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A. Proof of Asymptotic Properties

This section proves Theorems 1-3 explained in Section 3.4 by using techniques from empirical

process theory. Suppose the study duration is T = [0, τ ]. Let (θ0, α0, Λ0) denote the true

parameter values of (θ, α, Λ), and (θ̂, α̂, Λ̂) denote the MLEs. To establish the asymptotic

properties of the MLEs, we impose the following regularity conditions:

(A1) The true parameter value θ0 belongs to the interior of a compact set Θ within the

domain of θ.

(A2) With probability 1, X(t) and Z(t) is left-continuous with uniformly bounded left and

right derivatives in [0, τ ].

(A3) For some constant c0, P (C ≥ τ | X ,Z) > c0 > 0 with probability 1.

(A4) For some positive constant M0, M
−1
0 < σ2

0e < M0 and M−1
0 < cTΣ0b c < M0 for any

‖c‖ = 1.

(A5) The transformation function H(·) is four-times differentiable with H(0) = 0 and

H ′(0) > 0. In addition, there exist positive constants µ0 and κ0 such that

(1 + x)H ′(x) exp{−H(x)} ≤ µ0(1 + x)−κ0 .



Furthermore, there exists a constant ρ0 > 0 such that

sup
x

{
|H ′′(x)|+ |H(3)(x)|+ |H(4)(x)|

H ′(x) (1 + x)ρ0

}
<∞,

where H(3) and H(4) are the third and fourth derivatives.

(A6) For some t ∈ [0, τ ], if there exist a deterministic function c(t) and v such that c(t) +

vTX(t) = 0 with probability 1, then c(t) = 0 and v = 0.

(A7) With some positive probability, ZT
1Z1 has full rank, where Z1 denotes a matrix with

each row equal to the observed covariate Z1(t)
T at the time of each measurement.

(A8) The potential observation process of Y (t) has a continuous intensity over [0, τ ].

(A9) For a fixed integer r ≥ 2, α0(t) lies in W r,∞(R), where W r,∞(R) is a Sobolev space

consisting of the functions with bounded rth derivatives.

(A10) For a fixed constant r0 such that 1/(4r) < r0 < 1/3, (Kn,Mn) satisfies

Mn = O(log log n),

Kn = O(nr0).

(A11) A partition of T, {0 = s0 < s1 < · · · < sKn+1 = τ}, satisfies

s̄max/min
k
s̄k ≤ c1, and max

1≤k≤Kn
|s̄k+1 − s̄k| = o(K−1n ),

where s̄k = sk − sk−1, s̄max = max1≤k≤Kn+1 {s̄k}, and c1 is a positive constant.

Conditions (A1)-(A3) are the standard assumptions in survival analysis. Condition (A4) is

necessary to prove the existence of the NPMLEs. It can be easily verified that Condition

(A5) holds for all transformations commonly used, including the logarithmic transformations

described in Section 2. Condition (A6) implies that the columns of design matrix, say

X, for fixed effects should be linearly independent. When it holds, the inverse of XTX

exists. Condition (A7) implies that a similar condition is required for random effects. These
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conditions are used to prove identifiability of the parameters, following arguments similar

to those given by Kim et al. (2012). Condition (A8) prescribes that some subjects have

sufficient repeated measures. Finally, Condition (A9) grants sufficient smoothness of α0,

and Condition (A10) determines the size of the sieve space in terms of the number of knots

and the upper bound of the sieve functions. Condition (A11) is the restriction on the

length of subintervals of knots, which obviously holds for the equally spaced knots. For the

percentile-based knots, mink{sk − sk−1} should be away from zero to satisfy the condition.

Under the above conditions, the following theorem shows the consistency of the MLEs.

Theorem 1 Under Conditions (A1) - (A11),

θ̂ →p θ0, ‖α̂(t)− α0(t)‖W 1,∞(T) →p 0, ‖Λ̂(t)− Λ0(t)‖L∞(T) →p 0,

where ‖ · ‖W 1,∞(T) is the Sobolev norm on T and ‖ · ‖L∞(T) is the supremum norm on T.

Here, the Sobolev norm ‖α(t)‖W r,∞(T) is defined as ‖α(t)‖L∞(T) + ‖∇r
tα(t)‖L∞(T), where ∇r

t

is the rth derivative of a function with respect to t.

