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Abstract
The effect of microstructure on cracking was analyzed in a CMC using statistical

methods. It was determined that the amounts of coating surrounding fibers and their

dispersion within the matrix influenced where cracks evolved in transverse plies.

Linear models predicted that maximum principal strains in transverse fiber coatings

increased as (i) the fiber coating area increased and (ii) the length of matrix ligament

between fibers decreased. Logistic models indicated that the likelihood of transverse

fibers residing on a matrix crack increased as the (i) ratio of coating to filament

decreased, (ii) distance between fibers decreased, or (iii) coating area increased.
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1 | INTRODUCTION

Fiber-reinforced ceramic matrix composites (CMCs) exhibit
an unusually good combination of stiffness, strength, and
toughness, enabling their use in high-temperature structural
applications. CMCs are tougher than their monolithic coun-
terparts as a result of mechanisms introduced by the incor-
poration of fibers. Modern CMCs often contain stiff, strong
fiber filaments encased in a weak coating, both of which
are embedded in a stiff matrix. The combination of strong
filament with weak coating permits crack deflection, wide-
spread matrix cracking, and the delayed onset of catas-
trophic failure. Currently, limitations in material processing
make the fabrication of perfectly uniform coating thick-
nesses and fiber distributions impractical. If these properties
are found to strongly influence damage initiation and accu-
mulation, an educated decision can be made about time
and resource investment into processing refinements for
improved microstructures.

Experimental investigations of matrix cracking phenom-
ena in CMCs1-6 have demonstrated that fiber inclusions
greatly influence damage progression, and they have conse-
quently prompted development of analytical and numerical
models that incorporate fiber statistics into predictions of
CMC fracture behavior. For example, Curtin7 used fiber

strength (estimated using Weibull statistics) and fiber prop-
erties (radius, volume fraction, and sliding friction) to ana-
lytically derive the ultimate tensile strengths of continuous
fiber-reinforced CMCs. The model did not account for ran-
domness in the composite architecture, and its application
to experimental data ranged from near perfect agreement to
errors in predicted strengths as large as 30%. Calard and
Lamon8 used probabilistic functions to predict matrix
cracking as a function of flaw distribution. They followed
this with an assessment of scatter in failure strengths
(strength distributions were measured using Weibull statis-
tics) of SiC/SiC CMCs loaded in tension and flexure.9

Their analysis suggested that heterogeneities in fiber
arrangement and matrix crack distributions were responsi-
ble for deviations in the local stress state, which ultimately
impacted failure strength variability. Calard and Lamon10

used Bayesian statistics to determine failure probabilities
by implementing finite element models to predict failure in
representative volume elements of a CMC microstructure.
The probability functions applied to each element were
dependent on parameters derived from macroscopic tensile
and flexural stress distributions, as opposed to local
microstructural parameters.

Sorenson and Talreja11 reported that residual stresses in
the vicinity of fibers are influenced by the distance between

Received: 7 November 2016 | Accepted: 16 December 2016

DOI: 10.1111/ijac.12646

354 | © 2017 The American Ceramic Society wileyonlinelibrary.com/journal/ijac Int J Appl Ceram Technol. 2017;14:354–366.

http://wileyonlinelibrary.com/journal/IJAC


fibers. Using finite element models to simulate residual
stress fields around fibers, they found that the radial com-
pressive stress showed the most sensitivity to fiber distribu-
tion, noting that variability in stress increased in the
vicinity of fibers in contact. This suggests that cracks
emanating from fiber/coating/matrix interfaces may favor
high-stress regions of clustered fibers. Recognizing the sig-
nificance of fiber distribution to CMC performance, Yang12

developed random volume elements (RVE) that character-
ized the random spatial arrangement of fibers with the
intent of incorporating them into micro-mechanical damage
models. However, fibers in the RVE contained no coatings
and the results of their micro-mechanical modeling were
not reported.

The analytical models discussed above used statistical
distributions of an input variable, such as fiber strength, to
predict a global response in the composite, such as crack-
ing. We sought an alternate approach by experimentally
measuring all input and response variables, and fitting sta-
tistical models to this data. Several variables may influence
the fracture characteristics of CMCs, including residual
stresses in the fibers and matrix, fiber size, coating thick-
ness, fiber distribution, inclusions and defects in the matrix,
and the local stress state. However, this work focused on
factors pertaining to fiber/coating size and distribution to
develop statistical damage models for CMCs, as these
parameters are important, measureable with a high degree
of accuracy, and controllable.

