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ABSTRACT 

 

Organic light-emitting diodes (OLEDs) are poised to realize high performance for 

innovative display and lighting applications in the future. However, the development of suitable 

blue OLEDs remains a challenge which has impeded the progress of large-scale OLED 

commercialization for more than a decade. Blue devices are critical components for red-green-

blue displays and white lighting, but to date suffer from short operational lifetimes as well as a 

lack of efficient deep blue emitting materials. This thesis aims at understanding the physical 

background of these issues and providing potential solutions. 

OLEDs produce photons via radiative recombination of electron-hole bound pairs, called 

excitons. Fluorescent OLEDs depend on emission from the singlet excitons achieving an 

electron-to-light conversion, or internal quantum efficiency (IQE), from 25% up to 62.5%. On 

the other hand, phosphorescent OLEDs (PHOLEDs) exploit the emission from triplet excitons, 

attaining nearly 100% IQE. In OLED-based products, red and green PHOLEDs are universally 

used due to their high efficiency and long operational lifetime, while fluorescent OLEDs are still 

used for the blue emitting component despite their low performance. Thus, the development of 

long-lived and high efficiency blue PHOLEDs is a key to the success of the technology. 

In the first part of this thesis, we investigate the nonradiative loss mechanism dominant in 

deep blue emitting phosphorescent materials. We identify the metal-centered ligand-field states 

(3MC states) as a major source of efficiency loss and a probability of thermal population to these 

states increases with the emission energy of the emitter. Thus, we develop tris-cyclometalated 
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Iridium (III) complexes using N-heterocyclic carbene (NHC) ligands that render the energy of 

the 3MC states inaccessibly high while keeping a wide energy gap for deep blue emission. The 

NHC-ligand based Ir(III) complex can thereby minimize the nonradiative loss and achieve high 

IQE in deep blue. In PHOLEDs, the NHC-Ir(III) complexes are used as the emitters, as well as 

hole transporting and electron blocking components. This multiple use enables a very high 

brightness operation of deep blue PHOLEDs, potentially suitable for demanding display 

applications. 

 In the second part of this thesis, we focus on understanding and solving the short lifetime 

of blue PHOLEDs. We identify the intrinsic mechanism of the device degradation is the 

bimolecular annihilation between the excited states in the emission layer (EML) that generates 

the energetically “hot” excited state. If such a hot excited state dissipates its energy on the EML 

molecule, the resulting chemical bond dissociation and its products permanently deteriorate 

device performance. The frequency of this failure process increases with the energy of the 

excited state, particularly severe in blue PHOLEDs compared to red and green emitting devices. 

Thus, we propose two solutions to this problem: (i) reducing the probability of the bimolecular 

annihilation via distributing the excited state density and (ii) bypassing the dissociative reaction 

via thermalizing the hot excited states on the ancillary dopant in the PHOLED EML. The 

stability of the blue PHOLED employing both strategies is cumulatively improved and a theory 

is proposed to explain such lifetime enhancement. 
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Chapter 1 Past, present and future of OLEDs 

 

The most distinctive advantage of organic semiconductors may be tunability of their 

optical and electrical properties that can be suited to a wide range of practical applications, such 

as light emitting devices, photovoltaic cells, and field-effect transistors. Among these 

applications, organic light emitting diodes (OLED) have been the most widespread and 

successful organic semiconductor-based electronics and will be the main topic throughout this 

dissertation. In this chapter, we introduce a basic property of organic semiconductors and define 

important terminologies that are frequently used in this dissertation. Then, a brief history and the 

basic working principles of OLEDs will be discussed. Future applications enabled by OLEDs 

will follow.  

 

1.1.  Basic properties and definitions in organic semiconductors 

Organic semiconductors generally refer to the pi-bonded molecular or polymeric 

semiconductors whose building blocks are composed of carbon and hydrogen atoms. While this 

definition applies to a general class of the organic semiconductors, their composition can also 

include heteroatoms such as nitrogen, oxygen, sulfur and some transition metals such as iridium 

(III) and platinum (IV). The combination of these atomic constituents determines the property of 

the comprising molecule that can obtain high absorption, efficient luminescence, and/or high 

mobility characteristics suited to organic photovoltaics (OPVs) [1], OLEDs [2] and/or organic 
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FET (OFET) [3]. Figure 1.1 shows examples of the standard small molecules and their 

corresponding applications.  

 

 

Figure 1.1 Examples of represantative small molecules used in organic optoelectronic 

devices. (a) organic light-emitting diodes (OLEDs), (b) organic photovoltaics (OPVs), 

and (c) organic field-effect transistors (OFETs). Here, CBP and Ir(ppy)3 are used as the 

host and the light emitting dopant, respectively, in the emission layer of OLEDs. DBP 

and C70 are used as the donor and the acceptor, respectively, in the active layer of OPVs. 

The Rubrene crystal is used as the semiconducting channel for OFETs. Note that C70 

does not fall into a category of organic semiconductors defined in the text, since C70 

consists only of carbon atoms.  

 

Fundamental characteristics of organic semiconductors can be understood by comparison 

with conventional inorganic semiconductors. We should first discuss the basic building blocks 

and the structures of both types, which play a critical role in determining their distinctive band 

structures and optoelectronic characteristics. The crystalline inorganic semiconductor has a 

highly ordered structure with a well-defined lattice whose constituent basis is the one or a few 
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atoms such as Si, Ge and GaAs. These atoms are held together by a strong covalent bond and 

thus, inorganic semiconductors are generally hard, brittle, and have a high melting temperature 

[4] (>1,000oC), with a few exceptions such as HgCdTe [5]. On the other hand, the basis of the 

organic semiconductor is rather a large and electrically neutral molecule. In the bulk, these 

molecules are bound by the electrostatic van der Waals (vdW) force that is based on weak 

induced dipole–induced dipole interactions [6]. The weak vdW intermolecular interaction results 

in rather a random or amorphous arrangement of the organic molecules in most cases, although  

ordered structures can be found in some molecular crystals [7]. Therefore, organic 

semiconductors are generally soft, light and have a low melting temperature (<300oC).  

The electrical properties of semiconductors such as electronic band structure and charge 

conduction are mainly determined by interactions of their building blocks. In crystalline 

inorganic semiconductors, a periodic potential is created across the highly ordered lattice 

comprised of the covalently or ionic–bonded atoms. Thus, by plugging the wave function for the 

electron based on the Bloch’s theorem and the periodic potential as a perturbation term into 

Schrodinger’s equation, the band structure of the semiconductor (i.e. an E–k dispersion 

relationship) can be derived [4]. In the semiconductor band structure there exists an energetically 

forbidden zone (i.e. referred to as the band gap, Eg) between the continuous bands of the 

available electronic states, or a density of states (DOS), with the width of >4 eV [8]. The 

electronic state continuum below the band gap is called a valence band and the one above the 

band gap is referred to as the conduction band as shown in Figure 1.2. Since the Fermi level in 

intrinsic semiconductors lies in the band gap, the valence bands are, in general, filled with 

electrons whereas the conduction bands are partly filled or vacant of electrons depending on the 

temperature. When the electronic states in the conduction band are occupied by the electrons 
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from the filled states in the valence band via electrical, optical or thermal excitation, the 

semiconductor can conduct electrical current.  

 

 

Figure 1.2 Density of states (DOS) diagram of inorganic and organic semiconductors. 

The energy gap in the organic semiconductor is vaguely defined due to tail states of the 

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO). The DOS of HOMOs and LUMOs follows the Gaussian distribution. Note that 

to analytically estimate the tail states, an exponential DOS can be assumed.  

 

On the other hand, organic semiconductors consist of randomly oriented molecules 

loosely bound by a relatively weak vdW force. Thus, the band theory developed for crystalline 

semiconductors cannot be explicitly applied to the organic counterparts due to their random 

energetic nature. Instead of forming a continuous band, the available electronic states of organic 

semiconductors exist as discrete orbitals with a relatively narrow bandwidth of ≤100 meV (see 

Fig. 1.2). This energetic distribution is determined by the collective polarization effects among 
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randomly oriented molecules. The molecules in the solid or liquid phase are polarized by the 

surrounding molecules, and the vdW-based energetic interaction scales with 1/r6, where r is the 

intermolecular distance [9]. Since r is random in the amorphous organic semiconductor, the 

density of the molecular orbitals is assumed to follow a Gaussian distribution.  

Among the orbitals filled with the electrons, the one that has the highest energy is called 

the highest occupied molecular orbital (HOMO), corresponding to the valence band edge (Ev) of 

inorganic semiconductors. Likewise, the one that has the lowest energy among the empty orbitals 

is called the lowest unoccupied molecular orbital (LUMO), corresponding to the conduction 

band edge (Ec) of the inorganic counterpart. The orbitals below the HOMO and above the 

LUMO are denoted as HOMO-1, HOMO-2,... and LUMO+1, LUMO+2,..., respectively, in 

energetic order. The frontier molecular orbitals of organic semiconductors refer to both the 

HOMO and LUMO and a forbidden zone, vacant of the available electronic states between the 

frontier orbitals, is defined as an energy gap (c.f. a band gap for the inorganic semiconductor). 

The frontier orbitals play a major role in determining the optical and electrical properties of an 

organic semiconductor such as absorption and emission as well as charge transport, similar to the 

conduction and valence band edges of the inorganic counterpart.  

Due to the weak electronic coupling between molecules, charge carrier transport in 

amorphous organic semiconductors is limited by incoherent and phonon-assisted hopping 

between molecules with a mobility of µ << 0.1 cm2/Vs [10]. This is compared with the mobility 

of an inorganic semiconductor (e.g. µ > 1,000 cm2/Vs for the electron in the Si) characterized by 

the coherent band transport as described in Fig. 1.3. In some highly ordered and defect-free 

molecular crystals, however, the band transport characteristics are limited to µ ~ 0.1–1 cm2/Vs 

[11]. At room temperature, the intrinsic carrier concentration in the organic semiconductor, or 
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the density of thermally generated free charges given as ni ∝ exp −Eg 2kT( ) , is nearly negligible 

due to its wide energy gap of Eg = 3–5 (eV), as opposed to that of inorganic semiconductors of 

Eg = 1–2 (eV) (e.g. Si or GaAs have Eg = 1.11 and 1.43 (eV), respectively). Accordingly, organic 

semiconductors are intrinsically insulators and their charge conduction relies on injected charges 

from the electrodes or by an intentional conductive doping. The insulating nature of organic 

semiconductors with extremely low charge carrier mobility is the main reason state-of-the-art 

organic optoelectronic devices, including OLEDs, are based on a thin-film structure (<1 um) to 

eliminate the need of very large operating voltages, as well as to facilitate charge transport. 

When an electron is added to or removed from the neutral molecule either by charge 

injection or exciton dissociation, it becomes an anion or cation, respectively. This charged 

molecule undergoes not only a geometric shape change due to redistribution of the comprising 

electrons, but also affects the intermolecular distance to the surrounding molecules due to the 

change in its polarization. The charged molecule along with this resultant “lattice distortion” is 

deemed a quantum quasi-particle called a polaron. Throughout this dissertation, holes and 

electrons in OLEDs actually refer to hole polarons and electron polarons, respectively, and 

charge transport, in most cases, refers to intermolecular polaron hopping (see §2.2.1). 
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Figure 1.3 Structures of inorganic and organic semiconductors. Types of excitons and 

charge transport mechanisms are described. 

 

The distinctive optical characteristics of organic semiconductors arise from its low 

dielectric constant of εr ~ 3, as opposed to that of inorganic analogs where εr ~ 11. As organic 

semiconductors absorb light of an energy equal to or larger than their energy gaps, the electron in 

the HOMO is promoted to the LUMO or higher energy orbitals, leaving a hole in the HOMO. 

Then, these electrons and holes are strongly attracted to one another by Coulomb force due to the 

weak dielectric screening with a binding energy of EBE = e
2 4πε rε0 a0

*( )2 = 0.1 – 1 (eV) [12]. 

Here, e is the elementary charge, ε0 is the vacuum permittivity, and a0
* is the effective Bohr 

radius of the exciton. Thus, this strongly bound electron-hole pair tends to be localized on a 

single molecule which is called a Frenkel exciton. This is in contrast to a Wannier-Mott exciton 

of inorganic semiconductors which is loosely bound by a weak EBE << 0.1 eV due to large εr and 

therefore is delocalized across the lattice (see Fig. 1.3). In general, Wannier-Mott excitons are 

observed at very low temperatures in inorganic semiconductors [13] with a few exceptions such 

as GaN [14]. Frenkel excitons, or simply referred to as excitons hereafter, can be transferred 
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between molecular sites during their natural lifetime or before they are dissociated at a 

heterointerface (see §2.2.7). The excitonic energy transfer process dictates the performance of 

organic optoelectronic devices including OLEDs and OPV. The more details about the excitons 

will be discussed in Chapter 2.  

Since the organic semiconductor is a low dielectric medium, it has a correspondingly low 

refractive index of n = 1.8 ~ 2.0 following the relationship n ≅ ε r  at optical frequencies, 

compared to that of inorganic semiconductors where n > 3.0. Ref. [15] provides an overview of 

theories relating the energy gap vs. the refractive index which, roughly speaking, have an inverse 

relationship with each other. Therefore, light produced within OLEDs, for example, can be more 

efficiently extracted through a glass substrate (n ~ 1.5) to air (n ~ 1), compared to inorganic light 

emitting diodes made up of high refractive index materials. Combined with the large energy gap 

characteristics, highly efficient and transparent OLEDs can be realized (see §1.4). 

The amorphous characteristics of organic semiconductors is advantageous in choosing 

substrates. Unlike inorganic semiconductors such as Si or GaAs that require lattice-matched, 

brittle and bulky substrates, organic semiconductors can be grown on any medium as long as the 

surface is atomically smooth (i.e. an average surface roughness < 1–2 nm). Combined with its 

small Young’s modulus (10–20 GPa [16, p. 3] vs. 130–180 GPa for a silicon single crystal [17]), 

relatively soft organic semiconductors grown on the highly elastic substrates can enable flexible, 

curved, or stretchable electronics (see §1.4).  
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1.2.  Growth technology of organic semiconductors 

 The growth technology of organic semiconductors is mainly determined by their material 

types. The amorphous molecular thin films, mainly used in OLED or OPV applications, are 

deposited by vacuum thermal evaporation (VTE). In the vacuum chamber, the powder of organic 

molecules is loaded in and heated by the resistive thermal crucible at the sublimation temperature, 

which then undergoes a transition from a solid either directly or via the liquid to gas phase. The 

pressure of the chamber is maintained low enough (<10-6 Torr) so that the vapor of the sublimed 

molecules travels a long mean free path straight toward the target without colliding into the 

background gaseous molecules. Subsequently, the vaporized organic molecules that reach the 

cooled target are condensed into a solid, i.e. the deposition process, forming the thin film. The 

sublimable organic molecules, generally referred to as small molecules, consist of thermally 

stable, small and rigid molecular moieties. All the organic materials used in the OLEDs of this 

dissertation are small molecules deposited by VTE. On the other hand, a polymer is a large 

molecule that consists of many repeating units and side chains. Due to the weak bond nature of 

polymers, these materials in general cannot be processed by thermal evaporation. Therefore, 

most polymers are dissolved in solutions to disentangle the complex units [18] and subsequently 

are deposited using spin-coating.  

While VTE has been widely adopted in large-scale OLED manufacturing, the major 

drawback of this process is low material utilization efficiency. To overcome this issue, organic 

vapor phase deposition (OVPD) has been proposed as an alternative to the VTE [19]. 
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Figure 1.4 Schematic of organic vapor phase deposition and organic vapor jet printing. 

Images are obtained from Ref. [20] and Princeton University, respectively. 

 

As shown in Figure 1.4, OVPD uses an inert carrier gas such as nitrogen or argon to 

transport vaporized organic molecules to the cooled substrate, where they are condensed into a 

thin film. The pressure inside the OVPD chamber is maintained at 0.1 – 10 torr and the wall of 

the chamber is heated at a higher temperature than that of the source crucible at the sublimation 

temperature to prevent undesirable condensation or re-evaporation of the materials on the wall. 

Thus, OVPD can achieve high material utilization efficiency. The interesting feature of OVPD is 

that it can control the morphology of molecular thin films by varying growth conditions such as 

gas pressure. Based on this approach, OVPD-grown, ultra thick poly-crystalline layers are used 

as an active layer of OPVs, enabling high efficiency and long lifetime [21], [22]. Also, OVPD-
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grown OLEDs showed comparable performance relative to that of VTE-grown counterparts [23]. 

These examples show the potential of OVPD as large-scale manufacturing process technology of 

organic optoelectronic devices.  

Since conventional lithographic technologies are damaging to organic materials, both 

OVPD and VTE require shadow masks to define the shape and size of the organic thin film 

devices. For patterning  30–50 µm sized features such as pixels in modern OLED displays, a fine 

metal mask (FMM) with a thickness of 30–200 um has been widely used. Although FMM is a 

conceptually simple technique, it is hard to scale up to the large-sized substrates due to sagging 

of the mask, is challenging to pattern the feature size below a few tens of microns due to 

shadowing effect, and causes a large waste of materials. Thus, organic vapor jet printing (OVJP) 

has been proposed as an alternative to overcome such problems [24]. The working principle of 

OVJP is similar to that of OVPD in that both techniques use the inert carrier gas to transport the 

organic vapor to the substrate. The main difference is that a jet of organic vapor is shot through a 

small-size nozzle in OVJP (<10 µm diameter, see Fig. 1.3), which enables small-area deposition 

dependant on gas pressure and distance of the nozzle to the substrate [25], [26]. Thus, both 

deposition and patterning are simultaneously performed by OVJP, potentially eliminating the 

need of the shadow mask. By using an array of multiple OVJP nozzles, a highly efficient and 

large-scale deposition process is possible. 
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1.3.  A brief history of OLEDs 

The electroluminescence in organic materials was first observed in 1963 by applying a 

direct current voltage of ~400 V to 10–20 µm thick anthracene and tetracene-doped anthracene 

crystals [27]. Then, the first organic electroluminescent device, or OLED, was demonstrated by 

Tang and VanSlyke in 1987 [2], which was operated at a practical operating voltage of 5–10 V 

by virtue of a thin film structure (the total thickness of ~1 µm). This first-generation OLED was 

comprised of small molecule-based hole-transport (HTL) and electron-transport layers (ETL), 

sandwiched between a semi-transparent indium-tin-oxide (ITO) anode and a reflective Mg:Ag 

cathode. Here, tris(8-hydroxyquinolinato)aluminum (Alq3) served as the ETL, as well as the 

emissive layer (EML) where radiative recombination of the excitons mainly occurs as shown in 

Figure 1.5.  

 

 

Figure 1.5 Device structure and energetics of the first generation OLED. 

 

This multi-layered, green emitting OLED achieved a remarkably high external quantum 

efficiency (EQE) of ~1%. Soon after, Tang et al. demonstrated a doping technique by co-

evaporating Alq3 that was used as a host matrix and a small volume (<1 mole%) of the 

fluorescent dopant, either 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran 
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(DCM) or Coumarine 540 [28]. By allowing Förster energy transfer from Alq3 to  fluorescent 

dopant (see §2.2.7), this OLED exhibited emission from the dopant with a further boosted EQE 

of 2.5% compared to an undoped green emitting device. These advanced concepts incorporating 

multi-layered structures and color/efficiency control by the host-guest system have been widely 

adopted in state-of-the-art OLEDs.  

In the EML, injected hole and electron polarons with random spin recombine to form two 

types of excitons, i.e. singlet and triplet excitons with a ratio of 1:3 based on their spin statistics 

[29] (see §2.2.4). The first generation OLED is referred to as a fluorescent OLED based on the 

radiative recombination of singlet excitons. Since only a quarter of the generated excitons (i.e. 

singlets) participates in the emission while the rest of the excitons (i.e. triplets) nonradiatively 

decay in the form of heat, the internal quantum efficiency is limited to IQE =  25% for the 

fluorescent OLEDs. In 1999, Baldo et al. [30] found a mechanism that utilizes the triplet 

excitons to luminescence by an efficient singlet-triplet mixing via enhanced spin orbit coupling 

in heavy metal-based, light-emitting organic complexes (see §2.2.6). Specifically, all the singlet 

excitons can rapidly intersystem cross to the triplet excitons and triplet excitons perturbed by, 

and thus, having the character of singlet excitons radiatively recombine on the organometallic 

complexes. The devices exploiting such a mechanism are called electrophosphorescent OLEDs 

(PHOLED). PHOLEDs can achieve 100% IQE by having all the generated excitons to 

participate in the emission [31]. Eventually, the development of the highly efficient PHOLEDs 

has been the seminal step towards commercialization of the OLED technology. The operating 

principle and design concept of phosphorescent emitters and devices will be discussed in greater 

detail in Chapter 2. 
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While red and green PHOLEDs are nearly universally used in commercial products due 

to their superior efficiency and long lifetime, the blue emitting component still relies on 

fluorescent OLEDs due to the lack of long-lived, high efficiency blue PHOLEDs. Recent blue 

fluorescent OLEDs can attain IQE up to the theoretical limit of 62.5%, by combining prompt and 

delayed fluorescence [32]. Prompt fluorescence arises from the radiative recombination of 

initially generated singlet excitons whose natural decay time is below a few tens of nanoseconds. 

On the other hand, delayed fluorescence arises from the singlet excitons additionally generated 

by annihilation between the long-lived triplet states whose natural decay time is several hundreds 

of microseconds. Therefore, the delayed fluorescence is a slower process that follows after 

prompt fluorescence.  

The high efficiency of a modern fluorescent OLED is beneficial in reduction of its 

operating current level to obtain the desired luminance, thereby slowing down the device 

degradation process that generally scales with the density of the excited states [33]. Even so, the 

lifetime of recent blue fluorescent OLEDs is insufficiently short compared to the state-of-the-art 

red and green PHOLEDs. To overcome the efficiency limit of fluorescent devices, thermally 

assisted delayed fluorescence (TADF) OLEDs have been actively studied that can achieve an 

IQE up to 100% [34], comparable to PHOLEDs. This is enabled by efficient upconversion from 

the triplet to the singlet excitons by reducing the energy gap between these two states. Although 

high efficiency red, green and blue TADF OLEDs have been reported [35], [36], the lifetime of 

green TADF remains insufficiently low [37], and those of red and blue are even much less. The 

lifetime issue of OLEDs will be discussed in greater detail in Chapter 5 and Chapter 6. 
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1.4.  Success and innovation enabled by OLEDs 

 OLEDs enable high efficiency and attractive display and lighting applications. 

Advantages of the OLED as a screen light source such as high resolution, wide color gamut  and 

low power consumption have been successfully demonstrated by their use in the displays of 

smart phones and televisions as shown in Figure 1.6.  

 

 

Figure 1.6 Personal electronics enabled by OLED. Images of Samsung Galaxy 

smartphone, LG OLED television and Apple smart watch are included. 

 

The distinctive advantage of OLED displays compared to liquid crystal displays (LCDs) 

is that the latter requires multiple components including the backlight unit (usually white light 

emitting diodes), two polarizers, as well as color filters to produce the desired color and 

luminance, while the former only need OLED sub-pixels. Thus, OLED displays that only require 

the OLED pixels and a TFT backplane can enable ultra-thin and light weight electronics. Since 

OLED pixels can produce a deep black color by turning off the devices while operating a certain 

portion of them only where the image is required, the OLED can not only reduce power 

consumption, but also attain a theoretically infinite contrast ratio (defined as the ratio of highest 

luminance to the lowest value). This is compared to the contrast ratio of the state-of-the-art LCD 
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of 1600:1, indicating that an OLED can produce a broader range between bright and dark 

conditions. Further, since the response speed of the OLED is very fast with turn–on and –off 

times of 1–2 µs [38], [39], OLEDs are suited to gaming or virtual/augmented reality applications 

and high-speed video contents without motion blur issue that LCD has typically suffered from 

due to its slow response times (several milliseconds) [40]. Also, the OLED is a Lambertian light 

source, indicating that the device luminance is invariant with viewing angle. Thus, the emission 

of optically optimized OLEDs has nearly negligible angle– and wavelength–dependence, 

enabling its adoption in the large-area television screens.  

 

 

Figure 1.7 Future applications enabled by OLEDs. For example, virtual/augmented 

reality gears, transparent and flexible displays are shown. Images are obtained from 

Random42, Samsung, and Electronic Products. 

 

OLED materials, typically having a small Young’s modulus, can be deposited on flexible 

substrates to realize wearable or curved display electronics. For example, the OLED-based Apple 

smart watches and Samsung Galaxy smartphones have a partially curved portion of the screen 

near the side edges as shown in Fig. 1.6. Combined with the flexible and mechanically stable 

encapsulation barriers for the plastic-based devices, the rollable, free-form, and wearable 

displays have also been demonstrated (see Fig. 1.7). Finally, by utilizing the highly transparent 

characteristics of the organic molecules (i.e. negligible absorption coefficient in the visible), 
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OLEDs can be integrated with windows in the house, office and automobiles, or stand alone to 

be used as see-through and head-up displays. As such, the OLED is believed to open up a $20 

billion market by 2020 by virtue of various innovative applications along with early success in 

personal electronics. 
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Chapter 2 Optoelectronic properties of OLED materials and devices 

 

The performance of the OLED is determined by the properties of the comprising 

materials, and the electrical and optical processes that occur during device operation. In this 

chapter, we introduce the basic structure and operating principle of the OLED, as well as 

important metrics to evaluate the device performance. Then, we briefly review physics of the 

electrical and optical processes of the organic semiconductors that is relevant to the OLED 

operation. Finally, we discuss the design schemes and fundamental properties of blue 

phosphorescent organometallic complexes.  

 

2.1. An introduction to OLEDs 

2.1.1. Structure and operating principle of OLEDs 

 The standard structure of the OLED consists of several functional layers including the 

EML that are sandwiched between two electrodes, i.e. a semi-transparent ITO anode and 

reflective Al or Ag cathodes. The organic materials are chosen such that the energy differences 

from the work functions of the electrodes and are minimized. Thus, the need of high electric field 

to overcome the potential barrier for charges is eliminated, (see §2.2.1) and the electrical loss 

induced by the charge accumulation at the junctions between layers is reduced.  
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Figure 2.1 Device structure and energetics of the standard OLED. Here, ΦAnode and 

ΦCathode are work functions of the anode and cathode, respectively, with respect to the 

vacuum level. eVbi = ΦAnode– ΦCathode is the built-in potential of the diode. 

 

Figure 2.1 shows the standard OLED structure and its energetics. The organic molecules 

deposited adjacent to the electrodes are called the hole injection (HIL) and electron injection 

layer (EIL) that are used for facilitating the charge injection into a stack of the organic layers. 

Subsequently, the injected charges are transported through the hole transport (HTL) and electron 

transport layers (ETL) towards the EML where they recombine to form the excitons. Since most 

organic materials including those used in the EML have asymmetric hole and electron mobilities, 

hole blocking (HBL) and electron blocking layers (EBL) are employed that confine charges 

within the EML by imposing the high potential barrier and thus stimulate exciton formation [41], 

[42]. To accomplish such functions, the HBL and EBL should have energetically more stable 

HOMO and shallow LUMO energies with respect to the vacuum level, respectively, compared to 
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that of the EML molecules. In addition, there are other important requirements for the blocking 

layers: (i) the HBL and EBL should efficiently conduct electrons and holes, respectively, while 

blocking the opposite charges, and (ii) should have at least equal or larger energy of the exciton 

states than that of the EML so that the excitons do not leak out of the EML. Above-mentioned 

requirements to achieve high-efficiency OLEDs are sometimes fulfilled by the single, 

multifunctional layer with the good charge injection and transport characteristics, as well as 

exciton and charge blocking capability [43].  

