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Summary: In biomedical research, a steep rise or decline in longitudinal biomarkers may indicate

latent disease progression, which may subsequently cause patients to drop out of the study. Ignoring

the informative drop-out can cause bias in estimation of the longitudinal model. In such cases a full

parametric specification may be insufficient to capture the complicated pattern of the longitudinal

biomarkers. For these types of longitudinal data with the issue of informative drop-outs, we develop

a joint partially linear model, with an aim to find the trajectory of the longitudinal biomarker.

Specifically, an arbitrary function of time along with linear fixed and random covariate effects is

proposed in the model for the biomarker, while a flexible semiparametric transformation model

is used to describe the drop-out mechanism. Advantages of this semiparametric joint modeling ap-

proach are the following: 1) it provides an easier interpretation, compared to standard nonparametric

regression models, and 2) it is a natural way to control for common (observable and unobservable)

prognostic factors that may affect both the longitudinal trajectory and the drop-out process. We

describe a sieve maximum likelihood estimation procedure using the EM algorithm, where the Akaike

information criterion (AIC) and Bayesian information criterion (BIC) are considered to select the

number of knots. We show that the proposed estimators achieve desirable asymptotic properties

through empirical process theory. The proposed methods are evaluated by simulation studies and

applied to prostate cancer data.

Key words: Joint models; Longitudinal data; Nonparametric maximum likelihood; Partially

linear model; Random effects; Sieve maximum likelihood; Transformation models.
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Joint Partially Linear Model for Longitudinal Data with Informative Drop-outs 1

1. Introduction

In prostate cancer studies, Prostate-specific Antigen (PSA) has been widely used to make

clinical decisions. Higher or rising PSA patterns after treatment are related to an increased

risk of prostate cancer recurrence. One important scientific goal is therefore to identify the

PSA trajectory among patients who are treated with radiation therapy for localized prostate

cancer (Proust-Lima et al., 2008). In cases where the treatment has been successful, PSA

levels are expected to drop over the first post-radiation year and then remain stable at low

levels (Zagars et al., 1995). In the other cases, however, PSA values after treatment declined

for a short period of time and then might rise again at later times, for example, as illustrated

in Web Figure 1. Hence, it is desirable to develop a flexible model to capture this nonlinear

temporal trend of PSA levels. One key challenge here is that the follow-up of PSA stopped

when salvage hormone therapy was initiated, which is known to change the PSA level or

when prostate cancer recurred, resulting in possibly informative drop-out which can lead to

bias for PSA trajectory estimation if not accounted for properly.

Motivated by the prostate cancer data, we propose a method that flexibly models longitu-

dinal trajectories of biomarkers using a partially linear model, while taking informative drop-

outs into account. We treat the informative drop-out as an event which makes subsequent

PSA measurements missing, and these unobserved measures are related to the drop-out

process via subject-specific random effects. Advantages of this semiparametric joint modeling

approach are 1) it provides an easier interpretation of the covariate effects, compared to

standard nonparametric regression models, and 2) it is a natural way to control for common

(observable and unobservable) prognostic factors that may affect both the longitudinal

trajectory and the informative drop-out.

Without considering complications due to the informative drop-out, several authors have

studied partially linear models for longitudinal/clustered data (Zeger and Diggle, 1994; Zhang
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2 Biometrics, 000 0000

et al., 1998; Lin and Ying, 2001; Lin and Carroll, 2001). Other related work about joint

models with time-varying coefficients, but not considering informative drop-outs, includes Cai

et al. (2012) and Lu and Huang (2015). In longitudinal studies, the problem of informative

drop-out has received enormous attention. Hogan and Laird (1997) provided an excellent

review of model-based approaches to handling incomplete longitudinal measurements, where

most of the existing methods are based on the full parametric specification of the longitudinal

model and dependence structure of the drop-out mechanism. We refer the readers to Hogan

and Laird (1997) for a more detailed explanation and discussion of the limitations of these

parametric models. The conventional pattern-mixture and selection models reviewed by them

were extended by Roy (2003) and Beunckens et al. (2008), who allowed multiple latent

subgroups of subjects (i.e., joint latent class models). The assumption on latent subgroups

has been relaxed by Muthén et al. (2011) so that a subject’s subgroup can differ for drop-out

and outcomes in their pattern-mixture and selection models. However, all these methods

assume some parametric or even linear trends for the longitudinal trajectories, therefore not

appropriate for our application.

Roy and Lin (2005) considered longitudinal data with missing time-varying covariates in

addition to informative drop-outs. They used a generalized linear mixed model for continuous

or binary longitudinal outcomes, and used a transition model to estimate missing time-

varying covariates. For informative drop-out, they used a conventional selection model where

a separate logistic regression model was fit at every scheduled visit, including the missing

longitudinal outcome as a covariate. Viewing the drop-out time as a continuous random

variable, the proportional hazards model is commonly assumed to characterize the drop-out

process, however, it may not be appropriate in some cases. For example, patients receiving

more aggressive treatment may suffer elevated risk in the beginning but may benefit in the

long term if they tolerate the treatment. Considering a general class of transformations for
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Joint Partially Linear Model for Longitudinal Data with Informative Drop-outs 3

such cases will lead to a better model fit. The transformation models for a single survival

time and recurrent event times have been extensively studied, dating back to Dabrowska and

Doksum (1988) and more recently by Kosorok et al. (2004) and Kim et al. (2012).

In this paper, we propose a joint partially linear model for longitudinal data with the

issue of informative drop-out, where the informative drop-out is allowed to be dependent on

covariates. By applying general transformation models for informative drop-out, we do not

restrict to the proportional hazards cases. The underlying trajectory is estimated using a

B-spline approach. A key advantage of a B-spline approach is the computational simplicity

of using a small number of knots and a parametric regression-type implementation via the

sieve approximation, which counterbalances the model complexity in the joint modeling

approach. The knot selection procedures based on AIC and BIC are described in Section 3

and numerically evaluated in Sections 4-5. Through our flexible, but readily interpretable,

modeling approach, we can detect significant changes in the trajectory, which may not be

found using linear mixed effects models due to their parametric model constraints, while

correcting biases caused by the informative drop-outs.