Proof of Theorem 1

Proof The whole proof can be divided into three steps: first, we construct some functions

in a sieve space, which approximate the true parameters; then by using empirical process

theory, we obtain one key inequality; finally, this inequality is used to obtain the consistency

result. Without loss of generality, we assume T = [0, 1].

Step 1 We construct some functions in Sn(m,Kn,Mn) to approximate the true parameter

α0(t). From the properties of B-spline functions (Schumaker, 2007, Chap. 4), we can define

a linear operator Q mapping W r,∞(T) to the sieve space. That is, for any g ∈ W r,∞(T),

Q[g] =
m+Kn∑
k=1

Ψk[g]Bm
k (t),
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where Ψk are the linear functionals in L∞(T). Moreover, according to Theorem 4.41 and

Corollary 6.26 of Schumaker (2007),

|Ψk[g]| ≤ (2m+ 1)9m−1‖g‖L∞(T),

and there exists a constant C(m) depending only on m such that

‖g −Q[g]‖L∞(T) ≤ C(m)∆̄r‖g‖W r,∞(T),

where ∆̄ = max{sk+1 − sk}. The above inequality holds even for non-equally-spaced knots

because we have τ/c1 ≤ s̄max(Kn + 1) ≤ c1τ from Condition (A11). Now, we define αn(t) =

Q[α0], then the following boundness holds

‖αn − α0‖L∞(T) ≤ O(K−rn ).

Step 2 We obtain a key inequality based on empirical process theory. Let Pn be the

empirical measure determined by n iid subjects, let P be its expectation, and let Gn be the

empirical process given by
√
n(Pn − P ). For simplicity of notation, we denote `(α, θ,Λ) as

the log-likelihood function from a single observation. Since (α̂, θ̂, Λ̂) maximizes Pn[`(α, θ, Λ̂)]

over the sieve space, it follows that

Pn[`(α̂, θ̂, Λ̂)] ≥ Pn[`(αn, θ0, Λ̂)].

By following arguments similar to those given by Zeng (2005), we can show that the ε−bracketing

numbers covering the constructed sieve space Ln, defined by

Ln =
{
`(α̃n, θ, Λ̂)− `(αn, θ0, Λ̂); α̃n ∈ Sn(m,Kn,Mn), ‖θ‖ ≤M

}
,
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is of order O(e2Mn/ε)m+Kn+d, where ‖θ‖ =
√
θT θ for θ ∈ Rd and M is a constant. According

to the Theorem 19.35 of van der Vaart (1998), Theorem 1 of Zeng and Cai (2005) and by the

identifiability conditions of Λ, which can be shown by following similar arguments in Kim

et al. (2012), we obtain

‖`(α̂, θ̂, Λ̂)− `(α0, θ0,Λ0)‖2L2(P ) ≤ Op(1)Bn(n,Kn,Mn), (A.1)

where Bn(n,Kn,Mn) = ec1MnK
1/2
n logKn/

√
n+ ec1Mn/Kr

n and c1 is a constant.

Step 3 We obtain the L2-convergence of the estimators. Suppose we select Kn and

Mn satisfying Assumption (A10). From the boundedness (A.1) and Assumptions (A6)

and (A7) (i.e., identifiability conditions of the parameters), we can obtain that θ̂ →p θ0,

‖α̂−α0‖L2(P ) →p 0 and ‖Λ̂−Λ0‖L2(P ) →p 0. Moreover, Bn(n,Kn,Mn)1/2 is the convergence

rate of (θ̂, α̂, Λ̂).

To obtain the convergence of α̂ in W 1,∞-space, we notice from Theorem 4.22 of Schumaker

(2007) that

‖∇r
t α̂(t)‖L∞(T) ≤ c2K

r
n

m+Kn∑
k=1

|ζk| ≤ O(MnK
r
n),

where ∇r
t is the rth derivative of a function with respect to t. Hence, according to the

Sobolev interpolation inequality (Adams and Fournier, 1975), we obtain

‖α̂(t)− α0(t)‖W 1,∞(T) ≤ Op(1) (MnK
r
n)δ0Bn(n,Kn,Mn)(1−δ0)/2, (A.2)

where δ0 = 1/(2r). By Assumption (A10), the right side of (A.2) converges to zero. There-

fore, Theorem 1 holds.

