
Exploring and Expanding the Use of Lexical Chains in Information Retrieval

Technical Report

Terry L. Ruas, William I. Grosky

University of Michigan – Dearborn, Computer and Information Sciences, Dearborn, USA

truas@umich.edu, wgrosky@umich.edu

Summary: This technical report explains our advances in the arena of exploring lexical chains construction using

WordNet and proposed algorithms for different types of structures.

1. Best Synset Disambiguation

The Best Synset Disambiguation is a subroutine that applies and extends the concept of WSD, but considers the synsets

extracted from wi, wi-1 and wi+1. WSD is the problem in which one must decide which sense is better suited for a word

in a sentence, given that this word has multiple meanings and each one of them has an influence from other words.

We explore this question through the BSID of a word wi, which is selected by considering its predecessor (wi-1),

producing a synset called FormerSynsetID(wi) (FSID(wi)) and its successor (wi+1) word, producing a synset called

LatterSynsetID(wi) (LSID(wi)) as the algorithm in Fig. 1 illustrates.

Fig. 1. Former and Latter Synset Selection.

 The selection of FSID(wi) and LSID(wi) is based on the score provided by all possible combinations between all

senses of the pairs (wi,wi-1) and (wi,wi+1), respectively. This score is calculated applying Wu & Palmer’s algorithm [1,

2], defined in Eq. 1.

 𝑠𝑖𝑚𝑊𝑃(𝑐1, 𝑐2) =
2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑜(𝑐1,𝑐2))

𝑙𝑒𝑛(𝑐1,𝑐2)+2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑜((𝑐1,𝑐2))
 (1)

Where len(c1,c2) is the length of the shortest path from synset c1 to synset c2 in WN; lso(c1,c2) is the lowest common

subsumer of synset c1 and synset c2; depth(c1) is the length of the path to synset c1 from the root entity (initial synset)

in WN. More information about Wu & Palmer’s algorithm can be found in [2], where they conduct a small survey

about the most popular WSD algorithms available in the literature.

After each word wi has its own FSID and LSID, it is necessary to find the BSID for this given word wi. For this

task, we introduce an algorithm called Best Synset Disambiguation (BSD) to suggest the BSID, using as parameters

LSID and FSID. Three cases are considered prior to its selection: (a) if FSID(wi) and LSID(wi) are equal, then

BSID(wi) = FSID(wi) = LSID(wi); (b) the lowest common subsumer between FSID(wi) and LSID(wi), given a

threshold; and (c), if (b) produces an empty set, the deepest synset among FSID(wi) and LSID(wi) is chosen. In case

both have the same depth, one is chosen randomly. It is important to mention that, as we traverse the graph in WN for

the hypernyms extraction (for each FSID and LSID), we consider the first hypernym in each level, for each synset.

Considering that WN organizes the elements in each synset from most to least frequent usage, and we are generalizing

the concepts as we move towards the root, it is only natural that we extract a hyerpnym that will provide the most

diffused element. Therefore, the first hypernym in every upper level will provide greater probability of an intersection

mailto:truas@umich.edu
mailto:wgrosky@umich.edu

with another synset when we build our extended lexical chains. In case both have the same depth, one is chosen

randomly. Fig. 2 shows in detail the BSD algorithm.

Fig. 2. Best Synset Disambiguation (BSD) Algorithm.

2. Flexible Lexical Chain Extraction

Once all words have their BSID selected, we start building our lexical chains in a two-phase subroutine called Lexical

Synset Chain Extraction Module. To the best of our knowledge, this module is introducing two novel contributions.

First (a), we construct parametrized flexible lexical chains, considering an adaptive structure of synsets based on

multilevel hypernyms and second (b), we transform these flexible chains into fixed structures to better represent the

semantic values extracted from these synsets.

In (a), we introduce an algorithm called Flexible Lexical Chains (FLC), which extracts these chains, evaluating

if a new synset (of a word wi), or its hypernyms, present lexical cohesion among themselves and the current chain in

construction. If the evaluated synset has semantic affinity with the current chain (within a certain level of abstraction

in WN) this new synset is incorporated to the chain. Otherwise, a new chain will be initialized to capture the next

semantic representation.

First, we begin a new FLC inserting the first word, w1, from the text into an initial chain structure. Call this first

chain FLC(1) and let BSID(w1) be the synset id representing the FLC. For each word, wi, in the document, where i =

2,3,..,n, we verify if BSID(wi) is equal to BSID(wi-1). If they are the same, we just add wi into the current chain. In

case they are not the same, we need to investigate if there is any semantic relationship shared between BSID(wi) and

BSID(wi-1). This is done by extracting all hypernyms from BSID(wi) and BSID(wi-1), called α and β respectively.

Next, we choose the lowest common subsumer, called γ, between α and β given a certain cut-off. This threshold

is to avoid that the relatedness between α and β is too general, since all synsets in WN are connected by the root entity.

