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1. Abstract

Creating accurate risk prediction models from Big Data resources such as Electronic Health Records (EHRs) is a critical
step toward achieving precision medicine. A major challenge in developing these tools is accounting for imperfect aspects
of EHR data, particularly the potential for misclassified outcomes. Misclassification, the swapping of case and control
outcome labels, is well-known to bias effect size estimates for regression prediction models. In this paper, we study the
effect of misclassification on accuracy assessment for risk prediction models and find that it leads to bias in the Area Under
the Curve (AUC) metric from standard ROC analysis. The extent of the bias is determined by the false positive and false
negative misclassification rates as well as disease prevalence. Notably, we show that simply correcting for misclassification
while building the prediction model is not sufficient to remove the bias in AUC. We therefore introduce an intuitive
misclassification-adjusted ROC procedure that accounts for uncertainty in observed outcomes and produces bias-corrected
estimates of the true AUC. The method requires that misclassification rates are either known or can be estimated, quantities
typically required for the modeling step. The computational simplicity of our method is a key advantage, making it ideal
for efficiently comparing multiple prediction models on very large datasets. Finally, we apply the correction method to
a hospitalization prediction model from a cohort of over one million patients from the Veterans Health Administrations
EHR. Implementations of the ROC correction are provided for Stata and R.

2. Introduction

Predicting a binary outcome using a set of covariates is common practice in many areas of research[1, 2]. Typically this
involves fitting a predictive model on observed data, then assessing how accurately prediction probabilities from that
model discriminate cases from controls. A standard method for quantifying prediction accuracy is to compute AUC, the
Area Under the Receiver Operating Characteristic (ROC) Curve[3]. The ROC curve plots the sensitivity (true positive) and
specificity (true negative) of the prediction model at potential discrimination thresholds and the AUC is the probability
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that a randomly chosen case has a higher predictive score than a randomly chosen control. Implicit in the prediction
modeling and subsequent ROC analysis is the assumption that the observed binary outcomes are measured without error.
In practice, this assumption may not hold, meaning samples that are recorded as cases are in truth controls and vice
versa. Random error or systematic bias can produce measurement error in a binary variable which is often referred
to as misclassification[4]. Examples of this phenomenon are widespread in research, including epidemiology[5, 6, 7],
genetics[8, 9], and studies involving administrative claims outcomes[10].

Ignoring misclassification when modeling binary outcomes with logistic regression is well-known to result in biased
effect size estimates[4, 11]. Numerous methods have been proposed to obtain bias-corrected, though less efficient,
regression parameters estimates, including a modified likelihood equation[11], Bayesian estimation[12], the E-M
algorithm[13], simulation[14], and multiple imputation[15]. These papers focused primarily on parameter estimation and
did not consider the predictive accuracy of the resulting estimates. Thus, the effect of misclassified outcomes on ROC
analysis of risk prediction models has not been well described.

Analysis of misclassified outcomes is receiving renewed interest due to the emergence of research using Electronic
Health Record (EHR) data. The promise of precision medicine rests in part on the ability to leverage Big Data resources
such as EHRs that track vast clinical, demographic and genetic data into accurate prediction tools for individual patient
risk [16, 17, 18]. Already, clinical information recorded in EHRs has been used to develop risk models for a wide range
of conditions; examples include cardiovascular disease [19, 20], hospital readmission [21], acute kidney injury [22] and
postoperative complications [23]. The clinical research potential of EHRs is immense; however, EHRs are imperfect and
highly susceptible to missing and inaccurate diagnoses and behavioral information[24, 25, 26]. In practice, the presence
of specific diagnosis or procedural billing codes (e.g. ICD9 codes) in a patient’s EHR are often used to identify case
samples. Control samples are then defined as patients lacking the codes of interest. There are many reasons that a patient
EHR might contain incorrect or missing information, making outcomes extracted from EHRs particularly prone to the
problem of misclassification [27]. For example, a code can be erroneously entered in a patient EHR as the result of an
incorrect diagnosis, typographical mistake, or ambiguous and heterogeneous use of codes. In addition, because EHRs
are rarely shared between hospitals or health systems, whereas patients most certainly are, EHR-based records can be
incomplete as patients move between health systems. While statistical methods to create error-adjusted prediction models
from misclassified EHR outcomes do exist, the methods to properly assess the prediction accuracy of these models are
lacking.

Evaluating diagnostic measurements in the absence of gold standard outcomes is a well-appreciated statistical problem
(see [28] for an excellent review). Previous studies have examined ROC analysis for scenarios that include multiple
non-gold standard diagnostic tests [29], partial outcome verification leading to missing outcomes [30], prediction based
on multiple biomarkers [31] and even no observed outcomes [32]. In this paper, we focus on the specific problem of
ROC analysis on risk prediction scores developed from and tested on outcomes subject to misclassification, a scenario
commonly encountered in EHR research. Because the risk prediction scores are generated using the misclassified
outcomes, they are themselves subject to bias [4, 11, 13, 14]. Even if the prediction model is properly corrected using
one of the aforementioned methods, one is left with the dilemma of how to use the imperfect outcomes when performing
the ROC analysis.