The PHOLED EML generally employs a host–guest system where the phosphorescent 

emitter is doped into the host matrix at a concentration ranging from 2 to 20 vol%, depending on 

the device structure and the material characteristics. The host matrix should have at least equal or 

larger energy gap than that of the dopant to ensure exothermic energy transfer of the excitons 

from the host to the dopant (see §2.2.7) [44]. In order to attain the high luminescent quantum 

efficiency of the phosphorescent emitter in the host matrix, a low doping concentration (<2 

vol %) is desirable to minimize the nonradiative loss induced by the concentration quenching 

[45]. However in most PHOLED EMLs the unipolar host materials preferentially conduct one 

type of the charge carriers while the opposite charges are trapped by or are transported via 

hopping between the phosphorescent dopants that are generally slower [2]. Thus, the dopant 

concentration of >5 vol % is required to ensure balanced charge transport in the EML and high 

efficiency [41]. To satisfy such conflicting conditions, a “co-host” EML structure has been 

demonstrated that mixes the hole-transport and electron-transport-type hosts for balanced charge 

transport [46]. Or, the host with bipolar charge transport characteristics has been employed [47]. 

For such systems, only a small concentration of the phosphorescent dopant (<2 vol %) is 
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sufficient for achieving very high efficiency [48]. A detailed discussion of the state-of-the-art 

structures for blue PHOLEDs will be given in Chapter 4. 

 

2.1.2. Colorimetry  

The normal human eye has three cone cells for sensing visible light, i.e. that differentiate 

the “chromaticity” and “luminance” (roughly accepted as brightness, see below for the definition) 

of the electromagnetic wave at a certain wavelength range between λ  = 380 nm and 780 nm (i.e. 

the visible spectrum).  

 

Figure 2.2 Luminosity function and CIE color matching functions. (a) Luminosity 

functions that represent a spectral sensitivity of human eye perception of the luminance 

under bright (photopic) and dark conditions (scotopic). (b) Color matching functions 

yielding CIE tristimulus values, X, Y, and Z. 

 
 

 The luminosity functions including the photopic and scotopic responses quantify the 

spectral sensitivity of the human eye to the luminance of the light under bright and dark 

conditions, respectively, as shown in Figure 2.2. The photopic response indicates that the light 
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within the green spectral regime (500–570 nm) is perceived brighter than red and blue colors 

with a peak at λ = 555 nm. However, under low light level typically during night time, the cone 

cells cannot perceive the light and instead, the rod cells become functional that have the high 

sensitivity near the greenish-blue region (λ ~ 500 nm) and negligible sensitivity to red light (λ > 

600 nm). 

Another factor determining color perception is the chromaticity. Commonly, the 

chromaticity of the light source detected by the spectral response of the three cone cells is 

quantified using the Commission Internationale de l’Eclairage (CIE) 1931 (x, y) chromaticity 

diagram. The x and y chromaticity coordinates are calculated using three CIE tristimulus values 

X, Y, and Z as  

x = X
X +Y + Z

,   y = Y
X +Y + Z

   (2.1) 

where Y is the luminance of the light source and the combination of X and Z contains all possible 

chromaticity information at luminance Y. X, Y, and Z can be calculated using the color matching 

functions (CMF) x , y  and z  as 

X = I(λ)x (λ)dλ,
380nm

780nm

∫
Y = I(λ)y(λ)dλ

380nm

780nm

∫ ,

Z = I(λ)z (λ)dλ
380nm

780nm

∫ .
 

(2.2) 

The CMF shown in Fig. 2.2 (b) represent the standardized spectral response of the three 

light cells yielding the tristimulus (i.e. X,Y, and Z) values. I(λ) is the spectral radiance of the light 

source. The radiance is defined as the radiant power that is emitted by a surface within the unit 

solid angle per unit projected area (W sr–1 m–2). 
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Figure 2.3 CIE 1931 xy chromaticity diagram. In the diagram, the standard red-green-

blue (sRGB) color gamut is included. 

 

Figure 2.3 shows the CIE 1931 color space diagram called the gamut of human vision, 

that collectively displays the chromatic information of the visible light by using the CIE (x, y) 

coordinates (Eq. (2.1)). The curved boundary represents monochromatic light, while the straight 

boundary is referred to as the line of purples. If three light sources with different chromaticity are 

mixed at a certain ratio, any chromaticity within the triangular gamut formed by their (x, y) 

coordinates can be produced. For example, Figure 2.3 includes the standard RGB color space 

(sRGB) widely adopted in the screens of personal electronics. The triangular sRGB gamut is 

formed with the three vertices of the coordinates, (0.64, 0.33), (0.30, 0.60), and (0.15, 0.06), 

corresponding to primary red, green, and blue colors, respectively. In OLED-based displays, 

high performance red and green PHOLEDs whose colors are close to the required chromaticity 
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have been adopted, while the blue PHOLED counterpart is still under development. Thus, blue 

fluorescent OLEDs are used (see § 2.1.3 for the current technology status of the OLED). 

 

2.1.3. Characterization of the OLED performance 

The external quantum efficiency (EQE) of the OLED is an important metric for 

evaluating performance. The EQE is defined as the ratio of the number of extracted photons out 

of the device towards the viewer to the total number of injected electrons,  

EQE = # of extracted photons
# of injected electrons

= # of generated photons
# of injected electrons

⋅ # of extracted photons
# of generated electrons

       =ηIQE ⋅ηIQE = γ CB ⋅ χex ⋅ηQE
*( ) ⋅ηOC

 (2.3) 

Here, ηIQE denotes the internal quantum efficiency (IQE), the ratio of the total number of 

generated photons within the OLED EML to that of the injected electrons, and is determined by 

the three factors (see below). ηoc is the outcoupling efficiency, the ratio of the extracted vs. 

generated photons. In general, most generated photons within the OLED EML are lost via optical 

coupling to the waveguide, substrate and surface plasmon modes [49]. For this reason, the 

outcoupling efficiency (ηoc), is typically limited to ~20 % without any light extraction techniques 

[49].  

ηIQE is comprised of the charge balance factor, γ, the fraction of the radiative excitons, χex, 

and the photoluminescence quantum yield, ηQE
 *. γ in the modern OLED is near unity, because 

most injected charges are confined within the EML by the blocking layers (see §2.1.1) that 

subsequently participate in the exciton formation. Fluorescent OLEDs based on the singlet 

emission can attain χex = 25 % considering the spin statistics of the singlet to triplet formation 

rate of 1:3 and the transition selection rule (see §2.2.5) [29]. However, some modern fluorescent 

OLEDs can obtain higher χex by up to 62.5% [50] or even 100% [51] employing delayed 
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fluorescence by the triplet-triplet fusion or triplet-to-singlet upconversion, respectively, that 

manipulate the spin selection rule. χex for the PHOLEDs is 100 %, because all the generated 

excitons including both triplets that are originally formed upon the electron-hole recombination 

(see §2.2.4) and that are transferred from the singlets via intersystem crossing, participate in 

radiative recombination, enabled by the strong spin-orbit coupling perturbation (see §2.2.6). ηQE
* 

= kr
* kr

* + knr , where kr
* and knr are the radiative and nonradiative decay rates of the excitons, 

respectively. Note that kr
* is modulated by microcavity conditions created within the multi-

layered device structure (i.e. via the Purcell effect) [49]. knr includes phonon-mediated 

nonradiative relaxation processes, as well as the efficiency loss mechanisms such as triplet-triplet 

(TTA) or triplet-polaron annihilation (TPA) that are dependent on the operation conditions (see 

§2.2.7). These annihilation processes are similar to Auger-recombination in conventional 

inorganic semiconductors in that the excited triplet state (donor) transfers its energy to the 

another excited state (acceptor) within an interaction radius, and nonradiatively relaxes to the 

ground state. The other states that gain extra energy via the annihilation become “hot” excited 

states that occupy higher energy electronic manifolds, most of which are rapidly thermalized to 

the lowest excited state. Both TTA and TPA in the PHOLEDs are responsible for the efficiency 

loss, especially at high brightness that requires a large density of the excitons and polarons [52]. 

Furthermore, it has been reported that hot excited states generated by the bimolecular 

annihilations are the main source of the molecular dissociation in the EML and the ensuing 

degradation of the operational lifetime of the PHOLED [33]. PHOLED lifetime related to TTA 

and TPA will be discussed in Chapters 5 and 6. 

 The important photometric quantities used in displays include the luminance and the 

current efficiency. For the lighting, the luminous efficacy as well as the luminance are generally 
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used. The luminance measures the luminous intensity per unit area of multipoint or area light 

sources with the SI unit of candela per square meter (cd/m2). Here, the luminous intensity is a 

standard measure of the human eye response (i.e. a luminosity function, Fig. 2.2 (a)) to the 

power of wavelength-dependent light in a particular direction per unit solid angle. The strict 

definition of 1 cd is the unit luminous intensity of a light source emitting monochromatic 

radiation of frequency 540 × 1012 Hz that has a radiant intensity of 1/683 Watt per unit solid 

angle in a given direction.  

 

Table 2.1 Luminance characteristics of sub-pixels in the commercial OLED product. 

Maximum screen luminance and pixel luminance of the red, green, and blue sub-pixels 

and their combination (i.e. white) are shown. Note that the cell brightness is attenuated by 

the polarizer and other display components. 

Pixels Max screen luminance (cd/m2) Max sub-pixel luminance (cd/m2) 

White 435 3,500 

Red 110 3,300 

Green 311 6,400 

Blue 27 650 
* Data presented by Prof. Ching W. Tang at the 11th International Conference of 

Electroluminescence and Optoelectronic Devices, Raleigh, North Carolina, 

USA (Oct, 2016). 

 

Table 2.1 shows the maximum luminance of red, green and blue sub-pixels along with 

their mixture (i.e. white light) in a commercial OLED display. The typical luminance of a 

personal electronic display screen (e.g. laptop, computer monitor, and television) ranges from 

100 to 500 cd/m2, while the luminaire requires much higher luminance from >3,000 up to 10,000 

cd/m2, depending on the place and time of their usage. 
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The luminous efficacy is the ratio of the luminous flux to the consumed electrical power 

with units of lumens per Watt (lm/W). Here, the luminous flux is the total emitted luminous 

power of the light source with the unit of lm. That is, 1 lm (= 1 cd × 1 sr) is the flux of the light 

source uniformly emitting 1 cd of the luminous intensity in all directions within the unit solid 

angle of 1 steradian or sr. For example, if the OLED uniformly produces 1 cd of light in forward-

viewing directions (i.e. a half-sphere), the luminous flux of the device becomes 6.3 lm (≈ 1 cd × 

2π sr).  

 

Table 2.2 Representative commercial PHOLED performance at L0 = 1,000 cd/m2 

Color CIE 
Current efficiency 

(cd/A) 

Operational lifetime (hr) 

T95 T50 

Deep red (0.69, 0.31) 17 14,000 250,000 

Red (0.69, 0.34) 24 25,000 600,000 

Red (0.64, 0.36) 30 50,000 900,000 

Green-Yellow (0.46, 0.53) 72 70,000 1,400,000 

Green (0.34, 0.62) 78 18,000 400,000 

Light blue (0.18, 0.42) 47 600 20,000 

Source: Universal Display Corporation (http://www.oled.com) 

 

The recent OLED applications use the current efficiency, i.e. the luminous intensity per 

injected current to the device with the units of cd/A, as an indicator of the device performance. 

Including the operational lifetime, Table 2.2 shows the figures-of-merit of commercial 

PHOLEDs as an example. Here, T95 indicates the elapsed time measured from the initial 

luminance of L0 = 1,000 cd/m2 to a reduction by 5% from its initial value under the constant 

current operation. T95 is typically quoted as the lifetime for display applications, because only 

3–5 % reduction of the luminance can be readily recognized by the human eye. Thus, for the 
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practical use of personal electronics, T95 > 10,000 hr (i.e. approximately 10 years for the 2–3 

hours use on a daily basis) for red, green and blue or white sub-pixels is required. Table 2.2 

shows that T95 of deep red, red, green-yellow and green PHOLEDs are well above the required 

lifetime standard. Interestingly, green-yellow or green PHOLEDs achieve greater current 

efficiency than that of other color devices. Assuming the PHOLEDs have similar EQE, the 

reason is a result that the human eye is most sensitive to the emission of wavelengths between 

500 and 600 nm (see Fig. 2.2). Note that T95 of the light blue PHOLED is 600 hr with CIE of 

(0.18, 0.42), which is insufficiently short for the practical use. Deeper blue PHOLEDs that barely 

meet the display color standard, i.e. CIE of (0.15, 0.06), have even shorter lifetimes (see 

Chapter 6).  

 

Table 2.3 Representative commercial fluorescent OLED performance at L0 = 1,000 cd/m2 

Color CIE 
Current efficiency 

(cd/A) 

Operational lifetime 

T50 (hr) 

Red (0.67, 0.33) 11 160,000 

Green (0.29, 0.64) 37 200,000 

Blue (0.14, 0.12) 9.9 11,000 

Source: Idemitsu Kosan (http://www.idemitsu.com) 

 

Table 2.3 shows the summarized performance of commercial fluorescent OLEDs. 

Compared to PHOLEDs (Table 2.2), red and green fluorescent OLEDs have at least two times 

smaller current efficiency and operational lifetime than their PHOLED counterparts. This is why 

the OLED–based products have universally adopted red and green PHOLEDs. However, the 

deep blue fluorescent OLED can attain a relatively longer lifetime than its PHOLED counterpart 

and thereby has been employed in commercial products, although greater improvement is still 
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required. The discussion on the operational lifetime of OLEDs, including intrinsic degradation 

mechanisms and potential solutions, will be provided in Chapters 5 and 6. 

 

2.2. Optical and electrical characteristics of OLEDs 

2.2.1. Charge injection  

As briefly discussed in §1.1, undoped organic semiconductors are nearly insulators with 

negligible intrinsic carrier concentration (<105 cm-3) due to their relatively large energy gap (>2 

eV), i.e. ni ∝ exp −Eg 2kT( ) . Therefore, the electrical operation of organic optoelectronic 

devices should primarily depend on the externally injected or dissociated charges upon optical 

excitation. For example, the current flow in the OLED is determined by the charge injection 

efficiency from the electrodes, and by the bulk transport characteristics through the available 

electronic sites of the comprising organic layers.  

To understand the charge injection process, we first introduce the mechanism and 

formula developed for a conventional, metal–inorganic semiconductor junction. Charge injection 

can be described by two mechanisms, electron tunneling and thermionic emission. The charge 

injection efficiency for both mechanisms is mainly determined by the energy level difference or 

the injection barrier, Δ, between the Fermi energy of the metal electrode (i.e. its work function) 

and the transport level of the semiconductor (i.e. the valence band or the LUMO for the 

inorganic and organic semiconductors, respectively).  
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Figure 2.4 Charge injection mechanisms. (a) Tunneling, (b) thermionic emission, and (c) 

intermolecular polaron hopping are introduced. The image is reproduced from Ref. [6]. 

 

Fowler and Nordheim [53] formulated the electrical current such that the electrons 

emitted from the flat metal surface with an applied electric field of F tunnel into the triangular 

potential barrier of the vacuum of Δ, viz., 

 
J = AF2 exp − 4 2m ⋅ Δ

3/2

3!eF
⎛

⎝⎜
⎞

⎠⎟
 ,
  

(2.4) 

where A is the injection coefficient, ħ is Planck constant and m is the electron mass (Fig. 2.4 (a)). 

However, this tunneling mechanism cannot apply to a organic semiconductor/metal interface due 

to the presence of the image charge contributing to the barrier reduction, and the unrealistically 

long tunneling distance derived for electrons in organic semiconductors (~10 nm) [6].  

The thermionic emission mechanism was first formulated by Richardson [54] and then 

revised by Schottky [55] by taking into consideration injection barrier lowering by the image 

charge. This mechanism describes the charge injection process from the metal to the transport 

level of the semiconductor such that electrons overcome the injection barrier by gaining energy 

via thermal excitation (see Fig. 2.4 (b)). With an applied electric field, F, the injection current 

density by such process is given as 
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J = BT 2 exp −
Δ − qF 4πε rε0

kT
⎛

⎝⎜
⎞

⎠⎟
,  (2.5) 

where A* is the modified Richardson coefficient, T is the temperature and kB is the 

Boltzmann constant. Here, eF 4πε rε0  is the maximum barrier reduction induced by the image 

charge. Note that an image charge is formed in the metal at an equal distance from the interface 

to the real charge in the semiconductor with the opposite polarity.  

Tunneling and thermionic injection processes are often unsuitable for explaining charge 

injection at the metal/organic semiconductor interface, which is not strictly dependent on the 

injection barrier (i.e. Δ). This is because of the energetically distributed transport sites in the 

disordered organic layers and therefore, charge injection becomes a stochastic process. The 

disorder of the organic semiconductor results from the comprising, randomly oriented molecules 

with a permanent dipole moment and their weak van der Waals interactions. Assuming a simple 

cubic lattice with the lattice constant a, the distribution of the energetic sites is Gaussian with a 

standard deviation σB [56]: 

σ B =
2.35qp
4πε rε0a  

(2.6) 

where p is the permanent dipole moment of the organic molecules. Accordingly, Gartstein and 

Conwell [57] proposed a random, intermolecular polaron hopping mechanism to explain the 

charge injection process for the disordered molecular system (see Fig. 2.4 (c)). Polaron hopping 

is thermally activated between two adjacent sites assisted by the phonon coupling, and thereby is 

a function of temperature, as well as electric field. Thus, the polaron hopping rate is given by:  

 
R(E)∝ exp −

E + E
2kT

⎛
⎝⎜

⎞
⎠⎟
2Eb / !ω 0( )E /!ω0

E / !ω 0( )!   (2.7) 
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at low temperatures (typically, kT<<ħω0). Here, E is the activation energy for hopping between 

two electronic sites, Eb is the polaron binding energy, and ω0 is frequency of the optical phonon 

mode. In the high temperature regime, the hopping rate becomes: 

R(E)∝ exp −E / kT( ),        E > 0
R(E)∝1,                            E ≤ 0

.  (2.8) 

Here, the hopping rate at high temperature resembles the Marcus electron transfer rate 

[58] with the reorganization energy of λreorg = 2Eb. On the other hand, the low temperature rate 

can be simplified to: 

R(E)∝ 1
EbkT

⎛
⎝⎜

⎞
⎠⎟

1/2

exp − Eb

2kT
1+ E
2Eb

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟  (2.9) 

in the limit of E<<ħω0, indicating the one-step phonon process.  

Baldo and Forrest [59] formulated the injected current density assuming either the 

Marcus-type (Eq. 2.7) or Miller-Abrahams-type (Eq. 2.9) hopping mechanism along with a thin, 

dipolar interfacial layer that is formed at the metal/organic interface. Their interface dipole leads 

to (i) the lowering of the injection barrier and (ii) the broadening of the energetic distribution of 

the “intermediate” interfacial states. Thus, the current density is limited by polaron hopping from 

the interfacial dipolar states to the adjacent organic sites. Based on this understanding, the 

injection-limited current from the various electrodes into Alq3 (i.e. the standard OLED ETL 

material) was analyzed over a wide temperature range [59]. Although significant theoretical and 

experimental works including those introduced here have been done to understand the charge 

injection mechanism at the metal/organic interface, this process still leaves a considerable 

amount of complications. The interested reader is referred to Ref. [6], [10].  
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2.2.2. Charge transport 

 When the excess charges are supplied from the electrode into the organic semiconductor, 

the current flow is affected by space charge formed in the bulk. To satisfy such condition, the 

metal/organic semiconductor junction should be Ohmic with a low injection barrier to facilitate 

the electron flow in both directions and thus the current is not limited by the injection (see 

§2.2.1). Mott and Gurney formulated the unipolar space charge-limited (SCL) current for a trap-

free insulating solid with ohmic contacts. Their formula was modified from Child’s law:  

J = 9
8
ε rε0µ

E2

d
= 9
8
ε rε0µ

V 2

d 3
   (2.10) 

where εr is the relative permittivity, ε0 is the vacuum permittivity, µ is the mobility of the charge 

carrier in the solid, d is the thickness of the solid that charges traverse through from the injecting 

to the non-injecting electrode, and V is the applied voltage. Note that the SCL current density is 

proportional to V2/d3 so that it is useful for extracting µ in single-carrier-transport devices [60]. 

While the SCL current formula can be applied to the trap-free organic semiconductor, it does not 

sufficiently explain the current flow through the organic semiconductors that have the 

energetically distributed traps.  

The energetics and a concentration of traps, and the applied electric field determine the 

trapping and thermally activated de-trapping characteristics of the traps. For the analytical 

derivation of the current density of the organic semiconductor having the traps, an exponential 

distribution of the density of traps is generally assumed as 

nt Et( ) = Nt

kTc
exp − Et

kTc

⎛
⎝⎜

⎞
⎠⎟  

(2.11) 

where Et is the energetic depth of the trap with respect to the LUMO or HOMO for the 

electron and hole traps, respectively, Nt is the total density of the traps, and Tc is the 



 34 

characteristic temperature determining the distribution width. Accordingly, the trapped charge 

limited (TCL) current is derived as [61]  

JTCL = qµNc
ε rε0

qnt Et( )
⎛

⎝⎜
⎞

⎠⎟

l
l

l +1
⎛
⎝⎜

⎞
⎠⎟
l 2l +1

l +1
⎛
⎝⎜

⎞
⎠⎟
l+1 V l+1

d 2l+1
 (2.12) 

where Nc is the total available density of transport sites and l = Tc/T. This formula can be applied 

to molecular thin films with typically 4 < l < 11 [62]. This high power dependence on the applied 

voltage for the TCL current is attributed to the increased effective mobility. This is because the 

required detrapping energy is reduced as the deep energy traps are filled with the applied field. 

However, as all the traps are filled, they become the space charge and accordingly, the current 

density transits from the TCL to the SCL regime with a quadratic power dependence. This is 

typically observed at a high level of current densities (>10 mA/cm2) or a high applied voltage 

[63].  

 

Figure 2.5 Power dendence of ohmic, space-charge limited, and trapped-charge limited 

current on applied voltage. 
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Interestingly, Lampert [64] reported that the J–V characteristics of disordered solids with 

distributed trap states are confined within the triangular region formed by SCL ( J ∝V 2 ), TCL (

J ∝V l+1 ) and ohmic current ( J ∝V ) characteristics as shown in Fig. 2.5, which has been 

commonly observed in the organic semiconductors [62], [63], [65].  

 

2.2.3. Charge recombination 

Electrons and holes injected into the OLED undergo either the Langevin-type or trap-

assisted recombination. The former occurs when electrons and holes are in proximity within their 

Coulomb capture radius, r = e2 4πε rε0kBT( ) , and thereby recombine with the rate as given by 

R =
e µh + µe( )

ε rε0
np = γ np    (2.13) 

where γ is the Langevin recombination coefficient, and n and p are the electron and hole 

densities, respectively. The recombined electrons and holes then contribute to the formation of 

the bound excited states (i.e. excitons) that determine the optical characteristics of the device. 

When the traps are present near the charge transport sites, either holes or electrons are captured 

depending on the relative energetic positions of the traps, and the trapped charges then can 

recombine. This type of recombination is referred as the trap-assisted Shockley-Read-Hall (SRH) 

recombination [66] and since most traps in the organic semiconductors have deep energy levels 

within the forbidden gap, such recombination is in general nonradiative and undesirable. The 

SRH recombination rate for electron traps is given by 

kSRH =
CnCpNt

Cn (n + n1)+Cp (p + p1)
  (2.14) 

where Cn is the capture rate of the electron in the LUMO by the empty traps, Cp is the capture 

rate of the hole in the HOMO by the filled traps, Nt is the density of the electron traps, and n1 and 
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p1 are determined by the trap energies. It is reported that Langevin recombination contributes to 

the electroluminescent operation of OLEDs, while the SRH recombination leads to the loss of 

the device efficiency [67]. Along with those present within the as-grown device, traps are 

additionally generated during continuous operation of OLEDs due to the dissociation of 

molecular components. Such traps permanently degrade the device performance either via the 

SRH-type recombination direct exciton quenching [33]. 

 

2.2.4. Excitons 

Upon the recombination of the electron on the LUMO and the hole on the HOMO of the 

organic molecule, an excited state bound by the Coulombic force is formed, resulting ina Frenkel 

exciton, see §1.2. The wavefunction of the molecular state including the excitons can be 

expressed as 

Ψ total =ψ spatial ri{ }, Ri{ }( ) ⋅σ spin α k ,βk ,...( )  (2.15) 

where ψspatial is a spatial wavefunction depending on positions of the electrons (ri) and the nuclei 

(Ri) comprising the molecule, and σspin is a total spin wavefunction of many electrons 

(represented by the individual spin wavefunction of α, β, and so on). Here, |ψspatial|2 gives the 

probability of finding electrons at particular positions with the stationary nuclei.  

The organic semiconductor allows at most two electrons with antiparallel spins to fill the 

same molecular orbital, and thus the molecular excited or ground states are simply two-electrons 

systems. According to the Pauli exclusion principle, the wave function of the state (Eq. (2.15)) 

comprised of two fermions (e.g. electrons) should be anti-symmetric under the particle exchange. 

Therefore, there exists two types of molecular states, one with anti-symmetric ψspatial and 

symmetric σspin, and the other with symmetric ψspatial and anti-symmetric σspin. 
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As briefly discussed in Chapter 1, the electron transfer or the optical transition in the 

organic semiconductor involves either or both frontier orbitals (HOMO and LUMO). For 

example, upon optical excitation with an energy higher than the energy gap, one electron from 

the HOMO is excited to the LUMO or higher molecular orbitals (i.e. LUMO+1, LUMO+2 and 

so on) that subsequently relax to the LUMO, forming the exciton. Thus, the exciton is the 

molecular excited state with two unpaired electrons, one residing in the HOMO and the other in 

the LUMO. Since each electron in the exciton has a spin of ½, the exciton can have the total spin 

number of S = 0 or 1. The spin wavefunction of the S = 0 state is given by 

σ S =
1
2

↑ (1)↓ (2)− ↓ (1)↑ (2)( )  (2.16) 

where ↑ and ↓ denote the spin-up (ms = 1/2) and spin-down (ms = –1/2) states, respectively, and 1 

and 2 refer to the index of two electrons comprising the system. Then, σs is anti-symmetric under 

the particle exchange (i.e. 1 ↔ 2) and such state is called the singlet state. Note that the ground 

state with all filled HOMOs and empty LUMOs is thus the singlet state. On the other hand, the S 

= 1 state, referred to as the triplet, has three spin wavefunctions as  

σ T+
=↑ (1)↑ (2),

σ T0
= 1

2
↑ (1)↓ (2)+ ↓ (1)↑ (2)( ),

σ T−
=↓ (1)↓ (2).

 (2.17) 

These σT states are symmetric under the particle exchange. Based on the degeneracy of 

the excitons (Eq. (2.16) and (2.17)), the singlet-triplet generation ratio is given as 1:3 upon 

recombination of the random spin electrically injected holes and electrons [29]. However, the 

optical excitation only generates the singlet (100 %) in the organic molecules due to spin 

selection rules (see §2.2.5). 
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According to Eq. (2.15), the singlet and triplet excitons should have symmetric and anti-

symmetric ψspatial, respectively. Let’s denote the spatially symmetric excited state with the singlet 

character as: 

ψ + =
1
2
ψ H (1)ψ L (2)+ψ H (2)ψ L (1)( )   (2.18) 

where, ψH and ψL are the spatial wavefunctions of the electrons occupying the HOMO and 

LUMO, respectively. Then, the spatially asymmetric excited state with triplet character is given 

by: 

ψ − =
1
2
ψ H (1)ψ L (2)−ψ H (2)ψ L (1)( ) .  (2.19) 

The energy in each case is: 

E+ =
q2

4πε
ψ +

1
r12

ψ + = J + K ,

E− =
q2

4πε
ψ −

1
r12

ψ − = J − K .
  (2.20) 

where r12 is the distance between two electrons (1 and 2), and J and K are Coulomb and 

exchange integrals, respectively, given by: 

J = q2

4πε
ψ H (1)ψ L (2)

1
r12

ψ H (1)ψ L (2) ,

K = q2

4πε
ψ H (1)ψ L (2)

1
r12

ψ H (2)ψ L (1) .
  (2.21) 

Thus, the singlet exciton is energetically higher than the triplet exciton by 2K, the 

exchange interaction energy, which is determined by the overlap between HOMO and LUMO 

orbitals in the excited state configuration. The exchange energy, or the singlet-triplet gap (ΔST = 

2K), varies from 0.05 to 1 eV; for standard organic materials (0.7–1 eV) [68], phosphorescent 
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metallorganic complexes (0.2–0.3 eV) [69], and thermally-assisted delayed fluorescent 

molecules (0.05–0.2 eV) to achieve the efficient triplet-to-singlet upconversion [70]. 

