
Mitigation of Hot Electrons from Laser-Plasma
Instabilities in Laser-Generated X-Ray Sources

by

Je�rey R. Fein

A dissertation submi�ed in partial ful�llment
of the requirements for the degree of

Doctor of Philosophy
(Nuclear Engineering and Radiological Sciences)

in the University of Michigan
2017

Doctoral Commi�ee:
Professor James P. Holloway, Co-chair
Professor R. Paul Drake, Co-chair
Associate Research Scientist Paul A. Keiter
Associate Professor Alec G.R. �omas
Assistant Professor Louise Willingale



©Je�rey R. Fein

2017



Dedication
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ABSTRACT

Mitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated
X-Ray Sources

by

Je�rey R. Fein

Co-Chairs: James P. Holloway, R. Paul Drake

�is thesis describes experiments to understand and mitigate energetic or “hot” elec-

trons from laser-plasma instabilities (LPIs) in an e�ort to improve radiographic techniques

using laser-generated x-ray sources. Initial experiments on the OMEGA-60 laser show

evidence of an underlying background generated by x-rays with energies over 10 keV

on radiographs using backlit pinhole radiography, whose source is consistent with hard

x-rays from LPI-generated hot electrons. Mitigating this background can dramatically re-

duce uncertainties in measured object densities from radiographs and may be achieved

by eliminating the target components in which LPIs are most likely to grow.

Experiments were performed on the OMEGA-EP laser to study hot electron produc-

tion from laser-plasma instabilities in high-Z plasmas relevant to laser-generated x-ray

sources. Measurements of hard x-rays show a dramatic reduction in hot-electron energy

going from low-Z CH to high-Z Au targets, in a manner that is consistent with steepen-

ing electron density pro�les that were also measured. �e pro�le-steepening, we infer,

increased thresholds of LPIs and contributed to the reduced hot-electron production at
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higher Z. Possible mechanisms for generating hot electrons include the two-plasmon de-

cay and stimulated Raman sca�ering instabilities driven by multiple laser beams. Radia-

tion hydrodynamic simulations using the CRASH code predict that both of these instabili-

ties were above threshold with linear threshold parameters that decreased with increasing

Z due to steepening length-scales, as well as enhanced laser absorption and increased col-

lisional and Landau damping of electron plasma waves.

Another set of experiments were performed on the OMEGA-60 laser to test whether

hard x-ray background could be mitigated in backlit pinhole imagers by controlling laser-

plasma instabilities. Based on the results above, we hypothesized that LPIs and hot elec-

trons that lead to hard x-ray background would be reduced by increasing the atomic num-

ber of the irradiated components in the pinhole imagers. Using higher-Z materials we

demonstrate signi�cant reduction in x-rays between 30 − 70 keV and a 70% increase in

the signal-to-background ratio. Based on this, a proposed backlighter and detector setup

predicts a signal-to-background ratio of up to 4.5:1.
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CHAPTER 1

Introduction

Soon a�er the invention of the laser in 1960, it was recognized that focused electromag-

netic radiation could be used to rapidly heat materials to temperatures exceeding 10 mil-

lion degrees Kelvin—approximately that of the sun’s core—in less than a nanosecond [4,5].

At such high temperatures a material exists typically as a multiply-ionized plasma, and

through various processes emits x-rays with energies ranging from a few eV to several

keV. Such laser-produced plasmas have become a basis for laboratory studies of ma�er at

extreme conditions, and their application has yielded insights into phenomena ranging

from astrophysics to the physics of nuclear weapons. �ey play integral roles in both

creating extreme conditions, as a mediator of immense pressure, and in probing them,

through the creation of bright x-ray sources.

�e physics of such plasmas can be considerably complex and has become a major

topic of study in the pursuit of laser fusion, among other �elds. For nanosecond lasers

with irradiances between 1010−1016 W/cm2, plasma hydrodynamic motion is determined

in large part by the collisional absorption of laser energy, but can be strongly in�uenced

by electron heat conduction, radiation transport and even laser-generated magnetic �elds.

In addition, the lasers can parametrically excite an assortment of waves within the plasma

that may grow unstably and alter the plasma energetics. When these excited waves are

electron plasma waves, electrons with energies in excess of 100 keV can be generated.
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Such “hot electrons” are typically undesirable in most experiments, as they can heat up

target components altering initial conditions of an experiment, as well as degrade diag-

nostics. �is thesis presents results on the role that hot electrons play in producing un-

wanted background in x-ray radiography using laser-produced x-ray sources. In addition

it demonstrates how to mitigate this background based on a detailed understanding of the

laser-plasma interactions involved.

1.1 Physical Picture of Laser Plasmas

A laser can deposit its energy in a solid material to create a hot plasma in a variety of

ways. For the experiments discussed in this thesis, the plasmas are heated primarily by

collisional absorption of laser energy. An initially cold target will practically always have

some number of free electrons near its surface, typically generated by cosmic rays. �e

strong electric �eld of a laser incident on the target’s surface will accelerate the electrons,

which then sca�er o� nearby ions through Coulomb collisions with frequency,

νei = 3× 10−6neZe�

T
3/2
e

ln Λ s−1 (1.1)

Here, ne and Te are the plasma electron density and temperature in units of cm−3 and eV,

respectively. �e quantity, Ze� = 〈Z2〉/〈Z〉 where Z is the ion charge state and 〈〉 repre-

sents an average over all species present, and Λ = 9ND/〈Z〉, with ND being the number

of particles in a Debye sphere [6]. �e presence of ions is necessary for the electrons to

gain net energy over the oscillation period of the laser’s electric �eld. �is sca�ering pro-

cess is called inverse bremsstrahlung (Sec. 2.3), and is indeed the inverse of bremsstrahlung

radiation, where an electron loses energy though emission of a photon while decelerating

in an ion’s Coulomb potential. �e coe�cient for inverse-bremsstrahlung absorption of
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a laser with frequency ω0 is approximately

κIB =
νei
c

ω2
pe

ω2
0

1√
1− ω2

pe/ω
2
0

, (1.2)

with dimensions of inverse-length. Here, c is the speed of light, and ωpe is the electron

plasma frequency, or natural oscillation frequency of electrons in the plasma,

ωpe =

√
e2ne
meε0

, (1.3)

where e and me are the electron charge and mass, respectively, and ε0 is the permi�ivity

of free space and ne is in SI units. As the electrons gain energy over several oscillation

periods, they will further ionize the solid target in a cascading fashion through collisions

with bound electrons—resulting in the formation of a plasma. (Alternatively, at su�-

ciently high intensities, the potential energy of an electron in the laser’s electric �eld can

exceed the ionization energy of the atom and the laser will ionize the atom directly.)

�e subsequent dynamics are described with reference to the illustration of electron

density and temperature pro�les depicted in Fig. 1.1. Immediately, a hot, low-density

plasma corona expands away from the target at high velocities. �e corona typically re-
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mains isothermal through absorbing some of the laser energy or by rapid heat conduction

from higher densities where the majority of laser absorption occurs. If the laser does not

deposit its energy fully in this absorption region, it will propagate up to the critical density

surface, where ωpe = ω0. �e critical density, nc corresponding to this condition is

nc =
ω2

0meε0

e2
(1.4)

=
1.12× 1021

λ2
µ

cm−3 (1.5)

where λµ is the laser’s wavelength in vacuum in microns. Here, the laser will either

re�ect or be absorbed completely by resonant processes, depending on its incident angle

and polarization [7]. With reference to Eq. 1.2, collisional absorption is most e�cient

near the critical surface as a consequence of the EM wave coupling most strongly when

the plasma electrons are resonantly oscillating at the EM wave’s natural frequency.

As absorption ceases beyond the critical density, the temperature drops rapidly and

the dynamics become dominated by transport of heat towards the solid target via electron

thermal conduction. �e mass in this region ablates away from the target up to a location

known as the ablation front, producing an outward energy �ux that roughly balances ther-

mal energy-transport inward. By conservation of momentum, the ablating mass induces

a reactionary ablation pressure, Pa normal to the target’s surface, which compresses the

solid material and launches it inward. Low-Z targets are generally be�er for generating

ablation pressure than higher-Z targets at a given intensity for a variety of reasons. �e

low charge states and therefore collisions help localize laser absorption near the critical

surface, rather than wasting excess energy by heating the coronal plasma. Fewer colli-

sions also improve electron thermal conductivity, such that energy can be transported to

the dense material more e�ciently. Lastly, energy losses by radiation are nearly always

less e�cient (and typically negligible) in low-Z plasmas.
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Using a 1D planar stationary ablation model for low-Z targets [8], the ablation pressure

and coronal electron temperature, Tc can be approximated as,

Tc = 2.8 (ILλ
2
µ)2/3 〈Z〉2/3A1/3

(〈Z〉+ 1)
keV, (1.6)

Pa = 6.7 (IL/λµ)2/3 (〈Z〉+ 1)

〈Z〉 Mbar, (1.7)

where IL is the absorbed laser intensity near nc in units of 1014 W/cm2 andA is the mate-

rial’s atomic mass. �e coe�cient in front varies according to model speci�cs concerning

electron heat transport and plasma expansion velocity near the critical surface [8–10];

however, the overall magnitude does not change drastically. For a UV laser with 0.35-µm

wavelength incident on a CH target (〈Z〉 = 3.5) at an irradiance of 1015 W/cm2, we have

Tc ≈ 3 keV and Pa ≈ 80 Mbar. At these pressures, the compression produces a shock

wave, heating the solid material while driving it inward.

1.2 High-Energy-Density Physics and Laboratory As-

trophysics

�e extremely high temperatures and densities that can result under ablation pressures

ranging from 10 Mbar – 1 Gbar grant access to material conditions much like those at the

center of stars and planets, as well as those produced in a thermonuclear explosion. Such

systems are said to be at “high energy density,” (HED).

One exciting application of high-energy-density physics (HEDP) is the study of astro-

physically relevant properties and processes in a terrestrial laboratory. Here, aspects of

an astrophysical system that is evolving on the scale of millions of kilometers-to-light-

years, over days-to-millions of years, can be scaled to a laboratory system evolving on

the scale of millimeters, over a ma�er of nanoseconds. �is is done through the scaling
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Figure 1.2: Right: False-color image of the Puppis A supernova remnant. Image from
h�p://www.nasa.gov/sites/default/�les/puppisa.jpg. Le�: a time-sequence of x-ray radio-
graphs observing the evolution dense clump broken apart by a laser-driven blast wave,
from [1].

of hydrodynamic equations, by conserving dimensionless quantities that describe both

systems’ key hydrodynamic behavior. As an example, Fig. 1.2 shows an image taken by

the Chandra x-ray telescope of the Puppis A supernova remnant. �e inlet image of the

“Bright Eastern Knot” shows what has been identi�ed as a dense cloud of interstellar mat-

ter several light-years across being crushed by the supernova’s shock wave [11]. On the

right is a time-sequence of x-ray radiographs showing the temporal evolution of a scaled

experiment from [1], in which a 120-µm-diameter aluminum sphere is crushed as a laser-

driven blast-wave passes over. �e experiment provided insight into the mass-stripping

process that would occur in the astrophysical system, which is thought to a�ect the rate

of star formation throughout the universe. Many other experiments like these can and

have helped bridge the gap between astrophysical observation and theory [12–14]. Di-

agnosing these experiments requires bright x-ray sources, much like the backlit pinhole

imager used to produce the radiographs above. �ese sources are described in the next

section.
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1.3 Laser-produced x-ray sources

Laser plasmas from mid- to moderately high-Z elements heated to 2–4 keV have signi�-

cant populations of atoms in multiply-ionized states. Recombination of free electrons and

de-excitation of bound electrons into shell vacancies in these atoms will produce charac-

teristic x-ray emission with energy equal to the di�erence in potential energy of the states

involved in the transition, ∆E. For elements with 17 . Z . 32 (chlorine to germanium)

resonant He-like transitions from the n = 2, 3 (L-and M-shell) to n = 1 (K-shell) state be-

come dominant with x-ray energies ranging from 2.7−10 keV. Without further increases

in temperatures, ionization beyond the K-shell to form H-like atoms is rare. �e contin-

uum emission from thermal bremsstrahlung near the He-α energy is usually signi�cantly

lower in magnitude. Using elemental �lters to a�enuate the He-β and other lines, one can

therefore produce a quasi-monoenergetic x-ray spectrum from these plasmas. Previous

work has demonstrated conversion e�ciencies of laser energy into He-α energy emit-

ted into 4π steradians up to 3% for irradiances between 1014 − 1016 W/cm2, with a peak

around 1015 W/cm2 [15–18]. Hence, even moderate laser energies of 2 kJ and intensities

∼5×1014 W/cm2 available at many facilities can produce >1015 He-α photons/steradian.

�e conversion e�ciency decreases with Z because more energy is required to strip the

atoms down to He-like states.

In steady-state in these optically thin plasmas, collisional excitation dominates the

1s2 → 1s12p1 transition and is approximately in balance with the radiative 1s12p1 → 1s2

transition. �e text by Salzmann [19] provides a good overview of the atomic physics

involved in both of these processes. A main result is that the rate of collisional excitation

peaks when Te ≈ ∆E/3. When the temperature decreases by dropping the laser power,

the reduction in collisional excitation will soon quench line-emission. As a consequence,

lasers can produce a bright �ash of x-rays whose duration is on the order of the laser
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pulse. �ese x-rays can be used to diagnose high-density hydrodynamic �ows evolving

over nanoseconds [13, 14, 20–24].

Line-emission x-ray sources can be made using much higher-intensity lasers with

much shorter durations, on the order of several fs to a few ps [25, 26]. For these sources,

electrons are directly accelerated by the laser to energies ranging from hundreds of keV

to several MeV and induce K-shell x-ray emission through electron-impact ionization of

atoms in the cold target. However, this process of producing x-rays is much less e�cient

than by collisional excitation and radiative de-excitation in a hot plasma. In addition,

the very energetic electrons produced can escape the target and interact with diagnostics

and neighboring components, leading to MeV bremsstrahlung background x-rays that can

overwhelm an experiment [27].

1.3.1 X-ray Backlighting Techniques

X-ray backlighting is a common diagnostic technique, in which an object is backlit with

a laser-plasma x-ray source, and a detector some distance away images the transmi�ed

x-rays [28–35]. �e signal intensity, I(x, y) on the detector is proportional to the object’s

transmission, TE(x, y) or fraction of x-rays at energy, E transmi�ed, and is given by the

Beer-Lambert law, TE(x, y) = exp[−τE(x, y)], where τE is the object’s object depth,

τE(x, y) =

∫ s(x,y)

s0

σtot(E)ρ(s)ds. (1.8)

Here, σtot is the total photon interaction cross section that depends on the probing x-

ray energy and the object’s material composition, which along with the mass density, ρ,

can vary along the ray path coordinate, s. �ree separate backlighting techniques using

thermal plasmas have been developed for transmission imaging on HEDP laser facilities,

shown schematically in Fig. 1.3.
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I) Area backlighting: In this technique [29, 30, 35–38], the object is placed between

a large laser-irradiated foil and a substrate containing a pinhole aperture with diameter,

h. �e x-rays emi�ed by the backlighter foil image the object onto a detector a distance

b away from the aperture, much like in a simple pinhole camera. �e magni�cation is

given by the ratio MAB = b/a, where a is the object-aperture distance in this case. Area

backlighting is a�ractive in part because in this technique, di�raction from the pinhole

places a lower limit on the spatial resolution, and �exibility in placement of the pinhole

aperture provides a wide range of possible magni�cations. As well, a pinhole array can be

used—rather than a single aperture—to acquire three-dimensional information from the

parallax between neighboring pinholes, or to provide temporal information when coupled

to an x-ray framing camera [29,30]. However, the technique can su�er from low signal due

to the need to heat a relatively large foil area of several mm2 with limited laser energy, as

well as from signal nonuniformities that are di�cult to avoid when using such an extended

x-ray source.

II) Point-projection backlighting: In this case, a small target (e.g. the end of a thin

wire) with dimensions of ∼10 µm is irradiated by tightly focused lasers [39] creating a

point-like x-ray source that images the object onto a detector. �e magni�cation is given

by MPP = (q + d)/q, where q and d are the source-object and object-detector distances,

respectively. �ese sources tend to be signi�cantly brighter than area backlighters because

higher intensities can be achieved and the total optical throughput is much higher since no

pinhole aperture is needed to form an image. �eir small size mitigates nonuniformities.

And as a single-target device, they are also easier to �eld experimentally. However, spatial

resolution is typically worse than in area backlighters because the plasma tends to expand

beyond the laser spot. For this reason, the laser pulse must be kept reasonably short

(.200 ps) or a gated detector must be used [29]. In addition, the lack of a pinhole substrate

means that the object and detector are no longer shielded from plasma and debris ejected
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from the point backlighter target.

III) Backlit-pinhole imaging: Also referred to as “pinhole-assisted point-projection

backlighting,” this technique has been developed to alleviate some of the issues encoun-

tered with area and point-projection backlighting [29–32,34,40, 41]. Here, lasers produce

a ∼ 200 − 800-µm-diameter backlighting plasma either by a properly-sized focal spot

or by using a microdot backlighter foil a�ached to a lower-Z substrate. �e irradiated

foil emits x-rays more-or-less isotropically, similar to the point-projection case. However,

now a pinhole substrate is placed at a distance, s, from the microdot, prior to the object.

Hence, the spatial resolution is again set by the size of the pinhole, like in area backlight-

ing, but the x-ray throughput (∝ (h/s)2) can be much higher due to the shorter distance

between source and aperture, s, providing signi�cant improvements in signal-to-noise

ratios. In addition, the pinhole substrate shields the target and detector package from the

backlighter plasma. �e magni�cation is identical to the point-projection case, where q

becomes the pinhole-object distance.

In initial designs, a cylindrical pinhole was used; however, evidence showed that the

large x-ray energy �ux, of order 1010 W/cm2, led to ablation of the high-Z pinhole wall,

causing it to expand inward at ∼ 4µm/ns, close and a�enuate much of the desirable

x-ray signal [31, 34]. �e e�ect worsened the trade-o� between spatial resolution and

throughput, as a smaller pinhole closed more rapidly than a larger one. �is, in part,

motivated the use of tapered pinholes, wherein the pinhole diameter linearly increases

across the substrate, as shown in Fig. 1.4a. Tapered pinholes also help prevent vigne�ing

and make backlit pinhole imagers less sensitive to rotational misalignment by increasing

the angle of the x-ray cone exiting the pinhole [40].

In common designs of backlit pinhole imagers, a microdot is held from the pinhole

substrate by a low-Z (typically CH) sca�old, as depicted in Figs. 1.3, and 1.4b [40]. �e

laser irradiates a spot that is signi�cantly larger than the microdot, creating a fast blow-o�

11



microdot 

focal 
spot 

Tapered Cylindrical 

θcyl θtap > θcyl 
 

a) b) 

ablation 

X-rays 

Figure 1.4: a) Diagram of cylindrical and tapered pinholes (not to scale). In both cases,
x-rays can cause ablation of the pinhole walls. �e cylindrical pinhole will close more
rapidly than the tapered case because the ablated plasma has less distance to travel and can
stagnate on-axis. �e tapered pinhole has a larger cuto� angle, θtap than the cylindrical
pinhole (θcyl < θtap), making it less sensitive to rotational misalignment. b) Backlit pinhole
imager target with CH sca�old holding a 300-µm diameter V dot away from the 7x7 mm
Ta pinhole substrate. �e laser irradiates a spot larger than the V dot.

plasma from the low-Z sca�old. �e low-Z plasma may surround the microdot plasma,

potentially inhibiting its expansion around the pinhole substrate and therefore, emission

of x-rays towards the detector at late times—mainly an issue for un-gated detectors such

as �lm and image plates.

While backlit pinhole imagers o�er an improvement in spatial resolution and bright-

ness over the other radiographic techniques, the designs have faced issues with low signal-

to-background ratio. Figure 1.5a shows a radiograph of a radiative shock experiment

recorded on x-ray �lm with aluminum calibration steps placed in the object plane. �e

steps provide information about the incident source of x-rays that a�enuates through

the object since x-ray intensity is unknown and can vary signi�cantly shot-to-shot. �e

green pro�le in Fig. 1.5b is a lineout of signal intensity across the region between the

steps and shock tube, where no object is present. Non-uniformities are clearly present

a�er partially �ltering out shot noise by averaging over 15 pixels in the vertical direction.
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Figure 1.5: a) Radiograph of a radiative shock experiment recorded on a layer of Agfa D7
�lm produced using a backlit pinhole imager (courtesy of Carolyn Kuranz). b) Lineouts of
the recorded signal una�enuated by anything in the object plane (green) and the recorded
signal behind aluminum calibration steps (black) in the object plane. �e blue line is
the expected signal behind the aluminum calibration steps calculated by transmi�ing the
una�enuated pro�le through the steps, assuming it consists of He-α x-rays only.

If we assume that all of this “una�enuated” signal is from 5.18 keV He-α x-rays from the

emi�ing V microdot, we can easily calculate the expected transmission behind the steps

of known density and thicknesses (25, 50, and 75 µm). �is is shown as the blue-dashed

pro�le–multiplying the green pro�le by the step transmission–in which the magnitude

of the non-uniformities has dropped proportionally with the average signal. A lineout

across the steps from the radiograph (black pro�le) shows both signi�cantly higher sig-

nal and larger non-uniformities than would be expected from solely a He-α source. As

well, the cross-correlation between the green and black pro�les is highly peaked at zero

o�set from one another, due to similarities in the non-uniformities. All of this evidence

supports the notion that a “harder” source of x-rays with energies & 10 keV essentially

transmits with signi�cantly less a�enuation through the aluminum steps and experimen-

tal object, and contributes background on the detector. Past work has a�ributed this hard

x-ray background to x-rays produced by hot electrons generated via laser-plasma instabil-
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ities occurring in the backlighter and sca�old plasmas [16,42,43]. Some of the background

may also arise from thermal emission of these hot plasmas. Part of the work in this thesis

helps to con�rm the origin of the x-ray background, and to develop mitigation strategies

via a thorough understanding of the relevant laser-plasma instabilities. �ese are intro-

duced below and described in detail in Ch. 2.

1.4 Inertial Con�nement Fusion

In nuclear fusion, light atomic nuclei fuse together and release net energy, some of which

may be converted into electricity for power consumption. If realized on Earth, nuclear fu-

sion power would o�er a virtually unlimited source of clean energy, and therefore a means

to drastically reduce humans’ burning of fossil fuels and impact on global climate change.

�e principle concept for achieving net energy gain is to sustain a thermonuclear reaction

in a hot plasma for su�cient lengths of time. Here, the increase in energy amongst any

electrically-charged fusion reaction products can be distributed to the rest of the plasma

via Coulomb collisions, inducing new fusion reactions. Ignition occurs when the rate of

heating by the fusion products is larger than the rate of energy loss by mechanisms such

as expansive cooling and radiation. In inertial-con�nement fusion (ICF) the fuel is com-

pressed and heated to high enough densities and temperatures that fusion reactions occur

at such a high rate that the fuel does not have time to expand under its own inertia. High-

energy lasers can be used for this purpose, to drive the spherical implosion of cryogenic

deuterium-tritium targets, either by direct laser-irradiation of the target (direct drive), or

by heating the inside of a high-Z enclosure or hohlraum, producing x-rays that irradiate

a capsule at the hohlraum’s center (indirect drive) [44, 45]. �ese two drive approaches

are shown in Fig. 1.6. Both use the “hot-spot” ignition scheme: radiation in the form of

lasers or x-rays heats up the surface of a low-Z ablator surrounding a spherical shell of
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Figure 1.6: Le�: Direct-drive ICF, in which capsule implosion is driven by direct laser
irradiation. Right: Indirect-drive ICF, in which capsule implosion is driven by x-rays con-
verted from laser energy deposited in the walls of a high-Z hohlraum.

solid deuterium-tritium (DT) fuel enclosing DT vapor. �e low-Z ablator plasma that is

produced ablates outward, launching a shock and accelerating the remaining ablator and

solid DT fuel inward. Upon stagnation, the fuel is compressed to high density and tem-

perature and a hot-spot ignites in the dense vapor, initiating a thermonuclear burn-wave

that propagates outward through the solid DT fuel [8].

Many challenges arise in the scheme outlined above. �e implosion must be nearly

spherically symmetric throughout its duration to achieve maximum performance [46].

Perturbations to spherical symmetry can grow exponentially through Rayleigh-Taylor

(RT) instabilities, lowering compression and mixing cold outer-material into the fuel, re-

ducing performance [47]. In direct drive, this puts stringent requirements on uniformity

of the laser irradiation pro�le as laser hot spots can cause pressure perturbations that

make the ablation front RT-unstable [48, 49]. �e more uniform radiation bath of so� x-

rays in indirect drive alleviates this issue while compromising much of the drive energy

through the laser light-to-x-ray conversion process. Another challenge is to keep the fuel

on a low adiabat to achieve maximum compression e�ciency [50]. Using a series of timed
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shocks can produce an essentially adiabatic compression [8]. However, any preheat of the

fuel can increase the adiabat and hence, the work required to achieve a given compres-

sion. Hot electrons from laser-plasma instabilities are a major source of preheat in both

direct and indirect drive [51–53]. X-rays from the hot coronal plasma also contribute to

fuel preheat.

1.5 Laser-plasma instabilities and hot electrons

As the lasers propagate through the plasma they produce, they can drive laser-plasma

instabilities (LPIs), whereby a laser’s electromagnetic wave parametrically decays into a

pair of waves that are normal modes of the plasma: electron plasma waves (EPWs), ion-

acoustic waves (IAWs) and/or sca�ered electromagnetic waves (EMWs). As these waves

grow, they remove energy from the laser that would otherwise be absorbed collisionally

and converted into ablation pressure. Growth occurs when the driving lasers’ irradiance

is above a threshold set by the level of inhomogeneity and damping of the decay waves,

and depends on plasma conditions throughout the growth region. Even while keeping

the average beam irradiances well below threshold, beam speckle as well as �lamentation

from both ponderomotive and thermal e�ects can produce local irradiance hot-spots that

inevitably lead to instability [49].