In this work, cross-ply CMCs comprised of silicon car-
bide fibers clad with boron nitride and encased in a silicon
carbide matrix (abbreviated SiC/SiC) were loaded in tension
in-situ in a scanning electron microscope (SEM). High-mag-
nification micrographs of the damaged CMCs were captured
and digital image correlation (DIC) was used to compute
full-field strains. Microstructural and deformation data were
cataloged on a fiber-by-fiber basis to include the following:

1. Principal strains in the fiber coatings oriented transverse
to the loading direction

2. Fiber and coating sizes, proportions, and spatial distri-
butions

3. Fiber proximity to matrix cracks

Unsupervised statistical methods (ie, statistical calcula-
tions generated without a response variable) were used to
group the variables into categories with unique traits.
Microstructural parameters pertaining to coating area and
fiber distribution constituted a majority of the first principal
component, indicating that they shared a common attribute
in the overall pool of data. It was later found, through
supervised statistical methods, that the common attribute
was an affinity for accruing highly localized strains.
Covariance matrices were used to assess relationships

between variable pairs. This analysis indicated that fiber
distribution and coating area influenced the location of
matrix cracks in transverse plies, but did not distinguish
whether these relationships were causal or correlated by
association with another variable.

Linear and logistic models were developed to refine the
findings from covariance analyses by identifying which
parameters were causal to strain localization and crack
propagation. Two variable selection algorithms, best-sub-
sets and lasso, were used to determine significant predictor
variables for incorporation into statistical models. The lin-
ear model predicted that the magnitude of maximum princi-
pal strains in transverse fiber coatings increased as (i) the
fiber coating area increased and (ii) the length of matrix
ligament between nearest-neighbor fibers decreased. The
logistic model predicted the probability of a transverse fiber
residing on a matrix crack path. It was found that this like-
lihood increased as the (i) ratio of coating to filament
decreased, (ii) nearest-neighbor distance between fibers
decreased, or (iii) coating area increased. However, logistic
model findings were interpreted with caution, as they
under-predicted the amount of fibers that resided on a crack
path upon failure. Additionally, there were inherent errors
associated with the experimental data, and methods to
improve the accuracy of all models are discussed.

2 | EXPERIMENTAL METHODS

2.1 | Microscale data collection

All data were collected from cross-ply SiC/SiC CMC cou-
pons loaded in uniaxial tension and imaged in-situ in a FEI
Quanta 3D SEM. Three in-situ tensile tests were conducted
using two edge-notched specimens and one smooth (ie,
unnotched) specimen. The two edge-notched tests were on
pre-cracked specimens with 300 lm fields of view (FOV):
one test yielded two sets of image data (Figure 1), whereas
the other yielded one set. The smooth test specimen had no
pre-crack and yielded one data set at a 200 lm FOV. Spec-
imens were loaded in SEM using a miniature tension/com-
pression stage (Kammranth & Weiss) and were oriented to
image the edge of the gage section. For the edge-notched
tensile coupons, the areas of interest (AOIs) were situated
along the edge opposite the notch, such that matrix cracks
propagating through the gage width manifested in the AOI
prior to final fracture.

All tensile coupons were [0/90/0/90]s with approxi-
mately 200 lm thick individual lamina. The two edge-
notched coupons were pre-loaded to initiate through
thickness matrix cracks. For these two samples, 300 lm
FOV AOIs were positioned within transverse laminae.
FOVs of this size were small enough to permit the use of
DIC subset sizes similar to the fiber diameters, yet large

TRACY AND DALY | 355



enough to sample a sufficient number of fibers for statisti-
cal analysis. In the absence of an automated system for
capturing images along the entirety of the edge of the gage
section, notches were needed to localize matrix crack prop-
agation and improve the likelihood of capturing propagat-
ing cracks in a predetermined AOI. An illustration of data
collection on a notched tensile coupon is provided in Fig-
ure 1. Two areas of interest (AOI-1 and AOI-2) were
selected for image capture during loading, where AOI-1
captured a larger portion of the propagating matrix crack.
A 200 lm FOV was used for the smooth bar coupon,
which sampled fewer fibers but provided greater spatial res-
olution in full-field deformation measurements.