Now to achieve the asymptotic normality and the semiparametric efficiency of θ̂, we need

a tighter bound for the convergence rate of the estimators, which is stated in Theorem 2.
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Theorem 2 Under Conditions (A1) - (A11),

‖α̂(t)− α0(t)‖2L2(P ) + ‖Λ̂(t)− Λ0(t)‖2L2(P ) ≤ Op(K
−2r
n ) + op(n

−1/2),

where ‖ · ‖L2(P ) is the L2-norm with measure P .

Proof of Theorem 2

Proof Using the results of Theorem 1, we repeat the Step 2 of Theorem 1. Since α̂ is

within a W 1,∞-neighborhood of α0, based on the parameter identifiability conditions, the

left-hand side of (A.1) can be further bounded from above by the L2(P )-norm of ‖Λ̂− Λ0‖

and ‖α̂− α0‖. That is,

‖`(α̂, θ̂, Λ̂)− `(α0, θ0,Λ0)‖2L2(P ) ≤ op(1/
√
n) +Op(1/K

2r
n ).

Thus, Theorem 2 holds.

Theorem 3 Under Conditions (A1) - (A11), n1/2(θ̂ − θ0) weakly converges to a zero-mean

Gaussian process in Rdθ , where dθ is the dimension of θ. Furthermore, the asymptotic

covariance matrix of n1/2(θ̂ − θ0) achieves the semiparametric efficiency bound.

Proof of Theorem 3

Proof We will prove Theorem 3 by writing
√
n (θ̂−θ0) as a linear functional of the empirical

process Gn. Let `(α, Λ, θ) be the log-likelihood function from a single subject, and let

`0 = `(α0,Λ0, θ0).

Step 1 We define a least favorable direction for θ0. We treat ψ = (α, Λ) as the vector

of nuisance parameters with ψ0 = (α0, Λ0), and then the tangent space for ψ is given by

H = {h(t) = (h1(t), h2(t)); h(t) ∈ L2(T2)}. Let `ψ(ψ0, θ0)[h] be the derivative of ` with

respect to ψ along with the direction h1 for α and the direction h2 for Λ, and let `θ(ψ0, θ0)
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be the derivative of `0 with respect to θ. Then, a least favorable direction for θ0 is defined

as a tangent function h(t) ∈ H for ψ that satisfies

`∗ψ(ψ0, θ0)`ψ(ψ0, θ0)[h] = `∗ψ(ψ0, θ0)`θ(ψ0, θ0) a.s.,

where `∗ψ(ψ0, θ0) is the adjoint operator of `ψ(ψ0, θ0) in the Hilbert space L2(P ).

Step 2 We prove the existence and smoothness of the least favorable direction. The

existence can be shown by proving the operator `∗ψ(ψ0, θ0)`ψ(ψ0, θ0) is invertible based on

the Lax-Milgram theorem. The details of proofs are the same as in Zeng (2005).

Step 3 We construct the projection of h1(t) on the tangent space of the sieve space. The

tangent function for ψ at ψ̂ = (α̂, Λ̂) in the sieve space can be chosen by hn = (h1n(t), h2dΛ̂)

in L2(T2) such that

‖hn − h‖2L2(P ) ≤ O(K−2rn ) + op(n
−1/2).

Step 4 We derive the empirical process for
√
n (θ̂ − θ0). Since (ψ̂, θ̂) maximizes the log-

likelihood over the sieve space, the score along the path (ψ̂+ νhn, θ̂+ ν) is zero when ν = 0.

