
Improving Mobile Network Performance Through
Measurement-Driven System Design Approaches

by

Sanae Rosen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2017

Doctoral Committee:

Professor Z. Morley Mao, Chair
Professor Jason N. Flinn
Assistant Professor Harsha V. Madhyastha
Associate Professor Vijay G. Subramanian

c© Sanae Rosen 2017

All Rights Reserved

To my parents and my brother

ii

ACKNOWLEDGEMENTS

First of all, I would like to thank Professor Morley Mao for her excellent advising over

the years, for always believing in my ability to succeed and for encouraging me to always

strive to be a better researcher. The depth and breadth of her knowledge and expertise have

been an invaluable help, and I have learned an incredible amount working with her. I have

been truly lucky to have her as my advisor .

I would also like to thank my thesis committee: Professor Jason Flinn, Professor Harsha

Madhyastha and Professor Vijay Subramanian. Their expertise, advice and comments on

my work have been invaluable in shaping my thesis, and in particular in leading my research

in a strong direction for the last few projects. I am very glad I have had the opportunity to

work with them.

My internships have also given me the opportunity to work with some truly excellent

researchers who were instrumental to my grad student career: in particular, Professor S.J.

Lee, J. K. Lee, Vijay Gopalakrishnan, Professor K. K. Ramakrishnan, Jeff Erman and Jeff

Pang have all been wonderful to work with, and I am very lucky to have has the opportunity

to work with such a large number of prominent researchers and benefit from their expertise.

Outside of internships, I’ve collaborated with many great people at T-Mobile and AT&T

more generally, including Shuai Hao, Bo Han, Shubho Sen, and Professor David Choffnes,

all of whom I have greatly enjoyed working with.

I’ve also received a great deal of support and mentorship from grad students and former

grad students in my lab. Ever since he was a grad student, Professor Feng Qian has been

of great help and has acted as a mentor over the years, and Professor Zhiyun Qian did

iii

an excellent job of helping introduce me to research when I was starting out and he was

finishing up his PhD. I’ve had many other excellent grad student collaborators as well,

including Haokun Luo, Ashkan Nikravesh, Qi Alfred Chen, and Yihua Guo. I’ve greatly

enjoyed working with them and learning from them.

I’ve also received a great deal of support from many people over the years. My family,

first and foremost, have been a source of endless encouragement: my parents, who have

always believed in me, and my brother, who has been one of my greatest sources of sup-

port, especially when I’ve started to have doubts about completing my PhD. I’ve also had

many wonderful friends and colleagues: too many to name, but especially Lauren Hinkle,

Lizzie Mamantov, and Rob Goeddel for helping me through some difficult times; and Erik

Brinkman, James Kirk, Lynn Garrett, Elaine Wah, Nilmini Abeyratne, Zach Musgrave, Sai

Gouravajhala, Ameer Rahmati, Eric Crockett and many others who have all provided a

great deal of support and advice over the years.

I haven’t had the opportunity to work with everyone in my lab, but I’ve had many great

conversations over the years with many of them, and I’ve enjoyed working with them even

if I haven’t formally collaborated with them. In addition to the people I’ve worked with,

Mehrdad Moradi, Jeremy Erickson, Yikai Lin, and Tracy Zhou among many others have

all been a great help over the years. The people of SRG and SECRIT have helped me learn

an incredible amount over the years, and the people of ECSEL have been a great source

of support. Finally, I’ve gotten to know many great professors here over the years who I

haven’t gotten a chance to collaborate with directly — in particular, I’ve enjoyed working

with Professors Alex Halderman and Peter Honeyman in my last semester as a GSI. Finally,

I’d like to thank the other staff of 388, including David Adrian and all the wonderful TAs,

for helping me survive my final semester.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiv

ABSTRACT . xv

CHAPTER

I. Introduction . 1

1.1 Common Research Challenges 7
1.2 Contributions . 11

1.2.1 Discovering Fine-grained RRC State Dynamics and
Performance Impacts in Cellular Networks 12

1.2.2 Revisiting Network Energy Efficiency of Mobile Apps:
Performance in the Wild 12

1.2.3 Push or Request: An Investigation of Server Push as a
Means to Improve Mobile Performance 13

1.2.4 CellShift: A System to Efficiently Time-shift Data on
the Cellular Network 14

1.2.5 Predicting App Network Traffic to Facilitate Prefetching 14

II. Background . 16

2.1 The cellular network . 16
2.1.1 RRC states . 17
2.1.2 Application traffic and RRC states 18

2.2 HTTP/2 . 20

III. Related Work . 22

v

3.1 Measuring Factors that Impact Browsing Performance 22
3.2 Building systems to improve performance 25
3.3 RRC States and the Cellular network 27
3.4 Background Traffic . 29
3.5 Long-term Prefetching and Characterizing Carriers 31
3.6 Understanding New Application-Layer Protocols 35
3.7 Cloudlets . 36

IV. Discovering Fine-grained RRC State Dynamics and Performance Im-
pacts in Cellular Networks . 38

4.1 Introduction . 38
4.2 Measurement methodology . 42

4.2.1 Automated RRC Performance Measurement 43
4.2.2 Root Cause Analysis with QxDM 46

4.3 Global performance measurements 49
4.4 Root Cause Analysis . 56
4.5 Application impact . 59

4.5.1 HTTP and DNS Results from Global Deployment 60
4.5.2 Controlled Web Browsing Experiments 61
4.5.3 Case Study: Facebook Application 62

4.6 Discussion . 64
4.6.1 Limitations of methodology 65

4.7 Conclusion . 66

V. Revisiting Network Energy Efficiency of Mobile Apps: Performance
in the Wild . 68

5.1 Introduction . 68
5.2 Data Collection and Overview . 70

5.2.1 Measurement Data Overview 71
5.3 Background Energy Consumption 73

5.3.1 Foreground Traffic not Terminated 75
5.3.2 Transfers Initiated in the Background 78

5.4 What-if Analysis: Preemptively Killing Idle Background Apps . . 81
5.5 Recommendations and Conclusion 82

VI. Investigating using HTTP/2 Server Push for Improving Mobile Per-
formance . 84

6.1 Introduction . 84
6.2 Dataset and Methodology . 86
6.3 Web Performance . 88

6.3.1 Impact of Content Pushed 89

vi

6.3.2 Impact of the Network 92
6.3.3 Impact of the Web Page 97
6.3.4 Summary . 98

6.4 Case Studies . 99
6.5 Energy Impact of Server Push . 102
6.6 Discussion . 103
6.7 Conclusion . 105

VII. CellShift: A System to Efficiently Time-shift Data on the Cellular Net-
work . 107

7.1 Introduction . 107
7.2 Background and Motivation . 110

7.2.1 Incentives and Delay-Tolerant Data 112
7.2.2 Limitations . 113

7.3 System Design . 114
7.3.1 Forecasting algorithm and evaluation 116
7.3.2 Scheduling Algorithm 120
7.3.3 Alternate design approaches 121

7.4 Prototype Implementation and Performance 122
7.5 Simulation Evaluation . 124

7.5.1 Impact of Scheduled Request Patterns 126
7.5.2 Impact of Forecasting and System Design 130
7.5.3 Alternate Cellular Network Characteristics 132

7.6 Discussion and future work . 134
7.7 Conclusion . 135

VIII. Predicting App Network Traffic to Facilitate Prefetching 136

8.1 Introduction . 136
8.2 Motivation and Use Cases . 138
8.3 Activity prediction . 142
8.4 Traffic prediction . 145

8.4.1 Overview of Prediction Techniques 146
8.4.2 Predicting URLs . 147
8.4.3 Predicting parameters 150
8.4.4 Using The Prefetching Engine 152

8.5 Evaluation of URL prediction . 153
8.5.1 Results of trace-based prefetching simulation 154
8.5.2 Wasted downloads . 155
8.5.3 Tradeoff between accuracy and excessive downloads . . 157

8.6 Cloudlet Feasibility Analysis . 158
8.7 Conclusion and future work . 163

IX. Conclusion . 164

vii

9.1 Discussion and Future work . 166

BIBLIOGRAPHY . 170

viii

LIST OF FIGURES

Figure

1.1 Overview of Research Projects . 8

2.1 (Simplified) overview of the cellular network. 17

2.2 A: Overview of RRC state machine design. B-C: possible 3G and 4G
state machines. 19

2.3 Comparison of energy consumed for the same amount of data with dif-
ferent traffic patterns. 19

2.4 A simplified view of how Server Push results in performance benefits. . . 20

4.1 Impact of sending packets with varying interpacket intervals and how one
can use those to infer RRC states. 44

4.2 Measurement of demotion and promotion times for two carriers in QxDM. 48

4.3 Observed round-trip times while transitioning through RRC states. Me-
dian, quartile and 5%/95% values shown. 50

4.4 Variations in delays due to 3G states and state transitions, normalized
against the DCH RTT. Median, quartile and 5th/95th% values shown. . . 52

4.5 Delays due to LTE states and state demotions, normalized against the
RTT of an empty packet sent in CONNECTED with no DRX. 53

4.6 CDFs of distribution of latencies during state promotions over all carriers:
in the top graph, going from FACH and in the bottom from IDLE. 54

4.7 CDF over all carriers of additional latencies caused by transmissions dur-
ing state demotions (minus promotion transition times in the new RRC
state). 54

ix

4.8 Median values of sources of transmission delays for C1 , labeled based
on the messages observed in QxDM. C2 is similar but lacks “Idle Con-
fig.”, which seems to have to do with network configuration. 56

4.9 Breakdown of RTTs for varying inter-packet intervals, including a de-
motion to FACH at 3s and a demotion to PCH at 7s. The impact of the
FACH⇒ PCH demotion is essentially nonexistent in this case. 58

4.10 Performance of different carriers with different inter-packet timings, for
DNS lookups and HTTP connections to a small website. 60

4.11 Effect of RRC states on TCP SYN RTTs and HTTP GET latencies. 61

4.12 Effect of RRC states and transitions on user-perceived latency in web
browsing experiments. 62

4.13 Impact of additional RRC state transition delays on Facebook’s pull-to-
update action. 63

5.1 Number of times each app appears in a user’s top 10 apps, ranked by total
data consumption . 71

5.2 Highest cellular data and network energy usage by app across all users . . 72

5.3 Fraction of energy in each foreground/background state, based on process
codes assigned by the Android operating system 74

5.4 Chrome allows webpages to continue sending and receiving data in the
background . 76

5.5 Duration for which traffic continues to be sent/received after the app is
sent to the background. Each data point represents one transition to the
background . 77

5.6 Total background data sent by all apps, as a function of the time since
switching from a foreground state. Note the periodic spikes at 5 and 10
minute intervals, the large amount of traffic in the first minute, and the
long tail of persisting, continuous flows 77

6.1 Pushing all content versus pushing only Javascript and CSS files. PLT
stands for Page Load Time. 90

6.2 Server Push PLT savings for mobile websites on a variety of networks.
Negative values cut off at -0.5. 92

x

6.3 Impact of device processing power on Server Push. 93

6.4 Relative increase in the loading time of the initial HTML page with
Server Push. 94

6.5 Impact of network latency on Server Push. Latencies shown are from
ping; at 0ms, a small object takes about 30ms to load including server
processing etc. 95

6.6 Impact of network packet loss on Server Push. 96

6.7 Impact of combined high latencies and loss rates. The loss rate is listed
first, then the latency, as a percent and number of milliseconds, respectively. 97

6.8 Impact of bandwidth at 30ms latency. 97

6.9 Examining, through controlled experiments, the impact of web page
structure. 99

6.10 Waterfall diagram of loading the Ikea web site in a phone browser. 100

6.11 Waterfall diagram of loading the BBC website in a phone browser. 101

6.12 Waterfall diagram of loading the BBC website over WiFi on a laptop. . . 101

6.13 Radio energy trends for mobile devices. Server Push offers some savings
for LTE only. 102

7.1 Overview of time-shifting. Delay-tolerant data is scheduled by CellShift
around time-sensitive data. Our goal is for the peak load after time-
shifting to be as close as possible to the peak time-sensitive load. 112

7.2 Architecture overview: Apps submit requests to an API on the phone,
which schedules requests with the help of an in-network server (INS).
The server may also provide per-user forecasts to help users or apps de-
termine whether to time-shift data. 115

7.3 Impact of time interval on forecast accuracy when predicting on a per-
user basis, in fraction of the total PRB utilization. 118

7.4 Example diurnal trends: note there is substantial variation between eN-
odeBs, either in the shape of the curve or when it peaks. 118

xi

7.5 Fraction of HTTP requests older than various possible target deadlines,
based on last-modified dates on content headers, based on a one-day sam-
ple of hundreds of millions of HTTP requests. 119

7.6 CDF of top loads due to prefetching traffic with fixed deadlines, compar-
ing against no time-shifting. We also show the peak load if we were to
remove the delay-tolerant load from the network entirely. 126

7.7 Impact of deadline length on prefetching. Prefetching is more effective
when scheduling with less constrained deadlines, particularly deadlines
of 4h or longer. 126

7.8 Example eNodeB time-shifting traces for two eNodeBs with different
loads with 4 hour deadlines, along with the peak load seen on previous
days (“Threshold”). Examples chosen to illustrate cases of how time-
shifting works and represent roughly average cases. 127

7.9 Time-shifting remains effective under a variety of loads, including both
different sizes and distributions over time. 129

7.10 Impact of forecast accuracy and effectiveness of alternate design ap-
proaches. While perfect forecasting achieves better results, less flexible
scheduling approaches can support less data. 132

7.11 We examine some alternate loads of time-sensitive data. When non-
CellShift-controlled, time-sensitive data is more even, time-shifting is
easier, but when the network is already highly congested there is little
room for CellShift to schedule data. 133

8.1 System diagram of how a cloudlet prefetching system might work. 140

8.2 Fraction of Activity transitions from each Activity that go to the most
common, top two, and top three next Activities. 143

8.3 Fraction of Activity transition pairs from each Activity that go to the most
common, top two, and top three next pair of consecutive Activities. 143

8.4 Fraction of application entry points covered by the top, top two, and top
three next Activites. 144

8.5 Overview of how URLs are predicted based on past URL patterns. 147

8.6 Steps to generate a prefetching template. 148

8.7 Common types of parameters in URLs and how to predict them. 150

xii

8.8 Distribution of successfully prefetched objects by application. 154

8.9 Distribution of the amount of data successfully prefetched by application. 155

8.10 False positive rates of prefetching content, without immediately follow-
ing nested links. 156

8.11 False positive rates of prefetching one additional layer of nested content. . 157

8.12 Impact of varying the parameter for how many times we need to have
seen a static URL to prefetch it late. 159

8.13 Impact of varying the parameter for how many times we need to have
seen a match for this URL pattern when training in order to prefetch it later.159

8.14 Amount of data, total, downloaded for a short session of using an app. . . 161

8.15 Time to download and process the content to be loaded on initial batch
load. 162

9.1 Overview of potential comprehensive measurement-oriented app and
traffic management . 168

xiii

LIST OF TABLES

Table

1.1 Summary of work supporting thesis statement and main research contri-
butions . 2

4.1 Summary of results in figures and tables. 42

4.2 Comparison of ground truth demotion timers from QxDM with values
measured through the application. 47

5.1 Case studies. Energy per flow and per day are averages over time, and
one flow may not correspond to one periodic update. These can vary as
apps change over time or as background apps are forced to close, and
energy consumption values vary by device and carrier 79

5.2 Example trends in background traffic when apps are infrequently used,
and simulated energy savings from suppressing this traffic 83

6.1 Summary of web page characteristics. 87

6.2 Summary of findings. 89

6.3 Summary of recommendations . 104

7.1 Prototype overhead metrics for a Samsung S4 device scheduling new re-
quests every 15 minutes. Data sent includes all bytes sent over the link for
corresponding flows, and is a negligible fraction of an eNodeB’s capacity. 122

xiv

ABSTRACT

Improving Mobile Network Performance Through Measurement-Driven System Design
Approaches

by

Sanae Rosen

Chair: Professor Z. Morley Mao

Mobile networks are complex, dynamic, and often perform poorly. Many factors affect

network performance and energy consumption: examples include highly varying network

latencies and loss rates, diurnal user movement patterns in cellular networks that impact

network congestion, and how radio energy states interacts with application traffic. Because

mobile devices experience uniquely dynamic and complex network conditions and resource

tradeoffs, incorporating ongoing, continuous measurements of network performance, re-

source usage and user and app behavior into mobile systems is essential in addressing the

pervasive performance problems in these systems.

This dissertation examines five different approaches to this problem. First, we discuss

three measurement studies which help us understand mobile systems and how to improve

them. The first examines how RRC state performance impacts network performance in the

wild and argues carriers should measure RRC state performance from the user’s perspective

when managing their networks. The second looks at trends in applications’ background

network energy consumption, and shows that more systematic approaches are needed to

xv

manage app behavior. The third examines how Server Push, a new feature of HTTP/2,

can in certain cases improve mobile performance, but shows that it is necessary to use

measurements to determine if Server Push will be helpful or harmful. Two other projects

show how measurements can be incorporated directly into systems that predict and manage

network traffic. One project examines how a carrier can support prefetching over time spans

of hours by predicting the network loads a user will see in the future and scheduling highly

delay-tolerant traffic accordingly. The other examines how the network requests of mobile

apps can be predicted, a first step towards an automated and general app prefetching system.

Overall, measurements of network performance and app and user behavior are powerful

tools in building better mobile systems.

xvi

CHAPTER I

Introduction

Thesis statement: Because mobile devices experience uniquely dynamic and complex

network conditions and resource tradeoffs, incorporating ongoing, continuous measure-

ments of network performance, resource usage and user and app behavior into mobile

systems is essential in addressing the pervasive performance problems in these systems.

Mobile devices differ from traditional, stationary computers in many respects. In partic-

ular, they are more resource-constrained, and rely on lower-performance networks such

as cellular networks rather than wired networks. Furthermore, network conditions shift

rapidly, in terms of network quality, the network used, user location, and whether there is

any connectivity at all. To complicate the situation further, internal phone states (such as

the radio state or the app process state) change to compensate for limited energy resources.

These often happen in an opaque way, and also modify the power and performance tradeoffs

of network activity. We show through five projects how a measurement-oriented approach

can be used to address a variety of these sorts of problems on mobile devices.

The projects discussed in this dissertation are summarized in Table 1.1. Each addresses

network performance problems from a different perspective, but they are complementary,

each addressing how to improve a different aspect of network performance using different

types of measurements The first project, Discovering Fine-grained RRC State Dynam-

ics and Performance Impacts in Cellular Networks [103], measures the impact of radio

1

Main measurements Main contribution Performance problem
addressed

Improving systems through measurements
Discovering Fine-grained RRC State Dynamics and Performance Impacts in Cellular Networks
Latency around radio state
transitions worldwide

Client-oriented measure-
ments → understand RRC
states in the wild

Detect new RRC-related la-
tency problems

Revisiting Network Energy Efficiency of Mobile Apps: Performance in the Wild
App energy usage, user be-
havior and other context info

Long-term user study mea-
surements → understand en-
ergy problems and how to
solve them

Reduce excessive background
energy consumption

Push or Request: An Investigation of HTTP/2 Server Push for Improving Mobile Performance
Server Push performance,
overhead, web page network
request trends

Improved understanding of
Server Push and when/if to
use it

Reduce page load time

Time-shifting
CellShift: A System to Efficiently Time-shift Data on the Cellular Network

Use network load mea-
surements to schedule
delay-tolerant traffic

A system to time-shift data
over hours to smooth network
loads on the city scale

Avoid network congestion
and associated costs

Predicting App Network Traffic to Facilitate Prefetching
Network traffic patterns: infer
what to prefetch

A method of predicting net-
work traffic and an evaluation
of the challenges of predict-
ing traffic for prefetching

Prefetch for reduced network
latency

Table 1.1: Summary of work supporting thesis statement and main research contributions

2

resource states in the wild to understand how these states and state transitions affect user-

perceived performance. To conserve power while ensuring good performance on resource-

constrained mobile devices, devices transition between different Radio Resource Control

(RRC) states in response to network traffic and according to parameters specific to network

operators. As RRC states significantly affect application power consumption and perfor-

mance, it is important to understand how RRC states and network traffic interact.

In this project, we show that the impact of RRC states on performance is significantly

more complex and diverse than found in previous work. We introduce an open-source tool

for measuring RRC states as they affect users, in terms of their impact on network and

application performance. We deploy the app in 23 countries around the world and collect

data on a broad range of unmodified user devices and cellular network technologies. By ex-

amining what the end user devices experience, we detect previously unknown performance

problems. These problems create network latencies of up to several seconds, and for LTE

can increase packet losses by an order of magnitude. Examining these transitions through

cross-layer analysis, we determine that the highly complex state transitions of certain car-

riers, and in particular poor interactions between state demotions and network traffic, can

lead to substantial, unexpected latencies. Overall, our client-oriented measurements allow

us to gain a better understanding of the complexity of RRC states. By examining RRC

state transitions from the client perspective for the first time, we demonstrate that the inter-

actions between client traffic and radio resource states is far more complex than previously

described. Through ongoing performance measurements, we were able to monitor and ob-

serve previously unknown radio performance problems. We recommend that carriers make

use of a similar system when managing their networks.

The second project, Revisiting Network Energy Efficiency of Mobile Apps: Performance

in the Wild [104], also evaluates the impact of RRC states and RRC state transitions (among

other things), but in the context of how application traffic interacts with these transitions

and the way in which these interactions impact how much energy is consumed. This project

3

is a two year user study of app energy usage on real user devices where client-based mea-

surements were used to understand the behavior of users and applications and how the

resulting network traffic interacts with RRC states to consume energy.

Energy consumption due to network traffic on mobile devices continues to be a signifi-

cant concern, especially background traffic, which is responsible for about 84% of network

energy in our study. Through our client-based measurements, we discover a new energy

consumption problem where foreground network traffic persists after switching from the

foreground to the background, potentially leading to unnecessary energy and data drain.

Furthermore, while we find some apps have taken steps to improve the energy impact of

periodic background traffic over the last few years, energy consumption differences of up

to an order of magnitude exist between apps with very similar functionality. Finally, by

examining how apps are used in the wild, we find that some apps continue to generate un-

needed traffic for days when the app is not being used, and in some cases this wasted traffic

is responsible for a majority of the app’s network energy overhead. We propose that these

persistent, widespread and varied sources of excessive energy consumption in popular apps

should be addressed through new app management tools that tailor network activity to user

interaction patterns and that make use of active measurements of application behavior.

Next, we look at another approach to improving performance on mobile devices by

measuring performance trends, this time focusing on web browsing rather than applica-

tions, and latency rather than energy. Push or Request: An Investigation of Server Push as a

Means to Improve Mobile Performance1, investigates the performance impact of HTTP/2’s

Server Push. Server Push is a new technique that is supposed to reduce network latency

when loading web pages by pushing additional content in response to the first request for

the initial HTML page before the additional content is explicitly requested. However, the

performance benefits of this technique were previously not known. This study demon-

strates that Server Push performs best when there is moderately high latency or packet loss

1In submission to WWW ‘17

4

rates, motivating its use on mobile networks. Furthermore, there are slight energy benefits

to using Server Push, especially on LTE. However, in many cases Server Push can actually

degrade performance. Based on these findings, we recommend the cautious use of Server

Push for mobile websites, but only after carefully testing the performance of Server Push

on the site in question. This study motivates the use of ongoing measurements in conjunc-

tion with Server Push deployments to ensure Server Push gives the expected performance

benefits.

We then continue to look at how shifting when we transmit traffic can address perfor-

mance problems in the cellular network, focusing on shifting traffic on larger time scales.

Because mobile networks are heterogeneous and change significantly throughout the day,

we show that prefetching and time-shifting could be used to take advantage of changes in

network connectivity over periods of hours. In CellShift: A System to Efficiently Time-shift

Data on the Cellular Network [102], we examine how a long-term time-shifting system can

schedule large volumes of highly delay-tolerant data in a changing network with minimal

additional load on the client. Recent work [113] has shown that users are interested in

time-shifting certain types of data by several hours in exchange for discounted data. Such

a system could enable new, innovative, data-heavy and delay-tolerant services, such as a

prefetching system that can load entire TV shows onto user’s devices in advance of them

being watched.

To examine how this approach would work on real cellular networks, we evaluate net-

work load patterns from a major ISP in a major metropolitan area, demonstrating that there

are substantial variations over time and between base stations that can be leveraged through

time-shifting. Furthermore, we show these variations can be predicted hours in advance,

even for individual, highly mobile users. We present CellShift, a scalable time-shifting

framework that leverages these forecasts to efficiently schedule requests for millions of

users. Through a city-scale simulation using real load data, we demonstrate CellShift can

reduce the impact of a variety of data-heavy, highly delay tolerant traffic loads on peak base

5

station loads by 50-76% in most cases, and allow today’s cellular networks to support an

increase in demand by 40% or more even in heavily congested cities. A prototype imple-

mentation shows CellShift is scalable and efficient, in particular adding no more than a 2%

battery overhead to the device.

Finally, we continue looking at how to address performance problems through prefetch-

ing, in particular looking at how to make prefetching to mask performance problems in mo-

bile devices a reality by addressing the problem of predicting what to prefetch. For the final

project, Predicting App Network Traffic to Facilitate Prefetching, we examine how effec-

tively the requests made by an app can be predicted, with the goal of building an automated

prefetching system where a proxy makes prefetching decisions for unmodified apps. We

start by showing that app Activity transitions (transitions between different UI screens) can

be predicted easily and accurately, as usually only a small set of transitions occur with any

regularity. We then look at apps structured around populating relatively static Activities,

such as social media apps or news apps, and find that about 60% of URLs for these apps

can be predicted by a prefetching system that models how apps generate traffic requests. We

then examine several other challenges, such as the data overhead, bandwidth requirements,

and the time to download content to be prefetched, and determine that several challenges

must be overcome to build such a prefetching system. While fully automated prefetching

remains an open research project, our prediction system based around observing network

traffic trends is a major step in the direction of developing such a system.

Overall, this thesis shows there are many ways in which measurements of mobile sys-

tems can improve network performance, and in this thesis we envision a network where

from the web server to the device, measurements are used to make more informed de-

cisions, as shown in Figure 1.1. In addition to being complementary elements of a

measurement-driven mobile network, there are several other themes among these projects

tying them together. Three of the projects focus more specifically on client-oriented mea-

surements: RRC State Inference, Network Energy Efficiency, and Server Push. Measuring

6

the performance experienced by the client allows the impact of existing systems on power

and performance to be understood, and can inform how we build systems in the future.

The remaining two projects, Cellshift and App Traffic Prediction, focus on determining

how to build systems that make use of measurements directly and actively. The first set of

projects also motivate the need for dynamic systems that make use of the measurements we

use, though. Taking this more active approach would be the next step for that first set of

projects. Another common theme is using measurements to change when content is sent to

mitigate performance problems, in Server Push, Cellshift and App Traffic prediction.

Overall, these projects are complementary. The RRC State Inference project allows

networks to be configured optimally and can work in conjunction with any of the other

projects, and Network Energy Efficiency ’s insights about background power consumption

informs the designs of other systems that use periodic measurements, such as the RRC State

Inference project and Cellshift. Cellshift and App Traffic Prediction target time-shifting dif-

ferent types of traffic and are thus complementary, and could even be incorporated into one

cohesive carrier-facilitated prefetching system. Server Push, which shows Server Push

would benefit from being run inside a proxy, could also be incorporated into such a com-

prehensive prefetching system. Overall, these five projects can be viewed as pieces of a

new paradigm for managing network traffic.

1.1 Common Research Challenges

All of these research projects face similar challenges in terms of dealing with unique

aspects of how mobile apps, devices and networks function, but these challenges also in-

troduce opportunities to leverage measurements in order to build more intelligent systems

that can improve performance. There are three broad categories of these challenges which

we address for these projects: the dynamic nature of network, device and user behavior;

the fact that devices are resource-constrained and the overhead of measurements can be

significant; and the problem of collecting accurate mobile measurements.

7

RRC Inference

App Traffic
Prediction

Cellshift

Server Push

1

4

3

5

User Energy
Study

2

Energy
consumed

by apps

Network
performance
in different
contexts

App
traffic
trends

Cell
tower
loadsPLT in

different
contexts

Figure 1.1: Overview of Research Projects

Dynamic mobile requests: Dealing with the dynamic nature of mobile devices and

networks is one of the main challenges for all of these projects. There are three main as-

pects of dynamic networks that posed challenges. First, the RRC state machine means that

the energy consumption and latency of cellular network traffic can be different at differ-

ent points in time. Second, user mobility and dynamic trends in user traffic in particular

complicate the Cellshift project. Finally, app traffic patterns introduce challenges and op-

portunities for building better mobile systems: the trend for apps to make requests in the

background complicates the problem of managing application energy, but the relatively

well-structured nature of certain types of app traffic is something which we are able to

leverage.

Contending with the RRC state machine is the main focus of the RRC State Inference

project, evidently, but also the Network Energy Efficiency project. The cellular network

is unique in that devices shift between a variety of states with different power and perfor-

mance tradeoffs, moving to high-power, high-performance states in response to network

traffic, and lower-power, lower-performance states after timers set by the carrier expire.

8

We give more background in §2.1.1. As we find in the RRC State Inference project, these

state changes can also introduce significant performance problems. For this project, this

complex series of state transitions and their performance tradeoffs are the main target of

our investigation.

For the Network Energy Efficiency project, the RRC state machine is also a major focus

of our analysis. Traffic patterns on mobile devices, and how they interact with the RRC

state machine, have a major impact on energy consumption. Network traffic that occurs

periodically tends to have a high cost, as the radio must be woken up for several seconds

whenever traffic is sent. Batching traffic, conversely, tends to lead to better energy con-

sumption. It turns out that how traffic interacts with the RRC state machine is one of the

main factors impacting network energy consumption.

The second challenge related to dynamic networks is user mobility and the dynamic

nature of demand for network resources, which is of particular concern to the Cellshift

project. Cellshift primarily leveraged variations in network traffic over time and between

locations. These variations represent inefficiencies in how the cellular network is utilized,

as the network must support the peak load at each location even if that peak load occurs

only for an hour a day, since network capacity must be built for that peak load. The goal of

this project is to address these inefficiencies by shifting traffic to other times and locations.

However, these variations reflect the fact that users tend to be mobile, and building a system

that can adapt to changes in network load when scheduling traffic, as well as adapt to user

mobility, were major challenges of this project.

Finally, the unique nature of network requests on mobile devices also offers opportuni-

ties and challenges. The Network Energy Efficiency project is based on the fact that apps

tend to have a significant amount of background traffic, something which is not a concern

in the same way for desktops where power is less of a concern. Detecting and understand-

ing this background traffic was a major focus of the study. For the App Traffic Prediction

project, we are able to leverage the fact that mobile apps have unique approaches to net-

9

work traffic: a large class of apps have well-organized approaches to loading content based

on well-structured files that specify what future content to load, allowing us to model and

predict what to load.

Resource-constrained devices and measurement overhead: A major challenge in

working with mobile devices is that they are quite resource-constrained. We have to worry

about power consumption as well as data usage when designing measurements.

One major problem when collecting measurements is that periodic network traffic, as

we discuss in §2.1.2, is a harmful pattern for network traffic on the cellular network. But

in these projects, particularly the RRC State Inference project and the Network Energy

Efficiency project, ongoing measurements collected on the phone needed to be transmitted

to a central server. We decided to reduce how up to date the information collected would be

to save energy, and uploaded data once a day on WiFi. For the RRC State Inference study,

we started off collecting two measurements a day and reduced to one measurement a day.

As a result, it took about a year to get enough data from enough users for us to properly

analyze the results (also due to the slowness of advertising the app to users), but we could

be sure we weren’t negatively impacting the user.

This also informs the design of the entire Cellshift project. Ideally, we would have the

cellular network constantly communicating with the device to inform it when to transmit

data, but the energy overhead would be prohibitive. As a result, determining how to built a

system that can schedule data in an intermittent way was a major challenge for this project.

Another concern with the Cellshift project and other projects is the overhead at the

server. While not unique to mobile measurements, when collecting measurements at a

large scale, reducing the storage needs and networking needs at the server is also impor-

tant. For Cellshift , limiting the amount of data that would need to be stored, as well as

making sure that most decisions could be made in a relatively decentralized manner, are

important design constraints. For App Traffic Prediction , we examine the limitations of

storing and moving data from cloudlet to cloudlet and how that would impact the feasibil-

10

ity of a cloudlet prefetching deployment. For RRC State Inference , limiting the amount of

data that would be collected in a global measurement study is an important consideration.

Accurate mobile measurements: There are various factors that make it challenging

to collect accurate mobile measurements, and with any measurement study, there are chal-

lenges in ensuring that high-quality, useful measurements are collected.

For the RRC state measurement system, a major challenge is how to accurately measure

RRC states in the wild. It is necessary to first collect data on the phone about whether the

device is being used at the time and about the current type of network. Measurements

can be scheduled accordingly, and discarded if needed if we detect that other packets were

sent while the tests are performed, as background traffic affects the accuracy of the results.

While less of a fundamental challenge for the user study project, it is also necessary to

collect a significant amount of context data for this project, such as on the running state

of each application, to properly interpret network traffic and energy measurements and

understand how applications behave.

This is also a challenge for Server Push . It was not possible to collect measurements

on real servers, as there are not enough servers running Server Push. It is thus necessary

to mirror content as well as to construct artificial websites for controlled experiments to

explore how various factors impact Server Push performance. For the Cellshift and App

Traffic Prediction projects, the challenges are more in making use of the measurements

effectively. For the Cellshift project, determining how to make use of measurements of

network load is one of the major challenges, especially in predicting load for users as they

move around. For the App Traffic Prediction project, the challenge is in making use of

network log data in order to accurately predict network load.

1.2 Contributions

Next, I will summarize the research contributions in this thesis, organized by research

project.

11

1.2.1 Discovering Fine-grained RRC State Dynamics and Performance Impacts in

Cellular Networks

In this project, we examine how client-based measurements that can help us understand

RRC states. In particular, our contributions are:

• We develop a measurement approach that allows RRC state machine dynamics to be

measured and observed on uncontrolled devices in the wild.

• Using Mobiperf, an app into which we incorporated this technique, we create a large

database of RRC state performance worldwide, the only such dataset to date as far as

we know.

• We uncover and examine some previously unknown, severe latency problems that

can increase round trip times by seconds.

