
Architecting Persistent Memory Systems

by

Aasheesh Kolli

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2017

Doctoral Committee:

Associate Professor Thomas F. Wenisch , Chair
Associate Professor Luis Ceze
Professor Peter M. Chen
Assistant Professor Karthik Duraisamy
Associate Professor Satish Narayanasamy

Aasheesh Kolli

akolli@umich.edu

ORCID iD: 0000-0001-5355-5542

© Aasheesh Kolli 2017

To Venkata Subbamma, my nayanamma, Madan Mohan Rao, my tathayya, and

Krishnamurthy, my mavayya.

ii

ACKNOWLEDGEMENTS

My PhD experience was full of ups and downs, it was rarely flat. For all the fun times

when bugs were solving themselves, reviewers were increasing their scores, and papers

were getting accepted, there were just as many, if not more, dark times when papers were

getting rejected, Reviewer-C was being unreasonable, and I was doubting myself. However,

the many wonderful people in my life made the dark times surmountable and the fun times

truly memorable and I’d like to express my deepest gratitude to them.

I would first like to thank my parents, Ravi Kumar and Nagamani, and my sister,

Sahithi, for their unconditional love, for encouraging me to pursue my dreams, and for

making sure that I never had to worry about anything other than achieving my goals. My

father is an educator and my mother is a computer scientist, so, looking back, its not very

surprising that I chose to get a PhD in computer science. Thanks also to my uncle and

aunt, Subbarao and Krishna, for helping me immigrate to the US. Immigrating to the US

unlocked opportunities to me that were not available to many of peers back in India.

This thesis would obviously not have been possible without the mentorship from my

advisor, Thomas Wenisch. Tom’s technical acumen, generosity with time, and irrepressible

enthusiasm made working with him an absolute blast. I will forever be indebted to him for

all that I have learnt from him.

iii

When I was a confused undergrad wondering what to do next, several people helped

me realize that I want to earn a PhD. Without them, I would not have even applied to a

PhD program. My cousins, Vamsi, Prabha, Srihari, and Sowjanya inspired me by example

and with their work ethic. Rajeev Balasubramonian generously offered me an internship in

the UtahArch lab at the University of Utah and helped me gain necessary technical skills.

During the internship, I learnt about the life a grad student from Rajeev’s grad students Nil,

Manu, Kshitij, Ani, and Manju.

I worked closely with Peter Chen and Satish Narayanasamy during my time at Michi-

gan. Pete’s critical analysis of my work and patient answers to all my questions, about

work or life, were instrumental in me having a fulfilling PhD experience. Satish brought

a programmer-centric perspective to my research which markedly improved the quality

of my work. Satish also greatly helped me navigate the challenging waters of teaching

an undergraduate course with over five hundred students. I would also like to thank Luis

Ceze and Karthik Duraisamy for serving on my dissertation committee and their invaluable

feedback on my dissertation.

I was fortunate to work with many amazing collaborators, Ali Saidi, Steven Pelley,

Vaibhav Gogte, Stephan Diestelhorst, Joe Izraelevitz, Jeff Rosen, Andreas Hansson, Dhruva

Chakrabarty, and Terence Kelly, who helped me formulate new research projects, debug

code, write papers, and deal with reviewers.

Thanks to all of my lab mates and department friends, Faissal Sleiman, Neha Agarwal,

Richard Sampson, Prateek Tandon, Akshitha Shriraman, Amlan Nayak, David Meisner,

Andrew Lukefahr, Nilmini Abeyratne, Shaizeen Aga, Mehrzad Samadi, and David De-

iv

vecsery, who assisted me with my projects, brainstormed ideas with me, listened to my

problems over coffee, gave me advise, and attended my many (bad) practice talks.

A special thanks to my cousins Bobby and Sireesha, for helping me get my first laptop

and my first car, the two best purchases I have made in my life.

I would also like to thank all my friends who made life in Ann Arbor an absolute plea-

sure; Shruti, for all the half-eaten cookies, kitchen runs, and impromptu conversations; Vi-

mal, for all the parties, board games, and introducing me to Ann Arbor Ultimate; Shamitha,

for sharing my interests in whiskey, politics, and philosophy; Miloni, for your genuineness,

sympathetic ear, and for hosting me on my trips to California; Shankar, for being my tol-

erant roommate; Navneet Sarathy, for all the jokes and fun conversations; Daya, Ankit,

Gaurav, Abhay, Divya, and Ritesh, for all the parties, tea, and card games; Mike, Ben, and

Biruk, for all the basketball games.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 High-performance transactions for persistent memories 4
1.2 Delegated persist ordering . 5
1.3 Language-level persistency . 7
1.4 Summary . 9

II. Background . 11

2.1 Persistent memory technologies 11
2.2 Ordering constraints . 12
2.3 Memory persistency models . 13

2.3.1 Strict persistency . 14
2.3.2 Epoch persistency . 14
2.3.3 Strand persistency . 15
2.3.4 Buffering . 16

2.4 Coding patterns to order persists 17
2.5 Synchronous Ordering . 19
2.6 Formalism for non-multi-copy-atomic models 20

2.6.1 Relaxed Consistency Buffered Strict Persistency 23
2.6.2 Discussion . 26

vi

III. High-performance transactions for persistent memories 28

3.1 Introduction . 28
3.2 Transactions under Idealized Ordering 29

3.2.1 Transaction design . 30
3.2.2 Minimal Persist Dependencies 33
3.2.3 Persist critical path analysis 35

3.3 Synchronous commit transactions (SCT) 37
3.3.1 SCT under Epoch Persistency 37
3.3.2 SCT under Synchronous Ordering 40
3.3.3 SCT under Strand Persistency 41

3.4 Deferred commit transactions (DCT) 42
3.4.1 DCT under Epoch Persistency 43
3.4.2 DCT under Synchronous Ordering 46
3.4.3 DCT under Strand persistency 49

3.5 Evaluation . 50
3.5.1 Methodology . 51
3.5.2 Performance analysis 53

IV. Delegated persist ordering . 57

4.1 Introduction . 57
4.2 Performance of synchronous ordering 59

4.2.1 Semantics . 59
4.2.2 Performance . 60
4.2.3 Discussion . 62

4.3 Delegated persist ordering . 63
4.3.1 Design goals . 64
4.3.2 System Architecture 66
4.3.3 Enforcing Dependencies 68
4.3.4 Hardware Structures 71
4.3.5 Detailed Examples. 74
4.3.6 Coalescing Persists . 77

4.4 Evaluation . 78
4.4.1 Performance Comparison 79

V. Language-level persistency . 83

5.1 Introduction . 83
5.2 Design Exploration . 85

5.2.1 Failure and recovery 86
5.2.2 Atomicity and ordering 87
5.2.3 A Taxonomy of Persistency Guarantees 90
5.2.4 Discussion . 97

5.3 Acquire-Release Persistency . 98

vii

5.3.1 Definition . 98
5.3.2 Mapping to ISA-level persistency 101
5.3.3 Fence directionality . 102
5.3.4 Conflating concurrency control with recoverability . . . 103

5.4 Extending RCBSP for ARP . 105
5.4.1 Enforcing unidirectional fences 105
5.4.2 Extensions for volatile annotations 107

5.5 Evaluation . 108
5.5.1 Performance comparison 111
5.5.2 Persist scheduling . 113

VI. Related Works Survey . 115

6.1 Related works - software . 115
6.2 Related works - hardware . 117

VII. Conclusions . 121

7.1 Summaries of contributions . 121
7.2 Future work . 122

BIBLIOGRAPHY . 126

viii

LIST OF FIGURES

Figure

2.1 Ordering persists across threads/strands: Common coding patterns to
specify inter-thread persist dependencies. 17

2.2 Fence cumulativity example: This example shows shows how memory
events on different cores may be ordered via fence cumulativity. 26

3.1 Ideal undo-loggins transactions: (a) Steps in an undo transaction. (b)
Persist dependencies in a transaction sequence. 32

3.2 Synchronous-commit transaction designs: Synchronous-commit trans-
actions under epoch persistency, synchronous ordering, and strand persis-
tency. The red arrows in (d) represent the unnecessary dependencies en-
forced when compared to the minimal dependencies shown in Figure 3.1(b). 37

3.3 Deferred-commit transaction design for epoch persistency: Deferred-
commit transactions under epoch persistency and the resulting persist or-
dering constraints. 43

3.4 Deferred-commit transaction design for synchronous ordering: Deferred-
commit transactions under synchronous ordering and the resulting persist
ordering constraints. 47

3.5 Deferred-commit transaction design for strand-persistency: Deferred-
commit transactions under strand persistency and the resulting persist or-
dering constraints. 49

3.6 Evaluation of SCT vs DCT: SCT and DCT performance for Update Lo-
cation and New Order under various persistency models. 51

4.1 Proposed architecture design: Our system architecture implementing
delegated ordering for RCBSP, with a persist buffer at the L1 D-cache for
every core and write queue at the PM controller. 66

4.2 Examples of persist dependencies: Persist-persist dependency and epoch-
persist dependency . 69

4.3 Persist buffer design: Hardware structures required at each core. 72
4.4 RCBSP in action - 1: Resolving a persist-persist dependency. 74
4.5 RCBSP in action - 2: Resolving an epoch-persist dependency. 76
4.6 Evaluating SO vs RCBSP: Normalized execution time for PWQ, DRAM,

and PCM. 80

ix

5.1 Design space of persistency guarantees: Persistency guarantees ex-
plored along two dimensions, atomicity and ordering. 87

5.2 The taxonomy of persistency guarantees analyzed via a running ex-
ample: (a) Two objects (A,B), each with a record (R) and lock assum-
ing the language provides failure-atomicity of outer critical sections. (b)
Two objects (A,B), each with a record (R), a lock, a shadow copy (C),
and a pointer to ensure failure-atomicity assuming the language does
not provide failure-atomicity of outer critical sections. (c) Code and
failure-atomic region when the language guarantees sequentially consis-
tent failure-atomic outer critical sections. (d) Code and failure atomic re-
gions when the language guarantees sequentially consistent failure-atomic
synchronization free regions. (e) Code and orderings when the language
guarantees sequentially consistent persists. (f) Code and orderings when
the language guarantees epoch ordered persists. 90

5.3 Unnecessary persist constraints enforced by RCBSP: (a) Unnecessary
constraints enforced due to hardware being oblivious to fence directions.
(b) Unnecessary constraints enforced due to lack of language level se-
mantics to express volatile fences. 102

5.4 Allocation of epochs for unidirectional fences in the PM controller. . . 105
5.5 Execution time normalized to SCP: The graph compares execution time

of ARP and ARP+VA with SCP and RCBSP for micro-benchmarks and
benchmarks. 111

5.6 Page miss rate normalized to SCP: Lower page miss rate in the PM
controller implies better persist scheduling. 113

x

LIST OF TABLES

Table

3.1 Persist critical path lengths summary: Summary of the persist critical
path lengths observed with SCT and DCT for different persistency models. 50

3.2 SCT vs DCT performance break-even: The average persist epoch la-
tency (in µs), at which DCT breaks even with SCT. 56

4.1 Synchronous ordering performance: Slowdowns due to SO over volatile
execution. 62

4.2 Simulator Configuration . 78
4.3 Benchmark descriptions (CKC = clwbs per 1000 cycles) 79
5.1 Compiler transformations from ARP to RCBSP: Mapping from ARP

memory events to RCBSP [1], which is based on ARMv7a. Ideal map-
pings from ARP would be to an ISA which supports release consistency. . 101

5.2 Effect of removing unnecessary persist constraints: Increase in per-
sists per epoch when the memory controller is aware of FENCE direc-
tionality and volatile FENCEs. 104

5.3 Benchmark characteristics (PKC = persists per 1000 cycles) 110
5.4 Persists per epoch: The persists per epoch observed at the PM controller

for various persistency model implementations. 110

xi

ABSTRACT

Architecting Persistent Memory Systems

by

Aasheesh Kolli

Chair: Thomas F. Wenisch

The imminent release of 3D XPoint memory by Intel and Micron looks set to end the long

wait for affordable persistent memory. Persistent memories combine the persistence of disk

with DRAM-like performance, blurring the traditional divide between a byte-addressable,

volatile main memory and a block-addressable, persistent storage (e.g., SSDs). One of

the most disruptive potential use cases for persistent memories is to host in-memory re-

coverable data structures. These recoverable data structures may be directly modified by

programmers using user-level processor load and store instructions, rather than relying on

performance sapping software intermediaries like the operating and file systems.

Ensuring the recoverability of these data structures requires programmers to have the

ability to control the order of updates to persistent memory. Current systems do not pro-

vide efficient mechanisms (if any) to enforce the order in which store instructions update the

physical main memory. Recently proposed memory persistency models allow programmers

xii

to specify constraints on the order in which stores can be written-back to main memory.

While ordering constraints are necessary for recoverability, they are expensive to enforce

due to the high write-latencies exhibited by popular persistent memory technologies. More-

over, reasoning about recovery correctness using memory persistency models in addition

to ensuring necessary concurrency control in multi-threaded programs drastically increases

programming burden. This thesis aims at increasing the adoption of persistent memories

through a) improving the performance of recoverable data structures and b) simplifying

persistent memory programming.

Software transaction abstractions developed using recently proposed memory persis-

tency models are expected to be widely used by regular programmers to exploit the ad-

vantages of persistent memory. This thesis shows that a straightforward implementation of

transactions imposes many unnecessary constraints on stores to persistent memory. This

thesis also shows how to reduce these constraints through a variety of techniques, notably,

deferring transaction commit until after locks are released, resulting in substantial perfor-

mance improvements.

Next, this thesis shows the high cost of enforcing ordering constraints using recent

x86 ISA extensions to enable persistent memory programming, an ordering model referred

to as synchronous ordering. Synchronous ordering tightly couples enforcing order with

writing back stores to main memory, but this tight coupling is often unnecessary to ensure

recoverablity. Instead, this thesis proposes delegated persist ordering, wherein ordering

requirements are communicated explicitly to the persistent memory controller via novel

enhancements to the cache hierarchy. Delegated persist ordering decouples store ordering

xiii

from processor execution and cache management, significantly reducing processor stalls,

and hence, the cost of enforcing constraints.

Finally, existing memory persistency models have all been specified to be used in con-

junction with ISA-level memory models. That is, programmers must reason about recovery

correctness at the abstraction of assembly instructions, an approach which is error prone

and places an unreasonable burden on the programmer. This thesis argues for a language-

level persistency model that provides mechanisms to specify the semantics of accesses to

persistent memory as an integral part of the programming language and proposes a con-

crete model, acquire-release persistency, that extends C++11s memory model to provide

persistency semantics.

xiv

CHAPTER I

Introduction

New persistent memory (PM) technologies with the potential to transform software’s

management of persistent data will soon be available. For example, Intel and Micron have

announced their 3D XPoint memory technology for availability in 2017 [2], and competing

offerings may follow [3]. Such devices are expected to provide much lower access latencies

than NAND Flash, enabling access to persistent data with a load-store interface like DRAM

rather than the block-based I/O interface of Flash and disk. Persistent memory systems will

allow programmers to maintain in-memory recoverable data structures.

Ensuring recoverability of these data structures requires constraints on the order writes

become persistent [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. At the same time, it is desirable

that PM accesses are cacheable, both to hide access latency and to enable write coalescing

to conserve write bandwidth and lifetime for devices subject to wearout. Conventional

memory systems delay, combine, and reorder writes to memory at multiple levels, and

do not enforce any particular correspondence between the order stores become visible in

multi-core systems and the order in which they are written back to main-memory.

1

Recent work proposes that programming systems be extended with a memory persis-

tency model; an explicit specification and programming interface to constrain the order

writes to PM become persistent [5, 14, 4, 8]. A memory persistency model is analogous

to the memory consistency model [17] that governs the ordering of reads and writes to

shared memory, but instead constrains the order PM writes become persistent, an operation

referred to as a persist henceforth. And, constraints on the order of persists are referred to

as persist dependencies.

While PMs offer exciting new possibilities, the following challenges, if not addressed,

will hinder them from being widely adopted:

• Whereas specifying and honoring persist dependencies is essential for recovery cor-

rectness, enforcing persist dependencies is likely to be expensive. PM technolo-

gies are expected to be slower than DRAM [18], and will only be able to keep

up with CPU speeds through techniques that exploit parallelism, batching, and re-

ordering [9], all of which are possible only in the absence of persist dependencies.

Mechanisms to reduce the cost of enforcing persist dependencies, and hence, im-

prove the performance of recoverable data structures are necessary.

• Writing correct parallel programs is hard. Ensuring recovery correctness requires

programmers to reason about persist dependencies (via the memory persistency model)

in addition to concurrency control mechanisms, exacerbating programming burden.

Developing simple, precise, and high-performing programming abstractions to ease

programming burden could go a long way towards increasing the adoption of persis-

tent memories.

2

This thesis comprises of three thrusts, all aiming to address one or both of the challenges

described above. The three thrusts are:

• High-performance transactions for persistent memories: Software transactional

libraries are expected to be widely used by regular programmers to maintain recover-

able data structures in PM. We expose the unnecessary persist dependencies resulting

from a straight-forward implementation of transactions. We further show how to re-

duce these unnecessary persist dependencies, resulting in significant performance

gains.

• Delegated persist ordering: The cost of enforcing individual persist dependencies

plays a major role in determining the performance of recoverable data structures. We

show how the semantics of the recently proposed x86 ISA extensions for persistent

memory programming cause substantial overheads to enforce individual persist de-

pendencies. Subsequently, we also propose an alternative implementation strategy to

reduce the cost of enforcing persist dependencies.

• Language-level persistency: All of the recently proposed memory persistency mod-

els [5, 14, 4, 8] have been specified in conjunction with the ISA-level memory consis-

tency models. However, programmers predominantly reason about parallel programs

using language-level memory models exposed by high-level programming languages

(e.g. C++11). We propose to expose persistency semantics at the language level, al-

lowing programmers to reason about recovery correctness without concerning them-

selves with the ISA-level memory consistency and persistency models.

3

The rest of this chapter provides a brief overview of the proposals in each of the three

thrusts mentioned above.

1.1 High-performance transactions for persistent memories

Ensuring that persistent data is consistent despite power failures and crashes is difficult,

especially when manipulating complex data structures with fine-grained accesses. One

way to ease this difficulty is to access persistent data through atomic, durable transactions,

which make groups of updates appear as one atomic unit with respect to failure. Because of

the power and convenience of transactions, they are expected to be widely used by regular

programmers [11, 7, 6, 19]. Please note that transactions also provide mechanisms for

controlling concurrency; in this thesis, we assume that transactions use locks in volatile

memory for concurrency control.

Implementing transactions requires the ability to order writes to the PM. For example,

in write-ahead logging [20], the commit record for a transaction may persist only after after

all log records for that transaction have been persisted; otherwise a failure may cause the

system to recover to a state in which only some of the updates are present.

We consider how to implement transactions for PM in a way that minimizes persist

dependencies. We show that a simple transaction system design enforces many unnecessary

persist dependencies and that these dependencies greatly slow down common transaction

workloads. And, that most of the unnecessary dependencies arise as a consequence of

performing the commit step of the transaction while locks are held, and how to remove

these dependencies by deferring this commit until after locks are released.

4

Deferring commits leads to the new challenge of correctly ordering the deferred commit

operations across all outstanding transactions. To ensure transaction serializability, com-

mit order must match the order in which locks were originally acquired during transaction

execution. We show how to minimize persist dependencies through a combination of tech-

niques, including distributed logs [21], deferred commit [22, 23], Lamport/vector clocks

to serialize transactions [24], a subtle epoch-based mechanism to recycle log storage, and

memory persistency models [5].

While prior works like like NV-Heaps [11] and Mnemosyne [7] implement transactions

for persistent memories, they focus on optimizing transaction design for a particular persis-

tency model. We instead take a more fundamental approach to transaction design that can

be applied to many different persistency models. We evaluate the performance of a trans-

action system that defers commits on simulated PM with a range of device speeds. For two

transaction-processing workloads, we show that performance improves from 50%-150%

for various memory persistency models [5].

1.2 Delegated persist ordering

Apart from the total number of persist dependencies, the cost of enforcing individual

persist dependencies also plays a major role in determining overall performance. We quan-

tify the high costs of enforcing persist dependencies using recent x86 ISA extensions for

PM and also proposes an alternative persistency model implementation strategy to reduce

said costs.

5

To complement upcoming memory technology offerings, Intel [4] has announced in-

struction set extensions to enable programmer control of data persistence. The clwb in-

struction allows programmers to initiate write back of specific addresses to PM, and the

pcommit and sfence instructions enable order enforcement among these writebacks

and subsequent execution. we describe the persistency model implied by the semantics

of these instructions. This new persistency model is referred to as synchronous ordering

henceforth.

Synchronous ordering enforces order by stalling execution, preventing instructions or-

dered after a pcommit from retiring until prior PM writes persist. However, this approach

tightly couples volatile execution and persistent writes, placing PM write latency on the

execution critical path. As we will will show, these stalls can result in a 7.21× slowdown

in workloads with frequent PM writes.

Synchronous ordering couples two orthogonal operations: prescribing an order of per-

sists and ensuring that persists complete (i.e. the corresponding store has been written

back to PM). However, coupling these operations is often unnecessary for software system

recoverability, as data structure consistency depends principally upon the order of per-

sists [25, 10, 5, 14]. In many contexts, volatile execution may proceed ahead of properly

ordered persists without compromising recoverability or waiting for the persists to com-

plete, allowing PM latency to be hidden. When rare failures occur, some writes may be

lost, but data structure consistency is maintained (e.g., journaling file systems maintained

on disks [10]).

We explore a new implementation approach to enforcing persist dependencies. Instead

of enforcing order through stalls, the proposed solution, delegated persist ordering, com-

6

municates partial ordering requirements mandated by the persistency model explicitly to

the PM controller. Delegated persist ordering decouples persistency model implementation

from both volatile execution and cache management. Execution and communication via

shared memory proceed while PM writes drain. Caches remain volatile and may commu-

nicate through cache coherence and evict blocks at will. Instead, our approach maintains

writes to PM alongside the cache hierarchy in per-core persist buffers.

Using annotations added to coherence transactions, the persist buffers observe and track

persist dependencies mandated by the persistency model. Together, they serialize PM

writes into a partially ordered buffer at the PM controller, which may then schedule PM

writes to exploit available bank concurrency. Execution does not stall unless buffering re-

sources in the persist buffers and at the PM controller are exhausted or the programmer

explicitly requests the stall (e.g., before issuing an irrecoverable action). An evaluation of

delegated persist ordering demonstrates that it improves performance by 3.73× on average

over synchronous ordering for PM-write-intensive benchmarks, coming within 1.93× of

volatile execution without order enforcement.

1.3 Language-level persistency

All of the persistency models that have been proposed until now [5, 14, 1, 8, 4, 26] have

been specified at the instruction set architecture (ISA) level. That is, programmers must

reason about recovery correctness at the abstraction of assembly instructions, an approach

which is error prone and places an unreasonable burden on the programmer. The program-

mer must invoke ISA-specific mechanisms (via library calls or inline assembly) to ensure

7

persist order, and often must reason carefully about compiler optimizations that may affect

the relevant code. Since the ISA mechanisms differ in sometimes subtle ways, it is hard to

write portable recoverable programs.

We argue for a language-level persistency model that provides mechanisms to specify

the semantics of accesses to PM (including with respect to program failures) as an integral

part of the programming language, just as language-level memory consistency models en-

able precise specification of the semantics of memory accesses from concurrent threads.

A language-level persistency model provides a single, ISA-agnostic framework for reason-

ing about persistency and can enable portability of recoverable software across language

implementations (compiler, runtime, ISA, and hardware). Furthermore, a language-level

model prescribes precise requirements on the implementation, allowing implementers to

reason about the correctness of compiler and hardware optimizations.

We explore a taxonomy of guarantees that a language-level persistency model might

provide. Stronger guarantees (e.g., failure-atomicity of critical sections) make writing

recoverable software easier but impose substantial requirements on the implementation,

which entail performance penalties. Weaker guarantees complicate reasoning about recov-

ery, but provide greater implementation freedom and performance. The weaker guaran-

tees relax atomicity of critical sections and instead provide only ordering guarantees for

individual persists. Ordering guarantees on individual persists allow synthesis of higher

granularities of atomicity via logging.

