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Abstract. 

Opioid receptor antagonist naltrexone reduces alcohol consumption and relapse in both 

humans and rodents. The present study investigated whether hypothalamic 

proopiomelanocortin (POMC) neurons (producing beta-endorphin and melanocortins) play a 

role in alcohol drinking behaviors. Both male and female mice with targeted deletion of two 

neuronal Pomc enhancers nPE1 and nPE2 (nPE-/-), resulting in hypothalamic-specific POMC 

deficiency, were studied in short-access (4-h/day) drinking-in-the-dark (DID, alcohol in one 

bottle), intermittent access (IA, 24-hour cycles of alcohol access every other day, alcohol vs. 

water in a two-bottle choice), and alcohol deprivation effect (ADE) models. Wild-type nPE+/+ 

exposed to 1-week DID rapidly established stable alcohol drinking behavior with more intake in 

females, whereas nPE-/- mice of both sexes had less intake and less preference. Though nPE-

/- showed less saccharin intake and preference than nPE+/+, there was no genotype difference 

in sucrose intake or preference in the DID paradigm. After 3-week IA, nPE+/+ gradually 

escalated to high alcohol intake and preference, with more intake in females, whereas nPE-/- 

showed less escalation. Pharmacological blockade of mu-opioid receptors with naltrexone dose-

dependently reduced intake in nPE+/+, but had blunted effects in nPE-/- of both sexes. When 

alcohol was presented again after 1-week abstinence from IA, nPE+/+ of both sexes displayed 

significant increases in alcohol intake (ADE or relapse-like drinking), with more pronounced 

ADE in females, whereas nPE-/- did not show ADE in either sex. Our results suggest that 

neuronal POMC is involved in modulation of alcohol “binge” drinking, escalation and “relapse”, 

probably via hypothalamic-mediated mechanisms, with sex differences. 
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Introduction 

Alcohol alters the activity of the endogenous opioid peptide systems, especially the 

proopiomelanocortin (POMC) system.  POMC is a large peptide precursor that is cleaved to 

form several biologically active neuropeptides, including the potent opioid peptide beta-

endorphin, adrenocorticotropic hormone (ACTH), beta-lipotropin and alpha-melanocyte-

stimulating hormone. In the brain, a specialized population of neurons concentrated in the 

hypothalamic arcuate nucleus expresses POMC [Rubinstein et al. 1996; Cowley et al. 2001; de 

Souza et al. 2005; Zhou et al. 2013]. In the rat hypothalamus, alcohol increased POMC mRNA 

levels after 15 days of an alcohol-containing liquid diet [Angelogianni & Gianoulakis 1993]. 

Compared with Sardinian alcohol non-preferring (sNP) rats, there were higher basal POMC 

mRNA levels in the hypothalamus of Sardinian alcohol-preferring (sP) rats, and chronic alcohol 

exposure further increased hypothalamic POMC mRNA levels in sP rats [Zhou et al. 2013]. 

Taking into account the well-established role of beta-endorphin in reward-related and feeding 

behaviours [Koch et al. 2015], the genetically-determined POMC gene expression at basal 

levels and in response to alcohol exposure may contribute to the high alcohol preference and 

consumption observed in alcohol-preferring rats [Zhou et al. 2013] and mice [Jamensky & 

Gianoulakis 1999]. Decreased POMC mRNA and peptide levels were also reported in the rat 

hypothalamus after chronic alcohol exposure [Rasmussen et al. 2002; Navarro et al. 2013]. 

Acute alcohol administration stimulates the release of beta-endorphin in the nucleus 

accumbens [Marinelli et al. 2003]. Since activation of the mu-opioid receptor (MOP-r) by beta-

endorphin (the main endogenous ligand of MOP-r) is rewarding and increases dopamine 

release [Spanagel et al. 1991], beta-endorphin is involved in the reinforcing effects and 

motivational behaviors of alcohol [Koob & Kreek 2007; Roth-Deri et al. 2008]. Indeed, central 

beta-endorphin administration was found to induce conditioned place preference in rats [Amalric 

et al. 1987]. Numerous pharmacological studies provide strong evidence that opioid antagonists 

decrease alcohol reward, consumption, cue-induced reinstatement of alcohol seeking, and 
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relapse-like drinking in rodents and primates [Altschuler et al. 1980; Volpicelli et al. 1986; 

Heyser et al. 1999], as well as alcohol drinking, craving and relapse episodes in human 

alcoholics [O’Malley et al. 1992, 2002; Volpicelli et al. 1992].  Moreover, alcohol consumption is 

reduced in MOP-r knockout mice [Roberts et al. 2000; Hall et al. 2001; Becker et al. 2002], 

further suggesting that the MOP-r is involved in the regulation of alcohol drinking. 

Previous studies on the role of beta-endorphin in modulation of alcohol drinking using 

beta-endorphin deficient mice have been inconclusive.  For example, earlier publications 

reported no effect of a global knockout of pituitary and brain beta-endorphin on alcohol intake in 

mice [Grisel et al. 1999; Grahame et al. 2000]. However, in another study, beta-endorphin 

knockout mice were reported to show decreased alcohol consumption [Racz et al. 2008]. A 

limitation of this global beta-endorphin knockout mouse model is that it does not allow for 

clarification of which specific regions of POMC cells (e.g., hypothalamus) are involved in alcohol 

drinking behaviors. Recently, two neuronal Pomc enhancers (nPE1 and nPE2) that are 

necessary and sufficient for POMC expression specifically in hypothalamic arcuate neurons 

have been identified [de Souza et al. 2005]. Simultaneous transcriptional interference of nPE1 

and nPE2 enhancer function by insertion of a neomycin selection cassette in the enhancer 

vicinity abolishes POMC gene expression in the arcuate nucleus of transgenic mice, while 

leaving normal levels of POMC expression in pituitary cells [Bumaschny et al. 2012]. Therefore, 

to determine the role of hypothalamic POMC neurons in alcohol drinking behaviors in the 

present study, we used transgenic mice with region-specific POMC deficiency resulting from 

selective deletion of both nPE1 and nPE2 in combination with the neomycin insertion [Lam et al. 

2015].  Specifically, we determined the effect of tissue-specific Pomc gene manipulation on: (a) 

binge-like drinking in a 1-week drinking-in-the-dark model; (b) acquisition and escalation in a 

chronic (3-week) intermittent access drinking model of dependence-like behavior, and (c) 

relapse-like drinking in an alcohol deprivation effect model in both male and female mice. 
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MATERIALS AND METHODS 

[See Supplemental Information in detail] 

ANIMALS: [1] Pomc neuronal enhancers nPE1 and nPE2 knockout mice: The present study 

used intact, male and female, single-housed mice with targeted deletion of the POMC neuronal 

enhancers nPE1 and nPE2 (nPE-/-) [Lam et al. 2015]. The gene mutations were generated by 

homologous recombination in 129S6/SvEvTac Taffy ES cells to produce the chimeric founder 

mice, followed by 7-10 generations of backcrossing onto the C57BL/6J strain for the mice used 

in these studies. Specifically, in these transgenic mice, simultaneous deletion of nPE1 and 

nPE2 and insertion of a neomycin selection cassette in the enhancer vicinity in the context of 

the intact Pomc pituitary enhancer region and proximal promoter abolishes POMC gene 

expression in the arcuate nucleus, without altering POMC expression in pituitary cells. 

