
 
1 

Top-down estimate of methane emissions in California using a mesoscale inverse 

modeling technique: The San Joaquin Valley  

 

Yu Yan Cui1,2, Jerome Brioude1,2,3, Wayne M. Angevine1,2, Jeff Peischl1,2, Stuart A. 

McKeen1,2, Si-Wan Kim1,2, J. Andrew Neuman1,2, Daven K. Henze4, Nicolas Bousserez4, 

Marc L. Fischer5, Seongeun Jeong5, Hope A. Michelsen6, Ray P. Bambha6, Zhen Liu6,7, 

Gregory W. Santoni8, Bruce C. Daube8, Eric A. Kort9, Gregory J. Frost2, Thomas B. 

Ryerson2, Steven C. Wofsy8, Michael Trainer2  

 

1Cooperative Institute for Research in Environmental Sciences, University of Colorado, 

Boulder, CO, USA. 
2Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, CO, 

USA. 
3Laboratoire de l'Atmosphere et des Cyclones, UMR8105, CNRS-Meteo France-

Universite La Reunion, La Reunion, France. 
4Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.  
5Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 

Berkeley, CA, USA.  
6Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA.  
7Now at Ramboll Environ US Corporation, Novato, CA, USA.  
8Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA. 
9Department of Climate and Space Sciences and Engineering, University of Michigan, 

Ann Arbor, MI, USA.  

 

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/2016JD026398

http://dx.doi.org/10.1002/2016JD026398
http://dx.doi.org/10.1002/2016JD026398


 
2 

Corresponding Author: Yu Yan Cui (Yuyan.Cui@noaa.gov) 

 

 

Key Points:  

• Estimate methane emissions in the San Joaquin Valley using inverse modeling  

and a mass-balance approach 

• Methane emissions are estimated to be greater than the bottom-up  

inventory by a factor of 1.7 

• Livestock largely account for differences between the optimized and prior  
 
methane emission estimates   

 

Index terms: 

0322 Constituent sources and sink 

3260 Inverse theory 

0345 Pollution: urban and regional  

0365 Troposphere: composition and chemistry 

 

Keywords: 

methane; emission inventory; inverse modeling; mass-balance estimate; the San Joaquin 

Valley of California  

  

This article is protected by copyright. All rights reserved.



 
3 

Abstract 

We quantify methane (CH4) emissions in California’s San Joaquin Valley (SJV) using 

four days of aircraft measurements from a field campaign during May-June 2010 together 

with a Bayesian inversion method and a mass-balance approach. For the inversion 

estimates, we use the FLEXible PARTicle dispersion model (FLEXPART) to establish 

the source-receptor relationship between sampled atmospheric concentrations and surface 

fluxes. Our prior CH4 emissions estimates are from the California Greenhouse Gas 

Emissions Measurements (CALGEM) inventory. We use three meteorological 

configurations to drive FLEXPART and subsequently construct three inversions to 

analyze the final optimized estimates and their uncertainty (one standard deviation). We 

conduct May and June inversions independently, and derive similar total CH4 emissions 

estimates for the SJV: 135±28 Mg/hr in May and 135±19 Mg/hr in June. The inversion 

result is 1.7 times higher than the prior estimate from CALGEM. We also use an 

independent mass-balance approach to estimate CH4 emissions in the northern SJV for 

one flight when meteorological conditions allowed. The mass-balance estimate provides 

a confirmation of our inversion results, and these two independent estimates of the total 

CH4 emissions in the SJV are consistent with previous studies. In this study, we provide 

optimized CH4 emissions estimates at 0.1° horizontal resolution. Using independent 

spatial information on major CH4 sources, we estimate that livestock contribute 75–77% 

and oil/gas production contributes 15–18% of the total CH4 emissions in the SJV. 
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Livestock explain most of the discrepancies between the prior and the optimized 

emissions from our inversion. 

 

1. Introduction  

Methane (CH4) is the second most significant greenhouse gas. It has a large 

global-warming potential and mediates global tropospheric chemistry. Globally, more 

than 60% of total CH4 emissions are attributed to human activities [EPA, 2015], such as 

the natural gas and petroleum industries, domestic livestock operations, landfills, rice 

cultivation, and coal mining. Reducing CH4 from human activity is important for 

reducing risks associated with climate change. As the most populous state of the US and 

a major CH4 emitter, California enacted State Assembly Bill 32 

(http://www.arb.ca.gov/cc/ab32/ab32.htm) in 2006 to reduce greenhouse gas emissions to 

1990 emission levels by the year 2020, and to reduce greenhouse gas emissions to 40 

percent below 1990 levels by year 2030. Achieving this goal requires accurate accounting 

of the magnitude and source attribution of CH4 emissions.  

The Central Valley covers about 14% of California’s total land area and is the 

leading dairy-farming and most productive agricultural region in California. Twenty 

percent of US milk production occurs in California, mostly in the Central Valley 

(http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1103). 

The California Greenhouse Gas Emissions Measurements (CALGEM, 
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http://calgem.lbl.gov) project found that the Central Valley is the California region with 

the highest CH4 emissions [Zhao et al., 2009; Jeong et al., 2012; Jeong et al., 2013]. The 

San Joaquin Valley (SJV), the southern portion of the Central Valley, contains a variety 

of potential CH4 sources of anthropogenic origin, including approximately 2 million head 

of cattle and calves [National Agricultural Statistics Service, 2013], more than 75,000 

active oil wells, and many cities.  