Based on our taxonomy, we propose a concrete model, acquire-release persistency, to

extend the C++11 memory model. We describe how to compile ARP to an existing ISA-

level persistency model [1]. Ideally, the language and ISA persistency models work in

8

concert to enforce only the minimal guarantees required for correct recovery. However,

we find that mismatch between ARP and the ISA-level model lead to extra constraints that

hamper performance. We then propose modifications to the C++11 language, compiler,

ISA, and hardware to resolve these mismatches, increasing available persist concurrency

and scheduling flexibility. The greater flexibility allows the PM controller to reduce page

miss rates, improving application performance by up to 33.2% and by 19.8% on average.

1.4 Summary

Soon to be available persistent memories have the potential to transform how software

manages persistent data. However, before persistent memories can be widely adopted, a

couple of challenges need to be addressed: 1) improve the performance of in-memory re-

coverable data structures and 2) develop simple and precise programming abstractions to

enable persistent memory programming. In this thesis, we identify three different ways

to address one or both of these challenges. First, we develop high-performance transac-

tions for persistent memories by reducing the number of unnecessary persist dependencies

enforced. Second, we reduce the cost of enforcing individual persist dependencies by de-

coupling the enforcement of persist dependencies from execution at the core. And finally,

we expose the persistency model at the language-level (similar to language-level mem-

ory models) to alleviate programmers of the burden to reason about ISA-specific memory

consistency and persistency models.

In the reminder of this thesis, Chapter 2 provides the necessary background to better

understand the contributions of this thesis. Chapter 3 describes how we improve transaction

9

performance. Chapter 4 details how we reduce the cost of enforcing individual persist

requests. Chapter 5, presents the design of a language-level persistency model. Chapter 6

presents a brief summary of related works and Chapter7 the conclusions from this thesis.

10

CHAPTER II

Background

This chapter provides details necessary to understand the following chapters in this the-

sis. First, we talk about different persistent memory technologies, followed by an overview

of the various different memory persistency models that have been recently proposed.

2.1 Persistent memory technologies

Various memory technologies offer both byte-addressable accesses and non-volatility

(or durability). For example, phase change memory (PCM) [18] uses a chalcogenide glass

whose resistence can be programmed by varying electrical inputs to the cell. Resistive

RAM (ReRAM) [27] is similar to PCM except that instead of using a chalcogenide glass,

ReRAM uses metal oxide, whose ressistence can also be programmed via varying electrical

inputs. Spin-transfer torque memory (STT-RAM) is a magnetic memory that stores state

in electron spin [28]. Storage capacity increases by storing more than two states per cell in

Multi-level Cells (MLC) (e.g., four distinct resistivity levels provide storage of 2 bits per

cell).

11

While it remains unclear which of these technologies will eventually gain traction,

many share common characteristics. In particular, PMs will likely provide somewhat

higher access latency relative to DRAM. Furthermore, several technologies are expected to

have asymmetric read-write latencies, where writes are much more expensive than reads [29].

Write latency worsens with MLC, where slow, iterative writes are necessary to reliably

write to cells.

Resistive technologies suffer from limited write endurance, that is, memory cells may

be written reliably only a limited number of times. While write endurance is an impor-

tant consideration, proposed hardware mechanisms (e.g., Start-Gap [30]) are effective in

distributing writes across cells, mitigating write endurance concerns.

2.2 Ordering constraints

The ability to order writes is critical to all software that uses persistent storage. Con-

straining the order that writes persist is essential to ensure correct recovery, and minimizing

these constraints is key to enabling high performance.

Formally, we express an ordering relation over memory events loads and stores, which

we collectively refer to as accesses. The term persist refers to the act of durably writing

a store to persistent memory. We assume persists are performed atomically (with respect

to failures) at 8-byte granularity. By “thread”, we refer to execution contexts—cores or

hardware threads. We use the following notation (originally presented here [31]):

• Li
a: A load from thread i to address a

• Si
a: A store from thread i to address a

12

• Mi
a: A load or store by thread i to address a

We reason about two ordering relations over memory events, volatile memory order

and persist memory order. Volatile memory order (VMO) is an ordering relation over

all memory events (loads and stores) as prescribed by the memory consistency model for

multiprocessors [17]. Persist memory order (PMO) deals with the same events but may

have different ordering constraints than VMO. [5] uses the term memory persistency model

to describe the types of constraints that hardware allows software to express on the persist

memory order.

We denote these ordering relations as:

• A≤v B: A occurs no later than B in VMO

• A≤p B: A occurs no later than B in PMO

An ordering relation between stores in PMO implies the corresponding persist actions are

ordered; that is, A≤p B→ B may not persist before A.

2.3 Memory persistency models

In currently shipping processor architectures, persist dependencies must be enforced

either by using a write-through cache or by explicitly flushing individual cache lines (e.g.,

using the clflush instruction on x86). Moreover, these flush operations must be carefully an-

notated with fences to prevent hardware and compiler reorderings (details appear in [32]).

These mechanisms are quite slow because they give up much of the performance benefits

of CPU caches. Because cache flushes are so slow, Intel has recently announced extensions

to its x86 ISA to optimize cache line flushing [4].

13

Researchers have proposed other means to express persist dependencies. Condit and

co-authors propose an epoch barrier, which ensures writes before the barrier are ordered

before writes after the barrier [8]. Pelley and co-authors liken the problem of ordering

persists to the problem of ordering memory accesses in a multiprocessor [5]. Just as there

is a design space for multiprocessor memory consistency models, Pelley lays out a design

space for memory persistency models. We use sequential consistency (SC) as the under-

lying consistency model in this section. We briefly summarize all of the three persistency

models proposed by Pelley.

2.3.1 Strict persistency

Under strict persistency, PMO is identical to VMO. So, for any two stores ordered by

the consistency model, the corresponding persists are also ordered. Formally,

Mi
a ≤v M j

b↔Mi
a ≤p M j

b (2.1)

Whereas strict persistency is the most intuitive persistency model, it is not the best per-

forming. By ordering persists per VMO, strict persistency enforces orderings typically

not required for recovery correctness [5]. Thus, researchers have proposed more relaxed

persistency models, in which PMO may have fewer ordering constraints than VMO.

2.3.2 Epoch persistency

The epoch persistency model introduces a new memory event, the “persist barrier” (dif-

ferent from memory consistency barriers). We denote persist barriers issued by thread i

14

as PBi. Under epoch persistency, any two memory accesses on the same thread that are

separated by a persist barrier in VMO are ordered in PMO.

Mi
a ≤v PBi ≤v Mi

b→Mi
a ≤p Mi

b (2.2)

Persist barriers separate a thread’s execution into ordered epochs (persists within an epoch

are concurrent). While persist barriers order persists from one thread, epoch persistency

relies on another property, strong persist atomicity, to order persists from different threads.

2.3.2.1 Strong persist atomicity:

Memory consistency models often guarantee that stores to the same address by different

processors are serialized (this is called store atomicity). Pelley argues persistency models

should similarly provide strong persist atomicity (SPA), to preclude non-intuitive behavior,

such as recovering to states unreachable under fault-free execution [5]. SPA requires that

conflicting accesses (accesses to the same address, at least one being a store) must persist

in the order they executed.

Si
a ≤v M j

a→ Si
a ≤p M j

a

Mi
a ≤v S j

a→Mi
a ≤p S j

a

(2.3)

2.3.3 Strand persistency

Strand persistency divides program execution into strands. Strands are logically in-

dependent segments of execution that happen to execute in the same thread. Strands are

separated by the new strand (NS) memory event. New strand events from thread i are

15

denoted as NSi. The new strand event clears all prior PMO constraints from prior instruc-

tions, effectively making each strand behave as if it were a separate thread (with respect to

persistency). Memory accesses within a strand are ordered using persist barriers (Eq. 2.2).

Under strand persistency, two memory accesses on the same thread separated by a persist

barrier are ordered in PMO only if there is no intervening strand barrier. Memory accesses

across strands continue to be ordered via SPA (Eq. 2.3).

(Mi
a ≤v PBi ≤v Mi

b)∧ (6 ∃NSi : Mi
a ≤v NSi ≤v Mi

b)→Mi
a ≤p Mi

b (2.4)

2.3.4 Buffering

Pelley further suggests that buffering persists in hardware will expose more opportu-

nities to re-order and coalesce, thus improving performance. Buffering implies that some

stores, which have already been executed by a processor and are visible to other proces-

sors, might not yet have been persisted to PM. However, the hardware (memory hierarchy)

guarantees that, eventually, all these stores will persist in the order dictated by the PMO.

Buffering improves performance by ensuring that the memory hierarchy does not have

to persist an executed store immediately, but can perform the persist eventually, as long

as the correct order is maintained [5, 14]. Volatile execution and cache coherence may

proceed while the persist operation is drained lazily to PM.

16

Thread 1 Thread 2
lock L
store A
PB
unlock L

lock L
PB
store B
unlock L

(a) Lock

Thread 1 Thread 2
lock L
store A
unlock L

lock L
load A
PB
store B
unlock L

(b) Observe

Figure 2.1: Ordering persists across threads/strands: Common coding patterns to specify inter-
thread persist dependencies.

2.4 Coding patterns to order persists

The previous section described different persistency models that software can use to

specify ordering constraints among persists. We next discuss a few canonical examples to

show how software can use these interfaces. Persists on a single thread (or strand under

strand persistency) are ordered either by VMO (strict persistency) or by persist barriers

(epoch and strand persistency).

Enforcing persist order across threads is more complex; as with VMO, these orderings

must be established using conflicting accesses.

Figure 2.1 illustrates coding patterns to establish order for a simple scenario under each

model. Consider two stores to addresses A and B, executed on different threads (or strands),

which are protected by a single lock L, we assume thread 1 wins: S1
A ≤v S2

B. Our objective

is to use the persistency models to ensure that the persists of A and B follow the same order:

S1
A ≤p S2

B.

The definition of strict persistency (Eq. 2.1) ensures the desired order of persists. Below,

we describe two techniques lock and observe, employed under epoch and strand persistency

17

models to achieve the desired persist ordering.

Lock: The central intuition is to leverage the conflicting accesses of the concurrency con-

trol mechanism (i.e., locks), which establish required constraints (e.g., mutual exclusion) in

VMO, to also establish the required ordering constraints in PMO. Figure 2.1a shows how

to order persists to A and B under epoch persistency using persist barriers PB1 and PB2.

We denote the unlock operation on thread 1 as S1
L and the lock operation on thread 2 as

S2
L. The program orders of thread 1, thread 2 and the ordering property of persist barriers

(Eq. 2.2) ensures that:

S1
A ≤v PB1 ≤v S1

L→ S1
A ≤p S1

L (2.5)

S2
L ≤v PB2 ≤v S2

B→ S2
L ≤p S2

B (2.6)

From conflicting accesses to lock L and SPA (eq 2.3)

S1
L ≤v S2

L→ S1
L ≤p S2

L (2.7)

By transitivity and Eqs. 2.5-2.7, we ensure that S1
A ≤p S2

B. This same reasoning extends to

strands (instead of threads) under strand persistency.

Observe: Instead of relying on lock L for conflicting accesses, we can explicitly observe

(using loads) the specific addresses after which subsequent persists should be ordered, and

then issue a persist barrier. Figure 2.1b illustrates this pattern. S1
A’s persist is unordered

with respect to any other persist on Thread 1 or (absent L2
A and PB2 we have included)

Thread 2. Note that the lock L still ensures mutual exclusion and ordering of the (volatile)

18

execution of the critical sections but, by itself, will not order the persists of A and B. Since

thread 1 acquires lock L first, from VMO and SPA (Eq. 2.3), we have:

S1
A ≤v L2

A→ S1
A ≤p L2

A (2.8)

From the program order of Thread 2 and the ordering property of persist barriers (Eq. 2.2),

we have:

(L2
A ≤v PB2 ≤v S2

B)→ L2
A ≤p S2

B (2.9)

By transitivity and Eqs. 2.8 and 2.9, we have S1
A ≤p S2

B. Again, the above reasoning extends

to strands as well. In fact, by placing all persists on their own strands and using the observe

technique, it is possible to enforce only the required ordering constraints, even under SC.

2.5 Synchronous Ordering

Intel’s recently announced extensions [4] provide mechanisms to guarantee recovery

correctness and improve upon the performance deficiencies of clflush. Synchronous

ordering (SO) is our attempt to describe the persistency model implied by the semantics of

Intel’s ISA extensions [4]. We briefly describe the most relevant of these new instructions:

• clwb: Requests writeback of modified cache line to memory; clean copy of cache

line may be retained.

• pcommit: Ensures that stores that have been accepted to memory are persistent

when the pcommit becomes globally visible.

19

Executing a clwb instruction, by itself, does not ensure data persistence because the PM

controller is permitted to have volatile write queues that may delay a PM write even after

the clwb operation is complete. The semantics of pcommit are subtle; it is a request to

the PM controller to flush its write queues. However, pcommit execution is not implicitly

ordered with respect to preceding or following stores or clwb operations. Hence, neither

pcommit nor clwb alone assure persistence.

A store operation to cacheable (“write back”) memory is assured to be “accepted to

memory” when a clwb operation ordered after the store becomes globally visible ([4]

p. 10-8). However, since pcommit is not ordered with respect to the completion of

clwb operations, an intervening sfence is needed to ensure the clwb is globally visible.

Similarly, a fence operation is required after the pcommit to order its global visibility with

respect to subsequent stores.

With these two instructions, stores on one thread to addresses A and B can be

guaranteed to to be updated in PM in the order A < B, using the following pseudo-code:

st A;clwb A;sfence;pcommit;sfence;st B;

We refer to the code sequence sfence; pcommit; sfence as a sync barrier. The

first sfence orders the pcommit with earlier stores and clwbs, while the second orders

later stores with the pcommit.

2.6 Formalism for non-multi-copy-atomic models

In this section, we detail the semantics of buffered strict persistency when applied to

ARMv7 consistency, yielding a model that we call relaxed consistency buffered strict per-

20

sistency, or RCBSP. Because ARMv7 already allows store reordering between memory

fences, RCBSP enables concurrency among persist operations similar to what is allowed

under epoch persistency in sequentially consistent systems, without the need to introduce

new fence instructions for persists. Moreover, to account for the fact that ARMv7a is a non-

multi-copy-atomic model (unlike total store order in previous sections), we introduce new

notations to formally specify RCBSP. Next, we precisely specify RCBSP using nomencla-

ture from Pelley [5] and notation similar to that presented in chapter 2.2.

First, we add a new memory event a fence to the set of accesses (i.e. loads (Li
a) and

stores (Si
a)). Note that we use a full strength dmb [33] as our fence, details later in this

section. Further, we use the following notation for dependencies between memory events:

• Mi
a

d−→ Mi
b: An addr/data/control dependence from Mi

a to Mi
b, two accesses on the

same thread.

• Si
a

r f−→ L j
a: A load “reads from” [34] a prior store.

• Li
a

f r−→ S j
a: A store ”from reads” [34] a prior load.

We reason about three ordering relations over memory events, local memory order,

volatile memory order and persist memory order.

Local memory order (LMOi) is an ordering relation over all memory events (loads

and stores), observed by thread i, prescribed by the memory consistency model [17]. In

relaxed consistency models, especially non-multi-copy-atomic models like ARMv7 [34,

35], different threads may legally disagree on the order in which stores become visible. It

is important to note that, no thread disagrees with at least a subset of ordering relations, for

example, coherence order and orderings enforced by fence cumulativity [35, 34, 36, 37].

21

In order to account for the fact that ARMv7a is a non-multi-copy-atomic model, we use

a more precise definition of Volatile memory order (VMO). VMO is an ordering relation

over all memory events as observed by a hypothetical thread that atomically reads all con-

tents of persistent memory at the moment of failure (defined as “recovery observer” in [5]).

Note that VMO agrees with all other threads w.r.t. coherence order and fence cumulativity.

Persist memory order (PMO) is an ordering relation over all memory events but may have

different ordering constraints than any LMOi or VMO. PMO is governed by the “memory

persistency model” [5].

We denote these ordering relations as:

• A≤li B: A occurs no later than B in LMOi

• A≤v B: A occurs no later than B in VMO

• A≤p B: A occurs no later than B in PMO

An ordering relation between stores in PMO continues to imply that the corresponding

persists are ordered; that is,

A≤p B→ B may not persist before A.

Based on the relationship between VMO and PMO, Pelley classifies persistency models

into two types: strict and relaxed. Under strict persistency, the PMO is the same as VMO,

that is, a programmer uses the memory consistency model to govern both store visibility

and the order in which stores persist. Under relaxed persistency, PMO and VMO may

differ, that is, a programmer needs to reason separately about store visibility and the order

in which stores persist.

22

The motivation for relaxed persistency arises because of the use of conservative consis-

tency models such as sequential consistency (SC) and total store order (TSO). These con-

sistency models require a strict order (in VMO) for all stores and allow little re-ordering

or coalescing. Pelley shows that following the same strict order for persists (each of which

could take 100s of nano-seconds [18]), hinders performance, much like synchronous or-

dering. Relaxed persistency models allow programmers to impose a different set of con-

straints for the PMO than the VMO, thereby allowing more re-order-ing and coalescing

in the PMO. Pelley shows that the additional parallelism afforded to persists by relaxed

persistency models significantly improves performance.

Even though relaxed persistency models improve performance by exposing additional

parallelism, they increase the burden on the programmer by forcing her to reason about

two different memory models. ARMv7 consistency already enables parallelism among

memory accesses and requires reasoning about proper ordering of shared memory accesses

(including non-multi-copy-atomic stores). In this context, we consider the alternate choice

of using strict persistency. This choice of relaxed consistency and strict persistency exposes

persist parallelism but does not saddle the programmer with an additional memory model.

Instead, reasoning about recovery is akin to reasoning about an additional thread.

2.6.1 Relaxed Consistency Buffered Strict Persistency

We describe the semantics of buffered strict persistency under ARMv7 relaxed consis-

tency. Memory events on the same thread are locally ordered by:

23

• Executing a FENCE instruction between them in program order. Formally:

Mi
a;F i;Mi

b→Mi
a ≤li F i ≤li Mi

b (2.10)

• Using an address/data/control dependence between a memory access and a subse-

quent memory access in program order. Formally:

Mi
a

d−→Mi
b→Mi

a ≤li Mi
b (2.11)

Further, a thread may “observe” memory events on an another thread using “reads from”

and “from reads” dependencies [34]. Formally:

Si
a

r f−→ L j
a→ Si

a ≤l j L j
a (2.12)

Li
a

f r−→ S j
a→ Li

a ≤l j S j
a (2.13)

Memory events are globally ordered across threads using coherence and fence cumulativ-

ity [35, 36, 34, 37].

Coherence: Two stores to the same address are globally ordered, that is, all threads

agree on the order of stores (from any thread) to the same address.

∀(Si
a,S

j
a),(S

i
a ≤v S j

a)∨ (S j
a ≤v Si

a) (2.14)

24

Fence Cumulativity: Loosely, a FENCE (Fi) instruction provides ordering in VMO be-

tween the set of all memory accesses (from any thread) ordered before the FENCE (Group

GA) and the set of all memory accesses (from any thread) ordered after the FENCE (Group

GB). The set of memory accesses belonging to GA can be constructed using the following

algorithm [38, 35]:

(1) ∀Mi
a |Mi

a ≤li F i,GA = GA∪Mi
a

(2) Repeat:

(3) ∀(Mi
a ∈ GA,M

j
b)|M

j
b ≤v Mi

a,GA = GA∪M j
b

(4) ∀(Mi
a ∈ GA,M

j
b)|M

j
b ≤li Mi

a,GA = GA∪M j
b

Line (1) indicates all memory accesses thread-locally ordered before the FENCE belong

to Group GA. The next steps recursively add to GA additional accesses transitively observed

before the FENCE. Line (3) adds all accesses ordered by VMO before any in GA. Line (4)

for each access in GA, adds accesses ordered before it w.r.t its thread’s LMO in GA. The

algorithm stops when no new accesses can be added to GA.

Group GB is similarly constructed from accesses after the FENCE. Once GA and GB

are constructed, fence cumulativity offers the following guarantee:

∀(Mi
a ∈ GA,M

j
b ∈ GB),Mi

a ≤v M j
b (2.15)

The example in Figure 2.2 (a variant of the ISA2 litmus test from [34]) highlights fence

cumulativity. A FENCE (F0) instruction is executed on Core-0. So, S0
X , preceding F0, is

25

Core-0 Core-1
S0

X : St X = x
F0: FENCE
S0

Y : St Y = y
L1

Y : r1 = Ld Y
S1

Z: St Z = r1

Figure 2.2: Fence cumulativity example: This example shows shows how memory events on dif-
ferent cores may be ordered via fence cumulativity.

placed in GA. Note that S0
X is the only member of GA. S0

Y is placed in GB. We assume that

L1
Y “reads from” S0

Y , and hence gets added to GB. The data dependency between L1
Y and S1

Z ,

requires that S1
Z gets added to GB. So, from Eq 2.15, we have that S0

X ≤v S1
Z , implying that

all threads can only observe S1
Z after S0

X . Interestingly, S0
Y and Si

Z are not ordered in VMO

as they both belong to the GB.

Specifically under RCBSP, strict persistency (Eq 2.1), allows two behaviors:

1) Two stores to the same persistent address on different threads will persist in coherence

order.

2) Two stores to persistent addresses, one belonging to GA, and the other belonging to GB

of a FENCE (on any thread), will persist in order (GA before GB)

2.6.2 Discussion

When programming for persistence, to guarantee two stores persist in order, the pro-

grammer must ensure that a hypothetical thread would observe the stores in the desired

order. This requirement even holds for single-threaded applications, where programmers

rarely concern themselves with memory consistency models. Formally defining a consis-

26

tency model is a complex task [35, 36, 34, 37]. The intent behind the definitions above

is not to fully and precisely specify ARMv7, but rather to highlight the ways in which a

programmer can use the memory consistency model to order persists. We have manually

verified that our RCBSP definitions enforce required persist order for each of the litmus

tests presented in [34]. (More specifically, we confirmed that RCBSP precludes recovery

from observing outcomes forbidden by any litmus test). Nevertheless, automatic formal

verification (e.g., via a proof assistant), is beyond the scope of this thesis.

Next, we present how to implement high-performance transactions for persistent mem-

ories implemented using the persistency models described in this chapter.

27

CHAPTER III

High-performance transactions for persistent memories

3.1 Introduction

Ensuring that persistent data is consistent despite power failures and crashes is difficult,

especially when manipulating complex data structures with fine-grained accesses. One

way to ease this difficulty is to access persistent data through atomic, durable transactions,

which make groups of updates appear as one atomic unit with respect to failure. Because

of the power and convenience of transactions, many prior works propose providing them

on top of PM [11, 7, 6, 19]. We focus our analysis on static transactions (transactions for

which lock sets are known a priori), as detailed in Section 3.2.

Implementing transactions on PM requires the ability to order writes to the NVRAM.1

Memory persistency models described in the previous chapter allow developers to specify

the desired order of persists, and its the responsibility of the hardware to enforce the persist

order. This chapter considers how to implement PM transactions in a way that minimizes

persist dependencies using various persistency models. We show that a simple transaction

1Ensuring recoverability without transactions also requires the ability to order writes.

28

system design enforces many unnecessary persist dependencies and that these dependen-

cies greatly slow down common transaction workloads. And, that most of the unnecessary

dependencies arise as a consequence of performing the commit step of the transaction while

locks are held, and how to remove these dependencies by deferring this commit until after

locks are released.

We first derive the minimal persist ordering requirements to implement correct trans-

actions under an idealized programming interface that can specify arbitrary ordering con-

straints to hardware (Section 3.2). However, such a programming interface is unrealistic;

we use practical persistency models from Chapter II to express persist dependencies. We

then analyze a straightforward transaction implementation, synchronous commit transac-

tions (SCT), demonstrating how it overconstrains persist ordering (Section 3.3). Instead,

we propose deferred commit transactions (DCT), which can achieve minimal ordering con-

straints under sufficiently expressive interfaces (Section 3.4). We evaluate our transaction

implementations using the TPCC and TATP transaction processing workloads (Section 4.4)

and end with a survey of related work (Section VI).

