
Appendices

A Derivation of NPMLE of the retro-hazard

In this section, we briefly discuss some properties of the retro-hazard function H∗ and derive

the nonparametric maximum likelihood estimator (NPMLE) of H∗ under the general con-

dition of left-censored data, of which the CDR model’s data structure constitutes a special

case. Suppose we have Vi = max{Ti, Ci},∆i = 1(Vi = Ti), i = 1, . . . n, where Ti ∼ e−H
∗(t).

The likelihood for this data is

L(H∗) =
n∏
i=1

[−dH∗(Vi)]∆i e−H
∗(Vi). (A1)

From equation (8), we have F (t) = e−H
∗(t), implying that the pdf of X under this

formulation is f(t) = −dH∗(t) e−H∗(t). It is also apparent that dH∗(t) ≤ 0, t ∈ (0,∞), so H∗

must be nonincreasing. Furthermore, we may deduce that (for a proper distribution of T )

since F (0) = 0 and limx→∞ F (t) = 1, H∗(0) =∞ and limt→∞H
∗(t) = 0. The foregoing also

implies that

H∗(t) =

∫ ∞
t

−dH∗(y). (A2)

Apart from a sign change, dH∗ is equivalent to the function ρ introduced by Lagakos et al.

[21].

Define differentiation of a linear functional J with respect to H∗ as [see 28, Section 3.2]

δsJ =
∂J

∂dH∗(s)
.

Now, differentiation of the log-likelihood proceeds using the chain rule and definition (A2):

δs logL(H∗) =
n∑
i=1

{∆iδs log [−dH∗(Vi)]− δsH∗(Vi)}
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=
n∑
i=1

∆i
∂ log [−dH∗(Vi)]

∂dH∗(s)
−

n∑
i=1

∂H∗(Vi)

∂dH∗(s)

=
n∑
i=1

∆i

−dH∗(s)
· ∂

∂dH∗(s)
[−dH∗(Vi)]−

n∑
i=1

∂

∂dH∗(s)

∫ ∞
Vi

−dH∗(t)

=
n∑
i=1

∆i

−dH∗(s)
· −1(Vi = s)−

n∑
i=1

∫ ∞
0

−1(Vi ≤ t)
∂

∂dH∗(s)
dH∗(t)

=
n∑
i=1

∆i 1(Vi = s)

dH∗(s)
−

n∑
i=1

∫ ∞
0

−1(Vi ≤ t) 1(t = s)

=
n∑
i=1

∆i 1(Vi = s)

dH∗(s)
−

n∑
i=1

−1(Vi ≤ s).

The important identities established here are

δs log [−dH∗(t)] =
1(t = s)

dH∗(s)
, δsH

∗(t) = −1(t ≤ s). (A3)

Setting δs logL(H∗) = 0 implies a Nelson–Aalen estimator

d̂H∗(s) = −
∑n

i=1 ∆i 1(Vi = s)∑n
i=1 1(Vi ≤ s)

.

The negative sign of the estimator indicates that these will be decrements instead of the usual

increments in the classical Nelson–Aalen estimator. Otherwise, the form of the estimator

is identical, with the only difference being that the “risk set” at point s is composed of

observations with Vi ≤ s. Recalling the identity in equation (A2), the estimate of H∗ is

Ĥ∗(t) = −
∫ ∞
t

d̂H∗(s).

B Derivation of the profile likelihood

We confine ourselves to the observations for which Xi > 0 (that is, observations for which

damage is observed), and consider the problem of estimating H∗. The log-likelihood for
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these observations may be written as

`2(β;H∗) =
∑
i:Xi>0

{∫ ∞
0

log [−ηi dH∗(t)] dN∗i (t)−
∫ ∞

0

(ηi + µi)Y
∗
i (t) dH∗(t)

}
(B1)

using the counting processes defined by (9) and (10). By functional differentiation of (11)

with respect to H∗, we find

U(s) = δs log

{ ∏
i:Xi>0

[
−ηie−(ηi+µi)H

∗(Xi) dH∗(Xi)
]}

= δs
∑
i:Xi>0

{log ηi + log [−dH∗(Xi)]− (ηi + µi)H
∗(Xi)}

=
∑
i:Xi>0

[
dN∗i (s)

dH∗(s)
− (ηi + µi) · −Y ∗i (s)

]
=
∑
i:Xi>0

dN∗i (s)

dH∗(s)
+
∑
i:Xi>0

(ηi + µi)Y
∗
i (s).

