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Abstract

The effect ofmicrostructureon cracking was analyzed in a CMC usgtatistical methoddt was
determinedhat.the amounts of coating surrounding fibers and their dispersion within the matrix
influencedwhere cracks evolved in transverse plies. Linear mogiedicted that maximum
principal strais in transverse fiber coatings increased as (a) the fiber coating area incaedsed

(b) the length of matrix ligament between fibatecreased.ogistic models indicated that the
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likelihood of transverse fibexrresiding on a matrix cradkcreased as the: (a) ratio of coating to
filament decreased, (b) distance between fibers decreased, or (c) coating area increased.

l. I ntroduction

Fiber reinforced ceramic matrix composi{€MCs) exhibit an unusually good combination of
stiffness, strength, and toughness, enabling their use indnyberature structural applications.
CMCsare tougher than their monolithic counterparts as a result of mechanisms iatrbgube
incorporation ofibers. Modern CMCs oftenontain stiff, strong fiber filaments encased in a
weak coatingsboth of which are embedded stiff matrix. The combination of strong filament
with weak'coating permits crack deflection, widespread matrix cracking, anddyedienset

of catastrgphidailure. Currently, limitations in material processimgkethe fabrication of
perfectlyuniform coating thicknesses and fiber distributionpractical If these propertieare
found to strongly influence damage initiation and accumulation, an educated dearsio®
made about time and resouingestmeninto processing refinemestor improved

microstructures!

Experimentaifivestigations of matrix cracking phenomena in CR&save demonstratedah
fiber inclusions greatly influence damage progression, and have conseguenihted
development of malytical and numerical models that incorporate fiber statistics into predictions

of CMC fracturebehavior For exampleCurtin * used fiber strength (estimated using Weibull
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statistics)yandfiber properties (radius, volume fraction, and sliding friction) to analytically derive
the ultimate tensile strengths of continuous fiber reinforced CMCs. The model @didcooint

for randomness in the composite architectaral itsapplication to experimental data ranged
from near perfect agreement to errorgpredicted strengthes large a80%.Calard and Lamof
used probabilistic functions to predict matrix criagkas a function of flaw distribution. They
followed this with an assessment of scatter in failure strengths (strength distributions were
measured"using Weibull statistics) of SiC/SiC CMCs loaded in tension andeffe Their
analysissuggested thdteterogeneities in fiber arrangement and matrix crack distributions were
responsible for deviations in the local stress state, which ultimately imgaited strength
variability..Calard and Lamotf used Baysdan statisticsto detemine failure probabilitie®y
implementing finite element models to predict failure in representative volume elements of a
CMC microstructureThe probability functions applied to each element were dependent on
parameters derived from macroscoginsile and flexural stress distributioas opposed to local

microstructural parameters.

Sorenson and Talrefareported that residual stresses in the vicinity of fibers are influenced by

the distance.between fibers. Using finite element models to simulate residual stress fields around
fibers, they found thaheradial compressive stress showed the most sensitivity to fiber
distribution;"neting thatariability in stress increasdd the vicinity offibers in contactThis

suggests that cracks emanating from fiber/coating/matrix interfaces may favstreisgh

regions of clustered fiberRecognizing the significance of fiber distributimnCMC

performance, Yandf developed random volume elemefR&/E) that characterized the random
spatial arrangement of fibers with the intentraforporating them into micrmechanical
damage.medels. However, fibers in the RVE contained no coatingsexedults oftheir

micro-mechanical modeling were not reported.

The analytical models discussed above used statistical distribafian inputvariable, such as
fiber strengthto predict a global response in the compesiteh as crackingVe sought an
alternate approadby experimentally measuriradl input and response variablenditting
statistical models to thidata.Severalariables may influence thieacture characteristics of
CMCs including residual stre®s in the fibers and matrikiber size, coating thickned#yer
distribution inclusionsand defecten the matrix and the locastress stateHowever, this work
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focused orfactors pertaining to fibéroating sizeand distributiorto develop statistical damage
models for CMCsas these parameters armportant,measureable with a high degree of

accuracyandcontrollable

In this werksyerosgply CMCs comprised of silicon carbide fibers clad withdronitride and
encased in a silicon carbide matrabbreviated SiC/SiCvereloadedin tensionin-situ in a
scanning electron microscope (SEM)gh-magnification micrographs of the damaged CMCs
were captured andigital imagecorrelation (DIC)was used to compute fuield strains.
Microstructurahand deformation data wagdoged on a fiber-byioer basis to include:

e pringipalstrainsin the fiber coatingsriented transverse to the loading direction
o fiberand coatingizes, proportionsandspatial distributios

e fiber proximityto matrix cracks

Unsupervised statistical metho(l®. statistical calculations generated without a response
variable)wereused to group the variables into categories with unique traitsostructural
parameters pertaining to coating area and fiber distribabastituted a majority of the first
principakeempenent, indicating that they shared a common attribute in the overaif datd.

