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Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize
multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV
models may be especially useful when multivariate exposures are collected repeatedly over time. LV models
can accommodate a variety of assumptions, but at the same time present the user with many choices for model
specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could
assume conditional independence of observed exposure biomarkers given the latent exposure, and, in the case of
longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions
to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental
development, where assumptions of the measurement model for the time-changing longitudinal exposure have
appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we
were not particularly interested in characterizing the change of the latent variable itself, imposing a longitudinal
latent variable structure on the repeated multivariate exposure measures could result in high efficiency gains for the
exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about
the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental
variable (IV) estimators to the case of longitudinal exposures and propose them as an alternative to estimate the
health effects of a time-changing latent predictor. We show that IV estimators remain unbiased for a wide range of
data generating models and have advantages in terms of mean squared error.
Copyright c© 2010 John Wiley & Sons, Ltd.
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1. Introduction

Structural equation models (SEM) with latent variables (LV) [1, 2, 3] are increasingly being used in environmental

epidemiology as a way to summarize multiple environmental exposure measures and reduce the dimensionality of

predictor and outcome variables. For example, LV models have been employed to elucidate relationships between exposure

to methyl mercury and development [4], air pollution and cardiovascular disease [5], lead exposure and physical growth

[6], among others. In these applications, a measurement model is used to relate the observed exposures to a hypothesized
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underlying latent exposure, and then the association between the latent exposure and observed (or latent) outcomes is

described in a (structural) model for the outcome. The parameters in the structural model for the health outcome are

often of primary interest, since they encode the environmental health effects. A key advantage of SEMs with LV in these

applications is that, compared to typical regression analysis, a much smaller set of tests is conducted due to the dimension

reduction that occurs in the exposure measurement model.

There is also increased interest in epidemiological studies in examining how exposures measured repeatedly over time

are related to a subsequent health outcome, e.g., [7, 8]. A feature of these studies is that while the exposure measures are

longitudinal, the health outcome is often univariate and not measured at the same time as the exposures. An increasing

number of studies are also now collecting multiple exposure biomarkers over time, e.g., [9, 10], rather than a multiple

exposures at a single time point or a single exposure at multiple time points. Given the even larger number of exposure

biomarkers available in these studies with multivariate exposure measures taken repeatedly, it is important to examine the

applicability of latent variable models. For instance, latent variable models can be used not only to reduce dimensionality

of exposure biomarkers taken at a single point in time and thus reduce the number of tests conducted, but also to potentially

exploit the correlations among biomarkers measured over time and thus gain additional efficiency in estimating exposure-

outcome associations.

We were motivated by a study of prenatal lead exposure and mental development, conducted as part of the Early Life

Exposures in MExico City to Neuro-Toxicants (ELEMENT) project [11, 12]. The study collected several biomarkers of

lead exposure during prenatal visits occurring at each trimester of pregnancy to examine the effects of lead exposure

on child development later in life. At any one visit, a latent variable model can be developed to summarize exposure

information captured by the biomarkers. Because the biomarkers are measured over time, a model that posits a latent

variable whose value possibly changes with time can be proposed to summarize the exposure data. Exposure summaries

can then be related to the distal health outcome, in this case child’s mental development at 24 months. Figure 1 shows

path diagrams [1] describing two potential models for these data. The diagrams represent two similar models for a time

varying latent exposure, but differ in terms of the assumptions made regarding the measurement model, i.e., how observed

exposures relate to latent exposures at each trimester.

Although the use of LVs greatly reduces statistical concerns such as multiple testing and collinearity, correctly specified

covariance structures, in addition to mean structures (e.g., linearity), are needed for correct estimation and inference of
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mean parameters. The covariance structure of the observed data is in part determined by the measurement model. For

example, a classic assumption in the LV model literature is that the items are assumed to be conditionally independent

given the latent variable [1]. In the lead example, lack of conditional independence can arise from lead concentrations

being measured in the same media or by the same lab, or due to serial correlation among repeated measures of the

same item over time. While these correlations can be estimated, a model where all correlations are unconstrained is not

identifiable, and it is not always straightforward to choose which correlations to estimate or constrain to zero as various

models sometimes may have equivalent fit [13, 14]. Nevertheless, model fit statistics and specification tests, e.g., [15], can

used to help select the covariance structure or identify non-zero correlations. However, re-specifying the model multiple

times can increase Type I error [16]. In the lead example, one might choose correlations to estimate based on what is

known about serial and within lab correlations, but it is possible that other non-zero correlations exist.

Another important consideration is the stability, or invariance, of the measurement model over time, which also plays

a key role in defining the model-implied marginal covariance structure of the observed items. Violations of measurement

invariance could arise if the measurement properties of an observed exposure, also called item, change over time.

For instance, in the lead example, the correlation between lead measured in plasma and other media changes as the

concentration of lead in plasma (but not red cells) becomes diluted due to plasma volume expansion during pregnancy

[17]. Recommendations to identify and appropriately handle violations of measurement invariance, such as starting with

the most flexible model and then testing if constraints can be imposed, have been described [18, 19, 20], but the issues

of model selection and inflated Type I error remain[13, 14, 16]. While the potential use of longitudinal latent exposure

models is very appealing, the consequences of violating assumptions of time invariance of the longitudinal measurement

model have not been systematically studied.

Several estimators have been proposed for LV models, some of which may be more robust to misspecification errors of

the measurement model. When observed variables are continuous, most estimators are derived by minimizing a measure of

distance between the model-implied and observed/empirical covariance matrix, regardless of whether or not distributional

assumptions are made [1]. These estimators may propagate bias due to model misspecification in one part of the model to

correctly specified portions of the model [13, 21]. Among this set of estimators, maximum likelihood (ML) is by far the

most frequently used approach due to its wide availability (e.g., [22, 23]). In contrast, instrumental variable (IV) estimators

[24], also called two stage least square estimators (2SLS), have been shown to contain bias induced due to misspecification
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in one part of the model from contaminating other parts of the model. These IV estimators [24] have been adapted for

the case of longitudinal latent outcomes in order to impose the assumption of time invariance of the measurement model

[25, 26]. As pointed out in [15], other IV estimators [27, 28] developed prior to [24] either use ML to obtain estimates for

some of the model parameters or do not admit any correlated errors. These other IV estimators will unlikely be robust in

longitudinal exposure models since correlated errors will likely be present, and are thus not considered further.

A series of robustness studies in the SEM literature have been conducted (see [29] and background section in [24]

for excellent reviews). In particular, Reddy evaluated ML estimators under misspecification of residual error structure in

the context of a model with three latent variables, but did not include any IV estimators [21]. Sammel and Ryan [30]

investigated how violations of the error covariance structure among a set of observed outcomes impacted tests of the effect

of an observed predictor on those outcomes. Sánchez et al. [31] investigated violations of the impact of misspecifying

the error structure of longitudinal outcomes when the predictor of interest was a latent variable. Bollen [32] described

specific conditions under which his [24] IV estimator should yield robust estimates for some equations of the SEM, even

when misspecifications were present in other components of the model. Bollen et al. [33] carried out simulation studies

comparing IV and ML estimators when items were incorrectly assumed to not load on particular LVs. They also varied the

sample size and the number of instruments used in the IV estimator. Nestler [26] examined the degree of bias introduced

in ML and IV estimates of the coefficient of an observed predictor when the time pattern of a longitudinal latent outcome

was misspecified. However, specific examination of the bias due to incorrectly assuming time invariance have not been

conducted.