Note that we have used the identities (A3) and the fact that Y ∗i (s) = 1(Xi ≤ s). Further-

more, since for this model all observations greater than 0 are uncensored, dN∗i (s) = 1(Xi = s)

when Xi > 0. Setting U(s) = 0 implies a Breslow estimator of

d̂H∗(s) = −
∑

i:Xi>0 dN
∗
i (s)∑

i:Xi>0(ηi + µi)Y ∗i (s)
. (B2)

Substitution of (B2) into the log-likelihood (B1) yields

`2(β; Ĥ∗) =

∫ ∞
0

∑
i:Xi>0

log

[
ηi

∑
j:Xj>0 dN

∗
j (t)∑

j:Xj>0(ηj + µj)Y ∗j (t)

]
dN∗i (t)

+

∫ ∞
0

∑
i:Xi>0

(ηi + µi)Y
∗
i (t)

∑
j:Xj>0 dN

∗
j (t)∑

j:Xj>0(ηj + µj)Y ∗j (t)

=

∫ ∞
0

∑
i:Xi>0

log

[
ηi

∑
j:Xj>0 dN

∗
j (t)∑

j:Xj>0(ηj + µj)Y ∗j (t)

]
dN∗i (t) +

∫ ∞
0

∑
j:Xj>0

dN∗j (t)

= const.+
∑
i:Xi>0

∫ ∞
0

log ηi − log
∑
j:Xj>0

(ηj + µj)Y
∗
j (t)

 dN∗i (t),
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where in the last line we have absorbed into the constant all terms not involving η or µ.

Returning to (11), we see that

L(β; Ĥ∗) = e`1(β)+`2(β;Ĥ∗)

∝
∏
i:Xi=0

µi
ηi + µi

∏
i:Xi>0

ηi∑
j:Xj>0(ηj + µj)Y ∗j (Xi)

=
∏
i:Xi=0

µi
ηi + µi

∏
i:Xi>0

ηi∑
j:0<Xj≤Xi(ηj + µj)

.

C Score components and observed information matrix

The profile likelihood is given by equation (14).

C.1 Score components

In the interests of more compact notation, we hereafter adopt the convention that summa-

tions over j refer to the set {j : 0 < Xj ≤ Xi}. The score components are

U0 ≡
∂`pr(β)

∂β0

=
∑
i:Xi=0

1

1 + eβ0+z′iβθ
−
∑
i:Xi>0

∑
j e

β0+z′jβθ+z′jβη∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)

Uθ ≡
∂`pr(β)

∂βθ
=
∑
i:Xi=0

zi

1 + eβ0+z′iβθ
−
∑
i:Xi>0

∑
j zje

β0+z′jβθ+z′jβη∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)

Uη ≡
∂`pr(β)

∂βη
=
∑
i:Xi>0

zi −

∑
j zje

z′jβη
(

1 + eβ0+z′jβθ
)

∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)
 .

The score vector is U(β) = (U0,U
′
θ,U

′
η)
′.
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C.2 Observed information

The observed information matrix will be

I(β) =


I00 I ′θ0 I ′η0

Iθ0 Iθθ I ′ηθ

Iη0 Iηθ Iηη

 ,

with component matrices derived below. I00 is a scalar; Iθ0 and Iη0 are p× 1 vectors; and

Iθθ, Iηθ, and Iηη are p×p matrices. Clearly, then, I(β) will be a (2p+1)× (2p+1) matrix.

Below, we calculate the elements of this matrix.