SEM images were taken at discrete load increments. The
tests were run in displacement control, which caused the
samples to relax as much as 15 N. Consequently, image cap-
ture, which itself took approximately 90 seconds, began after
there was no further drop in load (between 30 and

60 seconds). Two images were collected at each load incre-
ment; the latter images were used for correcting spatial and
temporal image distortions inherent in SEM imaging.13-16

Note that imaging the entire coupon edge is ideal as it pro-
vides the largest possible pool of statistical observations, but
was impractical due to the rastering nature of SEM imaging.
The notched specimen tensile test depicted in Figure 1 fortu-
nately had matrix cracks manifest in both AOIs selected for
imaging, whereas only one AOI intercepted a matrix crack
during the test conducted on the second notched coupon.

In each of the four data sets, fibers and their coatings
were segmented, binned, and indexed. Principal, longitudi-
nal, transverse, and shear strains were calculated pixel-by-
pixel in each micrograph using DIC software.17 The strains
in each fiber and coating were averaged and indexed. Addi-
tionally, the following microstructural variables were mea-
sured and indexed; an illustrative example of each variable
is provided in Figure 2:

FIGURE 1 A matrix pre-crack was initiated from a laser ablated edge-notch (right-hand side of diagram) and allowed to propagate partially
through the gage width of the tensile coupon. After crack initiation, the sample was oriented for SEM imaging of the coupon edge opposite the
notch (left-hand side). Images were captured at incremental loads in two locations along the coupon edge (AOI-1 and AOI-2), both in transverse
plies. [Color figure can be viewed at wileyonlinelibrary.com]
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1. Location of fiber and coating centroids
2. Area of fiber and coating
3. Ratio of coating area to fiber area
4. Fiber-coating concentricity (ie, the amount of collinear-

ity between fiber and coating centroids)
5. Fiber-to-fiber nearest-neighbor distance (measured from

centroids)
6. Length of matrix ligament between nearest-neighbor

fibers
7. Whether or not any part of the fiber or its coating

resided on a crack path upon final fracture (note: these
data were only collected for the pre-cracked coupons)

8. Averaged strains in fiber and coating (minimum and
maximum principal, longitudinal, transverse, and shear
strains)

To ensure that each data set was a representative sample
of the total population of transverse fibers, the distribution
of fiber data collected from multiple fiber tows along a
transverse lamina was compared with those of each data
set. The data sets in Figure 1 were comprised of 183 fibers
in AOI-1 and 89 fibers in AOI-2. Each fiber constituted an
experimental observation for statistical modeling purposes.
The data set for the second edge-notched coupon contained
101 observations while that of the smooth bar sample con-
tained 86 observations. Within the gage section of a tensile
coupon, however, there were thousands of transverse fibers.
As shown in Figure 3, the individual data sets contained
similar distributions to the lamina.

2.2 | Unsupervised statistical learning

Scatter plots of microstructural variables, collected from
the notched-coupon test of Figure 1, provide a broad-based
graphical depiction of correlations between variable pairs.
This is evident in Figure 4, where for example, coating

area (“coatarea”) and area ratio (“ratio”) have a clear and
expected positive correlation. Other correlations, such as
that between area ratio (“ratio”) and nearest-neighbor dis-
tance (“nndist”), are not as clear.

Covariance matrices were used to determine the magni-
tude and direction of correlations between all microstruc-
tural and mechanical variables. Covariance matrices
provide a quantitative measure of correlations between vari-
able pairs, summarized in a single metric; an example and
further explanation of covariance matrices is provided in
Appendix 1. As previously mentioned, the data for statisti-
cal modeling were sampled fiber-by-fiber. For the covari-
ance analysis, rather than sample data fiber-by-fiber, data
were sampled point-by-point where each point corre-
sponded to a DIC data node. This was so that the analysis
would incorporate deformation data in the SiC matrix in
addition to the fibers and their coatings. Covariance matrix
input data were binned according to the type of constituent
from which it was collected. For example, for any data
point residing within a SiC carbide fiber, the corresponding
predictor and response values for that point were consoli-
dated into a data matrix that contained data only for SiC
fibers. The same concept was applied for the fiber coatings
and the SiC matrix. Covariance matrices were constructed
for each load increment over which DIC data were
collected.