Current bottom-up inventories of CH4 sources in the SJV are quite uncertain. The 

Emission Database for Global Atmospheric Research (EDGAR) version 4.2 global 

emission inventory at 0.1° × 0.1° horizontal resolution (http://edgar.jrc.ec.europa.eu) 

reports that the CH4 emissions from livestock in the SJV are 26.7 Mg/hr. However, a 

bottom-up study from CALGEM at 0.1° × 0.1° horizontal resolution calculated CH4 

emissions from livestock in the San Joaquin Valley to be 60.4 Mg/hr, more than twice 

that of EDGAR version 4.2 [Jeong et al., 2013]. The SJV is also a significant region for 

petroleum and natural gas production. A new bottom-up study from Jeong et al. [2014] 

reports 3 to 7 times higher emissions from petroleum and natural gas production than the 

California Air Resources Board (CARB) 2013 Oil and Gas Industry Survey Results and 

2014 greenhouse gas emissions inventory.  

To improve emissions quantification, atmospheric measurements have 

increasingly been used to constrain the bottom-up emissions estimates.  In the SJV, there 

are ongoing studies using the tower measurements to estimate CH4 emissions [Zhao et al., 
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2009; Jeong et al., 2013, 2016]. Current satellite data have been used to constrain CH4 in 

California, but CH4 emissions estimates using satellite observations over the Central 

Valley remain difficult because of the scarcity of observations [Wecht et al., 2014; 

Bousserez et al., 2016].  

A field campaign named the California Research at the Nexus of Air Quality and 

Climate Change (CalNex, Ryerson et al., 2013) took place in California during May and 

June 2010. During CalNex, the NOAA WP-3 aircraft collected intensive measurements, 

including CH4 mixing ratios, over the South Coast Air Basin and the Central Valley. To 

identify contributions from individual source categories, the aircraft flew close to 

emission sources with extensive horizontal and vertical coverage. The CalNex aircraft 

measurements provide a good opportunity to conduct a top-down estimate of the CH4 

emissions in these regions of California [Peischl et al., 2013; Cui et al., 2015]. The large 

spatial coverage of the aircraft enables sampling of multiple CH4 sources distributed 

across the complex terrain of the SJV, providing a useful complement to ground-based 

and remote-sensing measurements.  

This study uses a mesoscale inverse modeling technique to estimate CH4 

emissions in the SJV based on aircraft measurements from CalNex. This mesoscale 

inverse modeling system has already been employed to estimate CH4 emissions in the 

South Coast Air Basin of California [Cui et al., 2015] using measurements from the same 

campaign. The mass-balance approach [White et al., 1976], an independent top-down 
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method, is applied in part of the SJV to provide confirmation of the inverse modeling 

results. We compare our top-down CH4 emissions estimates to three different inventories. 

We also compare our results with another inversion analysis of the same region using 

tower measurements [Jeong et al., 2013, 2016]. 

The details of our methodology are described in Section 2. Our optimized 

emissions and interpretation of the results are presented in Section 3. Conclusions are 

given in Section 4. 

 

2. Methods 

In this section, we describe the atmospheric measurements of CH4 mixing ratios 

from the National Oceanic and Atmospheric Administration (NOAA) WP-3 aircraft. We 

describe the prior CH4 emission inventories, the construction of our atmospheric transport 

model used to build the source-receptor relationships, and the design of our Bayesian 

inverse modeling. The mass-balance approach, which provides an independent estimate 

of CH4 emissions based on the aircraft measurements, is described.  

 

2.1 Measurements  

In CalNex, the NOAA WP-3 aircraft obtained in situ measurements over the SJV 

during four daytime flights (May 7, May 12, June 16, and June 18) (Figure 1). We 

classify the 8 counties of the SJV into two sub-regions named D1 and D2 (Figure 1 (A)). 
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D1 is the southern SJV including Madera, Fresno, Tulare, Kings, and Kern Counties, and 

D2 is the northern SJV including San Joaquin, Stanislaus, and Merced Counties. D1 and 

D2 correspond to regions #12 and #8, respectively, of Jeong et al. [2013]. The May 7 and 

June 16 flights flew over D1, and the May 12 and June 18 flights flew over D2 (Figures 1 

(C) and (D). We excluded flight portions over the ocean and during takeoff and landing 

from the Los Angeles area.  

CH4 mixing ratios observed by the NOAA P-3 aircraft were measured once per 

second using wavelength-scanned-cavity-ring-down spectroscopy (WS-CRDS; Picarro 

1301 m) [Peischl et al., 2012, 2013]. The precision of the 1-Hz CH4 measurement is ± 

1.4 ppbv, and accuracy is estimated at ±1.2 ppbv. We aggregate these observations into 

30-s averages for use in the inversion framework, which, at a ground speed of 

approximately 100 m s-1, correspond to segments of about 3 km horizontally (Figure 2). 

This aggregated dataset provides the receptor points in our backward trajectory 

simulations from the atmospheric transport models described in Section 2.3 and is used in 

an inverse-modeling analysis.  

 

2.2 Prior emission inventory  

           A prior inventory provides critical information for Bayesian inversion modeling, 

particularly when atmospheric measurements alone cannot fully constrain the spatial 

distribution of the emissions sources. Inaccurate representation of the spatial distribution 
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of emissions sources in a prior limits the performance of inverse modeling [Xiang et al., 

2013]. Therefore, we need to select the best available inventory for the prior input. We 

compared three available CH4 inventories: a recent gridded top-down inventory based on 

the US EPA National Emissions Inventory (NEI 2011, https://www.epa.gov/air-

emissions-inventories/2011-national-emissions-inventory-nei-data) [Ahmadov et al., 

2015], a recent gridded bottom-up inventory designed to be consistent with the US EPA 

Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012 [Maasakkers et 

al., 2016], and a gridded bottom-up inventory from CALGEM designed to match the 

CARB inventory for 2008 [Jeong et al., 2012, 2013]. These three inventories provide 

annual average CH4 emissions estimates.   