Consistent with this previous report, nPE-/- mice which lack hypothalamic POMC expression, 

had greater daily food intake in 3 measures at 8-9 weeks of age (5.3g in males and 5.4g in 

females, respectively) than nPE+/+ or nP+/- mice (~3.3g in males and 3.2g in females, 

respectively, for both genotypes). At the time the experiments started (age 8-10 weeks), nPE-/- 

mice had greater body weight (~ 40g and 35g in males and females, respectively) than nPE+/+ 

or nP+/- mice (~ 27g and 23g in males and females, respectively, for both genotypes). Such 

phenotypes are not shown until the age of 7-8 weeks. 

[2] Beta-endorphin deficient (B-END KO) mice: The mice were generated and described 

previously [Rubinstein et al. 1996]. A premature STOP codon was inserted into the coding 

region of exon 3 of Pomc, to prevent the translation of the N -terminal beta-endorphin peptide by 

homologous recombination in 129/Sv-derived D3 ES cells. The original chimeric founder was 

subsequently backcrossed onto the C57BL/6N strain for 5 generations and then onto the 

C57BL/6J strain for a minimum of 5 additional generations to produce the mice used in these 

studies. These mice have a global deletion of beta-endorphin peptides, but intact melanocortins 

and ACTH (including in the pituitary and hypothalamus).  
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EXPERIMENTS 

I. Effects of genotype and sex on alcohol (7.5%, 15% or 30%) drinking in a 4-day 

drinking-in-the-dark (DID) model in nPE and B-END mice. Based on the publication by Rhodes 

et al. (2005), the basic paradigm with our modifications was as follows: Starting at 3 hours after 

lights off, water bottles were replaced with 10-ml alcohol tubes filled with alcohol solution for 4 

hours [Zhou et al. 2016]. For 4 days, alcohol intake values were recorded daily after 4 hours of 

alcohol access. These data were used to calculate alcohol intake (i.e., g ⁄ kg). Genotype 

(nPE+/+, nPE+/- vs. nPE-/-) and sex (male vs. female) differences were then tested using this 

4-hour short access model (Table 1A). To further assess the genotype differences in alcohol 

preference, nPE+/+ and nPE-/- mice of both sexes were exposed to the 2-bottle “alcohol vs. 

water” free choice regimen on day 5, after 4 days of DID. In control experiments, sucrose (8% or 

16% [w/v]) or saccharin (0.1%, 0.2% or 0.4% [w/v]) was used in place of alcohol, with an 

otherwise identical procedure. For each concentration of alcohol, saccharin or sucrose, 

separate groups of transgenic mice were used to test the following behaviors: [1.1] Alcohol 

drinking in nPE; [1.2] Sucrose drinking in nPE; and [1.3] Saccharin drinking in nPE; as well as 

[1.4] Alcohol drinking in B-END knockout. 

II. Effects of genotype and sex on alcohol (15%) drinking in a 3-week intermittent access 

(IA) drinking model with acute administration of naltrexone, morphine or nor-binaltorphimine 

(nor-BNI) in nPE mice. 

The primary objective of the following experiments was to determine whether intermittent 

24-hour long access to alcohol for 3 weeks led to elevated alcohol intake and preference in 

each sex and genotype. The IA model used was similar to an earlier protocol [Hwa et al. 2011], 

with some modifications: mice had 24 hours of access to 15% alcohol every other day for 3 

weeks with food available at all times in a two-bottle free choice paradigm. For IA alcohol 

drinking [Experiment 2.1], the procedures were identical to those of the above DID model with 

the following exceptions: starting at 3 hours after lights off, both the water and 15% alcohol 
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tubes were placed on home cages for 24 hours. The left ⁄right position of the tubes was set up 

randomly. Alcohol and water intake values were recorded after 4, 8 and 24 hours of alcohol 

access on the drinking days. These data were used to calculate alcohol intake (i.e., g ⁄ kg) and 

relative preference for alcohol (i.e., alcohol intake ⁄ total fluid intake) (Table 1B). 

After 3 weeks of IA, the next objective was to determine whether there was potential 

genotype or sex difference in drinking behavior in the IA mice following mu- and kappa-opioid 

receptor activation or blockade (morphine, naltrexone or nor-BNI). Separate groups of mice 

were used for each dose of each compound in the following experiments: [2.2] IA with acute 

naltrexone (1 or 2 mg/kg); [2.3] IA with acute morphine (0.1 or 0.3 mg/kg); and [2.4] IA with 

acute nor-BNI (5 mg/kg). On the test day, 15% alcohol was presented after a single injection of 

the compound or vehicle, and then alcohol and water intake values were recorded at 4-, 8- and 

24-hour time points. 

III. Effects of genotype and sex on alcohol “relapse” drinking in an alcohol deprivation 

effect (ADE) model in nPE mice. In the baseline session, alcohol and water intake was recorded 

at 4, 8 and 24 hours after 3 weeks of IA. Alcohol bottles were then removed and presented 

again after 7 days of abstinence, at which point alcohol and water intake values were recorded 

in 2 post-abstinence sessions (on 2 consecutive days). We determined whether IA to alcohol for 

3 weeks led to the ADE with potential genotype and sex differences (Table 1C). 

IV. Effects of genotype and sex on basal corticosterone levels, analgesic threshold and 

locomotor activity in nPE mice. To determine genotype and sex differences in basal levels of the 

stress hormone corticosterone, blood samples from nPE+/+ and nPE-/- mice were collected 3 

hours after lights off (the time of the drinking sessions), and plasma corticosterone levels were 

assayed by radioimmunoassays. The thermal analgesic threshold was measured 3 hours after 

lights off in another set of nPE mice, by recording response latency (rear paw flutter, rear paw 

licking or jumping) at 52o C on the hot plate. Spontaneous locomotor activity was evaluated 3 

hours after lights off in another set of nPE mice of both sexes in a place conditioning apparatus 
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for 30 min. In the first of two tests, half the mice for each genotype were placed in the white 

chamber and half in the black one. In the second test, the chambers were switched. The 

average values of both tests were used as the locomotor activity score. 

Data analysis. In most experiments, group differences in alcohol (sucrose or saccharin) 

intake and preference ratios were analyzed using 2-, 3- or 4-way ANOVA for genotype, sex, 

time (hour, day or session) and treatments followed by Newman-Keuls post-hoc multiple 

comparison tests. The results of statistical analysis for all the figures and tables are provided in 

detail in the Supplemental Information. 

