
Latency Measurements of V2X Communication

by

Uday Kumar Bejawada

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Engineering

(Automotive Systems Engineering)

in the University of Michigan-Dearborn

2017

Master’s Thesis Committee:

Professor Weidong Xiang, Chair

Associate Professor Jinhua Guo

Associate Professor Hafiz Malik

ii

Acknowledgements

I take immense pleasure to express my profound gratitude and deep regards to my academic

supervisor ‘Prof. Weidong Xiang’ for his exemplary guidance, monitoring and constant

encouragement throughout the course of this thesis. I would also like to thank him for offering me

thesis in my field of interest and equipping with all basic needs, which helped my work to be

interesting and productive.

I would also like to thank ‘Prof. Jiabo Zhang’ for giving me an opportunity to take his guidance. I

am obliged to colleagues of “laboratory” for their friendly sense of humour, creating energetic and

enthusiastic working environment.

Additional thanks to the “University of Michigan Dearborn” who have identified ways to help

students succeed.

I am grateful for the cooperation of ‘Dr. Pankaj Mallick’ and ‘Ms. Sherry Boyd’ for their

encouragement and in departmental aspects during the period of my thesis.

Finally, yet importantly, I would like to express my heartfelt thanks to my beloved parents and

brother for their blessings and support, my friends for their help and wishes for the successful

completion of this project.

iii

Table of Contents

Acknowledgements ... ii

List of Tables .. v

List of Figures .. vi

List of Abbreviations .. vii

Abstract .. viii

CHAPTER 1: INTRODUCTION .. 1

1.1 DESCRIPTION .. 2

1.2 SECURITY AND SAFETY IN V2X COMMUNICATION ... 2

1.3 MINIMUM REQUIREMENTS FOR V2X COMMUNICATION 3

1.3.1 CHANNEL REQUIREMENTS.. 3

1.3.2 Transmit Power Accuracy... 3

1.3.3 PATH HISTORY REFERENCE DESIGN .. 3

CHAPTER 2: DATA INTERPRETATION .. 5

2.1 NMEA FROM GARMIN GLOBAL POSITIONING SYSTEM SENSOR 5

2.2 DESIRED INFORMATION OF NMEA (National Marine Electronics Association) 6

2.3 ALGORITHM TO INTERPRET THE NMEA DATA ... 8

2.3.1 SYNCHRONOUS INPUT/ OUTPUT .. 8

2.3.2 ASYNCHRONOUS INPUT/ OUTPUT ... 8

2.4 VEHICLE CAN DATA VIA OBD DONGLE .. 14

2.5 ALGORITHM TO INTERPRET THE CAN PACKETS .. 15

CHAPTER 3: NETWORK CONFIGURATION .. 17

iv

3.1 LOCAL NETWORK.. 17

3.2 REMOTE NETWORK .. 19

3.3 ALGORITHM FOR NETWORK INTERFACE ... 20

CHAPTER 4: LATENCY MEASUREMENTS .. 32

4.1 SCENARIOS IMPLEMENTED .. 32

4.2 SCENARIOS OVERVIEW ... 32

4.3 Conclusion .. 33

REFERENCES ... 34

v

List of Tables

TABLE 1: GARMIN 10X TECHNICAL SPECIFICATIONS .. 5

TABLE 2: GGPGA DEFINED BY NMEA 0183 .. 6

vi

List of Figures

FIGURE 1: RESEARCH WORK APPROACH ... 1

FIGURE 2: WAAS SYSTEM [5] ... 6

FIGURE 3: NMEA SENTENCES ... 7

FIGURE 4: VEHICLE CAN BUS INFORMATION ... 14

FIGURE 5: DESIRED INFORMATION WITH TIME STAMP .. 16

FIGURE 6: LOCAL NETWORK CONFIGURATION ... 17

FIGURE 7: ALGORITHM FLOWCHART ... 18

FIGURE 8: REMOTE NETWORK CONFIGURATION ... 19

vii

List of Abbreviations

B

BSM (Basic Safety Message) 2

C

CAN (Controller Area Network) 7, 1

D

D2D (Device to Device) 7

DSRC (Dedicated Short Range

Communications) 7

G

GNSS (Global Navigation Satellite System)

 ... 2

GPS (Global Positioning System) 7

H

Host Vehicle (HV) 3

L

Long Term Evolution) 7, 1

P

Path History (PH) .. 3

Path Prediction (PP) 3

S

SA (selective availability) 5

SAE (Society of Automotive Engineers)

J2735 ... 2

T

TCP (Transmission Control Protocol) 1

Time of Flight (TOF) 1

U

UDP (User Datagram Protocol) 1

viii

Abstract

V2X communication plays one of the important roles for future autonomous vehicle. Current V2X

communication is more directed towards DSRC (Dedicated Short Range Communications). What if

the DSRC law is not enforced and some other technology such as D2D (Device to Device) based on

LTE (Long Term Evolution) will provide good results and become possible alternative.

The scope of this project is to have a sniffer that has the capability to process transmit and receive

the data and could able to interface all of the following devices DSRC, LTE and D2D (LTE based

communication without involvement of Base Station) and any other possible medium of

communication for V2X communication. And also, to have a database that has the capability to help

in the future of autonomous vehicles. This thesis explains the research study, done for one of the

performance evaluation of V2X communication. It can be further continued to develop a device and

a server with more functionalities for V2X communication.