3.2 Transactions under Idealized Ordering

It is not easy for software to express persist dependencies. Simply ordering the instruc-

tions that store data to PM is not sufficient: writes to memory (including PM) are cached

and may not be written from the CPU cache to PM in the same order the corresponding

instructions were executed [32].

29

In this section, we suppose that software has the ability to specify precisely the persist

dependencies for all writes to PM. While this is unrealistically expressive, it provides a

useful baseline upon which to build an idealized transaction system that minimizes persist

dependencies. In later sections, we implement transactions built on more realistic inter-

faces and show how a naive implementation of transactions on these interfaces introduces

unnecessary ordering constraints.

The most precise way to specify persist dependencies is as a partial order over all per-

sists. This partial order can be expressed as a directed acyclic graph (DAG), where a node

in the graph represents a persist, and an edge exists from node A to node B iff the persist

represented by node A must occur no later than the persist represented by node B (note

that this condition can be satisfied by performing the two persists atomically). In a system

with idealized ordering, the software can express a constraint between any two persists,

including persists that occur on separate threads.

We next describe how to build a simple transaction system, given the ability to express

general partial orders over all PM writes.

3.2.1 Transaction design

There are many ways to implement transactions [39], with one basic design choice be-

ing which version to log of the data being modified in a transaction: the data before the

modification (undo logging [40, 11, 41]), the data after the modification (redo logging [7]),

or both (e.g., ARIES [20]). In this chapter, we implement transactions with undo log-

ging. We believe this design fits well with storing data directly in PM: both committed

and uncommitted data are stored in place, so software can always read the most recent data

30

directly from the in-place data structure (assuming appropriate locks are held). In con-

trast, if transactions are implemented with a redo log, reads of uncommitted data must be

intercepted and redirected to the redo log.

We further implement several common optimizations required to achieve high transac-

tion concurrency. We implement per-thread, distributed logs [7, 21], to avoid the scalability

constraints of a centralized log. Our undo log records a copy of data (physical undo records)

before it is mutated rather than a “synchronous log-and-update” approach (like PMFS [41]),

as the latter requires more persist ordering constraints. We leverage checksum-based log

entry validation [42] so that non-atomic writes to a log entry can proceed in parallel, but

recovery software can deduce whether a log record was fully written without requiring a

separate “valid” bit. This optimization eliminates one persist ordering constraint and is

similar to the torn-bit optimization in Mnemosyne [7] and eager commit [19]. We assume

concurrency control via arbitrarily fine-grain locking—a transaction must hold all required

locks before executing (i.e. static transactions). Requiring a transaction to hold all locks

before executing implies that all the data that can possibly be modified by the transaction is

known a priori. If such knowledge is not available, a program must execute a read phase to

identify all regions it might touch and acquire all locks, and then begin execution (similar

to the approach used to implement deterministic transactions [43]).

Figure 3.1(a) depicts the high-level steps of an undo-logging transaction. Steps outlined

in a dotted box modify only volatile memory locations; those outlined in a solid box write

to persistent memory. We briefly describe each step:

31

NprepareLogEntry (P) 1

lockDS (L)

Persist Volatile

P1

M1

C1

P2

M2

C2

P1

M1

C1

P2

M2

C2

ConflictingNon-conflicting

(a)

NmutateDS (M) 1

commitTransaction (C)

unlockDS (U)

P3

M3

C3
(b)

Figure 3.1: Ideal undo-loggins transactions: (a) Steps in an undo transaction. (b) Persist depen-
dencies in a transaction sequence.

• lockDS (L): Acquire all locks to ensure mutual exclusion of the transaction. Locks

are held in volatile memory.

• prepareLogEntry (P): Allocate log space and copy the prior state of all data that

will be mutated to the log.

• mutateDS (M): Modify the data structure in place.

• commitTransaction (C): Commit the transaction by marking the undo log entry

invalid; the transaction will no longer be undone during recovery.

• unlockDS (U): Release all locks acquired by lockDS.

We represent transactions with three persist nodes, corresponding to the three steps that

perform durable writes, prepareLogEntry (P), mutateDS (M) and

commitTransaction (C).

32

3.2.2 Minimal Persist Dependencies

We next analyze the minimal persist dependencies required for correct recovery of an

undo-logging transaction. We consider two transactions, Tm and Tn, which acquire lock sets

Locksm and Locksn, respectively. The transactions conflict if their lock sets intersect (i.e.,

they mutate overlapping data). We require order across conflicting transactions (the order

in which they acquire locks); the subscripts indicate this order—in our example, m < n.

transactionStepm indicates completion of a particular step in the transaction Tm (and all its

associated persists). Recovery correctness requires the following order relationships:

prepareLogEntrym ≤p mutateDSm

mutateDSm ≤p commitTransactionm

(3.1)

(3.2)

∀(m,n) :

(unlockDSm ≤v lockDSn)∧ (Locksm∩Locksn 6= φ)

prepareLogEntrym ≤p prepareLogEntryn

mutateDSm ≤p mutateDSn

commitTransactionm ≤p commitTransactionn

(3.3)

(3.4)

(3.5)

• Within one transaction, the log entry must be complete before data structure mutation

(Eq. 3.1), and mutation must be complete before the transaction commits (Eq. 3.2).

These dependencies ensure that any incomplete transaction can be rolled-back during

recovery.

33

• Between conflicting transactions, preparing the log, mutating data, and commit must

be ordered (Eqs. 3.3, 3.4, 3.5). These dependencies ensure that: (1) Mutations from

conflicting transactions persist in lock-acquisition order (Eq. 3.4). (2) During recov-

ery, active log entries from conflicting transactions can be undone in the appropriate

order (Eqs. 3.3, and 3.5). Note that no dependencies exist between non-conflicting

transactions.

Next, we discuss how the above constraints ensure recovery correctness.

Intra-transaction: Once a transaction begins, if failure occurs, one of two scenarios

arise.

• No valid log entry: As per Eqs. 3.1 and 3.2, the transaction has either successfully

committed or hasn’t finished preparing a log. In either case, the data structure is in a

consistent state; no recovery is required.

• Valid log entry: In this case, the data structure is recovered to a consistent state using

the log entry, which undoes all mutations.

Note that it is unnecessary to distinguish a partially from a fully written log entry, since an

incomplete undo record has no effect.

Inter-transaction: Since persists from multiple conflicting transactions may be in-

flight at the same time, a situation might arise where a particular region of the data struc-

ture has multiple associated log entries during recovery. We analyze the scenario with two

conflicting log entries, which readily generalizes to additional entries. As above, let Tm

and Tn be the conflicting transactions, such that m < n and let Logm and Logn be the corre-

sponding log entries. Since we know log entries of conflicting transactions are created and

34

committed in order (Eqs. 3.3 and 3.5), one of three possible scenarios might arise during

recovery:

• Both Logm and Logn exist: If multiple undo logs exist, the recovery system should

undo the transactions from youngest to oldest, according to the order locks were

acquired. It determines this order by consulting lock-acquisition timestamps, which

are recorded in the log entries. Logn must be undone before Logm. Therefore, the

recovery mechanism must know the order of the transactions (i.e., the order locks

were acquired).

• Only Logn exists: In this case, only one log entry has to be undone. Eq. 3.5 precludes

the case where Logm exists but transaction n has committed.

• Neither exist: In this case, both the transactions have successfully committed and

hence no undo operations are required.

The “mutate in order” constraint (Eq. 3.4) ensures that the data structure mutations are

performed in the serialized order of the conflicting transactions, which is required in the

common case where no failure occurs. Hence, we have shown that the all the constraints

mentioned in this section are required by the recovery mechanism.

3.2.3 Persist critical path analysis

In later sections, we evaluate alternative transaction implementations by comparing

their persist dependency critical path to the ideal persist dependency DAG. Conflicting

transactions incur additional dependencies that are absent among non-conflicting transac-

tions. Hence, we characterize the critical path under two extreme scenarios, one where all

35

transactions are non-conflicting, and one where all transactions conflict. Figure 3.1(b) de-

picts the ideal DAG for conflicting and non-conflicting transaction sequences. Nodes in this

figure correspond to the (concurrent) sets of persist operations performed in each transac-

tion step (we omit steps that modify only volatile state). Edges indicate persist dependency

between nodes (more precisely, pairwise persist dependencies between all persists repre-

sented by each node).

Under each scenario, we assume x transactions are performed, and t threads concur-

rently execute those transactions. In the non-conflicting scenario, the x transactions all

acquire disjoint locks and modify disjoint data. Therefore, there are no persist order depen-

dencies across threads; the critical path is determined solely by persist ordering constraints

that arise on a single thread. In this scenario, the ideal persist critical path length is 3—the

intra-transaction ordering constraints—independent of x or t.

In the conflicting scenario, we assume all x transactions mutually conflict (they all

require a lock in common). Therefore, the persist critical path follows the total order of

these x transactions, as established by the order the locks are acquired. In this case, the

persist critical path propagates through the commit node of each transaction, resulting in a

critical path length of x+2 persist operations. Again, the critical path is independent of the

number of threads t.

While persist critical paths for an ideal DAG are quite short, achieving this ideal is

difficult with currently proposed programing interfaces, as we show next.

36

N

NprepareLogEntry(P) 1

lockDS()

mutateDS(M) 1

commitTransaction(C)

unlockDS()

SB1

SB3

SB2

P1

M1

C1

Non-conflicting Conflicting

Thread 3

Thread 1

⋱
(b) SCT under synchronous ordering (d) Persist critical path (epoch persistency)

NprepareLogEntry(P) 1

lockDS()

NmutateDS(M) 1

commitTransaction(C)

unlockDS()

PB1

PB2

PB4

(c) SCT under strand persistency

NS1

PB3
P2

M2

C2

P3

P1

M1

C1

P2

M2

C2

P3

⋱

Thread 1

Thread 2

NS2

N

NprepareLogEntry(P) 1

lockDS()

mutateDS(M) 1

commitTransaction(C)

unlockDS()

PB1

PB2

PB4

PB3

(a) SCT under epoch persistency

Figure 3.2: Synchronous-commit transaction designs: Synchronous-commit transactions under
epoch persistency, synchronous ordering, and strand persistency. The red arrows in (d) represent
the unnecessary dependencies enforced when compared to the minimal dependencies shown in Fig-
ure 3.1(b).

3.3 Synchronous commit transactions (SCT)

Section 3.2 showed how to implement transactions under an idealized programming

model allowing arbitrary persist dependencies. We next examine how to implement trans-

actions using more realistic mechanisms.

We first discuss an intuitive transaction implementation, which we call synchronous

commit transactions (SCT). However, as we will show, SCT enforces unnecessary persist

dependencies and overconstrains the persist critical path. Below, we describe and ana-

lyze SCT under epoch persistency, synchronous ordering, and strand persistency (we omit

analysis under strict persistency; all our designs will work under strict persistency).

3.3.1 SCT under Epoch Persistency

Epoch persistency enforces intra-thread persist dependencies via persist barriers, and

inter-thread dependencies (for conflicting transactions) via persist barriers and SPA (Eq. 2.3).

Figure 3.2(a) depicts a synchronous-commit transaction annotated with the four persist bar-

riers required for correctness.

37

Intra-transaction dependencies: PB2 and PB3 ensure proper intra-transaction order-

ing of prepareLogEntry, mutateDS, and commitTransaction (Eqs. 3.1 and 3.2).

Inter-transaction dependencies: Conflicting transactions (Tm and Tn) are synchro-

nized through the common locks in their lock sets and hence through unlockDSm and

lockDSn. Since Tm happens in VMO before Tn, from SPA (Eq. 2.3), we have:

unlockDSm ≤v lockDSn→ unlockDSm ≤p lockDSn

The VMO of prepareLogEntry, PB2 (or PB3 or PB4), and unlockDS in Tm imply:

prepareLogEntrym ≤p unlockDSm

The VMO of lockDS, PB1, and prepareLogEntry in Tn imply:

lockDSn ≤p prepareLogEntryn

Applying transitivity to the above three equations, we observe that conflicting transactions

prepare their log entries in order, satisfying Eq. 3.3. It is important to note that PB1 is criti-

cal to ensuring the correct order. Similarly, the VMO of lockDS, PB1 (or PB2), mutateDS,

PB3 (or PB4), and unlockDS ensures that conflicting transactions mutate the data structure

in order, satisfying Eq. 3.4. VMO of lockDS, PB1 (or PB2 or PB3), commitTransaction,

PB4, and unlockDS ensure that conflicting transactions commit in order, satisfying Eq. 3.5.

Thus, the four persist barriers in Figure 3.2(a) are necessary and sufficient to ensure

transactional persist ordering requirements. Unfortunately, these four persist barriers create

38

a persist critical path longer than the path that would be possible had the software been able

to specify the precise dependencies between all persists (Section 3.2).

From the VMO of commitTransaction, PB4, and unlockDS in Tm and Eq. 2.2, we have:

commitTransactionm ≤p unlockDSm

Similarly, VMO of lockDS, PB1, and prepareLogEntry in Tn implies:

lockDSn ≤p prepareLogEntryn

We have already shown:

unlockDSm ≤p lockDSn

Applying transitivity to the above three equations, we have:

commitTransactionm ≤p prepareLogEntryn

So, under epoch persistency, conflicting transactions are serialized. Moreover, transac-

tions on the same thread are always serialized, even if they do not conflict. Figure 3.2(d)

shows the persist critical path under epoch persistency: 3x for conflicting transactions and

3(x/t) for non-conflicting transactions. Both are longer than the minimal critical path (Fig-

ure 3.1(b)). Whereas SCT under epoch persistency is simple and intuitive, performing all

steps of a transaction while holding locks overconstrains the persist dependency graph and

lengthens the persist critical path.

39

3.3.2 SCT under Synchronous Ordering

Synchronous ordering enforces both intra-thread and inter-thread (for conflicting trans-

actions) persist dependencies via sync barriers. Figure 3.2(b) depicts a synchronous-commit

transaction annotated with the three sync barriers required for correctness. We also assume

that all the CLWBs required to be issued before the sync barriers are issued along with the

stores in the functions prepareLogEntry, mutateDS and commitTransaction.

Intra-transaction dependencies: SB1 and SB2 ensure correct intra-transaction order-

ing of prepareLogEntry, mutateDS, and commitTransaction, satisfying Eqs. 3.1,3.2.

Inter-transaction dependencies: We again consider conflicting transactions Tm and

Tn. SB3 ensures unlockDSm is not globally visible until commitTransactionm persists.

prepareLogEntryn cannot be executed until Tn acquires its locks (lockDSn), which happens

after unlockDSm becomes globally visible. By stalling the global visibility of unlockDSm

until commitTransactionm persists (because of SB3), we ensure that:

commitTransactionm ≤p prepareLogEntryn

It is important to note that a sync barrier between LockDS and prepareLogEntry is not

required to achieve the above dependency. The above dependency is the same (over-

constraining) dependency incurred under epoch persistency, which serializes all conflicting

transactions. SB3 also enforces that non-conflicting transactions within the same thread

are serialized (as under epoch persistency). SCT under synchronous ordering enforces the

same ordering constraints as SCT under epoch persistency, resulting in the same persist

critical path (Figure 3.2(d)).

40

3.3.3 SCT under Strand Persistency

Strand persistency makes it possible to remove unnecessary persist dependencies be-

tween transactions on the same thread (left graph of Figure 3.2(d)) by placing the transac-

tions on different strands. Our implementation of SCT is shown in Figure 3.2(c). We start

and end every transaction on a new strand (NS1, NS2 in Figure 3.2(c)). As a result, each

transaction behaves as if on its own logical thread (from the perspective of the persistent

memory, from Eq. 2.4). Such a design removes the dependence between successive non-

conflicting transactions on the same thread. Conflicting transactions continue to be ordered

due to the dependencies caused by the lock/unlock operations (as under epoch persistency).

It is important to note that in the SCT design for strand persistency (Figure 3.2(c)),

NS1 ensures that each transaction starts on a new strand, and NS2 ensures that memory

events executed after the transaction (but prior to the next transaction), don’t end up se-

rializing transactions on the same thread. For example, transaction systems may perform

some book-keeping (say, update transaction count) at the end of every transaction. Without

NS2, such bookkeeping could end up causing conflicts between otherwise non-conflicting

transactions.

To achieve high concurrency, our SCT implementation uses per-thread (distributed)

logs. In practice, log space is limited, and must ultimately be recycled. As a consequence,

transactions that share no locks may nonetheless conflict if they reuse the same log space.

We enforce the necessary ordering by adding a lock for the log entry to the transaction’s

lock sets.

41

Under ideal implementations of strand persistency, the achievable persist concurrency is

limited only by the available log space. In practice, we expect future systems to limit strand

concurrency. In a system with t threads and s strands, the maximum concurrency under

strand persistency is similar to a system with s × t threads under epoch persistency. Under

strand persistency, the SCT persist critical path for non-conflicting transactions improves

to 3(x/st) (the persist critical path for conflicting transactions remains 3x). Whereas strand

persistency improves the SCT persist critical path, it remains longer than the theoretical

minimum.

3.4 Deferred commit transactions (DCT)

SCT generates longer critical paths than needed when implemented on realistic per-

sistency models. In this section, we describe deferred commit transactions (DCT), which

generate shorter critical paths than SCT.

The key idea in DCT is for a transaction to release locks after mutating the data structure

and to defer commit until later. This idea has been explored as a mechanism for managing

lock contention for transaction systems with a centralized log [22]. We use this idea to

break the persist order dependence between commitTransaction and prepareLogEntry of

consecutive conflicting transactions. However, performing the commit after the lock re-

lease implies that the persists from commitTransaction are no longer synchronized by the

respective locks and could result in conflicting transactions committing out of order. 2 To

ensure that conflicting transactions commit in order (Eq. 3.5) we modify transactions to

explicitly track (in volatile memory) their predecessor conflicting transactions and commit
2This is not a problem with a centralized log, as they are serialized by the lock for the log.

42

NprepareLogEntry(P) 1

recordPrevConflicts

lockDS

NmutateDS(P) 1

unlockDS

spinOnConflicts

commitTransaction(C)

PersistVolatile Persist barrier

PB1

PB2

PBx

(Deferred commit)

{More transactions

P1

M1

C1

P2

M2

C2

P3

M3

C3

Non-conflicting Conflicting

Thread 1

P1

M1

C1

P2

M2

C2

P3

M3

C3

Thread 1

(a) DCT under epoch persistency

Thread 2

Thread 3

(b) Persist critical path

Figure 3.3: Deferred-commit transaction design for epoch persistency: Deferred-commit trans-
actions under epoch persistency and the resulting persist ordering constraints.

after all predecessors have committed. Next, we describe DCT implementations under the

three persistency models.

3.4.1 DCT under Epoch Persistency

Figure 3.3(a) shows the implementation of DCT and the associated “deferred-commit”

block.

Intra-transaction dependencies: Persist barrier PB2 helps satisfy Eq. 3.1 by guaran-

teeing that prepareLogEntry is ordered before mutateDS. The commit-after-mutate rule

(Eq. 3.2) is ensured by PBx (a barrier from a subsequent transaction).

Inter-transaction dependencies: For conflicting transactions Tm and Tn, the persist

barriers PB1 and PB2, along with the SPA guarantees of unlockDSm and locksDSn, ensure

that the log entries are prepared in order, satisfying Eq. 3.3. SPA (Eq. 2.3) of the conflicting

43

regions of the data structure ensure that Eq. 3.4 is satisfied. DCTs need to explicitly track

prior conflicting transactions to ensure the commit-in-order rule (Eq. 3.5). We achieve this

order by having the transaction spinOnCon f lict (conflicts are recorded in the log entry)

after the lock release and then commitTransaction following a persist barrier PBx. It is

important to note that, instead of having a designated barrier to order the commit, we rely

on a barrier from a subsequent transaction. As a result, the commitTransaction step may

occur concurrently with persists from a subsequent transaction and does not add to the

persist critical path. Next, we describe the challenges that arise from deferring commits

and the bookkeeping required to address them.

3.4.1.1 Inferring undo order during recovery

By allowing transaction commits to be deferred, we can arrive at a state where multiple

conflicting uncommitted transactions must apply undo log entries at recovery. The recovery

protocol must infer the order of these log entries and perform the undo operations in re-

verse order. As we use distributed logs, deducing this order is non-trivial. Mnemosyne [7]

uses a single global atomic counter to assign each new transaction an incrementing global

timestamp (log entries can be undone in the decreasing order of timestamps). However,

such an approach implies that all transactions conflict (they all update the global counter),

and results in an artificially conflated persist critical path. One might consider recording a

timestamp in each log entry, but reliably ordering nearly concurrent events via wall-clock

timestamps is challenging, especially if execution is distributed over multiple cores/chips.

Since we only need to order log entries for conflicting transactions, we extend all

locks to contain logical time stamps (i.e., Lamport clocks [24]). When a transaction ac-

44

quires a lock, it records and increments the current lock timestamp, ensuring subsequent

conflicting transactions will see a higher timestamp. Timestamps are logged in the new

recordPrevCon f licts function, shown in Figure 3.3(a). If a transaction acquires multiple

locks, all of their timestamps must be recorded. Recovery uses these timestamps to deduce

the correct undo order.

3.4.1.2 Enforcing correct commit order

To ensure correct recovery, conflicting transactions must commit in order. DCT requires

an explicit software mechanism to track and enforce this order. We extend each lock with

a pointer to the log entry of the last transaction to acquire that lock. When a transaction

acquires all of the locks in its lock set, it records the pointers to previous conflicting trans-

actions (one per lock) in volatile memory, shown as recordPrevCon f licts in Figure 3.3(a).

Then, it records a pointer to its own log entry in each lock.

At commit, a transaction must verify that preceding conflicting transactions have com-

mitted. Using the recorded pointers, it examines each preceding log entry for a com-

mit marker, spinning until all are set (spinOnCon f licts in Figure 3.3(a)). However, if a

log entry is recycled, its commit marker is now stale. Along with the commit marker,

recordPrevCon f licts records a log generation number associated with every log entry. The

log generation number is incremented if the log entry is recycled. The combination of

the commit marker and the log generation number is used to deduce whether an earlier

transaction has committed.

Once all of the conflicting log entries are committed, the transaction may commit

(commitTransaction in Figure 3.3(a)). (Note that, rather than simply spinning, an in-

45

telligent transaction manager could instead further defer commit and execute additional

transactions on this thread). The spin loop prior to commit orders conflicting transactions

in VMO. A persist barrier is required between spinOnCon f licts and commitTransaction

(PBx) to ensure the conflicting transaction commits are also ordered in PMO.

3.4.1.3 Persist critical path analysis

Figure 3.3(b) shows the persist critical path for DCT under epoch persistency. DCT

succeeds in matching the critical path length of the ideal dependence DAG for conflicting

transactions as derived in Section 3.2. For transactions on a single thread, it reduces the

critical path by allowing commit operations to be batched.

For non-conflicting transactions on the same thread, the prepareLogEntry and mutateDS

steps remain (unnecessarily) serialized. The commitTransaction step overlaps with the

prepareLogEntry step of the subsequent transaction. Hence, the non-conflicting persist

critical path length is (2(x/t) + 1). For conflicting transactions, the persist critical path

traverses the commitTransaction step of each transaction, and its path length is x+2.

3.4.2 DCT under Synchronous Ordering

The implementation of DCT under the synchronous ordering persistency model is shown

in Figure 3.4(a). While similar to the DCT implementation under epoch persistency, we re-

quire some subtle changes to account for the differences between a persist barrier and a

sync barrier detailed in Section 2.5. It is important to note that we require only one sync

barrier within the transaction, rather than the two persist barriers required for DCT under

epoch persistency.

46

NprepareLogEntry(P) 1

recordPrevConflicts

lockDS

NmutateDS(P) 1

unlockDS

spinOnConflicts

commitTransaction(C)

PersistVolatile Sync Barrier

SB1

SBx

(Deferred commit)

{More transactions

P1

M1

C1

P2

M2

C2

P3

M3

C3

Non-conflicting Conflicting

Thread 1

P1

M1

C1

P2

M2

C2

P3

M3

C3

Thread 1

(a) DCT under synchronous ordering

Thread 2

Thread 3

(b) Persist critical path

{More transactions
SBy

commitPersisted

Figure 3.4: Deferred-commit transaction design for synchronous ordering: Deferred-commit
transactions under synchronous ordering and the resulting persist ordering constraints.