2. Joint Partially Linear Model (JPLM)

Let Y (t) be the longitudinal response at time t, and let T be the informative drop-out time.

We define X = {X(t); t > 0} and Z = {Z(t); t > 0} as the covariate processes of fixed and

random effects, respectively. The vectors of external covariates X(t) and Z(t) are possibly

time-varying, and their subsets are denoted as Xk(t) and Zk(t) (k = 1, 2) in the models (1)

and (2). We consider a partially linear model for Y (t)

Y (t) = α(t) + βTX1(t) + bTZ1(t) + ε(t), (1)

and a transformed Cox model for T with the cumulative hazard function

Λ(t | X ,Z, b) = H

(∫ t

0

exp{γTX2(u) + (φ ◦ b)TZ2(u)} dΛ(u)

)
, (2)
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4 Biometrics, 000 0000

where α(t) is the unspecified underlying trajectory, β and γ are the vectors of unknown

regression coefficients, Λ(·) is an unspecified non-decreasing function, and ε(t) is a white

noise process with variance σ2
e . To account for the correlation between Y (t) and T , we

introduce a common latent variable b, following a (multivariate) normal distribution with

mean zero and covariance matrix Σb. We assume Y (t) and T are independent, conditional

on X , Z and b. In the model (2), φ is a set of unknown constants with the same number of

elements as b, and φ ◦ b denotes the component-wise product of φ and b. For instance, if one

would expect that the informative drop-out is related to the current level of a biomarker, as

in our application, then (φ◦ b)TZ2(t) can take the form φ̃(b1 + b2t) by taking Z2(t) = (1, t)T ,

bT = (b1, b2) and φT = (φ̃, φ̃). We note that each patient’s longitudinal responses and

informative drop-out rate are linked through the unobservable latent factors b as well as the

observed common covariates, for example, if X1(t) = X2(t). The amount of variation in the

informative drop-out process due to the latent factors is characterized by φ.

In the model (2), the transformation function H(·) is assumed to be continuously differ-

entiable and strictly increasing, and is required to be specified in the analysis. For example,

H(x) can take the form of the logarithmic transformation,

H(x) =

 log(1 + ηx)/η, η > 0

x, η = 0.

The choices of η = 0 and η = 1 lead to the proportional hazards model and the proportional

odds model, respectively.

Let C be the non-informative drop-out time (e.g. administrative end date) assumed to be

independent of {Y (·), T , b} given X and Z, and let V = min(T,C) denote the observed

drop-out time. The observed data for the ith subject with ni repeated measurements are

denoted by Oi= {Yi(tij), Vi, ∆i, X(u), Z(u); tij 6 Vi, u 6 Vi, i = 1, . . . , n, j = 1, . . . , ni},

where ∆i = I(Ti 6 Ci) with I(·) being the indicator function. The log-likelihood function
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Joint Partially Linear Model for Longitudinal Data with Informative Drop-outs 5

for the observed data is given by

n∑
i=1

log

∫
b

ni∏
j=1

[
(2πσ2

e)
−1/2 exp

{
−(Yi(tij)− α(tij)− βTX1i(tij)− bTZ1i(tij))

2/(2σ2
e)
}]

×
[
λ(Vi) e

γTX2i(Vi)+(φ◦b)TZ2i(Vi) H ′
(∫ Vi

0

eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

)]∆i

× exp

{
−H

(∫ Vi

0

eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

)}
× f(b; Σb) db, (3)

3. Inference Procedure

We propose a maximum likelihood estimation procedure to estimate the finite dimensional

parameters θ = (β, γ, φ, σ2
e , Vec(Σb)), the underlying trajectory function α(t), and the

baseline cumulative hazard function Λ(t), where Vec(Σb) denotes the vector consisting of

the upper triangular elements of Σb. Specifically, in Section 3.1 we use sieve maximum

likelihood estimation for α(t) (Geman and Hwang, 1982; Shen and Wong, 1994) in which

α(t) is approximated by a combination of known basis functions (e.g., cubic B-splines) and

unknown sieve coefficients, while in Section 3.2 we use nonparametric maximum likelihood

estimation (NPMLE) for Λ(t) by allowing Λ(t) to be any increasing right-continuous function.

The transformation H(x) is fixed.

3.1 Sieve Approximation for α(t)

Suppose that subjects are followed up to a fixed time τ . We approximate α(t) in (1) through

a finite number of basis functions in a sieve space of t in T = [0, τ ] as follows:

α(t) '
m+Kn∑
k=1

ζkB
m
k (t),

where {Bm
k (·)} is a basis function of t with the highest degree less than m, ζk is the regression

coefficient with a fixed knot sequence, and Kn is the number of interior points in the sieve

space. Rigorously speaking, the sieve space for α(t) is defined as

Sn(m,Kn,Mn) =

{
α(t) : α(t) =

m+Kn∑
k=1

ζkB
m
k (t),

m+Kn∑
k=1

|ζk| 6Mn

}
,
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6 Biometrics, 000 0000

on a finite partition of T

{s1 = · · · = sm = 0 < sm+1 < · · · < sm+Kn < τ = sm+Kn+1 = · · · = s2m+Kn} ,

where the constants Kn and Mn depend on the data and the sample size (n). The bound-

edness condition
∑m+Kn

k=1 |ζk| 6 Mn guarantees the sieve space defined by Sn(m,Kn,Mn) is

a bounded set in a finite dimensional space. Unlike parametric regression, both the number

of knots and the coefficient of the basis function at each knot need to be estimated from the

data. In practice, m is usually chosen to be at least 2, which corresponds to a linear function.

