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ABSTRACT

Analytical and Numerical Modeling of Delamination Evolution in Fiber Reinforced

Laminated Composites Subject to Flexural Loading

by

Jiawen Xie

Co-Chairs: Anthony M. Waas and Veera Sundararaghavan

Delamination or interfacial debonding is a common failure mode in composite (fiber

reinforced and layered) structures and other general multi-layered structures subject

to a variety of loading conditions, such as bending or low-velocity impact by for-

eign objects. A better understanding of delamination evolution and its relation to

geometry of the structure, lamina stacking sequences, size of existing crack, and in-

terfacial properties is very helpful in design and repair processes. In recent years,

finite element (FE) simulations that use cohesive elements have found wide appeal in

modeling onset and growth of the delamination. Despite its popularity, some com-

mon numerical issues in cohesive zone modeling (CZM) have not been fully addressed,

such as instability, convergence difficulties, and length-scale issues due to discretiza-

tion. Therefore, analytical solutions of CZM are important to obtain a comprehensive

understanding of modeling artifacts and a platform for acquiring computationally ef-

ficient results, as well as to provide benchmark cases and suggest element sizes and

mesh densities when FE simulations are to be used.

The focus of this research is to analyze flexural responses and delamination evo-

lution in laminated composites under transverse loading conditions. Analytical solu-

tions were formulated and computed for various flexural test configurations of lami-

nated beam and plate structures. The results, including load-displacement responses

and delamination threshold loads, were cross-checked with experiments and FE sim-

ulations.

xiv



Two-dimensional (2D) elasticity theory for laminated panels was extended to an-

alyze elastodynamic responses of pristine panels and quasi-static responses of pre-

delaminated panels. Stress distributions, load-displacement responses, and delami-

nation threshold loads calculated per the 2D elasticity theory for cross-ply laminates

were found in good agreement with FE simulations with plane-strain elements and

existing experimental data. Further investigations showed that the 2D elasticity the-

ory is not amenable to a closed-form solution for laminates containing off-axis angle

plies due to three-dimensional (3D) states of stress.

Closed-form solutions for CZM within a framework of classical lamination theory

(CLT) were developed, for three popular delamination toughness characterization

tests, including mode I double cantilever beam (DCB) test, mode II end notched

flexure (ENF) test, and mixed-mode I/II bending (MMB) test of laminated beams.

Following the concept of CZM, a laminated panel was considered as an assembly of

two sub-laminates connected by a virtual deformable layer with infinitesimal thick-

ness. Comprehensive parametric studies were performed on crack growth responses

and process zone lengths, revealing their relations to delamination lengths, cohesive

parameters, shapes of the traction-separation laws, and mode mixity, controlled by

external loading conditions.

The studies with laminated beams were simplified by considering linear damage

(quasi-brittle) traction-separation laws that consist of only one quasi-brittle softening

segment, so that closed-form expressions can be obtained, serving as a quick estima-

tion of the flexural responses and the process zone lengths for the three delamination

toughness characterization tests. Known for its dependence on the mode mixity, ma-

terial properties, and interfacial fracture properties, the process zone lengths were

found as a system parameter that is also influenced by specimen geometry, such as

thickness and crack lengths. Based on parametric studies and comparisons against

FE simulations, suggestions for estimating the process zone lengths were provided.

Analytical solutions for CZM were further extended to analyze laminated plates

subject to flexural loading. Due to extension-shear couplings, the Rayleigh-Ritz

method was used to determine approximate solutions for an elastic response and de-

lamination evolution of laminates with arbitrary stacking sequences, within a frame-

work of either CLT or first-order shear deformation theory (FSDT). Configurations

of quasi-static face-on impact tests were analyzed as an example. The results, includ-

ing elastic stiffness of flexural responses, traction distributions over potential crack

interfaces, threshold loads of the delamination, and initiating locations of the delam-

ination, were found in good agreement with FE simulations.

xv



The analytical solutions formulated herein can be used with confidence to study

general multilayered structures, and be extended to consider other loading conditions

as well as other boundary conditions.
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CHAPTER 1

Introduction

1.1 Motivation

During manufacturing processes and services, unexpected impacts on fiber reinforced

laminated composite structures by foreign objects, such as dropped tools, runway

debris, and service vehicles, can occur. Damage induced by those impact events

is a major concern in designing laminated composite structures because it can be

barely visible while largely altering the functionality of a designed structure in terms

of stiffness and strength [1]. Common failure modes of impact damage are matrix

cracking, delamination and fiber breakage, [2], as shown in Figure 1.1. Delamination is

particular serious because it has a major influence on flexural stiffness and buckling

failure. To maximize the design capacity, it is important to have reliable tools to

predict delamination evolution in laminated composites subject to flexural loading

and low-velocity impacts. The predictive tools for delaminated structural response

are also one step towards virtual engineering in design, manufacturing and testing that

is fully based upon computer aided modeling and simulations. Though real physical

experiments are valuable and necessary for characterizing and validating purposes,

virtual engineering provides an efficient way to explore more design possibilities with

lower costs of prototyping, testing and optimization.

From a viewpoint of fracture analysis, delamination is driven by interlaminar nor-

mal (peel) stress, characterized as mode I, and interlaminar shear stresses, denoted

as mode II and III for in-plane and out-of-plane cases, respectively [3]. To predict

initiation and propagation of delaminations, a stress- or strain-based continuum dam-

age mechanics approach is intuitive. The approach can provide time and locations of

delamination evolution by comparing the interlaminar stresses or strains to relevant

strength parameters that are measured from experiments. In this sense, predictions

of the stress- or strain-based approach heavily rely on the accuracy of stresses cal-
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Figure 1.1: Damage types in impacted fibre reinforced laminates [2].

culated, especially transverse stresses. Analytical approaches using elasticity theory

[4, 5, 6] can accurately predict transverse stress distributions of multilayered com-

posites subject to flexural loading. The elasticity approaches directly solve layer-wise

displacement fields from force and moment equilibrium, strain-displacement relations,

and constitutive laws in continuum mechanics with appropriate boundary conditions

and continuity conditions between layers. However, analytical solutions using the

elasticity approaches are only available for a limited class of problems. Simplified

analytical theories for multilayered composites reduce the elasticity approaches to

beam and plate theories based formulations by making appropriate assumptions on

the width and the thickness directions of composite structures. They provide good

approximations for the displacement fields and stiffness of structures. Representive

simplified theories are classical lamination theory (CLT) and first-order shear de-

formation theory (FSDT), distinguished by whether transverse shear deformation is

prohibited or allowed [7]. Unfortunately, most simplified theories cannot provide

satisfactory stress distributions in the through-the-thickness direction, making them

useless in the continuum damage mechanics approach for predicting delaminations.

Additionally, by analyzing a problem of an infinite sheet with semi-infinite cracks

subjected to far-field loading conditions, solutions based on linear elastic fracture

mechanics (LEFM) have shown that the stress field near the crack tip has a charac-

teristic r−1/2 singularity where r is the distance from the crack tip [3]. In spite of its

simplicitiy, the LEFM-based solutions suggest a stress concentration with very high

gradients near the crack tip, where stresses can be difficult to be accurately captured

by both analytical solutions and finite element (FE) based simulations.
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Figure 1.2: A general cohesive constitutive law of mode I fracture. The law for mode
II is similar (σ → τ , w → u) but antisymmetric with respect to the origin.

Instead of directly calculating stresses, LEFM-based solutions [8, 9] and FE meth-

ods such as virtual crack closure technique (VCCT) [10, 11] consider that the crack

can have self-similar growth when the change of potential energy per increment of

crack advance, referred to as energy release rate, satisfies energy-based criteria. The

energy methods work well in studying propagation of an existing delamination while

they have limited capability in predicting delamination initiation if the crack initiat-

ing location is unknown.

In recent years, FE methods with cohesive elements have been advanced to pre-

dict both initiation and propagation of cracks at potential crack interfaces by apply-

ing traction-separation laws that combine strength and energy based criteria, without

previous knowledge of the crack location and growth path. The original cohesive frac-

ture concept was proposed by Barenblatt [12, 13] who considered additional molecular

cohesive forces holding the upper and the lower surfaces of a narrow zone ahead of

the crack tip. As a result, the stress singularity near the crack tip is removed. If

the cohesive forces distributed in the narrow zone equals a constant value of yield

stress, the concept can be considered identical to Dugdale’s strip yield model [14].

The Dugdale-Barenblatt model was first adopted and implemented in the finite ele-

ment framework to study crack growth in concrete in Ref. [15], where finite geometry

was fully considered and the cohesive constitutive law independent of the continuum

material properties was defined more generally as a nonlinear traction-separation

relation. As shown in Figure 1.2, the relation indicates that as the separation in-

creases, the traction across the potential crack interface reaches a maximum, then

decreases, and eventually vanishes signifying the onset of crack propagation. The

modeling technique of cohesive elements has received continuous improvements dur-
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ing the last four decades in different aspects, such as characterizations of cohesive

constitutive laws [16, 17, 18, 19, 20, 21], the implementation of mixed-mode failure

modeling [18, 21, 22, 23, 24, 25, 26] and the development of discrete cohesive elements

[18, 27, 28]. Since the cohesive zone modeling (CZM) is a generalized method that al-

lows using different shapes of cohesive laws to simulate various interfacial behavior, it

has been widely accepted as a tool to predict the onset and growth of delamination or

interfacial debonding for fiber reinforced laminated composites [29, 30, 31, 32, 33, 34]

and sandwich structures [35], as well as other applications of general multi-layer com-

posites, such as hot mix asphalt pavement [36] and multi-layer coatings [37]. The

method has also been extended to model non-interfacial crack propagation along pre-

assigned potential crack paths [38] and used in analyzing impact damage [39].

Despite its popularity, some numerical issues of CZM have not been fully solved.

First, numerical instability and convergence difficulties at the onset of crack propaga-

tion are still common, especially when extreme values of the parameters such as initial

elastic stiffness, strength and fracture energy are assigned to simulations, preventing

a comprehensive understanding of modeling artifacts. Second, the relationship be-

tween process zone lengths and cohesive parameters remains to be studied, so that a

universal solution to determine the process zone length can be obtained. The process

zone length, defined by the length over which the cohesive zone enters the post-peak

degradation process, is a key meshing parameter for finite element simulations that

use cohesive elements. Past literature has demonstrated that it is necessary to use

three or more cohesive elements to correctly capture crack propagation and main-

tain mesh objectivity [40, 41]. Therefore, analytical solutions of CZM are gaining

attention since they provide insight into the mechanics of delamination growth, and

a platform for accessing computationally efficient results free from length-scale issues

due to discretization.

Following Kanninen’s original idea [42], analytical solutions derived from beam

theories introduce springs in normal and tangential directions connecting the upper

and lower surfaces of potential crack interfaces where the cohesive zone is placed in

numerical simulation. Since delamination evolution at the potential crack interfaces

is essentially governed by separation displacements between those two surfaces, the

drawback in predicting stress distributions of beam or plate theories is avoided. The

solutions are available for many delamination characterizing tests, such as mode I

double cantilever beam (DCB) tests [43, 44, 45, 46, 47], mode II end notched flexure

(ENF) tests [48, 46], mixed-mode I/II bending (MMB) tests [46, 49], asymmetric DCB

(ADCB) tests [50] and moment loaded DCB (MLDCB) tests [51, 47, 52, 53]. However,
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most of the solutions only discuss a simple application of linear elastic-brittle springs,

namely no softening behavior, and focus on pre-failure responses. More general ana-

lytical CZM solutions are difficult to develop because of the nonlinearity introduced

by traction-separation laws. It is also worth pointing out that, helpful as analytical

CZM solutions and FE simulations using cohesive elements in modeling delamination

evolution, it is still and will be under debate for a long time whether CZM correctly

reflects the actual physics of crack propagation. Attempts have been made to develop

new cohesive laws based on failure mechanisms at the atomic level [19, 21, 54] and to

numerically study influences of different existing laws [55, 56]. Therefore, it is nec-

essary to develop an evaluation tool based on general analytical CZM solutions that

can provide accurate results with arbitrary application of nonlinear cohesive laws. In

addition, analytical CZM solutions found in past literature are restricted to beam

configuration under some simplifications on stacking sequences and delamination lo-

cations. To analyze delamination evolution in general laminated plates, which is a

more practical concern in design processes, it is also necessary to extend the solutions

to higher dimensions with less restrictions.

Besides crack growth responses, process zone length is another important outcome

of analytical CZM solutions. Analytical studies of process zone lengths found in the

literature fall into two categories: strip yield model and large-scale crack bridging

model [57, 29, 40, 41]. The strip yield model analyzes infinite geometries while the

large-scale crack bridging model is limited to cohesive laws with infinite initial stiff-

ness. Therefore, it is of interest to develop analytical solutions that consider the same

setting adopted in FE simulations of finite geometry and use nonlinear cohesive laws

consisting of elastic and softening segments to provide benchmark solutions of flexural

responses and process zone lengths under mode I, mode II and mixed-mode loading

conditions.

1.2 Research Objective and Thesis Outline

In this dissertation, various analytical solutions of flexural responses and delamination

evolution of fiber reinforced laminated composites subject to flexural loading are

presented. Numerical FE simulations are subsequently used for cross-checking and

validating analytical solutions and computations. The dissertation can be broadly

divided into two parts.

The first part focuses on analytical approaches using elasticity theory. Chapter 2

extends two-dimensional (2D) elasticity theory to analyze elastodynamic responses
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of laminated wide panels subject to dynamic loading. Natural frequencies and mode

shapes of free vibration are first extracted. Inspired by a transformation technique

for solving a special class of partial differential equations, forced vibration problems

of impacted laminated panels are solved using an eigenfunction expansion technique.

Chapter 3 presents an exact, quasi-static analysis of pre-delaminated composite pan-

els under transverse loading conditions. A piecewise linear spring model and a shear

bridging model are, respectively, used to simulate normal contact and shear fric-

tional behavior between the interfaces of the existing delamination. Both analysis

provide closed-form solutions of displacement fields and stress distributions. To pre-

dict delamination propagation, strength- and energy-based criteria are considered in

Chapter 3. Calculated load-displacement responses and delamination threshold loads

of pre-delaminated beams are compared against results of published experiments, FE

simulations and other simplified models.

The second part studies delamination initiation and propagation by developing an-

alytical CZM solutions using laminated beam and plate theories. The solutions con-

sider a laminate as a stack of two sub-laminates connected by a virtual deformable

spring layer with infinitesimal thickness at a potential crack interface. Chapter 4

discusses comprehensive, closed-form solutions of CZM that analyze laminated com-

posite beams and solve arbitrary multi-linear traction-separation laws of the cohesive

interface. Chapter 5, as a simplified version of the solutions presented in Chapter 4,

provides closed-form expressions for quick estimation of CZM by only considering

quasi-brittle cohesive laws. The solutions and the expressions are available for pre-

peak and post-peak load-displacement responses, interfacial traction distributions

and process zone lengths of the DCB, the ENF and the MMB tests. Comprehensive

parametric studies are performed on the crack growth response and the process zone

length, revealing their relations to the delamination length, specimen thickness, co-

hesive parameters, the shape of the traction-separation laws and the mode mixity.

In Chapter 6, analytical CZM solutions are further extended to plate configuration.

Considering possible extension-shear couplings in laminated composite plates with

arbitrary stacking sequences, the Rayleigh-Ritz method is used to find approximate

solutions of pre-peak flexural responses and delamination threshold loads of quasi-

static impact tests on the plates. Results are further compared with FE simulations.