Here we report that using misclassified outcomes in a standard ROC analysis leads to biased AUC estimates. The AUC
bias exists regardless of whether the the predictive model fit on the misclassified outcomes was properly corrected. The
extent of the AUC bias depends on multiple factors including the the composition of true cases and controls in the dataset
and the specific rates at which each are misclassified. We present an intuitive and computationally simple correction to
the standard ROC analysis that accounts for the misclassification inherent in the data. In particular, when computing the
coordinates of the ROC curve, we replace the observed and potentially misclassified binary outcomes with a quantitative
measurement: the probability that a sample is in truth a case conditional on their predictor covariates, observed outcome
and the likelihood that their observed outcome is misclassified. We show, through simulation, that this ROC correction
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produces nearly the same AUC value that would have been obtained in the absence of misclassification. Our method builds
on the likelihood-based model for correcting logistic regression parameter estimates originally proposed by Neuhaus[11]
and likewise assumes that probabilities defining the misclassification mechanism are known or can be estimated. Similar
to regression parameter estimation in the presence of misclassification, the AUC estimates suffer from a loss of efficiency
compared to AUC based on the true outcomes. However, the AUC bias correction remains effective even in the presence
of high rates of misclassification.

Finally, we use the proposed ROC correction to assess a prediction model for inpatient hospitalization among patients
in the Veteran’s Health Administration (VHA). We extracted clinical and demographic predictors as well as instances
of inpatient hospitalization from the VHA EHR for a cohort of over one million samples. However, it is possible that a
hospitalization event is not recorded in the VHA EHR if the patient received the care outside of a VHA facility, leading
to misclassification of patients with true hospitalizations in our cohort. Ignoring the misclassified hospitalization events
results in an underestimate of the true predictive capacity of the model. We show that the misclassification rates can be
estimated using an internally validated “gold standard” subset created from Medicare data that captures hospitalization
events missing from the VHA EHR and incorporated into our corrected ROC procedure.

3. Methods

3.1. Binary Misclassification Model

We will adapt the basic notation for misclassified binary outcome data used by Neuhaus[11]. Let T be a binary outcome
variable and assume that the probability of event T depends on a set of covariate variables X = X1, ..., Xp and effect size
parameters β = β0, β1, ..., βp through the standard logistic model

logit[P (T = 1|X, β)] = log

(
P (T = 1|X)

1− P (T = 1|X)

)
= β0 + β1X1 + ...+ βpXp = X′β. (1)

We assume however that the true outcome variable T is not observed. Instead, we observe Y , a realization of the outcome
variable subject to misclassification according to the following functions:

γ0(X) = P (Y = 1|T = 0,X) and γ1(X) = P (Y = 0|T = 1,X). (2)

The observed outcome variable Y is then related to the covariates X through the likelihood equation

P (Y = 1|X, β) =
1∑
t=0

P (Y = 1|X, T )× P (T |X)

= {1− γ1(X)− γ0(X)} × P (T = 1|X) + γ0(X)

= {1− γ1(X)− γ0(X)} × exp(X′β)

1 + exp(X′β)
+ γ0(X) (3)

We assume that the misclassification parameters satisfy γ0(X), γ1(X) ≤ 0.5, indicating that observed values are no worse
than chance. Moreover, the constraint γ0(X) + γ1(X) ≤ 1 is required for numerical estimation of the β values.

3.2. Estimation of Regression Parameters

Assume a dataset consisting of covariate values and binary outcomes is generated using the model described above. We
will define three estimates for the effect size parameters β. First, let β̂T be the maximum likelihood estimates for equation
(1) had the true observations been observed (i.e. Y=T). The β̂T are then the standard log odds ratios obtained from
logistic regression. Next, let β̂I denote parameter estimates obtained by ignoring the misclassification and performing a
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standard logistic regression of the misclassified outcome Y on the covariates X . That is, β̂I is computed by maximizing
the incorrectly specified likelihood function logit[P (Y = 1|X)] = X′β. The β̂I estimators are biased, with the amount of
bias determined by the misclassification functions in equation (2) [11].

Finally, let β̂M be the misclassification-adjusted log odds ratio estimates obtained by maximizing the corrected
likelihood function based on equation (3). We assume that the misclassification parameters γ0(X) and γ0(X) are known.
The resulting β̂M are consistent estimators of β provided the maximum likelihood regularity conditions are satisfied.

3.3. Prediction Probabilities

After fitting a logistic regression, the effect size estimates can be used in the inverse logit function φ(x,b) =
exp(x′b)/

(
1 + exp(x′b)

)
to create a prediction model for the binary outcome. Here, we define prediction models based

on the three different effect size estimators. Let P̂T (X) = φ(X, β̂T ) denote the risk prediction model that uses the
effect size parameter estimates β̂T obtained when the true outcomes are observed. Likewise, let P̂ I(X) = φ(X, β̂I) and
P̂M (X) = φ(X, β̂M ) be risk prediction models based on the parameter estimates β̂I and β̂M , respectively. In the presence
of misclassified outcomes, P̂ I(X) is a naive risk prediction model for the true outcome T based on the biased parameter
estimates β̂I . Risk scores obtained from this model are in fact prediction values for the misclassified outcome Y rather
than the true outcome T . The risk model P̂M (X) gives prediction probabilities for the true, unobserved outcome by
incorporating the bias-corrected parameter estimates β̂M .