In particular, we use cubic B-spline functions (m = 4),

Bm
k (t) =

t− sk
sk+m−1 − sk

Bm−1
k (t) +

sk+m − t
sk+m − sk+1

Bm−1
k+1 (t), for t ∈ [0, τ ]

and B1
k(t) = I(sk 6 t < sk+1) for k = 1, . . . , (m + Kn). By the properties of B-splines, for a

given t value, only at most m basis functions among {Bm
k (t)} are nonzero, therefore, α(t) is

approximated by a linear combination of {Bm
k (t)} on m nearest knot points at any point t.

Therefore, conditional on {Bm
k (t)}, and hence Kn and {sk}, we can use the methodology that

has been developed for the parametric longitudinal data analysis in this nonparametric con-

text. It consequently reduces the computational burden of using nonparametric estimation

in both longitudinal and survival components.

For the knot locations {sk}, equally-spaced knots are commonly used. For longitudinal

studies with the issue of informative drop-outs, however, we suggest choosing {sk} based

on the observed data. It can prevent an numerical problem in {ζk} caused by sparsity in

the later study period. To determine the number of interior knots with the best fit to the

data, we use the AIC- or BIC-based selection procedures. The performance of AIC as a knot

selection criterion has previously been investigated by Shibata (1981) and Ding and Wang

(2008) among others, but that of BIC has not been studied in the joint modeling context. The

proposed knot selection procedure is as follows. For a given Kn, locations of interior knots

are determined as every distinct q100/(Kn+1), the 100/(Kn + 1)th percentile of the observed
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Joint Partially Linear Model for Longitudinal Data with Informative Drop-outs 7

longitudinal measurement times. For example, when Kn = 3 and Kn = 9 are considered,

{q25, q50, q75} and {q10, q20, . . . , q90} are used as the locations of interior knots, respectively.

We next repeatedly fit the joint model using the candidate interior points Kn ∈ {2, 3, . . .},

and calculate AIC (or BIC). Then, the model with the smallest AIC (or BIC) is considered

the best fitting one. In our simulation study, we observed that AIC and BIC selected the

same model approximately 42% of the time, and the number of knots selected by AIC was

always greater than or equal to that selected by BIC. Moreover, our numerical evaluation

was consistent with the results obtained in Huang et al. (2002); the same estimate α̂ can

be achieved through different sets of basis functions and their corresponding {ζ̂k}. Further

detailed comparisons of the two selection procedures are provided in Sections 4 and 5.

3.2 Nonparametric Maximum Likelihood Estimation for Λ(t)

Using the NPMLE approach, we treat Λ as a nondecreasing step function with jumps only

at the observed failure times and replace λ(t) with the jump size of Λ at t, denoted by

Λ{t}, in the log-likelihood function (3). For commonly used transformation functions such

as log-transformation, exp{−H(x)} can be expressed as the Laplace transformation of some

function δ(ξ) for ξ > 0, such that exp{−H(x)} =
∫∞

0
exp(−xξ) δ(ξ) dξ. For example, if

we choose a gamma frailty ξ with mean one and variance η, then it holds that H(x) =

log(1+ηx)/η. Applying the Laplace transformation, the observed log-likelihood function (3)

can be rewritten as ln(θ, ζ, Λ{·})

=
n∑
i=1

log

∫
b

(2πσ2
e)
−ni

2 exp

[
−

ni∑
j=1

{
Yi(tij)− ζTBm(tij)− βTX1i(tij)− bTZ1i(tij)

}2

2σ2
e

]

×
∫
ξ

[
ξ Λ{Vi} exp{γTX2i(Vi) + (φ ◦ b)TZ2i(Vi)}

]∆i

× exp

{
−
∫ Vi

0

ξ eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

}
δ(ξ) dξ × f(b; Σb) db, (4)

where ζ = (ζ1, . . . , ζKn)T , Bm(t) = (Bm
1 (t), . . . , Bm

Kn
(t))T , and ξ is assumed to be independent

of b.
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8 Biometrics, 000 0000

The most attractive feature about writing the transformation in this way is that the

modified log-likelihood (4) can be seen as the proportional hazards frailty model (Kosorok

et al., 2004) with the conditional hazard function

λ(t | X ,Z, ξ, b) = ξ λ(t) exp{γTX2i(t) + (φ ◦ b)TZ2i(t)}.

This makes the algorithm more stable and computationally efficient. Now, the MLEs can be

obtained by maximizing the modified log-likelihood function over Sn(m,Kn,Mn), θ and all

jump sizes of Λ at the observed failure times. Since this maximization involves unobservable

variables ξ and b, it can be carried out through the following EM algorithm, treating ξ and

b as missing data.

3.3 EM Algorithm

We describe the EM algorithm (Dempster et al., 1977) to compute the MLEs of (θ, ζ, Λ{·}).

In the E-step, we calculate conditional expectations of certain functions of (ξ, b) given the

observed data Oi, say Ê[ξ gi(b) |Oi]. Hereafter, we omit to write that the expectations are

conditional on the observed data and the current parameter estimates, and abbreviate such

expectation Ê[ξ gi(b) |Oi] as Ê[ξ gi(b)]. Computation of this expectation can be simplified

by first obtaining the nested conditional expectation of ξ, given b and Oi. That is, Ê[ξ gi(b)]

can be calculated as Êb[ Êξ[ξ | b] gi(b)]. Since the conditional distribution of ξ given b is

proportional to

h(ξ, b) = ξ∆i exp

{
−
∫ Vi

0

ξ eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

}
,

the conditional expectation of ξ given b has the form of

Êξ [ξ | b] =

∫
ξ

h(ξ, b) δ(ξ)∫
h(ξ, b) δ(ξ) dξ

dξ = H ′
(
x̃i(b)

)
−

[
H ′′
(
x̃i(b)

)
H ′
(
x̃i(b)

) ]∆i

,

where x̃i(b) =
∫ Vi

0
eγ

TX2i(u)+(φ◦b)TZ2i(u) dΛ(u). Once Êξ [ξ | b] is calculated, which is a function

of b, the conditional expectation Ê[ξ gi(b)] can be computed using numerical approximation

methods such as Gaussian quadrature with Hermite orthogonal polynomials. Note that the
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Joint Partially Linear Model for Longitudinal Data with Informative Drop-outs 9

conditional distribution of b given Oi is proportional to Γ(Oi| b)f(b; Σb), where

Γ(Oi| b) = exp

{
−

ni∑
j=1

[
{bTZ1i(tij)}2 − 2bTZ1i(tij){Yi(tij)− ζTBm(tij)− βTX1i(tij)}

]}

× exp
{

∆i(φ ◦ b)TZ2i(Vi) + ∆i logH ′
(
x̃i(b)

)
−H

(
x̃i(b)

)}
.