In the presented analytical solutions, delamination is the only failure mode consid-

ered. Note that failure progression in composites is very complicated as a consequence

of competitions and interactions among all possible failure mechanisms. To find out

a leading failure mode, a strategy to respectively determine failure evolution of each
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mode is necessary. It is of interest to study other impact induced failure modes. Ap-

pendix A presents a preliminary study on FE simulations of three-point bend tests of

quasi-isotropic laminated beams by implementing a 3D crack band model to simulate

intra-lamina failure modes, including fiber breakage and matrix cracking, as well as

using CZM for delamination evolution.

Though many analytical solutions developed in this dissertation analyze beam

type configuration of laminated panels by assuming a plane-strain or plane-stress

state in the width direction, it should be noticed that these assumptions are proven

valid for cross-ply laminates. Capabilities of theories with the 2D assumptions in

modeling laminates containing off-axes angle plies are evaluated in Appendix B.

Chapter 7 provides a summary and recommendations for future work, based on

the findings reported in this thesis.
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CHAPTER 2

2D Elastodynamic Solutions for Impacted

Laminated Composites Panels

2.1 Introduction

1 Several analytical studies have been conducted to examine static and vibrational

behavior of laminated composite panels. Studies in the response of simply supported

laminated composite panels under static transverse pressure loading [4, 6], which can

deal with arbitrary pressure loading and laminate lay-ups, have been considered as

the cornerstone of 2D elasticity approaches. The free vibrational frequencies have

been fully studied as well, [58]. However, closed-form solutions using elasticity theory

are limited and available only for a limited class of problems. Several analytical mod-

els have successfully simplified the elasticity approach, when one dimension of the

structure is at least one order of magnitude lower than the other dimensions, leading

to structural mechanics models referred to as beams, plates and shells. These theories

fall into two categories, equivalent single layer theories (ESLs) and zig-zag theories,

distinguished by whether the variables describing the displacement and transverse

stress fields are introduced for the whole plate/shell or independently for each layer.

Comprehensive reviews of ESLs and zig-zag theories, as applicable to laminated struc-

tures, are presented in, [59, 60].

In the continuum damage mechanics approach, a need exists to accurately evalu-

ate laminae and interface stresses during an impact event since such an evaluation will

serve as a starting point for subsequent developments of damage and failure initiation

criteria. Correctly understanding the time dependent stress distributions as a func-

tion of thickness, especially in the vicinity of the impact, is significant for predicting

1Parts of this chapter are published in Xie, J. and Waas, A. M., “2D Elastodynamic Solution
for the Impact Response of Laminated Composites,” Journal of Applied Mechanics, Vol. 81, No. 4,
2014, pp. 041015.
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material failure through delamination. Due to the potential inadequacy of approxi-

mate models in describing the complexity of the stresses, it is necessary to establish

a benchmark solution based on traditional elasticity theory for the case of impact.

The objective of this chapter, therefore, is to provide an accurate 2D elastodynamic

model and solution for the impact problem of a laminated structure.

With this objective in mind, the 2D quasi-static elastic solutions are extended

to a forced vibration problem for a generally layered laminate. For convenience, the

analysis of simply supported laminated composite panels under assumptions of cylin-

drical bending is considered. The presented approach is readily extended to plates

by adding another pair of simply supported edges, similar to that in, [5]. First, a free

vibration problem is solved to extract natural frequencies, mode shapes and orthogo-

nality properties. The forced vibration problem can be divided into two parts, which

consider a quasi-static solution and a solution that uses the eigen-function expansion

technique, respectively. The analysis provides closed-form solutions for displacement

field, as a function of time, in an N-layer laminate, from which lamina strains and

stresses are obtained as functions of positions and time. With the expectation that

an impact event on a boundary controlled laminated panel subject to low velocity

impact results in a small, but finite contact area between the impactor and panel

surface, the impact loading is simulated as a sinusoidal function in time [61] with a

narrow footprint and parabolic loading in space, centered at the impact location. Sev-

eral examples are shown by varying stacking sequences and aspect ratio of laminates.

Each lamina of the laminate is assumed to be transversely isotropic with five inde-

pendent elastic constants. Experimental results reported in [62, 63] have indicated

that strain-rate sensitivity of material properties can be ignored for the low-velocity

impact events. Thus, the material constants are assumed to be strain-rate indepen-

dent here. The 2D elastodynamic results are further compared with that of two well

known ESLs, Classical Lamination Theory (CLT) and First order Shear Deformation

Theory (FSDT) solutions, and fully 3D Finite Element (FE) simulations. In this

chapter, the laminate is assumed to be perfectly bonded at layer interfaces. Neither

material failure nor geometric imperfection is considered.
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Figure 2.1: Geometry of a laminated composite panel. A state of plane-strain is
assumed in the x− z plane. The panel is simply supported at its left and right ends.

2.2 General Elasticity Solutions

2.2.1 Governing Equations

Consider an N-layer laminated composite panel as shown in Figure 2.1, which is

reduced to 2D by an assumption of cylindrical bending in the x-z plane. The panel

has length, L and thickness, h. An arbitrary transverse pressure loading is applied

on the top surface z = h/2.

Each lamina is made of a fiber-reinforced material, which is assumed to be trans-

versely isotropic with a fiber volume fraction in excess of 55%. The material can

be described by five independent elastic constants: E11, E22 = E33, ν12 = ν13, ν23,

G12 = G13, where 1 is the fiber direction, and 2,3 transverse axes that are in a plane

perpendicular to the fiber direction. The 2-3 plane is isotropic. The 3D compliance

relation in the material frame is

ε11

ε22

ε33

γ23

γ13

γ12


=



1
E11

− ν12
E11

− ν12
E11

0 0 0

− ν12
E11

1
E22

− ν23
E22

0 0 0

− ν12
E11

− ν23
E22

1
E33

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12





σ11

σ22

σ33

τ23

τ13

τ12


(2.1)

where

G23 =
E22

2(1 + ν23)
(2.2)

The local material frame for each layer, denoted as 1-2-3, does not necessarily coincide

with the x−y−z structural reference frame. The fibers are restricted to be in the x-y
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plane but allowed rotated at an angle of θ measuring from the x-direction about z-axis.

Therefore, tensor transformation is performed to achieve the layer-wise constitutive

relations in the reference frame. In addition, a plane-strain state is assumed, implying

εy = γxy = γyz = 0. The strain-stress relation for a layer is thus reduced to,


σx

σz

τxz


(k)

=

C11 C13 0

C13 C33 0

0 0 C55


(k)

εx

εz

γxz


(k)

(2.3)

where C
(k)
ij are the elasticity matrix component for the kth layer,

C
(k)
11 =

1

∆

(
E2

11

(
ν2

23 − 1
)

cos4 θ + E22

(
−E11 + E22ν

2
12

)
sin4 θ

+

(
G12∆− 1

2
E11E22ν12 (ν23 + 1)

)
sin2 2θ

)
C

(k)
13 =− 1

∆
E22

(
E11ν12 (ν23 + 1) cos2 θ +

(
E22ν

2
12 + E11ν23

)
sin2 θ

)
C

(k)
33 =

1

∆
E22

(
−E11 + E22ν

2
12

)
C

(k)
55 =G12 cos2 θ +G23 sin2 θ

∆ =
(
2E22ν

2
12 + E11 (ν23 − 1)

)
(ν23 + 1)

(2.4)

All material constants above are layer-wise. The superscript k is omitted.

Consider linear strain-displacement relations,

εx =
∂u

∂x
, εz =

∂w

∂z
, γxz =

∂u

∂z
+
∂w

∂x
(2.5)

A condition of cylindrical bending assumes that the displacement v in the y-direction

and all the derivatives with respect to y are zero. The governing equations of motion

in x and z directions are,

∂σ
(k)
x

∂x
+
∂τ

(k)
xz

∂z
= ρ(k)∂

2u(k)

∂t2

∂τ
(k)
xz

∂x
+
∂σ

(k)
z

∂z
= ρ(k)∂

2w(k)

∂t2

(2.6)

where ρ is the area density of material in the x-z plane.
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Natural boundary conditions at the top and bottom face (z = ±h/2) are,

σ(N)
z (x, h/2, t) = q(x, t) , τ (N)

xz (x, h/2, t) = 0

σ(1)
z (x,−h/2, t) = 0 , τ (1)

xz (x,−h/2, t) = 0
(2.7)

The left and right end (x = 0, L) are simply supported,

w(k)(0, z, t) = 0 , σ(k)
x (0, z, t) = 0

w(k)(L, z, t) = 0 , σ(k)
x (L, z, t) = 0

(2.8)

Additionally, since each layer (ply) is analyzed as a homogenized single layer, four

conditions at the layer interfaces representing traction and displacement continuity

are,

u(k)(x, zk, t) = u(k+1)(x, zk, t)

w(k)(x, zk, t) = w(k+1)(x, zk, t)

σ(k)
z (x, zk, t) = σ(k+1)

z (x, zk, t)

τ (k)
xz (x, zk, t) = τ (k+1)

xz (x, zk, t)

, k = 1, 2, . . . , N − 1 (2.9)

where zk is the z coordinate of the interface between kth and (k + 1)th layers.

Further, rewriting the general problem in terms of displacements, u and w, one

will have[
C11

∂2

∂x2
+ C55

∂2

∂z2
− ρ ∂2

∂t2
(C13 + C55) ∂2

∂x∂z

(C13 + C55) ∂2

∂x∂z
C55

∂2

∂x2
+ C33

∂2

∂z2
− ρ ∂2

∂t2

](k){
u(k)

w(k)

}
=

{
0

0

}
(2.10)

subject to the boundary conditions,

w(k)(0, z, t) = 0 ,

(
C11

∂u

∂x
+ C13

∂w

∂z

)
|(k)
x=0 = 0

w(k)(L, z, t) = 0 ,

(
C11

∂u

∂x
+ C13

∂w

∂z

)
|(k)
x=L = 0

(2.11)

(
C13

∂u

∂x
+ C33

∂w

∂z

)
|(1)
z=−h/2 = 0 , C55

(
∂u

∂z
+
∂w

∂x

)
|(1)
z=−h/2 = 0(

C13
∂u

∂x
+ C33

∂w

∂z

)
|(N)
z=h/2 = q(x, t) , C55

(
∂u

∂z
+
∂w

∂x

)
|(N)
z=h/2 = 0

(2.12)
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and continuities at z = zk (k = 1, 2, . . . , N − 1)

u(k) − u(k+1) = 0

w(k) − w(k+1) = 0(
C13

∂u

∂x
+ C33

∂w

∂z

)(k)

−
(
C13

∂u

∂x
+ C33

∂w

∂z

)(k+1)

= 0

C
(k)
55

(
∂u

∂z
+
∂w

∂x

)(k)

− C(k+1)
55

(
∂u

∂z
+
∂w

∂x

)(k+1)

= 0

(2.13)

Furthermore, initial conditions are,

u(x, z, 0) = u0(x, z) , u̇(x, z, 0) = u̇0(x, z)

w(x, z, 0) = w0(x, z) , ẇ(x, z, 0) = ẇ0(x, z)
(2.14)

2.2.2 Frequencies and Mode Shapes

Natural vibration frequencies and mode shapes can be calculated for free vibration

responses without transverse pressure loading, namely, q(x, t) = 0. Assuming the

oscillations are time harmonic, the displacement field for the kth layer is characterized

by a single angular frequency Ωmn,{
u(k)(x, z, t)

w(k)(x, z, t)

}
=

{
U

(k)
mn(x, z)

W
(k)
mn(x, z)

}
exp(iΩmnt) (2.15)

Substituting the displacement field into the governing equations, Eqn. (2.10), it leads

to partial differential equations that only contain spatial variables,([
C11

∂2

∂x2
+ C55

∂2

∂z2
(C13 + C55) ∂2

∂x∂z

(C13 + C55) ∂2

∂x∂z
C55

∂2

∂x2
+ C33

∂2

∂z2

]
+ Ω2

mn

[
ρ 0

0 ρ

])(k){
U

(k)
mn

W
(k)
mn

}
=

{
0

0

}
⇔

(
−L(k) + Ω2

mnM(k)
)
d(k)
mn(x, z) = 0 (2.16)

One can guess a solution form for the spatial part to satisfy the simply supported

boundary conditions in the x-direction, as,{
U

(k)
mn(x, z, t)

W
(k)
mn(x, z, t)

}
=

{
cos(pmx)ψ

(k)
mn(z)

sin(pmx)φ
(k)
mn(z)

}
(2.17)
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where pm = mπ/L. Equation (2.16) become ordinary differential equations with the

independent variable z for every plies,([
−C11p

2
m + C55F2 (C13 + C55)pmF

−(C13 + C55)pmF −C55p
2
m + C33F2

]
+ Ω2

mn

[
ρ 0

0 ρ

])(k){
ψ

(k)
mn

φ
(k)
mn

}
=

{
0

0

}
⇔

(
−L(k)

z + Ω2
mnM(k)

)
υ(k)
mn(z) = 0 (2.18)

F = ∂
∂z

is an operator and L(k), L(k)
z andM(k) are the operator matrices.

For non-trivial solutions of υ
(k)
mn(z), the determinant of the operator matrix should

be zero [58],

det
(
−L(k) + Ω2

mnM(k)
)

= F4 + P2F2 + P0 = 0 (2.19)

where

P2 =
(C2

13 − C11C33 + 2C13C55) p2
m + (C33 + C55) ρΩ2

mn

C33C55

P0 =
(C11p

2
m − ρΩ2

mn) (C55p
2
m − ρΩ2

mn)

C33C55

(2.20)

The four roots of the characteristic equation, Eqn. (2.19), define four eigenvalues of

F = si and corresponding four eigenvectors {Ai, Bi}. The general solution is{
ψ

(k)
mn(z)

φ
(k)
mn(z)

}
=

4∑
i=1

H
(k)
i

{
Ai

Bi

}
exp(siz) (2.21)

Note that the roots of the characteristic equation are not necessarily real. The

general solution form may involve complex numbers. It is necessary to separate the

solution form into real functions by considering the value of coefficients P2 and P0.

From Eqn. (2.18), ψ
(k)
n (z) can be represented in terms of φ

(k)
n (z),

ψmn(z) = J (k)
mnφ

′
mn(z) +Q(k)

mnφ
′′′
mn(z) (2.22)

where

J (k)
mn =

(C2
13 + 2C13C55) p2

m + C55ρΩ2
mn

pm (C13 + C55) (C11p2
m − ρΩ2

mn)

Q(k)
mn =

C33C55

pm (C13 + C55) (C11p2
m − ρΩ2

mn)

(2.23)

The superscripts of layer-wise constants are omitted. Inspired by the solution for

beam buckling on an elastic foundation, [64], the solution form can be divided into
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eight cases depending on the values of P2 and P0 in the present case. Let,

s2
i =

1

2

(
−P2 ±

√
P 2

2 − 4P0

)
(2.24)

CASE 1. 0 < 4P0 < P 2
2 and P2 < 0. Four real roots: s2

i = a2
1, a

2
2 > 0.

φ(k)
mn = H

(k)
1 exp(a1z) +H

(k)
2 exp(−a1z) +H

(k)
3 exp(a2z) +H

(k)
4 exp(−a2z) (2.25)

CASE 2. 0 < 4P0 < P 2
2 and P2 > 0. Four imaginary roots: s2

i = −b2
1,−b2

2 < 0.

φ(k)
mn = H

(k)
1 cos(b1z) +H

(k)
2 sin(b1z) +H

(k)
3 cos(b2z) +H

(k)
4 sin(b2z) (2.26)

CASE 3. P0 < 0. Two real roots and two imaginary roots: s2
i = a2 > 0,−b2 < 0.

φ(k)
mn = H

(k)
1 exp(az) +H

(k)
2 exp(−az) +H

(k)
3 cos(bz) +H

(k)
4 sin(bz) (2.27)

CASE 4. 4P0 > P 2
2 . Four complex roots: si = ±(a± ib).