• We demonstrate the degree to which RRC state performance, including the perfor-

mance problems we uncovered, impact application-layer delays and app QoE, in-

cluding through crowdsourced measurements.

Overall, our client-based measurements allow for a deeper understanding of complex

RRC states and their impact on performance, and we argue that carriers should use our

approach to monitor and manage their networks, as these client-based measurements give

a different perspective on performance than the information exposed by device manufac-

turers..

1.2.2 Revisiting Network Energy Efficiency of Mobile Apps: Performance in the

Wild

In this project, we also focus on measurements, but this time instead of measuring RRC

states themselves, we examine how apps interact with them. Our main contribution was a

better understanding of how apps consume energy due to background traffic that keeps the

12

RRC radio active, gathered through a measurement study over several years. In particular,

our key findings are:

• We discover a new form of excessive energy consumption, where an app continues

sending likely unintended background traffic after the app is moved to the back-

ground.

• We show there is high variability in how much energy is consumed even by very

similar apps, and that app energy usage has evolved differently among apps over

time, demonstrating that the adoption of best practices is still not universal.

• We discover that many apps that send background traffic are not used for days. At

the time, App Standby and Doze did not exist, and we proposed that there should be

some mechanism to suppress traffic from apps that are not currently being used.

Overall, our long-term measurement study helps us understand how apps consume en-

ergy and propose concrete guidelines to app developers as to how to build more energy-

efficient systems. We argue that active measurements of app energy consumption and be-

havior are needed to manage these problems.

1.2.3 Push or Request: An Investigation of Server Push as a Means to Improve Mo-

bile Performance

In this project, we measure the impact of Server Push, demonstrating it is likely most

suitable to mobile networks. The main contributions of this paper are:

• Determining that Server Push is more effective on high loss or high latency networks,

motivating its use on WiFi and cellular networks.

• Determining that pushing all content on a web page is more effective than pushing a

few key objects.

13

• Determining that Server Push can sometimes decrease performance: various web

page factors can influence if it’s successful, but ultimately web page developers

should check if Server Push results in performance benefits through measurement

before deploying it.

• Server push leads to power savings on LTE of about 9%, another way it is particularly

suitable for mobile devices.

Overall, through controlled, in-lab experiments, we are able to gain a greater under-

standing of how Server Push can effectively be used to improve performance, particularly

for mobile devices, and demonstrate that website developers should incorporate perfor-

mance measurements when deploying Server Push.

1.2.4 CellShift: A System to Efficiently Time-shift Data on the Cellular Network

In this project, we leverage measurements of network load in order to determine how

to schedule delay-tolerant data over time spans of hours. Key contributions include:

• A city-scale examination of eNodeB usage trends over several months, determining

that there is a significant amount of underused capacity on today’s cellular networks.

• A method of predicting network loads on a per-eNodeB basis 15 minutes in advance

(with an accuracy of 2% of the eNodeB’s total capacity), and predicting loads a

user will experience in a location-agnostic manner up to a day in advance (with an

accuracy of 8% of an eNodeB’s capacity).

• The design and evaluation, in simulation, of a highly scalable system that schedules

data over time scales of hours on resource-constrained mobile devices.

1.2.5 Predicting App Network Traffic to Facilitate Prefetching

In this project, we determine how to effectively predict network traffic from mobile

applications, using cloudlet-based prefetching as a motivating example. The key contribu-

14

tions are:

• A method for predicting URLs and their parameters in advance for a large class of

applications, by observing prior network traffic and leveraging common app patterns.

• An evaluation of the accuracy and overhead of predicting URLs to facilitate prefetch-

ing: in particular, that about 60% of traffic can be predicted, but with a overhead of

about 150% in terms of unneeded requests.

• The identification and examination of the challenges in making automated prefetch-

ing based on this approach feasible, including examining the storage overhead, the

cost of migrating application state and the time to download content.

• The finding that application entry points and Activity transitions are highly pre-

dictable: for most apps, 50% of Activity transitions from one Activity go to the

same next Activity.

Overall, we show how, by examining network traffic, we can build the prediction frame-

work that would be needed for a cloudlet prefetching system that could reduce application

latency.

15

CHAPTER II

Background

2.1 The cellular network

The cellular network is unique in many ways. The cellular network architecture reflects

the fact that users are highly mobile. Also, there are unique ways that network radio en-

ergy management features inform the design of any work involving cellular devices. Users

move around without switching networks, and the network allocates resources to users dy-

namically, while seamlessly transferring users between cell towers. I discuss two network

types in this dissertation: 3G, and 4G LTE, the latter being more the more recent cellular

network technology. I will first summarize the LTE network, drawing from “An Introduc-

tion to LTE” [24]. I then focus in more depth on RRC states and their impact on energy

consumption.

An overview of the cellular network is shown in Figure 2.1. Users connect to the

network with mobile devices, commonly known as UE (User Equipment). They connect

to the cell tower (base station or eNodeB), which conveys both data and control plane

messages to and from the device. In general, latency over the channel between the UE and

eNodeB is a concern, and transmitting data over this channel has substantial energy costs,

described in the section on RRC states below.

Furthermore, each eNodeB can only support a certain amount of traffic. Resources are

allocated to devices in the form of Physical Resource Blocks, or PRBs. The amount of data

16

Physical Resource Blocks (PRB)

Phones (UE)
eNodeB or
base station ISP

Network

The Internet

SGW

MME

PGW

Figure 2.1: (Simplified) overview of the cellular network.

that can be sent for a given number of allocated PRBs is a function of the signal quality.

The cost of sending data over this last hop is often a major overhead for the carrier. In

particular, the cellular network in a given place has a fixed amount of capacity, and the cost

of supporting network traffic at a location is related to the peak load at that location, rather

than the average load. This fact is a major motivator for the Cellshift project.

The remainder of the network is less critical for understanding this dissertation. There

are a variety of middleboxes: P-gateways, which connect the cellular network to the rest

of the carrier’s network; the S-gateway, which forwards data from the base station to the

P-gateway and the Mobility Management Entity (MME) that manages the mobile devices.

More importantly, the carrier also introduces a large number of middleboxes after the P-

gateway and before the traffic reaches the outside world, such as NATs and firewalls [130],

giving the opportunity to introduce other sorts of proxies as well.

2.1.1 RRC states

For cellular networks, there is a tradeoff between latency and battery consumption.

Mobile devices do not maintain a constant, active network connection due to their limited

battery life. Switching to an active connection, however, introduces delays, so mobile

17

devices switch between network states based on when network traffic is sent. Figure 2.2A

gives a conceptual overview of these states as well as two common implementations, for

LTE and 3G. When data needs to be sent, devices switch to a high-power, active state.

This transition incurs additional delays, so to avoid making this transition more often than

needed, since network traffic is often comes in bursts, the device remains in this state for

several seconds. That way, only the first few packets in a burst are delayed by the state

promotion. A timer determines how long the device waits for additional traffic before

falling back to a lower power state. This timer, the demotion timer, is usually fixed, and set

by the carrier. There may also be an intermediate state where small amounts of data can be

transmitted without the high power consumption of the fully active state.

These are known as RRC States, and are defined by 3GPP specifications [4, 5]. Each

carrier configures their RRC state machine timers, subject to the constraints of the protocol

specification. For 3G network technologies [4], there are two to three main states. The

first is DCH, which is high-power and high-bandwidth. FACH, an optional state, is lower

power and can only transmit small amounts of data before needing to switch to DCH. Fi-

nally, in PCH, no transmission is possible and a state promotion is needed before sending

data, but very little energy is consumed. An example of a 3G state machine is shown in

Figure 2.2B. There can be slight variations in the possible state transitions depending on the

carrier. For 4G LTE, as shown in Figure 2.2C, there are two main states: CONNECTED,

a higher-power state, and IDLE, a lower-power state where no data is transmitted. The

former may be broken down further into smaller sub-states. For these sub-states, the con-

nection is active at regular intervals of tens or hundreds of milliseconds. This is known as

Discontinuous reception, or DRX.

2.1.2 Application traffic and RRC states

It has been shown that these RRC timers can have a substantial impact on application

performance and power consumption [36, 35, 63]. In particular, periodic messages may

18

High Power,
Performance

Med. power,
performance

Low power,
performance

Timeout Timeout

Data sent Data sent

RRC State Conceptual Overview

DCH FACH (small
transmissions)

3G UMTS Implementation

PCH

Continuous
Reception

Long
DRX

4G LTE Implementation

IDLEShort
DRX

CONNECTED

A

B

C

Figure 2.2: A: Overview of RRC state machine design. B-C: possible 3G and 4G state
machines.

Case A:

Case B:

P
ow

er
P

ow
er

Time

Time

Tail
energy

State
promotion

Data
transmission
energy

Figure 2.3: Comparison of energy consumed for the same amount of data with different
traffic patterns.

be affected by long promotion latencies as well as lead to the device being in a high-

power state longer than needed. Essentially, every state promotion incurs a performance

penalty due to the state promotion, and later incurs an energy penalty due to the tail timer,

regardless of how much data is sent, as shown in Figure 2.3. For some number of seconds

after traffic has been sent (depending on the carrier), the device continues to consume

energy, keeping the radio in a high-powered state. Since network transmissions can often

be of a similar length to the tail timer, or potentially even shorter, having many network

19

C
lie
nt

S
erver

example.html

example.png

Normal HTTP Requests

C
lie
nt

S
erver

example.html
example.html

example.png

example.html

example.png

Server Push

Figure 2.4: A simplified view of how Server Push results in performance benefits.

requests sent separately can cause a substantial increase in the energy consumed. In that

figure, substantially less energy is consumed in case A, even though case A sends just as

much traffic. By batching traffic and halving the number of bursts, the tail energy is halved

as well.

This problem can be addressed in part through fast dormancy [45], where the device

transitions to a low-power state early when no additional data transmissions are expected.

In Chapter IV, we find that fast dormancy is rarely enabled in practice, perhaps due to the

added complexity of implementing such a system, and problems with certain implementa-

tions to date [84, 10].

2.2 HTTP/2

HTTP/2 has been recently proposed as a replacement to HTTP/1.1, promising to offer

better performance, and to address some of the performance limitations of HTTP/1.1 [54,

14]. It builds on SPDY, a protocol developed by Google [95].

HTTP/2 differs from HTTP/1.1 in many ways. One feature is that HTTP/2 connections

now consist of a number of streams in a single HTTP/2 connection. Multiple streams

can be open concurrently, and the frames of the streams, which are units of data, can be

interleaved. Streams can be open or closed by either endpoint. Notably, this means fewer

TCP connections are required for a HTTP/2 session, which has performance advantages

20

and disadvantages [127]. Other features include giving each stream a priority, indicating

that more resources should be allocated to some strings; explicitly indicating dependencies

between streams; and mandatory encryption.

One of the more interesting new features in HTTP/2 is Server Push. We focus on this

feature primarily in Chapter VI. As shown in Figure 2.4, in HTTP/1.1, even if the server

knows what content the user will need, the content needs to be requested by the user. First,

the user fetches the initial HTML page, then parses it, and looks for additional content that

will be needed. Then, it requests that content. It is possible that due to additional HTML

files or javascript that further round trips would be needed for complex pages. Overall, this

means there can be substantial delays to fetch all the images on a page.

Server Push assumes that in many cases, as the server generates the content the user

will see, the server knows what the user should fetch. HTTP/2’s stream-based construction

supports streams being opened from either direction, and thus the server can initiate a con-

nection where data the server things the user will need is sent to the user. The step of having

the user parse the initial HTML page and request further content can thus be eliminated,

which should lead to performance improvements. We examine this in Chapter VI.

21

CHAPTER III

Related Work

The projects described in this thesis build on a substantial amount of prior work, which

has been organized into seven categories. We start by discussing past work on measuring

browsing performance generally, followed by discussing some systems that aim to improve

browsing and app performance. Next, we focus on RRC states, background traffic and the

cellular network, including both measurement studies and proposals of how to better work

with RRC states.

Then, we discuss more specific themes that pertain to specific chapters. As background

to the Network Energy Efficiency project, we discuss prior work on understanding back-

ground traffic and dealing with energy consumption due to that traffic. As background to

the Cellshift project, we discuss work on traffic forecasting and characterizing how cellular

networks are used on a large scale, followed by a section on long-term prefetching. For

Server Push, we examine other research on next-generation network protocols. Finally, we

examine how cloudlets, which are used as a motivating example to the App Traffic Predic-

tion project, have been discussed in the past.

3.1 Measuring Factors that Impact Browsing Performance

First, we discuss general related work on browsing performance, before focusing on

more specific aspects of performance in later sections. Work by Qian et al [97] examines

22

how existing websites are designed and the impact on performance and resource usage.

They develop a tool to measure website performance in the lab through cross-layer analysis

and find that a wide range of factors impact power and performance, such as the use of

Javascript causing the radio to be on for too long. Work by Wang et al [129] examines

sources of delays in mobile web browsers by instrumenting the browser directly. They find

that at the time the paper was written, object loading times are still the bottleneck, but that

device CPU power still has a major impact due to the overhead of networking operations

and other OS operations. Work by Butkiewicz et al [15] examines how website complexity

impacts performance, developing a series of metrics to do so, and evaluate how they impact

loading time. They find that the number of objects to load is a good predictor of network

loading time, more than the size of the object.

Other work examines longitudinal trends in browsing performance: work by Nikravesh

et al [88] examines longitudinal trends in mobile network performance generally, and find

that in addition to temporal and geographic trends in performance, that there is a significant

degree of instability in performance that cannot be attributed to these factors. Work by Imh

et al [60] characterizes websites, looking at five years of network data from 70,000 users

around the world and examining how network traffic has evolved. They discover Javascript

and video are increasingly important factors, that half of traffic is not due to the initial page

load, and that content-based caching rather than object-based caching would be valuable.

We make use of a longitudinal approach in our measurement studies, focusing on different

problems.

Thiagarajan et al [122] examine what types of browsing content leads to higher energy

consumption. They find complex Javascript and CSS, as well as certain image types, are a

problem, and propose a series of concrete guidelines to building better websites. Gember et

al [42] discuss the challenges of accurately measuring cellular networks from actively used

devices. They find that it is best to measure network performance at times when the user

uses the device, which unfortunately was not possible in RRC State Inference but which

23

motivates measuring app energy consumption in the context of a user study. Work by Xu

et al [133] measures country-wide trends in app usage, including the types of apps used,

the times of day, and the context in which they are used. They find a substantial number of

apps are only used locally, that use of certain apps is correlated, that many apps have clear

diurnal traffic patterns, and that some apps are more likely to be used while mobile, all

findings that could inform how carriers manage traffic. Unlike these projects, we examine

different factors that impact browsing performance: we focus on the impact of Server Push

on browsing, or propose systems such as App Traffic Prediction to improve performance.

Other work looks at networking performance. Work by Sundaresan et al [119] inves-

tigates residential broadband, and determines that the round trip time is still a bottleneck,

motivating the Server Push study. Their solution is to place a cache in home routers, a sim-

ilar concept to the cloudlets discussed in the App Traffic Prediction project. Work by Zaki

et al [135] examines factors affecting network performance in a developing country, and

find that a lack of CDN and caching infrastructure is a major factor in poor performance. In

particular, relevant to the Server Push project, they find that SPDY1 works particularly well

in this context. Work by Halepovic et al [29] presents a method of passively measuring

HTTP time to first byte from within the packet core, whereas previously expensive active

probing is needed. This tool could help carriers better manage their network. Work by

Narayanan et al [81] observes that content is often poorly distributed among CDNs. They

also observe that a significant percentage of content is served from CDNs, which may have

implications for Server Push deployment by third parties. These papers are complementary

to our examination of Server Push and RRC states, addressing different aspects of network

performance

User studies and app based measurement studies, such as those in Chapter IV and Chap-

ter V are approaches that also have a substantial amount of related work. The Livelab

project [18] makes use of users running a measurement app on their phones. A wide range

1Not an acronym — a proposed replacement to HTTP

24

of findings on how users interact with mobile devices have been published based on this

project, including measuring web usage in the wild [17]. In that study, they find substan-

tial differences between mobile web usage and desktop web usage, with less usage of the

browser, and a higher dependence on search, which might inform how browsers on phones

are designed. JamLogger [90] is an ongoing project to collect general performance and

user activity on mobile devices — to date, there are no related publictions. “Diversity in

Smartphone Usage” [37] examines how users use the phone, such as for how long or how

much data they use, and find a large amount of diversity in all of these characteristics, with

differences of orders of magnitude between users. They argue that as a result mechanisms

to improve performance for users should be tailored to individual users, and demonstrate

that energy prediction can be done in such a manner. These studies highlight the impor-

tance of user studies in understanding performance in the wild. Unlike these papers, we

focus specifically on using user studies and measurement studies to address two problems

in this thesis: network energy consumption and RRC state performance.

3.2 Building systems to improve performance

Next, we discuss approaches to building systems to improve browsing performance.

WProf [126] finds performance dependencies in browsers through an in-browser tool, and

finds that computation is a major part of the critical path and that caching is not neces-

sarily helpful, and that SPDY is not helpful with low RTTs. Follow-up work [82] extends

this analysis to mobile phones. This allows for a better understanding of the factors im-

pacting mobile performance: they find that a major cause of slow mobile browsing is the

computation overhead, that elements on the critical path may differ between the mobile

and browser version of the page, and that mobile performance only really suffers for large

pages. WebProphet [75] predicts page load times from object dependencies, and infers ob-

ject dependencies using a novel technique based on timing perturbations. As a result, it is

able to recommend simple approaches to optimizing web page loading performance. Po-

25

laris [83] makes computation more efficient by better detecting dependencies and schedul-

ing requests through a client-side scheduler in a way that minimizes round trips. This

approach is able to reduce page load times by 34% in the median case. The projects fo-

cused on system building in this thesis are complementary to these papers and use different

techniques: long-term time-shifting for Cellshift and prediction of network traffic for App

Traffic Prediction.

Using proxies to improve network performance is another common theme. Parcel [117]

splits browsing functionality between a proxy and mobile browser to improve performance.

The proxy downloads objects and pushes them to the browser, and interactive functionality

happens entirely on the client where possible. As a result the page load time and energy

consumption of loading a site is substantially reduced. Flywheel [6] is a compression proxy

for mobile devices used in the wild which halves the size of mobile pages. It also applies

other optimizations such as SPDY, and the paper discusses the engineering challenges of

implementing a complex proxy at scale, concerns that would need to be addressed for

projects such as the App Traffic Prediction project. They find overall that the performance

benefits of this approach are mixed, and work better for larger pages. Flexiweb [116] finds

that compression proxies can sometimes harm performance depending on network per-

formance, and dynamically adapts proxy optimizations based on network conditions and

website characteristics. By adapting to network conditions, they are able to greatly im-

prove the performance of a compression proxy. A similar method of dynamically applying

optimizations would be highly valuable to Server Push, as we show in this thesis.

Klotski [16] examines automatically detecting dependencies and scheduling object

downloads using a proxy to meet arbitrary priorities. A back-end proxy analyzes the depen-

dencies of a page and a front-end prioritizes the content, doubling the amount of high-utility

content delivered early. We apply some similar methods to generalizing dynamic URLs in

the App Traffic Prediction project. Shandian [128] optimizes the order and manner in which

content is loaded at the granularity of HTML or CSS elements, using a proxy server. They

26

focus in particular on eliminating unneeded HTML and CSS content during the initial load,

and find significant performance benefits of 50 to 60% on mobile devices. We propose the

use of proxies in different contexts: for Server Push, to facilitate Server Push, and for App

Traffic Prediction, to predict network traffic to facilitate prefetching.

3.3 RRC States and the Cellular network

Next, I discuss related work that gives background information on the cellular network

and examines the impact of RRC states on browsing specifically. This is most relevant to

the RRC Inference and Energy User Study projects, but most of the projects I discuss deal

with the cellular network. Work by Huang et al [57] examines LTE in depth, with a focus

on poor interactions between the cellular network and TCP flows. They argue that transport

control mechanisms that are LTE-friendly are needed, as currently TCP often operates at

below half of the maximum bandwidth and spends a lot of time in slow start. Sani et al [108]

examine trends in data consumption by app. They find substantial differences between

even very similar apps — similarly, we find major differences in energy consumption in

the Network Energy Efficiency project. They suggest that users could use these findings

to select an appropriate data plan based on the data they use. Work by Huang et al [58]

measures the performance of 3G and its difference between devices using crowdsourcing,

as well as controlled analysis on a variety of devices. They find substantial differences

between the performance of carriers and devices — the main contribution of this paper is a

comprehensive evaluation of the performance of 3G in a range of circumstances. This work

is complementary to this thesis, as we focus on measuring other factors of performance

such as the impact of RRC states or the background energy consumption of apps.

Other work has focused specifically on RRC states, a common feature in much of the

work in this thesis, especially the RRC State Inference chapter. Previous work examines

power and performance characteristics of RRC state machines in both 3G [35] and 4G

LTE networks [63, 70] in controlled environments, as well as specific features of those

27

networks such as DRX [65]. The work on 3G [35] introduced a method of probing RRC

state machine parameters which we adapted in the RRC State Inference project, and through

trace-based analysis determine that state promotions cause substantial delays and that RRC

state timers are suboptimal for many applications, motivating the use of variable RRC state

timers. The work on 4G LTE networks [63] also characterizes the power and performance

characteristics of LTE. It first generates a power model for RRC states and analyzes the

power efficiency of LTE, and by examining the performance of applications, determines

that with LTE computation is less of a bottleneck. Work by Zhou et al [70] examines DRX

specifically, building a model of DRX performance and power consumption, and showing

that different parameters for the length of time in DRX and the DRX frequency are suitable

for different types of applications.

A web page by Souders [106] estimates RRC state machine performance through a web

app, at a coarser granularity than we do and without accounting for background network

activity on phones. This demonstrates that there is interest in RRC state machines outside

the academic community, though. RILAnalyzer [123] monitors 3G RRC state transition

events and measures directly how applications cause excessive RRC state promotions by

leveraging chipset-specific functionality. They find RRC state transitions in the wild are

more diverse than have been measured in the lab, and find that applications in the wild

often interact poorly with RRC state transitions. Examining lower-layer control messages

specifically, a Qualcomm whitepaper [77] explains how control plane messages in dif-

ferent network technologies are expected to lead to different promotion latencies. In the

RRC State Inference chapter, we focus on RRC state transition dynamics: measuring and

understanding how RRC state transitions vary and cause different performance trends on

different carriers, and in particular non-ideal transition behavior.

28

3.4 Background Traffic

Prior work also examines various aspects of background network activity, including

how it interacts interacts with RRC states. Aucinas et al. examines smartphone energy

efficiency through in-lab experiments with a number of major apps which maintain a con-

tinuous online presence [11]. They find that these apps have a disproportionate energy

impact due to interactions with the RRC state machine, and propose the use of push noti-

fications instead. Earlier work by Qian et al [98] identify that periodic traffic is a general

problem, and through an analysis of 1.5 billion packets, finds that despite being less than

2% of traffic overall, make up 30% of the radio energy. They find that by flexibly schedul-

ing this periodic traffic, almost all of its energy impact can be eliminated. Addressing the

problem of periodic but likely delay-tolerant traffic, Tailender [79] designs a scheduler that

prefetches and batches delay-tolerant traffic and shifts the traffic to WiFi where possible

in order to reduce network energy consumption. Tamer [76] demonstrates it is possible to

modify the energy impact of app wakeups by interposing on wakeup events to better man-

age them by interposing on wakeup events, and show they can address many energy bugs

with their system. Our work is complementary to these papers, examining a broad set of

apps and focusing on their behavior in the wild over a long time period, which enables us to

uncover new energy drain problems as well as understand how old problems have evolved.

More specifically related to the proposals in the Network Energy Efficiency project,

there has also been a great deal of interest in the impact of background traffic in concur-

rently developed work. In particular, Google announced Android M after the submission

of the Network Energy Efficiency paper, which introduces Doze and App Standby, which

should decrease the energy impact of the excessive background traffic we uncovered in

Chapter IV [53, 28]. Other concurrent work includes ZapDroid [115], which automatically

isolates or disables infrequently-used apps, while allowing them to be easily restored when

needed. They also examine the impact of these apps, finding that they can be responsible

for as much as 20% of the network energy consumed in a day. Our findings in the Network

29

Energy Efficiency project suggest this approach would be highly valuable. Work by Chen

et al [21] presents a large-scale user study of 1520 users of how users use their phones and

how that interacts with app battery consumption. They find that almost half of energy is

consumed when the screen is off, and that cellular energy is a major factor, among other

things, comprehensively breaking down power consumption according to various factors

such as the device types. These findings could potentially inform app design and carrier

decision making in the future. Their study is complementary, covering all sources of energy

consumption and trends across categories of devices, whereas we focus on examining the

role of background network transfers specifically in depth and exploring the root causes of

this excessive background consumption.

There has been a great deal of interest in understanding how applications can improve

performance by accounting for RRC state timers, especially based on the observation of

temporal clustering of network traffic. ARO [36] presents a tool for optimizing applica-

tion performance, through cross-layer analysis, which accounts for poor interactions be-

tween applications and RRC state machines. Using this tool, they are able to provide con-

crete recommendations to six popular apps as to how to improve their energy consumption

by addressing problems such as loading scattered content while scrolling. TailTheft [50]

prefetches or delays traffic to reduce the amount of traffic sent in high-latency states by

scheduling this content during the tail timer without pushing the tail timer back, reducing

energy consumption by over 20%. Work by Lagar-Cavilla et al. [71] also proposes trans-

mitting delay-tolerant traffic immediately after other data transmissions, and providing an

API in order to allow apps to indicate what is delay-tolerant.

Work by Evensen et al [34], conversely, focuses on the latency impact of RRC states

and provides a mechanism by which applications can request a state promotion in advance,

thus avoiding the promotion latency. This approach allows almost all promotion-inducing

requests to take place at least two seconds faster. RadioJockey [94] uses network traces to

predict network traffic patterns and optimize when to trigger fast dormancy to both avoid

30

keeping the radio active unnecessarily and to avoid excessive signalling from unneeded

state promotions. It is able to reduce energy consumption by up to 40% while minimizing

added promotion overheads. Work by Deng et al. [105] propose a method of scheduling

data transfers to minimize energy consumption without impacting user-perceived perfor-

mance. They use statistical analysis of network traffic to determine when to make the

cellular radio idle and when to delay a networking session by a few seconds to allow for

traffic to be batched. All of this work motivates the need for an approach like RRC State

Inference to allow us to understand the performance impact of RRC timers, and motivates

Network Energy Efficiency examining if applications are in fact behaving well with respect

to the interaction between RRC state timers and energy consumption.

3.5 Long-term Prefetching and Characterizing Carriers

Motivating CellShift, prior work [47, 22, 113] shows that having carriers offer discounts

to users based on network load is beneficial and desirable for users, allowing them to use

more data with less cost. TUBE [47] demonstrates that users are willing to time-shift traffic

given the correct economic incentives, and that these incentives can significantly improve

the distribution of delay-tolerant loads even if users increase data usage in response to lower

prices. Mercado [22] presents a model of a system where some traffic can be designated

as delay-tolerant and thus scheduled at a more desirable time by the carrier, and show that

through “what-if” analysis that this approach can lead to improved network utilization.

Through a user study, they find that software updates, large videos and cloud syncing are

good candidates for time-shifting. Work by Sen et al [112] test out a small time-dependent

pricing deployment, and find that this is likely a beneficial approach for users and carriers.

Furthermore, they show that many less technically oriented users would even be willing to

time-shift email or social networking, showing there is a great deal of diversity in how users

use cellular networks. However, these papers focus on delay-tolerant loads in isolation for

a small number of users, without examining large-scale cellular network load patterns, as

31

in Chapter VII.

There has also been work on operator support for such a prefetching system. A recent

survey paper [113] shows that various forms of “smart pricing” have been implemented in

real cellular networks and are becoming prevalent worldwide. While most popular for voice

networks, especially in emerging markets, there has been recent interest in time-dependent

pricing for mobile data in Europe as well. This work motivates the design of Cellshift.

Delay-tolerant apps are needed to build a system such as CellShift, and there has been

a great deal of interest in designing these apps, especially to offload content to WiFi. Ce-

dos [78] adapts existing apps to be delay-tolerant by generating a TCP-like API that handles

disruptions and delays. They find that transparently offloading traffic can shift a significant

amount of video and podcast traffic to WiFi and, through a user study, find that users would

be willing to use such a system to delay requests by hours. A recent report from Cisco [23]

predicts that the share of data used for video, audio and file sharing — data types Cedos

identifies as being suited to delay-tolerant approaches — will grow dramatically over the

next few years. Domain-specific approaches to making other apps more delay-tolerant has

also been an area of recent interest. Cameo [69], is a comprehensive ad framework that

improves mobile advertisement delivery in a variety of ways. Most relevant to prefetching,

they find they can reduce the energy and data overhead of delivering advertisements by

prefetching them by examining past user history to predict what ads will likely be shown

to them in the future. O2SM allows for the prefetching and offline viewing of social me-

dia content, dividing content up into streams and prefetching streams that are more likely

to be viewed. They find they are able to significantly improve loading times with only a

small increase in energy consumption. Furthermore, several major apps, including a pod-

cast app [89], magazine-style app [40] and video app [134] already include delay-tolerant

design approaches.

There has also been substantial prior work on shorter-term time-shifting. Informed Mo-

bile Prefetching [51] decreases latency on mobile devices while prefetching while meeting

32

data and power budgets, through a system that provides cost-benefit analysis as to when to

prefetch. Wiffler [13] focuses on offloading data from 3G to WiFi, delaying traffic by 30-60

seconds. It leverages a model of the evironment to predict 3G connectivity and is able to

quickly switch back to 3G when needed, and is able to reduce the use of 3G by 30%. Work

by Han el al [49] propose dealing with the increasing load on cellular networks by having

devices collaborately share data when possible, falling back to normal cellular communi-

cation where needed. By carefully selecting sets of users to share data, they show that the

majority of data can be offloaded in this way. Conversely, Procrastinator [100] argues that

prefetching is frequently the wrong choice, given the cost of data on mobile devices, and

provides a system to selectively prefetch data only when the user has specific data by auto-

matically identifying what content is on the user’s screen, resulting in data savings of up to

4x.. The prefetching we examine in this thesis is either on a much longer time scale, as in

Cellshift and thus targets different types of content, or in the case of App Traffic Prediction

proposes a new mechanism for short-term time-shifting.

More recently, CoAST [114] demonstrates that peak utilization can be reduced, by up

to 50%, by scheduling traffic over time scales of seconds. This is based on the observation

that there are many small load spikes on the order of seconds in the network, and that even

content like streaming can be time-shifted on the scale of seconds. CellShift’s approach is

complementary: determining how best to distribute data within a one-minute time window

does not preclude determining which one-minute time window to target. CellShift also

has different challenges to address, such as forecasting and accounting for time-sensitive

data, user movement, and the overhead of continuously coordinating traffic over long time

scales. This sort of time-shifting could also be facilitated by predicting what content will

be required in advance, such as in the cloudlet project.

There has also been theoretical work on how to optimally schedule content given some

amount of future information. Work by Spencer et al [118] examines how the amount

of information about the future during periods of high demand has a significant impact

33

on the queue length. Work by Xu et al [132] examines how to use a limited amount of

future knowledge to bound the amount of delay possible when admissions can be rejected.

Work on making use of future information to schedule optimally is complementary to our

work, which focused on determining whether we could make use of imperfect network load

predictions.

More specifically, there has been a series of papers by Tadrous et al on modeling the

potential benefits of time-shifting data. First, in “Proactive resource allocation: harnessing

the diversity and multicast gains” [68], they identify the problem of the disparity between

peak and off-peak times, and build a model of the performance benefits of prefetching

this predictable traffic. Like CellShift, they assume user load is highly predictable. They

show in particular they can reduce the chance of requests being lost. They later elaborated

on their model by examining the impact of imperfect predictability of demand and mea-

sured the cost of data delivery, showing that it is possible to use their system to reduce that

cost [121]. Next, they extend their model to the multi-user case and show that prefetching

can reduce the cost to the carrier and that this method continues to be beneficial as the num-

ber of users grows [120]. Finally, they elaborate on the statistical model by incorporating

the network channel quality into the model [64]. They evaluate the impact of uncertain

channel quality and determine an optimal strategy for scheduling data anyway. Overall,

Tadrous et al have shown that from an information theoretic point of view, prefetching can

provably provide significant performance benefits.

Unlike these more theoretical papers, we focus on dealing with limitations specific

to long-term time-shifting on cellular networks, including determining if we can forecast

network load, and dealing with the scheduling constraints on resource-constrained mobile

devices, leaving determining an optimal scheduling method to future work.

Other work related to Cellshift looks at how cellular network performance varies on the

carrier scale. Laner et al. [72] investigates cell loading patterns in a large European city and

develop a model of network traffic and user behavior for future researchers to use. They

34

demonstrate that there are global network congestion trends, but that individual cell towers

may differ substantially from this standard behavior. Xiong et al. [131] examine using

collective trends in user movement patterns to predict future user locations. They are able

to do so with some degree of accuracy 6 hours into the future, but with rapidly diminishing

precision — it is not yet at the point where user location predictions are accurate enough

for the scheduling done in the Cellshift project. Finally, Jin et al. [67] examine trends in

data usage across users, finding that a small number of users and apps are responsible for

a disproportionate amount of the content.. In particular, they show that heavy users tend

to be clustered in a few cell towers. These carrier-scale variations in cellular network load

motivate our work in the Cellshift project.

User location prediction is a challenging problem. Prior work has developed sophisti-

cated statistical models for predicting the location of the next user given information, such

as by using data from other users to help build a model when data for a specific user is

insufficient [66]. In Cellshift however, we need to predict location on longer time scales

and thus build a system that doesn’t require such predictions.

3.6 Understanding New Application-Layer Protocols

In Server Push , I focus on Server Push in HTTP/2, but other work has looked at other

aspects of next-generation protocols, and recent work has found the performance benefits

of these protocols are mixed. Varvello et al [124] finds that the prevalence of HTTP/2 is

small but rapidly growing, driven by a few key players, and that it offers some performance

benefits in the wild, although that in general websites are not optimized for HTTP/2. “How

Speedy is SPDY?” [127] performs a comprehensive evaluation of SPDY’s performance un-

der a variety of factors, finding that network quality and website design play a major role.