• Derivatives of the score with respect to β0:

I00 ≡ −
∂U0

∂β0

=
∑
i:Xi=0

eβ0+z′iβθ(
1 + eβ0+z′iβθ

)2 +
∑
i:Xi>0

[∑
j e

β0+z′jβθ+z′jβη
] [∑

j e
z′jβη
]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2

Iθ0 ≡ −
∂Uθ

∂β0

=
∑
i:Xi=0

zie
β0+z′iβθ(

1 + eβ0+z′iβθ
)2 +

∑
i:Xi>0

[∑
j zje

β0+z′jβθ+z′jβη
] [∑

j e
z′jβη
]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2

Iη0 ≡ −
∂Uη

∂β0

=
∑
i:Xi>0


[∑

j zje
β0+z′jβθ+z′jβη

] [∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2

−

[∑
j zje

z′jβη
(

1 + eβ0+z′jβθ
)] [∑

j e
β0+z′jβθ+z′jβη

]
[∑

j e
z′jβη

(
1 + eβ0+z′jβθ

)]2


• Derivatives of the score with respect to βθ:

Iθθ ≡ −
∂Uθ

∂βθ
=
∑
i:Xi=0

ziz
′
ie
β0+z′iβθ(

1 + eβ0+z′iβθ
)2

+
∑
i:Xi>0


[∑

j zjz
′
je
β0+z′jβθ+z′jβη

] [∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2
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−

[∑
j zje

β0+z′jβθ+z′jβη
]⊗2

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2


Iηθ ≡ −

∂Uη

∂βθ
=
∑
i:Xi>0


[∑

j zjz
′
je
β0+z′jβθ+z′jβη

] [∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2

−

[∑
j zje

z′jβη
(

1 + eβ0+z′jβθ
)] [∑

j zje
β0+z′jβθ+z′jβη

]′
[∑

j e
z′jβη

(
1 + eβ0+z′jβθ

)]2


• Derivatives of the score with respect to βη:

Iηη ≡ −
∂Uη

∂βη
=
∑
i:Xi>0


[∑

j zjz
′
je

z′jβη
(

1 + eβ0+z′jβθ
)] [∑

j e
z′jβη

(
1 + eβ0+z′jβθ

)]
[∑

j e
z′jβη

(
1 + eβ0+z′jβθ

)]2

−

[∑
j zje

z′jβη
(

1 + eβ0+z′jβθ
)]⊗2

[∑
j e

z′jβη
(

1 + eβ0+z′jβθ
)]2


D Further simulation results

D.1 Correct specification

For these simulations, the intercept β0 in the θ part of the model was allowed to take

values −2, 0, and 2, corresponding to, respectively, approximately 18%, 43%, and 71% of

observations equal to zero.

The results of the simulation study for the scenario without misspecification are displayed

in Table 3. This table shows that bias and variance decrease with increasing sample size,

as we would expect. Bias of all parameter estimates also seems to be adversely affected by

intercept values differing from zero, however, as is the case for the large values of ESD and

ASE. We also see good agreement between the ESD and ASE for moderate to large samples.

In contrast to results for the logistic part of the model, it is clear that bias and variance

of the parameter estimates in the continuous part of the model monotonically increase with
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increasing proportions of zero observations, which is due to effectively decreasing the sample

size available for estimation of the η part of the model. We observe good agreement between

the ESD and ASE for moderate to large samples, indicating the adequacy of the asymptotic

approximations for the covariance matrix of the parameter estimates.

We observe some interesting bias patterns in these results. When the true value of the

parameter is negative (corresponding to approximately 18% of responses equal to zero),

the bias is also negative, but decreases quickly with increasing sample size. The reverse is

true for the simulations with approximately 71% of responses equal to zero. This shows a

consistent pattern of bias away from the null in small samples. Bias tends to be larger for

the negative and positive intercept scenarios than for the zero intercept scenario, but this is

to be expected, because for a binary variable, maximal information is gained from responses

with probability roughly equal to 1/2.

There seems to be little to no bias in some cases for the intercept in the logistic part of

the model. To explain this, recall that we are varying this parameter in order to examine the

effect of different levels of censoring on the model performance: minimal bias occurs when

we set the true value of the intercept equal to zero. Usually, we might report relative bias,

where the numbers in this table would be divided by the true values of the parameters in

order to facilitate comparisons, but of course this is not sensible for a parameter with a true

value of zero.

D.2 Non-proportional retro-hazards

For the expected outcome under the true model, we compute E [Di 1(Di > Ri)] for each

observation as ∫ ∞
0

te−µiH
∗(t) d

(
e−ηi[H

∗(t)]α
)
.