The spatial distributions of the three inventories are shown in Figure S1, and their 

total CH4 emissions for the SJV and its D1 and D2 sub-regions are listed in Table 1. The 

three inventories’ SJV total CH4 emissions estimates range from 68-107 Mg/hr. We find 

distinct variations between the three inventories’ spatial distributions of CH4 emissions 

from livestock and active oil and gas wells. CALGEM, developed by Zhao et al. [2009] 

and Jeong et al. [2012], relies on more detailed local information about source locations 

and activity to generate the gridded CH4 emissions estimates, compared with the other 

two inventories based on EPA’s NEI and GHGI. For example, CALGEM’s spatial 

distributions for livestock and oil/gas sources are based on the California Department of 

Water Resources land-use survey database [Salas et al., 2009] and the California 
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Department of Conservation's Division of Oil, Gas, and Geothermal Resources database  

(http://www.conservation.ca.gov/dog/pubs_stats/annual_reports/Pages/annual_reports.asp

x), respectively. Among the three inventories considered, CALGEM contains the most 

accurate spatial distributions for the major CH4 sources in the Central Valley, and we 

therefore use CALGEM as the foundation of our prior inventory.  We also update the 

oil/gas source sector of CALGEM in the SJV according to emissions from Jeong et al. 

[2014]. The CALGEM inventory is available at 0.1° × 0.1° spatial resolution, and we 

optimize the inventory at the same resolution. 

Similar to Cui et al. [2015], our study adjusts the magnitude of total CH4 

emissions in each grid cell of the prior annual average inventory, without differentiating 

source sectors. When we calculate the contributions from different source sectors 

independently, we require extra spatial information. Figure 1 (B) presents the spatial 

information for the two dominant CH4 sources in the SJV: dairies (an important 

livestock-related activity across the SJV) and active oil/gas wells [Jeong et al., 2013]. 

Like CALGEM, we obtained the spatial information for livestock sources from Salas et 

al. [2008], and the spatial distribution of the active oil and gas wells was taken from 

California’s Department of Conservation Division of Oil, Gas, and Geothermal 

Resources database 

(http://www.conservation.ca.gov/dog/pubs_stats/annual_reports/Pages/annual_reports.asp

x). Livestock sources are highly concentrated in both the D1 and D2 sub-regions. Oil and 
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gas production is mainly found in the southern part of D1. In the SJV, the oil and gas 

production sector has much larger CH4 emissions than oil/gas processing, transmission 

and distribution [Jeong et al., 2014].  

Although livestock and oil/gas production are the two major sources in the SJV, 

they are rarely collocated in the same 0.1° grid cell, allowing for the estimation of total 

emissions from each of them. In this study, if a grid cell includes more than one sector, 

only the sector with the highest emission in that cell is represented (this situation occurs 

less than 5% of the time). We assume that the uncertainty of the total emissions estimates 

due to the spatial partitioning of the two major sources is smaller than the transport 

uncertainty, and we did not explicitly include the spatial partitioning uncertainty for the 

source contribution estimate in this study. The similar spatial patterns shown in Figure 1 

(A) and (B) demonstrate that the prior inventory captures the spatial patterns of major 

sources.  

 

2.3 Atmospheric transport modeling  

Following Cui et al., [2015], the FLEXPART-WRF Lagrangian model version 3.1 

[Brioude et al., 2013] is used to calculate source-receptor relationships, a.k.a. footprints. 

The surface footprints (s m2 kg-1) represent the residence time within a surface layer 

(below 100 m above ground level) weighted by the atmospheric density. We conducted 

three atmospheric transport simulations using FLEXPART driven by three different 
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meteorology configurations from the Weather Research Forecasting Model (WRF) 

(Table 2). The three WRF meteorological fields have a 4 x 4 km horizontal grid spacing. 

The first and second meteorology configurations (WRF1 and WRF2) are from Angevine 

et al. [2012]. The third WRF configuration (WRF3) is from Kim et al. [2016]. Using 

measurements from the same field campaign, WRF1 and WRF2 have been used to 

estimate nitrous oxide emissions in the Central Valley [Xiang et al., 2013], and WRF3 

has been used to estimate ozone in the Los Angeles region [Kim et al., 2016]. Detailed 

information on evaluations of planetary boundary layer height (PBLH), wind speed, and 

wind direction from the three transport models can be found in Angevine et al. [2012] and 

Kim et al., [2016]. Here we show model evaluations using observations from the four 

flights in Figures S2-S4 and Table S1.  

Correlations between any of the three CH4 simulations with differing 

meteorological configurations are no larger than the correlations between any model 

simulation and the observations. Therefore, the three model simulations can be treated as 

independent representations of the meteorology. Each model is used in our inverse 

modeling system to derive the posterior emissions estimates, and the final optimized 

emissions estimates are based on the mean value from the three estimates. Three 

meteorological models can only represent part of the phase space of model uncertainties. 

A complete estimate of transport model uncertainty would require a larger ensemble and 

more comprehensive characterization [Angevine et al., 2014].  

This article is protected by copyright. All rights reserved.



 
13 

Ten thousand FLEXPART-WRF back trajectories were initiated at each receptor 

point along the flight track and run for three days backward in time. We derive our 

surface footprint from FLEXPART-WRF at the same spatial resolution (0.1° x 0.1°) as 

the prior. The surface footprints for the May and June inversions from each of the 

transport models are shown in Figure 3.  