Thus, it holds that

Gn{`ψ(ψ̂, θ̂)[hn] + `θ(ψ̂, θ̂)} = −
√
nP {`ψ(ψ̂, θ̂)[hn] + `θ(ψ̂, θ̂)}. (A.3)

Since the function in the left side of (A.3), indexed by both (ψ̂, hn) ∈ W1,∞ and θ̂ ∈ Θ,

belongs to a P-Donsker class, we apply Theorem 2.11.23 of van der Vaart and Wellner

(1996). By linearizing the right side of (A.3) at the true parameters and approximating hn
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to h, we obtain that

−P {`ψθ(ψ0, θ0)[h] + `θθ(ψ0, θ0)}
√
n (θ̂ − θ0)

= Gn{`ψ(ψ0, θ0)[h] + `θ(ψ0, θ0)}+
√
nOp(‖ψ̂ − ψ0‖2L2(P ) + ‖hn − h‖2L2(P ) + ‖θ̂ − θ0‖2)

≤ Gn{`ψ(ψ0, θ0)[h] + `θ(ψ0, θ0)}+Op(
√
n/K2r

n ) + op(1).

Since the second term in the right side of the above equation is op(1) by Theorem 2 and

Assumption (A10) and −P {`ψθ(ψ0, θ0)[h] + `θθ(ψ0, θ0)} > 0, the asymptotic normality of

√
n (θ̂ − θ0) holds. Moreover, the influence function of θ̂ is given by

[−P {`ψθ(ψ0, θ0)[h] + `θθ(ψ0, θ0)}]−1{`ψ(ψ0, θ0)[h] + `θ(ψ0, θ0)}.

Clearly, the above influence function is contained in the tangent space, therefore, we conclude

that θ̂ is semiparametrically efficient.

B. Web Tables and Figures

Web Tables 1-3 present the simulation results based on 1000 replications with n = 500 and

α(t) = (t+0.5)−1.5 +(t/2+1)3−4. The Web Tables 1-3 report the average of the differences

between the true parameter and the estimates (Bias), the sample standard deviation of the

parameter estimates (SD), and the average of the standard error estimates (SEE), and the

coverage probability of 95% confidence intervals (CP). The confidence intervals for variances

are constructed based on the the Satterthwaite approximation. Web Tables 1 and 2 sum-

marize the performance of the proposed α̂(t), in terms of Bias, SD, the mean square error

(MSE), and the ratio of the MSE for α(t) estimates in the joint model to the counterpart in

the marginal model (MSER). Individual trajectories of PSA are illustrated in Web Figure 1.

The analysis results of the prostate cancer data with the AIC-based knot selection procedure

are presented in Web Table 4, and Web Figures 3-4.
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Web Table 1: Simulation results for true φ = 0.5 (i.e., missing not at random) with Kn ∈
{kAIC , kBIC , 2, 4, 8} interior knots of B-spline approximation. True values are α(τ20) =
−1.10, α(τ40) = −0.58, and α(τ80) = 2.16, where τp represents p% of study duration τ .

Joint Model Marginal Model

Kn Bias SD SEE CP MSE Bias SD MSE MSER

H(x) = x
kAIC α(τ20) -0.007 0.035 0.034 0.941 0.001 -0.039 0.036 0.003 0.448

α(τ40) -0.008 0.043 0.041 0.936 0.002 -0.048 0.043 0.004 0.453
α(τ80) -0.008 0.080 0.076 0.931 0.006 -0.060 0.080 0.010 0.638

kBIC α(τ20) -0.010 0.032 0.033 0.950 0.001 -0.042 0.033 0.003 0.398
α(τ40) -0.009 0.040 0.039 0.942 0.002 -0.049 0.041 0.004 0.415
α(τ80) -0.005 0.078 0.075 0.937 0.006 -0.057 0.078 0.009 0.648

2 α(τ20) -0.010 0.032 0.033 0.948 0.001 -0.042 0.033 0.003 0.394
α(τ40) -0.009 0.040 0.039 0.943 0.002 -0.049 0.041 0.004 0.411
α(τ80) -0.004 0.078 0.075 0.935 0.006 -0.056 0.078 0.009 0.651

4 α(τ20) -0.006 0.032 0.033 0.961 0.001 -0.038 0.033 0.003 0.423
α(τ40) -0.007 0.041 0.040 0.940 0.002 -0.047 0.042 0.004 0.442
α(τ80) -0.009 0.078 0.075 0.932 0.006 -0.061 0.078 0.010 0.625

8 α(τ20) -0.005 0.035 0.037 0.959 0.001 -0.037 0.036 0.003 0.477
α(τ40) -0.008 0.044 0.042 0.939 0.002 -0.048 0.045 0.004 0.465
α(τ80) -0.011 0.080 0.078 0.932 0.007 -0.063 0.081 0.010 0.632