It waslater found, through supervised statistical methtidg,the common attribute was an
affinity for-accruing higly localized strainsCovariance matrices were used to assess
relationshipetween variable pair$his analysisndicated that fiber distribution and coating
areainfluencedthe location ofmatrix cracks in transverse plidsut did not distinguish whether

theserelationshipsverecausal or correlateloly associatiorwith another variable.

Linear and logistic models were developedefine the findings fromsovariance analysds/
identifying,which parameters were causal to strain localization and crack propa@ation
variableselection algorithms, bestibsets and lasso, were used to detersigréficantpredictor
variablesferincorporation intcstatisticalmodels.The linear modepredicted thathe magnitude
of maximumiprincipal strains in transverse fiber coaingreased a&) the fiber coating area
increasedandy(b) the length ahatrix ligament between nearastighbor fibes decreased. The
logistic model pedictedthe probability ofa transverséber residing on a matrix crack path.
was found that ik likelihood increased as th@) ratio of coating to filament decreased, (b)
nearest neighbor distance between fibers decreasg),coating area increaseldowever,
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logistic model findingsvereinterpreted with cautiorgsthey under-predicdthe amount of
fibers that resided on a crack path upon failddditionally, there were inherent errors
associated with the experimental data, mredhods to improve theccuracy of all modelare

discussed
. Experimental Methods
[1.1 Microscale'Data Collection

All data was cellected from crepy SiC/SiC CMC coupons loaded in uniaxial tension and
imagedin-sitwin a FEI Quanta 3[3EM. Threein-situ tensle tests were conducted usitvgo
edge-notchedpecimensnd one smooth (i.e. unnotchegecimenThetwo edge-notchetkests
were on preeracked specimens wi00 um fields of viewKHOV): onetestyielded two sets of
image data.(Eigur#&), while the other yielded one set. The smooth test specimen had no pre-
crack anddyieldednedata set at 200 um FOV Specimens were loadéstSEM using a
miniature tension/compression stdag@ammranth & Weissand wee orientedto imagethe edge
of the gage section. For the edygtched tensile couporhie areas ofinterest{AOIs) were
situated.along.the edge opposite the notch, such that matrix cracks propagating thrgagk the

width manifestedn the AOI prior to final fracture.

All tensile couponsvere[0/90/0/90}, with gpproximately 200 um thickdividual laminaThe
two edge-notched coupomgerepre-loadedo initiate througkthickness matrix cracks. For these
two samplespE30AmFOV AOIs were posibned within transverse lamigaFOVs of this size
weresmall'eneugh tpermitthe use oDIC subset sizes similar to the fiber diametget large
enough to sample a sufficient numbefibérsfor statistical analysidn the absence of an
automated system for capturing images aloegptttirety of the edge of the gage section, notches
wereneededto localizematrix crack propagation and improve the likelihood of capturing
propagating crackis a predetermined AOAn illustration of data collection on a notched
tensile coupen'is provided in FigureTwo areas of interest (A€ll and AO}2) were selected
for image ¢eapture during loading, wh&®I-1 captured a larger portion of the propagating
matrix crack.A 200 um FOV was used for the smooth bar coupon, wdaatpled fewer fibers
but provided greater spatial resolution infiiélld deformation measurements.
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SEM images were takeat discrete load incremeniBhe tests were run idisplacement control,
which causedhesampleto relaxas much ag5 N.Consequently, imageapture, which itself

took approximately 90 seconds, began dftere was no further drop in load (between 30 and 60
secoms). Two images were collected at each load increntbetjatteimageswere usedfor
correctingspatial and temporaagedistortiorsinherent in SEM imaging®°. Note that

imaging the entire cowm edgeis ided asit providesthe largest possiblgool of statistical
observations, buvas impractical due to the rastering nature of SEM imadihg.notched
specimen‘tensile test depicted in Figlifertunately hadnatrix cracks manifest inothAOIs
selected for imagingvherea®nly oneAOl intercepted a matrix crack during the test conducted
on the secendwnotched coupon.