3.4. ROC Analysis

3.4.1. Standard ROC analysis We will first develop notation for computing the standard Receiver Operating
Characteristic (ROC) curve for an arbitrary set of binary outcomes B = B1, B2, ..., BN and corresponding risk prediction
scores q = q1, q2, ..., qN . The ROC curve is defined as the true positive and false positive rates over a range of potential
prediction score cutpoints. The coordinates of the ROC curve for outcomes B and prediction scores q at a given cutpoint
α are defined as ROC(α,B,q) =

(
FP (α,B,q), TP (α,B,q)

)
where

TP (α,B,q) =

∑N
i=1 I(Bi = 1)× I(qi > α)∑N

i=1 I(Bi = 1)
(4)

FP (α,B,q) =

∑N
i=1 I(Bi = 0)× I(qi > α)∑N

i=1 I(Bi = 0)
(5)

are the true positive and false positive rates, respectively, and I() is the indicator function. The Area Under the ROC Curve
is defined to be AUC(B,q) =

∫
α
ROC(t,B,q)dt and can be computed numerically using, for example, Riemann Sums

or Monte Carlo methods. Using this notation, let AUC(T, P̂T ) be the AUC for an ROC analysis of the true outcomes
T ; AUC(Y, P̂ I) be the AUC value for an ROC analysis of the biased risk scores and the observed outcomes Y; and
AUC(Y, P̂M ) the AUC value for the unbiased risk scores and the observed outcomes Y.

3.4.2. Misclassification Adjusted ROC analysis In the presence of misclassification, there is uncertainty regarding the
observed outcomes meaning that cases and controls can be incorrectly tallied in equations (4) and (5). To account for this
uncertainty, we propose replacing the observed and potentially misclassified outcome Y in the computation of the true and
false positive rates with the “conditional predictive probability” that a sample is in truth a case (i.e. T = 1). This predictive
probability incorporates information from the observed outcome Y , the bias-corrected prediction probability P̂M (X) and
the misclassification values γ0(X) and γ1(X). As with the misclassification adjusted regression, we assume that γ0(X)

and γ1(X) are either known or can be estimated and have previously been used in the modeling building step to obtain the
bias-corrected parameter estimates β̂M.
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The conditional predictive probability that the unobserved outcome is in truth a case is

P̂ (T = 1|Y,X, β̂M ) =
P (Y |T = 1, X)× P̂ (T = 1|X, β̂M )

P̂ (Y |X, β̂M )

=



[
1−γ1(X)

]
×P̂M (X)[

1−γ1(X)−γ0(X)
]
×P̂M (X)+γ0(X)

Y = 1

γ1(X)×P̂M (X)

1−
[[

1−γ1(X)−γ0(X)
]
×P̂M (X)+γ0(X)

] Y = 0

=

[
γ1(X)− Y × (2γ1(X)− 1)

]
× P̂M (X)

(1− Y ) + (−1)1−Y
{[

1− γ1(X)− γ0(X)
]
× P̂M (X) + γ0(X)

} (6)

where the denominator in the first line comes from equation (3). After computing the conditional predictive probability
in equation (6) for each sample in the discrimination dataset, we define the misclassification-adjusted ROC curve to be
ROCM (α) = (FPM (α), TPM (α)) where

TPM (α) =

∑N
i=1 P̂ (Ti = 1|Yi, Xi, β̂

M )× I(P̂M (Xi) > α)∑N
i=1 P̂ (Ti = 1|Yi, Xi, β̂M )

(7)

FPM (α) =

∑N
i=1 P̂ (Ti = 0|Yi, Xi, β̂

M )× I(P̂M (Xi) > α)∑N
i=1 P̂ (Ti = 0|Yi, Xi, β̂M )

(8)

and the corresponding misclassification-adjusted area under the curve, AUCM =
∫
α
ROCM (t)dt, can be computed in the

typical manner.

4. Simulation Results

We present simulation results that describe the behavior of various strategies for assessing prediction models in the
presence of misclassified binary outcomes. We simulated data according to the binary misclassification model described
in section 3.1 using R software. For each dataset, we fixed the effect sizes β and misclassification functions γ0(X) and
γ1(X). Covariate values X were drawn from standard normal distributions and true binary outcomes T were simulated
based on the logistic model in equation (1). We then created an observed version Y of the outcome by changing true cases
(T = 1) to observed controls (Y = 0) with probability γ1(X), and true controls (T = 0) to observed cases (Y = 1) with
probability γ0(X). We partitioned each dataset into training and testing cohorts. The bias-corrected regression parameter
estimates β̂M were computed on training samples only using an iteratively weighted least squares maximization of the
logistic regression based on equation (3) [11]. ROC computations were performed only on the testing samples. Results
presented in this paper are for datasets of 5000 training samples and 5000 testing samples. The reported AUC and bias
values are averaged over 500 simulated realizations with fixed parameter settings.

For each simulated misclassification dataset, we computed the following four measures of area under the ROC curve:

1. True Outcome ROC Analysis: This scenario assumes the true outcomes are observed (Y = T ). A logistic regression
model is fit on the observed/true outcomes and a standard ROC analysis is performed. For this scenario, we report
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AUC(T, P̂T ) which we treat as the true predictive value when assessing the performance of the next three ROC
strategies.

2. Misclassified Outcome ROC Analysis: This scenario assumes that misclassified outcomes are observed, but the
misclassification is ignored in both the model fitting and subsequent ROC analysis. Biased parameter estimates
B̂I are used for the prediction model and a standard ROC analysis of the observed outcomes is performed, giving
AUC(Y, P̂ I)

3. Corrected Predictions, Standard ROC Analysis: This scenario assumes that misclassified outcomes are observed, and
that the misclassification is accounted for in the regression model but ignored in the ROC analysis. Therefore, bias-
corrected parameter estimates B̂M are used for the prediction model but a standard ROC analysis of the observed
outcomes is performed, resulting in AUC(Y, P̂M ).

