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ABSTRACT

Cooperative adaptive cruise control (CACC) or platooning recently becomes promising as vehicles

can learn of nearby vehicles’ intentions and dynamics through wireless vehicle to vehicle (V2V)

communication and advanced on-board sensing technologies. The complexity of automated ve-

hicle platoon system opens doors to various malicious cyber attacks. Violation of cybersecurity

often results in serious safety issues as been demonstrated in recent studies. However, safety and

security in a vehicle platoon so far have been considered separately by different sets of experts.

Consequently no existing solution solves both safety and security in a coherent way. In this paper,

we show cyber attacks on an automated platoon system could have the most severe level of safety

impact with large scale car crash and argue the importance of safety-security co-design for safety

critical cyber physical systems (CPS). We propose a safety-security co-design engineering process

to derive functional security requirements for a safe automated vehicle platoon system based on

a deep comprehension on the interrelation of safety and security. To our best knowledge, we are

the first to apply the safety-security co-design concept to a concrete application. Through this

engineering process, we propose a general approach for designing a safe and secure platooning.

Following the general approach, we come up with a new platoon control algorithm that takes into

account both safety and security. Our defense mechanism implicitly defends against safety-related

cyber-attacks and greatly shortens the safe distance required when the platoon is not protected.

viii



CHAPTER 1

Introduction

1.1 Motivation

Vehicle platooning has been studied as a method of increasing the capacity of roads since the

1960’s. In a vehicle platoon, a group of vehicles, following one another, acts as a single unit

through coordinated movements. Because vehicles in a platoon travel together closely yet safely,

this leads to a reduction in the amount of space used by the number of vehicles on a highway,

thus has the great potential to maximize highway throughput. Cooperative adaptive cruise con-

trol (CACC) or automated vehicle platooning recently becomes promising as vehicles can learn of

nearby vehicles’ intentions and dynamics through wireless vehicle to vehicle (V2V) communica-

tion and advanced on-board sensing technologies. Automation-capable vehicles in tightly spaced,

computer-controlled platoons offer additional benefits such as improved mileage and energy effi-

ciency due to reduced aerodynamic forces, as well as increased passenger comfort as the ride is

much smoother with fewer changes in acceleration.

The feasibility of automated vehicle platooning has been recently demonstrated successfully

by the demonstrator platooning system developed by the European’s Safe Road Trains for the

Environment (SARTRE) project team [1]. The SAR-TRE project aims to develop strategies and

technologies to allow vehicle platoons to operate on normal public highways. A demonstrator

platooning system with trucks and cars has been developed and successfully tested on both test

tracks and public motorways. According to the project director of intelligent transport systems,
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technically the SARTRE platooning could be ready for rollout in 10 years.

The complexity of an automated vehicle platoon system – including inter-vehicle communica-

tions, vehicle’s internal networking and its connection to external networks, as well as complicated

and distributed platooning controllers – opens doors to malicious attacks. In-vehicle range sensors

that are used to measure the preceding car’s speed and location might be altered. For instance, it

was recently demonstrated that radar and LIDAR sensors can be spoofed with a modulated laser

[2]. The wireless communication channel (DSRC) is vulnerable to manipulation and wireless

messages can be spoofed by a motivated attacker [3, 4, 5]. All these attacks could cause a wide

array of problems in a deployed platoon, for example, an attacker could cause crashes, reduce

fuel economy through inducing oscillations in spacing, prevent the platoon from reaching its (or

each individual’s) destination(s), or cause the platoon to break up. The full potential of automated

vehicle platooning will not be realized until the issues related to communication and application

security can be satisfyingly resolved.

1.2 Problem Statement

The violation of cybersecurity could result in serious safety violations such as car crashes. How-

ever, safety and security in a vehicle platoon have so far been considered separately by different

sets of experts. On one hand, the safety discipline usually considers system failures (including

systematic/random hardware and systematic software failures) or natural disasters as safety haz-

ard resources. Safety solutions developed are usually not evaluated in an adversarial environment.

On the other hand, the security discipline considers various attacks that can lead to different con-

sequences such as loss of life, loss of privacy, financial loss, etc. The variety of security goals

to address different types of attacks makes it very unlikely to be aligned with the goal of safety.

Consequently security solutions proposed are rarely evaluated in terms of safety. For example,

the model-based detection scheme [4], the only scheme proposed so far for platoon security, is
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designed from the security point of view by monitoring any misbehavior of the preceding car.

Although the scheme is able to detect vehicle misbehavior, whether it can lead to a safe platoon

is not answered. To date, no existing platooning solution solves both safety and security in a

reconciled and coherent way.

The need for a safety and security co-design is urgent today with the practicality of automated

vehicle platooning technology. Actually there has been calls long ago for safety and security

communities to work together [6]. Past efforts in the automotive industry have reached a consensus

that functional safety hazards can arise from malicious activities in addition to systematic failures

and random hardware failures [7]. So security should be considered as a pre-requisite for safety

while safety should be one of the driving forces for security design. Although a couple of works

have described a safety and security engineering process [7, 8], a lot of challenges need to be

addressed to come up with a concrete safe and secure platoon system: How to reconcile different

safety and security risks? How to align the goal of security with that of the safety? The most

important, how to arrive at a solution that satisfies both the safety and security requirements?

There are also performance challenges such as efficiency, real time, as well as maintaining the

string stability of platoon.

On the other hand, current secure platooning studies have not taken safety issue into considera-

tion. Some attacks only compromise vehicle traffic privacy, while others can be safety critical and

cause traffic accidents. Safe vehicle platooning is an essential step on the way to realize automated

vehicles. While many safe strategies and communication security have been researched, secure

strategies, risks and opportunities of sensing technology have not been researched well. Therefore,

understanding secure and safe platooning is a crucial requirement to be able to understand secure

automated vehicles. Although many vehicle platooning control algorithms have been developed to

achieve string stability, they have not been developed and analyzed under adversarial environment

where an adversary wants to inhibit the performance of the control algorithm and hence cause

instability of the system which may result in poor mileage, user discomfort, or even “intelligent
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collision”. Safety risks have to be carefully assessed and corresponding safety mechanisms have

to be developed to the full realization of such autonomous systems.

Based on a joint functional safety and security analysis, we are able to reconcile different safety

and security risks. For our purpose, we consider the subset of security threats that lead to safety

consequences. This allows us to align our security goal with that of the safety. We propose a new

platooning control algorithm that is designed from the safety point of view. Unlike the model-

based detection scheme [4] which is designed from the security point of view where a vehicle

treats the one before it as potentially malicious, in our scheme, a vehicle concentrates on self-

safety, calculates its own safety status (instead of predicting other’s misbehavior) based on the

context information and adjusts its next movement based on one criterion: whether it is safe to do

so. If it senses the next step is not safe, the vehicle will switch from the cooperative driving CACC

mode to the collision avoidance ACC mode. By centralizing on self-safety, our scheme achieves

safety by implicitly defending against cyber attacks that could result in safety consequences.

1.3 Thesis Contribution

Contributions: Our contributions are as follows:

• Based on a deep comprehension of the potential security and safety risks, we put emphasis

on safety-security co-design and make recommendations related to security and safety in

automated vehicle platooning by integrating cybersecurity into safety design strategies. To

our best knowledge, we are the first to apply the safety-security co-design concepts to a

concrete application (Chapter 4).

• To fully understand the severity of cybersecurity-induced safety risk, we introduce a leader

crash attack to demonstrate the severity of such attack on the safety of vehicle platoon.

To ensure the safety of platoons under attacks, We propose the concept of safe distance
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for platoons. A platoon has to travel with at least the safe distance to avoid any collision

(Chapter 4). Existing platoon systems leave no enough safe distance for the vehicles to

decelerate when the platoon is driving on the highway with a minimal gap between each

other. Leader vehicle crash will directly cause the following vehicles to collide, endangering

the safety of all drivers .

• Based on the co-design analysis, we propose a general approach for designing a safe pla-

tooning. We inist that platoon should maintain a safe distance and at the same time, detect

various potential cyber attacks. When the platoon is under cyber attack, it should switch to

fail-safe scheme to avoid collision (Chappter 5).

• We propose a new platoon control algorithm emphasizing on self-safety. In our scheme,

each vehicle cross-checks accelerations predicted by both the CACC and ACC controllers to

determine whether the next move is safe. The cross-check mechanism is designed in a way

such that it can guarantee string stability in normal operation and prevents collision attacks

from happening by switching from the collaborative driving CACC mode to the collision

avoidance ACC mode in abnormal situations. Our defense mechanism implicitly defends

against cyber-attacks which may result in car collisions. Meanwhile, our defense mechanism

greatly shortens the safe distance required when the platoon is not protected (Chapter 7).

• Unlike previous works which only use simulations, we demonstrate the effectiveness of the

proposed scheme in achieving the safety goal as well as defending against cybersecurity

attacks not just through vehicle network simulations but also through vigorous theoretical

analysis (Chapter 8).
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1.4 Thesis Organization

Organization: The organization of the paper is as follows. We overview related work in Chapter 2.