They briefly look at Server Push, finding it to give performance improvements with high

RTT. We examine Server Push specifically in more depth. The impact of SPDY on mobile

devices specifically has also been examined: work by Erman et al [33] find that SPDY does

35

not consistently give performance benefits on cellular networks, suggesting it is worthwhile

to examine the performance benefits of Server Push on mobile specifically. Work by Car-

lucci et al [19] examines the performance of QUIC, a new network protocol Google has

proposed to replace SPDY, and finds mixed results. QUIC, being based on UDP, does mit-

igate the problem where SPDY’s single TCP connection performs poorly under high loss

rates. A study of SPDY performance by Elkhatib et al [30] examines the performance of

real SPDY pages under a variety of network conditions and finds that SPDY’s performance

as a whole is impacted by network performance and web infrastructure. Recent work by

Zarifis et al [136] builds and evaluates a model that can predict HTTP/2 performance from

HTTP/1, and briefly examines the impact of Server Push, showing that it generally im-

proves performance. Unlike this prior work, although some prior work has briefly touched

on Server Push, we are the first to study Server Push specifically and in depth.

3.7 Cloudlets

Cloudlets are small computers near access points that are able to run computation or

serve content for mobile devices with less latency than the cloud. In Chapter VIII, we

use cloudlets as one motivating example for our work. Cloudlets have been extensively

discussed in the past, including in a published lecture which summarizes much of the work

in this area [38]. Work by Satyanarayanan et al [109] examine many of the challenges of

making cloudlets work, in particular proposing a cloudlet architecture, exploring the VM

requirements of cloudlets and the time to build a full VM. They find the overhead to be

substantial, on the order of a minute. For our application having full isolated VMs per

user that migrate their entire state are likely unnecessary, but we find migration even of the

minimal amount of state to be a challenge. Work by Ha et al [46] focuses on the problem

of creating VMs. They are able to create them in 10 sections for a specific application,

by applying changes to a generic base VM. Work by Rajesh et al [12] opportunistically

discovers servers and uses their resources with a focus on offloading computation. We

36

build on the concept of cloudlets in order to enable a system that automatically predicts

user traffic for the purpose of prefetching it.

Using cloudlets to improve network performance has also been extensively explored.

Infostations [59] proposes a new networking paradigm: high-speed, intermittent network

connections are established with one user each to a nearby combined access point and

server, called an infostation. The infostations can prefetch content locally and make intel-

ligent decisions about fetching content and networking generally, leveraging information

about current network conditions, user mobility, and the location of data. Work by Flinn

et al [39] prefetches content to untrusted cloudlets, called surrogates, and uses encryption

and the assistance of a trusted machine such as a home desktop to allow these untrusted

devices to be used. A cloudlet-like approach has also been used in the real world [101],

where internet connectivity is provided in a developing country by having users send an

SMS message to a kiosk and then having the kiosk prefetch the data for when the user ar-

rives. We build on this prior work on prefetching to cloudlets in the App Traffic Prediction

project, by developing a system that could facilitate this prefetching.

37

CHAPTER IV

Discovering Fine-grained RRC State Dynamics and

Performance Impacts in Cellular Networks

4.1 Introduction

Unlike traditional wired networks, or even WiFi, the high energy and resource cost of

keeping a cellular network connection active along with the high overhead of establishing

a connection capable of transmitting data has lead to a series of mechanisms of balancing

these resource tradeoffs in response to data being sent. These RRC states (Radio Resource

Control states) have different performance and energy consumption characteristics, and

different latencies when transitioning to a high-power state. By using high-power RRC

states only when necessary, and leveraging the temporal locality of network transmissions

to avoid state promotion latencies, users can experience good network performance on

resource-constrained mobile devices. Although the RRC states are largely defined by a

set of specifications [4, 5], many aspects of the RRC state machine, such as timers for

transitioning between states, are configured by the carrier.

The complex network conditions and resource tradeoffs we focus on in this chap-

ter [103] are those related to the network states, known as RRC (Radio Resource Control)

states, through which devices transition in order to balance power and performance. To

better understand these states, this chapter introduces a technique to perform ongoing, con-

38

tinous measurements of network performance. As a result of our findings, we propose new

ways in which mobile systems can incorporate the results of these measurements to address

performance problems on these networks: specifically, that carriers should adopt a similar

measurement framework to monitor their impact on user performance. In this way, this

chapter supports the main thesis: because mobile devices experience uniquely dynamic

and complex network conditions and resource tradeoffs, incorporating ongoing, continu-

ous measurements of network performance, resource usage and user behavior into mobile

systems is essential in addressing the pervasive performance problems in these systems.

Previous work [35, 63, 70, 65, 123] has focused on measuring RRC state configurations

in the lab. It has been assumed that RRC state timers are static and RRC state transitions add

a fairly constant and predictable amount of overhead. However, these static RRC timers do

not provide the full picture of cellular network dynamics, and measurements performed in

the lab on a limited number of devices. In this chapter, we focus on developing an in-depth

understanding of the dynamics of RRC state transitions, which have a substantial impact on

performance and have been under-explored. We first perform a global survey of the impact

of RRC states and state transitions on performance in 28 countries on 3G and 4G LTE

networks worldwide. In doing so, we determine that the impact of variable state transition

latencies is substantial. We also discover a previously unknown cause of performance

problems: RRC state demotions. When no data has been transmitted for several seconds,

devices then enter a lower-power state. For many carriers, this is a long, complex process,

and data sent during that time is often lost or delayed by as much as several seconds, in

addition to the time to perform a subsequent state promotion. In previous work, these

delays have been assumed to non-critical, but we discover for many carriers state demotion

delays can often be the determining factor in overall packet latencies.

To understand and verify the existence of the performance problems discovered, we

perform an in-depth, cross-layer examination of the root causes and application impact of

state transitions. We start by examining the impact of layer 2 messages on RRC state tran-

39

sition latencies for several carriers. We discover major differences in the implementation of

low-layer state changes and cell tower communication. In particular, overly complex state

transition mechanisms, poorly-timed network connection configuration operations, and in-

terfering control-plane operations cause substantial latencies during RRC state transitions

for devices in use today. In particular, the use of the optional FACH state for 3G networks as

a performance optimization in many cases actually leads to significant performance prob-

lems.

Additionally, we examine the impact of RRC states on higher-layer network protocols

and Android applications. In our global deployment, we measure the impact of RRC states

on HTTP requests and DNS lookups. We also develop an application for in-lab testing

of Android applications in order to systematically measure the impact of RRC states on

user-perceived performance in major applications. In doing so, we demonstrate that RRC

transition latencies — including the previously unknown demotion latencies — can have a

substantial impact on user-perceived performance.

Understanding the complex factors that cause RRC states to degrade application perfor-

mance is valuable to many parties. Cellular network operators are interested in determining

how devices on their networks perform and how both performance and signaling overhead

can be improved. Major app developers have been interested in understanding how RRC

state behavior can impact application performance [36, 74]. Finally, there has been interest

recently by “power users” in understanding how issues such as RRC state implementations,

as they differ among carriers, can affect performance [106, 44].

We summarize our contributions as follows:

• We provide an open-source RRC inference framework, requiring no special privi-

leges, device-specific functionality, or network technology, for measuring the impact

of RRC state transitions on performance (rather than just inferring the underlying

timers.)

• We survey how RRC states impact performance in carriers worldwide and provide

40

an open data set of the results. Unlike previous work, we focus on measuring user-

perceived latency rather than inferring configuration parameters. Through repeated

measurements over time we can detect variations in latencies and transition delays.

We also uncover variable timer configurations such as those due to Fast Dormancy,

which will become more important as dynamic RRC timers become more common.

• We uncover previously unknown, severe latency problems that exist in many cellular

network technologies and carriers around the world. These problems increase packet

round-trip times by seconds (on top of normal transmission delays) and in LTE, can

increase packet loss rates by at least an order of magnitude.

• We investigate the root causes of transition latency issues using cross-layer analy-

sis. The most significant causes include complex state transitions in certain carriers,

and non-RRC state control plane messages that coincide with state transitions, thus

adding additional delays of hundreds of milliseconds, or even seconds, to already

high-latency state transitions.

• We measure the impact of RRC states on application latencies as a whole, demon-

strating that RRC states, especially transitions, have a significant impact on

application-level latency as well as individual packets. In one case, we saw round-

trip times greater than five seconds during a state demotion! To do so, we developed

a controller application for systematically measuring the impact of RRC state transi-

tions on requests initiated by user input.

Overall, we find that the impact of the RRC state machine on user-perceived perfor-

mance is more complex than what has been described in previous work. In addition to hav-

ing implications on designing network state aware apps for better performance and power

consumption, our findings have implications on carrier network configurations as well. We

propose that carriers should use a measurement system such as ours to monitor how their

RRC states impact client performance.

41

Table 4.1: Summary of results in figures and tables.

Section Name Key finding
§4.2 (Methodology) Table 4.2, Fig. 4.2 Validation of inferred RRC timers
§4.3 (Results) Fig 4.4, 4.5, 4.6, 4.7 State transition delays for all network types

can be substantial.
§4.4 (Root causes) 4.8 Causes of LTE transition delays
§4.4 (Root causes) Fig 4.9 Causes of 3G transition delays
§4.5 (App impact) Fig 4.10, 4.12, 4.11 RRC states affect a variety of application and

transport protocols.

We start by describing our measurement methodology (§4.2), including our inference

approach for the global deployment and the approach used for cross-layer local experi-

ments. We then discuss our global results (§4.3) followed by an in-depth examination and

confirmation of results from several carriers (§4.4). Finally, we examine the impact on ap-

plication performance (§4.5) and discuss the implications of our finding and future work

(§4.6). We summarize our findings in Table 4.1.

4.2 Measurement methodology

To understand RRC state performance, particularly the impact of RRC state transitions,

we use several tools to develop a cross-layer understanding of RRC performance problems,

their root causes, and their impacts on application performance.

It is known that state promotions—moving from a lower-power state to a higher-power

state—involve additional latencies. We refer to these additional latencies as promotion

latencies. One contribution of this chapter is a cross-layer, experimental examination of

variations in these latencies across carriers, and how implementation differences among

carriers lead to these variations. We also discover that the impact of demotions on latency

can also be quite substantial, i.e., moving from a high-power to a low-power state in some

cases involves up to several seconds of network reconfiguration and measurement, In addi-

42

tion to adding delays of several seconds, for LTE it significantly increases the packet loss

rate. We call the resulting delay the demotion latency. Previous work treats promotion

latencies as constant and disregards demotion latencies, focusing on demotion timers. We

demonstrate that variable promotion and demotion delays, differing by carrier and varying

over time, have a substantial impact on performance.

To globally survey the impact of RRC state transitions on performance, we collected

data from a wide range of carriers using an open-source cellular network testing tool for

Android (§4.2.1). This tool adapted standard RRC inference techniques [35] to run auto-

matically on end-user devices, and was designed to require no special privileges or device-

specific functionality, allowing it to run on arbitrary user devices. It also accounts for

interfering data which might otherwise result in incorrect measurements. We also measure

the impact of RRC states and state transitions on HTTP requests and DNS lookups.

We also used local, controlled experiments to understand the performance impact of

RRC states, especially RRC state transmissions, using a cross-layer approach. Starting at

the RLC (Radio Link Control) layer, we examine control and data messages directly using

a tool called QxDM (Qualcomm eXtensible diagnostic monitor) [99], in order to under-

stand the root causes of the observed transition delays (§4.2.2). We built an application

controller tool in order to test the impact of RRC states on user-perceived performance at

the application layer.

4.2.1 Automated RRC Performance Measurement

Inferring RRC state timers by observing how packet latencies change as the time be-

tween packets increases has been examined in previous work [35, 63]. The standard tech-

nique used is as follows (summarized in Figure 4.1): first, a UDP packet is sent to ensure

the device is in a high power state. Next, the device is left idle for a period of time before

another UDP packet is sent and echoed back by the target server. The latency of the sec-

ond packet can then be compared to the latency of the first packet; if there is a substantial

43

P
ow

er state
Latency

P
acket

Force to DCH
-> State now
known

DCH FACH PCH

Demotions

T1 T2

(a) Initial packets sent.

Force to DCH
-> State now
known

Moved to
FACH!

T1 T2

FACH PCH

Promotion -
Adds delay

DCH

T1

Demotions

P
ow

er state
P

acket
Latency

(b) With a longer interval between the packets sent, we enter FACH.

Now in PCH!

T2T1 T1

Demotions

Promotion -
Adds delay

DCH FACH

P
ow

er state
P

acket
Latency

(c) Finally, with an even longer inter-packet interval, we enter DCH.

Figure 4.1: Impact of sending packets with varying interpacket intervals and how one can
use those to infer RRC states.

44

increase, it implies that a state promotion has occurred between them, adding latency. By

examining a range of inter-packet intervals, the time at which a state transition occurs after

a packet is sent can be determined. To distinguish between FACH, where a transition only

occurs for sufficiently large packets, and PCH, we perform this test with empty packets and

1 KB packets.

Although this technique has been applied in the past in a controlled setting to mea-

sure RRC state timers as set by carriers, we focus on measuring how RRC states and state

transitions impact user-perceived performance, by providing an implementation suitable

for end-user devices. This allows us to deploy our system broadly, to cover global carrier-

dependent effects, as well as gather data over a long time period, to capture probabilistically

occurring problems (whose presence we then confirm through controlled experiments). Un-

like methods of measuring RRC state transitions which focus on RRC state configuration,

we are able to capture the effect of RRC states as they impact performance in practice, in

particular performance issues caused by RRC state transitions.

To measure RRC states on a large scale, we implemented this method in an open-source

network measurement tool for Android devices, and released it to the public. We are able

to survey a large number of carriers to gather a representative picture of how RRC states

on carriers around the world affect performance, and discovered performance problems not

found in previous work.

A challenge of a public deployment is that control over all traffic on the device

is needed. To address this problem, we use a Linux utility (/proc/net/dev) to monitor

background traffic that might interfere with the current measurement, and discarded and

rescheduled tests when this interference occurs. This RRC test runs automatically in the

background to allow ongoing monitoring with no user involvement, and sends results back

to a server, along with information such as the carrier and signal strength at the time the

measurements were taken. User identifiable data is anonymized.

We also added tests to observe the impact of varying packet sizes on RRC state transi-

45

tions, by adjusting the size of the second packet sent. Finally, to observe the impact of RRC

states on HTTP and DNS lookups, we replaced the second UDP packet with the request in

question. Furthermore, as we measure RRC states repeatedly over time, we are able to ob-

serve dynamically configured timer values varying from test to test, such as those resulting

from fast dormancy.

We vary the inter-packet timings at the granularity of half-seconds, which is not suffi-

cient to identify timers for switching between various DRX timers in LTE’s CONNECTED

state. We determined these timers can be measured by performing a set of tests locally with

several carriers to measure performance changes when inter-packet intervals are varied by

50 ms. For these timers, there were no unexpected transition delays. As measuring timers

at such a fine granularity requires an order of magnitude more packets to be sent, thus con-

suming a lot of cellular data, and as we found no surprising results in our local experiments,

we did not deploy this test globally.

4.2.2 Root Cause Analysis with QxDM

QxDM [99] is a debugging tool that can view all network data and signaling messages

in the form of a pcap-like trace. Using this tool, we can map IP packets to RLC (Radio Link

Control) PDUs (Packet Data Units), which are layer 2 data-plane messages. We are also

able to view the control-plane messages associated with RRC state changes. We can then

determine how RLC PDU delays and control-plane messages affect latency to understand

the impact of RRC state changes on user-visible performance. We combine pcap traces

with QxDM logs to determine what RLC events surround IP packet transmissions, using

timestamps to match events at both layers. For 3G, we are able to map individual PDUs to

IP packets as the contents of PDUs are logged.

To perform this analysis, we use a simplified RRC state testing application which re-

peatedly cycles through inter-packet intervals in order to induce RRC state transitions. By

analyzing the resulting trace, we can determine which control messages related to each

46

Demotion type App. QxDM
3G C1 DCH⇒FACH 3 ± 0.5 s 3.1 ± 0.1 s
3G C1 FACH⇒PCH 6.5 ± 0.5 s 6.2 ± 0.8 s 1

3G C2 DCH⇒Disconn. 10 ± 0.5 s 10.3 ± 0.1 s
— fast dormancy 3 ± 0.5 s 3.2 ± 0.1 s

LTE C1 Conn.⇒Idle 10 ± 0.5 s 10.5 ± 0.1 s
LTE C2 Conn.⇒Idle 10 ± 0.5 s 10.2 ± 0.1 s

Table 4.2: Comparison of ground truth demotion timers from QxDM with values measured
through the application.

RRC state and RRC state transition result in substantial delays. We also determine if any

non-RRC state transition related processes are interrupting state transitions. We analyzed

traces from three different carriers with different RRC state implementations and different

transition delay behavior. In §4.4, we break down the causes of various RRC state delays,

and compare carriers with differing delay behavior in order to both validate the presence

of the observed differences and previously unknown delays, as well as understand their

causes.

A limitation of this approach, unlike the app-based approach, is that it cannot be per-

formed on actively-used devices in the wild, as proprietary software and some external

equipment is needed, as well as specially configured devices. It is complementary to the

app-based approach, which allows for a broad survey of RRC state performance to be per-

formed, covering many carriers, locations, and device types. Conversely, this approach is

more suitable for in-depth examination of specific performance problems. For this reason,

this approach we use to understand RRC state behavior is likely of most use to carriers

who, having detected a performance problem, are interested in understanding how best to

address it.

Finally, in order to validate the application-based RRC state measurement methodology,

we use QxDM to determine a ground truth for RRC state timers (i.e., the time after a packet

is sent where a state demotion occurs). After determining timers from two carriers for RRC

states, we then verify the values by comparing the inferred RRC timers with the ground

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Promotion process delay from QxDM (s)

C1 PCH->FACH
C1 FACH->DCH

C2 Disconnected->DCH

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10

C
D

F

Demotion process delay from QxDM in logscale (s)

C1 FACH->PCH
C1 DCH->FACH

C2 DCH->Disconnected

Figure 4.2: Measurement of demotion and promotion times for two carriers in QxDM.

truth values from QxDM, shown in Table 4.2. As we infer the RRC timers set by the

carriers from changes in the measured performance, elevated and variable latencies during

long RRC demotions mean that sometimes these values can only be inferred to within about

a second. This limitation applies only to inferring the demotion timers, not to be confused

with the demotion or promotion latency, which we measure at the millisecond granularity.

Changes in the promotion latency are used to infer the demotion timers.

We also confirm the presence of the long delays during state transitions observed in

our application tests. We examine three major carriers with over a hundred million sub-

scribers each, which we refer to as C1, C2 and C3 throughout the chapter. The carrier

names are anonymized to avoid appearing to endorse specific carriers, as we have uncov-

ered performance and configuration issues in these carriers that they may want to address.

In Figure 4.2, C1 has a substantially longer RRC demotion process delay than C2, which

prevents packets from being sent during that time and results in significantly longer trans-

mission delays at the application layer. We evaluate this in §4.5.

48

To systematically evaluate the impact of RRC state transition delays on user-perceived

application performance in §4.5 through a cross-layer analysis framework, we develop an

application controller which simulates normal user behavior over real, major Android ap-

plications such as Facebook. Built upon the Android Test Case framework [1], this con-

troller programmatically triggers Android UI events such as clicking buttons and entering

text, and enables performing common application UI operations such as “pull-to-update”

on the Facebook news feed list. To measure the user-perceived UI latency, the controller

also logs UI events, such as the start and end time of the news feed loading. As measured

by Android DDMS [2], an application performance profiling tool, our controller incurs a

computational overhead of less than 2% and thus has minimal impact on user-perceived

latency measurement.

4.3 Global performance measurements

Our approach to measuring RRC states allows any Android device on any cellular net-

work to measure the impact of RRC state and state transitions on user-perceived perfor-

mance. We deploy our measurement tool as part of a mobile network testing suite to survey

RRC performance around the world, to ensure results are representative of global user ex-

perience. This tool measures network performance automatically and in the background on

Android devices, allowing users to effortlessly monitor performance trends. The amount

of data consumed is configurable by users, and all data sent to the server is anonymized to

protect the user’s privacy.

Due to lost packets, interrupted measurements and unrelated network delays, a single

set of tests was usually insufficient. For our final results, we consider carriers with more

than 5 complete tests only, so that transient network delays, unrelated to RRC, will not

affect our results. We also excluded six carriers where network noise was so high that all

RRC states were indistinguishable.

In Figure 4.3, we give an example of measurements from one device type and car-

49

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12

N
o

rm
a

liz
e

d
 R

T
T

 (
m

s
)

Inter-packet timing (s)

Empty packets
1 KB packets

Figure 4.3: Observed round-trip times while transitioning through RRC states. Median,
quartile and 5%/95% values shown.

rier (sizes do not include headers). The round-trip time for large packets is higher for

inter-packet frequencies between 4–9 seconds, and higher for both packets from around 10

seconds onwards. In FACH, we expect round-trip times for large packets to be substan-

tially higher than in DCH by design, and round-trip times for small packets to be similar to

DCH. In PCH, while all packet sizes experience high round-trip times, we found that large

packets still have a larger round-trip time than small packets due to network delays.

Unlike RRC measurement tests in previous work [35, 63, 70, 65, 123], we focus on

measuring the impact of RRC states on user performance rather than just measuring RRC

state configuration parameters. In particular, we were able to observe behavior inconsistent

with the ideal model of RRC state transitions. In Figure 4.3, there is a period of several sec-

onds after a packet is sent, from about 2.5 to 4 seconds, when the next packet experiences

unexpectedly high round-trip times. We refer to this delay as the promotion delay, and

the period of time where it occurs as the promotion period. Where there are no promotion

delays, we instead identify the interpacket interval at which the promotion occurs to be the

promotion period. For example, in Figure 2, the demotion can be seen between 9.5 and 10

seconds.

Carrier and device characteristics: After filtering out carriers with insufficient data

50

for our analysis, we analyze 44 carriers in 28 countries covering every continent. Data on 69

distinct device model types and seven distinct network types was collected, including 2G,

3G and 4G technologies. In this chapter we focus on 3G and 4G, which have been adopted

by most carriers. 7 carriers use LTE, 23 use HSPA+, 16 use HSPA, 25 use HSPDA, and 6

use EVDO A, with many carriers supporting more than one technology. In particular, most

carriers with LTE also provide 3G.

Almost all carriers with LTE have a demotion timer to CONNECTED of 10 seconds,

but with 3G technologies, the timers vary greatly, from 2 to 10 seconds, although the total

time to enter PCH is generally less than 10 seconds. Carriers providing multiple 3G tech-

nologies generally use the same timers for each. About 2/3 of carriers with HSPA, HSPDA

or HSPA+ have no FACH state, or at least no FACH state with measurable performance

impact. We only saw definitive evidence of fast dormancy — a demotion timer varying

substantially from test to test — with one carrier. Two more carriers exhibited variations of

about a second. As fast dormancy and other dynamic RRC state timer approaches become

more prevalent, the ability to measure these variations will become increasingly valuable.

For 3G, we also examined the impact of packet sizes on RRC state transitions, by

varying the packet payload size from 0 to 1000 bytes by increments of 200 bytes. Dra-

matic increases in latency, indicating the size threshold for a promotion from FACH, all

occurred between 0 and 200 bytes. Given the small threshold for a promotion from FACH

and the high associated demotion overheads, FACH may not provide much benefit. We

also observed that RTTs increase steadily with packet size by as much as a few hundred

milliseconds in all states.

Transmission delays: Ideally, the overhead of acquiring radio resources to use the

radio channel should be fairly constant, independent of the idle time of the device. We

observed that when network transmissions are sent when the demotion timer expires and

the device undergoes a state demotion, there is an unexpected and undesirable increase in

the delay to promote back to a high power state. This problem occurs for a large number

51

 0

 1000

 2000

 3000

 4000

 5000

C1 C2 C3

A
d

d
it
io

n
a

l
d

e
la

y
s
 a

d
d

e
d

 t
o

 R
T

T
 (

m
s
)

FACH, 1KB
DCH->FACH, 1KB.

FACH, 0B
DCH->FACH, 0B

PCH, 0B
any->PCH, 0B

Figure 4.4: Variations in delays due to 3G states and state transitions, normalized against
the DCH RTT. Median, quartile and 5th/95th% values shown.

of carriers.

We start by describing detailed results from three major carriers, illustrative of three

different observed behavior patterns, and then summarize results globally. Values are nor-

malized by the average latency in the absence of any RRC state change. We show values

during state transitions separately, as described above.

In Figure 4.4 we show results from all 3G technologies for each carrier. C1 has im-

plemented FACH, which has a substantial difference in latency depending on packet size.

During demotions to FACH, latency becomes higher, especially for smaller packets, as ex-

pected. Round-trip times are substantially more variable during this time period, leading to

poor tail performance. The demotion to DCH does not lead to substantial latencies. C3 is a

CDMA network and thus does not implement FACH, but still experiences demotion delays.

C2 does not implement FACH and does not experience observable demotion delays glob-

ally, although we find in some areas (including in local experiments), where performance

is poor, demotion delays for this carrier appear. Performance sending data from low-power

states is substantially worse for this carrier, although network performance for this carrier

was generally poor.

In Figure 4.5, we show LTE performance for three carriers, comparing CONNECTED

52

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C1 C2 C3

A
d

d
it
io

n
a

l
d

e
la

y
s

a
d

d
e

d
 t

o
 R

T
T

 (
m

s
)

Conn.-DRX
IDLE

Transition

Figure 4.5: Delays due to LTE states and state demotions, normalized against the RTT of
an empty packet sent in CONNECTED with no DRX.

against IDLE and the demotion between the two. LTE is supposed to perform better than

3G, but this is not necessarily true during demotions. For all three carriers the tail latency is

substantially higher during state transitions, lasting potentially up to several seconds. For

C1 and C3, the median values are substantially higher as well. In §4.4, we discover this

difference is due to differences in how state transitions in these carriers are affected by

control-plane activity.

For LTE only, we also found packet loss during state transitions are higher than average,

by up to an order of magnitude. To measure loss rates, we sent out ten empty packets

simultaneously and counted how many were echoed back. C1, C2 and C3 experienced

packet loss of 26%, 63% and 68% respectively, with normal loss of 1–3% depending on

the network state (aside from C3 which experienced loss of up to 30% of packets).

To examine trends across all carriers in RRC state impact on performance, we start

by examining the impact of state promotions in Figure 4.6, which have been examined in

previous work only for a small number of carriers. Promotions from FACH generally take

several seconds, and even for empty packets, state promotions are sometimes triggered,

contrary to expectations. Promotions from DCH are also long, and the performance impact

53

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

F
ra

c
ti
o

n
 o

f
c
a

rr
ie

rs

(p
ro

m
o

ti
o

n
 f

ro
m

 F
A

C
H

)

3G, median
3G, 75th %

3G 1KB, median
3G 1KB, 75th %

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

F
ra

c
ti
o

n
 o

f
c
a

rr
ie

rs

(p
ro

m
o

ti
o

n
 f

ro
m

 I
D

L
E

)

Total delay in state (ms)

3G, median
3G, 75th %

LTE, median
LTE, 95th %

Figure 4.6: CDFs of distribution of latencies during state promotions over all carriers: in
the top graph, going from FACH and in the bottom from IDLE.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

F
ra

c
ti
o

n
 o

f
c
a

rr
ie

rs

Extra delay during state demotions (ms)

3G, FACH, median
3G, FACH, 75th %
3G, PCH, median
3G, PCH, 75th %

LTE, median
LTE, 95th %

Figure 4.7: CDF over all carriers of additional latencies caused by transmissions during
state demotions (minus promotion transition times in the new RRC state).

varies dramatically from carrier to carrier. LTE state promotion delays are generally no

more than a few hundred milliseconds.

54

In Figure 4.7, we show the additional latencies added by attempting to send data near

a state demotion, on top of the state promotion delays. We compare median values during

state demotions with median values for state promotions only, and likewise for 75th and

95th percentile values. Ideally, no additional latency should be incurred, if the demotion is

aborted, allowing the device to simply remain in the high-power state. This is not the case,

especially for demotions to FACH. Eliminating FACH (as many carriers have) would likely

reduce, though not completely eliminate, the prevalence of this demotion delay problem.

For LTE, median latencies are generally not affected by state promotions. It seems our

local carriers explored above have somewhat non-typical behavior, underscoring the need

for a broad survey of network performance. However, tail latencies, as we found earlier,

are frequently affected. Note that we show 95th percentile latencies and not 75th percentile

latencies. As we saw earlier, these tail latencies are substantially higher during demotions

than any other time. Given the low network delays in LTE generally, these delays can have

a major impact on user-perceived performance. Given that major web services go to great

lengths to reduce tail latencies for 0.01% of users due to the potential revenue impacts [27],

these latencies can be quite significant.

Summary: State demotion delays are common worldwide, though not experienced by

every carrier, and occur in both 3G and LTE. Where they occur, they can have a critical

effect on performance, in some cases causing delays of several seconds. State demotion

delays (and to a lesser extent, state promotion delays) also vary greatly between requests,

adding additional latencies of up to several seconds on top of the normal state promotion

latency. Additionally, in LTE, state demotions are associated with high packet loss rates.

More generally, we have shown that running RRC state performance tests on user devices

is an effective way of monitoring global RRC state performance trends.

55

 0

 200

 400

 600

 800

 1000

 1200

0 2 4 6 8 10 12 14

B
re

a
k
d

o
w

n
 U

D
P

 R
T

T
 (

s
)

Inter-packet interval (s)

Measure/Config.
Promotion

Idle
Demotion

Idle Config
Network Delay

Figure 4.8: Median values of sources of transmission delays for C1 , labeled based on the
messages observed in QxDM. C2 is similar but lacks “Idle Config.”, which
seems to have to do with network configuration.

4.4 Root Cause Analysis

Through controlled, in-lab testing of RRC latencies and measurements with QxDM,

which provides detailed visibility of RRC state transition control and data messages, we

examine the events that contribute to RRC state delays. Although delays during state tran-

sitions occur in nearly all cellular network technologies, the causes of these delays (as well

as their magnitudes) differ as shown in §4.3.

Causes of promotion delays in LTE: First, we examine state promotions that do not

occur in the vicinity of state demotions. Although previous work has identified that state

promotions cause delays, the root causes of and variations in these delays have yet to be

examined [35, 63]. We summarize the median delays for different inter-packet intervals in

Figure 4.8. The promotion delay, unsurprisingly, adds a highly varying delay to the overall

latency. This delay includes the effects of Discontinuous Reception (DRX), where devices

must wait a few hundred milliseconds before sending data. This promotion process starts

with a request to switch to a higher-bandwidth, more reliable channel, on an unreliable

network channel. Delays during this process due to poor network conditions sometimes

add substantial additional latencies. This contributes significantly to the high variation in

56

worst-case or tail network latency seen in Figure 4.5. A detailed description of some of

the messages involved in state promotions (though not demotions) for LTE and 3G can be

found in a white paper by Mohan et al. [77].

Causes of demotion delays in LTE: In Figure 4.8, it can be seen that latencies are

often significantly worse during state demotions. These involve more measurement and

configuration messages, although the demotion process itself is quite short. The promotion

delay in this period is also very short, since an immediate promotion means that the DRX

delay will be minimal.

We have isolated one set of message delays in particular that can add several seconds of

delays, and labeled them “Idle config.” These messages appear to be related to transmission

synchronizations with the base station, although they are not well-documented. If an IP

packet is sent before this message appears, then the entire process completes before the state

transition process begins. However, if an IP packet is sent after it appears, then this process

is aborted and a state transition begins right away, so this delay only appears for a narrow

window of inter-packet timings. This illustrates the dependencies of control messages on

the data packet timing. These messages do not appear for C2, which explains the lower

median latencies during demotions seen in Figure 4.5. Additionally, for all carriers the

device occasionally momentarily disconnects from the network before selecting a new cell

tower, causing long delays. This appears to be responsible for the long 95th percentile

latencies seen in Figure 4.5. This is likely unavoidable as user movement or poor network

performance may necessitate this switch.

Causes of promotion delays in 3G: We summarize the breakdown of latency causes in

Figure 4.9 as they vary by inter-packet interval. For 3G, promotion times are often longer

— roughly 1200 ms on average where they occur. After a state promotion, additional

control plane messages are sent, such as messages to measure channel conditions. These

messages take up significantly more time than the state promotions themselves, and the

messages seen can vary. One series of system information messages adds additional delays

57

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

B
re

a
k
d

o
w

n
 U

D
P

 R
T

T
 (

s
)

Inter-packet interval (s)

DCH->FACH process delay
FACH->PCH process delay
PCH->FACH process delay
FACH->DCH process delay

Configuration and measurement delay
Network delay

Figure 4.9: Breakdown of RTTs for varying inter-packet intervals, including a demotion to
FACH at 3s and a demotion to PCH at 7s. The impact of the FACH⇒ PCH
demotion is essentially nonexistent in this case.

of hundreds of milliseconds where it occurs, leading to high latency variations. These mes-

sages occur periodically, every few hundred milliseconds, not just during state transitions.

Overall, state promotions are more complex and involve more messages being exchanged

for 3G than for LTE. State promotions are already known to be slower in 3G for this rea-

son [77].

Causes of demotion delays in 3G: In Figure 4.9, it can be seen that state demotions

have a substantial impact when the inter-packet interval is between 3 and 4 seconds. Unlike

with LTE, it is simply the demotion process itself which is slow, rather than other control

plane messages which cause unexpected delays. This makes promotion latencies more

common as well as affect a larger range of inter-packet intervals. As we showed in §4.3,

for 3G, promotion delays affect more requests. It is also interesting to note that when a

state demotion is interrupted in this manner, there is often no subsequent promotion delay.

Interestingly, several carriers appear to lack these demotion delays altogether. We were

able to examine one such carrier in depth using QxDM. Our first observation was that this

carrier omits the FACH state. However, we found in our global study of 36 carriers that

not all carriers which omit FACH lack significant transition delays. The main difference

58

is that this carrier’s demotion process is substantially simpler, consisting of sending one

message to the base station followed by a small amount of additional delay due to device

configuration operations. As this adds a median time delay of 175 ms, it did not have a

statistically significant effect on the user-experienced latency. It is also interesting to note

that this carrier was also one of the few carriers in our study to have implemented Fast

Dormancy, a performance optimization which appears to have yet to be widely deployed.

It also has fewer LTE demotion delays.