RESULTS 

I. Effects of genotype and sex on alcohol drinking in a DID model in nPE and B-END mice. 

1.1. Genotype and sex differences in alcohol intake and preference in nPE mice.  

Between genotypes, nPE-/- mice of both sexes drank less alcohol at every concentration 

tested than nPE+/+ mice over the 4-day DID experiment (Figure 1) [p<0.000001]. Over time, 

wild-type nPE+/+ mice of both sexes escalated their intake; in contrast, only male nPE-/- mice 

escalated their intake. Though 3-way ANOVA did not reveal any significant main effect of sex at 

15% alcohol, previous studies in mice have found sex differences in alcohol drinking behaviors 

[Racz et al. 2008; Hall et al. 2001; Hwa et al. 2011; Becker & Koob 2016]. Using these 

published findings as an a priori hypothesis, post-hoc results showed that nPE+/+ females had 

more 15% alcohol intake on day 3 than nPE+/+ males [p<0.05] (Figure 1B). At 30% 

concentration, nPE+/+ females consumed more alcohol than nPE+/+ males during the first 2 

days [p<0.05] (Figure 1C). When alcohol preference was tested on day 5 using a 4-h, 2-bottle 

(alcohol vs. water) choice paradigm, nPE-/- mice of both sexes had less preference than 

nPE+/+ mice at 7.5% and 15% concentrations [p<0.05] (Table 2A, 2B). However, heterozygous 

nPE+/- mice did not show any differences from nPE+/+ in either sex after exposure to 15% 

alcohol over the 4-day DID experiment (Figure 1 Additional Information in Supplementary 

Information). 
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1.2. No genotype or sex differences in sucrose drinking or preference. The specificity of 

the genotype differences on alcohol intake was tested using sucrose, another caloric reinforcer, 

with the same DID paradigm. During 4 days of 8% or 16% sucrose drinking, there was no 

genotype difference in either sex (Table S2), though there was a slight, but not significant, 

decrease in nPE-/- females at 16%. 

1.3. Genotype and sex differences in saccharin drinking and preference. The specificity 

of the genotype differences in alcohol intake was further tested by examining intake of non-

caloric reinforcer saccharin. nPE-/- mice of both sexes drank less 0.4% saccharin than nPE+/+ 

ones over the 4-day DID experiment [p<0.01], with apparent but non-significant reductions in 

intake at 0.1% and 0.2% concentrations (Table 3A, 3B). When saccharin preference was tested 

on day 5 using a 4-h, 2-bottle choice paradigm, nPE-/- mice of both sexes had less 0.2% 

saccharin preference than nPE+/+ mice [p<0.05] (Table 3C, 3D), with no genotype differences 

in 0.1% or 0.4% saccharin preference. Between sexes, nPE+/+ females had more saccharin 

intake than nPE+/+ males at 0.4% over the 4-day DID experiment [p<0.01] (Table 3A, 3B). 

1.4. Sex, but no genotype, differences in alcohol intake in B-END+/+ and B-END-/- mice. 

In the following experiments, the alcohol exposure procedure was identical to the above 

experiment. During 4 days of DID, there was no genotype difference in alcohol intake in either 

sex (Table S4), though B-END+/+ females showed more alcohol intake than B-END+/+ males 

at all alcohol concentrations tested [p<0.000001]. When 15% alcohol preference was tested on 

day 5, there was no genotype difference (data not shown). 

 

II. Effects of genotype and sex on alcohol (15%) drinking in an IA model with acute 

administration of naltrexone, morphine or nor-BNI in nPE mice. 

2.1 Genotype and sex differences in alcohol intake and preference in an IA model. 

nPE+/+ males exposed to the 2-bottle “alcohol (15%) vs. water” free choice regimen every other 

day for 3 weeks had more alcohol intake and higher preference ratios in session 10 than in 
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session 1 [p<0.00001] (Figure 2A, left). To test our a priori hypothesis that there were sex 

differences, we included the post-hoc result showing that nPE+/+ females had more intake than 

the nPE+/+ males in sessions 1 and 10 [p<0.01], even though 4-way ANOVA did not show any 

significant main effect of sex and session interaction (Figure 2A, right). In contrast, neither male 

nor female nPE-/- mice escalated their intake significantly over 3 weeks, with lower consumption 

[p<0.000001] and preference [p<0.000001] than nPE+/+ mice. 

To test if there were genotype or sex differences in alcohol consumption at other 

concentrations after 3 weeks of IA, the alcohol concentration was switched to 7.5% or 30% 

alcohol. In both sexes, nPE-/- mice had significantly less alcohol intake at both concentrations 

than nPE+/+ mice [p<0.000001] (Table S5A, S5B). Additionally, nPE+/+ females had more 

intake than nPE+/+ males at both concentrations [p<0.05]. 

2.2. Genotype differences in the effect of mu-opioid receptor antagonist naltrexone on 

alcohol drinking after IA.  Naltrexone at 1 mg/kg had no significant effect on alcohol intake or 

preference ratio in nPE+/+ or nPE-/- mice of either sex (Table S6). At 2 mg/kg, naltrexone 

reduced alcohol intake in nPE+/+ mice of both sexes, with a significant effect at 24 hours 

[p<0.01] (Table 4). In contrast, naltrexone did not reduce alcohol intake in nPE-/- mice of either 

sex. 

2.3. No genotype differences in the effect of mu-opioid receptor agonist morphine on 

alcohol drinking after IA.  Morphine at 0.1 mg/kg (Table S7) and 0.3 mg/kg doses (Table S8) 

had no effect on alcohol intake or preference in nPE+/+ or nPE-/- mice of either sex. 

2.4. Sex, but no genotype, differences in the effect of selective kappa-opioid receptor 

antagonist nor-BNI on alcohol drinking after IA.  At 5 mg/kg, nor-BNI significantly reduced 

alcohol intake at 24 hours in male mice of both genotypes [p<0.05] (Table S9A). In females, 

however, there was no effect of acute nor-BNI treatment on either genotype (Table S9B). 

 

III. Effects of genotype and sex on alcohol relapse-like drinking in an ADE model. 
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nPE+/+ mice of both sexes had significantly more alcohol intake at the 4-hour time point 

in the post-abstinence session 1 (P1) than in the baseline session (BL) [p<0.05] (Figure 3A). 

However, nPE-/- mice did not show this ADE, regardless of sex. To test our a priori hypothesis 

that there were sex differences, we included the post-hoc result showing that nPE+/+ females 

had more intake than nPE+/+ males in session P1 [p<0.05], even though 3-way ANOVA did not 

show any significant main effect of sex (Figure 3A).  There was no change in alcohol 

preference in either genotype at 4 hours (Figure 3B). There was no ADE observed at 8 or 24 

hours in either genotype (Table S10). 

 

IV. Effects of genotype and sex on basal corticosterone levels and analgesic threshold, but not 

locomotor activity in nPE mice. 

As shown in Table 5A, there were higher basal corticosterone levels in female nPE+/+ 

mice than in males of the same genotype [p=0.05]. Between the genotypes, nPE-/- mice had 

significantly higher basal corticosterone levels than nPE+/+ mice in each sex [p<0.005]. nPE+/+ 

females had a longer basal hot plate response than wild-type males [p<0.01], and nPE-/- mice 

had significantly shorter basal hot plate responses than nPE+/+ mice in each sex [p<0.05] 

(Table 5B). There were no sex or genotype differences in locomotor activity (Table 5C). 