We thus calculate the conditional expectation by

Ê[ξ gi(b)] =

∫
b

Êξ[ξ | b] gi(b)
Γ(Oi| b)f(b; Σb)∫

b
Γ(Oi| b)f(b; Σb) db

db.

In the M-step, we maximize the expectation of the complete-data log-likelihood function:

n∑
i=1

ni∑
j=1

{
− log σ2

e/2− Ê
[
{Yi(tij)− ζTBm(tij)− βTX1i(tij)− bTZ1i(tij)}2/(2σ2

e)
]}

+
n∑
i=1

∆i

{
log ξ + log Λ{Vi}+ γTX2i(Vi) + Ê[φ ◦ b]TZ2i(Vi)

}
+

n∑
i=1

{
−Ê

[∫ Vi

0

ξ eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

]
+ Ê [log δ(ξ) + log f(b; Σb)]

}
.

Maximizing the above objective function over (ζ, β, σ2
e , Σb) is as simple as in a classic linear

regression; whereas the rest of the parameters (γ, φ, Λ{.}) do not yield a closed-form of the

maximizers. Using a reliable numerical approach, we solve the following equation for γ:

n∑
i=1

∆i

{
X2i(Vi)−

∑n
j=1 Rj(Vi)X2j(Vi) Ê [ξ q2j(Vi)]∑n

j=1Rj(Vi) Ê [ξ q2j(Vi)]

}
= 0, (5)

and the following equation for φ:

n∑
i=1

∆i

{
Ê [b ◦ Z2i(Vi)]−

∑n
j=1Rj(Vi) Ê [ξ q2j(Vi)(b ◦ Z2j(Vi))]∑n

j=1Rj(Vi) Ê [ξ q2j(Vi)]

}
= 0, (6)

where Rj(t) = I(Vj > t) and q2j(t) = exp{γTX2j(t) + (φ ◦ b)TZ2j(t)}. In addition, Λ is

estimated as a step function with the following jump size at Vi:

Λ{Vi} =
∆i∑n

j=1 Rj(Vi) Ê [ξ q2j(Vi)]
. (7)

At each M-step, we update γ and φ by solving the equations (5) and (6) through a one-step

Newton-Raphson algorithm, and update the jump sizes of Λ by equation (7).

To obtain the MLEs, we iterate the E-step and M-step until the parameter estimates

converge. The variances of the MLEs can be estimated from the inverse of the observed
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10 Biometrics, 000 0000

information matrix of all parameters (θ, ζ, Λ{·}). The observed information matrix can be

computed from the complete data log-likelihood function denoted by `ci for the ith subject

using the following Louis formula (Louis, 1982) of

−
n∑
i=1

Ê[∇2`ci(b) |Oi]−
n∑
i=1

{
Ê[∇`ci(b)⊗2 |Oi]− Ê[∇`ci(b) |Oi]

⊗2
}
, (8)

where u⊗2 = uuT , ∇ and ∇2 are the first and second derivatives with respect to parameters,

and Ê is the conditional expectation of a function of b given the observed data.

3.4 Asymptotic Properties

One of the attractive features of the proposed estimator is that its large sample properties

can be shown by using techniques from empirical process theory. Let (θ̂, α̂, Λ̂) denote the

estimator maximizing (4), and let (θ0, α0, Λ0) denote the true parameter values. Zeng

and Cai (2005) showed the strong consistency and asymptotic normality of θ̂ and Λ̂(·)

when α0(t) is constant over time. We relax their full parametric assumptions for Y (t) by

adding a nonparametric functional component into their linear mixed effects models. The

key difference in the proof is to find an upper bound of supt∈[0,τ ] |α̂(t) − α0(t)|. The upper

bound is constructed based on a linear span of α0(t) into the sieve space Sn(m,Kn,Mn)

that consists of functions with uniformly bounded rth (r > 2) derivatives. Under the

mild regularity conditions (A1)-(A11) stated in the Web Appendix A, we can show that

if the smoothing parameters satisfy Mn = O(log log n) and Kn = O(nr0) with 1/(4r) <

r0 < 1/3, then the MLEs are uniformly consistent in the sense that ‖θ̂ − θ0‖ = op(1),

supt∈[0,τ ] |Λ̂(t) − Λ0(t)| = op(1) and supt∈[0,τ ] |α̂(t) − α0(t)| = op(1), where ‖θ‖ =
√
θT θ.

From the consistency and the choice of Mn = O(log log n), we can further show that

‖θ̂ − θ0‖2 + ‖Λ̂(t)− Λ0(t)‖2
L2(P ) + ‖α̂(t)− α0(t)‖2

L2(P ) = oP (n−1/2) +OP (K−2r
n ). By choosing

Kn = O(n1/(4r−1)), for example, we can obtain the
√
n-convergence rate of the MLEs.

Finally, it is proved that n1/2(θ̂ − θ0) is asymptotically normal with mean zero and θ̂ is

a semiparametric efficient estimator for θ0. The asymptotic covariance of θ̂ can be estimated
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Joint Partially Linear Model for Longitudinal Data with Informative Drop-outs 11

by (8), and its finite sample properties are shown to be good in Section 4. A detailed proof

of the asymptotic properties is given in Web Appendix A.