In V2V communication network, performance evaluation is one of the key factors that need to be

considered. To address the evaluation criteria, I have analyzed the elapsed time in reading the GPS

(Global Positioning System) sensor and CAN (Controller Area Network) bus information from the

vehicle before transmitting the data to the Network (IEEE802.11p or LTE) and also after the

transmission. I have developed a c code, which can read the data from the GPS sensor and the CAN

bus, and add a time stamp to the real time data to analyze the elapsed time.

1

CHAPTER 1: INTRODUCTION

 In V2X communication networks, the elapsed time in receiving the CAN bus information

from the CAN network of the vehicle should be taken into consideration, prior to the transmission of

data to the other vehicle. Once the data is transmitted either by IEEE802.11p or LTE, Time of Flight

(TOF) comes into picture. To estimate the overall performance of V2X communication network

these two time factors need to be considered. A mobile service can be used to provide the live

updates of the traffic situation on the road to the users 1. To get the live updates, the users need to

transmit and receive the data from the remote server when they are driving on the road. The

objective of this thesis is to determine the performance of IEEE802.11p and LTE as vehicular

networks in real time. The overall approach followed for this research work is shown in Figure 1.

Two aspects are contributed to this thesis to estimate the real time performance of vehicular

networks.

1) Collecting the vehicle information in real time and transmitting the information to a

remote TCP (Transmission Control Protocol) server or UDP (User Datagram Protocol)

server.

2) Calculating the time elapsed to receive CAN data from the CAN network and

transmitting to the server at different traffic situations and driving speeds. The elapsed

time in transmitting the user data to the server is an essential challenge to estimate the

overall performance of the vehicular networks.

Figure 1: Research work approach

2

1.1 DESCRIPTION

 The vehicular networks architecture consists of three layers, access network layer, data aggregation

layer and application layer. Vehicles are connected to cellular base station and road side unit in

network layer. They act as mobile sensors to collect the traffic information in this layer [2]. The

BSM (Basic Safety Message), which is defined in SAE (Society of Automotive Engineers) J2735, is

the message used for V2V safety communications. Each vehicle broadcasts BSMs to provide

neighboring vehicles with trajectory and status information. The BSM consists of all data elements

listed in Part I and selected data elements and data frames listed in Part II of the SAE J2735

standard. Part I contains the vehicle position, speed, heading, acceleration, transmission, steering-

wheel angle, brake, and vehicle-size information. Many V2X safety applications need projection

information with lane-level granularity. The positioning system includes a GNSS (Global Navigation

Satellite System) receiver to enable the System to determine its own position and accurate time. The

System also maintains its own path history and calculates its path prediction. Each vehicle

broadcasts its time-tagged position (10Hz), heading, speed, and acceleration, its path history and

path prediction in the BSM. Hence as a part of this study, GPS information and some CAN data

packets from the BSM part1 have been taken into consideration to transmit the data via LTE.

1.2 SECURITY AND SAFETY IN V2X COMMUNICATION

According to [11], to support trust in message exchange between vehicles, BSM signing and

verification are performed using a public key digital signature algorithm. Each BSM is transmitted

with a signature and either a security certificate containing the public key or a certificate. The BSM

with a certificate is transmitted approximately every 500ms, and other BSMs are transmitted with a

certificate digest to reduce the overall message length. BSM security is compliant with IEEE 1609.2.

3

LTE security is compliant with 3GPP [12]. However, this thesis work doesn’t discuss the security

and focuses only on latency.

1.3 MINIMUM REQUIREMENTS FOR V2X COMMUNICATION

V2X communication should meet the requirements mentioned in [11]. Some of the minimum

requirements that need to be met by the V2X communication system are outlined in this section.

1.3.1 CHANNEL REQUIREMENTS

 The System shall transmit BSMs on channel with 10 MHz channel spacing.

 The System shall transmit BSMs using an 802.11 data rate of 6 Mbps.

 After the first BSM generated after System device startup, the System shall generate each

subsequent BSM within tolerance rate of (-10msec) to (+10msec) of its scheduled generation

time.

1.3.2 Transmit Power Accuracy

The DSRC Radio Subsystem shall meet the 802.11 transmitter requirements for 10 MHz channel

spacing with QPSK and ½ rate coding.

1.3.3 PATH HISTORY REFERENCE DESIGN

The Path History (PH) module for the V2V communications System uses a history of the past GNSS

locations traversed by the Host Vehicle (HV) and computes an adaptable, concise PH representation

of recent vehicle movement over a certain distance (200-300 meters). The PH communicated by a

vehicle provides other vehicles with information needed for predicting the roadway geometry.

4

PH plays an important role in target vehicle classification, relative to the HV, regarding the roadway.

There are different methods for design and implementation of the PH module. Three different design

methods are described here, each with a slightly different approach.

Path Prediction (PP) for the V2V safety communications System utilizes dynamics information

provided by the vehicle to estimate the driver’s intended future path. The estimate is provided

without dependence on future road geometry information obtained from outside sources (e.g., map

databases, vehicle probes). In order to determine if the LTE can meet the minimum V2X

communication requirement, the first step that has been considered to determine the latency is

outlined in this thesis work.

PP carries out the following basic operations:

 Gathers vehicle dynamics information.

 Computes path radius using dynamics information to represent the driver’s intended future

path:

 Radius = 1/curvature (ρ).

