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Abstract 34 

 35 

Critical thermal limits are thought to be correlated with the elevational distribution of species 36 

living in tropical montane regions, but with upper limits being relatively invariant compared to 37 

lower limits. To test this hypothesis, we examined the variation of thermal physiological traits in 38 

a group of terrestrial breeding frogs (Craugastoridae) distributed along a tropical elevational 39 

gradient. We measured the critical thermal maximum (CTmax; n = 22 species) and critical 40 

thermal minimum (CTmin; n = 14 species) of frogs captured between the Amazon floodplain (250 41 

m asl) and the high Andes (3800 m asl). After inferring a multi-locus species tree, we conducted 42 

a phylogenetically informed test of whether body size, body mass, and elevation contributed to 43 

the observed variation in CTmax and CTmin along the gradient. We also tested whether CTmax and 44 

CTmin exhibit different rates of change given that critical thermal limits (and their plasticity) may 45 

have evolved differently in response to different temperature constraints along the gradient. 46 

Variation of critical thermal traits was significantly correlated with species’ elevational midpoint, 47 

their maximum and minimum elevations, as well as the maximum air temperature and the 48 

maximum operative temperature as measured across this gradient. Both thermal limits showed 49 

substantial variation, but CTmin exhibited relatively faster rates of change than CTmax

 54 

, as 50 

observed in other taxa. Nonetheless, our findings call for caution in assuming inflexibility of 51 

upper thermal limits, and underscore the value of collecting additional empirical data on species’ 52 

thermal physiology across elevational gradients. 53 

 55 

 56 
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 57 

Introduction 58 

 59 

In a rapidly changing world, many species are faced with shrinking habitat and novel climatic 60 

conditions. As a result, there has been widespread interest in understanding species responses to 61 

past and present climatic variation in order to predict how best to conserve species in future 62 

climatic conditions (e.g., Sinervo et al. 2010, Moritz & Agudo 2013). While much attention has 63 

been given to modeling and predicting elevational range shifts in montane organisms, especially 64 

in the context of climate change, most predictions about future geographic ranges are based on 65 

correlative models that ignore species’ evolutionary history and eco-physiology (Colwell et al. 66 

2008, Laurance et al. 2011, VanDerWal et al. 2012). Tropical montane regions are of special 67 

concern because they are centers of biodiversity and endemism (Graham et al. 2014). Mountain 68 

uplift, climatic fluctuations, and the emergence of new ecological conditions have been 69 

hypothesized to promote the diversification of organisms at high elevations (Moritz et al. 2000, 70 

Hoorn et al. 2010). As a result, species living at high elevation often exhibit narrowly 71 

overlapping (i.e., parapatric) distributions, many of which are assumed to have greater tolerance 72 

to cold (Janzen 1967, Navas 2005, Ghalambor et al. 2006). However, empirical data on critical 73 

thermal limits of most tropical montane taxa remain unknown. Furthermore, tropical lowland 74 

taxa, especially ectotherms, are thought to live near their thermal optimum, so increased 75 

temperatures due to changing climates would lead to decreased fitness (Colwell et al. 2008, Huey 76 

et al. 2009, Sunday et al. 2014). As with species living at higher elevations, empirical data on 77 

species’ critical thermal limits are not available for most tropical lowland taxa.    78 

 79 

Several hypotheses have been proposed to explain the potential causes of diversity patterns along 80 

elevational gradients (Terborgh 1970, MacArthur 1972, Hofer et al. 1999, Lomolino 2001, 81 

McCain & Grytnes 2010, McCain & Colwell 2011, Graham et al. 2014, Peters et al. 2016). One 82 

of these hypotheses proposes that climatic conditions along the gradient restrict species’ 83 

distributions (von Humboldt 1849, Janzen 1967). Air temperature is the main environmental 84 

factor that predictably decreases with increasing elevation as a result of adiabatic cooling (on 85 

average 5.2−6.5 °C decrease per 1000 m elevation; Colwell et al. 2008). Critical thermal 86 

maximum (CTmax) and critical thermal minimum (CTmin) are two measures that have been used 87 
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to infer species’ critical thermal limits. Numerous studies have shown that ectotherms exhibit a 88 

general trend of decreasing critical thermal limits with elevation (Heatwole et al. 1965, Christian 89 

et al. 1988, Gaston & Chown 1999, Navas 2003, Catenazzi et al. 2014). Moreover, it is likely 90 

that critical thermal limits change at different rates in response to different temperature 91 

constraints along elevational gradients (McCain & Grytnes 2010). Specifically, CTmax

 95 

 is thought 92 

to be relatively inflexible across elevation (e.g., Hoffman et al. 2013, Muñoz et al. 2014, 2016), 93 

with a narrow upper limit and low plasticity (Sunday et al. 2011; Gunderson & Stillman 2015). 94 