In each of.the.four data sefhers and theicoating were segmentetlinned, and indexed.
Principal, lengitudinalifransverse and shestrainswere calculategixel-by-pixel ineach
micrograph USingIC software®’. The strains in each fiber and coating were averaged
indexed. Additionally, the followingmicrostructuravariables were measured and inde>at

illustrative example of each variable is provided in Figure 2:

e |ocation of fiber and coating centroids

e areaof fiber andoating

e ratio of coating area to fiber area

e fiber-coating concentricity (i.e. the amountaaillineaity between fiber and coating
centroidg

o fiber-to-fiber nearest neighbor distance (measured from centroids)

¢ length of matrix ligamenbetween nearest neighbor fibers

e whetheror not any part of the fiber or its coating resided on a crack path upon final
fracturey(note: this data was only collected for theqoeeked coupons)

e averaged strains in fiber and coatingriimum and maximum praipal, longitudinal,

transverse and shear strains

To ensure that each data set was a representative sample of the total population of transverse
fibers, the distribution of fiber data collected from multiple fiber tows along a transverse lamina

was compared with those of each data set. The data $etgire1l were comprised of 18®ers
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in AOI-1 and 89%ibers in AO}2. Each fiber constitutedn experimental observation for
statistical modelingurposesThe data set for the second edge-notched coupon contained 101
observations while that of the smooth bar sample contained 86 observations. Wig@gehe
section of a tensile coupon, however, theezethousands of transverse fibers. As shown in

Figure 3theindividual data sets contained simildistributions tahe lamina
11.2 Unsupervised Satistical Learning

Scatter plets*of'microstructural variablesllected fronthe notched-coupon test of Figure 1,
provide a'broad-based graphical depiction of cati@hs between variable pairs. This is evident
in Figure 4; where for example, coatinga(‘coatarea’)and aearatio (‘ratio’) have a clear and
expected positive correlatio®ther correlations, such as that betwaearatio (ratio) and

nearesheighbor dstance ‘findist’), are not as clear.

Covariance matricesere used to determine the magnitude and direction of correlations between
all microstructural and mechaniocariables Covariance matrices provide a quantitative measure
of correlations hetween variable passmmarized in a single metra exampleand further
explanation.of covariance matricdsgprovided in Appendix AAs previously mentioned, the

data forstatistical modelingvassampled fibety-fiber. For the covariance analysiather than
sampleldatarfibeby-fiber, data was samplgobint-by-point where each point corresponded to a
DIC data node. This was so that the analysis would incorporate deformation data @ the Si
matrix in addition to théibers and the coatings. Covariance matrikput data was binned
according to the type of constituent from which it was collected. For example, fortanyoda
residingwithin a SiC carbide fiber, the corresponding predictor and response values for that
point were .consolidated into a data matrix that contained data only for SiC fihersaime
conceptwas-applied for the fiber coatings and the SiC m&wariance maices were

constructed forieach load increment owhich DIC data was collected.

When a datarSet contains more than one predictor, visualizing the contributioh pfedictor

to a response becomes difficult. Principal component angBSi8) provides aneans of

graphically representing a data set that contains several dimensions (such as the microstructural
variables identified ifrigure 4) in fewer dimensions. In PCA, eigenvalue decomposition is used

to transform a data set into a space comprisgdiotipal components, where the number of
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components is equal to the numbépredicators in the data sayd each component is a linear
combination of all the predictors. The first component accounts for the graaiesnt of

variability in the data geEach subsequent component accounts for a lesser amount of variability
in the data set and is a linear combination of variables that are uncorrelatéueviitst

principal component. Further details of method can be foutft! in

A majority of datavariancewasaccounted for in just a few principal components. Using the
data set from AOI 1 in Figurk as an example, given an inputsof microstructural predictors,
the first three principatomponents accousd for approximately 90% of the variability in the
data set. When'plotted in principal space, the predicdioitered into unique groups. Binary
plots of thefirst three principal componen#sded in grouping variables dtustrated in Figures.
The red crosses represent scoreshferrespective principabmponents (indicated by the axes)
of each fiber:Ehe bluelinesrepresent therincipal component loading for each predictor-type,
as projectéd onto the two principal components indicated by the axes. Looking alofig the 1
principal component axis in Figurg®), the varidles weighted most heavily ateating area,
coating-fiber area ratio, nearest neighbor distance, and nearest neighbontliigsugih. Thus,

