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Fibrosis after solid organ transplantation is consid-
ered an irreversible process and remains the major
cause of graft dysfunction and death with limited
therapies. This remodeling is characterized by aber-
rant accumulation of contractile myofibroblasts that
deposit excessive extracellular matrix (ECM) and
increase tissue stiffness. Studies demonstrate, how-
ever, that a stiff ECM itself promotes fibroblast-to-
myofibroblast differentiation, stimulating further
ECM production. This creates a positive feedback
loop that perpetuates fibrosis. We hypothesized that
simultaneously targeting myofibroblast contractility
with relaxin and ECM stiffness with lysyl oxidase
inhibitors could break the feedback loop, reversing
established fibrosis. To test this, we used the ortho-
topic tracheal transplantation (OTT) mouse model,
which develops robust fibrotic airway remodeling.
Mice with established fibrosis were treated with sal-
ine, mono-, or combination therapies. Although
monotherapies had no effect, combining these
agents decreased collagen deposition and promoted
re-epithelialization of remodeled airways. Relaxin
inhibited myofibroblast differentiation and contrac-
tion in a matrix-stiffness–dependent manner through
prostaglandin E2 (PGE2). Furthermore, the effect of
combination therapy was lost in PGE2 receptor
knockout and PGE2-inhibited OTT mice. This study
revealed the important synergistic roles of cellular
contractility and tissue stiffness in the maintenance
of fibrotic tissue and suggests a new therapeutic
principle for fibrosis.

Abbreviations: BAPN, b-aminopropionitrile; Cntrl,
control; COX2, cyclooxygenase 2; CTCF, corrected
total cell fluorescence; DAPI, 40,6-diamidino-2-
phenylindole; DMEM, Dulbecco’s modified Eagle

medium; ECM, extracellular matrix; EP2, E prostanoid
2; IPF, idiopathic pulmonary fibrosis; LFA1, lympho-
cyte function-associated antigen 1; LGR7, leucine-rich
repeat–containing G protein-coupled receptor 7;
LOXL2, lysyl oxidase–like 2; LOX, lysyl oxidase; NS,
not significant; OTT, orthotopic tracheal transplanta-
tion; PBS, phosphate-buffered saline; PGE2, prosta-
glandin E2; pMLC, phospho–myosin light chain; Rlxn,
relaxin; RMST, root mean square tractions; RXFP1,
relaxin receptor 1; SEM, standard error of the mean;
a-SMA, a–smooth muscle actin
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Introduction

After tissue injury, the reparative response is character-

ized by a transient appearance of myofibroblasts that pro-

duce provisional, collagenous scars that protect against

further damage and rupture. In a normal response, the

provisional scars are eventually replaced by normal tis-

sue. In fibrosis, however, accumulation and activation of

myofibroblasts are persistent, resulting in overproduction

of stiff extracellular matrix (ECM) that replaces the nor-

mal tissue. Because few therapeutic options exist for

reversing fibrosis, this process may cause organ dysfunc-

tion and death. Previous studies have demonstrated that

the increased ECM stiffness that occurs in fibrosis is not

only a consequence of myofibroblast activation but also a

causative factor that independently perpetuates fibrosis

(1,2). The mechanical resistance of the ECM stimulates

myofibroblasts to express a–smooth muscle actin (a-
SMA), which enables cell contraction. This cellular con-

version then triggers the secretion and activation of

cytokines and growth factors, leading to additional ECM

production and creating a positive feedback loop (3).

Recent antifibrotic strategies targeting myofibroblast dif-

ferentiation and contraction have shown promising

results (4). Among these approaches is the use of

relaxin. Relaxin appears to inhibit fibrosis by attenuating

cellular contraction (5,6). Despite the lack of full under-

standing of its mechanisms of action, relaxin was tested

for the treatment of systemic sclerosis. An early placebo-

controlled trial showed that low-dose relaxin significantly
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reduced skin thickening and stabilized lung function (7).

Subsequent phase II and III trials, however, found no

significant benefit (8).