Figure 4 presents the mean vertical profiles of CH4 mixing ratios in 100-m vertical 

intervals over the SJV from the aircraft measurements and from the three transport 

models using the CH4 prior inventory. The error bars represent the standard deviations 

among the three different transport models. There is no obvious bias in the simulated 

vertical mixing.  There is a small bias in simulating CH4 in the upper part of the mean 

profile, but the bias is statistically insignificant as it is smaller than the uncertainty range 

of the CH4 background determination (see next section). There is a systematic low bias in 

the modeled CH4 concentrations below 1600-1800 m above sea level (ASL), which is 

attributed to a bias in the prior emissions estimates as shown below.  

 

2.4 Bayesian inverse modeling 

We perform a 4-dimensional (three spatial dimensions in the model plus time) 

inversion using a Bayesian framework by minimizing a cost function assuming 

lognormal distributions for the observed enhancements and surface fluxes [Brioude et al., 

2011]. The cost function used in the inversion framework is 
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𝐽 = 1
2

(ln(𝑦0) − ln(𝐻𝑥))𝑇𝑅−1(ln( 𝑦0) − ln(𝐻𝑥)) + 1
2
𝛼(ln(𝑥) − ln(𝑥𝑏))𝑇𝐵−1(ln(𝑥) −

ln(𝑥𝑏)), 

where yo is the measured time series of CH4 mixing ratio enhancement above defined 

background, H is the source-receptor relationship matrix calculated by FLEXPART-

WRF, R and B are the error covariance matrices of the model-observation mismatch and 

the prior information, respectively, xb is the prior emission inventory, and x is the 

posterior emission inventory to be determined. The parameter 𝜶 [Henze et al., 2009] 

balances the errors of both covariance matrices in the minimization of the cost function to 

calculate the best estimates of emissions.  

The surface emissions optimization applied in this study is based on the inverse 

modeling framework applied in Cui et al. [2015]. Most CH4 mixing ratio enhancements 

were measured below 2.0 km altitude ASL during the four flights. To reduce the potential 

uncertainty in the transport models’ ability to distinguish between the PBL and the free 

troposphere, we focus on the measurements (i.e., receptor points) below 1.5 km ASL 

(Figure 2). Choosing a threshold of 2.0 km or 1.0 km ASL does not significantly affect 

our results.   

For each flight, we plot the histogram of the observed CH4 mixing ratios below 

1.5 km ASL on the upwind side of the domain. We choose the mode of this distribution 

as the background value. Based on the width of this distribution, we estimate a 10 ppbv 

uncertainty in the background mixing ratio for each flight. 
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The NOAA P-3 flights over the SJV flew close to surface sources, so that the 

measurements were obtained within hours from the time of emission. Therefore, it is 

reasonable to assume that photochemical loss of CH4 can be neglected. Hence, CH4 is 

treated as a passive tracer in our mesoscale inverse system.  

We conduct a cluster aggregation process for the spatial grid cells as described by 

Cui et al. [2015]. Surface grid cells in the domain are clustered using a neighbor method 

based on the information from the Fisher information matrix [Bocquet et al., 2011]. We 

use this method to obtain inversion solutions efficiently and to reduce cross correlations 

between surface fluxes during the inverse modeling. In this study, 4544 (64 x 71) grid 

cells resulted in 2024 clusters in our inverse modeling system. 

The R and B covariance matrices are assumed to be diagonal matrices. R is 

calculated by the addition in quadrature of the 30-second aggregation uncertainty (i.e., 

the standard deviation of a 30-s interval, 10 ppbv for the mean value), the background 

uncertainty (10 ppbv), and the uncertainty of each transport model (50% [Angevine et al., 

2014], 50 ppbv for the mean value) in simulating CH4 enhancements above background. 

The largest uncertainty in R is that of the transport models. We assume a larger 

uncertainty in the models in this study than in the Los Angeles basin [Cui et al., 2015] 

because of the inherent difficulty in modeling the transport within the complex terrain of 

the Central Valley.  

Jeong et al. [2013] classified the state of California into 13 sub-regions to conduct 

This article is protected by copyright. All rights reserved.



 
16 

their inverse modeling and assumed 70% uncertainties in each sub-region for their prior 

inventory (CALGEM). We assume a 100% relative uncertainty for each cluster in our 

prior, since one sub-region from Jeong et al. [2013] is comprised of multiple clusters of 

our grid cells and because we updated the magnitude and spatial locations of oil and 

natural gas production in the CALGEM inventory. We test the sensitivity of our results to 

the 70% assumption of the prior’s uncertainty (compare Table S2 to Table 3). Using a 

prior uncertainty of 70% instead of 100% for each cluster does not significantly affect our 

optimized emission estimates.  

To carry out inverse modeling in the lognormal framework, we define all 

uncertainties as the arithmetic standard deviation (SD[X]) for a variable (X), including 

the measurements, the background determination, the transport model, the prior inventory, 

and the posterior estimates of each inversion. We define the covariance error matrixes (R 

and B) as the squared scale parameter (𝝈𝟐) of the variable (X). SD[X] and 𝝈𝟐  have the 

following relationship: 𝜎2 = 𝑙𝑛 �1 + (𝑆𝐷[𝑋])2

(𝐸[𝑋])2 �, where E[X] is the arithmetic mean.  

For each sub-region, the total emissions estimate is calculated by summing the 

emissions estimates of the clusters in the region. The total uncertainty estimate for each 

sub-region is calculated as the square root of the sum of the variances along the diagonal 

in the posterior error covariance matrix. We do not include the off-diagonal elements of 

this matrix because some are negative (indicating anti-correlation between two grid cells), 

and including them would result in a slightly smaller uncertainty estimate. Instead we 
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report the larger, more conservative uncertainty based on the diagonal elements only. A 

similar uncertainty estimate was also used in Jeong et al. [2013]. The optimized 

emissions estimates from each of the transport models are shown in Table 3. The final 

optimized estimates and the associated uncertainties are built by a resampling method 

shown in Table 3 from the three inversions based on the three transport models. 