 Computes confidence of the predicted path based upon the ra``te of change of the vehicle

dynamics to infer transient conditions (i.e., non-steady-state conditions).

5

CHAPTER 2: DATA INTERPRETATION

2.1 NMEA FROM GARMIN GLOBAL POSITIONING SYSTEM SENSOR

The GPS sensor used in this project is Garmin 10X, the technical specifications of which are

listed in

Table 1.

Table 1: Garmin 10x technical specifications

Electrical Characteristics

Input Voltage 4.5-5.5V

Input Current 500mA@ 5V

Battery 1100mAhr

Operating temperature range -30°C to + 60°C powered from external supply

-10°C to +60°C powered by removable

rechargeable battery

Receiver High sensitivity SiRFstarIII GPS receiver;

WAAS
1
-enabled

Acquisition Times On average for a stationary receiver with a clear

view of the sky.

 Warm:<1 sec

 Cold:<38 sec

 Factory Reset:<45 sec

Update Rate 1 record per second, continuous

Accuracy

GPS accuracy Position: <10 meters, typical

Velocity: 0.05 meters/sec RMS

GPS (WAAS) accuracy Position: <5 meters, typical

Velocity: 0.05m/s (RMS)

Interfaces

Bluetooth Serial Profile Range up to 32 feet or 10 meters

Protocol NMEA 0183,Version 2.0,default

1
 Wide Area Augmentation System corrects the GPS signal errors caused by ionosphere disturbances, timing and satellite

orbit errors. It can give a position accuracy of 3m, 95 percent of the time. WAAS satellite coverage is available in

North America.

6

As shown in Figure 2 the accuracy of GPS system subjects to degradation with SA (selective

availability) on and improves with SA off and WAAS.

 15m: typical GPS position accuracy without SA.

 3-5m: typical differential GPS (DGPS) position accuracy.

 <3m: typical WAAS position accuracy.

Figure 2: WAAS system [5]

2.2 DESIRED INFORMATION OF NMEA (National Marine Electronics Association)

As shown in Figure 3, NMEA 0183 consists of various sentences. The GGPGA consists the global

positioning system fix data, which is described in Table 2.

Table 2: GGPGA Defined by NMEA 0183

Name Example

Data

Description

Sentence Identifier $GPGGA Global Positioning System Fix Data

Time 170834 17:08:34 Z

Latitude 4219.2152,

N

42d 19.2152' N or 42d 19' 12.912" N

Longitude 08314.0246,

W

83d 14.0246' W or 83d 14' 1.4760" W

Fix Quality:

0=Invalid

1=GPS fix

2=DGPS fix

1 Data is from a GPS fix

Number of Satellites 06 6 Satellites are in view

Horizontal Dilution of

Precision (HDOP)

1.5 Relative accuracy of horizontal

position

Altitude 249.7, M 280.2 meters above mean sea level

Height of geoid above WGS84

ellipsoid

-34.0, M -34.0 meters

7

Time since last DGPS update blank No last update

DGPS reference station id blank No station id

Checksum *69 Used by program to check for

transmission errors

Figure 3: NMEA sentences

A C program is developed to interpret the latitude and longitude data from GPGGA received. The

GPGGA has the following format.

$GPGGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh

The program is to,

1) Read the complete NMEA sentences sent from the GARMIN GPS 10X sensor via Bluetooth.

2) Capture GPGGA string and write to a data buffer.

3) Extract desired information including timestamp and latitude and longitude.

4) Loop for next data.

8

2.3 ALGORITHM TO INTERPRET THE NMEA DATA

For the serial communication between the GPS module and the windows PC, the Bluetooth interface

is established. In windows reading from and writing to communication ports is like the file input and

output. Functions for serial I/O uses the same functions as file I/O. Reading and writing to

communication ports in windows can be done either synchronously or asynchronously.

2.3.1 SYNCHRONOUS INPUT/ OUTPUT

In synchronous I/O, the calling thread is blocked when an operation is taking place. Once the

operation is complete, the function will return and the thread can continue with the next operation.

This is useful in multithreaded applications, because when one thread is blocked on an I/O operation,

other threads can still perform work. However, the application should serialize the ports correctly.

The drawback in this operation is that if one thread is blocked waiting for the I/O operation, all other

threads that call a communications API will be blocked until the original operation completes.

2.3.2 ASYNCHRONOUS INPUT/ OUTPUT

In Asynchronous I/O, a port open for overlapped operations allows multiple threads to perform the

I/O operations at the same time, thus allowing to do other work while the operations are incomplete.

The overlapped operations allow a single thread to issue multiple requests of different type and do

work in the background while the operations are incomplete, thus allowing more flexibility and

efficiency.

Asynchronous operation is not a good for portability in comparison with synchronous operation,

because it is not supported by most of the operating systems. Multithreading is supported by most of

the operating systems, therefore synchronous operation might be the best choice for portability.

Between issuing requests and processing the results, some synchronization must take place, in both

single-threaded and multithreaded applications. One thread should be blocked until the result of an

operation is available. Asynchronous I/O allows a thread to do some work between the time of the

request and its completion, thus providing the advantage for better responsiveness.

According to [13] for opening and closing a communications resource handle and for performing

read and write operations, “CreateFile, closehandle, readfile, and writefile” will provide the basic

interface. As the first step to open a handle to a communication resource the process uses the create

9

file function. For example, specifying COM1 opens a handle to a serial port. The handle returned by

’createfile’ to identify the resource in any of the functions that access the resource can be used by

any thread of the process. The following attributes need to be specified while calling a create file

function, type of read/ write access, whether the handle can be inherited by child process and

whether the handle can be used in asynchronous I/O operations. More information about ‘createfile’

function to open or create an I/O device can be found at [14].