Summary: We have determined that, for both LTE and 3G, carrier-specific, RRC state

related messaging and configuration delays can interact poorly with certain network state

patterns. At least one carrier has been able to reduce these delays greatly. In general, how-

ever, LTE’s state transition procedure ensures much better average performance than 3G’s,

largely due to a lower amount of control-plane signaling needed in order to transmit data or

change RRC states. Delays in LTE are primarily due to poor interactions between certain

control-plane messages and the state demotion process, affecting only a subset of requests

(although it can add delays of several seconds). Delays in 3G, however, are generally due to

issues with state demotion implementations. Additionally, while it was already known that

state promotions can cause network delays, we experimentally quantify which components

of the state promotion process lead to promotion delays. The overall observation is RRC

state transitions contribute significantly to tail latencies on mobile devices.

4.5 Application impact

We next explore how upper-layer protocols are affected by RRC state transitions, using

both our globally deployed RRC state measurement tool and in-lab controlled experiments.

We find that HTTP connections, DNS lookups, and mobile applications are all impacted

by poor RRC state transition performance.

59

 0

 1000

 2000

 3000

 4000

 5000

 6000

T
im

e
 t

o
 c

o
m

p
le

te
 D

N
S

(n
o

rm
a

liz
e

d
,

m
s
)

High-power state
Med-power state

High->Med
Low-power state
High/Med->Low

 0

 1000

 2000

 3000

 4000

 5000

 6000

C1 C2 C3-LTE

T
im

e
 t

o
 c

o
m

p
le

te
H

T
T

P
 (

n
o

rm
a

liz
e

d
,

m
s
)

Inter-packet time (s)

Figure 4.10: Performance of different carriers with different inter-packet timings, for DNS
lookups and HTTP connections to a small website.

4.5.1 HTTP and DNS Results from Global Deployment

In our public deployment, we measured the impact of RRC states on DNS and HTTP

requests, which are more representative of real network traffic than individual UDP packets.

Testing with UDP packets allows us to understand the impact of RRC states without being

affected by network protocol features, but UDP is not representative of most network traffic.

We show the impact of RRC states on a DNS lookup and on the loading of a small web

page in Figure 4.10. We show results from the three carriers discussed in-depth before: C1

in 3G, which experiences substantial demotion delays in our UDP-based testing; C2 in 3G,

which did not experience these delays, and C3 in LTE.

For individual packets in 3G, C1 was found to experience promotion delays, whereas

in 3G C2 did not. This trend also impacts the performance for DNS lookups and HTTP

requests. For C1, FACH performs worse than DCH, and data sent during the promotion

to FACH performs even worse, comparable to the performance in PCH. Unfortunately, for

60

 0

 1000

 2000

 3000

 4000

 5000

C
1:D

C
H

C
1:D

C
H
->FAC

H

C
1:FAC

H

C
1:PC

H

C
2:D

C
H

C
2:D

C
H
->idle

C
2:idle

R
o

u
n

d
-t

ri
p

 t
im

e
 (

m
s
)

TCP SYN
HTTP GET

Figure 4.11: Effect of RRC states on TCP SYN RTTs and HTTP GET latencies.

this carrier we have limited data in PCH, but as we found before, demotions to PCH for this

carrier do not add substantial extra delays. Like with our UDP tests, we also found that for

C2 there were no state demotion delays. For LTE, while the median performance during

state demotions is not substantially worse than in IDLE, the tail results are substantially

worse, in one case lasting more than five seconds for a DNS lookup! Overall, we can see

that these RRC state performance problems have a real impact on users.

4.5.2 Controlled Web Browsing Experiments

To verify our findings, we also examined RRC state delays in different circumstances

in controlled, in-lab experiments. We evaluated the page loading time in a browser for 10

major websites, including search, social networking e-commerce, news, sports and finance

websites. We varied the inter-request time from 1s to 11s, with a granularity of 0.1s. In

total, we generated 3000 HTTP requests for both C1 and C2 over an entire day. In

Figure 4.11, we compare the TCP SYN RTTs and the HTTP GET request RTTs from TCP

flows. In addition to the expected promotion delays, the demotion delay increases the SYN

RTT substantially. As the HTTP GET request starts with a SYN request, it suffers from the

same transition delays.

We also evaluated the user experienced latency starting from the SYN packet until

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F

C1 DCH

C1 FACH->DCH

C1 DCH->FACH->DCH

C1 PCH->FACH->DCH

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

C
D

F

User-perceived latency (s)

C2 DCH

C2 Disconnected->DCH

C2 DCH->Disconnected->DCH

Figure 4.12: Effect of RRC states and transitions on user-perceived latency in web brows-
ing experiments.

the last HTTP-related packet is received, focusing on network latency (i.e., disregarding

Android system latencies). In Figure 4.12, we show the distribution of user-experienced

latency when browsing in various RRC states as well as during state transitions. Starting in

a low-power state has a substantial performance impact, adding 0.5–3s of user-experienced

latency. C2’s throughput happens to be significantly worse than C1’s at our location,

causing the atypical performance differences between the two.

Since C2 lacks an intermediate FACH state, unlike C1, there are two demotion types

shown for C2. As a result, there is a higher chance that users of C1 transmit data during a

state demotion. In our controlled experiments, we found that for C2, 2.4% of HTTP GET

requests experienced demotion delays, and for C1, 4.25% of requests were affected.

4.5.3 Case Study: Facebook Application

In order to demonstrate the impact of RRC state transitions on a major app other than

a web browser, we examine a common operation in the Facebook application. Facebook is

62

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

C1:DCH->FACH

C1:PCH->FACH->DCH

C1:FACH->DCH

C1:DCH

C2:DCH->Disconnected

C2:Disconnected->DCH

C2:DCH

U
s
e

r-
p

e
rc

e
iv

e
d

 l
a

te
n

c
y
 (

s
)

Facebook pull-to-update

Figure 4.13: Impact of additional RRC state transition delays on Facebook’s pull-to-update
action.

one of the most popular social networking services, with 945 million active mobile users

during the month of December 2013 [96]. Limiting network latency is critical to ensuring

good user experience. One of the most important features of Facebook is its news feed [92].

We examine the time to fetch new news feed content over the network by pulling down on

the list (the “pull-to-update” action). To systematically and repeatedly measure the latency

associated with app operations, we created a controller application that repeatedly initiates

the pull-to-update action and logs the timestamp of this action and the resulting news feed

load completion event.

We performed the experiment on two Android 4.2.2 Samsung Galaxy S3 devices. We

created two Facebook accounts, A and B, which are friends with one another. One device

with account A repeatedly uploads two photos to generate news feed data. The other ac-

count performs a pull-to-update operation, varying the time intervals between each action.

As shown in Figure 4.13, the DCH⇒FACH demotion process increases the user perceived

latency by 398 ms for C1, and the DCH⇒Disconnected process introduces an additional

2.225s delay for C2. The results are consistent with the web browsing experiments. As

63

with those experiments, the RRC state transition delay is worse for C2 due to exceptionally

poor network performance where we performed the experiment.

Summary: We show that the problems we observed are not just limited to affecting

individual packet latencies. RRC state transitions, especially RRC state demotions, can

greatly impact network and application layer protocols, as well as the performance of web

browsing and network applications directly, adding delays of up to five seconds in the worst

case. As we saw with the impact of RRC state transitions on latency for individual packets,

the degree to which transitions impact performance varies significantly by carrier. Most

importantly, for all carriers, in the worst case, delays of over a second can be added.

4.6 Discussion

We have shown that only determining RRC state timers set by the carrier is insufficient

for understanding the impact of RRC state on performance. The model of how RRC state

transitions impact user-perceived latency to date is incomplete, as variable state transmis-

sions, in particular state demotions, have a critical impact on performance. Being able to

monitor the impact of RRC states on performance in the real world is valuable for uncov-

ering network performance issues.

Cellular carriers are one party for whom our findings and measurement approach are

likely to be of interest. Implementation details which differ between carriers can lead to

highly varying delays. They have a particularly substantial impact on user performance

in 3G, which is still widely used by carriers around the world, although these problems

persist in LTE as well. These delays are caused in part by poor interactions between un-

related control messages and RRC state transitions, and have been substantially reduced

in one carrier, implying it is likely possible to reduce the prevalence of these transition

delays. We have also found that the use of DRX in CONNECTED has a significantly

lower impact on user-perceived performance due to the lack of demotion delays, and is a

particularly effective way of reducing power consumption without significantly impacting

64

user-perceived performance. More generally, the use of our user performance measurement

app would allow carriers to understand the impact of RRC states on user-perceived perfor-

mance, breaking down trends by region or network type, in order to detect unexpected RRC

state performance problems and then address them. We recommend that, overall, carriers

use ongoing measurements of the impact of RRC states on the user experience to inform

how they configure their networks.

Furthermore, as some of these problems are at least partially inherent in how RRC state

transitions work, and may not be easy to fix, application developers would likely be inter-

ested in understanding the impact of these states. Recent work has been done on allowing

applications to account for RRC state in order to reduce latency and save power on network

transmissions [36, 50, 71, 34]. This benefits greatly from a more accurate understanding of

RRC states as they impact application performance in the wild. In particular, they should

account for the fact that different carriers are impacted differently by state transition de-

lays, and therefore the performance tradeoffs for transmitting at different points in time

will differ by carrier. For instance, for some 3G networks, transmitting during long FACH

promotions can lead to even higher latencies than transmitting in PCH, making FACH an

ineffective tradeoff between power consumption and performance. As the causes of these

delays are complex and carrier-dependent, further development of libraries and frameworks

to allow app developers to easily account for underlying network artifacts that affect per-

formance and power consumption would be highly valuable. This is another way in which

measurement-oriented systems can lead to better performance for end users.

4.6.1 Limitations of methodology

Fundamentally, the methodology we use assumes RRC state machine parameters are

static. There has been some discussion of using techniques such as fast dormancy [94] or

other techniques to adaptively change the RRC state machine’s behavior. In particular, be-

cause we always run experiments when there is no background traffic, it’s possible any fast

65

dormancy behavior triggered by certain traffic types would be missed. To our knowledge,

based on working with a number of carriers, carriers have not yet start using fast dormancy,

but of course there are hundreds of carriers which we do not work with which may have.

Similarly, it’s possible carriers might change RRC state timers based on load, for in-

stance more aggressively transitioning to a lower state when network performance is bad.

This is also something we might be less likely to see due to how we schedule measure-

ments.

We also haven’t looked at whether RRC state timers vary by network conditions. We

run other measurement tests around the same time we run the RRC tests, so if we saw

substantial variations in RRC state machine behavior, that is something we could examine.

4.7 Conclusion

In this chapter, we examined the impact of RRC states on user-perceived performance

in depth. We uncovered several previously unknown implementation artifacts that can lead

to delays of up to several seconds, and have demonstrated the impact on latency and packet

loss that RRC states have on network protocols and applications. We have investigated the

root causes of these performance problems by examining RLC-layer messages in order to

determine what configuration events and messages cause the delays observed. In doing so,

we confirm the presence of these unexpected delays, and determine that, while they are

partially unavoidable, they are exacerbated by complex, multi-stage state transitions and

unexpected negative interactions with other control-plane configuration events. Further-

more, we discovered that some carriers have configured their RRC state machines to avoid

many of these pitfalls, suggesting these problems are fixable.

In addition to identifying specific and previously unknown performance problems in

networks around the world, this chapter also motivates the need for continuous, long-term

and global monitoring of cellular network configurations and the impact on performance,

with a emphasis on uncovering unexpected and non-ideal behavior, as these problems have

66

not been discovered in prior work. As applications increasingly account for underlying

cellular network implementation details to avoid excessive power consumption, data usage

or latency, properly understanding how the underlying cellular network affects application

performance in practice is crucial. It is clear that the reality of the impact of RRC states on

application performance is more complex than previously thought.

67

CHAPTER V

Revisiting Network Energy Efficiency of Mobile Apps:

Performance in the Wild

5.1 Introduction

Fueled by powerful mobile devices and ubiquitous cellular data network access, smart-

phone applications (apps) have become an indispensable part of modern life. There have

been more than 100 billion mobile app downloads from the Apple App Store as of June

2015 [61]. However, battery life remains a scarce resource. Over the past 15 years, CPU

performance has improved 250x while Li-Ion battery capacity has only doubled [26]. It is

known that inefficient app design can lead to excessive battery drain. In particular, certain

app traffic patterns, like periodic requests, interact poorly with the power-hungry cellular

interface [36, 11, 98]. Despite these known problems, however, apps continue to drain user

batteries.

Clearly, app behavior and how it impacts network energy1 consumption remains a sig-

nificant problem, due largely to the dynamic nature of network energy consumption which

is dependent on the current phone and radio state. Through a long-term study, we measure

the prevalence of network energy consumption, and these ongoing meausrements allow us

to gain a better understanding of app behavior trends over time. Furthermore, we find that

1By network energy, we refer to the energy consumed on the device due to network traffic.

68

ongoing monitoring of app behavior by the phone OS, along with the management of back-

ground traffic, would greatly improve energy consumption. This supports our overall thesis

that because mobile devices experience uniquely dynamic and complex network conditions

and resource tradeoffs, incorporating ongoing, continuous measurements of network per-

formance, resource usage and user and app behavior into mobile systems is essential in

addressing the pervasive performance problems in these systems.

More specifically, in this chapter [104], we measure the prevalence of excessive mobile

app network energy consumption by analyzing data collected from 20 real smartphone

users and 342 unique apps over a period of 22 months. This unique long-term dataset allows

us to examine the smartphone and app ecosystem in the wild. We focus on the impact of

background traffic — traffic sent when the app has no UI element visible — which makes

up 84% of the total network energy consumed across all users. Periodic background traffic

is often power-hungry [98], but apps have flexibility in scheduling background traffic due

to the absence of real-time user interaction, and can use strategies such as bundling traffic

or reducing update frequencies to reduce energy consumption. We examine global trends

across all apps and determine that energy overconsumption remains a pervasive problem,

despite many apps taking steps to reduce their energy overhead. Furthermore, some of this

traffic is likely unintentional and not useful to the end user.

Our key findings are as follows:

• We identify a significant new source of excessive background energy consumption

(§5.3.1), where network traffic persists after an app transitions from the foreground to the

background, sometimes for as long as a day. 30% of background traffic from one major

browser is caused by this phenomenon. Over 80% of apps transmit more than 80% of their

background data in the first minute after the app is sent to a background state, in total across

all user devices in our study.

• We show that there is high variation in the energy overhead of apps that rely on frequent

background traffic, even between apps with similar background functionality (§5.3.2). By

69

examining case studies of apps that require background updates, we find that the energy

consumed by similar apps can vary by up to an order of magnitude. Furthermore, we

find that apps studied in previous work have often improved their energy overheads but

that other new apps continue to make the same mistakes. There is substantial room for

improvement by adopting energy-efficient design approaches, such as batching background

updates.

• By examining apps as they are used in the wild, we find that many apps are frequently

not used for days, including apps with substantial background traffic. We demonstrate

that the network energy overhead of these apps can be reduced by up to a half in some

cases if the OS were to proactively terminate long-running apps after three days of inac-

tivity (§5.4). More generally, we emphasize the need for apps to be aware of their fore-

ground/background state when scheduling network requests, and our findings suggest that

new suggestions for managing background traffic are likely to be highly valuable.

5.2 Data Collection and Overview

We first summarize our measurement dataset. We recruited 20 students2 at the Uni-

versity of Michigan and provided each of them with a Samsung Galaxy S III smartphone

with an unlimited LTE data plan. We pre-installed custom data collection software on each

phone that transparently collects complete network traces. These traces include packet

payloads (note we are unable to decrypt SSL traffic), user input events, and packet-process

mappings. All collected data was kept strictly confidential. The data was collected over

a period of 623 days (December 2012 to November 2014) with an overall raw data size

of 125 GB, including cellular and WiFi packet traces and user input and context data.

We focus primarily on cellular traffic in this study as it consumes far more energy than

WiFi. Processes are labeled with names derived from the app package name, allowing us

to straightforwardly map packets to the originating apps. In a few cases, requests are del-

2This user trial was approved by University of Michigan IRB-HSBS #HUM00044666.

70

 0

 5

 10

 15

 20

M
edia process

M
edia server

Play store

G
m

ail

W
ssyncm

ldm

Facebook

D
efault brow

ser

M
aps

C
hrom

e

Plus
G
allery3d

Accuw
eather

R
eddit

Flipboard

D
ropbox

M
agic bus

Tinder

Yahoo w
eather

ESPN

Tw
itter

N
ytim

es

W
eather channel

Instagram

Skype

Sgiggle

Em
ail

Tencent

Spotify

N
u
m

b
e
r

o
f
ti
m

e
s
 i
n

a
 u

s
e
r’
s
 t
o
p
 1

0

Figure 5.1: Number of times each app appears in a user’s top 10 apps, ranked by total data
consumption

egated to some system services such as the Media Server. We label this traffic according

to the service from which it originated rather than the app which triggered it, as it is not

straightforward to map back to the original app.

When calculating network traffic, we used a standard model of RRC state energy con-

sumption [63] and allocate tail energies to the last packet that sent the traffic. We don’t use

the built-in Android energy manager because its way of calculating energy consumption is

very approximate [25].

5.2.1 Measurement Data Overview

We next give an overview of this 22 month dataset before focusing on specific apps.

App Popularity and Diversity. Users differ greatly in the apps they use. Figure 5.1

shows apps that appear in at least two users’ top-10 lists (by total data consumption). While

a handful of apps are popular among all users (e.g., the built-in media player, Facebook, and

Google Play), users’ top-ten lists otherwise exhibit significant diversity. Similar diversity

of app usage was observed in previous work [37, 133].

Data- and Energy-Hungry apps. First, we examine trends in applications that con-

71

 0

 0.5

 1

 1.5

 2

 2.5

G
roupm

e

Facebook

G
apps

Sam
sung Push

G
m

ail

Viber

G
vphone

Tenthbit

K9 ESPN

Em
ail

R
edbox

Tim
eToC

all

Loc. process

M
aps

W
eibo

W
hatsapp

Tw
itter

Exchange

C
hrom

e

T
o
ta

l
c
o
n
s
u
m

e
d
 (

M
J
)

Energy

 0

 5

 10

 15

 20

 25

 30

M
edia server

Instagram

Podcastaddict

M
edia process

Facebook

Pocketcasts

D
efault brow

ser

G
oogle m

usic

C
hrom

e

W
ssyncm

ldm

R
eddit

M
aps

G
allery3d

Play store

G
m

ail

Iheartradio

Tw
itter

W
eather

Spotify

ESPN

T
o
ta

l
c
o
n
s
u
m

e
d
 (

G
B

) Data

Figure 5.2: Highest cellular data and network energy usage by app across all users

sume a large amount of energy or data3.

We summarize the top energy and data consumers in Figure 5.2. Note the top energy

consumers and the top data consumers are not necessarily the same. For example, the

default email app consumes network energy disproportionate to its data usage, whereas the

built-in media server consumes significantly less energy per byte. As mentioned before,

in cellular networks, the radio remains active for several seconds after a data transmission,

consuming additional energy called tail energy. Since tail energy consumption is dependent

on the number of traffic bursts and the time between them rather than the amount of data

sent, apps sending data intermittently incur a disproportionate amount of energy.

As we evaluate the impact of each app in the wild, rather than the impact of apps in

isolation, we assign any tail energy to the last packet sent during the tail period to avoid

3In the rest of the chapter, “energy” refers to the network energy unless otherwise noted.

72

double-counting energy when there are multiple concurrent flows. In this way, the total

cellular network energy consumed by each device is the sum of the energy assigned to each

app. This may potentially introduce some bias, however, if, for instance, network traffic

from one app happens to frequently precede another. We expect this to happen rarely,

though.

Longitudinal Trends. We examined trends in network usage and energy consumption

over time. However, the diversity of apps, the smaller user set, users’ propensity to change

the apps they use over time, and changes in user behavior, obscured the overall impact of

app design changes over time or any trends towards more energy efficiency. Background

energy fluctuated by up to 60% from week to week throughout the study. Examining spe-

cific apps, we did determine that some apps have become more energy-efficient due to

adjusting the inter-packet intervals of background traffic, which we discuss in more detail

in §5.3.2.

5.3 Background Energy Consumption

Energy consumption in the background makes up 84% of the total network energy, and

is thus the focus of this study. An app running in the background may run until either the

user kills it manually or Android does (such as when more memory is needed). Many apps

sync with a server, receive push notifications, or run updates in the background. Since no

user interaction is present, these processes have much more freedom to determine when

they transmit data than when running in the foreground, where they may be subject to

time constraints to meet user expectations. Furthermore, there is often a tradeoff between

ensuring updates are timely and avoiding wasted background updates the user never looks

at. For this reason, apps vary greatly in the amount of energy that they consume in the

background, even when providing similar functionality. In this section, we analyze the

resource efficiency of app background network activities through detailed case studies,

identifying large disparities between similar apps due to diverse design approaches. We

73

 0

 0.2

 0.4

 0.6

 0.8

 1

D
efault brow

ser

C
hrom

e

ESPN

Facebook

Instagram

Plus
Tw

itter

W
eather

W
eibo

M
aps

Pocketcasts

Podcastaddict

Spotify

G
m

ail

Sam
sung push

Skype

F
ra

c
ti
o
n
 i
n
 e

a
c
h
 s

ta
te

foreground
visible

perceptible
service

background

Figure 5.3: Fraction of energy in each foreground/background state, based on process
codes assigned by the Android operating system

also identify several cases where large numbers of network requests are sent unnecessarily,

verified through in-lab testing.

Our definition of “background” traffic is based on five main process states defined by

Android [7]: foreground, where the process is responsible for the main UI; visible, where

the process is responsible for a secondary UI element; perceptible, where a process not

visible to the user may still affect the user experience (e.g. playing music); service, where

a background process should not be terminated if possible; and background, where the OS

will kill the app if system memory is low. We summarize the cellular energy in each of

these five states for twelve data- or energy-hungry apps in Figure 5.3. We refer to the first

two categories as “foreground” processes and the last three as “background” processes for

the remainder of the chapter. Note that for all but three of these apps, background energy

of some sort contributes more than half of the overall network energy consumed by the

app. Across all apps, 84% of cellular network energy is consumed in a background state.

This included only 8% of energy consumed by “perceptible traffic”, as only a few users

used streaming services and it is apparent from Figure 5.3 that not all apps made use of this

74

feature when expected. 32% was consumed by “service” traffic.

We focus on two main categories of background transfers. In §5.3.1, we examine back-

ground traffic that occurs when an app switches from the foreground to the background, and

network traffic either continues after this switch or is triggered by this switch. In §5.3.2 we

investigate traffic initiated automatically in the background, such as that for periodic up-

dates, push notifications, or music streaming. We supplement our longitudinal traces with

in-lab measurements to validate our findings and determine the context and purpose of the

traffic in our traces.

5.3.1 Foreground Traffic not Terminated

While it is expected that some apps will transmit data in the background, such as when

checking email, updating a social networking app or streaming music, other apps such as

browsers are expected to mainly transmit data when the app is in the foreground. However,

we find some such apps appear to inadvertently transmit data in the background. As shown

in Figure 5.3, about 30% of the Chrome browser’s network energy is consumed while the

app is running in the background. To understand why, we examine a representative trace

from the user study dataset in Figure 5.4. We have highlighted the time period after Chrome

switches to the background in grey. During this time packets continue to be sent for several

minutes: note that some websites also generate periodic background requests.

To validate our hypothesis that Chrome allows web pages to continue sending peri-

odic traffic after the app is minimized, we first created a custom web page that only sends

XMLHttpRequest asynchronously to a server every second. We found that the Chrome app

allows this web page to transfer data when tabs are not selected and thus invisible to the

user; when the screen is off; and even when the app has been sent to the background. To

further confirm this problem exists in the wild, we also opened several web pages, mini-

mized Chrome, and recorded the resulting network traces. In general, any web page which

automatically refreshes content has this problem, including some ad and analytics content.

75

 0

 500

 1000

 1500

 0 50 100 150 200 250 300 350 400

P
a

y
lo

a
d

 (
B

y
te

)

Elapsed Time (s)

FG BG

Figure 5.4: Chrome allows webpages to continue sending and receiving data in the back-
ground

In one particularly egregious case, a popular local transit information webpage sends back-

ground requests roughly every 2 seconds, indefinitely, keeping the cellular radio alive and

draining the battery until the app is killed or the tab is closed.

To quantify the severity of the problem on a larger scale, we plot the distribution of

the length of time during which Chrome continues to transmit data after being sent to the

background in Figure 5.5. This includes flows that were started when Chrome was in the

foreground but persist after Chrome is sent to the background. Each data point represents

one instance of the app being minimized. In some cases background traffic flows persist

for more than a day! While updating pages in the background may have some benefit to

users who then revisit that page, in most cases continuing to send data for so long is likely

not intended or useful behavior. Note that our data points do not include cases where the

app remains in the foreground but a tab other than the one being viewed is sending data,

and so the scope of the problem is likely even bigger.

We compared this behavior against that exhibited by Firefox and the default Android

browser. Neither allow data to be sent when the app is in the background or the screen is

76

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
D

F

Time (s)

Figure 5.5: Duration for which traffic continues to be sent/received after the app is sent to
the background. Each data point represents one transition to the background

 0

 5000

 10000

 15000

 20000

 0 10 20 30 40 50 60 70 80 90 100 110 120

D
a

ta
 (

M
B

)

Elapsed Time in BG (min)

Figure 5.6: Total background data sent by all apps, as a function of the time since switching
from a foreground state. Note the periodic spikes at 5 and 10 minute intervals,
the large amount of traffic in the first minute, and the long tail of persisting,
continuous flows

off, and Firefox blocks data from being sent by inactive tabs. To estimate the prevalence of

this problem among other apps, we examine the data sent by apps in the background as a

function of the time since the app was last in the foreground. As we show in Figure 5.6, the

more recently the app was sent to the background, the more traffic is sent, with substantially

77

more traffic being sent in the first few minutes than any other time. Some of this traffic is

periodic: there are peaks at 10 minute and 5 minute intervals, which are common time

intervals for intentional periodic background traffic. However, there is also a non-periodic

pattern, where the overall volume of background traffic falls off rapidly in the first few

minutes. To estimate the prevalence of this problem, we look for apps where 80% of the

background traffic is sent within 60 seconds of the app going to the background than any

other time. 84% of apps meet this criteria.

There are some apps, like Dropbox, which may have valid reasons to upload content

immediately after the app is closed, but in many other cases transmitting a large amount of

traffic after the app is closed is undesirable. Developers of apps that send a large amount

of data immediately after sending the app to the background should determine if this is

expected or necessary behavior.

5.3.2 Transfers Initiated in the Background

We next evaluate data transfers that intentionally occur in the background. Even though

these transfers may be beneficial to the user, depending on the frequency of user interaction

with the app, the overhead of these transfers can be disproportionate. We examine a num-

ber of energy-hungry apps in depth, as well as some energy-conserving apps with similar

functionality. Finally, we study a number of apps examined in previous work to evaluate

how background update energy efficiency has improved over time. The energy efficiency

of background transfers are primarily determined by their frequency, with small updates

incurring a disproportionate amount of tail energy. Large transfers are known to be more

efficient, as they make better use of available bandwidth [57]. As a result, apps with similar

functionality can have very different overheads depending on the traffic pattern used.

We summarize key findings in Table 5.3.2, focusing on five classes of apps that are

responsible for a substantial fraction of background updates in the user study: social media

apps, widgets, music streaming, podcasts and services that provide background updates.

78

MJ/day MJ/flow MB/flowAvg.J/B Update
fre-
quency

Notes

Social media
Weibo 3500 57 0.3 190 5-10 min Frequent, nearly-empty re-

quests
Twitter 220 11 17 0.65 1h
Facebook 930 14 7.7 1.8 5 min ⇒

1 h
Previously every 20-60s [98]
in 2012

Plus 180 11 8.9 1.2 1h Rarely actively used but in-
stalled by default

Periodic update services
Samsung Push 1500 140 2.2 64 15 min to

15h
Urbanairship 2000 310 1.9 163 5-30 min Library; period varies by app
Maps 190 21 55 0.38 20-30

min
Decreased to a few hours near
the end

Gmail 410 20 10 2 30 min⇒
varying

30 min in 2012 [98]; updates
appear to become discontinu-
ous.

Widgets
Go Weather 220 2.8 5.6 0.5 5 min ⇒

40 min
Switched push notification
approaches

- widget 300 12 1.6 7.5 5 min
Accuweather 1500 51 3.2 16 7 min but

high vari-
ation

- widget 33 1.7 18 0.094 ˜3h More efficient than the app
Streaming

Spotify 310 50 220 0.23 5 min ⇒
40 min

Pandora 35 3.9 45 0.087 1 min ⇒
2h

Previously every 1 min [98]
in 2012

Podcasts
Pocketcasts 36 4.3 2200 0.002 ˜2h aver-

age
0.4 mJ per minute running.

Podcastaddict 92 2.9 750 0.004 12 min
average

3.7 mJ per minute running.

Table 5.1: Case studies. Energy per flow and per day are averages over time, and one flow
may not correspond to one periodic update. These can vary as apps change over
time or as background apps are forced to close, and energy consumption values
vary by device and carrier

79

We break down the energy overhead into average per-day energy consumption and average

per-flow energy consumption. Note that it is not always the case that there is only one flow

per periodic update, nor that for periodic updates that the updates necessarily continue for

the entire day, as background applications may be forced to close for a variety of reasons.

First, we examine social media apps. These apps generally ask for updates from a

central server periodically, regardless of user activity, and can thus potentially consume a

large amount of energy. Apps with small, periodic background traffic (such as Weibo) have

very high energy overhead and send little data, whereas apps with similar functionality

(such as Twitter) have a much smaller footprint. Facebook, which had previously been

identified as a heavy energy user, improved its energy efficiency over the course of our

study by decreasing its background update frequency from 5 minutes to 1 hour, which is

much longer than the 1-minute periodicity measured in 2012 [98]. To summarize, social

media apps can vary substantially in how they manage background traffic both between

apps and over time.

Applications oriented towards providing periodic background updates, such as certain

push notification services, may consume a lot of energy compared to the amount of data

they send. In an in-lab experiment, one third-party library transmitted nearly empty HTTP

requests every five minutes for hours, but only provided one user-visible notification during

this time. Another example is Google Maps, which by default provides a background lo-

cation service that continuously collects anonymous location data. This service consumed

up to 90% of the app’s total energy usage at the beginning of the study, but the frequency

decreased to once every few hours by the end. GMail also leverages periodic updates using

push notifications: it has actually increased its inter-update intervals during times when it

is active, but updates appear to no longer be periodic, arriving only on demand, leading to

an overall low degree of energy consumption.

Widgets are a class of apps that appear on the home screen and have little or no direct

user interaction. In many cases their functionality revolves around periodic background

80

updates (such as to keep the user updated on the latest weather). There is a tradeoff between

timeliness of information and energy consumption. However, even just examining weather

widgets, the difference in update frequency between two apps (and the resulting energy

overhead) varies by an order of magnitude. Note also that the Accuweather app is far

less efficient than the corresponding widget, as the widget updates itself less frequently,

somewhat counterintuitively. Widgets and apps made by the same developers may have

very different behavior.

We also examined several multimedia streaming apps. Music streaming apps were not

as popular in our dataset as in prior work, but their update frequency was generally much

lower than before [98], having apparently moved away from a continuous streaming model

to larger batch downloads, although particularly long update frequencies may reflect users

who only intermittently use these apps. Podcasts were far more popular, and we compare

two popular apps. Podcastaddict consumed more energy overall, as Pocketcasts downloads

an entire podcast in one chunk whereas Podcastaddict downloads smaller chunks as needed.

While the latter approach may reduce data consumption if users don’t finish listening to a

podcast, it consumes more energy.

5.4 What-if Analysis: Preemptively Killing Idle Background Apps

In §5.3 we determined that background traffic has a substantial impact on energy con-

sumption, and in some cases much of this traffic is from apps users are not frequently using.

We propose having the OS kill background apps that have remained in the background for

several days. A new permission or whitelist could address corner cases where apps (such

as widgets) have a legitimate need to run in the background for an extended period of

time, and OS feedback on background energy consumption could disincentivize unneces-

sary use of this functionality. In fact, shortly after completing this work, this functionality

was added to Android M [53, 28]. We have identified a number of apps where this type

of functionality has the potential to greatly reduce background traffic, although we do not

81

evaluate Doze itself in this chapter.

To evaluate the effectiveness of this approach, we simulate restricting background traf-

fic after three days, and highlight six apps in Table 5.4. In row A we show the fraction

of days where we see only background traffic from the app, and in row B we show the

maximum number of such days that we see occurring consecutively, considering only time

periods where there is foreground traffic at the beginning and end of the time period. These

apps are rarely used by certain users, creating energy savings opportunities if the apps were

to be preemptively killed. Row C summarizes the average savings per user of killing the

app after three consecutive days. Note in particular that Weibo, which we showed was very

energy-hungry, can have its network energy consumption more than halved this way.

Due to the large number of apps users in our study had installed on their phone, the

impact of each app individually on a user’s total network consumption was small. Thus,

this would have resulted in total network energy savings of less than 1% on average overall.

However, we found that for the users running Weibo, disabling Weibo alone after just three

days of inactivity could have reduced their total network energy consumption by 16% on

those days. Overall, how much users benefit from this functionality depends greatly on the

set of apps involved and on user behavior, so it is hard to draw definite conclusions on the

average benefits of our proposed system for or other systems such as Doze, but such an

approach seems especially promising in protecting users from poorly optimized or buggy

apps, and reducing the worst-case energy consumption generally.

5.5 Recommendations and Conclusion

Excessive energy consumption by mobile apps has long been known to be a significant

problem, and background traffic continues to be a major battery drain. We have examined

a significant but previously unstudied phenomenon where network traffic initiated in the

foreground persists unnecessarily when the app is sent to the background. Furthermore,

we have shown that improvements for known inefficiencies have not been universal, even

82

Pl
us

W
eib

o

M
ap

s

ES
PN

Ac
cu

we
at

he
r

Sk
yp

e

A: % days with only 42% 83% 70% 13% 43% 62%
background traffic
B: Max consecutive 40 24 84 10 18 49
background days
C: Disable after 3 days: 14% 54% 39% 6.2% 22% 45%
avg.% energy reduction

Table 5.2: Example trends in background traffic when apps are infrequently used, and sim-
ulated energy savings from suppressing this traffic

for professionally developed apps with a large user base. While we recommend that app

developers continue to carefully consider the cost of the traffic they send, more is needed

to improve the situation, especially for background traffic. Systems within Android and

other mobile OSs that actively monitor and manage app behavior could play a major role

in reducing the impact of background traffic

83

CHAPTER VI

Investigating using HTTP/2 Server Push for Improving

Mobile Performance

6.1 Introduction

Recently, HTTP/2, which promises improvements over HTTP/1.1 in browsing perfor-

mance due to new features such as Server Push, has been standardized. In Server Push,

the server uses its knowledge of the website’s content to push objects before the client re-

quests them. In this chapter1, we explore whether, and to what degree, Server Push leads to

performance benefits, focusing on mobile networks where network conditions are dynamic

and challenging.