Because the scale of the outcome may vary with α under this form of misspecification and

we would like to be able to compare performance for different degrees of misspecification,
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Figure 4: Baseline cdf and pdf plots for simulations in which the baseline retro-hazard is
misspecified in the form of equations (18) and (19). The curve in black is the baseline cdf
that would be shared between the resistance and damage processes under correct model
specification, while the lines in color represent departures from that. Note that while the
left-hand panel has an untransformed x-axis, the right-hand panel’s x-axis is on the log scale
in order to give a clearer idea of the behavior of the density curves.
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we evaluated predictive ability of the models using a modified mean-squared error:

MSEP1 =
1

n

n∑
i=1

[
1− X̂i

E(Xi|zi)

]2

. (D1)

Average values of this quantity across 1000 simulated data sets are shown Table 4.

We see from this table that our method outperforms the standard method uniformly and

by a large margin, generally 40-50% regardless of other model parameters. The increased

efficiency of our method is most pronounced when there is a lower proportion of zero values

in the outcome (β0 = −2). The predictive errors increase with increasing proportion of zero

values, which is to be expected, as this reduces the amount of information contained in the

observed outcome data.

There is an apparent U -shaped relationship between α and the predictive errors under

our method (it seems this is also the case for the standard method, although the effect is less

obvious). This is sensible, as the model should perform best when it is correctly specified,

and indeed α = 1 is where we find the minimal average prediction errors under our method.

However, this does not seem to be the case for β0 = 0: the average predictive error seems

relatively flat for α ≤ 1, while increasing thereafter.

Overall, however, the effect of this kind of misspecification seems to be quite limited,

both on our proposed method as well as the standard method. We would not expect the

standard method to be affected in any particular way by this form of model misspecification,

as it does not rely on our specific model assumptions. The proposed method, on the other

hand, can be said to be quite robust to moderate violations of its primary assumption, the

proportionality of retro-hazards between the damage and resistance processes.

D.3 Unlinked models

The results for the Cauchy transformation simulations, shown in Table 5, are more favorable

for the standard method than our proposed method. For smaller values of the scale parameter
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σ, the standard method is substantially more efficient than our proposed method. However,

as the curve becomes more linear (i.e., with increasing σ), our proposed method becomes

more competitive. Both methods display decreasing trends in predictive error as σ increases,

but this effect is much stronger for our proposed method.

Indeed, comparing the results of this table for σ = 4 with those in Table 1 for ω = 1,

we see that predictive errors are quite similar, with
√

MSEP2 slightly less than 3 for the

standard method and slightly greater than 3 for our proposed method. This reflects the

near-linearity of the curve for σ = 4 and the perfect linearity of the curve for ω = 1 (see

Figure 2). Otherwise, it is true that the Cauchy transformations lead to smaller predictive

errors than the family of power transformations.
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Table 3: Simulation results under correct model specification (bias and standard errors). This
table shows the bias, empirical standard deviation (ESD), and average standard error (ASE)
of the parameter estimates across all simulated data sets for the part of the model pertaining
to the probability of positive damage being observed (“logistic part”) and for the part of
the model pertaining to amount of damage (“continuous part”). The intercept parameter
β0 was allowed to take values −2, 0, and 2 (shown in the first column), corresponding to,
respectively, approximately 18%, 43%, and 71% of observations equal to zero.

Logistic part of model
β0 βθ1 = 2 βθ2 = −1

β0 n Bias ESD ASE Bias ESD ASE Bias ESD ASE
-2 100 -0.177 0.620 0.556 0.248 0.598 0.519 -0.137 0.784 0.693

200 -0.077 0.397 0.367 0.101 0.358 0.334 -0.040 0.468 0.458
500 -0.027 0.224 0.224 0.029 0.210 0.200 -0.004 0.279 0.281

0 100 -0.007 0.380 0.364 0.154 0.428 0.406 -0.070 0.528 0.522
200 0.008 0.253 0.250 0.073 0.294 0.272 -0.026 0.345 0.357
500 -0.006 0.159 0.156 0.022 0.173 0.165 -0.002 0.220 0.222