 

2.2.5. Excitonic energy transitions 

 The rate of the optical transition, such as the light absorption leading to exciton 

generation in the OPV and the light emission via radiative recombination of the excitons in the 

OLED, is determined by the Fermi’s golden rule, viz., 

 
Γ if =

2π
!

Ψ i e
"r Ψ f

2
ρ Ef( )    (2.22) 

where Ψi and Ψf are wavefunctions of initial and final states participating in the transition, 

respectively, er is the electric dipole operator used as the perturbing Hamiltonian and ρ is the 

joint density of the initial and final states of the wavefunctions. By plugging Eq. (2.15) into Eq. 

(2.22), we get 

 
Γ if =

2π
!

φe,i (
"ri ) q
"r φe, f (

"rf )
2

ΦN ,i (
"
Ri ) ΦN , f (

"
Rf )

2
σ i (Si ) σ f (Sf )

2
ρ Ef( )   (2.23) 

According to the Born-Oppenheimer approximation, ψspatial is decomposed into the 

electronic wavefunction, ϕe, and the nuclear wavefunction, ΦN, that describes vibrational and 

rotational motions of the nuclei. That is, the electronic and nuclear motions are assumed to be 

independent because the electrons respond nearly instantaneously to the change of the nuclear 

positions due to their smaller masses. In the same vein, the electric dipole operator only operates 

on the electronic function because during the transition, the motion of the electron only slightly 

affects the nuclei of much heavy mass. Also, the total electron spin (σ) of the state is unaffected 

by the electronic transition.  
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Therefore, Eq. (2.23) gives the transition selection rule. First, the spatial electronic 

integral, 
 
φe,i (
!ri ) q
!r φe, f (

!rf )
2
, requires that the transition is only allowed between two states of 

the opposite parity under the spatial inversion (i.e. gerade from/to ungerade states, see §2.3.2), 

because the electric dipole operator has an odd parity. The second term 
 
ΦN ,i (

!
Ri ) ΦN , f (

!
Rf )

2
, 

referred to as the Franck-Condon factor, evaluates the overlap of the vibronational 

wavefunctions between initial and final states. That is, the electronic transition is likely to occur 

from the ground vibrational state to a higher energy electronic manifold (According to the 

Franck-Condon principle, see below). Finally, the term, σ i (Si ) σ f (Sf )
2
, dictates that the total 

spin number should be conserved between final and initial states that participate in the transition 

(i.e. triplet ↔ triplet or singlet ↔ singlet). Since the molecular ground state has singlet character, 

only the transition from the excited singlet state to the ground state is allowed, i.e. a rapid and 

radiative fluorescent process with the natural decay time of 1–10 ns [71]. In the same vein, only 

singlet excited states can be generated by the optical excitation. On the other hand, the transition 

from the excited triplet state to the ground state, also known as a phosphorescent process, is 

forbidden so that the triplet states are de-excited in the form of heat with extremely long decay 

time of 1–100 ms. However, the use of metallorganic complexes allows the radiative transition 

from the triplet states by introducing strong perturbations between singlet and triplet states [30] 

(see §2.2.6).  
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Figure 2.6 Franck-Condon principle diagram. (a) Optical transitions between lowest 

excited and ground states (b) corresponding to absorption and emission spectra for the 

molecule (i) in the gas phase and in the solid phase at (ii) low and (iii) high temperatures. 

 

Several aspects of the optical transitions (i.e. absorption and fluorescence) can be 

explained using the Franck-Condon principle. Since the electron redistribution upon excitation 

and relaxation occurs much faster than any change in the position of the nuclei, and the 

momentum of the vibrational states (fs vs. ps), the optical transition is represented by the vertical 

line at a constant nuclear coordinate. Multiple, allowed vibronic transitions appear as spectral 

lines whose intensities are governed by the Franck-Condon factor. Note that sharp spectral lines 

are observed only in cold gases, which undergo the inhomogeneous broadening in the liquid or 

solid phase at room temperature because of the inter- and intra-molecular phonon coupling. 

Optical absorption occurs from the lowest vibrational level (v = 0) in the ground state to the 

multiple vibrational levels of the excited electronic manifolds as shown in Figure 2.6 (a). 

According to Kasha’s rule, the photon emission process originates from the single, lowest 

excited state, due to the rapid and efficient vibrational relaxation and internal conversion from 

the higher energy electronic manifold.  
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Note that electrons are redistributed in the molecular excited state, often leading to a shift 

of the equilibrium positions of the nuclei (ΔQ in Fig. 2.6 (b)) and the distortion of the electronic 

potential with respect to the ground state. This is common due to the occupation of the anti-

bonding orbitals upon the excitation that weakens the bonds and distorts the molecule. 

Discrepancy breaks the mirror symmetry between absorption and fluorescent spectral shapes and 

results in the spectral gap between their lowest energy (0–0) transitions, referred to as the Stokes 

shift. This phenomena becomes more severe for organic molecules with less stiffness [72] and 

those in the polar media such as solvents, which will be discussed in greater detail in Chapter 4. 

 

2.2.6. Principle of radiative phosphorescence 

In phosphorescent emitters comprised of heavy metal atom center and coordinated 

organic ligands, there exists a strong perturbation due to spin-orbit coupling (SOC) that 

efficiently mixes the singlet and triplet states. The SOC perturbation breaks the spin-

conservation requirement in the Fermi’s golden rule, enhancing the transition rate from the 

excited triplet to the singlet ground state. The SOC is the quantum mechanical interaction 

between the spin of the electron and the magnetic field generated by the electron orbital, where 

strength is given by [73]: 

 
ΔHSOC = µB

!mec2
⋅ ∂V (r)
r∂r

⋅
"
L i
"
S( ) = − ZµB

4πε0!mec
2 ⋅
1
r3

⋅
"
L i
"
S( )    (2.24) 

where L and S denote angular and spin angular momentum vectors, respectively, V (r) = Ze
4πε0r

 

is the potential of one electron in the hydrogenic system with the atomic number, Z, and µB is the 

Bohr magnetron. The expectation value of the LS coupling term can be rewritten using the 

eigenvalues of orbital (l), spin (s) and total angular momentum (j) as 
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!
L i
!
S = 1

2
!
J

2
−
!
L

2
−
!
S

2( ) = "22 j( j +1)− l(l +1)− s(s +1)[ ] .  (2.25) 

The expectation value of 1/r3 calculated in the spherical coordinate is: 

1
r3

= 2
a3n3l(l +1)(2l +1)

  (2.26) 

where 
 
a = !2

Zkeme
2 n

2  is the effective Bohr radius with the atomic number Z. Thus, the energy 

difference of the SOC perturbation between states is given by: 

 
ΔHSOC = −Z 4 ⋅ µB!

2

4πε0mec
2a0

3 ⋅
j( j +1)− l(l +1)− s(s +1)

n3l(l +1)(2l +1)
.  (2.27) 

Eq. (2.27) indicates that the magnitude of the SOC interaction is proportional to Z4 and 

thus the effect increases for heavy metal atoms such as iridium or platinum, typically used in the 

phosphorescent organometallic complexes.  

According to Fermi’s golden rule (Eq. (2.22)), the rate of the phosphorescence is given 

by [6]: 

 
Γ ph ∝

1ψ i HSOC
3ψ 1

E(T1)− E(Si )i
∑

2

1ψ i e
!r 1ψ 0  ,  (2.28) 

where E(T1) and E(Si) is the energy of the lowest excited triplet and i-th singlet manifold, 

respectively, 3ψ1, 1ψi, and 1ψ0 are wavefunctions of the lowest excited triplet, i-th and ground 

state singlet manifold, respectively, HSOC is the Hamiltonian of the SOC perturbation. Thus, the 

strength of the phosphorescent transition is enhanced with decreasing energy gap between singlet 

and triplet states and the increased SOC interaction by using heavy metal atoms. Based on this 

understanding, iridium(III), platinum (II) and palladium (II)-based phosphorescent emitters with 
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fast natural decay time of the triplet state (1–10 µs) were introduced, resulting in very high 

efficiency PHOLEDs [31], [41], [69], [74], [75].  

 

2.2.7. Energy transfer  

The energy of excitons can be transferred between molecular sites depending on their 

distance, wavefunction overlap and etc., and thus, excitons are mobile in the solid. Energy 

transfer is divided into two types: dipole-interaction based long-range Förster transfer and charge 

exchange-based short-range Dexter transfer. Förster resonant energy transfer (FRET) requires 

the resonant interaction between the excited state dipole on the donor molecule and the ground 

state dipole on the acceptor molecule, and their spins must be conserved during the transfer. The 

latter requirement allows only the excited singlet–to–ground singlet FRET, while that from the 

triplet state is forbidden. However, if the triplets can be efficiently and radiatively relaxed on the 

donor molecules (i.e. phosphorescence), the triplet–to–singlet FRET is allowed, enabling 

phosphor sensitized fluorescence [76]. The rate of the FRET is given by: 

kFRET =
1
τ D

R0
RDA

⎛
⎝⎜

⎞
⎠⎟

6

 (2.29) 

where τD is the natural decay lifetime of the excited state on the donor molecule, RDA is the 

distance between donor and acceptor molecules, and R0 is the Förster radius defined as [77] 

R0
6 = 9000 ln10
128π 5n4N

⋅κ 2ΦD
fD (ν )σ A(v)

v40

∞

∫ dv . (2.30) 

Here, n is the refractive index of the medium, N is the Avogadro’s number, κ is the 

orientation factor, v is the wavenumber, fD(v) is the spectral distribution of the fluorescence from 

the donor molecule, and σA(v) is the molar absorption coefficient of the acceptor molecule. Eq. 

(2.29) indicates that when RDA = R0, the rates of the FRET and the natural decay of the excitons 
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on the donor molecules become equal. To enhance FRET, the Förster radius in Eq. (2.30) should 

be enlarged via increasing the spectral overlap between donor emission and acceptor absorption 

spectra. This strategy has been widely employed to facilitate exciton transfer in host (donor)–

guest (acceptor) systems both in fluorescent and phosphorescent OLEDs [28], [30]. Note that κ2 

dictates that the FRET only occurs between non-orthogonal dipoles of the donor and acceptor 

molecules. κ2 =2/3 for a randomly oriented molecular system [77]. In summary, the FRET 

governs the long-range transfer of the excited singlet state via dipole-dipole interaction whose 

transfer radius (R0) ranges from 5 nm to 10 nm for the typical organic small molecules [45]. 

Dexter transfer is a coherent exciton transfer process based on the simultaneous charge 

exchange between the donor and the acceptor molecules. The Dexter transfer rate is [78]: 

 
kDexter =

2π
!

Γ2 fD (υ)σ A(υ)dυ0

∞

∫ .  (2.31) 

Here, Γ is the matrix element for the charge exchange as 

Γ2 = ΨD (1)ΨA
* (2) 1

4πε rε0RDA

ΨD
* (1)ΨA(2)

     = ΦD (1)ΦA
* (2) 1

4πε rε0RDA

ΦD
* (1)ΦA(2) σ D (2) σ A(2) σ D

* (1) σ A
* (1)

.  (2.32) 

where Ψ, Φ and σ are the molecular ground state wavefunction, its spatial and spin components, 

respectively, with their excited analogs, Ψ*, Φ*, and σ*. According to the Eq. (2.32), Dexter 

transfer is allowed under the condition that (i) there is an intimate overlap between orbitals of the 

donor and the acceptor, and (ii) their integrated spin is conserved before and after the transition. 

Since the ground states of the donor and acceptor molecules are both singlets, their excited states 

can be either both triplets, or both singlets. Thus, unlike FRET, the Dexter transfer allows 

triplet–to–triplet energy transfer, which is shown the dominant mechanism for the triplet 

diffusion in the PHOLED EMLs [79]. Given that spin selection rules for the Dexter transfer is 
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satisfied, Γ2 ∝ exp − 2RDA

λ
⎛
⎝⎜

⎞
⎠⎟ , where λ is an effective van der Waals radius of the donor and 

acceptor molecules. This indicates that the donor and acceptor should be in close proximity to 

one another as in Eq. (2.32) enabling the charge exchange. Since λ has been experimentally 

calculated in the range of 1.3–1.6 nm for the triplet–to–triplet transfer in phosphorescent host-

guest systems [79], Dexter transfer is likely to occur only between the nearest-neighboring 

molecular sites (i.e. intermolecular spacing of r ~ 1 nm).  

 

2.3. Fundamentals of blue PHOLED materials  

2.3.1. Design principles of blue-emitting phosphorescent emitters 

There are two approaches to obtain the large energy gap for the blue phosphorescent 

emitters: either by stabilizing their HOMO or destabilizing the LUMO with respect to the 

vacuum level as shown in Fig. 2.7.  

 

 

Figure 2.7 Two approaches to design blue phosphorescent emitters. (a) HOMO 

stabilization or (b) LUMO destabilization with respect to the vacuum level.  
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The molecular orbitals, including the frontier orbitals, are constructed by the linear 

combination of the atomic orbitals and are generally represented by the part of the molecules 

where the electron distribution is largest. Tris-cyclometalated iridium (III) complexes have 

HOMOs and LUMOs on different molecular moieties, and thus the nearly independent control of 

the energetics of each orbital is possible. Figure 2.8 shows the molecular formula and frontier 

orbitals of the archetypal green phosphorescent emitter, Ir(ppy)3.  

 

 

Figure 2.8 Molecular formula of Ir(ppy)3 and its frontier orbitals diagram. HOMO and 

LUMO are calculated by density functional theory calculation (images obtained from 

Ref. [80]). 

 

The Ir(ppy)3 HOMO is comprised of the phenyl-π and Ir-d orbitals, while its LUMO is 

preferentially localized on the pyridine moiety. Most Ir (III)-based organometallic complexes are 

designed based on the structure of Ir(ppy)3. Their HOMOs and LUMOs can be redistributed, for 

example, by attaching different functional groups to the phenyl or pyridine rings, respectively.  

Figure 2.9 shows tris[2-(4,6-difluorophenyl)pyridyl] Ir(III) or Ir(F2ppy)3, having fluoride 

(i.e. a fluorine anion) attached to the 4 and 6 positions of the phenyl ring of Ir(ppy)3 [81]. The 

fluoride is an electron-withdrawing group that attracts the electron from the π-conjugated system, 
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rendering it more electrophilic. As a result, the HOMO of Ir(F2ppy)3 is lowered compared to that 

of Ir(ppy)3, leading to the wider energy. It is also reported that by replacing one ligand of the 

homoleptic Ir (III) organometallic complex with a functional ancillary ligand, the HOMO of the 

resulting heteroleptic complex can be adjusted while its LUMO is nearly unaffected [82]. Then, 

the luminescence characteristics such as the quantum efficiency and the emission energy of the 

Ir-complex is modified. 

 

Figure 2.9 Examples of blue-emitting Ir(III)-based organometallic complexes. By adding 

an electron withdrawing fluoride to the phenyl ring of Ir(ppy)3, cyan-emitting Ir(F2ppy)3 

is made. By replacing one of the cyclometalated ligands of Ir(F2ppy)3 with the ancillary 

ligand, heteroleptic FIrpic and FIr6 complexes are made. By replacing the pyridine ring 

of the ppy ligand with either pyrazolyl or methylbenzimidazolyl, homoleptic Ir(ppz)3 or 

Ir(pmb)3 complexes are made, respectively. 
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The ancillary ligand of Ir-complexes, such as acetylacetone (acac), picolinate (pic), 

pyrazolyl (ppz) and so on, interacts with the HOMO of the cyclometalated ligands via the metal 

orbitals, and thereby the energy of the singlet metal-ligand-charge-transfer state (1MLCT) is 

modified while the triplet ligand-centered (3LC) state is nearly unperturbed. If the ancillary 

ligand is used in the Ir-complex such that the HOMO is lowered without affecting the LUMO 

compared to that of the homoleptic complex, i.e. increased energy of the 1MLCT with unchanged 

3LC, the overall emission energy (Eem) of the lowest excited state (an admixture of both 1MLCT 

and 3LC states) increases. T1 =α
1MLCT + 1−α 2 3LC  where α =

1MLCT HSOC
3LC

ΔE
 . 

Here, ΔE is the energy difference between 1MLCT and 3LC states and HSOC is the spin-orbit 

coupling perturbation. The nonradiative decay rate of the exciton (knr) decreases according to the 

energy gap law (knr ~ ln(Eem)). But at the same time, the radiative rate (kr) is determined by the 

oscillator strength of T1, which is reduced with the increase in ΔE and the reduced spin-orbit-

perturbed 3LC by the metal orbitals in 1MLCT. Since the luminescent quantum efficiency of the 

Ir-complex is Φ = kr kr + knr( ) , care must be taken in choosing the ancillary ligand.  

The efficient sky blue-emitting phosphorescent emitter, Bis[4,6-di-fluorophenyl)-

pyridinato-N, C2’]picolinato Ir(III) (FIrpic), has been demonstrated. FIrpic is modified from 

Ir(ppy)3 by adding the electron withdrawing group and replacing one cyclometalated ppy ligand 

with the ancillary pic ligand [83]. Combined with the large energy-gap host that has a significant 

absorption-emission overlap for efficient energy transfer, FIrpic can achieve the 

photoluminescence (PL) quantum yield of 100 % [44], and thereby highly efficient blue 

PHOLEDs based on FIrpic can achieve EQE > 30 % [84]. However, the emission of FIrpic 

yields a light blue color corresponding to CIE = (0.18, 0.33) which is unsuitable for display 

applications requiring much deeper blue, i.e. CIE = (0.15, 0.06) [85]. Many efforts have been 
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made to further increase the energy gap of the Ir-complex by fluorination or by adding another 

ancillary ligand such as bis(4’,6’-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) 

with a CIE of (0.16, 0.26) [86]. However, a major concern in using the Ir-complexes with the 

fluorine and ancillary ligand is that both components are easily cleaved during device operation 

[87]. The operational lifetime of such device is unacceptably short, T80 < 10 hrs at L0 = 1000 

cd/m2. 

As an alternative to obtain a large energy gap for deep blue emitters, the LUMO can be 

increased towards the vacuum level without changing the HOMO energy. For this purpose, a 

more electron-rich or electron donating group can be substituted with the pyridine, such as tris[1-

phenylpyrazolyl]Ir (III) (Ir(ppz)3) as shown in Fig. 2.9. Ir(ppz)3 has a larger energy gap 4.5 ± 0.1 

eV vs. 3.6 ± 0.1 eV for Ir(ppy)3. This is attributed to a significantly stabilized LUMO of Ir(ppz)3 

= 0.6 ± 0.1 eV vs. 1.2 ± 0.1 eV for Ir(ppy)3, while their HOMO energies are nearly similar at 4.9 

± 0.1 eV and 5.0 ± 0.1 eV, respectively [81]. As a result, Ir(ppz)3 exhibits phosphorescence 

emission that peaks at λ = 414 nm vs. 494 nm for Ir(ppy)3 at T = 77 K, although it fails to emit at 

room temperature due to non-radiative loss via triplet metal-centered ligand-field states (see 

§2.3.2). 

To reduce the non-radiative loss channel found in the large energy gap Ir–complexes, the 

N–heterocyclic carbene (NHC) ligand was introduced. For example, tris(1-phenyl-3-

methylbenzimidazolin-2-yildene-C,C2’) Ir or Ir(pmb)3 emits at λpeak = 378 nm with a PL quantum 

efficiency of 37 ± 5 %. NHC Ir(III) complexes have a very wide energy gap for deep blue 

emission with potentially high efficiency, are thermodynamically stable and have strong metal-

ligand bonds. Therefore, many blue phosphorescent emitters are designed based on NHC 

ligands. Detailed characteristics of NHC Ir(III) complexes and their use in PHOLEDs to achieve 
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the deep blue color with very high efficiency will be discussed in Chapter 4. Furthermore, they 

are used as non-emissive, ancillary dopants in sky blue PHOLEDs to improve their operational 

stability, which will be introduced in Chapter 6. 

 

2.3.2. Metal-centered ligand-field state 

 

Figure 2.10 Molecular orbital diagram for the octahedral Ir (III) organometallic complex. 

Isolated orbitals for the Ir atom and ligands, and those for the coordinated complex are 

shown. e and t refer to doubly and triply degenerated d-orbitals, respectively, of the Ir 

ion. MC, MLCT, and LC refer to metal-centered ligand-field, metal-ligand-charge-

transfer and ligand-centered transitions, respectively. Image of five unhybridized Ir d-

orbitals is obtained from http://opentextbc.ca/chemistry. 
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To understand metal-centered ligand-field states (3MC), we first discuss the molecular 

orbitals of the octahedral Ir(III) organometallic complex [88]. Figure 2.10 shows the orbitals of 

the transition Ir(III) ion, ligands, and their coordinated complex. In the uncoordinated Ir(III) ion, 

the electrons are distributed across the five d orbitals having identical energy. dx2–y2 and dz2 

orbitals directly point to the ligands and these doubly degenerate orbitals are referred as eg. The 

triply degenerate orbitals (t2g) include dxy, dyz, and dzx, pointing between the ligands. Here, the 

subscript g for the orbitals eg and t2g indicates their gerade symmetry where the inversion of the 

corresponding orbital through the center of symmetry in the molecule conserves the phase. This 

is compared to the ungerade (u) symmetry, where the phase of the molecular orbital changes 

upon the inversion through the center of symmetry. When the Ir(III) ion is coordinated with the 

ligands, the electrons in the ligands repel those in the eg orbitals of the Ir-ion more strongly than 

t2g, resulting in the higher potential of the eg vs. t2g (see Fig. 2.10). t2g orbitals of the Ir(III) ion 

contribute to π orbitals of the coordinated complex (πM) that form the HOMO along with the 

occupied π orbitals of the ligands (πL). On the other hand, unoccupied π orbitals of the ligands 

(πL
*) become the LUMO of the complex. Upon coordination, eg orbitals of the metal ion and 

ligands that point toward each other are split into σ-bonding and σ*–antibonding orbitals.  

The electronic transitions between πM ↔ πL
*, πL ↔ πL

*, and πM ↔ 2eg are referred as 

metal-ligand charge transfer (MLCT), ligand-centered (LC), and metal-centered ligand-field 

(MC) transitions, respectively. In the Ir (III) organometallic complex, phosphorescence is a 

combination of the MLCT and LC transition between the excited triplet and ground states [69]. 

On the other hand, the MC transition is a forbidden process, because the transitions between two 

states (t2g and eg, gerade ↔ gerade) with the same parity in the centrosymmetric molecule are 

forbidden according to the Laporte selection rule [88]. That is, the electric dipole operator, er, 
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responsible for the transition probability has odd symmetry under the spatial inversion so that the 

transition probability between the states with the same parity vanishes or yields very small 

oscillator strength via coupling with the anti-symmetric vibrational states.  

The MC transition is nonradiative and limits the efficiency of the Iridium (III) 

organometallic complexes when involved with the emission process. Since the 3MC state is an 

antibonding (σ*) orbital of the M–L bond (Fig. 2.10), its energy is highly destabilized and the 

electronic configuration is distorted from the lowest excited triplet state (T1). Therefore, the 

potential of the 3MC state is displaced from that of T1 as shown in Figure 2.11. When these two 

states are strongly coupled and displaced from each other, their potentials overlap and the 

transition between two states shows an Arrhenius behavior with the thermal activation energy 

required for the surface crossing [88].  

 

 

Figure 2.11 Potential well diagram for Ir (III) organometallic complexes. When 3MC 

state is occupied, one of metal-ligand bonds is ruptured and the Ir complex becomes the 

trigonal bipyramidal (TBP) structure [89]. There is an activation energy, Ea, required for 

transferring from the lowest triplet state (T1) to 3MC, and ΔH is defined as the energy 

difference between T1 and TBP states. ET refers to the lowest triplet state energy. 



 54 

When the 3MC state of the Ir (III) organometallic complex is thermally accessed from the 

lowest triplet state (T1) by overcoming the thermal activation energy, Ea, one of the metal ligand 

bond is cleaved and the complex becomes the five-coordinated, trigonal bipyramidal (TBP) 

structure [89]. The energy difference between the T1 and TBP states, ΔH, can be obtained by the 

density functional theory (DFT) calculation for several heteroleptic Ir (III) complexes. Figure 

2.12 shows some examples including Ir(ppy)3, Ir(ppz)3 and Ir(pmb)3. 

 

 

Figure 2.12 Schematic energy diagram for excited state of several iridium (III) 

organometallic complexes. 

 

Since Ir(ppy)3 has a larger Ea = 0.5 eV than other complexes, the excited state cannot 

thermally transfer from T1 to the 3MC state. This leads to negligible nonradiative loss via the 

3MC state, contributing to its PL quantum efficiency of ΦPL ~ 100%. Likewise, most red and 

green Ir (III) complexes have relatively stable emissive T1 states (i.e. their ET ≈ 2.4 and 2.1 eV, 
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respectively) compared to the 3MC or TBP states so that their efficiencies are not decreased by 

coupling to the 3MC state. However, Ir (III) complexes with high ET for blue emission have 

unavoidably small Ea so that their excited states are more likely to couple to the 3MC states 

compared to their red or green analogs. For example, the excited state of Ir(ppz)3, designed for 

the blue phosphorescent emitter, can readily cross from T1 to 3MC due to its low Ea = 0.2 eV and 

since the TBP structure of Ir(ppz)3 is more stabilized than its T1 state, the transition from T1 to 

TBP states becomes irreversible. As a result, Ir(ppz)3 suffers from significant nonradiative loss 

via the 3MC state, leading to ΦPL  = 0 % at room temperature. Ir(pmb)3 has a similarly small Ea = 

0.2 eV due to the very high ET = 3.3 eV, although the complex has a fairly high thermal energy 

threshold to access the 3MC state. Since there is negligible energy required for the transition 

between the 3MC and TBP states, the excited state occupying the TBP state can transfer back to 

the more stabilized T1 state and participate in the radiative recombination. As a result, Ir(pmb)3 

attains ΦPL = 37 ± 5 % in violet.  

To raise the nonradiative 3MC state so that it is thermally inaccessible from the emissive 

excited state, one can employ ligands that form a strong metal-ligand bond with the Ir (III) ion so 

that its σ*-antibonding orbitals comprising the 3MC state are destabilized. The NHC ligand used 

in Ir(pmb)3 is a good candidate because it renders a strong and short metal-ligand bond, as well 

as has a high energy gap for deep blue emission.  

 

2.3.3. Facial and meridional isomers of the Ir(III) organometallic complex 

Tris-cyclometalated Ir (III) complexes, Ir(C^N)3, have two types of molecular 

configurations, facial (fac-) and meridional (mer-) isomers. Here, the isomer refers to two or 

more molecules with the same molecular components that are arranged differently. The fac-
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isomer of the pseudo-octahedral Ir(C^N)3 has three identical ligands forming the face of an 

octahedron as shown in Figure 2.13. The mer-isomer has the three identical ligands arranged to 

form the meridian of the octahedron. Thus, a fac-isomer has the C3 symmetry that is 

indistinguishable from the original by 360o/3 rotation, while a mer-isomer is asymmetric (i.e. C1) 

by the rotation. 

 

 

Figure 2.13 Crystal structures of facial (fac-) and meridional (mer-) isomers of Ir(ppz)3. 

Note that ligands in the fac- or mer-isomers of the pseudo-octahedral Ir (III) complex 

form one face or a meridian of the octahedron, respectively. ORTEP drawings obtained 

from Ref. [81]. 