The code developed for reading the GPS NMEA sentences works as follows:

Step1:

// Scans for an available COM port in a specified maximum and minimum range

// The maximum and minimum range must be defined by the user

 for (n = scan_max ; n >= scan_min ; --n)

 {

// Once the COM port is identified, the COM should be opened to read or write the data

 hSerial = CreateFile(device_name, GENERIC_READ|GENERIC_WRITE, 0, 0,

 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);

 if (hSerial!=INVALID_HANDLE_VALUE)

 {

 // Assign the device number and stop scanning the ports

 dev_number = n;

 break; // stop scanning COM ports

 }

 // if it results in invalid handle value display the error code

 }

Step2:

// Once the serial port is successfully opened, set the device parameters

// Baudrate (default 9600), 1 start bit, 1 stop bit, no parity

 dcbSerialParams.DCBlength = sizeof(dcbSerialParams);

 if (GetCommState(hSerial, &dcbSerialParams) == 0)

 exit_message("Error getting device state", 1);

 dcbSerialParams.BaudRate = baudrate;

10

 dcbSerialParams.ByteSize = 8;

 dcbSerialParams.StopBits = ONESTOPBIT;

 dcbSerialParams.Parity = NOPARITY;

 if(SetCommState(hSerial, &dcbSerialParams) == 0)

 exit_message("Error setting device parameters", 1);

Step3:

Read the incoming data as characters, to avoid running into infinite loop when no data is received set

COM port timeout settings.

 timeouts.ReadIntervalTimeout = 50;

 timeouts.ReadTotalTimeoutConstant = 50;

 timeouts.ReadTotalTimeoutMultiplier = 10;

 timeouts.WriteTotalTimeoutConstant = 50;

 timeouts.WriteTotalTimeoutMultiplier = 10;

 if(SetCommTimeouts(hSerial, &timeouts) == 0)

 exit_message("Error setting timeouts", 1);

 Step4:

Read the data to a specified buffer of defined length

 char message_buffer[MESSAGE_LENGTH];

 DWORD bytes_read;

Step5:

Read the messages in the correct format, by identifying the delimiters that are used to separate the

NMEA sentences.

 while(1)

 {

 // Read next character

 ReadFile(hSerial, &c, 1, &bytes_read, NULL);

 if (bytes_read != 1) continue;

 if (state == 1)

 {

 // State 1: Waiting for '<' character to start message

 n = 0;

11

 strcpy(message_buffer, "");

 if (c == '<') state = 2;

 }

 else if (state == 2)

 {

 // State 2: Reading id one digit at a time

 if (c >= '0' && c <= '9') n = 10*n + (c-48);

 else if (c == '@') state = 3;

 else state = 1;

 }

 else if (state == 3)

 {

 // Got a '@' character, so now reading actual message

 if (n != id) state = 1;

 else if (c != '>') strncat(message_buffer, &c, 1);

 else if (c == '>') state = 4;

 if (strlen(message_buffer) >= MESSAGE_LENGTH-1) state = 4;

 }

 else if (state == 4)

 {

 // State 4: Display complete message

 fprintf(stdout, "%s\n", message_buffer);

 state = 1;

 }

 else state = 1;

 }

 }

 return 0;

}

Step6:

12

Close the serial port in case of error or when the user presses a specific key defined in the code to

terminate program.

Step7:

To interpret a specific NMEA sentence out of the buffer data, a string comparison function is

required. For this a structure containing the GPS NMEA string info can be created.

struct {

 int timeZone;

 // flag to be used, when a valid sentence begins

 bool flagRead;

 // valid GPS fix and data available

 bool flagDataReady;

 // hold parsed words for one given NMEA sentence

 char words[20][15];

// hold the received checksum for one given NMEA sentence

 char szChecksum[15];

 // will be set to true for characters between $ and * only

 bool flagComputedCks;

 // used to compute checksum and indicate valid checksum interval (between $ and * in a given

sentence)

// compute numeric checksum for a given sentence

int checksum;

// after getting * start cuttings the received checksum

 bool flagReceivedCks;

// Parse the received checksum

int index_received_checksum;

 // Indexing the word

 int wordIdx;

 int prevIdx;

 int nowIdx ;

 // globals to store parser results

 bool positionFixIndicator; //GPGGA

13

 bool dataValid; //GPRMC

 float longitude; // GPRMC and GPGGA

 float latitude; // GPRMC and GPGGA

 unsigned char UTCHour, UTCMin, UTCSec, // GPRMC and GPGGA

 UTCDay, UTCMonth, UTCYear; // GPRMC

 int satellitesUsed;// GPGGA

 float speed; // GPRMC

}gps;

Step8:

Comparing the string in the buffer to read the data as words in the GPGGA sentence by parsing the

delimiters.

 if (strcmp(gps.words[0], "$GPGGA") == 0) {

 /*

 // Check GPS Fix: 0=no fix, 1=GPS fix, 2=Dif. GPS fix

 if (gps.words[6][0] == '0') {

 gps.positionFixIndicator = false;

 // clear data

// gps.res_fLatitude = 0;