the first.componeraccounts for coating size and fiber separa It also accounts for 50% of the
variability in the: data seAs these fibers are clumped together, they are correldteaach

other. Observing the"2and 3' component axes in Figure(l8), these components correspond to
measures of fibecoating concentricity and fiber area, respectiviligte that while the PCA
biplots do'not represent correlations between individual varigilegdo indicate a common
attribute that accounts for the greatest variability in the data set; reislemething about
these variables.that is relevahhe nature of their relevancy must be determined though more
pointed. statistical methods such as supervised modélegsupervised statistical models of
Section IHEwillsshow that these variables likely influenloealized damage in the composite.

[1.3 Satistical Moddl's

Linear and logisti models were developed to assess the influence of microstructural parameters
of CMCs on: (1) localized strain in fiber coatings and (2) the probability of transvieess f
residing on a matrix crack$he linear models were developed using all four data sets. The

smooth bar data set (with 86 observatiam)tained the leasbisy DIC data and wasased for
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training the modelThe logistic models did not incorporate DIC data, so the data set from AOI 1

of Figure 1 (with 183 observations) was used for training.
TheLinear regression models constituted the least squares solution to equatienfooht®:
y(x) = co + c1x + x5 + 0+ cpx,

wherep is the number of predictorsy, y is the predicted response (maximum principal strain in

the fiber coating)andc, are coefficients. Logistic regressions were of the fBtm

eC0+C1xl+"'+Cp.X'p

P(x) =

1 + eC0+C1X1+"'+CpxP

whereP(x) represents the probability of an observation residing on a crack as a function of its
predictor values.

Bestsubsets selection and lasso shrinkage algorithms adopted®fwere used to filter out
unnecessary predictors. The bggbsets algorithmproceeded as follow§&iven a data set qf

predictors

1. Forallk=1:p combinations of predictors, fit a regression to the appropriate response such

that,2‘models are generated. For logistic regressions, the response was binary; if a fiber

resided on a crack path its response value was designated as 1, otherwise the response was

designated.as 0. For linear regression, the response wasaximeum principal straim a

fiber coating (averaged over all DIC data points within the coating).

2. Among all models consisting &fpredictors, identify the model with the large$tlue
(for linear regressions) or lowest deviance (for logistic regresgion

3. Among the p models that remain, select the model with the largest adjasteldi&? As
more predictors are added to a modélafd deviance may improve only as a consequence
of adding=miore predictors. The adjustetcRterion adds a small penalty for having more

predigtors so that the largest predictor subset will not necessarily be the best subset.

The algorithm was run usingsax-predictor data set comprised of microstructveaiables
(fiber area, coating area, coatit@fiber area ratio, concentricity, centrdio-centroid fiber

nearest neighbor distance, and nearest neighbor matrix ligamen)) kendtheir inversesrFor
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both thelinear and logistienodels the most significant subsets were associated with coating
properties and fiber sepaiat, coincidingwith the £'and 2° principal component predictors of
Section 11.2. Higher order variables (e.g. quadratic terms and inverses) were excluded from the
best subsets for two reasons: (1) their inclusion resulted in impractical processin@uichés

plots of predicted responses versus residualaatichdicate that higher order terms would
improve the fits. The influence of quadratic terms, however, was investigated using an

alternative'means of subset selectiae hsso method.

Lasso variablesselection suggested tmdy the variables associated with fiber separation (i.e.
nearest neighbor distance and matrix ligament length) were relevant in pigethetiresponse.

Like best subsets, thasso method performs varialdelection However, it does so by fitting a
model witiall.variablesthen shrinking the coefficients of insignificant variables to zero using a
tuning paramete?. Significant variables are those that have nere coefficients after the

tuning parameter has been optimized to produce a fit of minimum deviasbertfall of this
method is thait often selectdighly collinear variables. When this occurred, the variables with
largest collinearity, as measured via the variance inflation factor (VIF), were removed from the
subset. This.resulted in degradation to theul p-values of the modeleBults are discussed in
Section 1.