DISCUSSION 

The main objective in this study was to investigate the potential role of hypothalamic-

specific POMC deficiency in alcohol drinking behaviors. Activation of POMC neurons affects 

food intake (which is increased and decreased by endorphin and melanocortins, respectively) 

especially at the onset of the dark cycle [Mercer et al. 2013], so we purposely monitored 

drinking activity at the beginning of the dark cycle using the DID model.  We found that nPE-/- 

mice of both sexes displayed lower alcohol intake than wild-type nPE+/+ mice during the 4-hour 

DID “binge” drinking (Figure 1), suggesting a contribution of basal hypothalamic POMC 

expression to the genetically determined tendency of nPE-/- mice towards reduced voluntary 
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alcohol consumption. Consistently, nPE-/- mice displayed less alcohol preference at 7.5% and 

15% (but not 30%) alcohol concentrations than nPE+/+ mice of both sexes (Table 2). When the 

blood alcohol concentration was measured after DID, nPE-/- males had significantly lower blood 

alcohol levels than nPE+/+ males (Table S1), which correlated with their reduced alcohol 

consumption levels, suggesting that differences in alcohol intake between the two genotypes 

resulted in altered blood alcohol levels. This result is consistent with earlier studies that found 

lower basal POMC mRNA levels in the hypothalamus of DBA/2 mice or sNP and ANA rats, 

which have low consumption and preference, than those in the hypothalamus of C57BL/6 mice 

or sP and AA rats, which have high consumption and preference [Jamensky & Gianoulakis 

1999; Marinelli et al. 2000; Zhou et al. 2013]. 

An issue with standard methods of measuring alcohol intake in terms of grams 

consumed/kilograms of body weight emerges when comparing groups with different body 

weights (e.g., genotype or sex). nPE-/- mice had greater body weights (~40%) than nPE+/+ 

mice, resulting in an exaggerated reduction in alcohol intake (g/kg). Similarly, males in general 

have greater body weight than females, with relatively less intake (g/kg). Of importance, nPE-/- 

mice showed less alcohol preference than nPE+/+ mice in both DID and IA models, which did 

not take into account the body weight differences between the genotypes. 

It is unlikely that the genotype differences between nPE-/- and nPE+/+ mice on alcohol 

intake were secondary to a general suppression of consumption behaviors. In fact, nPE-/- mice 

displayed higher food consumption, replicating results from a previous report [Bumaschny et al. 

2012]. In the DID paradigm, nPE deletion did not alter sucrose preference and only slightly 

reduced sucrose consumption without reaching statistical significance (Table S2). When both 

nPE-/- and nPE+/+ females were exposed to 15% alcohol in 0.1% saccharin, nPE-/- mice had 

less alcohol intake of and preference for the palatable alcohol/saccharin solution than the wild-

type, indicating that nPE deletion may not alter “alcohol-tasting” (Table S3). Further, the 

reduction of alcohol intake found in nPE-/- mice in the 2-bottle, free choice IA model was 
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coupled with a compensatory increase in water intake, clearly indicating the absence of 

nonspecific sedative behaviors, with normal locomotor activity (Table 5C). 

Consistent with a previous report using a 2-bottle choice paradigm [Grisel et al. 1999], 

the present study did not find any genotype differences in alcohol intake in either male or female 

B-END knockout mice using the DID paradigm (Table S4). Because 10-20 fold more beta-

endorphin is synthesized in the pituitary than in the hypothalamus [Zhou et al. 2013], global 

beta-endorphin deletion may affect pituitary functions more dramatically than hypothalamic 

ones. It is very possible that pituitary POMC may not be involved in certain alcohol-related 

behaviors. In our unpublished study, using Tpit knockout mice provided by Dr. Drouin (resulting 

in pituitary-specific POMC knock-out with intact hypothalamic POMC), we did not observe any 

differences in the DID model between Tpit-/- and wild-type in either males or females (n=7-8 for 

each genotype). Though our data were preliminary, they suggest that pituitary POMC is not 

involved in regulation of DID drinking behavior.  

The gradual increase in alcohol intake which results from long access to voluntary 

alcohol drinking is analogous to the loss of control over drug-taking found in human alcoholics 

[Koob 2008]. In nPE+/+ mice in the IA paradigm (intermittent 24-hour cycles of alcohol access) 

[Hwa et al. 2011], alcohol intake rapidly escalated over the course of weeks to high levels of 

consumption, with a parallel progressive elevation of alcohol preference (Figure 2). Therefore, 

we further tested the effect of hypothalamic POMC deletion on alcohol drinking during chronic 

escalation using an IA model, and found that nPE-/- mice showed less intake of and preference 

for 15% alcohol in both sexes than the wild-type (Figure 2). Our results suggest that the 

activation of hypothalamic POMC is involved in modulation of alcohol escalation drinking 

behavior. 

The phenomenon of a transient increase in alcohol consumption and/or preference after 

a period of imposed abstinence has been termed the alcohol deprivation effect (ADE) and has 

been observed in several species, including humans [Burish et al. 1981], rats and mice [Holter & 
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Spanagel 1999; Sajja & Rahman 2013]. Since the ADE in a long-term alcohol drinking model 

persists through very long abstinence phases (up to one year) and is hardly modified by 

external stimuli [Vengeliene et al. 2014], it can be regarded as an animal model of relapse 

behavior and craving with excellent predictive validity. In the present study, nPE+/+ mice of both 

sexes displayed the ADE with increased alcohol intake after 1 week of abstinence (Figure 3A). 

In contrast, nPE-/- mice had a blunted ADE in both sexes, suggesting the involvement of 

hypothalamic POMC in relapse-like drinking behavior. Consistently, in several different rodent 

studies [Holter & Spanagel 1999; Heyser et al. 2003], the ADE can be suppressed by 

naltrexone, a compound that is also effective in reducing relapse behavior in human alcoholics 

[O’Malley et al. 2002]. Because high baselines of the preference ratio in nPE+/+ mice were 

developed after 3 weeks of IA, it is possible that the ADE could not increase the preference ratio 

further when tested during post-abstinence sessions due to a ceiling effect (Figure 3B). 

In rats, chronic naltrexone (0.06 mg/kg) for 5 days was able to suppress the ADE only on 

the first post-abstinence day. Twenty-four hours after the last naltrexone injection, however, 

significant increases in alcohol consumption were observed [Heyser et al. 2003]. Similar results 

were reported after administering naloxone (1 mg/kg/h) in rats: reduced alcohol intake on post-

abstinence day 1, with an increase on day 2 (1 day after the last naloxone) [Holter & Spanagel 

1999]. These published results show a rebound increase in alcohol consumption in the post-

abstinence period after MOP-r blockade was discontinued. One possible explanation is that the 

MOP-r antagonists may enhance hypothalamic POMC function, as we recently reported 

increased POMC mRNA levels in the rat hypothalamus 24 hours after naloxone at 1 mg/kg 

[Zhou & Kreek 2015]. Based on these reasons, we purposely examined drinking activity on the 

2nd post-abstinence day in the present study, and found that nPE-/- mice did not show a 

rebound effect in the 2nd ADE test (Figure 3). Therefore, the observed reduction of ADE 

behaviours by hypothalamic POMC deletion is of interest, as it would constitute a clear piece of 

experimental evidence that hypothalamic POMC is responsible for relapse-like alcohol drinking. 
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Using the IA model, our current study confirmed that acute naltrexone administration 

dose-dependently (1-2 mg/kg) reduced alcohol intake and preference in the wild-type mice of 

both sexes [Hwa et al. 2011] (Table 4). These findings raise the possibility that alcohol may 

cause the release of endogenous beta-endorphin [Marinelli et al. 2003], which plays a functional 

role in alcohol drinking. Indeed, our study found that nPE-/- mice of both sexes had lower 

preference for 15% alcohol in both the DID (Table 2) and IA models (Figure 2), suggesting a 

reduced rewarding effect of alcohol when central POMC and beta-endorphin are reduced. In 

parallel, nPE-/- mice had significantly less saccharin (natural non-caloric reinforcer) intake and 

preference (Table 3) than the wild-type, suggesting that hypothalamic POMC deletion may 

produce an anhedonia-like state in nPE-/- mice. 