Other antifibrotic strategies have attempted to decrease

tissue stiffness by targeting collagen cross-linking, the

principal determinant of ECM stiffness. Lysyl oxidase

(LOX) is an enzyme that catalyzes the covalent cross-

linking of myofibroblast-secreted collagen units into

insoluble fibers (9). LOX is upregulated in fibrosis and is

associated with greater tissue stiffness in patients (10).

Animal studies have shown that inhibition of LOX and

LOX-like 2 (LOXL2) suppresses fibrosis in various organs

(11,12); however, clinical trials of LOXL2 inhibition were

terminated because of lack of efficacy.

Targeting myofibroblast contractility or ECM stiffness

individually has not yet been shown to be effective for

the treatment of human fibrotic disease, possibly

because both components are linked through a positive

feedback loop and likely require individualized drug

targeting. To address this possibility, we used the ortho-

topic tracheal transplantation (OTT) mouse model. Rejec-

tion of OTT allografts is characterized by the destruction

of the airway microvasculature and epithelial cell layer

followed by an accumulation of myofibroblasts that

deposit progressively cross-linked subepithelial collagen,

analogous to large airway changes seen in lung trans-

plantation (13); OTT mice do not develop bronchiolitis

obliterans. Evaluating changes in OTTs permits a detailed

physiologic and architectural assessment from which

careful inferences can be drawn concerning the process

of generalized fibrosis and fibrosis attenuation in large air-

ways. Unlike the fibrosis in the bleomycin lung injury

model, which is spontaneously reversible, the fibrosis in

OTTs is persistent and unresponsive to all immunomodu-

lating agents tested to date (14) and may model certain

intractable features of chronic lung allograft dysfunction.

In this study, we sought to determine whether targeting

both components of the biophysical microenvironment,

namely, myofibroblast contractility with relaxin and ECM

stiffness with LOX inhibition, could facilitate self-repair

and reduce fibrosis after “irreversible” tissue remodeling

was well established.

Materials and Methods

Animals and experimental procedures

Mice were acquired from the Jackson Laboratory (Bar Harbor, ME). Ani-

mal procedures were approved by the U.S. Department of Veterans

Affairs Palo Alto Health Care System institutional animal care and utiliza-

tion committee. OTTs were performed as described previously (15). In

short, tracheal segments from BALB/cJ (allograft) or C57BL/6J (syngraft)

donor mice were transplanted into C57BL/6J recipient mice (WT or

B6.126-Ptger2tm1Brey/J) on day 0. At 21 days after transplantation, mice

were treated with (i) saline, (ii) recombinant human relaxin-2 at 0.5 mg/

kg (Novartis Pharmaceutical) by continuous infusion with an Alzet mini

osmotic pump, (iii) 0.2% b-aminopropionitrile (BAPN; Sigma-Aldrich) in

drinking water, (iv) combination of recombinant human relaxin-2 at

0.5 mg/kg and 0.2% BAPN, or (5) combination of recombinant human

relaxin-2 at 0.5 mg/kg with anti-LOXL2 antibody at 0.5 mg/kg (Santa

Cruz Biotechnology) injected daily intraperitoneally on days 21–35. E

prostanoid 2 (EP2) selective antagonist PF-04418948 (Cayman Chemical)

was injected intraperitoneally daily at 10 mg/kg starting 21 days after

transplant, with or without relaxin and BAPN. Tracheas were harvested

after 14 days of treatment.

Cell culture

Fibroblasts from normal (line CCL-151; ATCC, Manassas, VA) and fibrotic

(line CCL-134; ATCC) human lungs were cultured in Dulbecco’s modified

Eagle medium (DMEM/F-12; Lonza) supplemented with 10% fetal bovine

serum, 100 U/mL penicillin, and 100 lg/mL streptomycin. Fibroblasts at

passages 2–5, cultured to <80% confluency, were seeded (4647 cells/

cm2) on collagen I–coated polyacrylamide gels (Matrigen) with elastic

moduli ranging from 0.5 to 25 kPa. Cells were treated with 1.2 mg/mL

recombinant human relaxin-2 with or without PF-04418948 at 10 lM in

DMEM/F-12 for 20 h after 4 h of serum starvation.