If γ doesn’t exist, it means that BSID(wi) and BSID(wi-1) are not semantically related in a non-trivial sense, so a new

FLC must be initialized. In case γ does exist, wi is included into the current FLC and the synset representing the current

FLC is updated. Fig. 3 shows in detail each step in the FLC algorithm.

Fig. 3. Flexible Lexical Chain (FLC) Algorithm.

3. Flexible to Fixed Lexical Chain Extraction (Flex2Fixed)

After all FLC are produced, we can convert these flexible chains in fixed structures (Flex2Fixed). We assign to

all words, wi, in the document, the FLCID of the FLC in which this word-synset appears.

For (b) above, after all pairs of words and synsets are arranged, we divide the document into chunks of size k with

respect to the number of synsets, represented by cwk. Each chunk corresponds to a fixed lexical chain. For each cwk,

we extract the dominant synset (the one that appears most often in the chunk), called θ, and assign it to represent cwk.

If there is more than one dominant synset, θ is chosen randomly. Fig. 4 shows in detail the Flex2Fixed algorithm,

while Fig. 5 is a pictorial representation of the process itself. Thus, each fixed lexical chain is represented by a synset.

The total number of synsets used in our overall document representation is the union over all documents of the synsets

representing all the fixed lexical chains in that document. Call this value NSynsets. Let the synsets used in our

document representation be syn1, syn2, …, synNSynsets.

Fig. 4. Flex2Fixed (F2F) Algorithm.

Fig. 5. Flex2Fixed Process.

4. Fixed Lexical Chain Extraction

Once all words have their BSID selected, we can also build fixed chains directly. To the best of our knowledge,

there is no previous work in the available literature that constructs parametrized fixed lexical chains for multi-

level of hypernyms and chain size.

In this section we introduce an algorithm called Fixed Lexical Chains (FXLC), which extracts these chains

given a pre-defined number of synsets that these chains should contain. For each chain cd, we extract all

hypernyms (including the initial synsets) from all the synsets and call this set λ. Since each chain must be properly

represented, only dominant (appearing in at least half of cd) synsets, β, are considered. If there is no dominant

synset in the chain, λ is selected instead. Let δ be either λ or β, depending on the preceding condition.

Next, we choose a subset of δ, called ε, of those synsets that are not too close to the root (entity) in WN. This

is to prevent providing a synset too general for our chain. If ε is empty, all synsets in δ are considered instead. Let

Ω be either ε or δ, depending on the preceding condition.

Then, from Ω we extract all maximally occurring synsets, α. We then construct γ, a subset of synsets that occur

at the deepest level of α. If α has more than one synset, the synset to represent the initial chain cd is then a random

synset from α. Since we already limit the search in the hypernyms to guarantee a certain level of generality, now

we want to maintain the semantic value within each fixed chain. See Fig. 6 for details.

Fig. 6. Fixed Lexical Chains (FXLC) Algorithm.

Thus, each chain is represented by a synset. The total number of synsets used in our document representation

is the union over all documents of the synsets representing all the fixed document chains. Call this value NSynsets.

Let the synsets used in our document representation be syn1, syn2,…, synNSynsets.

Consider document d. For each 1 ≤ i ≤ NSynsets, we define h(d,i) to be the histogram of relative distances

between consecutive occurrences of syni in document d. Note that the number of bins of h(d,i) and h(e,j) are the

same for any 2 documents d, e, and synsets i, j. Also, for h(d,i), if syni does not occur in document d, then the

histogram consists of all 0’s. Document d is then represented by the normalized concatenation of

h(d,syn1),…,h(d,synNSynsets).

5. Sample Results of using Lexical Chains for Document Similarity

This section shows some preliminary results of applying Flexible and Fixed Lexical Chain Extraction in a corpus

of 10 webpages from Wikipedia: 05 from dog categories and 05 from computer categories. Each document is

used/compared against the entire corpus through the use of cosine similarity, where 1 means a perfect match and 0 the

opposite.

Fig. 7. FLC document similarity considering the relative distance of chains.

Fig. 8. FLC document similarity considering the absolute position of chains.

Fig. 9. FXLC document similarity considering the relative distance of chains.