H(x) = log(1 + x)
kAIC α(τ20) -0.007 0.035 0.034 0.937 0.001 -0.031 0.037 0.002 0.551

α(τ40) -0.007 0.041 0.039 0.936 0.002 -0.037 0.044 0.003 0.523
α(τ80) -0.007 0.071 0.067 0.937 0.005 -0.049 0.076 0.008 0.623

kBIC α(τ20) -0.011 0.033 0.032 0.929 0.001 -0.035 0.035 0.002 0.497
α(τ40) -0.005 0.038 0.038 0.951 0.001 -0.035 0.041 0.003 0.505
α(τ80) -0.004 0.069 0.066 0.940 0.005 -0.046 0.074 0.008 0.630

2 α(τ20) -0.012 0.033 0.032 0.929 0.001 -0.036 0.034 0.002 0.490
α(τ40) -0.005 0.038 0.038 0.953 0.001 -0.035 0.041 0.003 0.506
α(τ80) -0.004 0.069 0.066 0.941 0.005 -0.046 0.074 0.008 0.629

4 α(τ20) -0.007 0.033 0.033 0.948 0.001 -0.030 0.035 0.002 0.529
α(τ40) -0.008 0.039 0.038 0.945 0.002 -0.038 0.041 0.003 0.491
α(τ80) -0.007 0.069 0.067 0.937 0.005 -0.049 0.074 0.008 0.612

8 α(τ20) -0.006 0.035 0.035 0.949 0.001 -0.029 0.037 0.002 0.564
α(τ40) -0.008 0.041 0.040 0.938 0.002 -0.038 0.043 0.003 0.513
α(τ80) -0.009 0.072 0.069 0.938 0.005 -0.051 0.076 0.008 0.618
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Web Table 2: Simulation results for true φ = 0 (i.e., missing at random) with Kn ∈
{kAIC , kBIC , 2, 4, 8} interior knots of B-spline approximation. True values are α(τ20) =
−1.10, α(τ40) = −0.58, and α(τ80) = 2.16, where τp represents p% of study duration τ .

Joint Model Marginal Model

Kn Bias SD SEE CP MSE Bias SD MSE MSER

H(x) = x
kAIC α(τ20) 0.000 0.035 0.034 0.950 0.001 0.000 0.036 0.001 0.916

α(τ40) 0.001 0.041 0.040 0.942 0.002 0.001 0.044 0.002 0.878
α(τ80) 0.001 0.077 0.075 0.941 0.006 0.002 0.083 0.007 0.855

kBIC α(τ20) -0.003 0.032 0.032 0.958 0.001 -0.003 0.034 0.001 0.901
α(τ40) 0.000 0.039 0.039 0.945 0.001 0.000 0.042 0.002 0.862
α(τ80) 0.006 0.074 0.074 0.944 0.006 0.006 0.081 0.007 0.852

2 α(τ20) -0.003 0.031 0.032 0.958 0.001 -0.003 0.031 0.001 0.998
α(τ40) 0.000 0.038 0.039 0.946 0.001 0.000 0.038 0.001 0.998
α(τ80) 0.006 0.074 0.074 0.942 0.006 0.006 0.074 0.006 1.000

4 α(τ20) 0.001 0.032 0.033 0.962 0.001 0.001 0.032 0.001 0.997
α(τ40) 0.003 0.039 0.040 0.946 0.002 0.003 0.039 0.002 0.998
α(τ80) 0.001 0.075 0.075 0.949 0.006 0.001 0.075 0.006 1.000

8 α(τ20) 0.002 0.036 0.036 0.955 0.001 0.002 0.036 0.001 0.998
α(τ40) 0.002 0.042 0.042 0.952 0.002 0.002 0.042 0.002 0.998
α(τ80) -0.001 0.078 0.077 0.947 0.006 -0.001 0.078 0.006 1.000

H(x) = log(1 + x)
kAIC α(τ20) -0.002 0.034 0.034 0.943 0.001 -0.002 0.036 0.001 0.890