In line with the result on drinking behavior, the observation of decreased analgesic 

thresholds and increased corticosterone levels in nPE-/- mice (Table 5A, B) further indicates 

less beta-endorphin/MOP-r tone resulting from neuronal POMC deletion, as it is known that the 

beta-endorphin/MOP-r system plays modulatory roles in pain and hypothalamic-pituitary-adrenal 

activity in both humans and rodents [Rubinstein et al. 1996; O’Malley et al. 2002]. Because 

enkephalins can also bind and activate MOP-r, we purposely investigated whether naltrexone 

could affect alcohol drinking in nPE-/- mice lacking beta-endorphin, the main peptide ligand of 

MOP-r.  We observed no effect of acute treatment with 2 mg/kg naltrexone on alcohol drinking 

in the IA paradigm in either nPE-/- males or females (Table 4), though the same naltrexone 

treatment significantly reduced alcohol drinking in nPE+/+ mice.  Therefore, it is unlikely that 

enkephalins contribute much to the MOP-r mediated modulation of alcohol drinking. Our results 

agree with one earlier study showing that voluntary alcohol intake was not affected in 

enkephalin knockout mice [Racz et al. 2008]. For comparison with naltrexone, we tested the 

selective kappa-opioid receptor antagonist nor-BNI in nPE+/+ and nPE-/- mice and found that 

males of both the genotypes displayed similar reductions in intake after the blockade of kappa-

opioid receptors (Table S9), indicating no disruption of kappa function after the neuronal POMC 
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deletion. This also suggests that the lack of significant effect of naltrexone in nPE-/- males was 

not due to their lowered basal alcohol intake, as nor-BNI still significantly reduced their alcohol 

intake. Together, these findings suggest that POMC/beta-endorphin acting on MOP-r plays a 

critical role in alcohol drinking. 

Consistent with previous studies in mice [Racz et al. 2008; Hall et al. 2001; Hwa et al. 

2011] and rats (see a recent review by Becker & Koob in 2016), we confirmed sex differences in 

alcohol drinking, with higher alcohol intake in females. Furthermore, we observed that the 

genotype differences in alcohol consumption between nPE+/+ and nPE-/- mice was much 

greater in females than in males in the DID, IA and ADE models. The POMC deficiency affected 

female mice more strongly than males, suggesting that POMC may influence alcohol 

consumption in a sex-specific manner.  Our findings are in line with previous studies showing 

decreased voluntary alcohol intake in beta-endorphin and MOP-r knockout mice with more 

notable differences in females [Racz et al. 2008; Hall et al. 2001]. Sex differences have also 

been observed in human alcoholism: in a genetic study, the Pomc two-marker haplotype was 

associated with alcoholism in women, but not in men [Racz et al. 2008]. Our results further 

contribute to the idea that opioid regulation of alcohol dependence differs between sexes 

[Becker & Koob in 2016]. Additionally, there may be many physiological differences between 

sexes, such as metabolism [Burke et al. 2016], behavioral differences (like pain threshold) and 

endocrine systems (presented in the current study), that could underlie sex differences in 

alcohol-related behaviors. 

The role of endogenous melanocortins (encoded by the Pomc gene) in regulation of 

alcohol-related behavior is not clear. Pharmacological studies have found that activation of 

melanocortin 4 receptors (MC4) by specific agonists significantly reduced alcohol “binge”-like 

drinking in a DID model, with reduced appetitive and consumption behaviors [Sprow et al. 

2016]. A very recent study, however, found that MC4 receptor blockade in the ventral tegmental 

area reduced alcohol self-administration in rats [Shelkar et al. 2015], indicating that endogenous 
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melanocortins mediated the alcohol-reinforcing effect via MC4 activation, which is consistent 

with reports on other drugs of abuse [Hsu et al. 2005]. The present study also suggests that 

melanocortins and MC4 receptors may be involved in reduced alcohol drinking in hypothalamic 

POMC/melanocortin deficient mice. Further investigation of this is needed [Olney et al. 2014]. 

Summary: Use of a transgenic mouse line with tissue-specific deletion of POMC in 

hypothalamic neurons uniquely allowed us to explore the potential roles of hypothalamic POMC 

neurons in the context of multiple behavioral models of alcohol addiction (including DID, IA and 

ADE). Our studies clearly indicate an essential role of the POMC system in the regulation of 

alcohol-related behaviors in both male and female mice. This corroborates earlier studies 

showing that voluntary alcohol intake is decreased in MOP-r knockout mice lacking the receptor 

for the endogenous ligand beta-endorphin (produced in POMC neurons), with more pronounced 

effects in females. 
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Figure legends 

Figure 1. Genotype and sex differences in alcohol (7.5, 15 and 30%) intake in a 4-day drinking-

in-the-dark (DID) model in male (left) and female (right) nPE mice. Alcohol at 7.5% (A), 15% (B) 

or 30% (C) concentration was presented 3 hours after the beginning of dark cycle, and alcohol 

intake values (EtOH intake, g/kg) were recorded after 4 hours of alcohol access for 4 days in the 

nPE+/+ and nPE-/- mice. Genotype difference: *p<0.05, **p<0.01 or ***p<0.005 vs. nPE+/+ at 

the same day; Day difference: #p<0.05, ##p<0.01 or ###p<0.005 vs. the same genotype at day 

1 session; and Sex difference: &p<0.05 or &&p<0.01 vs. the same genotype on the same day 

by 3-way ANOVA with Newman-Keuls post-hoc tests (n=5-8 in nPE-/-; n=5-9 in nPE+/+). (A) 