When a data set contains more than one predictor, visu-
alizing the contribution of each predictor to a response
becomes difficult. Principal component analysis (PCA) pro-
vides a means of graphically representing a data set that
contains several dimensions (such as the microstructural
variables identified in Figure 4) in fewer dimensions. In
PCA, eigenvalue decomposition is used to transform a data
set into a space comprised of principal components, where
the number of components is equal to the number of predi-
cators in the data set, and each component is a linear

(A) (B)

FIGURE 2 Microstructural parameters used for statistical modeling. (A) Nearest-neighbor distance was measured between fiber centroids.
Ligament length was a measure of the amount of matrix between nearest-neighbor fibers. (B) Constituent bins and examples of low concentricity
fibers are indicated by arrows.
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combination of all the predictors. The first component
accounts for the greatest amount of variability in the data
set. Each subsequent component accounts for a lesser
amount of variability in the data set and is a linear combi-
nation of variables that are uncorrelated with the first prin-
cipal component. Further details of method can be found
in.18

A majority of data variance was accounted for in just a
few principal components. Using the data set from AOI 1
in Figure 1 as an example, given an input of six
microstructural predictors, the first three principal

components accounted for approximately 90% of the vari-
ability in the data set. When plotted in principal space, the
predictors clustered into unique groups. Binary plots of the
first three principal components aided in grouping variables
as illustrated in Figure 5. The red crosses represent scores
for the respective principal components (indicated by the
axes) of each fiber. The blue lines represent the principal
component loading for each predictor-type, as projected
onto the two principal components indicated by the axes.
Looking along the 1st principal component axis in Fig-
ure 5(A), the variables weighted most heavily are coating

FIGURE 3 Distribution of microstructural parameters for the cases of (A) a 3009300 lm representative area element and (B) two fiber
tows (each tow containing roughly 500 fibers). The representative area contains an equivalent distribution of fiber parameters as that of multiple
tows. [Color figure can be viewed at wileyonlinelibrary.com]
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area, coating-fiber area ratio, nearest-neighbor distance, and
nearest-neighbor ligament length. Thus, the first component
accounts for coating size and fiber separation. It also
accounts for 50% of the variability in the data set. As these
fibers are clumped together, they are correlated with each
other. Observing the 2nd and 3rd component axes in Fig-
ure 5(B), these components correspond to measures of
fiber-coating concentricity and fiber area, respectively. Note
that while the PCA biplots do not represent correlations
between individual variables, they do indicate a common
attribute that accounts for the greatest variability in the data
set, that is, there is something about these variables that is
relevant. The nature of their relevancy must be determined
though more pointed statistical methods such as supervised

modeling. The supervised statistical models of Section 3
will show that these variables likely influence localized
damage in the composite.

2.3 | Statistical models

Linear and logistic models were developed to assess the
influence of microstructural parameters of CMCs on (i)
localized strain in fiber coatings and (ii) the probability of
transverse fibers residing on a matrix cracks. The linear
models were developed using all four data sets. The
smooth bar data set (with 86 observations) contained the
least noisy DIC data and was used for training the model.
The logistic models did not incorporate DIC data, so the

FIGURE 4 Example of scatter plots of microstructural variables. Plot of coating area and ratio (highlighted in a blue box) shows a clear
positive correlation. The trend is not as clear for many other variable pairs, hence the need for covariance analysis. [Color figure can be viewed
at wileyonlinelibrary.com]
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data set from AOI 1 of Figure 1 (with 183 observations)
was used for training.

The linear regression models constituted the least
squares solution to equations of the form:18

yðxÞ ¼ c0 þ c1x1 þ c2x2 þ . . .þ cpxp;

where p is the number of predictors, xp, y is the predicted
response (maximum principal strain in the fiber coating), and
cp are coefficients. Logistic regressions were of the form:18

PðxÞ ¼ ec0þc1x1þ...þcpxp

1þ ec0þc1x1þ...þcpxp

where P(x) represents the probability of an observation
residing on a crack as a function of its predictor values.

Best-subsets selection and lasso shrinkage algorithms
adopted from18 were used to filter out unnecessary predic-
tors. The best-subsets algorithm proceeded as follows.
Given a data set of p predictors:

1. For all k=1:p combinations of predictors, fit a regres-
sion to the appropriate response such that 2p models
are generated. For logistic regressions, the response
was binary; if a fiber resided on a crack path, its
response value was designated as 1, otherwise the
response was designated as 0. For linear regression,
the response was the maximum principal strain in a
fiber coating (averaged over all DIC data points within
the coating).

2. Among all models consisting of k predictors, identify
the model with the largest R2 value (for linear regres-
sions) or lowest deviance (for logistic regressions).

3. Among the p models that remain, select the model with
the largest adjusted R2 value. As more predictors are
added to a model, R2 and deviance may improve only
as a consequence of adding more predictors. The
adjusted R2 criterion adds a small penalty for having
more predictors so that the largest predictor subset will
not necessarily be the best subset.

