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In the past 20 years, there has been a steadily increasing attention and demand for Bayesian data analysis
across multiple scientific disciplines, including psychology. Bayesian methods and the related Markov
chain Monte Carlo sampling techniques offered renewed ways of handling old and challenging new
problems that may be difficult or impossible to handle using classical approaches. Yet, such opportunities
and potential improvements have not been sufficiently explored and investigated. This is 1 of 2 special
issues in Psychological Methods dedicated to the topic of Bayesian data analysis, with an emphasis on
Bayesian hypothesis testing, model comparison, and general guidelines for applications in psychology.
In this editorial, we provide an overview of the use of Bayesian methods in psychological research and
a brief history of the Bayes factor and the posterior predictive p value. Translational abstracts that
summarize the articles in this issue in very clear and understandable terms are included in the Appendix.
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In 2015, Psychological Methods published a call for articles for
a special issue on Bayesian Data Analysis. A total of 65 articles
have been submitted of which approximately 20 will be published.
The latter can be categorized under five topics: practical guidelines
and general use, Bayes factor, posterior predictive p values, Bayes-
ian estimation, and Bayesian modeling. We decided to distribute
these articles over two special issues: the June 2017 issue contain-
ing the articles with respect to the first three topics and the
December 2017 issue containing the articles with respect to the last
two topics. As much as possible, we have encouraged authors to
provide software codes and practical demonstrations with their
articles. These are available online as supplementary materials.

This editorial and special issue are organized into three sections.
A summary of the articles included is presented, followed by the
Appendix, which provides translational abstracts of the articles
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briefly describing their essence in clear understandable language.
We begin with an overview of Bayesian data analysis in psycho-
logical research, thereby introducing the articles by van de Schoot,
Winter, Ryan, Zondervan-Zwijnenburg, and Depaoli (2017) and
Depaoli and van de Schoot (2017). The editorial continues with a
brief history of the Bayes factor and its use in psychological
research, thereby introducing the articles by Boing-Messing, van
Assen, Hofman, Hoijtink, and Mulder (2017); Rouder, Morey,
Verhagen, Swagman, and Wagenmakers (2017); Schonbrodt,
Wagenmakers, Zehetleitner, and Perugini (2017); Houpt, Heath-
cote, and Eidels (2017); Jeon and De Boeck (2017), and Lu, Chow,
and Loken (2017). Subsequently, a brief history of the posterior
predictive p value and its use in psychological research will be
provided, thereby introducing the articles by van Kollenburg,
Mulder, and Vermunt (2017) and Li, Xie, and Jiao (2017). The
editorial ends with a short conclusion.

Overview of Bayesian Data Analysis in
Psychological Research

Most modern applications of Bayesian data analysis in psycho-
logical research employ a computationally demanding Gibbs or
Markov chain Monte Carlo sampler (McMC; Gelfand & Smith,
1990; Geman & Geman, 1984). The speed of computers has
always been an important determinant—and hurdle, in many cas-
es—of the rates at which Bayesian data analysis develops and
gains momentum in psychology. In February 1994, the first author
of this editorial programmed in Fortran an McMC approach to
sample the parameters of the two-parameter logistic item response
model (Birnbaum, 1968) on a, for that time, state-of-the-art laptop.
After 2 weeks of sampling, the program finished. Inspection of the
output showed that there was a bug in the code. To make a long
story short, some initial results were only available toward the end
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of April 1994. In 2015, the exercise was repeated using WinBUGS
(Lunn, Thomas, Best, & Spiegelhalter 2000), again on a (for that
time) state-of-the-art computer. This time, computations finished
in a few minutes. Aside from the anecdotal coincidence with the
first author’s personal experience, the time frame (1990-2015) for
van de Schoot and colleagues’ (2017, this issue) review of Bayes-
ian data analysis in psychological research is, indeed, well-chosen.
Before 1990, there were virtually no “psychological” articles deal-
ing with applied Bayesian statistics (but see Edwards, Lindman, &
Savage, 1963); however, with increases in computing resources
and available software, the number of publications on this topic
has rapidly multiplied.