4. Misclassification Adjusted ROC Analysis: This scenario assumes that misclassified outcomes are observed, and that
the misclassification is accounted for in both the regression model and the ROC analysis. That is, the bias-corrected
parameter estimates B̂M are used for the prediction model, conditional predictive probabilities (eq. 6) are computed
and incorporated into the ROC analysis, leading to AUCM .

The goal of the misclassification adjusted ROC analysis for a given dataset is to reproduce the AUC value that would
have been observed had there been no misclassification of outcomes. Therefore we define AUC bias for the naive or
corrected ROC analyses above as the difference between the AUC from true outcome ROC analysis, AUC(T, P̂T ), and
the AUC from the respective strategies (AUC(Y, P̂ I), AUC(Y, P̂M ) or AUCM ). In the following, we report the mean
value of bias across realizations of datasets from the same underlying model parameters.

[Table 1 about here.]

4.1. Bias in AUC of Misclassified Outcomes

We first show the results of standard ROC analysis performed on true and misclassified versions of simulated binary
outcome data (scenarios 1 and 2 above) to establish the existence of AUC bias and to determine conditions that are
most problematic. Table 1 gives the mean AUC values from an ROC analysis of true outcomes AUC(T, P̂ ) and from
a naive ROC analysis of the misclassified outcomes AUC(Y, P̂ I). To allow insight, we simulated outcomes with only
a single covariate and constant misclassification at combinations of realistically low and high parameter values for the
outcome-covariate model (β0 and β1) and the misclassification model (γ0 and γ1).

Misclassification leads to bias in the estimate of AUC for all parameter combinations. When the effect size β1 is small,
the true AUC value is already relatively low and any misclassification introduces only a small bias in AUC. When the
effect size is larger (β1 = 1.0), misclassification produces a greater bias in AUC, particularly for very rare events (baseline
risk of 0.01). For example, misclassifying rare events, even at low false positive (γ0) and false negative (γ1) rates of 5%,
leads to a 26% reduction in AUC value, from 0.758 down to 0.560. Misclassifying true controls as cases has a more
dramatic effect on AUC bias. Whereas increasing the false negative rate to γ1 = 20% in the prior scenario leads to only a
slight increase in AUC bias (from 26% to a 27.2% reduction), increasing the false positive rate to γ0 = 20% results in an
AUC value that is reduced by 31.6% from the true value.

The increased sensitivity of AUC bias to false positive misclassification rate (γ0) in the above simulations stems from the
fact that controls far outnumber cases in those datasets, as often occurs in population cohort studies. Since the vast majority
of samples are true controls, the false positive rate has a larger influence on the actual number of outcomes that will be
misclassified. We repeated this analysis using β0 values in which cases are more prevalent than controls (Supplementary
Table 2). As expected, in that scenario, it is the false negative misclassification rate (γ1) that has the greater effect on AUC
bias. Thus, the prevalence of the outcome in the dataset is critical in determining which type of misclassification will have
the greater effect on AUC bias.

[Figure 1 about here.]

6 www.sim.org Copyright c© 0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 1–14

Prepared using simauth.cls
This article is protected by copyright. All rights reserved.



M. Zawistowski et al.

Statistics
in Medicine

4.2. AUC Correction

4.2.1. Constant Misclassification Initially, we assume the misclassification functions γ0(X) and γ1(X) are known and
constant across all samples. Figure 1 shows the distribution of AUC values for the four ROC procedures based on datasets
simulated with effect sizes of β0 = −1, β1 = 1 at reasonably large constant misclassification rates of γ0 = 0.2andγ1 = 0.3.

The first boxplot shows the distribution of AUC(T, P̂ ), the AUC values that would be obtained if the true outcomes
were observed, and therefore provides the true distribution that we wish to recover. The dotted red line at 0.741 marks the
mean AUC(T, P̂ ) value for the True Outcome ROC analysis. The second boxplot shows the distribution of AUC(Y, P̂ I),
an analysis that ignores misclassification in both the model fitting and ROC procedure. As expected, this naive analysis
produces biased, underestimates of true AUC (mean bias=0.129). The third boxplot shows values of AUC(Y, P̂M )

based on a standard ROC analysis of misclassification-corrected prediction estimates. Interestingly, these AUC values
are virtually identical to those from the previous ROC analysis that completely ignored the misclassification. Therefore,
accounting for misclassification in the modeling step had little effect on AUC computation when the misclassified
outcomes were still used in a standard ROC analysis.

Finally, the fourth boxplot shows AUCM , the AUC values based on our misclassification adjusted ROC method. The
distribution for AUCM is centered over the mean of the true AUC values (dotted red line) and the ROC adjustment has
removed nearly all bias introduced by the misclassification (mean bias=-0.001). The AUCM estimates do, however, have
a larger variance than the AUC(T, P̂ ) from the true model. This is expected since the bias-corrected parameters estimates
β̂M are themselves known be less efficient than estimates based on the true data β̂T [11].

We computed confidence intervals for the corrected AUCM estimator using a bootstrap technique. We created
bootstrapped training datasets by randomly drawing samples with replacement from the the training cohort only,
recomputing the β̂M and prediction model for each bootstrapped set and calculating the corresponding AUCM in the
original testing data. Assuming that AUCM is an estimator for AUC(T, P̂ ), the true AUC value that would have been
observed in the absence of misclassified outcomes, we find that these bootstrap-based confidence intervals have accurate
coverage probabilities when the underlying misclassification rates are known. For example, 90% confidence intervals for
the AUCM values shown in Figure 1 (based on 300 bootstraps of the training data), contained the true AUC in the testing
data for 89% of the 500 simulated realizations.