φ(k)
mn =H

(k)
1 exp(az) cos(bz) +H

(k)
2 exp(az) sin(bz)

+H
(k)
3 exp(−az) cos(bz) +H

(k)
4 exp(−az) sin(bz) (2.28)

CASE 5. 4P0 = P 2
2 and P2 < 0. Two sets of duplicated real roots: s2

i = a2 > 0,

where a2 = −P2/2

φ(k)
mn = H

(k)
1 exp(az) +H

(k)
2 exp(−az) +H

(k)
3 z exp(az) +H

(k)
4 z exp(−az) (2.29)

CASE 6. 4P0 = P 2
2 and P2 > 0. Two sets of duplicated imaginary roots: s2

i =

−b2 < 0, where b2 = P2/2.

φ(k)
mn = H

(k)
1 cos(bz) +H

(k)
2 sin(bz) +H

(k)
3 z cos(bz) +H

(k)
4 z sin(bz) (2.30)

CASE 7. 4P0 = 0 and P2 < 0. Two real roots and two zero roots: s2
i = a2, 0, where

a2 = −P2 > 0.

φ(k)
mn = H

(k)
1 +H

(k)
2 z +H

(k)
3 z exp(az) +H

(k)
4 z exp(−az) (2.31)

CASE 8. 4P0 = 0 and P2 > 0. Two imaginary roots and two zero roots: s2
i = −b2, 0,
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where b2 = P2 < 0.

φ(k)
mn = H

(k)
1 +H

(k)
2 z +H

(k)
3 z cos(bz) +H

(k)
4 z sin(bz) (2.32)

Finally, substituting the displacement solution into the boundary conditions in the

z-direction and the continuities at every interface, as shown Eqn. (2.12) and (2.13)

respectively, one can rewrite all conditions into a matrix form

DH = 0 (2.33)

where D is 4N × 4N coefficient matrix of H
(k)
i , H = {H(1)

1 , H
(1)
2 , . . . , H

(N)
4 } and

0 are 4N vectors. Solve for the non-trivial vibration frequency Ωmn of the N-ply

laminated composite panel by letting,

det(D) = 0 (2.34)

Theoretically, one can get a doubly infinite spectrum of Ωmn, corresponding to each m

and n. However, note that Eqn. (2.19) contains Ωmn, which means that the unknown

frequencies are involved in the solutions for the displacements. Thus, the equation

for finding frequencies becomes very complicated. It is rarely possible to obtain

closed-form solutions. In numerical evaluation, an iterative method is recommended

to search frequencies which satisfy det(D)→ 0.

When the natural frequency Ωmn for specific m and n is found, the corresponding

mode shape is given by eigenvectors H . Based on the continuities of displacement

at the layer interface, the vibration mode shape can be concluded as a piecewise

function through the thickness direction combined with a sinusoidal function in the

x-direction,

dmn(x, z) = A

{
U

(k)
mn(x, z)

W
(k)
mn(x, z)

}
= A

{
cos(pmx)ψ

(k)
mn(z)

sin(pmx)φ
(k)
mn(z)

}
, zk−1 < z < zk (2.35)

where A means assembly through the thickness direction. The general orthogonality

relations of the mode shapes are,∫ h/2

−h/2

∫ L

0

dTrlMdmn dxdz = Mrlδmrδnl∫ h/2

−h/2

∫ L

0

dTrlLdmn dxdz = Krlδmrδnl = Ω2
rlMrlδmrδnl

(2.36)
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where the operator matrices are also assembled,

M = A
(
M(k)

)
, L = A

(
L(k)

)
(2.37)

2.2.3 Vibrational Response

An eigenfunction expansion technique is applied to solve the forced vibration problem.

To implement the solution technique, the time-dependent boundary condition on the

top surface (
C13

∂u

∂x
+ C33

∂w

∂z

)
|(N)
z=h/2 = q(x, t) (2.38)

need to be transformed to a homogenous boundary condition. The solution for vi-

bration response has been assumed as the superposition of two parts, a steady-state

part and a transient part [65],{
u(x, z, t)

w(x, z, t)

}
=

{
Su(x, z, t)

Sw(x, z, t)

}
+

{
ũ(x, z, t)

w̃(x, z, t)

}
(2.39)

such that the steady-state solutions, Su(x, z, t) and Sw(x, z, t), can satisfy non-homogeneous

boundary conditions as well as continuities. The steady-state solutions do not need

to satisfy the governing equations. Accordingly, the transient solutions, ũ(x, z, t) and

w̃(x, z, t), are solutions of a transformed problem consisting of non-homogeneous gov-

erning equations and homogeneous boundary conditions with new but known initial

conditions. The transient solutions can be obtained using eigenfunction expansions,

automatically satisfying all homogeneous conditions that are same as those assigned

for the free vibration problem.

2.2.3.1 Steady-state Solutions

The only requirement on the steady-state solutions is to satisfy boundary conditions

and continuities of the forced vibrational problem. The steady-state solutions can be

determined to be the solutions of the following quasi-static problem.

Governing equations are[
C11

∂2

∂x2
+ C55

∂2

∂z2
(C13 + C55) ∂2

∂x∂z

(C13 + C55) ∂2

∂x∂z
C55

∂2

∂x2
+ C33

∂2

∂z2

](k){
S

(k)
u

S
(k)
w

}
=

{
0

0

}
(2.40)
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Boundary conditions are

S(k)
w (0, z, t) = 0 ,

(
C11

∂Su
∂x

+ C13
∂Sw
∂z

)
|(k)
x=0 = 0

S(k)
w (L, z, t) = 0 ,

(
C11

∂Su
∂x

+ C13
∂Sw
∂z

)
|(k)
x=L = 0

(2.41)

(
C13

∂Su
∂x

+ C33
∂Sw
∂z

)
|(1)
z=−h/2 = 0 , C55

(
∂Su
∂z

+
∂Sw
∂x

)
|(1)
z=−h/2 = 0(

C13
∂Su
∂x

+ C33
∂Sw
∂z

)
|(N)
z=h/2 = q(x, t) , C55

(
∂Su
∂z

+
∂Sw
∂x

)
|(N)
z=h/2 = 0

(2.42)

Continuities are similar as Eqn. (2.13) by replacing symbols from steady-state solu-

tion.

The quasi-static problem is so called because the loading process is assumed static

with respect to time. In other words, at each time t, the panel reaches a steady state

before moving to the next time t+∆t (∆t is an infinitesimal time-step. The governing

equations are independent of time and no initial condition is needed. Therefore, this

problem is actually a static loading problem at each time t.

The solutions for arbitrary static loading have been already provided by a method

using Airy stress function [4]. Here we briefly introduce the displacement-based ap-

proach. Foremost, the essential idea to solve an arbitrary quasi-static pressure loading

is to make a spatial Fourier series expansion of the loading,

q(x, t) =
∞∑
j=1

qj(t) sin(pjx) (2.43)

pj = jπ/L , qj(t) =
2

L

∫ L

0

q(x, t) sin(pjx) dx (2.44)

The solution scheme is very similar as that of free vibration. The x-part functions are

guessed as sinusoidal functions that satisfy the simply supported boundary conditions.{
S

(k)
u (x, z, t)

S
(k)
w (x, z, t)

}
=
∞∑
j=1

{
cos(pjx)Ŝ

(k)
u,j (z, t)

sin(pjx)Ŝ
(k)
w,j(z, t)

}
(2.45)

Based on the orthogonality of sine and cosine functions, the governing equations can
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be separated for each j term[
−C11p

2
j + C55F2 (C13 + C55)pjF

−(C13 + C55)pjF −C55p
2
j + C33F2

](k){
Ŝ

(k)
u

Ŝ
(k)
w

}
=

{
0

0

}
(2.46)

where F = ∂
∂z

is an operator. To achieve non-trivial solutions, the determinant of

the operator matrix should be zeros, resulting in the characteristic equation,

F4 + p2
j P̂2F2 + p4

j P̂0 = 0 (2.47)

P̂2 =
C2

13 − C11C33 + 2C13C55

C33C55

, P̂0 =
C11

C33

(2.48)

The general solution of Eqn. (2.46) is a combination of four exponential functions{
Ŝ

(k)
u,j (z, t)

Ŝ
(k)
w,j(z, t)

}
=

4∑
i=1

T
(k)
ij (t)

{
Âij

B̂ij

}
exp(ŝijz) (2.49)

where four eigenvalues are

ŝ2
ij =

1

2
p2
j

(
−P̂2 ±

√
P̂ 2

2 − 4P̂0

)
, i = 1, 2, . . . , 4 (2.50)

and {Âij, B̂ij} are the corresponding four eigenvectors. To avoid error brought in by

the complex numbers, the solution can be separated into eight cases that only real

numbers are involved in, the same as that demonstrated in Section 2.2.2. Thus, the

solution form can be denoted as{
Ŝ

(k)
u,j (z, t)

Ŝ
(k)
w,j(z, t)

}
=

4∑
i=1

T
(k)
ij (t)

{
Ψ̂

(k)
ij (z)

Φ̂
(k)
ij (z)

}
(2.51)

The time-dependent constants T
(k)
ij (t) can be decided by the z-directional boundary

conditions and the interfacial continuities. One can get 4N linear equations with 4N

unknown constants T
(k)
ij (t) (i = 1, 2, . . . , 4, k = 1, 2, . . . , N) for each j (j = 1, 2, 3, . . .).

Clearly, the time variant constants are proportional to the loading series qj(t) for each

j,

T
(k)
ij (t) = T̂

(k)
ij qj(t) no sum on j (2.52)

It should be emphasized that the steady-state solutions can be chosen as any func-

tions as long as they satisfy the boundary conditions and the continuities. Satisfaction

of the governing equations, Eqn. (2.40), is not a requirement on the steady-state solu-
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tions. The steady-state solutions may be chosen as some simpler forms. For instance,

the solution can be assumed as linear layer-wise zig-zag time-variant function, or

cubic, or higher-order polynomial. These simpler forms also contain 4N unknown

constants of T
(k)
ij (t) that can be found by using the z-directional boundary conditions

and the interfacial continuities. The choice of steady-state solutions will not theo-

retically affect the final result since it influences the transient solutions. However,

an improper selection of steady-state solution form will lead to a fairly low converg-

ing rate of the transient solutions. Slower convergence means more computational

cost in numerical evaluation. The decision in seeking the steady-state solutions of

the quasi-static problem is made based on its good estimation of displacement and

stress distribution through the thickness direction. The convergence of the exponen-

tial functions has been proved to be much faster than that of polynomial forms in

our calculation.

2.2.3.2 Transient Solutions

The transient part is the solution of the transformed problem.

The non-homogenous governing equations are written in a matrix form,[
C11

∂2

∂x2
+ C55

∂2

∂z2
− ρ ∂2

∂t2
(C13 + C55) ∂2

∂x∂z

(C13 + C55) ∂2

∂x∂z
C55

∂2

∂x2
+ C33

∂2

∂z2
− ρ ∂2

∂t2

](k){
ũ(k)

w̃(k)

}
=

{
Q

(k)
1

Q
(k)
2

}
(2.53)

where,

Q
(k)
1 (x, z, t) = ρ(k) ∂2Su

∂t2
, Q

(k)
2 (x, z, t) = ρ(k) ∂2Sw

∂t2
(2.54)

Homogenous boundary conditions are,

w̃(k)(0, z, t) = 0 ,

(
C11

∂ũ

∂x
+ C13

∂w̃

∂z

)
|(k)
x=0 = 0

w̃(k)(L, z, t) = 0 ,

(
C11

∂ũ

∂x
+ C13

∂w̃

∂z

)
|(k)
x=L = 0

(2.55)

(
C13

∂ũ

∂x
+ C33

∂w̃

∂z

)
|(1)
z=−h/2 = 0 , C55

(
∂ũ

∂z
+
∂w̃

∂x

)
|(1)
z=−h/2 = 0(

C13
∂ũ

∂x
+ C33

∂w̃

∂z

)
|(N)
z=h/2 = q(x, t) , C55

(
∂ũ

∂z
+
∂w̃

∂x

)
|(N)
z=h/2 = 0

(2.56)

Continuities are similar as Eqn. (2.13) by replacing symbols from the transient solu-
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tion. Initial conditions are new but known,

d0(x, z) =

{
u0(x, z)− Su(x, z, 0)

w0(x, z)− Sw(x, z, 0)

}

ḋ0(x, z) =

{
u̇0(x, z)− Ṡu(x, z, 0)

ẇ0(x, z)− Ṡw(x, z, 0)

} (2.57)

Applying the technique of eigenfunction expansion, the displacement field of the

transient solutions can be expressed by frequencies and corresponding mode shapes

as, {
ũ(x, z, t)

w̃(x, z, t)

}
=

∞∑
m,n=1

dmn(x, z)ξmn(t) (2.58)

where dmn(x, z) are the mode shapes shown in Eqn. (2.35), ξmn(t) is an unknown

time-function that needs to be determined. Notice that the governing equations are

still layer-wise, and in matrix form given as,

∞∑
m,n=1

(
−M(k)d(k)

mnξ̈mn −L(k)d(k)
mnξmn

)
= Q(k)

(2.59)

Assembling the layer-wise governing equations and applying orthogonal properties

shown in Eqn. (2.36), one will get

ξ̈rl + Ω2
rlξrl = − 1

Mrl

∫ h/2

−h/2

∫ L

0

dTrlQ dxdz ≡ Q̂rl(t) (2.60)

The solution can be obtained by the Green’s function method,

ξrl(t) = b1,rl sin(Ωrlt) + b2,rl cos(Ωrlt) +
1

Ωrl

∫ t

0

sin(Ωrl(t− τ))Q̂rl(τ)dτ (2.61)

b1 and b2 are determined by initial conditions,

b1,rl =
1

Ωrl

ξ̇rl(0) =
1

ΩrlMrl

∫ h/2

−h/2

∫ L

0

dTrlMḋ0 dxdz

b2,rl = ξrl(0) =
1

Mrl

∫ h/2

−h/2

∫ L

0

dTrlMd0 dxdz

(2.62)
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(a) Spatial part of impact loading
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(b) Time part of impact loading

Figure 2.2: Parabolic impact loading.

2.3 Impact Responses

A low-velocity impact event on a laminated panel will result in a small, but finite

contact area between the impactor and the impact surface. As shown in Figure 2.2,

the impact loading is simulated as a sinusoidal function in time with a narrow footprint

and parabolic distribution in space, centered at the impact location. Mathematically,

q(x, t) = qx(x) sin(αt) (2.63)

where the parabolic loading is centered at the impact location

qx(x) =


q0

((
x− L/2

R

)2

− 1

)
|x− L/2| ≤ R

0 |x− L/2| > R

(2.64)

R is the radius of contact area. In a 2D case, the impact can be imagined as a cylinder

running along the y-axis and impacting the panel at the center of the top surface of

the panel with a low velocity.

Consider Fourier series expansions of the impact loading,

qj(t) =
2

L

∫ L

0

q(x, t) sin(pjx)dx = q̂j sin(αt) (2.65)

q̂j = − 8q0

p3
jR

2L
sin (pjL/2) (sin (pjR)− pjR cos (pjR))
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The initial conditions are,

u(x, z, 0) = w(x, z, 0) = 0

u̇(x, z, 0) = ẇ(x, z, 0) = 0
(2.66)

The angular frequency α of the time-part can be measured from experiments. It

depends on the material properties, laminar stacking sequences and the amplitude

of loading q0. The duration of impact loading is simply represented as ∆T = π/α,

which reveals that for the same laminated composite, smaller α will result in the lower

velocity impact.