 

The difference in molecular arrangement between fac- and mer-isomers leads to the 

disparity in the electron distribution of their molecular orbitals. Thus, fac- and mer-isomers have 

distinctive energetics, electrochemical and photophysical characteristics. In the synthetic 

processes of the coordination between the iridium (III) and the cyclometalating ligands, fac-

isomers are obtained at a high temperature (>200oC) compared with mer-isomers [81]. This 

indicates that the fac-isomer is more thermodynamically stable. Tamayo et al. demonstrated the 

mer-to-fac conversion by applying high temperature or high energy UV irradiation to the mer-

isomer [81]. This process involves the dissociation of the Ir-ligand bond of the mer-isomer and 

recoordination of the complex into the facial configuration.  
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Due to the reduced energy gap, mer-isomer exhibits red-shifted luminescent spectrum 

compared to that of the fac-isomer. Also, due to the more distributed and distorted excited state 

of the mer-isomer, the luminescence spectrum appears broader and featureless compared to 

vibrationally resolved and narrow spectrum for the fac-isomer. Finally, due to the lengthened Ir–

C bonds comprising the HOMO and thus the excited state, the 3MC state of the mer-isomer is 

lowered, leading to the significant nonradiative loss. As a result, mer-isomers of the conventional 

red and green Ir(C^N)3 have at least a tenfold smaller PL quantum efficiency than their fac-

counterparts.  
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Chapter 3 Phosphorescent organic light-emitting concentrator 

 

 

3.1. Introduction to phosphorescent organic light-emitting concentrator 

Recently, PHOLEDs are finding applications in solid-state lighting due to their color 

tunability and potentially low cost [90]. For use in general lighting, however, PHOLEDs must 

operate at a higher luminance (>3,000 cd/m2) than in displays. To obtain this level of brightness, 

current densities >1 mA/cm2 are required, which can lead to a reduced device lifetime and 

efficiency [33], [52]. Moreover, to obtain a desirable light distribution profile for uniform surface 

illumination, additional optical lighting source solutions [91]–[93] are required that often 

increase the cost and complexity of the fixture. In this chapter, we demonstrate an application 

that can provide solutions to both problems: a newly designed PHOLED luminaire, called a 

concentrator, achieves highly concentrated electroluminescence and a pattern of its emission 

provides uniform surface illumination. The concentrator is comprised of four triangular 

PHOLED panels that are assembled into a pyramidal structure, whose open base forms the 

emission aperture. The reflective PHOLED panels of the concentrator serve both as the light 

source and the reflector, confining the emitted light into the structure. Ultimately, the 

concentrated emission is directed toward the aperture. Since the emissive area is larger than that 

of the aperture, the luminance is increased by approximately a factor of three compared to a 

conventional device with the same area as the aperture. The far-field intensity profile of the 

concentrator exhibits a “batwing” distribution desirable in many illumination applications. The 
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directionality of the emission from the comprising PHOLEDs determines the radiation pattern of 

the concentrator, and also affects the degree of concentration. 

 

3.2. Experimental methods 

An illustration of the concentrator with a structure of the comprising PHOLEDs is shown 

in Figure 3.1. Four PHOLEDs are grown on triangular, indium tin oxide (ITO)-coated 

polyethylene terephthalate (PET) substrates (Sigma Aldrich) and they are attached to metal 

plates having the same shape and size as the devices. Each panel, combining the device and the 

plate as shown in Fig. 3.1 (c), is then assembled into a pyramidal structure with an apex angle of 

15.5°.  

 

Figure 3.1 Illustration of concentrator. (a) Configuration of PHOLED panels comprising 

the concentrator. (b) The Green PHOLED structure. (c) Photographs showing the 

emission from a single panel PHOLED and (d) from a four-sided concentrator. 
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The emissive (or substrate) side of the PHOLED faces inwards so that the light emission 

from one panel is reflected by adjacent or opposing devices, and is eventually directed towards 

the exit aperture (see Fig. 3.1 (d)). PHOLEDs were grown by vacuum sublimation at a base 

pressure <5×10-7 Torr on ITO-coated plastic substrates. The substrate has the sheet resistance of 

60 Ω/☐ and the transmittance of >79% at a wavelength of λ=550 nm. The device structure is as 

follows: ITO (100 nm)/MoOx doped at 15 vol. % in 4, 4’-bis(carbazol-9- yl)biphenyl (CBP) as a 

hole injection layer [94], [95] (HIL, 60 nm)/CBP as the HTL (10 nm)/bis(2-phenylpyridine) 

(acetylacetonate) iridium(III) (Ir(ppy)2(acac)) doped at 8 vol. % in CBP as the EML (15 

nm)/2,2’,2’’-(1,3,5-benzinetriyl)-tris(1-phenyl-1- H-benzimidazole) (TPBi) as the HBL and ETL 

[43] (65 nm)/LiF (1.5 nm)/ Al (cathode, 100 nm). The area of the reference PHOLED and one 

triangular panel of the concentrator were 1 cm2 and 1.85 cm2 (resulting in a total concentrator 

interior area of 7.4 cm2), respectively. Prior to deposition, particulates remaining on the solvent-

cleaned substrates were removed by CO2 snow-cleaning to minimize electrical shorts [96]. 

PHOLED electroluminescence characteristics were measured by a parameter analyzer and a 

calibrated Si-photodiode whose area is larger than that of the concentrator aperture [97].  

 

3.3. Results and Discussion 

The concentration factor (CF) is defined as the ratio of the luminous flux of the 

concentrator measured at the exit aperture to that of the planar PHOLED as a reference with the 

same area as the aperture: 

CF(J ) =
Lside,i (J )× Aside

i=1

4

∑
Lref (J )× Aref

.  (3.1) 
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Here, Lside,i and Lref are the luminance from the single panel of the concentrator and the reference 

device with the areas of  Aside and Aref, respectively, measured at current density, J. Further, we 

define Leff = Lside,i ⋅ Aside Aref( )
i=1

4

∑  as the effective luminance of the concentrator emitted at the 

aperture compared with the reference.  

 

 

Figure 3.2 Effective luminance vs. current density of concentrator. Data for the reference 

device (squares), a single panel device (circles), and the four-sided device forming the 

concentrator are included. Inset: current density vs. voltage characteristics of the 

reference device and a single-panel PHOLED. 

 

Figure 3.2 shows the Leff -J characteristics of the reference, a single panel device with the 

other panels turned off, and from all four panels forming the concentrator. The J-V 

characteristics (inset) indicate that the panel device operates at a higher voltage than the 

reference, which is primarily a result of increased lateral resistance of ITO with device area [98], 

[99]. Although the single panel device has lower Leff than the reference due to losses from 

reflections inside the concentrator, the integrated Leff from the concentrator substantially exceeds 
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that from the reference. As a result, CF = 2.5 to 3.1 at current densities from 0.01 to 1 mA/cm2, 

as shown in Figure 3.3.  

 

 

Figure 3.3 Concentration factor vs. current density of concentrator. 

 

Given that the area ratio is 7.4, the loss in the concentrator is approximately 60 %, yet 

this is partially compensated by the higher brightness at the aperture. 

To investigate the effect of geometry on CF, we rewrite Eq. (3.1) as: 

CF(J ) = 4 ⋅G θapex( ) ⋅ηext J,G θapex( )( ) .   (3.2) 

where G θapex( ) = 1 4 ⋅csc θapex 2( )  is the geometric areal ratio between the single concentrator 

panel and the aperture as a function of apex angle, θapex. Also, ηext J,G θapex( )( ) is the geometric 

extraction efficiency measured by comparing the luminance of the single panel concentrator 

device vs. the reference at J.  
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Now:  

ηext J,G θapex( )( ) = I(s) ⋅ R θapex( ){ }Nds
ds

S∫
I(s)ds

S∫
, (3.3) 

where I(s) is the initial luminance emitted by an area segment, ds, of the single panel device with 

a total area of S, R(θapex) is the reflectance of the PHOLED and Nds is the number of reflections 

for a ray from ds to reach the aperture as discussed below. 

 

 

Figure 3.4 Figures-of-merit of concentrator as a function of its apex angle. (Top) 

Geometric area ratio (G), extraction efficiency (ηext) and (Bottom) CF vs. apex angle 

(θapex) at J = 10 mA/cm2 for concentrators with θapex values of 15.5, 25.5, 35.5, 55.5°. 

Note that CF increases monotonically as θapex decreases due to the increased number of 

reflections compared to concentrators with large θapex values. At the same time, ηext 

decreases due to the increased propagation losses.  

 

 Figure 3.4 shows G, ηext and CF at J=1.0 mA/cm2 as functions of four different θapex and 

a fixed aperture area of 1.0 cm2. As θapex is decreased from 55.5o to 15.5°, ηext decreases from 68 

± 2 % to 39 ± 1 % due to the increased number of reflections. This suggests that utilization of the 

10 20 30 40 50 60
1.0
1.5
2.0
2.5
3.0
3.5

 

 

C
F

Apex angle, θapex  (degree)

10 20 30 40 50 60
0.4

0.8

1.2

1.6

2.0
 

 

 G

G

30
40
50
60
70

η ex
t (%

)

 η
ext



 64 

effective area that contributes to the output luminance decreases with θapex. Nonetheless, CF 

increases from 1.46 ± 0.03 to 2.92 ± 0.10 due to the dramatic increase of G. Table 3.1 gives 

values for CF and ηext at J = 1.0 mA/cm2  for these devices. 

 

Table 3.1 Concentration factor and geometric extraction efficiency vs. apex angle. These 

factors are obtained at a current density of J = 1.0 mA/cm2  

θapex 15.5° 25.5° 35.5° 55.5° 

CF 2.9 ± 0.1 2.05 ± 0.03 1.64 ± 0.02 1.46 ± 0.03 

ηext (%) 39 ± 1 46 ± 1 50 ± 1 68 ± 2 

 

Figure 3.5 (a) shows the normalized luminous intensity of the concentrator with respect 

to the reference as a function of viewing angle, ϕ, measured in the direction parallel to the side 

(denoted as horizontal) and along the diagonal of the aperture. While the reference is 

approximately a Lambertian source, the concentrator exhibits a batwing intensity profile where 

the intensity at viewing angles from ϕ=40 to 50° relative to the aperture normal is larger than 

along the central axis of the concentrator. The resultant illuminance distribution [100] is given by: 

I φ( ) = L(φ)
h2

cos3φ  ,  (3.4) 

at ϕ and distance, h, from the concentrator to illuminated area. For arbitrary h, the 

concentrator produces nearly uniform surface illumination over Δϕ = ±40°, while the reference 

has peak illuminance at ϕ = 0° and decreases dramatically with ϕ, as shown in Fig. 3.5 (b). When 

installed overhead, the intensity profile of the concentrator, unlike the reference, avoids strong 

veiling reflections from the illuminated surface that results from intense downward emission at 

low ϕ. 
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Figure 3.5  Normalized luminous intensity and illuminance of concentrator. (a) 

Normalized luminous intensity, L(ϕ), in polar coordinates vs. the viewing angle, ϕ. Also 

shown in an illustration of the directions along which the intensity profiles of devices 

were measured. (b) Calculated illuminance, I(ϕ), of the concentrator with respect to the 

reference measured in the direction parallel to the side (denoted as horizontal) and along 

the diagonal of the aperture. The shaded area indicates the zone of nearly uniform 

illumination achieved by the concentrator along the horizontal axis. 

 

We used a ray-tracing algorithm to model the angular distribution profile of the luminaire, 

and to determine Nds in Eq. (3.3). The simulation generates the extraction efficiency, ηext.x, of the 

rays emitted at distance, x, from the vertex of the concentrator, the intensity-weighted average 
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number of reflections, N , required to reach the aperture, and their intensity-weighted average 

exit angles, α exit , relative to the concentrator central axis. Each property for two different 

PHOLED reflectances, RPHOLED, is provided in Table 3.2, with details of the algorithm and 

assumptions used found in Appendix A.  

 

Table 3.2 Simulated characteristics of exiting rays from the PHOLED concentrator. 

Extraction efficiency (ηext,x), average intensity-weighted reflections ( ) and exit angles 

(α exit ) of the exiting rays for two values for PHOLED reflection (RPHOLED) vs. the relative 

position of the emission (x) from the apex are calculated. 

Position, x RPHOLED [%] 0 0.1 0.2 … 0.8 0.9 1.0 

ηext,x 66 14 % 16 % 18 % … 43 % 54 % 69 % 

71 19 % 20 % 23 % … 48 % 57 % 71 % 

N  66 3.6 3.4 3.2 … 1.3 0.8 0.3 

71 3.9 3.7 3.4 … 1.5 0.9 0.4 

α exit  66 1.2° 0.6° 0.5° … 29° 39° 51° 

71 1.1° 0.6° 0.5° … 30° 39° 51° 
* Concentrator height is assumed to be unity and the device reflectance is assumed to 

be invariant to the incident angle. 

 

Emission originating near to the vertex is strongly attenuated due to high Nds, and hence 

does not contribute significantly to the exit luminance. In addition, α exit  of such rays are low, 

which is responsible for the relatively weak intensity along the central axis (c.f. Fig. 3.5). On the 

other hand, rays emitted near the aperture escape with fewer reflections, and their α exit  is 

distributed across a range from only 30° to 50°, corresponding to the high intensity peak near 40° 

observed in the profile. Note that a primary factor that determines α exit  and the resultant batwing 

distribution is the Lambertian emission distribution of the panels, while the reflectance of the 

device determines ηext.x (Table 3.2). Hence, we infer that the desired emission profile of the 

N
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concentrator is achieved by tailoring the profiles of its component PHOLEDs. For example, if 

the PHOLEDs in the concentrator have relatively intense emission at high angles by using, for 

example, microlens arrays [101] or a grating [102] embedded in the substrate, the emission can 

be extracted with a lower N  at smaller α exit , which results in directed or spot illumination 

profiles.  

The geometry of the concentrator also affects its emission profile. The concentrator with 

a larger aperture (or θapex) can produce a higher luminous flux at low α exit  than that with a 

smaller aperture, since the rays emitted near the vertex experience fewer reflections with an 

enlarged escape cone as shown in Fig. 3.6.   

 

 

Figure 3.6 Exit angles (αexit) of emission normal to the concentrator panel. Concentrators 

with different apex angles, θ = 25.5° and 55.5°, are compared. 

 

 Additionally, if the side panel angle is large, its emission near the aperture exits at 

smaller α exit , while increasing the total ηext. However, this configuration has a correspondingly 

decreased geometric areal ratio, leading to a reduced CF (see Fig. 3.4).  
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 An effective means for enhancing both ηext and CF independent of geometry is to 

increase the PHOLED reflectance, RPHOLED. The PHOLED forms a weak microcavity [103] 

where RPHOLED is determined by the reflection, transmission and interference occurring inside the 

organic thin films and the metal cathode. Figures 3.7 (a) and (b) show RPHOLED as a function of 

incident angle, θinc and wavelength, λ calculated for PHOLEDs using Al (denoted as Device A) 

or Ag (Device B) as the cathode metal, respectively (Appendix A).  

 

 
 

Figure 3.7 Calculated reflectance of the PHOLED using (a) aluminum or (b) silver 

cathode. Average of the transverse electric and magnetic mode reflectance values of a 

PHOLED (RPHOLED, z-scale) is obtained as a function of the wavelength λ and the angle of 

incident light, θinc, relative to the surface normal of the PHOLED. Here, the reflectance 

values range from 60 to 80%, as denoted by the blue to red color scale on the right of 

each contour plot.  

 

Since the PHOLED emission is unpolarized [104], its total reflectance is obtained from 

the average of the transverse electric and magnetic mode reflectances at wavelengths from λ = 

460 to 600 nm, corresponding to 90 % of the spectral emission from the green PHOLED, and at 

incident angles from θinc = 0 to 80°. At θinc > 80°, most emission for both devices is reflected by 

the PET substrate. The reflectance of Device A varies from 64.2 ± 1.3 % to 76.3 ± 1.2 %, 
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compared with that of the Device B which varies from 69.2 ± 0.6 % to 79.9 ± 2.2% (Error is 

based on the 10% variation of the total thickness of the organic layers). Since Ag has a smaller 

extinction coefficient than Al, Device B is correspondingly less absorbing and has a higher 

RPHOLED as shown in Fig. 3.7, leading to an increased ηext from the concentrator (Table 3.2).  

 

 

Figure 3.8 Calculated outcoupling efficiency of green PHOLED. Each fraction coupled 

to air modes (outcoupling), glass modes, waveguide modes (ITO and organics) and the 

cathode, is calculated from the relative energy transferred from the dipoles [105] at 

wavelength λ = 522 nm and at an emission angle normal to the layers. Here, we assume 

that the dipole is formed at the interface between EML and HBL. The thickness are 

varied for the (a) ETL (tETL), (b) HTL (tHTL). The device structure used in the calculation 

is: ITO (100 nm) / 15 vol% MoOx doped in CBP (tHTL nm) / CBP (10 nm) / 8 vol% 

Ir(ppy)2(acac) doped in CBP (15 nm) / TPBi (10 nm) / 2 vol% Li doped in Bphen (tETL 

nm) / LiQ (1.5 nm) / Ag (150 nm). The refractive indices of the organic layers are 

measured by variable angle spectroscopic ellipsometer.  

 

Note that the high RPHOLED contours in Fig. 3.7 can be spectrally shifted to the PHOLED 

emission maximum by tuning the thickness of the ETL and/or the HTL. However, the 

outcoupling efficiency of the PHOLEDs, which contributes to the total luminous flux of the 

concentrator, is also dependent on the properties of the microcavity formed between the emission 
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zone and the cathode. Therefore, RPHOLED can be modified by varying the HTL thickness without 

significantly changing its outcoupling efficiency as shown in Fig. 3.8. 

Finally, the fraction of incident light that is not reflected is primarily absorbed by the ITO 

and the cathode. For example, at normal incidence at λ = 522 nm where the PHOLED emission 

peaks, ITO and Al in Device A absorbs 20.0 ± 1.2 % and 10.1 ± 0.8 % of the light, while the ITO 

and Ag absorption in Device B are 19.7 ± 1.7 % and 5.1 ± 0.2 %, respectively, considering 10% 

variation in thickness of organic layers. 

 

3.4. Conclusions 

We demonstrate concentrated PHOLED emission from a pyramid-shaped luminaire. By 

increasing the area of the side of the concentrator, a high concentration factor is achieved at the 

expense of the geometric extraction efficiency due to increased reflections from the surfaces of 

the devices comprising the edge of the luminaire. To achieve efficient extraction and high CF, 

increasing the cathode reflectivity is an effective means to increase the device external 

luminance efficiency. We observe that the angular intensity profile of the luminaire follows a 

batwing distribution, making it suitable for uniform downward illumination of surfaces. These 

principles of the concentrator can be generally applied to any color of light (R, G, B or W), 

which diversifies its usage in lighting; however to obtain desirable white color from the 

concentrator, the original spectrum of its component PHOLEDs should be tuned by adjusting the 

microcavity condition, or the thickness of the organic layers, considering the different PHOLED 

reflectance with respect to the wavelength. We also note that while a pyramid shape is used in 

our demonstration, different concentration factors and emission profiles can be achieved 

employing other geometries using this same general design concept.  For example, parabolic or 
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compound parabolic concentrator shapes show promise for achieving CF as high as 7, and may 

provide aesthetic advantages over the current design. Hence, the method of concentrating 

emission demonstrated here can be advantageously realized in many practical, high intensity 

OLED-based luminaire configurations.  
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Chapter 4 High brightness deep blue PHOLEDs 

 

4.1. Introduction to deep blue PHOLEDs 

A driving force behind the use of organic electroluminescence in displays and lighting 

has been the introduction of long-lived red and green electrophosphorescent devices with up to 

100% IQE [30], [41]. However, achieving deep blue electrophosphorescence with high 

efficiency and luminance, and long-term operational stability remains a significant challenge 

[33]. The design of robust and efficient blue phosphors free of electrochemically reactive 

moieties offers one possible solution. For example, the thermodynamically stable NHC ligands 

[106], [107] were used in saturated blue emitting tris-cyclometalated iridium (III) complexes 

[Ir(C^C:)3] [108]. This is compared with blue Ir complexes using fluorination to obtain a wide 

energy gap (see §2.3), which has resulted in high efficiency but only an unsaturated sky-blue 

color unsuitable for displays and chemical instability. 

Unfortunately, a significant drawback of previously demonstrated deep blue PHOLEDs is 

that they are subject to a pronounced efficiency roll-off at high luminance required in most 

display and lighting applications [109]–[117]. For example, the current density at the half 

maximum EQE, J1/2, is typically <50 mA/cm2 due to the loss of excitons and electrons from the 

PHOLED EML, as well as strong bimolecular annihilation [39]. Thus, they barely achieve a 

brightness > 3,000 cd/m2 at J1/2 or even higher current densities. Up to the present work, 

preventing these parasitic effects has been exacerbated by the lack of exciton and charge 
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blocking layers that are compatible with the high energy-triplet emitters required for deep blue 

emission.  

Based on our understanding of the unique energetics of the NHC ligand-based Ir(C^C:)3 

complexes, we introduce a device design that significantly improves the efficiency of the deep 

blue PHOLEDs especially at high luminance. Here, Ir(C^C:)3 complexes are used as the 

phosphorescent emitting molecules, electron/exciton blocking layers (EBL) and dopants that 

conduct holes across the EML. The combined effects of these multiple uses lead to a marked 

improvement in EQE at high current densities. Specifically, J1/2 is increased in devices with an 

EBL by more than a factor of 280 compared to those without it, and is improved by an additional 

50% (resulting in a cumulative improvement by a factor of 420) by grading the dopant across the 

EML, thereby reducing triplet annihilation losses at very high brightness [50], [118]. 

fac- and mer-Ir(C^C:)3-based PHOLEDs exhibit CIE coordinates of (0.16, 0.09) and 

(0.16, 0.15), with maximum EQE = 10.1 ± 0.2 and 14.4 ± 0.4 % at low luminance, decreasing 

slightly to 9.0 ± 0.1 and 13.3 ± 0.1 % at L = 1,000 cd/m2. Surprisingly, the fac- or mer-Ir(C^C:)3-

based devices attain unusually high luminance, i.e. L = 7,800 ± 400 and 22,000 ± 1000 cd/m2 at 

their J1/2 = 160 ± 10 and 210 ± 10 mA/cm2, respectively. These devices produce unparalleled 

luminance at J1/2 compared with the PHOLEDs with similar color coordinates [117], [119]. To 

our knowledge, the fac-isomer-based device achieves the brightest deep blue emission among the 

PHOLEDs reported to date, which almost meets sRGB requirement. 

An additional finding is that the mer-Ir(C^C:)3 is equally or more efficiently luminescent 

than the fac-isomer in solution and the solid-state [120], while conventional red and green-

emitting Ir(C^N)3 complexes follow the opposite trend, i.e. fac is more efficient than mer [121], 

[122]. We find that the strong Ir-NHC ligand bonds [106] in Ir(C^C:)3 result in reduced 
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nonradiative decay via the 3MC states for both isomers [89]. Our studies of the photophysics of 

Ir(C^C:)3 complexes along with their employment in proposed device architectures provides a 

solution for achieving efficient deep blue emission at very high brightness.  

 

4.2. Experimental methods 

4.2.1. Cyclic voltammetry 

Cyclic voltammetry and differential pulsed voltammetry were performed using a 

VersaSTAT 3 potentiostat. Anhydrous DMF (Sigma Aldrich) was used as the solvent under inert 

atmosphere, and 0.1 M tetra(n-butyl)ammonium hexafluorophosphate (TBAF) was used as the 

supporting electrolyte. A glassy carbon rod was used as the working electrode, a Pt wire was 

used as the counter electrode, and a Ag wire was used as a pseudo-reference electrode. The redox 

potentials are based on values measured from differential pulsed voltammetry and are reported 

relative to a ferrocene/ferrocenium (Cp2Fe/Cp2Fe+) redox couple used as an internal reference.  

 

4.2.2. Device fabrication and characterization 

PHOLEDs were grown on pre-cleaned glass substrates coated with 80 nm-thick ITO by 

vacuum thermal evaporation in a chamber with a base pressure 6×10-7 torr. The devices consist 

of 10 nm MoO3 doped at 15 vol% in 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole 

(CzSi)  as a HIL / 5 nm CzSi HTL / 5 nm Ir(C^C:)3-based EBL / 40 nm Ir(pmp)3 doped in 

TSPO1 to form the EML / 5 nm TSPO1 HBL / 30 nm TPBi ETL / 1.5 nm 8-

hydroxyquinolinolato-Li (Liq) electron injection layer (EIL) / 100 nm Al (cathode). The devices 

were patterned using a shadow mask with an array of circular openings resulting in contacts with 

a measured diameter of d = 430 µm. The standard deviation for a population of >20 devices leads 



 75 

to a variation in area of ~ 2 %. The EBLs used for the fac- and mer-Ir(pmp)3–based PHOLEDs 

were fac-Ir(pmp)3 and fac-Ir(pmb)3, respectively (see Figure 4.1). The current density-voltage-

luminance (J-V-L) characteristics were measured using a parameter analyzer (HP4145, Hewlett-

Packard) and a calibrated photodiode (FDS1010-CAL, Thorlab) according to standard 

procedures [97]. The emission spectra at J = 10 mA cm-2 were recorded using a calibrated 

spectrometer (USB4000, Ocean Optics) coupled to the device with an optical fiber. 

 

4.2.3. Probing the recombination zone 

The triplet exciton density, N(x), in the EML as a function of distance, x, from the 

EBL/EML interface was determined by measuring the relative emission intensity from a 1.5 nm-

thick “sensing” layer comprised of 5 vol% doped red-emitting phosphor, i.e., iridium (III) bis (2-

phenyl quinolyl-N,C2’) acetylacetonate (PQIr), inserted at different positions within the EML, as 

previously [50]. 

 

4.2.4. EQE modeling 

Based on TTA and TPA dynamics, EQE vs. J is modeled using: 

dn(x,t)
dt

= G(x)−γ n2 (x,t),   (4.1)   

dN(x,t)
dt

= γ n2 (x,t)− N(x,t)
τ

− kTPn(x,t)N(x,t)−
1
2
kTT N

2 (x,t)   (4.2)      

where, n is the electron and N is the triplet density, γ = e(µn + µp) / εε0 is Langevin 

recombination rate and µn, and µp are the respective electron and hole mobilities in the doped 

EML. Also, ε = 3 is the dielectric constant, x is position, t is time, G is the charge generation rate, 

and kTT and kTP are the TTA and TPA rates, respectively. Here, G(x) = J0 e ⋅N(x) N(x)dx
EML∫ , 
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where N  is the measured recombination profile in Figure 4.10, different from previous 

assumptions based on the constant recombination zone width [39], [118]. Eq. (4.1) assumes that 

p = n in the EML, and τ is obtained from the transient phosphorescence decay of Ir(pmp)3 doped 

into TSPO1. N(x) is obtained in steady state and integrated over the EML to obtain

Ntot = N(x)dx
EML∫ . Then, Ntot/J is normalized by the EQE value at J = 0.1 mA/cm2 and fit to J = 

100 mA/cm2 (Fig. 4.14, lines), where bimolecular quenching is active. 

 

4.3. Material properties of deep blue-emitting Ir(pmp)3  

4.3.1. Results 

The structure of our newly synthesized NHC Ir(III) complex, tris-(N-phenyl, N-methyl-

pyridoimidazol-2-yl)iridium (III), Ir(pmp)3, is based on the near UV-emitting tris-(N-phenyl, N-

methyl-benzimidazol-2-yl) Ir (III), or Ir(pmb)3, whose benzannulated component in the NHC 

ligands is replaced with a fused pyridyl ring as shown in Figure 4.1.  

 

 

Figure 4.1 Molecular structural formulae of fac-Ir(pmb)3, fac- and mer-Ir(pmp)3. Here, 

fac- and mer-Ir(pmp)3 have the C3 and C1 molecular symmetries, respectively, in pseudo-

octahedral coordinates. 
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The greater electronegativity of the nitrogen atom vs. methine (CH) lowers the reduction 

potential of fac-Ir(pmp)3 to Ered = −2.77 ± 0.05 V relative to fac-Ir(pmb)3 (Ered = −3.19 ± 0.05 V), 

while their oxidation potentials are nearly identical (Eox = 0.47 ± 0.05 and 0.45 ± 0.05 V, 

respectively). The absorption spectra of fac-Ir(pmb)3 and fac-Ir(pmp)3 in Fig. 4.2 show that their 

spin-allowed 1MLCT transitions have a high energy onset at λ = 350 and 380 nm, respectively. 