[Figure 2 about here.]

Figure 2 shows mean bias and associated standard errors for AUC values obtained using a standard ROC analysis
of misclassified outcomes and the misclassification-adjusted ROC analysis across a range of misclassification rates
(also Supplementary Figure 5). As expected, bias in the standard AUC computation increases with increasing levels of
misclassification. The adjusted ROC procedure removes nearly all bias in AUC, although the standard error on these
corrected estimates does increase with increasing misclassification. We observed similar results for simulations with
multiple predictor variables (Supplementary Figure 6).

[Figure 3 about here.]

4.2.2. Differential Misclassification Next, we relaxed the assumption of constant misclassification, allowing the
misclassification rates to be functions of the covariate and thus vary between samples. Figure 3 shows distributions of
AUC values for two extreme scenarios of covariate-dependent differential misclassification. Again, we set β0 = −1 and
β1 = 1 and modeled misclassification using logistic functions of the covariate X as follows: logit

[
γ0(X)

]
= θ0 + θ1X

and logit
[
γ1(X)

]
= σ0 + σ1X . We fixed θ0 = σ0 = −1.386294 to give γ0(0) = γ1(0) = 0.2. Then, in the first scenario,

we set θ1 = −0.5 and σ1 = 1.5 so that false positive rate increases with the probability of being a control and false negative
rate increases with the probability of being a case (Supplementary Figure 7). AUC values from the misclassified outcome
ROC analysis severely underestimate of the true AUC (mean bias=0.179). The AUCM values from the adjusted ROC
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analysis have a mean bias of only -0.001, indicating that the correction method has removed virtually all bias induced by
misclassification.

In the second scenario, we reversed the relationship between misclassification rates and event probability. We set
θ1 = 1.5 and σ1 = −0.5 so that the false positive rate increases with the probability of being a case and the false
negative rate increases with the probability of being a control (Supplementary Figure 8). Here, the misclassified outcome
ROC analysis actually overestimates the true AUC value (mean bias=-0.054). Again, the misclassification-adjusted ROC
procedure yielded nearly unbiased AUC estimates (mean bias=-0.001).

This differential misclassification example highlights the fact that AUC bias can actually occur in both directions. In
the first scenario, the noise introduced by the misclassification weakened the regression association between the covariate
and the outcome which ultimately led to a lower estimated predictive capacity. Underestimation of the true AUC is the
more frequent scenario, also occurring for constant misclassification as well as when γ0(X) and γ1(X) have the same
direction of effect (Supplementary Figure 9). In the second scenario, the misclassification systematically strengthened the
perceived association between the covariate and the outcome leading to an inflated estimate of the predictive ability of the
covariate. In each case, however, the ability to recover bias-corrected parameter estimates in the modeling step allows the
misclassification-adjusted ROC procedure to substantially reduce the AUC bias.

5. Application to EHR Hospitalization Data

We present a proof of principle example using data from the Veteran’s Health Administration (VHA) Electronic Health
Record (EHR) and Centers for Medicare and Medicaid Services (CMS). This example serves as an application of our
proposed ROC correction on real EHR data as well as a description of how the misclassification functions can be
estimated using an internally validated “gold standard” subset. The binary outcome of interest is the occurrence of an
inpatient hospitalization in VHA patients aged 65 or older during a three year followup period from 1/1/2007 through
12/31/2009. We wish to know how well hospitalization events can be predicted using demographic (age, sex), behaviorial
(smoking), medication (hypertension prescription) and comorbidity (diabetes, chronic heart failure, chronic obstructive
pulmonary disease, atrial fibrillation, and depression) information collected at baseline. We defined a nationwide cohort of
N = 1, 037, 428 VHA healthcare patients between the ages of 65 and 80 at the start of 2006 and with at least two outpatient
appointments within the VHA system during 2006. We partitioned the dataset into a training cohort of 750, 000 samples
for model building and the remaining ∼ 250, 000 samples to a testing cohort for the ROC analysis. Full description of the
cohort and specific diagnosis and procedural codes used for comorbidities are given in the appendix.

5.1. Misclassification of Hospitalization Events

Patients in our cohort may be eligible for medical care through non-VHA sources, meaning that hospitalizations either
occurring outside of VHA facilities or not billed to the VHA may not be recorded in the VA EHR. This inevitable gap
in recording leads to the clear potential to misclassify patient outcomes when using only VHA EHR data, a common
problem for any health care system. We therefore extracted Medicare records from CMS for patients in our cohort to
identify additional hospitalization events not appearing in the VHA EHR. We treated the combined set of hospitalization
events from the VHA EHR and CMS as the “true” outcomes (T ) and pose the question of how using only “observed”
VHA EHR outcomes (Y ) would affect our prediction modeling. Under this scenario, patients with a hospitalization event
in CMS but not in their VHA EHR would be misclassified as non-events.

We purposefully chose inpatient hospitalizations in Medicare-eligible patients ≥ 65 years of age to create an example
in which total event capture should be nearly complete between the VA EHR and CMS. Inpatient hospitalizations are
typically medically intensive and expensive, leading to a large number of procedural and billing codes that leave a
substantial trail in the patient medical record, be it the VHA EHR or CMS, which is unlikely to be missed.
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In total, 130,876 patients (12.6%) had an inpatient hospitalization during the three year followup recorded in their VHA
EHR. In comparison, 320,697 patients (30.9%) had a hospitalization event based on the combined VHA and CMS records,
indicating the extent of false negative misclassification for hospitalization events. We make the simplifying assumption that
all hospitalization events are real. Although this may not hold in practice, the number of false positive events is likely much
smaller than false negative events. Then, by construction, the false positive misclassification function is γ0(X) = 0, and the
false negative function γ1(X) is non-zero and unknown but there is evidence that it is covariate dependent (Supplementary
Figure 10).