4. Simulation Studies

To assess the performance of the proposed method, we conduct extensive simulation studies

under settings mimicking the prostate cancer data. Specifically, using the analysis results in

Figure 3 and Table 3 as a basis, we assume that true α(t) = (t+ 0.5)−1.5 + (t/2 + 1)3− 4 and

φ = 1.7, choose n = 500, and target a similar early drop-out rate as in the real data where

50% and 75% of informative drop-outs occurred within 3 and 5 years, respectively, over

the maximum follow-up time of 14 years. For simplicity we include one observed covariate

x, baseline PSA level, following a normal distribution with true β = γ = 0.5. Then, the

longitudinal outcomes are generated from Y (t) = α(t) + βx + b1 + b2t + ε(t), where ε(t) ∼

N(0, σ2
e) with σ2

e = 0.1 and (b1, b2) are from a normal distribution with zero means, σ2
b1

= 0.4,

and σ2
b2

= 0.2. The correlation between b1 and b2 is ρ = −0.1. Informative drop-out times are

generated from a transformation model taking the form Λ(t |x, b1) = H(exp(γx+φb1) Λ(t)).

Various missing mechanisms are explored by varying H(·) and φ. We consider two popular

models for survival data: the proportional hazards model H(x) = x (when η = 0) and the

proportional odds model H(x) = log(1 + x) (when η = 1). Assuming true φ = 0 represents

missing at random (MAR). True φ = 0.5 and φ = 1.7 represent missing not at random

(NMAR) with the same and larger effect size than the coefficient of the observed covariate

(γ = 0.5). These settings produce about 6 measurements of Y , on average.

We also investigate the impact of knot selection procedures on α(t) estimation when AIC

or BIC is used. We repeatedly fit the joint model using interior points Kn ∈ {2, 3, . . . , 20},

where the locations of knots are determined by every distinct 100/(Kn + 1)th percentile

of the observed measurement times. The best numbers of interior knots by AIC (or BIC),

denoted by kAIC (or kBIC), may be different in each dataset. In our simulation settings, we
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observe that kAIC equals kBIC for 42% of the data sets, and kAIC is always greater than or

equal to kBIC . For comparison purposes, in Table 1 we also report estimation results when

the interior knots are always fixed with Kn = 2, Kn = 4, or Kn = 8.

Simulation results based on 1000 replications are presented in Table 1 and Table 2 for

various missing mechanisms by different φ and H(·), where Bias is the average of the differ-

ences between the true parameter and the estimates, SD is the sample standard deviation

of the parameter estimator, SEE is the average of the standard error estimates, and CP is

the coverage probability of 95% confidence intervals. The confidence intervals of variance

components are constructed based on the Satterthwaite approximation.

Table 1 and Web Tables 1-2 report the performance of α(t) estimation in the joint modeling

approach, compared with that using the marginal modeling approach (i.e., ignoring the

informative drop-out), in terms of Bias, SD, the mean square error (MSE), and the ratio of

the MSE for joint estimates to the marginal estimates (MSER). Under MAR (i.e., φ = 0),

both approaches are similar in Bias and SD. However, under NMAR (i.e., φ = 0.5 or 1.7),

the marginal approach resulted in a larger Bias but with a similar magnitude of SD, which

indicates that the joint modeling approach leads to a more accurate and efficient estimator.

In Table 1, when the number of interior knots (Kn) increases, the SD consistently increases,

whereas the Bias decreases or increases in earlier or later observations times, respectively.

The AIC-based knot selection procedure tends to result in smaller biases than the BIC-

based knot selection procedure but at the cost of larger variation. It is worth noting that,

when AIC- or BIC-selected knots are used, part of SD is attributed to the uncertainty of

model selection, whereas such variability does not exist with the fixed knots. In Table 1,

we observe that SDs with the AIC- and BIC-selected knots are similar to SDs with the

fixed knots, indicating that the major source of variations in estimates was attributed to the

magnitude of Kn itself, rather than the variability in Kn chosen differently by AIC or BIC.
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Joint Partially Linear Model for Longitudinal Data with Informative Drop-outs 13

This might be the reason why the coverage probabilities could remain close to the nominal

level 95%, even if not accounting for the uncertainty of model selection. Figure 1 shows the

estimates of α(t) for all t, using different knot selection procedures and transformations. The

average, minimum and maximum of estimates over 1000 simulated datasets indicate that the

proposed estimator α̂(t) behaves well for both transformation models when BIC was used.

However, the AIC-estimates appeared to have larger variations in both tails. Therefore, we

suggest using the BIC-based knot selection procedure, based on negligibly small biases and

consistently smaller SDs in all scenarios we studied.

Table 2 shows good performance of the remaining parameters for both H(x) = x and

H(x) = log(1 + x) when BIC-based knot selection procedure was used. That is, the MLEs

are unbiased, the standard error estimates calculated using the Louis formula reflect well the

true variations in the proposed estimators, and the coverage probabilities are in a reasonable

range. When AIC was used as the knot selection criterion, simulation results are very similar

to those in Table 2 and hence omitted here (see Web Table 3).

5. Data Application

We illustrate the application of the proposed method using prostate cancer data from the

University of Michigan. The data were collected from a total of 503 patients with average

age of 69 (range of 34-86) who received planned radiation therapy as the primary treatment

method. The objective of this analysis was to identify the trajectory of post-radiation PSA

change, while correctly accounting for the informative drop-out either by the start of salvage

hormone therapy or by tumor recurrence. A detailed description of the data and possible

clinical impact achieved from the study are discussed in Proust-Lima et al. (2008) and Taylor

et al. (2013).

In this cohort, 118 patients (23.5%) dropped out, and the PSA level was measured 9 times

on average within a median follow-up time of 4.5 years. The model to characterize the PSA
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changes in the presence of informative drop-out was

Y (t) = α(t) + βTX + b1 + b2t+ ε(t),

Λ(t |X, b) = H

(∫ t

0

exp{γTX + φ(b1 + b2u)} dΛ(u)

)
,

where Y (t) is the observed values of log(PSA(t) + 0.1) at time t, Λ(t |X, b) is the cumulative

hazard function of time to informative drop-out from the end of radiation therapy, and the

prognostic factors (denoted as X) are log(baseline PSA + 0.1), T-stage, Gleason score, and

age at diagnosis. The log-transformation of PSA values and the choice of which covariates to

include were based on the findings in Proust-Lima et al. (2008). A subject-specific random

intercept and time slope (i.e., b1 + b2t) were included in both longitudinal and survival

components to account for the dependence of informative drop-out on the PSA trajectory.