Although many researchers have examined the relationship between critical thermal limits and 96 

the elevational distribution of species liv ing in montane gradients, only a few have combined 97 

empirical (CTmax and CTmin

 104 

) data and accounted for the effect of phylogenetic relatedness 98 

among species (Muñoz et al. 2014, 2016, Sheldon et al. 2015). Phylogenetic comparative 99 

methods are particularly useful for this purpose because they allow researchers to examine 100 

evolutionary transitions in physiological traits and account for statistical non-independence of 101 

interspecific data when studying life history evolution among closely related species (Harvey & 102 

Pagel 1991, Garland et al. 1992, Revell 2008).  103 

We investigated the role of physiological divergence among closely related species distributed 105 

along an elevational gradient of > 3500 m in southern Peru. Although 80% of Peruvian Andean 106 

frogs (ca. 250 species) occur within relatively narrow elevational ranges (Aguilar et al. 2010), 107 

little is known about the relationship between their critical thermal limits and their elevational 108 

distributions. We focused on 22 species of terrestrial-breeding frogs, Craugastoridae, the most 109 

diverse amphibian family in the Tropical Andes (Hedges et al. 2008, Duellman & Lehr 2009, 110 

Padial et al. 2014). These direct-developing frogs (Figure 1) are ideal model organisms in which 111 

to test hypotheses about divergence across environmental gradients because they have low 112 

vagility (resulting in local genetic structure), small body size (a trait that makes them amenable 113 

for physiological experiments), and limited geographic and elevational ranges (suggesting strong 114 

potential for local adaptation). 115 

 116 

Our goal was to examine how CTmax and CTmin vary in relation to the elevational distribution of 117 

species and to test whether life history traits such as body size and body mass, and elevational 118 
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range midpoint explain differences in CTmax and CTmin among species. Altogether, we used four 119 

metrics relating to elevation (elevational minimum, maximum, midpoint, and range) and two 120 

metrics relating to temperature (maximum air temperature and maximum operative temperature) 121 

as proxy for thermal environments. We reconstructed a phylogeny to determine the evolutionary 122 

relatedness among species and to evaluate the relationship between critical thermal limits and 123 

elevation using phylogenetic comparative methods. We tested for phylogenetic signal in all life 124 

history traits to infer the role of niche conservatism, which is when related species resemble each 125 

other more than expected under a Brownian motion model of trait evolution (Losos 2008). We 126 

also tested whether CTmax and CTmin are correlated with one another, and determined which life 127 

history traits can explain the observed variation in CTmax and CTmin. Furthermore, given that 128 

recent studies focusing on thermal niche evolution of terrestrial ectotherms showed that tolerance 129 

to cold changes more than tolerance to heat (Sunday et al. 2011, Araújo et al. 2013, Hoffman et 130 

al. 2013, Muñoz et al. 2014), we evaluated whether CTmax and CTmin

 133 

 exhibited different rates of 131 

thermal physiological change.  132 

Material and Methods 134 

 135 

Study area. We worked in Manu National Park and its surrounding habitat in southern Peru. 136 

Key study sites along the elevational transect included in this study are Acjanaco (13°11'56" S, 137 

71°37'03" W, 3700 m elev.), Wayqecha Biological Station (13°10'29" S, 71°35'14" W, 2900 m 138 

elev.), San Pedro Cock of the Rock Biological Station (13°03'16" S, 71°32'45" W, 1400 m elev.), 139 

Villa Carmen Biological Station (12°53'44" S, 71°24'14" W, 530 m elev.), and Los Amigos 140 

Biological Station (12°34'07" S, 70°05'57" W, 250 m elev.). A general overview of the study 141 

sites and local climate was provided by Catenazzi et al. (2011) and von May et al. (2009), and 142 

Catenazzi et al. (2013) provided an inventory of the herpetofauna in this region. 143 

 144 

Field surveys and critical thermal limits. All species surveyed in this study are distributed 145 

within the watershed of the Madre de Dios river and along a single montane gradient. Data 146 

collected for this study were obtained from multiple surveys conducted along the elevational 147 

gradient from Los Amigos Biological Station at 250 m (von May et al. 2009, 2010; von May & 148 