5.2. Standard ROC Analysis

Figure 4 shows ROC curves for predicting three year hospitalization events. First, we used the true (VHA+CMS) outcomes
in the regression model with standard ROC analysis (black curve) to establish the “true” AUC value in the absence of
misclassification. This analysis yielded an AUC of 0.669 in the testing cohort. Next, we determined the effect of ignoring
misclassification by fitting the logistic prediction model on the observed (VHA-only) outcomes and using the subsequent
biased prediction values in a standard ROC analysis with the observed outcomes (red line). The AUC for this analysis
was 0.592. As expected, the missed hospitalizations in the VHA-only outcome led to a biased AUC that lowered the
perceived predictive value of the covariates. The 11.5% drop in AUC is consistent with simulation results in Table 1 for
fairly common outcomes with low false positive and high false negative rates.

[Figure 4 about here.]

5.3. Estimation of Misclassification Rates

In order to apply our ROC procedure we require an estimate of the misclassification function γ1(X). To do this, we
randomly selected a subset of the training samples to serve as internally validated “gold standard” outcomes. That is, for
these samples, we revealed the true (VHA+CMS) hospitalization outcome and fit the following logistic regression model
on true hospitalization cases:

logit[P (Y = 1|T = 1,X)] = logit[1− γ1(X)]. (9)

where T is the VHA+CMS outcome, Y is the VHA-only outcome and X is the same set of covariates used for predicting
hospitalizations. We used the regression parameter estimates from equation (9) to compute a covariate-dependent estimate
of false negative misclassification γ̂1(X) for each sample in the dataset. Using the γ̂1(X) values and the VHA-only
hospitalization outcomes Y , we computed AUCM using our misclassification adjusted ROC procedure.

5.4. Misclassification-Adjusted ROC Analysis

Due to the sampling variation inherent in drawing an internal validation cohort, we created 20 realizations of 5, 000

randomly selected gold standard samples. The gray curves in Figure 4 show the misclassification-adjusted ROC curves
based on the different realizations of the internal validation cohorts. The true ROC curve (black) is roughly centered within
the distribution of misclassification-adjusted ROC curves. The AUCM values ranged from 0.626 to 0.692, with an average
value of 0.658, providing a much closer estimate of the AUC value of 0.669 from the true outcome ROC analysis.

Coverage of the bootstrap-based confidence intervals suffered (only 2 of the 20 90% confidence intervals covered
the true AUC) due to the misclassification rates being estimated rather than known exactly (Supplementary Figure 11).
However, none of the confidence intervals covered or were below the naive AUC estimate of 0.592, only two intervals
overestimated the true AUC, and, in many cases, the distance between the bounds of the confidence intervals and the true
AUC were negligible (e.g.< 0.01). Thus, the combination of a small internally validated subset (< 0.5% of the full cohort)
and our proposed ROC correction were able to sufficiently estimate unknown EHR misclassification rates and provide a
much improved estimate of the predictive accuracy for hospitalization events.
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6. Discussion

Building accurate predictive models based on EHR data is a critical step toward the goal of personalized medicine.
Analysis of misclassified outcome data is therefore only likely to increase as EHR research becomes more prevalent.
Properly accounting for inevitable misclassification in Big Data resources is required in both the statistical model building
step as well as for determining prediction accuracy. Ignoring outcome misclassification when fitting a regression model
leads to biased parameter estimates. Numerous methods have been proposed to correct that bias. Here we have shown
that simply correcting the effect estimates in the regression model is not sufficient for performing a valid ROC analysis.
Using the misclassified outcomes, even with accurate risk prediction scores, leads to biased estimates of AUC. We have
introduced a correction procedure in which the ROC curve incorporates quantitative likelihoods for the outcome into the
definitions of true and false positive rates in place of the observed potentially misclassified outcome (equations 7 and
8). This adjustment leads to more accurate estimates of true and false positive rates for any fixed cutoff α which in turn
substantially reduces the bias in area under the ROC curve.

A major advantage of our correction method is that it is computationally simple, requiring only one additional value
(equation 6) be computed beyond the standard ROC analysis. Computational efficiency is essential in the era of Big
Data in which datasets can be on the order of thousands of variables in millions of samples, thereby placing a premium
on algorithms that can obtain the desired result without iterating through the data many times or requiring repeated
draws of random variables. While the AUC bias could potentially be corrected using simulation, imputation or more
complex Bayesian methods, our closed form equation is substantially faster. It is therefore ideal for quickly and accurately
comparing the predictive value of competing models in very large datasets or determining the predictive value of individual
model covariates.