The inclusion of b1 + b2t in the survival component implied that the time to informative

drop-out was linked to the current PSA level.

To adjust for the informative drop-out mechanism better, we assumed different transfor-

mation models H(x) = log(1 + ηx)/η by varying η values in the range [0, 1]. This was

because, when η = 0 or η = 1 can be assumed, the chosen transformation provides useful

interpretations for the drop-out process. That is, η = 0 implies that the unit change in a

covariate has a linear impact on the log-hazard of dropping-out. The choice of η = 1 implies

the data fits better to a model with a linear increment in the log-odds of dropping-out per

unit change in a covariate.

To select the best transformation model η and interior knots Kn, model selection ap-

proaches such as AIC and BIC are considered. Under each set of (η, Kn) in η ∈ {0, 0.1, . . . , 1}

and Kn ∈ {2, 4, . . . , 12}, we computed the MLEs for the regression coefficients using the

proposed method, and the resulting AIC and BIC values were compared. The search range

of Kn was chosen to cover the upper and lower bounds of Kn satisfying Conditions (A9) -

(A11) in Web Section A. In Figure 2 the smallest BIC value corresponding to (η,Kn) = (1, 5)
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Joint Partially Linear Model for Longitudinal Data with Informative Drop-outs 15

indicated that use of 5 interior knots and the proportional odds model produced the best fit

to the data. As a sensitivity analysis, we expanded the range of the transformation parameter

to η > 1, leading to the smallest BIC value at η = 1.6 and Kn = 6 (Web Figure 2). Since

the decrement in BIC value was very small, for a better interpretation in practice, we still

reported the results from the proportional odds model.

Table 3 summarizes the analysis results under the selected best model. The positive

φ̂ = 1.730 (P<0.001) indicates that a higher current PSA level was significantly associated

with a higher rate of informative drop-out. The rate of informative drop-out statistically

significantly increased with a higher baseline PSA level, T-stage and Gleason score and

for older patients. On the other hand, there was no significant difference in post-radiation

PSA level by T-stage and Gleason score, although it was significantly affected by baseline

PSA level and patient’s age. We noticed that overall results for time-constant covariates

were similar between joint and marginal (i.e., ignoring the informative drop-outs) analyses,

whereas the results for the temporal trend in PSA level were different. In Figure 3, circles

and dots present the full history of all post-radiation PSA values for patients whose follow-

up was informatively and non-informatively dropped out, respectively. The mark “×” on

some circles indicates the last observation of PSA before the informative drop-out occurred.

Based on the descriptive summary indicated by the circles, dots and ×’s, it was observed that

patients who dropped out informatively had higher PSA scores and shorter follow-up time

in general. When we compare the curve for the ‘Joint Estimate’ to that for the ‘Marginal

Estimate’ in Figure 3, we can see that the joint modeling approach led to the estimated

underlying PSA trajectory curve being lower than the marginal estimate. This might be

because the joint modeling is a method to account for the fact that some of the PSA values

were observed under some degree of disease progression, which could cause informative drop-

out due to the tumor recurrence or sufficient concern that the patient considered hormone
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therapy. Moreover, the reduction in the estimate by the joint modeling approach was larger

at longer times.

Sensitivity to the inference based on BIC selection was examined by comparing the results

by AIC selection. Web Figure 3 shows that the AIC-based procedure selected the model with

(η,Kn) = (1, 7), however, the resulting estimates were very similar to those based on the

BIC-based selection procedure and hence omitted here (see Web Figure 4 and Web Table 4).

6. Discussion

We have discussed a method of fitting a partially linear model for longitudinal data with

informative drop-out, which can handle a covariate-dependent drop-out mechanism through

the transformed survival model. For estimation of the model parameters, we have maximized

the likelihood, and the resulting MLEs have been theoretically justified. The proposed joint

modeling approach has clearly shown the capability to correct biases induced by ignoring

informative drop-out using simulated data and a real example.

By exploring a broad class of models for the missing data through varying H(·) and φ, the

proposed method reduces errors due to the misspecified missing data mechanism to some

extent. The proposed methodology, however, does require extensive modeling assumptions,

including specification of the drop-out mechanism, the mean and covariance structures, such

as linearity in the covariate effects, and a normality assumption of latent variables. Therefore,

sensitivity analysis to these assumptions as well as future efforts in research and development

of model checking tools are needed to promote practical application of the proposed joint

partially linear model (JPLM). In the JPLM, the distribution of the outcomes after drop-out

is nonidentifiable, and thereby we assume that it remains the same as before the drop-out.

One simple approach to exploring sensitivity to this untestable assumption is to 1) introduce

a sensitivity parameter as the difference between the mean of observed and unobserved

responses, and then 2) examine how sensitive the results are over a clinically plausible range
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Joint Partially Linear Model for Longitudinal Data with Informative Drop-outs 17

of the sensitivity parameter (for more details, see Web Section D). For the assessment of

JPLM’s fit to observed data, a graphical inspection tool has been illustrated in Web Section

C. With regard to more rigorous model diagnostic procedures, the main difficulty is that

some model assumptions are made about unobserved variables, and hence the standard

model diagnostics based on the observed data alone are not sufficient. One possible research

direction is to adopt the multiple-imputation-based diagnostic method by Rizopoulos et al.