Donnelly 2009) to Tres Cruces at 3800 m (Catenazzi & Rodriguez 2001; Catenazzi et al. 2011, 149 
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2013, 2014). We measured CTmax and CTmin in 22 and 14 species, respectively, expanding the 150 

taxonomic diversity, number of individuals sampled per species, and elevational coverage of a 151 

previous study (Catenazzi et al. 2014). Animals were captured in the field and transported to a 152 

field laboratory, where they were kept in individual containers with water ad libitum. All 153 

individuals were housed at 16–21 °C for 2-3 days prior to measurements. Thus, our measures 154 

relate to thermal limits under field conditions, and are likely influenced by both plasticity and 155 

adaptation. We used non-lethal experiments to evaluate critical thermal maxima (CTmax) and 156 

minima (CTmin). CTmax and CTmin were measured as the point where frogs lost their righting 157 

response, defined as the moment when a frog cannot right itself from being placed venter-up for 158 

a period longer than 5 sec (Navas 1997, Navas 2003, Catenazzi et al. 2014). We placed each 159 

individual in a plastic cup with a thin layer of water (3-5 mm) and immersed the cups in a water 160 

bath. For CTmax, the bath temperature was progressively increased from 18°C to up to ~35°C at a 161 

rate of ~1°C/minute by adding warm water. For CTmin, the temperature was progressively 162 

decreased from 18°C to ~0°C by adding ice to the water bath (Christian et al. 1988). We forced 163 

animals to a venter-up position; whenever animals were unable to right themselves for 5 sec, we 164 

used a quick-reading thermometer to measure temperature against the body of the frog immersed 165 

in the thin layer of water. Given the small size of these frogs, we assumed that this temperature is 166 

equivalent to the core temperature of frogs (Navas et al. 2007). The righting response is relevant 167 

for considering selection on thermal physiology, because a frog that is unable to display their 168 

automatic righting reflex will likely be unable to escape predators. We measured CTmax in 768 169 

individuals (22 species) and CTmin in 196 individuals (14 of the 22 species). Even though there 170 

are fewer data points for CTmin

 173 

, our sampling covered the entire gradient for both critical thermal 171 

traits. 172 

Laboratory methods. We collected DNA sequence data for two mitochondrial and two nuclear 174 

genes in order to determine the phylogenetic relationships among focal species. The 175 

mitochondrial genes were a fragment of the 16S rRNA gene and the protein-coding gene 176 

cytochrome c oxidase subunit I (COI). The nuclear protein-coding genes were the 177 

recombination-activating protein 1 (RAG1) and Tyrosinase precursor (Tyr). Extraction, 178 

amplification, and sequencing of DNA followed protocols previously used for terrestrial 179 

breeding frogs (Lehr et al. 2005, Hedges et al. 2008). Primers used are listed in Table S1 and we 180 
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employed the following thermocycling conditions to amplify DNA from each gene using the 181 

polymerase chain reaction (PCR). For 16S, we used: 1 cycle of 96°C/3 min; 35 cycles of 182 

95°C/30 s, 55°C/45 s, 72°C/1.5 min; 1 cycle 72°C/7 min. For RAG, we used: 1 cycle of 96°C/2 183 

min; 40 cycles of 94°C/30 s, 52°C/30 s, 72°C/1.5 min; 1 cycle 72°C/7 min. For Tyr, we used: 1 184 

cycle of 94°C/5 min; 40 cycles of 94°C/30 s, 54°C/30 s, 72°C/1 min; 1 cycle 72°C/7 min. We 185 

performed the cycle sequencing reactions using BigDye Terminator 3.1 (Applied Biosystems) 186 

and ran the purified reaction products on an ABI 3730 Sequence Analyzer (Applied Biosystems). 187 

Newly obtained sequences generated in this study were deposited in GenBank (Table S2).  188 

 189 

Phylogenetic analysis. We used Geneious R6, version 6.1.8 (Biomatters 2013; 190 

http://www.geneious.com/) to align the sequences using the built-in multiple alignment program. 191 

For 16S, we visualized the alignment, trimmed the ends, and removed the highly variable non-192 

coding loop regions (to avoid alignment artifacts). Prior to conducting phylogenetic analysis, we 193 

used PartitionFinder, version 1.1.1 (Lanfear 2012) to select the appropriate models of nucleotide 194 

evolution. We used the Bayesian information criterion (BIC) to determine the best partitioning 195 

scheme and substitution model for each gene. The best fitting substitution model for 16S was 196 

GTR+I+G. The best partitioning scheme for COI and both nuclear genes included specific sets 197 

according to codon positions. For COI, the best partitioning scheme included three sets of sites 198 

(substitution models in parentheses): the first set with 1st codon position (K80+G), the second set 199 

with 2nd codon position (HKY), and the third set with the 3rd codon position (TrN+G). For RAG, 200 

the best partitioning scheme included two sets of sites: the first set with 1st and 2nd codon 201 

positions together (HKY+I) and the second set with only the 3rd codon position (K80+G). 202 

Likewise, for Tyr, the best partitioning scheme included two sets of sites: the first set with 1st and 203 

2nd codon positions together (K80+I) and the second set with only the 3rd

 208 

 codon position 204 

(K80+G). We inferred nuclear haplotypes from genotype data using PHASE version 2.1 205 