 

2.5 Mass-balance approach 

CH4 emission fluxes were determined using the mass-balance approach [White et 

al., 1976] for comparison with the inversions. In this study, we use this approach to 

quantify CH4 emissions using measurements made both upwind and downwind of the 

emission sources.  We estimate the total CH4 emissions from the D2 sub-region of the 

SJV when favorable meteorological conditions were observed, including steady 

horizontal winds, and a well-developed PBL that was well mixed vertically. The 

uncertainties associated with the assumptions of the technique are included. The details 

of the mass-balance approach are described in Peischl et al., [2015].  

 

3. Results and discussion 

3.1 San Joaquin Valley CH4 emissions estimates from the inversions 

         We optimize the spatially resolved CH4 emissions estimates in the SJV using the 

mesoscale inverse modeling system with the CalNex airborne measurements (Figure 5). 
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The optimized estimates are from two independent inversions using observations in the 

May and June 2010 flights. The May and June inversions derive similar total CH4 

emissions estimates for the SJV (Table 1). We estimate the total CH4 emissions from the 

SJV to be 135±28 Mg/hr in May 2010 and 135±19 Mg/hr in June 2010. The difference in 

total emissions between May and June is statistically insignificant. In general, the spatial 

patterns of the CH4 prior inventory are consistent with those of the optimized emissions 

estimates (Figure 5). However, the optimized emissions in May and June both indicate 

that the magnitudes of the prior emissions in the SJV are much lower than the optimized 

estimates (Figure 5 (B) and (D)). The highest emission rates (and the largest adjustments 

to the prior) are seen in the region from Hanford to Visalia in the southern sub-region (D1) 

and from Merced to Stanislaus in the northern sub-region (D2) of the SJV. Our optimized 

estimates on average in the SJV are higher by a factor of 1.7 than the prior estimates 

based on the CALGEM inventory.  

The optimized total CH4 emissions estimates from each transport model are 

shown in Table 3. The transport model evaluations shown in Table S1 indicate that 

WRF3 has a large (57%) bias in simulating PBLH in D2 for the May inversion case. 

Therefore, in Table 3 we also list the overall estimates based only on WRF1 and WRF2 

simulations. In May, using only these two simulations results in only a 10% difference in 

estimated SJV CH4 emissions compared with the results based on three WRF simulations; 

differences in June are much smaller. We therefore base our main conclusions on results 
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from the three WRF simulations for both May and June.  

To evaluate the optimized emissions, we compare the measured CH4 

enhancements above background and those simulated by FLEXPART-WRF using the 

optimized emissions estimates and the prior estimates (Figure 6 and Figure 7, Table 1). 

The FLEXPART-WRF simulation using the optimized emissions captures the 

observations with a coefficient of determination (r2) of 0.76 and 0.71 for the May and 

June inversions, respectively. These correlations are higher than for the simulations using 

the prior estimates (r2 = 0.49 and 0.47, respectively). Moreover, there is a large decrease 

in the mean bias using the optimized emissions. The mean biases between the observed 

and simulated CH4 enhancements using the prior inventory in the May and June 

inversions are -55.2 and -31.8 ppbv, respectively. In contrast, the observed-simulated 

biases using the optimized emissions are only -9.1 and -5.5 ppbv, respectively, an 83% 

decrease for both inversions compared to the corresponding results based on the prior 

inventory. Additionally, the vertical profiles of CH4 mixing ratios are well captured by 

the models when we use the optimized CH4 emissions estimates (Figure 4).  

We compare optimized emissions estimates in the present study to the top-down 

estimate from Jeong et al. [2013, 2016] (Table 1). The total emissions estimates for the 

SJV in this study are similar to estimates from Jeong et al. [2016] (98-170 Mg CH4/hr). 

In this study, we use many more grid clusters than the number of grid cells in Jeong et al., 

[2013] to invert for the surface fluxes in the SJV. The total emissions estimates are 
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similar, while the partitioning of CH4 emissions between sub-regions D1 and D2 differ 

between our study and Jeong et al. [2013]. We estimate total CH4 emissions from D1 to 

be 80±17 Mg/hr in May and 79±17 Mg/hr in June (Table 1), and the total CH4 emissions 

from D2 to be 55±18 Mg/hr in May and 56±13 Mg/hr in June. The differences between 

May and June are statistically insignificant. The estimated emissions for D1 are lower 

than those of Jeong et al. [2013], while those for D2 are higher on average than those of 

Jeong et al. [2013]. Jeong et al. [2013] only used two grid cells to represent the domain 

of the SJV in their inversions, while we substantially improved the spatial resolution by 

aggregating 4544 grid cells (0.1° × 0.1°) into 2024 clusters. The difference in spatial 

resolution between the two studies results in different transport and emissions estimates.   

 

3.2 San Joaquin Valley CH4 emissions estimates from the mass-balance approach 

We use the same CalNex aircraft measurements and an independent mass-balance 

approach to derive CH4 emissions from the SJV. We determined emissions in the 

northern SJV sub-region (D2) using measurements from the May 12 flight, the only day 

with favorable meteorological conditions in the Central Valley during CalNex. 

On the May 12 flight, the upwind transect in San Joaquin County (Figure 1 (C)) 

resulted in a CH4 flux of 28±19 Mg/hr (1-sigma uncertainty) coming mainly from the 

nearby Sacramento Valley.  The downwind transect in Merced County resulted in a flux 

of 97±45 Mg/hr. The difference between the upwind and downwind transects, 69±47 Mg 
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CH4/hr, represents the estimated emissions from sub-region D2, assuming the upwind 

sources were constant while the wind traveled from the upwind transect to the downwind 

transect. Details of the mass-balance calculation are given in Table 4. Within the stated 

uncertainties, the mass-balance emissions estimate agrees with our inversion in D2 

(55±18 Mg CH4/hr in May). Therefore, an independent method purely based on the 

measurements confirms our optimized inversion results.  