Intra-transaction dependencies: The sync barrier SB1, ensures order between prepareLogEntry

and mutateDS, satisfying Eq. 3.1. The sync barrier Sbx (which belongs to a subsequent

transaction) ensures that mutateDS and commitTransaction are ordered correctly, satisfy-

ing Eq. 3.2.

Inter-transaction dependencies: We discuss inter-transaction dependencies using two

conflicting transactions Tm and Tn. Within Tm, SB1, ensures that unlockDSm doesn’t become

globally visible until prepareLogEntrym becomes persistent. In transaction Tn, prepareLogEntryn

cannot be executed before the locks are acquired using lockDSn. However, lockDSn cannot

be completed until unlockDSm becomes globally visible. Transitively, SB1, ensures that

log entries are prepared in order, satisfying Eq. 3.3. Cache coherence ensures that at any

47

given time, only the latest values of any conflicting regions of the data structure persist,

satisfying Eq. 3.4.

Since SPA (Eq. 2.3) is not provided under eager sync, we cannot use the same coding

pattern as used in the epoch persistency DCT implementation to ensure conflicting trans-

actions commit in order. Instead, we have a commitPersisted bit associated with every

log entry, which is set after commitTransactionm is guaranteed to be have persisted (en-

sured by SBy in Figure 3.4(a)). We modify the spinOnCon f lict function to spin on the

commitPersisted bits of conflicting transactions, rather than the log entries. Once a trans-

action observes that the commitPersisted bit of earlier conflicting transactions have been

set, it can be committed and be certain that the correct commit order has been followed.

It is important to note that we do not need dedicated sync barriers, SBx and SBy, for

every transaction. We instead rely on sync barriers from a subsequent transaction, implying

that both mutateDS and commitTransaction are persisted concurrently with later transac-

tions. So, only the persists belonging to prepareLogEntry fall on the persist critical path

on a single thread, as depicted in Figure 3.4(b). For non-conflicting transactions, the per-

sist critical path traverses all the prepareLogEntry steps of each transaction executed on

one thread and is x/t + 2. For the conflicting case, the persist critical path traverses the

commitTransaction step of all the transactions and is x+ 2. Note that DCT under eager

sync incurs a shorter persist critical path than under epoch persistency for non-conflicting

transactions, whereas they exhibit the same persist critical path for conflicting transactions.

Discussion: DCT under eager sync and Mnemosyne (asynchronous mode) [7] are simi-

lar in that each transaction may add at most one persist epoch delay to the execution critical

path. Whereas DCT amortizes the cost of mutateDS and commitTransaction over subse-

48

NprepareLogEntry(P) 1

recordPrevConflicts

lockDS + lockLog

NmutateDS(P) 1

unlockDS

spinOnConflicts

commitTransaction(C)

PersistVolatile Persist Barrier

PB1

PB2

PB3
(Deferred commit)

{More transactions

P1

M1

C1

P2

M2

C2

P3

M3

C3

Non-conflicting Conflicting

Thread 1

P1

M1

C1
P2

M2

C2
P3

Thread1

(a) DCT under strand persistency

Thread 2

Thread 3

(b) Persist critical path

⋱

NS1

New Strand

NS2
unlockLog

PB4

Figure 3.5: Deferred-commit transaction design for strand-persistency: Deferred-commit trans-
actions under strand persistency and the resulting persist ordering constraints.

quent transactions on the same thread, Mnemosyne offloads log truncation to a separate

helper thread.

3.4.3 DCT under Strand persistency

Figure 3.5(a) shows our implementation of DCT under strand persistency. As with the

SCT implementation under strand persistency, we expose additional persist concurrency

by placing each transaction on a new strand, removing the dependencies between non-

conflicting transactions on the same thread. Similar to SCT, we introduce a log entry lock

to a transaction’s lock set, so that transactions which conflict on a log entry are serialized.

The log entry lock is acquired along with all the other locks in a transaction’s lock set.

However, the log entry is only released after commitTransaction, serializing transactions

that share log space. Figure 3.5(b) shows the persist critical paths for the conflicting and

49

Non-conflicting Conflicting
Persistency Model SCT DCT SCT DCT

Epoch 3x/t 2x/t +1 3x x+2
Synchronous ordering 3x/t x/t +2 3x x+2

Strand 3x/st 3x/st 3x x+2
Notation: x-transactions, t-threads, s-strands/thread

Table 3.1: Persist critical path lengths summary: Summary of the persist critical path lengths
observed with SCT and DCT for different persistency models.

non-conflicting scenarios. In the conflicting case, as under epoch persistency, the persist

critical path passes through the commitTransaction step of each transaction, leading to the

ideal persist critical path length of x+ 2 edges. In the non-conflicting case, the persist

dependency critical path improves, but may still fall short of the ideal DAG if the number

of strands supported in hardware is limited. The persist critical path for non-conflicting

transactions goes through transactions which share log space and is 3x/st where t is the

number of threads and s the number of strands per thread (similar to SCT under strand).

With support for at least two strands per thread, DCT under strand persistency outperforms

DCT under epoch persistency.

Table 3.1 summarizes the critical paths for SCT and DCT under various persistency

models and workloads.

3.5 Evaluation

We evaluate transactional systems implementing both SCT and DCT to examine their

performance trade-off as a function of persist latency for two transaction processing work-

loads. In general, we expect DCT to have slower volatile execution performance, due to the

bookkeeping overheads required to order commits. However, as persist latency increases, it

50

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. persist epoch latency (us)

0

1

2

3

4

5

Th
ro

ug
hp

ut
(M

TP
S

)

Eager sync
Epoch
Strand

(a) Update Location (SCT)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. persist epoch latency (us)

0

1

2

3

4

5

Th
ro

ug
hp

ut
(M

TP
S

)

Eager sync
Epoch
Strand

(b) Update Location (DCT)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. persist epoch latency (us)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
(M

TP
S

)

Eager sync
Epoch
Strand

(c) New Order (SCT)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Avg. persist epoch latency (us)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
(M

TP
S

)

Eager sync
Epoch
Strand

(d) New Order (DCT)

Figure 3.6: Evaluation of SCT vs DCT: SCT and DCT performance for Update Location and New
Order under various persistency models.

rapidly becomes the performance bottleneck, and DCT overtakes SCT. As the PM program-

ming interface remains unclear, we also compare the performance achieved under different

persistency models for both SCT and DCT. Strict persistency performs much worse than

all other persistency models, so we omit it from the discussion.

3.5.1 Methodology

We implement our transactional systems as a C++ library providing a simple API com-

prising only three entry points: beginTransaction(), prepareLogEntry(), and

51

endTransaction(). The system manages bookkeeping, log serialization, commit or-

dering, and inserting the necessary barriers to enforce persist dependencies.

Because memory-bus-attached PM devices are not yet available, we use a region of

DRAM as a proxy. We execute our workloads writing persistent data to DRAM to establish

their volatile execution performance. We then re-execute the workloads with lightweight

pin instrumentation [44] to record all persist operations and barriers. From these traces, we

construct the persist critical path (taking into account ordering within and across threads).

We assume 8-byte atomic persists.

Under epoch and strand persistency, overall throughput is limited by the slower of

volatile execution and the latency to drain all persists. However, in the case of synchronous

ordering, overall throughput is limited by volatile execution, which includes the stalls as-

sociated with executing the sync barriers. The overhead of a sync barrier only includes the

latency to make the stores persistent and does not include the costs associated with issuing

and executing the corresponding CLWBs.

As the hardware characteristics, raw device latency, and scheduling limitations of a

practical persistent memory system are as yet unknown, we vary our assumption for persist

performance and report the resulting throughput. Cumulative persist latency is determined

by how fast, on average, an epoch of persists can drain subject to queueing, scheduling,

device-level concurrency, and coalescing effects. We abstract these effects as a single av-

erage latency per persist epoch (i.e., latency per dependency edge in the critical path). As

we expect persist throughput to be the performance bottleneck when transactions are short,

load on the persistent memory system will be high and queueing delays substantial. Hence,

52

the average persist epoch latency is likely a small integer multiple of the PM device latency,

we study the the range of 0-4µs.

We perform experiments on an Intel Xeon E5645 processor (2.4GHz). We analyze

throughput for transactions selected from two widely studied transaction processing work-

loads. We study the New Order transaction from TPCC [45], which is its most frequent

write transaction. A New Order transaction simulates a customer buying different items

from a local warehouse. The transaction is write-intensive and requires atomic updates to

several tables. We also study the Update Location transaction from TATP [46], a bench-

mark that models a mobile carrier database. Update Location records the hand-off of a

user from one cell tower to another. In contrast to New Order, Update Location transac-

tions are much shorter, updating a small record in a single table. We execute workloads for

10M transactions running on four threads. We assume four strands per thread under strand

persistency.

3.5.2 Performance analysis

Figure 3.6 contrasts SCT and DCT performance across workloads, persistency models,

and average persist epoch latencies depicting throughput (millions of transactions per sec

(MTPS)) versus persist epoch latency (micro seconds).

Each performance result with epoch and strand persistency (Figure 3.6) comprises a flat

region, followed by a curve where throughput rapidly falls off. In the flat regions, where

average persist epoch latency is low, overall throughput is limited by volatile execution. At

the knee, which we call the “break-even” latency, volatile execution and the persist critical

path are equal. Higher break-even latency implies tolerance for slower PM technologies.

53

Performance then drops off rapidly as average persist epoch latency increases and asymp-

totically reaches zero. In contrast, for synchronous ordering, since sync barriers cause stalls

in volatile execution, performance begins to drop-off at the first non-zero average persist

epoch latency.

Volatile execution performance of SCT exceeds DCT. As expected, the additional

bookkeeping required to implement DCT penalizes volatile execution speed—SCT trans-

actions are faster than DCT transactions (if persist epoch latency is neglected) by 20%,

25% for Update Location and New Order respectively.

SCT performance across persistency models: Figures 3.6(a) and 3.6(c) show the

performance of SCT, for Update Location and New Order, for different persistency models.

SCT under synchronous ordering always performs worse than under epoch persistency.

This behavior is to be expected as SCT exhibits similar persist critical paths under epoch

persistency and synchronous ordering. With similar persist critical paths, the performance

under epoch persistency is always better than under synchronous ordering. Under epoch

persistency, performance is determined by the slower of volatile execution and time taken

to drain the persists. However, in the case of synchronous ordering, the time taken to drain

persists (stalls due to sync barriers), slows volatile execution.

Also, as expected, SCT performs better under strand persistency than under epoch per-

sistency, due to a shorter persist critical path. Hence, SCT performs best under strand

persistency and the worst under synchronous ordering.

DCT performance across persistency models: The performance trade-offs for DCT

are more complex. Figure 3.6(b) shows that the performance of DCT under epoch persis-

tency is worse than under synchronous ordering above 1µs persist latency. DCT incurs a

54

longer persist critical path under epoch persistency than under synchronous ordering, es-

pecially for workloads where transactions rarely conflict, like Update Location. Hence,

beyond the break-even latency, the performance under epoch persistency declines faster

than under eager sync.

For New Order (Figure 3.6(d)), we see that DCT performs better under epoch persis-

tency than under synchronous ordering. This behavior is caused by multiple factors: (1)

The break-even latency for epoch persistency is 2.5µs, so epoch persistency performance

degrades only for persist latencies above 2.5µs. (2) New Order has more conflicting trans-

actions than Update Location, so the difference in persist critical path between epoch and

synchronous ordering is smaller. (3) The crossover point at which synchronous ordering

begins outperforming epoch persistency lies beyond 4µs, which is not shown in the graphs.

It is not clear that a memory technology that incurs more than 4µs average persist epoch

latency is viable as a main memory.

As expected, DCT under strand persistency performs best for both workloads (Fig-

ures 3.6(b) and 3.6(d)) as the persist critical path under strand persistency is the shortest.

SCT vs. DCT across persistency models: The performance trade-off (for all persis-

tency models) between SCT and DCT depends upon two competing factors: (1) the better

volatile performance of SCT, and (2) the shorter persist critical paths of DCT. As a result,

for lower average persist epoch latencies, SCT performs better, but as latency increases,

DCT outperforms SCT by up to 50% under epoch and strand persistency and 150% under

synchronous ordering.

In Table 3.2, we summarize the average persist epoch latency, where SCT and DCT

provide the same performance, under each persistency model. Table 3.2 indicates: (1) DCT

55

Update Location New order
Epoch persistency 0.5 2

Synchronous ordering 0.5 1
Strand persistency 1.5 2.5

Table 3.2: SCT vs DCT performance break-even: The average persist epoch latency (in µs), at
which DCT breaks even with SCT.

breaks-even with SCT at higher latencies for New Order than Update Location. New Order

is a larger transaction, hiding longer persist delays under volatile execution. (2) Strand

persistency exhibits the highest SCT-DCT break-even latencies, as it incurs the smallest

difference in persist critical path between DCT and SCT.

56

CHAPTER IV

Delegated persist ordering

4.1 Introduction

The focus of the previous chapter was to reduce the overall cost of enforcing persist

dependencies by identifying and reducing the number of unnecessary persist dependen-

cies enforced. This chapter aims at reducing the overall cost of enforcing persists by re-

ducing the cost of enforcing each individual persist dependency. This chapter quantifies

the high costs of enforcing persist dependencies using recent x86 ISA extensions for PM

(synchronous ordering, Chapter 2.5) and also proposes an alternative persistency model

implementation strategy to reduce said costs.

Synchronous ordering enforces order by stalling execution, preventing instructions or-

dered after a pcommit from retiring until prior PM writes complete. However, this ap-

proach tightly couples volatile execution and persistent writes, placing PM write latency

on the execution critical path. As we will show, these stalls can result in a 7.21× slowdown

in workloads with frequent PM writes.

57

In this chapter, we explore a new implementation approach to enforcing persistency

model ordering requirements for PM writes. Instead of enforcing ordering through stalls,

we investigate an implementation approach, which we call delegated persist ordering, that

communicates partial ordering requirements mandated by the persistency model explicitly

to the PM controller. Delegated persist ordering represents a fundamental departure fr-

om existing persistency implementations and common approaches for enforcing (volatile)

write ordering for relaxed memory consistency. Relaxed consistency is often implemented

like synchronous ordering, relying on stalling (e.g., at memory fence instructions) to pre-

vent mis-ordering the visibility of memory operations.

We evaluate delegated persist ordering by implementing it for buffered strict persis-

tency [5, 14] (PM writes must reflect the order stores become globally visible, but their

persistence may be delayed) over a relaxed consistency model (i.e. RCBSP, as described in

Chapter 2.6) and compare its performance to synchronous ordering. We evaluate both ap-

proaches in a cache hierarchy that implements ARM’s relaxed memory consistency model,

which allows reordering and concurrency among stores between ordering points. We im-

plement a series of PM-write-intensive benchmarks, adding minimal fence instructions re-

quired for correctness under each model, and evaluate performance using the gem5 simu-

lation infrastructure [47]. We compare both approaches for different PM technologies. In

summary, the contributions of this chapter are:

• We analyze the semantics and performance of synchr-onous ordering—the persis-

tency model implied by Intel’s ISA extensions for PM [4]—and demonstrate that it

58

results in an 7.21× slowdown on average relative to volatile execution without order-

ing.

• We propose delegated ordering, an approach to memory persistency implementation

that exposes partial ordering constraints explicitly to the PM controller.

• We evaluate delegated ordering and demonstrate that it improves performance by

3.73× on average over synchronous ordering for PM-write-intensive benchmarks,

coming within 1.93× of volatile execution without order enforcement.

4.2 Performance of synchronous ordering

We first briefly summarize the semantics of synchronous ordering (more detailed dis-

cussion was presented in Chapter 2.5) and then the performance implications of these ex-

tensions.

4.2.1 Semantics

Synchronous ordering (SO) is our attempt to describe the persistency model implied by

the semantics of Intel’s ISA extensions [4]. The most relevant of these new instructions

are:

• clwb: Requests writeback of modified cache line to memory; clean copy of cache

line may be retained.

• pcommit: Ensures that stores that have been accepted to memory are persistent

when the pcommit becomes globally visible.

59

A store operation to cacheable (“write back”) memory is assured to be “accepted to

memory” when a clwb operation ordered after the store becomes globally visible ([4]

p. 10-8). However, since pcommit is not ordered with respect to the completion of

clwb operations, an intervening sfence is needed to ensure the clwb is globally visible.

Similarly, a fence operation is required after the pcommit to order its global visibility with

respect to subsequent stores.

With these two instructions, stores on one thread to addresses A and B can be guaran-

teed to to be updated in PM in the order A < B, using the following pseudo-code:

st A;clwb A;sfence;pcommit;sfence;st B;

4.2.2 Performance

SO’s overhead can be broken into two components:

• The overhead due to clwb instructions. clwb writes modified data back from the

cache hierarchy to the memory controller. Each clwb must snoop all caches (in-

cluding private caches of peer-cores) for a cache block in dirty state and write it back

to the PM. Effectively, each clwb instruction incurs a worst-case on-chip access

latency.

• The overhead due to pcommit instructions. A pcommit does not complete until

all writes that have been accepted to memory are persistent (regardless of which

processor issued them).

Modern out-of-order (OoO) cores can often hide some access latencies, however the sfence

instructions (required for correct ordering) preceding and following a pcommit will ex-

60

pose the latency of the clwb and pcommit operations. A PM write may take several

times as long as a DRAM write [18] and drastically reduces the effectiveness of OoO

mechanisms.

We study the performance of SO over three different PM designs:

• DRAM: a battery-backed DRAM.

• PCM: a Phase Change Memory (PCM) technology.

• PWQ: a persistent write queue at the PM controller that ensures data becomes durable

when it arrives at the PM controller (e.g., because a supercapacitor guarantees en-

queued writes will drain despite failure). We assume a PCM main memory.

PWQ provides freedom to the PM controller to arbitrarily schedule writes for perfor-

mance without compromising persistency guarantees. Studying these three configurations

highlights the technology independence of the observations made in this thesis. We con-

trast performance under two different persistency models:

Volatile: Under this model, benchmarks are run without support for persistence and are

vulnerable to corruption in the event of a failure. We use this as a baseline to measure the

costs of persistence.

Synchronous Ordering (SO): Under this model, the necessary clwb, sfence, and

pcommit operations are inserted ensuring data persistence to PM. Note that in case of

PWQ, ensuring the data reaches the PM controller in the desired order is sufficient to guar-

antee correct recovery. Hence, SO requires only clwb and sfence operations, without

any pcommits. The latency of the cache flush operations is exposed on the execution crit-

ical path (at the sfence), but the PM write itself is not. Increased execution times for SO

61

PM design Geo. mean Range

PWQ 1.54× 1.12× to 2.1×
DRAM 2.97× 1.16× to 7.96×
PCM 7.21× 1.33× to 35.15×

Table 4.1: Synchronous ordering performance: Slowdowns due to SO over volatile execution.

(over a baseline volatile execution) for our PM-centric benchmarks (please see Section 4.4

for methodology details) are shown in Table 4.1:

4.2.3 Discussion

SO suffers from four main drawbacks that hamper its performance and usability. First,

it couples the operation that prescribes the order between PM writes with the operation

that flushes the writes to persistent storage. In many contexts, stalling execution until the

flush is complete is not needed to assure data consistency and recoverability. Rather, such

stalling is needed only before irrecoverable side effects, such as sending a network packet.

We believe that one of the major deficiencies of the proposed model is that no mechanisms

are provided to ensure ordering of writes to PM without requiring completion.

Second, a programmer must explicitly enumerate the addresses for which persistence is

needed via flush operations. Although flexible, this interface greatly complicates software

development. For example, one cannot easily construct a software library that provides

transactional persistence semantics for a user-supplied data structure while hiding the de-

tails of the persistency model (the user must supply a list of addresses requiring clwb

operations). In contrast, fence operations in relaxed consistency [17] and relaxed persis-

tency [5] do not require addresses to be enumerated, facilitating synchronization primitives

in libraries.

62

Third, the pcommit operation does not complete until all operations accepted to mem-

ory are persistent, even those issued by other threads. In contrast, memory fences typically

stall only until preceding operations from or observed by the same thread are globally vis-

ible. A pcommit may be significantly delayed by PM writes of an unrelated application,

where the relative PM write interleaving is immaterial.

Finally, the clwb instruction relinquishes write permission to a cache block, which

will unnecessarily incur a coherence transaction to obtain write permission if the block is

written again. Coherence state is orthogonal to persistency.

Interestingly, ARM has also recently announced a new instruction for persistence sup-

port as part of ARM V8.2 [26]. The new instruction dccvap (data cache clean virtual

address to point of persistence), is similar to clwb in that, it forces a writeback of a cache

block. However, unlike clwb, dccvap requires the writeback to become persistent (reach

PM), rather than just being accepted at the PM controller, obviating the need for a sepa-

rate pcommit-like instruction. The dccvap instruction implies a different synchronous

persistency model than SO (which is based on Intel’s clwb, and pcommit instructions).

However, a complete ARM V8.2 specification is not yet available.

We can address synchronous ordering’s deficiencies with delegated persist ordering.

Next, we describe delegated persist ordering (Section 4.3), to implement the RCBSP model

(detailed in Chapter 2.6).

4.3 Delegated persist ordering

We now describe delegated persist ordering, our implementation strategy for the R.

63

4.3.1 Design goals

Delegated ordering is based on four key design goals:

Enforce persist ordering: Under RCBSP, the persist order must match the store order

given by the consistency model (as is necessary for strict persistency). Under ARMv7,

intra-thread ordering arises from FENCEs, which divide the instructions within a thread

into epochs. Stores to PM from the same epoch may persist concurrently (assuming they

are not ordered by the fence cumulativity property, Eq 2.15, of a remote FENCE), however,

stores from successive epochs must be totally ordered. Inter-thread persist ordering arises

from coherence order (Eq 2.14) and fence cumulativity (Eq 2.15). When accesses conflict,

corresponding persists (and their cumulative dependents) must occur in cache coherence

order. Our implementation must observe, record, and enforce these persist dependencies.

Decouple data persistence from volatile execution: Under SO, ensuring the desired

persist order frequently stalls execution. RCBSP decouples persist order enforcement from

thread execution, by buffering persists in hardware.

Express lane for persists: Under SO, persists reach PM via successive writebacks

from subsequent cache levels. Such an architecture optimizes for read performance at the

expense of write latency—an appropriate trade-off for volatile memory. However, in PM-

write-intensive applications, persist latency plays a major role in determining recoverable

system performance. Some epoch persistency implementations buffer unpersisted stores in

the cache hierarchy [8, 14]. However, buffering unpersisted stores in cache implies that a

later store to the same address may not become globally visible until the prior store has

persisted, leading to stalls. Moreover, performance-sensitive cache replacement policies

64

may have to be modified to account for the desired persist order. We provide a separate

persist path with dedicated storage that reduces persist latency and decouples persist order

from cache eviction and store visibility.

Expose ordering constraints explicitly: Central to our strategy is the principle of

exposing ordering constraints explicitly to the PM controller, a significant departure from

SO and conventional memory consistency implementations, which stall to enforce order.

Our intuition is that the PM controller is the proper (indeed, only) system component that

manages the precise timing of PM reads and writes, has knowledge of which physical

addresses are assigned to which banks, and has visibility into the conditions under which

PM accesses can be concurrent.

Prior research has proposed sophisticated schedulers at DRAM controller to jointly

optimize access latency, concurrency, and fairness [48, 49, 50]. Unlike DRAM controllers,

the PM controller is additionally expected to honor persist ordering constraints. Initial

research on PM-aware scheduling is under way [9, 51]. Our goal is to communicate persist

ordering constraints to the PM controller as precisely and minimally as possible, providing

it maximal scheduling flexibility, and yet without placing burdens on the cache hierarchy.