In stimulated Raman sca�ering (SRS) and two-plasmon decay (TPD), one or both of

the decay waves are electron plasma waves (EPWs), which can grow to large amplitudes

on a timescale much faster than the laser pulse. Electrons from the thermal distribution

can be accelerated in the EPWs’ electric �elds through nonlinear wave-particle damping

mechanisms [54, 55]. For TPD in particular, the large phase velocities of the EPWs can

lead to electrons with energies in excess of 100 keV [56]. �ese suprathermal or “hot

electrons” are typically detrimental to most experiments. Past experiments have observed
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as much as ∼ 5% of driving laser energy converted into hot electrons; this was observed

through measurements of the hard x-rays produced when the hot electrons interact in the

target [57].

In a material of nuclear charge, Znuc, the mean range x0 of hot electrons from a

Maxwellian distribution with temperature Thot is,

x0 = 3× 10−6AT
2
hot

Z
3/2
nuc

g/cm2. (1.9)

For a typical temperature of Thot ∼ 30 keV from either TPD or SRS the mean penetration

depth in plastic with a solid density of∼1 g/cm3, is∼30 µm [10,58,59]. �is is on the order

of the plastic ablator thickness in direct drive ICF capsules, indicating that hot electrons

generated near the target surface can penetrate into the solid DT fuel, preheating it and

making it less compressible. Experiments on low-adiabat cryogenic D2 implosions have

estimated∼ 0.2% of the laser energy was converted into hot-electron preheat, and played

an important role in compression degradation [51]. �e laser intensity may be increased to

achieve a higher compression due to higher implosion velocities. However, hot-electron

production also increases with intensity and can counteract this measure [60]. In indi-

rect drive, hot electrons are generated farther from the capsule in the low-density �ll-gas

plasma between the capsule surface and the hohlraum wall. �e capsule subtends, there-

fore, a smaller solid angle from the point of view of a hot-electron source. �is can relieve

the issue of hot electron preheat in indirect drive. However, it still poses some threat be-

cause of the long scale-lengths present in hohlraum plasmas that lead to low instability

threshold [45]. Hot electrons can also be generated from TPD and SRS by lasers inter-

acting with the hohlraum’s laser-entrance holes LEHs [61,62]. Recent work has provided

evidence that hot-electron preheat may be responsible for shock mistiming in indirect

drive implosion experiments, with estimates from simulations that the expected preheat
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can reduce the peak fuel compression at stagnation by ∼ 30− 40% [52].

Preheat by hot electrons can also be an issue for laboratory astrophysics experiments,

and is expected to have a much larger e�ect than radiative preheat. Numerical studies

have shown that hot electron preheat is expected to signi�cantly alter interfacial condi-

tions in experiments to study growth of hydrodynamic instabilities. For example, preheat

ultimately makes the initial conditions unknown, but may reduce the initial amplitude of a

surface perturbation by up to 40% [63,64]. �is is undesirable because the initial interface

must be well-characterized to make valid comparisons to predictions at later times.

In addition to preheat issues, interaction of hot electrons with the target and surround-

ing materials can produce K-shell and bremsstrahlung x-rays with many tens- and greater

than 100 keV in energy, as mentioned above. �ese x-rays can become a source of back-

ground and noise on x-ray diagnostics, either through direct incidence on detectors, or

through secondary x-ray �uorescence in shielding components [42, 65–67]. Of highlight

here is the hard x-ray background they produce in backlit pinhole imagers.

For the reasons stated above, it is typically desirable to mitigate LPIs, and some mea-

sures have been developed in part for this purpose. Shorter wavelength lasers have dras-

tically reduced the presence of LPIs, as well as increased the e�ciency of collisional laser

absorption [49, 59]. Di�erent types of beam smoothing, such as induced spatial incoher-

ence and smoothing by spectral dispersion, have been invented and adopted to limit the

e�ect of intensity hot spots. �ese techniques do not eliminate intense speckles outright,

but produce a speckle coherence time as low as ∼0.5 ps, limiting the time a hot spots’

irradiance is above threshold. However, they are not practical or feasible in many laser

facilities.

LPIs can also be mitigated by altering plasma parameters that determine their thresh-

olds and growth rates. In general, plasma density inhomogeneity (i.e. a density gradi-

ent) can introduce phase mismatch between the laser and decay waves; shorter density
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Figure 1.7: a) Computer rendering of the OMEGA-60 laser facility with photo of the target
chamber. b) OMEGA EP laser facility showing the four long-pulse beamlines coupled to
the target chamber. Credit: Laboratory for Laser Energetics

length-scales lead to higher thresholds [68]. �resholds can also be increased by raising

the amount of damping of the decay waves through collisions or nonlinear wave-particle

mechanisms [69]. Turner et al. have shown collisional damping to be important in deter-

mining the level of SRS generated in Au and CH targets [70]. Growth of LPI decay waves

can also be limited by decreasing the Landau damping of IAWs, which has the e�ect of

lowering the threshold for nonlinear saturation processes. Studies by Fernandez [71] and

Kirkwood [72] have shown the SRS re�ectivity to be proportional to the IAW damping,

which was varied by introducing low- and high-Z dopants. A similar result for TPD has

been seen by Seka et al. [73], through the variation of 3ω0/2 and ω0/2 emission which is

characteristic of TPD [74].

1.6 High-Energy-Density Facilities

Several facilities exist worldwide that provide access to high-energy-density physics con-

ditions. Many of these are laser facilities, using Nd-glass as the lasing medium with stim-
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ulated light emission centered in the infrared at 1.053 µm (referred to as 1ω light). Several

Z-pinch facilities also exist; these use magnetic �elds to implode a cylindrical array of

current-carrying wires to high temperatures and densities.

�e experimental campaigns reported on in this thesis were carried out on the OMEGA-

60 and OMEGA-EP (Extended Performance) laser facilities at the Laboratory for Laser En-

ergetics (LLE), University of Rochester [75, 76]. �e OMEGA-60 laser (Fig. 1.7a) consists

of sixty laser beams arranged in spherical geometry capable of delivering 30 kJ of energy

in the form of frequency-tripled 3ω light onto a target positioned approximately at the

center of a target chamber. Each beam is polarization-smoothed [77]. Pulse lengths can

be varied from ∼100 picoseconds to several nanoseconds, with a variety of pulse shapes.

�e facility has the capability of producing and �elding cryogenic deuterium or tritium

spherical targets and was designed to study key issues with direct-drive ICF implosions,

including irradiation uniformity, hydrodynamic instabilities, and hot-spot physics among

others.

�e OMEGA-EP laser (Fig. 1.7b) has a set of four long-pulse beams of 1ω light nom-

inally arranged in a conical geometry with a cone half-angle of 23◦. �e linearly polar-

ized beams can be frequency tripled and deliver between ∼ 0.2 − 6 kJ of energy/beam

as 3ω light depending on the pulse length, which can vary from 100 picoseconds to 10

nanoseconds. In addition, OMEGA-EP contains two short pulse beams of 1ω light and

pulse lengths of 10 to 100 picoseconds. Parabolic mirrors can focus these beams down

to spots of 10-µm-diameter, producing peak irradiances > 1019 W/cm2 on-target. Both

OMEGA-60 and OMEGA-EP have a variety of phase plates available for each beam capa-

ble of producing supergaussian irradiance pro�les with FWHM between ∼ 0.1 − 1 mm

on-target.
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1.7 Contributions by the author

�is section makes the distinction between the contributions by the authors and those of

the many individuals that made this work possible.

• Chapters 1 and 2: �ese chapters introduce the relevance of the thesis to the �eld of

HEDP as well as theoretical background, most of which was adapted from references

spanning several decades of prior work.

• Chapter 3: Paul Keiter was the principal investigator for the experiments presented

in this chapter. Targets were machined by Rob Gillespie and fabricated by Sallee

Klein at the University of Michigan. David Meyerhofer originally suggested chang-

ing the pinhole substrate material in the pinhole imagers. �e author designed other

aspects of the pinhole imagers/radiography system and carried out all data analysis

presented in this chapter.

• Chapter 4: �e author was the principal investigator for these experiments under

the guidance of Paul Keiter, Dana Edgell and Dustin Froula. Targets were fabricated

at LLE by Mark Bonino. Dan Haberberger assisted with setup of Angular Filter

Refractometry. �e author carried out all data analysis presented in this chapter.

• Chapter 5: Ma� Trantham performed the 2D CRASH simulations presented in this

chapter, with input from Tim Handy. Erez Raicher, Hilik Frank and Moshe Fraenkel

conceived of the approach to incorporate non-LTE ionization and opacity tables

into CRASH, which was implemented by Bart van der Holst. �e author carried out

all analysis of results, with input from Dov Shvarts.

• Chapter 6: �e author carried out all analysis presented in this chapter, much of

which relied on physical models proposed by others.
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• Chapter 7: �e author was the principal investigator for the experiments presented

in this chapter. He designed the targets, which were machined by Rob Gillespie and

fabricated by Sallee Klein at the University of Michigan. �e author also designed

the Ross-pair �lter system and carried out all data analysis presented.

1.8 Description of Subsequent Chapters

Chapter 2: �is chapter outlines the basic physics of long-pulse lasers interacting with

underdense plasmas, with an overview of plasma waves, laser propagation in plasma and

LPIs. Simple derivations of single and multi-beam TPD are provided, along with a general

discussion of growth rates, thresholds and convective gains for several instabilities.

Chapter 3: �is chapter presents an overview of �lm and image-plate x-ray detectors

used in imaging HEDP experiments. Experiments performed on the OMEGA-60 laser are

presented, studying the origin of the hard x-ray background in backlit pinhole imaging.

Chapter 4: Experiments on the OMEGA-EP laser are introduced, studying hot electron

production from LPIs in high-Z plasmas from laser-irradiated planar foils. We describe

hard x-ray measurements from which we infer properties of hot electrons generated in

the foil targets. Measurements using Angular Filter Refractometry to image the expand-

ing plasmas are also presented, as well as modeling of the data to reconstruct electron

density pro�les and calculate gradient length-scales.

Chapter 5: �is chapter presents results from 2D radiation hydrodynamic simulations

that are compared to the measured density pro�les from Ch. 4. �e results of these simu-

lations are used in Ch. 6 to predict how the plasma conditions varied across materials to

interpret the hot-electron measurements in Ch. 4.

Chapter 6: Models are proposed for hot-electron production observed in Ch. 4. We

speculate on the importance of nonlinear saturation mechanisms and Landau damping
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in determining the hot-electron temperatures inferred from measurements. �e results

of the simulations from Ch. 5 are used to predict the importance of various laser-plasma

instabilities to understand inferred hot-electron levels.

Chapter 7: �is chapter describes experiments performed on OMEGA-60 to mitigate

LPIs and hard x-ray background from hot electrons in backlit pinhole imagers. New pin-

hole imager designs were tested in which the sca�old material holding the microdot was

changed from low-Z CH to higher Z Al and V, based on the results from Ch. 4 showing

mitigation of hard x-rays under similar changes. Incident x-ray spectra are measured and

used to estimate signal-to-background ratios on radiographs.

Chapter 8: �is chapter summarizes the �ndings and conclusions of this thesis and pro-

vides perspectives on future work.
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CHAPTER 2

Laser-Plasma Interactions

�is chapter provides an overview of the interaction of intense lasers with plasmas, with

the goal of elucidating the necessary physical relations to describe experimental results

that follow in subsequent chapters.

2.1 Description of a plasma

Ordinary ma�er dissociates into its constituent charged particles when their kinetic en-

ergy is greater than the electrostatic energy binding electrons to nuclei within atoms, or

ions to each other within molecules. As the density of charged particles becomes large in

a net-neutral ensemble, the small-scale �uctuations in electric �eld will be shielded out

over distances on the order of the Debye length,

λD =

√
ε0Te
nee2

, (2.1)

where ε0 is the vacuum permi�ivity, and e, Te and ne are the electron charge, tempera-

ture (in energy units) and density, respectively. Such an ensemble is known as a plasma

and behaves collectively under the in�uence of electromagnetic forces, as long as particle

collisions are small compared to the plasma frequency, ωpe =
√
e2ne/meε0. �e collec-

tive behavior of plasmas gives rise to many complex phenomena, and in particular, the
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excitation and propagation of intrinsic waves as described next in Sec 2.2. In addition,

the collective behavior is important in understanding a plasmas’ interaction with intense

electromagnetic radiation (e.g. laser light).

2.2 �e two-�uid model of a plasma and plasma waves

�e most detailed description of a plasma would involve keeping track of each particles’

position and velocity separately at all times, t. �is procedure is impractical for nearly

all applications; a truncated approach—known as kinetic modeling—is to describe the kth

species of a plasma in terms of its distribution function, fk(r,v, t) in position (r) and

velocity (v) space. �e evolution of each species’ 7-dimensional distribution function

can be modeled by a Boltzmann equation accounting for the relevant forces due to both

self-consistent and applied electric (E) and magnetic (B) �elds as well as collisions with

other particles. �e vast majority of interesting problems using this kinetic approach

still require numerical solutions arrived at with powerful computing resources. A further

simpli�cation is to track macroscopic �uid-like quantities that can be acquired by taking

particle velocity moments of the distribution function. For example, the zeroth moment

gives the particle density, nk(r, t) =
∫
fk(r,v, t)d

3v, and the �rst moment gives the av-

erage velocity, uk(r, t) = 1
nk

∫
vfk(r,v, t)d

3v at each point in space at a given time. One

can arrive at the Euler �uid conservation equations for mass, momentum and energy de-

scribing the evolution of such quantities by similarly taking moments of the Boltzmann
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equation for each species:

∂nk
∂t

+∇ · (nkuk) = 0 (2.2)

mknk

(
∂uk
∂t

+ (uk · ∇)uk

)
= −∇pk + qknk (E + uk ×B)−

∑
α

Rkα, (2.3)

and 3

2

(
∂pk
∂t

+∇ · (pkuk)
)

= −pk∇ · uk −∇ ·Qk + Sk (2.4)

where mk, qk and pk are the mass, electric charge and pressure of the species, respec-

tively. (�e pressure has been taken to be a scalar here, but in general is a rank-2 tensor,

P k.) In addition, the quantity Rkα = νkα(uk − uα) is a drag term accounting for elas-

tic collisions between species k and α, Qk is the particle heat �ux and Sk are energy

sources or sinks. Equations 2.2-2.4 are closed with an appropriate equation of state (

Equation of State (EOS)), which for a plasma is well-approximated by that of an ideal gas,

pk = nkTk at temperature, Tk. Much behavior concerning the interaction of lasers hav-

ing ILλ2
0 < 1015 Wµm2/cm2 with plasmas can be described using a “two-�uid” approach,

combining a set of conservation equations for both electrons and ions with Maxwell’s

equations. However, this description breaks down when the local velocity distributions

are signi�cantly modi�ed by mechanisms such as wave-particle interactions (Sec. 2.7) and

nonlocal transport of particles.

2.2.1 Electron plasma waves

Charge density �uctuations can be excited in a plasma from thermal noise or an applied

�eld and will propagate as electrostatic (compressional) waves in the presence of a �nite

pressure. For a small-amplitude, high-frequency �uctuation in electron density, n1, we

have ne = n1 + ne0 with n1 � ne0 where the background electron density, ne0, varies

slowly in space and time relative to n1. Because of their much larger mass, the ions are
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assumed to be immobile and simply provide a neutralizing background density, ni0 =

ne0/Zi, where Zi is the charge state. For high-frequency �uctuations, the phase velocities

of the waves are much larger than the electron thermal velocity (ω/k � ve =
√
Te/me)

and the compressions are adiabatic. Hence, pe/nγee = const., where γe = (N+2)/N is the

polytropic index for an electron gas withN degrees of freedom. We can plug ne(r, t) into

Eqs. 2.2 and 2.3 and combine the two, assuming an unmagnetized, collisionless plasma.

Making use of Poisson’s equation, ε0∇ · E = e(ne − Zini) and keeping only �rst-order

terms we get the wave equation,

∂2n1

∂t2
=
e2ne0
ε0me

n1 +
γeTe
me

∇2n1. (2.5)

Considering only a single Fourier mode for simpli�cation, n1 ∼ exp(ik · r− iωt), we can

arrive at the dispersion relation,

ω2 = ω2
pe + 3v2

ek
2 (2.6)

= ω2
pe

(
1 + 3k2λ2

D

)
, (2.7)

where γe = 3 has been used for the 1D motion of these longitudinal modes. �is is also

known as the Bohm-Gross dispersion relation for electron plasma waves (EPWs), also

known as Langmuir waves (LWs). Larger k (smaller λ) results in larger pressure gradi-

ents and vice versa, implying that as the wavelength shortens, the wave will propagate

faster. However, the group velocity will always be less than the thermal speed, due to the

opposing electrostatic restoring force as thermal electrons stream from higher to lower

pressure regions.
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2.2.2 Ion acoustic waves

When the density �uctuations have a much lower-frequency (vi � ω/k � ve), the ions

have time to respond to electron motion and both the electron- and ion-�uid motion must

be considered. Using a similar procedure as before, inserting a perturbed ion density,

ni = ni0 + ni1 into Eqs. 2.2 and 2.3 and combining the two we have

∂2ni1
∂t2

=
Zieni0
mi

∇ · E +
γiTi
mi

∇2ni1. (2.8)

In the presence of an electron pressure gradient, electrons will dri� from ions and set up

a space-charge electric �eld,

eneE = −∇pe, (2.9)

where electron inertia has been neglected with respect to the ions. Inserting this into Eq.

2.8, we then get
∂2ni1
∂t2

=
γeZiTe + γiTi

mi

∇2ni1, (2.10)

and the corresponding dispersion relation,

ω2 = c2
sk

2 (2.11)

for ion acoustic waves (IAWs), where cs =
√

(γeZiTe + γiTi)/mi is the ion acoustic sound

speed. Since in the regime vi � ω/k � ve ions behave adiabatically in 1D and electrons

are isothermal, we have γi = 3 and e�ectively, γe = 1.
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2.3 Electromagnetic waves in plasma

Electromagnetic (EM) waves can be absorbed, re�ected, refracted, as well as sca�ered in

a plasma. All these features make EM radiation a useful probe of plasma conditions. �e

dispersion relation for an EM wave of frequency, ω0 in a plasma is

ω2
0 = ω2

pe

1− iνei/ω0

1 + (νei/ω0)2 + c2k2, (2.12)

where c is the speed of light, and νei is the electron-ion collision frequency, given by Eq.

1.1 when the plasma electrons are Maxwellian-distributed. Damping through electron-ion

collisions has been included here because it describes the primary mechanism by which

laser energy is absorbed in the plasmas: inverse bremsstrahlung. Without the presence

of ions, the average velocity of an electron in a laser’s oscillating electric �eld will be

zero, and it gains zero net energy over a single period. If the electron can sca�er o� an

ion’s Coulomb potential, however, it will transfer some of its momentum into the direction

perpendicular to the laser’s electric �eld, gaining net energy during the oscillation. Se�ing

the wavenumber to k = k0 + iκIB/2, the real part, k0 becomes

k0 =

√
1− ne

nc (1− (νei/ω0)2)
. (2.13)

We can see that as ne approaches ∼the critical density, nc (Eq. 1.4) that k0 goes to zero,

at which point the EM wave re�ects in the plasma. Below and above nc, the plasma is

referred to as underdense and overdense, respectively. �e quantity κIB is the inverse-

bremsstrahlung absorption coe�cient given by Eq. 1.2. In the underdense plasma, trans-

mission and absorption of EM radiation with intensity I(s) along the path coordinate s

in the plasma is described by the radiative transfer equation neglecting re-emission of
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radiation,
dI

ds
= −κIBI(s), (2.14)

with the solution

I(s) = Io exp

(
−
∫ s

so

κIB(s′)ds′
)

(2.15)

where Io = I(so).

To understand refraction in a plasma, we can look at the phase velocity of the wave,

vp. Neglecting collisions altogether,

vp =
ω0

k0

=
c√

1− ne/nc
(2.16)

≈ c

(
1 +

ne
2nc

)
, (2.17)

where Eq. 2.17 is accurate to within 5% when ne . nc/3. �e dependence of vp on elec-

tron density implies that in an inhomogeneous plasma, an initially smooth wavefront will

distort as the phase advances more quickly in denser regions compared to in those that

are more rare�ed. �e distortion results in the EM wave refracting through the plasma at

varying angles along the wavefront. Over a distance L the phase-di�erence ∆φ(x, y) ac-

cumulated is the di�erence in phase between that from an EM wave propagating through

plasma and one propagating in vacuum. For a low-density plasma this is given approxi-

mately by

∆φ(x, y) =

∫ L

z=0

(k0 − ω0/c)dz (2.18)

≈ π

ncλ0

∫ L

z=0

ne(x, y, z)dz. (2.19)

Here, λ0 is the wavelength of the EM wave in vacuum, where it is assumed to propagate

in the +z direction. �e corresponding refraction angle, θα, into the α = x, y direction is
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a measure of the phase gradient,

θα =
λ0

2π

∂∆φ

∂α
(2.20)

=
1

2nc

∂

∂α

∫ L

z=0

ne(x, y, z)dz. (2.21)

For a ray passing through a plasma whose density only varies along one dimension, y

say, the angle of refraction perpendicular to this direction, θ(y) can be related to the angle

of incidence in vacuum, θv via Snell’s law,

sin θ(y) =
sin θv√

1− ne(y)/nc
. (2.22)

�is results in a turning point of the EM wave in an inhomogeneous plasma at the density

nc cos2 θv.

2.4 Wave-wave interactions and parametric instabili-

ties

Multiple waves can resonantly interact with one another in a plasma, through the non-

linear coupling to density perturbations. Of primary interest for the plasmas studied in

this thesis are three-wave interactions that occur when the driving lasers resonantly de-

cay into sca�ered light waves, EPWs and/or IAWs. Physically, the laser light wave will

displace electrons in a density perturbation, producing a transverse current and space-

charge electric �elds. �e transverse current can excite a sca�ered light wave, and the

space-charge �elds can excite EPWs. �e laser’s electric �eld will beat with the �elds

of these waves, resulting in a ponderomotive force that increases the magnitude of den-

sity perturbations and hence, the coupling strength between the laser and excited waves.
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When the growth rate exceeds the rate of damping, the decay waves will grow unstably

until saturation mechanisms become important. �is phenomenon is known as paramet-

ric instability. For three-wave parametric instabilities, the wave providing the energy to

drive the instability is referred to as the pump (the laser, here) with subscript 0 and the

driven waves are referred to as the decay or daughter waves, with subscripts 1 and 2.

�e three waves can resonantly interact when they are in-phase, given by the matching

conditions,

ω0 = ω1 + ω2 (2.23)

k0 = k1 + k2. (2.24)

�e most common three-wave parametric instabilities in the context of laser-produced

plasmas are Stimulated Raman Sca�ering (SRS), for a decay into a sca�ered light wave and

EPW, Stimulated Brillouin Sca�ering (Stimulated Brillouin Sca�ering (SBS)), for a decay

into a sca�ered light wave and IAW, and Two-Plasmon Decay (TPD) for a decay into two

EPWs. As discussed in Ch. 1, all of these instabilities typically are undesirable for ICF.

For example, SRS and SBS sca�er laser light out of underdense plasma region, diverting

energy away from compressing the fuel. In addition, SBS can seed a phenomenon known

as cross-beam energy transfer (CBET), whereby intersecting laser beams can couple energy

to one-another through ion density perturbations [78]. �is energy transfer can alter the

irradiance pro�le around the capsule in direct-drive and the hohlraum wall in indirect

drive ICF, degrading implosion symmetry. Growth of SRS and TPD can also divert drive

energy away from inverse-bremsstrahlung absorption of the laser energy. However, some

of this energy may be recovered as an anomalous absorption mechanism, by collisional

damping of the large-amplitude EPWs [68]. A major concern of SRS and TPD is that the

large-amplitude EPWs generated can produce hot electrons through Landau damping and
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other nonlinear wave-particle interactions (Sec. 2.7) [56,79]. As mentioned previously, the

hot electrons themselves can further degrade the implosion by penetrating deep into the

fuel and heat it, reducing the e�ciency of compression, and can also produce hard x-ray

background on diagnostics.

2.5 Two-plasmon decay

To further outline the basic physics of LPIs, we now derive the dispersion relations and

growth rates of TPD driven by both single and multiple laser beams using the two-�uid

description of a plasma [69, 80]. �e basic procedure that follows can be used to arrive at

the dispersion relations and growth rates of SRS and SBS as well.

In TPD, the matching conditions, together with the EPW dispersion relations give

ω0 =
√
ω2
pe(1 + 3λDk2

1) +
√
ω2
pe(1 + 3λDk2

2) (2.25)

⇒ ω0 ≈ 2ωpe (2.26)

since λDk1,2 . 0.3 for Landau-damping to be weak enough for waves to grow (Sec. 2.7).

We conclude that the TPD instability only occurs in the neighborhood of the quarter-

critical density (ne ≈ nc/4). We also see from Eq. 2.25 that EPWs with small wavevectors

and large phase-velocities, vp = ω1,2/k1,2 are generated closer to nc/4 than EPWs with

large wavevectors, which occur at lower densities.

To derive the TPD dispersion relation and growth rate, we linearize the electron �uid

equations, de�ning ne = ne0 +np. Here np is a small perturbation on the electron density

�eld and, in general, may consist of a variety of modes arising from thermal �uctuations.