1. Results
I11.1: Resultsof Unsupervised Models

Consolidating.covariance data from all b{fieer, coating and matrixpr each of the foudata

sets resulted the following findings:

e Fibers'with thick coatingexhibited low fiberfilament concentricity

e Maximum principal strains were largest in fibers that vastoselyspaced and exhibited
low concentricity

e Crack paths favored fibers thaere closely spaced, but fibexgh thicker coating®n
the crack patloften spread out rather than clustered.

When interpreting these results, two important points must be noted: (1) coganatices do
not account for interactions between multiple variables (i.e., a posuiveation between
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Variable 1 and Variable @hay be an indirect artifact of Variable 3, but covariance matrices
alone do not provide that information) and (2) conservative constraints were applragt

each conclusion; if an observation was not consistent from one bin to another and frest one t
to another, than it was not included in the list of conclusions. In order to better undi¢ista
microstructural variables influenced fractureear and logistic statistical models were
developed. They are presentedsaations 111.2 andill.3.

[11.2; Linear Model Results

A linear statistical model wadeveloped taleterminghe influence omicrostructural parameters
onstrain loealizationFor the stiff components of the CM(e. the fiber filaments and matrijx)

it wasassumedhat high strain DIC measuremeimsdicatal cracking Using maximum principal
strainto indirectlyobservecracks in transverse pliesa reasonable assumptamdhasbeen
previouslydemonstrated®. Thestrain data was modestijtered (45pixel strain filter window
given a 29ixel subset size andixel step sizejo reduce noise. The impact of noise on model

results is discussed Bection | V.

Bestsubsets.and lasso algorithms were used to reduce the number of predexdis u
modelingandpreventoverfitting of the data. Both methods selected variables pertaining to
coating/thickness and fiber dispersi®ecall fromSection I1.3 that he bestsubsets method

selected variables by omitting those that degraded the adjustadLig of the linear fitwhile

the lasso method fit a model to all variables but reduced the weights of insignificant variables to
zero. t was determined that a linear fit of first order terms is sufficieme. resuls of both

methods are lied inTablel. The best-subsets model only includiest order terms, which

resultedin a.goodness of fit (adjusted)Rf 0.48.The lasso model incorporatéinverse and

higher orderterms, but this did not improve the goodness (@fdjiisted Rwas0.47). The

scatter plot of residuals versus fitted values for the figstets model showed distinct trend

to suggest anything other than a linear fit to the data points.

Coating area and fiber distribution impact strain localization and should belemd critical
factors in optimizing a CMC microstructuielots of thebestsubsetdinear modebpplied to
training dataare shown in Figure @.0 examine theeffect of each variable, aximum principal

strain (the failure criterion for matrix cracking chosen in this studgplotted as a function of
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each predictoand theother predictowasheld constanat its mean valuélhough the fracture

strain of the bulk siliconized-silicon carbide matrix is kiwbwn, for reference the fracture strain

of reaction bonded silicon carbide is ~1200 ue®. Figure 6(a) showsan overlay of th@rincipal

strain fields on the microstructure. Inset is a yellow square indicating the DIC subset size relative
to a fiber. Eigure §b) showsplots of each bestubset predictor. The red squares are

experimental data points. Black diamonds indicate the fitted responseedimlind by magenta
diamonds-depicting the 95% confidence interval. The linear model suggesteafiaed
maximum-principal stram(i.e. cracking in the CMC) increase as the fiber coating area increases
and/orthe/matrix ligament legth between nearest neighbors decreases (which may be indicative
of clustering)Results for the test data are shown in Figut@and 8which indicate that the

trends observed all three sets of test data match that of the training data.
111.3: Logistic.Model Results

Theinfluence of fiber properties on the likelihood of a fiber residing on a crackyaath
assessedsingalogistic statistical modeFirst, bestsubsets selection ahasso shrinkage were
used to identify microstructurahriables relevant tthe responsdBecause the smooth bar
tensile coupon was not tested to final fracture, its data set was not includetbgighe model.
The modebkwas trained with the data from AOI 1 of Figurasit, had the greatest number of
observationsResults of each model are presented in TAbBoth the bessubsets and lasso
shrinkage“algorithms selected variable subsets pertaining to coating ardzeasdgaration, as
was the casefor the linear regression model. Both models hachloimg and test error rates
(i.e. theymiselassified predictions 18%&and 15.8% of the time, respectivelyhese low error
ratesindicatethat the logistic models reliably predict the likelihoddarack developing on a
fiber if the micrastructuraparametersf the fiber meet the criteria determined by the model.
However, note that the models have lofwRlues and grossly underestimate when a fiber
resides on a crack path. The best performing model $bésets) only predicted 6% of crack
path fikers carrectly in the training data and 3% in the test data. This renders the results of the
model impractical for use in optimizing the microstructure of fibrous CMCs. Thusidhes

methods were pursued to improve predictive capability.