α(τ40) 0.000 0.040 0.039 0.950 0.002 0.000 0.044 0.002 0.828
α(τ80) 0.001 0.067 0.067 0.943 0.005 0.000 0.075 0.006 0.814

kBIC α(τ20) -0.005 0.032 0.032 0.944 0.001 -0.005 0.034 0.001 0.879
α(τ40) 0.002 0.038 0.038 0.954 0.001 0.002 0.042 0.002 0.812
α(τ80) 0.004 0.065 0.066 0.948 0.004 0.003 0.073 0.005 0.806

2 α(τ20) -0.006 0.032 0.032 0.943 0.001 -0.006 0.032 0.001 0.993
α(τ40) 0.003 0.038 0.038 0.954 0.001 0.003 0.038 0.001 0.992
α(τ80) 0.004 0.065 0.066 0.947 0.004 0.004 0.065 0.004 1.000

4 α(τ20) -0.001 0.032 0.033 0.940 0.001 -0.001 0.032 0.001 0.993
α(τ40) -0.000 0.038 0.038 0.957 0.001 -0.000 0.038 0.001 0.993
α(τ80) 0.001 0.066 0.066 0.948 0.004 0.001 0.066 0.004 1.000

8 α(τ20) 0.000 0.034 0.035 0.953 0.001 0.000 0.034 0.001 0.993
α(τ40) -0.000 0.040 0.040 0.960 0.002 -0.000 0.040 0.002 0.995
α(τ80) -0.001 0.068 0.069 0.952 0.005 -0.001 0.068 0.005 1.000
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Web Table 3: Simulation results by varying φ and H(·) when the interior knots of B-spline
approximation are selected by AIC (i.e., Kn = kAIC). τp represents p% of study duration τ .

H(x) = x H(x) = log(1 + x)

Parameter Target Bias SD SEE CP Bias SD SEE CP

φ = 0.0
β 0.5 -0.000 0.031 0.029 0.938 -0.000 0.028 0.029 0.961
σ2
e 0.1 -0.000 0.003 0.003 0.940 -0.000 0.003 0.003 0.951
σ2
b1 0.4 -0.003 0.028 0.028 0.949 -0.002 0.028 0.028 0.959
σ2
b2 0.2 -0.002 0.030 0.030 0.955 -0.002 0.026 0.027 0.952
ρ -0.1 0.002 0.087 0.085 0.946 0.003 0.076 0.079 0.961
γ 0.5 0.020 0.065 0.066 0.951 0.020 0.095 0.095 0.947
φ 0.0 -0.002 0.106 0.105 0.945 0.001 0.151 0.154 0.959
Λ(τ20) 0.3 -0.007 0.029 0.029 0.948 -0.011 0.035 0.035 0.943
Λ(τ40) 0.6 -0.003 0.050 0.050 0.940 -0.006 0.065 0.067 0.954
Λ(τ80) 1.3 0.023 0.116 0.115 0.950 0.011 0.165 0.165 0.954

φ = 0.5
β 0.5 -0.001 0.029 0.030 0.950 -0.001 0.030 0.029 0.939
σ2
e 0.1 -0.000 0.003 0.003 0.944 -0.000 0.003 0.003 0.937
σ2
b1 0.4 -0.002 0.028 0.028 0.957 -0.003 0.028 0.028 0.947
σ2
b2 0.2 -0.001 0.031 0.030 0.943 -0.002 0.028 0.027 0.953
ρ -0.1 0.002 0.090 0.087 0.942 0.003 0.082 0.080 0.948
γ 0.5 0.021 0.068 0.068 0.947 0.023 0.099 0.097 0.955
φ 0.5 0.019 0.108 0.108 0.946 0.014 0.159 0.158 0.957
Λ(τ20) 0.3 -0.008 0.031 0.030 0.936 -0.011 0.034 0.036 0.951
Λ(τ40) 0.6 -0.005 0.052 0.051 0.945 -0.009 0.066 0.068 0.958
Λ(τ80) 1.3 0.023 0.124 0.119 0.942 0.005 0.161 0.167 0.964