Recent work has shown that improving web browsing performance is a complex prob-

lem. For instance, the performance benefits of SPDY have not been as great as ex-

pected [127], and are dependent on factors such as network performance. As most sites

do not use Server Push, we take snapshots of 50 popular websites and test them locally on

a server that supports Server Push. With this dataset, we find that Server Push offers far

higher performance benefits on WiFi and LTE networks than Ethernet networks, and in fact

on a high-speed Ethernet network, Server Push is not particularly useful. This motivates

focusing on mobile devices.

1In submission to WWW 2017. Authors: Sanae Rosen, Bo Han, Shuai Hao, Z. Morley Mao, Feng Qian.

84

To understand the impact of network characteristics, we perform experiments on mobile

phones, as well as controlled experiments with artificially limited network conditions on

wired networks where it is easier to explore the impact of limited network performance in

a systematic way. We find that Server Push performance is highly dependent on network

features such as the loss rate and latency, and in some cases Server Push can even be

detrimental. Individual websites also vary greatly in how they are impacted by the network,

due to differences in loading patterns and the impact of rendering and computation. In

absolute terms, savings are typically around a few hundred milliseconds, with some pages

seeing benefits of seconds2. In this chapter, we explore these factors in depth and provide

recommendations as to when Server Push would be most useful.

We examine how other factors can impact Server Push performance as well. Pushing

the entire website, rather than a few Javascript or CSS files, is necessary to see substantial

performance improvements. Websites split among different domains are a challenge for

Server Push. We also find that the limited processing power of mobile phones can limit

the benefits of Server Push, and that more computationally powerful devices would likely

benefit more. Finally, we find that Server Push offers modest energy reductions of 9% on

one LTE network on average.

Supporting the main thesis, the complex network conditions we consider are those that

impact Server Push’s performance on mobile devices. We perform a measurement study of

the impact of these measurements, and suggest that web pages should use measurements

of network performance and of how network conditions and website attributes impact the

website’s performance with Server Push. Thus, mobile pages can incorporate the results

of these measurements in order to ensure that people on mobile devices can benefit from

Server Push.

Our main contribution is the first study focused on understanding Server Push perfor-

mance (particularly on mobile devices) and how and when Server Push should be used.

2100 ms is often cited as having a financial impact [52]

85

More specifically, our findings are as follows:

• Server Push is more effective on high-loss or high-latency networks, such as cellular

and WiFi networks, as compared to typical wired networks, motivating its use on

mobile devices.

• Pushing all content on a website is on average significantly more effective than push-

ing a handful of Javascript or CSS files.

• Domain sharding and content otherwise split among multiple servers is a significant

impediment to Server Push’s effectiveness.

• Server Push works best with high latencies and loss rates, offering a median 16%

improvement in PLT with a 2% loss rate and a 14% improvement with a round trip

time of 100 ms, but excessively poor network performance hurts Server Push.

• Server Push doesn’t improve performance on every website, and so should be used

judiciously: measurements will likely play a major role when determining how to

deploy Server Push.

• Server Push reduces LTE power consumption on mobile devices by about 9% and

has no significant impact on WiFi power consumption.

6.2 Dataset and Methodology

Since so few sites make use of Server Push, we conducted controlled experiments us-

ing mirrored sites hosted locally, to test the impact of network performance and run other

experiments to understand Server Push under a variety of circumstances.

We mirrored a total of 50 sites from the Alexa top 500 starting with the most popular,

with essentially identical websites omitted. Sites were copied using the Firefox Scrapbook

extension [111], including all Javascript, and where necessary manually edited to remove

86

Table 6.1: Summary of web page characteristics.

Min value Median value Max value
Num. objects 6 64.5 440

- Images 0 25.0 435
- Javascript 0 7.0 51
- CSS 1 1.0 7

Page size 46 Kb 1.86 Mb 10 Mb

popups and redirects that interfered with automated analysis, and to ensure where possible

content is loaded locally. Sites that could not be hosted locally without substantial mod-

ifications were skipped. The mobile version of the page was used in our analysis. We

summarize some statistics on the pages in Table 6.1.

These sites were hosted on a server using nghttp2 [85], which has a complete imple-

mentation of Server Push. Its library is now used by other servers, in particular Apache [9].

We collected at least 5 measurements for each experiment, randomizing the order in which

the sites were visited. Except for when exploring how much content to push, all content

was pushed as we found that to be the most effective approach, as we will show in the next

section. Nghttp2 prioritizes the HTML page first, then the CSS files, then the Javascript

files, then images and other content, according to their documentation3. We leave exploring

other prioritization approaches to future work.

On the client side, all experiments were run in an up-to-date Chrome browser. Our first

set of experiments were carried out on two mobile devices: a Samsung S5 and (to compare

with an older phone) a Samsung S3. Page load time measurements were collected using

Chrome’s debug interface accessible by plugging the phone into a computer and going to

chrome://inspect#devices. The page load times are those listed by Chrome. All

experiments were conducted with caching disabled, and the values of three measurements

were averaged, rather than five, due to the manual effort involved.

3https://nghttp2.org/blog/2014/04/27/how-dependency-based-prioritization-works/

87

Controlled experiments, where latency, loss rates and bandwidth were varied, were car-

ried out over Ethernet on a desktop (except for the bandwidth experiments, which were

performed over Ethernet with a laptop). This allowed us to be able to precisely control

each of these variables. However, in most cases we are examining the sorts of network

conditions that are more typical for mobile devices than for desktops or laptops on mod-

ern Ethernet connections. For these, page load time information was collected by a script

which connects to Chrome’s remote debug interface through a JSON API4. Unfortunately,

this API was not available on mobile devices, but the page load times indicated in the

GUI-based debug interface used for the mobile phone experiments is equivalent. Latency

and loss rates were varied using tc, a standard Linux utility that allows different network

conditions to be emulated. Bandwidth was varied using the built-in Mac OS network emu-

lation tools on a laptop. We also collected performance data for WiFi and tethering on the

same laptop.

To calculate the energy overhead of Server Push, we made use of the power model in a

recent paper [87], using the same parameters as in that paper. We collected tcpdump traces

from our page loading experiments and calculated the power impact of Server Push with

both the WiFi and cellular network.

6.3 Web Performance

There are a number of factors that impact Server Push performance that we examine.

We first look at the impact of pushing differing amounts of content, and demonstrate that

the current trend of distributing a web page’s content across many domains introduces sig-

nificant challenges for Server Push. We then examine how various network conditions can

impact Server Push performance, demonstrating Server Push is mainly helpful for networks

likely to experience high latency or loss rates, such as mobile networks. We then examine

differences between websites that do well or poorly with Server Push. We summarize the

4https://developer.chrome.com/devtools/docs/debugger-protocol

88

Table 6.2: Summary of findings.

What to push
Push as much content as possible, not just a few small files. Fig. 6.1
Content divided across domains is a major problem §6.3.1

(proxies are a possible solution).
Server Push increases the loading time for the first object Fig. 6.4

and so can harm performance.
Network factors

Server Push works best on WiFi and LTE for a given device; Fig. 6.2
mobile devices are limited by their processing power.

Server Push works well with latencies around 100 ms. Fig. 6.5
Performs well with loss rates between 0.5% and 2%; Fig. 6.6

better with high uplink losses.
High losses and latencies combined don’t do well with Server Push. Fig. 6.7
Performs slightly better with low bandwidth. Fig. 6.8

Energy impact (§6.5
Server Push improves LTE energy consumption slightly (by about 9)%. Fig 6.13
Server Push has almost no impact on WiFi energy consumption. Fig 6.13

findings in this chapter in Table 6.2.

6.3.1 Impact of Content Pushed

First, we examine existing sites that use Server Push and what they do, then determine

a good strategy for determining what content to push.

Server Push is still rarely used in practice. We used the nghttp2 client to crawl the top

10,000 sites according to Alexa in September 2016. Our client attempted to connect using

HTTP/2, and recorded whenever a PUSH PROMISE header is seen which indicates the

start of an object being pushed. We found five sites which used Server Push (plus one more

that logged a Server Push request in our automated testing, but not when we examined it

manually a few days later).

We looked at each of the five websites using Server Push in Google Chrome and manu-

ally examined what was pushed. They took a variety of approaches: one site pushed every-

89

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

No added latency

push everything
push jss/css

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (s)

100ms latency

Figure 6.1: Pushing all content versus pushing only Javascript and CSS files. PLT stands
for Page Load Time.

thing except dynamic content (www.neobux.com); other sites pushed just one Javascript

file (www.cloudflare.com; www.yoob.com); another pushed its Javascript and CSS

files (www.kroger.com) and one pushed a selection of Javascript and image files, but

not all (www.namepros.com).

We next examine two cases: pushing only CSS and Javascript files, and pushing every-

thing. For this experiment, we looked at our locally mirrored websites, as unfortunately we

cannot set the push policy for real sites in the wild. We emulated a high-latency network

(such as a cellular network) by adding 100 ms to the latency on an Ethernet connection, in

addition to testing on a low latency network (1 ms ping, about 30ms total for a small object

to load). The results are shown in Figure 6.1. Clearly, Server Push performs a lot better

90

when we push everything, and we recommend pushing more content where possible. In

particular, pushing everything seems to matter more on higher latency networks: pushing

just Javascript and CSS give similar results on the two networks, but pushing everything

shows very different results.. Using nghttp2’s hard-coded priorities, HTML was pushed

first, then CSS, then Javascript, then all other content.

There is one major complication in pushing everything. In practice, content is often split

over several domains, whether due to third-party advertisement, domain sharding, or other

reasons. To examine the impact of this problem, we went through each page and manually

determined whether each object came from the same domain or a different domain. We

then moved that content to another server, and didn’t push that content. In the median case

for the 50 sites, we moved more than 95% of the objects to another server. Most major

websites host images and other content separately, although a few websites were mostly

unchanged. We found almost no benefit from Server Push when we split the content like

this: Only 25% showed any measurable benefit, and less than 15% showed more than a

10% performance improvement. Clearly, the way in which websites are architected today

are a major problem for the deployment of Server Push, and which should be addressed in

future work.

HTTP/2 promises to make domain sharding unnecessary [55], and it is generally recom-

mended not to use domain sharding in HTTP/2 [86]. Recent work has also discussed that

content on a website served from outside a CDN can cause substantial performance degra-

dation [43], motivating further keeping content on one server wherever possible. However,

in the short term it’s unlikely that websites will be drastically re-architected.

Other approaches, such as a mobile-specific proxy similar to Flywheel [6], which would

enable Server Push as well, are probably more realistic deployment scenarios in the short

term. At least one HTTP/2 proxy exists that supports Server Push, which is intended to

provide HTTP/2 for servers using other protocols [85]. Other methods of supporting third-

party and remote content through Server Push should also be explored. It might be possible

91

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

WiFi (laptop)
LTE (tethering)

LTE (phone)
Ethernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (s)

Figure 6.2: Server Push PLT savings for mobile websites on a variety of networks. Nega-
tive values cut off at -0.5.

to alert third-party servers as to what to push. For instance, perhaps a small object near the

top of the HTML page could be loaded to alert the third-party server that it should push

content. We leave developing a solution to dealing with third-party content to future work.

6.3.2 Impact of the Network

To understand how network conditions impact Server Push, we vary network perfor-

mance parameters in a controlled manner by adding latency, loss and limited bandwidth to

an Ethernet connection.

First of all, what networks should we focus on, when deploying Server Push? We first

examine several typical connections: the local LTE network, a home WiFi network, and

92

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

Samsung S5
LTE (tethering)

Samsung S3

Figure 6.3: Impact of device processing power on Server Push.

the Ethernet connection in the lab. Typically, the LTE network experiences latencies of

roughly 90 ms, the WiFi network of about 25 ms, and latencies of about 1 ms for the

Ethernet network (the server hosting the pages was on campus). The time to first byte for

the first object with a 1 ms latency was around 30ms for a small object. As we show later

in this section, even more typical latencies of up to 50 ms perform similarly over Ethernet.

As we show in Fig. 6.2, Server Push can greatly improve performance — reducing page

load time (PLT) by up to 80% in the best case — but in many other cases, Server Push does

not help. LTE and WiFi benefit more from Server Push than Ethernet does. For this reason,

we believe it makes sense to focus on mobile devices when determining when and how to

use Server Push. However, on an actual mobile device on LTE, savings as a percent of

the original PLT shrink, although they remain higher than a laptop using Ethernet. Recent

work has found the lower processing power of mobile devices makes the loading time less

network-dependent [82]. We still see performance improvements, though. Furthermore,

despite this limitation, there are savings of hundreds of milliseconds on average, and in

some cases seconds. Even saving 100 ms can have a high benefit [52].

Next, we tested a second mobile phone (a Samsung S3) on a different carrier (still

LTE), to make sure our results are not specific to a particular device or network. We show

the results in Figure 6.3. This older phone performs slightly worse, as expected, but the

93

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-2 0 2 4 6 8 10 12 14

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Ratio of increase in first (HTML) object load time to original load time

Figure 6.4: Relative increase in the loading time of the initial HTML page with Server
Push.

overall shape of the curves are very similar, suggesting our results on the phone are at

least somewhat representative. The laptop with tethering does far better though; substantial

improvements in processing power would be needed to see the full benefit of Server Push

on mobile phones.

It is also apparent that the benefits of Server Push can be lower than zero (although we

cut off the negative values at -0.5 in the graphs to focus on the positive values, as there

is a very long tail on the negative values, and we assume websites wouldn’t use Server

Push if it performs badly for them.) We examine why Server Push does not show positive

performance benefits in every case. Server Push tends to make the initial HTML file slower

to load, sometimes quite substantially, as shown in Figure 6.4. This is the case even though

nghttp2 sends HTML traffic with a higher priority — we seem to still see interference from

other requests. For Server Push to be beneficial, it has to offer savings greater than this

cost.

Next, we examine individual network performance factors, varying the bandwidth, la-

tency and loss rate of an Ethernet connection while holding the other variables constant. We

use Ethernet to measure the impact of each variable in a controlled manner, as WiFi or LTE

are likely to show a wider range of latencies and losses while we run these experiments,

making it harder to draw a firm conclusion.

94

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

0ms
25ms
50ms

100ms

Figure 6.5: Impact of network latency on Server Push. Latencies shown are from ping; at
0ms, a small object takes about 30ms to load including server processing etc.

Latency: Fig. 6.5 shows the results of varying the latency. There is a sudden jump

in performance between 50ms and 100ms, where web pages are likely becoming more

network-bound. At higher latencies, fetching content earlier has a bigger impact.

Packet loss: The impact of packet loss is fairly substantial as well, as shown in Fig-

ure 6.6. As loss increases, the performance of Server Push for the better performing web-

sites increases for loss rates up to 2%, and after that it decreases sharply. At about a 0.5%

loss rate, websites almost consistently do better than with no loss. Also, sites that perform

badly tend to perform worse at high loss rates. In the top subfigure, a 1% loss rate means a

1% loss rate for uplink packets and a 1% loss rate for downlink packets.

We then look at uplink and downlink losses individually in the bottom part of the graph,

and we see that uplink losses benefit Server Push much more than downlink losses do. With

Server Push, far fewer requests are made on the uplink and so there are fewer opportunities

for these requests to get delayed when pushing content rather than waiting for requests to

the client. With 3% loss rates, both start to see the PLT savings go down again.

If we look at high loss rates and latencies combined, as in Figure 6.7, Server Push also

doesn’t perform well. In fact, we see decreasing performance with increasing latency when

there’s a substantial loss rate, rather than the other way around. Note how the distributions

95

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

Loss both
directions

0 loss
0.5% loss

1% loss
2% loss
3% loss

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

Uplink loss
only

0 loss
0.5% loss

1% loss
2% loss
3% loss

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

Downlink
loss only

0 loss
0.5% loss

1% loss
2% loss
3% loss

Figure 6.6: Impact of network packet loss on Server Push.

get much wider at high loss rates. In general, high latencies are more common on mobile

networks than high loss rates.

Bandwidth: The amount of available bandwidth has a smaller impact, as can be seen

in Figure 6.8, even with an added delay of 30ms which made differences more pronounced.

If bandwidth is the limiting factor, pushing more content at a time generally will not have

much of an impact on this limitation.

96

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

0%
/0m

s

0%
/25m

s

0%
/50m

s

0%
/100m

s

0.5%
/0m

s

0.5%
/25m

s

0.5%
/50m

s

0.5%
/100m

s

1%
/0m

s

1%
/25m

s

1%
/50m

s

1%
/100m

s

2%
/0m

s

2%
/25m

s

2%
/50m

s

2%
/100m

s

F
ra

c
ti
o
n
 i
m

p
ro

v
e
m

e
n
t
in

 P
L
T

Figure 6.7: Impact of combined high latencies and loss rates. The loss rate is listed first,
then the latency, as a percent and number of milliseconds, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

5 Mbps
10 Mbps
15 Mbps

Unlimited

Figure 6.8: Impact of bandwidth at 30ms latency.

6.3.3 Impact of the Web Page

Overall, it is difficult to identify any one factor that lead to some websites performing

better than others. Websites are complex and it appears a number of factors have an impact.

To understand what factors might impact website performance, we performed a number of

simple controlled experiments. The first was based on our observation that websites that

benefited from Server Push often had content that loaded late. We created a page with a

significant amount of Javascript computation, and with 5 images to load. We then varied

97

the number of figures that loaded after the Javascript, and show the results in Figure 6.9(a).

Content that loads after Javascript or substantial page rendering can be fetched early by

Server Push, resulting in higher performance savings as the download time can be hidden

behind the compute time. However, this network traffic has to have a substantial impact on

the overall loading time to matter.

We examined, through controlled experiments on simple websites we made ourselves,

a number of other website characteristics. The main one which appeared to also have

an impact was the website size, shown in Figure 6.9(b). As we increase the number of

images, the benefits of Server Push increase as it is able to reduce the resulting loading

time increase. However, we did not find the size to consistently lead to better Server Push

performance on real websites: larger websites were more complex and perhaps thus more

compuation-dependent.

6.3.4 Summary

Overall, we’ve found that Server Push works best with mobile devices, although the

performance limitations of these devices impact Server Push’s performance. Even so, the

performance benefits over wireless networks are higher than over Ethernet, at least for a

reasonably high-speed network. Results are similar across devices and networks. However,

Server Push introduces a delay to the first HTML object, despite prioritizing it, and so not

all websites benefit from Server Push. Looking deeper into the network characteristics that

lead to good Server Push performance, high latencies benefit from Server Push, as do high

loss rates — but only to a point. Bandwidth plays a smaller role. In terms of web page

structure, the main factor that predicts good Server Push performance appears to be how

long it takes the second object to load.

98

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5

P
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

Number of images delayed (out of 5)

(a) Pushing content for sites with a significant amount of computation, with 1-5 of 5 figures loading after the
Javascript computation and the rest loading before

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

R
e
d
u
c
ti
o
n
 i
n
 P

L
T

 (
ra

ti
o
)

Number of images

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

P
L
T

 i
n
 m

s

Number of images

No push
Server push

(b) Impact of web page size on Server Push with a 100 ms delay and 10 Mbps bandwidth

Figure 6.9: Examining, through controlled experiments, the impact of web page structure.

6.4 Case Studies

We next examine examples of real sites and how they load, in a variety of circumstances,

to better understand how Server Push affects performance. These experiments were carried

99

O
b

je
c
ts

 w
it
h

o
u

t
p

u
s
h

Browser load time
Page Load Time

0 1000 2000 3000 4000 5000 6000

O
b

je
c
ts

 w
it
h

 p
u

s
h

milliseconds since first request

Figure 6.10: Waterfall diagram of loading the Ikea web site in a phone browser.

out on a phone over LTE, unless otherwise stated. Our plots show only the browser load

times and not the push download times. The browser load time is the time for the browser

to fetch and load a given object, from when the browser first makes the request to when it

is fully loaded, extracted from the HTTP Archive (.har) file saved from the debug view in

Google Chrome. When content is pushed, the browser load time for each object should be

much smaller, as the push time is not shown.

First, we show the mirrored Ikea page in Figure 6.10. This is a fairly straightforward

case: loading happens over several stages, and especially after the first few objects, the

loading time is shorter because Server Push has already delivered (most of) the content.

Rendering and other computation does play a major role in the page load time, but reducing

the network loading time helps substantially. Note that a significant amount of content is

loaded after some computation, like in Figure 6.9(a).

The BBC website also loads in batches, but is more complex, and more time is spent

100

O
b

je
c
ts

 w
it
h

o
u

t
p

u
s
h

Browser load time
Page Load Time

0 5000 10000 15000 20000 25000 30000

O
b

je
c
ts

 w
it
h

 p
u

s
h

milliseconds since first request

Figure 6.11: Waterfall diagram of loading the BBC website in a phone browser.

O
b

je
c
ts

 w
it
h

o
u

t
p

u
s
h

Browser load time
Page Load Time

0 2000 4000 6000 8000 10000 12000 14000

O
b

je
c
ts

 w
it
h

 p
u

s
h

milliseconds since first request

Figure 6.12: Waterfall diagram of loading the BBC website over WiFi on a laptop.

101

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
p
a
g
e
 l
o
a
d
s

Energy per page load (J)

LTE

No push
Push

 0 0.5 1 1.5 2

Energy per page load (J)

WiFi

Figure 6.13: Radio energy trends for mobile devices. Server Push offers some savings for
LTE only.

in computation. We show the results in Figure 6.11. While it’s apparent that the network

loading time is reduced substantially, only the computation and rendering time is on the

critical path in this case. With a laptop on WiFi, we see better performance for Server

Push, as shown in Figure 6.12. Server Push is not able to reduce the loading time of the

first burst of traffic, as there is too much in total to load. The last chunk of network traffic

has been fetched by the time the browser requests it. Because of the last burst of network

traffic being fetched, close to two seconds are shaved off, or a little under 20%.

6.5 Energy Impact of Server Push

We next consider the impact on radio energy on mobile devices. Energy consumption

is the biggest concern among users of mobile devices [93]. Ideally, if Server Push reduces

the time that the radio is active, by essentially “compacting” requests into one burst, then it

should result in energy savings.

We collected packet traces over WiFi and LTE, and calculated the energy consumed

by the radio based on the model given in a recent paper [87]. The results are shown in

Figure 6.13. We found there to be modest but observable power savings with LTE, but not

102

with WiFi. WiFi has very short timers to stay awake after data is sent, and so WiFi is less

dependent on the distribution over time in which requests are made. With LTE, however,

the radio stays active for some time after data is no longer sent. We see a 9% improvement

on average, which is less than the PLT savings, as fixed-length tail timers mean that as a

percentage the reduction in page load time won’t be the same as the radio energy savings.

6.6 Discussion

In this chapter, we found that Server Push performs better under high loss and high

latency conditions, and generally performs better on wireless networks (WiFi and LTE).

While mobile devices tend to benefit less from Server Push than laptops for a given set of

network conditions, the fact that they are more likely to experience poor network conditions

in the first place means these are good devices to target.

We have focused on the performance benefits of Server Push, but there are other ob-

stacles to Server Push being effectively and commonly used. The first is the problem of

client caching. Since the server doesn’t know what the client has cached, there is poten-

tially more overhead in terms of data wasted with Server Push. There have been various

solutions proposed, however [48, 85].

The second challenge, conversely, is dynamic content: we may not be able to determine

what to push, and we leave predicting dynamic content to future work. The last challenge

is that we assume that it’s possible to determine what to push. When content is produced by

a single server, this should be true. However, predicting third-party content may be harder.

An interesting approach might be to have a proxy load the page and forward content using

Server Push.

There are also a few questions we haven’t addressed. We use the default order for push-

ing content, and don’t explore alternate orderings based on, say, dependencies. There are

a number of papers that have proposed systems to analyze web page loading dependen-

cies [16, 83, 75]. An interesting direction for future work would be to explore and adapt

103

Table 6.3: Summary of recommendations

Push as much content as possible Fig. 6.1
If possible, host everything on one server § 6.3.1
Develop tools for pushing third-party content § 6.3.1
Test if websites actually benefit § 6.3.2
Use for sites that are not compute-heavy § 6.4
Use Server Push when high latency/loss expected § 6.3.2

these methods to further optimize loading time by avoiding pushing content unnecessarily.

Finally, we analyze mirrored websites, because there are almost no real websites using

Server Push. It is possible, however, that as Server Push is deployed on production servers,

other factors affecting Server Push will become apparent. We hope that these findings will

motivate more sites to make use of Server Push.

We have focused on web browsing, but Server Push may be applicable to many other

uses of HTTP. We have not considered the impact on video content — we did not play

any videos on Youtube or other video services we examined. Server Push could help the

browser start to buffer content right away, but aside from that, we do not expect it will

be very useful for this class of content, as the round trip time is unlikely to be the main

limiting factor. We also have not examined mobile apps, which may be able to leverage

Server Push even if they do not have the typical structure of an HTML page with images

and other content embedded in it. We leave examining this to future work.

Recommendations: We summarize our recommendations in Table 6.3. Our first rec-

ommendation is that, if you are using Server Push, you should push as much as possible.

We have not exhaustively examined all possible ways of choosing what to push — perhaps

determining what is on the critical path for a particular device and set of network conditions

would be helpful — but overall, pushing images and other frequently larger content, rather

than just CSS or Javascript files, results in better performance.

Relatedly, the problem of third-party content is likely to be a significant impediment

104

to the success of Server Push. It probably isn’t realistic to recommend that websites stop

using third-party content, which suggests that examining ways to effectively deal with this

content would be a valuable direction for future research. In the meantime, this introduces

yet another reason to serve as much content as possible from the same server when using

HTTP/2.

We also found that many sites do not benefit from Server Push at all. As a result, we

recommend that the performance benefits of Server Push for a particular site should be

tested — preferably under a range of performance conditions that are representative of how

it will be used — before Server Push is deployed. Since mobile devices are limited in

their compute power, compute-heavy pages where networking is not on the critical path are

unlikely to do well.

The network characteristics also make a major difference. High latencies, and high

losses — though not too high — lead to Server Push being more beneficial. In the context

of a mobile app, it might be possible to profile what network performance the average user

sees, and decide whether to use Server Push accordingly. In general, though, Server Push

is more beneficial over wireless than modern, high-speed wired networks, hence our focus

on mobile devices in this study.

Overall, whether or not websites benefit from Server Push depends on many factors,

making it hard to predict whether or not Server Push should be used. The best way to

determine whether to use Server Push is to measure how well Server Push performs on

representative devices and networks.

6.7 Conclusion

Overall, we have found that Server Push can offer substantial performance benefits.

Server Push works best when latency or loss rates are high (bandwidth has a smaller im-

pact) and on sites where objects are requested late in the loading process. Mobile networks

are particularly suitable for Server Push, and Server Push is likely to become substantially

105

more useful as mobile devices become more powerful. However, the way modern websites

are constructed, with content divided across many servers, is a substantial problem. Fur-

thermore, performance benefits vary greatly by website, and in some cases Server Push can

be detrimental to performance, so it should be deployed cautiously, leveraging performance

measurements to be sure that users will benefit.

106

CHAPTER VII

CellShift: A System to Efficiently Time-shift Data on the

Cellular Network

7.1 Introduction

As mobile data usage continues to grow rapidly, and is predicted to increase tenfold

by 2019 [23], novel approaches are needed to ensure users continue to experience strong

cellular network performance. One potential approach is to flatten network loads, moving

traffic at peak times to off-peak times. This reduces the cost of network usage and allows

apps to increase data consumption without increasing network congestion. The key factor

in determining network capacity is the peak load experienced by eNodeBs (base stations):

network loads vary greatly over the course of the day, leading to network resources going

unused at some times, while being heavily used at others.

Prior work has shown that users are willing to time-shift usage over several hours given

the right incentives [47, 22, 112]. In fact, congestion-aware and time-dependent pricing

has already been implemented to a degree in several countries [113]. Increasingly, mo-

bile applications support time-shifting through mechanisms such as subscribing to feeds or

channels, or through manual preloading [89, 40, 134], and recent work has shown apps can

almost automatically be made delay-tolerant [78]. However, whether real-world cellular

networks can benefit from such a system is a question that has yet to be addressed: there

107

needs to be sufficient, predictable variation in network load that can be leveraged in highly

complex, dynamic cellular networks. Furthermore, a system that supports large amounts

of highly delay-tolerant traffic could likely enable new types of applications.

In this chapter [102], by examining a wide variety of real cellular network loads from

a large ISP around a major metropolitan area, we find that there is substantial variation in

network load both from hour to hour and between eNodeBs, although we find that these

variations happen over large enough time scales to require time-shifting over several hours.

Predicting these trends hours in advance is essential for a long-term time-shifting system, so

that the system can account for time-sensitive loads and unmodified apps. Using standard

techniques to model diurnal load patterns, we are able to predict per-eNodeB trends with

an average error of 0.02 of an eNodeB’s capacity. As we examine trends in a wide range

of locations, including both dense and underpopulated areas, and for a variety of users, we

expect similar results to apply to other networks than the one we studied.

Furthermore, we demonstrate that we can efficiently and accurately predict the load

that mobile users experience throughout the day as they move around, without actually

requiring that we predict the user’s location directly (with an average accuracy of 0.08 of an

eNodeB’s capacity). Even if a user’s location is not predictable, they tend to visit locations

with similar load patterns (for instance, a user might connect to one of several eNodeBs

near their workplace). By leveraging this trend, we are able to predict the loads a user will

experience over time scales of hours. While forecasting network loads would likely have

implications on application design and network management, we focus on applying these

forecasts to long-term time-shifting.

We introduce CellShift, a framework that leverages these predictions to schedule traffic

designated as time-shiftable to meet deadlines set by the user or app. We make the problem

of scheduling requests for millions of highly mobile users tractable by making short-term

decisions at the 15 minute granularity at individual eNodeBs, with synchronization from

user devices only happening every 15 minutes. These decisions nevertheless effectively

108

smooth network loads overtime scales of hours. Scheduling is done in a highly parallel

manner that is scalable to a nation-wide network, and in a flexible enough manner to adapt

to unexpected changes in network load, making this large-scale scheduling over long time

periods practical.

We evaluate our approach at the scale of a large metropolitan area using anonymized

traces from a real network. We demonstrate CellShift remains effective under a large range

of network loads and scheduling constraints, showing that networks can support dramatic

increases in load using CellShift. We also evaluate the data and battery overhead of a small-

scale prototype implementation to demonstrate CellShift’s energy overhead on the device

is less than 2% in the worst case, due to the lightweight, periodic synchronization approach

used.

Considering our original thesis statement, the dynamic, complex part of the cellular

network in which we focus are the city-wide network load trends, in particular how they

change due to user mobility and diurnal load patterns. In our system, ongoing measure-

ments of network load, along with our prediction algorithm, can allow a system to be built

that helps schedule delay-tolerant data, thus reducing congestion due to such traffic. In

that way, this chapter supports the thesis statement that because mobile devices experience

uniquely dynamic and complex network conditions and resource tradeoffs, incorporating

ongoing, continuous measurements of network performance, resource usage and user and

app behavior into mobile systems is essential in addressing the pervasive performance

problems in these systems.

The contributions of this chapter are as follows:

• We conduct the first city-scale examination of per-eNodeB network usage trends

over several months, using real data from a large ISP, and demonstrate that real-

world, heavily-used networks experience substantial variations in load which are not

effectively leveraged by standard app designs.

• We show that on a per-eNodeB basis, network load can be predicted with high ac-

109

curacy, in particular with an accuracy of 0.02 of total eNodeB capacity 15 minutes

in advance. The network load a user will experience can be predicted up to a day

in advance with an accuracy of 0.08 of total eNodeB capacity in a location-agnostic

manner.

• Leveraging these findings, we present a novel design of a highly scalable system that

schedules very large amounts of highly delay-tolerant data over time scales of hours

on resource-constrained mobile devices. Requiring only application-level modifica-

tions, we reduce the impact of a 40% increase in network load on peak utilization by

58%, and achieve similar results for a variety of network loads, including reducing

bursty loads by 76%. We incur battery overheads of less than 2% on the device to do

so in the worst case.

7.2 Background and Motivation

There are a number of problems which must be addressed to make long-term time-

shifting effective. Although prior work has shown there is user and carrier interest in

long-term time-shifting, and that many classes of apps can be made delay-tolerant, several

problems remain. In particular, it must be shown that network loads can be forecasted and

time-sensitive loads can be efficiently scheduled on highly complex and dynamic cellular

networks.

CellShift’s goals: Ultimately, our goal is to lower the network peak load, as that’s

what determines the cost to the carrier. There needs to be the infrastructure to support the

maximum load that will be experienced at a location, but those resources don’t go away

during off-peak hours.

We focus on determining whether real-world cellular networks can effectively support

and benefit from time-shifting data on the scale of hours. Ultimately, our goal is to address

the problem of growing network demands on cellular networks, reducing peak load while

110

increasing how much data each eNodeB can support. To do so, we demonstrate that there

are opportunities on real cellular networks to leverage unused capacity due to variations in

network load, and that these variations can be predicted and leveraged through an intelligent

scheduling system. While such forecasts could be a generally useful tool both for managing

cellular networks and developing more intelligent apps, we leave exploring such directions

to future work.

In Figure 7.1, we explain the terms and metrics we use throughout the chapter, as well

as show a simplified visualization of what CellShift is meant to accomplish. First, there

is time-sensitive data which is not known in advance or controlled by CellShift (shown in

dark blue), although it can be forecasted (the white line — note that forecasts are adjusted

over time based on the current load). There is also data that can be time-shifted and is

thus controlled by CellShift (light blue). The time-sensitive load varies throughout the day,

as well as between eNodeBs, giving opportunities to time-shift delay-tolerant data to less

heavily loaded times. However, due to uncertainties in our forecast, we may mis-schedule

a bit of data during peak hours. To evaluate CellShift, we measure the reduction in the peak

load caused by delay-tolerant data ((A − C)/(A −D) as denoted in Figure 7.1), given an

amount of additional delay-tolerant data to schedule (E/F). To evaluate our forecasting

algorithm, we consider the absolute difference between the forecasted load and the actual

load (C −D averaged over each forecast interval).