In the present article we conduct simulation studies within the setting of longitudinal latent exposures to examine the

impact of violating assumptions of the exposure measurement model over time on MLE and IV estimators. We focus

on how misspecification of the exposure measurement model, and hence the model-implied item covariance structure,

ultimately impacts estimation and inference regarding the associations between the latent exposures and a health outcome.

In Section 2 we give the algebraic representation of the longitudinal exposure models in Figure 1, and show how the model

can be embedded within the broader SEM with LVs framework. Section 3 describes the estimators used, and Section 4

compares the estimators via simulation. Section 5 presents the analysis of data from the ELEMENT study, and we end in

Section 6 with a summary of our findings and further discussions.
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2. Modeling approach

There are several available notations for linear structural equation models (SEM) with latent variables (LV) [1, 2, 34].

Here we borrow from a common form of the LISREL model [32] to write our longitudinal latent exposure model. We then

explain how our model fits within the general LISREL notation.

2.1. Longitudinal latent exposure model

As discussed in the introduction, we are interested specifically on surrogate exposure measures that are measured

repeatedly over time. To devote our focus to the exposure measurement model assumptions, we make the simplifying

assumption that the health outcome of interest, Yi, measured on i = 1, . . . N individuals, is univariate and continuous.

The discussion points to literature for non-continuous Yi. We use Xit = (xit1, ..., xitK)> to denote measurements on

k = 1, ...,K exposure markers collected repeatedly on t = 1, . . . , ` occasions. All of the observed exposure measures can

be collected into a block vector Xi = (X>i1, ..., X
>
i` )
>, where each block represents the multivariate exposure measures at

each occasion. In the motivating example there are ` = 3 measurement occasions (Figure 1).

We posit that exposure information Xit is a manifestation of a univariate latent exposure variable ξit that arises at each

occasion t = 1, ..., `. The vector of latent exposures for the ith individual ξi = (ξi1, . . . , ξi`)
> is assumed to have mean

αξi = (αξi1 , . . . αξi`)
> and covariance matrix Σξ. We use the subscript i in αξi to denote the possibility that the mean of

the latent exposure changes according to person-level covariates such as the time of measurement (see Section 2.2.3). For

simplicity we assume that exposure biomarkers at occasion t, Xit are not associated with the latent variable at another

occasion, ξt′ , given ξt; this assumption can be relaxed (see Section 2.3). Then, at any one measurement occasion, t, the

exposure measurement model is:

Xit = αxt + Λxtξit + δit t = 1, . . . , `. (1)

We assume the observed health outcome is impacted by the latent exposures through the outcome model:

Yi = αy + γ>ξi + εi. (2)

In (1), the vector of intercepts αxt = (αxt1, αxt2, . . . αxtK)> and the vector of factor loadings Λxt = (λt1, . . . λtK)>

capture the assumed linear relationships between the observed biomarkers Xit and its corresponding latent variable ξit.

The vector δit denotes exposure measurement errors, is independent of the vector of latent variables ξi, and has zero

mean and covariance Σδt. In (2), αy is the typical intercept and γ = (γ1, . . . , γ`)
> captures the association between the
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latent exposures and the outcome, and εi is a residual error with zero mean and variance σ2
ε , and is independent of ξi and

δi = (δ>i1, . . . , δ
>
i`)
>. The exposure coefficients γ are of primary interest in this study. Additional covariates or adjustment

factors can be included in (1)-(2), in addition to the intercepts. For simplicity, we leave out such adjustment factors since

including them is rather straightforward, albeit with more complex notation.

Identifiability constraints, e.g. [1], are needed in order to estimate model parameters. A common constraint is to set the

scale of each latent variable equal to the scale of one of its surrogates by constraining the corresponding factor loading

to one. The particular surrogate with the factor loading equal to one is called the scaling item. The location can be set

either by constraining the mean of the latent variable to zero, or constraining the intercept of the scaling item to zero.

Without loss of generality, we assume the scaling item at each occasion is xit1, the first element of Xit. It is also common

to assume a diagonal structure for the covariance matrix of the measurement errors, although this is not required. In our

exposure model, we assume that the measurement error in the scaling item is independent of the measurement errors in

the remaining items. Prior to discussing additional constraints that can be made in the longitudinal latent exposure model,

we describe the exposure model for the lead example to help gain clarity of the model.

In the lead example (Figure 1), the exposure measurement model at each trimester t = 1, 2, 3 is

xit1 = ξit + δit1 Plasma Lead
xit2 = αxt2 + λt2ξit + δit2 Blood Lead (Laboratory 1)
xit3 = αxt3 + λt3ξit + δit3 Blood Lead (Laboratory 2)
xi34 = αx34 + λ34ξi3 + δi34 Cord Blood,

where plasma lead measures at each trimester t, xit1, have been selected as the scaling items.

2.2. Exposure measurement model assumptions

Given the assumed longitudinal nature of the latent exposure variable, several assumptions can be made on the exposure

model parameters across the measurement occasions, including assumptions about αxt,Λxt,Σδt, the covariances between

the error vectors at different time pointsCov(δit, δit′), and the mean αξit and variance of the latent exposure. If appropriate,

these additional constraints would reduce the overall number of parameters estimated, and thus have the potential to boost

efficiency of model parameter estimates.

2.2.1. Time invariance of the measurement model. Time invariance of the measurement model is the assumption that at

least some of the exposure model parameters αxt,Λxt,Σδt are equal for all t. There are several types of time invariance that

can be discussed [18, 19, 20], the strongest type being when intercepts, factor loadings and variance matrices are all equal.
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Equality of the factor loadings, i.e., in our case Λx1 = Λx2 = · · · = Λx`, with other parameters left unrestricted is the most

basic type of measurement invariance, and we focus on it in the simulation study. In the lead example, differences in the

factor loadings could arise, implying TI , due to correlations among lead biomarkers changing over time; for example, due

to plasma volume expansion during pregnancy [17] as previously described. We use TI to denote cases when the time

invariance of all parameters holds, and TI when it does not hold.

2.2.2. Variance structure for measurement errors. In many applications of latent variable models, conditional

independence of all items given the latent variables is assumed (i.e., diagonal structure for var(δ) = Σδ). Although

this assumption can be relaxed, there are many choices about which off-diagonal terms to estimate. In the longitudinal

exposure setting, there may be “between-occasion” correlations due to serial correlation among the measurement errors

related to measuring the same biomarker repeatedly over time (i.e., serial correlation), or there may be “within-occasion

correlations” among measurement errors in biomarkers measured at the same occasion. For instance, positive correlation

among blood lead levels measured at laboratory 1 (k = 2) across trimesters could be present due to specific measurement

techniques at the laboratory (i.e., Cov(δit2, δit′2) > 0). When such correlations are zero, we say that serial independence,

denoted as as SI , among the measurement errors of a specific item measured repeatedly holds. Alternatively, when there

is non-zero between-occasion correlations in the measurement errors of a given item, then serial independence does not

hold, denoted as SI . Within-occasion correlation among the residual errors of the items measured at the same visit could

exist as well; in our example, for instance, due to lead being measured in the same media (e.g., blood vs. plasma) in our

example. Although the term conditional independence is broader and includes serial correlation, here we use the symbol

(CI) to denote conditional independence, given the latent variable, of biomarkers or items taken at the same time (i.e., CI

implies var(δt) = Σδt is a diagonal matrix for each t). Otherwise, lack of conditional independence is present (denoted as

CI).