φ = 1.7
β 0.5 0.000 0.030 0.030 0.948 -0.000 0.030 0.029 0.947
σ2
e 0.1 -0.000 0.003 0.003 0.946 -0.000 0.003 0.003 0.952
σ2
b1 0.4 -0.001 0.030 0.029 0.939 -0.001 0.029 0.029 0.948
σ2
b2 0.2 -0.000 0.029 0.030 0.957 -0.003 0.027 0.027 0.957
ρ -0.1 -0.001 0.101 0.102 0.952 0.001 0.089 0.087 0.944
γ 0.5 0.026 0.087 0.086 0.941 0.026 0.112 0.111 0.947
φ 1.7 0.091 0.152 0.149 0.920 0.086 0.192 0.195 0.937
Λ(τ20) 0.3 -0.015 0.036 0.035 0.935 -0.015 0.040 0.041 0.946
Λ(τ40) 0.6 -0.009 0.067 0.065 0.942 -0.014 0.078 0.080 0.952
Λ(τ80) 1.3 0.025 0.151 0.153 0.959 -0.000 0.190 0.191 0.952
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Web Table 4: Joint analysis results of the prostate cancer data under the best fit of
transformation H(x) = log(1 + x) and 7 interior knots selected by AIC. The 50:50 mixture
of χ2 distributions is used for testing variances. Reference groups for categorical covariates
are T-stage=1, Gleason score between 2 and 6, and age<65. τp represents p% of study
duration τ .

Joint Model Marginal Model

Effect Est SE p-value Est SE p-value

Longitudinal PSA score
α(τ20) 0.331 0.088 .0002 0.546 0.092 < .0001
α(τ40) 0.960 0.136 < .0001 1.368 0.142 < .0001
α(τ60) 1.791 0.195 < .0001 2.390 0.201 < .0001
α(τ80) 2.628 0.263 < .0001 3.419 0.270 < .0001
log(baseline PSA+0.1) 0.510 0.034 < .0001 0.508 0.034 < .0001
T-stage 2 -0.062 0.064 .3334 -0.049 0.064 .4480
T-stage 3 or 4 0.012 0.117 .9154 0.021 0.117 .8602
Gleason score 7 to 9 0.056 0.060 .3462 0.042 0.060 .4793
Age 65-75 years -0.191 0.069 .0054 -0.203 0.069 .0035
Age > 75 years -0.117 0.088 .1829 -0.131 0.088 .1362
σ2
e 0.117 0.003 < .0001 0.118 0.003 < .0001

Random effects
σ2
b1

0.373 0.028 < .0001 0.371 0.027 < .0001
σ2
b2

0.207 0.018 < .0001 0.196 0.017 < .0001
ρ -0.121 0.055 .0290 -0.113 0.054 .0377

Informative drop-out
log(baseline PSA+0.1) 0.530 0.161 .0010
T-stage 2 1.183 0.320 .0002
T-stage 3 or 4 1.800 0.467 .0001
Gleason score 7 to 9 1.090 0.293 .0002
Age 65-75 years -1.183 0.329 .0003
Age > 75 years -1.546 0.471 .0010
φ 1.730 0.134 < .0001
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Web Figure 1: Individual trajectory of PSA. Case 1 are sample profiles for patients who
had complete follow-up. Case 2 are sample profiles for patients who dropped out of the study
due to the initiation of salvage hormone therapy. Case 3 are sample profiles for patients who
dropped out of the study due to prostate cancer recurrence.
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Web Figure 2: Bayesian information criterion (BIC) plotted for different transformations
H(x) = log(1 + ηx)/η and different numbers of interior knots (Kn). Expanding the range of
transformation parameter to η > 1 led to the smallest BIC at η = 1.6 and Kn = 6.
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ηx)/η and the number of interior knots (Kn).
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Web Figure 4: Coefficient function of log PSA score, adjusted by T-stage, gleason score,
and age, under the best fit of transformation H(x) = log(1 + x) and 7 control points. The
solid curve is an estimate from the joint model, and the dashed curve is an estimate from the
marginal model. The circles and dots present the full history of all post-radiation PSA values
for patients whose follow-up was informatively and non-informatively censored, respectively.
The mark ‘×’s on some circles indicate the last observation of PSA before the informative
censoring occurred.
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C. Assessing the Fit of Joint Model to Observed Data