Delegated ordering succeeds in decoupling persistency enforcement entirely from cache

management. Nevertheless, the goal of communicating minimal ordering constraints is as-

pirational; to reduce hardware complexity, our design serializes per-core persists into a

single, partially ordered write queue at the PM controller, which is insufficient to represent

a fully general dependence graph among persists. A single write queue cannot represent

a dependence graph where two accesses must be ordered by an epoch boundary, but a

third access is unordered with respect to both—we must place the third access in either the

65

PM	

PM	Cntrl	

Membus	

I$	 D$	

Core	

Persist	Buffer	

DRAM	

DRAM	Cntrl	

I$	 D$	

Core	

LLC	

Coherence	requests	

Memory	requests	

Persist	requests	

Write	Buffer	

Figure 4.1: Proposed architecture design: Our system architecture implementing delegated order-
ing for RCBSP, with a persist buffer at the L1 D-cache for every core and write queue at the PM
controller.

first epoch or the second, introducing an unnecessary constraint. Nevertheless, our design

provides prodigious performance advantage; we believe the remaining gap to the perfor-

mance of unordered volatile execution does not warrant additional hardware complexity to

communicate minimal constraints.

4.3.2 System Architecture

Figure 4.1 shows our system architecture to implement delegated ordering for RCBSP.

Responsibility for ensuring proper persist ordering is divided between persist buffers, lo-

cated alongside each L1 D-cache, and the PM controller, which ultimately issues persist

operations. The persist buffers each track persist requests and fences from their associated

core to discover intra-thread persist dependencies and monitor cache coherence traffic to

discover inter-thread persist dependencies. The buffers coordinate to then serialize their

66

per-core persist operations into a single, partially ordered write queue at the PM controller

through the path marked “Persist requests” in Figure 4.1. (We show a dedicated persist

path for clarity; persist traffic may be multiplexed on existing interconnects, much like

uncacheable memory requests or non-temporal store operations [32]). The persist buffers

drain persists into totally ordered epochs. The PM controller may freely schedule within

an epoch, but not across epoch boundaries.

We describe delegated ordering assuming a snooping protocol for cache coherence and

to drain persists. As this design is already quite complex, we leave generalization to non-

snooping protocols to future work.

The persist buffer bears structural similarity to a write queue in a write-through cache

(but buffers data at cache block rather than word granularity). It supports associative lookup

by block address to facilitate coalescing and interaction with the coherence protocol. A

persist buffer is quite small; as we will show, eight entries at most four of which may

contain FENCE operations is sufficient.

A new persist request is appended to the persist buffer every time a store to a persistent

address or a FENCE completes at an L1 D-cache. Upon completion of the store, the entire

cache block is copied into the persist buffer entry (and later drained to the PM as a persist

request). The FENCE entries divide the persist requests from the corresponding thread

into epochs.

Persist buffer entries drain to the PM write queue when both intra- and inter-thread

persist dependencies (governed by the PMO) have been resolved. When a FENCE drains,

it creates an epoch separator in the PM write queue, across which persists may not be

67

reordered. Epochs from different persist buffers that are unordered with respect to one

another join a single epoch at the PM controller’s write queue.

Persist buffers decouple volatile execution from persist operations, unlike synchronous

ordering. Further, they also absolve caches of the responsibility to persist data to the PM.

Caches may continue to hold and transfer ownership of data that is buffered in persist

buffers. However, when a cache block in persistent memory is evicted from the LLC, it is

silently dropped (persist buffers ensure updates are not lost and service subsequent reads).

4.3.3 Enforcing Dependencies

Persist buffers collaborate to jointly drain persists to the PM write queue, constructing

unified epochs that are consistent with the persistency model ordering constraints at each

core. We first describe at a high level how we ensure a correct drain order with reference

to the example code sequences in Figure 4.2. We defer details to Section 4.3.5.

Intra-thread dependencies are enforced by draining persists from a persist buffer in or-

der. It is important to note that even though persists are drained in order, they may still

coalesce/reorder at the PM write queue, as long as no intervening FENCEs have been

drained (by any thread). Additionally, adopting this simple drain policy allows us to obey

fence cumulativity dependencies without having to employ complex dependency tracking

mechanisms to accurately enforce dependencies. Overall, our in-order drain policy trades

off some reordering/coalescing opportunities for a simpler design. Inter-thread dependen-

cies are communicated among the persist buffers by leveraging existing coherence traffic.

Dependencies can arise between individual persists to the same address, due to conflicting

68

Persist-persist Epoch-persist
Core-0 Core-1 Core-0 Core-1

St X = x St X = x
FENCE

St X = x′ St AL = a

r1 = Ld AL
St Y = r1

Figure 4.2: Examples of persist dependencies: Persist-persist dependency and epoch-persist de-
pendency

accesses, or between epochs, due to FENCE operations becoming transitively ordered by

conflicting accesses.

Figure 4.2 (left) illustrates a dependence between two persists. Persist-persist depen-

dencies arise when two stores to the same persistent address are executed at two differ-

ent cores. RCBSP mandates that the two stores persist in coherence order (via Eqs 2.14

and 2.1). At a high level, the dependency is discovered as part of the cache coherence

transaction that transfers ownership of the cache block from Core-0 to Core-1. Core-0 will

include in its write response an annotation with the ID of its persist, indicating that Core-1’s

persist must be ordered after it. This annotation will prevent the persist from draining from

Core-1’s persist buffer. When Core-0 drains its persist, Core-1 will observe the drain and

resolve the dependency (clear the annotation), allowing its persist to then drain.

Figure 4.2 (right) illustrates a code sequence creating a dependence between an epoch

and a persist. An epoch-persist dependency arises when an epoch and a persist on different

threads are ordered due to intervening conflicting accesses (here via accesses to AL) and

fence cumulativity. Due to the FENCE instruction on Core-0, we have S0
X ∈ GA and S0

AL
∈

GB. Since L1
AL

reads from S0
AL

, we have L1
AL
∈ GB. Further, since S1

Y is data dependent on

69

L1
AL

(via register r1), we have S1
Y ∈ GB. Since S0

X and S1
Y are in GA and GB respectively, via

fence cumulativity (Eq 2.15)) and strict persistency(Eq 2.1) we have S0
X ≤p S1

Y .

In this scenario, our design ensures that the persist buffer entry corresponding to store

Y on Core-1 is drained only after the persist buffer entry corresponding to the FENCE

instruction on Core-0, which in turn ensures that persists to X and Y are drained to PM in

order.

At a high level, the ordering between the FENCE operation and the store (SY) is again

discovered as a consequence of the coherence transaction on the conflicting address AL.

When Core-0 receives a Read-Exclusive request for AL, it discovers there is a preceding,

undrained FENCE. Its reply includes an annotation indicating an ordering requirement

against its FENCE. When Core-1 receives this annotation, it records the persist ordering

dependence and will enforce it against the next persist/FENCE it encounters, which in this

case is the persist buffer entry of the store to Y .

A particular challenge of this mechanism is that ordering relationships between epochs

(FENCE operations) and persists can arise due to conflicting accesses to volatile as well

as persistent addresses. In ARMv7, causal ordering between two FENCE operations or

FENCE-persist operations is established by any conflicting access pair. Therefore, the per-

sist buffers must detect and honor ordering constraints established through volatile memory

accesses. Indeed, in the example, we label the conflicting address AL as it represents a lock

or other synchronization variable, which likely resides in volatile memory.

To detect all conflicting accesses that follow a FENCE, the persist buffer must keep

a record of all addresses read or written by its core until either the FENCE drains or the

processor executes a subsequent FENCE. Incoming coherence requests must be checked

70

against the read- and write-sets to detect conflicts and discover dependencies. This re-

quirement is similar to the read- and write-set tracking required to implement transactional

memory [52]. As in many transactional memory designs, these sets may be maintained

approximately, because false positives (identifying a conflict when there is none) introduce

unnecessary persist ordering edges, but do not compromise correctness. However, given

that the lifetime of a FENCE in the persist buffer is much smaller than an entire transac-

tion, a simple design would suffice. We enumerate the steps of this exchange in detail in

Section 4.3.5.

Note that persist-epoch and epoch-epoch dependencies may also arise, and are enforced

by the hardware structures described in Section 4.3.4. It is also important to note that by

tracking dependencies at an individual persist or FENCE granularity, our design does not

suffer from the epoch dependency deadlocks identified in [14]. We omit examples in the

interest of space.

4.3.4 Hardware Structures

Next, we describe the hardware structures required for delegated ordering. At each

core, we provision a persist buffer, a pair of bloom filters for tracking read and write sets,

and a register for tracking accumulated ordering dependences that must be applied to a

yet-to-be-executed FENCE or persist. Persist requests and FENCE operations drain from

persist buffers into the write queue at the PM controller. Figure 4.3 illustrates the hardware

and fields in these structures.

71

ID	 T	 Y	 A	
DP	

Data	

.	.	.	

Read-set	

AccumDP	

Write-set	

X4	

X4	8		
Entries	

56	bits	+	1	cache	block	

Figure 4.3: Persist buffer design: Hardware structures required at each core.

Persist Buffer. The persist buffer is the key structure that buffers pending persist re-

quests while the core continues executing. Each persist buffer entry contains either a persist

operation or a FENCE. We briefly describe each field:

• T - The “Type”; persist request or fence.

• A - The cache block “Address” of a persist request; supports associative search by

address. For FENCEs, this field associates the entry with a read/write-set.

• D - The “Data” cache block to be persisted.

• ID - An “ID” that uniquely identifies each in-flight persist or FENCE, comprising

the core id and entry index. These IDs are used to track and resolve dependencies

across persist buffers. We denote IDs as “{Core index}:{Entry index}”.

• Y - The “Youngest” bit, marks the youngest persist request to a particular address

across all persist buffers. This bit is set when a persist request is appended to the

buffer and reset upon an invalidation of the cache block, indicating a subsequent

store by another core. When set, this bit indicates this persist buffer must service

coherence requests for the address.

72

• DP - An array of inter-thread dependencies for this entry. The number of fields in

each “DP” entry is one less than the number of persist buffers, tracking at most one

dependency from each other core. An entry can be drained to PM only when all its

dependencies have been resolved (drained to PM write queue). The dependencies

are tracked via IDs; When an ID drains on the persist bus, matching “DP” fields are

cleared.

Read/Write Sets & AccumDP. We provision pairs of bl-oom filters to track addresses

accessed by the core after a FENCE, as described in Section 4.3.3. Each persist buffer

also requires an additional dependence (“AccumDP”) register that is not associated with

any persist buffer entry. “AccumDP” tracks dependences that are discovered via cache

coherence and must be applied as order constraints against the next persist/FENCE issued

by the core. When a persist or FENCE is appended to the persist buffer, its “DP” field is

initialized from “AccumDP” and “AccumDP” is cleared.

PM Write Queue. The PM Write Queue, like buffers in a conventional memory con-

troller, holds writes until they are issued to the PM storage array. When a FENCE operation

is drained from a persist buffer, it creates an epoch boundary across which persists may not

be reordered.

Overheads. The storage overhead for each persist buffer entry is 72B. Considering

the short duration a FENCE spends in the persist buffer (due to the aggressive draining

employed at the persist buffer), we use 32B bloom filters. An AccumDP register of 64B

stores dependencies from all other persist buffers. In all, each persist buffer requires 8

persist buffer entries, 8 bloom filters for read/write sets (a maximum of 4 active FENCE

73

D$0	

ID	
 A	
 D	
 DP	

0:0	
 X	
 x	
 -­‐	

D$1	

ID	
 A	
 D	
 DP	

1:0	
 X	
 x’	
 0:0	

To	
 L2	
 To	
 Membus	

St	
 X	
 =	
 x	

1	

2	

St	
 X	
 =	
 x’	

3	

4	
 6	

8	
 9	

5	

7	

Figure 4.4: RCBSP in action - 1: Resolving a persist-persist dependency.

entries are allowed in a persist buffer) and one AccumDP register, placing the storage

overhead at 896B/core. It is important to note that if a persist buffer becomes full (either

due to exhaustion of entries or FENCE slots), the corresponding L1-D$ is blocked until

an entry drains from the persist buffer. The results presented in Section 4.4 account for all

such blockages.

4.3.5 Detailed Examples.

We next walk through detailed examples that illustrate how persist buffers track inter-

thread dependencies, with the aid of Figures 4.4 and 4.5

Persist-persist dependency. Figure 4.4 depicts the evolution of the persist buffer state

for a persist-persist dependency (see Figure 4.2).

74

(1) D$0 receives a store request to a persistent address X . For simplicity, assume a

cache hit at D$0. (2) A new value x is written to the cache for address X , and a persist

request for X is appended to the persist buffer at D$0 with ID “0:0”. Its address is set to X ,

the cache block data (x) is copied into the buffer, and the Y (Youngest) bit is set. Assume

that there were no earlier dependencies for the store to X , so DP is cleared. (3) D$1 re-

ceives a store request to address X . (4) D$1 sends a read-exclusive request to D$0. (5) D$0

receives the read-exclusive request and snoops both the cache and the persist buffer. In the

persist buffer, it finds a match with the Y bit set. It copies the value x into the response,

invalidates the line in the cache, and clears the Y bit in the persist buffer. The coherence

reply includes an annotation with ID “0:0” as a dependence. (6) D$1 receives the response

with the latest data for X and the dependence annotation. (7) D$1 completes the store,

creates a new persist request in its persist buffer, marking ID “0:0” as a dependency to its

persist “1:0”. (8) Persist buffer at D$0 entry “0:0” has no dependencies and is thus eligible

to drain. It now does so, broadcasting its drain request to all persist buffers and the PM

controller. (9) Persist buffer at D$1 observes that persist “0:0” has drained, resolves the

dependency for persist “1:0” and subsequently drains it.

Epoch-Persist dependency. Figure 4.5 depicts the evolution of the persist buffer state

an epoch-persist dependency.

(1) D$0 receives a store request to a persistent address X . Assume that it hits at D$0.

(2) A new persist request is created for X with ID “0:0”. Assume no dependencies. (3)

D$0 receives a FENCE request. (4) A new entry is created for the FENCE with ID “0:1”.

75

D$0	

ID	 A	 D	 DP	

0:0	 X	 x	 -	

D$1	

ID	 A	 D	 DP	

To	L2	 To	Membus	

St	X	=	x	1	 FENCE	3	 St	AL	=	a	5	

0:1	 -	 -	 -	

r1	=	Ld	AL	7	 St	Y	=	r1	

write-set:	a	

4	

8	
13	

12	

1:0	 Y	 y	 0:1	2	

9	

10	

11	6	

AccumDP:	0:1	

Figure 4.5: RCBSP in action - 2: Resolving an epoch-persist dependency.

(Gray entries indicate a FENCE). (5) D$0 receives a store request to a volatile address AL.

Assume it hits at D$0. (6) The volatile address AL is recorded in the write-set associated

with the FENCE. (7) D$1 receives a load request for address AL. (8) D$1 sends a read

request for address AL to D$0. (9) D$0 snoops its cache and persist buffer, locating its

cached copy of AL. Since it has a pending FENCE, it compares address AL to the write-set

of the FENCE and discovers a match, indicating a persist order dependence. The coher-

ence response is annotated to indicate a FENCE with ID “0:1” as a dependence. (10) D$1

receives the response with the latest data for AL and the persist dependency annotation. (11)

D$1 updates its “AccumDP” register to store the dependence on “0:1”. This dependence

will be applied to the next persist/FENCE instruction executed at D$1. (12) D$1 receives a

store request to a persistent address Y . Assume it results in a cache hit at D$1. (13) A new

persist request is created with ID “1:0”. The dependence on “0:1” from the “AccumDP”

register is recorded and the register is cleared.

76

The persist at D$1 with ID “1:0” will not be permitted to drain until D$0 broadcasts the

drain of FENCE “0:1”, ensuring that the persists to X and Y fall into successive epochs at

the PM controller.

We note that our hardware might be substantially simplified under a programming

model where conflicting accesses must be explicitly annotated as synchronization accesses,

such as the DRF0 model [17]. In such models, only synchronization accesses may create or-

dering relationships between epochs in properly labeled programs. Unfortunately, ARMv7

does not mandate that racing accesses be annotated, requiring the additional complexity of

the read- and write-set tracking.

4.3.6 Coalescing Persists

One of the aims of our design is to enable persist operations to coalesce, where al-

lowed by the persistency model, to improve performance and reduce the total number of

PM writes. Coalescing may occur at two points. First, an incoming persist may coalesce

with the most recent persist in the persist buffer if: (1) they are to the same cache block,

(2) “accumDP” is empty and (3) the “Youngest” bit is still set. The implications of fence

cumulativity require these restrictions. Sophisticated schemes may enable more coalesc-

ing, but would require complex tracking to ensure all persist dependencies are properly

enforced. Second, persists may coalesce in the PM write queue, even if issued by different

cores, provided they do not cross an epoch boundary.

In our design, we drain persist operations eagerly at both the persist buffer and PM write

queue, as soon as ordering constraints allow. However, in the absence of a FENCE, it may

be advantageous to delay persist operations in an attempt to coalesce more persists. The

77

PM-write-intensive benchmarks we study do not afford additional coalescing opportunity,

so we leave such optimizations to future work.

4.4 Evaluation

Core

8-cores, 2GHz OoO
6-wide Dispatch, 8-wide Commit
40-entry ROB
16/16-entry Load/Store Queue

I-Cache 32kB, 4-way, 64B
1ns cycle hit latency, 2 MSHRs

D-Cache 64kB, 4-way, 64B
2ns hit latency, 6 MSHRs

L2-Cache 8MB, 16-way, 64B
16ns hit latency, 16 MSHRs

Memory controller 64/32-entry write/read queue(DRAM, PM)
DRAM DDR3, 800MHz
PCM 533MhZ, timing from [27]

Table 4.2: Simulator Configuration

We compare delegated ordering against synchronous ordering for three different mem-

ory designs: DRAM, PCM, and PWQ (described in Section 4.2.2. We model DDR3

DRAM operating at 800MHz and PCM using timing parameters derived from [27] operat-

ing at 533MHz. We use PCM memory assumptions for PWQ. The PWQ design isolates the

effect of fences and ordering instructions from PM access latency, while DRAM and PCM

provide plausible performance projections. We model an 8-core system with ARM A15

cores in gem5 [47] using the configuration details in Table 4.2. RCBSP uses an 8-entry

persist buffer at each core, allowing at most four in-flight FENCEs.

It is important to note that gem5 implements a conservative multi-copy atomic version

of ARMv7 consistency. Whereas ARMv7 allows non-store-atomic systems, there is reason

to believe that, in practice, multi-copy atomicity may be provided (for example, Tegra 3

78

forbids some litmus test outcomes normally observed for non-store-atomic systems [34]).

Nevertheless, we have presented an RCBSP design that is also correct for non-store-atomic

systems.

Benchmark Description CKC

Conc. queue Insert/Delete entries in a queue 1.2
Array Swaps Random swaps of array elements 7.1
TATP Update location transaction in TATP [46] 4.5
RB Tree Insert/Delete entries in a Red-Black tree 0.1
TPCC New Order transaction in TPCC [45] 0.8

Table 4.3: Benchmark descriptions (CKC = clwbs per 1000 cycles)

Benchmarks: We study a suite of five PM-centric multi-threaded benchmarks, de-

scribed in Table 5.3. Our Concurrent Queue is similar to that of Pelley [5]. The Array

Swaps and RB Tree are similar to those in NV-Heaps [11]. Our TATP [46] and TPCC [45]

benchmarks execute the “update location” and “new order” transactions, respectively the

benchmark’s most write-intensive transactions. We select these benchmarks specifically

because they stress PM write performance; larger applications may amortize slowdown of

PM-write-intensive phases over periods of volatile execution. As a heuristic for the “write-

intensive”ness of the benchmarks, we report the number of clwbs issued per 1000 cycles

per core (CKC) in Table 5.3. Array Swaps is our most write-intensive benchmark while

RB Tree is the least, so we expect them to show the most and least sensitivity to persistency

models, respectively.

4.4.1 Performance Comparison

Figure 4.6 contrasts the performance of RCBSP with SO, for three different memory

designs: PWQ, DRAM, and PCM. Execution times in the figure are normalized to volatile

79

0	

2	

4	

6	

8	

10	

PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	

Concurrent	Queue	 Array	Swap	 TATP	 RB	Tree	 TPCC	 GEOMEAN	

SO	 RCBSP	35.15	 15.75	

N
or
m
al
iz
ed

	e
xe
cu
/o

n	
/m

e	

Figure 4.6: Evaluating SO vs RCBSP: Normalized execution time for PWQ, DRAM, and PCM.

execution with the corresponding memory design. The main takeaways from the figure

are:

RCBSP outperforms SO: RCBSP consistently outperforms SO in nearly all cases. On

average, RCBSP reduces the cost of persistence from 1.54× to 1.21×, 2.97× to 1.18×, and

7.21× to 1.93× for PWQ, DRAM, and PCM, respectively. It is particularly noteworthy that

RCBSP outperforms SO even with PWQ for all workloads; even though PWQ hides the

entire write latency of the memory device, the clwb latency exposed by SO still incurs

noticeable delays that are hidden by RCBSP.

SO sensitivity to memory design: The performance of SO gets progressively worse for

PWQ, DRAM, and PCM for each workload. This behavior is to be expected, as PWQ,

DRAM, and PCM expose increasing memory access latencies on the critical path.

RCBSP sensitivity to memory design: The performance overheads of RCBSP are similar

for PWQ and DRAM, and, as expected PCM is a distant third. Similar performance with

PWQ and DRAM is due to two competing factors: (1) The main memory technology in

PWQ is PCM, which is slower than DRAM—advantage DRAM. (2) PWQ has fewer or-

dering constraints on persists draining from the memory controller write queue—advantage

PWQ. Moreover, we employ a 64-entry write queue at the memory controller, which hides

80

most of the memory access latency for DRAM.

Least affected: For both SO and RCBSP, as expected, RB Tree incurs the least cost of

persistence.

Most affected: Under SO, Array Swaps incurs the highest cost of persistence for DRAM

and PCM, while Concurrent Queue is the most affected for PWQ. Under RCBSP, Array

Swaps is the most affected for PWQ and PCM, Concurrent Queue suffers the highest slow-

downs for DRAM. Array swaps is our most write-intensive benchmarks and its high costs

of persistence are to be expected. It is interesting to observe that Concurrent Queue is

most-affected in certain scenarios, because it exhibits the least thread concurrency among

our benchmarks. Threads frequently contend for the enqueue and dequeue locks, causing

clwb latencies to be exposed on the critical path of lock handoffs for SO under PWQ,

which is then reflected in the overall execution time. For RCBSP, the high thread con-

tention results in severely constrained drain order of persists at the PM controller, which

increases overall execution time.

Persist buffer configuration: We studied the performance of RCBSP with different per-

sist buffer configurations, varying the size of the buffer and the number of supported active

FENCEs. We found that an 8-entry buffer supporting four simultaneously active FENCEs

provided the best trade-off between hardware overhead and performance.

PM wear out: PMs like PCM suffer from wear out due to writes. RCBSP increases the

overall writes to PM by 30%, averaged over all the benchmarks. This increase is to be

expected as RCBSP is a hardware mechanism that tries to aggressively move persists from

persist buffers to the PM write queue, while SO has the advantage of programmer inserted

clwb instructions as triggers for writebacks, allowing better coalescing. Nevertheless, ef-

81

fective wear-leveling schemes have been proposed [53, 54, 55] to mitigate wear out and

those solutions are orthogonal to persistency models and may be deployed with RCBSP.

Overall, RCBSP outperforms SO by 1.28× (PWQ), 2.58× (DRAM), and 3.73× (PCM)

on average and by up to 8.23×.

82

CHAPTER V

Language-level persistency

5.1 Introduction

While the focus of the previous chapters was to improve the performance of persistent

memory systems through software (Chapter III) and hardware (Chapter IV) mechanisms,

the focus of this chapter is to ease the burden of programming such systems. Various per-

sistency models have been proposed, but all of them have been specified at the instruction

set architecture (ISA) level. That is, programmers must reason about recovery correctness

at the abstraction of assembly instructions, an approach which is error prone and places

an unreasonable burden on the programmer. The programmer must invoke ISA-specific

mechanisms (via library calls or inline assembly) to ensure persist order, and often must

reason carefully about compiler optimizations that may affect the relevant code. Since the

ISA mechanisms differ in sometimes subtle ways, it is hard to write portable recoverable

programs.