We present system and attack models as well as platooning controllers in Chapter 3. We perform a

joint safety and security risk analysis in Chapter 4 where we also introduce a leader crash attack to

analyze the severity of such attack on safety. Then we propose a general approach for designing a

safe platooning in Chapter 5. We present two safe platooning schemes in Chapter 6 and 7. Security

analysis is presented in Chapter 8. Discussions and future work are presented in Chapter 10 and

Chapter 11 concludes the paper.
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CHAPTER 2

Related Work

Vehicle and Vehicle Network Security. Vehicle security is an emerging topic. A number of pre-

vious works have demonstrated many insecure designs in modern vehicles [9, 10, 11, 12]. Ve-

hicle network security has been extensively studied. Many techniques such as efficient message

authentication, anonymous authentication to address various aspects of communication security

and privacy have been proposed [13, 14]. Chenxi Zhang [13] presents an efficient batch signa-

ture verification scheme for communications between vehicles and roadside units. Xiaodong Lin

[14] proposes an efficient social-tier-assisted packet forwarding protocol, for achieving receiver-

location privacy preservation in Vehicular Ad hoc Networks. The study of [9] shows an internal

attacker who has prior physical access to the vehicle is able to adversely control a wide range of

automotive functions and completely ignore driver input, including disabling the brakes, stopping

the engine and so on. The authors also show it is possible to bypass rudimentary network secu-

rity protections within the car and they also present composite attacks that can leverage individual

weaknesses. The work of [10] demonstrates that remote exploitation is feasible via a broad range

of attack vectors (including mechanics tools, CD players, Bluetooth, and cellular radio). Attack on

the tire pressure-monitoring system (TPMS) [11] shows that eavesdropping is easily possible at a

distance of roughly 40 m from a passing vehicle. They also find out that reverse-engineering of

the underlying protocols reveal static 32 bit identifiers, which raises privacy concerns as vehicles

can be tracked through these identifiers. The work of [12] demonstrates how to remotely hack a

2015 Jeep Cherokee and control its most vital functions. This attack puts hundreds of thousands of

7



Jeeps under risk and it forces a 1.4 million vehicle recall by FCA as well as changes to the Sprint

carrier network.

Platooning Security. Traditional platooning research mainly focuses on four aspects: Inter-vehicle

communication methodology, Collision avoidance and obstacle detection methodology, Design of

lateral and longitudinal control systems for a platoon, last but not least, String stability of a platoon

[15].

The security of autonomous platooning has been recently studied. Mani Amoozadeh [3] presents

a first look at the effects of security attacks on the communication channel as well as sensor tam-

pering of a connected vehicle stream. The adversary can use message falsification, spoofing or

replay attacks to maliciously affect the vehicle stream. Another type of attack is tampering with

vehicle hardware or software, which can be done by malicious insider at the manufacturing level

or by an outsider in an unattended vehicle. The work of [4] introduces a set of insider attacks that

can cause unexpected behavior in platoons. Mis-report attack is the attack that sends false message

to the following vehicle to increase the following distance of the preceding car. Collision induc-

tion attack can cause dangerous accidents by broadcasting an acceleration message indicating that

they are speeding up, while the attacker starts to aggressively brake. It suggests switching from

CACC to ACC if a crash could happen. It focuses on the detection of false message attack from the

proceeding car. In the false message attack, a malicious proceeding car driving at a low speed mis-

reports it is driving at a high speed. The false message may mis-lead the following car to collide

with the malicious proceeding car. From the security angle, the proposed solution is to let each ve-

hicle monitor the behavior of the proceeding car. If the received status info from the proceeding car

is different from the one the following car calculates, the following car will think the proceeding

car may behave abnormally and switch to ACC. However it is not clear whether the switch from

CACC to ACC can lead to a safe platoon. However, this passive solution has shortcomings. The
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misbehavior detected cannot be delivered to the entire platoon immediately because the message

broadcasting to following vehicles costs time and the message range is distance limited. Soodeh

Dardras [5] presents that a single malicious controlled vehicle can destabilize a vehicular platoon.

They show that an attacker is theoretically capable of gaining control over the individual position

and velocity of other vehicles in the platoon.

Collision Avoidance. For collision avoidance, Gehrig and Stein [16] have proposed the concept of

elastic bands and analyzed collision avoidance. Araki [17] presents a system which has automatic

braking when the headway distance between the trailing vehicle and the selected vehicle crossed

the safety threshold. Ferrara and Vecchio [18] propose a concept of a supervisor for the control

system of every vehicle in the platoon to avoid collision. When a possible collision is detected, the

control system switches from the normal “cruise mode" to “collision avoidance mode", causing

the vehicle to stop following the preceding vehicle.
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CHAPTER 3

Models and Simulation Environment

In this section, we present the system model we use. We also provide information about the

simulation platform we will use to carry out the work presented in this paper.

3.1 Adversary Model

We consider insider attacks that can lead to safety issues such as car crashes in this work. Attacks

that result in different consequences such as system performance, driver privacy, financial loss,

etc. are not considered in this paper as they can be treated in the regular way without considering

safety.The adversary or the vehicle controlled by the adversary is part of the platoon system and

thus is able to send valid V2V messages. However, there is no guarantee on the correctness of

information in the messages it sends. Also the adversary does not need to follow the control law.

The adversary is able to control one or more vehicles, including the leader, in the platoon.

However, it cannot control all the radars or radar signals of vehicles in the platoon because of the

line-of-sight requirement.

3.2 System Model

We consider a platoon of K cars numbered from 0 to K − 1 with car 0 being the leader vehicle.

We assume the platoon is already formed and do not consider platoon formation and dissolve

(we leave platoon dynamics as our future work). All cars drive on a straight line with string

10



stability. The order of cars does not change. We assume homogeneous cars which have the same

physics, mechanics, and communication capabilities (this requirement will be relaxed in our future

work). They are not immune to hardware/system failures, and cybersecurity attacks, so abnormal

behaviors can happen.

3.2.1 Communication and Mobility Models

In order to study the safety and security of a CACC vehicle system, we utilize the PLEXE plat-

form [19] for its built-in communication (IEEE 802.11p) and mobility models. PLEXE is an Open

Source extension to the known and widely used Veins simulation framework [20] by adding pla-

tooning capabilities and controllers. Veins itself extends the OMNeT++ network simulator and

the SUMO road traffic simulator. PLEXE combines the network and the mobility simulator by

creating a network node in OMNeT++ for each vehicle traveling in SUMO. It provides a vehicular

communication system based on IEEE 802.11p and a mobility model based on SUMO. When a

vehicle moves, PLEXE repeats the movement in the corresponding OMNeT++ node by updating

the mobility model in SUMO. OMNeT++ framework implements platooning protocols and appli-

cation logic, while SUMO realizes the actuation of the applications decisions as well as part of

application logic.

If we want to tell the vehicles what they should do, we need to refer to application layer logic.

There is a BaseApp in PLEXE which simply extracts data out of packets coming from the protocol

layer, and updates CACC data via TraCI if such data is coming either from the leader vehicle or

from the preceeding vehicle. The SimplePlatooningApp extends BaseApp and and it tells the ve-

hicles to use the controller requested by the user. We modify the SimplePlatooningApp to simulate

Leader Crash Attack. We make the platoon drive at a fixed speed of 100 km/h and fixed gap of

5 meters. At a certain time, we send a messgae to leader vehicle to tell it to stop. We set the

deceleration of the leader car extremely large so that the speed can decelerate to zero in a minimal
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time interval. In this way, it acts just like a leader car crash. It allows us to see how the follow-

ing vehicles will respond conducted by the CACC controller strategy. PLEXE implements a list

of classic controllers for Cruise Control (CC), Adaptive Cruise Control (ACC), and Cooperative

Adaptive Cruise Control (CACC) to realize platooning capabilities. In the following we provide a

brief introduction to these controllers and users are referred to [21] for more details.

3.2.2 Cruise Control

CC is a technology which allows a driver to select a desired speed and the car is driven automat-

ically at the desired speed until CC is switched off by the driver. PLEXE implements the classic

Cruise Control algorithm (Equation 3.1) which is already available on several commercial cars

[21].

ẍdes = −kp(ẋ− ẋdes)− η (3.1)

where ẍdes is the acceleration to be applied, ẋ is the current speed and ẋdes is the desired speed,

kp is the gain of the proportional controller (set to 1 by default), while η is a random disturbance

taking into account imprecision of the actuator and of the speed measure (default set to 0).

3.2.3 Adaptive Cruise Control

As CC only takes the desired and actual speed as inputs, the driver needs to manually switch off

CC to avoid a collision when approaching a slower vehicle in the front. To avoid collision and also

relieve the driver from this duty, high-end cars are now equipped with a radar or laser scanner to

estimate distance to the preceding car. If a slower car is detected, the system decelerates and au-

tomatically maintains a safe distance. This technology is known as ACC. ACC will automatically

slow down the vehicle whenever it finds obstacles in the way.

ACC makes use of radar to detect vehicles in front and calculate the desired acceleration with

only preceding car into consideration. ACC will automatically slow down the vehicle whenever it
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finds obstacles in the way. CACC primarily rely on wireless communication to broadcast driving

information to each vehicle. After receiving the message from preceding vehicle and leader vehi-

cle, the controller computes the desired acceleration for the current vehicle. Different from CACC,

ACC makes use of radar to detect vehicles in front and calculate the desired acceleration with only

preceding car into consideration. ACC will automatically slow down the vehicle whenever it finds

obstacles in the way. The control law of ACC [21] used in PLEXE is defined as

ẍi_des = −
1

T
(ε̇i + λδi) (3.2)

δi = xi − xi−1 + li−1 + T ẋi (3.3)

ε̇i = ẋi − ẋi−1
(3.4)

where T is the time headway in seconds and ε̇i is the relative speed between two consecutive

vehicles i and i + 1. δi is the distance error which is the difference between the actual distance

(xi − xi−1 + li−1) and the desired distance T ẋi. λ is a design parameter which is strictly greater

than 0 and set to 0.1 by default.

The ACC driving functionality in PLEXE is implemented through the use of both ACC and CC

controllers. When the ACC driving mode is selected, a car follows the instruction of the one which

predicts smaller acceleration rate:

ẍdes = min(ẍCC , ẍACC) (3.5)

Basically, if the CC decides to accelerate to reach the desired speed, but the ACC decides to slow

down because of a vehicle in front, the car will follow the instructions of the ACC. On contrary, if

the ACC decides to accelerate to follow the car in front, but the car has reached its desired speed,

the CC will make the car to “detach” from the preceding one. If there is no car in front (assuming
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that the radar detects no car in front) or the distance is larger than 250m, the car only considers CC

even when it is in the ACC mode. Notice that this might not be the best strategy to implement, but

for the sake of simplicity PLEXE [19] chooses to use this straightforward switching mechanism.