The impact response within the impact duration will be considered. After the

time t = π/α, the impact force ceases. The plate will then perform free vibration

which will not be discussed. The steady-state solutions are,{
S

(k)
u

S
(k)
w

}
=
∞∑
j=1

q̂j sin(αt)
4∑
i=1

T̂
(k)
ij

{
cos(pjx)Ψ̂

(k)
ij

sin(pjx)Φ̂
(k)
ij

}
(2.67)

In the transformed problem, the non-homogeneous part of the governing equations

are,

Q(k) = −
∞∑
j=1

ρ(k)α2q̂j sin(αt)
4∑
i=1

T̂
(k)
ij

{
cos(pjx)Ψ̂

(k)
ij

sin(pjx)Φ̂
(k)
ij

}
(2.68)

and the initial condition has non-zero velocities,

d
(k)
0 (x, z) =

{
0

0

}

ḋ
(k)

0 (x, z) = −
∞∑
j=1

α q̂j

4∑
i=1

T̂
(k)
ij

{
cos(pjx)Ψ̂

(k)
ij

sin(pjx)Φ̂
(k)
ij

} (2.69)

The time-part function ξrl(t) can then be determined

ξrl(t) = b1,rl sin(Ωrlt) + b2,rl cos(Ωrlt) + b3,rl
α sin(Ωrlt)− Ωrl sin(αt)

α2 − Ω2
rl

(2.70)

where

b3,rl =− 1

MrlΩrl

N∑
k=1

∫ zk+1

zk

∫ L

0

d
(k) T
rl Q(k) dxdz (2.71)

The solutions for the displacement components due to the impact loading in gen-
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eral elasticity theory are,{
u(k)

w(k)

}
=

{
S

(k)
u

S
(k)
w

}
+

∞∑
m,n=1

{
cos(pmx)ψ

(k)
mn(z)

sin(pmx)φ
(k)
mn(z)

}
ξmn(t) (2.72)

Since the impact loading is symmetric with respect to the longitudinal (x) direction,

all asymmetric terms (m is even) in the final solution will vanish. The stresses can

be obtained from the stress-strain-displacement relations, Eqn. (2.3) and (2.5).

2.4 Other Theories and Modeling

2.4.1 Equivalent Single-layer Theories

ESLs treat a heterogeneous laminated plate as a statically equivalent, single layer

having a complex constitutive behavior by making suitable assumptions for the dis-

placements and (or) stresses through the thickness of the laminate [7]. These assump-

tions allow the reduction of analysis from 3D to 2D. By the additional assumption of

plane strain, the problem will be further reduced to 1D. Closed-from solution for im-

pact responses by using CLT and FSDT are presented. in-plane inertia have already

been ignored compared to the out-of-plane motion, namely ρx
∂2u
∂t2
� ρx

∂2w
∂t2

, where ρx

is the linear density along the x-direction.

Free vibrational frequencies are

ωm(CLT) = β2
m

√
D

ρx
, ωm(FSDT) = β2

m

√√√√ KÂ55D

ρx

(
β2
mD +KÂ55

) (2.73)

where

βm =
mπ

L
, D =

A11D11 −B2
11

A11

,


A11

B11

D11

Â55

 =

∫ h/2

−h/2


Q

(k)
11

Q
(k)
11 z

Q
(k)
11 z

2

Q
(k)
55

 dz (2.74)

Q
(k)
ij is the reduced constitutive matrix for the kth layer by plane-stress assumption

in x-y plane. The transverse shear correction factor used is K = 5/6.
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Figure 2.3: FE model used for numerical simulations of impact events.

Displacement solutions for impact response are

u(CLT) =
∞∑
m=1

(βm (Am −Bmz) cos(βmx)− Am cos(βmL/2)) ξm(t)

w(CLT) =
∞∑
m=1

Bm sin(βmx)ξm(t)

(2.75)

u(FSDT) =
∞∑
m=1

((Am −Bmz) cos(βmx)− Am cos(βmL/2)) ξm(t)

w(FSDT) =
∞∑
m=1

Cm sin(βmx)ξm(t)

(2.76)

where
Am
Bm

=
KÂ55βm

βmD +KÂ55

Am
Cm

=
B11

A11

(2.77)

The time-part function is determined by zero initial conditions

ξr(t) =
q̂r
ρxωr

α sin(ωrt)− ωr sin(αt)

α2 − ω2
r

(2.78)

In-plane stress component σ
(k)
x can be calculated by the constitutive relation.

Transverse stress components, σ
(k)
z and τ

(k)
xz , are obtained by the stress equilibrium

equations, Eqn. (2.6), and interfacial continuities of σz and τ
(k)
xz , Eqn. (2.9).

25



0.4 0.5 0.6
−0.5

0

0.5

1

1.5

Parabolic Loading Curve
(L=120mm,R=5mm,L/h=6)

x/L

q x(x
)/

q 0

 

 

Exact
Fourier

0.46 0.48 0.5 0.52 0.54
−0.5

0

0.5

1

1.5

Parabolic Loading Curve
(L=420mm,R=5mm,L/h=21)

x/L

q x(x
)/

q 0

 

 

Exact
Fourier

Figure 2.4: Fourier expansions of impact loading in space for aspect ratio of 6 and
21.

2.4.2 Finite Element Modeling

3D FE simulations using Abaqus/Standard have also been performed to study the

impact responses. The FE model is build with periodic constraints along the width

direction (y-direction), shown in Figure 2.3. The periodic constraints on all three

degrees of freedom make specimens strictly following the assumption of cylindrical

bending. Homogenized lamina properties were assigned in local material orientation

following the fiber direction of each sub-layer. Parabolic loading with a time-variant

amplitude was applied on the top surface. The left and right face were set as simply

supported. Besides, an assumption u = v = 0 was applied at the line of centroid.

Eight-node solid elements (C3D8) was used in the analysis. The mesh of of the central

portion under and near the impact loading, which has the dimension of 4R×width×h,

is refined for accuracy, and reported results correspond to a converged solution.

2.5 Results and Discussions

In this section, results that compare CLT and FSDT with the 2D elastodynamic

solution are presented. The transversely isotropic material constants in the principal

material coordinate frame, are shown in Table 2.1. The area density of x-z plane

is 1600 kg/m2. The fiber orientation is assumed to be variable with layers. Three

geometrical stacking sequences are studied: (0/90), (90/0) and (0/90/0). The angles

indicated correspond to fibers running parallel to x (0) and y (90) axis, respectively.

A layer-wise effect of length-to-thickness ratio (aspect ratio) has been studied.

The thickness of all specimens is fixed at h = 20 mm. Two aspect ratios are con-
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Table 2.1: Homogenized lamina properties used.

E11 250 GPa
E22 = E33 10 GPa
ν12 = ν13 0.28
ν23 0.67
G12 = G13 7.0 GPa
G23 3.0 GPa

sidered, L/h = 6 and 21. Correspondingly, the length of the composite panels are

L = 120 and 420 mm. The radius of the parabolic loading is fixed at R = 5 mm.

FEM models for each stacking sequence with a width of 2000 mm were built. The

element size is 2 mm (L) × 200 mm (W) × 0.5 mm (H). For the central (refined)

mesh area, the element size is 0.5 mm (L) × 200 mm (W) × 0.5 mm(H).

The Fourier series expansions of impact loading in space is performed up to 175

terms for both aspect ratios. Figure 2.4 shows the comparison between the approxi-

mate and exact curves. The number of terms decided ensures the error of integration

to be less than 0.1% , though the Gibbs phenomenon is still visible for aspect ratio

of 21.

The angular frequency of the time-part in the impact loading is set at α = 100π

Hz. This value implies a low velocity impact, of which the duration is ∆T = 10 ms.

2.5.1 Natural Frequencies and Mode Shapes

2D elastodynamics provides a doubly infinite spectrum of natural frequencies and

mode shapes while CLT and FSDT only provide a one-dimensional spectrum. In

other words, ESLs only produce the fundamental vibration modes while ignoring the

secondary modes in additional branches.

Table 2.2 and 2.3 list the first 3 frequencies provided by 2D elastodynamic solution

compared to the first three frequencies given by ESLs for the two aspect ratios,

respectively. Stacking sequences of (0/90) and (90/0) are identical in the free vibration

problem. As shown in Table 2.2 and 2.3, the frequencies are larger when the layer-

wise feature of the composite panel becomes more significant, which can result from

the smaller aspect ratio or more sub-layers. A higher frequency implies a stiffer

specimen. The data also suggests an advantage of the 2D elastodynamic approach

compared with ESLs. ESLs always overestimate the frequencies. Table 2.2 clearly

shows that CLT fails to predict frequencies for the shorter panel. The results of FSDT

are acceptable for two-layer composites while errors become moderate when adding
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Table 2.2: Fundamental natural frequencies aspect ratio of 6.

Layup m
Angular frequencies [rad·Hz] and Errors [%]

2D Elastodynamics
FSDT (Err.) CLT (Err.)

n=1 n=2 n=3
(0/90) 1 18970.57 173413.33 360779.70 19135.30 0.87 21463.07 13.14

or 2 59575.51 231062.31 485096.28 60221.27 1.08 85852.30 44.11
(90/0) 3 105640.81 277116.72 493300.14 105969.13 0.31 193167.66 82.85

(0/90/0)
1 30485.88 255801.32 393733.24 33026.30 8.33 48652.74 59.59
2 75427.69 399864.56 570413.60 81651.91 8.25 194610.95 158.01
3 122680.34 429902.51 637211.98 128945.28 5.11 437874.65 256.92

Table 2.3: Fundamental natural frequencies for aspect ratio of 21.

Layup m
Angular frequencies [rad·Hz] and Errors [%]

2D Elastodynamics
FSDT (Err.) CLT (Err.)

n=1 n=2 n=3
(0/90) 1 1731.99 65853.03 257760.00 1733.92 0.11 1752.09 1.16

or 2 6704.28 121477.37 284310.00 6730.48 0.39 7008.35 4.54
(90/0) 3 14354.09 159889.76 331611.63 14457.53 0.72 15768.79 9.86

(0/90/0)
1 3732.70 76928.57 258592.96 3794.55 1.66 3971.65 6.40
2 12881.31 151999.06 301084.88 13513.31 4.91 15886.61 23.33
3 24381.01 222888.74 360315.86 26211.38 7.51 35744.87 46.61

Table 2.4: Converging tolerance [%] of transient solution by exponential and cubic
steady-state solution function.

Function Value
(0/90) (90/0) (0/90/0)

L/h = 6 21 L/h = 6 21 L/h = 6 21

exponential
σx(L/2, z, t1/2) - - - - - -
σz(L/2, z, t1/2) 0.2 0.8 1.4 0.4 1.6 4.3
τxz(0, z, t1/2) - - 0.2 - - 0.3

cubic
σx(L/2, z, t1/2) 0.2 0.7 1.4 0.2 2.5 1.1
σz(L/2, z, t1/2) 5.6 46.4 6.1 5.0 13.4 11.1
τxz(0, z, t1/2) 1.3 5.3 3.3 5.4 8.3 5.3

“-” means the converging tolerance is less than 0.1%

one more layer.

The orthogonality of mode shapes has already been examined.

2.5.2 Impact Responses

The solutions of all theories mentioned involve infinite sequences. Numerically, the

accuracy of the results depends on the numbers of terms used. Therefore, the con-

vergence of the solutions is discussed first.

In 2D elastodynamics, the steady-state solutions greatly rely on the boundary

conditions and continuities in the thickness direction, where the impact loading gets
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Figure 2.5: Half-time snapshots of impact response of stress σ̄z at the central line
x = L/2.
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Figure 2.6: Half-time snapshots of impact response of stress σ̄z off the central area.

involved. The number of terms for the steady-state part is 175, as same as that of the

Fourier spatial expansion of the impact loading profile, for the most accurate state.

The transient solutions are expanded at most as 10 × 20 terms (up to mmax = 20,
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Figure 2.7: Half-time snapshots of impact response of stress τ̄xz at the left end x = 0.
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Figure 2.8: Half-time snapshots of impact response of stress τ̄xz off the central area.

nmax = 20). The relative norm to examine convergence (at x0 and t0) is defined as,

normmn =

√√√√√
∫ h/2
−h/2 (fmn(x0, z, t0))2 dz∫ h/2

−h/2

((∑m−1,nmax
i=1,j=1 +

∑m,n
i=m,j=1

)
fij(x0, z, t0)

)2

dz
(2.79)

All converging transient solutions u(0, z, t1/2), w(L/2, z, t1/2) are within 0.1 % which
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Figure 2.9: Transverse stress history of 3-layer laminate (0/90/0).

means they converge very fast. The converging tolerance data for stresses are shown

in Table 2.4. The transverse normal stress component, σz, is found to converge at

a slower rate than in-plane normal stress component σx(L/2, z, t1/2) and transverse

shear stress component τxz(0, z, t1/2), since it is more closely related to the impact

loading and vertical motions. Above all, the convergence of the transient part from

the exponential steady-state solution is pleasing. When using a cubic function, the

stress components, σz and τxz, still need more terms to reach a satisfactory converged

state.

Similarly, in ESLs, solutions of u, w, σx converge much faster than those of σz

and τxz. mmax = 175 was finally chosen in calculation. All the converging tolerances

are guaranteed to be less than 0.1%.

To clearly show the layer-wise effect, snapshots of the impact response are taken

at half-time t1/2, corresponding to the maximum value of the applied loading on the

top surface. The distribution of stresses σz, τxz through the thickness direction at

half time are shown in Figure 2.5, 2.6, 2.7 and 2.8. For each stacking sequence, the
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distributions at two different spatial locations are displayed. One is at the central

line x = L/2 for σz and at the left end x = 0 for τxz. Another one is outside the area

of pressure loading. The locations for both variables were chosen as x = L/2− 1.2R

and x = L/2− 2R, corresponding to aspect ratio, R, of 6 and 21, respectively.

The results from 2D elastodynamics are highly consistent against the FE results

even at the layer interface. The exceptions are found in Figure 2.6. The error is

believed to be caused by Gibbs phenomenon of Fourier series expansions. By 175

terms of Fourier expansion, the error has been controlled within 0.1%. Besides, the

FE solution contains some error in evaluating the stresses at the surface because of

its smoothing method for stress evaluation.

The comparison made between the 2D elastodynamics and ESL solutions shows

an inadequacy of the approximate theories. First and foremost, ESLs fail to predict

the trend of the distribution of σz and τxz even for the longer panel. Previous studies

of static loading demonstrated a convergence of displacements and stresses from 2D

elastic solution and ESLs as the aspect ratio increases [4, 6]. The same convergence

is discovered for displacement components u, w and stress σx in the impact event,

namely that the prediction by ESLs is valid for thin or longer plate. However, the

convergence no longer exists for the transverse stresses σz and τxz in the dynamic case.

Second, ESLs give a similar shape of the distribution at different locations while the

exact solution shows that the distribution can be very different.

The vibrational responses of σz(L/2, 0, t) and τxz(0, 0, t) for laminated lay-up

(0/90/0) are shown in Figure 2.9. The 2D elastodynamic solution still has good

agreement with the FE result. It is shown that the steady-state solutions is domi-

nant for the case of a thick plate since the angular frequency α of loading is much

smaller than the fundamental frequency. With the aspect ratio increasing, α becomes

considerable compared to the natural frequencies. The transient solutions gradually

take part in the formulation of impact response. It also should be noticed that σz has

sinusoidal response regardless of the aspect ratio.

2.6 Conclusions

A general 2D elastodynamic solution, that can be used as a benchmark, has been

established for the response of simply supported laminated composite panels subject

to transverse loading under a cylindrical bending assumption. Highly consistency

are found between the 2D elastodynamic solutions and results 3D FE simulations.

This lends confidence and validation to the transformation and eigen-function expan-
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sion techniques developed in this chapter. Since the assumptions made are within

traditional linear elasticity, the 2D elastodynamic solution can be used to analyze a

specimen with any length-to-thickness ratio. The analysis provides closed-form solu-

tions of the 2D displacement field, as a function of time, in an N-layer laminate, from

which lamina strains and stresses are obtained as functions of positions and time.