The Bayesian point of view and computational toolkit enable
new approaches to data analysis. However, as is highlighted by
Depaoli and van de Schoot (2017, this issue), new approaches also
call for new standards and guidelines for reporting analyses to
improve transparency and replicability across studies. Their
WAMBS checklist (When to worry and how to Avoid the Misuse
of Bayesian Statistics) provides one possible set of recommenda-
tions on important results to report. Their checklist is timely, and
we agree with the authors that such a checklist provides a working
framework to help researchers organize their analytic plans and
results. Two important new approaches are testing hypotheses
using the Bayes factor and the posterior predictive p value. In the
next two sections, both approaches will be introduced.

Brief History of the Bayes Factor and Its Use in
Psychological Research
The core of the Bayesian approach is Bayes’s theorem, which
states that the posterior density g(-) is the product of the density of
the data f(-) and the prior distribution A(-) divided by the marginal
likelihood m(-):

g(81x) = L1 0)(B) 0

m(x) ’

where x denotes the data, and 6 the parameters of the model
defining the density of the data. In classical statistics, the infor-
mation in the data with respect to the model parameters is sum-
marized in the likelihood function. In Bayesian statistics, this
information is summarized in the posterior distribution. A distin-
guishing feature of the Bayesian approach is the opportunity to
include prior knowledge about the model parameters into statisti-
cal analyses via the specification of prior distributions. The inter-
ested reader is referred to Gelman, Carlin, Stern, and Rubin (2013)
for an introduction and many examples. Another feature is the use
of the marginal likelihood, which contains the information in the
data with respect to a model, to test hypotheses. Bayesian hypoth-
esis testing by means of the Bayes factor was introduced by
Jeffreys (1939/1961). In psychological research, it is often used in
the form of the following ratio of two marginal likelihoods:

BF,, = MlHD _ fef(x|9>h(9IH1>de o
el f o1 0)A(0] H)db

where the marginal likelihoods and prior distributions are now con-
ditional on H, and H,, respectively, where “H” refers to a specific
hypothesis. If, for example, BF,, = 10, the support in the data for H,
is 10 times larger than the support for H,. The density of the data can,
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for example, be based on the simple model x; ~ N(p, 02) for I = 1,
..., N, where . and o” denote the population mean and variance of
x, respectively, and N the sample size. To obtain a Bayesian test of the
hypotheses H, : w. = 0 versus H, : p. # 0, the prior distributions have
to be specified. Prior distributions could be, for example, &
(w|Hy) = I, a point-mass or probability of 1 for p = 0, &
(w|Hy) = N(0,7), where T is the prior variance; and a standard
uninformative prior for o?.

An important landmark reviving the attention for the Bayes factor
is Kass and Raftery (1995). Readers wanting to learn about the Bayes
factor are well advised to start with this article. The main question
when using Bayes factors is how to specify the prior distributions. In
our example this would amount to choosing a value for 7. Currently,
within psychological research two main approaches can be distin-
guished. The first approach uses data based methods to specify the
prior distribution (see Berger and Pericchi, 2004, for an overview).
The first appearance of the Bayes factor in Psychological Methods,
Klugkist et al. (2005), used data based prior distributions to evaluate
so-called informative hypotheses; that is, hypotheses specified using
equality and inequality constraints (Hoijtink, 2012). The interested
reader is referred to http://informative-hypotheses.sites.uu.nl/for an
overview and software packages with which informative hypotheses
can be evaluated. The latest extension of this approach is Boing-
Messing et al. (2017, this issue), who evaluate inequality constrained
hypotheses with respect to variances. An application of this approach
can be found in Houpt et al. (2017, this issue) who test informative
hypotheses with respect to cognitive architecture. The second ap-
proach uses (mixtures of) so-called g-priors (Liang, Paulo, Molina,
Clyde, & Berger 2008). In our example these priors would be based
on a subjective choice of the value of 7. Rouder, Speckman, Sun,
Morey, and Iverson (2009) is the starting point of a number of g-prior
based Bayes factor articles for the evaluation of traditional null-
hypotheses. The interested reader is referred to http://pcl.missouri.edu/
bayesfactor for an overview and software packages in which this
approach is implemented. The latest extension is Rouder et al. (2017,
this issue) and concerns Bayesian analysis of factorial designs. An
application of this approach can be found in Schonbrodt et al. (2017,
this issue) who use it in the context of sequential hypothesis testing.
Both approaches are (being) implemented in the software package
JASP (https://jasp-stats.org/) thereby increasing their usability for
psychological researchers.