The algorithm was run using a six-predictor data set
comprised of microstructural variables (fiber area, coating
area, coating-to-fiber area ratio, concentricity, centroid-to-
centroid fiber nearest-neighbor distance, and nearest-neigh-
bor matrix ligament length) and their inverses. For both the
linear and logistic models, the most significant subsets were
associated with coating properties and fiber separation,
coinciding with the 1st and 2nd principal component pre-
dictors of Section 2.2. Higher-order variables (eg, quadratic
terms and inverses) were excluded from the best subsets
for two reasons: (i) their inclusion resulted in impractical
processing times and (ii) plots of predicted responses vs
residuals did not indicate that higher-order terms would
improve the fits. The influence of quadratic terms, how-
ever, was investigated using an alternative means of subset
selection—the lasso method.

Lasso variable selection suggested that only the vari-
ables associated with fiber separation (ie, nearest-neighbor
distance and matrix ligament length) were relevant in pre-
dicting the response. Like best subsets, the lasso method
performs variable selection. However, it does so by fitting
a model with all variables, then shrinking the coefficients
of insignificant variables to zero using a tuning

FIGURE 5 Biplots of principal component analysis of predictor
variables. The first two principal components are plotted against each
other in (A). The second and third components are plotted in (B).
Red markers indicate scores for individual observations. Blue vectors
indicate position of individual predictors in principal space. Area
ratio, coating area, ligament length, and nearest-neighbor distance
have the largest values along the first principal component. This
indicates that they share a common attribute that accounts for the
greatest variability in the data set. Further statistical analysis (see
Section 2.3) is needed to identify the nature of the common attribute.
[Color figure can be viewed at wileyonlinelibrary.com]
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parameter.18 Significant variables are those that have non-
zero coefficients after the tuning parameter has been opti-
mized to produce a fit of minimum deviance. A shortfall of
this method is that it often selects highly collinear vari-
ables. When this occurred, the variables with largest
collinearity, as measured via the variance inflation factor
(VIF), were removed from the subset. This resulted in
degradation to the R2 and P values of the model. Results
are discussed in Section 3.

3 | RESULTS

3.1 | Results of unsupervised models

Consolidating covariance data from all bins (fiber, coating,
and matrix) for each of the four data sets resulted in the
following findings:

1. Fibers with thick coatings exhibited low fiber-filament
concentricity;

2. Maximum principal strains were largest in fibers that
were closely spaced and exhibited low concentricity;

3. Crack paths favored fibers that were closely spaced, but
fibers with thicker coatings on the crack path often
spread out rather than clustered.

When interpreting these results, two important points
must be noted: (i) covariance matrices do not account for
interactions between multiple variables (ie, a positive corre-
lation between Variable 1 and Variable 2 may be an indi-
rect artifact of Variable 3, but covariance matrices alone do
not provide that information) and (ii) conservative con-
straints were applied to draw each conclusion; if an obser-
vation was not consistent from one bin to another and from
one test to another, then it was not included in the list of
conclusions. In order to better understand how microstruc-
tural variables influenced fracture, linear and logistic statis-
tical models were developed. They are presented in
Sections 3.2 and 3.3.

3.2 | Linear model results

A linear statistical model was developed to determine the
influence of microstructural parameters on strain localiza-
tion. For the stiff components of the CMC (ie, the fiber fil-
aments and matrix), it was assumed that high-strain DIC
measurements indicated cracking. Using maximum princi-
pal strain to indirectly observe cracks in transverse plies is
a reasonable assumption and has been previously demon-
strated.19 The strain data were modestly filtered (45-pixel
strain filter window given a 29-pixel subset size and 1-
pixel step size) to reduce noise. The impact of noise on
model results is discussed in Section 4.

Best-subsets and lasso algorithms were used to reduce
the number of predictors used for modeling and prevent
overfitting of the data. Both methods selected variables per-
taining to coating thickness and fiber dispersion. Recall from
Section 2.3 that the best-subsets method selected variables
by omitting those that degraded the adjusted R2 value of the
linear fit, while the lasso method fit a model to all variables
but reduced the weights of insignificant variables to zero. It
was determined that a linear fit of first-order terms is suffi-
cient. The results of both methods are listed in Table 1. The
best-subsets model only included first-order terms, which
resulted in a goodness of fit (adjusted R2) of .48. The lasso
model incorporated inverse and higher-order terms, but this
did not improve the goodness of fit (adjusted R2 was .47).
The scatter plot of residuals vs fitted values for the best-sub-
sets model showed no distinct trend to suggest anything
other than a linear fit to the data points.