(Stephens et al. 2001; Stephens & Scheet 2005) and processed the input and output files with 206 

SEQPHASE (Flot 2010).  207 

We used a multispecies coalescent approach implemented in *BEAST v1.6.2 (Drummond & 209 

Rambaut 2007) to infer a Bayesian multilocus timetree of the 22 focal taxa. The primary goal of 210 

the analysis was to obtain an ultrametric tree to be used for phylogenetic comparative analyses 211 
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(see below). Our analyses only depend on the relative branch lengths of the tree, but we preferred 212 

to illustrate our tree in rough units of time. Therefore, we used an uncorrelated relaxed molecular 213 

clock with the rate of nucleotide substitution for 16S was set at 1% per million years. However, 214 

we note that the dates associated with the tree should only be viewed as very approximate and 215 

that there can be multiple sources of error when calibrating phylogenies (Arbogast et al. 2002). 216 

The analysis in *BEAST included two independent runs, each with 100 million generations and 217 

sampled every 10000 generations. Following the completion of the analysis, we used Tracer v1.5 218 

(Rambaut & Drummond 2007) to examine effective sample sizes, verify convergence of the 219 

runs, and to ensure the runs had reached stationarity. Observed effective sample sizes were 220 

sufficient for most parameters (ESS >200) except for substitution rates for a few partitions. We 221 

discarded the first 10% of samples from each run as burn-in. Subsequently, we used 222 

LogCombiner v1.6.2 to merge all remaining trees from both runs and used TreeAnnotator v1.6.2 223 

(Drummond & Rambaut 2007) to summarize trees and obtain a Maximum Clade Credibility tree 224 

(available at the Dryad Digital Repository: doi:10.5061/dryad.84bp7). We visualized the MCC 225 

tree and the associated node support values in FigTree (http://tree.bio.ed.ac.uk/software/figtree/).  226 

 227 

Phylogenetic signal. For a given quantitative trait, phylogenetic signal is present when related 228 

species tend to resemble one another (Harvey & Pagel 1991, Blomberg et al. 2003). We tested 229 

for phylogenetic signal by calculating the K (Blomberg et al. 2003) and λ statistics (Pagel 1999) 230 

in the R package ‘phytools’ (Revell 2012). Both methods are commonly used to account for non-231 

independence of interspecific data resulting from shared ancestry (Ashton 2004, Revell 2008, 232 

Corl et al. 2010). For K, values smaller than 1 indicate that related species are less similar than 233 

expected under a Brownian motion model of trait evolution whilst values greater than 1 indicate 234 

that related species resemble each other more than expected under a Brownian motion model of 235 

trait evolution (Blomberg et al. 2003). The value of λ typically ranges between 0, indicating no 236 

phylogenetic signal, and 1, indicating strong phylogenetic signal (i.e., when related species 237 

resemble each other more than expected under a Brownian motion model of evolution) (Pagel et 238 

al. 1999). For CTmax and CTmin, phylogenetic signal tests were done both considering and not 239 

considering intraspecific measurement error in either CTmax or CTmin values. Given that 240 

considering measurement error did not affect the results, only results from tests with no 241 

measurement error are included in the Results section.  242 
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 243 

Rates of thermal physiological change. Prior to comparing the rates of physiological change 244 

for CTmax and CTmin

 257 

, we searched for a model of evolution that best explains the variation in the 245 

observed data. We used the fitContinuous function in GEIGER (Harmon et al. 2008) to fit three 246 

models of evolution: Brownian Motion (BM), Ornstein-Uhlenbeck (OU), and Early Burst (EB). 247 

The Brownian motion model assumes a constant rate of change, such that the differences 248 

between species will (on average) be proportional to the time since their divergence. The 249 

Ornstein-Uhlenbeck model assumes a stationary distribution, such that the differences between 250 

species will not necessarily relate to their time since divergence. Finally, the Early Burst model 251 

assumes an exponential decline in rates through time. This means that species with recent 252 

divergence times will be very similar, while species with deeper divergences will be relatively 253 

independent of one another. After determining the best fitting model of evolution for each trait, 254 

we used the R package ‘APE’ (Paradis et al. 2004) and code developed by Adams (2013) to 255 

estimate the rates of change. 256 

Correlates of CTmax and CTmin.  We explored the relationship between critical thermal traits 258 

and other life history characteristics (body size and body mass) as well as four metrics relating to 259 

elevation minimum, maximum, midpoint, and range collected from 22 species of 260 

craugastorid frogs. We also considered maximum air temperatures (Ta) and maximum operative 261 

temperatures (Te), both of which were previously estimated for the same montane gradient 262 

(Catenazzi et al. 2014). The Ta data were inferred by regressing daily average temperatures vs. 263 

elevation from four weather stations operated by Peru’s national weather service (SENAMHI = 264 