Another proposed approach has been offloading to WiFi, but as we show in this chapter,

there are ample opportunities to make use of available cellular resources through intelligent

scheduling. Furthermore, while some major cities have widespread, free public WiFi, as

was shown in one measurement study in Korea [73], others do not, and many users may not

have access to free WiFi for much of the day (i.e. if their workplace does not provide free

WiFi or if personal use is limited). As network loads increase, WiFi may likewise require

innovative new approaches to address the rising demand.

111

Time-sensitive data (F)

Delay-tolerant
data (E)

Forecasted
time-sensitive load

Before Time-Shifting

After Time-Shifting

A

B

C

D

Figure 7.1: Overview of time-shifting. Delay-tolerant data is scheduled by CellShift
around time-sensitive data. Our goal is for the peak load after time-shifting
to be as close as possible to the peak time-sensitive load.

7.2.1 Incentives and Delay-Tolerant Data

With CellShift, the incentive to use the system for the user is that they get offered

discounts on data downloaded using CellShift. Prior work has shown that users are willing

to manually time-shift their data in exchange for discounts, so this is a reasonable model for

how CellShift could be used [47, 113]. In fact, in some cases users actually increased how

much data they used when there were incentives to use data during off-peak hours [113].

As a result, the incentives to use this system for the carrier not just that they can reduce

peak loads, but also that they can support more data on their network, possibly resulting in

112

more business for them. In our model of how Cellshift is used, we also ensure that users

always get the data they need: if we don’t schedule data by the deadline, we just download

at a suboptimal time. In this way, aside from the inconvenience of scheduling downloads

in advance, there is no downside to the user; the user always gets their data.

Evidently, a lot of data is not going to be available for time-shifting over periods of

hours. For instance, we expect that web browsing usually can’t be time-shifted. However,

it’s possible that large videos, such as for TV shows, could be downloaded in advance.

It is possible to do so on Netflix as of November 20161, suggesting a demand for such a

service. Other examples of content that could be time-shifted on a long time scale include

app updates, and large social media uploads where the user doesn’t insist on making content

available immediately. We separate the data into time-sensitive and delay-tolerant data. We

try and forecast the time-sensitive data (by definition, we don’t know about it in advance)

and then schedule the delay-tolerant data around it.

Overall, we expect that time-shifting will enable new ways of using the network, and

in particular the use of more video content, as it will become financially feasible to support

large volumes of traffic. As such, we assume that the existing traffic in the network is fixed,

an we examine what happens if we add a substantial volume of data to the network — can

CellShift allow the network to support this new load?

7.2.2 Limitations

Evidently, we can’t test our system on a real network, if we are building a system

that works on the city scale. As a result, we analyzed our system based on traces, which

introduced some limitations. First of all, our traces were at the granularity of 15 minutes.

This meant our evaluation is somewhat coarse grained and in particular does not account

for highly mobile users. Secondly, we don’t actually know what the large loads our system

enables would look like, both because we envision the system as enabling new ways of

1http://www.nytimes.com/2016/11/30/business/media/now-netflix-users-
can-watch-movies-offline-on-their-mobile-devices.html?_r=0

113

using the network, and also because we didn’t have any data on the nature of the current

network loads available to us. As a result, we instead evaluate the impact of time-shifting

a variety of artificial loads.

Overall, this is not a comprehensive real-world evaluation of whether a system like

CellShift would work. This is a first step in the direction of determining if long-term time-

shifting is feasible, and of evaluating many of the major limitations in such a system, in

order to inform whether a real-world, city-scale implementation should be pursued. In this

chapter, we show that this approach is promising, but that it requires long time periods to

prefetch data, and thus would only work for limited types of loads.

7.3 System Design

CellShift’s architecture, summarized in Figure 7.2, consists of both on-device compo-

nents and network components which collaboratively monitor and predict network loads

and schedule data accordingly. The in-network components would most likely be managed

by the ISP, and with the exception of the in-network server (INS) responsible for schedul-

ing, piggy-backs on existing cellular network functionality.

The on-device module gives apps access to per-user forecasts of time-sensitive load to

incentivize time-shifting, and acts as a proxy for delay-tolerant data. The app developer

uses this data and their knowledge of application semantics to determine what deadlines to

select, including whether to solicit user input. Next, apps submit requests to be time-shifted

to the API, which carries out the requests on the app’s behalf. These requests consisting of

the network request to make, the estimated size, a deadline and a unique id. We implement

this proxy as an Android app in our prototype, but it could be implemented as an app library

or system service.

The INS helps the on-device proxy determine when to carry out requests, by account-

ing for requests from other devices and predicted time-sensitive loads at the per-eNodeB

granularity. Requests are scheduled only in the short term: the on-device proxy syncs with

114

The Internet

App

Request in
progress

eNodeB

Pending
requests

Forecasts
and

incen�ves

Cellular Device

Schedule
User

requests

App

Per‐eNodeB
u�liza�on
forecast

Per‐user
u�liza�on forecast INS

Proxy

Figure 7.2: Architecture overview: Apps submit requests to an API on the phone, which
schedules requests with the help of an in-network server (INS). The server may
also provide per-user forecasts to help users or apps determine whether to time-
shift data.

the INS a few times an hour and is only informed of what requests to fulfill before it next

contacts the INS. We describe our scheduling approach in depth in §7.3.2. Note that ap-

plications only register time-shiftable requests with CellShift and so the remainder of the

network load due to requests not submitted to CellShift must be inferred through other

means (as described in §7.3.1). As we make decisions at the eNodeB granularity, our sys-

tem is highly scalable: we can easily parallelize all decision-making by eNodeB, although

the INS does not have to be physically situated at the eNodeB. Communication between

the INS and proxy is all done at the HTTP level, with no modifications to low-level cellular

network protocols.

To forecast network loads, additional data needs to be collected from the cellular net-

115

work, which today’s networks already support. User associations with eNodeBs are needed

for per-eNodeB scheduling, and historical net loads at eNodeBs are needed to predict future

loads. Note that we do not store user location data for more than a few minutes, and cellular

networks already need to know the eNodeB to which a device is connected to deliver data.

As such, we do not introduce any new privacy issues. Furthermore, as existing cellular

networks already make use of a variety of middleboxes for network management purposes,

integrating additional functionality into these cellular networks is a practical solution. One

advantage of implementing CellShift for cellular networks is that their management is cen-

tralized.

Next, we describe network load forecasting and scheduling in depth.

7.3.1 Forecasting algorithm and evaluation

There are two types of network trends that we forecast. Per-eNodeB load forecasts

are needed to schedule requests around time-sensitive network loads, and per-user load

forecasts (i.e the load at each successive eNodeB a device associates with throughout the

day) allow apps to make informed decisions, including determining when to time-shift and

how to set time-shifting deadlines. These forecasts can potentially allow apps to make

network usage decisions beyond what CellShift supports, and cellular operators may find

per-eNodeB forecasts to be useful for other network management operations.

To understand how to forecast network trends, we use a dataset that covers a major city

over the first few months of 2014. Network load is measured by the fraction of available

Physical Resource Blocks (PRBs) that are in use at a given time by each eNodeB. PRBs

can be mapped to the amount of available bandwidth per user using the signal quality at

the device. In our dataset, average PRB utilization over 15 minute time intervals have been

collected for each eNodeB.

We forecast network load using the Holt-Winters algorithm [91], an exponential

smoothing algorithm that accounts for periodic trends. We set the period to one day, and

116

eliminate the linear trend term (as we found this leads to overfitting). We use different sets

of parameters for different forecast windows: short-term forecasts benefit from weighting

short-term trends from the current day, whereas long-term predictions are based primarily

on what has been seen in previous days.

Forecasting per-eNodeB loads is straightforward, but there are two challenges in ex-

tending forecasting to these per-user predictions. First, we must account for changes due

to location as well as time which can introduce additional sources of inaccuracy. Second,

we want to avoid storing user location beyond what is already part of the normal operation

of cellular networks, due to the potential privacy implications of this data.

To deal with both problems, we first merge user location traces and eNodeB load traces

to create location-agnostic per-user load traces, and use this new trace to predict the load

a user will experience. We observed that users often connect to eNodeBs with similar

loads even if they connect to different eNodeBs from day to day, likely due to these loads

reflecting similar daily routines. For instance, a user who goes downtown every day may

connect to different eNodeBs from day to day, but likely experiences a load pattern typical

of that downtown area. Creating location-agnostic per-user load traces allows us to leverage

these similarities. It also allows for a more robust and consistent approach to forecasting

loads: if the user deviates from their normal routine, rather than having to predict user

motion accurately we just allow the Holt-Winters algorithm to adjust the user’s periodic

load pattern based on daily load fluctuations, as normal.

In Figure 7.3, we show how accuracy varies with the forecast time range for per-user

forecasts. Our accuracy is within about 0.08 total network load in most cases. Note that

predictions are more accurate two hours or less in advance, as the short-term component

of Holt-Winters can then account for shorter-term fluctuations that occur on the order of

hours. In our per-eNodeB forecasts which are used for scheduling data (rather than mo-

tivating users or apps to time-shift), we make use of predictions 15 minutes in advance,

a number chosen due to the granularity of our dataset. The median error of these per-

117

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25

A
v
e

ra
g

e
 f

o
re

c
a

s
t

e
rr

o
r

in
fr

a
c
ti
o

n
 o

f
to

ta
l
c
a

p
a

c
it
y

Time in advance, hours

Figure 7.3: Impact of time interval on forecast accuracy when predicting on a per-user
basis, in fraction of the total PRB utilization.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

A
v
e

ra
g

e
 u

ti
liz

a
ti
o

n
(n

o
rm

a
liz

e
d

)

Time (hours)

Office location
Retail location

Average
all locations

Figure 7.4: Example diurnal trends: note there is substantial variation between eNodeBs,
either in the shape of the curve or when it peaks.

eNodeB predictions is 0.02, although 10% of the time the error is over 0.1. We will show

that although these forecasts are accurate enough to significantly decrease the impact of

delay-tolerant data on peak loads, these occasional errors do introduce some limitations.

We examined some other approaches to improve forecasts, including incorporating

weekly trends, trying to forecast error, and weighting overestimates and underestimates

differently, with no significant effect, and so we focused on a simpler but equally effective

approach.

We next examine some example eNodeBs to better understand how network loads vary

by location. Figure 7.4 shows how the average load patterns experienced by two eNodeBs

118

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25F
ra

c
ti
o

n
 o

f
H

T
T

P
 r

e
q

u
e

s
ts

o
ld

e
r

th
a

n
 s

p
e

c
if
ie

d
 t

im
e

Hour of day

24h or more
8h or more
4h or more
1h or more

15 minutes or more

Figure 7.5: Fraction of HTTP requests older than various possible target deadlines, based
on last-modified dates on content headers, based on a one-day sample of hun-
dreds of millions of HTTP requests.

vary over the course of a day, and compare them to the average load across all eNodeBs.

The eNodeB covering an office area near a transit center peaks earlier than average and

is less heavily loaded in the late afternoon. An eNodeB in a retail area has two distinct

peaks and a lull in the middle of the day. These load variations demonstrate examples

of predictable usage patterns around which data can be scheduled. Note that the sorts of

variations we can leverage are, in practice, on the order of hours. For instance, an increase

in load due to commuters near a train station lasts several hours as commute times vary.

This means that our deadlines must be on a similar scale, as we show in our experiments.

Given that the load patterns we detect vary on the order of hours, does that mean traf-

fic we fetch in advance will be stale when it is used? To show this would not generally

be the case, we evaluate a sample of all uncached anonymized HTTP data covering three

million requests over one day (not the same dataset used elsewhere in the study), which

includes short-lived content we would treat as unshiftable anyway. Even so, as we show in

Figure 7.5, the majority of content is still valid hours later. Furthermore, we are targeting

types of content that are relatively long-lived, such as static videos, music and podcasts. In

conjunction with prior work suggesting users are willing to delay data by hours, this sup-

ports the notion that time-shifting data over time scales of hours is a practical and effective

119

solution for significant classes of traffic.

However, it is likely for a real implementation that there would be limits on how much

data could be time-shifted. For instance, users wanting to watch a video later in the day

would probably not be interested in viewing it when asleep, and may not know what video

they want to watch until a few hours in advance.

7.3.2 Scheduling Algorithm

Next, we determine how the INS can best leverage these predictions to effectively

schedule data. Due to the enormous scale of the networks in which we schedule data,

and the fact that the devices on which we schedule data are highly mobile, we must deter-

mine a way to make this scheduling problem tractable. To do so, we show that effective

scheduling decisions can be made on a per-eNodeB basis using only short-term decision

making, while still achieving good long-term, global results.

The first step is to determine the amount of available capacity. The INS keeps track of

a target threshold for each eNodeB, which is equal to the peak utilization that eNodeB has

seen so far, multiplied by 0.8 (a number chosen through experimentation) to account for

the slight inaccuracies in forecasting network load. The available capacity is the difference

between this threshold and the actual load at this point in time. Since we cannot know the

actual load in advance, we use our forecasts to estimate it.

Time is divided into scheduling intervals, equal to the frequency with which devices

sync with the server, and requests are only scheduled one scheduling interval in advance.

When scheduling, any requests that are about to reach their deadline are first fulfilled re-

gardless of network capacity. If any free capacity remains, more data is then scheduled.

Requests are scheduled to fill the estimated available capacity below the target threshold

completely, if possible (i.e. we use a work-conserving approach). They are fulfilled in

earliest-deadline-first order. Since our goal is to avoid increasing the eNodeB’s peak load,

downloading as much data as possible now without exceeding the target threshold is al-

120

ways a better decision than delaying downloads until later, even if future loads are lower

than expected or the user moves to a lower-load location.

If the target threshold was exceeded by requests reaching their deadline (rather than a

misprediction), the target threshold is increased to this new peak load, as data must have

been scheduled too conservatively in the past for this to happen. This allows us to effec-

tively schedule large data loads where completely eliminating the impact of delay-tolerant

data is not possible. The periodic scheduling approach allows decisions to be made at the

per-eNodeB level while resulting in effective time-shifting globally. It allows us to leverage

more accurate, up-to-date forecasts while allowing devices to only periodically connect to

the INS, allowing for a good tradeoff between scheduling accuracy and device overhead.

7.3.3 Alternate design approaches

We examined a number of alternative design approaches against which we compare

CellShift to better understand the impact of the tradeoffs made.

Fixed download time: In this approach, user scheduling decisions are made once,

rather than recalculated each scheduling interval. This also allows us to predict how much

extra capacity will exist over the course of the scheduling interval and schedule content

accordingly, acting as an admission control system. For instance, we might select the

quality of the music or videos to prefetch. Upon submitting a request to time-shift data,

the system calculates the expected best time to fulfill the download (i.e. the time with the

most available capacity), incorporating estimates of user location at each point in time to

determine how much capacity to reserve at each eNodeB. This allows devices to wake up

less frequently to communicate with the server, but with some loss of accuracy in predicting

the available load in the future, thus requiring that we be more conservative in the amount

of data we schedule. We also assume we can predict user location with this approach,

which we do not evaluate in this paper.

No inter-device coordination: An alternate approach is to make scheduling decisions

121

Table 7.1: Prototype overhead metrics for a Samsung S4 device scheduling new requests
every 15 minutes. Data sent includes all bytes sent over the link for correspond-
ing flows, and is a negligible fraction of an eNodeB’s capacity.

Metric Result/active in-
terval

Result/day (constant requests)

Energy consumed from all
sources2

6.7 J 644 J (1.8% battery capacity)

... due to server communi-
cation

6.4 J 614 J (1.7% battery capacity)

... due to forecasts 4.4 J 422 J (1.2% battery capacity)
Extra signaling overhead

forecasts 5.7 kB 547 KB
coordination 5.4 kB 516 KB

on the device in isolation. The device still fulfills any requests that are still pending when

their deadline is reached. Otherwise, it attempts to spread downloads as evenly as possible

between underutilized time slots, with no knowledge of load from other devices. This

schedule is adjusted each time new data on eNodeB utilization trends is received from the

network. We show this approach is not very effective.

7.4 Prototype Implementation and Performance

We evaluate CellShift’s overhead by developing and benchmarking a prototype system,

which we use to demonstrate that server-side coordination is scalable and able to support

large numbers of users, as well as efficiently forecast and schedule requests on behalf of

these users with minimal overhead. We also demonstrate that the power and data overhead

on the user device is small enough for resource-constrained mobile devices. We evaluate

CellShift’s effectiveness at scheduling loads at scale through a simulation in §7.5.

We developed a Android app consisting of two parts: a simple user-facing app that

downloads large files, and an implementation of CellShift’s on-device component. The

former periodically generated requests to download files of various sizes from a web server

we set up for this purpose, with various deadlines, and submitted these requests to the

122

CellShift component. The CellShift module set a periodic timer to wake up and send the

size and deadline of each pending request to the INS. The INS then replied with a list

of requests to fulfill before the next synchronization. The app also fetched and displayed

network load forecasts.

The INS was implemented in Python, and made use of a trace of eNodeB loads from a

real eNodeB to perform the scheduling. Each scheduling interval, the INS updated the fore-

cast models for the eNodeB and for each user, then estimated the load over the next time

interval to determine how much could be scheduled. It stored any requests received and

determined which requests should be fulfilled next. When the device next connected to the

INS, the device fetched a list of requests specific to that device which the INS determined

should be carried out over the next scheduling interval. To give the most conservative per-

formance values, we had the device constant generate and submit requests each scheduling

interval

We first examine the power and data overhead. To examine the impact of CellShift’s

network communication in isolation (i.e. excluding the impact of any unrelated background

traffic such as Android system generated traffic), we generated parameters for a standard

model of LTE power consumption [56] using a power monitor, and then calculated the

impact of the relevant TCP flows sent using tcpdump traces collected on the test phone.

This model accounts for the impact of cellular RRC state transition dynamics, which have

a significant impact when sending small amounts of data, and by analyzing each component

in isolation we can calculate a worst-case value for energy consumption when there is no

other traffic we can piggyback on. It also allows us to separately examine each component

of network communication. Although the exact results would vary by cellular network,

as configuration parameters such as RRC tail timers would affect the energy efficiency,

we chose a network with a particularly long tail timer to measure an upper bound on the

possible overhead.

The results are summarized in Table 7.1. These values correspond to a power overhead

123

of about 1.8% per day on a Samsung Galaxy S4 [107]. In practice, it would almost al-

ways be lower as it’s unlikely for a user to be submitting requests 24 hours a day and for

there to never be overlapping traffic. Power consumption could be further reduced if fast

dormancy were enabled. Nevertheless, this overhead motivates the need for CellShift to

support intermittent, rather than continuous, server synchronization.

Each coordination with the INS consumes 5.4 kilobytes of data on average. Headers

make up the majority of the data consumed, but a more efficient protocol could reduce the

data consumed further. This has a negligible impact on cell tower load, on the order of a

thousandth of a percent for 1000 users all with poor signal strength.

We also measured the INS scheduling overhead. An artificial workload of data for

10,000 users, far more than eNodeBs can support today, takes less than a millisecond to

schedule with an unoptimized python script. We designed our scheduling algorithm to be

highly efficient and parallelizable. To stress-test the INS, a separate server then generated

requests for 1500 simulated users. We increased the communication interval to five minutes

for ease of testing, and had all simulated users submit requests almost simultaneously to

ensure a high server load. The additional overhead from adding new users never exceeded

tens of milliseconds (also with an unoptimized python-based server). The overhead of

storing and scheduling requests was under half a megabyte. Per-user forecasts required 24

megabytes for 1500 users.

7.5 Simulation Evaluation

We evaluate CellShift through a city-scale simulation to ensure we are able to adapt to

real user mobility and variations in network load over time and by location. The simulation

encompasses over one hundred eNodeBs and hundreds of thousands of users, covering both

the downtown core and some suburban areas of a major US metropolitan area. A real-world

deployment could be even larger: each component of the analysis is parallelized by user or

by eNodeB, allowing it to scale indefinitely.

124

We made use of a PRB utilization dataset similar to the one used to develop our forecast

algorithm, collected in the first week of June 2014 (plus the last day of May to initialize

the forecast models). This dataset is independent of the several month one used to develop

the forecast algorithm, and its length was selected to ensure we evaluate both weekdays

and weekends. We also used a set of anonymized user to eNodeB associations collected at

the same times and locations. The privacy of the users was preserved as all user identifiers

were anonymized prior to our analysis and we focus on the aggregate statistics across all the

users in the data sets. PRB utilization can be mapped to bandwidth using RSRQ (Reference

Signal Received Quality) [3] values, which we also collected. In a few cases, RSRQ values

were missing in the dataset, and so we took the lowest value (supporting the lowest bit rate)

to make the most conservative possible claim about how much data can be time-shifted.

The dataset of eNodeB to user associations contains an entry every time the user inter-

acts with the network, such as when sending or receiving network traffic or connecting to a

new eNodeB. Where we have a small gap in the data, we assume that the user is stationary

during that time and connected to the same eNodeB. To bound the scope of our simulations

(a limitation of our simulations rather than of CellShift), we do not schedule downloads for

users who will be outside of the target area for an hour or more, and did not schedule any

additional requests for users who spent less than five hours in our target area. If the user is

only outside the area briefly, we delay all CellShift downloads until they return. We only

consider users connected to the cellular network, and treat users on WiFi as being outside

the target area, due to a lack of information on those users.

The main question we examine is whether CellShift can allow networks to support a

substantial increase in load without unduly increasing peak traffic levels. We see CellShift

as enabling new network services, as well as heavier but cost-effective network usage, such

as making it more affordable for users to watch large videos on their devices. As such, for

most of our test cases we examine the impact of data added to the network, although we

also look at the impact of scheduling existing data.

125

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o

n
 o

f
e

N
o

d
e

B
s

Peak enodeb utilization, normalized

Prefetching requests

Without delay-tolerant load
CellShift - Prefetch

No CellShift

Figure 7.6: CDF of top loads due to prefetching traffic with fixed deadlines, comparing
against no time-shifting. We also show the peak load if we were to remove the
delay-tolerant load from the network entirely.

 0

 0.5

 1

 1.5

 2

ideal

8h 6h 4h 2h 1h 0h

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 p

e
a
k
 l
o
a
d
 p

e
r

e
N

o
d
e
B

Added load, no CellShift
Added load, CellShift

Time-sensitive load

Figure 7.7: Impact of deadline length on prefetching. Prefetching is more effective when
scheduling with less constrained deadlines, particularly deadlines of 4h or
longer.

7.5.1 Impact of Scheduled Request Patterns

We first examine one request load and scheduling configuration, and then compare

against alternate network loads and deadlines. For this test case (and other tests, unless

otherwise stated), we use an 8 hour deadline. Data is scheduled at 15 minute intervals.

Each individual user submits requests to an eNodeB-specific server. Each eNodeB then

estimates the load in the next time interval and schedules requests accordingly. We then

126

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

U
ti
liz

a
ti
o

n
 (

h
ig

h
)

CellShift
No CellShift

Time sensitive
Threshold

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40

U
ti
liz

a
ti
o

n
 (

lo
w

)

Hour

Figure 7.8: Example eNodeB time-shifting traces for two eNodeBs with different loads
with 4 hour deadlines, along with the peak load seen on previous days (“Thresh-
old”). Examples chosen to illustrate cases of how time-shifting works and rep-
resent roughly average cases.

calculate what the actual load resulting from that schedule would have been, given the real

network load during that time interval.

For this test case, a randomly selected subset of users want to make five large network

requests at randomly selected times during daytime hours, resulting in a 40% total increase

in PRB load across all eNodeBs. We show the results of prefetching these requests in

Figure 7.6. The distribution of peak loads at each eNodeB are shown in the form of a CDF,

both with and without CellShift’s time-shifting. We also show the peak loads due to time-

sensitive requests alone, excluding delay-tolerant requests entirely (D in Figure 7.1). When

prefetching, CellShift is able to reduce the average impact of added load on per-eNodeB

maximum utilization by 58% ((A − C)/(A − D) from Figure 7.1), for an overall data

127

increase of 40% (E/F).

Next, we examine the impact of our deadline length in Figure 7.7, with deadlines of

a fixed time in each case. Unsurprisingly, we do better with a less constrained deadline.

With a four hour deadline we reduce the impact on peak loads by 40%. Conversely, a one

hour deadline only reduces peak loads by 14% on average. Recall that we observed when

finding predictable variations in network loads that they tend to be on the order of hours,

and as such, the cutoff for CellShift’s effectiveness seems to be about 4 hours.

To better understand how data is time-shifted, we show example traces from two eN-

odeBs in Figure 7.8 for the four hour deadline case, before and after scheduling data with

CellShift. The top trace is in a moderately busy area, whereas the second one has a lighter

load. In both cases, there is less load this day than on other days, and so the target threshold

is higher than the peak load on those days.

We are able to flatten these loads, fitting the scheduled loads to the shapes of each

eNodeB’s load pattern, and in most cases do not exceed the target threshold. Note we are

able to shift some traffic to off-peak hours, as well as shift data between eNodeBs. During

daytime hours, the network loads are almost flat, with slight variations due to limitations in

the forecast accuracy. Note how there are dips in the time-sensitive load during the middle

of the day for the first day of the top trace, which we flatten when adding the time-sensitive

load, although later in the day due to a slight misprediction we slightly exceed the target

threshold. For the second plot, which has a smaller number of users, we are able to flatten

loads more dramatically as the impact of delay-tolerant data is much greater compared to

the time-sensitive load.

We also examine a variety of alternate network loads to schedule. In Figure 7.9, we

examine the impact of varying both the quantity and distribution over time of requests

scheduled by CellShift. We start by examining a scenario where traffic that would normally

be used during peak hours is delayed to off-peak hours (“delay”). When shifting data in the

other direction, we are more likely start by seeing the smallest loads we are likely to see

128

 0

 0.5

 1

 1.5

 2

 2.5

 3

m
ain case

delay

large load

sm
all load

video load

burst

constant

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 p

e
a
k
 l
o
a
d
 p

e
r

e
N

o
d
e
B

Added load, no CellShift
Added load, CellShift

Time-sensitive load

Figure 7.9: Time-shifting remains effective under a variety of loads, including both differ-
ent sizes and distributions over time.

and so our flexible, short-term decisions work well. However, when delaying data away

from peak hours, we have a lot of pending data to schedule during peak hours and thus are

more likely to misschedule it, even if there are more opportunities to download the data

later.

Next, we examine a larger request load where the added delay-tolerant data is 56% of

the time-sensitive load (“large load”). We are able to reduce the impact of these requests

on maximum utilization by 56% in this case, almost as much as with the smaller load.

Examining a lighter load than our first example (“small load”), of a 10% increase in total

data, we are able to reduce the impact by 52% on average.

For another use case where data is used during off-peak hours, we examine a load

derived from real user video traces (“video load”). As described in work by Erman et

al. [32], video traffic both contributes a large amount of data (30% of total HTTP traffic in

2011), and makes up a higher proportion of traffic during off-peak hours. We examine a set

of traces of moderately-sized videos (less than 1 GB) collected separately from the eNodeB

load data, and generate a load based on those traces. One limitation is that, as we are

subtracting data from our traces rather than adding data, and the video traces were collected

129

separately from the network load traces, users who experience poor signal strength during

off-peak hours but who have video traces assigned to them may find themselves driving

PRB loads into the negatives in the no-timeshift case. Therefore, we do not adjust available

bandwidth based on RSRQ values for this experiment. We find we can reduce this load by

50%.

With support for time-shifting, it is possible that new applications leveraging this tech-

nology would lead to traffic demands that diverge from the current pattern. To demonstrate

we can still achieve good results with other load patterns, we examine a case where users

download large amounts of data during their commute only (labelled “burst”). In this case,

we actually reduce the average peak eNodeB load more, by 76%. Unsurprisingly, spiky

loads benefit more from being flattened.

However, even very smooth loads can be time-shifted (“constant”). We randomly select

users and give them a constant additional load during peak hours. We are able to reduce

this load by 67%. Although this load is already smooth, the underlying time-sensitive data

is not, and there is thus opportunity to smooth the total load. Furthermore, the small but

constant series of requests submitted means that we are less likely to suddenly have a large

amount of data to schedule when there are insufficient opportunities for doing so.

7.5.2 Impact of Forecasting and System Design

We next evaluate the role of various aspects of CellShift’s design, shown in Figure 7.10,

starting with the forecast accuracy. Per-eNodeB forecasts are needed to estimate the aver-

age utilization in the next time slot, but these forecasts, even 15 minutes in advance, are

not perfect. We show that with perfect foreasting 15 minutes in advance we could almost

completely eliminate the impact of CellShift-controlled requests. Basically, in that case we

are able to leverage not just the larger, predictable variations that persist from day to day,

but we are also able to capture sudden, sub-hour changes in network load that are challeng-

ing to forecast. We leave closing this gap to future work. One approach could be actively

130

monitoring the second-to-second eNodeB load immediately before a scheduled request to

double-check it’s a good time to fulfill the request. Modeling net flows of users to detect

potential anomalies may also be a promising approach.

We also examine a number of alternate system designs with different tradeoffs, which

we described in §7.3.2. The first is one where the INS calculates a single, optimal down-

load time when a request is first issued, between four and eight hours in the future (fixed

deadline). No further coordination is needed, allowing the device to sleep entirely until the

scheduled time. To schedule these requests, the INS calculates the optimal time to schedule

requests based both on predictions of network load at each eNodeB the user is expected to

visit, as well as prior requests made to each eNodeB at each time. Each eNodeB keeps

track of requests made to date. Once requests are scheduled at the eNodeB, that request is

treated as fixed. As we are scheduling requests in advance and monitoring the global load

on each eNodeB, we also determine a load the network can safely support and only allow

those requests to be admitted.

This approach assumes user location can be predicted, but as we are examining this

use case primarily for comparison purposes, we did not develop a long-term user location

prediction system. User location has been shown to be predictable to some degree in prior

work [131], especially at home and at work [62]. We are able to decrease the overhead

of the added load by 44% with an eight hour deadline. In addition to achieving somewhat

lower results, we are also limited to supporting half as much data.

We also examine a design with no inter-device coordination. In this scenario, devices

spread load evenly among available time slots before the deadline (we also tried randomly

selecting time slots, which performed worse). However, we would often simply move

utilization peaks around, as we had no way to avoid other scheduled requests, and we and

only reduced the impact of the data on peak loads by 18% on average. Variations in network

load are small enough during the day that coordination is needed. With a 24 hour deadline

this approach works better, but we are then essentially shifting most traffic to occur at night,

131

 0

 0.5

 1

 1.5

 2

m
ain test case

perfect forecasting

fixed deadline

no coordination

no coordination 24h

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 p

e
a
k

lo
a
d
 p

e
r

e
N

o
d
e
B

Added load, no CellShift
Added load, CellShift

Time-sensitive load

Figure 7.10: Impact of forecast accuracy and effectiveness of alternate design approaches.
While perfect forecasting achieves better results, less flexible scheduling ap-
proaches can support less data.

which may be impractical for many use cases.

7.5.3 Alternate Cellular Network Characteristics

So far, our results have been based on network traces from a major cellular network,

but networks may have different characteristics worldwide. We examine how challenging

time-sensitive network loads may impact our results. We examine two hypothetical patterns

in Figure 7.11: one where we greatly increase the time-sensitive network load, resulting in

less spare capacity to work with, and another where we reduce the number of time-shifting

opportunities, smoothing the baseline utilization by taking the average value over the last

hour for each scheduling interval.

Although our results are dependent on leveraging variations over time and between

eNodeBs, the artificially smoothed fixed data load surprisingly performs better than the

real-world one, as shown in Figure 7.11 (in the form of CDFs, since we’ve altered the dis-

tribution of time-sensitive network loads as well). Although smoother load patterns offer

fewer time-shifting opportunities, smoothing the data makes the peaks and valleys more

132

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o

n
 o

f
e

N
o

d
e

B
s

Smoothed - running average

W/o delay-tolerant
CellShift

No CellShift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o

n
 o

f
e

N
o

d
e

B
s

Normalized peak utilization

High congestion

Figure 7.11: We examine some alternate loads of time-sensitive data. When non-CellShift-
controlled, time-sensitive data is more even, time-shifting is easier, but when
the network is already highly congested there is little room for CellShift to
schedule data.

predictable, and we are thus less likely to inadvertently schedule too much data during a

data spike. With time-shifting, we are able to reduce the impact of these added requests al-

most entirely. In fact, because this smoothing reduces any utilization spikes in the baseline

data, even without time-shifting the CellShift-controlled requests have a lower impact on

each eNodeB’s maximum utilization.

With more congestion in the baseline load, time-shifting around these loads are more

challenging and we only reduce the impact of CellShift-controlled traffic by 37% on aver-

age. When a network is already overloaded, there are fewer opportunities to time-shift the

requests.

133

7.6 Discussion and future work

There are a few promising directions for future work. First, we have shown by simu-

lating perfect prefetching that our biggest challenge in creating an effective time-shifting

system is in the accuracy of our forecasts. Possible future directions include leveraging

fine-grained user movement patterns directly, detecting anomalies in daily motion patterns,

or even having the device get network utilization from the eNodeB every few seconds dur-

ing a time slot where it is scheduled fulfill a request, although that would likely have a

much higher energy overhead.

Furthermore, some types of loads can be more effectively scheduled than others, mo-

tivating which types of traffic should be targeted by such a system. Time-shifting most

dramatically reduces loads on the network caused by large, bursty downloads, especially

during peak hours, but there is less room to improve loads occurring more predominantly

during off-peak hours. Furthermore, if all eNodeBs are congested, the benefits are minimal,

since time-shifting allows us to use resources more efficiently rather than add network ca-

pacity. For instance, time-shifting content such as music or podcasts would be a particularly

promising approach: users may want to listen to them during peak hours, they are gener-

ated in advance, they probably reflect predictable user preferences, and they contribute a

substantial amount to network loads.

In developing CellShift, we have demonstrated that network loads vary significantly

throughout the day, and that these variations are at least partially predictable (as well as

identified limits on the predictability of this content). While we have presented one system

which can leverage these predictions, we expect that these forecasts could be valuable in

other ways. For instance, users could query such a database to determine what sorts of

network loads to expect at a particular time and place, such as when travelling, or a gaming

app could suggest entering a multiplayer or single-player mode depending on forecasted

network conditions. Network operators may also find these forecasts facilitate network

management, another interesting direction to explore in future work.