2.2.3. Mean and variance structure for latent exposure vector. Since the latent exposure is longitudinal, it is conceivable

that the mean of the latent exposure changes over time. In that case, the mean vector αξi could depend on covariates

such as the actual time of measurement. Similarly, although the covariance matrix among the latent exposure variables,

Σξ, is typically left unstructured, more parsimonious assumptions could be used, such as an autoregressive or compound

symmetry structure or random effects [35]. Parsimonious representations of αξi and Σξ may be advantageous when there
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are a large number of occasions `, especially in studies with small sample size. Since in the lead example ` = 3, and time

of measurement is coded as discrete occasions (trimesters), we leave αξ and Σξ unstructured.

2.3. Connection to general linear structural equation modeling

In general, SEMs with LV are denoted with a larger system of equations than (1)-(2) and encompass latent outcomes

in addition to latent exposures. The general SEMs with LV are composed of a structural equation which defines the

relationships among m latent outcomes ηi = (η1, . . . , ηm)>, and latent exposures ξi, i.e., ηi = αη +Bηi + Γξi + ε∗i , and

two measurement model equations. One measurement equation describes the relationships between latent predictors and

their surrogates, i.e., Xi = αx + Λxξi + δi, similar to (1) above. The second describes the relationships between latent

outcomes and a multivariate vector of p observed outcome surrogates, i.e., Yi = αy + Λyηi + ζi. Measurement error

vectors ζi and δi are independent of ε∗i and ξi. The intercept vectors αη, αx and αy, and vector αξ parametrize the means

of the variables corresponding to their subscript, and Σ, with a corresponding subscript, is used to denote covariance

matrices. The coefficient matrix B, with diagonal entries equal to zero, encodes the relationships among the endogenous

latent variables ηi; each of the m rows of the m× ` matrix Γ contains the effects of the latent exposures on the latent

outcome variable corresponding to the row; Λy and Λx are factor loading matrices defining which, and how strongly,

observed variables relate to the latent variables.

Our measurement model (1) can be embedded in this general notation by defining the factor loading matrix, Λx as a

block diagonal matrix with diagonal blocks Λxt, and letting αx = (α>x1, . . . , α
>
x`)
> and δ = (δ>1 , . . . , δ

>
` )>. In the lead

example, the parameters are αx = (0, αx12, αx13, 0, αx22, αx23, 0, αx32, αx33, αx34)> and

Λx =

 1 λ12 λ13 0 0 0 0 0 0 0
0 0 0 1 λ22 λ23 0 0 0 0
0 0 0 0 0 0 1 λ32 λ33 λ34

> .
Our outcome model (2) is obtained as a special case of the structural equation and the measurement model for the outcome

where p = 1 and m = 1. In this case, the only observed outcome, univariate Yi, becomes the scaling item, i.e., Λy = 1.

We set the location of the latent outcome by letting αη = 0. Since m = 1, then B = 0, and Γ has only one row, which

we denote as γ>. Then, the simplified structural equation ηi = γ>ξ + ε∗i can be plugged in to the simplified measurement

model, Yi = αy + ηi + ζi, to yield our outcome model Yi = αy + γ>ξ + εi, where the residual εi = ε∗i + ζi combines the

residual from the structural equation and the measurement error for the observed outcome.

Since our model (1)-(2) can be embedded within the general LISREL notation, it is straightforward to relax the

assumption that exposure biomarkers at occasion t are not associated with the latent variable at another occasion, ξt′ ,
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given ξt. Specifically, this can be done by freeing some of the factor loadings that have been constrained to zero in Λx

above.

3. Estimation

3.1. Maximum Likelihood Estimation

Let θ represent all model parameters. Assuming normality of ε, δ, and ξ, the observed marginal likelihood can be written

as L(θ) =
∏N
i=1 fY|X(Yi|Xi; θ)fX(Xi; θ), where fY|X, fX are normal densities. Letting `(θ) = logL(θ), the ith’s subject

contribution to the likelihood score equation for γ is

∂`i
∂γ

= ξ̂LV
i (Yi − µiY|X)/σ2

Y|X +
Σξ|Xγ

2(σ2
Y|X)2

[
(Yi − µiY|X)2 − σ2

Y|X

]
(3)

where ξ̂LV
i = E(ξi|Xi) = αξi + ΣξΛ

>
x Σ−1X (Xi − µiX) is the expected value of the latent variable given the items; µiY|X =

αy + γ>ξ̂LV
i and σ2

Y|X = γ>Σξ|Xγ + σ2
ε are the conditional mean and variance of Yi given Xi; and Σξ|X = var(ξi|Xi) =

Σξ − ΣξΛ
>
x Σ−1X ΛxΣξ; µiX = E(Xi) = αx + Λxαξi ; ΣX = V ar(Xi) = ΛxΣξΛ

>
x + Σδ. Parameter estimates are obtained

by solving the full set of score equations (see Appendix A) using standard numerical procedures. Variances for parameter

estimates can be obtained by inverting the information matrix, Iθ = −E(∂2`(θ)/∂θ∂θ>), or by computing robust variances

v̂arR(θ̂) = B−1AB−>, where A = 1/N
∑N

i=1{∂`i(θ)/∂θ}{∂`i(θ)/∂θ}>, B = −1/N
∑N

i=1 ∂`i(θ)/∂θ.

Since we are primarily interested in the bias in γ̂, we examine the expected value of (3). In contrast to the score equation

for a regression on observed predictors, (3) has two components. The first term is the same as what would be used if ξ̂LV
i

was the observed predictor, and the second term is due to the residual error variance of the outcome given the observed

items, σ2
Y|X, being dependent on γ. Letting the superscript 0 denote the true parameters from the data generating model

and the superscript ∗ the (asymptotic) parameter estimates that would be obtained for a given model, and assuming Y and

X are conditionally independent given ξ and the relationship between Y and ξ in (2) is correct, the expected value of (3)
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is

E

[
∂`i
∂γ

]
=

1

σ2,∗
Y|X

{
C∗Σ0

X(C0 − C∗)> + α0
ξi(α

∗
ξi − α

0
ξi + C∗(µi,0X − µ

i,∗
X ))>

}
γ (4)

+
Σ∗ξ|X

2(σ2,∗
Y|X)2

(σ2,∗
Y|X − σ

2,0
Y|X)γ (5)

+
Σ∗ξ|X

2(σ2,∗
Y|X)2

{
γ>(C0 − C∗)Σ0

X(C0 − C∗)>γ
}
γ (6)

+
Σ∗ξ|X

2(σ2,∗
Y|X)2

{
(α∗ξi − α

0
ξi + C∗(µi,0X − µ

i,∗
X ))>γ

}2

γ (7)

whereC = ΣξΛ
>
x Σ−1X are the weights given to the itemsXi to obtain ξ̂LV

i = αξi + ΣξΛ
>
x Σ−1X (Xi − µiX). Hence, even when

the means are correctly specified, if components of the marginal covariance of X , Λx,Σξ,Σδ, are not correctly modeled,

the expected value of (3) will not be zero. The magnitude of bias will depend on how poorly the estimated weight matrix

C∗ approximates the truth, C0. When the approximation is relatevely poorer, ξ̂LV
i will be a more biased estimate of the

latent exposure. Thus, regressing Yi on ξ̂LV
i , as the first term of (3) suggests, yields a biased estimate of γ. The term (4)

represents the bias in the score equation for γ associated with ξ̂LV
i not being a consistent estimate of ξi when the covariance

components ofX are misspecified. The remaining three terms (5)− (7) correspond to the second term of (3). Importantly,

if all elements of γ are zero, then there is no bias. However, if at least one of the elements of γ is not zero, then the zero

elements of γ can have bias, as will be demonstrated in the simulations.