Analyzing misclassified data requires some knowledge of the underlying misclassification mechanism. Unfortunately
this mechanism can be very complicated and unintuitive. Nevertheless, we have assumed that misclassification
probabilities are either known or can be estimated. Since the misclassification probabilities are typically needed for
correction in the model building step, we do not require additional information for our ROC correction. Estimates of
misclassification rates can come from external diagnostic data or potentially even inferred from summary analyses of the
observed data. In this paper, we showed how covariate-dependent misclassification probabilities can be estimated from an
internally validated subset in which the true outcome is known. We used Medicare records to obtain the true outcome for
hospitalization events but other applications may require validation techniques such as medical chart review or molecular-
based diagnosis (e.g. biopsy). The feasibility of this strategy is dependent on the cost (both financial and time) of obtaining
true validated outcomes. It is important to note that although the actual causal mechanism leading to the misclassification
in our data example remained unclear, the sample-level estimates of misclassification were sufficiently accurate to improve
AUC estimation.

In practice, it may be unclear how extensive the misclassification is or how accurately it has been estimated. Our results
in Tables 1 and 2 provide a means for determining how large the misclassification rates must be for different scenarios in
order to have a major impact on AUC estimates. In some cases the misclassification may be judged low enough that the
effect on AUC is negligible. When fitting models and performing ROC analysis on misclassified outcomes, we recommend
a sensitivity analysis in which AUC is computed for a range of misclassification parameter values to understand how
changes in the misclassification probabilities affect inference. Similar sensitivity analyses have already been recommended
for misclassification in the model building step[33].

There are many analytic considerations in prediction modeling and discrimination analysis. Throughout we have
assumed that the misclassification rates are the same in the testing and training cohorts, as expected when a single dataset is
partitioned, however this is not required. Provided the misclassification rates from the training data are used for the model
building step and the misclassification rates from the testing data are used in the misclassification-adjusted ROC analysis,
the correction method remains valid. We have also used logistic regression throughout as our prediction model, but the
prediction scores used in the ROC analysis can come from any type of classification model [2]. We simply assume that the
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risk scores have been properly corrected for the misclassification. Finally, sample size plays an important role in analysis of
misclassified outcome data. Of course, larger sample sizes improve precision of effect size parameter estimates. But, more
importantly, small sample sizes can lead to difficulty in convergence when trying to obtain maximum likelihood estimates
for the misclassification-adjusted effect sizes β̂M . Here we used the Iteratively Weighted Least Squares (IWLS) approach
to solve for the β̂M in training cohorts of 5000 samples. Smaller sample sizes may require alternative maximization
procedures.
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Figure 1. Distribution of AUC values for four strategies of performing ROC analysis in the presence of misclassified binary outcomes. (1) The distribution of AUC values when the
true outcomes are observed. (2) Ignoring misclassification in both the regression prediction model and ROC analysis leads to a biased, underestimate of the true AUC. (3) The AUC
bias remains when accounting for the misclassified outcomes during the modeling step, but ignoring them in ROC computation. (4) The misclassification-adjusted ROC procedure
gives nearly unbiased AUC estimates (bias=-0.001) but larger variance than the true outcome AUC. Results are shown for 500 simulated datasets of 5000 training and 5000 testing
samples with model effect sizes of β0 = −1, β1 = 1 and constant misclassification parameters γ0 = 0.2, γ1 = 0.3.
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Figure 2. Bias in AUC for standard and misclassification-adjusted ROC analysis over a range of constant misclassification rates (β0 = −1, β1 = 1). Mean bias in AUC for a
standard ROC analysis of misclassified outcomes (solid lines) increases with increasing amount of misclassification. The misclassification-adjusted ROC procedure (dashed lines)
has bias of nearly zero over all combinations of false positive and false negative misclassification rates. Standard error on the misclassification-adjusted AUC estimates (vertical
bars) increases with increasing rates of misclassification.
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Figure 3. Distribution of AUC values for covariate-dependent differential misclassification. In the first scenario, the differential misclassification reduces the true association
between covariate and outcome, leading to an underestimate of the true AUC. In the second scenario, the misclassification rates inflate the covariate-outcome association in the
prediction model, and lead to an overestimate of the true AUC. In both cases, the misclassification-adjusted ROC procedure removes nearly all bias in AUC estimates.
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Figure 4. ROC curves for prediction of hospitalization events in Veteran’s Health Administration (VHA) patients. The ROC curve (black) obtained when the true outcomes are
observed has AUC=0.669. Using only hospitalization events recorded in the VHA EHR leads to misclassified outcomes. A standard ROC analysis of only VHA outcomes (red
curve) has AUC=0.592, an underestimate of the true predictive capability. We applied the misclassification-adjusted ROC procedure to the data using “gold standard” subsets with
validated outcomes to model outcome misclassification in the VHA-only data. The gray lines show the misclassification-adjusted ROC curve for realizations of the gold standard
subset. The mean AUC value from the misclassification-adjusted ROC curves was 0.658, meaning the combination of a small gold standard subset and adjusted ROC procedure
dramatically improved AUC estimation.
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Figure 5. Scatterplots of standard AUC estimates and misclassification-adjusted AUC estimates versus the true AUC values for various levels of misclassification. In each figure,
simulations were for model parameters β0 = −1 and β1 = 1 and fixed false-negative misclassification rate of γ1 = 0.2. As misclassification increases, bias increases in standard
estimates of AUC (triangles). The misclassification-adjusted AUC estimators (circles) have bias of nearly zero but increasing variance as misclassification increases.
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Figure 6. Bias in AUC for standard and misclassification-adjusted ROC procedures over a range of constant misclassification values for a model with multiple predictor variables
(β0 = −1, β1 = 1, β2 = 0.5, β3 = −1). For each simulated dataset, we computed bias as the difference between the AUC value based on the true outcome dataAUC(T, P̂ )

and the estimates using the observed outcome dataAUC(Y, P̂M ) andAUCM . Mean bias in AUC for standard ROC computation (solid lines) increases with increasing amount
of misclassification. The proposed misclassification-adjusted ROC procedure (dashed lines) has bias of nearly zero over all combinations of false positive and false negative values.
The vertical bars give standard errors for the AUC estimates.
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Figure 7. Graphical display of false positive, false negative and event probabilities for differential misclassification scenario 1 in which the false positive rate increases with the
probability of being a control and false negative rate increases with the probability of being a case. The misclassification in this scenario leads to an underestimate of the true AUC
value.
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Figure 8. Graphical display of false positive, false negative and event probabilities for differential misclassification scenario 2 in which the false positive rate increases with the
probability of being a case and the false negative rate increases with the probability of being a control. The misclassification in this scenario leads to an overestimate of the true
AUC value.