(2010). The key idea of Rizopoulos et al. (2010) is to create multiple sets of complete data by

resampling missing longitudinal outcomes from the posterior distribution given the observed

data, and apply standard model diagnostics for mixed effects models and survival models with

complete data. Since the general framework needed for the multiple imputation procedures

in Rizopoulos et al. (2010) has already been established in equation (5) and Sections 3.3 and

3.4, the extension to survival transformation models appears promising. The assumption

on the linear effects of covariate can be relaxed by extending to time-varying coefficients

models. When a fixed numbers of knots are used or the number of knots can be assumed to

the same for all time-varying coefficients, we do not expect any additional technical challenge

in the extension. However, further efforts to reduce the computational burden are needed for

selecting different numbers of knots for each covariate.

There are a few other ways in which we can extend our proposal. In this paper, we assume

that the observation times of the biomarkers are independent of the level of biomarkers.

However, in some cases where biomarkers are observed at hospitalizations or whenever

clinicians may suspect some progress of the diseases for example, our JPLM can be extended

to accommodate the informative observation process by jointly modeling the additional

component. The AIC and BIC were considered to determine both the best transformation

and the selection of the number of knots, but we can also explore and compare the validity

of other resampling-based model selection criteria such as cross-validation in the future.
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Lastly, there is no theoretical justification for any of these model selection procedures, and

the proposed inference does not account for the uncertainty of model selection. Post-model

selection inference methods under the joint modeling setting are worth pursuing.

7. Supplementary Materials

Web Appendices, Tables and Figures referenced in Sections 1, 3.4 and 4-6, and an R package

to implement the JPLM method are available with this paper at the Biometrics website on

Wiley Online Library.

[Table 1 about here.]
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[Figure 1 about here.]
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Figure 1. Simulation results for α(t) estimation when φ = 1.7 and (a) H(x) = x; and (b)
H(x) = log(1 + x). The solid curve indicates true α(t) = (t + 0.5)−1.5 + (t/2 + 1)3 − 4. The
dash-dotted (dotted) curves indicate the maximum, average and minimum of the estimated
α(t) over 1000 simulated datasets when the AIC-based (BIC-based) knot selection procedure
was used. The AIC-estimates appeared to have larger variations in both tails than the BIC-
estimates. This figure appears in color in the electronic version of this article.
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Figure 2. Bayesian information criterion (BIC) plotted for different transformations
H(x) = log(1 + ηx)/η and different numbers of interior knots (Kn).
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Figure 3. Coefficient function of log PSA score, adjusted by T-stage, gleason score, and
age, under the best fit of transformation H(x) = log(1 + x) and 5 interior points. The
solid curve is an estimate from the joint model, and the dashed curve is an estimate from the
marginal model. The circles and dots present the full history of all post-radiation PSA values
for patients who dropped out informatively and non-informatively, respectively. The mark
“×” on some circles indicates the last observation of PSA before the informative drop-out
occurred.
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Table 1
Simulation results for true φ = 1.7 (i.e., missing not at random) with Kn ∈ {kAIC , kBIC , 2, 4, 8} interior knots of

B-spline approximation. True values are α(τ20) = −1.10, α(τ40) = −0.58, and α(τ80) = 2.16, where τp represents p%
of study duration τ .

Joint Model Marginal Model

Kn Bias SD SEE CP MSE Bias SD MSE MSER

H(x) = x
kAIC α(τ20) -0.009 0.037 0.035 0.928 0.001 -0.081 0.037 0.008 0.187

α(τ40) -0.009 0.045 0.044 0.946 0.002 -0.098 0.043 0.011 0.180
α(τ80) -0.010 0.086 0.082 0.938 0.008 -0.124 0.083 0.022 0.341

kBIC α(τ20) -0.013 0.035 0.033 0.921 0.001 -0.084 0.035 0.008 0.169
α(τ40) -0.010 0.043 0.043 0.948 0.002 -0.099 0.041 0.011 0.171
α(τ80) -0.006 0.084 0.081 0.945 0.007 -0.120 0.081 0.021 0.340

2 α(τ20) -0.013 0.035 0.033 0.922 0.001 -0.085 0.034 0.008 0.166
α(τ40) -0.010 0.043 0.043 0.946 0.002 -0.099 0.041 0.012 0.169
α(τ80) -0.006 0.084 0.081 0.945 0.007 -0.120 0.081 0.021 0.340

4 α(τ20) -0.008 0.035 0.034 0.932 0.001 -0.080 0.035 0.008 0.175
α(τ40) -0.009 0.044 0.043 0.949 0.002 -0.098 0.042 0.011 0.176
α(τ80) -0.011 0.085 0.082 0.940 0.007 -0.124 0.082 0.022 0.333

8 α(τ20) -0.008 0.039 0.037 0.932 0.002 -0.079 0.038 0.008 0.202
α(τ40) -0.009 0.046 0.045 0.949 0.002 -0.098 0.044 0.012 0.189
α(τ80) -0.012 0.088 0.084 0.936 0.008 -0.126 0.084 0.023 0.342

H(x) = log(1 + x)
kAIC α(τ20) -0.010 0.035 0.034 0.935 0.001 -0.077 0.034 0.007 0.182

α(τ40) -0.010 0.041 0.040 0.946 0.002 -0.091 0.040 0.010 0.179
α(τ80) -0.014 0.070 0.070 0.936 0.005 -0.119 0.068 0.019 0.268

kBIC α(τ20) -0.014 0.033 0.033 0.932 0.001 -0.081 0.032 0.008 0.166
α(τ40) -0.008 0.039 0.040 0.953 0.002 -0.089 0.038 0.009 0.167
α(τ80) -0.012 0.068 0.069 0.943 0.005 -0.117 0.067 0.018 0.264

2 α(τ20) -0.015 0.032 0.033 0.932 0.001 -0.082 0.032 0.008 0.163
α(τ40) -0.007 0.039 0.040 0.952 0.002 -0.089 0.038 0.009 0.167
α(τ80) -0.012 0.068 0.069 0.945 0.005 -0.117 0.066 0.018 0.262

4 α(τ20) -0.009 0.033 0.033 0.945 0.001 -0.076 0.033 0.007 0.170
α(τ40) -0.010 0.039 0.040 0.946 0.002 -0.092 0.038 0.010 0.165
α(τ80) -0.015 0.068 0.070 0.941 0.005 -0.120 0.067 0.019 0.259

8 α(τ20) -0.009 0.034 0.035 0.946 0.001 -0.076 0.034 0.007 0.178
α(τ40) -0.011 0.041 0.041 0.946 0.002 -0.092 0.040 0.010 0.176
α(τ80) -0.018 0.070 0.072 0.950 0.005 -0.122 0.069 0.020 0.266
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Table 2
Simulation results by varying φ and H(·) when the interior knots of B-spline approximation are selected by BIC

(i.e., Kn = kBIC). τp represents p% of study duration τ .