Rather than ESLs, and more refined layer-wise and zig-zag theories, the 2D elastody-

namic analysis clarifies that transverse stress distributions in the thickness direction

at different longitudinal locations or for different panel aspect ratios can be quite

different. The lower-polynomial formulation of transverse stress fields of ESLs cannot

well approximate the distributions of these stress components. All presented results

suggest a great advantage of the 2D elastodynamic solutions in analyzing impact

responses of laminated composites as well as the importance of considering thick-

ness effects. Correctly understanding stress distributions as a function of thickness is

significant for subsequent research on predicting failure through delamination. The

2D elastodynamic solutions formulated can also be used to study dynamic responses

of cross-ply laminated beams or sandwich panels subject to other dynamic loading

profile.
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CHAPTER 3

Predictions of Delamination Growth for

Quasi-static Loading of Composite

Laminates

3.1 Introduction

1 A better understanding of delamination threshold loads and their relations to geom-

etry of structures, laminate stacking sequences, sizes of existing crack and interfacial

properties can be helpful in design and repair of composite structures. Modeling

impact dynamic response in composite structures is computationally expensive since

the simulation includes multiple time steps, structural oscillations and the onset of

various damage modes. Previous studies have found that load-displacement response

measured in low-velocity impact tests agree well with the quasi-static loading re-

sponses within a narrow margin [66]. Furthermore, comparable critical force and

displacement, and similar damage distributions between two types of tests have been

observed in experiments and simulations [67, 68]. With considerably lower compu-

tational effort, analysis of a quasi-static loading test provides an alternative way to

study the response of composite beams and plates subject to low-velocity impact.

In this chapter, the main objective is to predict delamination growth in three-point

bend tests of laminated composite panels with existing delaminations. An accurate

2D elasticity approach is developed to model quasi-static flexural responses of the

pre-delaminated panels. The analysis extends from 2D elasticity solutions for pristine

panels under the assumption of cylindrical bending [4] within the framework of linear

elasticity theory. Inspired by Refs. [69], a piecewise linear spring model and a shear

1Parts of this chapter are published in Xie, J. and Waas, A. M., “Predictions of delamination
growth for quasi-static loading of composite laminates,” Journal of Applied Mechanics, Vol. 82, No.
8, 2015, pp. 081004.
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bridging model are respectively applied to simulate normal contact and shear fric-

tional behavior between interfaces of delaminations, integrating into the continuities

between adjacent laminae of delamination. The analysis provides closed-form solu-

tions of displacement and stress fields. Two criteria, quadratic stress criterion [70] and

fracture mechanics based criterion on energy release rate are used to predict delami-

nation propagation. Examples are shown for uni-directional and cross-ply laminates,

as well as for different lengths and locations of the delamination. Load-displacement

responses and delamination threshold loads are first validated by published three-

point bend experiment data. Results of predicted delamination threshold loads by

varying delamination lengths are further compared with simple fracture models [71],

a model that uses a modified CLT for pre-delaminated composites, FE simulations

using discrete cohesive elements. In the chapter, shear driven propagation (mode

II failure) of an existing delamination under cylindrical bending is the only failure

mode considered. Other occurrences of delamination, pure mode I open-crack failure

or mixed-mode I/II fracture such as the buckling-delamination damage that happen-

ing when a laminated panel is subject to in-plane compression loading, will not be

included.

3.2 2D Elasticity Approach

Consider an N-ply composite panel with length, L, thickness, T and width, B as

shown in Figure 3.1. A delamination with a length, d, from x = x1 to x = x2,

is located at the interface between the k̄th and the (k̄ + 1)th layer, z = zk̄. The

delamination is assumed to be through-width. The panel is simply supported at its

left and right ends. An arbitrary transverse pressure loading, q(x) is applied on the

top surface of the panel. Under an assumption of cylindrical bending in the x-z plane,

the problem is reduced to 2D.

3.2.1 Governing Equations

Similar as the analysis in Section 2.2.1, each fiber reinforced lamina in the composite

panel is treated as a homogenized material that is transversely isotropic. With a

plane-strain state assumed in x-z plane, namely, εy = γxy = γyz = 0, the stress-strain
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Figure 3.1: 2D illustration of the pre-delaminated composite panel. The panel is
assumed in a state of plane strain in the xz plane and simply supported at its left
and right ends.

relation of the kth lamina is ,


σx

σz

τxz


(k)

=

C11 C13 0

C13 C33 0

0 0 C55


(k)

εx

εz

γxz


(k)

(3.1)

where Ck
ij are the layer-wise elasticity matrix components, which are expressed by

five material constants and the fiber angle θ(k), shown in Eqn. (2.4).

Consider linear strain,

εx =
∂u

∂x
, εz =

∂w

∂z
, γxz =

∂u

∂z
+
∂w

∂x
(3.2)

A condition of cylindrical bending assumes that the displacement v in the y-direction

and all the derivatives with respect to y are zero. Therefore, the governing equations

of stress equilibriums are,

∂σ
(k)
x

∂x
+
∂τ

(k)
xz

∂z
= 0

∂τ
(k)
xz

∂x
+
∂σ

(k)
z

∂z
= 0

(3.3)

The boundary conditions are simply supported at the left and right end (x = 0, L),

w(k)(0, z) = 0 , σ(k)
x (0, z) = 0

w(k)(L, z) = 0 , σ(k)
x (L, z) = 0

(3.4)

External forces are involved in natural boundary conditions at the top and bottom
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surfaces (z = ±T/2). Only the pressure loading applied at the top surface is consid-

ered in this analysis.

σ(N)
z (x, T/2) = −q(x) , τ (N)

xz (x, T/2) = 0

σ(1)
z (x,−T/2) = 0 , τ (1)

xz (x,−T/2) = 0
(3.5)

The mathematical representation of structural responses is the solution of a boundary

value problem satisfying the governing equations within each layer, Eqn. (3.3), the

boundary conditions given by Eqn. (3.4) and (3.5), and the continuities between ad-

jacent layers. At the intact interfaces, the continuities representing the displacement

and traction continuity are,

u(k)(x, zk) = u(k+1)(x, zk) (3.6a)

w(k)(x, zk) = w(k+1)(x, zk) (3.6b)

σ(k)
z (x, zk) = σ(k+1)

z (x, zk) (3.6c)

τ (k)
xz (x, zk) = τ (k+1)

xz (x, zk) (3.6d)

where k = 1, 2, . . . , k̄ − 1, k̄ + 1, . . . , N − 1 and zk is the z coordinate of the interface

between the kth and the (k + 1)th layers.

3.2.2 Contact Models at Delaminated Interface

The delaminated interface, z = zk̄, can be divided into two sections: the intact section

and the delaminated section. In the intact section (0 ≤ x < x1 and x2 < x ≤ L), the

surfaces are assumed perfectly bonded, behaving similarly as the intact interfaces.

The continuities are the same as Eqn. (3.6). Under this assumption, the plastic

deformation in the intact section near the crack tip is not considered in this chapter.

However, since the delamination crack is contained within the matrix rich layers and

the process zone is very small compared to plastic zone size estimates, the assumptions

are valid, at least for relatively brittle matrix material. In the delaminated section

(x1 ≤ x ≤ x2), two springs are introduced to model surface contact interactions.

In the normal direction, the contact force is zero when the delamination is open.

If the delamination is closed, the upper surface of the delamination is allowed to

moderately penetrate into the lower surface. A nonlinear relationship between the

penetration and the contact force is expected, shown as the dashed line in Figure 3.2.

As a simplification, a piecewise linear spring model is proposed to approximate the

contact behavior [72]. As the solid line shown in Figure 3.2, the spring stiffness
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Figure 3.2: The piecewise linear spring model, slightly modified from [72].

is zero when the relative displacement between the upper and the lower surface is

positive (Line OA), while the negative relative displacement is related to a constant

spring coefficient (Line OB) until it reaches the tolerance of penetration, −d0, where

the delamination is completely closed with an infinite spring stiffness (Line BC).

Therefore, the normal contact stress at the delaminated interface can be generally

written as,

kn

(
w(k̄+1) − w(k̄)

)
= σ(k̄)

z = σ(k̄+1)
z (3.7)

This model can be reduced to a constrained model that assumes perfect bonding

between the two delaminated surfaces by assigning the stiffness kn → ∞. In this

sense, the third spring with infinite stiffness (Line BC) is equivalent to the constrained

model. In addition, a shear bridging model is employed to simulate the frictional

contact behavior [69]. The model considers a linear spring acting opposite to the

trend of the delaminated surface sliding, expressed as,

ks

(
u(k̄+1) − u(k̄)

)
= τ (k̄)

xz = τ (k̄+1)
xz (3.8)

If only normal contact is considered, the model becomes a friction free model by

letting ks → 0.

The stiffness parameters for the contact springs can be estimated from the effective
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Young’s modulus Êz and transverse shear modulus Ĝxz at the delaminated interface,

kn = ξn
Êz
B

, ks = ξs
Ĝxz

B
(3.9)

where ξn and ξs are normalized spring stiffness. When the delamination is located

between the k̄th and the (k̄ + 1)th layers,

Êz =
(
R

(k̄)
33 R

(k̄+1)
33

)−1/2

, Ĝxz =
(
R

(k̄)
55 R

(k̄+1)
55

)−1/2

(3.10)

where R
(k)
ij is the inverse of the 2D elasticity matrix C

(k)
ij shown in Eqn. (3.1).

As a requirement of the solution technique presented in Section 3.2.3, the con-

tinuities in the intact section, Eqn. (3.6a) and (3.6b), and the continuities in the

delaminated section, Eqn. (3.7) and (3.8), are assembled by introducing a piecewise

function S(x).

Ss(x)τ (k)
xz (x, zk) + u(k)(x, zk)− u(k+1)(x, zk) = 0 (3.11a)

Sn(x)σ(k)
z (x, zk) + w(k)(x, zk)− w(k+1)(x, zk) = 0 (3.11b)

where k = k̄ and

Ss,n(x) =

{
k−1
s,n , x1 ≤ x ≤ x2

0 , 0 ≤ x < x1 or x2 < x ≤ L
(3.12)

In the constrained model (kn → ∞), Sn(x) = 0 everywhere at the delaminated

interface. Eqn. (3.11b) will be reduced to Eqn. (3.6b).

3.2.3 Solution Technique

Flexural responses of pristine laminated composite panels subject to arbitrary quasi-

static loading have been already solved by a method using Airy stress function [4]. A

displacement-based approach has been briefly introduced in Section 2.2. Performing

Fourier series expansions on the pressure loading q(x),

q(x) =
∞∑
m=1

qm sin(pmx) (3.13)
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the displacement can be expressed as a form that automatically satisfies the simply

supported boundary conditions,{
u(k)(x, z)

w(k)(x, z)

}
=

∞∑
m=1

{
cos(pmx)ψ

(k)
m (z)

sin(pmx)φ
(k)
m (z)

}
(3.14)

Substituting Eqn. (3.14) into the governing equations, Eqn. (3.3), the equations for

each m term are found to be de-coupled because of the orthogonality of sinusoidal

functions. The z-part solution can be written as a combination of four exponential

functions, {
ψ

(k)
m (z)

φ
(k)
m (z)

}
=

4∑
i=1

H
(k)
mi

{
A

(k)
mi

B
(k)
mi

}
exp(s

(k)
miz) (3.15)

where the eigenvalues s
(k)
mi and eigenvectors

{
A

(k)
mi , B

(k)
mi

}
can be solved. The values

of s
(k)
mi can be complex numbers that may introduce errors in numerical evaluations. A

detailed discussion of cases that only allow real numbers is provided in Section 2.2.2.

The corresponding solution forms for stress fields are calculated using Eqn. (3.1) and

(3.2), and generally expressed as,
σ

(k)
x (x, z)

σ
(k)
z (x, z)

τ
(k)
xz (x, z)

 =
∞∑
m=1

4∑
i=1

H
(k)
mi


C

(k)
mi sin(pmx)

D
(k)
mi sin(pmx)

E
(k)
mi cos(pmx)

 exp(s
(k)
miz) (3.16)

where C
(k)
mi , D

(k)
mi , E

(k)
mi are known constants.

The unknown coefficients, H
(k)
mi , can be computed by enforcing the z-directional

boundary and continuity conditions. The Fourier series terms are de-coupled when

applying the boundary conditions in Eqn. (3.5), as well as applying the continuities on

the intact interface in Eqn. (3.6). However, the couplings are expected when dealing

with the continuities on the delaminated interface. Substituting the solution forms

into Eqn. (3.11a) and (3.11b), and performing one more Fourier series expansion of

the equations, one will have,

∞∑
m=1

4∑
i=1

amnH
(k)
miE

(k)
mi exp(s

(k)
mizk)

+
2

L

4∑
i=1

(
H

(k)
ni A

(k)
ni exp(s

(k)
ni zk)−H(k+1)

ni A
(k+1)
ni exp(s

(k+1)
ni zk)

)
= 0 (3.17a)
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∞∑
m=1

4∑
i=1

bmnH
(k)
miD

(k)
mi exp(s

(k)
mizk)

+
2

L

4∑
i=1

(
H

(k)
ni B

(k)
ni exp(s

(k)
ni zk)−H(k+1)

ni B
(k+1)
ni exp(s

(k+1)
ni zk)

)
= 0 (3.17b)

where k = k̄ and

amn =
2

ksL

∫ L

0

Ss(x) cos(pmx) cos(pnx)dx

bmn =
2

knL

∫ L

0

Sn(x) sin(pmx) sin(pnx)dx

(3.18)

The first terms in Eqn. (3.17a) and (3.17b) show the couplings of Fourier series

terms. Therefore, if a maximum of M Fourier terms are considered in numerical

evaluations of quasi-static responses of an N-layer delaminated composite panel, one

can get 4×M ×N linear equations with 4×M ×N unknown constants H
(k)
mi (m =

1, 2, . . . ,M , i = 1, 2, . . . , 4, k = 1, 2, . . . , N).

Since the problem discussed in this chapter is responses of pre-cracked laminated

panels subject to transverse pressure loading, it is reasonable to assume that the

crack is closed everywhere. Based on this assumption, only the negative (penalty)

part of the piecewise linear spring model is considered. Iterations are required in

numerical evaluations if the penetration of a segment of the cracked interface, denoted

as x3 < x < x4, exceeds the tolerance d0. It is necessary to repeat the evaluations

by decreasing Sn(x) = Sn(x)
1+δSn(x)

in that segment until everywhere in the crack has a

penetration within the given tolerance.

3.3 Modeling Three-point Bend Tests

Configuration of quasi-static three-point bend tests, shown in Figure 3.3, is analyzed

to understand the effect of specimen geometry and stacking sequences on critical loads

since it has comparable results to low-velocity face-on impact tests. The loading roller

will have a small, but finite contact area on the top surface of the specimen. The

pressure loading is simulated as a parabolic distribution under the roller,

q(x) =

q0

(
1−

(
x−L/2
R/2

)2
)

|x− L/2| ≤ R/2

0 |x− L/2| ≥ R/2

(3.19)
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Figure 3.3: Configuration of three-point bend tests on a pre-delaminated panel.

where the radius of the contact area is assumed to be half of the radius of the roller

R. Measured total contact force in experiments, F , can be computed by integrating

the pressure loading over the contact area,

F = B

∫ L

0

q(x)dx =
2

3
q0BR (3.20)

3.4 Predictions of Delamination Growth

Delamination growth can be predicted either by stress-based criteria or following

fracture mechanics concepts. The stress-based criteria leads to information of time

and locations that the delamination occurs by comparing interlaminar stresses to the

relevant strength parameters measured from experiments. One popular stress-based

criterion is the quadratic stress criterion [70],(
σ̄z
σc

)2

+

(
τ̄xz
τc

)2

+

(
τ̄yz
τc

)2

≥ 1 when σ̄z ≥ 0(
τ̄xz
τc

)2

+

(
τ̄yz
τc

)2

≥ 1 when σ̄z ≤ 0

(3.21)

where σ̄z, τ̄xz and τ̄yz are the average stresses over a fixed distance from the crack tip.