3.2.4 Cooperative Adaptive Cruise Control

The CACC controller implemented in PLEXE is a representative CACC controller based on clas-

sical control theory [21]. The status of each vehicle depends on the acceleration and speed of the

leading and preceding vehicle in order to keep close vehicle following. It is capable of maintaining

a fixed distance between cars no matter what the platoon’s speed is.

The control law of the i-th vehicle in the platoon is defined as

ẍi_des = α1ẍi−1 + α2ẍ0 + α3ε̇i + α4(ẋi − ẋ0) + α5εi (3.6)

εi = xi − xi−1 + li−1 + gapdes (3.7)

ε̇i = ẋi − ẋi−1
(3.8)

ẍi_des is the desired acceleration of i-th vehicle. ẍi−1 and ẍ0 are the acceleration of the preceding

vehicle i− 1 and the leading vehicle. ẋi and ẋ0 are the speed of i-th vehicle and leader vehicle. εi

is the distance error based on a desired constant distance gapdes which is 5 meters by default. li−1

is the length of car and the default value is 4 meters.

The αi parameters in Equation 3.6 are defined as:

α1 = 1− C1; α2 = C1; α5 = −ω2

n
(3.9)

α3 = −(2ξ − C1(ξ +
√

ξ2 − 1))ωn (3.10)

α4 = −C1(ξ +
√

ξ2 − 1)ωn (3.11)
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Controller Strategy Characteristic

CC Maintain desired velocity

ACC Collision avoidance

CACC Fixed small gap

String stability

Table 3.1: Comparison between controller strategies

C1 is a weighting factor between the acceleration of the leader and the preceding vehicle, which is

set to 0.5 by default. ξ is the damping ratio and set to 1 by default. ωn is the controller bandwidth

and set to 0.2 Hz by default.

In the implementation of the CACC functionality, the interaction between CC and CACC de-

pends on the distance between vehicles. If a vehicle is less than 20 meters from the preceding one,

the vehicle follows instructions from CACC: ẍdes = ẍCACC , otherwise, the policy is the same as

ACC: ẍdes = min(ẍCC , ẍCACC).

3.2.5 Controller Comparison

We use Table 3.1 to summarize distinguished characteristics of each controller strategy. From the

table we can see that different controller strategies have diverse design objectives.

3.3 Simulation Environment

With this controller and default parameters, we conduct an experiment of Leader Crash Attack

with PLEXE [19] which is based on Veins [20] and further extends the interaction through the

TraCI interface in order to fetch vehicles’ data from SUMO [? ] to be sent to other vehicles in

the platooning to realize CACC. PLEXE combines the network and the mobility simulator by cre-

ating a network node in OMNeT++ for each vehicle traveling in SUMO. It provides a vehicular

communication system based on IEEE 802.11p and a mobility model based on SUMO. When a

vehicle moves, PLEXE repeates the movement in the corresponding OMNeT++ node by updating
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the mobility model in SUMO. OMNeT++ framework implements platooning protocols and appli-

cation logics, while SUMO realizes the actuation of the applications decisions as well as part of

application logics.

We use PLEXE for all the (attack and defense) simulations carried out in this work. As men-

tioned earlier, PLEXE extends Veins which further extends the OMNeT++ network simulator and

the SUMO mobility simulator. The coupling between the network and the mobility simulation

framework is done through the TraCI interface which SUMO exposes. PLEXE extends the inter-

action through the TraCI interface in order to fetch vehicles’ data from SUMO to be sent to other

vehicles in the platoon to realize CACC. Platooning protocols and the application logic are realized

in the OMNeT++ framework.

To simulate the adversary, we need to provide the functionality that informs the adversary ve-

hicle how to launch the attack. To achieve this, we need to refer to application layer logic. There

is a BaseApp in PLEXE which simply extracts data out of packets coming from the protocol layer

and updates CACC data via TraCI if such data is coming either from the leading vehicle or from

the preceding vehicle. SimplePlatooningApp extends BaseApp and it tells the vehicle to use the

controller requested by the user. We modify the SimplePlatooningApp so that to let vehicles follow

the instructions of what we want them to do. We make the platoon drive at a fixed speed of 100

km/h and fixed gap of 5 meters. At a certain time, we send a message to leader vehicle to tell it to

stop. We set the deceleration of the leader car extremely large so that the speed can decelerate to

zero in a minimal time interval. In this way, it acts just like a leader car crash. It allows us to see

how the following vehicles will respond conducted by the CACC controller strategy.
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CHAPTER 4

Safety and Security co-Design

Safety has a long tradition in many engineering disciplines and has had successful standardization

efforts. In automotive systems, the international standard ISO 26262 is the state of the art standard

for safety critical system development.

Automotive security has evolved quite recently with networked systems and concerns about

privacy, data integrity, authenticity and protection. As long as safety critical systems were not

networked, the two fields did not have to interact and as a result, the two domains have evolved

separately so far with little overlap. As cyber-physical systems evolved into networked systems,

security became a relevant issue for safety critical systems.

The Vehicle Cybersecurity Systems Engineering Committee of SAE has been working on J3061

Cybersecurity Guidebook for Cyber-Physical Vehicle Systems [22]. J3061 takes the initial step to

standardize the cybersecurity risk assessment process for connected vehicles. However, this work

is very much initial steps rather than a mature process. J3061 Cybersecurity Guidebook [22] is

an overall guidebook on implementing cybersecurity for the entire vehicle. The safety-security

co-design is being discussed in the secure software SAE committee at the moment and there is

no final product yet. We are able to work with several key members of the SAE cybersecurity

committee to understand the concepts and requirements as well as discuss the proposed safety-

security engineering process.

17



4.1 Safety-Security co-Design

We propose a safety-security co-design engineering process which consists of four main steps: (1)

Define the safety goal for the system; (2) Define attack model; (3) Derive security goals; (4) Derive

functional security requirements.

Safety Goal. Safety is very important in automotive industry and therefore highly regulated. For

end users, it means that users do not face any risk or danger coming from the motor vehicle or its

spare parts. Unacceptable consequences for safety are loss of human life and injuries. The safety

goal of individual vehicle is to protect users from injuries and life threatening risks. In our context,

we set up the safety goal of vehicle platoon as avoiding car collisions that can cause human life

and injuries. (Although there are different kinds of safety hazards such as no seatbelts, poor brakes

and tires, non collapsible steering columns, doors that opened on impact, etc. In this paper, we

consider safety hazards from nontraditional sources – cybersecurity attacks.)

Attack Model and Security Goal. Unlike safety, cybersecurity has a broader range of unaccept-

able consequences such as human life and injury (safety), human security, financial loss, loss of

privacy [23, 24], etc. Figure 4.1 shows the interrelation of safety and security. From Figure 4.1, we

can see that safety can be an objective (or impact) of a security attack. It can also be an unintended

consequence caused by hardware or software bugs. Meanwhile, cyber attacks can have different

impacts. The intersection part concerns both safety and security, or safety-related security risks,

which is of interest of this paper.

To derive our attack model that lead to safety, we summarize various of attacks, targeting at

automotive platoon systems, extensively studied by researchers in the literature and their corre-

sponding possible consequences in Table 4.1. From the table, we can see that there are five attacks

which can lead to car collisions, result in safety issues, and thus belong to the intersection in Figure

4.1. Our security goal is to develop a system that is resilient to these attacks.

Of the five attacks that can cause collisions, message spoofing and replay attacks belong to
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Figure 4.1: Interrelation of Safety and Security

outsider attacks. In this paper, we assume the platoon system uses standard security techniques

such as digital signature, time-stamp or nonces to defend against these outsider attacks. In this way,

we can narrow our focus on defense mechanisms against insider attacks. We briefly summarize the

insider attacks as follows and users are referred to their original papers for details.

In collision induction attack [4], the driver (the attacker) broadcasts an acceleration message

indicating that it is speeding up which causes the following vehicle to accelerate while actually the

attacker starts to decelerate abruptly.

In Message falsification attack [25], the driver sends a false message to the following vehi-

cle. Unlike collision induction attack, the attacker still moves according to the CACC controller

strategy.

(We note the message falsification attack defined in [25] is actually the same as the mis-report

attack defined in [4]. However, they are shown to have different negative consequences: collision

or decreased performance. Our security analysis in Section 8 will explain this inconsistency.)
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If a vehicle is a victim of System tampering attack, we mean an attacker is able to control the

vehicle remotely through compromised hardware or software. The victim vehicle will behave like

the one in either collision induction attack or message falsification attack, without the awareness

and involvement of the driver. For us, we only need to focus on attack behaviors without worrying

about who, the driver or a remote attacker, initiates the attack. Therefore in the following of the

paper, we only consider collision induction attack and message falsification attack and ignore who

initiates the attack.

Based on the discussion above, we derive our attack model as follows:

Adversary Model: We consider insider attacks that can lead to safety issues such as car crashes

in this work. Attacks that result in different consequences such as system performance, driver

privacy, financial loss, etc. are not considered in this paper as they can be treated in the regular

way without considering safety. The adversary or the vehicle controlled by the adversary is part of

the platoon system and thus is able to send valid V2V messages. However, there is no guarantee

on the correctness of information in the messages it sends. Also the adversary does not need to

follow the control law. The adversary is able to control one or more vehicles, including the leader,

in the platoon. However, it cannot control all the radars or radar signals of vehicles in the platoon

because of the line-of-sight requirement.

Scope of this work. Our adversary model defines the scope of this work: we only consider

safety-related security risks in this work. For other security risks such as financial loss or privacy

leakage, we understand they can be at least addressed in a parallel way.

Functional Security Requirements. From our analysis above, we can derive functional security

requirements as follows:

• It shall not be able for an attacker to spoof a message;

• It shall not be possible to replay an old message;
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Reference Attack Impact

[25]

Message falsification attack Collision

Message spoofing Collision

Message replay Collision

DoS (jamming) Dissolved platoon

System tampering Collision

[4]

Collision induction attack Collision

Reduced headway attack Decreased string stability

Joining without radar Decreased string stability

Mis-report attack Decreased performance

Non-attack abnormalities Decreased performance and

string stability

[5]
Destabilization attack Decreased string stability

Platoon control taken attack Dissolved platoon

Table 4.1: Attacks and impacts

• It shall not be possible for an attacker to broadcast a message with false information without

being detected;

• The system shall be able to take a response action whenever such misbehavior is detected;

• The system shall ensure there is enough time for the system to respond.