Flex_BA DOG A DOG B DOG C DOG D DOG E COMP A COMP B COMP C COMP D COMP E

DOG A 1 0.5879 0.5932 0.6114 0.477 0.2928 0.0775 0.2118 0.1467 0.322

DOG B 0.5879 1 0.6825 0.7684 0.5343 0.2119 0.0731 0.1332 0.1582 0.1862

DOG C 0.5932 0.6825 1 0.6895 0.5118 0.3091 0.0945 0.1788 0.2272 0.3038

DOG D 0.6114 0.7684 0.6895 1 0.5575 0.1623 0.0518 0.109 0.1053 0.1514

DOG E 0.477 0.5343 0.5118 0.5575 1 0.2076 0.0564 0.158 0.1085 0.2275

COMP A 0.2928 0.2119 0.3091 0.1623 0.2076 1 0.3827 0.7446 0.6829 0.7553

COMP B 0.0775 0.0731 0.0945 0.0518 0.0564 0.3827 1 0.2754 0.6658 0.2273

COMP C 0.2118 0.1332 0.1788 0.109 0.158 0.7446 0.2754 1 0.4557 0.6547

COMP D 0.1467 0.1582 0.2272 0.1053 0.1085 0.6829 0.6658 0.4557 1 0.475

COMP E 0.322 0.1862 0.3038 0.1514 0.2275 0.7553 0.2273 0.6547 0.475 1

Flex_TA DOG A DOG B DOG C DOG D DOG E COMP A COMP B COMP C COMP D COMP E

DOG A 1 0.2971 0.3265 0.3377 0.3245 0.1933 0.0944 0.1561 0.1319 0.2265

DOG B 0.2971 1 0.2659 0.33 0.305 0.1253 0.0914 0.1431 0.1487 0.1217

DOG C 0.3265 0.2659 1 0.4186 0.3456 0.2151 0.0876 0.1411 0.1438 0.2356

DOG D 0.3377 0.33 0.4186 1 0.3361 0.1681 0.0859 0.1514 0.1032 0.1732

DOG E 0.3245 0.305 0.3456 0.3361 1 0.1751 0.0967 0.1498 0.1224 0.1975

COMP A 0.1933 0.1253 0.2151 0.1681 0.1751 1 0.2809 0.3624 0.3158 0.4622

COMP B 0.0944 0.0914 0.0876 0.0859 0.0967 0.2809 1 0.2178 0.3808 0.1865

COMP C 0.1561 0.1431 0.1411 0.1514 0.1498 0.3624 0.2178 1 0.2259 0.3375

COMP D 0.1319 0.1487 0.1438 0.1032 0.1224 0.3158 0.3808 0.2259 1 0.2392

COMP E 0.2265 0.1217 0.2356 0.1732 0.1975 0.4622 0.1865 0.3375 0.2392 1

Fixed_BA DOG A DOG B DOG C DOG D DOG E COMP A COMP B COMP C COMP D COMP E

DOG A 1 0.6328 0.8718 0.7707 0.8244 0.5644 0.2876 0.2932 0.3438 0.488

DOG B 0.6328 1 0.719 0.7119 0.6457 0.3222 0.193 0.1374 0.2587 0.2342

DOG C 0.8718 0.719 1 0.8715 0.8308 0.6518 0.3488 0.337 0.4942 0.5267

DOG D 0.7707 0.7119 0.8715 1 0.8284 0.3772 0.1975 0.1912 0.2863 0.2949

DOG E 0.8244 0.6457 0.8308 0.8284 1 0.5147 0.2578 0.2876 0.3518 0.4282

COMP A 0.5644 0.3222 0.6518 0.3772 0.5147 1 0.4774 0.7281 0.6953 0.9093

COMP B 0.2876 0.193 0.3488 0.1975 0.2578 0.4774 1 0.3529 0.4712 0.4186

COMP C 0.2932 0.1374 0.337 0.1912 0.2876 0.7281 0.3529 1 0.3744 0.8445

COMP D 0.3438 0.2587 0.4942 0.2863 0.3518 0.6953 0.4712 0.3744 1 0.5194

COMP E 0.488 0.2342 0.5267 0.2949 0.4282 0.9093 0.4186 0.8445 0.5194 1

FIXED Algorithm

Fig. 10. FXLC document similarity considering the absolute position of chains.

References

1. Wu, Z., Palmer, M.: Verb semantics and lexical selection. 32nd Annu. Meet. Assoc. Comput. Linguist. 133–

138 (1994).

2. Meng, L., Huang, R., Gu, J.: A Review of Semantic Similarity Measures in WordNet. Int. J. Hybrid Inf.

Technol. 6, 1–12 (2013).

Fixed_TA DOG A DOG B DOG C DOG D DOG E COMP A COMP B COMP C COMP D COMP E

DOG A 1 0.3243 0.4965 0.4484 0.5173 0.3659 0.2168 0.2613 0.2335 0.3374

DOG B 0.3243 1 0.3473 0.3626 0.356 0.2192 0.1579 0.155 0.1941 0.1907

DOG C 0.4965 0.3473 1 0.6274 0.5414 0.435 0.2671 0.2757 0.3004 0.4398

DOG D 0.4484 0.3626 0.6274 1 0.5167 0.3187 0.1827 0.2282 0.2354 0.2882

DOG E 0.5173 0.356 0.5414 0.5167 1 0.3532 0.2067 0.2383 0.2907 0.3034

COMP A 0.3659 0.2192 0.435 0.3187 0.3532 1 0.3705 0.5108 0.4603 0.6438

COMP B 0.2168 0.1579 0.2671 0.1827 0.2067 0.3705 1 0.3215 0.3586 0.3514

COMP C 0.2613 0.155 0.2757 0.2282 0.2383 0.5108 0.3215 1 0.3575 0.585

COMP D 0.2335 0.1941 0.3004 0.2354 0.2907 0.4603 0.3586 0.3575 1 0.383

COMP E 0.3374 0.1907 0.4398 0.2882 0.3034 0.6438 0.3514 0.585 0.383 1