Servicio Nacional de Meteorología e Hidrología del Perú) from 520 to 3485 m. The Te data were 265 

inferred from field measurements taken with 21 iButtons (Maxim Integrated Products, 266 

Sunnyvale, California, U.S.A.) placed in forest microhabitats used by frogs at five sites between 267 

1525 and 3500 m. For two species that are primarily distributed in the Andean grassland 268 

(Bryophryne cophites and Psychrophrynella usurpator), Te data were inferred from 269 

measurements taken with 12 iButtons placed in this microhabitat from 2800 to 3450 m. 270 

Furthermore, as in Catenazzi et al. (2014), we calculated operative warming tolerances (OWTs) 271 

by subtracting the average maximum Te from CTmax. We also considered the thermal range, 272 

defined as the difference between CTmax and CTmin. We examined a correlogram displaying the 273 
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relationships between pairs of variables (Figure S1) to determine which predictor variables were 274 

highly correlated with each other. We used the R package ‘phylolm’ (Ho & Anné 2014ab) to fit 275 

phylogenetic generalized linear regression models. This package implements a phylogenetic 276 

regression under various models for the residual error, including Brownian Motion (BM) and 277 

Ornstein-Uhlenbeck (OU; these models were implemented with a constant selection strength α 278 

and variance rate σ2

 281 

). We used the AIC value to identify the model that best explains the 279 

variation of observed data (Ho & Anné 2014b).  280 

Results 282 

 283 

Phylogenetic relatedness and elevational distribution. We recovered a well-supported 284 

phylogenetic tree (Figure 2 and Figure S2; node support values shown in Figure S2) that was 285 

generally congruent with previous trees (Padial et al. 2014). Seventeen out of 21 nodes had 286 

Bayesian posterior probabilities greater than 0.95 (Figure S2). We mapped elevational data on to 287 

the species tree obtained with *BEAST to visually assess the patterns of elevational distribution 288 

and phylogenetic relatedness (Figure 2).  289 

 290 

We observed that closely related, congeneric species exhibit generally parapatric distributions 291 

with respect to elevation; an exception to this pattern was seen in some species of Pristimantis 292 

(e.g., P. platydactylus and P.  salaputium) that exhibit broader elevational overlap (Figure 2). A 293 

congruent and similarly well-supported phylogeny was obtained with a concatenated partitioned 294 

dataset analyzed with MrBayes (Ronquist & Huelsenbeck 2003; see Supplementary Information 295 

and Figure S3).  296 

 297 

Critical thermal traits. We observed substantial differences in CTmax values (from 24.8 °C to 298 

34.8 °C) among both closely- and distantly-related species (Figure 3; Table S3). In five cases, 299 

close relatives had non-overlapping CTmax values and non-overlapping elevational distributions. 300 

The highest CTmax was found in Oreobates cruralis, an exclusively lowland species, and the 301 

lowest CTmax was found in Bryophryne hanssaueri, a species distributed in highland forests just 302 

below the treeline. CTmin also varied substantially across the gradient (from 1.6 °C to 15.2 °C; 303 

Table S3). In three cases, close relatives exhibited non-overlapping CTmin values (Figure S4). 304 
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 305 

Phylogenetic signal. No phylogenetic signal was detected for CTmax, in tests both considering 306 

and not considering intraspecific measurement error in CTmax values (Table 1; only results from 307 

tests with no measurement error are shown). This result infers that, for CTmax, closely related 308 

species are less similar than expected from a Brownian motion model of evolution along the tree. 309 

Likewise, no phylogenetic signal was detected for CTmin

 316 

, based on a test using the reduced 310 

dataset (14 species). In contrast, a strong phylogenetic signal was detected for both SVL and 311 

body mass, and a moderate phylogenetic signal for minimum elevation, maximum elevation, 312 

elevational midpoint, and elevational range (Table 1). The only discrepancy observed between 313 

the two phylogenetic signal statistics was observed for maximum elevation (λ non-significant) 314 

and elevational range (λ marginally non-significant).  315 

Rates of thermal physiological change. Results of fitting tests for the three models of trait 317 

evolution showed that BM was the best model for both CTmax and CTmin (Table S4). The method 318 

used for estimating the rates of evolution (Adams 2013) assumes a constant rate of change (BM), 319 

and we performed this test assuming BM for both traits and using the reduced dataset (14 320 

species). We found that CTmax exhibits a slower rate of change than CTmin (σ2 = 0.686 and σ2 

 323 

= 321 

1.353, respectively; likelihood ratio test, LRT = 4.443, AICc = 128.319, P = 0.035).  322 