// gps.res_fLongitude = 0;

 gps.flagDataReady = false;

Reading the time information from the GPS

 gps.UTCHour = charToInt(gps.words[1][0]) * 10 + charToInt(gps.words[1][1]);

 gps.UTCHour = gps.UTCHour-4; // Michigan time zone

 gps.UTCMin = charToInt(gps.words[1][2]) * 10 + charToInt(gps.words[1][3]);

 gps.UTCSec = charToInt(gps.words[1][4]) * 10 + charToInt(gps.words[1][5]);

Reading the latitude and longitude information

 gps.latitude = strtof(gps.words[2], NULL);

 gps.longitude = strtof(gps.words[4], NULL);

Reading the number of satellites

14

 gps.satellitesUsed = (int)strtof(gps.words[7], NULL);

Step9:

Create a data file and write the data to the file. Continue the loop till the user terminates the program

or if an error is encountered, and close the file.

2.4 VEHICLE CAN DATA VIA OBD DONGLE

Vehicle CAN data is read from an Open-XC dongle through Bluetooth from Ford. Moreover, Ford

provides open sources and data focused API [6]. It works for Ford vehicles and others if you can get

the corresponding firmware from their manufacturers. Once the dongle is paired, it starts to transmit

the selected CAN packets in the JSON format, shown in Figure 4.

Figure 4: Vehicle CAN bus information

A C program is developed to interpret CAN packet. Its works to,

1) Read JSON strings sent from the OBD dongle via Bluetooth.

15

2) Capture and process interest vehicle data, such as engine speed, vehicle speed, torque, steer

angle and brake pedal position as shown in Figure 5.

3) Once it encounters the string it writes the data to a buffer.

4) In the next step, it divides the string and reads its value.

5) Resets the buffer and the process continues.

In each cycle of this process a time stamp is added to calculate the elapsed time for the update rate.

Figure 5 shows that the vehicle speed sensor gives output every 100ms and engine speed sensor

every 100ms and latitude and longitude information updates approximately every 1sec.

2.5 ALGORITHM TO INTERPRET THE CAN PACKETS

The algorithm to interpret the CAN packets is like the one discussed in section 2.3, except for few

changes. Instead of the NMEA sentences the incoming data will be in JSON (Java Script Object

Notation) format. JSON is built on two structures, a collection of name value pairs and an ordered

list of values. In JSON an object is an unordered set of name/value pairs, that begins with {(left

brace) and ends with} (right brace). Each name is followed by: (colon) and the name/value pairs are

separated by, (comma). An array is an ordered collection of values, begins with [(left bracket) and

ends with] (right bracket). Values are separated by, (comma)

.

A value can be a string in double quotes, or a number, or true or false or null, or an object or

an array. A string is a sequence of zero or more Unicode characters, wrapped in double quotes, using

backslash escapes. A character is represented as a single character string. For the number, octal or

hexadecimal formats are not used. Therefore, a string comparison to interpret the data with specified

delimiters will be used to compared and read the desired information from the NMEA sentence. The

string comparison functionality will work on pointer reference.

16

Figure 5: Desired information with time stamp

17

CHAPTER 3: NETWORK CONFIGURATION

In order investigate the latency for the LTE, I have categorized the network configuration into two

types, local and the remote network. I have done the socket programming to create server and client

configuration for both TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).

3.1 LOCAL NETWORK

The local network configuration is as shown in Figure 6. The client is considered to be a car

transmitting the CAN packets and GPS information to the server. Once the server receives the

information, it will store the data. The client and the server are connected to the local network of

University of Michigan Dearborn.

Figure 6: Local network configuration

18

A code has been developed for the local network configuration as shown in Figure 7. The code

functionality and the evaluation is as follows:

Step 1:

 The server is configured with a standard receiving buffer size and IP network listening to a

port.

 The client is configured to transmit the data to the server IP address on to the specific port

that the server is configured to listen.

 Dummy packets are transmitted to test the established communication between the server

and the client.

Step 2:

 Client is now connected to the OBD dongle to interface the CAN network.

 Once the client establishes the connection with the server it will start receiving the CAN

packets from the OBD dongle.

 The received packets will be transmitted to the server and the client will not wait for the

acknowledgement from the server.

 The server stores the data sent from the client. It listens to the client until the client closes the

connection.

Figure 7: Algorithm Flowchart

19

The above two steps are tested by connecting the client and server to the local network (Same Wi-Fi

network). No data has been lost when the network interface is local. The TCP network connection is

like the UDP with one difference that the client transmits the information to the server after

receiving the acknowledgement from the server. The TCP network is tested in both local network

and through internet.

3.2 REMOTE NETWORK

The remote network configuration is as shown in Figure 8. The client is a car transmitting the CAN

(Controller Area Network) packets and GPS (Global Positioning System) information to the server

via internet. The client is connected to the LTE (Long Term Evolution) network and the server to the

private local area network. Once the server receives the information, it will store the data. Verizon

LTE network is used for the network connection.

Figure 8: Remote network configuration

20

For local and the remote network configurations a time stamp is added on the server side and also on

the client side to determine the latency. Latency observed for the local network is within the range of

0 to 16ms. Latency measured at different scenarios for the remote network configuration are

discussed in chapter 4.

3.3 ALGORITHM FOR NETWORK INTERFACE

Network specific software that communicates with the network specific device driver and the IP

layer to provide the IP layer with consistent interface can be considered as the network interface.