The observed red shift for the absorption spectrum of fac-Ir(pmp)3 results from its smaller energy 

gap compared to fac-Ir(pmb)3 inferred from their Ered and Eox. 

 

Figure 4.2 Absorption spectra of fac-Ir(pmb)3, fac-Ir(pmp)3 and mer-Ir(pmp)3 diluted in 

dichloromethane. 

 

Accordingly, the photoluminescence (PL) spectrum of the fac-Ir(pmp)3 in Figure 4.3 has 

a red-shifted spectrum with peak wavelength of λmax = 418 nm in the deep blue compared to the 

near-UV emission of fac-Ir(pmb)3 (λmax = 380 nm) [106]. Meanwhile, the PL spectrum of mer-

Ir(pmp)3 is broad and displays a large room temperature bathochromic shift (λmax = 465 nm) 

relative to the fac-isomer. The lower emission energy of the mer-Ir(pmp)3 compared to the fac-

isomer is due to its lower oxidation potential (Eox = 0.23 ± 0.05 V) and nearly identical reduction 
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potentials (Ered = −2.80 ± 0.05 V), which result in a correspondingly reduced energy gap. The 

emission from both Ir(pmp)3 isomers undergo a pronounced rigidochromic shift at T = 77 K, 

with the fac-isomer displaying a vibronically structured line shape. Table 4.1 summarizes the 

reduction and oxidation potentials, and PL characteristics of fac-Ir(pmb)3, fac- and mer-Ir(pmp)3. 

 

 

Figure 4.3 Temperature dependence of PL spectra of fac- and mer-Ir(pmp)3. Complexes 

are diluted in degassed 2-methyltetrahydrofuran and their PL are obtained at temperatures 

of T = 295 K (top) and 77 K (bottom). 

 

Table 4.1 Reduction and oxidation potentials of fac-Ir(pmb)3, fac-Ir(pmp)3 and mer-

Ir(pmp)3. The peak wavelength of their PL spectra are also given. 

Complexes aEox (V) aEred (V) bPL λpeak (Epeak) 

fac-Ir(pmb)3 0.45 ± 0.05 -3.19 ± 0.05 380 nm (3.26 eV) 

fac-Ir(pmp)3 0.47 ± 0.05 -2.77 ± 0.05 418 nm (2.97 eV) 

mer-Ir(pmp)3 0.23 ± 0.05 -2.80 ± 0.05 465 nm (2.67 eV) 
a Measured by cyclic voltammetry and values are determined versus 

Fc/Fc+. b Measured in degassed 2-methyltetrahydrofuran. Value in 

parenthesis corresponds to energy. 
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Figure 4.4 shows the temperature dependent transient PL characteristics of fac- and mer-

Ir(pmp)3 in de-aerated 2-methyltetrahydrofuran (2-MeTHF) with quantum yields of ΦPL = 76 ± 5 

and 78 ± 5% at T = 295 K [cf. ΦPL of fac-Ir(pmb)3 = 37 ± 5%] [89], and ΦPL = 95 ± 5 % at 77 K 

for both isomers.  

 

 

Figure 4.4 Temperature dependence of transient PL decay of fac- and mer-Ir(pmp)3. 

Complexes are diluted in 2-MeTHF and their PL signals were obtained at T = 295 K (top) 

and 77 K (bottom), with the fits based on mono- or multi-exponential decays. 

 

The triplet lifetimes, τ, were obtained from mono-exponential fits to the transient PL 

decay at room temperature. Radiative (kr) and nonradiative (knr) rate constants are calculated 

using the relationship [122] kr = ΦPL/τ, where ΦPL = kr/(kr + knr). The mer-isomer has a shorter 

triplet lifetime of τ = 0.8 ± 0.1 vs. 1.2 ± 0.1 µs for the fac-isomer, that results in its higher kr = 

(1.0 ± 0.2)×106 vs. (6.4 ± 1.3)×105 s-1 and knr = (2.7 ± 0.4)×105 vs. (2.0 ± 0.4)×105 s-1. At T = 77 

K, triplet lifetimes of fac-Ir(pmp)3 were extracted from multi-exponential fits. Accordingly, fac-

Ir(pmp)3 has two relatively well-resolved lifetimes of τ1 = 3.9 ± 0.2 µs (weighting: 45%) and τ2 = 
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9.2 ± 0.2 µs (55%). In contrast, the mer-isomer still shows a mono-exponential decay with only 

slightly increased τ = 1.0 ± 0.1 µs at T = 77 K. Table 4.2 summarizes the photophysical 

parameters of both isomers.  

 

Table 4.2 Temperature-dependent photophysical properties of fac- and mer-Ir(pmp)3 

dispersed in degassed 2-methyltetrahydrofuran solution. 

Temperature 295 K 77 K 

ΦPL (%)* τ (µs)† kr (105 s-1) knr (105 s-1) ΦPL (%)‡ τ (µs) 

fac-Ir(pmp)3 76 ± 5 1.2 ± 0.1 6.4 ± 1.3 2.0 ± 0.4 95 ± 5 3.9 ± 0.2, 9.2 ± 0.1 

mer-Ir(pmp)3 78 ± 5 0.8 ± 0.1 10 ± 2 2.7 ± 0.4 95 ± 5 1.0 ± 0.1 
* Photoluminescence quantum yield (ΦPL). † Mono- and multi-exponential fits are used for extracting 

triplet lifetimes (τ) at temperatures of T = 295 and 77 K, respectively. ‡ Calculated by referencing the 

integrated emission intensity to that of fac-Ir(ppy)3 (ΦPL = 100 %). Errors for the model parameters (kr 

and knr) are the 95% confidence interval. 

 

 

Figure 4.5 PL spectra of diluted fac- and mer-Ir(pmp)3 in different polarity media. Media 

are poly(methyl methacrylate) (PMMA), toluene, and dichloromethane (DCM). 
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Figure 4.5 shows the PL spectra of diluted fac- and mer-Ir(pmp)3 in different polarity 

media, poly(methyl methacrylate) (PMMA), toluene, and dichloromethane (DCM) having dipole 

moments of 0, 0.375, and 1.6 Debye [123], respectively. Both complexes exhibit positive 

solvatochromism (bathochromic shift) in a polar medium. Interestingly, the PL spectrum of the 

mer-isomer is more red-shifted and broadened than that of the fac-isomer, indicating that the 

excited states of the former complex are more stabilized in the similar polar solvent. 

Figure 4.6 illustrates the calculated HOMO, LUMO and the spin density surfaces from 

the optimized triplet states for fac- and mer-Ir(pmp)3, which were obtained from density 

functional theory (DFT) and time-dependent DFT calculations, respectively. Commonly, the 

HOMOs of both isomers are disposed on the phenyl-π and Ir-d orbitals, while their LUMOs are 

preferentially formed in the methyl-pyridoimidazole ligands [122]. The HOMO and LUMO of 

fac-Ir(pmp)3 are equally distributed among the three ligands due to its C3 symmetry (nearly 

identical LUMO, LUMO+1, LUMO+2), whereas for C1-symmetric mer-Ir(pmp)3, the phenyl π-

orbitals in the two mutually trans pyridoimidazole ligands (both denoted as L) form the HOMO, 

and its lowest LUMO is localized in π*-orbitals in the third ligand (denoted as L’ and LUMO < 

LUMO+1, LUMO+2). This electron configuration of the mer-isomer elongates its transoid Ir−C 

bonds that leads to the destabilized HOMO and the slightly affected LUMO [122]. The 

calculated HOMOs are at 5.21 eV and 5.10 eV and LUMOs of 1.27 eV and 1.20 eV from the 

vacuum level for fac and mer-Ir(pmp)3, respectively. The spin density distribution of triplet states 

of fac and mer-Ir(pmp)3 show that both isomers have pronounced metal-ligand charge-transfer 

(3MLCT) character (see Table 4.3); however, the greatest difference between two isomers is that 

triplets in a fac-isomer are localized within a single ligand represented by intraligand-charge-

transfer (ILCT) admixed with 3MLCT states, whereas those in the mer-isomer are delocalized 
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across the ligands represented by combined ligand-to-ligand charge-transfer (3LL’CT) and 

3MLCT states (see Fig. 4.6). From the calculated energy of the excited states, we get the singlet-

triplet splitting, ΔST, of 0.22 and 0.10 eV for fac- and mer-Ir(pmp)3, respectively. 

 

 
Figure 4.6 Calculated molecular orbitals diagram of fac and mer-Ir(pmp)3. A 

B3LYP/LACVP** functional in a CH2Cl2 solvent continuum dielectric model is used for 

time dependent density functional theory (TD-DFT) and DFT calculations. 
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Table 4.3 Calculated characteristics of optical transitions in fac- and mer-Ir(pmp)3. 

S0→T1 and S0→S1 transitions, energies (λcal and Ecal), oscillator strengths (f), orbital 

contributions (>10%), and assignments of fac and mer-Ir(pmp)3 are obtained from TD-

DFT calculations. 

 State λcal (Ecal) f Orbital contribution Assignment 

fac- 

Ir(pmp)3 

T1 390 nm (3.18 eV) 0 HOMO→LUMO (78%) MLCT, ILCT 

S1 365 nm (3.40 eV) 0.0427 
HOMO→LUMO+1 (82%) 

HOMO→LUMO (14%) 
MLCT, ILCT 

mer- 

Ir(pmp)3 

T1 396 nm (3.13 eV) 0 
HOMO→LUMO (71%) 

HOMO→LUMO+2 (17%) 
MLCT, LLCT 

S1 384 nm (3.23 eV) 0.0035 HOMO→LUMO (98%) MLCT, LLCT 

 

4.3.2. Discussion 

The mer-isomers of the conventional red and green-emitting Ir(C^N)3 complexes [121], 

[122] typically have a nonradiative decay rate (knr) at least an order of magnitude larger than 

their fac-isomers as shown in Table 4.4.  

 

Table 4.4 Photophysical characteristics of red, green and deep blue phosphors. 

Emitter †Ir(piq)3 (red) ‡Ir(ppy)3 (green) Ir(pmp)3 (blue) 

Isomer facial meridional facial meridional facial meridional 

ΦPL [%] 45 7 100 4 76 78 

kr [105 s-1] 3.6 3.3 2.1 2.4 6.4 ± 1.3 10 ± 2 

knr [105 s-1] 4.4 42 3.2 64 2.0 ± 0.4 2.7 ± 0.4 
† Tris[1-phenylisoquinolinator-C2, N]iridium (III), ‡ Tris[2-phenylpyridinato-C2, N]iridium (III). 

 

This difference is attributed to a more efficient thermal population of nonradiative triplet 

metal-centered (3MC) ligand-field states that comprise Ir–ligand antibonding orbitals in the mer-

isomer [89], [124]. The asymmetric molecular structure (C1) of mer-isomers leads to trans-

disposed Ir–N linkages that are more labile compared to the three equivalent Ir–N bonds in the 
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C3-symmetric fac-isomers [125]. Therefore, the 3MC states of the mer-isomer are stabilized and 

thermally accessible compared to the fac-isomer. However, for Ir(pmp)3, the difference in knr 

between fac- and mer-isomers is less than a factor of two as a result of the strong Ir–carbene 

bonds destabilizing the 3MC states for both isomers. The lack of mer-to-fac isomerization for 

Ir(pmp)3 substantiates its strong metal-ligand bond nature, while the Ir(C^N)3 complexes having 

weaker Ir–N bonds allow such conversion [89]. At T = 77 K, the quantum yields of fac- and mer-

Ir(pmp)3 increase to near unity due to suppressed nonradiative decay via thermal population to 

3MC states. 

The relative dominance of ligand-centered (3LC) over 3MLCT excited states in fac-

Ir(pmp)3 compared to the mer-isomer is reflected in the more pronounced temperature 

dependence of the transient PL response (Fig. 4.4). The broader PL spectrum both at T = 295 and 

77 K, more pronounced bathochromic shift in a polar medium (Fig. 4.5), and rigidochromic shift 

in a frozen media (see Fig. 4.3) confirm that emission from mer-Ir(pmp)3 originates more from a 

polar excited state (3MLCT), rather than the relatively nonpolar 3LC-dominant states of the fac-

isomer [126]. The dispersed electron distribution in the mer-isomer as opposed to the ligand-

localized condition in the fac configuration likely results in its higher transition dipole moment 

[126] (see Fig. 4.6). This also explains the smaller ΔST, or the electron exchange energy, for the 

mer-Ir(pmp)3 than the fac-isomer (0.10 vs. 0.22 eV), because ΔST reduces with the decreased 

overlap and increased spatial separation between the HOMO and LUMO. Table 4.5 summarizes 

the photophysical characteristics of fac and mer-isomers of Ir(pmp)3.  
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Table 4.5 Photophysical characteristics of fac and mer-Ir(pmp)3 

Complex fac-Ir(pmp)3 mer-Ir(pmp)3 
a FWHM (nm) 51 ± 1 75 ± 1 

b Solvatochrmism† (eV) 0.19 ± 0.01 0.33 ± 0.01 
c Rigidochromic shift† (eV) -0.19 ± 0.01 -0.34 ± 0.01 
a Measured from the PL of the isomers doped at 1 vol% in PMMA. 
b The value corresponds to the spectral shift of the PL peak of the isomer in DCM 

relative to that in PMMA. 
c The value corresponds to the spectral shift of the PL peak of the isomer in 2-MeTHF 

at T = 77 K relative to that at room temperature. 
† The positive and negative values indicate the spectral red and blue-shift, respectively. 

 
 

Compared to the structurally analogous violet-emitting fac-Ir(pmb)3 complex, fac- and 

mer-Ir(pmp)3 achieve a higher phosphorescence efficiency of ΦPL = 76 ± 5 and 78 ± 5 %, 

respectively, relative to 37 ± 5 % for fac-Ir(pmb)3 [89]; the difference once more is due to the 

increased stabilization of the triplet states in Ir(pmp)3. Another possible explanation for the 

enhanced ΦPL is a decrease in the torsion angle between the phenyl and pyridoimidazole groups 

in Ir(pmp)3 relative to Ir(pmb)3 caused by a steric interference between the H-atoms at the 1,7 

phenyl and benzimidazole group positions. Substitution of the methine (CH) for N in Ir(pmp)3 

eliminates this conflict. 

 

4.4. Deep blue PHOLEDs based on Ir(pmp)3 

4.4.1. Results 

Figure 4.7 shows the structures of PHOLEDs using fac- or mer-Ir(pmp)3 (denoted by 

devices Dfac or Dmer) along with the highest occupied molecular orbital (HOMO) and lowest 
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unoccupied molecular orbital (LUMO) energies for all organic materials studied [12], [127], 

[128].  

 

Figure 4.7 Structure and energetics of the PHOLED based on fac- and mer-Ir(pmp)3. The 

former and latter devices are denoted by (a) Dfac and (b) Dmer, respectively. HOMO and 

LUMO energies of comprising materials in eV are either calculated or obtained from the 

literature [12], [128], [129].  

 

The LUMO energies are calculated from the reported or measured Ered following Ref. 

[12]. The EBLs consist of the Ir(C^C:)3 themselves [i.e. fac-Ir(pmp)3 and fac-Ir(pmb)3 for Dfac 

and Dmer, respectively] which have equal or shallower LUMO energies than that of the host, as 
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well as equal or larger triplet energy levels than the dopants. This enables efficient hole injection 

into the hole-conducting dopants, while blocking electrons transported via the host. The doping 

concentration in the EML is linearly graded from 20 vol% at the EBL interface to 8 vol% at the 

hole blocking layer (HBL) interface to create a uniform triplet distribution across the EML [50].  

To investigate how injected charges in the EML are transported, we fabricate hole-only 

(HO) and electron-only (EO) transporting devices. HO and EO devices have the same EML with 

mer-Ir(pmp)3 doped at different concentrations of 4, 8, and 20 vol% and other components of the 

respective types are chosen to conduct only holes or electrons, while blocking opposite charges. 

Detailed structures of HO and EO devices are as follows:  

 

HO device – ITO (ultraviolet-ozone treated) / 10 nm CzSi:MoO3 at 15 vol. % / 5 nm CzSi / 5 nm 

fac-Ir(ppz)3 / 40 nm TSPO1:mer-Ir(pmp)3 at 4, 8 and 20 vol. % / 5nm TSPO1 / 5 nm MoO3 / 100 

nm Al.  

EO device – ITO (untreated) / 10 nm CzSi:MoO3 at 15 vol. % / 5 nm CzSi / 5 nm fac-Ir(ppz)3 / 

40 nm TSPO1:mer-Ir(pmp)3 at 4, 8 and 20 vol. % / 5nm TSPO1 / 1.5 nm Liq / 100 nm Al.  

 

The lack of emission from both types of devices confirms negligible charges with the 

undesirable, opposite polarity. Figure 4.8 shows the current density-voltage characteristics of 

HO and EO devices.  
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Figure 4.8 Current density-voltage characteristics of hole-only (left) and electron-only 

(right) devices. They have the same EML structures with different concentrations of 4, 8 

and 20 vol. % (squares, circles, and triangles, respectively) of mer-Ir(pmp)3. 

 

The current density of HO device increases with the doping concentration of mer-

Ir(pmp)3 in the EML, whereas that of EO device is nearly independent of the concentration. This 

indicates that holes and electrons injected into the EML are dominantly transported by the dopant 

and the host (TSPO1), respectively. Due to the nested HOMO and LUMO energies of Ir(pmp)3 

in TSPO1 (Fig. 4.7), the majority of electrons transported via the host are trapped by the dopant 

and then radiatively recombine with the holes on the dopant. Since TSPO1 is preferably electron-

transporting due to its diphenylphosphine oxide group [129], triplets are primarily formed at the 

EBL/EML interface in PHOLEDs (top, Fig. 4.9). 
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Figure 4.9 Charge-transport mechanisms in standard and graded emission layers. The 

standard emission layer (EML, top) is uniformly doped with Ir(pmp)3 (blue circle) at 14 

vol% into TSPO1 host (white rectangular background ) and the graded EML (bottom) has 

linearly graded Ir(pmp)3 at 20 – 8 vol% from the EBL to the HBL boundaries. Black and 

red arrows describe the hole and electron transport trajectories, respectively, which then 

recombine radiatively as illustrated by a yellow starburst. This conceptually demonstrates 

that recombination occurs relatively closer to the HBL boundary for the graded vs. 

uniformly doped EML due to the improved hole injection and transport of the former. 

 

 This necessitates the use of EBLs with high triplet and shallow LUMO energies as 

shown in Fig. 4.7. In the graded EML, an initially high doping concentration (20 vol%) near the 

EBL/EML interface facilitates hole injection and transport, which gradually reduces due to the 

decreasing dopant fraction (8 vol%) at the EML/HBL interface (bottom, Fig. 4.9). The resulting 

triplet exciton densities [50] (or recombination profiles) of both types of EML are shown in Fig. 

4.10. In the uniformly doped EML, ~47 % of triplets are concentrated near the EBL/EML 

interface (x = 0 – 10 nm), which decreases to approximately 33 % in the graded EML due to the 

deeper hole penetration. The distributed recombination profile reduces the probability of 

bimolecular annihilation quenching [39]. 
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Figure 4.10 Triplet density distributions of standard and graded emission layers. The 

standard and graded EMLs are uniformly doped (squares) and graded (circle) with mer-

Ir(pmp)3, respectively, and their triplet density profiles were measured at J = 10 mA/cm2. 

The EQE vs. J of PHOLEDs for both types of EML structures are compared in the inset. 

 

In addition, radiative recombination in the graded EML device occurs farther from the 

EBL/EML interface compared to the uniformly doped EML PHOLED, resulting in enhanced 

light outcoupling.  

 

Figure 4.11 Outcoupling efficiency as a function of dipole location in the emission layer.  

EBL / EML and EML / HBL interfaces are at x = 0 and 40 nm, respectively. 
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Figure 4.11 shows the calculated energy distribution of the dipole as a function of the 

position in the EML following ref. [105]. Assuming a radiative triplet exciton as a point dipole, 

the outcoupling efficiency of the dipole closer to the EML/HBL interface (e.g. x = 30 nm) is 

higher than that at the EBL/EML interface (x = 0 nm). These combined effects of the high 

outcoupling efficiency and reduced bimolecular annihilation contribute to the increased EQE of 

Dmer, as shown in the inset of Figure 4.10. 

 

 

Figure 4.12 EL spectra of deep blue PHOLEDs, Dfac and Dmer. Spectra were measured at 

a current density of J = 10 mA/cm2. The insets are photographs of 2 mm2, packaged 

PHOLEDs whose illumination is reflected from a white background to avoid saturation 

of the camera sensor. The bright irregular square shape in each image is due to light 

scattered from the epoxy package seal. The package is a sandwich of two glass slides, 

one containing electrodes (dark regions) and the other serving as a lid. 

 

Figure 4.12 shows the electroluminescence (EL) spectra of Dfac and Dmer measured at a 

current density of J = 10 mA/cm2, which result in deep blue CIE coordinates of [0.16, 0.09] and 

[0.16, 0.15], respectively. In the inset we show images of the packaged devices along with their 
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characteristic emission color. The EL spectra have nearly identical CIE coordinates compared to 

the PL of the EML, confirming the emission solely from the dopants in the PHOLEDs. 

 

 

Figure 4.13 Current density-voltage-luminance characteristics of Dfac and Dmer. 

 

Figure 4.13 shows the current density-voltage-luminance (J-V-L) characteristics of Dfac 

and Dmer. Dmer turns on at a lower voltage than Dfac (3 vs. 4 V), which is presumably due to 

different charge injection, transport and trapping characteristics [120], and the lower HOMO 

energy of mer-Ir(pmp)3 than the fac-isomer. Although the current densities of Dfac at high voltage 

(> 7 V) are greater than those of Dmer, the latter device still achieves a higher luminance due to 

its red-shifted emission and higher EQE at all current densities. Figure 4.14 shows the EQE-J 

characteristics of Dfac, Dmer and analogous devices whose EMLs are uniformly doped at 14 vol% 

by fac and mer-Ir(pmp)3 (denoted Dfac,uni and Dmer,uni, respectively), and a device without an 

Ir(C^C:)3-based EBL (Dmer,uni,no EBL).  

By employing fac-Ir(pmb)3 as the EBL, the uniformly doped EML PHOLED (Dmer,uni) 

has a markedly higher EQE and reduced efficiency roll-off at high J compared to the PHOLED 
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lacking an EBL (Dmer,uni,no EBL). Therefore, J1/2 increases by almost 280 times, from 0.5 ± 0.1 to 

140 ± 10 mA/cm2, and EQE increases by at least 40 % at all current densities. The EQEs of the 

graded-EML devices employing an EBL (Dmer) are further improved by ~10% at all current 

densities compared to uniformly doped EML PHOLEDs (Dmer,uni), and J1/2 is increased by an 

additional 50% leading to a cumulative improvement by a significant factor of 420. Thus, Dfac 

and Dmer attain EQE = 10.1 ± 0.2 and 14.4 ± 0.4 % at low luminance, decreasing only slightly to 

9.0 ± 0.1 and 13.3 ± 0.1 % at L = 1,000 cd/m2, and by 50% at L = 7,800 ± 400 and 22,000 ± 1000 

cd/m2 (corresponding to J1/2 = 160 ± 10 and 210 ± 10 mA/cm2), respectively.  

 

 

Figure 4.14 EQE vs. current density of deep blue PHOLEDs. The devices have either 

linearly graded or uniformly doped emission layers consisting of either fac- or mer-

Ir(pmp)3. Fits (solid lines) are based on the model in §4.2.5. EQE vs. current density for 

the mer-based PHOLED without an EBL is also plotted. 

 

The difference in EQE of Dfac vs. Dmer is consistent with the trend found in the solid-state 

PL quantum yields (PLQY) for fac- vs. mer-Ir(pmp)3. Figure 4.15 shows the higher PLQY of 
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mer-Ir(pmp)3 than the fac-isomer when doped in TSPO1 at the same concentrations from 2 to 30 

vol% and the values are summarized in Table 4.6.  

 

 

Figure 4.15 Photoluminescence quantum yield of fac- and mer-Ir(pmp)3 doped at various 

concentrations in TSPO1. 

 

Table 4.6 PLQY of fac- and mer-Ir(pmp)3 at various doping concentrations in TSPO1. 

Doping (vol %) 
PLQY (%) 

fac-Ir(pmp)3  mer-Ir(pmp)3 

2 - 21 ± 1 

8 19 ± 2 41 ± 3 

11 36 ± 3 66 ± 3 

14 43 ± 4 73 ± 7 

20 39 ± 4 61 ± 9 

30 30 ± 7 47 ± 8 

* Excited at the wavelength of λ = 325 nm by HeCd laser. 

 

Here, a HeCd laser was used for an optical excitation of only the dopant molecules at λ = 

325 nm [129]. The PLQY of both isomers increases for doping concentrations of 2 to 14 vol%, 

decreasing at higher concentrations. It should be noted that the low PLQY of the thin film (< 

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

 

  fac-Ir(pmp)3

 mer-Ir(pmp)3

P
LQ

Y 
(%

)

Doping concentration (vol %)



 95 

20 %) at a low doping concentration of 2 vol% significantly deviates from that measured in 

solution which is 76 – 78 % in 2-MeTHF.  

The EQE vs. J of graded and uniformly doped fac- and mer-Ir(pmp)3 PHOLEDs in 

Figure 4.14 was modeled to analyze the effect of the distributed recombination profile on device 

performance (see §4.2.5 and Table 4.7). As the doping concentration changes from the uniform 

(14 vol%) to graded (20 – 8 vol%), triplet-triplet annihilation rate (kTT) increases while the 

triplet-polaron annihilation rate (kTP) decreases for both fac- and mer-Ir(pmp)3-based devices. 

The increased kTT is due to a high triplet concentration in the dopant rich (>14 vol%) region of 

the EML (Fig. 4.10). However, the reduced local density of triplets in the graded EML 

compensates for the higher kTT. Also, the significantly lower kTP for the graded devices, which is 

proportional to the charge density [130], is consistent with the measured profiles.  

 

Table 4.7 Parameters for triplet-triplet (kTT) and triplet-polaron annihilation (kTP). 

  Fixed parameter Fitting parameters 

Devices Doping τ (µs)* kTT 

(10−12 cm−3s−1) 

kTP 

(10−13 cm−3s−1) 

Dfac Uniform 

Graded 
1.0 ± 0.1 4.6 ± 0.8 

5.6 ± 0.4 

8.6 ± 0.1 

3.2 ± 0.5 

Dmer Uniform 

Graded 
0.85 ± 0.03 

5.8 ± 0.8 

7.3 ± 0.4 

10 ± 1 

6.4 ± 0.4 

* Triplet lifetime (τ) was obtained from the transient, solid-state phosphorescence decay 

fit [39]. Errors for the model parameter (kTT and kTP) are the 95% confidence interval. 

 

4.4.2. Discussion 

The graded deep blue-emitting phosphor Ir(pmp)3 across the EML serves as a wide 

energy-gap hole transporter that evenly distributes the exciton formation zone, thereby reducing 
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bimolecular triplet annihilation. Note that light blue-emitting materials such as 

iridium(III)bis[(4,6-difluorophenyl)-pyridinato-N,C2’]picolinate (FIrpic) achieve higher emission 

efficiency (> 20%) [131], [132] than deep blue PHOLEDs shown here. This is a result of their 

relatively low emission energies and availability of the corresponding various host 

materials/systems. Given the difficulties of synthesizing hole-transporting hosts for deep blue 

PHOLEDs, using hole-transporting gradient doping via the phosphor itself is clearly an effective 

strategy for improving device efficiency.  