This chapter proposes a language-level persistency model that provides a single, ISA-

agnostic framework for reasoning about persistency and can enable portability of recov-

83

erable software across language implementations (compiler, runtime, ISA, and hardware).

We consider how to specify a persistency model that extends the data-race-free (DRF)

consistency model [17] that is espoused by popular high-level programming languages like

C++11 and Java. The DRF model is appealing for programmers because DRF guarantees a

sequentially consistent (SC) execution for data-race-free programs [56], a guarantee often

called “SC for DRF”. At the same time, the DRF model admits compiler and hardware

optimizations that reorder and optimize memory accesses between (and, in certain cases,

across) synchronization. Such reorderings and optimizations are invisible to the program-

mer, because they cannot be observed without a data race.

One might hope that the simplicity of “SC for DRF” might extend naturally to memory

persistency. Unfortunately, DRF is insufficient to define semantics for the PM state that

recovery code may observe after a failure. The fundamental problem is that failures, such as

operating system crashes, hardware lockups, or power disruptions, may occur at any time,

and thereby introduce a data race into an otherwise race-free program: loads performed

during recovery inherently race with stores before the failure. A failure may interrupt the

atomicity of a critical section, exposing a partial (and possibly reordered) set of updates to

PM to recovery code.

In Chapter 5.2, we explore a taxonomy of guarantees that a language-level persistency

model might provide. Based on our taxonomy, in Chapter 5.3, we propose a concrete

model, Acquire-Release Persistency (ARP), to extend the C++11 memory model. Further,

in Chapter 5.4, we propose modifications to the C++11 language, compiler, ISA, and state-

of-the-art persistency model implementations to improve performance by exploiting all of

the available persist concurrency and scheduling flexibility provided by ARP.

84

In summary:

• We make a case for language-level rather than ISA-level persistency models.

• We explore a taxonomy of guarantees that a language-level persistency model might

provide.

• We propose acquire-release persistency as an extension to the C++11 memory model.

We demonstrate that writing applications to ARP rather than the ISA-level persis-

tency model improves performance by up to 18.5% (8.9% avg.).

• We show that, with small extensions to C++11 and the ISA-level persistency model,

we can eliminate further unnecessary persist dependencies, leading to speedups of

up to 33.2% (19.8% avg.).

5.2 Design Exploration

All memory persistency models proposed to date [5, 1, 8, 14, 4, 26] have been specified

at the ISA level. These models vary in the semantics they provide. To use these models,

programmers must reason about and annotate their programs with assembly instructions

to ensure correct persist order. Whereas the challenge of reasoning using assembly in-

structions might be mitigated by encapsulating assembly annotations in persistency-model-

specific libraries, there is no easy way for programmers to develop portable recoverable

software. Moreover, without a precise definition of language-level persistency semantics,

otherwise legal compiler optimizations could render data structures unrecoverable. These

challenges are reminiscent of the motivation for portable language-level memory consis-

85

tency models [17]. Similarly, we argue for a language-level persistency model, so that

programmers do not have to reason about ISA-specific assembly code while developing

recoverable software. In this chapter, we explore possible approaches to design a language-

level persistency model.

5.2.1 Failure and recovery

A persistency model imposes requirements on the fault-free execution of a program

that writes to PM to ensure that, in the event of a failure, a programmer can rely on some

set of guarantees on PM state. These guarantees then make it possible to develop recovery

software that can repair data structure inconsistencies caused by interrupted updates. Past

work on ISA-level persistency models has focused primarily on power failures (since PM

state survives power failure). In this work, we consider fail-stop failures more broadly, e.g.,

program, run-time and operating system crashes, and hardware failures in addition to power

failures. Notably, the trivial solution of providing battery backup to drain in-flight persist

operations is not sufficient to tolerate all fail-stop failures. For example, an OS crash might

expose that the compiler has reordered two persists and may compromise recovery. (We set

aside PM media failures, as an orthogonal set of mechanisms are required to tolerate these,

e.g., [57].)

After a failure, we assume the contents of all volatile state (processor registers includ-

ing program counters, cache contents, volatile memory) as well as incomplete persists are

lost, but the contents of persistent memory are retained. Recovery software then examines

the persistent data structure, repairing it if necessary, so that normal operation may resume.

In some cases, normal operation may be able to resume without any recovery. For example,

86

[11,7,51,6]

Stricter
Ordering

Persist

Epoch
Order Seq. Cst.

More
Atomicity

Sync. Free
Region

Outer
Critical
Section

[12,60]

[8,14,1,4,26] [8,14,1,65]

Figure 5.1: Design space of persistency guarantees: Persistency guarantees explored along two
dimensions, atomicity and ordering.

prior work has demonstrated that wait-free concurrent data structures are inherently recov-

erable [58, 59]. We discuss the difficulty of writing recovery code under various persistency

guarantees next.

5.2.2 Atomicity and ordering

A language-level persistency model has to provide programmers with guarantees on

two orthogonal properties: (a) the granularity of failure-atomic regions (i.e., persists from

one region are committed to PM atomically) and (b) the ordering of these regions. Pro-

grammers need both these guarantees to write correct recoverable software. Figure 5.1

shows the various options that a language may choose to provide for each of these guar-

antees and places existing academic and industrial proposals for persistent programming

within this taxonomy. The granularity of failure atomicity can vary from an individual

persist (8-byte atomic writes) to a synchronization free region (code between two synchro-

nization accesses) to an outer critical section (code between the first lock acquired by a

thread until the thread holds no locks). It is important to note that if a programmer desires

87

a larger granularity of failure atomicity than what is natively provided by the language, she

can achieve it through undo or write-ahead logging mechanisms [15]. Furthermore, the

language may guarantee that these atomic units may be ordered sequentially (SC order)

or provide a more relaxed ordering mechanism. For example, the language may provide

sequence points that the programmer can use to break a thread into epochs. Failure-atomic

units within an epoch are unordered, but epochs are sequentially ordered (as in [8, 5, 14]).

5.2.2.1 DRF Persistency?

Popular high-level programming languages like C++11 and Java espouse the data-race

free (DRF) memory model to enable parallel programming. One of the key advantages

of the DRF memory model is that, for DRF programs, it allows programmers to reason

about memory access interleaving at the granularity of synchronization-free regions, rather

than individual accesses. The lack of any data races implies that programmers are assured

that the writes in any synchronization-free region will become visible atomically to other

threads. Compilers exploit this guarantee to perform optimizations that reorder memory

accesses within a region [56], which wouldn’t be permissible otherwise.

In addition to its sequentially consistent synchronization operations, C++11 also pro-

vides low-level atomics, which allow the programmer to label individual synchronization

operations with specific memory ordering semantics. A program that uses relaxed atom-

ics has well-defined memory semantics, but loses the “SC for DRF” guarantee. That is,

programs with low-level atomics do not necessarily exhibit SC execution [56]. We con-

sider how persistency models might interact with C++11 programs both with and without

low-level atomics.

88

One might argue that it is natural to extend the SC for DRF consistency guarantee

to recovery code that executes after failure. That is, it would help programmers in writ-

ing recovery code to provide a failure-atomicity guarantee for regions of persists. Such a

guarantee would hide compiler or hardware memory access reordering from the program-

mer, and recovery code need only consider memory states that can arise at synchronization

points.

However, arbitrary fail-stop failures make such atomicity challenging to enforce. If

writes may persist from a synchronization-free region incrementally, recovery code may

observe intermediate memory state within the region, breaking the atomicity guarantee

that is core to the DRF model: recovery code is not guaranteed to observe sequentially

consistent state.

There are two ways to resolve the conflict between arbitrary failures and DRF:

• Enforce atomicity: Programming languages may demand that the implementation

provide a programmer-transparent mechanism to ensure failure-atomicity (e.g., undo

logging in the hardware or runtime).

• Forego atomicity and provide only ordering: Alternatively, languages may forego

guarantees that program regions appear atomic to post-fault recovery code, and in-

stead guarantee only the relative order of persists, much like ISA-level persistency

models. (Note that, in fault-free execution, the SC for DRF guarantees still apply).

Next, we explore design alternatives and their implications for the programmer, com-

piler, and implementation.

89

1. A.lockAcq();
2. A.updateRecordStart();
3. B.lockAcq();
4. B.updateRecordFull();
5. B.lockRel();
6. A.updateRecordFinish();
7. A.lockRel();

Outer
Critical
Section

SFR-3

(d)

(c)

R

R
B

A

(a)

(f)

R

B

A

(b)

C

R C

Epoch
Order

Epoch
Order

1. A.lockAcq();
2. A.updateCopyStart();
3. B.lockAcq();
4. B.updateCopyFull();
5. B. updatePtr();
6. B.lockRel();
7. A.updateCopyFInish();
8. A.updatePtr();
9. A.lockRel();

SFR-1

SFR-2

1. A.lockAcq();
2. A.updateCopyStart();
3. B.lockAcq();
4. B.updateCopyFull();
5. B. updatePtr();
6. B.lockRel();
7. A.updateCopyFInish();
8. A.updatePtr();
9. A.lockRel();

Program
Order

Program
Order

(e)

1. A.lockAcq();
2. A.updateCopyStart();
3. B.lockAcq();
4. B.updateCopyFull();
5. SeqPt();
6. B. updatePtr();
7. B.lockRel();
8. A.updateCopyFInish();
9. SeqPt();
10. A.updatePtr();
11. A.lockRel();

Figure 5.2: The taxonomy of persistency guarantees analyzed via a running example: (a) Two
objects (A,B), each with a record (R) and lock assuming the language provides failure-atomicity of
outer critical sections. (b) Two objects (A,B), each with a record (R), a lock, a shadow copy (C), and
a pointer to ensure failure-atomicity assuming the language does not provide failure-atomicity of
outer critical sections. (c) Code and failure-atomic region when the language guarantees sequen-
tially consistent failure-atomic outer critical sections. (d) Code and failure atomic regions when
the language guarantees sequentially consistent failure-atomic synchronization free regions. (e)
Code and orderings when the language guarantees sequentially consistent persists. (f) Code and
orderings when the language guarantees epoch ordered persists.

5.2.3 A Taxonomy of Persistency Guarantees

We use a running example to highlight how alternative guarantees can be used to ensure

recovery correctness. Consider a program with two shared objects, A and B, each with

record fields (R) protected by a lock (Fig. 5.2 (a)). Suppose the correctness requirement

is that the fields of each object must be updated atomically with respect to failures and

with respect to other threads. Now, consider a piece of code that acquires the lock for

object A, starts modifying it, and then must also modify B, which it does within a nested

critical section (Fig. 5.2 (c)). The two locks assure atomicity with respect to concurrent

access from other threads in fault-free execution. The persistency model must enable the

90

programmer to write code that can recover to a correct state (i.e., each object to either its

initial or final state) in the event of failure.

For languages which do not guarantee the failure-atomicity of the entire update of ob-

jects A and B, we provide alternative designs for A and B that rely on shadow logging,

shown in Fig. 5.2 (b). The update is performed on a shadow copy (C) of the object (rather

than an in-place update in the object itself). Once the shadow copy has been updated, a

pointer is atomically switched to indicate that the copy is committed. For this approach to

be correct with respect to recovery, the language must guarantee that the pointer switch per-

sists no earlier than the updates to the shadow copy (assuming appropriate annotations from

the programmer). We next consider four different sets of guarantees that a language may

provide to enable such recovery. We discuss them in the order of decreasing constraints on

persists.

5.2.3.1 Sequentially consistent, failure-atomic outer critical sections

Description: All the persists from an outer critical section (from first lock acquire till

no locks are held) are guaranteed by the language implementation to be failure atomic.

Further, different outer critical sections must persist in sequentially consistent order.

Example: Fig. 5.2 (c) shows code which updates both objects in nested critical sec-

tions. As the entire outer critical section (from line 1 to 7) is failure-atomic, the condition

for correct recovery (each element is individually atomically updated) is trivially met.

Programmability: The idea of sequentially consistent failure-atomic outer critical sec-

tions was first explored by Chakrabarti [12, 60]. The central appeal of this programming

guarantee is that, by ensuring failure-atomicity of entire critical sections, the state of per-

91

sistent memory post-recovery always reflects a state that would have arisen in fault-free

execution and when no threads holds a lock. When no locks are held, shared data struc-

tures are always in a consistent state. So, no recovery code is needed; the programmer is

assured that her data structures are always in a consistent state post-recovery.

Implementation: Chakrabarti [12] provides a software undo-logging mechanism to

ensure failure-atomicity of critical sections. Note that the software logging occurs outside

of the language’s memory model and must be implemented by the runtime system using

ISA-level memory persistency.

Compiler optimizations: Since critical sections persist atomically, any compiler opti-

mizations valid within a critical section under fault-free execution remain valid; optimiza-

tion is unaffected by the persistency guarantee.

Challenges: While failure-atomic critical sections provide an intuitive guarantee, sev-

eral challenges must be addressed:

1. Guarantees for programs without critical sections: This approach provides no se-

mantics for programs without critical sections (e.g., single-threaded programs). It is

unclear how system calls within critical section should be addressed.

2. Implementation complexity: Overlapping critical sections introduce considerable com-

plexity to the logging and log-pruning mechanisms. They may cause cyclic depen-

dencies, which must be carefully resolved [12].

3. Large critical sections: Providing atomicity guarantees over large regions increases

the forward progress loss upon a failure. Large and nested critical sections intro-

92

duce hardware logging challenges similar to those seen with unbounded transactional

memory designs [61].

4. Alternatives to logging: Many data structures can be made recoverable without log-

ging (e.g., wait-free data structures [59, 58]). Furthermore, logging can often be

optimized for special cases to improve efficiency (e.g., static transactions [15]). A

generic, programmer-transparent logging mechanism will miss these optimization

opportunities.

5.2.3.2 Sequentially consistent, failure-atomic synchronization free regions

Description: All persists from a synchronization free region (SFR) are guaranteed to be

failure-atomic. Regions must persist in a sequentially consistent order. An SFR is defined

as code on the same thread separated by two synchronization accesses, or two system calls,

or a synchronization access and a system call [62, 63, 64]. For transaction-based code,

the outer critical section is from transaction begin to transaction end. Note that, for nested

transactions, we assume that inner transactions are flattened into a single outer transaction.

Example: As the modifications to object A span SFRs (due to nested locking), we must

use shadow logging to achieve failure-atomicity (Fig. 5.2 (b)). Fig. 5.2 (d) shows the code

required to ensure that the pointer switch does not persist earlier than the shadow copy

update under sequentially consistent failure-atomic SFRs. For object B, since the shadow

copy update and pointer update are in the same SFR (SFR-2), the update is failure-atomic.

For object A, since the pointer update cannot persist earlier than the partial copy update

93

in SFR-1 (program order of SFRs) or the partial copy update in SFR-3 (failure-atomicity

guarantee of an SFR), failure-atomicity is preserved.

Programmability: For transaction-based programs or programs without overlapping

critical sections, SFRs and critical sections are the same. However, for programs which

have overlapping critical sections (as in Fig. 5.2 (d)), a critical section may span multi-

ple SFRs. For such programs, partially completed critical sections may be visible post-

recovery. While developing recovery software, the programmer must be cognizant of this

possibility. If failure-atomicity of outer critical sections is desired, the programmer must

add roll-back mechanisms for partially completed critical sections.

Implementations: Various logging proposals can provide failure-atomicity for SFRs.

However, most focus only on transaction-based code [6, 51, 11, 7]. While transactions

simplify logging, they are not general enough to be provided as a language guarantee [60].

Compiler optimizations: Since SFRs persist atomically, optimizations within an SFR

remain valid.

Challenges: Several challenges remain under this model:

1. Large SFRs: Large SFRs pose the same challenges as large outer critical sections, as

discussed above.

2. Alternatives to logging: As with failure-atomic critical sections, the implementation

must provide a generic logging mechanism that will miss data-structure-specific op-

timization opportunities.

94

5.2.3.3 Sequentially consistent persists (SCP)

Description: Individual stores persist atomically. All stores persist in sequentially

consistent order.

Example: Fig. 5.2 (e) shows the code required to ensure that the pointer switch does

not persist earlier than the shadow copy update under SCP. Since the shadow copy update

precedes the pointer switch in program order (lines 4-5 and 7-8 in Fig. 5.2 (e)), failure-

atomicity of the object is preserved.

Programmability: Since only the atomicity of individual persists is guaranteed, the

programmer must implement failure-atomicity mechanisms if larger granularities are re-

quired. The programmer can rely on sequentially consistent order of persists while imple-

menting the logging mechanisms.

Implementation: Under SCP, the implementation is no longer required to provide a

logging mechanism; it is expected that the programmer will implement mechanisms needed

for failure-atomicity over multiple persists. Persists drain incrementally to PM, but, the

compiler and hardware must ensure that they drain in program order. Under some ISA-level

persistency models, stores may need to be flushed individually with explicit instructions [4,

26] or by inserting fence instructions after each store [8, 1]. Hardware can also guarantee

SCP via hardware logging [14] or via transparent checkpointing [65].

Compiler optimizations: A consequence of the sequential consistency requirement

on stores is that compiler or hardware optimizations that reorder persistent writes are no

longer allowed. An implementation may choose to provide atomicity over some regions to

allow intra-region reordering, as in speculative consistency implementations [66, 67].

95

Challenges: While SCP does not require any annotations to ensure persist order, it

entails the following challenges:

1. In-program logging: The programmer must implement failure-atomicity mechanisms.

However, she is also free to leverage data-structure specific recovery optimizations.

Notably, some (e.g., wait-free) data structures require no logging at all [59, 58].

2. ISA-level persistency mismatch: The ISA-level persistency models proposed to date

require persistent stores to be flushed individually and fence/barrier instructions to

enforce order. For such ISAs, the compiler must insert copious (and performance-

sapping) annotations.

3. Lost compiler optimizations: Straight-forward implementation of SCP precludes all

compiler and hardware optimizations that reorder writes.

4. Performance: Prior works [8, 5] observe that preserving program order is expensive

(due to high PM access latencies) and often unnecessary. Instead they argue for an

epoch-based ordering of persists, where programmers use special barrier instructions

to indicate where ordering is required.

5.2.3.4 Epoch ordered persists (EOP)

Description: This guarantee is derived from ISA-level epoch persistency models [8, 5,

14] proposed in prior research. Special sequence point (SP) annotations may be used by a

programmer to break a thread into epochs; persists across epochs are ordered, but may be

reordered within epochs. Persists on different threads are still governed by synchronization

order.

96

Example: Since the shadow copy update is ordered before the pointer switch via an

intermediate SP (lines 5 and 9 in Fig. 5.2 (f)), the failure-atomicity of each object is ensured.

Programmability: Similar to programming under SCP, programmers may have to

implement failure-atomicity mechanisms in software. However, the programmer may no

longer rely on program order, but instead must issue explicit sequence points when ordering

guarantees are required, complicating the implementation of recoverable data structures.

Compiler optimizations: The compiler (and hardware) may reorder persists within

epochs (e.g., between two sequence points), but may not allow persists to reorder across

epochs.

Implementation: Many approaches to implement epoch-persistency models in hard-

ware have been proposed [8, 14, 1]. Any of these satisfy the requirements of EOP.

Challenges: While EOP alleviates many challenges that arise under SCP, some chal-

lenges remain:

1. In-program logging: The programmer must use explicit sequence points to ensure

recovery correctness rather than simply relying on program order.

2. Compiler optimizations: The compiler may not reorder persists across sequence

points.

5.2.4 Discussion

Each of the four sets of guarantees analyzed in the previous section have their own ad-

vantages and disadvantages. Ignoring performance concerns, programmers would clearly

want to choose sequentially consistent failure-atomic outer critical sections as the guaran-

97

tee that languages should provide, as it requires no logging from the programmer. Instead

the compiler, runtime or hardware are responsible for providing failure-atomicity of critical

sections. However, indications from hardware vendors (e.g., Intel [4], ARM [26]) are that

future processors are only going to guarantee the atomicity of individual persists. Because

compiler or runtime logging mechanisms [12] required to ensure failure-atomicity must be

general, they cannot take advantage of data-structure-specific optimizations (e.g., wait-free

recoverable data structures [58], static transactions [15]).

Given that all the other sets of guarantees would require programmers to implement

some in-program logging, we argue that the language should provide the most fundamen-

tal atomicity guarantee (individual persists); software solutions (e.g., in expert-crafted li-

braries) for larger atomic regions can be layered on top to reduce programmer burden. In

the rest of this chapter, we focus on analyzing, designing, and evaluating implementations

of SCP and EOP.

5.3 Acquire-Release Persistency

We next propose acquire-release persistency (ARP), a persistency model for C++11

based on the EOP approach.

5.3.1 Definition

We formally define ARP as an ordering relation over memory events—loads and stores

on data variables, acquire and release operations on atomic variables—and sequence points.

98

By “thread”, we refer to execution contexts—cores or hardware threads. We use the fol-

lowing notation:

• Ai
x: An acquire operation from thread i on an atomic variable x

• Ri
x: A release operation from thread i on an atomic variable x

• SPi: A sequence point from thread i

• Mi
x: A data load/data store/acquire/release/sequence point by thread i (on variable x)

We use the following notation for ordering dependencies between memory events:

• Mi
x

po−→Mi
y: Mi

x is program ordered before Mi
y

• Ri
x

sw−→A j
x: A release operation on atomic variable x in thread i “synchronizes with” [56]

an acquire operation on atomic variable x in thread j.

We reason about an ordering relation over all memory events, persist memory order

(PMO), denoted as ≤p. An ordering relation between stores in PMO implies the corre-

sponding persist actions are ordered; that is,

A≤p B→ B may not persist before A.

Memory events can be ordered in PMO using a combination of intra-thread and inter-

thread ordering relations. A programmer can use the following guarantees to ensure the

desired order of events in PMO.

Ensuring intra-thread ordering: Based on the ordering guarantees provided by the lan-

guage (via sequence points 5.2.3.4) intra-thread ordering can be achieved as follows:

99

• Sequence point guarantee: If two memory events on the same thread are separated

by a sequence point in program order, then they are ordered in PMO. Formally:

(Mi
x

po−→ SPi po−→Mi
y)→Mi

x ≤p Mi
y (5.1)

Note that we use the existing std::atomic_thread_fence instruction in C++11 as

our sequence points.

Ensuring inter-thread ordering: Inter-thread ordering is achieved using the “synchro-

nizes with” [56] relationship between a release and a subsequent acquire operation.

• Synchronization guarantee: If two memory events are ordered via synchronization

accesses, then they are ordered in PMO. Formally:

(Mi
x

po−→ Ri
s

sw−→ A j
s

po−→M j
y)→Mi

x ≤p M j
y (5.2)

Furthermore, PMO is a transitive (and irreflexive) ordering relationship, that is:

• Transitivity guarantee: If A is ordered before B in PMO and B is ordered before C

in PMO, then A is ordered before C in PMO. Formally:

(Mi
x ≤p M j

y)∧ (M j
y ≤p Mk

z)→Mi
x ≤p Mk

z (5.3)

A programmer can use the above three guarantees to express the desired order of per-

sists. It is the responsibility of the compiler to translate these constraints to machine code

100

ARP memory events RCBSP mapping Ideal mapping

Data load/store on addr a ldr/str a; ld/st a;
Seq. Pt. (SP) dmb ish; full;
Store Release on addr a dmb ish; str a; rel a;
Load Acquire on addr a ldr a; dmb ish; acq a;

Table 5.1: Compiler transformations from ARP to RCBSP: Mapping from ARP memory events
to RCBSP [1], which is based on ARMv7a. Ideal mappings from ARP would be to an ISA which
supports release consistency.

using the ISA-level persistency model, and it is the responsibility of the hardware to enforce

these constraints. Enforcing constraints on persists is expensive (due to the high access la-

tencies of PMs), so, it important to co-design language-level persistency models, ISA-level

persistency models, and hardware implementations such that only the necessary constraints

are enforced.

5.3.2 Mapping to ISA-level persistency

While ARP can be translated to any epoch-based ISA-level persistency model [8, 5,

14, 4, 1], in this chapter, we provide mappings to the state-of-the-art RCBSP model [1].