3.2. Bollen’s two-stage least squares (2SLS) estimator

Here we describe Bollen’s 2SLS estimator in the context of our model, whereas [24] and [32] describe the estimator for the

full LISREL model. The first step to construct the estimator is to re-write the model (1)-(2) using only observed variables.

This is achieved by sorting and partitioning the vector of observed exposures Xi into

Xi = (X̃>i1, X̃
>
i2)>

where X̃i1 = (xi11, xi21, . . . , xi`1)> is a vector containing the scaling indicators across all measurement occasions, and

X̃i2 contains the remaining exposure measures for the individual. Thus,

X̃i1 = ξi + δ̃i1

where δ̃i1 is the vector containing the subset of measurement errors corresponding only to the scaling items. This later

equation can be used to solve for ξi:

ξi = X̃i1 − δ̃i1,
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and is substituted into (2) to get

Yi = αy + γ>X̃i1 + (εi − γ>δ̃i1). (8)

Similarly, a reduced measurement model for X̃i2 can be obtained,

X̃i2 = αX̃i2
+ ΛX̃2

X̃i1 + (δ̃i2 − ΛX̃2
δ̃i1). (9)

Parameters in these reduced equations (8)-(9) cannot be estimated using ordinary least squares since the residual terms

(e.g., εi − γ>δ̃i1) are correlated with the observed predictors X̃i1. Instead, instrumental variables (IV) for X̃i1 can be

used. Although an instrumental variable approach is available to jointly estimate all parameters (8)-(9), the estimates are

the same as estimating parameters in each equation of the system separately [32]. Since we are primarily interested in the

outcome model parameters, we follow the equation-by-equation approach in [24] and focus on IV estimation for (8).

IV estimation requires the availability of at least ` variables or instruments that: (a) are correlated with X̃i1, and (b) are

uncorrelated with the composite error term ui = εi − γ>δ̃i1 [24]. Variables not included in the model (1)-(2) that meet

conditions (a) and (b) could be used as IVs. However, Bollen’s IV estimator [24] is built upon the idea that X̃i2 form a pool

of potential model implied IVs. Variables from X̃i2 that meet conditions (a) and (b) are used as IVs. To assess condition

(a), the sample correlations between X̃i1 and candidate IV variables in X̃i2 can be used. In our case study and simulations,

correlations among X̃i1 and X̃i2 were significantly different from zero. To verify condition (b), model assumptions are

needed. We used an automated approach [36] to verify that all variables in X̃i2 satisfy condition (b) under our assumed

model. We thus use investigate the use of the full set of X̃i2 as the IV variables in our simulation studies. Nevertheless,

some investigators have found that dropping items in X̃i2 can sometimes yield parameter estimates with better properties

[33]. Thus, we also investigate the use of subsets of X̃i2 in our simulations.

Estimation proceeds in two stages: The first is to carry out a multivariate regression of X̃i1 on X̃i2, followed by the

regression of Yi on the predicted values from the first step. To formalize this, let Y contain the n outcome values, u the n

residuals ui = εi − γ>δ̃i1, Z be an N × (1 + `) matrix that contains a 1 and the ` values X̃i1 for each subject in each row,

and A = (αy, γ1, γ2, γ3)>. Thus, (8) becomes:

Y = ZA+ u.

Similarly, let V be a matrix with N rows, with each row i = 1, . . . , N containing a 1 and the X̃>i2 values for the ith

subject. Then the first stage consists of the multivariate regression E(Z) = V G, where G is a (k − 1)`× (1 + `) matrix

of coefficients that can be estimated as Ĝ = (V >V )−1V >Z. Then, the predicted values can be obtained as Ẑ = V Ĝ.
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Regressing Y on Ẑ at the second stage then yields

Â = (Ẑ
>
Ẑ)−1Ẑ

>
Y .

Bollen [24] proposes using v̂ar(Â) = σ̂2
u(Ẑ

>
Ẑ)−1, where σ̂2

u = (Y −ZÂ)>(Y −ZÂ)/N to obtain asymptotic

standard errors. Notice that the proposed v̂ar(Â) is not the naive variance where (Y − ẐÂ)>(Y − ẐÂ) is used in lieu of

(Y −ZÂ)>(Y −ZÂ).

3.3. Modifications to Bollen’s 2SLS estimator to improve efficiency

Although potentially more robust, Bollen’s 2SLS is likely to suffer a large loss of efficiency due in part to the large

number of parameters in G, i.e., up to (`+ 1) · (k − 1)` coefficients. In addition to dropping weak instruments as a way

to improve the properties of IV estimators, imposing constraints in G can also reduce the number of parameters estimated

and improve efficiency. When the TI assumption is satisfied, we propose constraining the diagonal blocks of G to be

equal. This is a viable constraint since the association of xit1 with xit2, ..., xitk conditional on all other instruments is

the same for all t when the TI assumption is satisfied. We call these estimates γ̂IV2, and refer to the 2SLS estimates

obtained in Section 3.2 as γ̂IV1. In the simulation studies we also consider using fewer instruments instead of the full list

of available variables, and call them by either γ̂IV1R γ̂IV2R, with the R denoting a reduced number of instruments. Appendix

C of the supplementary materials describes how to impose constraints on G. It also briefly discusses other potential

constraints on G that, although intuitive in a longitudinal setting, did not perform well in simulations.

3.4. Connection between Bollen’s 2SLS and Regression Calibration

A rich literature has been devoted to investigate approaches to correct bias in regression coefficients that is due to

measurement error in covariates. Within this literature, classical measurement error models assume that a true exposure is

associated with an outcome, but the exposure is unobserved (i.e., it is a latent exposure like ξ, and model (2) is assumed.

Typically an unbiased surrogate is assumed to be observed, i.e., similar to X̃i1 above, in order to enable estimation

of regression coefficients in the outcome model. Regression calibration (RC) is an approach used to obtain unbiased

exposure coefficients in the outcome model. Although several RC estimation procedures are available, a simple algorithm

[37, Section 6.3.3] consists of two steps: regressing the observed unbiased surrogates X̃i1, on available instruments (e.g.,

X̃i2), and then using predicted values of X̃i1 as regressors in the outcome model instead of the unobserved ξi. Obviously,
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this simple RC estimator yields exactly the same estimates as Bollen’s 2SLS estimator, even though the RC estimator

is motivated without the assumption of a full LISREL model. One difference between the RC and Bollen’s approaches,

however, is that in RC, the variance of the estimator is derived using estimating equations approach (see Appendix B), and

thus explicitly accounts for the uncertainty in the predicted values used as regressors in the second stage of the model.