4.2 Severity Analysis

The EU project EVITA provides a risk model to measure the security of in-vehicle systems [26].

The risk analysis rationale of EVITA is that as it is too costly to protect against every threat, it

is necessary to rank risks in order to prioritize countermeasures. Risk associated with a security

attack depends on (1) severity of impact and (2) probability of successful attack. In this section,

we analyze the severity as well as the probability of platooning attacks by using the EVITA model.

In response to various safety risks, ISO 26262 severity classification defines four severity levels

(S0, S1, S2 and S3) in terms of the estimated personal injury that could result from the risk. S0

refers to no injuries. S1 refers to light or moderate injuries. S2 means severe to life-threatening
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injuries (survival probable). S3 means life threatening (survival uncertain) or fatal injuries. The

EVITA model extends the ISO 26262 safety classification by including a fifth level S4 which means

fatal injuries of multiple vehicles as cyber security attacks may have more widespread implication

than unintended hardware or software bugs can cause.

In this way, we are able to define the severity of different kinds of collision attack. Leader crash

attack belongs to S4 without doubt because it will lead to multi car crash and cause damage and

even death to drivers.

Previous work [4] has shown that message falsification and collision induction attacks can result

in serious safety issue. However, it is not clear the severity level of such attacks. To understand the

severity level of a collision that is resulted from a cyber attack, we introduce a new attack called

leader crash attack by extending the collision induction attack proposed in [4]. In the leader crash

attack, the leading car stops suddenly (intentionally due to being remotely controlled by an attacker

or not) and causes the following cars to crash over each other. This crash attack can be mounted

by any insider, not just the leader, in the platoon. However it is very likely a crash attack induced

by the leader can have the most severe consequence.

Previous work focuses on attacks from insiders and show that even insider attacks can cause

significant damage in the CACC vehicle stream. Intuitively if the leader is malicious, it can cause

the most severe damage to the platoon.

We firstly argue collision induction attack is very possible (probability). As shown in Section

2, it has been demonstrated successfully on several modern vehicle models that an attacker can

totally control a vehicle by compromising its hardware or software locally or remotely through

a wide range of attack vectors [9, 10, 11, 12]. When a leader or any insider of the platoon is

compromised and can be remotely controlled, an attacker can issue an instruction to the victim

vehicle to brake abruptly so that the following cars will crash into the front ones. The risk of

insider crash attack will become more serious with the advancement in vehicle automation. If an

insider car is a compromised driverless automated vehicle, such an attack can be mounted with
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severe consequence at a low cost. Also, we do not exclude the case when the driver himself is

reckless.

Any insider car can become malicious if its hardware or software is tampered. In current platoon

system demonstrations like SARTRE, the leader vehicle is usually a truck with an experienced

trained driver. However SARTRE does not focus on security and so it does not consider a malicious

leader vehicle. However, the leading driver can be malicious in the real world. He just needs to

hit the brake abruptly when the vehicle stream is on the highway with a high speed and minimal

gap. Under this circumstance, the following vehicles will crash together for there is no enough

safe distance for them to decelerate.

The risk of insider crash attack will become more serious with the advancement in vehicle

automation. If the leader car is a compromised driverless automated vehicle, such an attack can

be mounted with severe consequence at a low cost or effort. When the platoon is driving on the

highway, the attacker just needs to remotely control the leader vehicle to brake abruptly so that the

following cars will all crash into the front ones. Whether which kind of attack it is, it can cause

severe accidents and endanger the driver’s life.

We use the PLEXE simulator to demonstrate the consequence of this attack (severity). In this

simulation, initially a platoon of four vehicles is driving at the speed of 100 km/h with a gap of

5 meters (we will use the same platoon as a concrete example throughout the rest of the paper).

At the time of 50s, we instruct the leader vehicle to stop. We set the deceleration of the leader

car extremely large so that the speed can decelerate to zero in a very short time interval. In this

way, the leader vehicle acts just like it suddenly hits the brake or crashes into something like a

wall so that it stops immediately. We see how the following vehicles will respond under the CACC

controller strategy.

Mobility traces of the platoon are collected and shown in Figure 4.2. From the figure, we can

see that following vehicles crash into preceding vehicles at 50.41s, 50.75s and 51.10s respectively.

To obtain an insight of speed changing of the platoon in the crash, we utilize the statistics collected
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from PLEXE which are shown in Figure 4.3. In Figure 4.3, Vehicle 0 with the red line is the

leader vehicle. Vehicle 0 decelerates from 100 km/h (27.77 m/s) to 0 km/h in a very short time

interval. The following vehicles are trying to prevent crash by decelerating, but the 5-meter gap

is not long enough for them to fully stop before they crash into the car before it. The above three

lines terminating at different time spot shows that each of them has crashed into the leader vehicle.

Figure 4.2: Leader Crash Attack

Figure 4.3: Speed Changes of Platoon during the Crash

More on severity. The above simulation clearly demonstrates that the leader car crash attack

can potentially result in multiple car damage and life injuries and has the highest level of safety

24



severity. However, the maximum safety impact of security attack demonstrated is only a local event

to several vehicles. We believe the worst security impact can potentially be nation-wide impacting

thousands or millions of cars and suggest a new severity level of S5: nation-wide wide spread and

harmful impact. For example, in the platoon context, suppose there is a security weakness that

has an impact due to forged DSRC messages, also suppose future smart-phones are DSRC enabled

and malware spread on smartphones, we can easily see a nation-wide attack platform to attack the

platoon mechanism. Due to the severity of security attacks on platoon systems, we strongly argue

the importance of designing safe and secure platoon systems.
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CHAPTER 5

Safe Platooning:General Approach

Based on the safety-security co-design analysis, we propose a general approach to design a safe

platooning. There are three steps to take in order to maintain safety and security. First, vehicles

in the platoon need to keep a safe distance from preceding vehicle, so that when abnormal driving

happens, they have enough distance to brake. Second, vehicles are supposed to detect security

attacks while driving. These attacks include message falsification attack, collision induction attack,

abnormal driving and so on. There are also many countermeasures to detect these attacks which

will be discussed in the following part. Third, when abnormalities are detected, vehicles should

switch to fail-safe scheme such as Adaptive Cruise Control (ACC) or Emergency Brake Assist

(EBA) to avoid collision.

5.1 Safe Distance

Platoon is designed to keep a small distance between each vehicle so that it can increase the high-

way capacity. The platoon in SARTRE Project is driving at 90 km/h with a 4-meter gap between

vehicles. Meanwhile, Energy ITS maintains a 80 km/h platoon with 4-meter gap. However, when

accident happens, there is no enough distance for these vehicles to decelerate. As shown above,

leader crash attack can cause multiple vehicle damage and life injuries.

For a safe platooning design, we need to maintain the safe distance to defend against extreme

incidents. [27] presents a unique optimal control method of velocity and distance for platooning us-

ing model predictive control. Estimation of safe distance is also dependent on the fail-safe scheme
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adopted. This paper aims to develop an optimal control system for safe distance of platooning. In

out paper, we also want to identify the exact safe distance for platooning with the corresponding

fail-safe scheme. We will use a concrete example to present the method of obtaining safe distance.

5.2 Attack Detection

To ensure safety, platoon has to detect various cyber attacks. In Bruce DeBruhl’s paper [4], he

proposes a set of insider attacks that can cause unexpected behaviors in platoons. Mis-report attack

is the attack that sends false message to the following vehicle to increase the following distance

of the preceding car. Collision induction attack can cause dangerous accidents by broadcasting an

acceleration message indicating that they are speeding up, while the attacker starts to aggressively

brake. The work of [4] suggests switching from CACC to ACC if a crash could happen. It focuses

on the detection of false message attack from the preceding car. In the false message attack, a

malicious preceding car driving at a low speed mis-reports it is driving at a high speed. The false

message may mis-lead the following car to collide with the malicious preceding car. From the

security angle, the proposed solution is to let each vehicle monitor the behavior of the preceding

car. If the received status info from the preceding car is different from the one the following car

calculates, the following car will think the preceding car may behave abnormally and switch to

ACC. However it is not clear whether the switch from CACC to ACC can lead to a safe platoon.

In our paper, we will show that platoon with a safe distance is able to avoid collision in worst

cases by switching to ACC. In our scheme, a vehicle concentrates on self-safety, calculates its

own safety status (instead of predicting others’ misbehavior) based on the context information and

adjusts its next movement based on one criterion: whether it is safe to do so. If it senses the next

step is not safe, the vehicle will switch from the cooperative driving CACC mode to the collision

avoidance ACC mode. By centralizing on self-safety, our scheme achieves safety by implicitly

defending against cyber attacks that could result in safety consequences.
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5.3 Switch to Fail-safe Scheme

Fail-safe is a mechanism which is automatically triggered by failure that reduces or eliminates

harm [28]. A fail-safe is not supposed to prevent failure but mitigates failure when it happens. For

example, railway trains commonly have air brakes that get applied automatically when the main

brake system fails to work. Flight control computers are typically designed with redundancy so that

when one goes down another will continue to function. Similarly, platoon’s safety is threatened by

different kinds of cyber attacks and in some worst cases, such as leader crash attack, vehicles need

to switch to fail-safe scheme to eliminate harm. Under this circumstance, vehicles are suggested

to switch to ACC or EBA to avoid collision. Moreover, this defense mechanism can only succeed

on one condition: there is a safe distance between vehicles. In the following section, we will use

an example to show how safe distance can guarantee the safety of platoon and how to shorten the

safe distance with attack detection.
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CHAPTER 6

Safe Platooning: First Attempt

In this section, we propose a naive solution to deal with the worst case in platoon, such as leader

crash attack. In the naive solution, we do not detect cyber attacks and we only rely on safe dis-

tance to ensure safety. Results show that relying on safe distance alone is not feasible for a safe

platooning. We have to follow the three steps in general approach to design a safe platooning.