Immunofluorescent, picrosirius red, and Masson’s trichrome

staining

Cells were fixed with 4% paraformaldehyde, permeabilized with 0.1% Tri-

ton X-100 in phosphate-buffered saline (PBS) supplemented with 1%

bovine serum albumin, and immunostained after blocking. Mouse tra-

cheal tissues were fixed with 10% formalin, embedded in paraffin, then

cut cross-sectionally with a microtome (Leica Microsystems). The 8-lm

tracheal cross-sections were stained by immunofluorescent, picrosirius

red, or Masson’s trichrome staining. The following primary antibodies

were used: phospho–myosin light chain (pMLC) mAb (Cell Signaling Tech-

nology), pro–collagen type I mAb, cyclooxygenase 2 (COX2) mAb, leu-

cine-rich repeat–containing G protein-coupled receptor 7/relaxin receptor

1 (LGR7/RXFP1) polyclonal Ab (antibody; Abcam), and conjugated (Cy3) a-

SMA mAb (Sigma-Aldrich) at 1:200 dilution. For in vitro experiments, col-

lagen production was assessed by expression of procollagen I, a precur-

sor of collagen; fibroblast-to-myofibroblast differentiation was assessed

by a-SMA expression. The contraction of myofibroblasts was evaluated

and measured by immunofluorescent staining of pMLC and traction force

microscopy. Expressions of relaxin receptor on myofibroblasts were eval-

uated by immunofluorescent staining of RXFP1. Corrected total cell fluo-

rescence (CTCF) was measured by ImageJ (National Institutes of Health)

and defined as follows: CTCF = integrated density of selected cell�(area

of selected cell 9 mean fluorescence of background readings). Antirabbit

Alexa Fluor 488, antirabbit Cy3, and antirat Cy3 were used for secondary

antibodies (Invitrogen).

Hydroxyproline assay

Mice tracheas were weighed, homogenized, and hydrolyzed in hydrochlo-

ric acid (12N). Hydroxyproline concentrations were measured according

to the manufacturer’s instructions (BioVision).

Immunosorbent assays and immunoblot analysis

For immunosorbent assays, supernatants were collected and PGE2 con-

centrations were detected by enzyme-linked immunosorbent assay,

according to the manufacturer’s instructions (Cayman Chemical). For

immunoblot analysis, cells were rinsed with PBS and lysed with radioim-

munoprecipitation assay buffer supplemented with Halt protease and

phosphatase inhibitor cocktail stabilized in dimethylsulfoxide (Thermo

Fisher Scientific). Cell lysates were loaded onto SDS-polyacrylamide gels

followed by electrophoresis and immunoblot analysis using chemilumi-

nescent immunodetection.
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Traction force microscopy

Traction generated by individual cells was measured as described previ-

ously (16). Cells were plated at 2 cells/mm2 on collagen-coated polyacry-

lamide gels embedded with fluorescent beads (0.5 lm). At 24 hours

later, a phase-contrast image and an image of the fluorescent beads

immediately underneath the cell were taken. The cells were detached

from the gels, and a second image of the same fluorescent beads was

taken. Displacement maps and traction fields were obtained by cross-

correlating these images.

Statistical analysis

The Shapiro–Wilk test was performed to test whether the data were nor-

mally distributed. Statistical significance (p < 0.05) was assessed using

the unpaired t-test assuming unequal variances between the treatment

and saline-control groups for hydroxyproline analysis (Prism Software). A

one-way analysis of variance test was used for the multiple group com-

parisons shown in Figure 5. For histologic analysis, at least 10 tissue sec-

tions from each animal (3–20 animals per group) were examined and

analyzed with the Mann–Whitney test. Analysis of collagen density in tri-

chrome-stained sections was measured by the ratio of the blue area to

the area between the subepithelium and cartilage with ImageJ. For

in vitro studies, results are from at least three independent experiments,

and statistical significance (p < 0.05) was assessed using the Mann–

Whitney test.