When dealing with a perfect pristine beam, there is no stress singularity presented

so that the average stresses can be substituted by point stresses σz, τxz, τyz in Eqn.

(3.21). The average interlaminar stresses are preferred for the pre-delaminated prob-

lem since a weak stress singularity may exist at the delamination front. Nevertheless,

the challenge of stress-based predictions is the accuracy of the stress fields calculated.

The 2D elasticity approach provides exact solutions of displacement and stress fields
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that can be used with the quadratic stress criterion.

As an alternative to characterize the evolution of delamination, LEFM-based

methods can often bypass the difficulties in directly performing accurate stress cal-

culations since it considers crack growth energetics. A balance between the energy

release and the energy absorbed to advance the crack front is enforced. The aim of

the LEFM-based approach is to compute the energy release rate G as the change of

potential energy per unit extension of a crack, and then compare the obtained rate

against a critical value. The virtual crack closure technique (VCCT) [10] is useful

in computing energy release rates of the delamination problem. The delamination is

assumed to be through-width so that

G = − 1

B

∂Π

∂d
≈ −Π(d+ ∆d)− Π(d)

B∆d
(3.22)

where Π(d) is the potential energy of a composite panel with a delamination length

of d, and ∆d is the infinitesimal crack growth. The potential energy,

Π(d) = U + Usp −Wex (3.23)

has three components: the strain energy U of the panel,

U =
1

2
B

∫ L

0

∫ T/2

−T/2
(σxεx + σzεz + τxzγxz) dxdz (3.24)

the strain energy Usp of the two virtual springs at the delaminated interface,

Usp =
1

2
B

∫ x2

x1

(
kn

(
w(k̄+1)(x, zk̄)− w(k̄)(x, zk̄)

)2

+ ks

(
u(k̄+1)(x, zk̄)− u(k̄)(x, zk̄)

)2
)

dx (3.25)

and the external work, Wex,

Wex = −B
∫ L

0

q(x)w(x, T/2)dx (3.26)

Previous studies have confirmed that mode II is the dominant in the delamination

propagation in quasi-static three-point bend tests and low-velocity face-on impact

tests [67, 73, 74]. The crack is assumed to be closed. Thus, the energy release rate
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computed by Eqn. (3.22) is considered as GII. The energy-based criterion is simple,

GII ≥ GIIc (3.27)

3.5 Modified Classical Lamination Theory

3.5.1 Governing Equations

As shown in Figure 3.4, a pre-delaminated composite panel can be viewed as a com-

bination of four sections [75] at the delamination boundaries, x = x1 and x = x2:

two intact sections I and IV with thickness of T , two delaminated sections II and III

with thickness of T II and T III, respectively. Downward pressure loading is applied on

the top surface of the sections I, II, IV. Each section is considered as an independent

laminated panel under an plane-strain assumption, εy = γxy = γyz = 0 and v = 0.

The displacement field is defined as, ui(x, z) = ui
0(x)−

(
z − zi

mid

) dwi

dx

wi(x, z) = wi(x)

(3.28)

where the zi
mid is the z-coordinate of the mid-plane of section i (i = I, II, III, IV). CLT

treats a laminated panel as a statically equivalent single layer and introduces the

external stiffness Ai
ij, bending-extensional coupling stiffness Bi

ij and bending stiffness

Di
ij, which are defined in terms of layer-wise lamina stiffness Q

(k)
ij as,

{
Ai
ij Bi

ij Di
ij

}
=

∫ zimid+T i/2

zimid−T i/2

Q
(k)
ij

{
1 z z2

}
dz (3.29)

The free body diagrams of the four sections are shown in Figure 3.5. The resultant

constitutive relations are, {
N i

M i

}
=

[
Ai

11 Bi
11

Bi
11 Di

11

]{
ui

0,x

−wi
,xx

}
(3.30)

For the beams I, IV, the governing equations are,

dN I(IV)

dx
= 0 ,

dQI(IV)

dx
= q(x) ,

dM I(IV)

dx
= QI(IV)(x) (3.31)

Two pairs of contact stresses, σ(x) and τ(x), are applied on the delaminated interfaces,
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Figure 3.4: Four-section partition of a pre-delaminated composite panel in modified
CLT.
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Figure 3.5: Free body diagrams of modified CLT.

namely, the lower surface of beam II and the upper surface of beam III.

dN II

dx
= τ(x) ,

dQII

dx
= q(x) + σ(x) ,

dM II

dx
= QII(x)− 1

2
T IIτ(x) (3.32a)

dN III

dx
= −τ(x) ,

dQIII

dx
= −σ(x) ,

dM III

dx
= QIII(x)− 1

2
T IIIτ(x) (3.32b)

The boundary conditions are,

uI(0) = 0 , wI(0) = 0 , M I(0) = 0 , N I(0) = 0

wIV(L) = 0 , M IV(L) = 0
(3.33)

The displacements u, w, rotation dw
dx

and resultant loads N , M , Q are required to be

continuous at the delamination edge (x = x1 , x2), resulting in a total of 18 continuity
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conditions.

3.5.2 Contact Models and Solutions

The piecewise linear spring model and the shear bridging model are used as the

general contact model,

σ(x) = kn
(
wII − wIII

)
(3.34)

τ(x) = ks

((
uII

0 +
1

2
T II dwII

dx

)
−
(
uIII

0 −
1

2
T III dwIII

dx

))
(3.35)

By letting ks = 0, the contact model is reduced to the friction free model.

The governing equations in terms of displacements are,

∂2ui
0

∂x2
=
Bi

11

Ai
11

d3wi

dx3
(3.36)

DI(IV) d4wI

dx4
= −q(x) (3.37)

DII d4wII

dx4
= −q(x)− σ(x) (3.38)

DIII d4wIII

dx4
= σ(x) (3.39)

where the effective bending stiffness of each beam is,

Di =
Ai

11D
i
11 −

(
Bi

11

)2

Ai
11

(3.40)

The Fourier series expansions of the external pressure loading q(x) is shown in Eqn.

(3.13). The solution form of the beams, I and IV, can be obtained by integrating Eqn.

(3.36) and (3.37). From Eqn. (3.34) and (3.39), wII can be represented as,

wII(x) =
DIII

kn

d4wIII

dx4
+ wIII(x) (3.41)

Substituting Eqn. (3.41) into Eqn. (3.38), one can obtain an ordinary differential

equation of wIII,
d8wIII

dx8
+ 4

(
DII +DIII

4DIIDIII
kn

)
d4wIII

dx4
= −q(x) (3.42)

The solution forms can be achieved, expressed by 24 unknown constants: 6 for beams

I and IV, respectively, and 12 for beams II and III, in total. The unknown constants
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can be solved by the 6 boundary conditions and 18 continuities.

When kn → ∞, the analysis can be further simplified to the constrained model,

namely

wII(x) = wIII(x) (3.43)

In this case, the value of the pair of reaction stresses, σ(x), at the delaminated

interface, is unknown. Combining Eqn. (3.38) and (3.39), one will get,

(
DII +DIII

) d4wII(III)

dx4
= −q(x) (3.44)

so that the solution form can be obtained by integration. Based on the assumption

of the constrained model, the number of continuities is reduced to 14. Together with

6 boundary conditions, one can solve for the 20 unknown constants: 6 for beams I

and IV, respectively, and 8 for beams II and III, in total.

The potential energy can be written as,

Π(d) = U I + U II + U III + U IV + Usp −Wex (3.45)

where U i is the strain energy of each section, Usp is the strain energy of the virtual

spring and Wex is external work done by the loading. Delamination evolution in

three-point bend tests can be predicted based on LEFM by comparing the mode II

energy release rate GII, which is calculated using Eqn. (3.22), with the critical value

GIIc.

3.6 Other Theories and Modeling

3.6.1 Simple Fracture Model

A simple analytical model [71] was proposed to quickly estimate threshold loads of

centre delamination propagation within a beam subject to three-point bending. As

shown Figure 3.6, a delamination with length d splits the centre region of a panel

into two halves with the thickness T1 and T2 respectively. A rotation of the outer

intact sections creates a bending moment in the delaminated halves. The model also

assumes that the rotation of the outer sections is same regardless of the existence of

a delamination. Therefore, the analysis can be reduced to only consider the centre

delaminated region, calculating its change in potential energy from pristine to totally

split configuration with both ends clamped and subject to load by the centre roller,
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Figure 3.6: Simple fracture models. The models only consider the potential energy
change of the centre delaminated region form pristine to delaminated configuration.

which is approximated as a central point load P , shown in Figure 3.6. The origi-

nal formulation was only for mid-plane delaminations, which means the two halves

had identical thickness. In this section, the model is extended to consider unequal

thicknesses, T1 6= T2. The energy release rate is,

G =
3P 2d2

32EB2

(
1

T 3
1 + T 3

2

− 1

T 3

)
(3.46)

If the fracture mechanics based criterion is used, the critical load for delamination

propagation is,

Pc =
4B

d

√√√√ 2GIIcE

3
(

1
T 3
1 +T 3

2
− 1

T 3

) (3.47)

Formulations above assume that the equivalent flexural modulus, E, for the pris-

tine laminated beam can be also applied to split halves. However, the bending stiffness

for the delaminated halves, D1 and D2, will certainly be different from that of the

pristine one even for quasi-isotropic laminated panels. Therefore, a modification in

terms of the effective bending stiffness is suggested. The delamination threshold load

is,

Pc =
8B

d

√
2GIIc

1
D1+D2

− 1
D

(3.48)

3.6.2 Finite Element Modeling

2D configuration of a laminated beam is built using Abaqus/Standard. The beam

is modeled by four-node plane strain elements (CPE4). Only the portion between

supports is considered. Local material properties considering fiber orientations are

pre-calculated and assigned to each sub-layer. Adjacent sub-layers share nodes at

their interface so that the displacement continuities are preserved. To simulate frac-
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ture initiation and subsequent growth at the interface containing the delamination, a

discrete cohesive zone model (DCZM) [28] is implemented via a user subroutine UEL.

The size of cohesive elements is 1/5 of that of the surrounding continuum elements

to ensure numerical convergence. Crack propagation occurs when the mixed-mode

energy-based criterion is satisfied,

GI

GIc

+
GII

GIIc

≥ 1 (3.49)

Default frictionless contact interactions are assigned to the interfaces of existing de-

lamination. For convenience, displacement controlled three-point bend tests are sim-

ulated by assigning a velocity boundary condition of 0.001 mm/s at the top center

node of the panel. Transverse displacement and reaction forces of that node are out-

put as load-displacement responses. Delamination threshold loads can be observed

from a sudden load drop of the load-displacement responses.

3.7 Results and Discussions

A published three-point bend test [76] was modeled. Test specimens of 150× 25 mm

in size were prepared from Seal ’Texipreg REM’ unidirectional carbon/epoxy prepreg

with orthotropic stacking sequence (06)s resulting in 2.28 mm thickness. Teflon lay-

ers with length of 50 mm and thickness of 0.04 mm were inserted at the center of

mid-plane (z = 0.00T ), lower-quarter-plane (z = −0.25T ) or upper-quarter-plane

(z = 0.25T ) during lab manufacturing processes to create delaminations at the cor-

responding plane. The specimens were simply supported with support span length,

100 mm. Material and interface fracture properties were measured or taken from

published test data on a similar carbon-epoxy material [77], shown in Table 3.1. The

length of delamination d is varied from 10 to 50 mm to understand the relation be-

tween threshold loads and crack sizes. The diameter of center roller is set as 12.7

mm.

To evaluate predictions of delamination growth provided by the simplified theo-

ries, the analysis was also performed for a cross-ply laminated composite panel with

support distance, 120 mm, width, 50 mm and thickness, 4.5 mm with stacking se-

quence (04/904/04/904)s. Material and interface fracture properties used are from

experiment results reported in Ref. [78], shown in Table 3.2. An existing delamina-

tion was assumed at the center of the mid-plane. The length of delamination d is

varied from 12 to 60 mm.
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Table 3.1: Homogenized lamina properties and interface fracture properties of the
material used published three-point bend test, taken from Ref. [76, 77]. ν23 and G23

were assumed from literature.

E11 130 GPa
E22 = E33 8.4 GPa
ν12 = ν13 0.44
ν23 0.4
G12 = G13 5.6 GPa
G23 3.0 GPa
GIc 0.192 N/mm
GIIc 0.776 N/mm
σc 40 MPa
τc 40 MPa

Table 3.2: Homogenized lamina properties and interface fracture properties from [78].

E11 136.8 GPa
E22 = E33 5.4 GPa
ν12 = ν13 0.42
ν23 0.57
G12 = G13 2.5 GPa
G23 1.7 GPa
GIc 0.670 N/mm
GIIc 1.670 N/mm
σc 15 MPa
τc 28 MPa

Table 3.3: Normalized stiffness parameters for the contact springs.

Model M1 M2 M3
ξn 0.1 0.1 ∞
ξs 0.02 2× 10−8 2× 10−8

The Fourier Series expansions were performed with up to 400 terms for all exam-

ples. Three contact models were implemented in the 2D elastic analysis to simulate

the contact and frictional behavior between the upper and the lower surface of de-

lamination: the general model combined piecewise linear spring model and shear

bridging model (Model 1), the friction-free model (Model 2) and the constrained

model (Model 3). The normalized stiffness of the normal and shear contact spring

used for each model is listed in Table 3.3. Model 2 and Model 3 were also applied

to the modified CLT. Simple fracture models assumed that the surfaces are perfectly

bonded (Model 3) in developing the theories. Default frictionless contact interactions

was assigned in FE simulations. The tolerance of penetration was set as d0 = 0.1

mm. The iterative parameter of S(x) is chosen as δ = 1.
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Only left half of the specimen was modelled in FE simulations by considering the

symmetry of geometry, delamination and loading. The span between supports was

modeled. The bottom left node and the right edge are assigned simply supported

boundary conditions and symmetric conditions in x-direction, respectively. The ele-

ment size used for the published 12-ply test specimens is 0.50× 0.95 mm while that

for the 32-ply specimens is 0.60×0.70 mm. The cohesive elements were only inserted

at the interface with pre-delamination. The cohesive element has 1/5 length of that

of continuum elements and zero thickness. The cohesive properties (penalty stiffness)

were taken from the literature [68]: KN = 120 GPa/mm, KS = 43 GPa/mm.

3.7.1 Transverse Stress Analysis

First, transverse stress distributions at the delamination interface obtained in the 2D

elasticity analysis is shown in Figure 3.7. σz and τxz, representing mode I and mode

II failure, respectively, are the most relevant stresses in studying delamination. The

plots clearly demonstrate that mode II is the dominant failure mode for delamination

propagation in three-point bend tests since τxz is at least one-order of magnitude

larger than σz near the crack tip while the strength of mode I and mode II is of the

same order.

Because of the observation of stress singularity in analytical calculation, the

stresses near crack tip are averaged before substituting in the quadratic stress cri-

terion. However, the averaging dimension was not clear in past literature. In this

analysis, the stress under the peak near the crack tip (stress concentration area) is

averaged. A detailed shear stress distribution near crack tip is shown in Figure 3.8.

An averaging length from the crack tip of 0.02L is used for all examples.

A convergence study was conducted to understand the effect of Gibbs phenomenon

on stress distributions at crack tip. The terms of Fourier series expansions ranges from

50 to 500. The study used average transverse stress as a criterion for convergence.