The platoon in this paper is traveling at 100km/h with a 5-meter gap. From the previous simula-

tion on leader crash attack, we can see that when the leader vehicle in the platoon crashes suddenly,

such a short distance between cars is not enough for the following vehicles to decelerate. To avoid

collision, without changing the underlying CACC controller, the straightforward idea is to simply

increase the distance between cars so that a car can stop before it crashes over the preceding car.

Under this circumstance, we present a naive solution by increasing the gap between each vehicle

in the platoon.

We use PLEXE to test this naive idea to find the required safe distance. In the SimplePla-

tooningApp, we set the constant space to a specific value at first by using the TraCI interface to

update the CACC data. We increase the constant gap between vehicles step by step until we find

that when the car-to-car distance is increased to 47 meters, the following vehicles will not crash

into preceding vehicles. 47 meters equal to a headway of T = 1.7s when the vehicle is traveling

at 100km/h. Figure 6.1 shows speed changing of vehicles when the gap is increased to 47 meters.

We can see the leader vehicle stops at 50.38s and the following vehicles stops at 56.16s, 58.42s

and 60.9s. The last three vehicles set their accelerations according to the CACC controller strategy
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during the crash.

Figure 6.2 shows the distance changing of each vehicle. Here the distance refers to the gap

between the current vehicle and its preceding vehicle. So the figure only shows the distances of

Vehicle 1, 2, and 3. We can see that initially the three following vehicles maintain a fixed gap of

67 meters with their processing cars. The gaps begin to decrease as vehicles decelerate. Vehicle 1

stops right after the leading vehicle with a distance of almost zero while Vehicle 2 and 3 stop with

enough distance with proceeding cars.
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Figure 6.1: Naive Solution: Speed Changing

6.1 Theoretical Analysis of CACC Safe Distance

In order to prove that we find the correct safe distance for a platoon under the leader crash attack,

we calculate the theoretical safe distance value by using MATLAB and do a cross check with our

simulation result. In the CACC controller, the acceleration of each vehicle is calculated based on on

30



0

20

40

60

40 45 50 55 60

time(s)

d
is

ta
n

c
e

(m
)

factor(nodeId) 1 2 3

Figure 6.2: Naive Solution: Distance Changing

the leader vehicle and preceding vehicle. Vehicle 0 is leader vehicle and we study the performance

of vehicle 1. If vehicle 1 does not crash into vehicle 0, the following two vehicles will not crash

either as there is longer distance for them to decelerate.

In Equation (3.6), we set ẍ0 and ẋ0 to 0 and other variables to their default values. x refers to

location of the vehicle. ẋ and ẍ refers to the speed and acceleration of the vehicle. In this way, we

transfer Equation (3.6) to Equation (6.1).

ẍ1 = −0.4ẋ1 − 0.04(x1 − x0 + l0 + gapdes) (6.1)

Obviously, Equation (6.1) is a second order differential equation and x0, l0, gapdes are constant

values. x0 is the location where the leader vehicle crashes. l0 is the length of vehicle 0 and gapdes

is the distance between two vehicles. By solving this equation, we acquire the relation between

vehicle location x and time t. By differentiating the equation between vehicle location x and time
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t, we can obtain the relation of a vehicle speed ẋ and the time t. With the time t when the vehicle

speed decreases to 0, we are able to obtain the location x where the vehicle stops. If location x

is smaller than the location of the leader vehicle x0, we say there is enough safe distance for the

platoon.

Algorithm 1 Safe Distance Calculation

1: Input: Vehicle Location location, Vehicle Speed speed

2: Output: Final Position of the Vehicle

3:

4: Use dsolve method to find the relation between location x and time t. Original state is x(0) =

location, Dx(0) = speed

5: x = dsolve(D2x+ 0.4Dx+ 0.04x− 0.04(x0 − l0 − gap), t)
6:

7: Use diff method to find the relation between speed and time

8: speed = diff(x)
9:

10: Find the time when Vehicle 1 decelerates to 0

11: speedChar = char(speed)
12: time = solve(speedChar,′ t′)
13:

14: Find the position where Vehicle 1 finally stops

15: f = inline(x)
16: answer = f(time)

Algorithm 1 is the MATLAB program which is used to estimate the theoretical safe distance a

platoon needs to maintain to defend against a leader crash attack. From the statistics collected by

OMNeT++, we can get the final position of leader vehicle x0 which is 1432 meters. The speed

of Vehicle 1 Dx(0) in initial state is 27.77 m/s (100 km/h). The default length of vehicle l0 is 4

meters. Taking the vehicle length into consideration, we hope that the final position of Vehicle 1

which is the output of the algorithm should be 1428 meters. By adjusting the input gapdes and the

original location of Vehicle 1 x(0), we need to achieve gapdes + x(0) = x0 − l0. Therefore, the

gapdes is the exact safe distance for the platoon to decelerate during a leader crash attack. After

executing the algorithm, we find out that when the gapdes equals 51 meters and the position of

Vehicle 1 x(0) equals 1377 meters where it starts to decelerate, then it will stop at the distance of
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1428 meters. In this way, the safe distance is the difference between two positions which is 51

meters.

From the discussion above, we can see that CACC does not help in achieving better safety

under urgent situations. Although increasing vehicle distance can help to achieve safety, this naive

solution kills the space efficiency a platoon brings as a headway of T = 1.7s is enough for a human

driver to stop safely from a speed of 100km/h.
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CHAPTER 7

Proactive Safe Platooning

As shown in previous section, the naive approach to safe platooning does not work as it totally

removes the space efficiency which is the major reason why vehicle platoon is designed for. This

motivates us to design a secure and safe CACC algorithm which achieves safety and security

without losing space efficiency. Therefore, in this section, we follow the three steps in general

approach to design a safe and feasible platooning.

7.1 Attack Detection

[4] focuses on the safe status of preceding vehicle. It compares the expected behavior and measured

behavior of front car, if the error is larger than a specific threshold, current car switches to ACC

controller strategy. The parameters of preceding car they choose are acceleration and velocity.

Different from previous work, we concentrate on current vehicle’s safety status. The parameters

we choose are acceleration and distance. The reason why we don’t consider velocity is that for ego

vehicle, its speed is able to vary all the time and change abruptly in accidents. So we cannot use

velocity to determine whether current vehicle’s status is safe or not. In the following, we will show

how to use acceleration and distance to ensure both safety and security.
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7.1.1 Acceleration & Distance

For acceleration, to detect cyber attacks and avoid collision in CACC function, our idea is to

include ACC in the design of the CACC function as ACC is designed for collision avoidance.

It relies on range sensors like radar or laser scanner to estimate the distance to the preceding

car. Real time distance information can be further used to estimate the preceding car’s velocity

and acceleration. We utilize ACC acceleration as the baseline for safe situation determination.

In normal situations, the acceleration rate calculated by CACC is less than the acceleration rate

calculated by ACC (i.e., speed change in CACC is usually more smoothly than that in ACC for

improved user comfort). Let ∆ denote the fluctuation range of ACC acceleration. When the

acceleration rate of a vehicle falls into this range [ACC − ∆, ACC + ∆] (here, ACC refers to

acceleration in ACC controller strategy), it indicates there is no immediate crash threat. On the

contrary, if the acceleration of a vehicle is out of the range, it indicates abnormal situation and we

need to switch to fail-safe scheme to avoid collision.

Here are some details on how range is defined. From Equation (3.6) and Equation (3.2), the

accelerations of CACC and ACC in normal state can be calculated. By setting parameters to their

default values, we are able to get Equation (7.1) and Equation (7.2). Actually, we can calculate the

difference between CACC and ACC acceleration anytime and then we can determine the threshold

exactly the maximum difference.

ẍi_cacc = 0.5ẍi−1 + 0.5ẍ0 − 0.4ẋi + 0.3ẋi−1 + 0.1ẋ0 − 0.04xi

+0.04xi−1 − 0.04li−1 − 0.04gapdes

(7.1)

ẍi_acc = −
1

T
(ẋi − ẋi−1 + 0.1xi − 0.1xi−1 + 0.1li−1 + 0.1T ẋi) (7.2)

Let us define

∆ = max(|ẍi_cacc − ẍi_acc|) (7.3)

35



In normal situation, the platoon is driving with a fixed speed and constant gap between cars. There-

fore, we can assume that ẍi−1 and ẍ0 are 0 with ẋi, ẋi−1 and ẋ0 are equal. Meanwhile we have

ẋi−1 − ẋi = gapdes + li−1 so that the acceleration of CACC ẍi_cacc is 0. For ACC, T is headway

and then we have ẍi_acc = − 1

T
(0.1T ẋi − 0.1gapdes). Finally, the guideline for range is achieved

with ∆ = max(| 1
T
(0.1T ẋi − 0.1gapdes)|) = 0.1max(ẋi) −

0.1gapdes
T

. max(ẋi) is the max speed

of Vehicle i. This max speed is not the maximum mechanical speed a car can have. Instead, it is

the max speed set by automatic driving. Usually the max speed in automatic driving is less than

the actual max speed a car can have because passenger comfort is usually an important factor in

automatic driving.

We analyze the relationship between accelerations calculated from CACC and ACC in normal

situation (when there is no attack) and find out that difference between these two acceleration val-

ues acts well as the range. When the CACC acceleration is within the range of ACC acceleration,

we follow CACC controller strategy to maintain string stability. Otherwise, we should switch from

CACC to ACC to maintain safety.

Based on this observation, we can set the platoon to CACC mode when the difference between

CACC and ACC accelerations is under the range (normal situation) while switch the platoon to

ACC mode when the difference is larger than the range (abnormal situation).