We did not conduct a mass-balance analysis for the southern SJV region (D1) in 

this study because CH4 surface emissions from D2 strongly influenced CH4 in D1 (Figure 

8). In addition, the nighttime Fresno eddy [Bao et al., 2008] complicates the application 

of a mass-balance approach to the flights over D1, such as leading to a build-up of CH4 

enhancements in the entire domain the following day and violating the steady wind 

assumption. Therefore, favorable conditions for mass-balance estimates in D1 are 

difficult to obtain during CalNex. Similarly, winds over the D1 and D2 regions during the 

June flights had a westerly component that transported emissions through the eastern 

edge of the San Joaquin Valley and beyond the extent of the downwind flight legs, so we 

could not carry out mass-balance estimates using the June flights. These limitations to 

using the mass-balance approach in the SJV show the value of inverse modeling 

estimates for the region.  

 

3.3 Major source contributions in the San Joaquin Valley 
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Livestock sources (including dairies and animal feeding operations) are the largest 

source of CH4 emissions in both sub-regions of the San Joaquin Valley. Livestock and 

oil/gas production sources are rarely collocated in the same 0.1° grid cell. In the few 

cases where a grid cell contains more than one CH4 source, the source type of the cell is 

determined by the dominant source. Combining our optimized 0.1° resolution CH4 

emissions estimates (Figure 5) and the locations of two major sources (Figure 1 (B)), we 

estimate the CH4 emissions from livestock sources in the SJV to be 103±29 Mg/hr and 

105±25 Mg/hr for May and June, respectively (Table 5), which are higher than the prior 

CH4 emissions by a factor of 1.8. Livestock emissions contribute 75–77 % of the total 

CH4 emissions in the SJV according to our optimized results on average. Our estimates 

are consistent with the analysis of Jeong et al. [2016], who estimate SJV CH4 emissions 

from the livestock source sector are 81-177 Mg/hr. Moreover, our finding for livestock 

sources is consistent with the analysis of Johnson et al. [2016], who estimate a factor of 2 

higher emissions from a top-down approach compared with the CALGEM inventory.  

Active oil/gas wells are mainly located in the southern SJV (Figure 1 (B)). We 

estimate CH4 emissions in the SJV from the active oil/gas wells to be 24±11 Mg/hr in 

May and 21±7 Mg/hr in June (Table 4), which are higher than the prior CH4 emissions by 

a factor of 1.6. On average, the wells emissions contribute 15–18% of the total CH4 

emissions in the SJV according to our optimized results. Our results are in agreement 

with the Jeong et al. [2014, 2016] estimates of 19 Mg/hr from oil and natural gas 
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production in the SJV.  

We also calculate the fractional adjustment in each of the two sources relative to 

the fractional change between the prior and optimized estimates of the SJV total CH4 

emissions. On average, livestock sources explain 82-86% of the discrepancy between our 

prior and optimized estimates, while oil/gas production explains 13-18% of the 

discrepancy. 

 

4. Conclusions 

          Using airborne measurements collected during the CalNex 2010 study, we apply a 

mesoscale inverse model to perform a top-down estimate of CH4 emissions in the San 

Joaquin Valley of California. Our optimized estimates of total CH4 emissions in the San 

Joaquin Valley in May 2010 (June 2010) are 135±28 (135±19) Mg CH4/hr. Our 

optimized CH4 emissions estimates are higher by a factor of 1.7 than the prior estimates 

based on CALGEM.   

We compare our inversions based on CalNex four days of aircraft measurements 

with inversions conducted using tall tower measurements [Jeong et al., 2013, 2016]. The 

total SJV CH4 emissions derived from these complementary inversion approaches agree 

within the uncertainties, while our inversions provide SJV emissions estimates at a finer 

spatial distribution than these previous studies. The optimized spatial emissions 

information that we derive helps to refine source attributions. We also compare our 
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inversions with the annual average SJV CH4 emissions (107 Mg CH4/hr) from a recent 

national bottom-up CH4 inventory [Maasakkers et al., 2016], and within the uncertainties 

our optimized estimates agree with these bottom-up estimates.  

Our optimized estimates, based on only four days of aircraft measurements in the 

summer of 2010, do not capture episodic or seasonal variations in SJV emissions. 

Therefore, we cannot carry out fully quantitative comparisons with the annual average 

emissions of the CALGEM prior and Maasakkers et al. [2016] inventories, nor with the 

longer analysis periods of the inversions performed by Jeong et al. [2013, 2016] in 

different years than 2010.   

Compared with the prior CALGEM inventory, our optimized estimates for 

CH4 emissions from livestock sources are higher by a factor of 1.8, while our optimized 

CH4 emissions from oil/gas production are higher by a factor of 1.6.  Livestock are the 

most important source of CH4 emissions in the SJV, and we find that livestock sources 

explain most of the discrepancies between the prior and our optimized CH4 emissions 

estimates. Our use of high-frequency aircraft observations and a model with high spatial 

resolution allow us to distinguish signals from livestock and oil/gas sources and to 

provide a quantitative top-down constraint on the emissions from these sectors.  