Results

Combined treatment with relaxin and LOX inhibition
attenuates established airway fibrosis
Previous studies showed that monotherapy with relaxin

or LOX inhibition is effective in preventing fibrosis in ani-

mal models (7,8). We assessed whether these drugs

could reverse the airway fibrosis in OTT recipients. Non-

immunosuppressed allograft OTT mice were treated at

21 days after transplantation, a time point at which fibro-

sis is well established (Figure S1). These mice were trea-

ted with relaxin, BAPN, LOXL2, relaxin with BAPN,

relaxin with LOXL2, or saline for 14 days (Figure 1A).

Relaxin monotherapy minimally decreased subepithelial

collagen deposition, whereas BAPN monotherapy had

no effect; however, combined relaxin and BAPN treat-

ment significantly diminished collagen deposition in the

subepithelial layer, as demonstrated by histology and

hydroxyproline concentration (Figures 1B–D). Moreover,

combined treatment with relaxin and BAPN promoted

tracheal re-epithelialization with taller cuboidal and pseu-

dostratified epithelium compared with animals in other

groups, which exhibited flattened epithelium (Figures 1B

and E). Substitution of BAPN with less toxic LOXL2 anti-

body in combined therapy modestly decreased subep-

ithelial collagen. There was a trend toward decreased

hydroxyproline concentration, but this did not meet

statistical significance (p = 0.0542) (Figure S2).

Decrease in cellular contractility with relaxin is
dependent on the type of fibroblast and matrix
stiffness
The in vivo data indicated that relaxin in combination with

LOX inhibition significantly decreased collagen deposition,

suggesting that the effectiveness of relaxin may be

dependent on ECM stiffness. Prior studies isolated the

role of matrix stiffness in cellular functions by plating cells

on inert cross-linked polyacrylamide hydrogels (17). The

effect of LOX inhibition in our study was modeled in vitro

by varying the stiffnesses of these matrices. This in vitro

model was used as a surrogate for BAPN because poly-

acrylamide gels allow one to isolate the contribution of

matrix stiffness, whereas a collagen matrix is limited by

the fact that plated cells can migrate into the matrix,

changing the stiffness. In addition, it should be noted that

because BAPN inhibits collagen cross-linking, it has no

action on a polyacrylamide gel.

One measure of stiffness is Young’s elastic modulus,

which is defined as the force per unit area (in pascals)

required to deform a given material. Shkumatov et al

measured the stiffness of intrapulmonary airways in the

mouse lung by atomic force microscopy and found that

the elastic moduli range from 2 to 45 kPa, with a median

of 18.6 kPa (18). In another study, Booth et al found that

the mean Young’s modulus of normal human lungs was

2 kPa, whereas that of tissue from idiopathic pulmonary

fibrotic lungs was 16 kPa (19). Consequently, we used

0.5- and 4-kPa matrices to mimic low lung tissue stiff-

ness and 12- and 25-kPa matrices to mimic intermediate

to high lung tissue stiffness.

On soft matrices (0.5 and 4 kPa), there was no detect-

able expression of procollagen I, a-SMA, or pMLC in nor-

mal lung fibroblasts (Figures S3 and 2A). On stiff

matrices (12 and 25 kPa), the expressions of procollagen

I (Figure S3), a-SMA, and pMLC (Figure 2A) were all sig-

nificantly increased. Relaxin inhibited expression of these

markers in normal lung fibroblasts plated on matrices

with intermediate stiffness (12 kPa) but not in cells

plated on the highest stiffness matrices (25 kPa)

(Figure 2A).

Lung fibroblasts from stiff conditions (i.e. fibrotic lung)

have been shown to be more contractile than those from

normal lungs (20). Consequently, we assessed whether

relaxin would regulate the contraction of fibrotic lung

fibroblasts and normal lung fibroblasts differently. We

found that fibrotic lung fibroblasts were more contractile

even with a relatively low matrix stiffness of 4 kPa (Fig-

ure 2B). At 4 kPa, relaxin was able to decrease the

expression of pMLC (Figure 2B). In contrast, on matrices

with intermediate and high stiffness, relaxin failed to

reduce pMLC expression. Immunoblots showed that in

normal lung fibroblasts, treatment with relaxin signifi-

cantly decreased pMLC expression at 12 kPa (Fig-

ure 2C), but in fibrotic lung fibroblasts, relaxin decreased

pMLC expression only at 4 kPa (Figure 2D).