Correlates of CTmax and CTmin. Phylogenetic linear regression models indicated that CTmax 324 

and CTmin were significantly correlated with all proxies of thermal environmentminimum 325 

elevation, maximum elevation, elevational midpoint, maximum air temperature, and maximum 326 

operative temperature (Table 2, Table 3). In all cases, increasing elevation led to decreasing 327 

CTmax and CTmin (Figure 4, Table 2, Table 3). Body size, body mass, and elevational range did 328 

not explain the variation in CTmax and CTmin (Table 2, Table 3). Models with two or more 329 

variables did not provide a better fit compared to univariate models (i.e., AIC values of models 330 

with two or more variables were greater than AIC values of univariate models; Table S5). 331 

Further, CTmax and CTmin

 334 

 were significantly correlated with one another (AIC = 53.46, Log 332 

likelihood = -23.73, P = 0.0003; reduced dataset of 14 species). 333 
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Our data also showed that operative warming tolerance (OWT) increased with elevation (AIC = 335 

86.90, Log likelihood = -40.45, P < 0.001; Figure 5). Therefore, the distance between CTmax and 336 

maximum operative temperature (Te) of high-elevation species is greater that that of species 337 

distributed at lower elevations. We also observed a consequent increase in thermal range (= 338 

CTmax

 341 

 − CTmin) at higher elevations, although this relationship was marginally non-significant 339 

(AIC = 59.87, Log likelihood = -26.94, P < 0.0831; Figure 5). 340 

Discussion 342 

 343 

Our findings suggest that thermal physiology is relevant in determining where species live, and 344 

provide further evidence that local adjustment to the thermal environment, whether by plasticity 345 

or adaptation, is an important process in tropical mountains (Cadena et al. 2012). Overall, critical 346 

thermal limits decreased with elevation as well as with decreasing air (Ta) and operative (Te

 350 

) 347 

temperatures, a pattern exhibited by other terrestrial ectotherms living along montane gradients 348 

(Christian et al. 1988, Gaston & Chown 1999, Navas 2003, Muñoz et al. 2014).  349 

Importantly, the high variability observed in both CTmax and CTmin

 362 

 among closely related species 351 

(Figures 3 and S4) supports the idea that thermal traits in ectotherms can adjust through 352 

evolutionary time. In contrast to studies focusing on thermal physiology across distantly related 353 

taxa (i.e., different families) and/or larger geographic scales (e.g., Kellermann et al. 2012a,b, 354 

Araújo et al. 2013, Sunday et al. 2014), we investigated species within a single family distributed 355 

along a steep elevational gradient. We believe this approach can be used to refine predictions and 356 

to test further hypotheses regarding physiological divergence among montane taxa, especially if 357 

such studies incorporate knowledge of phylogenetic relatedness among species. Synthesizing this 358 

information is essential for understanding historical patterns and processes determining species’ 359 

elevational distributions and for predicting species’ responses to climate change (Moritz & 360 

Agudo 2013). 361 

Our tests of phylogenetic signal focusing on CTmax indicated that closely related species are less 363 

similar than expected under a Brownian motion model of evolution, supporting the idea that even 364 

upper thermal limits can change rapidly in this diverse amphibian clade. This finding, along with 365 
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those from Neotropical plethodontid salamanders (Kozak & Wiens 2007), suggests that niche 366 

divergence in tolerance to heat may be common among montane amphibians (e.g., Navas 1997, 367 

Navas 2003). Our tests of phylogenetic signal focusing on CTmin based on a reduced dataset (14 368 

species) also suggested that closely related species tend to differ in their tolerance to cold. The 369 

reduced dataset for CTmin spans the full elevational range, but had few species distributed at high 370 

elevation (e.g., only one species of Bryophryne and only one Psychrophrynella), so an expanded 371 

dataset is required to examine this pattern more thoroughly. Given that CTmax and CTmin are 372 

significantly correlated with one another, and that each of these traits is significantly correlated 373 

with elevational midpoint, maximum elevation, and minimum elevation, we predict that an 374 

expanded dataset for CTmin

 381 

 will support the hypothesis that tolerance to cold has changed rapidly 375 

in this clade. Given that the Andes have experienced multiple uplift events since the Miocene 376 

(Hoorn et al. 2010), the emergence of colder environments along the montane gradient might 377 

have promoted rapid divergence in species’ thermal physiological traits. These observations for 378 

amphibians contrast with experimental studies of Drosophila, were there appears to be strong 379 

phylogenetic constraint on both cold and heat tolerance (Kellermann et al. 2012a,b). 380 

Nevertheless, observing strong correlations does not necessarily imply that either the lower or 382 

upper bound of the elevational range of montane frog species is constrained by their critical 383 

thermal limits (Navas 1997, Catenazzi 2011). In addition to species’ thermal physiology, factors 384 

such as availability of breeding sites, competition, predation, and other biotic interactions may 385 

play an important role in restricting species’ elevational distribution (Hutchinson 1957, Terborgh 386 