�e electron �uid velocity, ue = up + vos is made up of a longitudinal component, up

and transverse component, vos equal to the electron oscillation velocity in the laser’s EM
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�eld, where ∂vos/∂t = −eE0/me. We insert these de�nitions of ne and ue into Eqs. 2.2

and 2.3, to get the linearized forms of the continuity and momentum equations. Further

de�ning the longitudinal component up = ∇ψ, where ψ is a velocity potential, and using

the identity, (u · ∇)u = ∇(u2/2) + (∇× u)× u, we get,

∂np
∂t

+ ne0∇2ψ + vos · ∇np +∇ψ · ∇ne0 = 0 (2.27)

∂ψ

∂t
− e

me

φ+
3v2

e

ne0
np + (vos · ∇ψ) = 0 (2.28)

∇2φ = enp/ε0, (2.29)

for the general inhomogeneous case where∇ne0 6= 0 with mean background density N0.

�e substitutions, E = −∇φ − me
e
∂vos
∂t

and B = −me
e
∇ × vos have been made where

φ here is the electrostatic potential from np, and again the adiabatic EOS has been used

with γe = 3. Damping has also been neglected for simplicity but its e�ect can be added in

later trivially. Equations 2.27 and 2.28 comprise the typical starting point to analyze the

behavior of TPD in a variety of regimes [80–82].

We can arrive at a wave equation for ψ by taking ∂
∂t

of 2.28 and substituting in ∂np
∂t

from 2.27. A similar procedure applies for np, but swapping operations between the two

equations. In the end, we get,

[
∂2

∂t2
− 3v2

e

(
∇2 +

1

ne0
∇ne0 · ∇

)
+ 2vos · ∇

∂

∂t
+
∂vos

∂t
∇
]
ψ =

e

me

[
∂

∂t
+ vos · ∇

]
φ

(2.30)[
∂2

∂t2
+ ω2

pe

ne0
N0

− 3v2
e

(
∇2 +

1

ne0
∇ne0 · ∇

)
+
∂

∂t
(vos · ∇ψ)

]
np =

∇ [ne0∇ (vos · ∇ψ)]− e

me

∇ne0 · ∇φ, (2.31)

where 2nd-order terms in v0 have been dropped since v0 � ve for the laser intensities

34



and temperatures of interest.

2.5.1 Single-beam, homogeneous TPD

Following closely to Ref. [69], we now consider a plane EM wave,

vos =
1

2
v0

[
ei(k0·r−ω0t) + e−i(k0·r−ω0t)

]
(2.32)

propagating through a homogeneous plasma (∇ne0 = 0, ne0 = N0) and neglect pump-

depletion by the growing decay waves. Inserting Eq. 2.32 into Eq. 2.31 and taking the

Fourier transform, we �nd

(
−ω2 + ω2

pe + 3v2
ek

2
)
ñp(k, ω) =

ω

2
k · v0 [ñp (k− k0, ω − ω0) + ñp (k + k0, ω + ω0)]

+
N0k

2

2
k · v0

[
ψ̃ (k− k0, ω − ω0) + ψ̃ (k + k0, ω + ω0)

]
,

(2.33)

where the tilde represents a quantity’s Fourier transform. �erefore, ñp provides the am-

plitudes of all EPWs present, i.e. both waves driven and un-driven by the laser. We can

simplify Eq. 2.33 making use of the continuity equation, 2.27 to �nd ψ̃:

ψ̃(k, ω) ≈ ω

k2

ñp(k, ω)

N0

, (2.34)

which gives

D(k, ω)ñp(k, ω) = −k · v0

2

ω (k− k0)2 + k2 (ω − ω0)

(k− k0)2

× [ñp (k− k0, ω − ω0) + ñp (k + k0, ω + ω0)] , (2.35)
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simplifying with the Bohm-Gross dispersion relation,

D(k, ω) = ω2 − ω2
pe − 3v2

ek
2. (2.36)

We can see by comparing the le�- and right-hand sides of Eq. 2.35 that EPWs at (k, ω) are

driven by the laser beating ponderomotively with EPWs at (k±k0, ω±ω0). However, as a

result of the wave-matching conditions, only the (k−k0, ω−ω0) modes are resonant, and

hence the (k+k0, ω+ω0) terms can be dropped from Eq. 2.35. By substituting k→ k−k0

and ω → ω−ω0, we arrive at the corresponding equation for the (k− k0, ω−ω0) mode:

D(k− k0, ω − ω0)ñp(k− k0, ω − ω0) = −k · v0

2

ω (k− k0)2 + k2 (ω − ω0)

k2
ñp (k, ω)

(2.37)

where the (k − 2k0, ω − 2ω0) term has been dropped as non-resonant. Combining Eqs.

2.35 and 2.37, and using the wave-matching and EPW dispersion relations, approximating

ω ≈ ω0 − ω ≈ ωpe on the RHS, we �nd

D(k, ω)D(k− k0, ω − ω0) =

(
k · v0ωpe

2

)2 [
(k− k0)2 − k2

k |k− k0|

]2

, (2.38)

which is the TPD dispersion relation for EPWs excited by a single laser beam interacting

in a homogeneous plasma. �e homogeneous temporal growth rate, γ0 for the two EPWs

can be found by se�ing ω = ωr + iγ0 in the Bohm-Gross dispersion relation,

D(k, ωr + iγ0) ≈ ω2
r + 2iωrγ0 −

(
ω2
pe + 3v2

ek
2
)

(2.39)
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k0	

k1	

k2	

Figure 2.1: �e normalized homogeneous temporal growth rate squared, γ2
0 for single-

beam TPD in k-space. Arrows represent a decay diagram of the laser (k0) into decay
EPWs (k1 and k2) along the maximum-growth hyperbolas from Eq. 2.41.

assuming γ0 � ωr. For normal modes of the plasma (i.e. when ω2
r = ω2

pe + 3v2
ek

2), we

�nd the well-known result from the TPD dispersion relation,

γ0 =
|k · v0|

4

|(k− k0)2 − k2|
k |k− k0|

. (2.40)

�e TPD homogeneous growth rate squared is shown in Fig. 2.1 in the plane of polariza-

tion, where k0 has been chosen to lie along the x-axis. �e overlaying arrows represent

a decay of the laser (k0) into two EPWs (k1 and k2) at maximum growth, represented by

the hyperbolas in this plane,

kx =
1

2

(
k0 ±

√
k2

0 + 4k2
y

)
. (2.41)

We can see from Eq. 2.40 that for a single beam, plasma waves traveling parallel to k0

cannot grow, due to there being no electric �eld component in this direction. When k �
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k0 the maximum TPD single-beam growth rate (squared) is given by

(
γ2

0

)
max =

(
k0v0

4

)2

=
2

cncme

(
k0

2

)2

I (2.42)

where I is the laser irradiance.

2.5.2 Multi-beam TPD

When multiple laser beams overlap in the neighborhood of nc/4, they can cooperatively

drive resonant EPWs [57,83] through the TPD instability. �is is shown pictorially with a

wave-diagram in Fig. 2.2a, where the common EPW with wavevector kc is shared between

two lasers with wavevectors k01 and k02. For N plane-wave laser beams with frequency,

ω0 that are in-phase, the electron oscillation velocity is,

vos =
1

2

N∑
i

v0i

[
ei(k0i·r−ω0t) + e−i(k0i·r−ω0t)

]
(2.43)

For the common wave with wave vector, kc, and frequency, ωc Eq. 2.35 becomes

D(kc, ωc)ñp(kc, ωc) = −kc
2
·
N∑
i

v0i

[
ωc (kc − k0i)

2 + (ωc − ω0)k2
c

(kc − k0i)
2

]
ñp(kc − k0i, ωc − ω0),

(2.44)
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Figure 2.2: a) General decay diagram for two laser beams (k01 and k02) sharing a common
EPW, kc. Regions of common-wave maximum growth geometries for b) two laser beams
and c) more than two laser beams.

and for the (kc − k0i, ωc − ω0) modes,

D(kc − k0i, ωc − ω0)ñp(kc − k0i, ωc − ω0) =

−(kc − k0i)

2
·
N∑
j

v0j

[{
(ωc − ω0) +

(kc − k0i)
2 (ωc − 2ω0)

(kc − k0i − k0j)2

}
ñp(kc − k0i − k0j, ωc − 2ω0)

+

{
(ωc − ω0) +

(kc − k0i)
2 ωc

(kc − k0i + k0j)2

}
ñp(kc − k0i + k0j, ωc)

]
. (2.45)

On the RHS, the (kc − k0i − k0j, ωc − 2ω0) modes will always be non-resonant and can

be dropped. �e (kc−k0i +k0j, ωc) modes will only be resonant when j = i, from which

Eq. 2.45 simpli�es to Eq. 2.37 at (k, ω) = (kc, ωc), replacing k0 and v0 with k0i and

v0i, respectively. Substituting the simpli�ed form of Eq. 2.45 into Eq. 2.44 and canceling

ñp(kc, ωc) on both sides,

D(kc, ωc) =
N∑
i

(kc · v0i)
2

4

[
ωc (kc − k0i)

2 + (ωc − ω0)k2
c

kc (kc − k0i)

]2
1

D(kc − k0i, ωc − ω0)
.

(2.46)

Approximating ωc ≈ ω0 − ωc ≈ ωpe in the bracketed term as before leads to the multi-
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beam TPD dispersion relation,

D(kc, ωc) = ω2
pe

N∑
i

4γ2
0i

D(kc − k0i, ωc − ω0)
(2.47)

where γ0i is the homogeneous temporal growth rate for the ith beam with irradiance Ii.

We can solve for the multi-beam growth rate of the common EPWs by again including

an imaginary component iγ in each mode’s frequency with γ � ωr. To keep notation

consistent with [57], we set ωc → ωc + iγ and ω0 − ωc → ω0 − ωc + iγ in the dispersion

relations. When the common wave is a normal mode (i.e. ω2
c = ω2

pe + 3v2
ek

2
c ), then Eq.

2.47 becomes

2iωcγ = ω2
pe

N∑
i

4γ2
0i

(ωc − ω0)2 − ω2
pe − 3v2

e(kc − k0i)2 + 2i(ωc − ω0)γ
. (2.48)

�e growth rate is a maximum when the denominator in the summation is a minimum,

which occurs when the dispersion relation from the matching conditions between lasers

and common EPW,

(ω0 − ωc)2 = ω2
pe + 3v2

e(kc − k0i)
2 (2.49)

is satis�ed for all (kc − k0i) modes. �is happens when all the participating laser beams

share the same angle relative to the common waves,

kc · (kc − k0i)

kc|kc − k0i|
= cos θ, for i = 1, ..., N. (2.50)

When two laser beams drive a common wave, the region of maximum growth is limited

to the plane bisecting the beams’ wavevectors (Fig. 2.1b). For more than two beams, the

region of maximum growth is the line de�ning the axis of a cone that all the beams lie
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along (Fig. 2.1c). Once Eq. 2.50 is satis�ed, the multi-beam growth rate becomes simply

(γ2
0)MB =

N∑
i

γ2
0i. (2.51)

Evidently the growth of common EPWs depends on the total overlapped irradiance of

participating laser beams, IΣ =
∑N

i Ii, rather than the single beam irradiance, leading to

larger growth and lower thresholds, depending on the beam geometry and polarizations.

To highlight this la�er dependence, the multi-beam growth rate can be normalized by the

maximum single-beam growth rate squared–Eq. 2.42 evaluated at the total overlapped

laser irradiance [57]. �e normalized homogeneous TPD multi-beam growth rate then is

(
Γ2

0

)MB
=

(γ2
0)MB

(γ2
0)SB

max
∣∣
IΣ

(2.52)

=fc(kc, θ)
N∑
i

Ii
IΣ

cos2 αi (2.53)

where

fc(kc, θ) =
k2
c − (kc − k0i)

2

k0|kc − k0i|
(2.54)

andαi is the angle between the ith beam’s polarization vector and kc and whose θ-dependence

follows from Eq. 2.50. In the case of polarization-smoothed beams, Eq. 2.53 becomes

(
Γ2

0

)MB
PS =

1

2
fc sin2 θ, (2.55)

arrived at by averaging over αi for each beam [57].
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Table 2.1: Laser-plasma instabilities and their growth rates. Subscripts “s”, “p” and “iaw”
stand for sca�ered light wave, electron plasma wave and ion-acoustic wave, respectively.
ωi is the ion plasma frequency.

Instability Decay Waves Maximum Growth Rate, γ0

Stimulated Raman Sca�ering (SRS) EMW + EPW
√

ω2
pe

ωsωp

kpvos
4

Stimulated Brillouin Sca�ering (SBS) EMW + IAW
√

ω2
pi

ωscskiaw
kiawvos

4

Two-Plasmon Decay (TPD) EPW + EPW k0vos
4

2.5.3 Multi-beam SRS

A recent model has been proposed suggesting that EPWs may also be driven by mul-

tiple laser beams through SRS [84]. �e model shares many qualities with the theory

of multiple-beam TPD discussed above, where the primary di�erence is that the (k0i −

kc, ω0 − ωc) modes are sca�ered light waves in the instability’s more likely form, rather

than EPWs. As in multi-beam TPD, the common EPWs in multi-beam SRS must also sat-

isfy Eq. 2.50. A result similar to Eq. 2.51 is found relating the growth rate of common

waves from SRS to the individual-beam growth rates for EPWs in oblique SRS.

2.6 Growth rates and instability threshold

�e growth rates of other laser-plasma instabilities can be found similarly as was done for

TPD, upon deriving the dispersion relation for the coupled modes. �e results are given

in Table 2.1. �ese are the undamped rates for modes that grow everywhere in time,

which are termed absolutely unstable (Fig. 2.3, le�). Without damping, we may expect

any amount of thermal noise to grow exponentially, unabated. For a 0.35-µm laser with an

irradiance of∼ 1014 W/cm2, the maximum TPD growth rate is∼ 1013 s−1, and would lead

to the complete depletion of laser energy virtually instantaneously for a nanosecond pulse.

�is does not happen in reality because damping mechanisms set a threshold intensity
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Figure 2.3: Le�: Absolute instability, where an initial disturbance grows everywhere in
time, t at the homogeneous growth rate, γ. Right: Convective instability, where an initial
disturbance grows by a �nite amount, exp(πG) as it propagates in space.

that the laser must exceed to transfer net energy to the decay waves, and at large enough

amplitudes, nonlinear mechanisms will set in and eventually saturate the instability. To

include the e�ect of damping, we can add the terms 2ν1
∂
∂t

and 2ν2
∂
∂t

the wave equations

for decay waves 1 and 2, respectively, where ν1,2 is the amplitude damping rate for each

wave. �e result is the substitution ω2 → ω(ω+2iν1,2) in each waves’ dispersion relation

(e.g. Eq. 2.36 for EPWs). Following the previous instability analysis with this substitution

we would arrive at the general threshold condition [69],

γ2
0 ≥ ν1ν2. (2.56)

In many cases, damping rates ν1 and ν2 arise simply from collisions and Landau damp-

ing in the case of EPWs and IAWs. However, �nite density gradients in an inhomogeneous

plasma can spoil phase-matching between the three waves, resulting in an e�ective damp-

ing as the decay waves convect out of the resonance region at their group velocities, vg1

and vg2 along the gradient. Assuming the gradient is in the x direction, the wavenumber
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mismatch is

κ(x) = k0x(x)− k1x(x)− k2x(x), (2.57)

de�ning κ(0) = 0. �is type of damping leads to a �nite growth region, over which a

seed pulse is convectively unstable (Fig. 2.3, right), growing as it propagates by a factor

∼ exp(πGc), where

Gc =
γ2

0

|κ′vg1vg2|
(2.58)

and is known as the Rosenbluth or convective gain [68]. Here, κ′ is the spatial derivative

of the wavenumber mismatch. Collisional and Landau damping have been neglected. A

typical method for arriving at this result is to solve the equations for coupled oscillators

in the steady-state WKB approximation, assuming linear dependence of the wavenumber

mismatch, i.e. κ(x) ≈ κ′x. We can �nd Gc by evaluating κ′ and γ0 of the growing modes

for a particular instability. In TPD, we have

κ′(x) =
∂k0

∂x
− ∂k1x

∂x
− ∂k2x

∂x

=

(
− 1

2c2k0

+
1

6v2
ek1x

+
1

6v2
ek2x

)
dω2

pe(x)

dx

≈ 1

6v2
e

dω2
pe(x)

dx

(
1

k1x

+
1

k2x

)
. (2.59)

Approximating the density pro�le as linearly varying in x with gradient length-scale Ln

near nc/4, i.e. ω2
pe(x) ≈ ω2

pe0(1 + x/Ln) where ωpe0 is the plasma frequency evaluated at

the background electron density, N0, we have

κ′ ≈ ω2
pe0

6v2
eLn

(
1

k1x

+
1

k2x

)
. (2.60)
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Substituting this expression in Eq. 2.58 along with vg1,2 ≈ 3v2
ek1,2x/ωpe0, and k1x + k2x =

k0, the convective gain becomes,

Gc =
2γ2

0Ln
3v2

ek0

. (2.61)

�e gain evaluated for the waves along the hyperbola of maximum growth is

Gc = 6× 10−2 ILnλ0

Te
, (2.62)

Here, I is in units of 1014 W/cm2, Ln and λ0 are in microns and Te is in keV, and all are

evaluated near nc/4. For multi-beam TPD, the gain simply becomes [83]

Gc = 6× 10−2 IΣLnλ0

Te

(
Γ2

0

)MB
max . (2.63)

For both cases, we note the proportionality to ILnλ0/Te; physically, a longer length-

scale implies a larger resonance volume over which phase-matching between waves can

occur. A lower temperature decreases the EPWs’ group velocities, allowing the waves to

spend more time propagating through the resonance volume, leading to larger growth.

As well, higher laser irradiances provide more energy �ux to drive the EPWs. In SRS, the

convective gain is similarly proportional to ILn and does not depend on Te to �rst order.

�is is because the sca�ered light wave convects out of the growth region at close to the

speed of light–much faster than the EPW.

�e threshold for the convective modes can be calculated by se�ingGc = 2 for a min-

imum of exp(2π) ampli�cation [57]. �e resulting multi-beam TPD convective threshold,

IMB
c,TPD is

IMB
c,TPD ≥

94.9Te

Lnλ0 (Γ2
0)

MB
max

. (2.64)
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Plasma inhomogeneity similarly a�ects absolutely unstable modes in LPIs. In TPD,

the absolute threshold from inhomogeneity was calculated by Simon [81],

Iabs,TPD ≥
81.9Te
Lnλ0

, (2.65)

where the units of the parameters are the same as those given above. In SRS backsca�er,

the absolute threshold from inhomogeneity is

Iabs,SRS ≥
807

λ
2/3
0 L

4/3
n

. (2.66)

2.6.1 Multi-beam LPIs and hot electrons

For multi-beam experiments, growing evidence has demonstrated that the measured frac-

tion of laser energy, EL converted to hot electrons, fhot = Ehot/EL, depends on the over-

lapped intensity, IΣ of beams that can drive common EPWs, rather than a single beam’s

intensity [57, 83, 85–87]. Measured fhot’s from CH targets were shown to scale with the

TPD common-wave convective gainGc for a multi-beam geometry with the interpretation

that hot electrons are being accelerated by convectively-growing EPWs originating from

the TPD common-wave process [83]. Recently, direct observation of multi-beam TPD was

reported using �omson sca�ering to measure amplitudes of common waves [88].

Recent observations of hot-electron beaming in indirect drive experiments have sug-

gested the presence of multi-beam SRS [62] in the hohlraum LEH. Hard x-ray images

showed electron acceleration to be highly directed along the hohlraum axis in the case of

low density gas-�ll hohlraums when TPD was predicted not to occur because densities

were well below nc/4. �e observations were consistent with the presence of multi-beam

SRS, which would only generate EPWs along the hohlraum axis. For higher density gas-

�ll hohlraums, with average densities closer to nc/4, electron acceleration was observed
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to be more isotropic, consistent with the presence of non-common EPWs in multi-beam

TPD that could have a variety of directions.

2.7 Wave-particle interactions

As EPWs and IAWs grow to large amplitudes, they can resonantly interact with the in-

dividual electrons and ions in the plasma. Electrons moving near an EPW’s phase ve-

locity, ω/k can be decelerated or accelerated by the wave’s electric �eld. When more

electrons exist with velocities slightly below than with velocities slightly above ω/k, e.g.

in a Maxwellian distribution, the distribution around ω/k will �a�en. �is mechanism is

referred to as Landau damping, because the electrons remove net energy from the wave.

�e rate of Landau damping of the EPW amplitude in a Maxwellian plasma is [89]

νL(k) =

√
π

8

ω

(kλD)3
exp

[
−1

2

(
1

(kλD)2
+ 3

)]
, (2.67)

which becomes large for waves with kλD & 0.3, known as the Landau cuto�. IAWs may

also undergo Landau damping in a plasma when the ion-acoustic sound speed, cs is close

to the ion thermal velocity vi =
√
Ti/mi, occurring when 〈Z〉Te/Ti ∼ 1.

Electrons can be accelerated to very high energies via Landau damping, resulting in

the populations of hot electrons observed in many experiments. Particle-in-cell simu-

lations predict that hot electron production via Landau damping occurs predominantly

in the nonlinear regime of TPD. �e broad spectrum of EPWs that exists serves to stage-

accelerate electrons from short-wavelength/low-phase velocity EPWs to large-wavelength/high-

phase velocity EPWs [55]. Plasma inhomogeneity can make the acceleration process more

e�cient since an EPW’s phase velocity increases as it travels up the density gradient.

As an EPW grows to large amplitude, it can also accelerate initially cold electrons very
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e�ciently to velocities on the order of ω/k, into resonance with the wave. �is is known

as wave-breaking, and provides additional damping of EPWs.
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CHAPTER 3

Investigation of Hard X-ray Background in

Backlit Pinhole Imagers

�is chapter begins with an overview of x-ray detectors used in high-energy-density

physics experiments. Experiments are presented to study the origin of hard x-ray back-

ground in backlit pinhole imagers. �is work was adopted from the article, “Investigation

of the hard x-ray background in backlit pinhole imagers” published by the author in Re-

view of Scienti�c Instruments, 2016 [65]. A quantitative description is also provided to

demonstrate how the hard x-ray background present in radiography introduces uncer-

tainties in estimates of optical depth or density of an imaged object.

3.1 Detection of X-rays

In laser-driven experiments, instruments and detectors must be able to discriminate among

the large �uxes of energetic particles, such as visible photons, x-rays, electrons and neu-

trons, that are emi�ed in many directions to gain detailed information about the experi-

ment. In addition to x-ray imaging, detectors used in most x-ray spectroscopic measure-

ments must be position-sensitive to record spectrally dispersed x-rays. Commonly used

position-sensitive x-ray detectors include x-ray �lm, image plates (IPs), x-ray CCDs and

micro-channel plates (MCPs)–all of which rely principally on the local deposition of x-
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ray energy via photoelectric absorption in a sensitive layer. Film and IPs are a�ractive in

many experiments because they are virtually una�ected by the large EMPs generated by

laser-plasma interactions that create overwhelming noise on solid state-based detectors

and in their electronic components.

X-ray �lm contains a sensitive emulsion layer consisting of densely packed silver-

halide grains (typically AgBr) suspended in gelatin. When a grain absorbs an incident

x-ray photoelectrically, it is reduced to create metallic silver crystals. Usually only a

single photon need be absorbed for this to occur. �e formed silver crystals are then

developed into a permanent image using chemical agents that remove unexposed silver-

halide grains. �e image is darkest at the most-exposed areas, where light is absorbed or

highly sca�ered by the random crystal orientations. Film exposure is typically calculated

in terms of the optical density, OD = − log10 T , where T is the fraction of light transmit-

ted through the developed �lm. For the experiments presented in this thesis Perkin-Elmer

PDS microdensitometer measured the �lm OD and created a digitized image with pixel

size 22 µm. �e spatial resolution and dynamic range of �lm scale with grain density

and sensitivity scales with grain size. �e �lm development process and cosmic rays pro-

duce an inherent uniform background on �lm, known as fog, and is subtracted o� in any

quantitative analysis presented in this thesis unless otherwise noted.

In image plates, x-rays interact in a layer containing BaF(Br,I):Eu2+ phosphor crystals

suspended in plastic. As x-rays are absorbed photoelectrically, they liberate electrons from

the Eu2+ ions that become trapped in la�ice defects. Irradiation of the IP with a red laser

stimulates local emission of blue photons from the recombination of trapped electrons

with Eu3+ ions. �is photo-stimulated luminescence (PSL) can be detected and ampli�ed

using a photomultiplier tube that scans over the image plate with the laser [90]. �e result

is a digitized image where the pixel intensity, measured in units of PSL is proportional to

the deposited energy. �e trapped electron-Eu3+ ion pair is in a meta-stable state, that
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Figure 3.1: Spectral sensitivities of DEF x-ray �lm (black) from Brown et al. [2] and the MS-
type image plate (magenta) calculated using GEANT4 and provided by Barukh Yaakobi at
the Laboratory for Laser Energetics.

decays on the order of tens of minutes. �erefore, IPs are typically scanned within ∼an

hour of exposure to avoid signal fade. Spatial resolution of IPs is limited by (1) the intrinsic

energy transport of ionizing radiation in the sensitive layer and (2) sca�ering of the red

laser photons and stimulated blue photons at the IP surface or within the di�erent detector

layers; it is typically worse than what can be achieved with x-ray �lm [91]. Despite this,

IPs are preferable over �lm in many experiments due to their higher detective quantum

e�ciency, high dynamic range of 5 orders of magnitude, dose linearity, re-usability and

lack of chemical development [90, 92, 93]. �ey are also fairly versatile, being sensitive to

other forms of ionizing radiation, such as electrons, ions and neutrons because of their

reliance on the production of free electrons to form excited states.

�e spectral sensitivities of Kodak Direct Exposure Film (DEF) �lm (black) and Fuji

MS-type IP (magenta) are plo�ed in Fig. 3.1. �e IP sensitivity peaks at higher energies

than the �lm sensitivity in part because of more e�cient absorption at higher energies

from the presence of high-Z Eu ions. As a result, IPs are more susceptible than �lm to

image degradation from hard x-ray background when the goal is to detect primarily 4−

7 keV x-rays in experimental diagnosis.
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Figure 3.2: Side-on schematic of the backlit pinhole imager target, and orientation relative
to experimental diagnostics, laser beams and an imaged object.