While co-host systems using two different compounds to separately transport holes and 

electrons have previously been shown to improve charge balance in the EML [132], they do not 

generally eliminate the need for an EBL and/or HBL since charge carriers and excitons can still 

leak out from the emission zone without them. To prevent leakage, the comparatively high 

electron mobility in the recent deep blue OLED EML [117], [133] necessitates using an EBL, 

which have minimal impact on the conventional hole-transport dominated structures [134]. The 

significantly improved EQE and J1/2 of our PHOLED primarily results from the Ir(C^C:)3 EBL 

(see Fig. 4.13). As noted, effective blocking by the dopant itself is a unique property of the 

Ir(C^C:)3 family of phosphors with their very shallow LUMO energies and wide HOMO-LUMO 

gaps. Indeed, previously reported deep blue PHOLEDs lacking the EBL are similar to that of our 

unblocked device with its severe efficiency roll-off, whereas the blocked PHOLED 

characteristics are similar to those of conventional red and green-emitting devices. This is 

indicative of charge and exciton confinement achieved in the EML of deep blue PHOLEDs.  

The difference in the solid-state PL efficiencies of the fac- vs. mer-Ir(pmp)3 leads to the 

difference in EQE of Dfac vs. Dmer and is likely due to different degrees of the emitter 

aggregation quenching. Figure 4.16 and Table 4.8 show the PL spectra and characteristics of 
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fac- and mer-Ir(pmp)3 doped at 11 vol% in wide energy gap hosts, p-bis(triphenylsilyly) benzene 

(UGH2), CzSi, and TSPO1, compared to those diluted at 1 vol% in the solution (2-MeTHF). 

When the complexes are doped at a high concentration in host matrices, fac-Ir(pmp)3 tends to 

form more aggregated clusters resulting in a high degree of concentration quenching [45] and 

concomitantly lower PLQY. This may be induced by the high static dipole moment of 17.2 D 

fac-Ir(pmp)3 versus 10.8 D for the mer-isomer, as high dipole moments can promote aggregation 

[135]. This is compared to the nearly same PLQY of diluted fac- and mer-Ir(pmp)3 in the 

solution at a low concentration of 1 vol%. 

 

 

Figure 4.16 PL spectra of fac- and mer-Ir(pmp)3 doped in wide energy gap host matrices 

compared to those diluted in 2-MeTHF. 

 

TSPO1 is a polar host comprised of the phosphine oxide moieties (P=O) and may lead to 

additional phosphorescence losses [136]. Strong interactions between TSPO1 molecules form 
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crystalline domains within an amorphous film, which result in structured, lower energy emission 

bands [129] superposed with those obtained in solution [137] as can be seen in Figure 4.17. 

 

Table 4.8 PL characteristics of thin films of Ir(pmp)3 doped in wide energy gap host 

matrices. Note that PL characteristics of solution samples are included for comparison. 

  Solid-state thin film (11 vol%) Solution (1 vol%) 

 Isomers UGH2 CzSi TSPO1 2-MeTHF 

PLQY (%) 
Facial 66 ± 3 23 ± 1 36 ± 2 76 ± 5 

Meridional 85 ± 4 61 ± 3 66 ± 3 78 ± 5 

FWHM 

(nm) 

Facial 89 80 66 51 

Meridional 83 83 77 76 

CIE (x, y) 
Facial (0.17, 0.16) (0.17, 0.15) (0.16, 0.09) (0.16, 0.04) 

Meridional (0.16, 0.18) (0.16, 0.19) (0.16, 0.14) (0.16, 0.09) 

   

 

Figure 4.17 PL spectrum of TSPO1. Note that the highest energy emission at λ ≅ 310 

nm is from the TSPO1 monomer, while lower energy emission band is from their 

crystalline domain.  
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On the other hand, the polar TSPO1 enables a high solid-state solubility of the Ir(pmp)3 

by preventing interactions between dopants, leading to their physical separation [129], [138]. 

This enables the comparatively high optimal doping concentration of 14 vol% of Ir(pmp)3, as 

well as a narrower and less bathochromic shifted Ir(pmp)3 emission resulting in a more saturated 

blue emission compared with that in other non-polar hosts (see Fig. 4. 16 and Table 4.8). Finally, 

Given that the PL quantum yields at 14 vol% in TSPO1 are higher than at either 20 and 8 vol% 

of Ir(pmp)3 (initial and terminal concentrations of the graded doping in the EML), the optimal 

doping concentrations for EL and PL are different since the dopant also serves as a hole 

transporter in the PHOLED, affecting the charge balance and hence the EQE. 

 

4.5. Conclusions 

We find that deep blue emitting Ir(C^C:)3 complexes can be simultaneously employed as 

triplet emitting dopants, hole transporters and EBLs. This combination of uses in structures 

significantly reduce electron and exciton losses. In particular, fac-Ir(pmp)3-based-PHOLEDs 

achieved remarkably reduced efficiency roll-off at high current density, resulting in very high 

brightness (>7,800 cd/m2) with CIE of [0.16, 0.09] closest to the NTSC requirement among 

reported Ir-based PHOLEDs. The highly emissive mer-isomer of Ir(pmp)3, which is due to the 

strong Ir-NHC ligand bond, enables even brighter PHOLED (>22,000 cd/m2) operation in the 

blue. Our advances in materials design and device architectures provide the guidelines for 

designing efficient and more importantly, long-lived deep blue PHOLEDs. 
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Chapter 5 Exciton density management for long-lived blue 

PHOLEDs 

 

5.1. Intrinsic degradation mechanism of PHOLEDs 

To improve the operational lifetime of the blue PHOLED, it is imperative to understand 

the intrinsic factors that cause the degradation of the materials comprising the device during 

operation and their detrimental impact on the device performance. It was previously suggested 

that bimolecular annihilation in the EML create the energetically hot excited state that leads to 

dissociation of molecular bonds of the EML materials [139]. The density of resulting fragmented 

molecular species increases with time, permanently degrading the device performance. 

 

 

Figure 5.1 Triplet polaron annihilation process causing the degradation of blue 

PHOLEDs. 
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Figure 5.1 shows the schematic of triplet-polaron annihilation or TPA proposed as one of 

intrinsic degradation mechanisms of blue PHOLEDs [33], [140]. The triplet excitons (T1) on the 

blue dopant transfer their energy to the electron polarons (D0) on the host, and subsequently 

decay to the ground state (S0) without producing any photons. The polarons gaining energy from 

the triplets are promoted to energetically higher-lying electronic states called “hot” polarons (i.e. 

D0→Dn
*). Most of the hot polarons internally convert and relax to their original states (D0), but 

some of them can be coupled to a pre-dissociation potential [141] or are possibly routed to the 

dissociation limit, leading to the bond dissociation of the EML molecules. These fragmented 

molecules or defects increase in number with time and permanently reduce the device efficiency. 

For example, the defects may trap and immobilize the electrons or holes, building up space 

charge that causes the operational voltage to rise. Also, defects can directly quench the excitons, 

or trapped charges on the defects can nonradiatively recombine with free charges of the opposite 

polarity, both of which lead to the luminance loss.  

This degradation mechanism explains why the lifetime of blue PHOLEDs is shorter than 

that of the red and green devices. Because of the higher energy of triplet excitons (>2.7 eV) 

needed for blue emission vs. red (2.0 eV) and green (2.3 eV), hot polarons in the blue PHOLEDs 

formed due to the TPA can gain an energy up to 6.0 eV. This high energy surpasses the bond 

dissociation energy of covalent bonds in the molecules, increasing the likelihood that they will 

be cleaved (see Fig 5.1). For this reason, the order of the lifetime of red, green and blue 

PHOLEDs generally follows the reverse order of energies of their excited states. It is therefore 

essential to preserve EML molecules by preventing the generation of hot polarons induced by the 

TPA, and thus the operational stability of the device is improved. In this chapter, we demonstrate 
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a means to reduce the probability of TPA in the blue PHOLED EML by managing the density of 

triplet excitons via graded doping [50].  

 

5.2. Performance of the controlled blue PHOLED 

Figure 5.2 shows the schematic device structure of the controlled blue PHOLED. The 

detailed structure is as follow: 70 nm ITO as an anode / 10 nm dipyrazino[2,3,-f:2’,3’-

h]quinoxaline 2,3,6,7,10,11-hexacarbonitrile (HATCN) as a HIL / 20 nm N,N’-Di(1-naphthyl)-

N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine (NPD) as a HTL / 30 nm EML / 5 nm 3,3-di(9H-

carbazol-9-yl)biphenyl (mCBP) as an HBL / 30 nm Alq3 as an ETL / 1.5 nm Liq as an EIL / 100 

nm Al as a cathode. In the EML, 13 vol% of iridium (III) tris[3-(2,6-dimethylphenyl)-7-

methylimidazo[1,2-f] phenanthridine] (Ir(dmp)3) is uniformly doped into the mCBP host matrix.  

 

 

Figure 5.2 Structure of and molecular formulae used in control blue PHOLED. 

 
We investigate charge transport characteristics in the PHOLED EML by fabricating the 

hole-transport-only (HO) and electron-transport-only (EO) devices. Here, HO and EO devices 

share the same EML structures whose doping concentrations of the blue dopant are varied from 
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0, 8, 13 to 20 vol%. Depending on this compositional change, we can analyze the change in the 

electron and hole transport in the EML. Current density-voltage characteristics of HO and EO 

devices are shown in Figure 5.3. 

 

 

Figure 5.3 Current density vs. voltage of electron-only (EO) and hole-only (HO) devices.  

EO and HO devices have the same EML with varying doping concentrations from 0, 8, 

13, and 20 vol%. 

 

The conductivity of HO devices increases with the doping concentration, while that of 

EO devices is nearly invariant with the doping concentration. This indicates that the holes are 

mainly transported by the blue dopant, while electrons are transported by the host. This is 

consistent with frontier orbitals of the EML molecules, i.e. the blue dopant has more stable and 

thus favorable HOMO level for the hole transport (4.8 ± 0.1 eV vs. 6.0 ± 0.1 eV for the host), 

while the host has more shallow LUMO level that is more suitable for the electron transport (1.2 

± 0.1 eV vs. 1.5 ± 0.1 eV for the dopant, see Fig. 5.2).  
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Figure 5.4 EL spectrum of control blue PHOLED. 

 

Figure 5.4 shows an electroluminescent spectrum of the controlled blue PHOLED, 

whose CIE chromaticity coordinates are (x, y) = (0.16, 0.31). There is no spectral feature of the 

NPD fluorescence that peaks at a wavelength of λ ≈ 425 nm, indicating that electrons are 

effectively blocked by the HTL (NPD) and thus confined within the EML. However, triplet 

excitons may diffuse and potentially leak out of the EML and nonradiatively recombine on the 

NPD HTL, due to its lower triplet energy of ET = 2.3 eV than both blue dopant and the host of ET 

= 2.7 and 2.9 eV, respectively. Without an HBL (i.e. a neat layer of mCBP included between the 

EML and the Alq3 ETL as shown in Fig. 5.2), the fluorescence from Alq3 is observed [33], 

indicating that a high density of holes and excitons may be blocked and accumulated at the 

interface between the EML and the HBL (see below). Figure 5.5 shows time evolution of 

normalized luminance degradation, L(t)/L0, and change in the operating voltage, ΔV(t) = V(t)–V0, 

measured from an initial luminance of L0 = 3,000 cd/m2 under constant current operation. Here, 

V0 is the initial operating voltage of the as-grown device to obtain L0 = 3,000 cd/m2.  
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Figure 5.5 Time evolution of normalized luminance degradation and operating voltage 

rise of the control blue PHOLED. These lifetime characteristics were measured from an 

initial luminance of L0 = 3000 cd/m2 under constant current operation. 

 

The observed, continuous luminance degradation (L(t)/L0) and operating voltage rise 

(ΔV(t)) of the device is caused by a growing number of defects in the EML. The defects, whose 

energies are situated within the energy gap of the device EML, act as nonradiative recombination 

centers, exciton quenchers, and charge traps (see below). The molecular dissociation rate or 

defect formation rate is associated with the frequency of the TPA that increases with the 

densities of excitons and polarons. Unbalanced charge transport between electrons and holes in 

the EML can lead to an irregular distribution of the excitons and the location of the higher 

density of excitons is preferentially degraded. Therefore, it is important to distribute the excitons 

across the EML to reduce their local densities and thereby to reduce the probability of TPA. 

 

5.3. Exciton density management by graded doping 

To verify that the reduced TPA by distributing the exciton density improves the 

operational lifetime of blue PHOLEDs, we fabricated three test devices as shown in Figure 5.6.  
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Figure 5.6 Schematic of blue PHOLEDs with different EML structures. D1 is the control 

device with the 20 nm-thick HTL (NPD) and the 30 nm-thick EML uniformly doped with 

Ir(dmp)3 at 13 vol% into mCBP. Compared to D1, D2 has the widened, 50nm-thick EML 

at the same doping concentration and lacks the HTL. In D3, the doping concentration is 

linearly graded from 18 to 8 vol% across the 50nm-thick EML without the HTL. 

 

D1 is the control device with the 20 nm-thick HTL (NPD) and the 30 nm-thick EML 

uniformly doped with Ir(dmp)3 at 13 vol% into the mCBP host. Compared to D1, D2 has a 

widened, 50nm-thick EML at the same doping concentration (i.e. 13 vol%), but lacks the HTL. 

In D3, the doping concentration is linearly graded from 18 at the HTL/EML interface to 8 vol% 

at the EML/HBL interface across the 50nm-thick EML without the HTL. That is, the average 

volume concentration of blue dopants in the EML of D1, D2, and D3 are same. 
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Figure 5.7 Device performance of blue PHOLEDs. (a) Current density vs. voltage 

characteristics, (b) EQE vs. current density characteristics and normalized EL spectra, (c) 

time evolution of normalized luminance degradation and (d) operating voltage rise for 

blue PHOLEDs (D1, D2, and D3). The solid lines in (c) and (d) are fit based on the TPA 

model. 

 

Figure 5.7 (a) and (b) shows the current density vs. voltage and EQE vs. current density 

characteristics, respectively, of D1, D2, and D3. By increasing the thickness of the EML and 

eliminating the HTL, the conductivity of D2 and D3 decrease compared to that of D1 due to the 

reduced hole conductivity. However, due to the higher doing concentration near the HTL/EML 

interface of D3 (i.e. 18 vol% vs. 13 vol% for D2), holes can be more efficiently injected into and 

transported through the EML of D3 than that of D2, leading to the higher conductivity of D3. D3 
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attains the higher EQE at all current densities than both D1 and D2 due to the reduced 

bimolecular annihilations (see below). The EL spectra measured at a current density of J = 10 

mA/cm2 for D1, D2, and D3 are nearly identical, yielding the same CIE chromaticity coordinates 

of (0.16, 0.31). Thus, we can confirm that the emission is solely produced from the blue dopant 

and a negligible spectral shift is attributed to the minor change in their microcavity conditions. 

Figure 5.7 (c) and (d) show the time evolution of the luminance degradation and the operating 

voltage rise of D1, D2, and D3 measured from the same luminance of L0 = 3000 cd/m2. The 

required operating current densities (J0) to obtain L0 are J0 = 21, 21, and 17.3 mA/cm2 for D1, D2, 

and D3, respectively. T80 of D1, D2, and D3 are 12, 25, and 39 hr, respectively. T80 of D2 is 

increased by 2-fold from that of D1, and D3 attains the even longer T80 than D2 by employing 

the graded doping. The operating voltage rise shown in Fig. 5.7 (d) is indicative of the growing 

number of defects over time. Thus, the lower voltage rise of D3 compared to D1 and D2 is due to 

the lower density of defects present in the EML. Since the trapped polaron on the defect 

nonradiatively recombines with the opposite polaron and the empty defect directly quenches the 

exciton, both of which lead to the luminance loss, a lower density of defects in D3 EML 

contributes to less severe luminance degradation than D1 and D2, leading to the longer T80.  

Figure 5.8 shows the triplet exciton density, N(x), as a function of a distance to the anode, 

x, of the EMLs of D1, D2, and D3 measured at J = 10 mA/cm2. A detailed method of measuring 

the exciton density can be found in ref. [50] and Chapter 6. D1 has a high density of excitons 

accumulated at the EML/HBL interface (x = 60 nm). This is because of more efficient hole 

transport than that of the electrons. In D2, the exciton density near the EML/HBL interface is 

decreased, but the peak appears at x = 25 nm. This is because of the reduced hole transport across 

the broadened EML as well as a lack of the HTL and therefore, electrons can more deeply 
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penetrate towards the anode side of the EML. In D3 EML, a more distributed and smooth exciton 

profile is obtained, because high doping concentration of 18 vol% at the HIL/EML interface (x = 

10 nm) initially facilitates the hole injection and transport, impeding the penetration of the 

electrons. Also, since the doping concentration linearly reduces to 8 vol% towards the cathode 

side (x = 60 nm), holes are gradually blocked and result in the distributed exciton profile without 

having an abrupt peak. 

 

 

Figure 5.8 Triplet exciton density of blue PHOLED EMLs. The local triplet density, N(x), 

as a function of the distance to the anode, x, for the EMLs of D1, D2, and D3 is measured 

at J = 10 mA/cm2. 

 

Note that the densities of excitons of D2 and D3 EMLs vanish at the HIL/EML interface 

of x = 10 nm due to quenching by HATCN. This is presumably due to the extremely stable 

LUMO of HATCN ≈ 5.4 eV that leads to a small energy offset between the LUMO of HATCN 

and HOMO of the blue dopant = 4.8 ± 0.1 eV. Thus, excitons diffused from the blue dopant to 

the HIL/EML interface may relax to low energy exciplex states that nonradiatively recombine or 
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get dissociated. However, this exciton quenching does neither deteriorate the efficiency nor the 

lifetime of the devices (see Fig. 5.7). 

To confirm that the distributed exciton density reduces the TPA and thereby improves the 

device lifetime, we develop a model for fitting both L(t)/L0 and ΔV(t). The coupled rate equations 

for densities of hole (p), electron (n), and excitons (N) are: 

dp(x,t,t ')
dt '

= G(x)−γ n(x,t,t ')p(x,t,t ')− kQnQ(x,t)p(x,t,t ')

dn(x,t,t ')
dt '

= G(x)−γ n(x,t,t ')p(x,t,t ')− kQpQ(x,t)n(x,t,t ')

dN(x,t,t ')
dt '

= γ n(x,t,t ')p(x,t,t ')− 1
τ
+ kQTQ(x,t)

⎛
⎝⎜

⎞
⎠⎟ N(x,t,t ')

  (5.1) 

Two different time scales are used where t' is the duration of charge transport and energy 

transfer (~µs) and t is the device degradation time (~hr) due to the defects with the density of Q(x, 

t). For the simplicity of the model, we assume that defects only trap holes [33]. In the equations, 

G(x) = J0 e ⋅N(x) N(x)dx
EML∫ is the local recombination rate calculated using the measured 

triplet exciton density (N(x), see Fig. 5.8), γ = 1.7×10-13 cm3s-1 is the Langevin recombination 

rate, τ = 1.1 µs is the natural decay time of the dopant triplet exciton, kQp = 4.8×10-14 cm3s-1 and 

kQn = 1.7×10-13 cm3s-1 are rates for hole trapping by the defects and trapped hole-electron 

recombination, respectively, and kQT is the rate for exciton quenching by defects that is used as a 

fitting parameter [50]. The Eq. (5.1) can be solved under steady-state conditions such that t'→∞, 

yielding lim
t '→∞

n(x,t,t '), p(x,t,t ') and N(x,t,t ') = n(x,t), p(x,t) and N(x,t) . Defects (Q(x,t)) are 

generated as a result of the molecular dissociation in the PHOLED EML, which is triggered by 

the TPA between the triplet exciton on the blue dopant and the electron polaron on the host [33]:  

dQ(x,t)
dt

= kQN(x,t)n(x,t)  (5.2) 
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Here, kQ is the rate of molecular dissociation resulted from the TPA and used as a fitting 

parameter. Then, Eq. (5.2) and steady-state n(x,t), p(x,t) and N(x,t) are numerically solved to fit 

both the luminance degradation and operating voltage rise as: 

 

L(t)
L0

= N(x,t)ηOCEML∫ (x)dx,

ΔV (t) = e
ε rε0

xQ
EML∫ (x)dx

 (5.3) 

The TPA model fits the lifetime characteristics of D1, D2, and D3 as shown in Fig. 5.7 

(c) and (d) with similar fitting parameters, i.e. kQ ≈ 1.0×10–11 cm3s–1 and kQN ≈ 7×10–24 cm3s–1 

[50]. This indicates that the lifetime improvement of D3 compared to D2 and D1 results from 

distributed densities of excitons and charges. Note that initial values for the model fit for L(t)/L0 

and ΔV(t) are 0.95 and 0.2 V, respectively. This arbitrary initial condition was chosen to account 

for the rapid initial drop of the luminance and rise of the operating voltage of the devices, 

presumably attributed to water contamination or other external factors [142]. In fact, this is due 

to various types of EML defects with different energetic distribution and those generated outside 

the EML by degradation of charge transport and blocking layers. These aspects in the lifetime 

model will be discussed in Chapter 6.  

As a further step to improve the lifetime of the blue PHOLED, two stacked graded-EML 

devices were fabricated and denoted as D3T. The detailed structure of D3T is as follows: ITO / 

10 nm HATCN / 50 nm graded EML / 5 nm mCBP / 5 nm Alq3 / 70 nm 2 vol% of Li doped into 

Alq3 as an n-doped ETL / 10 nm HATCN / 50 nm graded EML / 25 nm Alq3 / 1.5 nm Liq / 100 

nm Al. Here, n-doped ETL and HIL forms a charge generation interface where two cells are 

connected [143]. Figure 5.9 shows the comparison of electroluminescent and lifetime 

characteristics of D3 and D3T.  
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Figure 5.9 Device performance of tandem blue PHOLEDs. (a) Current density–voltage–

luminance characteristics, (b) EQE vs. current density characteristics and EL spectra, (c) 

triplet exciton density profile in the EML, and (d) normalized luminance degradation of 

D3 and D3T. The solid line is fit based on the TPA model. 

 

As shown in Fig. 5.9 (a), D3T requires nearly twice the voltage of D3 to achieve the same 

current density; however, at the same luminance, D3T obtains the significantly higher EQE than 

that of D3 (e.g. 17.3 vs. 9.0 % for D3T and D3 at L0 = 3000 cd/m2, respectively, see Fig. 5.9 (b)). 

The high EQE of D3T results in its reduced J0 = 9.0 vs. 17.3 mA/cm2 for D3 to obtain L0 = 3000 

cd/m2, thereby reducing the density of excited states in the device EML. Here, J0 of D3T was 

larger than half of that of D3 due to loss in efficiency by stacking devices and the blue shifted EL 

spectrum due to the microcavity effect relative to that of D3. Nevertheless, the lifetime of D3T is 
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significantly increased compared to D3 due to the reduced J0 as shown in Fig. 5.9 (d). For 

example, T80 of D3T = 106 vs. 39 hrs for D3 at L0 = 3,000 cd/m2. In the TPA model, we assume 

that the shape of the exciton profile in the D3T EML is unchanged from that of D3, while its 

density is scaled by their J0 ratio (i.e. by 9.0/17.3, see Fig 5.9 (c)). Based on this assumption, the 

TPA model fits the lifetime data of D3T with the reduced TPA by the reduced J0, leading to the 

slow luminance degradation compared to D3.  

 In summary, T80 of D3T = 106 hrs is enhanced by nearly 9.2 times compared to D1 of 

T80 = 12 hrs at L0 = 3000 cd/m2. This results from the reduced TPA by distributing the exciton 

density in the PHOLED EML via graded doping and by reducing J0 via stacking devices. As a 

result, the molecular dissociation process followed by the TPA is reduced, improving the 

operational stability of blue PHOLEDs. If devices are measured from L0 = 1000 cd/m2, T80 is 

improved from 56 to 616 hrs from D1 to D3T, corresponding to nearly tenfold improvement. 

The strategy of managing the exciton density introduced here can be universally applied not only 

to blue PHOLEDs, but also red and green devices, as well as the fluorescent OLEDs to further 

improve their operational stability. 
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Chapter 6 Hot excited state management for long-lived PHOLEDs 

 

6.1. Introduction to hot excited state management 

The short operational lifetime of blue PHOLEDs has been convincingly attributed to 

annihilation between excited states (i.e. exciton-exciton or exciton-polaron) in the device EML 

[33], [50], [140], [144], resulting in an Auger process that produces a “hot”  (i.e. multiply 

excited) exciton while the remaining state nonradiatively transitions to the ground state. The hot 

state can attain up to double the energy of the initial excited state (≥ 6.0 eV). Thus, there is a 

possibility that energy dissipation of the hot states on the blue dopant or host molecules can 

induce chemical bond dissociation [141], [145]. The probability of this reaction increases with 

the excited state energy, and hence is particularly dominant for blue PHOLEDs compared with 

red and green-emitting analogs.  

The key to realizing long-lived blue PHOLEDs is, therefore, to manage the hot states to 

prevent molecular dissociation. This can be accomplished by reducing bimolecular annihilations, 

or by “bypassing” the dissociative processes altogether. Reduction of bimolecular annihilation 

has recently been demonstrated by evenly distributing excitons and polarons across the EML via 

dopant grading [50]. Here we demonstrate an effective strategy to thermalize the hot states 

without damaging the blue dopant or host molecules in the EML. This approach leads to a 

substantial improvement in the operational stability of blue PHOLEDs beyond that observed to 

date. For this purpose, we add an ancillary dopant called an excited state “manager” into the 
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EML. The manager has a triplet exciton energy intermediate between that of the lowest energy 

triplets of the EML molecules and the hot states generated by bimolecular annihilation. By 

enabling the rapid exothermic energy transfer from the hot states to the manager, the probability 

of direct dissociative reactions in the EML is reduced, leading to a significant improvement in 

the device lifetime.  

To optimize the non-destructive de-excitation of hot states, the manager dopant must be 

located in the region where the triplet excitons have the highest density where bimolecular 

annihilation is most probable. Implementing this strategy, the longest-lived managed blue 

PHOLEDs achieve an approximately 3.6 ± 0.1 and 1.9 ± 0.1 times increased lifetime of T80 = 

334 ± 5 hr at L0 = 1,000 cd/m2, compared to previously reported state-of-the-art conventional and 

graded-EML devices of T80 = 93 ± 9 and 173 ± 3 hr, respectively. To our knowledge, this 

significant improvement results in the longest-lived blue PHOLEDs yet reported. We develop a 

triplet annihilation-based model that accurately predicts the lifetime characteristics of managed 

PHOLEDs for several different device configurations. Based on our results, we provide selection 

criteria for manager molecules that can enable further improvement in the stability of both blue 

phosphorescent and TADF-based OLEDs. 

 

6.2. Experimental methods 

6.2.1. Device fabrication and characterization 

PHOLEDs were grown by vacuum sublimation in a chamber with a base pressure of 

4×10-7 Torr on pre-patterned indium-tin-oxide (ITO) glass substrates (VisionTek Systems Ltd., 

United Kingdom). The device and the structures of GRAD and managed PHOLEDs are as 

follows: 70 nm ITO anode / 5 nm HATCN as a hole injection layer (HIL) / 10 nm N,N’-
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Di(phenyl-carbazole)-N,N’-bis-phenyl-(1,1’-biphenyl)-4,4’-diamine (CPD)[146] hole transport 

layer (HTL) / 50 nm EML / 5 nm mCBP:Ir(dmp)3 8 vol% exciton blocking layer (EBL) / 5 nm 

mCBP hole blocking layer (HBL) / 25 nm Alq3 electron transport layer (ETL) / 1.5 nm Liq as an 

electron injection layer / 100 nm Al cathode. The conventional PHOLED (CONV) has the 

following structure [33], [50]: 5 nm HATCN / 30 nm CPD / 35 nm 13 vol% Ir(dmp)3 uniformly 

doped in mCBP / 5 nm mCBP / 25 nm Alq3 / 1.5 nm Liq / 100 nm Al. The device area is 2 mm2 

defined by the intersection of a 1 mm wide ITO strip and an orthogonally positioned 2 mm wide 

metal cathode patterned by deposition through a shadow mask. HATCN and Alq3 were 

purchased from Luminescence Technology Corporation (Taiwan), CPD was from P&H 

Technology (S. Korea), mCBP and Ir(dmp)3 were provided by Universal Display Corporation 

(Ewing, NJ. USA) and mer-Ir(pmp)3 was synthesized following previous methods [42]. The J-V-

L characteristics of the PHOLEDs were measured [97] using a parameter analyzer (HP4145, 

Hewlett-Packard) and a calibrated Si-photodiode (FDS1010-CAL, Thorlab). The PHOLED 

emission spectra were recorded using a calibrated spectrometer (USB4000, OceanOptics). For 

lifetime tests, PHOLEDs were operated at constant current (U2722, Agilent) and the luminance 

and voltage data were automatically collected (Agilent 34972A). Errors quoted for the measured 

electroluminescent and lifetime characteristics (J0, V0, EQE, T90, T80 and ΔV(t)) are standard 

deviations taken from a population of from three devices. 