134

We do not consider the possibility of malicious devices trying to subvert the system, but

as users must register a specific device with the system, identifying badly behaving users —

such as users deliberately sending large amounts of data when network load is highest —

would be straightforward. Finally, although we have analyzed our system on a large scale

through trace-driven analysis, we have not deployed a prototype system on such a scale.

Ideally, we would deploy and evaluate such a system with a large number of representative

users in a major metropolitan area to fully evaluate its effectiveness.

7.7 Conclusion

In this chapter, we first showed that there are substantial variations in network load in

heavily used networks that can be predicted. We then presented a system, CellShift, that

can effectively time-shift content on cellular networks to leverage these variations, reduc-

ing the impact of CellShift-controlled network requests on eNodeB capacity by more than

50%. Furthermore, we can achieve these results in a network where the majority of data

is time-sensitive and thus unknown to CellShift in advance, by modelling future network

loads based on past trends. CellShift is a lightweight system that requires devices to sub-

mit requests to a per-eNodeB coordination server no more than a few times an hour, and

schedules data by making only immediate, local decisions intermittently, with scheduling

performed only at the eNodeB level. Nevertheless, CellShift achieves strong results in re-

ducing network load overall. As the challenges in creating a practical time-shifting system

have yet to be examined, namely predicting network load and scheduling content accord-

ingly over long time scales in large and highly complex cellular networks, we also examine

a number of alternate design approaches. CellShift compares favorably against them, show-

ing that our approach offers a good tradeoff between overhead and effectiveness in making

use of free network capacity to reduce peak loads.

135

CHAPTER VIII

Predicting App Network Traffic to Facilitate Prefetching

8.1 Introduction

Ensuring good performance on network-dependent mobile apps remains challenging.

One possible solution is prefetching: not just long-term prefetching, but prefetching a

on the order of a few hundred milliseconds in advance as well. A common problem in

prefetching systems is determining what to prefetch. In addition, there are other cases

where knowing what content will arrive in the future will facilitate decisions that can lead

to improved performance, such as in Server Push.

In this chapter, we examine this problem in two parts. We first introduce two tools

that allow application behavior to be predicted, and evaluate them using network traces.

We then examine how these tools can be applied to real-world prefetching systems, and

discuss the challenges that would need to be overcome for automated prefetching to be

possible.

First, we examine two approaches to predicting app behavior: determining what activity

a user will visit next, and determining what network requests will be issued soon (e.g. in

the next activity). The former problem, as it turns out, is relatively straightforward to solve,

as certain activity transitions are consistently far more common than others. This could

allow static requests to be prefetched, that are the same each time the Activity is loaded.

Determining more generally what requests will be issued soon is more challenging. We are

136

able to do so with a median accuracy of about 60% of requests, but there are challenges in

applying this to a real system.

For the second problem of predicting app requests, we examine only a subset of apps:

apps which rely on network traffic to fetch content, and leverage one or more HTML,

JSON or XML files to determine what to fetch. News and social media apps are examples

of such apps: games, video conferencing services, and chat services are not. We infer

the structure of these apps — what series of requests lead to content being fetched, and

how the app determines what parameters to pass along with the URL — and based on this

model, predict what content will be fetched in the future. About 60% of objects are fetched

in the median case in our trace-based simulation, and about 65% of bytes are fetched,

although the success rate varies greatly by application. A major limitation, however, is that

a substantial amount of extra data is fetched: often sometimes several times as much as

what is needed. This limitation means that automated prefetching is likely not yet ready

for real-world applications.

Next, we examine the challenges of applying these approaches to real systems. As a

motivating use case, we consider a prefetching system built around cloudlets. Cloudlets

have been proposed as a method to address many of the limitations of mobile devices, by

offloading functionality to machines near access points [125, 110, 39, 12, 46, 109]. Acting

as a proxy, they could prefetch content for user devices, and observe and predict mobile

traffic. We discuss how our prediction system would apply to a cloudlet system and what

would be needed to make such a system feasible. We find there are several obstacles to

achieving the results in our trace-based evaluation. In particular, we find that the time to

download content is a challenge, limiting how much content can be predicted and fetched

in time for a real system. We discuss some potential approaches to address this problem,

which would require future research directions.

Considering how this project supports this dissertation’s thesis, it addresses not just to

the complex and dynamic nature of network performance, which can be masked through

137

prefetching, but also leverages the unique nature of mobile app behavior. The measure-

ments in question are not numerical measurements per se, so much as ongoing observations

of the contents of network requests, and where and in response to what these requests occur.

Using these measurements, we hope to be able to support systems, such as prefetching sys-

tems, that can improve performance on mobile devices. In this way, this section supports

the thesis statement that because mobile devices experience uniquely dynamic and complex

network conditions and resource tradeoffs, incorporating ongoing, continuous measure-

ments of network performance, resource usage and user and app behavior into mobile

systems is essential in addressing the pervasive performance problems in these systems..

The main contributions of this chapter are as follows:

• An investigation of the predictability of activity transitions, determining that over

half of all activity transitions are the most common transition, and the three most

common activity transitions make up almost all activity transitions.

• An approach for predicting URLs requested based on prior network traffic, as well

as the parameters passed with those URLs, with about 60% accuracy for a large class

of apps in a trace-based evaluation.

• An examination of the feasibility of automated prefetching, the limitations of URL

prediction for prefetching, and of what is needed to work towards an effective, truly

automated cloudlet prefetching system that can achieve similar results to the trace-

based evaluation.

8.2 Motivation and Use Cases

We address the problem of reducing network latency by better understanding network

performance. We have discussed two methods for reducing latency that require knowing

about traffic in advance: Server Push and prefetching. Generally, causing content to be

138

downloaded early can mask limitations in network performance, but this requires deter-

mining a systematic way to predict URL requests for apps, which has yet to be done.

Applicability to Server Push: While Server Push is not the use case we will focus

on in this chapter, we briefly discuss it as motivation for predicting content. In particular,

one recommended approach for implementing Server Push we discussed was by using a

proxy. Third-party content and domain sharding are major limitations for Server Push, so

why not have a proxy serve as a single point from which the client can request content from

disparate sources? In this way, the user would get the full benefits of HTTP/2, including

allowing Server Push to have all known content be piggybacked on the initial HTTP page.

We did not discuss, however, how the proxy might know what content to push. In some

cases, a sort of configuration file could perhaps be sent to the proxy, if the original server

knows everything that will be pushed, but that might not be the case. What we would

like would be for the server to be able to predict what content will be needed simply by

observing traffic as it passes, and then build a model of what sort of content to expect when.

This is precisely what we aim to do in this chapter.

Applicability to cloudlets: Cloudlets are servers near access points (either WiFi ac-

cess points or cell towers) that phones can offload functionality to, allowing for increased

performance [125, 110, 39, 12, 46, 109]. It has been proposed, in particular, that content

can be prefetched to these cloudlets in a technique known as data staging [39]. A recent

paper, focusing on offloading computation, showed that cloudlets still have the potential to

approximately halve response times, as compared to offloading content to the cloud alto-

gether [41]. However, determining what to prefetch in this case is also a problem.

We show an example system architecture for a cloudlet prefetching system in Fig-

ure 8.1. A cloudlet server near the access point acts as a proxy, and can observe all traffic

that passes through it. It can then generate a model of what to prefetch, and use that

model to prefetch content to a local prefetch cache. One advantage of a cloudlet is that the

cost of mispredictions is lower, since unnecessary content never goes over the congested

139

Unmodified
app server

Per-app proxy

Logger Prefetch
rules

User app
state

Extract Prefetch Rules Offline

Prefetch
Cache

Lightweight
app state
logging

Figure 8.1: System diagram of how a cloudlet prefetching system might work.

and possibly expensive last hop. However, as we will show, one major challenge is that

these mispredictions still take time to download, and there is a limited amount of time for

prefetching to happen. Finally, there could potentially be some communication between

the phone’s OS and the cloudlet. In particular, we could communicate to the cloudlet what

activity the device is in, or what apps have started, to let the cloudlet know what to prefetch.

System design goals: We therefore want to create a system that can a) predict as much

network traffic as possible for an application, and b) do so with reasonable data download

overheads. If we use the cloudlet system as our motivating example, we can assume the

device has many times the capacity of a phone, and so we can err somewhat on the side of

downloading more. We consider several metrics in evaluating the overhead of mispredic-

tions: whether we can store data for a reasonable number of apps and servers on a single

cloudlet, whether we can migrate data between cloudlets in a timely manner, and whether

we can load the prefetched content sufficiently quickly.

Thus, we evaluate:

140

1. The amount of traffic successfully predicted

2. The amount of extra data we try and download unnecessarily

3. The estimated number of users/apps that can be stored on a cloudlet server, and

difficulty of transferring the data between cloudlets

4. The estimated time and overhead of a migration, and;

5. The estimated time to fetch the prefetched content.

We are able to get positive results for the first metric, and reasonable results for the

second if we are targeting cloudlets and can thus afford some excess downloads, but the

final three points remain a challenge and will likely require new research directions to

properly address. Finally, we do not yet evaluate the latency savings for prefetching, since

due in particular to our last metric, it is not yet possible to build an effective prefetching

system.

Assumptions and limitations: We only apply this method to certain types of traffic.

We focus on apps (that aren’t browsers), which usually have a constrained set of requests

that they make, rather than web browsing, where the content fetched draws from a virtually

limitless set. We also focus on apps that have network traffic, where the content fetched is

pregenerated (i.e. no chat or video apps, or games).

We also assume that the cloudlet can be trusted, and thus can observe network traffic

and make decisions as to what to prefetch. Some prior work examines how to use untrusted

cloudlets [39], but ultimately, someone has to know what network traffic is being sent for

this to work due to how we determine what to prefetch.

Much of our analysis is trace-based, which doe not include the server’s response to

malformed packets, or any rate-limiting done by the server, which we find to be a major

limitation of a real-world deployment. We find that the cooperation of the server to, for

instance, not log you out after sending a bunch of invalid requests, is necessary. For a

141

real-world deployment with the full cooperation of app developers this should be generally

obtainable.

8.3 Activity prediction

The first aspect of application behavior predictability we examined was Activity transi-

tions. Activities [8] are focused pieces of app functionality associated with a full-screen UI,

such as a screen to search for restaurants or one that displays information about a restau-

rant. As users interact with an application, they traverse different Activities. By predicting

Activity transitions, we can predict in a coarse grained way what an app will do.

To determine if Activity transitions are predictable, we make use of the Phonelab

testbed [80]. For this testbed, researchers at the University at Buffalo have created a modi-

fied version of the Android OS that logs a variety of information of relevance to researchers.

They then have volunteers use the phones. For our project, we introduce a new set of ex-

periments to PhoneLab, that instrument Activity and other UI changes, logging the time,

app, Activity, and type of transition (e.g. start, resume, stop, pause). We got a sample of

data from 86 users over seven days, although not all users were active over all seven days.

Next, we examine whether the next Activity is predictable given the current Activity.

We use a simple Markov chain approach, where we predict the next Activity based on what

is most likely given the current Activity, base on how often it has lead to each Activity in

the past. As we show in Figure 8.2, in almost every case guessing just the most common

Activity would be accurate half the time, and guessing the top three Activities would be

accurate almost all the time. Even trying to predict the next two Activities is pretty reliable,

as shown in Figure 8.3. Note that since we are tracking transitions, A→ B and B→ A are

separate pairs.

Finally, we examine the predictability of application entry points. In general, it is possi-

ble for more than one Activity to be an entry point. For instance, you might see one Activity

when you launch Google Maps by clicking the app icon, and another when Google Maps is

142

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
a
c
ti
v
it
ie

s

Percent transitions to activity(ies)

Top activity
Top 2 activities
Top 3 activities

Figure 8.2: Fraction of Activity transitions from each Activity that go to the most common,
top two, and top three next Activities.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
a
c
ti
v
it
ie

s

Percent transitions to activity(ies)

Top activity pair
Top 2 activitiy pairs
Top 3 activity pairs

Figure 8.3: Fraction of Activity transition pairs from each Activity that go to the most com-
mon, top two, and top three next pair of consecutive Activities.

143

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
a
c
ti
v
it
ie

s

Percent transitions to activity(ies)

Top activity
Top 2 activities
Top 3 activities

Figure 8.4: Fraction of application entry points covered by the top, top two, and top three
next Activites.

launched by another application to give you directions. We expect that in the vast majority

of cases, though, only one entry point is used, and as we show in Figure 8.4, this is indeed

the case.

For relatively static apps, this suggests we can accurately predict what to prefetch. If the

same network requests are made every time for each Activity, then those requests could be

prefetched before you go to that Activity. For instance, a weather app might always fetch

weather through the same request to the same online API, or a transit app might likewise

fetch the current schedule using the same request every time. However, this is not a general

approach: most apps are not this simple.

In the next section, we investigate a more sophisticated approach: one where we try and

predict individual network requests, even when dynamic.

144

8.4 Traffic prediction

The basic idea of traffic prediction is that most app URLs are either requested at the

same point in the app each time themselves, or can be derived in a straightforward way

from prior requests. Commonly, applications follow a regular pattern: they load some

configuration file, either when the app is launched, or daily, or in response to user inter-

action, and those configuration files populate the app with specially tailored content such

as location- or day-specific content. Usually, the configuration file is a JSON file or XML

file which is easily parseable. Additional information, such as the user’s location, is often

passed with the request. Sometimes, different content is loaded based on user actions, but

unlike web pages, often what can be loaded is relatively constrained.

For example, consider a news app that loads content on a daily basis. The app might

have an initial XML file with the names of all news articles, and for each, a link to a

thumbnail, and a link to the text of the article. Thus, once you determine that the app loads

content from that XML file, it is only necessary to determine how the app uses the XML file

to fetch the thumbnails and the text of the content, and prefetch that content. There may be

a number of pages the user can visit: politics, sports, local news, etc, but there are a limited

number of such buttons a user can press, and thus a limited number of XML or other such

files. At the very least, we would expect the XML files to be specified in another XML

file. For another example, a food recommendation app such as Yelp might load a JSON file

containing a list of the top 20 most popular websites in the area, and display them when the

user clicks on “restaurants”. This method will not cover every case — for instance, once

the user decides to filter the websites down to “sushi” we cannot predict that this request

will be made — but at least we can predict initial content loads, and if the “sushi” page

loads its own XML file of content, we can prefetch based on that. Likewise, for a social

media app, this would allow us to prefetch the user’s timeline, but if the user searches for

another user to add as a friend, that content would not be prefetched.

This method also only works with apps that fit this pattern. Notably, games tend to have

145

less structured content, and so do not work as well. Ad content, being more dynamically

generated, may often not be prefetchable as well. And for an app like Amazon, which

searches from a very large collection of content, the possibilities of what to prefetch are

too great. However, this sort of prediction is a valuable tool for better understanding and

modeling the behavior of a large class of apps.

8.4.1 Overview of Prediction Techniques

We separate the problem of predicting URLs into two parts: predicting the base url,

and predicting the parameters. We summarize this in Figure 8.5. For instance, if we have

a URL of the form http://www.example.com/api?user=Alice&location=

AnnArbor, then we first try to predict the url http://example.com/api, and then

try to predict the parameters that are associated with the URL in order to assemble the

full request. The reason for this is that often the URLs and parameters come from sepa-

rate sources. For instance, the url http://example.com/api might be hard-coded

into the application as something to fetch whenever a certain activity is loaded, but the

parameters come from some user-specific state maintained by the application.

To model the pattern of URL generation where template files such as XML files de-

termine future requests, we look for two types of URLs. We first identify URLs that are

statically generated by the app (i.e. the initial template file that, say, fetches the daily news).

We then determine how other URLs can be derived from these static URLs. We predict pa-

rameters by inferring global application state, partly from prior requests and partly from

global device information such as the device’s location or the current time. The URLs

generated are constructed from both the parameters and the root URLs, as summarized in

Figure 8.5.

We developed this method using six apps, CNN, eBay, Flipboard, Groupon, NPR, and

Pinterest. These were only used in developing this technique, and not used in our evaluation

of this technique to ensure we were not simply memorizing the pattern of a few apps

146

example.com/daily_content.json
examplecdn.com/images/121.jpg

examplecdn.com/images/122.jpg

examplecdn.com/images/123.jpg

URLs

Content

Step 1: Identify static
urls

Step 2: Identify
dynamic URLS +
origins, generalize

Step 3:
analyze

parameters

Rules for
Prefetching

{images:[
{tag:”121”, …
{tag:”122”, ...
{tag:”123”, …

 …
], ...

Figure 8.5: Overview of how URLs are predicted based on past URL patterns.

8.4.2 Predicting URLs

To predict URLs, our prediction engine takes in complete traces of network requests,

including both the URLs and the content of the requests. We generate the traces by loading

the app and manually interacting with it - scrolling all the way to the bottom of the page,

then clicking on a few items if relevant and scrolling to the bottom of those. We generated

several different such traces.

To create a model for predicting URLs, we go through the trace and attempt to deter-

mine where each URL came from. For each URL in the trace, we go through the following

steps:

1. Analyze the URL in order to identify the common and unique portions of the URL.

2. Locate the unique portions of the URL in the past trace.

3. Create a representation of that URL portion’s location.

147

Trace:
example.com/photoalbum.json
example.com/photos/photo1.jpg
example.com/photos/photo2.jpg
example.com/photos/photo3.jpg
…
example.com/photoalbum.json
example.com/photos/photo3.jpg
example.com/photos/photo4.jpg
example.com/photos/photo5.jpg
...
example.com/photoalbum.json

Photoalbum.json:
{“album”:”abcde”,
“Photos”: [

{“file”:”photo1.jpg”,
“title”:”Cat”},
{“file”:”photo2.jpg”,
“title”:”Dog”},
{“file”:”photo3.jpg”,
“title”:”Bird”},

]}

example.com

photoalbum.json

photos

photo1.jpg

photo2.jpg

photo3.jpg

photo4.jpg

photo5.jpg

example.com

photoalbum.json

photos

*.jpg

B

C

A1

Photoalbum.json “Photos” “file” example.com/photos/______
- 6 entries
- No subtree

Dynamic rules:

example.com/photoalbum.json
- 3 entries

Static rules:

D

A2

Static URL detected

Origin in JSON file

detected

Convert to
Trie

Convert to prefetch
templateFind origin of URL

patterns

Figure 8.6: Steps to generate a prefetching template.

4. If not found, consider a candidate for being a static URL (a URL which is always

fetched), if the URL continues to appear in later traces.

We summarize the steps to generate our prefetching templates in Figure 8.6. We start

with a set of traces of network requests (A1) and the contents of the HTML, JSON and

XML files in the trace (A2). We next look for URLs in the past, but when we look

for those URLs, it is often not the precise URL which is in the trace. For instance,

if the URL is http://example.com/photos/photo1.jpg, and another URL is

148

http://example.com/photos/photo2.jpg, then the JSON file specifying the

first URL might specify photo1.jpg. To facilitate this search, we create a trie of all

URLs, segmenting them by the portion between the slashes, in order to determine what

part of the URL is unique to that URL and what is shared with others (B). The intuition is

that the unique portions have to come from somewhere, but the common portions may be

hard-coded in the app.

We search backwards in time for the URL, or the unique segment of the URL (C). We

support JSON, XML, HTML and some other combinations such as a JSON file containing

XML as one of the fields. When we search for the origin of the URL, the complete URL

takes precedence over the URL’s unique segment: we look for the longest match. We also

allow for the portion of the URL in the file we are searching for being a larger match of

the URL than the substring we identified, e.g. photos/photo1.jpg. We also allow

the embedded URL to contain parameters, even though we normally treat parameters sep-

arately, since this is usually not the case. In practice, some engineering details such as a

variety of methods of normalizing the content of the network responses that we parse are

needed.

Once we’ve located the origin of our URL, we then create a representation of where

the URL is located and how one would go about fetching similar URLs in the future (D).

We call these representations templates. We create a tree of the tags to follow or the lists to

expand in the JSON, XML, or HTML file to find the URL. Associated with the leaf node,

we keep track of the suffix and prefix of the URL fragment we find there (as relevant). We

keep track of how many items we find that match each leaf node.

It is possible that the files which we parse to find URLs lead to loading additional

content which can also be parsed to find more URLs to prefetch. Thus, our tree of content

to prefetch can have within it additional nested trees to prefetch.

If we don’t locate our URL in a file somewhere, we keep track of that URL. If we find

identical URLs in three different traces taken at different times, which were not predictable,

149

{userid:”12345”
…}

Config.json

Parameter categorizer

example.com/main?
userid=12345&
loc=42.8,-83.74&
time=1470447628&
device=Android&
item_clicked=2

History

Detect GPS
coordinates near
device

Detect standard
timestamp formats

Detect values that
are constant or
near-constant
across requests

Detect integers in
a limited range
(across requests)

Figure 8.7: Common types of parameters in URLs and how to predict them.

we add them to our list of static URLs to prefetch. In §8.5.3, we show why we picked three

as the cutoff.

There are many special cases which we have to deal with, particularly when extracting

URLs from the originating files. However, we don’t want it to be necessary to manually

adapt the code to each individual app we process. Particularly when evaluating apps, we

want to evaluate apps with no additional manual effort needed. Thus, we developed our

tool to, as accurately as possible, be able to predict content for 6 apps, and then tested on

a separate set of apps, without adapting to use those apps specifically, to evaluate how well

we can predict URLs with no app-specific training.

8.4.3 Predicting parameters

As mentioned above, we keep track of parameter state globally, as opposed to on a

per-URL basis, and don’t assume that parameters originate from URLs embedded in JSON

or other files. In many cases, parameters represent some global state of the app or device

(such as a username, location or preference). We show an example of some of the types of

parameters we might see in Figure 8.7.

We associate each parameter with a parameter key, which is the set of all other parame-

ters in that URL. In doing so, we assume that parameters have the same meaning across the

application when they are grouped together. For instance, we assume that if you have

150

the URLs http://www.example.com/images/photo1.jpg?id=123&loc=

AnnArbor, http://www.example.com/friends?id=123&loc=Ypsilanti

and http://www.example.com/homepage?id=123&phone=Android that the

“id” and “loc” parameters refer to the same type of thing in the first URL, but that the “id”

parameter might mean something different in the third. This is based on the observation

that parameters like “id” may have different meanings in different contexts: future work

could explore these assumptions in more depth.

We look for 8 different types of parameters: Unix timestamps; human-readable times-

tamps in several standard formats; latitudes and/or longitudes; parameters with constant

values; parameters which can take on one of three or fewer values; parameters which take

on a small range of integers; parameters which come from prior web content, similar to our

URL analysis; and other parameters, which we can’t currently predict.

With UNIX timestamps and other timestamp formats, it’s a matter of looking for strings

with particular formats and identifying irrelevant, static characters. For these, we can sub-

stitute in the current time in the same format. Likewise, latitudes and longitudes can easily

be identified if the current device latitude and longitude is known.

Identifying static values is also a very powerful approach. Usernames, unique IDs, the

device type, the user’s city, and other such information would be hard to analyze, under-

stand and predict. However, all we need to know is that these URLs change rarely or never

for a particular user. Then, it is simply a matter of collecting that information from a few

early requests, and then substituting it in as needed. We assume that mispredictions are ac-

ceptable, and so if we see fewer than three unique values for a given parameter, we simply

try prefetching for all three (as we show in §8.6, though, it may not be so straightforward.)

We set a limit of the number of permutations, however, as we found one case where we

would have had to prefetch thousands of URLs.

Another common case is one where the parameter is different depending on what item

in a list is clicked, and thus the parameter’s value varies among a small list of integers. In

151

these cases, we also prefetch all possibilities, if there aren’t too many of them.

Finally, some parameters do come from prior web content. If possible, we try and track

the parameters in a different way. To find where they may come from in web content, we

use a similar method for finding the location of those parameters’ values. We then use our

new template to extract the complete set of objects with a similar position in the originating

file where we found the parameter. If the set of objects we found is very similar to the set

of values we saw for the parameter (Jaccard similarity of 0.95 or more — a lower threshold

lead to many false positives), then we have found the source of those parameters. Because

these parameters are often very short, we need this extra layer of verification to make sure

we’ve actually found the parameters we’re looking for.

We only prefetch if the number of different permutations of parameters is less than 100.

8.4.4 Using The Prefetching Engine

The URL extracting templates, as well as the parameter templates, are placed into a data

structure which stores instructions on how to generate URLs and their parameters. This

data structure can then predict URLs based on prior network traffic. When a URL passes

through the proxy, it is checked to see if it contains content needed to make prefetching

decisions. The first such type of URLs are static URLs, but when these URLs are parsed to

determine what to prefetch, these prefetched URLs may in turn lead to further content to

prefetch after parsing them. These nested parsing decisions are indicated at the leaf node

of the parsing tree.

At the same time, this data structure gathers information needed to maintain the state of

URL parameters. Thus, when prefetch decisions are made, the URL is populated with the

appropriate parameters and their values. In addition, we keep track of a list of every URL

that gets prefetched.

We use a very simple statistical model for determining what to prefetch: if we have

seen content a few times in the past, we prefetch it in the future. We explore the parameter

152

of how often we should have seen content in the future in §8.5.3

Our analysis in this section is trace-based. As we show in the next section, there are

currently some fundamental obstacles to a real-world implementation, but we can at least

analyze the accuracy of the prediction aspects. For this analysis, we simulate at each point

in time receiving a URL, parsing it as appropriate, and determining what we would want

to prefetch, including the parameters we would append to the URL. Then, in the future,

when we fetch a URL, we first check if we correctly predicted the URL, as well as its

parameters. We allow the timestamp to have changed, and the location to have drifted

slightly as well. We simulate different levels of server delay between when we receive and

parse an object and when we can assume we’ve prefetched the data by. We assume a 100

ms server processing delay to analyze content and prefetch objects. In practice, this may

not be fast enough.

8.5 Evaluation of URL prediction

We chose 29 popular apps, selecting apps from a variety of categories in the app store,

as well as the most popular apps overall. We chose apps that had a network component and

that were not games, but aside that attempted to choose a variety of apps representative of

popular apps generally. However, when evaluating the results, it is important to consider

that apps expected not to work are specifically excluded.

We generated network traces by manually loading the page, refreshing it, scrolling

down, and clicking on a few items. We generated at least 5 traces per app, each with as

similar a set of user actions as possible. We expect there to be some natural variations

between when items load, but we are not predicting user actions in this case. Determining

how to predict traffic given a variety of user actions remains an open problem to address

in the future, and would likely require a full user study to predict and characterize user

browsing behavior and its implication for predicting network traffic.

We only prefetch one level of nested prefetch content at a time: even if an item we

153

 0

 20

 40

 60

 80

 100

 120

 140

lin
e

w
e
b
to

o
n

p
b
s

k
id

s

n
o
a
a

a
o
l

n
e
w

s
m

a
s
te

r

b
ib

le
g
o
o
g
le

m
u
s
ic

a
m

a
z
o
n

tr
ip

a
d
v
is

o
r

w
a
lm

a
rt

ih
e
a
rt

ra
d
io

fo
x

n
e
w

s

in
d
e
e
d

a
ir
b
n
b

re
d
d
it

y
e
lp

if
u
n
n
y

c
h
e
c
k
o
u
t5

1
u
n
iv

is
io

n
z
e
d
g
e

re
ta

ilm
e
n
o
t

y
a
h
o
o

z
ill

o
w

w
a
tc

h
e
s
p
n

a
c
c
u
w

e
a
th

e
r

le
tg

o
in

s
ta

g
ra

m
o
ff
e
ru

p
w

is
h

prefetched, static
prefetched, dynamic

Param missed
Url missed

Figure 8.8: Distribution of successfully prefetched objects by application.

prefetch in turn contains content to be prefetched, we don’t prefetch that second level of

content until there is a hit in the prefetch cache. As we show, this keeps the false positive

rate, and thus the number of items downloaded, under control.

8.5.1 Results of trace-based prefetching simulation

We show the number of objects we successfully prefetch in Figure 8.8, and the amount

of data we successfully prefetch in Figure 8.9. Note that these values only include data

that is prefetched that was later used; in the next section we discuss unnecessary down-

loads. We sorted the pages by the amount successfully prefetched, in those figures and we

divide the content successfully prefetched into static content and dynamic content. Note

that more prefetched objects are static, but a larger amount of prefetched data is dynamic:

dynamic content often consists of images that change from day to day, while static content

is more likely to be JSON or other text-based files. We also divide the content we did

not successfully prefetch into content we missed because we didn’t predict the URL, and

154

 0

 20

 40

 60

 80

 100

 120

 140

re
d
d
it

p
b
s

k
id

s

a
ir
b
n
b

n
e
w

s
m

a
s
te

r

c
h
e
c
k
o
u
t5

1
a
o
l

ih
e
a
rt

ra
d
io

a
m

a
z
o
n

b
ib

le
n
o
a
a

tr
ip

a
d
v
is

o
r

lin
e

w
e
b
to

o
n

fo
x

n
e
w

s

z
ill

o
w

w
a
lm

a
rt

y
e
lp

g
o
o
g
le

m
u
s
ic

in
d
e
e
d

u
n
iv

is
io

n
a
c
c
u
w

e
a
th

e
r

z
e
d
g
e

le
tg

o
if
u
n
n
y

y
a
h
o
o

w
a
tc

h
e
s
p
n

o
ff
e
ru

p
in

s
ta

g
ra

m
re

ta
ilm

e
n
o
t

w
is

h

prefetched, static
prefetched, dynamic

Param missed
Url missed

Figure 8.9: Distribution of the amount of data successfully prefetched by application.

content where we predicted the URL but not the parameter. The latter category is not all

that large: pages with complicated, hard-to-predict parameters may be more likely to have

complicated, hard-to-predict URLs.

8.5.2 Wasted downloads

One problem is the amount of downloaded content wasted due to excessive prefetching.

In order to examine this, we keep track of all the URLs we predict and count how many

never were used. Our evaluation of wasted downloads in the trace-based analysis is thus the

number of unnecessarily downloaded objects, and not the amount of data. On the one hand,

we may be downloading many large objects; on the other hand we may be just making a

lot of rejected requests which return small error messages.

The results of examining the number of objects downloaded unnecessarily are shown

in Figure 8.10. We show the total number of objects, as well as the objects where the

parameters were mis-predicted, the number of static URLs that were fetched unnecessarily,

155

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

F
ra

c
ti
o
n
 o

f
a
p
p
s

False posititives as a fraction of total requests

due to URL templates
due to static URLs

due to params
Total

Figure 8.10: False positive rates of prefetching content, without immediately following
nested links.

and the number of URLs fetched unnecessarily due to the URL templates generating unused

URLs. First, the overhead of this prefetching is substantial. The median overhead is a little

under 2x, and in the worst case can be as high as almost 17x. This motivates the use of

cloudlets, as they would be able to tolerate this overhead.

It is also apparent that mispredicting static URLs does not contribute substantially to

the overhead. Somewhat more surprisingly, mispredicted parameters are only responsible

for about half the remaining excessive downloads, although in the worst case they can add

substantially more overhead. This overhead would likely also depend on user behavior.

For instance, for a news app, the user in the trace would view only one or two items.

However, the prefetching template will prefetch all the articles. Thus, for someone who

systematically goes through and reads each news article, the overhead of wasted downloads

would be lower. We don’t make this assumption, though, to avoid understating the overhead

of prefetching.

In Figure 8.11, we examine the possibility of prefetching two levels of content —

156

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

F
ra

c
ti
o
n
 o

f
a
p
p
s

False posititives as a fraction of total requests

Figure 8.11: False positive rates of prefetching one additional layer of nested content.

after downloading an item, parsing it, and prefetching content accordingly, parsing the

prefetched content to find more items to prefetch. Unfortunately, this approach for some

apps can lead to unreasonable overheads, over 40x in one case. Fetching the 10 items linked

to on a page might make sense, but fetching another 10 items for each of those would be

excessive. Thus, for the analysis above, we only prefetch one layer of content.

8.5.3 Tradeoff between accuracy and excessive downloads

The accuracy and false positive rates shown depend on several parameters: the more

certain we have to be before prefetching content, the less we will prefetch, but the less we

will download unnecessarily. There are two main parameters we consider that determine

our accuracy: how often we must have seen a static object before prefetching it, and how

much we must have seen a set of dynamic objects corresponding to a template entry before

seeing the object in the set.

The static case is straightforward. If we see an object more than N times, we download

157

it. We had this set to 2 in the tests above, i.e. if we see two identical requests we would

prefetch: this was a fairly aggressive approach, which we believe can be justified based

on our cloudlet design. In Figure 8.12, we show that it’s necessary to filter so that only

requests that are seen several times are made. If we prefetch everything we’ve seen before,

the false positive rate is very high, as we would expect.

In the dynamic case (Figure 8.13, we look at how many template matches we hit for a

given template. For instance, if we found that for a configuration file, matching “reviews”

→ “userdata”→ “images” matches 5 different files which we wound up downloading later,

and we have a cutoff of 5 or more, then we will prefetch objects that match that template

in the future. As such, the number of matches that we can consider before prefetching is

higher.

In order to prefetch, the number of copies must be greater than the number indicated as

the cutoff threshold, so for a cutoff of zero, every template would be used if it could have

been used to predict at least one URL in the test set. For small numbers (less than about 20),

the false positive rate is significantly higher than the amount of data or number of objects

prefetched. For a cutoff larger than 50, there are relatively few false positives, but also

less is prefetched from the templates. Also, note how the amount of data prefetched falls

faster than the number of objects: we’re losing the ability to prefetch larger objects first.

However, when false positives are a concern, setting the cutoff even at 6 seems reasonable.

8.6 Cloudlet Feasibility Analysis

Having examined our prediction system using trace-based analysis, we then examine

the feasiblity and challenges of using it in the real world. We use cloudlets as our main

motivating system, and start by considering what sort of overheads would be of concern for

these systems. We examine how the total data downloaded can impact the storage required

and the time to migrate data between cloudlets. We then build a simple prefetching proxy

and find that there are challenges with being able to download prefetched content in time

158

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10

Parameter used in analysis

P
e
rc

e
n
t
o
f
d
a
ta

 d
o
w

n
lo

a
d
e
d

Number of template matches needed to download object

false positives (objects)
by size

by object

Figure 8.12: Impact of varying the parameter for how many times we need to have seen a
static URL to prefetch it late.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100

Parameter used in analysis

P
e
rc

e
n
t
o
f
d
a
ta

 d
o
w

n
lo

a
d
e
d

Number of template matches needed to download object

false positives (objects)
by size

by object

Figure 8.13: Impact of varying the parameter for how many times we need to have seen a
match for this URL pattern when training in order to prefetch it later.