Each network interface has a network address. Based on the destination address of the packet to be

transmitted the IP layer selects the appropriate network interface. A socket will be an endpoint in a

two-way communication link between two programs running on the network. It is bounded to a port

number so that the TCP layer can identify the application to where data need to be sent. A TCP

connection can be uniquely identified by its endpoints. Each endpoint is a combination of an IP

address and the port number. Thus, providing the access of having multiple connections between

clients and server.

The basic TCP client server connection involves three steps, the client sends a synchronous

message, the server sends an acknowledge with the clients synchronous message and contains the

servers synchronous message, then the client sends an acknowledge for the servers synchronous

message. Synchronous message indicates that the segment is being used to initialize a connection.,

and acknowledge indicates that the device sending the segment is conveying the acknowledgement

for a message it has received. The algorithm works as follows:

Step1:

21

The server opens a passive connection, creating a transmission control block for the connection and

prepares for the recipient connection from (Synchronous message) from the client. The client cannot

connect to server until the server opens a passive connection.

Step2:

The client creates a transmission control block for the connection and sends a synchronous message

to the server. The server listens to the client.

Step3:

The server receives the synchronous message from the client. It sends a synchronous message and

acknowledgement message back to the client that contains an acknowledgment form clients and

server synchronization. The client waits to receive an acknowledgement to the synchronous message

it has sent, and also for the server synchronous message.

Step4:

The client receives the synchronous and acknowledge message from the server and sends an

acknowledgement for the server synchronization. The client ready to establish connection. Server

waits for the acknowledgement from the client for the synchronous message it has send previously.

Step5:

The clients will wait for the server to establish connection. The server receives the acknowledgement

to its synchronization and establishes the connection.

 Step6:

The client and server will be ready for the data transfer.

The client code below will explain the functions performed by the client.

// Attributes to initialize the socket

 WSADATA wsaData;

 SOCKET ConnectSocket = INVALID_SOCKET;

 struct addrinfo *result = NULL,

 *ptr = NULL,

 hints;

 char *sendbuf = "this is a test";

 char recvbuf[DEFAULT_BUFLEN];

 int iResult;

22

 int recvbuflen = DEFAULT_BUFLEN;

 // Validate the parameters

 if (argc != 2) {

 printf("usage: %s server-name\n", argv[0]);

 return 1;

 }

 // Initialize Winsock

 iResult = WSAStartup(MAKEWORD(2,2), &wsaData);

 if (iResult != 0) {

 printf("WSAStartup failed with error: %d\n", iResult);

 return 1;

 }

 ZeroMemory(&hints, sizeof(hints));

 hints.ai_family = AF_UNSPEC;

 hints.ai_socktype = SOCK_STREAM;

 hints.ai_protocol = IPPROTO_TCP;

 // Resolve the server address and port

 iResult = getaddrinfo(argv[1], DEFAULT_PORT, &hints, &result);

 if (iResult != 0) {

 printf("getaddrinfo failed with error: %d\n", iResult);

 WSACleanup();

 return 1;

 }

 // Attempt to connect to an address until one succeeds

 for(ptr=result; ptr != NULL ;ptr=ptr->ai_next) {

 // Create a SOCKET for connecting to server

 ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype,

 ptr->ai_protocol);

 if (ConnectSocket == INVALID_SOCKET) {

 printf("socket failed with error: %d\n", WSAGetLastError());

23

 WSACleanup();

 return 1;

 }

 // Connect to server.

 iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen);

 if (iResult == SOCKET_ERROR) {

 closesocket(ConnectSocket);

 ConnectSocket = INVALID_SOCKET;

 continue;

 }

 break;

 }

 freeaddrinfo(result);

 if (ConnectSocket == INVALID_SOCKET) {

 printf("Unable to connect to server!\n");

 WSACleanup();

 return 1;

 }

 // Send an initial buffer

 iResult = send(ConnectSocket, sendbuf, (int)strlen(sendbuf), 0);

 if (iResult == SOCKET_ERROR) {

 printf("send failed with error: %d\n", WSAGetLastError());

 closesocket(ConnectSocket);

 WSACleanup();

 return 1;

 }

 // shutdown the connection since no more data will be sent

 iResult = shutdown(ConnectSocket, SD_SEND);

 if (iResult == SOCKET_ERROR) {

 printf("shutdown failed with error: %d\n", WSAGetLastError());

 closesocket(ConnectSocket);

24

 WSACleanup();

 return 1;

 }

 // Receive until the peer closes the connection

 do {

 iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0);

 if (iResult > 0)

 printf("Bytes received: %d\n", iResult);

 else if (iResult == 0)

 printf("Connection closed\n");

 else

 printf("recv failed with error: %d\n", WSAGetLastError());

 } while(iResult > 0);

 // cleanup

 closesocket(ConnectSocket);

 WSACleanup();

The server code below explains the basic functions implemented

 WSADATA wsaData;

 int iResult;

 SOCKET ListenSocket = INVALID_SOCKET;

 SOCKET ClientSocket = INVALID_SOCKET;

 struct addrinfo *result = NULL;

 struct addrinfo hints;

 int iSendResult;

 char recvbuf[DEFAULT_BUFLEN];

 int recvbuflen = DEFAULT_BUFLEN;

 // Initialize Winsock

 iResult = WSAStartup(MAKEWORD(2,2), &wsaData);