Bayes factor is not the only mechanism for model comparison. It
has its strengths in some modeling contexts, but also its limitations in
others. Comparisons of the Bayes factor to other model comparison
tools are undertaken in several articles that appear in this special issue.
Among them are the article by Jeon and De Boeck (2017, this issue),
in which they compare the decision qualities of the Bayes factor and
p value based hypothesis testing, and that by Lu et al. (2017, this
issue) in which the authors compare the performance of the Bayes
factor with model comparison criteria such as the Bayesian Informa-
tion Criterion and the Deviance Information Criterion, as well as
alternative approaches based on Bayesian leave-one-out and variable
selection methods.

A Brief History of the Posterior Predictive p Value
and Its Use in Psychological Research

The first proposal for the posterior predictive p value was put forth
by Rubin (1984, Section 5) as a mechanism for testing a null hypoth-
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esis, H,, with respect to a model of interest. We use the name “null
hypothesis” for convenience, but generally, H,, may take on a form
that is much more general than the way the null hypothesis is typically
defined in the classical sense. If the model of interest is, for example,
x; ~ N(w, ) fori = 1,. .., N, the hypothesis could be (a) Hé:u, = 0
and (b) Hf.x; is normally distributed. The formal definition of the
posterior predictive p value is:

p =P,

ep

> Tlx, Hy) = feo P(T,

o> T100)g (81 x, Hy)db,

=2 e O
where the vector of parameters for the model defined under H,, is
denoted as 0,. For the two examples listed above, 6, = [n =
0, ¢?] and [, 02], respectively, under H% and Hf. The posterior
distribution of 6, is denoted by g(6, | x, H), which is proportional
to f(x]0y)h(6,), where h(-) represents the prior distributions for 6,
usually selected to be uninformative in nature. The plausibility of
H, is assessed using 7, a sample statistic of choice computed using

the observed data. For example, for Hj, T = —=—, where X and

s? denote the sample mean and variance of x, srespectively. In the
case of Hj, choices for T may include the sample skewness, the
sample kurtosis, or the largest value of x.

A McMC sampling method can be used to draw ¢ = I, . . . Q
samples of 6f from g(-). Each 0f is, in turn, used to generate x7,,, a
replication of the data matrix sampled from the posterior predictive
distribution of the data under H,,. Each xf,, can be used to compute
T},,, thereby rendering a sample from the posterior predictive distri-
bution of the test statistic under H,,. Simply counting the proportion of
times that the replicated test statistics are larger than the observed test
statistic provides an estimate of the posterior predictive p value.

The posterior predictive approach provides one possible solution to
the fundamental problem of computing p values: how to replicate data
from a population in which H, is true if one or more of the population
parameters are unknown. In the case of Hj, only ¢ is unknown; in the
case of Hj, both w and ¢ are unknown. The problem is addressed by
sampling the unknown parameters from their joint posterior distribu-
tion using one of a variety of McMC sampling techniques.

An important landmark in the development of the posterior
predictive p value is Meng (1994). He provided a formal descrip-
tion, elaborations, examples, and derived properties. As became
clear, the posterior predictive p value is not necessarily uniform
under the null-hypothesis; that is, it may very well not hold that
P(p < a|Hy) = a, where o denotes the Type I error level. Bayarri
and Berger (2000) elaborated that this bias is caused by using the
data twice: once for the specification of the posterior distribution
and once for the computation of the p value. They also provide
modifications that solve this problem; however, these modifica-
tions are not easily applied. Van Kollenburg et al. (2017, this issue)
provide another solution (posterior calibration of the p values) and
apply it in the context of latent class models and regression
analysis. The interested reader is also referred to Lecoutre,
Lecoutre, and Poitevineau (2010), who discuss the use of predic-
tive probabilities in psychological research and constitute the first
appearance of predictive probabilities in Psychological Methods.

Despite its nonuniformity, proponents of the posterior predictive
p value argue that it is very useful because it is a clearly defined
and easily applied model check (Gelman, Meng, & Stern, 1996)

and can always be used as such. Li et al. (2017, this issue) show
how model checking using the posterior predictive p value can be
used to assess the fit of unidimensional polytomous item response
theory (IRT) models. It is furthermore implemented in packages
such as Mplus (Muthén & Muthén, 1998-2015) and Blavaan
(Merkle & Rosseel, 2015), where it is used to test the fit of
structural equation models.