4. Simulation Studies

We evaluate the impact of violations to exposure measurement model assumptions on inferences in the outcome model

parameters, specifically the exposure-outcome associations captured by γ. We examine the impact of violations of (a)

conditional independence of the observed exposures, Xit, given the latent variables, ξit; (b) misspecification of the serial

correlation of a given item across time; and (c) time invariance of the factor loadings in the exposure measurement model.

Aside from using a factorial design to consider combinations of violations of these three measurement model assumptions,

we also consider varying degrees of the misspecification, different sample sizes, and use a varying number of instruments

in the IV estimators.

4.1. Simulation set up

We simulated data assuming the existence of one latent variable at each of three occasions. Values of the latent variables

for each individual were simulated using a multivariate normal distribution assuming exchangeable correlation and unit

variance (off diagonal elements of Σξ are 0.25). The outcome was simulated as Yi = γ>ξi + εi with var(εi) = 2, and

γ = (0, 0, 0) to evaluate Type I error probabilities, and γ = (−2,−2,−2) or γ = (−2,−2, 0) to examine bias and relative

efficiency or mean squared error.

Data for 15 items Xi (5 at each of three occasions) were initially simulated using a factorial design with three factors

representing conditional independence (CI) or lack of conditional independence (CI); serial independence (SI) or serial

correlation (SI); and measurement invariance over time (TI) or lack of measurement invariance (TI). Hence, data were

generated assuming a total of 8 different “true” models. We denote a given true model by the combinations of TI or TI ,

SI or SI , and CI or CI . Lack of measurement invariance over time (TI) was simulated by setting the factor loadings

for item Xitk, k = 2, . . . , 5 at 1 for t = 1, 1.2 at t = 2, and 1.5 at t = 3. Lack of conditional independence was simulated

by having items 2, 4, and 5 share a random intercept at the 2nd time point only (i.e., inducing a compound symmetry

structure among the within-occasion measurement errors of these items). By simulating CI at only one time point, we
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would be able to assess how covariance misspecification at only one time point induces bias in the coefficient of exposure

at a different time. Similarly, SI was simulated by letting each item k = 2, 3, 4, 5 share a random intercept with the same

item at different time points (i.e., induce a compound symmetry structure among the between-occasion measurement error

of the same type of biomarker). The variance of the measurement error for each item was set at 1. The variances for

the random intercepts inducing conditional or serial dependence were initially set at 1; i.e., the correlation among items,

conditional on the latent variables, was 1/(1 + 1) = 0.5. For each combination of parameters we simulated 500 data sets

each with N=300 or N = 600. For each true model, we used MLE to fit eight “working models” also defined by whether

or not TI , SI or CI were assumed. We use italics to denote the true model and non-italics to denote the working model

used at the estimation stage (e.g., data model TISICI vs. working model TISICI).

A second set of simulations was devoted to assess the impact of different magnitudes of any one type of misspecification

on mean squared error (MSE), which serves as a measure of bias-variance trade off. To examine lack of time invariance,

we simulated data under the true model TISICI , assuming the factor loadings for item j = 2, . . . , 4 were all 1 at t = 1,

1.2 at t = 2, and λ∗ at t = 3, with λ∗ ranging from 1 to 1.5. Various magnitudes of violation of CI or SI were simulated

by generating data from the true models TISICI or TISICI using random intercepts as previously described, but letting

the random intercept variance range from 0 to 1. In this second set of simulations we focused only on IV1 (given the

results of the first set of simulations), and fitted working models with the ‘classic’ assumption of TISICI or TISICI. The

latter is a reasonable first model for a longitudinal latent exposure model where SI is likely, and is consistent with the

strategy of fitting a reasonable model that can then be improved according to model modification/selection criteria.

Maximum likelihood estimates for model parameters were obtained using Mplus [22]. Instrumental variable estimates

were obtained using R functions available from the authors. Previous studies have shown that IV estimators that use fewer

than all available items may have better properties [33]. Thus, for the above scenarios we fitted IV estimators that included

either all available instruments, or only two of the four possible instruments at each time point. For the latter, we either

included items with k = 2, 3 or k = 2, 4; items with k = 2, 4 have correlated errors among themselves at time point 2, thus

enabling us to investigate how choices of specific item subsets can impact IV estimators.

4.2. Simulation Results

4.2.1. Type I error. When γ = (0, 0, 0)>, all estimators had empirical Type I error probabilities between 0.04 and 0.06 for

tests at the 0.05 significance level regardless of the underlying exposure measurement model used to simulate data (results
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not shown). However, when γ = (−2,−2, 0)>, the rejection rates for Ho : γ3 = 0 were up to 50% for some of the working

models fitted using MLE, and some of the restricted IV estimators (IV2), largely due to bias (below). The IV1 estimator

and the most flexible working model TISICI fitted with MLE had rejection probabilities between 0.04 and 0.06 for this

test.

4.2.2. Bias for MLE. Figure 2 displays the bias of various estimators for γ for the 8 true models used to generate data in

the first set of simulations and true γ = (−2,−2,−2) (i.e., 8 true models shown in the legend). Each of the working models

fitted using MLE (shown along the x-axis) corresponds to one of the true models. For a given true model, the correctly

specified working model is unbiased, as are working models that estimate additional covariance parameters. Although the

most flexible working model, TISICI is always unbiased, arriving at the correct model specification may be difficult in

practice. Since sample size did not have an appreciable impact on bias, our discussion on bias below does not differentiate

between the sample sizes used.

Violation of the TI assumption resulted in positive bias for γ̂1, small bias for γ̂2, and negative bias for γ̂3 (e.g.,in Figure

2, see true models + TISICI or ♦ TISICI when the working model TISICI is fitted). This pattern of bias across the

coefficients may be heuristically explained by the fact that the factor loadings increased with t in both of these true models:

the working models assuming TI resulted in estimated factor loadings close to the average of the factor loadings over the

measurement times, and the average was close to the factor loadings at the second time point (not shown). Because the

estimated factor loadings at the second time point were approximately correct, the bias for γ̂2 is smaller. However, the

estimated factor loadings at t = 1 were over estimated, resulting in positive bias for γ̂1, and under estimated for t = 3,

resulting in negative bias for γ̂3.

Violation of CI at t = 2 resulted in positive bias for γ̂1 and γ̂3, but negative bias for γ̂2 (e.g., see true models O TISICI

or ∗ TISICI when the working models TISICI or TISICI are fitted). Interestingly, this bias was greatly reduced when the

time invariance assumption on the factor loadings was removed (e.g., see true model denoted with O TISICI when the

working model TISICI vs. when TISICI is fitted). Even though in the true model the factor loadings are the same across

time, allowing them to differ in the working model ‘absorbs’ the bias that would have otherwise corrupted the outcome

model coefficients γ.

Finally, violation of the serial independence assumption resulted in negative bias for all outcome model regression

coefficients. Unlike violations of the CI assumption, the bias due to violation of SI persisted unless serial dependence
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was estimated in the model.

Simulation results when true γ = (−2,−2, 0) were generally similar, with the exception of violations of SI . When SI

did not hold, γ̂1 and γ̂2 had negligible bias, but γ̂3 had severe negative bias. That is, although γ̂1 and γ̂2 were correctly

estimated, a spurious association between ξ3 and the outcome appeared when incorrectly assuming SI held (see Appendix

Figure S1, × symbol).