7.5% alcohol: 3-way ANOVA revealed significant effects of genotype [F (1, 64) = 181, 

p<0.000001] and day [F (3, 64) = 25, p<0.00001], with no interaction between genotype and 

sex. Post hoc analysis showed that: (1) between genotypes, nPE-/- males had less intake than 

nPE+/+ ones on day 1, day 2 and day 4 [p<0.01 for all]; nPE-/- females had less intake than 

nPE+/+ ones on day 2, day 3 and day 4 [p<0.01 for all]; and (2) between the days,  nPE+/+ 
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males had more intake on day 4 than on day 1 [p<0.01]; nPE-/- males had more intake on day 3 

and day 4 than on day 1 [p<0.01 for both]; and nPE+/+ females had more intake on day 3 and 

day 4 than on day 1 [p<0.05 and p<0.01, respectively]. (B) 15% alcohol: 3-way ANOVA 

revealed significant effects of genotype [F (1, 104) = 156, p<0.000001], day [F (3, 104) = 9.7, 

p<0.00005] and interaction between genotype and sex [F (1, 104) = 9.9, p<0.005]. Post hoc 

analysis showed that: (1) between genotypes, nPE-/- males had less intake than nPE+/+ ones 

on day 2, day 3 and day 4 [p<0.05 for all]; nPE-/- females had less intake than nPE+/+ ones on 

day 2, day 3 and day 4 [p<0.001 for all]; and (2) between the days, nPE+/+ males had more 

intake on day 4 than on day 1 [p<0.05]; nPE+/+ females had more intake on day 2, day 3 and 

day 4 than on day 1 [p<0.05 for all]. Though overall sex difference was not significant, the post-

hoc showed that nPE+/+ females had more intake on day 3 than nPE+/+ males [p<0.05]. (C) 

30% alcohol: 3-way ANOVA revealed significant effects of genotype [F (1, 72) = 196, 

p<0.000001], day [F (3, 72) = 5.1, p<0.005], sex [F (1, 72) = 5.3, p<0.05], interaction between 

genotype and sex [F (1, 72) = 21, p<0.0001] and interaction between day and sex [F (3, 72) = 

5.7, p<0.005]. Post hoc analysis showed that: (1) between genotypes,  nPE-/- males had less 

intake than nPE+/+ ones on day 1, day 2 and day 4 [p<0.05 for all]; nPE-/- females had less 

intake than the nPE+/+ ones from day 1 to day 4 [p<0.005 for all]; (2) between the days, nPE+/+ 

males had more intake on day 3 and day 4 than on day 1 [p<0.05 and p<0.01, respectively]; 

nPE-/- males had more intake on day 3 and day 4 than on day 1 [p<0.05 for both]; and (3) 

between sex, nPE+/+ females had more intake on day 1 and day 2 than nPE+/+ males [p<0.01 

and p<0.05, respectively]. 

 

Figure 2. Genotype and sex differences in alcohol intake (A) and alcohol preference (B) in male 

(left) and female (right) nPE mice in a 3-week intermittent access (IA) drinking model. The mice 

were exposed to the 2-bottle “alcohol (15%) vs. water” choice regimen every other day for 3 

weeks. Data are presented after 4, 8 and 24 hours of alcohol access in session 1 on the first 
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day and in session 10 after 3 weeks of IA. Genotype difference: *p<0.05, **p<0.01 or *** 

p<0.005 vs. nPE+/+ at the same hour; Session difference: #p<0.05, ##p<0.01 vs. the same 

genotype at the same hour in session 1; and Sex difference: &&p<0.01 vs. the same genotype 

in the same session by 4-way ANOVA with Newman-Keuls post-hoc tests (n=5 in nPE-/-; n=5-8 

in nPE+/+). (A) Alcohol intake: 4-way ANOVA revealed significant effects of genotype [F (1, 

114) = 146, p<0.000001], session [F (1, 114) = 44, p<0.00001], sex [F (1, 114) = 13, p<0.0005], 

and interaction between genotype and sex [F (1, 114) = 6.9, p<0.01]. Post hoc analysis showed 

that: (1) in Session 1 between genotypes, nPE-/- males had less intake at 24 hours than nPE+/+ 

males [p<0.01]; nPE-/- females had less intake at 8 and 24 hours than nPE+/+ females [p<0.05 

and p<0.001, respectively]; (2) in Session 10 between genotypes, both nPE-/- males and 

females had less intake at 8 and 24 hours than nPE+/+ ones [p<0.01 for all]; and (3) between 

the Sessions, nPE+/+ males had more intake at 24 hours in Session 10 than in Session 1 

[p<0.05]. Though overall interaction between sex and session was not significant, nPE+/+ 

females had more intake at 24 hours than nPE+/+ males [p<0.01] in both Sessions 1 and 10. 

(B) Alcohol preference: 4-way ANOVA revealed significant effects of genotype [F (1, 114) = 70, 

p<0.000001] and session [F (1, 114) = 63, p<0.000001]. Post hoc analysis showed that: (1) in 

Session 1 between genotypes, both nPE-/- males and females had less preference at 8 hours 

than nPE+/+ ones [p<0.05]; (2) in Session 10 between genotypes, nPE-/- females had less 

preference at 4 hours than nPE+/+ ones [p<0.05]; and (3) between the Sessions, both nPE+/+ 

males and females had more preference at 4 hours in Session 10 than in Session 1 [p<0.01 and 

p<0.05, respectively]; and nPE-/- males had more preference at 4 and 24 hours in Session 10 

than in Session 1 [p<0.05 for both]. 

 

Figure 3. Genotype and sex differences in 15% alcohol intake (A) and preference (B) in male 

(left) and female (right) nPE mice in an alcohol deprivation effect (ADE) model at the 4-hour 

time point. In the baseline session (BL) after 3 weeks of intermittent access (IA) drinking, 
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alcohol and water intake values (EtOH intake, g/kg) were recorded after 4, 8 and 24 hours of 

alcohol access. After 7 days of abstinence, alcohol bottles were presented again and the 

alcohol and water intake were recorded for the 1st post-abstinence session (P1). The 2nd post-

abstinence session (P2) was 1 day later. Data in this figure is at the 4-hour time point. Genotype 

difference: *p<0.05 or ***p<0.005 vs. nPE+/+ in the same session; Session difference, #p<0.05 

or ##p<0.01 vs. the same genotype at the baseline session BL; and Sex difference: &p<0.05 vs. 

the same genotype in the same session by 3-way ANOVA with Newman-Keuls post-hoc tests 

(n=9-15 in nPE-/-; n=11-15 in nPE+/+). (A) Alcohol intake: 3-way ANOVA revealed significant 

effects of genotype [F (1, 138) = 58, p<0.000001], session [F (2, 138) = 8.8, p<0.005], 

interaction between genotype and sex [F (1, 138) = 6.6, p<0.05] and interaction between 

genotype and session [F (2, 138) = 3.9, p<0.05]. Post hoc analysis showed that: (1) In 

comparison with baseline session BL, nPE+/+ males and females had more intake in session 

P1 [p<0.05 and p<0.01, respectively]; and (2) between genotypes, nPE-/- males and females 

had less intake in session P1 than nPE+/+ ones [p<0.001 for both]; nPE-/- females had less 

intake in session P2 than nPE+/+ ones [p<0.05]. Though overall sex difference was not 

significant, nPE+/+ females had more intake in session P1 than nPE+/+ males [p<0.05]. (B) 

Alcohol preference: 3-way ANOVA revealed a significant effect of genotype [F (1, 138) = 19.9, 

p<0.00005]. Post hoc analysis showed that in session BL, nPE-/- males had less alcohol 

preference than nPE+/+ [p<0.05].  
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Table 1 Experimental timelines 

A. The 4-day alcohol drinking-in-the-dark (DID) model and alcohol preference (alcohol vs. 

water) on day 5 

Day 1 Day 2 Day 3 Day 4 Day 5 
4-h alcohol  4-h alcohol 4-h alcohol 4-h alcohol 4-h alcohol vs water 

 

B. The 3-week chronic intermittent access (IA) drinking model (15% alcohol vs. water) every 

other day with mu- (naltrexone) or kappa- (nor-BNI) opioid antagonist or morphine. 