To further examine relaxin’s effects on cell contraction,

we quantified the contractility of fibrotic and normal lung

fibroblasts by traction force microscopy (16). We found
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that both normal and fibrotic lung fibroblasts exhibited

increased contractions with increasing substrate stiffness

as measured by root mean square tractions (RMSTs)

(Figure 3). Treatment with relaxin decreased the contrac-

tion of normal lung fibroblasts plated on 12-kPa matrices

but had no significant effects on cells plated on matrices

with more stiffness (Figures 3A and C). Treatment with

relaxin decreased the contraction of fibrotic lung fibrob-

lasts plated on 4-kPa matrices but had no effects on cells

plated on matrices with elastic moduli of ≥12 kPa (Fig-

ures 3B and D).

Expression of RXFP1 on fibroblasts is modulated in
response to increases in matrix stiffness
Tan et al found that RXFP1 is significantly decreased in

the lungs of idiopathic pulmonary fibrosis (IPF) patients

and suggested that progression of IPF may be associ-

ated with sequential decreases of RXFP1 expression

(21). In our study, because relaxin’s positive effects were

dampened by a stiff microenvironment in vitro, we spec-

ulated that the expression of RXFP1 would be modulated

by a progressive increase in ECM stiffness. We found

that expression levels of RXFP1 were significantly higher

on fibroblasts plated on soft matrices (0.5 and 4 kPa)

than those on fibroblasts cultured on intermediate and

stiff matrices (12 and 25 kPa) (Figures 4A and C). Inter-

estingly, cells that expressed higher levels of a-SMA had

lower RXFP1 expression (Figure 4A) than cells express-

ing lower or nondetectable levels of a-SMA. Fibrotic lung

fibroblasts had much lower expression of RXFP1 than

normal lung fibroblasts. Expression levels of RXFP1 were

significantly decreased on fibrotic lung fibroblasts plated
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on matrices with elastic moduli of ≥4 kPa (Figures 4B

and D).

Combined relaxin and LOX inhibition efficacy is
dependent on COX2/PGE2

Next, to address how relaxin may augment LOX inhibi-

tion, we evaluated PGE2, a key eicosanoid implicated in

lung fibrosis regulation. PGE2 is generated when COX2

catalyzes the oxidation of arachidonic acid, and it is the

predominant prostaglandin in the lung (22–24). PGE2

has been shown to decrease cell contractility, and

levels of COX2/PGE2 are significantly decreased in lung

fibroblasts (22,25). This led us to investigate whether

the effectiveness of combined relaxin and BAPN

therapy was mediated through the COX2/PGE2 path-

way.

Mouse tracheal allografts of saline control, relaxin

monotherapy, and BAPN monotherapy groups had negli-

gible levels of COX2 expression (Figure 5A). By distinc-

tion, tracheas from mice treated with both relaxin and

BAPN demonstrated levels of COX2 expression in the

epithelium and subepithelium similar to that of tissue

from syngrafts. Next, we assessed the expression of

COX2 in normal lung fibroblasts on substrates with elas-

tic moduli ranging from 0.5 to 25 kPa. Cells plated on

stiff matrices had less COX2 expression than those pla-

ted on soft matrices, verifying previous observations (1).

Relaxin increased COX2 content in cells from 0.5- and 4-

kPa matrices but not from 12- or 25-kPa matrices (Fig-

ure 5B). Supernatants of fibroblasts plated on matrices

of physiological stiffness (0.5, 1, and 2 kPa) had higher

concentrations of PGE2 than those of cells plated on stif-

fer matrices (4, 12, and 25 kPa). Relaxin increased PGE2

levels on all but the stiffest matrices (25 kPa) (Fig-

ure 5C).

PGE2 can ligate four distinct G protein–coupled recep-

tors, termed EP receptors 1–4. Numerous reports have

implicated EP2 as the major receptor mediating inhibitory

effects on indices of fibroblast activation (26,27). To con-

firm that relaxin mediates a decrease in cell contraction

by upregulating COX2/PGE2 production and signaling via

the EP2 receptor, we inhibited the actions of PGE2 by

treating normal lung fibroblasts with PF-04418948, a

potent and selective EP2 antagonist. This EP2 antagonist

prevented the relaxin-mediated reduction of pMLC and

a-SMA in cells cultured on the 12-kPa matrices (Fig-

ure 6A).