4.2.3. Bias in IV estimators. IV1 estimators had a small amount of bias that decreased with sample size, both when true

γ = (−2,−2,−2) or true γ = (−2,−2, 0) and regardless of whether the full set (IV1) or only a reduced set of instruments

(IV1R23 or IV1R24) were used (Figure 2 and Supplementary Figure 1). At the same sample size, the estimators with

fewer items, IV1R23 and IV1R24, had even lower bias as had been previously noted [33]. IV2 estimators were only

unbiased for two true models, 4 TISICI and × TISICI , as would be expected since IV2 restricts coefficients in the

stage 1 regression based on the TI assumption. Again, higher sample size reduced the observed bias as did using fewer

instruments for both of these true models. One may hypothesize that IV2 could also be unbiased for the TISICI model,

since TI also holds. However, CI was generated at only one time point in these simulations, which makes the associations

between the scaling indicators and the instruments different over time. The fact that IV2R23 has lower bias than IV2R24

for the true models O TISICI and ∗ TISICI illustrates that the bias in IV2 comes primarily from having CI at t = 2.

Recall that IV2R23 uses items with k = 2, 3, which are conditionally independent for all t, whereas items with k = 2, 4

have correlated measurement errors at t = 2.

4.2.4. Standard errors. Figure 3 shows the variation for γ̂1 (left) and γ̂2 (right); the patterns of variation for γ̂3 were

similar to those of γ̂2 (not shown). The top two figures show the variability when data are generated with true model,

TISICI , whereas the bottom shows the variability when the data are with true model TISICI . Since the variances of the

estimates are greatly reduced by doubling the sample size from 300 to 600, we normalize all the variances by the empirical

variance of the MLE where from working model TISICI (top) or TISICI (bottom) to enable us to show both sample sizes

in the same plot.

When data were generated with true model TISICI , relaxing the assumption of serial independence or conditional

independence among the MLEs had little impact on efficiency (< 5% e.g., comparing working model TISICI or TISICI

to TISICI), in contrast to relaxing the time invariance assumption (up to ≈ 45% comparing working model TISICI to
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TISICI). This is partly due to the relatively fewer parameters needed to relax the SI and CI assumptions compared to the

number of parameters needed to relax time invariance. For all MLEs, the average of the asymptotic variances were only

slightly lower than the variance of the estimates; the difference was reduced with higher sample size.

IV estimators are inevitably less efficient; the empirical variance of the IV estimates (+ symbol) was at least 75%

larger than that of the most parsimonious MLE. IV2 had smaller variance than IV1, as we expected given the fewer

coefficients estimated in the stage 1 regression. For IV1, the variance formula proposed by Bollen and the estimating

equations variance formula were close to the empirical variance, and were closer at higher sample sizes. However, for

IV2, the variance estimator proposed by Bollen was consistently larger than the empirical variance it does not account

for the potentially reduced variance due to constraining G. The estimators utilizing fewer items (IV1R23 and IV1R24, or

IV2R23 and IV2R24) had about 30% higher variance than IV1 or IV2, respectively, since information to predict the scaling

items is lost when dropping instruments.

When data were generated under the true model, TISICI , Figure 3 (bottom) shows the variation in the estimates of γ

obtained from IV are closer to the correct MLE. This shows that for the cases when IV estimators would be most needed

(most flexible data generating model), the loss of efficiency is relatively lower than when they are not. Since parsimonious

MLEs incur large degrees of bias when they are misspecified, but IVs have more comparable variability when data arise

from more general data generating models, IV estimators can potentially achieve better bias-variance tradeoff, i.e., lower

mean squared error (MSE).

4.2.5. Mean squared error (MSE). MSE allows us to compare estimators with respect to their compromise between bias

and efficiency. Figure 4 shows the MSEs obtained from the second set of simulations when true γ = (−2,−2,−2) (top)

and γ = (−2,−2, 0) (bottom) for parsimonious working models estimated via MLE, and IV1 and IV2, under violations

of TI , SI , or CI . The IV estimators with fewer items are not included in these figures since they have about the same bias

but larger variance and thus larger MSE compared their corresponding IV1 or IV2 estimator shown.

When γ = (−2,−2,−2) (Figure 4, top), IV1 had a better bias-variance trade-off for γ̂1 when the degree of

misspecification in the MLE was large. While the MSE of IV1 remained relatively constant across a range of violations

of TI (left), SI(middle), or CI (right), the MSE of the MLE increased rapidly due to increases in bias. The degree of

misspecification at which IV1 was better than MLE (crossing point of the MSE curve for MLE and IV1) depended on the

sample size. MLE tended to be better for smaller sample sizes because while the bias of both estimators was relatively
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constant with sample size, the MLE variance was relatively lower than that of the IV variance at the lower sample size.

The pattern of the MSE comparing IV1 and MLE estimators for γ̂2 and γ̂3 was very similar (see Appendix Figure S2)

to those of γ̂1 in the figure. IV2 demonstrated lower MSE compared to IV1 for lower degrees of misspecification when

TI and CI were violated, and consistently lower when SI was violated. This is expected since IV2 has lower variance

than IV1, and is unbiased regardless of whether SI holds or not. The MSE in IV2 increased with increasing magnitude of

the violations of TI , or CI at t = 2, as increases in bias overtook its advantage with lower variance. The improvement in

MSE comparing IV2 to IV1 was more apparent at lower sample sizes.

When true γ = (−2,−2, 0) (Figure 4, bottom), the MSE for γ̂1 was consistently lower for MLE compared to IV when

SI (middle) did not hold in the true model. This is due to the fact that the bias in the MLE for γ̂1 was small when true

γ3 is 0 and SI did not hold, but IV had consistently larger variance compared to the MLE. When either TI or CI do not

hold, we again see that IV1 is better than MLE when the degree of TI or CI increases (left and right bottom panels). The

patterns of MSE for γ̂2 across various degrees of SI , TI or CI was the same as for γ̂1 (Appendix Figure S3). However,

when SI did not hold in the data generating model, the MSE for the MLE of γ̂3 increased rapidly due to large increases

in bias (Supplementary Figure 2). Interestingly, the MSE for MLE estimates of γ3 was consistently lower than MSE for

IV1 estimates when TI or CI increases (Supplementary Figure 2). Again IV2 demonstrated lower MSE compared to IV1

for lower degrees of misspecification when TI and CI were violated, and consistently lower when SI was violated, as

described for the case above when γ = (−2,−2,−2).

5. Prenatal lead exposure and mental development

We use data from the Early Life Exposures in MExico City to Neuro-Toxicants (ELEMENT) study, where prospective

mothers were recruited at or before conception. One goal of the study was to quantify effects of lead exposure during

each trimester of pregnancy on child development [11]. Women were followed during pregnancy to assess their exposure

to lead. Various measures of exposure (lead concentrations in whole blood and plasma) were collected on the mother

during each trimester of pregnancy. Measures of lead concentration in blood and plasma during pregnancy are the closest

surrogate measures of fetal exposure. Other information, such as maternal age and IQ was also collected [11, 12]. Children

were followed after birth to assess their cognitive development using the mental development index (MDI) of Bayley’s

scale of mental development [38]. We use MDI measured at 24 months of age as the outcome of interest. Figure 1 shows
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potential models for this data.