25

 if (iResult != 0) {

 printf("WSAStartup failed with error: %d\n", iResult);

 return 1;

 }

 ZeroMemory(&hints, sizeof(hints));

 hints.ai_family = AF_INET;

 hints.ai_socktype = SOCK_STREAM;

 hints.ai_protocol = IPPROTO_TCP;

 hints.ai_flags = AI_PASSIVE;

 // Resolve the server address and port

 iResult = getaddrinfo(NULL, DEFAULT_PORT, &hints, &result);

 if (iResult != 0) {

 printf("getaddrinfo failed with error: %d\n", iResult);

 WSACleanup();

 return 1;

 }

 // Create a SOCKET for connecting to server

 ListenSocket = socket(result->ai_family, result->ai_socktype, result->ai_protocol);

 if (ListenSocket == INVALID_SOCKET) {

 printf("socket failed with error: %ld\n", WSAGetLastError());

 freeaddrinfo(result);

 WSACleanup();

 return 1;

 }

 // Setup the TCP listening socket

 iResult = bind(ListenSocket, result->ai_addr, (int)result->ai_addrlen);

 if (iResult == SOCKET_ERROR) {

 printf("bind failed with error: %d\n", WSAGetLastError());

 freeaddrinfo(result);

26

 closesocket(ListenSocket);

 WSACleanup();

 return 1;

 }

 freeaddrinfo(result);

 iResult = listen(ListenSocket, SOMAXCONN);

 if (iResult == SOCKET_ERROR) {

 printf("listen failed with error: %d\n", WSAGetLastError());

 closesocket(ListenSocket);

 WSACleanup();

 return 1;

 }

 // Accept a client socket

 ClientSocket = accept(ListenSocket, NULL, NULL);

 if (ClientSocket == INVALID_SOCKET) {

 printf("accept failed with error: %d\n", WSAGetLastError());

 closesocket(ListenSocket);

 WSACleanup();

 return 1;

 }

 // No longer need server socket

 closesocket(ListenSocket);

 // Receive until the peer shuts down the connection

 do {

 iResult = recv(ClientSocket, recvbuf, recvbuflen, 0);

 if (iResult > 0) {

27

 printf("Bytes received: %d\n", iResult);

 // Echo the buffer back to the sender

 iSendResult = send(ClientSocket, recvbuf, iResult, 0);

 if (iSendResult == SOCKET_ERROR) {

 printf("send failed with error: %d\n", WSAGetLastError());

 closesocket(ClientSocket);

 WSACleanup();

 return 1;

 }

 printf("Bytes sent: %d\n", iSendResult);

 }

 else if (iResult == 0)

 printf("Connection closing...\n");

 else {

 printf("recv failed with error: %d\n", WSAGetLastError());

 closesocket(ClientSocket);

 WSACleanup();

 return 1;

 }

 } while (iResult > 0);

 // shutdown the connection since we're done

 iResult = shutdown(ClientSocket, SD_SEND);

 if (iResult == SOCKET_ERROR) {

 printf("shutdown failed with error: %d\n", WSAGetLastError());

 closesocket(ClientSocket);

 WSACleanup();

 return 1;

 }

28

 // cleanup

 closesocket(ClientSocket);

 WSACleanup();

Now the message buffer filled with either vehicle data or GPS data or both can be transferred to

server from the car (Client). However, the above code is the basic functionality that works for only

one server and client configuration. To accept multiple clients few more functionalities are

developed to establish asynchronous communication (refer to section 2.3). For the local network, the

performance is similar to the single server client configuration. However, the performance

evaluation is still need to be tested on remote network configuration.

The code works as follows:

// Waits for the incoming connections

// Reads the set of socket descriptors

 //clear the socket fd set

 FD_ZERO(&readfds);

 //add master socket to fd set

 FD_SET(master, &readfds);

 //add child sockets to fd set

 for (i = 0 ; i < max_clients ; i++)

 {

 s = client_socket[i];

 if(s > 0)

 {

 FD_SET(s , &readfds);

 }

 }

//wait for an activity on any of the sockets, timeout is NULL , so wait indefinitely

 activity = select(0 , &readfds , NULL , NULL , NULL);

 if (activity == SOCKET_ERROR)

 {

29

 printf("select call failed with error code : %d" , WSAGetLastError());

 exit(EXIT_FAILURE);

 }

 //If something happened on the master socket , then its an incoming connection

 if (FD_ISSET(master , &readfds))

 {

 if ((new_socket = accept(master , (struct sockaddr *)&address, (int *)&addrlen))<0)

 {

 perror("accept");

 exit(EXIT_FAILURE); }

 //add new socket to array of sockets

 for (i = 0; i < max_clients; i++)

 {

 if (client_socket[i] == 0)

 {

 client_socket[i] = new_socket;

 printf("Adding to list of client sockets at index %d \n" , i);

 break;

 }

 }

s = client_socket[i];

 //if client present in read sockets

 if (FD_ISSET(s , &readfds))

 {

 //get details of the client

 getpeername(s , (struct sockaddr*)&address , (int*)&addrlen);

 //Check if it was for closing , and also read the incoming message

 valread = recv(s , buffer, recv_buflen, 0);

 if(valread == SOCKET_ERROR)

 {

 int error_code = WSAGetLastError();

30

 if(error_code == WSAECONNRESET)

 {

 //Somebody disconnected , get his details and close the connection

 //Close the socket and mark as 0 in list for reuse

 closesocket(s);

 client_socket[i] = 0;