159

before it is needed.

First, we estimate the impact of the volume of downloaded content on a cloudlet. We

use an approach similar to our analysis in the last section, only now we guess what the

size of the content would be. We assume that for the objects we mispredict, their sizes

are on average similar to the average size of the content we did download. For calculating

false positives due to prefetching the right URL with the wrong parameters, we take as

the object’s size the size of the URL with the correct parameters. We expect this is a

conservative estimate, as in many cases a smaller error message would be returned instead

of real content.

We assume each app and each user has independent data stores and that we thus aren’t

optimizing by having only one copy of each object globally. This sort of optimization could

potentially introduce privacy issues. We calculate the amount of data needed across each

of the sessions we recorded, which are several minutes long each.

For our sessions, we average about 41 MB, including both static and dynamic content,

but the median was 5 MB. As shown in Figure 8.15, the mean is distorted by a small number

of apps (Instagram and PBS Kids in particular) which use over a hundred megabytes, due

to their heavy use of high-resolution images and video, respectively. Overall, storage is not

a problem. A 500 GB hard disk costs about thirty dollars when bought individually1. It

is thus reasonable to support about 100,000 app instances for individual users on a single

cloudlet, or 12,500 if we take the average instead of the median. Even with a disk of a few

gigabytes only, a significant number of apps could be supported.

A bigger problem is bandwidth. It appears that the average bandwidth in the US is

around 18 Mbps2. Assuming we can saturate the bandwidth, or most apps, several could

be forwarded to the next cloudlet each second, but for something like Instagram, it could

take 15 seconds or so to transfer all the data. If the user has several such apps, it could take

1https://www.amazon.com/Seagate-Pipeline-3-5-Inch-Internal-
ST3500312CS/dp/B002CMOH26/

2http://gizmodo.com/americas-internet-inequality-a-map-of-whos-got-
the-b-1057686215

160

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

F
ra

c
ti
o
n
 o

f
a
p
p
s

Data required in a session (MB)

Figure 8.14: Amount of data, total, downloaded for a short session of using an app.

minutes. Given the low cost of storage, one solution could be to store data in advance on

cloudlets the user is likely to visit next. Another solution would be to only focus on apps

with lower sizes. We could also focus on the cases where the user is stationary for a period

of time and not guarantee that Server Push will work for the first few minutes after moving

elsewhere.

In the case of WiFi, cloudlets could be associated with a building rather than a specific

AP, limiting the amount of data that needs to be moved around the building. An exam-

ination of traceroute results from WiFi in this building shows that the first hop after the

wireless access point in the BBB (which, in fact, is in the School of Information building

and not the BBB) is less than 2 milliseconds away, whereas a server on the other side of

the continent https://berkeley.edu) is about 77 milliseconds away. This suggests

for something like a university campus, only a few cloudlet sites may be needed, since in

many cases the last hop adds only a small fraction of the latency, which would limit how

often data would need to be migrated.

161

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

F
ra

c
ti
o
n
 o

f
a
p
p
s

Time to load first batch of prefetch content, seconds

Figure 8.15: Time to download and process the content to be loaded on initial batch load.

We created a simple prototype to examine some of the challenges of applying prefetch-

ing to real devices. We were not able to get prefetching to work effectively in practice,

primarily because content wasn’t loaded fast enough. As we show in Figure 8.15, the

time to download and parse the content could be quite substantial, and the apps with short

download times often did not have much content that could be prefetched. This is an initial

prototype, and not heavily optimized, but aggressively fetching a large amount of content

can be slow, and we need to get the download and processing time down to about the time

to download a single object to see benefits. A method of identifying or prioritizing the

content to prefetch is could alleviate this problem. We also ran into some other engineering

problems, such as the account apparently becoming logged out due to the requests made,

which prevented prefetching from working effectively.

162

8.7 Conclusion and future work

This chapter is a first look at the problem of building a prefetch system which can auto-

matically determine what to prefetch. I have focused on the problem of predicting content

to fetch. As with other work in this dissertation, this involves observing and measuring

characteristics of network traffic and making intelligent decisions based on the data col-

lected. While it is not possible to determine what traffic an app will send in every case, a

substantial amount of traffic can be predicted by leveraging the well-structured traffic pat-

terns that many apps have. We also investigated other ways of predicting app behavior, in

particular predicting activity transitions.

We have also discussed the challenges in building a full, practical prefetching system.

The main problem is that the overhead, in terms of time to download data as well as to

move that data around, remains excessive, and the data cost can be substantial as well. To

be truly practical, only a few objects should be prefetched, and thus future work should

examine what to prioritize. Work such as Wprof [126] has looked at dependencies and

work building on that may be able to identify what content is on the critical path for gen-

erating the Activity (although the approach would need to be modified to track rendering

dependencies in Activities rather than pages). Then, approaches to predict what content is

on the critical path would be needed. Perhaps in many places the same items in the prefetch

template are on the critical path, or perhaps some sort of machine learning technique could

predict the key URLs.

Once these obstacles are overcome, a realistic evaluation on a real deployment would be

possible. A user study would be a good method to make sure that the prefetch predictions

are truly representative. Overall, this project has opened the door to promising new research

directions that could lead to a practical, automated prefetching system.

163

CHAPTER IX

Conclusion

I have discussed five major projects in this thesis. Three focus on better understanding

network performance and power consumption on mobile devices in order to understand

how to build better mobile systems. Each of these suggests that app developers, network

operators, and web page developers should make decisions based on comprehensive, on-

going measurements. The other two show how measurements could be used to support

prefetching systems that improve user performance.

First, Discovering Fine-grained RRC State Dynamics and Performance Impacts in Cel-

lular Networks examine how RRC states impact user-perceived performance in the wild,

in particular state demotions. It introduces a technique for collecting an ongoing picture of

RRC states and their performance impact globally. This is something which app develop-

ers could make use of when determining the power and performance tradeoffs they make

when scheduling their newtwork traffic. It also uncovers a previously unknown perfor-

mance problem, which affects only certain carriers, which apps should avoid. We suggest

that carriers use ongoing measurements of RRC state performance to detect and address

similar problems that crop up as cellular networks evolve.

We then examine the network power consumption of real apps through an ongoing

user study in Revisiting Network Energy Efficiency of Mobile Apps: Performance in the

Wild. Here, we uncover a number of performance problems, both unknown problems and

164

problems which persist despite being well-known. We propose, based on these findings,

that it is necessary for a service within Android to monitor application behavior and block

network traffic that is likely unneeded but that nevertheless drains the user battery.

Next, we examine HTTP/2’s Server Push, with an emphasis on whether it would be

successful in improving networking performance on mobile devices, in Push or Request:

An Investigation of HTTP/2 Server Push for Improving Mobile Performance. We determine

that Server Push would be more effective at improving performance for cellular and WiFi

networks than Ethernet networks, but that the performance benefits are mixed, depending

heavily both on the web page and on the network conditions. Furthermore, at this point,

due to how web pages are structured, a proxy would likely be needed to support Server

Push since content is split over too many servers to work well with Server Push. This

proxy could selectively push content based on factors such as observed network conditions

and the performance of particular web pages.

All of these measurement studies suggest that there is a place for systems to intelligently

leverage this measurement data in order to ensure improved performance. The final two

projects focus on building systems that leverage measurements more directly.

For CellShift: A System to Efficiently Time-shift Data on the Cellular Network, we simu-

late a system that time-shifts network requests on the order of hours, by leveraging network

load measurements at each eNodeB. This simulation uses real network performance data

across a city. We find that we can predict an eNodeB’s future load highly accurately, and

predict the load a user will experience in a location-agnostic manner.

For Predicting App Network Traffic to Facilitate Prefetching, we examine how we can

enable prefetching to cloudlets by predicting network traffic in advance. By observing prior

network traffic, we are able to make intelligent decisions on what to fetch. While we only

address the problem of predicting app behavior, and many open problems remain in the

construction of a practical prefetching system, this system represents a promising first step

in the direction of automated prefetching.

165

9.1 Discussion and Future work

Next, I examine several ways that future research could build on this thesis.

Enhancing the current analysis performed: For each project, there are a number of

ways in which the analysis can be expanded upon. For the RRC State Inference project, a

larger dataset could detect differences between device types or regions, and a more longi-

tudinal one could determine if any changes have occurred over time. While we have not

detected any signs of dynamic approaches to setting RRC state timers, as RRC state man-

agement continues to evolve, adapting our inference method to detect those cases would be

useful.

The Network Energy Efficiency project could be improved by analyzing what content

is actually viewed by the user or otherwise necessary, perhaps through Taintdroid [31] or

another such system, to see how much background traffic could actually be eliminated. We

also focus on background traffic, that being a likely source of more unnecessary traffic, but

there could be inefficiencies in foreground traffic as well.

For the Server Push study, we do not examine stream prioritization. Instead, we use the

default prioritization scheme, but exploring the tradeoffs of scheduling traffic in different

orders would be potentially an interesting research direction. Similarly, we don’t examine

using existing systems to determine what content is on the critical path. In fact, examining

how to use a system like WProf to handle stream prioritization would be an interesting

research project in and of itself. Looking at how Server Push might be used for apps would

also be an interesting direction for future work.

For Cellshift, while we have ample access to global load data, the content we time-shift

is somewhat artificial, since we don’t have details of the actual content sent. While it may

not be possible to actually gain access to this data for privacy or legal reasons, detailed per-

user network traces could be used in conjunction with the load and location data to more

accurately simulate prefetching.

Building real-world systems: The three measurement studies each suggest a system

166

to dynamically leverage their measurements would be valuable. For the Network Energy

Efficiency project, we propose that an Android system module should monitor application

behavior, detect energy bugs, and fix them, such as by suppressing background traffic. Sim-

ilar solutions to the ones proposed in our paper were implemented by Google (concurrent

to our work), but a comprehensive evaluation of a variety of actual implementations could

be informative. For the RRC project, having a system library that assists apps in schedul-

ing traffic with the right power and performance tradeoffs, based on per-carrier RRC state

performance characteristics loaded from a central database, would allow energy and per-

formance problems to be evaded. How exactly to best make these tradeoffs in an automated

way could also be explored.

For the Server Push study, a real-world proxy deployment based on our findings would

allow Server Push to be much more effectively used. Even better, a system that adapts based

on the network type — or even on current network conditions — and perhaps only starts

pushing later in a user session, would allow Server Push to be used much more effectively.

Our findings suggest that for Server Push to be used effectively, an intelligent approach that

leverages measurements and observations of the client would be needed.

The Cellshift study was done essentially in simulation. For that project, a city-scale

evaluation wouldn’t be possible, but a user study of a sample of users in a town with a

limited number of access points to monitor might be possible. It wouldn’t be possible in

that case to measure how network load can be reduced, as we couldn’t recruit the thousands

of users that would be needed to make a difference, but it might be possible to improve

network performance for a few users by avoiding congested times.

Building a complete automated prefetching system: Finally, for the App Traffic Pre-

diction project, a major problem is the high false positive rate. Reducing these false posi-

tives by determining what content actually impacts the UI, perhaps building on the work we

did in QoE Doctor [20], would likely allow the network load due to unnecessary fetches

to be reduced, since the number of target URL types to prefetch would be smaller. An-

167

Cloudlet
prefetching

Measurement
App:
● RRC
● App

behavior
● Network

quality

Manage
cellshift

Manage
cloudlets

Server
push
proxies

RRC
database

Network load
and user
location
monitoring

Figure 9.1: Overview of potential comprehensive measurement-oriented app and traffic
management

other possibility might be to apply some sort of machine learning technique to filter out

URLs unlikely to benefit from prefetching. Hopefully, this would reduce the overhead of

prefetching content enough that our prediction framework would be useful. Overall, this

seems like a potentially fruitful avenue for future research. Finally, a real-world system

could be set up in a university building, with a number of cloudlets attached to WiFi access

points. In addition to allowing the performance benefits of Server Push to be tested, the

impact of migrating between access points could also be tested.

A network-wide system of comprehensive, intelligent traffic scheduling: Once it

has been shown that building these systems is possible, and that they provide effective

solutions to each of the problems they deal with, one can envision a network which trans-

parently makes traffic scheduling decisions throughout the network to ensure good perfor-

mance on mobile devices, summarized in Figure 9.1. In the middle is a powerful proxy,

which selectively enables Server Push, monitors and predicts network conditions to sched-

ule traffic over long time periods, orchestrates the cloudlets, and provides general RRC

168

state information to devices. Data would be prefetched to cloudlets based on a compre-

hensive network traffic prediction engine, and data would be loaded into trusted per-user

VMs on each cloudlet. Devices would be adapted to use information collected from the

network, including network performance trends and RRC performance, to better schedule

network transitions, both on scales of hours and scales of seconds. These devices could

also send back measurements to the central server about network conditions observed by

the client, as well as expected network demands and user mobility. This system would

be especially suitable for cellular networks, where central control of the network already

exists, but a form of it might exist on university campuses or on particularly large corpo-

rate networks. Overall, through network measurements, a more intelligent, responsive and

better performing network is possible.

169

BIBLIOGRAPHY

170

BIBLIOGRAPHY

[1] Android Activity Testing. http://developer.android.com/tools/
testing/activity_testing.html.

[2] Android DDMS. http://developer.android.com/tools/
debugging/ddms.html.

[3] 3GPP. 3GPP TS 36.211 Physical Layer Measurements.

[4] 3GPP TS 35.331: Radio Resource Control (RRC) - UMTS, 2013.

[5] 3GPP TS 36.331: Radio Resource Control (RRC) - LTE, 2013.

[6] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein, S. McDaniel,
M. Piatek, C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s data compression
proxy for the mobile web. In Proc. NSDI, 2015.

[7] ActivityManager.RunningAppProcessInfo documentation. https:
//developer.android.com/reference/android/app/
ActivityManager.RunningAppProcessInfo.html.

[8] Android Developers. Activity. https://developer.android.com/
reference/android/app/Activity.html.

[9] Apache Module mod http2. https://httpd.apache.org/docs/2.4/
mod/mod_http2.html.

[10] G. Association. Fast dormancy best practices v1.0, 2011.

[11] A. Aucinas, N. Vallina-Rodriguez, Y. Grunenberger, V. Erramilli, K. Papagiannaki,
J. Crowcroft, and D. Wetherall. Staying Online while Mobile: The Hidden Costs. In
Proc. ACM CoNEXT, 2013.

[12] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang. The case
for cyber foraging. In Proceedings of the 10th Workshop on ACM SIGOPS European
Workshop.

[13] A. Balasubramanian, R. Mahajan, and A. Venkataramani. Augmenting Mobile 3G
Using WiFi: Measurement, Design, and Implementation. In Proc. ACM MobiSys,
2010.

171

[14] M. Belshe, R. Peon, and M. Thomson. Hypertext transfer protocol version 2 (http/2).
RFC 7540.

[15] M. Butkiewicz, H. V. Madhyastha, and V. Sekar. Understanding website complexity:
Measurements, metrics, and implications. In Proc. ACM IMC, 2011.

[16] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar. Klotski: Reprior-
itizing web content to improve user experience on mobile devices. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), 2015.

[17] C. C. Tossell, P. Kortum, A. Rahmati, C. Shepard, and L. Zhong. Characterizing
web use on smartphones. 2012.

[18] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum. LiveLab: Measuring
Wireless Networks and Smartphone Users in the Field. 2010.

[19] G. Carlucci, L. De Cicco, and S. Mascolo. Http over udp: An experimental investi-
gation of quic. In Proc. ACM SAC, 2015.

[20] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni, and K. Lau.
Qoe doctor: Diagnosing mobile app qoe with automated ui control and cross-layer
analysis. In Proc. ACM IMC, 2014.

[21] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby. Smartphone
energy drain in the wild: Analysis and implications. In Proc. Sigmetrics, 2015.

[22] X. Chen, J. Erman, S. Lee, and J. Van der Merwe. Mercado: Using Market Principles
to Drive Alternative Network Service Abstractions. 2012.

[23] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2014-2019. Technical report, Cisco, February 2015.

[24] C. Cox. An Introductio to LTE. John Wiley & Sons Ltd, 2012.

[25] K. Crawford. Battery life: How does the android battery tool work, and why
should developers care? https://www.apteligent.com/developer-
resources/battery-life-how-does-the-android-battery-
tool-work-and-why-should-developers-care/.

[26] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl. MAUI: Making Smartphones Last Longer with Code Offload. In Proc.
ACM MobiSys, 2010.

[27] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly avail-
able key-value store. 2007.

[28] Developer preview - power-saving optimizations. https://developer.
android.com/preview/features/power-mgmt.html.

172

[29] E. Halepovic, J. Pang, and O. Spatscheck. Can you GET Me Now? Estimating the
Time-to-First-Byte of HTTP Transactions with Passive Measurements. 2012.

[30] Y. Elkhatib, G. Tyson, and M. Welzl. Can spdy really make the web faster? In IFIP
Networking, 2014.

[31] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In Proc. Operating Systems Design and Implementation, 2010.

[32] J. Erman, A. Gerber, K. K. Ramadrishnan, S. Sen, and O. Spatscheck. Over the Top
Video: The Gorilla in Cellular Networks. In Proc. ACM IMC, 2011.

[33] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan. Towards a spdy’ier
mobile web? In Proc. ACM CoNEXT, 2013.

[34] K. R. Evensen, D. Baltrünas, S. Ferlin-Oliveira, and A. Kvalbein. Preempting State
Promotions to Improve Application Performance in Mobile broadband Networks. In
Proc. ACM MobiArch, 2013.

[35] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. Characterizing
Radio Resource Allocation for 3G Networks. In Proc. ACM IMC, 2010.

[36] F. Qian, Z. Wang, A. Gerber,Z. M. Mao, S. Sen, and O. Spatscheck. Profiling Re-
source Usage for Mobile Applications: A Cross-layer Approach. In Proc. ACM
MobiSys, 2011.

[37] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin.
Diversity in Smartphone Usage. In Proc. ACM MobiSys, 2010.

[38] J. Flinn. Cyber Foraging: Bridging Mobile and Cloud Computing. Morgan & Clay-
pool Publishers, 2012.

[39] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanaryanan. Data staging on un-
trusted surrogates. In Proc. USENIX FAST, 2003.

[40] Flipboard. Good news for commuters: Mobile data options. http:
//inside.flipboard.com/2013/03/22/good-news-for-
commuters-mobile-data-options/, 2013.

[41] Y. Gao, W. Hu, K. Ha, B. Amos, P. Pillai, and M. Satyanarayanan. Are cloudlets nec-
essary? Technical Report CMU-CS-15-139, School of Computer Science, Carnegie
Mellon University.

[42] A. Gember, A. Akella, J. Pang, A. Varshavsky, and R. Caceres. Obtaining In-Context
Measurements of Cellular Network Performance. In Proc. ACM IMC, 2012.

[43] U. Goel, M. Steiner, W. Na, M. P. Wittie, M. Flack, and S. Ludin. Are 3rd parties
slowing down the mobile web? In Proc. S3 Workshop, 2016.

173

[44] E. Griffin. Fast dormancy - save your battery from 3g drainage. https://www.
youtube.com/watch?v=O8L50sCY7CI, 2012.

[45] GSMA. Fast dormancy best practices. http://www.gsma.com/newsroom/
wp-content/uploads/2013/08/TS18v1-0.pdf, 2011.

[46] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan. Just-in-time provision-
ing for cyber foraging. In Proc. ACM MobiSys, 2013.

[47] S. Ha, S. Sen, C. Joe-Wong, Y. Im, and M. Chiang. Tube: Time-dependent pricing
for mobile data. In Proc. ACM SIGCOMM, 2012.

[48] B. Han, S. Hao, and F. Qian. Metapush: Cellular-friendly server push for http/2. In
AllThingsCellular, 2015.

[49] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and A. Srinivasan. Cellular
Traffic Offloading Through Opportunistic Communications: A Case Study. In ACM
CHANTS, 2010.

[50] Y. Z. Hao Liu, Yaoxue Zhang. TailTheft: leveraging the wasted time for saving
energy in cellular communications. 2011.

[51] B. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson. Informed
mobile prefetching. In Proc. ACM MobiSys, 2012.

[52] Latency is everywhere and it costs you sales - how to crush it. http:
//highscalability.com/latency-everywhere-and-it-costs-
you-sales-how-crush-it.

[53] R. Holly. Checking out Doze and App standby on the Android M Developer
Preview. http://www.androidcentral.com/checking-out-doze-
android-m-developer-preview.

[54] Http/2. https://http2.github.io/.

[55] Http/2 faq. https://http2.github.io/faq.

[56] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A Close
Examination of Performance and Power Characteristics of 4G LTE Networks. In
Proc. ACM MobiSys, 2012.

[57] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and O. Spatscheck.
An In-Depth Study of LTE: Effect of Network Protocol and Application Behavior
on Performance. In ACM SIGCOMM Computer Communication Review, 2013.

[58] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing Ap-
plication Performance Differences on Smartphones. In Proc. ACM MobiSys, 2010.

[59] A. L. Iacono and C. Rose. Infostations: New perspectives on wireless data networks.
In Next Generation Wireless Networks. 2002.

174

[60] S. Ihm and V. S. Pai. Towards understanding modern web traffic. In IMC, 2011.

[61] N. Ingraham. Apple’s app store has passed 100 billion app downloads.
http://www.theverge.com/2015/6/8/8739611/apple-wwdc-
2015-stats-update.

[62] S. Isaacman, R. Becker, R. Cáceres, M. Martonosi, J. Rowland, A. Varshavsky, and
W. Willinger. Human Mobility Modeling at Metropolitan Scales, 2012.

[63] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A Close
Examination of Perfomance and Power Characteristics of 4G LTE Networks. In
Proc. ACM MobiSys, 2012.

[64] A. E. J. Tadrous. On optimal proactive caching for mobile networks with demand
uncertainties. IEEE/ACM Transactions on Networking, 2016.

[65] J. Wigard, T. Kolding, L. Dalsgaard, and C. Coletti. On the User Performance of
LTE UE Power Savings Schemes with Discontinuous Reception in LTE. 2009.

[66] J. Jeong, M. Leconte, and A. Proutière. Mobility prediction using non-parametric
bayesian model. CoRR, 2015.

[67] Y. Jin, N. Duffield, A. Gerber, P. Haffner, W.-L. Hsu, G. Jacobson, S. Sen,
S. Venkataraman, and Z.-L. Zhang. Characterizing Data Usage Patterns in a Large
Cellular Network. In CellNet, 2014.

[68] H. E. G. J.Tadrous, A. Eryilmaz. Proactive resource allocation: harnessing the di-
versity and multicast gains. IEEE Transactions on Information Theory, 2013.

[69] A. J. Khan, K. Jayarajah, D. Han, A. Misra, R. Balan, and S. Seshan. Cameo: A
middleware for mobile advertisement delivery. In Proc. ACM MobiSys, 2013.

[70] L. Zhou, H. Xu, H. Tian, Y. Gao, L. Du, and L. Chen. Performance Analysis of
Power Saving Mechanism with Adjustable DRX Cycles in 3GPP LTE. 2008.

[71] H. A. Lagar-Cavilla, K. Joshi, A. Varshavsky, J. Bickford, and D. Parra. Traffic
backfilling: subsidizing lunch for delay-tolerant applications in UMTS networks.
2011.

[72] M. Laner, P. Svoboda, S. Schwarz, and M. Rupp. Users in Cells: a Data Traffic
Analysis. In WCNC, 2012.

[73] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile Data Offloading: How Much
Can WiFi Deliver? In Proc. CoNEXT, 2012.

[74] Leila Modarres. At&t aro makes apps even better. http://blogs.keynote.
com/mobility/2012/08/, 2012.

[75] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M. Wang. Webprophet:
Automating performance prediction for web services. In NSDI, 2010.

175

[76] M. Martins, J. Cappos, and R. Fonseca. Selectively Taming Background Android
Apps to Improve Battery Lifetime. In Proc. Usenix ATC, 2015.

[77] S. Mohan, R. Kapoor, and B. Mohanty. Latency in hspa data networks. Technical
report, Qualcomm, 2011.

[78] Y. Moon, D. Kim, Y. Go, Y. Kim, Y. Yi, S. Chong, , and K. Park. Practicalizing
Delay-Tolerant Mobile Apps with Cedos. In Proc. ACM MobiSys, 2015.

[79] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy Con-
sumption in Mobile Phones: A Measurement Study and Implications for Network
Applications. 2009.

[80] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao, S. Y. Ko,
and G. Challen. Phonelab: A large programmable smartphone testbed. In Proceed-
ings of First International Workshop on Sensing and Big Data Mining, pages 1–6.
ACM, 2013.

[81] S. Narayanan, Y. Nam, A. Sivakumar, B. Chandrasekaran, B. Maggs, and S. Rao.
Reducing latency through page-aware management of web objects by content deliv-
ery networks. In Proc. ACM SIGMETRICS, 2016.

[82] J. Nejati and A. Balasubramanian. An in-depth study of mobile browser perfor-
mance. In WWW, 2016.

[83] R. Netravali, J. Mickens, and H. Balakrishnan. Polaris: Faster page loads using
fine-grained dependency tracking. In Proc. NSDI, 2016.

[84] N. S. Networks. Understanding smartphone behavior in the network, 2011.

[85] Nghttp2: HTTP/2 C library and tools. https://nghttp2.org/.

[86] 7 tips for faster http/2 performance. https://www.nginx.com/blog/7-
tips-for-faster-http2-performance/.

[87] A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu, X. Zhou, B. Y. Zhao, and H. Zheng.
Energy and performance of smartphone radio bundling in outdoor environments. In
WWW, 2015.

[88] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and M. Welsh. Mobile
network performance from user devices: A longitudinal, multidimensional analysis.
In Passive and Active Measurement Conference, 2014.

[89] NPR One app FAQ. https://www.fuzeqna.com/npr/ext/kb637-npr-
one-app-faq, 2015.

[90] NU JamLogger: A Study of User Activity and System Performance
on Mobile Architectures. http://www.ece.northwestern.edu/
microarchitecture/jamlogger/, 2009.

176

[91] Office for National Statistics. Methodology of the monthly index of services: Annex
b: the holt-winters forecasting method. http://www.ons.gov.uk/ons/
guide-method/user-guidance/index-of-services/index-
of-services-annex-b--the-holt-winters-forecasting-
method.pdf.

[92] J. Osofsky. More ways to drive traffic to news and publishing sites.
https://www.facebook.com/notes/facebook-media/more-
ways-to-drive-traffic-to-news-and-publishing-sites/
585971984771628, 2013.

[93] C. P. Going into 2016, battery life is still the number one concern with our readers
(poll results). http://www.phonearena.com/news/Going-into-
2016-battery-life-is-still-the-number-one-concern-with-
our-readers-poll-results_id76978, 2015.

[94] P. K. Athivarapu, R. Bhagwan, S. Guha, V. Navda, R. Ramjee, D. Arora, V. N. Pad-
manabhan, and G. Varghese. RadioJockey: Mining Program Execution to Optimize
Cellular Radio Usage. 2012.

[95] T. C. Projects. Spdy: An experimental protocol for a faster web. Technical report.

[96] E. Protalinski. Facebook passes 1.23 billion monthly active users, 945 mil-
lion mobile users, and 757 million daily users. http://thenextweb.
com/facebook/2014/01/29/facebook-passes-1-23-billion-
monthly-active-users-945-million-mobile-users-757-
million-daily-users, 2014.

[97] F. Qian, S. Sen, and O. Spatscheck. Characterizing resource usage for mobile web
browsing. In Proc. ACM MobiSys, 2014.

[98] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck.
Periodic Transfers in Mobile Applications: Network-wide Origin, Impact, and Op-
timization. In Proceedings of the 21st international conference on World Wide Web,
pages 51–60, 2012.

[99] QxDM Professional Proven Diagnostic Tool for Evaluating Handset and Net-
work Performance. http://www.qualcomm.com/media/documents/
files/qxdm-professional-qualcomm-extensible-diagnostic-
monitor.pdf, 2012.

[100] L. Ravindranath, S. Agarwal, J. Padhye, and C. Riederer. Procrastinator: Pacing
mobile apps’ usage of the network. In Proc. ACM MobiSys, 2014.

[101] A. Reda, B. Noble, and Y. Haile. Distributing private data in challenged network
environments. In World Wide Web Conference, 2010.

177

[102] S. Rosen, J. Erman, V. Gopalakrishnan, Z. M. Mao, and J. Pang. Cellshift: A system
to efficiently time-shift data on the cellular network. Technical Report CSE-TR-
588-15, Department of Computer Science and Engineering, University of Michigan,
2015.

[103] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau. Discovering
fine-grained rrc state dynamics and performance impacts in cellular networks. In
Proc. ACM MobiCom, 2014.

[104] S. Rosen, A. Nikravesh, Y. Guo, Z. M. Mao, F. Qian, and S. Sen. Revisiting network
energy efficiency of mobile apps: Performance in the wild. In Proc. ACM IMC,
2015.

[105] S. Deng, and H. Balakrishnan. Traffic-Aware Techniques to Reduce 3G/LTE Wire-
less Energy Consumption. In Proc. ACM CoNEXT, 2012.

[106] S. Souders. Making a mobile connection. http://www.stevesouders.com/
blog/2011/09/21/making-a-mobile-connection/, 2011.

[107] Samsung. Galaxy S4 Standard Battery. https://www.samsung.com/us/
mobile/cell-phones-accessories/EB-B600BUBESTA.

[108] A. A. Sani, Z. Tan, P. Washington, M. Chen, S. Agarwal, L. Zhong, and M. Zhang.
The Wireless Data Drain of Users, Apps, & Platforms. ACM SIGMOBILE Mobile
Computing and Communications Review, 17(4), 2013.

[109] M. Satyanarayanan. Pervasive computing: vision and challenges. Personal Commu-
nications, IEEE, 2001.

[110] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based
cloudlets in mobile computing. Pervasive Computing, IEEE, 2009.

[111] Scrapbook: Addons for Firefox. https://addons.mozilla.org/en-US/
firefox/addon/scrapbook/.

[112] S. Sen, C. Joe-Wong, S. Ha, J. Bawa, and M. Chiang. When the Price is Right:
Enabling Time-dependent Pricing of Broadband Data. In Proc. SIGCHI, 2013.

[113] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang. A Survey of Smart Data Pricing: Past
Proposals, Current Plans, and Future Trends. ACM Comput. Surv., 46, 2013.

[114] C. Shi, K. Joshi, R. K. Panta, M. H. Ammar, and E. W. Zegura. Coast: Collaborative
application-aware scheduling of last-mile cellular traffic. In Proc. ACM MobiSys,
2014.

[115] I. Singh, S. V. Krishnamurthy, H. V. Madhyastha, and I. Neamtiu. ZapDroid: Man-
aging Infrequently Used Applications on Smartphones. In Proc. UbiComp, 2015.

[116] S. Singh, H. Madhyastha, K. S.V., and R. Govindan. Flexiweb: Network-aware
compaction for accelerating mobile web transfers. In Proc. ACM MobiCom, 2015.

178

[117] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakrishnan, S. Lee, S. Rao, and
S. Sen. Parcel: Proxy assisted browsing in cellular networks for energy and latency
reduction. In Proc. ACM CoNEXT, 2014.

[118] J. Spencer, M. Sudan, and K. Xu. Queuing with future information. The Annals of
Applied Probability, 2014.

[119] S. Sundaresan, N. Feamster, R. Teixeira, and N. Magharei. Measuring and mitigating
web performance bottlenecks in broadband access networks. In Proc. ACM IMC,
2013.

[120] J. Tadrous, A. Eryilmaz, H. El Gamal, J. Tadrous, A. Eryilmaz, and H. El Gamal.
Joint smart pricing and proactive content caching for mobile services. IEEE/ACM
Trans. Netw., 2016.

[121] J. Tadrous, A. Eryilmaz, and H. E. Gamal. Proactive content download and user
demand shaping for data networks. IEEE/ACM Trans. Netw., 2015.

[122] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh. Who Killed
my Battery?: Analyzing Mobile Browser Energy Consumption. In Proceedings of
the 21st international conference on World Wide Web, 2012.

[123] N. Vallina-Rodriguez, A. Auçinas, M. Almeida, Y. Grunenberger, K. Papagiannaki,
and J. Crowcroft. Rilanalyzer: A comprehensive 3g monitor on your phone. 2013.

[124] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, A. Finamore, and K. Papagian-
naki. Is the web http/2 yet? In Passive and Active Measurement Conference, 2016.

[125] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt. Cloudlets: Bringing the cloud
to the mobile user. In Proceedings of the Third ACM Workshop on Mobile Cloud
Computing and Services, MCS ’12, 2012.

[126] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. Demystify-
ing page load performance with wprof. In Proc. NSDI, 2013.

[127] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. How speedy
is spdy? In Proc. NSDI, 2014.

[128] X. S. Wang, A. Krishnamurthy, and D. Wetherall. Speeding up web page loads with
shandian. In NSDI, 2016.

[129] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why are web browsers slow on
smartphones? In Proc. of Workshop on Mobile Computing Systems and Applica-
tions, 2011.

[130] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang. An untold story of middleboxes
in cellular networks. In Proc. ACM SIGCOMM, 2011.

[131] H. Xiong, D. Zhang, D. Zhang, and V. Gauthier. Predicting Mobile Phone User
Locations by Exploiting Collective Behavioral Patterns. In IEEE UIC/ATC, 2012.

179

[132] K. Xu. Necessity of future information in admission control. CoRR, 2015.

[133] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman. Identifying
Diverse Usage Behaviors of Smartphone Apps. In Proc. ACM IMC, 2011.

[134] Take your channels with you on the new YouTube app. http://youtube-
global.blogspot.com/2012/06/take-your-channels-with-
you-on-new.html, 2012.

[135] Y. Zaki, J. Chen, T. Pötsch, T. Ahmad, and L. Subramanian. Dissecting web latency
in ghana. In Proc. ACM IMC, 2014.

[136] K. Zarifis, M. Holland, M. Jain, E. Katz-Bassett, and R. Govindan. Modeling http/2
speed from http/1 traces. In Passive and Active Measurement Conference, 2016.

180