Since we can compute the acceleration of ACC and CACC at the same time, we can combine

them together to present a new driving mode which is called Proactive CACC Algorithm. On one

hand, we can utilize the received V2V messages to compute the acceleration for CACC. On the

other hand, we can use radar data to compute the acceleration for ACC. Meanwhile, we define

a range for Proactive CACC Algorithm. In normal cases, the difference between two kinds of

acceleration will be within the range. Therefore, we set the platoon to CACC mode so that it can

maintain string stability. In abnormal cases, the difference between CACC acceleration and ACC

acceleration will be larger than the range. Then we switch the platoon to ACC mode to ensure

safety. With this defense mechanism, we can achieve string stability and safety at the same time.
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For distance, we use a straightforward way to detect cyber attacks. When platooning is driving

in normal situation, it maintains a fixed desired gap. The idea is to check whether the gap between

vehicles is smaller than desired value, if it is, then we identify a cyber attack.

7.1.2 Switch to Fail-safe Scheme

Once cyber attacks are mounted on platoon, we need to switch to fail-safe scheme to reduce or

eliminate harm. When crash happens, we believe in such urgent situation, autonomous driving re-

sponds quicker than human drivers. So we choose to switch cooperative CACC to non-cooperative

ACC. There might be other autonomous emergency plans which we will take further investiga-

tion in the future. In the following, we will show the fail-safe schemes of different parameters

(acceleration,distance) respectively.

Acceleration & Distance

The key point of Proactive CACC Algorithm is that whether the difference of CACC and ACC

accelerations is within the range. From the discussion above we know that, in normal situation,

the acceleration to CACC is 0 while the acceleration to ACC is ẍi_acc = − 1

T
(0.1T ẋi − 0.1gap).

The range defined is 0.1max(ẋi)−
0.1gap

T
. Hence, the difference of two accelerations is within the

range. Otherwise any abnormal event happens, the difference is larger than the range which will

trigger the defense mechanism.

Based on the above analysis, for acceleration parameter, we propose Proactive CACC Algo-

rithm which is shown as Algorithm 2. In our algorithm, a vehicle calculates desired accelera-

tion in both CACC and ACC controller strategy. It switches to ACC if the defense mechanism

(|ẍi_cacc − ẍi_acc| > ∆) is triggered.

In the Proactive CACC Algorithm, _cc, _acc and _cacc are the methods computing the desired

acceleration based on CC, ACC and CACC controller strategy respectively. gap2pred is the dis-
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Algorithm 2 Proactive CACC Algorithm

1: Input: parameters (vehicle information)

2: Output: desiredAcceleration

3:

4: ccAcceleration = _cc(parameters)

5: accAcceleration = _acc(parameters)

6: caccAcceleration = _cacc(parameters)

7:

8: if |caccAcceleration - accAcceleration| <= ∆ then

9: desiredAcceleration = caccAcceleration

10: else

11: desiredAcceleration = accAcceleration

12: end if

13: if gap2pred >= 20 then

14: desiredAcceleration = min(desiredAcceleration,ccAcceleration)

15: end if

tance to the preceding vehicle. ∆ is the threshold that we use to select the proper controller strategy

between ACC and CACC.

For distance, the fail-safe scheme is to switch to ACC when the gap between vehicles is smaller

than the desired value, otherwise platoon still follows CACC to maintain fixed gap and string

stability.

7.1.3 Safe Distance

Safe distance is the prerequisite in general approach for designing a safe platooning. Here we

present the safe distances under different fail-safe schemes and attack detection mechanisms.

Acceleration

To demonstrate whether the proposed Proactive CACC Algorithm works and to find the safe dis-

tance, we conduct a simulation with the example platoon under leader crash attack. When we set

the range value to 0.2 m/s2, the platoon is safe with a safe distance of 9 meters (0.32s).

We modify the PLEXE to make sure that platoon can switch between CACC and ACC when-
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ever it needs. MSCFModel_CC is a vehicle driving model which implements the CACC, ACC

and other control strategies, like Cruise Control (CC) and human driving mode. Within the _v()

method in MSCFModel_CC, it computes the desired acceleration of each type of controller strat-

egy and then choose the requested one. When it comes to CACC controller strategy, we use CACC

proactive algorithm to calculate the desired acceleration. If the difference between CACC and

ACC acceleration is within the range ∆, we return CACC acceleration, otherwise we return ACC

acceleration. In the experiment, we find out that when we set the range to 0.2 m/s2, we can achieve

string stability and safety both. At the same time, we also achieve a much shorter safe distance

which is 9 meters (0.32s).
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Figure 7.1: Speed Changes of Platoon : Acceleration

From Figure 7.1, we can see that all the vehicles maintain the same velocity. Meanwhile, the

acceleration of platoon is a constant value. Therefore, ẍi_cacc = 0. The highest speed ẋi is 27.78

m/s and the gap in this experiment is 9 meters (0.32s). Therefore, we obtain ∆ = 0.22 m/s2

which is close to our simulation result. So our algorithm achieves safety and efficiency. In the next

39



section, we prove its security under the two insider attacks.

Distance

For distance, we also conduct an experiment to show how this method defend against leader crash

attack. The experiment environment is the same as above setting. We can see from Figure 7.2 that

result is the same too. The safe distance is 9 meters (0.32s).
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Figure 7.2: Speed Changes of Platoon : Distance

Comparison

In this paper, we recommend using acceleration defense mechanism to defend against attacks

rather than distance defense mechanism. As shown in Table 7.1, when cyber attack happens,

acceleration defense mechanism responds immediately, namely, the difference between CACC

and ACC acceleration will be larger than the specific range. For distance defense mechanism, it
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Attack Defense Response Time Leader Crash Collision Induction Message Falsification

Acceleration Fast Yes Yes Yes

Distance Slow Yes Yes No

Table 7.1: Comparison between acceleration and distance defense mechanism

will only be triggered when the vehicle gap is decreased. In the leader crash attack which starts

at 50.00s, the ego vehicle switches to ACC at 50.02s by using acceleration defense mechanism

and 50.07s by using distance defense mechanism. Furthermore, the kinds of cyber attacks can be

defended by distance defense mechanism is limited. For example, in message falsification attack,

the malicious vehicle broadcasts false message to tell current car to decelerate. Using distance

defense mechanism cannot deal with such situation, but using acceleration defense mechanism can

defend against it. Therefore, for the safe platooning design, we recommend using acceleration

defense mechanism.

41



CHAPTER 8

Security Analysis

Platoon relies heavily on broadcasting messages via wireless communication to maintain a close

gap and string stability. However, the messages are easy to be compromised and the following

vehicles can’t receive the correct signals to make the right maneuver decisions. Once the platoon

is driving on the highway with a minimal gap, security threats from message falsification attack can

cause severe accidents and endanger drivers’ lives. The Proactive CACC Algorithm we proposed

can completely defense diverse message attacks.

In this chapter, we analyze the security of the proposed proactive safe CACC algorithm in terms

of resilience to the collision induction attack and message falsification attack which may lead to

car collisions. We want to show that such an attack will cause a big difference between CACC

and ACC acceleration values and thus trigger the vehicle to switch from CACC to ACC in order

to avoid collision. For each attack type, we will provide a theoretical analysis on its resistance

first and then demonstrate the effectiveness of the proposed scheme through simulation by using a

concrete platoon example.

8.1 Security Resistance to Collision Induction Attack

8.1.1 Theoretical Analysis

In collision induction attack [4], an attacker broadcasts an acceleration message indicating that it

is speeding up which causes the following vehicle to accelerate while actually the attacker starts to
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decelerate abruptly. With platoon driving on highway with a close gap, this is very likely to lead

to dangerous accidents. In order to prove that our proactive safe CACC algorithm can really de-

fend against Collision Induction Attack, we determine to perform theoretical analysis of Collision

Induction Attack.

Assume initially the platoon is already formed and traveling at a fixed velocity with a fixed

gap gapdes between cars. In this situation, the acceleration of platoon is ẍ_cacc = 0. Every

vehicle broadcasts its current speed (ẋ) and acceleration (ẍ_cacc) to its following car. Suppose

Vehicle i − 1 is the attacker and it begins to mount collision induction attack at certain time. It

decelerates at a fixed deceleration rate and at the same time it sends false state information (speed

and acceleration) to Vehicle i. We consider two cases of false state information. In Case 1, the

attacker tells the following car that it is traveling the same as before with the same velocity and

acceleration rate of 0 while it is actually decelerating. In Case 2, the attacker tells the follower that

it is speeding up with a non-zero positive acceleration rate. In the following, we will show that the

attack in both cases will trigger our defense mechanism. The following car, Vehicle i, is able to

switch from CACC to ACC.

First of all, we show that Case 1 will trigger defense mechanism so that Vehicle i will switch

from CACC to ACC. CACC makes use of broadcasting message to calculate the acceleration Vehi-

cle i should take, while ACC utilize the information detected by radar to compute the correspond-

ing acceleration. The condition whether we should switch on ACC depends on if the difference

between two accelerations is beyond range.

Assuming the platoon is already driving at a fixed speed with a fixed gap, as shown in Chapter

7, we have ∆ = max(| 1
T
(0.1T ẋi − 0.1gapdes)|) = 0.1ẋi −

0.1gapdes
T

.

In Case 1, the attacker i − 1 pretends it is driving at the same parameters as before. As inputs

to Vehicle i’s CACC algorithm remain the same, i.e., ẍi_cacc = 0 in our assumed setting. Vehicle i
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calculates its ACCC rate by using Equation (7.2):

ẍi_acc = −
1

T
(ẋi − ẋi−1 + 0.1xi − 0.1xi−1 + 0.1li−1 + 0.1T ẋi)

= −
1

T
(ẋi − ẋi−1)−

0.1(xi − xi−1 + li−1)

T
− 0.1ẋi

= −
1

T
(ẋi − ẋi−1) +

0.1gap′

T
− 0.1ẋi

(8.1)

Hence we have:

|ẍi_cacc − ẍi_acc| =
1

T
(ẋi − ẋi−1)−

0.1gap′

T
+ 0.1ẋi (8.2)

When Vehicle i − 1 starts to mount collision induction attack, it broadcasts message to Vehicle

i while decelerating. After a message broadcasting time interval, Vehicle i receives the message

and begins to adjust its movement. During that time interval, because the attacker Vehicle i − 1

decelerates and the gap decreases, therefore, we have ẋi > ẋi−1 and gap′ < gapdes where gap′ is

the latest measured gap which Vehicle i measures using a radar sensor. It is obvious the difference

between ẍi_cacc and ẍi_acc is larger than ∆ , which will trigger the defense mechanism and Vehicle

i will follow the instructions of ACC in the next step.