22 www.sim.org Copyright c© 0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 1–14
Prepared using simauth.cls

This article is protected by copyright. All rights reserved.



FIGURES

Statistics
in Medicine

0.
60

0.
65

0.
70

0.
75

A
re

a 
U

nd
er

 th
e 

R
O

C
 C

ur
ve

True
Outcome

ROC

Misclass.
Outcome

ROC

Misclass.
Adjusted

ROC

Misclass.
Outcome

ROC

Misclass.
Adjusted

ROC

Differential
Misclassification

θ1 = σ1 = 0.5

Differential
Misclassification

θ1 = σ1 = −0.5

Figure 9. Examples of differential misclassification in which false positive and false negative rates have same direction. When θ1 = σ1 = 0.5, both the false positive and
false negative rates increase with the probability of being a case and the misclassification leads to an underestimate of the true AUC. When θ1 = σ1 = −0.5, both the false
positive and false negative rates decrease with the probability of being a case and, again, the misclassification leads to an underestimate of the true AUC. In both cases, the
misclassification-adjusted ROC method substantially reduces AUC bias.
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Figure 10. Three year inpatient hospitalization rates by baseline age using events recorded in either VHA or CMS records (black line) and only VHA EHR events (red line). Using
only the VHA EHR leads to a misclassification of hospitalization outcome events as non-events. The change in difference between event rates by age indicates covariate dependent
misclassification.
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Figure 11. Bootstrap-based 90% confidence intervals of AUCM for 20 realizations of the internal validation cohort in the data example. The solid black line at AUC=0.669
indicates the true AUC value and the dashed line at AUC=0.592 the nave analysis of misclassified outcomes. Coverage of the bootstrap-based confidence intervals suffered due to
the misclassification rates being estimated rather than known exactly.
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Baseline Risk
eβ0/

(
1 + eβ0

) Effect Size
β1

False
Positive
Rate γ0

False
Negative
Rate γ1

True Outcome
ROC

AUC(T, P̂ )

Misclass.
Outcome ROC
AUC(Y, P̂ I)

Mean Bias
(% Change)

0.01 0.1 0.05 0.05 0.511 0.499 1.60
0.2 0.511 0.500 1.31

0.2 0.05 0.511 0.499 1.56
0.2 0.511 0.500 1.27

1.0 0.05 0.05 0.758 0.560 26.07
0.2 0.758 0.552 27.16

0.2 0.05 0.758 0.517 31.77
0.2 0.758 0.512 32.44

0.2 0.1 0.05 0.05 0.527 0.522 0.95
0.2 0.527 0.520 1.28

0.2 0.05 0.527 0.513 2.61
0.2 0.527 0.510 3.10

1.0 0.05 0.05 0.743 0.704 5.21
0.2 0.743 0.688 7.42

0.2 0.05 0.743 0.641 13.72
0.2 0.743 0.617 16.87

Table 1. Bias in Area Under the ROC curve (AUC) for misclassified outcomes in a population cohort in which controls
outnumber cases. The table shows the AUC for standard ROC analysis of true and misclassified outcomes simulated at low
and high values for each model parameter. The bias in AUC is greatest for very rare events with large effect covariates. In
this scenario, misclassifying controls as cases (false positives) has a greater impact on AUC bias than does misclassifying

true cases. Supplementary Table 2 shows the result when cases are more prevalent in the cohort.
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Baseline Risk
eβ0/

(
1 + eβ0

) Effect Size
β1

False
Positive
Rate γ0

False
Negative
Rate γ1

True Outcome
ROC

AUC(T, P̂ )

Misclass.
Outcome ROC
AUC(Y, P̂ I)

Mean Bias
(% Change)

0.6 0.1 0.05 0.05 0.527 0.524 0.57
0.2 0.527 0.519 1.53

0.2 0.05 0.527 0.521 1.13
0.2 0.527 0.515 2.29

1.0 0.05 0.05 0.739 0.714 3.41
0.2 0.739 0.675 8.75

0.2 0.05 0.739 0.689 6.87
0.2 0.739 0.641 13.30

0.8 0.1 0.05 0.05 0.528 0.523 0.99
0.2 0.528 0.514 2.70

0.2 0.05 0.528 0.520 1.47
0.2 0.528 0.510 3.42

1.0 0.05 0.05 0.742 0.704 5.15
0.2 0.742 0.640 13.76

0.2 0.05 0.742 0.687 7.39
0.2 0.742 0.618 16.79

Table 2. Bias in Area Under the ROC curve (AUC) for misclassified outcomes in a population cohort in which cases
outnumber controls. In this scenario, misclassifying cases as controls (false negative) has a greater impact on AUC bias

than does misclassifying true controls.
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