One of the advantages of RCBSP is that it is a strict persistency model; that is, if the

compiler ensures that two stores are ordered by the ISA-level consistency model, then the

corresponding persists are ordered as well.

Table 5.1 lists four important kinds of memory events in ARP and how they map to the

machine ISA under RCBSP. Non-synchronization data accesses translate to regular loads

and stores. A sequence point is translated to a full fence instruction (DMB ISH in ARM).

A store release operation is translated to a full fence followed by a regular store instruction.

A load acquire operation is translated to a regular load followed by a full fence instruction.

101

St p_C

St p_A

St p_B

Acq

Rel

RCBSP constraints

A

Ideal constraints

CB

A

B

C

RCBSP constraints

A

Ideal constraints

B

A

B

p_thread

St v_X

St v_Y

v_thread

St p_A

St p_B

Acq

p_thread

(b)(a)

Figure 5.3: Unnecessary persist constraints enforced by RCBSP: (a) Unnecessary constraints
enforced due to hardware being oblivious to fence directions. (b) Unnecessary constraints enforced
due to lack of language level semantics to express volatile fences.

5.3.3 Fence directionality

We next discuss two sources of unnecessary persist constraints that arise when mapping

ARP to RCBSP. The first arises because of the differences between the underlying consis-

tency models of ARP and RCBSP. While ARP (and the C++11 memory model) is based on

release consistency [68], RCBSP is based on the more conservative ARMv7 consistency

model. Hence, RCBSP is oblivious to uni-directional acquire and release operations that

are available in C++11 and ISAs based on release consistency (e.g., ARMv8).

ARP allows programmers to use uni-directional synchronization operations (acq and

rel) to order memory accesses. Both acq and rel operations are usually used to ensure

memory accesses within a critical section do not “leak out”, however, they allow memory

accesses from outside the critical section to “leak into” the critical section. However, as

ARMv7 does not distinguish between an acq and a rel, compilers are forced to use a full

fence (DMB ISH [69], which precludes memory access reordering in both directions) for

both of them. Figure 5.3 (a) shows the unnecessary ordering constraints caused by using a

102

full fence instead of uni-directional acq or rel. A thread performs stores to three persistent

addresses, A, B, and C. The stores to A and B are separated by an acq, while stores to B

and C are separated by a rel. As per the semantics of ARP, all three of A, B and C are

considered concurrent and may execute and persist in any order. However, replacing the

acq and rel with a full fence requires that persists to A, B, and C are serialized. So, persist

order is overconstrained by RCBSP. Table 5.2 shows the increase in persists per epoch

possible by distinguishing the required directionality of a fence. It is important to note that

such over-constraints on persist order are not specific to RCBSP, but arise whenever the

ISA-level persistency model is not as relaxed as the language-level persistency model.

Table 5.1 also shows the mapping of the four C++11 memory events to an ISA that

provides uni-directional acquire and release operations (e.g., ARMv8). A store release is

translated to a corresponding release instruction and a load acquire to an acquire instruction.

5.3.4 Conflating concurrency control with recoverability

The second set of unnecessary constraints are caused by the lack of mechanisms to

allow programmers to annotate constraints that are required for concurrency control, but

not for recoverability. Consider the case in Figure 5.3 (b), where two unrelated threads

(p thread and v thread) issue memory accesses. RCBSP serializes persists and fences

from all cores into the write queue at the PM controller. So, if the acq from v thread

happens to arrive at the PM controller between the two persists requests from p thread,

then the PM controller will place them in different epochs, introducing an unnecessary

constraint.

103

Benchmark FENCE directionality Volatile annotations

cq 1.4× 2.1×
pc 1.9× 5.7×
sps 1.7× 2.9×
TATP 2.7× 3.6×
TPCC 1.6× 13.1×
YCSB A 1.8× 5.9×

Table 5.2: Effect of removing unnecessary persist constraints: Increase in persists per epoch when
the memory controller is aware of FENCE directionality and volatile FENCEs.

Ideally, we would like the hardware to enforce only constraints required for recovery,

however, accurately tracking these persist constraints over multiple cores is challenging.

Instead, we observe that programmers can identify acq and rel memory operations that

have no persist semantics (i.e., they are required for concurrency control but were never

meant to order persists). For example, some threads may never issue any persist opera-

tions and communicate only among themselves [9]. With minor extensions to the C++11

memory model, programmers can annotate acq and rel that do not have persist semantics

as non-persistent or “volatile”. And, with appropriate extensions to the machine ISA, this

information can be passed to hardware, avoiding unneeded persist constraints to improve

performance. Table 5.2 shows the increase in persists per epoch possible by making sure

that volatile acq and rel are not sent to the PM controller.

Discussion: Mitigating the two sources of unnecessary persist constraints allows more

persists to join each epoch. Larger epochs in turn provide the PM controller greater flex-

ibility to schedule and batch persist operations, improving persist concurrency, leading to

substantial performance gains since PM write latencies are so high.

104

a) Back-to-back acquire-release blocks b) Interleaved acquire-release blocks

Core 0

L0
A: V_A0.ld(mem_order_acq)

S0
X: St P_X = x

S0
A: V_A0.st(1,mem_order_rel)

S0
Y: St P_Y = y Core 1

L1
A: V_A0.ld(mem_order_acq)

S1
X: St P_X = x’

S1
A: V_A0.st(1,mem_order_rel)

S1
Z: St P_Z = z

Core 0

L0
A0: V_A0.ld(mem_order_acq)

S0
X1: St P_X1 = x1

 …

S0
Xn: St P_Xn = xn

S0
A0: V_A0.st(1,mem_order_rel)

S0
Y: St P_Y = y

Core 1

L1
A1: A1.ld(mem_order_acq)

S1
Z: St Z = z’

S1
A1: A1.st(1,mem_order_rel)

Ordering at PM
controller

L0
A: p_acq

S0
X

S0
A: p_rel

S0
Y

L1
A: p_acq

S1
X

S1
A: p_rel

S1
Z

Ordering at PM
controller

L0
A0: p_acq

S0
X1

L1
A1: p_acq

S0
Xk,S

1
Z

S1
A1: p_rel

S0
Xn

S0
A0: p_rel

S0
Y

Epoch 2Epoch 1

Figure 5.4: Allocation of epochs for unidirectional fences in the PM controller.

Algorithm 1 Epoch allocation in PM controller
Input: type of barrier barrierType, persists S, wait for acquire flag waitForAcq

1: if waitForAcq && barrierType == p acq then
2: epoch = epoch + 1
3: waitForAcq.reset()
4: else if barrierType == p rel then
5: waitForAcq.set()
6: else
7: S.epoch = epoch
8: end if

5.4 Extending RCBSP for ARP

We extend RCBSP [1] to support ARP with unidirectional and volatile fences. The key

change to the RCBSP hardware is to allow a single persist buffer entry to represent both

a persist and a fence for store-release and store-fence operations. However, the PM con-

troller’s epoch-based scheduling mechanism must be redesigned to account for the fence-

directionality that ARP provides.

5.4.1 Enforcing unidirectional fences

In RCBSP, the PM controller tracks persists in epochs and maintains a current epoch

number, to which newly arriving persists are assigned. The PM controller drains persists

105

in epoch order. Since RCBSP only supported full fences, the PM controller increments the

current epoch number upon each fence. We extend RCBSP to support ARP’s unidirectional

fences by changing the algorithm for incrementing the current epoch number. The current

epoch number is incremented only: (1) upon receiving a full fence, or (2) upon receiving

the first acq after a rel. A full fence always creates a new epoch, since it orders all persists

that precede/follow it. However, the respective directionalities of an acq and a rel mean

that only a (rel + acq) combination disallows persists prior to the rel from reordering with

persists after the acq. Successive acqs and rels do not impact the current epoch number.

Algorithm 1 provides pseudo-code for the epoch management algorithm, which uses the

waitForAcq flag to indicate whether the next acquire operation should open a new epoch.

We illustrate the assignment of epochs for the following scenarios:

Conflicting acquire-release blocks: Figure 5.4 (a) illustrates two threads updating a

conflicting address P X in persistent memory. Core-0 acquires a lock that resides in volatile

memory V A0 (L0
A), sets the persistent location P X (S0

X), and then releases the lock (S0
A).

It then sets a persistent location P Y (S0
Y) after releasing the lock. Core 1 then proceeds to

acquire lock V A0 (L1
A) and updates location P X (S1

X). It then releases the lock and sets

persistent location P Z (S1
Z). Assume that the current epoch number is 0 at the start of this

code sequence and is incremented to 1 upon the first acq.

The dependency tracking mechanism at the persist buffers preserves the happens-before

ordering between the release of lock S0
A by core-0 and acquire of lock L1

A by core-1, and

drains the stores to the PM controller in the order shown in Figure 5.4 (a). At the PM

controller, upon receiving the lock release by core-0 rel S0
A, the PM sets waitForAcq, indi-

cating that the next acquire must initiate a new epoch. The next persist, S0
Y , is still assigned

106

to ongoing epoch 1. Upon receiving p acq L1
A by core-1, because waitForAcq is set, the

current epoch is incremented to 2. Subsequent persists S1
X and S1

Z arrive and are assigned to

epoch 2. Note that persists lying between a release and subsequent acquire may join either

epoch. To minimize re-ordering complexity, we assign these persists to the prior epoch.

The persists in epoch 2, S1
X and S1

Z , cannot be re-ordered with the persists in epoch 1, S0
X

and S0
Y . As a result, the shared address X is updated in the persistent memory in the order

the stores were executed.

Interleaved acquire-release blocks: The example in Figure 5.4 (b) depicts two threads

accessing separate regions of persistent memory by acquiring distinct locks. As in the

previous example, the PM controller increments the epoch number to 1 upon receiving acq

L0
A0 and resets the waitForAcq flag. As core 1 then acquires a different lock, acq L1

A1 has

no dependency in the persist buffer and drains immediately to the PM controller. Since

there has been no release since the last acquire (waitForAcq is clear), acq L1
A1 does not

increment the epoch number. Upon receiving rel S1
A1 from core 1, the waitForAcq flag

is set. The subsequent release operation rel S0
A0 has no effect; the arriving persist S0

Y is

assigned to epoch 1. Note that the persists within both critical sections are concurrent and

join the same epoch.

5.4.2 Extensions for volatile annotations

To allow programmers to annotate acq and rel as being “volatile-only”, we propose

to add an argument to C++11 sync (std::atomic) variable accesses. In addition to

the memory order argument (std::memory_order), we introduce a new argument that

identifies if the access has persistent semantics (bool is_persistent). By default,

107

sync accesses are labeled as persistent (is_persistent = true). For instance, the

new definition of a load on an atomic variable (x), is then:

x.load(std::memory_order, bool is_persistent = true);

This new load operation is synchronized with other variables in the program as per the spe-

cific memory order, however, the is_persistent flag is used to inform the hardware

whether the load operation is intended to have any impact on the order of persists. Simi-

larly, in the machine ISA, we add “volatile” (non-persistent) versions of acq, rel, and fence

instructions, allowing the compiler to map persistent/volatile sync accesses to the ISA. The

persistent and volatile variants of acq, rel, and fence have the same behavior, except that the

volatile versions are not sent to persist buffers and have no effect on subsequent persists.

5.5 Evaluation

We study the relative performance of five different persistency models: (a) SCP (from

section 5.2.3.3), (b) ISA-level RCBSP, (c) our hardware design for ARP, (d) our hardware

design for ARP with volatile annotations (ARP+VA), and (e) an idealized performance

limit model (Ideal). Under the ideal case, we artificially maintain a constant 64 (size of

write queue) persists per epoch to estimate an upper bound on performance. Note that,

under Ideal, data structures are not recoverable in the event of failure; we include it only as

a limit study.

Configuration: Similar to Chapter 4.4, we model persistent memory using the timing

model from Xu et al.[27] to represent phase-change memory operating at 533MHz with a

1KB row buffer. We model a persistent memory controller with a 64-entry write queue and

108

schedule persists using an FR-FCFS policy [70], subject to persist ordering constraints. We

extend our compiler’s std::atomic implementation to support our C++11 extensions

with volatile annotations in the ARP+VA model. We use the same system configuration as

the previous chapter, the details are summarized in Table 4.2.

Benchmarks: We study a suite of three PM-centric multithreaded micro-benchmarks,

described in Table 5.3. Our Concurrent Queue (cq) is similar to that of Pelley [5], Array

Swap (sps) is similar to that in NV-Heaps [11], and Persistent Cache (pc) is a persistent

hash table similar to [14]. In addition, we also consider three write-intensive benchmarks.

TATP [46] and TPCC [46] execute “update location” and “new order” transactions, respec-

tively, on top of a transactional storage manger designed for persistent memory, similar to

[15]. YCSB A [71] (YCSB A) is a write intensive key-value store workload with 50% reads

and 50% updates. It runs on a custom key-value store that has been designed to support all

five of our persistency models.

We select these benchmarks specifically because of their PM write-intensiveness, ex-

pected to be core tenet of persistent applications [9]. As a measure of the “write-intensive”-

ness of the benchmarks, we report the number of persists issued per 1000 cycles (PKC)

in Table 5.3. Array swap is our most write-intensive micro-benchmark while concurrent

queue is the least, so we expect them to show the most and least sensitivity to different

persistency models. Similarly, TATP and TPCC are respectively the most and least write-

intensive benchmarks.

All workloads run with eight worker threads that update the underlying persistent data-

structure. In all the benchmarks, we run an additional work allocator thread [72] and two

volatile antagonistic threads to evaluate the proposed volatile annotations. Each worker

109

Benchmark Description PKC

Conc. queue Insert/Delete entries in a queue 17.4
Persistent Cache Persistent hash table 22.7
Array Swaps Random swaps of array elements 41.8
TATP Update location trans. in TATP [46] 30.8
TPCC New Order trans. in TPCC [45] 11.7
YCSB A YCSB Workload A [71] 17.4

Table 5.3: Benchmark characteristics (PKC = persists per 1000 cycles)

Benchmark SCP RCBSP ARP ARP+VA

cq 1 1.7 2.3 3.5
pc 1 2.2 3.9 12.3
sps 1 4.6 8.1 13.2
TATP 1 1.7 4.5 6.0
TPCC 1 1.7 2.7 22.1
YCSB A 1 2.1 3.8 12.5

Table 5.4: Persists per epoch: The persists per epoch observed at the PM controller for various
persistency model implementations.

thread has a 64-entry work queue that resides in the volatile memory. The work allocator

thread distributes tasks from a shared work queue to the eight worker threads. Note that

since work queue resides in volatile memory, the acquire and release fences required to

order accesses to the work queue are volatile fences. This work queue structure represents

the request dispatch of a typical network application and illustrates how threads that issue

no accesses to persistent memory can nevertheless impact persist performance indirectly

due to synchronization operations. Each workload also includes two antagonist threads to

simulate the traffic of background threads polling for events. The two threads contend on

a lock to a shared counter in volatile memory, increment it, and release the lock. These

antagonists represent synchronization activity by unrelated application threads and do not

interact directly with the eight worker threads.

110

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

cq	 pc	 sps	 geomean	 TATP	 TPCC	 YCSB	 geomean	

SCP	 RCBSP	 ARP	 ARP+VA	 Ideal	

Micro-benchmarks	 Benchmarks	

Figure 5.5: Execution time normalized to SCP: The graph compares execution time of ARP and
ARP+VA with SCP and RCBSP for micro-benchmarks and benchmarks.

5.5.1 Performance comparison

We first measure the number of persists per epoch to assess the opportunity of the ARP

and ARP+VA models.

Persists per epoch: Table 5.4 shows the persists per epoch under each persistency

model. More persists per epoch allow greater reordering opportunity and better persist

scheduling at the PM controller. ARP exploits unidirectional acquire and release opera-

tions to reduce the number of epochs at the PM controller and increase persists per epoch.

ARP provides a 3.9× and 1.8× increase in persists per epoch relative to SCP (which by

definition places each persist in its own epoch) and RCBSP, respectively. Further, ARP+VA

111

distinguishes volatile and persistent fences using programmer inserted volatile annotations

and achieves a 9.9× and 4.6× increase in persists per epoch relative to SCP and RCBSP.

Micro-benchmarks: The left set of bars in Figure 5.5 contrast the execution time for

micro-benchmarks under RCBSP, ARP, ARP+VA, and Ideal ordering models normalized

to SCP. Array swap (sps) gains the most from ARP+VA with 51.7% performance improve-

ment over SCP and 33.2% over RCBSP. As evident from the ideal result, array swap is

sensitive to the increase in persists per epoch. Concurrent queue (cq) gains the least. In

this microbenchmark, entries are pushed or popped from the queue serially by the worker

threads; there is limited thread concurrency. As a result, it is not sensitive to the number

of persists per epoch and gains little performance even under the ideal case. In fact, due

to inopportune read-write bus turnarounds, performance with ARP+VA slightly degrades

relative to RCBSP. Overall, ARP+VA improves micro-benchmark execution time by 32.4%

as compared to SCP and 21.2% as compared to RCBSP.

Benchmarks: Figure 5.5 also contrasts the execution time of the TATP, TPCC, and

YCSB A benchmarks under each persistency model. YCSB A is the most sensitive, gain-

ing 17.8% and 29.2% performance, respectively, under ARP and ARP+VA. Further, ARP+VA

improves execution time of TATP by 25.5%, and TPCC by 23% as compared to SCP. It is

interesting to note that unidirectional fences in ARP do not provide substantial performance

gain over RCBSP in TATP even though the ideal case outperforms SCP by 70.2%. TATP

includes numerous small critical sections containing full fences to log values before up-

dating the persistent database, limiting potential performance gains. The majority of the

gain for TATP is achieved by annotating volatile fences explicitly. Overall, ARP+VA im-

112

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

cq	 pc	 sps	 geomean	 TATP	 TPCC	 YCSB_A	 geomean	

SCP	 RCBSP	 ARP	 ARP+VA	 Ideal	

Micro-benchmarks	 Benchmarks	

Figure 5.6: Page miss rate normalized to SCP: Lower page miss rate in the PM controller implies
better persist scheduling.

proves execution time of the three benchmarks by 24.3% and 15.5% over SCP and RCBSP

respectively.

5.5.2 Persist scheduling

Finally, we report the impact of PM scheduling policies on the page miss rate of the PM

controller in Figure 5.6. The PM controller’s FR-FCFS policy seeks to maximize page hits

within each persistent memory bank. As described earlier, increasing the number of persists

per epoch improves the scheduling flexibility available to the controller. Owing to the

unidirectional fences in ARP, the page miss rate drops on average by 17.9% relative to SCP

113

and 8.2% relative to RCBSP. This improvement is the result of the increase in the number

of persists that can be scheduled to write to different PM banks concurrently. ARP+VA

further relaxes persist ordering constraints by distinguishing volatile and persistent fences,

achieving a further 13.0% improvement in page miss rate relative to ARP. The ideal model

lowers page miss rate by 76.3% over SCP, indicating the upper bound on PM bank-level

parallelism available in these workloads. However, it should be noted that this model does

not maintain ordering between the persists and data structures are not recoverable in the

event of failure.

114

CHAPTER VI

Related Works Survey

The proposals in this thesis involve both software (Chapters III, V) and hardware (Chap-

ters IV, V) modifications that would decrease the overall costs of enforcing persist depen-

dencies. Next, we present a survey of related works, we start with related software tech-

niques and then present related hardware works.

6.1 Related works - software

The emergence of new persistent memory technologies has spurred research in many

areas of computer science, including file systems [73, 8, 41], databases [40, 74, 75, 76, 21],

persistent data structures [11, 7], and concurrent programming [12].

Several systems share our goal of providing a transaction interface to persistent mem-

ory. NV-Heaps [11] provides a persistent object system with transactional semantics that

prevents persistence-related pointer and memory allocation errors. Mnemosyne [7] allows

programmers to declare or allocate persistent data and write this data through special in-

115

structions or via transactions. Rio Vista [40] provides transactions on top of flat memory

regions.

Prior systems have generally not sought to optimize concurrency of writes to persis-

tent memory. For example, Rio Vista assumes persistent memory is fast enough to not

require concurrent accesses [40]. NV-Heaps uses epoch barriers to order persistent writes

and assumes that memory accesses execute serially [11]. Mnemosyne uses cache-flush

operations to order updates to persistent memory [7].

Unlike these systems, our work focuses on maximizing the concurrency of writes to

persistent memory by reducing ordering constraints between persistent memory accesses.

We believe that freeing the underlying persistent memory system to reorder, parallelize,

and combine writes will be essential to supporting high-performance, transaction-oriented

workloads. To our knowledge, our work is the first to explore the implications of various

recently proposed persistency models on transaction software.

Recent work by Lu, et al. shares our goal of reducing ordering constraints among per-

sistent writes [19]. Their system distributes the commit status of a transaction among the

data blocks to eliminate an ordering constraint within a transaction (similar to the torn bit

in Mnemosyne [7]), and uses hardware support (multi-versioned CPU cache and transac-

tion IDs) to enable conflicting transactions to persist out of order. Their techniques are

complementary to the ones we propose for reducing ordering constraints. In addition, their

system assumes that flushing is required to guarantee ordering (as in eager sync), whereas

we explore other memory persistency models.

Our work builds on prior proposals to allow software to communicate ordering depen-

dencies among writes to persistent memory. In shipping systems, order can be enforced by

116

flushing persistent writes from the CPU cache to memory (e.g., via write-through caches

or clflush instructions) and then issuing a memory barrier (e.g., mfence) [77]. How-

ever, flushing data to persistent storage is not necessarily the best way to ensure the order

in which data is made durable [10]. To relax ordering requirements, Condit et al. propose

using epoch barriers to ensure an ordering between writes before and after the barrier [8].

Pelley, et al. expand this into a design space for memory persistency models [5].

Others propose hardware support to increase the apparent speed of persistent memory

by adding a nonvolatile CPU cache [6] or by assuming sufficient residual power to complete

all pending writes [78]. Reducing persist latency makes it less important to allow concur-

rent writes to persistent memory. Our work makes the more conservative assumption that

data must be written to the main persistent memory to be considered durable. Transactions

can also be accelerated via other hardware support for persistent memory, such as editable

atomic writes [75].

6.2 Related works - hardware

We briefly discuss related hardware designs that seek to facilitate the adoption of PM in

future systems. We broadly classify works into five categories based on the write-ordering

guarantees they provide.

No ordering: Apart from durability, cost, scalability, and energy efficiency may make

PMs an attractive alternative to DRAM. Some hardware designs focus on PM only as a

scalable replacement for DRAM [18, 55] and don’t seek to use PM’s non-volatility. De-

ploying PM as a volatile memory alternative requires addressing media-specific issues,

117

such as wear-leveling [53, 54, 55], slow writes [79, 80, 81], and resistance drift [82]. These

techniques are essential and orthogonal to our use PM.

Persistent caches: By making the caches themselves persistent, some proposals ensure

that stores become durable as they execute, obviating the need for a persistency model.

Cache persistence can be achieved by building cache arrays from non-volatile devices [21,

6], by ensuring that a battery backup is available to flush the contents of caches to PM

upon power failure [78, 59], or by not caching PM accesses [21]. However, integrating

NV devices in high performance logic poses manufacturing challenges, present NV access

latencies (e.g., for STT-RAM) are more suitable for the LLC than all cache levels [6], and

it is not clear if efficient backup mechanisms are available for systems with large caches.

Our approach assumes volatile caches.

Synchronous ordering: SO (see Section 4.2) is our attempt to formalize the persis-

tency model implied by Intel’s recent ISA extensions [4]. Without these extensions, it may

be impossible to ensure proper PM write order in some x86 systems [41]. Mnemosyne [7]

and REWIND [83] use SO to provide transaction systems optimized for PM. Atlas [12],

uses it to provide durability semantics for lock-based code. SCMFS [84] uses SO to provide

a PM-optimized file system. SO provides few opportunities to overlap program execution

and persist operations and Bhandari et al. [32] show that write-through caching sometimes

provides better performance. We propose delegated ordering to increase overlap between

program execution and persist operations.