Week 1 Week 2 Week 3 Week 4 
24-h alcohol 

vs water 
24-h alcohol 

vs water 
24-h alcohol 

vs water 
Naltrexone, nor-BNI, 

morphine 
 

C. The alcohol deprivation effect (ADE) model after 1-week abstinence from a 3-week chronic 

intermittent access (IA) drinking (15% alcohol vs. water) 

Week 1 Week 2 Week 3 Week 4 Week 5 
24-h alcohol 

vs water 
24-h alcohol 

vs water 
24-h alcohol 

vs water 
Baseline (BL) 

Alcohol abstinence ADE, alcohol vs 
water 

Post-abstinence (P) 
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Table 2. Genotype differences in alcohol (7.5, 15 or 30%) preference after 4 days of drinking-in-

the-dark (DID) in male (A) and female (B) nPE mice. On the test day, both alcohol (7.5%, 15% 

or 30% concentration) and water were presented 3 hours after the beginning of dark cycle, and 

alcohol and water intake values were recorded after 4 hours of alcohol access in the nPE+/+ 

and nPE-/- mice. Genotype difference: *p<0.05 vs. nPE+/+ by Student’s t-tests. 

2A. Males  
 7.5% alcohol 15% alcohol 30% alcohol 

Genotype nPE+/+ 
(n=5) 

nPE-/- 
(n=5) 

nPE+/+ 
(n=9) 

nPE-/- 
(n=8) 

nPE+/+ 
(n=5) 

nPE-/- 
(n=5) 

Alcohol  
Preference 

0.83±0.04 0.60±0.03 * 0.67±0.08 0.42±0.04 * 0.50±0.04  0.51±0.04 

 
 2B. Females 

 7.5% alcohol 15% alcohol 30% alcohol 
Genotype nPE+/+ 

(n=5) 
nPE-/- 
(n=5) 

nPE+/+ 
(n=6) 

nPE-/- 
(n=7) 

nPE+/+ 
(n=6) 

nPE-/- 
(n=6) 

Alcohol  
Preference 

0.85±0.03 0.54±0.02 * 0.61±0.06 0.24±0.07 * 0.55±0.07  0.59±0.02 
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Table 3. Genotype and sex differences in saccharin (0.1, 0.2 and 0.4%) intake in a 4-day 

drinking-in-the-dark (DID) model in male (A) and female (B) nPE mice, and in saccharin 

preference after the 4-day DID model in male (C) and female (D) nPE mice. In A and B, 

saccharin was presented 3 hours after the beginning of the dark cycle, and saccharin intake 

values were recorded after 4 hours of saccharin access for 4 days in the nPE+/+ and nPE-/- 

mice. In C and D, on the test day (day 5), both saccharin (0.1%, 0.2% or 0.4% concentration) 

and water were presented, and saccharin and water intake were recorded after 4 hours of 

saccharin access. Genotype difference: *p<0.05, **p<0.01 or ***p<0.005 vs. nPE+/+ on the 

same day; Sex difference: &&p<0.01 vs. the same genotype on the same day. 

At 0.1% or 0.2% saccharin, 3-way ANOVA did not show any differences between the 

genotypes, sexes or any effects of their interaction. At 0.4% saccharin, 3-way ANOVA revealed 

significant effects of genotype [F (1, 64) = 53, p<0.000001], sex [F (1, 64) = 56, p<0.000001], 

and interaction between genotype and sex [F (1, 64) = 43, p<0.00005]. Post hoc analysis 

showed that: (1) between genotypes, both nPE-/- males and females had less intake from day 1 

to day 4 than nPE+/+ ones [p<0.01 for all]; nPE-/- females had less intake at 8 and 24 hours 

than nPE+/+ ones [p<0.005 for both], and (2) between sexes, nPE+/+ males had less intake 

from day 1 to day 4 than nPE+/+ females [p<0.01 for all].  

3A. Saccharin intake in males (n=5) 
 Day 1  Day 2  Day 3  Day 4  

Genotype nPE+/+ nPE-/- nPE+/+ nPE-/- nPE+/+ nPE-/- nPE+/+ nPE-/- 
0.1%, g/kg 0.16± 

0.02 
0.10± 
0.03 

0.19± 
0.03  

0.08± 
0.02 

0.25± 
0.02  

 0.07± 
0.04 

0.28± 
0.03 

0.09± 
0.03 

0.2%, g/kg 0.29± 
0.03 

0.18± 
0.03  

0.31± 
0.02 

0.13± 
0.02  

0.48± 
0.08  

0.19± 
0.03  

0.53± 
0.07  

0.20± 
0.04  

0.4%, g/kg   0.65± 
0.08 && 

 0.32± 
0.07*  

0.69± 
0.10 &&  

0.38± 
0.08* 

 0.78± 
0.13 &&  

0.32± 
0.08* 

0.81± 
0.04 && 

0.33± 
0.08**  

 
 
3B. Saccharin intake in females (n=5) 
 Day 1  Day 2  Day 3  Day 4  

Genotype nPE+/+ nPE-/- nPE+/+ nPE-/- nPE+/+ nPE-/- nPE+/+ nPE-/- 
0.1%, g/kg 0.19± 

0.03   
0.04± 
0.01  

0.22± 
0.04 

 0.12± 
0.02  

0.25± 
0.01 

0.11± 
0.01 

0.23± 
0.02  

0.07± 
0.02  
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0.2%, g/kg 0.29± 
0.08 

0.24± 
0.05  

 0.54± 
0.05  

 0.22± 
0.05  

0.49± 
0.04  

0.23± 
0.04  

 0.53± 
0.02 

 0.12± 
0.04  

0.4%, g/kg 1.03± 
0.05  

0.38± 
0.08***  

1.03± 
0.08  

0.39± 
0.02***  

1.16± 
0.04  

0.36± 
0.07***  

1.07± 
0.06  

 0.31± 
0.08***  

 
 
3C. Saccharin preference in males (n=5). Genotype difference: *p<0.05 vs. nPE+/+ on 

the same day by Student’s t-tests.  

 0.1%  0.2%  0.4%  
Genotype nPE+/+ nPE-/- nPE+/+ nPE-/- nPE+/+ nPE-/- 

Preference 0.94±0.02 0.90±0.01 0.91±0.04 0.67±0.07 * 0.95±0.01  0.92±0.02 
 
 
3D. Saccharin preference in females (n=5). Genotype difference: *p<0.05 vs. nPE+/+ on 

the same day by Student’s t-tests.  