Ensemble methodsexre used to improve the crack classification error rates of thellestts

model and bolster the fits of the regression modéiszeensemble algorithms were investigated
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— bootstrap aggregation, boosting, and subspace nearest neighbor classificatinnmasnd
found that boostingnproved the classification error ratédl ensemble algorithms were
implemented using MATLAB's Statistics Toolb6k In brief, ensembles incorporate a
combination ®multiple fits toimprove poor model diagnostics. A randomly stdd subset of
training data.sised to grow a decision tree. New decision trees are gseguentiallyfrom the
original tree using the training daaadinformation from the previously grown tree. The final
tree uséd forpredictions is built from aflits combined successo$pecifics orthe individual

ensembleteéchniques can be foundfif’

The judicious=use of boosting ensembles, as described m¢pwiicantlyimprovedcrack
prediction However the error rate wastill too high toaccuratelyimplementthe binomial
logistic (or.classification) modah the prediction ofnicrostructure influence otrack
propagationifEMC transverse pliedJsing AOI 1 as training data and performieg-fold
crossvalidation,boosting ensembles were evaluatsohg the bessubsets predictor selection
Bestsubséts was chosen becauggdduceda lower deviance and larger adjustéatirn the
lasso predictor seThetesterror rate fell tdl6.9% andhe percentage of cracks correctly
predicted.rose.to 37.5% when applied to the data set from ADie2test error rate was 24.8%
with only 25% eorrectly predicted cracks for the data set from the second naiwineon tensile

test.
V. Discussion

There aresignificantchallenges associated with using DIC daban brittle materials likeCMCs

to statistically model damag&wo major challenges are th@f) cracks evolve over large swaths
of the material during loading, sometimes closing as new cracks nuclea(g2) &g
measurementsin CMCs are ngibyt remwing noise comes at the expense of mitigating or
even eliminating crackhduced strain signals. Regardicigallenge (1)cracks that relax as a
result of adjacent cradkrmationcanpresent dampened strain signiat fall below the strain

to noiseratioFortunatelymost of the cracks captured in our data sets appeared to continually
open as indicated kstrain signals that intengt with load.

Recall fromSection 111.3 that the logistic model underestimated the number of fibersmgsuah

cracks(meaning that either a fiber filament or its coating intercepted a crHais)is likely a
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result of measuring the binomial response (i.e. does or does not a fiber residacknpath)

after final fractureas some matrix cracks could have closkpossible, the entire edge of the
gage section should be scanned at each increment, using the smallest FOV avhikbleuld
provide more observations for linear modeling, atmdin signals could be converted to a
binomial respense for logistic modajinAs DIC data is near reéime, the issue of crack closure
would be resolvedrhis wouldalsopermit modeling crack initiation (rather than a given damage

state) as a‘function of microstructural parameters.

Regardingsthessecond point, DIC data oftentaimis unwanted artifagteamely noise and bias.
Combatingneise is particularly challenginglwe SEM, where specimen charging, chamber
contamination and equipment vibration contribute to image contamirfatidnise and bias
amplitudes.can.be reduced through data filtedmgthis comes at the expense of spatial
resolution.Foerquantitative statistical modeling, high spatial resaoligtidesired to minimize
smearing otleformation data at constituent interfaces. This is illustrated in Fguwkere
maximum principal strain fields with different amounts of filtering are overlaid on a micrograph
of the loaded, cracked CMC.