3.2 Experiments on OMEGA

Previous work has demonstrated the presence of hard x-rays in the direction of the radio-

graph in backlit pinhole imagers [42]. It was suspected that hot electrons generated via

laser-plasma instabilities in the foil and sca�old plasmas underwent collisions in the high-

Z pinhole (PH) substrate, inducing &10 keV bremsstrahlung and Kα x-rays that reach the

radiograph [32, 37].

Here we present additional evidence for a hard x-ray background produced in back-

lit pinhole imagers from experiments performed on the OMEGA-60 laser. We con�rm

that the hard x-ray background observed on radiographs comes from the pinhole imager

targets. However, we �nd it plausible that the hard x-rays were only produced in the

irradiated target components, rather than the PH substrate.

A schematic of the backlit pinhole imagers used in this experiment is shown in Fig.

3.2. A 5-µm thick, 300-µm diameter V foil (microdot) sits atop a 25-µm×4-mm square CH

sca�old �xed a distance 500 µm from the PH substrate. Upon irradiation, the V microdot

emits strongly at the 5.18 keV He-α line. �e PH substrate is 50-µm×7-mm square and has

a tapered PH with 20-µm minimum diameter. �e material of the PH substrate was varied
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in an a�empt to alter the spectrum of x-rays produced in the substrate when bombarded

with hard x-rays generated by hot electrons, or with the hot electrons themselves. For

the data presented here, 5 targets had Ta, 1 had Mo and 1 had a Sn PH substrate. It was

hypothesized that if electrons were interacting with the PH substrate, a di�erence in the

hard x-ray signal could be detected between materials.

�is investigation of the hard x-ray background in pinhole imagers was a ride-along to

a larger experiment studying plasma �ows from a laser-irradiated wedge target. In total,

three targets were irradiated by lasers during each shot; two orthogonal backlit pinhole

imagers and the wedge target. Orthogonal backlighting was used to diagnose a sheet of

plasma produced in the wedge target.

�e targets were driven by 1-ns square pulses consisting of �ve laser beams at 351-nm

wavelength. A total laser energy,EL ∼ 2.25 kJ was delivered into an 800-µm laser spot, for

a corresponding irradiance of 4.5× 1014 W/cm2 with less than 6% shot-to-shot variation.

�e beams were smoothed by distributed phase plates and polarization smoothing. Hot

electrons with temperatures in the range ∼ 10 − 30 keV have been observed from the

irradiation of plastic targets with similar laser parameters [87, 94].

3.2.1 Radiography

Radiographs were recorded on 2 layers of Afga D7 �lm and a Fuji BAS MS-type image

plate, stacked such that the �lm was closer to the target. Parylene �ducial steps were

used to calibrate the integrated signal, in order to isolate the signal’s distinct spectral

contributions. Figure 3.3a shows a radiograph recorded on the image plate of the �ducial

steps adjacent to the plasma �ow. We note the low contrast in these steps despite recorded

signals well above the noise. �e right side of the radiograph was over-exposed by emis-

sion coming directly from the plasma corona in the wedge target. Radiographs from shots
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in which the wedge target was un-driven indicated that this emission only produced the

localized exposure and did not contaminate the rest of the detector.

�e average of the signal over each step is shown as the red points in Fig. 3.3b vs the

step’s optical depth for the 5.18 keV He-α x-rays, τα. Similar to previous analyses [1,13,14],

we modeled the total signal as a quasi-monoenergetic source of 5.18 keV x-rays, Iα with

an underlying background contribution, IBG that had negligible a�enuation through the

steps in comparison. Using the Beer-Lambert law, the total signal is then

Itot(τα) = Iαe
−τα + IBG. (3.1)

�e result of this �t is shown by the black solid line, which gives the expected signal vs.

optical depth for the He-α x-rays, where the dashed lines are the one-sigma error bars.

According to this model, the background was estimated to be almost twice the desirable

He-α signal. Over all shots in this experiment, we estimated signal-to-background ratios

on the image plate between 1:5 and 1:1 with uncertainty in the background as large as

20% of the desirable signal. �e signal-to-background ratio on the �lm a�er subtracting

o� fog was on average 3.4:1.

�e presence of the high-energy background on the detector both reduces the dynamic

range available for the desirable signal and introduces signi�cant uncertainty in optical

depth-estimates of the object that is being imaged (e.g. the plasma �ow here). We use the

simple model of Eq. 3.1 to calculate the magnitude of this uncertainty. Lower uncertainties

may be achieved with a more complicated model, but this requires additional �ducial

measurements that take up usable imaging space in the radiograph. Rearranging Eq. 3.1

for optical depth, we have

τα = − ln

(
Itot − IBG

Iα

)
. (3.2)

Measurement error in the signal, δItot propagates through the �t as standard errors, δIα
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Figure 3.3: a) Radiograph recorded on image plate showing parylene calibration steps
adjacent to plasma �ow, from shot 69936. b) Beer’s law �t to the step intensities (red
circles), showing the expected signal as a function of an object’s depth at the V He-α
energy.

and δIBG. �ese, in-turn, lead to uncertainty in τα. From simple error propagation in Eq.

3.2, we have

δτ 2
α = (δI2

tot + δI2
BG)

1

(Itot − IBG)2
+

(
δIα
Iα

)2

= (δI2
tot + δI2

BG)
e2τα

I2
α

+

(
δIα
Iα

)2

(3.3)

To interpret this result, we plot the relative error, δτα/τα against the optical depth of an

“unknown” object, shown in Figs. 3.4a-b. Here, values of Iα, IBG, and their respective

errors were estimated from �ts to calibration step data for shot 69936 on a) �lm and b) the

IP, respectively. �e black lines represent the error for the nominal case with background,

and the red lines represent the error for the same magnitude He-α signal, but with IBG and

δIBG set to zero. For either case, when τα � 1, the resulting a�enuation is not observable

above �uctuations from Poisson statistics of the detected photons, as well as uncertainty

in Iα and IBG if IBG ∼ Iα; therefore, the relative errors are very large. As τα increases,

the expected change in Itot from a�enuation departs signi�cantly from the Poisson �uc-
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a) Film b) IP 

Figure 3.4: Relative error in estimates of optical depth, τα of unknown object. Estimates
of Iα, IBG and their respective errors are retrieved from �ts to measurements of signal
behind polystyrene steps, recorded on an a) Agfa D7 �lm and b) FujiTM MS-type image
plate. Black lines are the nominal case and red lines have IBG set to zero, showing potential
improvements for background mitigation.

tuations and background uncertainty and the relative error decreases. Increasing τα even

further will bring Itot close to IBG, where further changes in signal again become drowned

out in particular, by δIBG. �e red curves demonstrate the potential improvements from

mitigating this background and its associated uncertainty. �e majority of improvement

comes from eliminating uncertainty in the estimate of background, δIBG. �is model

By comparing Figs. 3.4a and b, we can clearly see that the uncertainties in optical

depth from the high-energy background are signi�cantly worse for the image plate than

the �lm, due to an order of magnitude increase in δIBG/Iα. �is is in part, a result of

image plates being signi�cantly more sensitive than �lm to hard x-rays with energies>10

keV, relative to lower energy x-rays. Mitigating the hard x-ray background is exceedingly

important, therefore, as image plates replace �lm as the standard x-ray detector in many

HEDP experiments for the reasons stated in Sec. 3.1.

In a few radiographs, Eq. 3.1 was a poor model of the total signal on both the image

plate and �lm. For instance, the signal did not always monotonically increase going to

thinner steps, which is evidence of signal non-uniformity over the image, potentially in
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Figure 3.5: a) �e comparison of measured Background/Laser energy between di�erent
PH substrate materials. b) Response of image plate to x-rays of di�erent energies for the 3
PH substrate materials, calculated as the product of transmission through the PH substrate
+ �ltering and the image plate’s spectral sensitivity.

both the He-α and hard x-ray contributions. �is observation further motivates gaining

a be�er understanding of the source of x-rays that produces the radiographs.

3.2.2 Varying pinhole substrate material

Figure 3.5 shows the variation of background with PH substrate material by plo�ing

IBG/EL against material Z. Going from Mo to Ta, IBG/EL decreases by a factor of ∼3,

whereas the relative variation between Ta shots is signi�cantly smaller. �e �rst scans of

the image plates were saturated in both cases using a Mo PH substrate. As a result, we

inferred the background from the second scans, albeit with signi�cantly larger errors.

Using equation 1.9, we estimate that the electron distribution must have a temperature

greater than 30 keV for the average electron range to be longer than the 25-µm thickness

of the CH sca�old. As well, we expect the majority of electrons that may interact with the

PH substrate to lose all their energy within the �rst few microns. �erefore, any x-rays

produced from these interactions would have to transmit through nearly all 50 microns of
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the PH substrate. Figure 3.5b shows the product of the total transmission through the PH

substrate (including the �ltering and �lm preceding the image plate) with the image plate’s

spectral sensitivity (Fig. 3.1), which we term the “response.” �e higher transmission and

hence, response going from Ta to Sn and Mo is consistent with the increased background

from > 10 keV x-rays seen on the radiographs using these substrates. We note, however,

that the average image plate response using the Sn PH substrate is higher than when using

Mo, which is not consistent with the measured background signals on the radiograph.

Additional data are required to understand if the lower background at Sn is real since we

only had one target with this material.

�e above results add to previous evidence that the source of hard x-ray background

from backlit pinhole imagers originates from the region of laser-plasma interactions in

these targets. Based on the laser parameters used in this experiment, two-plasmon de-

cay and stimulated Raman sca�ering are expected to generate hot electrons at the laser

spot. Recent two-plasmon decay experimental and theoretical work indicates that the

hot electrons are produced primarily at the CH sca�old, rather than the higher-Z V mi-

crodot [57, 94].

3.3 Conclusions

Backlit pinhole radiography was performed on the OMEGA laser using V microdots with

5.18 keV probing energy. Signi�cant background from x-rays of energy content well-

above 5.18 keV was observed on the radiographs recorded on image plates. Using the

Beer-Lambert law to model the radiograph signals, it was demonstrated that the presence

of background can lead to large uncertainties in estimates of optical depth. Changing

the PH substrate material from Ta to Mo and Sn resulted in higher background on the

image plate, consistent with increased transmission of >10 keV x-rays through the lower
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Z substrates. We suspect that any LPIs whose hot-electron production contributes to the

observed hard x-ray background occurs primarily in the low-Z CH sca�old, rather than

the V microdot. More detailed measurements of the spectral content of x-rays incident on

the radiograph in Ch. 7 demonstrate this to be the case, but also show that much of the

background comes from x-rays produced in the thermal plasma.
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CHAPTER 4

Experiments to Study Hot-Electron

Production in High-Z Plasmas

�is chapter introduces experiments studying hot-electron production from laser-plasma

instabilities and its mitigation going from low- to high-Z laser-irradiated targets. �e

experiments were motivated by the desire to understand and mitigate hot electrons that

may lead to hard x-rays in laser-generated x-ray sources, whose presence was evidenced

in the previous chapter. Much of the material presented in this chapter and Ch. 6 has

been adapted from a manuscript titled, “Mitigation of hot electrons from laser-plasma

instabilities in high-Z, highly ionized plasmas,” which was accepted to Physics of Plasmas

in January of 2017.

Past experiments have demonstrated that LPIs can be mitigated by altering plasma

conditions at or below nc/4. In Ref. 57, the fraction of laser energy converted to hot elec-

trons, fhot was reduced by a factor of 30 in CH targets when the length-scale was predicted

to decrease by a factor of ∼2 when switching from planar to a more hydrodynamically-

diverging, spherical geometry, both at an overlapped laser irradiance of IΣ = 5×1014 W/cm2.

In addition, Froula, [87] Hu [94] and Folle� [95] all reported a decrease in hard x-ray sig-

nal from hot electrons going from low- to mid-Z targets. �is was a�ributed to reduced

TPD growth in the mid-Z plasmas. Designs of mid-Z direct-drive capsules have been stud-
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ied and initial experiments have shown an order of magnitude reduction in hot-electron

preheat [96]. �e material or Z-dependence of LPIs is linked to (i) a decrease in Ln from

slower expansion, (ii) a decrease in IΣ and increase in Te through increased laser absorp-

tion and (iii) increased electron-ion collisions (νei ∝ Ze�, where νei is the electron-ion

collision rate). E�ects (i) and (ii) directly lower gains, while increased collisions can damp

the EPWs before they reach large amplitudes. Beyond the linear growth stage, TPD and

SRS can depend on Ze� through nonlinear saturation processes whose threshold is set by

the Landau damping of IAWs [97, 98]. Zakharov simulations of TPD have shown lower

saturation amplitudes of EPWs as well as a decrease in hot-electron production when the

IAW damping is lowered [95, 97]. Folle� et al. [95] determined this e�ect to be partially

responsible for the observed hot electron levels in irradiated Be capsules.

We extend the previous work on hot electron mitigation by studying its production in

planar targets irradiated by multiple lasers beams for materials ranging in average atomic

number from 3.5 (CH) to 79 (gold). Hot-electron production is inferred from measure-

ments of hard x-rays produced by electrons interacting in the targets. Refraction imaging

is used to measure plasma densities in order to estimate the electron density length-scales

which are important in determining thresholds and growth of laser-plasma instabilities.

�e refraction measurements are also useful to validate radiation-hydrodynamic simula-

tions of laser-produced plasmas. In this chapter, we provide an overview of the experi-

mental techniques and the primary experimental results. A more in-depth interpretation

of the experimental results is provided in chapter 6.

4.1 Experimental Geometry

Experiments were performed on the OMEGA EP laser [76] at the Laboratory for Laser

Energetics, University of Rochester. Four laser beams of 351-nm light irradiated a planar
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Table 4.1: Target materials and thicknesses

Material CH Al Ti Cu Mo Ag Au
�ickness (µm) 120 60 25 20 25 25 20

foil target 23◦ from target-normal, producing an expanding plasma (Fig. 4.1a). �e beams

were linearly polarized with polarization geometry shown in Fig. 4.1b. Each beam was

passed through a distributed phase plate, giving an 8th-order super-Gaussian intensity

pro�le with 680-µm FWHM. �e laser pulse was 2-ns �at-top with an approximately 240-

ps rise time and each beam co-timed to within 50 ps. Beams 1 and 2 had 1.90 ± 0.05 kJ

and beams 3 and 4 had 2.25 ± 0.05 kJ energy, resulting in an average overlapped a peak

irradiance, Imax ' 1.2×1015 W/cm2. �e single-layer target materials were: CH, Al, Ti, Cu,

Mo, Ag and Au, spanning a wide array of atomic number. Target thicknesses of are listed

in Table 4.1 and were chosen based on available materials. A �ducial sphere was a�ached

to the non-irradiated side of the targets to enable spatial registration of the targets for

refraction imaging.

4.2 Hard x-ray measurements

Hot electron levels were inferred in these experiments from measurements of hard x-

rays produced through the interaction of hot electrons with the foil targets. �e HXIP

diagnostic, a nine-channel �ltered spectrometer [99] recorded time-integrated x-ray dose

from x-rays with energies >10 keV on a Fuji MS-type image plate. �e spectrometer

viewed the non-irradiated side of the target at a stando� distance of 49 cm. �e channels

were separated spatially across a tungsten aperture, illustrated by the scan of an exposed

image plate in Fig. 4.2a. �e diagnostic was housed in lead shielding nearly an inch thick to

reduce background from x-rays produced elsewhere in the target chamber. A blast shield

sat in front of the detector, consisting of 25 µm of kapton and 2 mm of polyethylene.
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Figure 4.1: a) Four Omega EP long-pulse beams irradiate the planar foil targets creating a
nearly spherically-symmetric focal spot with FWHM = 680 µm. �e �ducial plastic sphere
is shown below the foil target. b) Polarization geometry of the four beams. Courtesy of
LLE.

Filters for each channel are listed in Table 4.2 and consisted of aluminum and copper

with thicknesses varying from 1–20 mm and 0–8 mm, respectively. Even though most

electrons were not expected to escape the targets in these experiments, the �ltering in

front of channel 1 was enough to shield the image plate from electrons with energy up to

1.5 MeV. �e response curves, R(E) of each channel are shown in Fig. 4.2b, calculated by

multiplying the �lter transmission T (E) by the image plate sensitivity, K(E). �e trans-

mission was calculated using the NIST XCOM photon cross section libraries [100] and the

image plate sensitivity was provided by Barukh Yaakobi at LLE. We see that channels 4

and above are several orders of magnitude less sensitive to energies below 20 keV than

channels 1–3. All channels are sensitive to x-rays with energies well above 100 keV.

�e total signal for each channel, ytot was calculated as an average over an area of

approximately 240 × 200 pixels, shown as the blue dashed boxes in Fig. 4.2a. Signi�-

cant background resulted from Compton sca�er in the shielding material and the detec-

tor housing, which is seen in 4.2a surrounding each of the channels in the shadow of the
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Figure 4.2: a) Scan of exposed image plate from the HXIP detector with labeled channels.
Signals and background were calculated as averages over the blue and black boxes, re-
spectively. b) Response curves for the 9 channels in the HXIP from the �lter transmission
multiplied by the IP spectral sensitivity.

aperture. Vertical signal bleed from the scanning process contributed additional back-

ground for the least-�ltered channels, 1–3. However, this contribution was no more than

a few percent of the total in these channels. �e total background was taken as an average

over an area of roughly 100× 30 pixels above each channel, depicted by the black dashed

boxes, and this value was subtracted from the channel’s total signal. �e uncertainty in

each signal, σy =
√
σ2
y,tot + σ2

BG was calculated from the standard deviations of the total

signal and background over their sampling regions, σy,tot and σBG, respectively.

Several of the shots showed channels whose PSL saturated the scanner photomulti-

plier tubes (PMTs). Since only a fraction of the trapped electron-Eu3+ ion pairs recombine

during the scanning process, the image plates were rescanned several times until satura-

tion of the PMTs ceased. It was found by comparing unsaturated channels between fade-

corrected scans that the signal ratio between the �rst and nth scans is (yscan 1/yscan n) ≈

n1.65±0.20. We multiplied the unsaturated signal in later scans that by this factor to infer

the unsaturated signal on the �rst scan.
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Table 4.2: Filters and thicknesses for the HXIP spectrometer

Filter material / Channel 1 2 3 4 5 6 7 8 9
Aluminum (mm) 1 2 3 10 20 20 20 20 20

Copper (mm) 0 0 0 0 0 1 3 6 8

4.2.1 Modeling of hard x-ray meaurements

�e signal at the ith channel, yi, was modeled as,

ỹi = Ωpix

∫ ∞
0

Ti(E)K(E)
d2Nx

dEdΩ
dE PSL/pixel, (4.1)

where Ωpix is the solid angle of the detector pixel, d2Nx/dEdΩ is the time-averaged inci-

dent x-ray spectrum and the transmission Ti(E) includes both that through the ith �lter

and the blast shield.

We need an appropriate model x-ray spectrum that relates the set of x-ray signals

to the distributions of hot electrons produced in the targets. We expected the continu-

ous x-ray spectrum to consist of both a hard component due to bremsstrahlung from hot

electrons interacting in the cold target, as well as a so�er or “cold” component from the

thermal bremsstrahlung radiation emi�ed by the plasma of expected temperatures be-

tween∼ 1− 6 keV. Line emission from He-like states was also present in several of these

plasmas. However, we estimate based on past measurements of He-α conversion e�cien-

cies [17, 18, 101] that this emission would have contributed negligible signal (relative to

what was measured) to channels 4 and above on all shots, and 3 and above for all shots

except Mo and Ag. Hot electrons can induce cold K-α emission in the Mo, Ag and Au

targets with energies 17.5, 22.2 and 68.8 keV, respectively, and all channels are sensitive

to these energies. However, we estimate with the simple formula provided in [102] that

the total electron energy converted to K-α emission was less than 5% of that going into

bremsstrahlung radiation. �erefore, we were able to neglect line emission in modeling
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these measurements by selectively ��ing to only channels 3 or 4 and above, depending

on the target material.

Hard x-ray spectrum

We approximated the hard x-ray spectrum, Sh(E) as thick target bremsstrahlung,

Sh(E, Thot) = Ehot
5× 1011

4π

Znuc

79

e1−E/Thot

E

photons
keV Sr . (4.2)

from a Maxwellian hot-electron distribution of total energy Ehot and temperature, Thot

[103]. Upon inferringEhot from a �t to the x-ray measurements we calculated the fraction

of laser energy, EL converted to hot electrons or “hot electron fraction,” fhot = Ehot/EL.

�e thick-target approximation is valid if the hot electrons lose the large majority of

their energy in the target. Using Eq. 1.9, we estimated that Thot had to be greater than

∼ 70 keV in the case of the CH and ∼ 90 keV for all other materials in order for the

mean electron range to be greater than the target thickness. Since these temperatures

are well above what we estimated from our measurements (a posteriori), we expect that

most electrons accelerated into the target lost all their energy there. However, electrons

initially accelerated away from the target may escape unless they re�ux with high e�-

ciency. Re�uxing occurs when the electrons remain trapped in the potential created by

charge-separation electric �elds as they try to escape the target. �e fraction of hot elec-

trons that re�ux through the target, fR was calculated using a simple analytic capacitance

model developed by Mya� et al. [104]. As the hot electrons leave the target surface, they

contribute to a potential, V . Assuming the escaping hot electrons, Nl are Boltzmann-

distributed in the potential, we have,

Nl = Nee
−eV/Thot , (4.3)
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where Ne is the total number of hot electrons, with minimum energy, Emin. If we approx-

imate the target as a perfectly-conducting disc of radius, r in vacuum, the capacitance

is C = Q/V = 8ε0r. Substituting in the total charge lost from the target by escaping

electrons, Q = eNl,

Nl = 8ε0rV/e (4.4)

⇒ 8ε0rV/e = Nee
−eV/Thot (4.5)

or

Φ = κe−Φ, (4.6)

where Φ = eV/Thot, and κ = 8ε0rThot 〈Ee〉 /(e2fhotEL). We have substituted Ne =

fhotEL/ 〈Ee〉, where EL is the laser energy and, 〈Ee〉 =
∫∞
Emin

Eef(Ee, Thot)dEe is the

average hot electron energy from the Maxwellian distribution, f(Ee, Thot). We can solve

Eq. 4.6 numerically for Φ at a given value of κ(fhot, Thot), from which we calculate fR =

1 − Nl/Ne = 1 − exp(−Φ). In these experiments, EL = 8.4 kJ, r ' 350 µm (focal spot

diameter). For the ranges of Thot (10−100 keV) and fhot (∼ 10−5−10−1) relevant here, we

found fR ≥ 0.998, from which we conclude that virtually no electrons escaped. �erefore,

fhot should represent the fraction of laser energy converted to the total population of hot

electrons generated in the target.

�ermal bremsstrahlung emission

�e thermal bremsstrahlung emissivity or spectral power emi�ed per unit mass in a

plasma is given by [8]

η� =
16π

3
√

6π

e6

m2
ec

3

〈Z〉2ne√
Te/memi

e−E/Te , (4.7)

and varies signi�cantly throughout the plasma with ne and Te. �e total spectrum at the
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detector from this emission involves an integral of Eq. 4.7 over the entire plasma volume

along di�erent lines-of-sight, integrated in time and then divided by photon energy. We

approximated the overall behavior of the time-integrated thermal bremsstrahlung spec-

trum as roughly exponential in energy with an e�ective plasma temperature, Tcold. Emis-

sion from x-rays generated by EPW-accelerated electrons may also contribute to this cold

spectral component. Using a particle-in-cell simulation, Estabrook et al. [105] calculated

hot-electron distributions with temperatures on the order of 5 keV, produced by resonance

absorption at the critical surface.

�e full model of the incident x-ray spectrum is

d2Nx

dEdΩ
= Acold

e−E/Tcold

E
+ Ehot

5× 1011

4π

Znuc

79

e1−E/Thot

E

photons
keV Sr , (4.8)

where Acold is a coe�cient describing the magnitude of the thermal component, and we

�t forAcold, Tcold, fhot and Thot. We note that the hot and cold components have essentially

identical forms, which were indistinguishable in an optimization procedure without ad-

ditional information. To converge on a two-temperature solution, we estimated the pair

of parameters, pcold = (Acold, Tcold), and phot = (Ehot, Thot) for the hot and cold com-

ponents, respectively, in separate least-squares �ts and iterated between the two, rather

than ��ing for all four parameters simultaneously. �is technique of breaking a single

optimization problem into two smaller optimization problems improved convergence sig-

ni�cantly. Channels 3 through or 4 through 6 (set Ncold) were used to �t for pcold and

channels 5 through 9 (set Nhot) were used to �t for phot. When ��ing for one set of pa-

rameters, the other set was kept constant in the model spectrum. On the kth iteration, we
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b) cold only 

hot only 

a) 

Figure 4.3: a) Weighted least-squares functions that are minimized to estimate p̂cold and
p̂hot vs. iteration in the two-temperature ��ing procedure. b) HXIP channel signals from
the Ti shot (squares) compared to ��ed values (+), where the×’s are the predicted signals
of channels not used in the �t (1 and 2 here). �e red dots (blue triangles) show the signal
contribution from the hot (cold) spectral component only for channels 3 through 6.

solved

p̂kcold = argmin
pcold

∑
i∈Ncold

∣∣∣∣∣
∣∣∣∣∣yi − ỹi(pcold, p̂

k−1
hot )

σy,i

∣∣∣∣∣
∣∣∣∣∣
2

(4.9)

p̂khot = argmin
phot

∑
i∈Nhot

∣∣∣∣∣
∣∣∣∣∣yi − ỹi(p̂kcold,phot)

σy,i

∣∣∣∣∣
∣∣∣∣∣
2

, (4.10)

where the procedure was initialized with a guess, p̂0
hot. �e values of the weighted least-

squares quantities in Eqs. 4.9 and 4.10, which we denote as Ψcold and Ψhot, respectively,

are shown in Fig. 4.3a for the Ti shot; they converged a�er about 6 iterations. Figure

4.3b shows the channel data (squares) for the this shot and ��ed values (+). �e red dots

show the predicted signal contribution to channels 3 through 6 from the hot spectral

component only. We estimated that the cold component contributes about 15% of the

signal at channel 5, and more than 50% of the signal at channels 3 and 4. Conversely,

the blue triangles representing the predicted cold contribution are much lower than the

recorded signals at channels 5 and above, demonstrating the presence of harder x-rays.
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a) b) c) 

Figure 4.4: Estimates of a) hot electron fraction, fhot and b) hot electron temperature, Thot
and c) e�ective temperature of the thermal emission, Tcold vs target atomic number, Znuc
from �ts to HXIP measurements. �e error bars on Tcold are smaller than the data points
in most cases.