 

6.2.2. Exciton profile measurement  

The exciton density profile, N(x), was measured across the EML by inserting ultrathin 

(~1Å) red phosphorescent (iridium (III) bis (2-phenylquinolyl-N, C2’) acetylacetonate (PQIr)) 
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sensing layers at different locations within the EML in a series of blue PHOLEDs. The integrated 

emission intensities of PQIr and Ir(dmp)3 at J0 are converted into the number of excitons at x via: 

Isens (λ, x) = aPQIr (x)IPQIr (λ)+ aIr(dmp)3 (x)IIr(dmp)3 (λ)    (6.1) 

where Isens(λ, x) is the emission intensity consisting of the combined spectra of Ir(dmp)3 

(IIr(dmp)3(λ)) and PQIr (IPQIr(λ)). The relative weights of aPQIr(x) and aIr(dmp)3(x), respectively, were 

used. Then, the outcoupled exciton density, ηout(x)N(x), is equal to the relative number of 

excitons emitting on the PQIr at x as: 

ηOC (x)N(x) = A ⋅EQE(x) ⋅
aPQIr (x) IPQIr λ( ) λ dλ∫

aPQIr (x) IPQIr λ( ) λ dλ∫ + aIr(dmp)3 (x) IIr(dmp)3 λ( ) λ dλ∫
  (6.2) 

Here, EQE(x) is external quantum efficiency of the device with the sensing layer at x; thus the 

right-hand side of Eq. (6.2) gives the relative number of excitons at position x. Also, 

N(x)dx = 1
EML∫ , and ηout(x) is the outcoupling efficiency calculated as the fraction of outcoupled 

light emitted at x based on Green’s function analysis [105]. The Förster transfer length of ~3 nm 

[50] limits the spatial resolution of the measurement. 

 Since the thickness of delta-doped PQIr is less than a monolayer, PQIr molecules are 

spatially dispersed to avoid emission loss by concentration quenching [147]. A delta-doped 

sensing layer only slightly affects the charge transport as opposed to previously used 1–2 nm-

thick, doped layers [50], [148], [149]. This leads to a variation in operating voltages at J0 of < 0.5 

V among all sensing devices (see also the upper panel of Fig. 6.4b). 

 

6.2.3. Lifetime degradation model 

The rate equations for holes (p), electrons (n) and excitons (N) are: 
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dp(x,t,t ')
dt '

= G(x)−γ n(x,t,t ')p(x,t,t ')− kQp QA(x,t)+QB(x,t)[ ] p(x,t,t '),

dn(x,t,t ')
dt '

= G(x)−γ n(x,t,t ')p(x,t,t ')− kQn QA(x,t)+QB(x,t)[ ]n(x,t,t '),   

dN(x,t,t ')
dt '

=  γ n(x,t,t ')p(x,t,t ')+ kQnQB(x,t)n(x,t,t ')− 1
τ N

+ kQNQA(x,t)
⎧
⎨
⎩

⎫
⎬
⎭
N(x,t,t ').

  (6.3)

 

There are two different time scales: t' is the duration of charge transport and energy 

transfer (~µs), and t is the device degradation time (~hr) due to the formation of defect, QA(x,t) 

and QB(x,t). The triplet decay lifetime is τN = 1.4 ± 0.1 µs, obtained from the transient PL decay 

of thin-film EMLs of the GRAD and managed PHOLEDs. Also, 

G(x) = J0 e ⋅N(x) N(x)dx
EML∫ is the generation rate of excitons due to charge injection at 

current J0, γ = e µp + µe( ) ε rε0 is the Langevin recombination rate, where e is the elementary 

charge, µn and µp are the electron and hole mobilities [150], [151] in the EML, respectively, and 

ε0 and εr ~ 3  are the vacuum and relative permittivities, respectively. It follows that 

kQn = eµn ε rε0  is the reduced Langevin recombination rate describing the recombination of 

immobile trapped holes and mobile electrons. 

 

The trap densities, QA and QB, resulting from the TTA increase at rates kQA and kQB are 

given by: 

dQA(x,t)
dt

= kQA N(x,t){ }2 ,
dQB(x,t)

dt
= kQB N(x,t){ }2 .

  (6.4)

 

Eq. (6.3) is solved in steady state (t'→∞), yielding 

lim
t '→∞

n(x,t,t '), p(x,t,t ') and N(x,t,t ') = n(x,t), p(x,t) and N(x,t) , respectively. This set of equations 
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is numerically solved with QA(x,t) and QB(x,t)  to fit both the luminance loss and voltage rise as 

a function of t using: 

L(t)
L(0) = N(x,t)ηOCEML∫ (x)dx  (6.5) 

and 

ΔV (t) = e
εε0

xQ(x,t)dx +
EML∫ x 'Qext (x ',t)dx 'ext∫( )   (6.6) 

Here, ηB(x) is the outcoupling efficiency of the excitons emitted at x, and Qext(x',t) is 

introduced to account for the voltage rise caused by traps present outside the EML. The 

uniqueness of the fit that yields parameters, kQN, kQp, kQA, kQB, and kQext, has been tested and it is 

found that the parameters are uniquely determined by the model.  

Note that when extracting kQext and thus ΔVext(t) from the fits, the polaron densities in the 

EML at J0 are used. However, kQext should more accurately reflect the polaron densities in the 

transport layers due to charge trapping by Qext, and thus, a reduction in layer conductivity. This 

simplifying assumption leads to its large variation among devices compared with other 

parameters. Initial values of QA, QB, and Qext are set at 1015 (cm–3), at which they do not result in 

the initial voltage offset (<0.05 V), but accurately trace the time evolution of ΔV(t) and converge 

to their final values after the iteration of the least-square algorithm. 

 

6.3. Hot excited state management mechanism for blue PHOLEDs 

 Figure 6.1 shows the Jablonski diagram of an EML containing an excited state manager 

and the possible relaxation pathways for excitons. While we will focus our discussion on 

phosphorescent OLEDs, this process also represents the excited state energies available in TADF 

devices; hence a similar degradation pathway is assumed to be active in both cases. The manager 
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can enable the transfer of the hot singlet/triplet state (S*/T*) resulting from triplet-triplet 

annihilation (TTA, process 2) to the lowest excited state of the manager (SM/TM) via process 3’. 

We note that the hot state can be either an exciton or polaron state resulting from either TTA or 

triplet-polaron annihilation (TPA), respectively.  

 

 

Figure 6.1 Jablonski diagram of the EML containing manager molecules. Here, S0 is the 

ground state, T1 is the lowest energy triplet state and S*/T* is a hot singlet/triplet manifold 

of the blue dopant or host. D represents the dissociative state the EML materials. SM/ TM 

is the lowest singlet/triplet state of the manager. Possible energy-transfer pathways are 

numbered as follow: 1) radiative recombination, 2) TTA resulting in excitation to S*/T*, 

2)’ internal conversion and vibrational relaxation, 3) and 4) dissociative reactions leading 

to molecular dissociation, 3)’ exothermic Förster energy transfer for singlet-to-singlet 

transitions, and 3)’ and 5)’ Dexter energy transfer for triplet-to-triplet transitions, and 4)’ 

intersystem crossing and vibrational relaxation. 
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As will be shown below, the system investigated here is dominated by TTA, although 

either or both mechanisms may be active [33]. Furthermore, the hot state (S*/T*) can be one of 

many potential electronic state manifolds above the lowest one. However, given the extremely 

rapid decay rates from the higher states, it is likely that S2/T2 is the most probable hot state for 

inducing dissociative reactions. 

By introducing a manager whose energy SM/TM is greater than that of either the host or 

blue dopant, transfer from S*/T* to SM/TM is allowed, and damage to these molecules via 

dissociative reactions (process 3) is minimized provided that the rate for S*/T*→SM/TM is 

comparable to or higher than  S*/T*→D, where D is the dissociative state for the guest or the host 

in the EML. The energy transfer of the hot state to the manager, S*→SM or T*→TM via process 3’ 

is based on exothermic Förster or Dexter transfer, respectively. In this work we use a heavy 

metal (Ir) complex as the manager. Hence, the transferred singlet state on the manager undergoes 

vibrational relaxation followed by the intersystem crossing to the triplet state (SM→TM via 

process 4’), which subsequently transfers back to the blue dopant or host (TM→T1) via the Dexter 

process 5’. This leads to radiative recombination (process 1), or is recycled back to S*/T* by a 

repeat process. It is also possible that the high energy SM/TM state can result in dissociation of the 

manager itself via SM/TM→DM (process 4), i.e. where the manager serves as a sacrificial additive 

to the EML. Process 4 is not optimal since the number of effective managers decreases over 

time, providing less protection for the host and blue dopant as the device ages. Nevertheless, 

even in this case presence of the manager can still increase device stability. 

From the foregoing discussion, three primary criteria must be met for effective molecular 

design of the manager: (i) The exciton energy of the manager should be intermediate between 

that of the multiply excited (S*/T*) and lowest exciton states (S1/T1) of the host and blue dopants; 
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(ii) the rate of transfer to the manager (process 3’) must be comparable to or higher than that for 

dissociation (process 3); and (iii) the manager should be sufficiently stable such that it does not 

degrade on a time scale short compared to that of the unmanaged device (process 4).  

 

 

Figure 6.2 Energy and doping schemes of managed blue PHOLEDs. (a) Molecular 

formulae of Ir(dmp)3 and mer-Ir(pmp)3, used for the blue dopant and the manager, 

respectively. (b) Energy level diagram of the PHOLED with the manager. Numbers in the 

figure are energies referred to the vacuum level. (c) Doping scheme of the 50 nm-thick 

EML for the graded-EML and managed PHOLEDs, denoted as GRAD and M0, 

respectively. GRAD has the blue dopant graded from 18 to 8 vol% in the mCBP host, 

while M0 is a similarly graded device but with the 3 vol% of the manager replacing the 

blue dopant of the same amount, compared to GRAD, to keep the total doping 

concentration the same for both devices. (d) Managed PHOLEDs M1 – M5 have 

selectively doped 10 nm-thick zones of the EML. The zones have a manager doping of 3 

vol% substituting the blue dopant of the same amount. The other details of the EML are 

identical to that of GRAD. 
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For that purpose, we introduce N-heterocyclic carbene (NHC) Ir(III) complex, 

meridional-tris-(N-phenyl, N-methyl-pyridoimidazol-2-yl)iridium (III) [mer-Ir(pmp)3] [42], as 

the manager in the PHOLED EML. The EML also consists of the blue dopant, iridium (III) 

tris[3-(2,6-dimethylphenyl)-7-methylimidazo[1,2-f] phenanthridine] [Ir(dmp)3] [33], [50], and 

the host, 4,4’-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl (mCBP) [152]. Figure 6.2 (a) 

shows molecular formulae of mer-Ir(pmp)3 and Ir(dmp)3. The manager is characterized by a 

relatively strong metal-ligand bond [106] and a high glass transition temperature of 136 °C. The 

triplet energy of mer-Ir(pmp)3 is 2.8 eV calculated from its peak phosphorescence spectrum (λ = 

454 nm), while its onset is at ET1 ≈ 3.1 eV, higher than that of the blue dopant and host of ET1 ≈ 

2.8 and 2.9 eV, respectively [152] (Fig. 6.3 (a)). Thus, mer-Ir(pmp)3 fulfills criterion (i) of the 

manager, although both criteria (ii) and (iii) are not suitably met by this molecule. Hence, these 

complexes have not been optimized for rapid transfer via process 3’. This is a function of the 

intimate orbital overlap between manager and blue dopant or host; a property controlled by the 

steric and orbital characteristics of all molecules involved. Nor is mer-Ir(pmp)3 particularly 

stable, which can lead to manager depletion with time (process 4) In spite of these shortcomings, 

we find significant lifetime improvements for the managed vs. the non-managed blue PHOLEDs, 

suggesting that there is considerable scope for additional benefits that should arise from 

optimized manager molecules. 

 

6.4. Performance of managed blue PHOLEDs 

Figure 6.2 (b) shows the energy level diagram of the managed devices. The lower energy 

(>1 eV) of the HOMO of the blue dopant compared with that of the host suggests that hole 

transfer is predominantly supported by the dopant molecules and only slightly by the manager, 
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while electrons are transported by both the host and the manager having nearly identical LUMO 

energies. The EML doping schemes of the graded control, and managed PHOLEDs are given in 

Fig. 6.2 (c) (denoted as GRAD and M0, respectively; see §6.2.1). For the GRAD device, the 

concentration of the blue dopant is linearly graded from 18 to 8 vol% from the hole transport 

layer (HTL) to the electron transport layer (ETL) interfaces to enable a uniform distribution of 

excitons and polarons throughout the region. This structure was previously shown[50] to have 

reduced bimolecular annihilation, and thereby achieve an extended lifetime compared to 

conventional, non-graded EML devices (denoted CONV; see §6.2.1). In device M0, a 3 vol% of 

the manager is uniformly doped across the EML, and the concentration of the blue dopant is 

graded from 15 to 5 vol%. To investigate the position of the manager that results in the longest 

operational lifetime, the manager is doped at 3 vol% into 10 nm-thick zones at various positions 

within the 50 nm-thick EML of devices M1 – M5, shown in Fig. 6.2 (d). Except for the zone 

with the manager, the remainder of the EMLs for M1 – M5 are identical to that of GRAD. Thus, 

the total doping concentrations of the managed devices are kept the same as that of the GRAD 

PHOLED. 

Figure 6.3 (a) shows the electroluminescence (EL) spectra of GRAD, M0, M3 and M5 

measured at a current density of J = 5 mA/cm2. The GRAD and managed PHOLEDs exhibit 

nearly identical EL spectra with Commission Intermationale de l’Elcairage (CIE) chromaticity 

coordinates of (0.16, 0.30). This confirms that in managed devices, radiative recombination 

occurs solely on the blue dopant. Note that the excitons can be formed on the manager either by 

direct electron-hole recombination or transferred from hot states via process 3’. Since the lowest 

triplet state of the manager has a higher energy of ET1 = 3.1 eV vs. 2.8 eV for the blue dopant, 

triplets on the manager efficiently transfer back to the blue dopant via process 4’ in Fig. 6.1. 
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Figure 6.3 Device performance of managed blue PHOLEDs. (a) Normalized EL spectra 

of the GRAD and managed PHOLEDs, M0, M3, and M5, measured at a current density 

of J0 = 5 mA/cm2. For comparison, the PL spectrum of the manager [mer-Ir(pmp)3] is 

also shown. (b) Current density-voltage, and (c) EQE-current density characteristics of 

GRAD and selected managed PHOLEDs. Note that between GRAD and the managed 

PHOLEDs, the absolute difference of the operating voltages (V0) and EQE at an initial 

luminance of L0 = 1,000 cd/m2 for the lifetime test are < 1.2 V and 1.0 %, respectively. 

 

Figure 6.3 (b) and (c) show the current density–voltage (J–V) and EQE–J characteristics 

of GRAD, M0, M3 and M5. Table 6.1 summarizes properties of their EL characteristics at L0 = 

1,000 cd/m2. The initial operating voltages (V0) of the managed PHOLEDs (M0 – M5) are higher 

than GRAD by ~1V. This is consistent with the lower hole mobility of the manager compared to 

that of the blue dopant. For example, when a small concentration (< 5 vol%) of the manager is 

added as a substitute of the same amount for the blue dopant, the device resistance marginally 

increases. This is due to the difference in the HOMO levels between the manager at 5.3 ± 0.1 eV 

and 4.8 ± 0.1 eV for the blue dopant, creating a small energy barrier that impedes hole transport 

between the manager molecules. The EQE of the managed PHOLEDs at L0 = 1000 cd/m2 is 

slightly (< 1.0 %) higher than that of the GRAD, leading to the maximum difference in drive 

current density of J0 < 0.6 mA/cm2 needed to achieve the same L0.  
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Table 6.1 EL characteristics for CONV, GRAD and managed PHOLEDs at L0 = 1,000 

cd/m2. 

Device J0 

[mA/cm2] 

EQE 

[%] 

V0 

[V] 

†CIE 

CONV 6.7 ± 0.1 8.0 ± 0.1 6.6 ± 0.0 (0.15, 0.28) 

GRAD 5.7 ± 0.1 8.9 ± 0.1 8.0 ± 0.0 (0.16, 0.30) 

M0 5.5 ± 0.1 9.4 ± 0.1 9.2 ± 0.0 (0.16, 0.30) 

M1 5.4 ± 0.1 9.5 ± 0.1 8.8 ± 0.1 (0.16, 0.29) 

M2 5.4 ± 0.1 9.3 ± 0.0 8.9 ± 0.1 (0.16, 0.31) 

M3 5.3 ± 0.1 9.6 ± 0.0 9.0 ± 0.1 (0.16, 0.30) 

M4 5.2 ± 0.1 9.6 ± 0.2 8.6 ± 0.0 (0.16, 0.31) 

M5 5.1 ± 0.1 9.9 ± 0.1 8.6 ± 0.0 (0.16, 0.31) 

EQE, external quantum efficiency 
† Measured at current density of J = 5 mA/cm2. 

* Errors for the measured values are standard deviation from at least three devices. 

 

Figure 6.4 (a) shows the time evolution of the increase in operating voltage, ΔV(t) = 

V(t)–V0, and normalized luminance loss, L(t)/L0 of GRAD and managed devices. For these 

experiments, the PHOLEDs were continuously operated at constant current to yield L0 = 1,000 

cd/m2 at t = 0. Table 6.2 summarizes the lifetime characteristics (T90, T80 and corresponding 

ΔV(t)) for GRAD and managed PHOLEDs. Managed PHOLEDs (M0 – M5) have increased T90 

and T80 relative to those of GRAD. For example, the longest-lived device M3 has a T90 and 

T80 of 141 ± 11 and 334 ± 5 hr, corresponding to a 3.0 ± 0.1 and 1.9 ± 0.1 times improvement 

from those of GRAD with 47 ± 1 and 173 ± 3 hr, respectively. Compared with CONV having 

T90 and T80 of 27 ± 4 and 93 ± 9 hr, M3 achieves 5.2 ± 0.2 and 3.6 ± 0.1 times improvement in 

T90 and T80, respectively. Here, T90 and T80 are used to determine the short- and long-term 

effectiveness of the excited state management, indicative of its potential use in PHOLED-based 

display and lighting applications. Although these applications may impose somewhat different 
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requirements (e.g. T95 or T70, respectively), consistent improvements in both T90 and T80 

indicate the usefulness of the manager in both applications. 

 

Table 6.2 Lifetime characteristics for CONV, GRAD and managed PHOLEDs at L0 = 

1,000 cd/m2 

Device T90 

[hr] 

T80 

[hr] 

ΔV(T90) 

[V] 

ΔV(T80) 

[V] 

CONV 27 ± 4 93 ± 9 0.3 ± 0.1 0.4 ± 0.1 

GRAD 47 ± 1 173 ± 3 0.6 ± 0.1 0.9 ± 0.1 

M0 71 ± 1 226 ± 9 0.9 ± 0.1 1.2 ± 0.1 

M1 99 ± 3 260 ± 15 1.2 ± 0.1 1.6 ± 0.1 

M2 103 ± 0 285 ± 8 0.7 ± 0.1 1.0 ± 0.1 

M3 141 ± 11 334 ± 5 1.1 ± 0.1 1.5 ± 0.2 

M4 126 ± 7 294 ± 16 1.0 ± 0.1 1.3 ± 0.1 

M5 119 ± 6 306 ± 3 0.9 ± 0.1 1.2 ± 0.1 

* Errors for the measured values are standard deviation from at least three devices. 

 

The reduced lifetime improvement by the manager from 3.0 ± 0.1 to 1.9 ± 0.1 times 

increases in T90 and T80, respectively, for M3 is attributed to the degradation of the manager 

molecules via process 5. We found that increasing the manager concentration to > 3 vol% in the 

EML neither improves the lifetime nor the efficiency, while it leads to an increased operating 

voltage due to the low hole mobility of the manager. To further enhance both efficiency and 

lifetime of the devices, manager molecules with improved stability and hole mobility than mer-

Ir(pmp)3 are required. 
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Figure 6.4 Lifetime of managed blue PHOLEDs. (a) Lifetime characteristics of managed 

PHOLEDs M0, M3 and M5, compared with GRAD. Top and bottom show the time 

evolution of the operating voltage change, ΔV(t) = V(t)–V0, and the normalized luminance 

degradation, L(t)/L0, respectively. Solid lines are fits based on the model in §6.2.3 (see 

fitting parameters in Table 6.3). (b) (Top) Exciton density profile, N(x), of the PHOLED 

emission layer (EML) as a function of position, x, and operating voltages of the devices 

using delta-doped sensing layer at J = 5 mA/cm2. The origin of the x-axis is at the 

HTL/EML interface. The operating current density results in a luminance of L0 = 1,000 

cd/m2. (Bottom) Lifetimes (T90 and T80) of managed devices (M1 – M5) as functions of 

the position of the managed EML zones. T90 and T80 of the managed devices are 

compared with those of the GRAD (dotted lines). Note that the variation in lifetime 

qualitatively follows the exciton density profile, suggesting that placing the manager at 

the point of highest exciton density results in the longest device lifetime. 

 

The upper panel of Fig. 6.4 (b) shows the measured triplet density profile, N(x), in the 

GRAD EML at J0 = 5 mA/cm2, where x is the distance from the EML/HTL interface. The T90 

and T80 of managed PHOLEDs (M1 – M5) are compared as functions of the manager position in 
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the EML in the lower panel in Fig. 6.4 (b). Note that the variation in lifetime qualitatively 

follows the exciton density profile. For example, the manager in M3 is located at 20 nm < x < 30 

nm, which is at the point of highest measured exction density relative to those of the other 

managed devices. Hence, it is anticipated that the effectiveness of the manager at this position is 

greatest, as is indeed observed from the data in this figure (Table 6.2).  

Finally, the change in operating voltage, ΔV(t), required to maintain a constant current 

density of the managed PHOLEDs is larger than that of GRAD, while their rate of luminance 

degradation is reduced (Fig. 6.4 (a)). This suggests the formation of polaron traps that have no 

effect on the luminance. 

 

6.5. Discussion 

The degraded products by molecular dissociation can be formed in any and all PHOLED 

layers, but those located in the EML play a dominant role in affecting the device luminance. On 

the other hand, changes in the device operating voltage can arise from defects generated both 

within and outside the EML. Therefore, a premise in understanding device lifetime is that both 

the energetics and positions of the defects in the PHOLEDs can influence their performance in 

different ways.  
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Figure 6.5 Lifetime model for managed PHOLEDs. (a) (Left) Energy level diagram of 

the doped EML along with proposed positions of QA and QB. Here, QA and QB are 

assumed to be hole traps, with QA deeper in the energy gap than QB. Holes are 

transported by the blue dopant and the manager, and are potentially trapped by QA and 

QB. Electrons are transported by the host and the manager. (Right) Energy diagram of the 

triplet exciton states in the EML. The sources of triplet excitons in the as-grown device 

due to charge recombination are twofold: triplet exciplexes (ET,ex) generated between the 

host and the blue dopant, and triplet excitons directly formed on the manager (ET,M). Both 

can exothermically transfer to the blue dopant (ET,dop). QA, the deep hole trap, has a low-

energy triplet state that results in exciton quenching (ET,QA), while QB, the shallow trap 

(ET,QB), transfers excitons to the lower energy sites. (b) Average QA and QB generation 

rates in the EML, PA(t) and PB(t), from hot states in CONV, GRAD, and managed 

PHOLEDs. The total defect generation rate is Ptot(t) where t = 100 hr. (c) Relative 

contributions to the voltage rise with respect to V0 induced by defects within and outside 

the EML (i.e. QA + QB and Qext, respectively) at t = 100 hr. The separate contributions to 

the voltage rise, ΔVEML(t)/V0 and ΔVext(t)/V0, along with V0 are shown. 
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To model the lifetime data, we consider that two types of dissociated products, QA and 

QB, are generated by the hot states within the EML. For simplicity, both are assumed to be hole 

traps [153], with QA lying deeper in the energy gaps of the host and blue dopant than QB, as 

shown in Fig. 6.5 (a). Both traps are charged when filled, leading to an increase in voltage, 

ΔV(t). Shockley-Read-Hall (SRH) nonradiative recombination occurs for holes trapped on QA. 

Likewise, exciton quenching via triplet states at QA results in a decrease in luminance (Fig. 6.5 

(a)). On the other hand, shallow QB defects can capture excited states that are subsequently 

transferred to the blue dopant, and thus do not affect the PHOLED luminance. Note that the 

triplets on the blue dopant (at energy ET,dop) are transferred from exciplex states originally 

formed between the hole on the blue dopant and the electron on the host (ET,ex) [50], as well as 

from excitons formed directly on the manager (ET,M). The latter is possible because, as implied 

by the energy scheme in Fig. 6.5 (a), the manager is found to transport both electrons and holes 

in the EML. 

Based on these considerations, we developed a lifetime model for fitting L(t)/L0 and 

ΔV(t) of CONV, GRAD, and managed PHOLEDs similar to that previously reported [50]. The 

best fit is provided by assuming that defects generated in the EML are the result of TTA without 

needing to include TPA processes. This differs from previous conclusions claiming that TPA is 

the dominant path to failure, although it was noted that both TPA and TTA might be active in 

defect formation [140], [144]. Indeed, whether TPA or TTA is the dominant degradation 

mechanism is dependent on several factors including the details of the materials used for the host 

and dopant, the distribution of charges and excitons within the EML at a particular current 

density, and so forth. In any case, all of these analyses implicate hot exciton states as the source 

of the loss of luminance and operating voltage rise in the aged blue PHOLEDs. Thus, 
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introducing exciton managers in regions with the highest exciton density results in the longest 

lifetime, as is indeed the case for M3.  

The model also includes the effects of degradation of layers outside the EML, resulting in 

the increase of the operating voltage without affecting luminance. These include the degradation 

of the charge transport (i.e. HTL and ETL) and blocking layers, and the electrodes, all of which 

are commonly observed in aged devices [154]–[156]. This extrinsic degradation is possibly due 

to polaron-induced charge traps of density, Qext [156]. Unlike QA and QB however, Qext only 

accounts for ΔV and not ΔL (Eq. (6.6)). For simplicity, it is assumed that charge and exciton 

blocking properties of the devices are unchanged over time.  

Table 6.2 summarizes the parameters used for fitting the lifetime data for CONV, GRAD 

and the managed PHOLEDs. The defect generation rates kQA and kQB, are similar for most 

devices, yielding nearly similar QA and QB in the managed PHOLEDs, which are smaller than 

those in the GRAD and CONV over the same operational period, t. For example, QA and QB in 

M3 at t = 100 hr are (5.4±0.1) and (5.5±0.1)×1016 cm–3, while those in GRAD are (6.1±0.2) and 

(6.3±0.1)×1016 cm–3, and those in CONV are (7.3±0.2) and (8.2±0.1)×1016 cm–3, respectively. 

The routes leading to luminance loss are: (i) SRH recombination between trapped holes on QA 

and electrons at rate, kQnQAn, and (ii) direct exciton quenching by QA at rate, kQNQAN. Here, kQn 

and kQN are the reduced Langevin and defect-exciton recombination rates, respectively, and n 

and N are the steady-state densities of electrons and excitons, respectively (Eq. (6.3)). Reduction 

in both terms in the managed PHOLEDs compared to CONV and GRAD is primarily attributed 

to their correspondingly lower QA, which results in their reduced rate of luminance degradation. 