We present data from 341 mother-child pairs. To be included in the analysis, the mother had to have measurements on

at least one of the surrogate measurements of fetal exposure, and have completed an IQ test. The children in the sample

completed Bayley’s MDI, and had a concurrent blood lead measurement at the time of the MDI assessment. Descriptive

statistics are given in Supplementary Table 1. Because almost all variables had some missing data, we constructed five

imputed data sets using sequential regression methods [39]. While MLE could account for missing data within the

estimation procedure, the IV estimates could not. We estimated model parameters using the methods described in Section

3 on all imputed data sets, and combined them using standard formulae [40].

Table 1 gives the regression coefficients for the outcome model obtained by maximum likelihood estimation (MLE)

under 8 possible combinations of assumptions regarding serial or conditional independence and time invariance. The

estimates shown range from a most restricted working model (TISICI, top of Figure 1), to the least restrictive model

(TISICI, bottom of Figure 1); they differ substantially both in terms of estimated effect and their standard errors, reflecting

compromises between bias and variance. Our working models that assumed CI included correlations among blood lead

concentrations within each trimester, since blood measures are replicate measures assayed in different laboratories; for SI

we included serial correlations for the items; and for TI we allowed factor loadings, item means, and residual variances to

vary over time. Other model specifications can arise from, for example, assuming partial time invariance (e.g., constrain

the factor loadings for some factors to be constant across time, but not all) or freeing other of the 45 possible pair-wise

correlations. For simplicity, the working models shown assumed that TI , SI , and/or CI held or not. Its noteworthy that

when we used the working model TISICI, modification indices revealed a need to relax constraints of conditional or serial

independence, but not a need to relax the assumption of time invariance.

Table 1 also shows estimates obtained using IV estimators, and multiple linear regression (MLR) using plasma lead

levels at first trimester as the exposure measure. The MLR estimate is much smaller compared to all other estimates,

reflecting attenuation due to measurement error. The IV1 estimate is within the range of estimates obtained via MLE, and

the standard error is comparable to those obtained with the more flexible MLEs. The IV2 estimate is somewhat attenuated

compared to IV1, and follows the patterns of the MLEs where working models that assume TI have smaller coefficients

than those that don’t.

Table 2 shows the parameter estimates for the exposure model using the working models TISICI and TISICI. The
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table shows that factor loadings and item means and variances change with time (estimates under TISICI). Lack of time

invariance in the measurement model is primarily responsible for the large changes in the regression coefficients in the

estimated MLEs (Table 1), as would be expected from the simulation results. Table 2 also shows that there is significant

covariance among the residual errors of blood lead concentrations assayed in laboratory 1 (σx21,x22
, σx21,x23

, σx22,x23
not

zero), as suspected given the longitudinal nature of the exposure biomarkers.

6. Discussion

Models which assume longitudinal latent exposures are of increasing interest in environmental epidemiology given the

new tendency to collect multivariate exposure measures over time [9, 10]. Since these models are highly parameterized, it

is important to examine the impact of model assumptions on the estimates of key parameters of interest. While approaches

to check and relax linearity and distributional assumptions have been studied [41, 42], including the availability of

distribution-free estimators such as [43], less work has been done to examine measurement model assumptions that are

particularly relevant to longitudinal settings. We presented a model with longitudinal latent exposures and examined the

impact of three types of misspecification of the exposure measurement model, namely, conditional independence, serial

independence of repeated items, and time invariance of the factor loadings. We found that incorrectly assuming that

factor loadings are constant over time can have a major impact on outcome model regression coefficients estimated via

MLE, that ignoring positive serial correlation in items measured repeatedly across time results in bias toward the null

in regression coefficients, and that incorrect assumption of conditional independence resulted in bias toward the null for

some coefficients and away from the null for others. We examined properties of IV estimators of the exposure effect, which

were more robust although predictably less efficient because they make fewer assumptions about the covariance structure

among exposure biomarkers. Differences in bias-variance trade off (mean squared error) favored IV estimators, compared

to the most parsimonious ML estimators, in situations where there was a medium to large degree of misspecification.

Prior robustness studies comparing ML and IV estimators have focused on examining violations of conditional

independence [21], missing paths [33] or misspecifying latent variable means [26], but, to our knowledge, none examined

time invariance assumptions or combinations of types of model misspecification in the measurement model of longitudinal

latent variables. We found the bias-variance trade-off between IV and MLE estimates obtained from a working model

assuming TI favors IV once the difference in factor loadings in the true model exceeds about 20%. Our simulation study
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demonstrated that ML estimators were always sensitive to lack of serial independence. Since lack of serial independence

is likely in longitudinal studies, it is recommended to always include correlations among individual items across time. We

found that including additional parameters to the model to relax the serial independence assumption incurred essentially

no cost in terms of efficiency of the MLE. We also found that lack of conditional independence within items measuring

the latent exposure variable at one occasion biases regression coefficient of exposure parameters at other occasions. This

is likely due to residual measurement error in the plug in estimate for at least one of the latent variables, i.e., the fact that

measurement error in one covariate can bias coefficients for other predictors if predictors are correlated [44]. Interestingly,

we found that the magnitude of bias in the exposure coefficient estimates due to lack of conditional independence depended

on whether time invariance of the measurement model is assumed. When time invariance was not assumed, the bias due to

lack of conditional independence was smaller. Relaxing the assumption regarding time invariance indirectly implies that

the marginal covariance at one point in time can be different than at another time point by allowing the factor loadings

which define the latent variable to differ. When there is lack of conditional independence, the factor loadings will be biased

but allowing the factor loadings to differ at the different time points will capture the residual correlation caused by lack

of conditional independence, and contain some of the bias from contaminating outcome model parameters. Finally, we

found that using a smaller set of instruments can lead to small improvements in small sample bias of the IV estimator,

but pronounced increases in its variance. Previous studies that used fewer instruments than the available model-implied

instruments when estimating IV1 dropped the weakest instruments and showed either negligible loss of efficiency or even

slight improvements [33]. In our simulations all items had the same measurement error variance (i.e., had about the same

strength as instruments), which may partially account for the differences in our results compared to previous studies. When

we used smaller measurement error variance for the instruments, we also observed relatively smaller losses of efficiency

when dropping instruments (not shown).

The issue of whether MLE or IV estimators are best ultimately depends on the purpose of the analysis; some issues to

take into account are bias vs. efficiency, testing vs. estimation, whether the exposure model parameters are of interest, and

missing data. Although MLEs will be most efficient when the specified model is correct and distributional assumptions

hold, IV estimators will be unbiased in more situations, thus IV methods would be preferable for estimation. Since loss

of efficiency, and thus reduced power, can be noted as a problem for IV models, MLEs could be favored for testing

when distributional assumptions hold, at least approximately [1, 43]. However, because potentially many (low powered)
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model selection steps may be involved before achieving a well fitting model, the potential for inflated Type I error can

quickly arise in the MLE framework. One scenario where MLE is potentially advantageous is when one is interested in

certain exposure measurement parameters such as reliability of one item vs. others. That is, MLE may be better suited for

exploratory or explanatory purposes, but IV better suited for testing and estimation of exposure effects. One setting where

MLE could be seen as having an advantage is in the presence of missing data; however, this may not be readily the case.

Although MLE can easily handle cases with data missing at random (MAR), MLE relies on correct model specifications in

order for inferences with MAR data to be valid [40]. On the other hand, IV estimators would require a data processing step,

such as multiple imputation, before the method can be applied. Thus, IV estimators would require a correct imputation

model.