4.2.2 Estimates of hot electron parameters

Figures 4.4a and b show the inferred values of fhot and temperature, Thot, vs. the target

material atomic number, Znuc. �e error bars are from error propagation through the �t,

due to uncertainties in the channel signals; they increase with Znuc as signal-to-noise de-

creases. Disagreements with estimates of fhot from measurements taken with a cannon

spectrometer [106], as well as uncertainties in image plate calibration led to absolute er-

rors of a factor of ∼ 2. Regardless, fhot decreased by a much larger factor of 103 across

Znuc, which we a�ribute to the mitigation of LPIs and is consistent with the hypothesized

physical mechanisms described at the beginning of this chapter. �e hot-electron tem-

perature decreased with Znuc as well, but �a�ened out around 20 keV, appreciably above

the inferred values of Tcold, which are shown in Fig. 4.4c.

We observed that Tcold generally increased withZnuc up to Cu. We expect Tcold to corre-

late with the time- and space-averaged plasma temperature, 〈Te〉 and can infer therefore,

that 〈Te〉 increased over this same range of Znuc. �is is consistent with more e�cient

laser absorption, as well as less e�cient electron thermal conduction into the dense tar-
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get from increased collisions near nc at higher Z. �e lower Tcold at Mo (40) and Ag (47) is

consistent with increased radiative losses expected at higher Z that start to signi�cantly

regulate the plasma temperature. However the higher value of Tcold at Au (79) does not

support this interpretation, and may be evidence that line emission from highly-ionized

states of Au not included in the model weighted this e�ective thermal spectrum towards

higher energies. �e high Tcold at Au may be evidence of inhibited electron transport

near the critical density surface from ion-acoustic turbulence (IAT) driven by the return

current instability (i.e. two-stream instability) [107, 108]. �e return current instability

may develop in the presence of steep temperature gradients and negligible IAW Landau

damping, which are expected in high-Z laser-produced plasmas with 〈Z〉Te/Ti � 1.

4.3 Angular Filter Refractometry to measure electron

density pro�les

Angular Filter Refractometry (AFR) imaging was used to measure electron density pro-

�les and length-scales, which are relevant to the LPI thresholds and convective gains. �e

plasmas were imaged at 1.5 ns, based on past radiation hydrodynamic simulations show-

ing that length-scales near nc/4 start to stagnate around this time in CH targets [94]. �e

AFR diagnostic is covered in detail in [3] and [109], and in principle produces an iso-

contour map of the total refraction angle, θref that a probe beam accumulates through a

plasma. A simpli�ed diagram of the optical setup is shown in Fig. 4.5. A 4ω (λ4ω = 263 nm)

probe beam with 3.5-mm diameter, propagating in the z direction refracts in the α = x, y

directions by angle,

θα =
1

2nc,4ω

d

dα

∫ 0

−L
ne(x, y, z)dz, (4.11)
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Figure 4.5: Simpli�ed optical diagram of the AFR diagnostic. A 263-nm probe beam re-
fracts through the plasma expanding from the target and is focused to the Fourier plane by
an f/4 collection lens. Concentric angular �lters in the Fourier plane block regions of the
probe beam corresponding to speci�c bands of refraction angle. An image is formed with
bands, along which the total refraction angle, θref is constant. Adapted from Haberberger
et al. [3].

over the extent of the plasma, L, where nc,4ω = 1.59 × 1022 cm−3 is the probe beam’s

critical density. Here, we have used the paraxial approximation, assuming that the dis-

placements in the x and y directions over the plasma’s extent are negligible. As the beam

continues to propagate out to a distance z′, the displacements, ∆x and ∆y, that a refracted

ray accumulates in the x and y directions, respectively, are given by

∆x = z′ sin θx ≈ z′θx (4.12)

∆y = z′ sin θy ≈ z′θy, (4.13)

using the small angle approximation (θα . 20◦). �e total displacement of a ray in the

x − y plane is
√

∆x2 + ∆y2 = z′ sin θref ≈ z′θref, from which we �nd that the total
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refraction angle is,

θref ≈
√
θ2
x + θ2

y

=
1

2nc,4ω

∣∣∣∣∇x,y

∫ 0

−L
ne(x, y, z)dz

∣∣∣∣ . (4.14)

A�er exiting the plasma, the refracted beam was collected at f/4, which limited the max-

imum detectable refraction angle to 7.13◦. �e beam then passed through additional op-

tics and eventually was focused with a convex lens to the lens’ focal or “Fourier” plane.

In e�ect, the convex lens Fourier-transforms the refracted beam into (θx, θy) space [110].

Refracted light intersects the plane at a position rf ∝ θxx̂ + θyŷ with origin at the optical

axis, (i.e. rf = |rf | ∝ θref). A system calibration measured θref = (0.368 ± 0.003) × rf .

Un-refracted light intersects the optical axis at this plane and was blocked with a cen-

tral Schlieren-like stop. Blocking beam propagation in other regions of the Fourier plane

e�ectively �lters out regions in (θx, θy)-space. �e resulting reformed image has null re-

gions where the original beam refracted at angles corresponding to these blocked regions

of (θx, θy)-space. In this experiment, concentric opaque rings in the Fourier plane created

a series of angular bandpass �lters of total refraction angle, and hence, contours in the

reformed image that corresponded to constant values of θref. For example, two of these

contours have been outlined with the purple dashed lines in the AFR image at the right

in Fig. 4.5. �e AFR images analyzed in this thesis were produced using the “AF3” �l-

ter whose angles below the cuto� are listed in Table 4.3. �e full dataset is provided in

Appendix A.

�e image was recorded at a magni�cation of 4.1 on a CCD with 2048×2048 pixels of

width 13.5 µm, resulting in a detector resolution of 3.3 µm at the target plane. �e total

resolution of the imaging system was measured to be 3.6 µm [109]. Temporal resolution

was limited by the 10 ps width of the probe beam. A�er the beam was collected by the
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f/4 collection lens, a �lter strongly a�enuated wavelengths outside the band 263± 2 nm

to minimize background from plasma self-emission.

4.3.1 Reconstructing Plasma Density Pro�les

To estimate length-scales at speci�c density, we need to reconstruct the full electron den-

sity pro�le. �e plasmas produced in these experiments were approximately axisymmet-

ric, driven by the near-circular focal spot and overlapping intensity pro�le above the tar-

get. In principle, an Abel inversion procedure could be used to recover a density pro�le,

ne(r =
√
x2 + z2, y) upon acquiring a phase pro�le, φ(x, y) from the refraction contours,

integrating the relation ∇φ = 2π
λ4ω

(θxx̂ + θyŷ) (Eq. 2.20) as is done in [3]. However, the

la�er requires interpolating refraction between contours and presumes an (x, y) path of

integration, since θx and θy were not measured individually. In this analysis, we instead

sought to model the refraction images using a forward �t with a parameterized density

pro�le, ñe(x, y, z; p), whose shape is described by the vector of parameters, p. �e ap-

proximate refraction pro�le that results, θ̃(p) is simply that given by Eq. 4.14, replacing ne

with ñe(p). An exhaustive ��ing approach would be to calculate a full refraction image

by modeling propagation of the 4ω beam through ñe, and then compare to the data, pixel-

by-pixel, for many iterations of p until a stopping criterion is reached. In this analysis, we

instead reduced the recorded refraction images to simply the positions of each contour

of constant θref. We then �t the reduced data by evaluating the model refraction angle

pro�le, θ̃(x, y;ne(p)), along the positions of the data contours, {(xi,yi), i = 1, ..., Nc},

which we then compared to the contours’ corresponding true refraction angles, θref,i. Fig-

ure 4.6 provides a visual representation of this procedure. �e vector of �t parameters that

best �t the data, p̂ was then found by minimizing the sum of square di�erences between
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θ(x, y)

y 
x 

θref,i 

θ̃(p)

Figure 4.6: Visual representation of refraction contour ��ing procedure. Refraction angle,
θ(x, y) is represented as a surface in the x− y plane. �e purple dots represent the total
refraction, θref,i along the y-axis at the locations of the contours in the image. �e model
refraction pro�le, θ̃(p) is shown in black for a given set of �t parameters, p, where the
black dots are the model refraction at the positions of the contours on-axis. �e parame-
ters are varied to minimize the di�erence between the true refraction and model refraction
along the contours (i.e. make the black dots lie as close to the purple dots as possible).
Only the axis is shown for clarity, but this procedure is applied to the entire refraction
contours in the x− y plane.
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Table 4.3: Angular Filter Refractometry “AF3” �lter angles below the 7.13◦ cuto�

Angle (degrees)
1 0.092
2 0.350
3 0.654
4 1.004
5 1.401
6 1.844
7 2.334
8 2.870
9 3.453

10 4.082
11 4.758
12 5.480
13 6.248
14 7.063

true and model refraction angle along the Nc contours, i.e. by solving

p̂ = argmin
p

Nc∑
i=1

∣∣∣∣∣∣∣∣ 1

σθiNi

(
θref,i1− θ̃(xi,yi; ñe(p))

)∣∣∣∣∣∣∣∣2 . (4.15)

Here, the contribution of the ith contour was normalized by its number of coordinate

positions, Ni and the error in nominal refraction angle, σθi , and the quantity 1 is the

vector of ones of length Ni. Minimization was performed with a Levenberg-Marquardt

steepest-descent algorithm, which could handle the nonlinearity of Eq. 4.15 that was

introduced by Eq. 4.14 and the dependence of ñe on p. Once model parameters, p̂ were

found, length-scales were calculated from the best-�t electron density pro�le.

4.3.2 Processing of AFR data

To track the absolute expansion, we needed to measure the position of the original target

surface, which became obscured by refraction through steep gradients. Prior to driving

the foil target, a calibration image was taken using the 4ω probe beam without the angular

76



�lters to record the position of the original target surface, as shown in Fig. 4.7a, relative

to the �ducial sphere. Assuming the sphere moved a negligible amount over the length

of the laser pulse, we used this relative distance to locate the original target surface at the

time of measurement in the AFR image (Fig 4.7b).

A�er locating the original target surface, we extracted the contours nominally out-

lining the bands in the images. Ideally, in an AFR image the intensity would be equal to

zero in the “blocked” refraction regions and equal to a constant value in all other regions.

However, di�raction from the hard edges of the angular �lters created an interference pat-

tern in the blocked regions between the bands and tended to smear out their edges. We

used a Gaussian �lter to smooth out the interference pa�ern and thresholded the image

at some fraction of the maximum intensity a�er subtracting background. Simulated re-

fraction images were calculated with a Fourier method from density pro�les predicted by

radiation hydrodynamic simulations to determine this threshold. We found that a∼ 30%

threshold produces contours that most closely overlap with the contours corresponding

to the �lters true refraction angles. Figure. 4.7c shows part of a refraction image a�er

thresholding, where the resulting contours are outlined in red.

4.3.3 Modeling of density pro�les

We sought a suitable model density pro�le to complete the forward-��ing procedure,

whose shape we motivated with physical considerations of these expanding laser-produced

plasmas. At early times, the majority of laser-absorption occurs close to the critical surface

and a hot corona expands in the axial (target-normal) direction. �e hot corona will be ap-

proximately isothermal because heat conduction occurs rapidly here, scaling as T 7/2
e . We

can check this approximation using the criterion provided in [9] for the laser irradiance
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a) b) 

c) 

Figure 4.7: a) Image of undriven target with AFR probe beam without angular �lters,
showing the original target surface and �ducial sphere. b) AFR image of driven CH tar-
get with angular �lters. c) Demonstration of contour extraction from thresholded image.
Contours used in the �t for this image are shown in red.
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absorbed in the corona,

Ia,14 ≥ 2.7× 10−2Ze� ln Λtnsλ
4
µ

[〈Z〉+ 1]7/2

〈Z〉2A3/2
, (4.16)

in units of 1014 W/cm2, where tns is the expansion time in ns, and λµ is the laser wave-

length in microns. Even assuming full ionization, we found that Ia only needs to exceed

∼3×1013 W/cm2, or less than 3% of the incident irradiance through the end of the 2-

ns laser pulse. Simulations presented in Ch. 5 also indicate isothermal behavior in the

corona. Assuming an in�nite amount of mass is available from the remaining solid target,

the density pro�le of the planar isothermal rarefaction is found analytically to be a well-

known exponential, ne ∝ exp(−y/cst). Here, cs =
√

(〈Z〉+ 1)Te/mi is the isothermal

sound speed for ions of mass, mi and temperature Ti ≈ Te/3, where Te is in energy units.

For late times, the expansion size normal to the target grows to the order of approxi-

mately the laser spot radius, Rf and lateral �ow beyond this distance becomes important.

�e lateral expansion is limited by the mass originating from within the focal spot, and

may be described approximately as a mass-limited isothermal rarefaction. Past authors

derived analytically a 1D self-similar density pro�le from the single-�uid Euler equations

to describe this type of rarefaction [111–113]. In doing so, they de�ned a dimensionless

similarity coordinate, ξ = s/S(t), where S(t) is a self-similar length-scale that increases

in time and s is a general spatial coordinate, referring to linear distance from the origin

in planar geometry (y) and radius in cylindrical or spherical geometry. For a free, homo-

geneous expansion, the velocity component in this direction, us(s, t) is linear in s. �e

similarity ansatz for velocity and mass density becomes [111]

u(s, t) = Ṡξ, (4.17)

ρ(s, t) = ρ0

(
S0

S(t)

)α
G(ξ), (4.18)
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where ρ0 and S0 are the initial central density and size of the expanding plasma and α =

1, 2 or 3 for planar, cylindrical or spherical geometry, respectively, and G(ξ) is the self-

similar density distribution. �e factor in parentheses on the RHS of Eq. 4.18 decreases

in time and accounts for the mass-limited nature of the expansion. Inserting this ansatz

into the �uid continuity and momentum equations, one �nds

G(ξ) = exp(−ξ2). (4.19)

We approximated the lateral shape of the low-density corona with this 1D Gaussian pro�le

in cylindrical geometry, which agrees well with simulations presented in Ch. 5.

Because the isothermal plasma should freely expand away from the target in all di-

rections, the density pro�le is separable in r and y, i.e. ρ(r, y, t) = ρ0f(y, t)g(r, t). As

the lateral �ow limits the mass available to feed the axial expansion, we would expect

at very late times and for y > Rf that the axial expansion is also well-described by a

mass-limited isothermal rarefaction (eventually, the expansion becomes spherical as the

size of the plasma grows to be much larger than the laser spot). To allow for intermedi-

ate behavior between simple-planar and mass-limited on axis, we used the axial pro�le

f(y & Rf ) ∝ exp(−[(y − yt)/L]b), where 1 ≤ b ≤ 2. Here, L is the characteristic axial

length-scale and yt is the center of the axial rarefaction. For the results in Sec. 4.3.4, we

found typically b ≈ 1.3 − 1.5. In this model of the isothermal corona, we assumed the

ionization to be constant in space, which was a reasonable approximation since ionization

only weakly depends on density. �is led the electron density, ne(r, y) to have the same

spatial dependence as ρ(r, y).

Closer to the target surface, the �ow remains predominantly axial. For late times

and mid-to-high-Z, absorption of laser energy becomes distributed, rather than locally

deposited near nc. Regardless, it has been found using a distributed absorption model
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with �ux-limited electron heat transport that the behavior near nc/4 is approximately

exponential-like [114].

From these physical considerations, we proposed a density pro�le for the forward

model that combined an outer corona (“cor”) with an inner absorbing (“abs”) region:

ñe(r, y; p) =ncor exp
[
−(r/Rcor)

2 − ((y − yt)/Lcor)
b
]

+

nabs exp
[
−(r/Rabs)

4 − y/Labs
]
, (4.20)

where a 4th-order supergaussian for r was chosen to limit the extent of the inner pro�le’s

axial behavior to approximately the laser focal spot. �erefore, a total of eight ��ing

parameters, p = [ncor, Rcor, Lcor, b, yt, nabs, Rabs, Labs], were used to characterize the pro�le

at t = 1.5 ns. �is semi-analytical model proved robust enough to accommodate the

variation in scale of the corona and absorbing regions across materials.

4.3.4 Estimates of electron density pro�les and length-scales

Figures 4.8a and 4.8c show halves of the �ltered refraction images of the irradiated CH and

Au targets, respectively, at 1.5 ns where the lasers are incident 23◦ from the +z direction.

�e measured contours in the Au plasma are signi�cantly closer to the original target

surface than in the CH plasma, indicating slower expansion and shorter length-scales.

�e overlaid dashed lines represent the refraction contours from the �t evaluated at the

nominal angles of the measured contours, which show reasonable agreement with the

data. �e �t does not model the behavior of the pro�le outside the focal spot below about

250 µm from the target surface where we see signi�cant disagreement. Figures 4.8b and

4.8d are the corresponding best-�t electron density pro�les (divided by the the critical

density of the drive beams). �e solid and do�ed contours in these pro�les are located

at nc/4 and nc/10, respectively. We observed that refraction was too great to image the
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plasma above ∼ nc/10 with this diagnostic, so any estimate of Ln beyond nc/10 is an

extrapolation.

�e best-�t density pro�les on axis are plo�ed for several materials in Fig. 4.9a, where

the bands represent the one-sigma error, which increases going to lower densities. �e

do�ed lines are the �t extrapolated outside of where the refraction data exists. �e in-

ferred distance from the data cuto� to nc/4 varies from 150 to 200 microns based on these

extrapolations. We clearly see that slower expansion (i.e. evidence of lower sound speeds)

going to higher Z by noting that below ∼ nc/5 the position of a given density is closer to

the target surface. �e pro�les from the Al and Mo targets are consistent with this trend,

although they are not shown for clarity. �e lower density cuto� is about the same for all

materials, around 0.15nc.

Estimates of Ln from the �t density pro�les on-axis are plo�ed in Fig. 4.9b, vs. ne/nc

for several of the target materials in this experiment, separated by color. �e bands again

represent the one-sigma con�dence interval around the mean value. Across materials, we

observe a clear steepening of Ln as Znuc increases for densities ∼ nc/30 − nc/10. �e

length-scales appear to have a maximum, marking where the pro�le transitions from the

absorbing region to corona in our model. Estimated length-scales are plo�ed vs. Znuc in

Fig. 4.10 at densities nc/50, nc/10 and nc/4. At nc/10 length-scales decrease approxi-

mately linearly with Znuc, by a factor of 2 from CH to Au. Similar behavior is observed

at nc/4 according to the inferred values of Ln extrapolated from the �ts. �e nature of

the steepening is explored with simulations in Ch. 5 and is likely from increased radiative

losses at densities near and above nc/4 as Znuc increases, leading to slower ablation. At

constant electron temperature and laser intensity, such prominent steepening we would

expect to substantially reduce growth of EPWs from laser-plasma instabilities across ma-

terials. A factor of 2 shorter length-scales would result in a factor of 2 decrease in con-

vective gains and a factor of 2 and 2.5 increase in absolute thresholds for TPD and SRS,

82



c) d) 

a) b) 

Figure 4.8: a) Comparison between the AFR data and resulting refraction contours (dashed
lines) from the �t for the CH plasma. b) �e corresponding electron density pro�le with
density contours at nc/4 (solid line) and nc/10 (do�ed line). �e corresponding plots for
the Au plasma are shown in c) and d).
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a) 

b) 

nc/4 

Figure 4.9: a) Best-�t electron density pro�les on-axis (r = 0) vs. position from original
target surface for several materials. Bands represent the one-sigma con�dence interval
and do�ed lines are the �t extrapolated beyond the region where data was present. b)
Estimates of electron density gradient length-scale on-axis vs. nc/nc from the pro�les in
(a). Again, the bands represent one-sigma con�dence intervals and do�ed lines are the
�ts extrapolated outside the data region.
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Figure 4.10: Estimates of Ln from �ts to data on-axis vs. Znuc, where open diamonds, gray
circles and black triangles are at nc/50, nc/10 and nc/4, respectively.

respectively.

At densities less than nc/30, occurring at axial distances larger than the laser spot

radius, length-scales begin to depend much less strongly on Znuc, and the Z-dependence

disappears almost entirely by nc/50, shown as the open diamonds in Fig. 4.10. �is result

suggests that out in the low-density corona, the pro�le is becoming more regulated by

lateral expansion beyond the laser spot and less by material-dependent processes.

In the corona where the plasma is freely expanding, the electron density pro�le is

determined only by the geometry of the rarefaction and the isothermal sound speed–and

hence, the electron temperature. A rough estimate is to approximate Ln ≈ cst; this is

an exact relationship in the planar, in�nite-mass limit of the isothermal rarefaction. In

the limit where the rarefaction becomes mass-limited, we have a di�erent relationship

between the density pro�le and sound-speed [111]:

cst =
S0

2

∫ S/S0

0

(lnµ)−1/2 dµ. (4.21)

We use both of these relationships to estimate rough limits on the plasma temperature
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a) b) 

Mass-limited

Tcold

Simple-planar

Figure 4.11: a) Estimates of coronal electron temperature using measured length-scales,
calculated from relationships between sound speed and density pro�le from simple-planar
and mass-limited models, compared to estimates of Tcold from HXIP measurements. b)
Corresponding estimates of average ionization.

in the corona, which LPI thresholds and growth depend on in this region in addition to

length-scales. �e expansion time we take to start from the 50% rise time of laser pulse,

giving 1.38 ns at the time of measurement. Ionization is acquired using PrismSPECT [115]

non-LTE ionization tables for materials CH through Cu and Ag. �ese tables were not

available for Mo and Au. For Eq. 4.21, we take the initial width of the plasma to be the

spot radius, S0 ∼ Rf and use the radial self-similar length-scale (S → Rcor) acquired

from the �ts. �e estimates of coronal temperature and average ionization are shown in

Figs. 4.11a-b, respectively, where the gray squares and open circles are from calculations

using the simple-planar and mass-limited limits, respectively. We see that in both cases,

the temperature rises with Znuc and appears to either plateau or decrease a�er Cu, much

like the behavior of Tcold (shown again as blue triangles) estimated from �ts to hard x-ray

measurements in Sec. 4.2.2. However, the more than factor of 2 di�erence on-average in

Te between the separate limits demonstrates the simple models’ inadequacy in describing

the detailed behavior of the expanding plasmas in these experiments.
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4.4 Conclusions

Experiments were performed to measure hot electron production from laser irradiated

foils of low- to high-Z material. �e fraction of laser energy converted to hot electrons,

inferred from hard x-ray measurements, decreased by 3 orders of magnitude from CH

to Au, consistent with the mitigation of laser-plasma instabilities going to higher Z. Hot

electron temperatures were observed to decrease from 40 to ∼20 keV across materials,

bo�oming out around Ti. A refraction imaging technique was used to measure electron

density pro�les and estimate gradient length-scales. Across materials, the length-scale at

nc/10 was observed to decrease by nearly a factor of 2, from 400 µm at CH to ∼200 µm

at Au. Extrapolations predicted a similar trend at nc/4. �e steepening length-scales are

consistent with reduced hot-electron production going to higher Z, from higher thresholds

and less growth of laser-plasma instabilities.
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CHAPTER 5

Radiation Hydrodynamic Simulations

In this chapter, we present results from radiation hydrodynamic simulations that model

behavior of the laser-plasmas produced in the experiments reported on in Ch. 4. �is is

in an e�ort to predict plasma conditions and how their variation across materials would

have a�ected growth of LPIs and hot-electron production. Plasma conditions such as

electron temperature and ionization that we did not measure are necessary to determine

thresholds from inhomogeneity in the case of TPD and from the e�ect of damping for all

LPIs relevant to hot-electron production. Here we primarily compare the simulations to

the measurements of electron density pro�les from refraction imaging, while additional

results are presented in Ch. 6. Nominal agreement between the predicted and measured

density pro�les o�ers some validation in using simulation results to infer properties of

hot-electron production.

In general, measurements of electron density pro�les from laser-produced plasmas

are useful to the broader HEDP community as a means to validate radiation hydrody-

namics codes. �e electron density and temperature pro�les in the underdense plasma

directly determine propagation and absorption of laser energy, and hence the coupling

of laser energy to the dense target. �ese pro�les are strongly a�ected by electron heat

conduction near the critical density as well as by emission and absorption of radiation.

�erefore, electron density pro�les can be a useful diagnostic to probe physical models
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used in radiation hydrodynamics codes that describe these processes.

5.1 CRASH Simulations

Simulations were performed in 2D ry geometry for target materials CH, Al, Ti, Cu and

Ag using the Eulerian radiation-hydrodynamic code, CRASH [116], with initial condi-

tions mimicking those of the experiments. We use the y axis for azimuthal symmetry here

(rather than the z axis) to be consistent with the target coordinate system used in Ch. 4.