Noise filtering presents an unavoidable conundrum: larger strain filters afuptieel DIC data
reduces periodic noise but also reduce the intensityabste@in measurements. Figure 9(a),
strains are computed from fulkld displacementghen smoothed with a 5x5 pixel averaging
filter window. The 29-pixel subset is depicted by the yellow box for reference. In Figure 9 (b),
the strain filteris ina¥ased to 45 by 45 pixels. As depicted by the trio of white arrows, this
reduces thesperiodic bands of noise. However, as depicted by the double arroimg, fétirces
the intensity of strain measurements, in this case around the thin coakiaday of a fiber. The
thickness of the band of localized strain around the coating remains absairibehowever the
band in (b).is_nearly uniform in intensity. Thisaiserious deficiencypecause using DIC data to
detect cracks requires a clear distincti@tween regions that contain cracks and those that do
not. For thisqpurposehe data of (a) is more suitable; buisitorrupted with noise thaan be
misconstrued,as localized str@iracking. Noisevill present less of an issue in more advanced
microscopes. However, once present, the low strain sigradise ratio that results from
running DIC on a stiff ceramic precludes filtering without a loss in spatial resolution.
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The strength of the statistical modeling approach is that it may be used tbycqhargynergistic
influencesof microstructuralariableson damage progression that dricult to reliably
incorporate into phenomenological modéidimitation is that critical valuesf any given
variable(to predict cracking events) may be evaluated only by fialhgthervariables

However, previded noise limitations are addressed, this type of modeling providgsedesi

metric to identify likely cracking events based on tunable inputs of microstructural parameters.
To improve accuracy of the model predictions, future efforts should address asariablesas

are reliably'measurable (e.g. matrix defects, residual stressesrfate damage).
V. Conclusions

Unsupervised@and supervised learning techniques were used to analyze the #fiect of
attributes on cracking in SiC/SiC CMCs. It was found that the amounts afigaatirounding

fibers and their dispersion within the matrix were most likely to influence where cracks evolved
in transverse plies. Covariance analysis and linear amstilogtatistical models all implied that

as coatingsarea or the distance between adjacent fibers increased, the presence of localized
maximum ‘prineipal strain increaseghd therefore the likelihood of a fiber residing on a crack
path increased’helinear model showed a reasonable goodnesfit-¢R? = 0.49) and low root-
meansquare‘error (RMS ==+ 908 pe).

There were severéimitationsin thestatisticalmodeling techniquegresented, ancksults be
interpreted with'cautiarSubsets of the microstructusereused for modeling after being
determined asepresentative elements of the overall transverse microstructure. Under this
assumption,.the distribution of fiber attributes and matrix cracks within tidemnasubsets of the
materialare.assumed to Ismilar. Without the capability to comprehensively image the entire
gage sectionythis could not be guaranteed. Time and resources permitting, a similar statistical
analysis of the entire microstructure would be preferred. Furthermoi®EMeDIC deformation
data collected from SiC/SiC CMCs at FOVsthe order of hundreds of microns is inherently
noisy.High qualityspeckle patterns can help minimize noise, but some degree of filtering is
necessary. Comprehensive imaging of the entire gage sectiorsatahest FOVs attainable is
the best way to remedy this problem. Finally, a thorough investigation of the influence of

microstructure on cracking should incorporate variables such as flaws, inclasgbrssidual
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stresses. In spite of these limitations, this investigatumgests that coating thickness and fiber
dispersion are significant factors in optimizing the microstructure of CMCs.

Appendix

An example.covariance matrix is illustrated in FigAfe(a). The horizontal and vertical axes

contain variale/hames. The intersection of any combination of variables contains a correlati
coefficient'which indicates the magnitude and direction of the correlation between the variable
pair. A positive'value implies a positive correlation; as the value of otte efalues increases,

so does the other. A value of 1 indicates a perfect positive correlation while a value of 0 indicates
no correlation=T'he diagonals contain correlations between identical eatiabd hence should

always be positive 1.

In FigureAl.(a), the intersection of Coating Area and Nearest Neighbor (NN) Distant indicates a
strong, paositive correlation; as the amount of coating around a fiber increases, so does the
centroidto-centroid distance between it and its nearest neighbor. FAdufe) contains p-

statistics for each correlation coefficient from FigaAde(a). Rstatistic values less than or equal

to 0.05 indicate.strong enough confidence to consider the correlation statisticafigagnAll
correlations with gstatistics greater than 0.05 (i.e. those colored green in FAdufie)) were

disregarded:
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Figure Captions

Figure 1. A matrix presrack was initiated from a laser ablated edg&h (right hand side of

diagram) and allowed to propagate partially through the gage width of the tensile coupon. Aft

crack initiationy'the sample was oriented for SEM imggifithe coupon edge opposite the notch

(left hand'side). Images were captured at incremental loads in two locatogsthe coupon
edge (AOH1 and AO#2), both in transverse plies.

Figure 2. Microstructural parameters used for statistical modeling. (a) Nearest neighbor distance

was measured between fiber centroids. Ligament length was a measure of the amount of matrix
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between nearest neighbor fibers. (b) Constituent bins are indicated byowws. drow
concentricity fibers are depicted in blue arrows.