Coating area and fiber distribution impact strain local-
ization and should be considered critical factors in optimiz-
ing a CMC microstructure. Plots of the best-subsets linear
model applied to training data are shown in Figure 6. To
examine the effect of each variable, maximum principal
strain (the failure criterion for matrix cracking chosen in
this study) was plotted as a function of each predictor and
the other predictor was held constant at its mean value.
Though the fracture strain of the bulk siliconized-silicon
carbide matrix is not known, for reference the fracture
strain of reaction bonded silicon carbide is ~1200 le.20

Figure 6(A) shows an overlay of the principal strain fields
on the microstructure. Inset is a yellow square indicating
the DIC subset size relative to a fiber. Figure 6(B) shows
the plots of each best-subset predictor. The red squares are

TABLE 1 Linear model results

Model Best subsets Lasso shrinkage

R-squared .49 .51

Adjusted R-squared .48 .47

P value 0 0

RMS error 908 le 913 le

Variable P value Variable P value

Significant
variables

Coating area .00 Coating area .10

Ligament
length

.00 Area ratio
[coating:fiber]

.84

Ligament length .29

Inverse coating
area

.39

Inverse ligament
length

.31

Inverse squared
coating area

.28
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experimental data points. Black diamonds indicate the fitted
response and are bound by magenta diamonds depicting
the 95% confidence interval. The linear model suggests that
localized maximum principal strains (ie, cracking in the
CMC) increase as the fiber coating area increases and/or
the matrix ligament length between nearest neighbors
decreases (which may be indicative of clustering). Results
for the test data are shown in Figures 7 and 8, which indi-
cate that the trends observed all three sets of test data
match with that of the training data.

3.3 | Logistic model results

The influence of fiber properties on the likelihood of a fiber
residing on a crack path was assessed using a logistic sta-
tistical model. First, best-subsets selection and lasso shrink-
age were used to identify microstructural variables relevant
to the response. Because the smooth bar tensile coupon
was not tested to final fracture, its data set was not
included in the logistic model. The model was trained with
the data from AOI 1 of Figure 1, as it had the greatest
number of observations. Results of each model are pre-
sented in Table 2. Both the best-subsets and lasso shrink-
age algorithms selected variable subsets pertaining to
coating area and fiber separation, as was the case for the
linear regression model. Both models had low training and
test error rates (ie they misclassified predictions 18.5% and
15.8% of the time, respectively). These low error rates indi-
cate that the logistic models reliably predict the likelihood
of a crack developing on a fiber if the microstructural
parameters of the fiber meet the criteria determined by the
model. However, note that the models have low R2 values
and grossly underestimate when a fiber resides on a crack
path. The best performing model (best-subsets) only pre-
dicted 6% of crack-path fibers correctly in the training data

and 3% in the test data. This renders the results of the
model impractical for use in optimizing the microstructure
of fibrous CMCs. Thus, ensemble methods were pursued to
improve the predictive capability.

Ensemble methods were used to improve the crack clas-
sification error rates of the best-subsets model and bolster
the fits of the regression models. Three ensemble algo-
rithms were investigated—bootstrap aggregation, boosting,
and subspace nearest-neighbor classification—and it was
found that boosting improved the classification error rates.
All ensemble algorithms were implemented using
MATLAB’s Statistics Toolbox.21 In brief, ensembles incor-
porate a combination of multiple fits to improve poor
model diagnostics. A randomly selected subset of training
data is used to grow a decision tree. New decision trees are
grown sequentially from the original tree using the training
data and information from the previously grown tree. The
final tree used for predictions is built from all of its com-
bined successors. Specifics on the individual ensemble
techniques can be found in.18,21

The judicious use of boosting ensembles, as described
below, significantly improved crack prediction. However,
the error rate was still too high to accurately implement the
binomial logistic (or classification) model in the prediction
of microstructure influence on crack propagation in
CMC transverse plies. Using AOI 1 as training data and
performing 10-fold cross-validation, boosting ensembles
were evaluated using the best-subsets predictor selection.
Best-subsets were chosen because it produced a lower
deviance and larger adjusted R2 than the lasso predictor
set. The test error rate fell to 16.9% and the percentage of
cracks correctly predicted rose to 37.5% when applied to
the data set from AOI 2. The test error rate was 24.8% with
only 25% correctly predicted cracks for the data set from
the second notched-coupon tensile test.