As shown in Figure 3.9, the value of average stress starts to converge from 250 terms

in the expansions. 400 terms used in calculation was found to be acceptable to get

converged results.

3.7.2 Delamination Threshold Loads

Both the quadratic stress criterion and the energy-based criterion were implemented

in 2D elasticity solutions. Since CLT cannot provide accurate stress distributions in

the through-the-thickness direction, only the energy-based criterion was used. For
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Figure 3.7: Transverse stress distributions at delaminated interface of specimens with
mid-plane delamination length 0.3L. The dashed line represents the location of crack
tip.
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Figure 3.8: Transverse shear stress distributions near the crack tip at delaminated
interface of specimens with mid-plane delamination length of 0.3L. The dashed line
represents the location of crack tip.

analysis using the energy-based criterion, the small crack perturbation ∆d was set as

0.01L. The results are further compared against the simple fracture model, and the
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Figure 3.9: The convergence study on average transverse stresses of 32-ply specimen
with mid-plane delamination length. d/L is the relative delamination length.

modified version that replaces effective flexural modulus E by bending stiffness D.

The variation of delamination threshold load with length of existing centre delamina-

tions of 12-ply and 32-ply specimens are shown in Figure 3.10 and 3.11, respectively.

The following observations can be made. First, the energy-based criterion provides a

better prediction than stress based criterion when compared to published three-point

bend experiment data of 12-ply specimens. Note that, since the interlaminar fracture

properties were taken from a similar material, the predictions made for 12-ply spec-

imens has slight deviations. The predictions of two criteria are closer for the 32-ply

specimens with well characterized properties. FE simulations with DCZM elements

provide predictions between the two analytical criteria because traction-separation

laws used combines the two criteria. DCZM element will enter the post-peak strain

softening zone and have its secant modulus degraded when it reaches the criteria of

failure initiation. The time that the exact solution meets the quadratic stress-based

criterion is earlier but comparable to the stage that one DCZM element reaches the

peak of the triangular traction separation law, resulting in a lower failure load from

analytical stress-based prediction. The energy-based method is a one-parameter the-

ory that implicitly assumes infinite interlaminar strength without any stiffness degra-

dation. Therefore, the elasticity solutions with the energy-based criterion predict a

higher failure load. Second, the delamination threshold load is lower with a longer

delamination except for the example of upper-quarter-plane delamination in 12-ply

specimen. As shown in Figure 3.10(a), the delaminations need a higher load to grow

when the relative delamination length ranges from 0.1 to 0.2, as predicted by the

fracture mechanics methods. This could be a sign of stable propagation of delami-
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nations. Additionally, the simplified theories, including simple fracture models, the

revised version and the modified CLT, are found to give overestimations on delamina-

tion threshold loads. The difference between simplified theories and the 2D elasticity

solutions is significant when delamination lengths are small while all theories converge

as the length of delamination increases. The errors of simple fracture models with

respect to 2D elasticity solutions using general contact model and energy-based crite-

rion are shown in Figure 3.12. For the orthotropic 12-ply specimens, the predictions

provided by the simple fracture model is acceptable within a 10% error when delami-

nation length is greater than 0.3L. However, the 50% error remains even for a relative

delamination length of 0.5 of the cross-ply specimens. Though in-plane elastic prop-

erties can be quasi-isotropic, the bending behavior of laminates with quasi-isotropic

stacking sequence before and after delamination are different, and this is difficult to

be interpreted by only one effective flexural modulus when using the model developed

by Ref. [71]. When completely delaminated, the stacking sequences of the halves are

less likely to be identical, resulting in different bending properties. In this sense, the

results of the revised version using bending stiffness calculated for each half after

delamination is a better simplified approximation.

3.7.3 Load-displacement Responses

Comparison of experiment measurements of the 12-ply specimens with the predicted

load-displacement responses are shown in Figure 3.13. The predictions by 2D elas-

ticity solutions well agree with the experiments for upper-quarter-plane and lower-

quarter-plane delaminations. Results of FE simulations coincide with experiments

within a narrow margin as well. However, the predictions using the elasticity solu-

tions and the experiment is different for specimens with mid-plane delamination, as

shown in Figure 3.13(c). To investigate this discrepancy, a 3D FE model was built

without considering any fracture. The resulting load-displacement response from the

3D model coincides with the 2D analytical solutions and simulation. This suggests

that the 2D model deviation from experiments are likely caused by uncertainty in the

input material properties.

The variations of load-displacement response with the delamination lengths are

shown in Figure 3.14. The stiffness of the panels decreases with an increase in delam-

ination length. It is noticed that this degradation is faster in the 32-ply specimens

than for the 12-ply specimens. A possible reason can be the difference in length-to-

thickness ratios and stacking sequences. Moreover, the observation of lower threshold
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(a) upper-quarter-plane delamination
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(b) mid-plane delamination
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(c) lower-quarter-plane delamination

Figure 3.10: Variations of delamination threshold load with existing centre delam-
ination length of 12-ply orthotropic laminated panel. 2D elastic solutions use the
combination of three contact models (M1: general model, M2: friction free model,
M3:contrained model) and two delamination criteria (stress: quadratic stress crite-
rion, fracture: fracture mechanics based criterion).
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Figure 3.11: Variations of delamination threshold load with existing centre delami-
nation length of 32-ply cross-ply laminated panel.
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Figure 3.12: Errors between simple fracture models and 2D elasticity theory using
general contact model and fracture mechanics based failure criterion.

loads and smaller flexural displacement with longer delamination, shown Figure 3.14,

indicates that the propagation of delaminations in these examples is unstable.
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(a) upper-quarter-plane delamination
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(b) lower-quarter-plane delamination
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(c) mid-plane delamination

Figure 3.13: Load-displacement responses for 12-ply specimen with delamination
length of 0.5L.
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Figure 3.14: Variations of load-displacement responses with delamination length for
12-ply and 32-ply specimen with mid-plane delamination.
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3.8 Conclusions

A general 2D elasticity solutions has been developed for modeling quasi-static re-

sponses of simply supported pre-delaminated composite panels. A piecewise linear

spring model and a shear bridging model are combined as a general contact model

to simulate normal contact and frictional behavior between delaminated interfaces,

respectively, by integrating into continuities of the adjacent laminae. In addition, a

modified CLT that can address a panel with existing delaminations subject to arbi-

trary transverse pressure loading has been developed. Detailed study on delamination

propagation in three-point bend tests has been performed. A modified simple fracture

model using bending stiffness instead of effective flexural modulus has been intro-

duced, improving the accuracy in quick estimations of delamination threshold loads.

Based on numerical evaluations of 12-ply (06)s laminates and 32-ply (04/904/04/904)s

laminates, the following conclusions are made.

1. Delamination propagation is dominated by mode II failure because transverse

shear stress near the crack tip is at least one-order of magnitude larger than the

normal peel stress while their critical values remain of the same order.

2. Flexural responses predicted by the elasticity solutions is highly consistent with

experiments. Delamination threshold loads predicted by the elasticity solutions

using energy-based criterion are found in good agreement with the experiment

measurements. The agreement suggest that the assumption of neglecting the

small yielded zone ahead of the crack tip is acceptable. The analysis with the

quadratic stress criterion is best used by incorporating volume averaged stresses

near the sharp gradients.

3. According to the results using the energy-based criterion, delaminations in

upper-quarter-plane of 12-ply specimen can propagate stably when the length

of delaminatiosn is in the range of 0.1 to 0.2 of specimen length, since the de-

lamination threshold load is higher when delamination length increases in this

region.

4. Simplified theories provide an overestimation of critical loads. However, their

predictions become more accurate when the delamination is longer. The simple

fracture model is acceptable with an error of 10% for uni-directional laminate

with a long delamination, while its predictions can be 50% higher for laminates

with multi-directional stacking sequences even when the length of delamination
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is half of that of the specimen. The modified version introduced in this chapter,

can significantly reduce the prediction errors.

The highlight of the 2D elasticity approach is the exact solutions of displacement

and stress fields it provides. The convergence and the accuracy of the results have

been discussed. This benchmark solution offers the opportunity to examine simplified

theories and numerical models, evaluate delamination growth predictability among

proposed criteria based on strain, stress or energy, and develop new criteria. The

study on quasi-static responses builds a foundation for future research on extending

this approach to dynamic responses and predicting delamination growth induced by

low-velocity impacts. The 2D elasticity approach can be used with confidence to

study other multilayered structures with multi-delaminations subject to arbitrary

transverse loading profile.
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CHAPTER 4

Closed-form Solutions for Cohesive Zone

Modeling of Delamination Toughness

Tests

4.1 Introduction

1 Closed-form solutions of CZM within a framework of CLT is studied in this chap-

ter. The cohesive interactions between potential crack surfaces are modeled as zero-

thickness virtual deformable layers, following multi-linear traction-separation laws.

The formulation and solution technique are available for mode I DCB tests, mode

II ENF tests and mixed-mode I/II MMB tests. Especially for the MMB tests, two

methods are presented. Considering that the MMB configuration can be thought of

as the superposition of DCB and ENF configuration in setting of the simple beam

theory (SBT) [79], the method without superposition is provided as a reference to

determine the applicability of the method with superposition. Results, including

load-displacement responses and load-crack length relations as well as mode mixity

in the MMB test, are further compared against one-parameter SBT solutions, which

are the analytical benchmark solutions of VCCT simulations. Process zone length

for each test is provided as a function of loading. Comprehensive parametric studies

have been performed to investigate the influences of crack length, strength, fracture

energy, and the shape of cohesive laws.

1Parts of this chapter are published in Xie, J.,Waas, A. M., and Rassaian, M., “Closed-form
solutions for cohesive zone modeling of delamination toughness tests,” International Journal of
Solids and Structures, Vol. 88, 2016, pp. 379–400.
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4.2 General Cohesive Zone Modeling

Consider a laminated composite panel with supported span length, 2L, thickness,

hu + hl, and width, b, as shown in Figure 4.1. A through-width crack with length a0,

parallel to the laminate plane, lies at the right end of the panel. The potential crack

interface is the extension of the crack surface into the pristine section of the panel.

The potential crack, together with the existing one, virtually divides the panel into an

upper and a lower sub-laminates, with thickness of hu and hl, respectively. Following

the concept of CZM, the two sub-laminates in the pristine section are assumed to be

connected by a virtual deformable layer with infinitesimal thickness, referred to as the

cohesive zone, at the potential crack interface. Therefore, the bottom surface of the

upper panel and the top surface of the lower panel are subject to equal and opposite

cohesive traction distributions, which are further determined by cohesive constitutive

laws that relate the traction to separation displacements of those two surfaces.

Each sub-laminate is considered as an independent laminated panel with a plane-

strain assumption in the width direction (into the paper). The displacement fields are

defined in a local coordinate system located at the mid-plane of each sub-laminate

shown in Figure 4.1, Uu(x, zu) = uu(x)− zu
dwu
dx

Wu(x, zu) = wu(x)
,

 Ul(x, zl) = ul(x)− zl
dwl
dx

Wl(x, zl) = wl(x)
(4.1)

where uα(x) and wα(x) are the axial and transverse displacements of the mid-plane,

respectively. The subscript α = u denotes the upper sub-laminate, while α = l

denotes the lower one. The free body diagrams of the sub-laminates are shown in

Figure 4.2. The constitutive relations for the internal generalized resultant forces are,{
Nu

Mu

}
=

[
A11u B11u

B11u D11u

]{
duu
dx

−d2wu
dx2

}
,

{
Nl

Ml

}
=

[
A11l B11l

B11l D11l

]{
dul
dx

−d2wl
dx2

}
(4.2)

where the Aijα, Bijα and Dijα (with α = u, l) are the axial, bending-axial coupling,

and bending stiffness of upper and lower beams, respectively [7].

The governing equations of equilibriums consisting of force and moment balances
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Figure 4.1: Geometry of a pre-cracked laminated composite panel.
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Figure 4.2: Free-body diagrams of two sub-laminates connected by the cohesive zone.

are, 

dNu

dx
= bτ(x)

dQu

dx
= −fz(x) + bσ(x)

dMu

dx
= Qu(x)− 1

2
hubτ(x)

(4.3a)



dNl

dx
= −bτ(x)

dQl

dx
= −bσ(x)

dMl

dx
= Ql(x)− 1

2
hlbτ(x)

(4.3b)

In this analysis, small deflections of the beam are assumed so that higher-order terms
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have been removed from the governing equations. An additional assumption is

A11u = A11l ≡ A11s , |B11u| = |B11l| , D11u = D11l ≡ D11s , hu = hl ≡ h (4.4)

where the subscript s stands for sub-laminate. This assumption generally implies that

specimens analyzed can be made of orthotropic material or laminates with antisym-

metric (identical) or symmetric stacking sequences about the mid-plane (crack-plane).

The external loading condition is limited to transverse point loads. Therefore, the

external pressure loading at the top surface fz(x) = 0.

The cohesive traction in the normal and shear direction, σ(x) and τ(x), are de-

termined by the separation displacements of cohesive surfaces,

∆w(x) = wu(x)− wl(x) (4.5a)

∆u(x) =

(
uu(x) +

h

2

dwu
dx

)
−
(
ul(x)− h

2

dwl
dx

)
(4.5b)

A general traction-separation law is shown in Figure 1.2. The initial elastic (harden-

ing) response, starts from zero traction and zero separation, and is required to remove

the analytical stress singularity at the crack tip, while keeping the stress concentra-

tion. A large value of initial stiffness is assumed. The cohesive secant modulus is

degraded when the traction reaches a critical value expressed through a criterion that

includes relevant strength parameters, and enters the post-peak softening zone, where

the tangent stiffness is negative. The area under the cohesive law is the critical energy

release rate. The initial crack will propagate when the crack tip has zero secant mod-

ulus. The cracked surface is traction free and assumed frictionless, σ(x) = τ(x) = 0.

In this chapter, discussions of closed-form CZM solutions are limited to applications

of piecewise linearized traction-separation laws, which consists of several hardening

and softening linear responses, as shown in Figure 4.3. Quasi-static loading conditions

are also assumed. No unloading is considered, i.e., that the separation displacements

will increase monotonically everywhere in the potential crack interface.

4.3 Solutions of DCB Test (Mode I Fracture)

In the DCB tests, an existing crack will be opened, and further extended, by the

pair of equal and opposite forces applied at the split end of upper and lower beams.

The diagram of the DCB test is shown in Figure 4.4. Aiming to study the pure

mode I fracture, the axial separation ∆u(x) and shear cohesive traction τ(x) are
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Figure 4.3: A piecewise linear cohesive constitutive law of mode I fracture.
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Figure 4.4: Diagram and variables of the DCB test.

required to be zero everywhere in the cohesive zone. To fulfill this requirement, the

problem should be exactly crack-plane symmetric, meaning B11u = −B11l ≡ B11s.