To validate our optimized emissions estimates, we also conduct a mass-balance 

estimate for one flight and one sub-region as an independent approach. Our optimized 

estimates are in agreement with the mass-balance estimate within the combined 
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uncertainty of the two approaches. The mass-balance method using aircraft observations 

can be used to estimate emissions from a region under favorable meteorological 

conditions, but such conditions do not always occur. For instance, no mass-balance 

estimates could be performed for the southern SJV in this study. Mesoscale inverse 

modeling therefore offers a reliable, complementary technique for quantifying emissions 

from multiple CH4 sources over a large area. 

Our inversions based on high quality aircraft measurements provide estimates of 

CH4 emissions in the San Joaquin Valley that agree with previous inversion calculations 

based on tall tower observations. These independent top-down estimates confirm that 

major CH4 sources in the Valley are underestimated by the CALGEM prior inventory. 

This study shows that applying an inverse model to tower and aircraft measurements to 

assess and improve emissions estimates can inform bottom-up inventories and could 

ultimately be useful in evaluating emissions reduction strategies. 
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Table 1. Comparison of Total CH4 Emission Estimates in the San Joaquin Valley.  
 

 SJV 
(Mg/hr) 

D1 
(Mg/hr) 

D2 
(Mg/hr) r2  Slope 

Mean Bias 
(Post-Prior) 

(ppbv)  
 

“May case” Optimized 
(This study, top-down) 

 
135±28 

 
80±17 

 
55±18 

 
0.76 

 
0.63 

 
-9.1 

 
“June case” Optimized 
(This study, top-down) 

 
135±19 

 
79±17 

 
56±13 

 
0.71 

 
0.61 

 
-5.5 

 
“May case” Prior 

(Based on CALGEM, 
bottom-up) 

 
80 

 
52 

 
28 

 
0.49 

 
0.25 

 
-55.2 

 
“June case” Prior 

(Based on CALGEM, 
bottom-up) 

 
80 

 
52 

 
28 

 
0.47 

 
0.24 

 
-31.8 

 
Jeong et al., [2013] 
(Tall tower network, 

top-down) 

 
- 

 
120±16 

 
33±5 

 
- 

 
- 

 
- 

 
Jeong et al., [2016] 
(Tall tower network, 

top-down) 

 
98-170 

 
 
- 
 

 
- 

 
- 

 
- 

 
- 

 
CH4 annual average 
Inventory (based on 

NEI 2011, Ahmadov et 
al.) 

68 46 22 - - - 

 
CH4 annual average 
Inventory (based on 

EPA-GHGI 2012, 
Maasakkers et al. 

[2016]) 

 
107 

 
75 32 - - - 
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Mass-balance 
approach 

(This study, top-down) 
 

 - 69±47 - -        - 
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Table 2. Names and Primary Configurations of Three WRF Runs used in This Study 
 
 

 
a,b Angevine et al. [2012], C Kim et al. [2016]. WRF1 is initialized by the European Centre for Medium-Range Weather 
Forecasts’ Re-Analysis-Interim (ERA-Interim). WRF1 is coupled to the Noah Land Surface Model with MODIS land 
products and a single-layer Urban Canopy Model (UCM) [Chen and Dudhia, 2001]. The Mellor-Yamada-Janjic (MYJ) 
scheme [Mellor and Yamada, 1982] is used to simulate planetary boundary layer (PBL). WRF2 is initialized by the 
National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS)[Kalnay et al., 1990]. The land 
surface model in WRF2 is a five-layer thermal diffusion land surface scheme (“Slab”) [Dudhia, 1996] with USGS land 
products. WRF3 is initialized with data from the NCEP-GFS, and the PBL is simulated using the Yonsei University (YSU) 
boundary layer model [Hong et al., 2006].  

 

Name Version Initialization PBL 
Scheme 

Grid 
Spacing (km) 

Vertical 
Levels LSM, data Wind field 

WRF1a WRF 3.3 ERA-Interim MYJ 4 60 Noah, UCM, MODIS Time-averaged 
winds 

WRF2b WRF 3.3 NCEP-GFS MYJ 4 40 Slab, USGS Time-averaged 
winds 

WRF3c WRF-Chem3.4 NCEP-GFS YSU 4 60 Noah, USGS Time-averaged 
winds 
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Table 3. Optimized CH4 Emissions in May and June from Each of Three Transport Models and the Overall Results 
 

 
a. For each inversion (𝑋𝑖 ± 𝜎𝑖), we randomly select 10,000 values from the data range of  𝑋~𝒩(𝑋𝑖, 𝜎𝑖). The overall 

estimate is the mean of all 30,000 (20,000) selected values from the three (or two) inversions and the associated 
uncertainty is the standard deviation of these values.  

b. Including WRF1 and WRF2 simulations only, because WRF3 had a large bias in simulating PBLH in D2 in the May 

May                                              June 

 
SJV 

(Mg/hr) 

D1 
(post) 
(Mg/h

r) 

D2 
(post) 
(Mg/h

r) 

r2 
(prior) 

 

r2 
(post) 

 

bias 
(prior) 
(ppbv) 

bias 
(post) 
(ppbv) 

SJV 

(Mg/hr) 

D1 
(post) 

(Mg/hr) 

D2 
(post) 
(Mg/h

r) 

r2 
(prior) 

 

r2 
(post) 

 

bias 
(prior) 
(ppbv) 

bias 
(post) 
(ppbv) 

WRF1 142±20 81±15 61±13 0.38 0.76 -60.6 -10.0 143±19 93±15 50±12 0.47 0.70 -35.7 -3.8 
WRF2 156±22 88±17 68±14 0.38 0.69 -62.7 -10.4 129±18 70±12 59±13 0.33 0.60 -31.7 -4.5 
WRF3 108±16 71±14 37±8 0.42 0.75 -49.9 -7.8 134±17 75±13 59±12 0.37 0.77 -31.8 -3.4 
Overall 

a 
135±28 80±17 55±18 

    
135±19 79±17 56±13 

    
Overalla

,b 
149±22 84±17 65±14 

    
136±20 81±18 55±13 
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inversion case (see Table S1).  
 