To test whether the beneficial effects of the combined

treatment of relaxin and BAPN in vivo could be
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abrogated by inhibition of the COX2/PGE2/EP2 pathway,

OTT mice at 21 days after transplantation were treated

with saline, PF-04418948, or combined relaxin and

BAPN treatment with or without PF-04418948. Further-

more, OTT EP2 receptor KO mice (B6.126-Ptger2tm1Brey/

J) were treated with or without the combination of

relaxin and BAPN. Suppression of PGE2 signaling with

the EP2 receptor antagonist in the combined treatment

group abrogated the protective effect of combined treat-

ment, with specimens exhibiting dense deposition of

subepithelial collagen and no restoration of cuboidal

epithelium (Figures 6B and C). Similarly, treatment with

relaxin and BAPN lost its beneficial effects in EP2 KO

mice. Tracheas from PF-04418948–treated mice and

EP2 KO mice had higher amounts of collagen than

those from saline-treated control mice, as shown in

hydroxyproline concentration measurement. Combined

treatment of relaxin and BAPN failed to decrease colla-

gen amount in tracheas from PF-04418948–treated WT

and EP2 KO mice (Figures 6C and D), providing further

support that relaxin and BAPN act through the COX2/

PGE2/EP2 pathway.
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Discussion

Preclinical studies have used a large number of therapies

that have demonstrated the reversal of fibrosis in animal

models; however, very few have been found to be

effective in human fibrotic diseases. The discrepancy

between the preclinical and clinical findings may be

result in part from the use of models of fibrosis that

are not robust. Compared with other fibrotic models

such as the bleomycin-injured lung model, which is
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spontaneously reversible, tissue remodeling in the OTT

model is particularly robust and progressive, driven

by inflammation (alloimmunity) not present in nontrans-

plant models of fibrosis. Treatment of the OTT model

with numerous immunosuppressant and antifibrotic

agents, including high-dose steroids, anti-CD40L, anti–
lymphocyte function-associated antigen 1 (anti-LFA1),

combined anti-CD40L/anti-LFA1 (14), and pirfenidone,

have not been able to reverse fibrosis (data not shown). In

this study, we demonstrated that combined therapy with

relaxin and LOX inhibition reversed established airway

fibrosis by targeting both intracellular and extracellular bio-

physical properties of the graft—cellular contractility and

ECM stiffness—and in this manner appeared to promote
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the conversion toward a normal, nonremodeled, epithelial-

ized airway.

As described, myofibroblast activation and contraction

contribute to ECM stiffening and further fibrotic progres-

sion. Myofibroblast contractility is regulated by MLC

phosphorylation, which enables myosin to interact with

actin filaments to generate force. We found that pMLC

and RMST of lung fibroblasts cultured on matrices with

soft and intermediate stiffness were downregulated by

relaxin. Relaxin also decreased a-SMA and procollagen I

expression in normal lung fibroblasts on matrices with

soft or intermediate stiffness but lost its effects on very

stiff matrices. In the mouse OTT model, monotherapy

with relaxin had only a minimal effect in reversing fibro-

sis. Given the in vitro findings, we suspect that relaxin

alone was not effective in reversing fibrosis in the OTT

model (and possible fibrosis in human) because the ECM

of the tracheas was already very stiff.

Relaxin was first named for its ability to relax the female

reproductive tract during pregnancy (28). It is produced

by both sexes and has been shown to act intracellularly

to induce cellular relaxation and to ameliorate fibrosis

(29). Relaxin and its G protein–coupled receptors are

found in rodent and human lungs, predominantly within

bronchial epithelial cells, fibroblasts, and airway smooth

muscle cells (6,30). Intriguingly, relaxin-deficient mice

develop age-associated fibrosis in the lung and skin

(31,32). However, as stated earlier, phase II and III trials

of relaxin did not demonstrate any efficacy in the treat-

ment of fibrosis in systemic sclerosis (8). It has been

shown that RXFP1 level is decreased in lungs of IPF

patients (21). We found that fibroblasts that were plated

on stiff matrices had significantly lower RXFP1 expres-

sion than those plated on soft matrices. This may sug-

gest that expression of RXFP1 is associated with

progressive increase of ECM stiffness in fibrosis. Conse-

quently, we speculate that the lack of effect in estab-

lished dermal fibrosis may be due to the relatively high

tissue stiffness.