Laser energy was deposited in the plasmas by ray-tracing the experimental beam geome-

try in 3D a�er projecting the azimuthally-symmetric pro�les around the target axis. �e

3D pro�le of laser-energy deposition was then azimuthally-averaged for further hydrody-

namic calculations. �is procedure avoided the excess heating that would occur on-axis

using 2D ray-tracing as a result of in�nite ray densities on-axis. Electron heat conduction

was modeled using �ux-limited electron heat transport, where the �ux-limiter, f = 0.06

is the fraction of the free-streaming electron heat �ux. Radiation transport was calculated

using multi-group di�usion with equation of state and absorption and emission opacity

tables from PrismSPECT [115]. Tables for Ag were not available, so the corresponding

tables for Sn were used instead. We assumed this was a reasonable approximation since

Ag and Sn only vary in atomic number by 3; however, the substitution may have led to

excess ionization and hence, laser absorption at low densities. Non-local thermodynamic

equilibrium (non-LTE) e�ects were expected to be important in these plasmas, where

sharp density and temperature gradients were present and in the low-density, optically

thin corona. A preliminary approach to incorporate non-LTE physics was used in which

CRASH switched between LTE and non-LTE opacity and equation-of-state tables along a

prede�ned boundary in ion number density (ni) and electron temperature space. Non-LTE

tables were used when ni < 1022 cm−3 and Te > 100 eV.
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a) b) 

c) d) 

nc/10 
nc/4 

Figure 5.1: Spatial pro�les at 1.5 ns predicted by CRASH simulation of an irradiated Ti
target. a) Electron density, b) electron temperature, c) axial velocity, d) radial velocity.
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Pro�les from the simulation of the Ti target at 1.5 ns into the laser pulse are shown in

Fig. 5.1a-d, where lasers are incident 23◦ from the y-axis. �e white contours represent

the locations of the nc/10 and nc/4 surfaces in each pro�le. In the temperature pro�le,

we observe a hot “bubble”-like feature near the original target surface with a peak tem-

perature of 4.3 keV that is a factor of 2 higher than the asymptotic temperature in the

corona. �is feature coincides with the region of highest overlap between individual laser

beams. �e drop-o� to lower temperatures outside this region does not occur in 1D planar

simulations and is caused in part by cooling from lateral expansion and heat conduction.

�e plasma starts to become isothermal at densities of ∼ 0.02nc, except close to the

target, outside the laser spot. In this isothermal region, both the axial velocity, uy and

radial velocity, ur are approximately spatially-linear in their respective directions, away

from the target surface. �ese behaviors are consistent with the assumption of a freely-

expanding isothermal corona that we used to guide our choice of model density pro�le to

�t the refraction measurements in Sec. 4.3.3. In addition, the mass �ux (ρu) in the focal

spot is directed almost entirely along the axis between densities nc to ∼ nc/20, which is

consistent with the presumed spot-limited planar behavior near the target surface in the

model density pro�le. Similar behaviors are observed across the materials simulated.

5.1.1 Comparison to Measurements

�e 2D electron density pro�les predicted by CRASH simulations are compared to the

best-�t density pro�les from refraction measurements in Figs. 5.2a-d for the CH and Ag

targets. �e simulated and measured pro�les agree generally in shape for both targets

shown. Expected large discrepancies occur well outside the focal spot and close to the

target surface, where the lasers do not directly heat the expanding plasma. At 1.5 ns, both

the simulations and measurements show that more expansion has occurred on-axis than
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a) c) 

b) d) 

Figure 5.2: 2D Electron density pro�les at 1.5 ns, predicted by CRASH simulations for a)
CH and b) Ag targets. Plots c) and d) are the corresponding density pro�les from �ts to
refraction measurements.
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b) a) 

Figure 5.3: Spatial pro�les at 1.5 ns from CRASH simulations at a target radius of 50µm
for a) CH and b) Ag targets. �e electron density pro�le from the simulation is depicted
as the black solid line and that from the �t to the data at the same position is shown as the
solid gray line with one-sigma error band, all with relation to the le� vertical axis. Do�ed
lines are the �t extrapolated outside the range of data. �e electron temperature pro�le
is shown by the solid red line, with relation to the right vertical axis.

in the lateral direction.

Figure 5.3, provides a comparison on-axis between measured (solid gray line) and sim-

ulated (solid black line) electron density pro�les for a) CH and b) Ag. Along the axis,

where length-scales are longest, the simulations agree to within 10-40% of the measure-

ments from nc/100− nc/10 and 20-40% from nc/10− nc/4 across all materials modeled.

�roughout the pro�les, the simulations over-predict densities at a given position, which

has similarly been observed by other authors in the past [3,117,118]. In the case of Ag, the

predicted pro�le becomes very steep at densities greater than ∼ 0.3nc, and departs dras-

tically from the extrapolation of the �t. Length-scales on-axis generally agree with those

from the �ts to measurements, shown in Fig. 5.4 in red and blue, respectively at densities

nc/50 (diamonds), nc/10 (circles) and nc/4 (triangles). �e decreasing trend with Znuc is
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reproduced by the simulations, and persists at lower densities than what is extrapolated

from the measurements. Excellent agreement is seen at nc/4 for all materials except CH,

despite the lack of data at this density.

Consistent overestimation of densities at a given position and length-scales at low

density relative to measured values may result in part from the absence of a nonlocal

electron transport model in our simulations. Nonlocal electron transport becomes sig-

ni�cant at laser intensities near and above 1015 W/cm2 [119, 120]. �e ho�er plasmas

at these intensities contain a signi�cant population of electrons with energies in excess

of 10 to 15 keV, whose mean free paths can be many times larger than the temperature

gradient length-scale near critical density. Penetration and energy deposition of these

electrons into the high-density region of the target can increase both temperature and

density length-scales and ablation velocity. Hu et al. [121] showed that at high intensity,

inclusion of a nonlocal transport model in 2D DRACO simulations accurately captured

experimental trajectories of driven foils, compared to a constant �ux limiter model with

f = 0.06. �e nonlocal model provided an e�ective time-dependent �ux limiter that aver-

aged 0.08 over the �rst 0.5 ns of the pulse and 0.06 over the next 0.5 ns. With regard to the

CRASH simulations presented here, a less-inhibited heat �ux at early times would lead

to a cooler corona, and hence lower late-time densities at a given position from slower

expansion velocities.

In contrast to the other targets simulated, the predicted density pro�le for the CH

target most closely matches the measured pro�le out in the corona and shows the largest

disagreement at higher densities, between nc/20− nc/10. Part of this disagreement may

result due to the loss of laser energy at the higher densities to hot-electron production,

which we inferred was ∼ 10% from hard x-ray measurements. Sca�ered light from SRS

and SBS would cause additional energy losses. Another possibility is that in the multi-

species CH plasma, the hydrogen ions’ would have higher sound speeds than the carbon
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nc/50 

nc/10 

nc/4 

Figure 5.4: Electron density gradient length scales for the di�erent target materials at
nc/50, nc/10 and nc/4 from simulations (red) and �ts to refraction data (blue) at 1.5 ns.

ions due to a larger charge-to-mass ratio. As a result, the corona would expand more

rapidly and the higher density region more slowly than if the plasma were composed of a

single-ion species with average mass and charge given by an atomic mixture of hydrogen

and carbon; the la�er is the approximation used in the simulation. Other mechanisms

may explain this relationship between the simulation and measurement, however, and

the study of this topic falls outside the scope of this thesis.

In addition to the lack of non-local electron transport modeling mentioned above,

inaccuracies in the high-Z emission and absorption opacities may also signi�cantly in�u-

ence the simulation results. For example, underestimation of dielectronic recombination

could lead to an overestimation of 〈Z〉 and as well, temperature, as a consequence of fewer

radiative losses.

5.2 Evaluation of pro�le steepening

We take a moment to gain some insight into the physical causes of pro�le steepening

observed as Znuc increased. �e electron density and temperature pro�les at a radius of

50 µm are shown in Fig. 5.5 for each material simulated, down to a density of nc/20. We

95



Te (keV) 
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heat wave 

Figure 5.5: Electron density (solid) and temperature (dashed) pro�les on axis from 2D
CRASH simulations for each material, separated by color.

observe several general trends going from CH to Ag. First, the distance that the shock

has traveled from the original target surface decreases. Second, the temperature in the

low-density plasma increases, but appears to level out between Cu and Ag. �ird, the

length of the conduction zone, from ∼ 2nc to where the temperature starts to plateau

decreases, i.e. the pro�les in this region steepen. In general, these features are consistent

with more inhibited electron heat conduction going to higher Z as the plasma becomes

more collisional from ions with higher charge states. However, the steepening may also

result from e�ects of radiation.

By Cu we observe two distinct ablation fronts in the density pro�le, separated by a

density plateau as well as a foot in the temperature pro�le ahead of the conduction zone

that corresponds to a radiative heat wave. �is “double ablation front” (DAF) structure

has been described in [122] and [123], among others and depends on the interplay be-

tween radiative and electronic heat �uxes. In mid- to high-Z plasmas, the conduction

zone strongly emits x-rays that escape in the direction towards the hot corona, but are
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Figure 5.6: Electron density (solid lines) and temperature in keV (dashed lines) from 1D
HYADES simulations at 0.8 ns, in a coordinate system where nc is at the origin. �e
absorption and emission opacity multiplier, M is reduced to 0.5 for Cu and increased to 2
for Al to show the e�ect of radiation on the pro�les.

absorbed within the more opaque, dense target. As a consequence, a radiation-driven

heat wave forms in the dense target where radiation and ma�er are approximately in

equilibrium and a radiation-driven ablation front forms, distinct from the electronic ab-

lation front at lower density. �e emission of radiation from the conduction layer helps

balance electron heat �ux into the dense target, leading to slower ablation and hence, pro-

�le steepening. �e steepening from this e�ect may persist through the absorbing region

until the plasma transitions to a free expansion. Radiation would similarly contribute to

steepening of the pro�les in the lower Z targets; in these cases, a distinct second ablation

front does not form because the target is in general more transparent to x-rays and the

transition between optically thin and thick plasma occurs much more gradually.
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5.2.1 1D HYADES Simulations

In addition to the 2D CRASH simulations, we performed 1D radiation hydrodynamics

simulations in planar geometry with the Lagrangian code HYADES to more directly ob-

serve how radiation a�ects the pro�les. Di�usive radiation transport was calculated with

30 energy groups logarithmically-spaced from 1 eV to 20 keV a time-independent average-

atom model was used to model ionization. Flux-limited electron heat transport was cal-

culated using a �ux limiter of f = 0.06. �e incident laser irradiance was chosen to be

4 × 1014 W/cm2, 1/3 of the peak irradiance in the experiments to account for some of

the e�ects of lateral expansion and heat conduction. �ese simulation parameters were

somewhat arbitrary, but their choice should not strongly in�uence the qualitative behav-

ior across Z that we are interested in. Simulations were performed for Al, and Cu. To

investigate radiation e�ects, we multiplied the emission and absorption opacities by a

value M . In general, higher values of M increase the in�uence of radiation.

Figure 5.6 shows the predicted electron density (solid lines) and temperature (dashed

lines) pro�les at 1 ns for each of these materials, in a relative coordinate system where

withnc at the origin. In all cases, signi�cant pro�le steepening occurs in the neighborhood

of nc/4, and is much more dramatic than in the CRASH simulations. In this region, the

nominal case (M = 1) Cu has signi�cantly steeper pro�les and a higher temperature in

the corona compared to Al. When the opacity multiplier is increased to M = 2 for Al,

increased emission of radiation at densities near and above nc steepens the pro�les in this

region to densities well below critical. In addition, the corona becomes much colder from

increased radiative losses. �e opposite occurs when the opacity multiplier is reduced to

M = 0.5 for Cu. �ese results indicate the role radiation may have in producing shorter

density length-scales in the experiments as the atomic number of the target is increased.
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5.3 Conclusions

Simulations were performed in 2D and showed reasonable agreement with the density

pro�les from refraction measurements, reproducing the observed length-scale steepening

with Z. �e simulations lacked models of nonlocal electron transport and may have had

inaccurate atomic physics models describing ionization and radiation transport. Despite

these potential uncertainties, we believe the current results give a reasonable idea of how

plasma conditions generally scale across the di�erent materials in these experiments. Less

e�cient electron heat conduction and increased radiative losses are believed to lead to the

shorter length-scales observed in the higher-Z targets. One-dimensional simulations with

HYADES showed that increases in emission of radiation alone can steepen the pro�le in

the region near critical.
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CHAPTER 6

Models of Hot-Electron Production

Chapter 4 presented data from experiments measuring hot-electron production in laser-

irradiated planar targets ranging from low-Z CH to high-Z Au. We observed that the

inferred fraction of laser energy converted to hot electrons, fhot, decreased by 3 orders

of magnitude and the hot electron temperature, Thot, decreased by a factor of 2 going

from CH to Au. In addition, electron density length-scales, Ln, estimated from refraction

measurements decreased by nearly a factor of 2 over this same range of materials. While

we did not directly observe LPIs, these observations are consistent with their mitigation

going to higher-Z, which may have resulted in part from increased thresholds from the

steeper length-scales. However, the instability thresholds also depend on conditions that

we did not observe directly, such as electron temperature, ionization and the laser irra-

diance pro�le. In this chapter we speculate on the origins of the inferred hot electrons

by evaluating the importance of various LPIs and their scaling with Z to interpret our

measurements. We use radiation hydrodynamic simulations discussed in Ch. 5 to predict

how plasma conditions vary with Z as part of this interpretation.

6.1 Discussion

Before invoking predictions from radiation hydrodynamic simulations, we make infer-

ences on hot-electron production based on the data alone. Estimates of the fraction of

100



a) b) 

Figure 6.1: a) Hot electron fraction and b) temperature estimates from hard x-ray mea-
surements described in Ch. 4.

laser energy converted to hot electrons, fhot, and hot electron temperature, Thot, described

in Ch. 4 are again presented in Fig. 6.1 for reference. Two possible models of interest for

generation of hot electrons in these experiments are the SRS and TPD instabilities driven

by multiple laser beams. In both instabilities, anywhere from 2 to 4 of the beams may share

a common EPW accompanied by a series of individual beam-driven sca�ered light waves

or EPWs in the case of SRS and TPD, respectively. �e thresholds for unstable growth of

common EPWs shared by multiple beams can be signi�cantly lower than if these EPWs

were driven by single laser beams.

Multi-beam SRS:

For SRS in particular, the thresholds at a given density are determined solely byLn and

the beam geometry when damping can be neglected. For N laser beams with the same

wavenumber, k0 and frequency, ω0, lying on a cone with half angle θ, the multi-beam SRS

(MBSRS) convective gain is [84]

GMB
SRS =

πLnk
2
c

4c2ksy

N∑
i=1

|v0i|2 cos2(ϕi), (6.1)
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0.18nc nc/4 

Imax
�,vac

Figure 6.2: Convective thresholds for the MBSRS instability calculated along the target
axis, using the length-scales from the �ts to refraction data. Do�ed lines represent where
no refraction data was present

neglecting damping. Here, kc = k0 cos θ +
√
k2
s − k2

0 sin2 θ is the wavenumber of the

common EPW, and ks,i(y) = (ω0/c)[1 − 2
√
ne(y)/nc]

1/2 is the wavenumber of the ith

beam’s sca�ered light wave with component k2
sy = k2

s−k2
0 sin2 θ parallel to the beam cone

axis. In the plasma, we recall that the angle θ(y) is related to the vacuum cone half-angle,

θv = 23◦ via Snell’s law (Eq. 2.22). Here, v0i is the ith beam’s electron oscillation velocity

andϕi is the angle between the polarizations of the ith beam and sca�ered wave. Sca�ered

light waves from MBSRS may be driven with a variety of polarizations at a given density.

However, growth is maximized and thresholds are minimized for those light waves whose

polarization is most closely aligned with its driving laser’s polarization. �is occurs in the

present geometry whenϕi ≈ 39±2◦ (cos2(ϕi) ≈ 0.6±0.05) over a wide range of densities.

�e MBSRS convective threshold, IMB
c,SRS can be found by se�ing GMB

SRS ≥ 2 for a minimum

of exp(2π) growth [68]. We calculate this threshold along the axis for each material as a

function of electron density using the estimated values of Ln from the �ts to refraction

data provided in Sec. 4.3.4, shown in Fig. 6.2. According to the estimates of Ln, we

�nd that along the axis, the threshold for multi-beam convective growth is always above
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15× 1014 W/cm2 (as high as 50× 1014 W/cm2 in the case of Au), except very close to the

density 1
4
nc cos4 θv ' 0.18nc, where the MBSRS instability driven by 3 or 4 beams becomes

absolute [84]. Damping would further increase these convective thresholds, which are

already above the peak overlapped irradiance in vacuum, Imax
Σ,vac shown as the horizontal

dashed line. It is possible that this instability is above threshold between nc/10 . ne .

0.18nc where length-scales were not directly observed (do�ed lines). However, even in

the “best-case” scenario of CH, the length-scales in this region would have to increase by

at least ∼ 50% from those measured at nc/10 for the threshold to be lowered to even the

peak vacuum overlapped intensity, shown by the dashed horizontal line. In contrary, the

simulations in Ch. 5 consistently predict shorter length-scales with increasing density in

this region. We conclude from our observations that the convective MBSRS instability is

not likely to contribute to hot-electron production, except perhaps in a small number of

laser hot spots.

As mentioned above, the absolute MBSRS instability driven by 3 or 4 beams may exist

at the density 0.18nc in this geometry. It occurs when the sca�ered light waves propagate

essentially perpendicular to the density gradient and can remain in-phase with the laser

over longer distances than in the convective case. If this instability is dominant, then

the EPW spectra in the linear growth stage would feature a strong peak for the common

waves, at k = kc ∼ 0.9ω0/c along the axis. Electrons moving at these common waves’

phase velocity, vp = ωc/kc would have energy Ee− = 1
2
me(ωc/kc)

2. Taking this to be

approximately the hot-electron temperature [84], we have

Thot '
mec

2 cos2 θv
(8− 2 cos2 θv)

, (6.2)

which equates to roughly ∼ 70 keV–signi�cantly higher than the <40 keV temperatures

observed in these experiments (Fig. 6.1b). �e expected temperature from common EPWs
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1.3 

Figure 6.3: Normalized multi-beam TPD growth rate for the 4-beam OMEGA EP geometry
along the common wave line, coinciding with the y axis (kc = kcŷ) vs. wavenumber. �e
kinetic energy of an electron moving at the common wave’s phase velocity, vp = ωc/kc is
shown on the right axis.

driven by 2 beams in absolute MBSRS is even larger since the angle between the beams

and the common wave (equivalent to θv in Eq. 6.2) is smaller.

Multi-beam TPD:

For multi-beam TPD in this experimental geometry, the lasers may stimulate common

EPWs with a variety of wavenumbers. However, the modes with the highest linear growth

rate are expected to dominate the EPW spectrum during linear growth [124, 125]. Figure

6.3a shows the normalized multi-beam growth rate squared, (Γ2
0)

MB (Eq. 2.52) for the 4-

beam geometry along the common wave line, which coincides with the y axis. Plo�ed

with respect to the right axis is the energy of an electron moving at a common wave’s

phase velocity. �e growth rate peaks for common EPWs with wavenumber, kc ≈ 1.3k0,

giving Ee− ' 1
2
me(ω0/2.6k0)2 ≈ 50 keV, which is somewhat closer to the observed

temperatures compared to the estimate for MBSRS, but still well above Thot ∼ 20 keV

seen for materials Cu through Au.

�e discrepancy between the rough temperature estimates given above and those from
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the hard x-ray measurements is consistent with hot electrons being generated in the non-

linear regime of the multi-beam instabilities once higher wavenumber modes have devel-

oped from potentially a variety of mechanisms. �e relatively long timescale of the laser

pulse compared to the instabilities’ e-folding times suggests that nearly all driven EPWs

below the Landau cuto� may reach a time-averaged stable state. In general, the higher

wavenumber EPWs occupy a larger volume in k-space than small-wavenumber EPWs,

and therefore can weight the hot-electron spectrum towards lower energies. �is could

lead to a lower characteristic Thot than predicted by the common waves’ phase velocities

alone.

Rather than being directly-driven by the laser, higher wavenumber EPWs may arise

primarily due to broadening of common EPWs resulting from multi-beam TPD or SRS

[97, 98, 124]. Broadening may occur via propagation of EPWs down the density gradient

upon re�ection at nc/4, or cavitating Langmuir turbulence which leads to saturation in

the nonlinear regime [97, 98, 124, 126, 127]. Vu et al. [124] observed in 2D reduced-PIC

simulations of 2-beam TPD that during linear growth, the EPW spectra contained a peak

corresponding to the common wave with maximum linear growth rate. In the saturated

spectra, this peak had broadened and migrated to a wavenumber ∼4/3 times its value in

the linear regime. �is would correspond to a hot-electron temperature of∼ 30 keV, by a

similar calculation as above.

�e threshold for nonlinear saturation of growing EPWs decreases as IAW damping

is lowered [71, 72, 95, 97]. �is occurs as 〈Z〉Te/Ti increases, which will generally scale

strongly with Znuc. We would therefore expect the nonlinear regime to persist for longer

periods of time on average as Znuc increases, enabling more broadening towards higher

wavenumbers. �is is consistent with the lower Thot observed with increasing Znuc. Colli-

sional damping would contribute additional broadening of resonances and is expected to

increase with Znuc. Even if this broadening were roughly symmetric about the resonance
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center, the larger volume that the higher wavenumbers occupy would lead to a lower

characteristic Thot.

At high enough values of 〈Z〉Te/Ti, the IAW damping rate will bo�om-out at some

value set by the background Landau damping on electrons. �is may explain the leveling

of Thot at ∼20 keV for materials Ti and above. �e leveling of Thot may also be evidence

that the Landau cuto� (k . kmax ≡ 0.3/λD ∝ T
−1/2
e , where λD is the Debye length)

has shi�ed to smaller wavenumbers as a result of the higher temperatures expected in

these higher-Z plasmas. For electrons to be accelerated by Landau damping of LPI-driven

EPWs to energies, Ee− . 20 keV we �nd that Te must be less than 3.6 keV, using Ee− .

1
2
me(ω/kmax)

2.

6.1.1 Variation of plasma conditions

At this point, we use the plasma conditions predicted by simulations to infer gener-

ally how growth of TPD and SRS would scale across materials, and evaluate consistency

with our hot electron measurements. �ese inferences are limited by the simulations

themselves–especially at high-Z (e.g. Ag)–but may still indicate the relative importance

of the potential hot-electron generation mechanisms.

�e electron temperature at 1.5 ns from the simulations is plo�ed vs. Znuc in Figs. 6.4a

at 50 µm from the axis, where the squares and triangles are evaluated at 0.18nc and nc/4,

respectively. At both densities, the temperature increases by nearly a factor of 2 going

from CH to Cu, where it peaks at ∼4.7 keV, as a result of increased laser absorption and

lower electron thermal conductivity from the signi�cantly higher charge states available

in the higher-Z materials. �e slight drop a�er this point going to Ag is due to increased

emission of radiation. Similar behavior across Znuc is seen at lower densities as well.

�ese high temperatures suggest that for materials Ti and beyond, Landau damping would
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a) b) 

Figure 6.4: Plasma parameters from CRASH simulations vs target atomic number. Squares
are at 0.18nc and triangles are at nc/4. a) Electron temperature, b) overlapped intensity
(×1014 W/cm2). All are evaluated at 1.5 ns into the laser pulse.

indeed set a lower limit on the energy of hot electrons produced by multi-beam LPIs that

is above the lowest Thot’s observed, around 20 keV.

�e IAW damping rate, νiaw was calculated for each of the simulated materials using

the plasma conditions predicted by simulations. �is was done for materials Al through

Ag using the formula for a single-ion-species plasma provided in Bellan [89], and for CH

using the two-ion-species analysis provided in Williams et al. [128]. Figure 6.5 shows that

the damping decrement, Γi = νiaw/ωr (where ωr is the real part of the IAW frequency)

rapidly drops from CH to Al and then continues to decrease only slightly going to higher

Z, roughly independent of wavenumber. In general, the lower predicted IAW damping–

implying lower saturation thresholds of LPIs–is consistent with the lower inferred Thot

going to higher Z. However, the precise dependency of Thot on Γi is not clear, and may

depend on other important physical mechanisms. In particular, Thot decreased by almost

40% from Al to Cu, whereas Γi is predicted to only decrease by 15%.

Electron density, temperature and ionization pro�les were post-processed to calculate

the overlapped irradiance, using Eq. 2.15 with the incident 3D beam pro�le azimuthally
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Figure 6.5: Predicted IAW damping rate divided by the real component of the frequency,
ωr evaluated at 0.18nc and 1.5 ns into the laser pulse.

averaged around the target axis. �e overlapped irradiance vs. Znuc is shown in Figure

6.4b at the location and densities corresponding to those in Fig. 6.4a. Enhanced laser

absorption leads to a 25% drop in overlapped intensity at 0.18nc going from CH to Ag. A

larger, 40% drop in IΣ is observed at nc/4 across Znuc from the stronger absorption that

occurs at a higher density.

6.1.2 Linear instability thresholds

We now use the plasma conditions predicted by simulations to infer generally how growth

of TPD and SRS would scale across materials, and evaluate consistency with the inferred

hot electron levels from hard x-ray measurements. For each instability, we calculate an

above-threshold parameter η ≡ I/Ithr, the ratio of driving intensity, I to the threshold

intensity, Ithr. For signi�cant growth, η should be near or greater than unity. In the case

of the multi-beam instabilities, I = IΣ.