FIGURE 6 Statistical model developed using strain fields from smooth bar tensile coupon as training data suggest high-strain localizations
are prevalent in fibers with thick coatings spaced close together. Deformation fields are plotted on top of micrograph in (A). Predicted strain
responses as a function of predictor values are shown in (B). Fitted strains responses are regressed against best-subset predictor (yellow
diamonds) holding other predictor constant. 95% confidence interval is plotted in green circles. Black dots indicate experimentally observed
response. [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

There are significant challenges associated with using DIC
data from brittle materials like CMCs to statistically model
damage. Two major challenges are that (i) cracks evolve
over large swaths of the material during loading, sometimes
closing as new cracks nucleate; and (ii) DIC measurements
in CMCs are noisy, but removing noise comes at the
expense of mitigating or even eliminating crack-induced
strain signals. Regarding challenge (i), cracks that relax as
a result of adjacent crack formation can present dampened
strain signals that fall below the strain to noise ratio. Fortu-
nately, most of the cracks captured in our data sets
appeared to continually open as indicated by strain signals
that intensified with load.

Recall from Section 3.3 that the logistic model underes-
timated the number of fibers residing on cracks (meaning
that either a fiber filament or its coating intercepted a
crack). This is likely a result of measuring the binomial

response (ie, does or does not a fiber reside on a crack
path) after final fracture, as some matrix cracks could have
closed. If possible, the entire edge of the gage section
should be scanned at each increment, using the smallest
FOV available. This would provide more observations for
linear modeling, and strain signals could be converted to a
binomial response for logistic modeling. As DIC data are
near real time, the issue of crack closure would be
resolved. This would also permit modeling crack initiation
(rather than a given damage state) as a function of
microstructural parameters.

Regarding the second point, DIC data often contain
unwanted artifacts, namely noise and bias. Combating
noise is particularly challenging in the SEM, where speci-
men charging, chamber contamination, and equipment
vibration contribute to image contamination.22 Noise and
bias amplitudes can be reduced through data filtering, but
this comes at the expense of spatial resolution. For quanti-
tative statistical modeling, high spatial resolution is desired

FIGURE 7 Application of model to test data (Test 1, AOI 1). Deformation fields are plotted on top of micrograph in (A). Predicted strain
responses as a function of predictor values are shown in (B). Fitted strains responses are regressed against best-subset predictor (yellow
diamonds) holding other predictor constant. 95% confidence interval is plotted in green circles. Black dots indicate experimentally observed
response. Test response is in agreement with training response. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Application of model to test data (Test 1, AOI 2). Deformation fields are plotted on top of micrograph in (A). Predicted strain
responses as a function of predictor values are shown in (B). Fitted strains responses are regressed against best-subset predictor (yellow
diamonds) holding other predictor constant. 95% confidence interval is plotted in green circles. Black dots indicate experimentally observed
response. Test response is in agreement with training response. [Color figure can be viewed at wileyonlinelibrary.com]
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to minimize smearing of deformation data at constituent
interfaces. This is illustrated in Figure 8, where maximum
principal strain fields with different amounts of filtering are
overlaid on a micrograph of the loaded, cracked CMC.

Noise filtering presents an unavoidable conundrum: lar-
ger strain filters applied to the DIC data not only reduce
periodic noise, but also reduce the intensity of real strain
measurements. In Figure 9(A), strains are computed from
full-field displacements, then smoothed with a 595 pixel
averaging filter window. The 29-pixel subset is depicted by
the yellow box for reference. In Figure 9(B), the strain fil-
ter is increased to 45 by 45 pixels. As depicted by the trio
of white arrows, this reduces the periodic bands of noise.
However, as depicted by the double arrows, filtering
reduces the intensity of strain measurements, in this case
around the thin coating at the top of a fiber. The thickness
of the band of localized strain around the coating remains
about the same; however, the band in (B) is nearly uniform
in intensity. This is a serious deficiency because using DIC
data to detect cracks requires a clear distinction between
regions that contain cracks and those that do not. For this
purpose, the data of (A) are more suitable, but it is cor-
rupted with noise that can be misconstrued as localized
strain/cracking. Noise will present less of an issue in more
advanced microscopes. However, once present, the low
strain signal-to-noise ratio that results from running DIC on
a stiff ceramic precludes filtering without a loss in spatial
resolution.