Tissue stiffening results mainly from the cross-linking of

ECM proteins (33). LOX converts collagen from soluble

monomers to insoluble fibers by oxidizing peptidyl lysine

to form covalent cross-linkages, thereby increasing ECM

stiffness (9). Inhibition of LOX with BAPN decreased a-
SMA expression and fibrotic tissue stiffness in a carbon

tetrachloride–induced liver fibrosis model. (11). In a bleo-

mycin lung model, inhibition of LOXL2 with a mono-

clonal antibody decreased collagen deposition (12).

Nevertheless, a clinical phase II trial was terminated

because of lack of efficacy. Intriguingly, the current

study modeled persistent alloimmune injury, and LOX

inhibitor monotherapy failed to reverse established fibro-

sis. We modeled the effect of LOX inhibition and iso-

lated the role of substrate stiffness by plating cells on

inert polyacrylamide gels with stiffnesses ranging from

normal to fibrotic tissues. We found that soft (0.5 and

4 kPa) but not intermediate or stiff (12 and 25 kPa) sub-

strates prevented expression of procollagen I and the

differentiation and contraction of fibroblasts. These find-

ings suggest that the chronically rejected trachea is

stiffer than normal airways (range 2–45 kPa (18)) and

exceeded the threshold below which the profibrotic

feedback loop could be interrupted by LOX inhibition

alone.

Fibrotic lungs express less COX-2/PGE2 than healthy

lungs (34). We found that allogeneic transplanted tra-

cheas have less COX2 and more a-SMA expression than

syngeneic transplants. Allografts from mice treated with

combined relaxin/LOX inhibition express more COX2 than

those from monotherapies. In vitro, relaxin upregulated

COX2 expression and PGE2 secretion in fibroblasts cul-

tured on soft matrices but not on stiff matrices. Relaxin

boosted the secretion of endogenous PGE2 from cells on

low- to intermediate-stiffness matrices but failed to

increase PGE2 levels in cells cultured on pathologically

stiff matrices (≥25 kPa). These results suggest that relax-

in’s ability to upregulate COX2/PGE2 is dampened by a

stiff microenvironment. This was also observed in

previous studies that demonstrated that a stiff ECM

suppresses the secretion of COX2/PGE2. Previous inves-

tigations showed that PGE2 signaling through the EP2

receptor inhibits lung myofibroblast differentiation, con-

traction, and secretion of collagen (26,35). We found that

treatment with an EP2 receptor antagonist abrogated the

effects of relaxin on cells cultured in the intermediate-

stiffness matrices and the beneficial effects of combined

treatment on fibrotic airways. These results cumulatively

indicate that the effectiveness of combined relaxin and

BAPN treatment in abrogating subepithelial fibrosis is

mediated through COX2 expression, PGE2 biosynthesis,

and EP2 signaling.

In addition to decreasing myofibroblast contractility

directly, PGE2 has also been shown to inhibit LOX (36),

which may contribute to further decrease in collagen

cross-linking and softening of the ECM. Moreover, Liu

et al demonstrated that a stiff ECM suppresses the

COX2/PGE2 pathway (1); therefore, decreasing collagen

cross-linking with LOX inhibition may lead to increased

COX2/PGE2, which in turn can decrease myofibroblast

contractility. These mechanisms may further support the

reversal of fibrosis (Figure 6E).

Combined treatment not only decreased subepithelial

fibrosis but also promoted an epithelium expressing a

high level of COX2. Konoeda et al showed that fibrosis

in the chronically rejected airways is associated with

an aberrant flattened epithelium, and the damage to

epithelial cells appears before subepithelial fibrosis (37).