�e threshold for convective growth of TPD common waves is determined by se�ing

the TPD convective gain GTPD ≈ 2, [57] as was done previously for MBSRS in Sec. 6.1,
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a) b) 

Figure 6.6: a) Damping parameter at nc/4 for for multi-beam TPD, and b) TPD convective
gains with (open) and without (red) damping of EPWs.

where

GTPD = 6× 10−2 IΣLnλ0

Te

(
Γ2

0

)MB
max . (6.3)

Here Ln and λ0 are in microns, Te is in keV and IΣ is in 1014 W/cm2, all of which are

evaluated at nc/4. At kc ≈ 1.3k0 in Fig. 6.3, (Γ2
0)

MB has a maximum value of 0.58. For

convective growth of LPIs in an inhomogeneous plasma, damping modi�es the gain [129]

in Eq. 6.3 by a factor, F (ζ) (and the convective threshold by 1/F (ζ)),

F (ζ) =


2
π

(
arccos(ζ)− ζ

√
1− ζ2

)
, if ζ ≤ 1

0, otherwise,
(6.4)

where ζ =
√
ν1ν2/γ0 and ν1 and ν2 are the amplitude damping rates of the decay waves

and γ0 is the LPI homogeneous growth rate. For multi-beam TPD, ζ =
√
νcνb/γ0,max,

and (γ2
0)max = 2

cncme

(
k0

2

)2
IΣ (Γ2

0)
MB
max is the maximum homogeneous temporal growth

rate squared at nc/4 for multi-beam TPD. �e amplitude damping rates of the common

(c) and backward propagating (b) EPWs are νc,b = νei/2 + νL(kc,b) where νL(kc,b) are
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the Landau damping rates evaluated at the wavenumber of either wave. ζ is plo�ed for

each material in Fig. 6.6a, showing that damping becomes signi�cant (ζ & 0.1) above Al.

Landau damping of the common-wave reaches a maximum at Cu(Znuc = 29), where Te

at nc/4 peaks, and is ∼ 50% of the collisional damping. �e convective gains are plo�ed

in Fig. 6.6b with (open triangles) and without (red triangles) the e�ect of damping. While

damping is predicted to reduce the gain by a factor of 10− 40% for materials Ti through

Ag, the gain has already been lowered by a factor of 5 from smaller length-scales, higher

temperatures and greater absorption of the laser prior to it reaching nc/4.

�e absolute threshold for TPD driven by a single beam in an inhomogeneous plasma

is [81] ISB
TPD,abs = 81.3Te/(Lnλ0), using the same units as above. Zhang et al. [125] pre-

dicted that this instability can also be driven by multiple laser beams. However, even

excluding the e�ects of multiple beams or damping, we �nd that its threshold is generally

above that of convective multi-beam TPD with damping. Absolutely unstable modes may

still be present, but presumably at smaller wavenumbers than in the convective case [125].

�e threshold from inhomogeneity for the absolute MBSRS instability in units of 1014 W/cm2

is [84]

IMB
SRS,abs ≥

3× 103

fSλ2
0

(Ln/λ0)−4/3 (6.5)

where Ln (evaluated at 0.18nc) and λ0 are again in microns. �e factor, fS accounts for

the beam geometry similar to the normalized multi-beam growth rate for TPD, and has a

maximum value of 1.78 in this experiment when the angle between the polarizations of

the lasers and sca�ered light waves is a minimum. �e threshold in Eq. 6.5 is updated to

include the e�ect of damping following the analysis in Afeyan et al. [130] for oblique stim-

ulated Raman sidesca�er by subtracting the e�ective damping rates of the decay waves

from the inhomogeneous growth rate. However, we �nd that at 0.18nc, inhomogeneity

is the dominant mechanism in se�ing the threshold, which is increased by no more than
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a) b) 

Figure 6.7: a) �reshold parameter, η = I/Ithr vs. Znuc calculated from simulations at
1.5 ns for the absolute MBSRS instability at 0.18nc, the single-beam stimulated Raman
backsca�er (SBSRS) at nc/10 and the convective multi-beam TPD instability at nc/4 with
the e�ects of damping. b) fhot from Fig. 6.1 vs the multi-beam threshold parameters from
a), where the lines are exponential �ts for guidance.

5% percent from collisional and Landau damping of the common EPWs and collisional

damping of the sca�ered light waves.

�e threshold parameters, η for convective multi-beam TPD and absolute MBSRS with

damping are shown in Fig. 6.7a as the open triangles and black squares, respectively,

vs. Znuc for the materials simulated. �e simulations indicate that η is generally near

its maximum in both cases around 1.5 ns, but reaches unity as early as 0.4 ns for several

materials. We see that for both instabilities, η decreases with increasingZnuc, and that both

are predicted to be above threshold except perhaps in the case of Ag where damping is

expected to signi�cantly reduce growth of TPD. �e TPD threshold parameter is predicted

to be less than that of MBSRS, but is more sensitive toZnuc because of the increase inTe and

larger drop in IΣ going to higher Z. �e threshold parameter for absolute SRS backsca�er

driven by a single beam is also shown, as the blue squares, evaluated at nc/10 where the

phase velocities of the EPWs correspond to the acceleration of electrons to ∼20 keV. �is
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threshold parameter is predictably lower than those of the multi-beam instabilities, except

in the case of Ag where it is comparable to that of TPD.

Figure 6.7b shows the estimates of fhot from measurements plo�ed against the thresh-

old parameters inferred from simulations for the multi-beam instabilities in question. fhot

scales with η in both cases, consistent with mitigation of these instabilities and their conse-

quent hot-electron production as length-scales steepen and absorption becomes enhanced

going to higher Z. However, we are unable to determine de�nitively which instability, if

either, dominates in producing hot electrons, as well as how the plasma conditions are

varying across Z based on these measurements. We also note that the single-beam LPIs

that are above threshold may still contribute signi�cantly to production of hot electrons;

while single-beam LPI growth is generally lower and thresholds are higher, the match-

ing conditions are easier to satisfy than in the multi-beam case because only one beam

needs to be in-phase with the decay waves. Furthermore, because hot electrons are accel-

erated during the nonlinear regime, fhot will ultimately depend on nonlinear saturation

mechanisms. Regardless, we still expect fhot to correlate with η, since lowering the lin-

ear threshold or increasing the average intensity increases the number of laser hot spots

above threshold that can drive EPWs to saturation and accelerate hot electrons. In the fu-

ture, calculations using a 3D Zakharov model may be performed to study the evolution of

the nonlinear regime for these plasmas and the coupling between EPWs and IAWs [95,97].

6.2 Conclusion

In summary, models of hot-electron production were presented to interpret the observed

decreases in hot-electron fraction, fhot and temperature, Thot with Znuc that were inferred

from hard x-ray measurements in Ch. 4. �e decrease in Thot was consistent with more

e�cient EPW spectral broadening from decreased IAW damping expected at higher Z.
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Additionally, the eventual leveling of Thot around ∼20 keV was consistent with the Lan-

dau cuto� shrinking to smaller wavenumbers from the higher temperatures expected at

higher Z. Both multi-beam TPD and multi-beam SRS were predicted to be signi�cantly

above threshold in most cases, based on the plasma conditions calculated from the ra-

diation hydrodynamic simulations that were presented in Ch. 5. For all LPIs evaluated,

the threshold parameters were highest for multi-beam SRS, suggesting that it may play

a comparable or greater role in producing hot electrons compared to TPD. �e threshold

parameters were predicted to decrease by a factor of ∼5 and ∼2 from CH to Ag for TPD

and SRS, respectively due to shorter length-scales as well as increased temperatures and

decreased overlapped irradiance from more e�cient laser absorption going to higher Z.

�ese predictions support the connection between measured hot electrons and mitigation

of multi-beam laser-plasma instabilities at high-Z. Future measurements of plasma con-

ditions as well as TPD and SRS common wave amplitudes using �omson sca�ering will

help con�rm our inferences from the present data and simulations.
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CHAPTER 7

Mitigation of the Hard X-ray Background in

Backlit Pinhole Imagers

�is chapter is based on the article “Mitigation of hard x-ray background in backlit pinhole

imagers,” wri�en by the author and published in Review of Scienti�c Instruments, June

2016 [131]. Experiments were performed on the OMEGA laser to test whether hard x-ray

background could be mitigated in backlit pinhole imagers by controlling laser-plasma

instabilities. Based on previous work [86, 94], we hypothesized that laser-plasma in-

stabilities and production of hot electrons leading to hard x-ray background can be re-

duced by increasing the atomic number of the irradiated sca�old material holding the

microdot away from the pinhole substrate. As we have demonstrated in previous chap-

ters, a higher atomic number is correlated with shorter electron density length-scale, and

higher plasma temperature due to enhanced collisional laser absorption, lowering the in-

stability growth [67, 94]. In combination with increased collisional damping, growth of

the electron plasma waves that accelerate hot electrons becomes inhibited.

7.1 Experimental Design

Diagrams of the backlit pinhole imagers used in this experiment are shown in Fig. 7.1. In

the nominal design (A) a 5-µm thick V dot with 300-µm diameter is a�ached to a 25-µm
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Figure 7.1: Side-on schemata of the backlit pinhole imagers: design with A) bare CH
sca�old; B) Al intermediate layer; C) V intermediate layer.

× 3-mm square CH sca�old that sits 500 µm behind a Ta pinhole (PH) substrate. Lasers

heat the V dot and sca�old, producing a thermal plasma that emits V He-like x-rays at

5.18 keV. Fast blow-o� plasma from the low-Z sca�old inhibits V expansion around the

PH substrate and emission of x-rays towards the un-gated detector. �e 50-µm thick ×

7-mm square PH substrate contains a tapered aperture from 50− 20µm to collimate the

so� x-ray emission into a quasi-point source while minimizing vigne�ing. It also prevents

the blow-o� plasma from interacting with the primary object.

Five laser beams of 351-nm light with 450 J/beam irradiated the targets in a 1-ns �a�op

pulse. �ree beams had incident angle 59◦, and two beams had incident angles 42◦ and

22◦, relative to target-normal. Each beam was polarization-smoothed and passed through

distributed phase plates having a 4th-order super-Gaussian intensity pro�le. �e �nal

∼700-µm FWHM laser spot gave a peak irradiance of 4.9×1014 W/cm2 and ratio of ∼5:1

between irradiated areas of sca�old and V microdot. Based on the geometry, the largest

overlapped irradiance that could be coupled into TPD or SRS common waves is ∼ 3 ×

1014 W/cm2 via the three 59◦ beams. From these irradiances and beam geometries we

expect temperatures of hot electrons produced in the plastic targets to be. 20 keV [94,99].
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Figure 7.2: a) Photograph of backlit pinhole imager with Al sca�old. b) Rendering of
resolution test target.

IP 
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Spectral 
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Figure 7.3: Diagram of backlit pinhole radiography to test strategies to mitigate hard x-
ray background. A resolution test target was imaged onto 2 �lm layers and an image
plate loaded in an RSPCA mount. A cannon spectrometer detected hard x-rays from the
irradiated side of the pinhole imager, opposite the imaging direction.

Two additional pinhole imagers were used to test whether hard x-ray background

could be mitigated by varying the target-irradiated material. In (B), a 3-µm-thick × 2.5-

mm square intermediate layer of Al was placed between the V microdot and existing 25-

µm CH (picture shown in Fig. 7.2a). In (C), a 5-µm-thick× 2.5-mm square V foil replaced

the dot altogether, eliminating the potential collimating e�ect of the lower-Z sca�old. A

single CH sca�old target and two of both the Al and V sca�old targets were tested.

7.1.1 X-ray diagnostics

Radiography
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Table 7.1: Spectral �lter materials, thicknesses and nominal energy band de�ned by the
indicated pair �lters’ K-edges. “Low” and “High” indicate whether the �lter’s K-edge is
the lower or upper bound of the energy band. Filters are numbered in relation to Fig. 7.5.

Filter Numbers (Low, High) Low �lter (µm) High �lter (µm) Energy band (keV)
(14,13) & (5,10) Ti(12.5) V(8) 4.97 - 5.46
(15, 12) V(25) + Al(5) Fe(12.5) + Al(5) 5.46 - 7.11
(12, 11) Fe(12.5) + Al(5) Zn(10) 7.11 - 9.67
(8, 7) Zn(35) Mo(10) 9.67 - 20.0
(7, 6) Mo(10) Ag(7) 20.0 - 25.53
(6, 16) Ag(7) Sn(9) 25.53 - 29.21
(4, 3) Sn(150) Ta(25) 29.21 - 67.41
(2, 1) Ta(50) Au(35) 67.41 - 80.72

As depicted in Fig. 7.3, x-rays that made it through the PH aperture back-lit a res-

olution test target at a distance of 11.5 mm onto x-ray detectors another 274 mm away,

resulting in a magni�cation of M ' 25. �e resolution target (Fig. 7.2b) consisted of two

Au grids, with 42- and 62-µm pitch and 10- and 25-µm bar width, respectively, a�ached

to an acrylic ramp used to help calibrate x-ray signal intensity. �e detector stack, which

was housed in the TIM-based Rotational Static Pinhole Camera Array (RSPCA), consisted

of 2 layers of Agfa D7 x-ray �lm in front of a Fuji BAS MS-type image plate (IP). Kapton

and Be blast shields and an 8-µm V “discriminator” �lter light-sealed the detectors and

a�enuated x-rays with E ≤ 2 keV by a factor greater than 4×106 and 5.4 ≤ E ≤ 8 keV

by a factor between 4 – 40. Image plates were scanned at 50-µm resolution (equivalent

to 2.5 µm at the object plane) with a scanning sensitivity of S = 4000 and temporal fade

was corrected using the fade curve in Ref. [93].

Additional spatially-separated �lters of material varying from Al to Au were placed

between the V �lter and �lm to provide spectral content of the incident x-rays in the

range ∼ 2− 80 keV, mounted on a 178-µm-thick Cirlex® �lter holder. �e materials and

thicknesses are detailed in Table 7.1, where the numbering corresponds to the spatial or-
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Figure 7.4: Detector response (sensitivity× total transmission) for each of the 16 spectral
�lter channels listed in Table 7.1. a) Response for the IP and b) response for the �lm layer
closest to TCC. Curves c) and d) are the di�erences in detector response between �lters i
and j, K(E)∆Tij(E) for the IP and �lm, respectively for selected Ross pairs.

dering in the radiograph in Fig. 7.5a. Each �lter provides a separate “channel” of spectral

information. �e detector response or amount of signal produced per photon of energy

E behind the ith channel/�lter, Ri(E) = K(E)Ti(E) is calculated as the product of the

spectral sensitivity, K(E) of the IP or �lm [93,132–134] and the channel’s total transmis-

sion, Ti(E), neglecting �uorescence. Ti(E) includes transmission through the blast shield

and 8-µm V and is calculated using the XCOM photon cross-section database [100]. �e

response curves of the 16 spectral �lters are shown in Fig. 7.4 for a) the IP and b) the �lm

layer closest to source. We can see that the image plate responses peak at energies 20–

118



60 keV, whereas the �lm responses peak at lower energies, 4–25 keV. �e relatively low

image plate response at energies ≤7 keV is due to decreased sensitivity at these energies

and a�enuation through the preceding �lm layers. To aid with reconstruction of the spec-

trum at energies below∼7 keV, three additional channels were incorporated into the total

data set: two from separate regions of the polyimide ramp and one from the center of the

image where no object or extra �ltering were present.

�e materials and thicknesses of the spectral �lters were initially chosen so that certain

�lter pairs would create nominal band-pass �lters with edges de�ned by the two materi-

als’ K-edges, as in the Ross-pair technique [135]. With proper matching of thicknesses,

the di�erence in transmission between two �lters composing a pair may be everywhere

negligible except between the K-edges of the two materials. Any di�erence in detected

signal between the two �lters, therefore, must come predominantly from x-rays with en-

ergies between the two K-edges in the pair. �e di�erence in detector response between

�lters i and j, K(E)∆Tij(E) is shown for the �lter pairs designed for this experiment in

Figs. 7.4c and d, for the IP and �rst �lm layer, respectively. Each curve corresponds to

a separate Ross pair, and several show sizable “wings” outside the nominal energy band.

Using the di�erence signal, dij between channels i and j, a simple estimate of the number

of incident photons/detector pixel or area with energies between K-edges i and j, Nij is

Nij ≈
|dij|∆Eij

|
∫ Ej
Ei
K(E)∆Tij(E)dE|

, (7.1)

assuming the spectrum to be approximately �at over the energy band and neglecting ef-

fects of the wings except as a source of error [41, 93]. In Sec. 7.2.3, we propose a more

complete approach to calculate the number of photons in each energy band that properly

accounts for the e�ects of wings on all neighboring energy bands. However, we �nd that

the covariances introduced by subtracting data points lead to a worse spectral reconstruc-
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Figure 7.5: a) Radiograph from recorded on the image plate from shot 74180 using a V
sca�old target. Labeled spectral �lters are placed in the detector plane. Scale corresponds
to the object plane. b) Lineouts across the highest-Z �lters (1 - 4) for each shot. �e black
line corresponds to the CH sca�old, and the blue and red lines correspond to the Al and
V sca�olds, respectively, where solid and dashed lines indicate separate shots.

tion than when using channels individually.

7.2 Experimental Results

7.2.1 Radiography

Figure 7.5a shows an example radiograph recorded on an IP using a V sca�old, with test

target above and numbered spectral �lters below. �e aperture of the RSPCA snout results

in a circular image on the detector. Spatial resolution was calculated approximating the

pinhole’s point-spread function as a Gaussian blur. Fi�ing the blur of the Au grid edges

in the �lm radiographs showed resolution varied slightly across sca�old materials, with

FWHM = 13.5±3µm in the vertical and horizontal directions—on the order of the 20-µm

pinhole size.
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Lineouts across the four highest-Z �lters (depicted by the red rectangle) from each

shot are compared in Fig. 7.5b. Black, blue and red lines correspond to the CH, Al and

V sca�olds, respectively, where solid and dashed lines indicate separate shots. �e mean

signal behind each �lter decreases by a factor of 2–10 when going from the CH sca�old

to the Al and V sca�old, respectively. Virtually no He-α x-rays are detected behind these

�lters since the maximum �lter transmission at 5.18 keV is ∼ 10−10, through the 25-µm

Ta. At 10 keV, the combined IP response [93] and transmission through the 25-µm Ta is

at most 1/60 that of the neighboring Cirlex® �lter holder. �erefore, any reduced signal

behind �lters 1 through 4 shot-to-shot re�ects a loss of hard x-rays at energies well above

that of the He-α line. �is conclusion is further supported by the increase in signal behind

the Cirlex®with the V sca�old relative to the CH sca�old. In addition, a cannon �ltered

spectrometer [106] viewing the irradiated side of the target showed up to a 2 order of

magnitude drop in signal on channels sensitive primarily to x-rays with energy >20 keV.

We note that the signal behind the high-Z �lters from the V-sca�old targets is con-

sistently higher than that from the Al-sca�old targets. As will be discussed below, we

a�ribute the higher signal to both increased thermal bremsstrahlung from the higher-Z V

plasma, and detector exposure to emission from V plasma whose expansion beyond the

edge of the pinhole substrate was not tamped with a lower-Z sca�old plasma.

7.2.2 Assessment of nonuniformities and other characteristics

Distinct nonuniformities were observed in the radiographs for most targets, whose shape

and likely origin varied across sca�old materials. Figure 7.6 illustrates how these nonuni-

formities may originate in the pinhole imaging geometry for each sca�old material from

either hard x-rays, microdot misalignment or extended sources. It is used as a supplement

to the radiographs and will be described throughout this section as needed.
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Figure 7.6: Illustration of how radiograph signal non-uniformities may originate for the
di�erent sca�old materials. Hard x-rays can produce a �are just beyond the aperture
shadow, seen with the CH sca�old. Misalignment of the microdot would create a sharp
cuto� in signal along the radiograph, seen possibly with the Al sca�old. Uncollimated
expansion of the V plasma (expected with the V sca�old) may cause an extended source
of so� x-ray emission beyond the edge of the pinhole substrate that would expose a large
area of the detector, well into the aperture’s shadow.
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CH Sca�old:

�e �lm and IP radiographs from the pinhole imager using the CH sca�old are shown

in Figs. 7.7a and b, respectively. Figure 7.7c shows lineouts from the radiographs across

the central una�enuated region (green lines) and acrylic �ducial ramp (black lines), which

correspond to the regions outlined by the boxes of same color and line style in the im-

ages of the radiographs to the le�. Dashed and solid lineouts are from the �lm and IP

radiographs with intensity in units OD and mPSL/µm2, respectively. Looking at the solid

green line we see that the una�enuated signal across the radiograph has a roughly bell-

shaped pro�le, varying from the maximum value by more than 20%. A similarly-shaped

but much more subtle pro�le exists over the same region on the �lm, with less than 10%

variation from the maximum. �e black dashed line of the ramp pro�le recorded on the

�lm shows a very clear exponential decay that agrees well with what we would expect

from a spatially uniform V He-α source being a�enuated through the ramp. Conversely,

the solid black line representing the ramp pro�le recorded on the IP shows a much more

gradual decay from right-to-le�, superposed with a nonuniform feature similar to that in

the una�enuated pro�le. �ese features of the data agree with the hypothesis that the

non-uniformity is from x-rays at energies signi�cantly above the 5.18 keV V He-α line;

they contribute relatively li�le signal to the �lm, but signi�cant signal to the IP whose

sensitivity peaks at higher energies.

�e precise origin of the non-uniformity’s shape is unknown and may be a combina-

tion of several factors. Even if hot electrons are produced preferentially in the CH plasma

surrounding the V microdot, they will di�use both across and outside the laser spot. Pro-

duction of hard x-rays from these hot electrons will be more e�cient in the higher-Z

V plasma and remaining solid material than in the lower-Z plastic. �is could lead to

an emission pro�le that decays radially as the ions from which the x-rays are produced

transition from V to carbon and hydrogen. Additionally, the hot-electron di�usion radi-
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Figure 7.7: Radiographs from a pinhole imager using the nominal CH sca�old recorded on
a) the �rst layer of �lm and b) the IP. c) Lineouts across the radiographs in a) and b) of the
central una�enuated region (green lines) and across the acrylic �ducial ramp (black lines).
Regions where lineouts were taken correspond to the boxes of same color and linestyle as
in the radiographs. Dashed and solid lineouts are from the �lm and IP radiographs with
intensity units OD and mPSL/µm2, respectively. Lineouts from the IP radiograph show
signi�cant nonuniformity. �e �lm fog has not been subtracted in the lineout.

ally outward would likewise contribute to this decay as fewer electrons reach larger radii

due to 1/r fallo�. �e presence of a “�are” observed surrounding the circular aperture’s

shadow in Fig. 7.7b supports this notion, which is much signi�cantly fainter in the IP

radiographs from V sca�olds and completely absent in those with Al sca�olds. �e �are

is likely from x-rays with energies well above that of the V He-α line because it is not

observed in the �lm (Fig. 7.7a). More than 40% of x-rays with energy >40 keV transmit

through the 50-µm Ta pinhole substrate. As depicted in Fig. 7.6 by the red arrow, some of

these transmi�ed hard x-rays that originate far from the optical axis could lead to signal

outside the aperture shadow. Some of this signal contributing to the �are could be from

x-ray �uorescence in the V discriminator �lter in front of the Cirlex®spectral �lter holder;

however, this contribution must apparently be small because the �are is not observed in

the �lm which has a higher sensitivity to the 4.95 keV V Kα x-rays than to harder x-rays.

Al Sca�old:

Figure 7.8a shows the radiograph recorded on the image plate from shot 74176, in

which an Al sca�old was used. �e image shows a nonuniform feature in which from
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Figure 7.8: a) Radiograph recorded on �rst layer of �lm from shot 74176 with Al sca�old,
showing nonuniformity from right-to-le�. �e cyan dashed line represents the edge of
the x-ray cone from a potentially misaligned V microdot. b) Radiograph recorded on �rst
layer of �lm from shot 74181 with Al sca�old, with considerably lower overall signal. c)
�e green line is the lineout from the boxed region in a) showing the magnitude of the
nonuniformity. �e purple dashed line is the simulated intensity pro�le from a microdot
that is misaligned 140 µm to the le� of center.

right-to-le� the intensity is roughly �at and sharply drops o� over ∼8 mm in the de-

tector plane (∼400 µm in the object plane). �is is illustrated more clearly by the green

lineout in Fig. 7.8c of the boxed region in Fig. 7.8a. �e nonuniformity appears to come

from a variation in so� x-ray intensity across the image, based on a comparison of the

intensity across the Cirlex®to the intensity across the una�enuated region between the

spectral �lters and grids in Fig. 7.8a. One hypothesis for such a feature is the translational

misalignment of the microdot relative to the pinhole. �e Al sca�old design was most

susceptible to this issue because the pinhole could not be viewed through the opaque Al

layer, whereas the CH sca�old was optically transparent. �e result of misalignment is

described pictorially in Fig. 7.6 by the cyan rays that outline the misaligned x-ray cone

projected through the pinhole. �e edge of such a cone with an expected diameter of 144

mm at the detector reasonably outlines the nonuniformity in 7.8a, shown by the dashed

cyan line. �e shape of the drop-o� in Fig. 7.8c is consistent with a pro�le that results

from approximately 140-µm misalignment of the microdot with respect to the pinhole
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140 µm, to the le� of the image’s center. �is is modeled by ray-tracing a microdot-sized

He-α source through the pinhole substrate and shown as the purple dashed line in Fig.

7.8c, where a constant underlying background has been added. �e model shows sharp

“knees” where a�enuation starts and the source abruptly stops, which we would expect

to round out (like in the green pro�le) from mixing of the microdot and Al plasmas, as

well as a smoothed Ta density pro�le from ablation of the pinhole wall.

�e lineout in Fig. 7.8c contains an intensity minimum at -9 mm, and then increases

out to the aperture’s shadow at -15 mm–a feature that is inconsistent with the nonuni-

formity resulting solely from misalignment. �e nature of this feature is unclear. Rather

than translational misalignment of the microdot, the nonuniformity in shot 74176 may

have resulted from partial obstruction of the laser or the He-α emission, e.g. by glue or

dust. In the end, not enough data are available to make any strong conclusions about the

non-uniformity in shot 74176, aside from it being low-energy in nature.