Conclusion

As van de Schoot et al. (2017, this issue) show, the history of
Bayesian data analysis in psychological research started about 25
years ago. Since then, many new developments, applications, and
refinements to existing techniques have been achieved. We have
highlighted here only a fraction of the new developments in theory
and software packages. We do not claim the collection of articles
appearing in this special issue to be exhaustive. Nevertheless, we hope
that these articles can add to the repertoire of Bayesian tools and
resources available to psychological researchers in useful ways.
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Appendix

Translational Abstracts (TAs) for the 10 Special Issue Articles

1. TA for “A Systematic Review of Bayesian Papers in
Psychology: The Last 25 Years” by Rens van de Schoot,
Sonja  Winter, Oisin Ryan, Marielle Zondervan-
Zwijnenburg, and Sarah Depaoli

Although the statistical tools most often used by researchers in
the field of Psychology over the last 25 years are based on
frequentist statistics, it is often claimed that the alternative Bayes-
ian approach to statistics is gaining in popularity. In the current
article, we investigated this claim by performing the very first
systematic review of Bayesian psychological articles published
between 1990 and 2015 (n = 1,579). We aim to provide a thorough
presentation of the role Bayesian statistics plays in Psychology. This
historical assessment allows us to identify trends and see how Bayes-
ian methods have been integrated into psychological research in the
context of different statistical frameworks (e.g., hypothesis testing,
cognitive models, IRT, structural equation modeling, etc.). We also
describe take-home messages and provide “big-picture” recommen-
dations to the field as Bayesian statistics becomes more popular. Our
review indicated that Bayesian statistics are used in a variety of

contexts across subfields of Psychology and related disciplines. There
are many different reasons why one might choose to use Bayes (e.g.,
the use of priors, estimating otherwise intractable models, modeling
uncertainty, etc.). We found in this review that the use of Bayes has
increased and broadened in the sense that this methodology can be
used in a flexible manner to tackle many different forms of questions.
We hope this presentation opens the door for a larger discussion
regarding the current state of Bayesian statistics, as well as future
trends.

2. TA for “Improving Transparency and Replication in
Bayesian Statistics: The WAMBS Checklist” by Sarah
Depaoli and Rens van de Schoot

Bayesian statistical methods are slowly creeping into all fields of
science and are becoming ever more popular in applied research.
Although it is very attractive to use Bayesian statistics, our personal
experience has led us to believe that naively applying Bayesian
methods can be dangerous for at least three main reasons: the potential
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influence of priors, misinterpretation of Bayesian features and results,
and improper reporting of Bayesian results. To deal with these three
points of potential danger, we have developed a succinct checklist: the
WAMBS-checklist (When to Worry and how to Avoid the Misuse of
Bayesian Statistics). The purpose of the questionnaire is to describe 10
main points that should be thoroughly checked when applying Bayes-
ian analysis. We provide an account of “when to worry” for each of
these issues related to: (a) issues to check before estimating the model,
(b) issues to check after estimating the model but before interpreting
results, (c) understanding the influence of priors, and (d) actions to
take after interpreting results. To accompany these key points of
concern, we will present diagnostic tools that can be used in conjunc-
tion with the development and assessment of a Bayesian model. We
also include examples of how to interpret results when “problems” in
estimation arise, as well as syntax and instructions for implementa-
tion. Our aim is to stress the importance of openness and transparency
of all aspects of Bayesian estimation, and it is our hope that the
WAMBS questionnaire can aid in this process.

3. TA for “Bayesian Evaluation of Constrained Hypothe-
ses on Variances of Multiple Independent Groups” by
Florian Boing-Messing, Marcel A.L.M. van Assen, Abe
D. Hofman, Herbert Hoijtink, and Joris Mulder

Research has shown that independent groups often differ not
only in their means, but also in their variances. Comparing and
testing variances is therefore of crucial importance to understand
the effect of a grouping variable on an outcome variable. Research-
ers may have specific expectations concerning the relations be-
tween the variances of multiple groups. Such expectations can be
translated into hypotheses with inequality and/or equality con-
straints on the group variances. Currently, however, no methods
are available for testing (in)equality constrained hypotheses on
variances. This article proposes a novel Bayesian approach to this
challenging testing problem. Our approach has the following use-
ful properties: First, it can be used to simultaneously test multiple
(non)nested hypotheses with equality as well as inequality con-
straints on the variances. Second, our approach is fully automatic
in the sense that no subjective prior specification is needed. Only
the hypotheses need to be provided. Third, a user-friendly software
application is included that can be used to perform this Bayesian
test in an easy manner.