In contrast to the flattened epithelium observed in

other treatment groups, mice treated with combined

therapy had taller, more cuboidal, and occasionally
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pseudostratified epithelial layers. Because the airway

epithelium is a major source of PGE2 (38), its damage

could lead to decreased levels of PGE2 in the airway and

an inability to inhibit fibroblast proliferation and activation,

thereby promoting subepithelial fibrosis. However, the

mechanism by which combined therapy with relaxin and

LOX inhibition contribute to the development of this

columnar epithelium requires further investigation. Prior

studies showed that PGE2 deficiency in lung fibrosis

leads to increased airway epithelial cell apoptosis, and PGE2
has been shown to promote epithelial cell proliferation and

migration (39,40). We speculate that the collagen-rich

subepithelium is unable to support a pseudostratified

columnar epithelium, perhaps in part because of a defi-

ciency of COX2/PGE2.

A limitation of this study is that we were unable to

confirm that LOX inhibition decreased tracheal stiffness

in vivo. We attempted to measure the elastic moduli

of the tracheas with atomic-force microscopy but found

wide variability within each sample, with point-to--point

differences up to 10 kPa (data not shown). Previous

studies have shown that Young’s elastic moduli of non-

cartilaginous lung airways range from 2 to 45 kPa (18).

We suspect that the variability in cartilaginous airways

will be even higher. Another limitation of this study is

that although BAPN is a potent irreversible inhibitor of

LOX, wider clinical use is limited by its side effects,

such as osteolethyrism, a disorder that can lead to

skeletal deformations (41). We replaced BAPN with

nontoxic LOXL2 antibody and found that the combined

treatment of relaxin and LOXL2 had a less significant

effect on reduction of collagen. BAPN was used in this

study as a proof of concept; for clinical use, other less

toxic and more potent LOX or LOX-like inhibitors in

conjunction with relaxin could be tested.

In summary, we demonstrated reversal of transplanted

airway fibrosis by targeting both intracellular and extracel-

lular biophysical properties of the allograft. We showed

that relaxin increases the expression of COX2/PGE2 and

thus decreases cellular contraction, whereas LOX inhibi-

tion decreases tissue stiffness; together, they may shift

the airway toward a physiological state (Figure 6E). The

reversal of established fibrosis achieved in this work may

represent a novel therapeutic strategy for the treatment

of chronic rejection in solid organ transplantation and

other fibrotic diseases.
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Figure S1. Airway fibrosis is established at day 21
after transplantation. (A, B) Representative images of

picrosirius red staining of tracheal cross-sections at days

21 and 35 after transplantation. Under bright field micro-

scopy, collagen is stained red. Under polarized light, large

and dense collagen bundles are visualized in orange and

yellow. (C) In tracheal sections from relaxin and b-amino-

propionitrile (BAPN)–treated mice, under polarized light,

thin and loose collagen fibers are visualized in green.

Scale bar = 50 lm.

Figure S2. Combined treatment with relaxin and lysyl
oxidase–like 2 (LOXL2) inhibition attenuates estab-
lished fibrosis in orthotopic tracheal transplantation
(OTT) tracheas. (A) Representative images of Masson’s

trichrome staining of tracheal cross-sections in which col-

lagen was stained in blue. Scale bar = 50 lm; n = 3–10
per group with at least 10 tissue sections per animal.

(B) Analysis of collagen density in trichrome-stained sec-

tions measured by the ratio of the blue area to the area

between the subepithelium and cartilage; mean plus or

minus standard error of the mean; *p < 0.05. (C) Hydroxy-

proline concentration in tracheal hydrolysates relative to
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controls was measured to assess the amount of collagen.

Mean plus or minus standard deviation; p = 0.054.

Figure S3. Immunofluorescent staining of human
normal lung fibroblasts cultured with and without
relaxin on matrices with Young’s elastic moduli of

0.5, 4, 12, and 25 kPa. Collagen production was assessed

by expression of procollagen I; fibroblast-to-myofibroblast

differentiation was assessed by a–smooth muscle actin

(a-SMA) expression. Results are from at least three inde-

pendent experiments; scale bar = 848 lm.
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