& Weske 1975, Wake & Lynch 1976). Likewise, other climatic factors such as rainfall, relative 387 

humidity, and availability of microrefugia in the dry season may also play a role in determining 388 

the upper and lower elevational range limits in some species (Wake & Lynch 1976, McCain & 389 

Grytnes 2010, Graham et al. 2014).   390 

 391 

Our finding that CTmin has faster rates of change than CTmax is consistent with results from 392 

phylogenetic comparisons of sets of related lizards distributed across elevational gradients in the 393 

tropics (e.g., Muñoz et al. 2014, 2016). Nevertheless, differences in species distributions and in 394 

species’ thermoregulation strategies between frogs and lizards might reflect contrasting patterns 395 

of physiological evolution. Whilst lizards tend to occur in warm places where they can actively 396 
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thermoregulate, frogs occur in greater numbers in cold environments and most species are 397 

considered to be thermoconformers (Navas 2003)—with the notable exceptions of some high-398 

elevation frog species that thermoregulate opportunistically (Navas 1997). For example, the 399 

mountaintop at our study site (~ 3500 m elevation) is inhabited by eight frog species of three 400 

families, but only one lizard species. Therefore, the selective pressures on thermal limits are 401 

likely to differ largely between frogs and lizards. 402 

 403 

Several studies focusing on terrestrial ectotherms have suggested that plasticity may not play an 404 

important role in shaping inter-specific variation in critical thermal limits. For example, a recent 405 

meta-analysis by Gunderson & Stillman (2015) found that terrestrial ectotherms exhibit low 406 

acclimation potential (i.e., low plasticity) for heat resistance. However, this hypothesis requires 407 

further testing and the group of tropical frogs studied here represents a suitable study system to 408 

examine the contribution of plasticity vs. genetic effects. Future studies should examine variation 409 

in the acclimation potential of montane and high-elevation tropical frogs, complementing 410 

previous studies that found no such capacity, or very low acclimation potential, in frogs 411 

(Brattstrom 1968, Christian et al. 1988, Gunderson & Stillman 2015). 412 

 413 

Our findings do not support a broad assumption of niche conservatism in research aimed at 414 

examining species’ responses to environmental change. Many researchers have used species 415 

distribution modeling approaches to predict whether species will experience range shifts or 416 

extinction in the face of climate warming (Chen et al. 2011, Laurance et al. 2011, VanDerWal et 417 

al. 2012). The assumption underlying many of these studies is that climatic niches have not 418 

changed along the history of species, both within and among closely related species (Wiens et al. 419 

2010). However, our results call for caution in assuming inflexibility of thermal limits, especially 420 

CTmax, in montane anurans, and underscore the value of collecting additional empirical data on 421 

species’ thermal physiology (Perez et al. 2016). It is worth noting that while our results suggest 422 

that thermal limits may change rapidly on the time scale of the formation of new species, it is 423 

still an open question about whether thermal physiology will be able to keep pace with future 424 

global climate change that may be more rapid than in the recent past (Gunderson & Stillman 425 

2015). Our data on operative warming tolerance (Figure 5) support the idea that tropical lowland 426 
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species might be more sensitive to increased temperatures than high-elevation species, because 427 

they live at ambient conditions that are closer to their critical thermal limits (Colwell et al. 2008, 428 

Huey et al. 2009, Sunday et al. 2014). In turn, tropical amphibians living at high elevation might 429 

be more buffered from increased temperatures, as their CTmax

 434 

 values are farther away from the 430 

maximum temperatures that they regularly experience in the wild (Catenazzi et al. 2014). More 431 

studies on populations/species that have recently diverged along montane gradients are needed to 432 

help estimate maximal rates of change of thermal limits. 433 
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 800 

 801 

 802 

 803 

 804 

 805 

Figure legends 806 

 807 

Figure 1. (A) Female Bryophryne cophites attending a clutch of direct-developing embryos at 808 

high elevation (above 3200 m a.s.l.). These frogs tolerate near-freezing temperatures (which they 809 

experience during the dry season) as well as moderately high temperatures (which they may 810 

experience during sunny days). (B) Bryophryne hanssaueri individuals have bright orange 811 

coloration ventrally, including the throat. These frogs live under mosses and leaf litter in the 812 

high-elevation cloud forest between 3195 and 3430 m, just below the treeline. Like other 813 

Bryophryne species, females attend clutches of direct-developing embryos until they hatch into 814 

tiny froglets. Photographs by A. Catenazzi.  815 

 816 

Figure 2. Elevational divergence in terrestrial breeding frogs along a tropical montane gradient. 817 