4. TA for “Bayesian Analyses of Cognitive Architecture”
By Joseph W. Houpt, Andrew Heathcote, and Ami
Eidels

The question of cognitive architecture—how cognitive pro-
cesses are temporally organized—has arisen in many areas of
psychology. This question has proved difficult to answer, with
many proposed solutions turning out to be spurious. Systems
Factorial Technology provided the first rigorous empirical and

analytical method of identifying cognitive architecture, using the
Survivor Interaction Contrast (SIC) to determine when people are
using multiple sources of information in parallel or in series.
Although the SIC is based on rigorous nonparametric mathemat-
ical modeling of response time distributions, for many years in-
ference about cognitive architecture has relied solely on visual
assessment. Recently, null hypothesis significance tests were in-
troduced, and here we develop both parametric and nonparametric
(encompassing prior) Bayesian inference. We show that the Bayes-
ian approaches can have considerable advantages.

5. TA for “Bayesian Analysis of Factorial Designs” by
Jeffrey N. Rouder, Richard D. Morey, Josine Verhagen,
April R. Swagman, and Eric-Jan Wagenmakers

This article provides a Bayes factor approach to multiway
analysis of variance (ANOVA) that allows researchers to state
graded evidence for effects or invariances as determined by the
data. ANOVA is conceptualized as a hierarchical model where
levels are clustered within factors. The development is compre-
hensive in that it includes Bayes factors for fixed and random
effects and for within-subjects, between-subjects, and mixed de-
signs. Different model construction and comparison strategies are
discussed, and an example is provided. We show how Bayes
factors may be computed with BayesFactor package in R and with
the JASP statistical package.

6. TA for “Sequential Hypothesis Testing With Bayes
Factors: Efficiently Testing Mean Differences” by Felix
D Schonbrodt, Eric-Jan Wagenmakers, Michael Ze-
hetleitner, and Marco Perugini

Unplanned optional stopping rules have been criticized for
inflating Type I error rates under the null hypothesis significance
testing (NHST) paradigm. Despite these criticisms this research
practice is not uncommon, probably as it appeals to researcher’s
intuition to collect more data in order to push an indecisive result
into a decisive region. In this contribution we investigate the
properties of a procedure for Bayesian hypothesis testing that
allows optional stopping with unlimited multiple testing, even after
each participant. In this procedure, which we call Sequential Bayes
Factors (SBF), Bayes factors are computed until an a priori defined
level of evidence is reached. This allows flexible sampling plans
and is not dependent upon correct effect size guesses in an a priori
power analysis. We investigated the long-term rate of misleading
evidence, the average expected sample sizes, and the biasedness of
effect size estimates when an SBF design is applied to a test of
mean differences between two groups. Compared with optimal
NHST, the SBF design typically needs 50% to 70% smaller
samples to reach a conclusion about the presence of an effect,
while having the same or lower long-term rate of wrong inference.

(Appendix continues)
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7. TA for “Decision qualities of Bayes factor and p-value
based hypothesis testing” by Minjeong Jeon and Paul
De Boeck

The purpose of this article is to investigate the decision qualities
of the Bayes factor method compared with the p value based null
hypothesis significance testing (NHST). The performance of the
two methods is assessed in terms of the false and true positive rates
as well as the false discovery rates and the posterior probabilities
of the null hypothesis for two different models: an independent-
samples t-test and an ANOVA model with two random factors.
Our simulation study results showed the following: (1) The com-
mon Bayes factor > 3 criterion is more conservative than the
NHST alpha = .05 criterion, and it corresponds better with the
alpha = .01 criterion. (2) An increasing sample size has a different
effect on the false positive rate and the false discovery rate de-
pending on whether the Bayes factor or NHST approach is used.
(3) When effect sizes are randomly sampled from the prior, power
curves tend to be flat compared with when effect sizes are pre-
specified. (4) The larger the scale factor (or the wider the prior) is,
the more conservative the inferential decision is. (5) The false-
positive and true-positive rates of the Bayes factor method are very
sensitive to the scale factor when the effect size is small. (6) While
the posterior probabilities of the null hypothesis ideally follow
from the BF value, they can be surprisingly high using NHST. In
general, these findings were consistent independent of which of the
two different models was used.