 0.1%  0.2%  0.4%  
Genotype nPE+/+ nPE-/- nPE+/+ nPE-/- nPE+/+ nPE-/- 

Preference 0.92±0.02 0.90±0.01 0.93±0.02 0.71±0.01 * 0.94±0.02  0.92±0.02 
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Table 4. Genotype differences in effects of acute naltrexone (NTN, 2 mg/kg) on alcohol (15%) 

intake and its preference in male (A) and female (B) nPE mice after 3 weeks of intermittent 

access (IA) drinking.  On the test day, 15% alcohol was presented 10 min after a single i.p. 

injection of NTN in saline or vehicle, and then alcohol and water intake values were recorded 

after 4, 8 and 24 hours of alcohol access. In the following experiments, mice in each sex were 

assigned to one of four treatment groups: (1) nPE+/+ with vehicle as control; (2) nPE+/+ with 2 

mg/kg NTN; (3) nPE-/- with vehicle as control; and (4) nPE-/- with 2 mg/kg NTN. Data are 

presented after 4, 8 and 24 hours of alcohol access. Genotype difference: *p<0.05 or *** 

p<0.005 vs. nPE+/+ mice at the same hour after the same treatment; Naltrexone treatment 

difference:  ##p<0.01or ###p<0.005 vs. vehicle control in the same genotype at the same hour 

by 4-way ANOVA with Newman-Keuls post-hoc tests. 

4A. Males 
Genotype  nPE+/+ (n = 6) nPE-/- (n = 5) 
Treatment  vehicle 2 mg/kg NTN vehicle 2 mg/kg NTN 

Intake 4h 7.6 ± 1.6 2.0 ± 0.7 2.9 ± 0.51 1.0 ± 0.08 
g/kg 8h 10.9 ± 2.2 5.8 ± 1.1 4.5 ± 0.8 * 2.8 ± 0.10 

 24h 21.4 ± 2.1 15.5 ± 1.3 ## 9.8 ± 2.2 *** 7.4 ± 0.7 
Preference 4h 0.86 ± 0.02 0.40 ± 0.13 0.68 ± 0.11 0.51 ± 0.10 

 8h 0.71 ± 0.04 0.54 ± 0.08 0.66 ± 0.12 0.53 ± 0.12 
 24h 0.67 ± 0.04 0.66 ± 0.06 0.58 ± 0.11 0.58 ± 0.13 

 
 4B. Females 

Genotype  nPE+/+  (n = 5) nPE-/- (n = 5) 
Treatment  vehicle 2 mg/kg NTN vehicle 2 mg/kg NTN 

Intake 4h 5.6 ± 0.79  4.1 ± 0.37  1.4 ± 0.57  1.2 ± 0.46  
g/kg 8h 12.0 ± 0.89 8.7 ± 0.64  2.9 ± 1.03 *** 3.3 ± 0.88 

 24h 24.4 ± 1.85 17.2 ± 1.3 ### 6.2 ± 1.9 *** 8.4 ± 1.8 
Preference 4h  0.81 ± 0.06  0.72 ± 0.08  0.51 ± 0.14  0.59 ± 0.08  

 8h 0.74 ± 0.07 0.68 ± 0.09 0.42 ± 0.14 0.53 ± 0.12 
 24h 0.65 ± 0.04 0.63 ± 0.07 0.42 ± 0.12 0.50 ± 0.11 

 
 Alcohol intake: 4-way ANOVA revealed significant effects of genotype [F (1, 102) = 181, 

p<0.000001], NTN treatment [F (1, 102) = 28, p<0.00005], interaction between genotype and 

sex [F (1, 102) = 4.2, p<0.05], interaction between genotype and NTN treatment [F (1, 102) = 

15, p<0.0005], and interaction between sex and NTN treatment [F (1, 102) = 4.9, p<0.05]. Post 
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hoc analysis showed that: (1) between genotypes, nPE-/- males and females had less intake at 

8 and 24 hours than nPE+/+ ones [p<0.05 and p<0.005, respectively]; and (2) NTN treatment at 

2 mg/kg reduced intake at 24 hours in nPE+/+ males and females [p<0.01 and p<0.005, 

respectively], but not in the nPE-/- ones. 

 Alcohol preference: 4-way ANOVA revealed significant effects of genotype [F (1, 102) = 

12, p<0.001], NTN treatment [F (1, 102) = 4.3, p<0.05], interaction between genotype and sex 

[F (1, 102) = 4.5, p<0.05], and interaction between sex and NTN treatment [F (1, 102) = 5.2, 

p<0.05]. 
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Table 5. Genotype and sex differences in basal plasma corticosterone levels (A), thermal 

analgesic thresholds (B), and spontaneous locomotor activity (C) in male and female alcohol 

naive nPE mice. (A) Blood was collected 3 hours after lights off and plasma corticosterone 

levels were assayed by radioimmunoassays; (B) The thermal analgesic threshold test was 

carried out on a hot plate at 52o C 3 hours after lights off and the time to response (rear paw 

flutter, rear paw licking or jumping) was measured; and (C) 3 hours after lights off, mice were 

placed into the appropriate chamber of conditioned place preference apparatus for 30 min, and 

locomotor activity was assessed as the number of “crossovers”. Genotype difference: *p<0.05 

or ***p<0.005 vs. nPE+/+ mice in the same sex; and Sex difference: &p=0.05 or &&p<0.01 v. 

nPE+/+ mice in the same genotype by 2-way ANOVA with Newman-Keuls post-hoc tests. 

 5A. Plasma corticosterone: Significant effects of genotype [F (1, 13) = 57.6, p<0.000005] 

and interaction between genotype and sex [F (2, 13) = 5.51, p<0.05]. Post hoc analysis showed 

that between genotypes, nPE-/- of both sex had higher plasma corticosterone levels than 

nPE+/+ [p<0.005 for both]. Though overall sex difference was not significant, nPE+/+ females 

nPE+/+ females had higher plasma corticosterone levels than nPE+/+ males [p=0.05]. 

5A males  females  
Genotype nPE+/+ (n=4) nPE-/- (n=5) nPE+/+ (n=5) nPE-/- (n=4) 

Corticosterone, ng/ml 41 ± 5 187 ± 10 *** 84 ± 25   & 162 ± 13 *** 
  
  

 5B. Hot plate responses: Significant effects of genotype [F (1, 29) = 18.8, p<0.0005] and 

sex [F (2, 29) = 17.5, p<0.0005]. Post hoc analysis showed that: (1) between genotypes, nPE-/- 

of both sexes had shorter responses than nPE+/+ [p<0.05 for both]; and (2) between sexes, 

nPE+/+ females had longer hot plate responses than nPE+/+ males [p<0.01]. 

5B males  females  
Genotype nPE+/+ (n=9) nPE-/- (n=8) nPE+/+ (n=9) nPE-/- (n=7) 

second 27 ± 4.1 14 ± 1.0 * 38 ± 2.3 && 26 ± 2.0 * 
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5C. Locomotor activity  
5C males  females  

Genotype nPE+/+ (n=8) nPE-/- (n=8) nPE+/+ (n=5) nPE-/- (n=5) 
Crossover (30 min) 273 ± 45 255 ± 27 280 ± 62 231 ± 59 
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