 }

 else

 {

 printf("recv failed with error code : %d" , error_code);

 }

 }

 if (valread == 0)

 {

 //Somebody disconnected, get his details and close

//Close the socket and mark as 0 in list for reuse

 closesocket(s);

 client_socket[i] = 0;

 }

 //Echo back the message that came in

 else

 {

//add null character, if you want to use with printf/puts or other string handling functions

 buffer[valread] = '\0';

 printf("%s:%d - %s \n" , inet_ntoa(address.sin_addr) , ntohs(address.sin_port), buffer);

 send(s , buffer , valread , 0);

 }

 }

 }

 closesocket(s);

 WSACleanup();

31

The server code developed is a standalone application, waiting for incoming connections, if the user

terminates it. Each car connecting as a client will be assigned a unit port address within the

application. Whenever the client closes the connection, the port address within the application

assigned for that car will be deleted in the array, and will be assigned to new car that connects to the

server. Thus, establishing multiple stable connections.

32

CHAPTER 4: LATENCY MEASUREMENTS

4.1 SCENARIOS IMPLEMENTED

The scenarios that are considered for the simulation are as follows:

1) Scenario 1: Vehicle speed data received from the CAN bus is every 100 to 140ms. Projection

information received from the GPS sensor is every 1sec. TOF calculated when the car is located in

the parking slot within a range of 10miles radius from the server is 0 to 30ms.

2) Scenario 2: Vehicle speed data received from the CAN bus is every 100 to 140ms. Projection

information received from the GPS sensor is every 1sec. TOF calculated when the car is driving at

70mph around 450miles radius from the server in the dense forest area of Pennsylvania with average

signal connectivity is 300 to 400ms.

3) Scenario 3: Vehicle speed data received from the CAN bus is every 100 to 140ms. Projection

information received from the GPS sensor is every 1sec. TOF calculated when the car is driving at

40mph around 650miles radius from the server in the heavy traffic of New York city is 150 to

250ms.

4.2 SCENARIOS OVERVIEW

If we consider a worst case scenario that the traffic is moving at 70mph, then for each millisecond

each vehicle covers a distance of 0.032 meters or 0.105 foot. If we assume a time latency of 100ms

for the traffic update. Then each vehicle could able to transmit or receive a traffic update for every

3.2 meters or 10.5 foot approximately. If we assume that the vehicle speed sensor of vehicle

transmits information every 100ms. It adds up to the to a time latency of 100ms resulting to a time

lapse of 200ms. Therefore, it takes around 6.4meters or 21foot approximate distance to transmit the

information to the server

33

Similarly, if a GPS sensor could able to update every 100ms and if we assume a time latency of

100ms to transmit to the server. Every 3.2meters or 10.5foot the server gets the projection

information of vehicle and it adds to a time latency of network of 100ms in addition to reach the data

to the server resulting in 200ms time lapse. Therefore, reduction in the time latency and time lapse

plays an essential role in vehicular networks, in receiving the accurate and the reliable information of

the traffic update.

4.3 Conclusion

Many possible scenarios such as using IEEE802.11p and cellular networks at different ranges from

the server, and the speeds of multiple vehicles connected to the server can still be considered to

evaluate the time latency in the vehicular networks. However, the simulations that are outlined in

this paper with one vehicle connected to the server at different ranges and speeds, shows how

essential it is to determine the time latency to evaluate the overall performance of the vehicular

networks.

The simulations have shown that the traffic updates that can be sent to the server or received from

the server by the vehicles are affected by factors such as vehicle speed, range of server from the

vehicle and the signal connectivity of the network used.

34

REFERENCES

1. Ahmed S. Kaseb, Youngsol Koh, Everett Berry, Kyle McNulty, Yung-Hsiang Lu and Edward J.

Delp, "Multimedia content creation using global network cameras: The making of CAM2",

Signal and Information Processing (GlobalSIP) 2015 IEEE Global Conference on, pp. 15-18,

2015.

2. Yunshu Liu, Xuanyu Chen, Cailian Chen, and Xingping Guan,” Traffic Big Data Analysis

Supporting Vehicular Network Access Recommendation” Communications (ICC), 2016 IEEE

International Conference on,pp. 14 July 2016.

3. IEEE Trial-Use Standard for Wireless Access in Vehicular environments (WAVE) Resource

manager

4. Dedicated short range communications (DSRC) message set dictionary SAE J2735_201603

5. http://www8.garmin.com/aboutGPS/waas.html.

6. http://openxcplatform.com/

7. http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp.

8. https://www.garmin.com/support/pdf/NMEA_0183.pdf

9. http://www.plaisance-pratique.com/IMG/pdf/NMEA0183-2.pdf

10. https://en.wikipedia.org/wiki/World_Geodetic_System

11. http://standards.sae.org/wip/j2945/

12. http://www.3gpp.org/DynaReport/33-series.htm

13. https://msdn.microsoft.com/en-us/library

14. https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx

http://www8.garmin.com/aboutGPS/waas.html
http://openxcplatform.com/
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
https://www.garmin.com/support/pdf/NMEA_0183.pdf
http://www.plaisance-pratique.com/IMG/pdf/NMEA0183-2.pdf
https://en.wikipedia.org/wiki/World_Geodetic_System
http://standards.sae.org/wip/j2945/
http://www.3gpp.org/DynaReport/33-series.htm