8. TA for “A Comparison of Bayesian and Frequentist
Model Selection Methods for Factor Analysis Models”
by Zhaohua Lu, Sy-Miin Chow, and Eric Loken

We compare the performances of well-known frequentist model
fit indices (MFIs) and several Bayesian model selection criteria
(MSCQ) as tools for cross-loading selection in factor analysis under
low to moderate sample sizes, effect sizes, and possible violation
of distributional assumptions. The Bayesian criteria considered
include the Bayes factor (BF), Bayesian Information Criterion
(BIC), Deviance Information Criterion (DIC), Bayesian leave-one-
out approach based on Pareto-smoothed importance sampling
(LOO-PSIS), and a Bayesian variable selection method using the
spike-and-slab prior (SSP; Lu et al., 2017). Simulation results
indicate that the BF and the SSP showed the best balance between
true positive rates and false positive rates, followed closely by the
BIC. The SSP actually exhibited better performance than the BF as
computed using the bridge sampler. The LOO-PSIS and the DIC
showed the highest true positive rates among all the measures
considered, but both had elevated false positive rates. In compar-
ison, likelihood ratio tests (LRTs) are still the preferred frequentist
model comparison tool, showing comparable or even higher true
positive rates than the BF, SSP and BIC; under violations of
distributional assumptions, however, slightly higher false positive
detection rates were observed than for the Bayesian MCC. The
root mean squared error of approximation (RMSEA), at the con-
ventional cut-off of approximate fit, imposes a much more strin-
gent “penalty” under conditions with low effect size, low sample
size, and high model complexity compared with the LRTs and all
other Bayesian MCC. Nevertheless, it provided a reasonable al-

ternative to the LRTs in cases where the models cannot be con-
structed as nested within each other.

9. TA for “Posterior Calibration of Posterior Predictive
P-values, with Applications in Latent Class and Regres-
sion Analysis” by Geert Hein van Kollenburg, Joris
Mulder, and Jeroen K. Vermunt

To accurately control the type I error probability (typically.05),
a p value should be uniformly distributed under the null model.
The posterior predictive p value (ppp), which is commonly used in
Bayesian data analysis, generally does not satisfy this property.
For example there have been reports where the sampling distribu-
tion of the ppp under the null model was highly concentrated
around .50. In this case, a ppp of.20 would indicate model misfit,
but when comparing it with a significance level of.05, which is
standard statistical practice, the null model would not be rejected.
Therefore, the ppp has very little power to detect model misfit. A
solution has been proposed in the literature, which involves cali-
brating the ppp using the prior distribution of the parameters under
the null model. A disadvantage of this method is, however, that it
is very sensitive to the quality of prior information that is provided
about all model parameters. In this article, therefore an alternative
solution is proposed where the ppp is calibrated using the posterior
under the null model. This method (a) can be used when good prior
information is absent, (b) allows one to test any model assumption
by choosing an appropriate discrepancy measure, and (c) results in
p values that are uniformly distributed under the null model. The
new methodology is applied in various testing problems such as
assessing model misfit in latent class analysis and checking misfit
with outliers in linear regression.

10. TA for “Assessing Fit of Alternative Unidimensional
Polytomous IRT Models Using Posterior Predictive
Model Checking” by Tongyun Li, Chao Xie, and Hong
Jiao

This article explored the application of a posterior predictive
model checking (PPMC) method in assessing fit for unidimen-
sional polytomous item response theory (IRT) models, specifically
the divide-by-total models (e.g., the generalized partial credit
model). Previous research has primarily focused on using PPMC in
model checking for unidimensional and multidimensional IRT
models for dichotomous data and paid little attention to polyto-
mous models. A Monte Carlo simulation was conducted to inves-
tigate the performance of PPMC in detecting different sources of
misfit for the partial credit model family. Results showed that the
PPMC method, in combination with appropriate discrepancy mea-
sures, had adequate power in detecting different sources of misfit
for the partial credit model family. Global odds ratio and item total
correlation exhibited a specific pattern in detecting the absence of
the slope parameter, whereas another method, Yen’s Ql, was
found to be promising in the detection of misfit caused by the
constant category intersection parameter constraint across items.
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