The above analysis can be easily extended to analyze Case 2. As Vehicle i will receive a

message from the attacker to speed up, so we have ẍi_cacc > 0. ẍi_acc is calculated the same as in

Equation (8.1): ẍi_acc is negative and its absolute value is larger than THRESHOLD. Therefore,

the absolute difference between CACC and ACC acceleration is larger than THRESHOLD. This

will trigger our defense mechanism and Vehicle i will follow ACC in the next step. .

8.1.2 Attack & Defense Simulation

We conduct experiments to show that the proposed Proactive CACC Algorithm can defend against

Collision Induction Attack. In the experiment, Vehicle 1 starts to send false messages to Vehicle

2 at 50.0 second. Instead of sending its real velocity to Vehicle 2, Vehicle 1 chooses to broadcast
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a velocity value that is twice of its real speed so that Vehicle 2 will follow the message to speed

up. Meanwhile, Vehicle 1 decelerates from 100 km/h (27.77 m/s) to 80 km/h (22.22 m/s) at a

deceleration of 9 m/s2. In order to show Proactive CACC Algorithm can help platoon maintain

string stability, we make the platoon velocity oscillates at a frequency of 0.2 Hz with an average

speed of 100 km/h (27.77 m/s).

When the attacker decreases its speed from 100km/h to 80km/h (in contrast to the leader crash

attack where the attacker decreases its speed from 100km/h to 0), our defense mechanism can

prevent collision from happening even when the platoon is with a 5-meter gap. The simulation is

completed by modifying MSCFModel_CC and SimplePlatooningApp. In MSCFModel_CC, we

pass false messages from Vehicle 1 to Vehicle 2 and in SimplePlatooningApp we instruct Vehicle

1 to decelerate. The range is set to 1.6 m/s2 to achieve string stability.

Figure 8.1: Collision Induction Attack Defense

We run two simulations. The first simulation is to show the vulnerability of the platoon under the

collision induction attack when there is no defense mechanism enforced. The second simulation is
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Figure 8.2: Collision Induction Attack Defense

to show how effective of the proposed Proactive CACC Algorithm in defending against the attack.

From Figure 8.1 we can see that, vehicle 2 follows vehicle 1’s false message to speed up while

vehicle 1 is actually decelerating, so vehicle 2 and vehicle 3 crash into vehicle 1. Speed changes of

vehicles in the second simulation are plotted in Figure 8.2. From the figure, we can see following

vehicles 2 and 3 can successfully avoid collisions even when the platoon is under the mis-report

attack. They switch to ACC immediately after the attacker decelerates and detach themselves from

the platoon. Eventually Vehicles 1, 2, and 3 reach to ACC stability by following the attacker’s

speed.
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8.2 Security Resilience to Message Falsification Attack

8.2.1 Theoretical Analysis

Message falsification attack [25] or mis-report attack as known in [4] is an attack where a vehicle

broadcasts a message with false information. It could be done by an insider attacker who does not

trust the CACC controller strategy. When the platoon is driving on the highway with a minimal

gap, the larger the gap between current car and following car is, the safer the driver will feel. Under

this circumstance, the driver may send a false message to the following vehicle to tell it to keep a

smaller velocity compared with the actual platoon speed so that the gap will be enlarged. Unlike

collision induction attack, the attacker still moves according to the CACC controller strategy.

The work of [25] shows that message falsification attack can result in car collision while the

work of [4] shows such attack only decreases system performance. It is interesting to understand

what causes this inconsistency in attack impact. Our analysis shown below explains the cause of

this inconsistency. Whether a message falsification attack can cause a collision or not depending

the level of cheating on its actual speed.

However, when the vehicle trusts the false message and starts to decelerate to a lower speed,

the rest following cars may not have enough time to react and crash into the preceding vehicle.

Therefore, the False Message Attack could also cause severe collision and endanger driver’s life.

Assume initially the platoon is already formed and traveling at a fixed speed with a fixed gap.

Suppose Vehicle i − 1 is the attacker and it wants to mount mis-report attack. It maintains the

speed while broadcasting false message to Vehicle i to tell it to slow down. The attacker defines a

mis-report percentage α ∈ [0, 1] and then send the false speed αẋi−1 to Vehicle i. The mis-report

percentage α determines the level of cheating on its speed. Apparently the smaller α is, the more

the attacker cheats on its speed. In the following, we will show that depending on the cheating

value of α, mis-report attacks with small α values (high cheating levels) will trigger our defense

mechanism while mis-report attacks with large α values (low cheating levels) will only decrease
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platoon performance.

Since we assume the platoon is driving at a fixed speed in initial stage, we can assume that all

the vehicles’ speed are the same (ẋi = ẋi−1 = ẋ0) initially. After a simulation time step, Vehicle

i receives a false message from the attacker Vehicle i − 1. It calculates the accelerations by using

both CACC and ACC. From Equation (7.1) and Equation (7.2), we can get

ẍi_cacc = −0.3ẋi + 0.3αẋi−1 − 0.04(xi − xi−1)

− 0.04(li−1 + gapdes)

= −0.3ẋi(1− α)− 0.04(gapdes − gap′)

(8.3)

ẍi_acc = −
1

T
(ẋi − ẋi−1 + 0.1xi − 0.1xi−1 + 0.1li−1 + 0.1T ẋi)

= −
1

T
(ẋi − ẋi−1)−

0.1(xi − xi−1 + li−1)

T
− 0.1ẋi

= −0.1ẋi +
0.1gap′

T

(8.4)

So we have

ẍi_cacc − ẍi_acc = −0.2ẋi + 0.3αẋi−1 − 0.04(gapdes − gap′)

−
0.1gap′

T

(8.5)

Equation (8.5) is linear function of α, so there exists a value α1 such that when α = α1, the left

side of the equation becomes ẍi_cacc − ẍi_acc = 0 or ẍi_cacc = ẍi_acc. When α > α1, it is easy to

prove that |ẍi_cacc − ẍi_acc| < ∆, and it will not trigger the defense mechanism. Now we consider

the opposite situation when α < α1. We have

|ẍi_cacc − ẍi_acc| −∆ = 0.1ẋi − 0.3αẋi−1

+0.04(gapdes − gap′) +
0.1gap′ + 0.1gapdes

T

(8.6)

Similarly there exists a value α2 such that when α = α2, the left of the equation |ẍi_cacc − ẍi_acc| −

∆ = 0 or |ẍi_cacc − ẍi_acc| = ∆. In this way, it is easy to see that when α < α2, we have
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|ẍi_cacc − ẍi_acc| > ∆ and it will trigger the defense mechanism.

In summary, whether a mis-report attack can trigger the defense mechanism depends on the

level it wants to cheat on its speed. When α < α2, a mis-report attack will trigger our defense

mechanism. When α > α2, which means a less severe mis-report attack, the attack only breaks the

string stability of the platoon, leads to platoon oscillation, and thus decreased platoon performance.

8.2.2 Attack & Defense Simulation

Same as in the defense simulation on collision induction attacks, we run two simulations to show

how a platoon will respond with and without applying our defense mechanism. In the simulation,

the attacker Vehicle 1 does not send its real velocity. It broadcast a false speed that is half of its

true speed. That is α = 0.5.

Figure 8.3: Mis-report Attack Defense

Simulation result is shown in Figure 8.3 and Figure 8.4. In Figure 8.3, vehicle 2 follows vehicle

1’s false message to slow down. Then vehicle 3 crashes into vehicle 2. The reason why vehicle
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Figure 8.4: Mis-report Attack Defense

2 speed up later is that vehicle 2 has been detached from platoon. Vehicle 2 then follows CC

algorithm instead of CACC algorithm and maintain the desired velocity. From Figure 8.4, we

can see mis-report attack has no impact on platoon when platoon is equipped with our proactive

algorithm.
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CHAPTER 9

Source Codes of Experiment

Listing 9.1: MSCFModel_CC Source Codes

SUMOReal

MSCFModel_CC::_v(const MSVehicle* const veh, SUMOReal gap2pred,

SUMOReal egoSpeed, SUMOReal predSpeed, SUMOReal desSpeed, enum

CONTROLLER_INVOKER invoker) const {

//acceleration computed by the controller

double controllerAcceleration;

//acceleration actually actuated by the engine

double engineAcceleration;

//speed computed by the model

double speed;

//acceleration computed by the Cruise Control

double ccAcceleration;

//acceleration computed by the Adaptive Cruise Control

double accAcceleration;

//acceleration computed by the Cooperative Adaptive Cruise Control

double caccAcceleration;
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//variables needed by CACC

double predAcceleration, leaderAcceleration, leaderSpeed;

bool debug = true;

// Add these codes to launch leader crash attack

if(MSNet::getInstance()->getCurrentTimeStep() >=

string2time("50.00") && veh->getID() == "platoon.0") {

if(egoSpeed > 0) setFixedAcceleration(veh, 1, -20);

else setFixedAcceleration(veh, 1, 0);

}

// End of codes

// Add these codes to launch collision induction attack

if(MSNet::getInstance()->getCurrentTimeStep() >=

string2time("50.00") && veh->getID() == "platoon.1") {

if(egoSpeed > 80/3.6) setFixedAcceleration(veh, 1, -9);

else if(egoSpeed < 80/3.6) setFixedAcceleration(veh, 1,

1.5);

else setFixedAcceleration(veh, 1, 0);