 
 
 
 
 
 
 
 
Table 4. Mass-Balance Inputs for the Northern San Joaquin Valley  
  

Northern SJV 
Transect(s) 

Terrain Ht. 
(m ASL) 

Adjusted 
Mixing Ht. 
(m ASL) 

Wind 
Direction 
(degrees) 

Wind 
Speed 
(m/s) 

Estimated CH4 
background 

(ppb) 

CH4 flux 
(1026 

molec./s) 

CH4 flux 
(Mg/hr) 

Upwind 
average 41 ± 41 1194 ± 243 299 ± 18 4.6 ± 2.0 1900 ± 5 2.9 ± 1.4 28 ± 19 

downwind 89 ± 89 1361 ± 271 330 ± 21 6.1 ± 2.5 1900 ± 7 10.1 ± 4.7 97 ± 45 
 

 
 
 
 

This article is protected by copyright. All rights reserved.



 
37 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Livestock   Oil/Gas  

 
Prior 

(Mg/hr) 
Inversion 
(Mg/hr) 

Contribution Prior 
(Mg/hr) 

Inversion 
(Mg/hr) 

Contribution 

May June May June May June May June 
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Table 5. Prior and Optimized CH4 Emissions from two Major Source Sectors and Their Contributions to the San Joaquin 
Valley. 
 
 

a.  The calculations of the final estimates are the same as Table 3.  
b.  Including WRF1 and WRF2 simulations only, because WRF3 had a large bias in simulating PBLH in D2 in the May 

inversion case (see Table S1). 

This studya 
57 

103±29 105±25 75% 77% 
14 

24±11 21±7 18% 15% 
This studya,b 114±28 106±26 83% 77% 26±12 21±7 19% 15% 

Jeong et al., 

[2016] 
 81-177 86% 

Jeong et al., 

[2016] 
19 11-19% 
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Figure 1. (A) The San Joaquin Valley (SJV) and two sub-regions, the Southern 
SJV (D1) and the Northern SJV (D2). The background map is the prior inventory 
of CH4 emissions used in this study based on CALGEM, showing the annual 
average emissions rate (unit: μg s-1 m-2). (B) The spatial distribution of the two 
major CH4 sources in the SJV: livestock and active oil/gas wells. (C) Two NOAA 
P-3 flight tracks over the SJV in May 2010. The black rectangles highlight the 
locations of the upwind transect in San Joaquin County and the downwind 
transect in Merced County used in the mass-balance estimate. (D) Two NOAA P-
3 flight tracks over the SJV in June 2010.  

Figure 2. Airborne measurements of CH4 mixing ratios (averaged over 30 s) in 
the San Joaquin Valley, at 0-1500 m ASL and excluding measurements taken 
over the ocean and during takeoff and landing from the Los Angeles area. Each 
data point represents a receptor for the inverse modeling.  
 
Figure 3. Surface footprints calculated by FLEXPART for the previous 72 hrs 
with 3 different WRF configurations and averaged for the two May flights (top row) 
and for the two June flights (bottom row). The surface footprints (unit: s m2 kg-1) 
represent the sensitivity of the airborne measurements (Figure 2) to surface 
emissions. Different scales are used for the footprints in the May and June cases 
to improve visualization.  

Figure 4. Vertical profiles of 100-m averaged measurements of CH4 
enhancement mixing ratios, ΔCH4, (measured mixing ratios in Figure 2 above a 
background derived for each flight; see text for details), simulations of Δch4 from 
FLEXPART-WRF using the prior and optimized emission estimates in the San 
Joaquin Valley for May (left) and June (right) 2010. The error bars represent the 
standard deviations (1-sigma) of simulations from the three different transport 
models. 
 
Figure 5. Two-dimensional maps of CH4 emissions estimates in the San Joaquin 
Valley from this study. (A) and (C) are average optimized emissions using the 
airborne measurements from two May flights and two June flights, respectively. 
(B) and (D) are the corresponding differences between the optimized emissions 
estimates and the prior emission inventory in Figure 1(A).  
 
Figure 6.  Airborne measurements of CH4 enhancement mixing ratios, ΔCH4, 
(measured mixing ratios in Figure 2 above a background derived for each flight; 
see text for details) (black line), simulations of ΔCH4 from FLEXPART-WRF 
based on the prior inventory (blue lines), and simulations from FLEXPART-WRF 
based on the optimized emissions (red lines). Solid lines are average values 
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based on the three transport models, and shading represents the standard 
deviation (1-sigma) of three transport models.  
 
Figure 7. The relationship between observed and simulated CH4 enhancement 
mixing ratios for the May (left) and June (right) flights. The simulated data points 
are average values based on three transport models (the solid lines in Figure 6). 
The lines indicate the least squares fits to the data. We show correlations 
between observations and simulations with either the optimized emissions (red) 
or the prior inventory (blue). All correlations are significant with P < 0.05.  

Figure 8. CH4 enhancement mixing ratios simulated by the FLEXPART-WRF 
model based on the optimized CH4 emissions from the whole domain (All, green 
lines) and due to CH4 emissions from only one specific sub-region (either D1 or 
D2). Flights 0507 and 0616 mainly flew over D1, but were impacted by air 
masses from D2. Flights 0512 and 0618 mainly flew over D2 and were rarely 
impacted by air masses from D1. The percentages shown in the titles represent 
the contributions of emissions from this other sub-region (D1 or D2) to the overall 
airborne measurements of CH4 mixing ratios in each flight.  
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