The strength of the statistical modeling approach is that
it may be used to quantify the synergistic influences of
microstructural variables on damage progression that are
difficult to reliably incorporate into phenomenological

models. A limitation is that critical values of any given
variable (to predict cracking events) may be evaluated only
by fixing all other variables. However, provided noise limi-
tations are addressed, this type of modeling provides
designers a metric to identify likely cracking events based
on tunable inputs of microstructural parameters. To
improve accuracy of the model predictions, future efforts
should address as many variables as are reliably measur-
able (eg, matrix defects, residual stresses, sub-surface dam-
age).

TABLE 2 Logistic model results

Model Best subsets Lasso shrinkage

Deviance 162.15 166.57

Adjusted R-squared .06 .03

Training error rate 18.5% 18.5%

Cracks correctly classified 6% 0

Test error rate 15.8% 15.8%

Cracks correctly classified 3% 0

Variable P value Variable P value

Significant
variables

Coating area .00 Inverse
nearest-neighbor
distance

.00

Area ratio .16 Inverse squared
ligament length

.53

Nearest-
neighbor
distance

0

(A)

(B)

FIGURE 9 Maximum principal strain fields overlaid on
microstructure for CMC loaded in tension. In (A), a five-node filter
(1/6th of DIC subset size) has been applied to strain data. In (B), a
45-node filter (1.59 DIC subset size) has been applied to strain data.
Relative size of filter window to subset is inset in upper-right of both
figures. Triple arrows point to bands of noise, which are reduced
when filtering is increased. Double arrows point to a matrix crack, the
signal of which is also reduced as a result of filtering. [Color figure
can be viewed at wileyonlinelibrary.com]
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5 | CONCLUSION

Unsupervised and supervised learning techniques were used
to analyze the effect of fiber attributes on cracking in SiC/
SiC CMCs. It was found that the amounts of coating sur-
rounding fibers and their dispersion within the matrix were
most likely to influence where cracks evolved in transverse
plies. Covariance analysis and linear and logistic statistical
models all implied that as coating area or the distance
between adjacent fibers increased, the presence of localized
maximum principal strain increased, and therefore the like-
lihood of a fiber residing on a crack path increased. The
linear model showed a reasonable goodness-of-fit (R2=.49)
and low root-mean-square error (RMS=�908 le).

There were several limitations in the statistical modeling
techniques presented, and results be interpreted with cau-
tion. Subsets of the microstructure were used for modeling
after being determined as representative elements of the
overall transverse microstructure. Under this assumption,
the distribution of fiber attributes and matrix cracks within
the random subsets of the material are assumed to be simi-
lar. Without the capability to comprehensively image the
entire gage section, this could not be guaranteed. Time and
resources permitting a similar statistical analysis of the
entire microstructure would be preferred. Furthermore, the
SEM-DIC deformation data collected from SiC/SiC CMCs
at FOVs on the order of hundreds of microns are inherently
noisy. High-quality speckle patterns can help minimize
noise, but some degree of filtering is necessary. Compre-
hensive imaging of the entire gage section at the smallest
FOVs attainable is the best way to remedy this problem.
Finally, a thorough investigation of the influence of
microstructure on cracking should incorporate variables
such as flaws, inclusions, and residual stresses. In spite of
these limitations, this investigation suggests that coating
thickness and fiber dispersion are significant factors in opti-
mizing the microstructure of CMCs.
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APPENDIX 1

Supplementary Examples of Stat is t ical
Methods

An example covariance matrix is illustrated in Figure A1
(A). The horizontal and vertical axes contain variable
names. The intersection of any combination of variables
contains a correlation coefficient which indicates the mag-
nitude and direction of the correlation between the variable
pair. A positive value implies a positive correlation; as the
value of one of the values increases, so does the other. A
value of 1 indicates a perfect positive correlation, whereas

a value of 0 indicates no correlation. The diagonals contain
correlations between identical variables, and hence should
always be positive 1.

In Figure A1(A), the intersection of coating area and
nearest neighbor (NN) distant indicates a strong, positive
correlation; as the amount of coating around a fiber
increases, so does the centroid-to-centroid distance between
it and its nearest neighbor. Figure A1(B) contains p-statis-
tics for each correlation coefficient from Figure A1 (A).
p-Statistic values less than or equal to .05 indicate strong
enough confidence to consider the correlation statistically
significant. All correlations with p-statistics greater than .05
(ie, those colored green in Figure A1(B)) were disregarded.

FIGURE A1 Examples of (A) covariance and (B) p-statistic
matrices from fiber bin from AOI 1 of Figure Anaheim. In (A),
nearest-neighbor distance and coating area show a strong positive
correlation. The corresponding P-value in (B) is low, indicating that
the correlation is significant
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