Species tree (obtained with *BEAST) depicting the relationship among the 22 species included 818 

in this study (top) and their elevational distribution along the study transect (bottom). The 819 

elevational midpoint is denoted by a black bar. Species are color-coded according to genus.  820 

 821 

Figure 3. Divergence in CTmax in terrestrial breeding frogs along a tropical montane gradient. 822 

Species tree (obtained with *BEAST) depicting the relationship among the 22 species included 823 

in this study (top) and box plots depicting their CTmax

 827 

 values (bottom). The box plots show the 824 

median (black bar), interquartile range (box), and 1.5 times the inter-quartile range (bars); circles 825 

represent outliers. Species are color-coded according to genus. 826 
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Figure 4. Correlation between CTmax and elevational midpoint (left) and between CTmin

 831 

 and 828 

elevational midpoint (right). Species are color-coded according to genus (see Figures 2 and 3). 829 

The slopes of the regression lines reflect the phylogenetic corrections in each model. 830 

Figure 5. Correlation between operative warming tolerance and elevational midpoint (left) and 832 

correlation between thermal range (= CTmax − CTmin

 835 

) and elevational midpoint (right). Species 833 

are color-coded according to genus and the regression lines reflect the phylogenetic correction.  834 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

Tables  852 

 853 

Table 1. Results from the tests for phylogenetic signal based on two statistics, K and λ. Log 854 

likelihood values included correspond to the λ estimates. Phylogenetic signal tests were done 855 

with the full dataset (22 species) for all traits except for CTmin. Phylogenetic signal tests were 856 

conducted for CTmin and repeated for CTmax

Trait 

 with the reduced dataset (14 species).  857 

K P-value λ (K) P-value lnL (λ) 
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Analyses with full dataset  

(22 species)      

CT 0.3955 max 0.1572 0.0626 0.8202 -49.22 

SVL 0.9548 0.0010 1.0352 0.0003 -64.71 

Mass 0.7589 0.0030 1.0560 0.0031 -24.61 

Minimum elevation 0.7011 0.0020 0.7291 0.0055 -179.52 

Maximum elevation 0.5233 0.0140 0.3854 0.1559 -181.17 

Elevational midpoint 0.6115 0.0060 0.5903 0.0307 -180.03 

Elevational range 0.4944 0.0280 0.4999 0.0635 -160.54 

Analyses with reduced dataset 

(14 species)      

CT 0.7019 min 0.0631 1.1339 0.0681 -35.68 

CT 0.5279 max 0.2302 0.0001 1.000 -30.25 

 858 

 859 

 860 

 861 

 862 

Table 2. Results from phylogenetic generalized linear regression models for CTmax, fitted 863 

assuming the Brownian Motion (BM) model of evolution. Model fitting was done with the full 864 

dataset (22 species). Similar results were obtained with the Ornstein-Uhlenbeck (OU) model 865 

(results not shown). Ta = maximum air temperature; Te

Model 

 = maximum operative temperature. 866 

Evol. model Coefficient P-value AIC lnL 

CTmax BM  ~ min_elev -0.0023 <0.001 90.02 -42.01 

CTmax BM  ~ max_elev -0.0020 <0.001 93.24 -43.62 

CTmax BM  ~ elev_midpoint -0.0022 <0.001 90.21 -42.10 

CTmax BM  ~ elev_range -0.0002 0.881 110.27 -52.13 

CTmax ~ T BM a 0.3542 <0.001 89.09 -41.55 

CTmax ~ T BM e 0.4782 <0.001 69.28 -31.64 

CTmax BM  ~ svl -0.1844 0.136 107.78 -50.89 

CTmax BM  ~ mass -1.191 0.115 107.49 -50.75 

 867 

 868 
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 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

Table 3. Results from phylogenetic generalized linear regression models for CTmin, fitted 878 

assuming the Brownian Motion (BM) model of evolution. Model fitting was done with the 879 

reduced dataset (14 species). Similar results were obtained with the Ornstein-Uhlenbeck (OU) 880 

model (results not shown). Ta = maximum air temperature; Te

Model 

 = maximum operative 881 

temperature.  882 

Evol. model Coefficient P-value AIC lnL 

CTmin BM  ~ min_elev -0.0031 <0.001 58.99 -26.50 

CTmin BM  ~ max_elev -0.0026   <0.001 56.39 -25.20 

CTmin BM  ~ elev_midpoint -0.0029 <0.001 56.14 -25.07 

CTmin BM  ~ elev_range 0.0041 0.081 75.17 -34.59 

CTmin ~ T BM a 0.4728 <0.001 51.74 -22.87 

CTmin ~ T BM e 0.5998 <0.001 58.26 -26.13 

CTmin BM  ~ svl -0.2730 0.138 76.19 -35.10 

CTmin BM  ~ mass -1.2024 0.358 77.83 -35.92 

 883 
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