The defect formation reaction rate within the EML is given by P(t) =
1

dEML

dQ(x,t)
dtEML∫ dx . 
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Figure 6.5 (b) shows the rates for generating QA and QB, and QA + QB  (PA(t), PB(t), and Ptot(t), 

respectively) at t = 100 hr. For example, for CONV, Ptot = (1.3±0.1)×1014 cm–3hr–1 is reduced to 

Ptot = (1.0±0.1)×1014 cm–3hr–1 for GRAD, and decreases further to Ptot = (0.8 ± 0.1)×1014 cm–3hr–

1 for M3. It is remarkable that only a 15% decrease in the defect formation rate for managed vs. 

graded doping devices leads to a nearly two-fold improvement in T80, suggesting that even a 

small change in the probability of dissipation of excess energy can have large effects on 

extending device lifetime.  

Note that since the luminance loss is primarily due to QA, the high PA of CONV and 

GRAD of (6.1±0.4) and (4.9±0.3)×1013 cm–3hr–1 leads to a luminance of < 800 and 850 ± 10 

cd/m2, respectively, as opposed to that of M3 = 920 ± 10 cd/m2 with PA = (4.0±0.1)×1013 cm–3hr–

1 at t = 100 hr. On the other hand, M3, M4, and M5 have similar PA, yielding a luminance of 

915±5 cd/m2, while PB are (4.2±0.1), (4.3±0.2), and (4.7±0.1)×1013 cm–3hr–1, respectively. This 

larger variation in PB results since QB can return excitons to the dopants where they have a 

renewed opportunity to luminesce, and thus its effect on the in luminance is small compared to 

PA. 

The percentage contributions of kQnQAn to the luminance degradation (i.e. kQnQAn + 

kQNQAN) is 90 ± 2 % for most devices. This indicates that SRH recombination is the dominant 

luminance decay mechanism due to the presence the large density of injected polarons that are 

lost prior to exciton formation.  

When hot states are generated in blue-emitting devices, all molecular bonds are 

potentially vulnerable to dissociation by the very high energy of the hot states (ET* ~ 5.4–6 

eV)[156]. That is, QA and QB may result from many possible molecular fragments or defect 

species, but for our purposes we simply assign two discrete energy levels without identifying a 
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particular compound. This assumption can lead to somewhat larger uncertainties in the hole 

trapping rate (kQp) compared with other parameters extracted from the model (see Table 6.3).  

 

Table 6.3 Parameters for lifetime model for CONV, GRAD and managed PHOLEDs. 

Device 
kQN 

[10-11 cm3/s] 

kQp 

[10-7 cm3/s] 

kQA 

[10-21 cm3/s] 

kQB 

[10-21 cm3/s] 

kQext 

[10-21 cm3/s] 

CONV 3.3 ± 0.4 0.7 ± 0.2 0.9 ± 0.1 1.0 ± 0.1 0.06 ± 0.01 

GRAD 2.3 ± 0.2 0.9 ± 0.2 0.9 ± 0.1 1.0 ± 0.1 0.2 ± 0.01 

M0 2.3 ± 0.1 1.3 ± 0.2 1.0 ± 0.1 1.0 ± 0.1 0.5 ± 0.1 

M1 2.1 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 1.0 ± 0.1 0.8 ± 0.1 

M2 1.9 ± 0.1 3.0 ± 0.7 0.9 ± 0.1 0.9 ± 0.1 0.5 ± 0.1 

M3 1.9 ± 0.1 3.0 ± 0.8 0.9 ± 0.1 0.9 ± 0.1 1.0 ± 0.3 

M4 2.1 ± 0.1 2.1 ± 0.5 0.9 ± 0.1 1.0 ± 0.1 0.8 ± 0.2 

M5 2.0 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 0.3 ± 0.1 

* Errors for the model parameters are the 95 % confidence interval for fit. 

 

Nevertheless, we note that kQp is generally higher for the managed PHOLEDs than that 

for CONV or GRAD, possibly resulting from energy levels arising from multiple species. This is 

offset by the relatively small density of QA in the managed PHOLEDs, additional exciton 

generation via QB (Eq. (6.3) in §6.2.3), and reduced exciton loss due to the smaller kQN.  

Compared to CONV and GRAD, the managed PHOLEDs have a lower rate of exciton-

defect interactions (kQN), indicating that fewer excitons are eliminated due to the quenching by 

QA (Fig. 6.5 (b)). Now, kQN ≅ 2.0 × 10–11 cm3/s of the aged PHOLEDs is larger by nearly two 

orders of magnitude than the TTA rate of kTT ≅ 1.0 × 10–13 cm3/s obtained from the transient PL 

of the as-grown PHOLED EML. This implies that the reduction of luminance over time is 
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severely impacted by defect-related exciton loss compared to increased TTA, while the latter 

reaction still plays a critical role in triggering molecular dissociation reactions.  

Figure 6.5 (c) shows ΔVEML(t)/V0 and ΔVext(t)/V0 for CONV, GRAD and managed 

PHOLEDs. These are the relative contributions to the total voltage rise induced by defects within 

and outside of the EML (i.e., QA + QB and Qext, respectively) at t = 100 hr with respect to V0, the 

initial operating voltage needed to achieve L0. CONV and GRAD have relatively high ΔVEML(t) 

compared to the managed devices due to the higher defect densities in the EML. Note that the 

relative contributions to the total voltage rise are dominated by Qext for the more resistive devices 

(i.e. GRAD and managed PHOLEDs compared to CONV), which also have a slightly higher V0. 

Due to the lack of this consideration, previous models [33] underestimated ΔV(t) or added an 

arbitrary constant voltage [50] to explain the discrepancy between the model and measurement.  

The generation rate of Qext that produces ΔVext(t) is kQext, which is generally higher for the 

managed PHOLEDs than CONV and GRAD. This results from the higher resistivity of the 

devices due to thick EML, as well as the lower hole mobility of the manager relative to that of 

the blue dopant (Fig. 6.3(b)). Using a simple approximation based on space-charge-limited 

transport [64], the mobility in the managed EML is reduced by ~20% compared to that of the 

GRAD EML. Due to the limited hole transport in the managed devices, the polaron density in the 

HTL is increased, accelerating degradation [156], [157].  

In summary, L(t)/L0 is accurately modeled by assuming the formation of both deep (QA) 

and shallow defects (QB) in the EML. To fully account for ΔV(t), however, defects formed in 

other non-luminescent layers of the PHOLEDs (Qext) were also considered.  

Finally, we note that hot state management strategies proposed here may also be useful in 

extending the lifetime of OLEDs based on TADF. Similar to electrophosphorescence, TADF is 
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based on the generation of triplets with natural lifetimes [36] typically > 5 µs. Hence, these 

devices should, in principle, undergo the same degradation process as PHOLEDs. Indeed, to date 

TADF OLEDs have shown lifetimes considerably shorter than those based on 

electrophosphorescence, with the problem once more being particularly acute for blue emission. 

 

6.6. Conclusions 

We demonstrated a strategy to manage hot excited states that otherwise lead to 

dissociative reactions and deteriorate the operational stability of blue PHOLEDs. By introducing 

excited state manager molecules into the PHOLED EML, we achieve to our knowledge the 

longest lifetime reported thus far for blue-emitting devices. Our findings emphasize the 

importance of physics-based solutions such as excited state management or similar approaches to 

further improve the lifetime of blue PHOLEDs. While such solutions are essential, they must be 

accompanied by the development of highly stable dopants, managers, hosts and transport 

materials; a challenge made all the more difficult by the very wide energy gaps required for blue 

PHOLEDs. The properties required for successful manager molecules are, therefore: (i) high 

molecular stability, (ii) a wide energy gap intermediate between that of the host and dopant 

molecules and their hot excited states, (iii) significant molecular orbital overlap with the EML 

components to ensure rapid energy transfer prior to molecular degradation, along with 

morphological properties that can assist in charge transport. We also developed a 

phenomenological model that establishes the roles and characteristics of defects present in the 

device, providing a convincing fit to the time dependence of both luminance decay and voltage 

rise of managed and unmanaged blue PHOLEDs. Direct spectroscopic measurements of defect 

characteristics can be useful in determining their energetic properties as well as their chemical 
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origins. This will provide meaningful information to develop a suite of stable manager materials, 

enabling even longer-lived and deeper blue PHOLEDs than those reported here.  
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Chapter 7 Future work 

 

7.1. Mechanically stacked, white phosphorescent organic light-emitting diodes 

For solid-state lighting, it is desirable to develop highly efficient, long-lived white 

phosphorescent organic light-emitting diodes (WOLED). The selected combination of red, green, 

and blue, or yellow and blue PHOLEDs should produce white light with the desired color 

quality, i.e., CIE coordinate, color temperature (CT) and color rendering index (CRI). Color 

stability is an important performance metric for white-emitting devices and should remain 

unchanged during continuous operation until at least up to T70. However, due to the accelerated 

luminance degradation of the blue-emitting cells compared to red- or green-emitting ones, the 

color of WOLED emission will likely turn yellowish after use. Therefore, it is required to adjust 

the luminance of the each cell during operation to maintain the color quality of white light. 

However, this is not easily achieved in conventional stacked WOLEDs where individual cells are 

serially connected and operated by the same drive current.  

Here, we propose an idea of independently operated blue and yellow PHOLEDs that are 

mechanically stacked, and their cathodes are electrically connected through the metal conductor. 

This results in a three-channel WOLED with controllable color. Figure 7.1 demonstrates a 

schematic diagram for unidirectional and bidirectional emission, mechanically stacked WOLEDs 

(MS-WOLED).  
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Figure 7.1 Structures of mechanically stacked white OLEDs. 

 

Here, blue and yellow PHOLEDs are fabricated on individual transparent substrates, and 

are stacked such that their electrodes are electrically connected via cold-welded gold that is 

patterned along the edges of the top electrodes of both devices. Note that the width of the gold 

connector should be sufficiently thin to ensure a large device aperture ratio, and its thickness 

should minimize the optical loss. Sharing a common ground, devices in the MS-WOLED can be 

operated by different anode channels so that the luminance of individual devices can be 

independently controlled to produce white light with the desired color coordinates.  

Depending on the device structure, the MS-WOLED can produce either unidirectional or 

bidirectional light emission. For both types, at least one PHOLED should be transparent, while 

the other device can have a transparent electrode for one side and with a reflective metal or 

transparent electrode for the other side, resulting in unidirectional or bidirectional MS-WOLEDs, 

respectively.  
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Figure 7.2 Structures of transparent, green-emitting PHOLEDs. 

 

Figure 7.2 shows the transparent PHOLED structures that can be employed in the MS-

WOLEDs. Transparent PHOLED structures employ ITO both as the anode and cathode, while 

the inverted structure has the organic layers deposited in reverse order compared to the 

conventional one. Here, we dope the transport layers to increase conductivity, resulting in p–type 

or n–type doped HTL (p–HTL) or ETL (n–ETL), respectively. Thus, hole or electron injection 

from electrodes into the p–HTL or n–ETL is achieved via tunneling, which does not significantly 

impact the device conductivity and thus the efficiency of the PHOLEDs [158]. The additional 

advantage of conductivity doping is that we can make the p–HTL or n–ETL thick without 

significantly increasing the device resistivity. The thick doped transport layers prevent damage to 

the EML induced by ITO sputtering, which otherwise negatively affects the device performance.  

Figure 7.3 shows the current density (J)–voltage (V) characteristics of conventional and 

inverted transparent PHOLEDs, denoted as Conv and Inv, respectively with structures given in 

Fig. 7.2. The inset of Fig. 7.3 shows the electroluminescence (EL) spectra of the transparent 

PHOLEDs measured from the substrate side and from the sputtered ITO electrode side, denoted 
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as Bottom and Top, respectively. This notation similarly applies to the measured EQE shown in 

Fig. 7.4 (see below). 

 

 

Figure 7.3 Current density vs. voltage of conventional and inverted transparent 

PHOLEDs. Inset: EL spectra of top and bottom emission of each device type. 

 

Both Conv and Inv devices show slight variations in their EL spectra between Bottom 

and Top emission due to the microcavity effect. This can be controlled by modifying the 

thickness of the p–HTL or n–ETL so that the optical resonance can be engineered without 

impacting the electrical characteristics of the devices [159].  

Figure 7.4 shows the EQE of bottom and top transparent PHOLEDs along with their 

summed values, denoted as Bottom, Top, and Total, respectively. For both structures, the total 

EQE is nearly comparable to that measured from conventional PHOLEDs having a reflective 

metal and transparent electrodes for unidirectional light extraction. Thus, the given transparent 

PHOLED structures with either direction of deposition can be adopted in the MS-WOLEDs 

without inducing any potential electrical or optical losses. 
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Figure 7.4 EQE vs. current density of conventional and inverted transparent PHOLEDs. 

 

 

Figure 7.5 Pictures of the operating transparent PHOLED pixel. 

 

Figure 7.5 shows the pictures of the transparent PHOLED pixel when it is off and on 

under room light. The device emission from the top is directly seen while the bottom emission is 

deflected by the photodiode placed underneath. When the device is not operating, the 

photodetector can be seen through the device due its high transparency. Therefore when used in 

MS-WOLEDs, the transparent PHOLED does not absorb emission produced from the other 

paired device. Finally, since MS-WOLEDs have two substrates attached with their devices 
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facing inwards, we can apply epoxy along their edges for encapsulation without needing 

additional barrier glass to prevent oxygen and water penetration. The outcoupling methods such 

as microlens arrays can be used to boost the efficiency [101] (see Fig. 7.1). 

 

7.2. Triplet exciton quenching for long-lived blue PHOLEDs 

It has been shown that the reduction of bimolecular annihilation is crucial for improving 

the operational stability of blue PHOLEDs [33], [50]. In the PHOLED EML, the long natural 

decay time of the triplet exciton (τ > 1 µs) leads to its diffusion over long distances. The long-

lived triplet exciton has a higher probability of finding another active excited state to annihilate.  

Figure 7.6 shows the modeled luminance degradation of a blue PHOLED with varying 

decay times of the triplet exciton (τ). Other parameters used to generate the response are fixed 

and were extracted from the model used for the managed PHOLEDs (see Chapter 6). If τ 

decreases from 1.5 µs to 0.9 µs, the device operational lifetime, T80, is significantly increased 

from 110 hr to 465 hr, resulting in a fourfold improvement.  

 

Figure 7.6 Luminance degradation of PHOLED as a function of triplet natural lifetimes. 
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There are multiple approaches to reduce τ: (i) design the blue phosphorescent emitter 

with an enhanced metal-ligand charge transfer character [71] (see Chapter 4), (ii) optically 

modify the device structure with an increased Purcell factor, or (iii) provide an additional energy 

transfer pathway for the triplets. Approach (i) is challenging because molecules with good 

luminescence characteristics, molecular stability, as well as a large energy gap for blue emission 

are difficult to design, since these properties are not compatible with each other. Approach (ii) 

requires a change in the distance of the emission zone to the metal cathode by a significant 

amount (>100 nm) in the conventional PHOLED structure, or adding components such as thin 

metal electrodes or distributed Bragg reflectors (DBR) that can modify the optical resonances of 

the device. This generally makes the device emission dependent on the wavelength and viewing 

angle.  

Here, we propose a means for approach (iii) by introducing an extremely small amount 

(<0.5 vol%) of stable, triplet exciton quenching molecules in the blue PHOLED EML. This so-

called “quenching manager” should have a lower triplet energy than that of the blue dopant to 

allow for exothermic triplet transfer, should be stable, and should not allow light emission from 

the triplet states. The Liq molecule can be a potential candidate for this purpose. It has been 

reported that the thin Liq layer was inserted between the EML and the HBL of the TADF OLED, 

resulting in a tenfold lifetime improvement (see below) [37].  
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Figure 7.7 Schematic diagram of PHOLED EML containing triplet exciton quenchers. In 

the given EML system, hole polarons injected from the HTL are transported via the blue 

dopant and electron polarons injected from the ETL are transported via the host. Exciplex 

states are then formed between the hole on the blue dopant and electron on the host, 

which are subsequently transferred to the triplet states on the blue dopant. Triplet exciton 

quenching manager molecules are lightly doped (<0.5 vol%) to eliminate the excessive 

number of triplet excitons and thus to reduce their “effective” natural decay time. 

 

Figure 7.7 shows the schematic EML of blue PHOLEDs with hole transport (HTL) and 

electron transport layers (ETL). At a high brightness (L0 > 1,000 cd/m2) an excess number of 

excitons are generated more than needed, potentially leading to bimolecular annihilation. Thus, 

even the small fraction of quenching managers can efficiently eliminate triplet excitons so that 

their “effective” natural decay time is reduced. To maximize lifetime without significantly 

altering the device conductivity, the quenching manager is locally doped only in the zone of the 

EML where the triplet exciton density is the highest.  
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In addition, the quenching manager can be inserted at the EML interfaces adjacent to the 

HTL and ETL. There exist potential barriers for hole and electron polarons at such interfaces 

where the polarons are likely to accumulate, leading to the high likelihood of their interaction 

with excitons in the EML. Degradation of the organic/organic interface has been reported, which 

is attributed to the charge accumulation at interfaces and is accelerated if excitons are present 

nearby within the TPA interaction radius [144]. The EML interface is where charge injection and 

blocking of the opposite charges and excitons occur that critically impact the device 

performance. Thus, the interfacial degradation may degrade the device stability more severely 

than that occurring in the bulk of the EML.  

By inserting the quenching manager at the EML interface, the triplet excitons can be 

eliminated before they interact with the charges via TPA and the operational stability of the 

device will improve. Employing a similar approach, a nearly tenfold improvement of the lifetime 

has been achieved in green TADF OLEDs [37] (T90 = 175 → 1115 hr). 

A major drawback of using the quenching manager is that it can also reduce the radiative 

recombination rate of the triplet excitons along with the bimolecular annihilation, leading to 

reduced device efficiency. The device having the quenching manager may require a higher drive 

current density (J) to achieve the target brightness. Increased J promotes the TTA and TPA due 

to a high density of excited states.  
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Figure 7.8 Luminance degradation of PHOLED as a function of driving current densities. 

 

Figure 7.8 shows the modeled luminance degradation of a blue PHOLED. As J increases 

from 5.0 mA/cm2 to 7.0 mA/cm2, T80 decreases from 305 hr to 150 hr. However, we note that 

this calculation does not take into consideration the interfacial protection and reduction in the 

triplet decay time that are potential advantages expected by having the quenching manager. If 

such a positive impact of the quenching manager overwhelms the negative one induced by the 

reduction of the device efficiency, the overall operational lifetime of the device will be 

improved. More importantly, the investigation of the device with the quenching manager at the 

EML interface will provide important clues to understand the impact of the interfacial 

degradation on the device performance, e.g. the change of charge injection or blocking leading to 

the charge imbalance, or loss of exciton blocking ability, and also the impact of interfacial TPA 

reduction on the operational stability of the PHOLEDs. 
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APPENDIX A Raytracing algorithm for PHOLED concentrator 
 

A.1. Algorithm and assumptions used for the tray-tracing simulation 

  

 

Figure A1. Ray-tracing algorithm for the single panel concentrator device. 

 

 (a) Decomposition of the ray with initial intensity, I0, at the polar angle, φ, and the azimuthal 

angle, ϕ, with respect to the normal and the median of the concentrator panel, respectively. The 

forward component is directed toward the aperture (blue), and the lateral component is confined 

within the concentrator (black), being reflected by adjacent device panels and attenuated. Here, φ 
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and ϕ are varied from -90° to 90° and 0° to 180°, respectively. (b) Ray tracing of the forward 

component, , at an initial emission angle, β, with respect to the normal of the concentrator 

panel. Note that the original intensity I0 of the ray emitted at an arbitrary position x from the 

vertex of the concentrator satisfies the Lambertian distribution (see Figure 4 in text), and its 

forward compoenent intensity I and emission angle β are determined vs. φ and ϕ. As the ray is 

reflected by the opposing panel, its intensity is attenuated by the PHOLED reflectance, RPHOLED, 

and its reflected angle is increased by the apex angle, θ, of the concentrator. Then the ray travels 

the length, ln until the next reflection. The height of the concentrator, l, is set to unity. The exit 

angle, αexit, of the ray escaping through the aperture is defined with respect to the central axis of 

the concentrator, which determines the final angular distribution profile. (c) Schematic of the 

ray-tracing algorithm. The ray can escape through the aperture only if it fulfills the exit 

condition: the total travel length added to the initial emission position x must be greater than l, or 

the initial or reflected emission angle is larger than π/2–θ so that it does not meet the opposing 

panel. Each traced ray contains information about its final intensity, exit angle, and the number 

of reflections up to extraction.  

The simulation is based on a single-wavelength and fixed reflectance RPHOLED 

independent of the incident angle, and does not include optical effects other than reflection. 

 

I
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A.2. Method for calculating the PHOLED reflectance 

 

Figure A2. Schematic of the PHOLED reflectance and transmittance. 

 

The total reflectance of the PHOLED including the PET substrate is as follows: 

 RPHOLED θi( ) = R1 θi( ) +T1 θi( )T2 θt( )R θt( ) +T1 θi( )T2 θt( )R2 θt( )R2 θt( ) +!  (A.1)  

 

where R1 and R2 are the fractions of the incident energy reflected back to the air and the PET by 

the air/PET interface, T1 and T2 are the transmitted fractions into the PET and air, respectively, 

and  is the reflectance of the PHOLED structure calculated using the transfer matrix method. 

Now, Eq. (A.1) is rewritten as: 

RPHOLED θi( ) = R1 θi( ) + T1 θi( )T2 θt( )R θt( )
1− R2 θt( )R θt( )   (A.2) 

 

The transverse electric (TE) and transverse magnetic (TM) mode reflectance are calculated 

separately according to Eq. (A.2) and averaged with the assumption that the incident PHOLED 

emission is unpolarized. Structures of the Device A and Device B discussed in the text are as 

follows: 

R
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Device A: ITO 100 nm / 15 vol. % MoO3 doped into CBP 60 nm / CBP 10 nm / 8 vol. % 

doped in Ir(ppy)2(acac) into CBP 15 nm / TPBi 65 nm / LiF 1.5 nm / Al 150 nm 

Device B: ITO 100 nm / 15 vol. % MoO3 doped into CBP 60 nm / CBP 10 nm / 8 vol. % 

doped into Ir(ppy)2(acac) in CBP 15 nm / TPBi 10 nm / 2 vol. % doped Li in Bphen 55 

nm / 8-hydroxyquinolinato lithium (Liq) 1.5 nm / Ag 150 nm 
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APPENDIX B Test of lifetime model 
 

 

Figure B1. Schematic diagram of the PHOLED structure with defects.  

 

The TTA model requires the use of 5 independent variables; kQN, kQA, kQB, kQP and kQext. 

While this is the same as used in previous TTA/TPA analyses, it is essential to test the 

uniqueness of the fits to the data in Fig. 6.4. Figure B1 shows the possible locations of defects 

formed in the PHOLED structure. Defect densities in the hole transport layer (HTL), EML, and 

the electron transport layer (ETL) are QHTL, QEML, and QETL, respectively. In the model, these 

defects are formed outside of the EML and hence are simply lumped into a single, external 

defect density, Qext = QHTL + QETL. The defects trap holes, and depending on their locations and 

the densities, they contribute to the operational voltage rise, ΔV(t), via: 
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ΔV (t) = ΔVEML (t)+ ΔVHTL (t)+ ΔVETL (t)

         = q
ε0ε r

QEML (x,t)dx
EML∫ + QHTL (x,t)dx

HTL∫ + QETL (x,t)dx
ETL∫( )

         = q
ε0ε r

QA(x,t)+QB(x,t)dx
EML∫ + Qext (x,t)dxext∫( )

  (B.1)  

Figure B2 shows the contributions of the various defects to the fits. The lifetime data, i.e. 

time evolution of the luminance degradation and the voltage rise, of the managed PHOLED M1 

is used as an example. 

 

 

Figure B2. Lifetime model fit based on different combinations of defects. The squares 

show time evolution of the measured luminance (left) and operating voltage (right). 
 

Compared to the model with a complete set of defects (black solid line, see text), the one 

excluding Qext (red dashed line) underestimates ΔV(t), while providing a reasonable fit for 

L(t)/L0. This is because L(t)/L0 is affected only by the defects within the EML (QEML = QA + QB), 

as well as the electrons, holes, and excitons whose densities are determined by the constant 

current density of J0 and the measured recombination profile ofG(x) = J0 e ⋅N(x) N(x)dx
EML∫ . 

On the other hand, the voltage rise due to defects QA and QB within the EML [ΔVEML(t)] is 
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insufficient to account for the measured ΔV(t) (see Fig. 6.4). Thus the defects present outside of 

the EML [ΔVext(t)] need to be included.  

If only one type of EML defect (QA) is assumed to be active along with Qext, the fit for 

both L(t)/L0 and ΔV(t) significantly deviates from the data. This necessitates the inclusion of 

shallow defects (QB) that trap charges but also contribute to the PHOLED luminescence via 

transfer back to the dopant molecule (see text). Finally, the fit from the model [33] assuming 

only QA and triplet-polaron annihilation (TPA) for the defect generation is also shown to deviate 

from data. 

 

  

Figure B3. Lifetime model fit by changing a single parameter while fixing others. The 

squares are data for time evolution of the luminance (left) and operating voltage (right). 

 

Figure B3 shows the sensitivity to variations of a single fitting parameter used in the 

lifetime model. From the calculated set of parameters (yielding the black solid line, denoted as 

“Best”), each parameter is modified by an order of magnitude within the bounds for the fit, while 

the other parameters are fixed. The results show that the changes in kQN, kQA, kQB and kQP result 

in significant deviations from the measurements. kQext does not affect L(t)/L0 whereas it strongly 

influences ΔV(t), consistent with the data shown in Fig. B2.  
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Note that the initial values (I.V.) chosen for the fitting parameters are set within the upper 

and lower bounds that are an order of magnitude larger or smaller, respectively, relative to the 

final parameters providing the best fit (see Table 6.3). The fitting parameters with arbitrary I.V. 

within such boundary conditions (B.C.) converge to the final values reported, while if I.V. of one 

or more parameters are set outside the given B.C. lead to different values with an unacceptably 

poor fit to the data. 

 

  

Figure B4. Lifetime model fit by changing a single parameter, while varying others. The 

squares are data for time evolution of the luminance (left) and operating voltage (right). 

 

We also forced a single parameter to be smaller or larger by an order of magnitude 

relative to its final value, and the induced discrepancy in the fit was attempted to be compensated 

by varying the remaining four parameters. Figure B.4 shows that all the resulting simulations 

cannot fit the voltage rise, while some of those with changed kQN, kQp and kQext are in a 

reasonable agreement with the luminance degradation. However, considering that these fitting 

parameters are derived from coupled equations that should predict both the lifetime and voltage 

characteristics, the models that satisfy only one of these two characteristics are not accepted.  
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Figure B5. Current density-voltage-luminance  and EQE-current density characteristics 

of as-grown and aged PHOLEDs. 

 

Figure B5 shows the J–V–L and EQE–J characteristics of as-grown (fresh) and aged 

managed M3 PHOLEDs. The aged M3 was driven at J0 = 5.3 mA/cm2 for ~550 hr, at which 

point the initial luminance of L0 = 1,000 cd/m2 decreases by 32%. The device performance for 

these devices is summarized in the Table B1.  

 

Table B1. EL characteristics of as-grown and aged PHOLED M3 

Device J0 

(mA/cm2) 

t 

(hr) 

CIE* V(t) 

(V) 

EQE(t) 

(%) 

L(t) 

(cd/m2) 

M3 (As-grown) 5.29 0 (0.16, 0.30) 9.0 9.7 1,000 

M3 (Aged) 5.29 ~550 (0.16, 0.30) 10.6 6.5 ~680 

* Measured at J = 5 mA/cm2. 

 

The J-V characteristics of the aged M3 PHOLED compared to the as-grown device show 

both parallel translation towards higher voltage and a slight decrease in slope. These trends 

indicate of the existence of the traps and consequent reduced “effective” mobilities of the 

materials comprising the devices. For simplicity, extrinsic factors such as degradation of the 
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electrodes are not considered. In the EQE-J characteristics, the reduced efficiency is attributed to 

nonradiative recombination by the defects at low J and the exciton quenching at higher J. 
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