H(x) = x H(x) = log(1 + x)

Parameter Target Bias SD SEE CP Bias SD SEE CP

φ = 0.0
β 0.5 -0.000 0.031 0.029 0.938 -0.000 0.028 0.029 0.961
σ2
e 0.1 -0.000 0.003 0.003 0.948 -0.000 0.003 0.003 0.952
σ2
b1 0.4 -0.003 0.028 0.028 0.952 -0.002 0.028 0.028 0.958
σ2
b2 0.2 -0.001 0.030 0.030 0.955 -0.002 0.026 0.027 0.953
ρ -0.1 0.001 0.087 0.085 0.947 0.003 0.076 0.079 0.962
γ 0.5 0.020 0.065 0.066 0.951 0.020 0.095 0.095 0.947
φ 0.0 -0.002 0.106 0.105 0.945 0.001 0.151 0.154 0.958
Λ(τ20) 0.3 -0.007 0.029 0.029 0.948 -0.011 0.035 0.035 0.943
Λ(τ40) 0.6 -0.003 0.050 0.050 0.940 -0.006 0.065 0.067 0.954
Λ(τ80) 1.3 0.023 0.116 0.115 0.950 0.011 0.165 0.165 0.954

φ = 0.5
β 0.5 -0.001 0.029 0.030 0.950 -0.001 0.030 0.029 0.939
σ2
e 0.1 -0.000 0.003 0.003 0.951 -0.000 0.003 0.003 0.939
σ2
b1 0.4 -0.002 0.028 0.028 0.957 -0.002 0.028 0.028 0.947
σ2
b2 0.2 -0.001 0.031 0.030 0.944 -0.001 0.027 0.027 0.950
ρ -0.1 0.001 0.089 0.086 0.944 0.002 0.082 0.080 0.948
γ 0.5 0.021 0.068 0.068 0.947 0.023 0.099 0.097 0.955
φ 0.5 0.019 0.108 0.108 0.945 0.014 0.159 0.158 0.955
Λ(τ20) 0.3 -0.008 0.031 0.030 0.936 -0.011 0.034 0.036 0.950
Λ(τ40) 0.6 -0.005 0.052 0.051 0.945 -0.009 0.066 0.068 0.958
Λ(τ80) 1.3 0.023 0.124 0.119 0.942 0.005 0.161 0.167 0.964

φ = 1.7
β 0.5 0.000 0.030 0.030 0.947 -0.000 0.030 0.029 0.945
σ2
e 0.1 -0.000 0.003 0.003 0.943 -0.000 0.003 0.003 0.948
σ2
b1 0.4 -0.001 0.030 0.029 0.940 -0.001 0.029 0.029 0.947
σ2
b2 0.2 0.000 0.029 0.030 0.958 -0.002 0.027 0.027 0.958
ρ -0.1 -0.002 0.101 0.101 0.951 0.001 0.088 0.087 0.943
γ 0.5 0.026 0.087 0.086 0.941 0.026 0.112 0.111 0.947
φ 1.7 0.091 0.152 0.149 0.920 0.085 0.192 0.195 0.937
Λ(τ20) 0.3 -0.015 0.036 0.035 0.936 -0.015 0.040 0.041 0.946
Λ(τ40) 0.6 -0.009 0.067 0.065 0.942 -0.014 0.078 0.080 0.951
Λ(τ80) 1.3 0.025 0.151 0.153 0.958 -0.000 0.190 0.191 0.952
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Table 3
Joint analysis results of the prostate cancer data under the best fit of transformation H(x) = log(1 + x) and 5

interior knots selected by BIC. The 50:50 mixture of χ2 distributions is used for testing variances. Reference groups
for categorical covariates are T-stage=1, Gleason score between 2 and 6, and age<65. τp represents p% of study

duration τ .

Joint Model Marginal Model

Effect Est SE p-value Est SE p-value

Longitudinal PSA score
α(τ20) 0.340 0.087 .0001 0.553 0.092 < .0001
α(τ40) 0.963 0.135 < .0001 1.368 0.141 < .0001
α(τ60) 1.792 0.195 < .0001 2.388 0.201 < .0001
α(τ80) 2.637 0.262 < .0001 3.424 0.269 < .0001
log(baseline PSA+0.1) 0.510 0.034 < .0001 0.509 0.034 < .0001
T-stage 2 -0.058 0.064 .3617 -0.045 0.064 .4828
T-stage 3 or 4 0.018 0.117 .8770 0.027 0.117 .8171
Gleason score 7 to 9 0.055 0.060 .3592 0.040 0.060 .4942
Age 65-75 years -0.190 0.069 .0056 -0.201 0.069 .0037
Age > 75 years -0.115 0.088 .1882 -0.130 0.088 .1408
σ2
e 0.117 0.003 < .0001 0.118 0.003 < .0001

Random effects
σ2
b1

0.373 0.028 < .0001 0.371 0.027 < .0001
σ2
b2

0.206 0.018 < .0001 0.195 0.017 < .0001
ρ -0.121 0.055 .0281 -0.114 0.054 .0359

Informative drop-out
log(baseline PSA+0.1) 0.532 0.161 .0010
T-stage 2 1.193 0.320 .0002
T-stage 3 or 4 1.815 0.467 .0001
Gleason score 7 to 9 1.089 0.293 .0002
Age 65-75 years -1.180 0.329 .0003
Age > 75 years -1.543 0.471 .0011
φ 1.730 0.134 < .0001