The use of longitudinal latent variable models as discussed here has some limitations. In the case of the example, we

posited the existence of one latent variable at each occasion. The observed biomarkers could be modeled in different

configurations instead of the one we posited (e.g., separate latent variables for blood lead vs. plasma lead). The model

however, can be easily extended to more than one latent variable at each occasion if so desired, and our bias analyses

would still be relevant. Another issue is that of assigning meaning to the longitudinal latent exposure variable when time

invariance does not hold. However, if at least the scaling item keeps the same relationship with the latent variable across

time (i.e., xi1t = ξit + δi1t), then not all interpretation is lost. In the lead example, we assume plasma lead concentration

is an unbiased measure of the underlying fetal exposure regardless of time, since lead in plasma is what would be more

likely bio-available to the fetus (in contrast to lead in red blood cells). In this manner, we can assume the units of the latent

variable remain constant through time (the interpretation of the latent variable is the same), despite possible changes in

the relationship between the latent variable and other exposure biomarkers.

Several additional extensions of our study may be worth conducting. Given the also increased interest in longitudinal

latent outcome models [45, 35, 41, 46, 47, 48] it is important to evaluate how estimates of coefficients for observed

predictors are influenced by incorrectly assuming time invariance in the measurement model for a longitudinal latent

outcome. While MLE estimates will probably have the similar degree of bias as observed here, the robustness of the IV

estimator will largely depend on whether time invariance constraints [25, 26] are imposed or not. Our study focused on

continuous exposure surrogates, and we assumed multivariate normality to obtain ML estimates. Several other available

estimators for models with continuous outcomes do not require normality, but still require a correctly specified covariance
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matrix for the observed data [1, 43]. Hence, bias for those estimators would likely be of similar magnitude as for ML.

When observed variables are not continuous, ML estimators can still be computed [49], as well as IV estimators [50].

Examining these estimators in the presence of missing data may also be desirable.

In summary, we found that potentially large biases in exposure coefficients can result from violations of the time

invariance assumption for the measurement model, conditional independence among the items measuring one latent

variable, and from violation of the assumption of serial independence across individual items measured repeatedly over

time. Although our simulation design does not cover all possible model misspecifications, this study highlights the

importance of examining measurement model assumptions in longitudinal latent exposure variable models.
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Table 1. Estimated association between prenatal lead exposure at trimester 1 and mental development at 24 months of
age.

Estimator∗ Est. S.E.∗∗ Est./S.E.
TISICI -2.72 0.84 -3.23
TISICI -2.71 0.84 -3.22
TISICI -2.70 0.84 -3.23
TISICI -2.67 0.84 -3.18
TISICI -3.47 1.07 -3.24
TISICI -3.43 1.06 -3.23
TISICI -3.37 1.07 -3.16
TISICI -3.31 1.07 -3.09

IV1 (all) -2.83 1.09 (1.22) -2.60 (-2.32)
IV1RLab1 -2.82 1.10 (1.20) -2.56 (-2.35)
IV1RLab2 -2.68 1.11 (1.29) -2.42 (-2.08)
IV2 (all) -2.62 1.09 (1.10) -2.41 (-2.37)
IV2RLab1 -2.83 1.12 (1.14) -2.52 (-2.48)
IV2RLab2 -2.49 1.05 (1.08) -2.38 (-2.31)

MLR, x11 -1.97 1.15 -1.72
∗ First 8 lines refer to working models fitted via MLE
∗∗ SE using Bollen (estimating equations) formula
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Table 2. Estimated exposure model parameters

TISICI† TISICI
Variable t Parameter Est SE Est/SE Est SE Est/SE
Factor Loadings
Blood lead (Lab 1) 1 λ21 1.73 0.15 11.94 2.07 0.26 8.09

2 λ22 1.35 0.15 8.97
3 λ23 1.55 0.10 15.97

Blood lead (Lab 2) 1 λ31 1.52 0.10 15.02 1.90 0.17 11.49
2 λ32 1.18 0.15 7.92
3 λ33 1.32 0.08 16.51

Cord lead 3 λ43 1.15 0.11 10.19 1.01 0.11 9.26

Item Means
Blood lead (Lab 1) 1 αx21

-4.30 0.55 -7.84 -5.78 0.96 -6.05
2 αx22

-2.92 0.54 -5.41
3 αx23

-3.50 0.41 -8.63
Blood lead (Lab 2) 1 αx31

-3.61 0.40 -8.97 -5.20 0.65 -7.96
2 αx32 -2.40 0.55 -4.39
3 αx33 -2.81 0.31 -9.06

Cord lead 3 αx43
-2.01 0.43 -4.74 -1.42 0.40 -3.52

Residual variances of items
Plasma lead 1 σ2

x11
0.46 0.02 25.28 0.62 0.07 8.57

2 σ2
x12

0.35 0.03 10.21
3 σ2

x13
0.30 0.03 8.74

Blood lead (Lab 1) 1 σ2
x21

0.12 0.03 3.90 0.27 0.10 2.81
2 σ2

x22
0.06 0.02 3.05

3 σ2
x23

0.06 0.03 2.20
Blood lead (Lab 2) 1 σ2

x31
0.12 0.02 6.72 0.08 0.05 1.58

2 σ2
x32

0.13 0.02 5.82
3 σ2

x33
0.12 0.03 3.75

Cord lead 3 σ2
x43

0.51 0.06 8.53 0.52 0.06 8.19

Between-occasion covariances among item measurement errors
Blood lead (Lab 1) 1,2 σx21,x22 0.037 0.017 2.18 0.056 0.024 2.33

1,3 σx21,x23 0.046 0.023 2.00 0.055 0.027 2.04
2,3 σx22,x23

0.097 0.034 2.85 0.048 0.017 2.82
Blood lead (Lab2) 1,2 σx31,x32

-0.005 0.014 -0.36 -0.009 0.020 -0.45
1,3 σx31,x33

0.017 0.017 1.00 0.013 0.017 0.76
2,3 σx32,x33 -0.020 0.024 -0.83 -0.009 0.019 -0.47

† Factor loadings, item means and measurement error variances are constrained to be equal
for a given item for all t
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Figure 1. Path diagrams showing relationships between exposure biomarkers, latent prenatal lead exposure measured at three trimesters, and mental development. Both models
assume the same structural model. Measurement model in top panel assumes time invariance (TI), serial independence, SI and conditional independence CI of items given the
latent variables; in bottom panel, TI , SI , CI assumptions are relaxed.
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Figure 2. Percent bias in γ̂1 (top), γ̂2 (middle), γ̂3 (bottom) for instrumental variable and maximum likelihood estimators with various working models (x-axis) when data are
generated under a variety of true models (denoted by different symbols in the legend) and true γ = (−2,−2,−2).
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Figure 3. Variability in γ̂1 (left) and γ̂2 (right) for instrumental variable and maximum likelihood estimators with various working models (x-axis) when data are generated from
the true model TISICI (top) or true model TISICI (bottom), and true γ = (−2,−2,−2). Variance patterns for γ̂3 were similar to those of γ̂2.
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Figure 4. MSE of γ̂1 for instrumental variable and maximum likelihood estimators when data are generated from true γ = (−2,−2,−2) (top) or true γ = (−2,−2, 0)
(bottom) and various degrees of lack of time invariance (left); various degrees of serial dependence (middle); various degrees of lack of conditional independence (right).
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