In this section, we illustrate a graphical tool to assess the proposed joint model’s fit to the

observed data. Overall fit and model assumptions on observed covariates will be examined

based on residual plots. Recall that the final models fitted to the prostate cancer data were

yi(tij) = α(tij) + βTX + b1i + b2itij + ε(tij),

Λ(t |X, b) = H

(∫ t

0

exp{γTX + φ(b1i + b2iu)} dΛ(u)

)
,

where H(x) = log(1 + x). For our purposes, we consider two types of residuals for each of

the two processes. First, the residuals for the longitudinal model are defined as

ri(tij) = {yi(tij)− α̂(tij)− β̂TX1(tij)− b̂1i − b̂2itij}/σ̂e,

which is the difference between the observed and fitted values, conditioning on the empir-

ical Bayes estimates b̂1i and b̂2i given the model. Second, the martingale-based residuals

(Therneau et al., 1990) for the survival model are defined as Mi(∞), where

Mi(t) = Ni(t)−H
(∫ t

0

I(Vi ≥ u) exp{γ̂TX + φ̂(b̂1i + b̂2iu)} dΛ̂(u)

)

is the difference between the observed number of events over [0, t] and the expected coun-

terpart given the fitted model. For each individual in the data set we have computed both

residuals and the predicted outcomes ŷi(tij) = α̂(tij) + β̂TX1(tij) + b̂1i + b̂2itij and the risk

score γ̂TX + φ̂(b̂1i + b̂2iVi) at the observed survival time Vi. In Web Figure 5 (a) and (c),

we observed that the fitted loess curves in the plots of the residuals versus the fitted values

showed no systematic trends, suggesting a good overall fit for both longitudinal and drop-

out models. In Web Figure 5 (b) and (d), no systematic trends in residual plots against

log(baseline PSA + 0.1) values, the only continuous covariate in the fitted model, were

found. It appeared to support the linearity on baseline PSA effect.
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Web Figure 5: Residuals for the prostate cancer data.
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D. Sensitivity Analysis to the Dropout Mechanism

In this section, we suggest a simple way of examining sensitivity to the assumptions about

the missing data mechanism. As stated in the National Research Council (2010) report, it

is important to note:

With incomplete data, inference about the treatment arm means requires two types of as-

sumptions: (i) untestable assumptions about the distribution of missing outcomes data,

and (ii) testable assumptions about the distribution of observed outcomes. (Chapter 5,

page 85)

Strategies to check type (ii) assumptions have been extensively discussed in Section 6 and

Web Section C. Type (i) assumptions, however, are not testable with missing outcomes;

therefore, it is essential to conduct a sensitivity analysis under different type (i) assumptions.

In the proposed joint partially linear model (1), the distribution of the outcomes after drop-

out is nonidentifiable, and thereby we assume that it remains the same as before the drop-out.

One simple approach to exploring sensitivity to this assumption is to 1) introduce a sensitivity

parameter as the difference between the mean of observed and unobserved responses, and

then 2) examine how sensitive the results are over a clinically plausible range of the sensitivity

parameter.

Suppose an individual dropped out of the study at time d, and we focus on inference about

the mean µ(s) = E[Y (s)|X] of the intended outcome at time s. A sensitivity parameter δ(s)

can be formulated in our partially linear model with the following mean function:

E[Y (s)|T = d,X] = α(s) + βTX + δ(s)I(s > d), (A.4)

where the temporal trend of Y is assumed to change after dropout time d from α(s) to

α(s) + δ(s). With a known δ(s), the conditional mean of Y (s) is estimated as

Ê[Y (s)|T = d,X] = α̂(s) + β̂TX + δ(s)I(s > d),
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where α̂(·) and β̂ are the proposed MLEs. For each δ(s), then µ(s) can be obtained by

µ̃(s) =

∫
u

Ê[Y (s)|T = u,X] P̂{T = u|X} du,

where P̂{T = u|X} is the estimate of the conditional density Eb[P{T = u|X, b}] of drop-out

time T given the covariates X. These inference procedures about µ(s) will be repeated for a

user-specified set of sensitivity parameters. In our prostate cancer analysis, it is reasonable

to assume a log-transformed PSA level linearly increases after drop out, i.e., δ(s) = constant

×(s− d). In general, any user-specified sensitivity function δ(s) can be posited, which may

depend on drop-out time d and covariates as well.
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