Epoch barriers: As proposed in BPFS [8], epoch barriers divide program execution

into epochs in which stores may persist concurrently. Stores from different epochs must

persist in order. BPFS [8] implements epoch barriers by tagging all cache blocks with the

118

current epochID (incremented after every epoch barrier instruction) on every store, and

modifying the cache replacement policy to write epochs back to PM in order in a lazy fash-

ion. This approach allows for more overlap of program execution and persist operations

(no need to stall at epoch barriers) than SO. However, BPFS is tightly coupled with cache

management, restricting cache replacements and suffers from some other drawbacks of

SO, such as discarding write permissions as epochs drain from the cache. Pelley et al. [5]

propose a subtle variation of epoch barriers, and show the potential performance improve-

ment due to a better handling of inter-thread persist dependencies. Joshi et al. [14] define

efficient persist barriers to implement buffered epoch persistency. However, Joshi does

not study persistency models with a detailed PM controller, which is a central theme of

our work. Delegated ordering fully decouples cache management from the path persistent

writes take to memory and requires no changes to the cache replacement policy.

Other: Kiln [6] and LOC [19] provide a storage transaction interface (providing Atom-

icity, Consistency and Durability) to PM, wherein the programmer must ensure isola-

tion. Kiln [6] employs non-volatile LLCs and leverages the inherent versioning of data

in the caches and main memory to gain performance. LOC [19] reduces intra- and inter-

transaction dependencies using a combination of custom hardware logging mechanisms

and multi-versioning caches. Pelley [5] explores several persistency models, which range

from conservative (strict persistency) to very relaxed (strand persistency) and shows the

potential performance advantages of exposing additional persist concurrency to the PM

controller. However, Pelley does not propose hardware implementations for the persis-

tency models. FIRM [9] and NVM-Duet [51] optimize memory scheduling algorithms

119

to manage resource allocation at the memory controller to optimize for performance and

application fairness while respecting the constraints on the order of persists to PM.

120

CHAPTER VII

Conclusions

New persistent memory technologies make it possible to store persistent data directly

in memory. Achieving the full performance benefits of doing so requires both minimizing

the constraints on the order of writes to PM and also minimizing the cost of enforcing

individual persist dependencies. Further, simple and precise programming abstractions

for persistent memory programming are required to ensure the wide-spread adoption of

persistent memories. This thesis addresses the aforementioned challenges on two thrusts

and proposes future work on a third . Summaries of the contributions of this thesis follow.

7.1 Summaries of contributions

In Chapter III, we showed how to design transaction systems that specify and commu-

nicate these constraints to hardware in a way that reduces the persist dependencies. Our

DCT transaction design reduces the persist critical path and improves performance by up

to 50% under epoch and strand persistency and up to 150% under synchronous ordering.

121

In Chapter IV, we show that synchronous ordering (based on Intel’s recent ISA exten-

sions for PM) incurs 7.21× slowdown on average over volatile execution for write-intensive

benchmarks. SO conflates enforcing order and flushing writes to PM, incurring frequent

stalls and poor performance. We show that forward progress can be effectively decoupled

from PM write ordering by delegating ordering requirements explicitly to the PM. Our

approach outperforms SO by 3.73× on average.

In Chapter V, we presented a taxonomy of differing failure-atomicity and ordering guar-

antees that a language-level persistency model might provide. Based on our analysis of this

taxonomy, we proposed acquire-release persistency (ARP), a language level persistency

model for C++11. We then co-optimized ARP with an underlying ISA-level persistency

model, RCBSP, to minimize the number of persist constraints the PM controller must en-

force, substantially increasing PM bank-level parallelism and performance. Although we

have focused on the C++11 memory model, we believe the insights underlying our work

apply more broadly to programming systems, especially when the language mandates a

weaker memory model than the underling hardware.

7.2 Future work

This thesis outlines the fundamental research conducted on how to efficiently provide

precise recovery guarantees in persistent memory systems using a combination hardware

and software techniques. However, much more applied research needs to be conducted in

identifying and mitigating the system-specific problems that arise when integrating persis-

tent memories into various computing systems. For example, integrating persistent memo-

122

ries into small energy harvesting devices will likely present different challenges than inte-

grating persistent memories into servers in a data center. The rest of this chapter lists some

important directions in which our work can be extended.

Recovery aware wear-leveling for persistent memories: Most candidate persistent

memory technologies like PCM and Memristor suffer from “wear-out”. That is, mem-

ory cells deteriorate after a certain number of writes to them. So, it is important to make

sure that the writes to persistent memory are uniformly distributed to all memory cells, a

process called wear-levelling. Many wear-levelling techniques have been proposed previ-

ously [53, 29], they all involve one or more of the following approaches: a) re-order writes

to persistent memory, b) relocate hot persistent memory pages to cold memory locations,

and c) in heterogenous memory systems with both persistent memory and DRAM, relo-

cate hot pages in persistent memory to DRAM and cold pages from DRAM to persistent

memory.

While such approaches are valid when treating persistent memories as simply DRAM

replacement technologies, they may violate recovery guarantees when using persistent

memory as the only durable media in the system. While tailoring wear-levelling solu-

tions to ensure recovery correctness, writes to persistent memory may be re-ordered only

when such a re-ordering does not violate persistency constraints, relocating pages within

persistent memory performed atomically with respect to the program and while relocating

pages between DRAM and persistent memory, care should be taken to make sure there is

always a consistent version of data in persistent memory.

123

Programming language support for persistent memories: One of the foci of this

thesis is to make programming persistent memory systems easier. To that end, we de-

signed simpler programming abstractions and developed high-level language primitives.

However, much more work needs to be done in helping programmers with persistent mem-

ory programming. For example, continuing with C++, we need a new type qualifier, say

persistent, for variables in persistent memory, similar to how volatile is used for

I/O variables. We need to provide programmers with a library of recoverable data structures

they can use in their programs. We also need to develop tools that programmers can use to

recover from system failures and debug their persistent memory programs. Programming

persistent memory systems is challenging and a robust supporting framework could go a

long way in helping the adoption of persistent memory systems.

Persistency models for remote memories: All of the persistency models and their

implementations that have been proposed so far assume that persistent memory being ac-

cessed by a program is local to the system on which the program is being run. However,

with reducing networking latencies and fast remote direct memory accesses (RDMAs), it is

reasonable to assume that programs might want to access remote persistent memories. We

need to develop the semantics and implementations of our persistency models to handle

remote persistent memories, which requires figuring out how the persistency model will

interact with network protocols. And, implementations have to specify where, when, and

how data gets cached (and hence possible to lose in the event of a failure) when moving

data from one system to a remote system, so that programmers are provided with precise

guarantees on the status of their data. Persistency models for remote memories will also

124

have to encounter a new kinds kinds of failures emanating from the network and provide

programmers with precise guarantees in the event of such failures.

Asynchronous persistency models with durability notifications: Programmers ex-

pect mechanisms in their persistency model that they can use to confirm that certain da-

tum has been persisted (for example, before performing an externally visible irrecoverable

event). All of the persistency models that have been proposed so far provide synchronous

mechanisms to do so, like pcommit from synchronous ordering or persist sync pro-

posed by Pelley [5]. These synchronous mechanisms block volatile execution of the pro-

gram until all prior persist operations have been completed. However, if persistent memory

access latencies are high, either because of a slow technology or because the memory is

in a remote machine, these blocking operations can significantly decrease performance.

And, motivate the development of an asynchronous persistency model with durability noti-

fications. Similar to how asynchronous networking protocols operate, these asynchronous

persistency models will have mechanisms in place such that programs can poll certain

memory locations to confirm if the corresponding data has persisted rather than having to

block.

Persistent memories enable a paradigm shift in how we manage recoverable data. For

decades, we have used a multi-tiered storage hierarchy with a byte-addressable volatile

main memory and a block-addressable persistent storage. With persistent memories we

have the ability to unify these tiers into a a single byte-addressable, persistent storage layer.

This thesis is one of the initial efforts to redesign software, programming interfaces for this

new storage landscape and important work is ahead of us.

125

BIBLIOGRAPHY

126

BIBLIOGRAPHY

[1] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. Chen, and T. Wenisch,
“Delegated persist ordering,” in Proceedings of the 49th International Symposium on
Microarchitecture, 2016.

[2] Intel and Micron, “Intel and micron produce breakthrough
memory technology,” 2015. http://newsroom.intel.
com/community/intel_newsroom/blog/2015/07/28/
intel-and-micron-produce-breakthrough-memory-technology.

[3] C. World, “Hp and sandisk partner to bring storage-class mem-
ory to market,” 2015. http://www.computerworld.
com/article/2990809/data-storage-solutions/
hp-sandisk-partner-to-bring-storage-class-memory-to-market.
html.

[4] Intel, “Intel architecture instruction set extensions programming reference (319433-
022),” 2014. https://software.intel.com/sites/default/files/
managed/0d/53/319433-022.pdf.

[5] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in Proceedings of
the 41st International Symposium on Computer Architecture, 2014.

[6] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the performance
gap between systems with and without persistence support,” in Proceedings of 46th
International Symposium on Microarchitecure, 2013.

[7] H. Volos, A. J. Tack, and M. M. S. E, “Mnemosyne: Leightweight persistent mem-
ory,” in Proceedings of the 16th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2011.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee,
“Better i/o through byte-addressable, persistent memory,” in Proceedings of the 22nd
ACM Symposium on Operating Systems Principles, 2009.

[9] J. Zhao, O. Mutlu, and Y. Xie, “Firm: Fair and high-performance memory control
for peristent memory systems,” in Proceedings of 47th International Symposium on
Microarchitecure, 2014.

127

http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://www.computerworld.com/article/2990809/data-storage-solutions/hp-sandisk-partner-to-bring-storage-class-memory-to-market.html
http://www.computerworld.com/article/2990809/data-storage-solutions/hp-sandisk-partner-to-bring-storage-class-memory-to-market.html
http://www.computerworld.com/article/2990809/data-storage-solutions/hp-sandisk-partner-to-bring-storage-class-memory-to-market.html
http://www.computerworld.com/article/2990809/data-storage-solutions/hp-sandisk-partner-to-bring-storage-class-memory-to-market.html
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf

[10] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Op-
timistic crash consistency,” in Proceedings of the 24th ACM Symposium on Operating
Systems Principles, 2013.

[11] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and S. Swan-
son, “Nv-heaps: Making persistent objects fast and safe with next-generation, non-
volatile memories,” in Proceedings of the 16th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, 2011.

[12] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: leveraging locks for non-
volatile memory consistency,” in Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2014.

[13] H.-J. Boehm and D. R. Chakrabarti, “Persistence programming models for non-
volatile memory,” Tech. Rep. HPL-2015-59, Hewlett-Packard, 2015.

[14] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist barriers for multi-
cores,” in Proceedings of the international symposium on Microarchitecture, 2015.

[15] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-performance
transactions for persistent memories,” in Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, 2016.

[16] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory updates via
justdo logging,” in Proceedings of the Twenty-First International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, 2016.

[17] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A tutorial,”
IEEE Computer, vol. 29, pp. 66–76, December 1996.

[18] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as
a scalable dram alternative,” in Proceedings of the 36th Annual International Sympo-
sium on Computer Architecture, 2009.

[19] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency for persistent mem-
ory,” in Proceedings of the 32nd IEEE International Conference on Computer Design,
2014.

[20] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries: A transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-
ahead logging,” ACM Transactions on Database Systems, vol. 17, no. 1, 1992.

[21] T. Wang and R. Johnson, “Scalable logging through emerging non-volatile memory,”
Proceedings of the VLDB Endowment, vol. 7, pp. 865–876, June 2014.

[22] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki, “Aether: A scal-
able approach to logging,” in Proceedings of the VLDB Endowment, vol. 3, pp. 681–
692, September 2010.

128

[23] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. Wood,
“Implementation techniques for main memory database systems,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data, 1984.

[24] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com-
munication of the ACM, vol. 21, pp. 558–565, July 1978.

[25] G. R. Ganger, M. K. McKusick, C. A. N. Soules, and Y. N. Patt, “Soft Updates: A
Solution to the Metadata Update Problem in File Systems,” ACM Transactions on
Computer Systems, vol. 18, May 2000.

[26] ARM, “Armv8-a architecture evolution,” 2016. https://
community.arm.com/groups/processors/blog/2016/01/05/
armv8-a-architecture-evolution.

[27] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and Y. Xie,
“Overcoming the challenges of crossbar resistive memory architectures,” in In Pro-
ceedings of the International Symposium on High Performance Computer Architec-
ture, 2015.

[28] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy,
“Overview of candidate device technologies for storage-class memory,” IBM J. Res.
Dev., vol. 52, pp. 449–464, July 2008.

[29] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main
memory system using phase-change memory technology,” in Proceedings of the 36th
Annual International Symposium on Computer Architecture, 2009.

[30] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali,
“Enhancing lifetime and security of pcm-based main memory with start-gap wear
leveling,” in Proceedings of the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009.

[31] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “Persistency programming
101,” 2015. http://nvmw.ucsd.edu/2015/assets/abstracts/33.

[32] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Implications of cpu caching
on byte-addressable non-volatile memory programming,” Tech. Rep. HPL-2012-236,
Hewlett-Packard, December 2012.

[33] ARM, “Arm software development tools.” http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.dui0802b/CIHGHHIE.html.

[34] M. Luc, S. Inria, Sarkar, and P. Sewell, “A tutorial introduction to the arm and power
relaxed memory models,” 2012.

[35] D. Lustig, C. Trippel, M. Pellauer, and M. Martonosi, “Armor: Defending against
memory consistency model mismatches in heterogeneous architectures,” in Proceed-
ings of the 42Nd Annual International Symposium on Computer Architecture, 2015.

129

https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
http://nvmw.ucsd.edu/2015/assets/abstracts/33
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802b/CIHGHHIE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802b/CIHGHHIE.html

[36] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams, “Understanding power
multiprocessors,” in Proceedings of the 32Nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2011.

[37] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling, simulation,
testing, and data-mining for weak memory,” in Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, 2014.

[38] ARM, “Barrier litmus tests and cookbook,” 2009. http://infocenter.arm.
com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_
Tests_and_Cookbook_A08.pdf.

[39] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, Inc., 1993.

[40] D. E. Lowell and P. M. Chen, “Free transactions with rio vista,” in Proceedings of the
16th Symposium on Operating Systems Principles, 1997.

[41] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and
J. Jackson, “System software for persistent memory,” in Proceedings of the 9th Euro-
pean Conference on Computer Systems, 2014.

[42] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Iron file systems,” in Proceedings of the 20th
Symposium on Operating Systems Principles, 2005.

[43] A. Thomson and D. J. Abadi, “The case for determinism in database systems,” Pro-
ceedings of the VLDB Endowment, vol. 3, no. 1-2, 2010.

[44] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the Conference on Programming Lan-
guage Design and Implementation (PLDI), 2005.

[45] T. P. P. C. (TPC), “Tpc benchmark b,” 2010. http://www.tpc.org/tpc_
documents_current_versions/pdf/tpc-c_v5-11.pdf.

[46] S. Neuvonen, A. Wolski, M. Manner, and V. Raatikka, “Telecom application transac-
tion processing benchmark,” 2011. http://tatpbenchmark.sourceforge.
net/.

[47] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News,
vol. 39, pp. 1–7, Aug. 2011.

[48] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and O. Mutlu,
“Staged memory scheduling: schieving high performance and scalability in hetero-
geneous systems,” in In Proceedings of the International Symposium on Computer
Architecture, 2012.

130

http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf
http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/

[49] Y. Kim, D. Han, O. MUtlu, and M. Harchol-Balter, “Atlas: A scalable and high-
performance scheduling algorithm for multiple memory controllers,” in In Proceed-
ings of the International Symposium on High Performance Computer Architecture,
2010.

[50] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread cluster memory
scheduling: Exploiting differences in memory access behavior,” in In Proceedings of
the International Symposium on Microarchitecture, 2010.

[51] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang, “Nvm duet: unified
working memory and persistent store architecture,” in Proceedings of the interna-
tional conference on Architectural Support for Programming Languages an Operat-
ing Systems, 2014.

[52] T. Harris, J. Larus, and R. Rajwar, Transactional memory. Morgan & Claypool Pub-
lishers, 2010.

[53] M. K. Qureshi, M. M. Franchescini, V. Srinivasan, L. A. Lastras, B. Abali, and
J. Karidis, “Enhancing lifetime and security of pcm-based main memory with start-
gap wear leveling,” in Proceedings of the International Symposium on Microarchitec-
ture, 2009.

[54] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franchescini, “Practical and
secure pcm systems by online detection of malicious write streams,” in Proceedings
of the 17th International Symposium on High Performance Computer Architecture,
2011.

[55] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main mem-
ory using phase change memory technology,” in Proceedings of the 36th International
Symposium on Computer Architecture, 2009.

[56] H.-J. Boehm and S. V. Adve, “Foundations of the c++ concurrency memory model,”
in Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2008.

[57] T. J. Dell, “A white paper on the benefits of chipkill-correct ecc for pc server main
memory,” IBM Microelectronics Division, pp. 1–23, 1997.

[58] H. M. Joseph Izraelevitz and M. L. Scott, “Linearization of persistent memory ob-
jects under a full-system-crash failure model,” in Proceedings of the International
Symposium on Distributed Computing (DISC), 2016.

[59] F. Nawab, D. Chakrabarti, T. Kelly, and C. B. M. III, “Procrastination beats preven-
tion: Timely sufficient persistence for efficient crash resilience,” Tech. Rep. HPL-
2014-70, Hewlett-Packard, December 2014.

[60] H. Boehm and D. R. Chakrabarti, “Persistence programming models for non-volatile
memory,” in Proceedings of the ACM SIGPLAN International Symposium on Memory
Management, 2016.

131

[61] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie,
“Unbounded transactional memory,” in 11th International Symposium on High-
Performance Computer Architecture, pp. 316–327, IEEE, 2005.

[62] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm, “Conflict exceptions:
simplifying concurrent language semantics with precise hardware exceptions for data-
races,” in Proceedings of the 37th Annual International Symposium on Computer Ar-
chitecture, 2010.

[63] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni, “Hybrid static–
dynamic analysis for statically bounded region serializability,” SIGARCH Comput.
Archit. News, vol. 43, Mar. 2015.

[64] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy, “. . . and region serializability
for all,” in Presented as part of the 5th USENIX Workshop on Hot Topics in Paral-
lelism, 2013.

[65] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm: Enabling software-
transparent crash consistency in persistent memory systems,” in Proceedings of the
48th International Symposium on Microarchitecture, pp. 672–685, ACM, 2015.

[66] C. Blundell, M. M. Martin, and T. F. Wenisch, “Invisifence: performance-transparent
memory ordering in conventional multiprocessors,” in ACM SIGARCH Computer Ar-
chitecture News, vol. 37, pp. 233–244, ACM, 2009.

[67] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: bulk enforcement of
sequential consistency,” in ACM SIGARCH Computer Architecture News, vol. 35,
pp. 278–289, ACM, 2007.

[68] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
“Memory consistency and event ordering in scalable shared-memory multiproces-
sors,” in Proceedings of the 17th Annual International Symposium on Computer Ar-
chitecture, ISCA ’90, (New York, NY, USA), pp. 15–26, ACM, 1990.

[69] J. Sevcik and P. Sewell, “C/c++11 mappings to processors,” 2011. https://www.
cl.cam.ac.uk/˜pes20/cpp/cpp0xmappings.html.

[70] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access
scheduling,” in Proceedings of the 27th Annual International Symposium on Com-
puter Architecture, ISCA ’00, (New York, NY, USA), pp. 128–138, ACM, 2000.

[71] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with ycsb,” in Proceedings of the 1st ACM symposium on Cloud
computing, pp. 143–154, ACM, 2010.

[72] T. H. Tzen and L. M. Ni, “Dynamic loop scheduling for share-memory multiproces-
sors.,” in ICPP (2), 1991.

132

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

[73] P. M. Chen, W. T. Ng, S. Chandra, C. M. Aycock, G. Rajamani, and D. Lowell,
“The rio file cache: Surviving operating system crashes,” in Proceedings of the 7th
International Conference on Architectural Support for Programming Languages and
Operating Systems, 1996.

[74] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algorithms for phase
change memory,” in Proceedings of the 5th Biennial Conference on Innovative Data
Systems Research, January 2011.

[75] J. Coburn, T. Bunker, M. Shwarz, R. K. Gupta, and S. Swanson, “From aries to
mars:transaction support for next-generation solid-state drives,” in Proceedings of the
24thSymposium on Operating System Principles, 2013.

[76] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-aware logging in transaction sys-
tems,” in Proceedings of the VLDB Endowment, vol. 8, pp. 389–400, 2014.

[77] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, “Consistent and
durable data structures for non-volatile byte-addressable memory,” in Proceedings of
the USENIX Conference on File and Storage Technologies, February 2011.

[78] D. Narayanan and O. Hodson, “Whole-system persistence,” in Proceedings of the
17th International Conference on Architectural Support for Programming Languages
and Operating Systems, 2012.

[79] J. Yue and Y. Zhu, “Accelerating write by exploiting pcm asymmetries,” in Proceed-
ings of the International Symposium on High Performance Computer Architecture,
2013.

[80] S. Cho and H. Lee, “Flip-n-write: a simple deterministic technique to improve pram
write performance, energy and endurance,” in Proceedings of the International Sym-
posium on Microarchitecture, 2009.

[81] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger, “Preventing pcm banks
from seizing too much power,” in Proceedings of the International Symposium on
Microarchitecture, 2011.

[82] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran, and R. Balasubramonian, “Effi-
cient scrub mechanisms for error-prone emerging memories,” in Proceedings of the
International Symposium on High Performance Computer Architecture, 2012.

[83] A. Chatzistergiou, M. Cintra, and S. D. Vaglis, “Rewind: Recovery write-ahead sys-
tem for in-memory non-volatile data structures,” Proceedings of the VLDB Endow-
ment, vol. 8, no. 5, 2015.

[84] X. Wu and A. L. N. Reddy, “Scmfs: a file system for storage class memory,” in In
Proceedings of the International Conference for High Performance Computing, 2011.

133

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	High-performance transactions for persistent memories
	Delegated persist ordering
	Language-level persistency
	Summary

	Background
	Persistent memory technologies
	Ordering constraints
	Memory persistency models
	Strict persistency
	Epoch persistency
	Strong persist atomicity:

	Strand persistency
	Buffering

	Coding patterns to order persists
	Synchronous Ordering
	Formalism for non-multi-copy-atomic models
	Relaxed Consistency Buffered Strict Persistency
	Discussion

	High-performance transactions for persistent memories
	Introduction
	Transactions under Idealized Ordering
	Transaction design
	Minimal Persist Dependencies
	Persist critical path analysis

	Synchronous commit transactions (SCT)
	SCT under Epoch Persistency
	SCT under Synchronous Ordering
	SCT under Strand Persistency

	Deferred commit transactions (DCT)
	DCT under Epoch Persistency
	Inferring undo order during recovery
	Enforcing correct commit order
	Persist critical path analysis

	DCT under Synchronous Ordering
	DCT under Strand persistency

	Evaluation
	Methodology
	Performance analysis

	Delegated persist ordering
	Introduction
	Performance of synchronous ordering
	Semantics
	Performance
	Discussion

	Delegated persist ordering
	Design goals
	System Architecture
	Enforcing Dependencies
	Hardware Structures
	Detailed Examples.
	Coalescing Persists

	Evaluation
	Performance Comparison

	Language-level persistency
	Introduction
	Design Exploration
	Failure and recovery
	Atomicity and ordering
	DRF Persistency?

	A Taxonomy of Persistency Guarantees
	Sequentially consistent, failure-atomic outer critical sections
	Sequentially consistent, failure-atomic synchronization free regions
	Sequentially consistent persists (SCP)
	Epoch ordered persists (EOP)

	Discussion

	Acquire-Release Persistency
	Definition
	Mapping to ISA-level persistency
	Fence directionality
	Conflating concurrency control with recoverability

	Extending RCBSP for ARP
	Enforcing unidirectional fences
	Extensions for volatile annotations

	Evaluation
	Performance comparison
	Persist scheduling

	Related Works Survey
	Related works - software
	Related works - hardware

	Conclusions
	Summaries of contributions
	Future work

	BIBLIOGRAPHY