2 100 0.167 0.576 0.512 0.184 0.501 0.448 -0.091 0.646 0.586
200 0.075 0.351 0.342 0.066 0.306 0.292 -0.058 0.392 0.395
500 0.027 0.212 0.210 0.036 0.178 0.179 -0.011 0.243 0.244

Continuous part of model
βη1 = −1 βη2 = 2

β0 n Bias ESD ASE Bias ESD ASE
-2 100 -0.020 0.162 0.164 0.049 0.318 0.310

200 -0.007 0.113 0.112 0.021 0.220 0.214
500 -0.002 0.071 0.069 0.012 0.132 0.133

0 100 -0.016 0.225 0.210 0.073 0.394 0.389
200 -0.013 0.146 0.143 0.046 0.274 0.266
500 -0.001 0.089 0.088 0.013 0.166 0.164

2 100 -0.013 0.366 0.339 0.133 0.658 0.623
200 -0.015 0.227 0.220 0.090 0.422 0.408
500 -0.010 0.136 0.133 0.026 0.251 0.246
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Table 4: Simulation results under misspecified model, with non-proportional retro-hazards:
predictive errors, n = 500. This table shows the root mean-square error of the predictions
(
√

MSEP1) for both the standard method (LSSIM) and our proposed method (CDRM); the
final column is a measure of relative efficiency, calculated as the ratio of

√
MSEP1 for the

CDRM method to that of the LSSIM method. This is averaged over 1000 simulated data
sets at each distinct combination of intercept value β0 and misspecification parameter α
(where α = 1 corresponds to proportional retro-hazards, i.e., correct model specification).
The intercept parameter β0 was allowed to take values −2, −1, and 0 (shown in the first
column), corresponding to, respectively, approximately 18%, 29%, and 43% of observations
equal to zero.

Method
β0 α LSSIM CDRM Ratio
-2 0.7 0.157 0.077 0.489

0.8 0.155 0.073 0.467
0.9 0.151 0.069 0.455
1 0.152 0.068 0.450
1.1 0.150 0.070 0.468
1.2 0.153 0.073 0.478
1.3 0.150 0.076 0.508

-1 0.7 0.166 0.092 0.558
0.8 0.160 0.083 0.520
0.9 0.155 0.082 0.526
1 0.154 0.079 0.513
1.1 0.156 0.087 0.555
1.2 0.160 0.094 0.588
1.3 0.166 0.107 0.641

0 0.7 0.175 0.107 0.611
0.8 0.172 0.104 0.604
0.9 0.169 0.103 0.607
1 0.169 0.104 0.617
1.1 0.173 0.111 0.642
1.2 0.178 0.124 0.698
1.3 0.191 0.145 0.760
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Table 5: Simulation results under misspecified model, Cauchy transformation as unknown
function of the index: predictive errors, n = 500. This table shows the root mean-square
error of the predictions (

√
MSEP2, RMSEP) for both the standard method (LSSIM) and our

proposed method (CDRM); the final column is a measure of relative efficiency, calculated
as the ratio of

√
MSEP2 for the CDRM method to that of the LSSIM method. This is

averaged over 1000 simulated data sets at each distinct combination of intercept value β0

and misspecification parameter σ. Also displayed in this table is the average outcome across
all subjects and simulated data sets, intended to give an idea of the relative size of the√

MSEP2 values (which are not normalized as they are for MSEP1). The intercept parameter
β0 was allowed to take values −2, −1, and 0 (shown in the first column), corresponding to,
respectively, approximately 18%, 29%, and 43% of observations equal to zero.

β0 σ EX LSSIM CDRM Ratio
-2 1 72.4 3.166 7.242 2.287

2 75.7 3.017 4.861 1.611
3 77.5 2.983 3.878 1.300
4 78.5 2.912 3.414 1.172

-1 1 61.0 3.108 7.181 2.310
2 64.4 2.959 4.522 1.528
3 66.2 2.953 3.541 1.199
4 67.3 2.964 3.362 1.134

0 1 47.7 2.840 6.207 2.185
2 50.9 2.881 4.043 1.403
3 52.7 2.814 3.263 1.160
4 53.6 2.973 3.259 1.096
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