In the other Al sca�old shot (74181), the radiograph, Fig. 7.8b, showed factor of ∼ 2

lower signal overall than in the �at signal region in Fig. 7.8a. We believe the lower signal to

have resulted from a smaller pinhole in shot 74181, which is consistent with the improved

resolution observed in this shot. �e Gaussian blur FWHM was 11.4±0.3 in shot 74181

vs. 14.2±0.5 in shot 74176, corresponding to a factor of 1.25 smaller pinhole. �is would

reduce the signal by a factor of (14.2/11.4)2 ≈ 1.6, similar to what was observed.

V Sca�old

Figure 7.9a shows the radiograph recorded on the �rst layer of �lm from shot 74180

using a V sca�old. Similar to before, lineouts across the radiograph and corresponding IP

(Fig. 7.5a) of the central una�enuated region (green lines) and across the ramp (black lines)

are shown in Fig. 7.9c. As in Fig 7.7c, dashed lines correspond to the �lm and solid lines

correspond to the image plate. A similar bell-shaped curve appears in the una�enuated

lineouts, but is more smoothly varying and symmetric than in the CH radiograph. �is
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Figure 7.9: a) Radiograph from shot 74180 the V sca�old recorded on the �rst layer of �lm.
b) Zoom-in on region in radiograph near the edge of the aperture’s shadow, focusing on
the shadow of the V �lter overlapped with the Cirlex �lter holder. �e diagram underneath
describes this overlap. c) Lineouts across the radiograph and corresponding IP of the
central una�enuated region (green lines) and across the acrylic �ducial ramp (black lines).
As in Fig 7.7, dashed lines correspond to the �lm and solid lines correspond to the image
plate.
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feature was reproduced in the other V sca�old target, shot 74188 and is seen on both the

�lm and image plate.

�ere are several features of this non-uniformity that are consistent with it originating

from an extended source of so� x-rays. �ese x-rays were likely emi�ed by the V plasma

as it expanded unabated beyond the edge of the pinhole substrate, which is depicted in Fig.

7.6 by the blue extended source and dashed arrows. In the radiograph, we see very clearly

the outlines of several spectral �lters and that of the Cirlex®�lter holder in the aperture’s

shadow. Signi�cant exposure is present at distances � 6 mm from the beginning of

this shadow (almost up to the detector’s edge), which could only originate from x-ray

emission in the source plane that extended beyond the edge of the pinhole substrate.

�is observation rules out that a signi�cant portion of the additional source of x-rays

originated from �uorescence in the V discriminator �lter. Figure 7.9b shows a close-up of

�lter 10 of 8-µm thick V, which lies partially in the aperture’s shadow. �e regions labeled

II and IV consist of solely the V and the V + Cirlex®, respectively. �e signal ratio between

the two is 0.544 ± 0.023, which matched an expected transmission of 0.53 for 5.18 keV

He-α x-rays through the 178-µm Cirlex®. In addition, the ratio between signals in regions

II and III (Cirlex only) is consistent with 5.18 keV x-rays transmi�ing through solely the

V �lter.

�e bell-shape of the nonuniformity is similar to that produced by an annular extended

source from emission around the pinhole substrate which is then projected through the

diagnostic aperture. Several other features in the image are consistent with this sug-

gested origin, such as the ramp pro�le and signal behind the tungsten wires on the ramp.

Ray-tracing shows that the additional source of x-rays does not pass through the res-

olution target, and would simply contribute an overall background, in addition to hard

x-rays. A similar extended source has similarly been reported in [41]. �e authors used

a signi�cantly smaller pinhole substrate, in which case the extended source was able to
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cast an additional shadow of the target. In the work reported here, since the nonuni-

formity/extended source does not appear when using pinhole imagers with CH and Al

sca�olds, we conclude that the low-Z plasma formed in the la�er two cases e�ectively

tamps lateral expansion of the V microdot plasma.

7.2.3 Reconstruction of X-ray Spectra

For each channel, the recorded signal is taken to be the average over a detector region

of ∼ 50 × 50 pixels. �e recorded signal, yi on the IP or �lm of the ith channel can be

modeled as

yi = ŷi + εi (7.2)

where ŷi is the expected signal from an incident spectrum, S(E),

ŷi =

∫ Emax

Emin

Ri(E)S(E)dE, (7.3)

Ri(E) is the detector response and εi is noise, which we can expect to be normally-

distributed when the number of photons/pixel is su�ciently large. In general, we can

assume that S(E) lies in the spaceL2(Emin, Emax) of functions that are square-integrable

over the interval, [Emin, Emax]. �en we can write the spectrum as a sum of basis func-

tions, hb(E) that span L2(Emin, Emax),

S(E) =
∞∑
b

cbhb(E), (7.4)
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which gives,

ŷi =

∫ Emax

Emin

Ri(E)
∞∑
b

cbhb(E)dE.

To reconstruct the spectrum, we can then estimate the coe�cients, cb by minimizing the

weighted L2-norm of the error, ‖ε‖
W

1/2
y

= ‖y − ŷ‖
W

1/2
y

between the Nd measurements,

y and the expected values, ŷ. Here, the weighting matrix, Wy = S−1
y is the inverse

of the measurement covariance matrix, Sy, whose diagonal elements, σ2
y,ii are taken as

the standard deviation of signal over each channel. In reality, the �nite number of data,

(dimensionality of y) requires that we truncate the number of basis functions to Nb <∞,

which span the subspace, H .

ŷi ≈
∫ Emax

Emin

Ri(E)

Nb∑
b

cbhb(E)dE

=

Nb∑
b

cb

∫ Emax

Emin

Ri(E)hb(E)dE (7.5)

= c · gi (7.6)

where c = {c1, c2, ..., cNb} and gib =
∫ Emax
Emin

Ri(E)hb(E)dE. �e data vector of measure-

ments, y can be wri�en as a matrix equation:

y = G c + ε, (7.7)

where gi are the rows of the Nd × Nb system matrix, G. �e weighted least-squares

solution is

ĉ = A y (7.8)
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where A = (G>WyG)−1G>Wy. �e covariance matrix of the coe�cients, Sc is calcu-

lated via

Sc = ASyA
>, (7.9)

where the diagonal elements, Sc,bb are the square of the standard error, σb. In practice,

we apply a non-negativity constraint to ensure that the reconstructed spectral bins have

physically-relevant values.

To use the Ross pair technique, we construct a di�erencing matrix, ∆y where a given

row,

∆ij
y = [0 ...0 − 1 0...0 1 0 ... 0]

i j (7.10)

produces the di�erence signal, dij = ∆ij
y · y = yj − yi between �lters i and j comprising

a Ross pair. �e vector of di�erences is then d = ∆yy, with covariance matrix, Sd =

∆ySy∆
>
y . �e system matrix becomes D = ∆yG, and weighted least-squares estimate

is ĉRP = ARPd, where ARP = (D>WdD)−1D>Wd, and Wd = S−1
d . In this description,

the di�erence signal model accounts for contributions not just from the nominal energy

band between the Ross pair’s K-edges, but from the wings outside as well.

We choose the basis functions, hb(E) to be rectangular functions whose edges are

de�ned by the K-edges of the �lter materials because these are dominant features that

introduce independence between channels. We also choose Emin = 1.5 keV and Emax =

80.7) keV knowing negligible numbers of x-rays with energies outside this range are de-

tected, given the amount of a�enuation for low-energy x-rays and that the hot electron

temperatures are expected to be . 20 keV.
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Given these basis functions, we can now compare the quality of reconstruction be-

tween the individual-channel and Ross pair techniques by determining their sensitivity

to noise in the data. In both cases, we are solving the equation, b = H c for coe�cients,

c, given system matrix, H and data, b. For each model, sensitivity of c to noise in b can

be measured in terms of the system matrix’s condition number, cond(H). Table 7.2 pro-

vides a comparison of condition numbers between the individual-channel (H ≡ G) and

Ross-pair (H ≡ ∆yG) systems. In the �rst column, only signals recorded on the image

plate were included in the reconstruction, whereas in the second column, only signals

recorded on the �lm were used. In the third column, signals from both the image plate

and �lm were used in combination. In all three cases, we see that the condition number of

the individual-channel system matrix is several (up to 12) orders of magnitude lower than

that of the corresponding Ross-pair system matrix, due to fewer channels being used by

pairing. In addition, the data covariances (and hence bin covariances) increase substan-

tially as a result of subtracting channels. �erefore we conclude that for the current �lter

setup, using individual channels o�ers an improvement over the Ross pair technique. Com-

paring the columns of Table 7.2, we see that condition number is lowest when combining

the image plate and �lm channels in the reconstruction. Absolute values of the corre-

sponding covariance matrices, Sc of the coe�cients are shown in Fig. 7.10, where bins are

ordered in energy; bin 1 is (1.5,4.97) keV and bin 9 is (67.41,80.72) keV. Large covariances

are present at low energy for the image plate channel-only system and at high energy

for the �lm channel-only system, resulting from the shapes of the sensitivity curves of

Table 7.2: Condition numbers of the systems matrices used in the reconstruction of x-ray
spectra.

System cond(HIP) cond(Hf) cond(Htot)
Individual, (H ≡ G) 7×104 900 129
Ross Pairs, (H ≡∆yG) 1.7×1016 9×1016 9.5×104
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a) b) c) 

Figure 7.10: Absolute values of covariances matrices, Sc of coe�cients, cb for individual-
channel reconstruction using channels of a) IPs only, b) �lm only and c) both IP and �lm.
Standard errors of the signals data were taken from shot 74188 to calculate Sy for each
detector.

either detector. Combining the image plate and �lm channels results in a system with

overall signi�cantly reduced coe�cient covariances (as much as 10 orders of magnitude

reduction).

�e non-uniformities discussed previously can introduce signi�cant errors in the re-

constructed x-ray spectra. While not completely avoidable, we took several steps to min-

imize these errors. For instance, in the case where a signi�cant signal gradient was ob-

served across a channel, the signal average was preferentially weighted towards the high-

signal side. In some cases, select channels were removed altogether from the data set

used in the reconstruction. For instance, channels 5 and 10 at the extremities of the im-

age were removed from most shots without much loss of spectral information as they

were repeats of channels 13 and 14. Many of the low-energy channels in the Al sca�old,

shot 74176 were removed. We also note that the high-energy channels were insensitive

to non-uniformities in the low-energy x-ray signal.

Using the individual channel system, spectra are reconstructed for each shot and

shown in 7.11a-b, divided by the laser energy, where the colors and line style are the

same as those for Fig. 7.5b. Error bars represent the standard error from the covariance

matrices as discussed above. In a) only image-plate channels were used, whereas in b)
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a) b) 

Figure 7.11: Reconstructed spectra from the �lters in the radiograph plane. Colors and
line style (solid/dashed) correspond to the lineouts in Fig. 7.5b. a) Reconstruction from
individual channels using image plate signals only. b) Reconstruction from individual
channels utilizing signals from both the image plate and �lm.

both image plate and �lm channels were used. Comparing a) and b) we see that combin-

ing detectors primarily improves the �delity for the 1.5 - 4.97 keV bin and the 4.97 - 5.46

keV bin, which includes the V He-α line at 5.18 keV.

Hard x-rays in the range 30–70 keV decrease by a factor of> 25 when switching from

a CH to Al or V sca�old, consistent with the mitigation of LPIs and their consequent hot

electrons going to higher Z. For V, somewhat so�er x-rays between 7–25 keV increase by

25–100%, likely from increased thermal bremsstrahlung emission at higher Z. In addition,

we see that the number of x-rays in the 4.97 - 5.46 keV bin is about 50% larger for the V

sca�olds compared to the CH sca�old and the Al sca�old shot 74176 (solid blue line), due

to the extended source that emits x-rays beyond the edge the pinhole substrate. �e other

Al sca�old shot, 74181 had over a factor of 2 fewer x-rays in this bin.

7.2.4 Signal-to-background ratio

We now use our above results to calculate signal-to-background ratios (SBs), to under-

stand improvements in image plate-based radiography using the di�erent sca�old designs.
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Figure 7.12: a) Inferred cumulative intensity distributions on the image plate from the
reconstructed spectra for setup A, the current experiment. b) Signal and background on
the image plate in units of mPSL/µm2·kJ and the dimensionless signal-to-background ratio
(SB) vs. sca�old atomic number, Z. �e corresponding plots for setup B with a 30-µm V
discriminator �lter and no �lm are shown in c) and d).
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With the reconstructed energy spectra, we can estimate how x-rays of di�erent energies

contribute to the total una�enuated intensity on the image plate. We calculate the total

intensity on the image plate, ytot(E) contributed by x-rays up to energy, E,

ytot(E) =

∫ E

Emin

K(E ′)T0(E ′)S(E ′)dE ′, (7.11)

similar to Eq. 7.3, where T0(E ′) is the transmission through the blast shield, the 8-µm

V discriminator �lter and the 2 layers of �lm in front of the image plate. �e total in-

tensity distributions are shown for each shot in Fig. 7.12a, divided by the laser energy.

�e initial large increase in intensity comes from the He-α x-rays in the 4.95 − 5.5 keV

bin. We call this the desirable “signal.” All intensity increases beyond 5.5 keV we refer

to as the “background.” For all shots, we infer that the majority of the background arises

from x-rays with energies between 5.5 and 20 keV. �ese x-rays likely originate from

thermal bremsstrahlung emission within the hot coronal plasmas, and contribute much

more background than do harder x-rays–especially in the case of Al and V. �is thermal

background is largest for V, as expected since bremsstrahlung scales as 〈Z〉2. However,

the hard x-rays with energies &30 keV present using the CH sca�old (likely from LPI-

generated hot electrons) contribute a background that is about 30% of the He-α signal

alone. �e background signal from energies between 5.5 and 20 keV from the CH sca�old

is larger than that from both of the higher-Z Al sca�olds, indicating there may be some

hot electron-generated hard x-rays in this energy range.

�e signal, background and SB are shown in Fig. 7.12b vs. sca�old Z as the circles,

squares and triangles, respectively. �e SB improves from 4:10 for CH to∼7:10 and∼6:10

for Al and V, respectively. However, we note that for V, the SB may really be lower than

what is shown since some of the signal came from the extended emission around the

pinhole substrate that doesn’t pass through the object. We can approximate the direct
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signal contribution from the pinhole for V as the average of that estimated for CH and Al

(excluding the Al shot, 74181 showing much less signal. We remind the reader that lower

signal is consistent with the pinhole being smaller for this shot, in which case the SB is

not directly comparable to the other data.) In a future design we presume to eliminate

the extended source of background with a collimating structure rather than with plasma

from a low-Z sca�old. We calculate a worst-case corrected SB for V using the above

approximation of direct pinhole signal, assuming only the He-α x-rays from the extended

source are eliminated through collimation. �is is shown as the orange triangles, which

are about equal to the SB seen for CH as a result of the large thermal bremsstrahlung

component. However, eliminating the extended source may also eliminate some of the

background from this thermal component, resulting in a SB somewhere between 4:10 and

6:10 for V.

7.2.5 Future design of backlit pinhole imagers

We can improve the design of image plate-based radiography for future experiments with

the information provided by the spectral measurements presented in Sec 7.2.3. We pro-

pose using a thicker, 30-µm V discriminator �lter and removing the �lm, which gives

a total transmission (including blast shield) shown by the blue curve in Fig. 7.13. �e

orange curve is the transmission of the proposed setup relative to that for the current

experiments. �ese changes result in a factor of 4 higher throughput of the He-α x-rays

while decreasing the throughput of thermal bremsstrahlung x-rays with energy between

5.5 to 10 keV by a factor of 3 to 100. Figure 7.12c shows estimates of the total intensity

distributions for this proposed setup, indicating that background from 5.5 - 20 keV x-rays

may be reduced by over a factor of 2, while hard x-rays are essentially una�ected by the

change. Fluorescence in this �lter contributes additional signal no more than∼ 4% of that
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Figure 7.13: Transmission (blue) of proposed radiography setup with 30 µm of V and no
�lm and the transmission relative (orange) to that used in these experiments.

from incident x-rays. Data in Fig. 7.12d presents calculations of signal, total background

and SB for this new setup, showing seven-fold increase in SB overall relative to that for

the current experiments. Again, the SB increases by 50% from 3:1 for CH to 4.5:1 for Al.

Figure 7.14 shows two designs of backlit pinhole imagers for future experiments, along

with the �ltering setup proposed above for image plate-based radiography. In both de-

signs, the pinhole substrate may be Ta or higher-Z, with dimensions 7 mm-square by 50

µm-thick. According to results from Ch. 3, a thicker substrate (e.g. 75 µm) may further im-

prove signal-to-background by more e�ciently a�enuating the thermal bremsstrahlung

x-rays that don’t pass directly through the pinhole. �e top design is similar to the com-

mon CH-sca�old design, but uses a transparent quartz or glass (SiO2) sca�old ∼20-µm

thick that we expect to mitigate hard x-ray background and avoid microdot misalignment

issues. �e beryllium blast shield should be made thick enough to signi�cantly a�enuate

the 1.8 keV Si He-α x-rays that may still transmit through the sca�old. �e bo�om design

is similar to the V-sca�old design reported on in this chapter, except that the V foil is

now supported by an acrylic cone that collimates its blow-o� plasma, inhibiting expan-

sion beyond the edge of the pinhole substrate. �is type of cone has been successfully
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Figure 7.14: Proposed designs of future backlit pinhole imagers. Top: design using a
transparent SiO2 sca�old and V microdot. Bo�om: design using a V foil embedded in a
collimating cone that is symmetric about the horizontal axis.
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applied to x-ray sources used in di�raction measurements of dynamic materials experi-

ments [136]. Alternatively, a larger pinhole substrate may be used. In all cases, one can

optimize between spatial resolution and photon statistics by altering the pinhole size and

adding kapton �ltering between the blast-shield and image plate.

7.3 Conclusions

In this chapter, we demonstrated that the hard x-ray background present in backlit pin-

hole imagers could be mitigated by increasing the atomic number of the sca�old material

that holds the microdot foil away from the pinhole substrate. Changing the sca�old ma-

terial from CH to aluminum o�ered a 50% increase in the signal-to-background ratio. �e

targets using aluminum sca�olds may have su�ered from misalignment of the microdot

relative to the pinhole. Replacing the aluminum with a transparent sca�old of similar Z,

such as quartz or glass (〈Z〉 = 10) may avoid this issue and still mitigate hard x-rays.

Eliminating the sca�old entirely by means of irradiating a large V foil led to mitigation

of hard x-rays, but less improvement in signal-to-background ratio due to an increase in

background from thermal bremsstrahlung emission. As well, we observed an additional

source of background so� x-rays in these targets consistent with emission from V plasma

extending beyond the edges of the pinhole substrate. �is extended source should not be

an issue for gated detectors but may be avoided in future experiments by using a colli-

mating cone or larger pinhole substrate. �e CH and aluminum sca�olds prevented this

issue by tamping lateral �ow of the V plasma. A proposed setup demonstrates a signal-

to-background ratio of up to 4.5:1.
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CHAPTER 8

Conclusions and Future Directions

�is thesis presented three experiments that were performed at large laser facilities, fo-

cused on laser-plasma interaction and radiography using laser-generated x-ray sources to

diagnose high-energy-density physics experiments. �e overarching theme here was to

understand the origin of sources of background in backlit pinhole radiography in order

to mitigate them and improve the quality of imaging for future HED experiments. How-

ever, much of the work is interesting and valuable independent of solving this speci�c

engineering problem. With these concluding remarks, I provide a brief summary of the

�ndings, as well as broader implications of this work and future directions.

Chapter 3 reported results from experiments studying the hard x-ray background in

backlit pinhole imaging. Signal-to-background ratios as low as 1:10 were observed. Mit-

igating the background entirely had the potential to reduce uncertainty in estimates of

optical depth from radiographs by over a factor of 2 for �lm and a factor of 10 for image

plates. �e la�er is particularly important given the desire to move away from �lm and

toward image plates for x-ray detection. �e background on the radiograph increased sig-

ni�cantly when using lower-Z pinhole substrates. While these changes were consistent

with the x-ray background coming from the pinhole imagers, we did not have enough

evidence to determine whether the x-rays were produced primarily in the laser plasma

interaction region, or in the pinhole substrate. Estimates of electron ranges in materi-
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als suggest the former. �ese results indicate that future experiments using thicker and

higher-Z pinhole substrates can lead to less background on the radiograph. However,

the source of hard x-rays must be eliminated entirely to also mitigate the contribution of

background that passes through the pinhole.

Chapters 4-6 focused on experiments studying hot electron production from low- to

high-Z laser-irradiated planar targets. We inferred from hard x-ray measurements that

hot-electron levels decreased by 3 orders of magnitude between low-Z CH and high-Z Au

targets, and temperatures decreased by a factor of 2. Measurements of electron density

pro�les of the expanding plasmas from these targets demonstrated signi�cant steepen-

ing as the atomic number of the target increased. �ese combined observations were

consistent with increased intensity thresholds of laser-plasma instabilities in the higher-

Z targets. Radiation hydrodynamic simulations presented in Ch. 5 showed systematic

over-prediction of density at a given location by up to 40%, relative to measured den-

sity pro�les. However, they showed overall good agreement in shape and length-scales

compared to measurements at densities below nc/10. �e low-density agreement helped

validate using the simulations to predict conditions at higher densities. �e simulations

predicted signi�cant increases in electron temperature and overlapped intensities with

increasing Z, leading to higher thresholds for multi-beam TPD and multi-beam SRS. �e

results added to previous evidence indicating that SRS may play a comparable or greater

role than TPD in generating hot electron in multi-beam experiments.

Models of LPIs are di�cult to validate with solely time-integrated hard x-ray mea-

surements and inferences of hot-electron production. �e acceleration of hot electrons

occurs primarily in the nonlinear stages of TPD and SRS driven by either single or multi-

ple laser beams. Hence, the hard x-ray measurement data contain li�le information about

the linear growth stages and the original decay waves that are direct signatures of these

LPIs. Time-resolved �omson sca�ering measurements of common EPW amplitudes as
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well as measurements of ω0/2 and 3ω0/2 light and SRS sca�ered light signatures in fu-

ture experiments can provide more direct observations of these instabilities. In addition,

more comprehensive measurements of plasma conditions can help con�rm which physical

mechanisms are most important in mitigating the instabilities in mid- to high-Z targets.

Zakharov and PIC simulations combined with accurate knowledge of the plasma condi-

tions in these experiments can be used to study the nonlinear evolution of TPD and SRS

from the coupling between EPWs and IAWs, as well as the acceleration of hot electrons

in the EPWs’ potentials.

�e refraction images presented in Ch. 4 may be used in the future to understand

details of ablation dynamics in laser-produced plasmas, aside from their application in

understanding LPIs in this thesis. �ese measurements are particularly useful to study

the plasma corona at densities below ∼ 9× 1020 cm−3. However a measurement system

with a shorter probe wavelength and/or larger-diameter collection optic is required to

observe the pro�le closer to nc where gradients are especially steep. X-ray interferometry

techniques [137, 138] may be used to image these plasmas at higher density in future

experiments, and can be used in concert with our low-density measurements to provide

a more complete picture of the plasma pro�le. Detailed measurements of the pro�les can

help validate models of nonlocal electron heat transport and non-LTE atomic physics that

are used in radiation hydrodynamic simulations. Validation of this kind is highly valuable

to improve modeling of full-scale direct and indirect drive ICF targets.

�e measurements from the OMEGA-EP experiments increase the parameter space

over which hot-electron production has been quanti�ed. �is is in general useful to pre-

dict the importance of hot electrons in more complicated experiments with similar laser

parameters and irradiated materials. In addition, they add to the evidence demonstrating

that low-Z irradiated materials can be replaced with higher-Z ones where acceptable to

reduce hot electrons that cannot be tolerated experimentally. Past experiments studying
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unstable HED �ows have typically had design constraints from hot-electron preheat. For

instance, the laser irradiance had been limited to ∼1014 W/cm2 [139] when using low-Z

plastic ablators. Our observations and others of mitigated hot-electron production suggest

that this upper limit may be increased in future experiments by increasing the e�ective Z

of the ablator. Higher irradiances would enable access to new �ow regimes. However, de-

signs must optimize over reduced hot-electron production, additional x-ray preheat and

reduced ablation pressures going to higher Z. Inserting an additional thin high-Z layer

between the ablator and target package may mitigate the x-ray preheat [139].

Chapter 7 presented experiments on the OMEGA-60 laser demonstrating that the hard

x-ray background present in backlit pinhole imagers could be mitigated by increasing the

atomic number of the sca�old material that holds the microdot foil away from the pin-

hole substrate. Spectral measurements showed that hard x-rays with energy &30 keV

were signi�cantly reduced in both the Al- and V-sca�old designs relative to the common

CH-sca�old design. �is change led to a greater than 50% improvement in the signal-to-

background ratio in the case of Al. �e improvements with the V-sca�old design were

less clear due to the presence of emission from the V plasma that had expanded beyond

the edge of the pinhole substrate. In all cases, the background from the thermal emission

was estimated to be signi�cantly larger than that from the harder x-rays that were pre-

sumably generated by hot electrons. New designs of backlit pinhole imagers and �ltering

setups may o�er signal-to-background ratios of greater than 4:1 using image plate-based

radiography.
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APPENDIX A

AFR Data From August 2014 Shot Day

�e full set of angular �lter refractomery images using the “AF3” angular �lter are shown

in Fig. A.1 from the experiments presented in Ch. 4. All images are fairly symmetric across

the y-axis, consistent with our assumption of azimuthally symmetry electron density pro-

�les. �e contours closer to the target surface are highly discontinuous across the image

in nearly all targets. �e breaks in the contours correlate with �lamentary structures ob-

served in shadowgraphs that align closely with the beam direction. �e density gradients

that led to these structures may have occurred from either �lamentation instabilities or

local intensity hot spots in the beam pro�le [140–142].
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Figure A.1: Angular �lter refractometry images for all targets in the experiments pre-
sented in Ch. 4.
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