}

// End of codes

VehicleVariables* vars = (VehicleVariables*)

veh->getCarFollowVariables();

if (vars->activeController != Plexe::DRIVER &&

vars->useFixedAcceleration) {

controllerAcceleration = vars->fixedAcceleration;

}

else {

switch (vars->activeController) {
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case Plexe::ACC:

ccAcceleration = _cc(veh, egoSpeed, vars->ccDesiredSpeed);

accAcceleration = _acc(veh, egoSpeed, predSpeed, gap2pred,

vars->accHeadwayTime);

if (gap2pred > 250 || ccAcceleration < accAcceleration) {

controllerAcceleration = ccAcceleration;

}

else {

controllerAcceleration = accAcceleration;

}

break;

case Plexe::CACC:

if (invoker == MSCFModel_CC::FOLLOW_SPEED) {

predAcceleration = vars->frontAcceleration;

leaderAcceleration = vars->leaderAcceleration;

leaderSpeed = vars->leaderSpeed;

}

else {

/* if the method has not been invoked from

followSpeed() then it has been

* invoked from stopSpeed(). In such case we set all

parameters of preceding

* vehicles as they were non-moving obstacles

*/

predAcceleration = 0;

leaderAcceleration = 0;
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leaderSpeed = 0;

}

//TODO: again modify probably range/range-rate controller

is needed

ccAcceleration = _cc(veh, egoSpeed, vars->ccDesiredSpeed);

caccAcceleration = _cacc(veh, egoSpeed, predSpeed,

predAcceleration, gap2pred, leaderSpeed,

leaderAcceleration, vars->caccSpacing);

// Add these codes to launch message Falsification attack

if(MSNet::getInstance()->getCurrentTimeStep() >=

string2time("50.00") && veh->getID() == "platoon.2")

caccAcceleration = _cacc(veh, egoSpeed, predSpeed/2,

predAcceleration, gap2pred, leaderSpeed,

leaderAcceleration, vars->caccSpacing);

// End of codes

// Add these codes to launch collision induction attack

if(MSNet::getInstance()->getCurrentTimeStep() >=

string2time("50.00") && veh->getID() == "platoon.2")

caccAcceleration = _cacc(veh, egoSpeed, predSpeed*2,

predAcceleration, gap2pred, leaderSpeed,

leaderAcceleration, vars->caccSpacing);

// End of codes

//if CACC is enabled and we are closer than 20 meters, let

it decide

if (gap2pred < 20) {

controllerAcceleration = caccAcceleration;

}
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else {

controllerAcceleration = fmin(ccAcceleration,

caccAcceleration);

}

// Add these codes to defense against security attacks,if

there is abnormal situation, we switch CACC to ACC

accAcceleration = _acc(veh, egoSpeed, predSpeed, gap2pred,

vars->accHeadwayTime);

if(fabs(caccAcceleration-accAcceleration) <=

ACCELERATION_THRESHOLD)

controllerAcceleration = caccAcceleration;

else

controllerAcceleration = accAcceleration;

// End of codes

break;

case Plexe::FAKED_CACC:

if (invoker == MSCFModel_CC::FOLLOW_SPEED) {

//compute ACC acceleration that will be then used to

check for vehicles in front

vars->followAccAcceleration = _acc(veh, egoSpeed,

predSpeed, gap2pred, vars->accHeadwayTime);

}

else {

//compute ACC acceleration that will be then used to

check for vehicles in front
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vars->freeAccAcceleration = _acc(veh, egoSpeed,

predSpeed, gap2pred, vars->accHeadwayTime);

}

ccAcceleration = _cc(veh, egoSpeed, vars->ccDesiredSpeed);

caccAcceleration = _cacc(veh, egoSpeed,

vars->fakeData.frontSpeed,

vars->fakeData.frontAcceleration,

vars->fakeData.frontDistance,

vars->fakeData.leaderSpeed,

vars->fakeData.leaderAcceleration, vars->caccSpacing);

controllerAcceleration = fmin(ccAcceleration,

caccAcceleration);

break;

case Plexe::DRIVER:

std::cerr << "Switching to normal driver behavior still

not implemented in MSCFModel_CC\n";

assert(false);

break;

default:

std::cerr << "Invalid controller selected in

MSCFModel_CC\n";

assert(false);

break;

}

}

//compute the actual acceleration applied by the engine
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//engineAcceleration = \_actuator(veh, controllerAcceleration,

vars->egoAcceleration);

// here, we want to apply the desired acceleration immediately

engineAcceleration = controllerAcceleration;

//compute the speed from the actual acceleration

speed = MAX2(SUMOReal(0), egoSpeed +

ACCEL2SPEED(engineAcceleration));

//if we have to ignore modifications (e.g., when this method is

invoked by the lane changing logic)

//DO NOT change the state of the vehicle

if (!vars->ignoreModifications) {

if (invoker == MSCFModel_CC::FOLLOW_SPEED &&

vars->followSpeedSetTime !=

MSNet::getInstance()->getCurrentTimeStep()) {

vars->controllerFollowSpeed = speed;

vars->followSpeedSetTime =

MSNet::getInstance()->getCurrentTimeStep();

vars->followControllerAcceleration = controllerAcceleration;

}

if (invoker == MSCFModel_CC::FREE_SPEED) {

vars->controllerFreeSpeed = speed;

vars->freeControllerAcceleration = controllerAcceleration;

}

}

return speed;

}
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Listing 9.2: SimplePlatooningApp Source Code

#include "SimplePlatooningApp.h"

#include "crng.h"

#include "WaveShortMessage_m.h"

#include "MacPkt_m.h"

#include "Mac1609_4.h"

#include <BaseProtocol.h>

Define_Module(SimplePlatooningApp);

void SimplePlatooningApp::initialize(int stage) {

BaseApp::initialize(stage);

if (stage == 1) {

//get the oscillation frequency of the leader as parameter

leaderOscillationFrequency =

par("leaderOscillationFrequency").doubleValue();

//should the follower use ACC or CACC?

const char *strController = par("controller").stringValue();

//for now we have only two possibilities

if (strcmp(strController, "ACC") == 0) {

controller = Plexe::ACC;

}

else {

controller = Plexe::CACC;

}

//headway time for ACC

accHeadway = par("accHeadway").doubleValue();

//leader speed

leaderSpeed = par("leaderSpeed").doubleValue();
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if (myId == 0) {

//ACC speed is 100 km/h

traci->commandSetCruiseControlDesiredSpeed(traci->getExternalId(),

leaderSpeed / 3.6);

//leader uses the ACC

traci->commandSetActiveController(traci->getExternalId(),

Plexe::ACC);

//leader speed must oscillate

changeSpeed = new cMessage();

scheduleAt(simTime() + SimTime(0.1), changeSpeed);

}

else {

//followers speed is higher

traci->commandSetCruiseControlDesiredSpeed(traci->getExternalId(),

(leaderSpeed + 30) / 3.6);

//followers use controller specified by the user

traci->commandSetActiveController(traci->getExternalId(),

controller);

//use headway time specified by the user (if ACC is employed)

traci->commandSetACCHeadwayTime(traci->getExternalId(),

accHeadway);

changeSpeed = 0;

}

//every car must run on first lane

traci->commandSetFixedLane(traci->getExternalId(), 0);
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// Add these codes to set cacc constant spacing

traci->commandSetCACCConstantSpacing(traci->getExternalId(), 5);

// End of codes

}

}

void SimplePlatooningApp::finish() {

BaseApp::finish();

if (changeSpeed) {

cancelAndDelete(changeSpeed);

changeSpeed = 0;

}

}

void SimplePlatooningApp::onData(WaveShortMessage *wsm) {

}

void SimplePlatooningApp::handleSelfMsg(cMessage *msg) {

//this takes car of feeding data into CACC and reschedule the self

message

BaseApp::handleSelfMsg(msg);

if (msg == changeSpeed && myId == 0) {

//make leader speed oscillate

traci->commandSetCruiseControlDesiredSpeed(traci->getExternalId(),

(leaderSpeed + 10 * sin(2 * M_PI * simTime().dbl() *

leaderOscillationFrequency)) / 3.6);

scheduleAt(simTime() + SimTime(0.1), changeSpeed);

}

}
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CHAPTER 10

Limitations and Future Work

Our analysis, simulation, and evaluation are performed over PLEXE. The controllers (CACC,

ACC, and CC) used in PLEXE are classical and representative. Although we believe our ap-

proach is general enough to extend to other controllers, still we think it is necessary to evaluate

the proposed solution over other realizations of platoon systems using different controllers. We

are currently communicating with the Crash Avoidance Metrics Partnership (CAMP) for potential

collaboration on its platoon implementation.

In our study, we assume a homogeneous platoon system. In reality, apparently, a platoon con-

sists of heterogeneous vehicle systems. Experiences, lessons and recommendations gained from

this study may not apply to a heterogeneous platoon system. Heterogeneous platooning has been

studied by the transportation research community. We are going to extend our work by considering

heterogeneous vehicle platoon systems.

Our study is based on theoretical analysis and simulation. In reality, the situation can be more

complicated. We believe our work provides some insights on the safety and security of platooning

and hope it can open a new area of research towards safer and more secure platoon mechanisms.
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CHAPTER 11

Conclusions

In this paper, we present our work towards a safe and secure platoon co-design. We have shown

that cyber attack on a platoon system can have the most severe and widespread safety impact as

defined by the EVITA vehicle security risk model. We argue the importance of safety-security co-

design for safety critical cyber physical systems and make the first effort toward a safety-security

co-design engineering process which allows functional security requirements to be derived for

a safe automated vehicle platoon system. Based on the co-design analysis, we present a general

approach for designing a safe and secure platooning. Following the general approach, we propose a

new platoon control algorithm that takes into account both safety and security. The effectiveness of

the proposed scheme in achieving the safety goal as well as defending against security attacks has

been analyzed, demonstrated, and evaluated through both theoretical analysis and vehicle network

simulation.
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