Figure 3. Distribution of microstructural parameters for the cases of3@) & 300 pm
representative-area element and (b) two fiber tows (each tow containing roughilyes§0 The
representative area contains an equivalent distribution of fiber paenas that of multiple

tows.

Figure 4. Example of scatter plots of microstructural variables. Plot of coating area and ratio
(highlighted in a blue box) shows a clear positive correlation. The trend is noaafclmany
other variablespairs, hence the need for covariance analysis.

Figure 5. Biplots of principal component analysis of predictor variables. Thexogrincipal
components.are plotted against each other in (a). The second and third comperatsedrin

(b). Red markers indicate@es for individual observations. Blue vectors indicate position of
individual ‘predictors in principal space. Area ratio, coating area, ligaewgth and nearest
neighbor distance have the largest values along the first principal componemdidaits that

they share.a.common attribute that accounts for the greatest variability in the data set. Further

statistical analysis (see Section 11.3) is needed to identify the nature of the common attribute.

Figure 6. Statistical model developed using strain fields from smooth bar tengitencas

training data suggests high strain localizations are prevalent in fibers with thick coatings spaced
close togethery, Deformation fields are plotted on top of micrograph in (a). teckdirain
responsesias.a function of predictor values are show in (b). Fitted strains responses are regressed
against bessubset predictor (yellow diamonds) holding other predictor constant. 95%

confidence interval is plotted in green circles. Black dots indicate expeahysobserved

response.

Figure 7. Application of model to test data (Test 1, AOI 1). Deformation fieédplatted on top
of micragraph in (a). Predicted strain responses as a function of predictor ar@sE®w in (b).
Fitted strains responses are regressed agasssubset predictor (yellow diamonds) holding
other predictor constant. 95% confidence interval is plotted in green circhek. dits indicate

experimentally observed response. Test response is in agreement with tespomgse.
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Figure 8. Application of model to test data (Test 1, AOI 2). Deformation fiet&platted on top

of micrograph in (a). Predicted strain responses as a function of predictoraast®w in (b).

Fitted strains responses are regressed againssuiestt predictor (yellow dmonds) holding

other predictor constant. 95% confidence interval is plotted in green circde& @its indicate

experimentally. observed response. Test response is in agreement with tespomse.

Figure 9. Maximum principal strain fields overlaid on microstructure for CM@ddan tension.
In (@), a five node filter (1/6th of DIC subset size) has been applied to straihnd@ty a 45
node filter(1.5% DIC subset size) has been applied to strain data. Relatioé fdtee window

to subset isnset in upper-right of both figures. Triple arrows point to bands of noise, which are

reduced when filtering is increased. Double arrows point to a matrix crack, thieafigiach is

also reduced.as a result of filtering.

Figure Al. Examples of (a) covance and (b) fstatistic matrices from fiber bin from AOI 1 of

Figure Anaheim. In (a), nearest neighbor distance and coating area show a strorey posit

correlations=The corresponding p-value in (b) is low, indicating that the caoorelatsignificant.

Tables
Model: Best Subsets Lasso Shrinkage
R-Squared 0.49 0.51
Adjuted 0.48 0.47
R-squared
p-value 0 0
RMS Error 908 pe 913 pe
Variable p-value Variable p-value
Coating Area 0.00 Coating Area 0.10
Ligament Length 0.00 Area Ratio 0.84

Significant
Variables

Inverse Coating Area (.39

(Coating:Fiber)
Ligament Length  0.29

Inverse Ligament
Length
Inverse Squared
Coating Area

0.31

0.28
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Table 1 Linear model results.

Distance

Model: Best Subsets Lasso Shrinkage
Deviance 162.15 166.57
Adjusted R-squared 0.06 0.03
Training Error Rate 18.5% 18.5 %
Cracks Correctly 0
Classified 6% 0
Test Error Rate 15.8 % 15.8 %
Cracks Correctly 0
Classified 3% 0
Variable p-value Variable p-value
Coating Area 0.00 In_verse Ne_arest 0.00
N Neighbar Distance
Significant | s r
. o nverse Square
Variahles Area Ratio 0.16 Ligament Length 0.53
Mearest Neighbor 0

Table 2. Logistic model results.
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(a) 300 x 300 um Representative Sample (183 Fibers)
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