The symmetry allows only the upper beam to be analyzed, wu(x) = −wl(x). The

governing equation in Eqn. (4.3) is reduced to

Ds
d4wu
dx4

+ bσ(x) = 0 (4.6)

and Mu(x) = −Ds
d2wu
dx2

, Qu(x) = −Ds
d3wu
dx3

, where the effective bending stiffness is

Ds =
A11sD11s −B2

11s

A11s

(4.7)

For isotropic material, Ds = E
1−ν2

bh3

12
. The normal cohesive traction σ(x) has a multi-

linear relationship with the opening ∆w = 2wu.
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4.3.1 Solution Forms

Consider a piecewise linear traction-separation law (made of M segments) of normal

direction as shown in Figure 4.3, where the ith segment can be generally expressed as

σi(x) = σci−1 +KN(i)

(
∆w(x)−∆wci−1

)
= KN(i)∆w(x)−KN(i)

(
∆wc1 +

i−1∑
k=2

(
∆wck −∆wck−1

))
+ σci−1

= KN(i)∆w(x)−KN(i)

(
σc1

KN(1)

+
i−1∑
k=2

σck − σck−1

KN(k)

− σci−1

KN(i)

)

= KN(i)∆w(x)−KN(i)

i−1∑
k=1

(
1

KN(k)

− 1

KN(k+1)

)
σck (4.8)

where (∆wci , σ
c
i ) is the turning point between the ith and (i + 1)th segments. The

tangent stiffness KN(i) of the ith segment can be either positive or negative. By sub-

stituting Eqn. (4.8) to Eqn. (4.6), we obtain a non-homogeneous ordinary differential

equation

Ds
d4wu
dx4

+ 2bKN(i)wu(x)− bKN(i)

i−1∑
k=1

(
1

KN(k)

− 1

KN(k+1)

)
σck = 0 (4.9)

When KN(i) > 0, the solution form is

wu1(i)(x) =a1(i) sinh(α1(i)x) sin(α1(i)x) + a2(i) sinh(α1(i)x) cos(α1(i)x)

+ a3(i) cosh(α1(i)x) sin(α1(i)x) + a4(i) cosh(α1(i)x) cos(α1(i)x)

+
1

2

i−1∑
k=1

(
1

KN(k)

− 1

KN(k+1)

)
σck (4.10)

while KN(i) < 0, the solution form is

wu2(i)(x) =b1(i) sinh(α2(i)x) + b2(i) cosh(α2(i)x) + b3(i) sin(α2(i)x)

+ b4(i) cos(α2(i)x) +
1

2

i−1∑
k=1

(
1

KN(k)

− 1

KN(k+1)

)
σck (4.11)

where

α1(i) = 4

√
bKN(i)

2Ds

, α2(i) = 4

√
−2bKN(i)

Ds

(4.12)
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The cracked region is free of support, σ(x) = 0. Hence, the solution form for the

cracked region is

wu(c)(x) =
1

6
c1x

3 +
1

2
c2x

2 + c3x+ c4 (4.13)

ak(i), bk(i)and ck (k = 1 ∼ 4) are unknown coefficients that will be determined by the

boundary conditions and continuities.

4.3.2 Solution Technique for Bi-linear Cohesive Law

First, consider the application of an triangular (bi-linear) traction-separation law that

contains only one elastic and one softening segment, namely, KN1 > 0 and KN2 < 0.

Based on the cohesive behavior of the crack tip, flexural responses of the specimen can

be divided into three stages: initial bending, crack initiation, and crack propagation,

respectively, as shown in Figure 4.5.

In Stage 1, the crack tip B follows the initial elastic traction-separation relation.

As shown in Figure 4.5(a), the upper beam is partly free and partly supported by an

elastic foundation with positive stiffness. The boundary conditions are,

Mu1(1)(xO) = 0 , Qu1(1)(xO) = 0 , Mu(c)(2L) = 0 , Qu(c)(2L) = P (4.14)

where point O denotes the left end of the cohesive zone. If the cohesive zone is

assumed to span the entire potential crack interface, point O is the left end of the

DCB specimen, xO = 0. Here, xα (α = A, B, O) denotes the axial coordinate of

point α. The continuities at x = xB are

wu1(1) = wu(c) ,
dwu1(1)

dx
=

dwu(c)

dx
, Mu1(1) = Mu(c) , Qu1(1) = Qu(c) (4.15)

Since the solution form of wu1(1)(x) and wu3(x) does not contain a particular solution,

as shown in Eqn. (4.10) and (4.13), all 8 coefficients, ak(1) and ck (k = 1 − 4), will

be linear in external load P , resulting in a linear load-displacement response in this

stage. By letting wu(xB) = ∆w0/2, we can get the maximum load P0 of the linear

response.

Stage 2 is defined when the crack tip B is in the softening segment but its secant

stiffness has not been degraded to zero, 0 < σ(xB) < σc, shown in Figure 4.5(b).

Point A is the softening zone tip. The continuities are,

at x = xA : wu1(1) = wu2(2) ,
dwu1(1)

dx
=

dwu2(2)

dx
,
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Figure 4.5: Three stages of the flexural response when applying a bi-linear cohesive
law.

Mu1(1) = Mu2(2) , Qu1(1) = Qu2(2) (4.16)

at x = xB : wu2(2) = wu(c) ,
dwu2(2)

dx
=

dwu(c)

dx
,

Mu2(2) = Mu(c) , Qu2(2) = Qu(c) (4.17)

Note that wu2(2) has a particular solution, 1
2

(
1

KN1
− 1

KN2

)
σc, which results in a non-

linear response to load P . Substituting the constraint,

σc = σ(xA) = −Ds

b

d4wu1(1)

dx4

∣∣∣∣
x=xA

(4.18)

to the expression of wu2(2), the problem can be solved by assembling the boundary
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conditions and continuities, Eqn. (4.14), (4.16) and (4.17). As a result, all 12 coeffi-

cients, ak(1), bk(2) and ck (k = 1− 4), will be proportional to the load variable P . The

solution is only valid at the instant that the constraint is fulfilled. By substituting

the solutions back to the constraint above, we can get the value of load P .

When the old crack tip B′ has zero secant stiffness, the crack will be opened at

point B′. A new crack tip B will form, illustrated as Stage 3 as shown in Figure 4.5(c).

The softening zone between points A and B is the process zone [22], of which the

length is an important meshing parameter in FE simulations using cohesive elements.

Besides the 12 unknown coefficients, there will be 3 more unknowns at this stage, xA,

xB and P . Two constraints in addition to the boundary conditions and continuities

can be used, Eqn. (4.18) and σ(xB) = 0, to solve for those unknowns. In numerical

evaluations, one can specify one of xA, xB and P , solve for the unknown coefficients

by using boundary conditions and continuities, and finally find the other two by using

the constraints. The easiest way is to specify xA. The algorithm to solve the DCB

configuration by using the bi-linear cohesive law is provided in Figure 4.6.

Note that since the expression of wu1(i) contains hyperbolic functions, the matrix

that assembles boundary conditions and continuities to calculate the unknown coef-

ficients may run into numerical singularities when the laminate is long or the value

of α1(i) is large. To avoid this difficulty, it is reasonable to assume that the cohesive

zone does not span the entire potential crack interface since the deformation in the

far field is negligible compared to that at the near-tip region. A shorter cohesive zone

can be placed from the crack tip while the rest of the potential crack interface can

be considered as perfectly bonded (this is equivalent to a “tie” constraint in FE sim-

ulations). Considering the continuities between the perfectly bonded section and the

section containing the cohesive zone, the boundary condition at x = xO is changed to

wu1(1)(xO) = 0 ,
dwu1(1)

dx

∣∣∣∣
x=xO

= 0 (4.19)

The length of the cohesive zone should be carefully selected to avoid introducing any

bias to the results. An adaptive length of cohesive zone is suggested by keeping the

distance between point O and softening zone tip A as a fixed length if a numerical

singularity occurs.
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σ(xB) = σc ⇒ P0
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find next EQM:
xA = xA − δA

xA

solve 12 coefficients
by BCs & MCs

xB

σ(xA) = σc ⇒ Pc

EQM found: store
the calculated results

σ(xB) ≥ 0
crack propagates:
xB = xB − δB

xO

xO

YES NO

Figure 4.6: The algorithm to find equilibrium (EQM) state in the DCB configuration
by using the triangular (bi-linear) cohesive law.

4.3.3 Solution Technique for Multi-linear Cohesive Law

The application of the multi-linear cohesive constitutive law is similar to that of

the bi-linear law. Flexural responses can also be divided into three stages, except the

initial bending response becomes nonlinear after the crack tip reaches the first turning

point, namely, σ(xB) = σc1. In every stage, the boundary conditions are identical to

Eqn. (4.14). The conditions for matching between segments require the continuities

of w, w′, M and Q. Furthermore, by replacing all σck in the particular solution of

wu1(i) and wu2(i) using the constraints,

σck = σ(xAk) = −Ds

b

d4wu
dx4

∣∣∣∣
x=xAk

(4.20)

one can get rid of all non-homogenous terms. Using the boundary conditions and

continuities, unknown coefficients can be expressed in terms of load variable P . The

value of load P can be finally obtained by substituting the solution back to one of

the constraints, e.g., σc1 = σ(xA1). The algorithm to solve the DCB configuration by

using the multi-linear cohesive law is provided in Figure 4.7.
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Figure 4.7: The algorithm to find equilibrium (EQM) state in the DCB configuration
by using the multi-linear cohesive law. The variable i corresponds to the segment
where the crack tip B is located.

4.4 Solutions of ENF Test (Mode II Fracture)

The ENF tests are three-point bend tests on a specimen containing an edge delami-

nation. The diagram of the ENF test is shown in Figure 4.8. The crack is assumed

to be closed everywhere in both the cohesive zone region and the initial traction free

crack, which means the surfaces are assumed to be bonded in the normal direction

everywhere,

∆w(x) = 0 ⇒ wu(x) = wl(x) ≡ w(x) (4.21)

Stacking sequences of the ENF specimens analyzed can be mid-plane symmetric

(B11u = −B11l) or antisymmetric (B11u = B11l). Especially, the specimens with

antisymmetric stacking sequences should be centre loaded at a particular side so that

B11u < 0 to ensure the vertical closure of the potential crack interfaces. For instance,

the center load should be applied on the 90◦-side of the specimen with stacking se-

quences (90/0)2 in the ENF test. Applying center load at 0◦-side can result in a

mixed-mode fracture. Note that the value or expression of the normal contact force

distribution σ(x) ≤ 0 is unknown. Friction caused by normal contact is ignored.
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Figure 4.8: Diagram and variables of the ENF test.
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Figure 4.9: Linearized traction-separation law of mode II fracture.

Therefore, the governing equations can be written as,

dNu

dx
= −dNl

dx
= bτ(x)

dQu

dx
+

dQl

dx
= 0

dMu,l

dx
= Qu,l(x)− 1

2
hbτ(x)

(4.22)

As shown in Figure 4.9, the shear cohesive law is antisymmetric with respect to

the origin. In this analysis, the specimen is assumed to have a delamination at its

right edge. Under this assumption, there is always positive shear near the crack

tip. The left end of the cohesive zone is assumed to be within the the first elastic

segment of the law, with negative separation displacement. Thus, the softening zone

in the negative part of the shear cohesive law will never be activated in the presented

analysis. Only the positive part of the shear cohesive law is considered.
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4.4.1 Solution Forms

Consider a piecewise linear traction-separation law (made of M segments) of mode II

as shown Figure 4.9. The jth segment with positive separation displacement can be

expressed similarly as that of mode I shown in Eqn. (4.8),

τj(x) = τ cj−1 +KS(j)

(
∆u(x)−∆ucj−1

)
= KS(j)∆u(x)−KS(j)

j−1∑
k=1

(
1

KS(k)

− 1

KS(k+1)

)
τ ck (4.23)

where (∆uci , τ
c
i ) is the turning point between the ith and (i + 1)th segment. Manip-

ulating the governing equations by substitution and simplification, one will get an

ordinary differential equation for the transverse displacement,

A11sDs

bKS(j)

∂6w(j)

∂x6
−
(

2Ds +
(B11u −B11l + A11sh)2

2A11s

)
∂4w(j)

∂x4
= 0 (4.24)

When KS(j) > 0, the solution form of the displacement fields is,

w1(j)(x) =d1(j) sinh(β(j)x) + d2(j) cosh(β(j)x) +
1

6
d3(j)x

3 +
1

2
d4(j)x

2

+ d5(j)x+ d6(j) (4.25a)

u1u(j)(x) =

(
2Ds

B11u −B11l + A11sh
+
B11u

A11s

)
β(j)

[
d1(j) cosh(β(j)x) + d2(j) sinh(β(j)x)

]
+

1

4

(
B11u +B11l

A11s

− h
)
d3(j)x

2 + d7(j)x+ d8(j) (4.25b)

u1l(j)(x) =

(
− 2Ds

B11u −B11l + A11sh
+
B11l

A11s

)
β(j)

[
d1(j) cosh(β(j)x) + d2(j) sinh(β(j)x)

]
+

(
1

4

(
B11u +B11l

A11s

+ h

)
x2 +

B11u −B11l + A11sh

2bKS(j)

)
d3(j) + hd4(j)x

+ hd5(j) + d7(j)x+ d8(j) −
j−1∑
k=1

(
1

KS(k)

− 1

KS(k+1)

)
τ ck (4.25c)

while when KS(j) < 0, the solution form is,

w2(j)(x) =e1(j) sin(β(j)x) + e2(j) cos(β(j)x) +
1

6
e3(j)x

3 +
1

2
e4(j)x

2

+ e5(j)x+ e6(j) (4.26a)

u2u(j)(x) =

(
2Ds

B11u −B11l + A11sh
+
B11u

A11s

)
β(j)

[
e1(j) cos(β(j)x)− e2(j) sin(β(j)x)

]
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+
1

4

(
B11u +B11l

A11s

− h
)
e3(j)x

2 + e7(j)x+ e8(j) (4.26b)

u2l(j)(x) =

(
− 2Ds

B11u −B11l + A11sh
+
B11l

A11s

)
β(j)

(
e1(j) cos(β(j)x)− e2(j) sin(β(j)x)

)
+

(
1

4

(
B11u +B11l

A11s

+ h

)
x2 +

B11u −B11l + A11sh

2bKS(j)

)
e3(j) + he4(j)x

+ he5(j) + e7(j)x+ e8(j) −
j−1∑
k=1

(
1

KS(k)

− 1

KS(k+1)

)
τ ck (4.26c)

where

β(j) =

√
b|KS(j)|
A11sDs

(
2Ds +

(B11u −B11l + A11sh)2

2A11s

)
(4.27)

The cracked region is free of shear traction, τ(x) = 0. The solution will be,

w(c)(x) =
1

6
f1x

3 +
1

2
f2x

2 + f3x+ f4 (4.28a)

uu(c)(x) =
B11u

2A11s

f1x
2 + f5x+ f6 (4.28b)

ul(c)(x) =
B11l

2A11s

f1x
2 + f7x+ f8 (4.28c)

dk(j), ek(j)and fk (k = 1 ∼ 8) are unknown coefficients that will be determined by the

boundary conditions and continuities.

4.4.2 Solution Technique

The boundary conditions are simply supported at the two ends of the specimen,

at x = 0 : u1l(1) = 0 , N1u(1) = 0 ,

w1(1) = 0 , M1u(1) +M1l(1) +
h

2
(N1u(1) −N1l(1)) = 0 (4.29)

at x = 2L : Nl(c) = 0 , Nu(c) = 0 ,

w(c) = 0 , Mu(c) +Ml(c) +
h

2
(Nu(c) −Nl(c)) = 0 (4.30)

The conditions for matching between segments can be obtained from the continuities

of uu, ul, Nu, Nl, w, w′, Qu +Ql and Mu +Ml + h
2
(Nu −Nl). Especially at x = L,

P +Qu(L
−) +Ql(L

−) = Qu(L
+) +Ql(L

+) (4.31)
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The solution technique and algorithm for the ENF configuration share similarities

with those of the DCB configuration. All the τ ck in the particular solution of u1l(j)

and u2l(j) will be replaced by the constraints,

τ ck = τ(xAk) =
1

b

(
A11s

duu
dx
−B11u

d2w

dx2

)∣∣∣∣
x=xAk

(4.32)

After solving all the coefficients expressed linearly in the load variable P , the value

of load P can be obtained by substituting the solution back to the first constraint

where k = 1.

Note that the expressions of w1(j), u1u(j) and u1l(j) contain hyperbolic functions,

thus the issue of numerical singularity may also appear in the ENF calculation when

the laminate is long or the value of β(j) is large. As suggested in Section 4.3.2, to

avoid this issue, only the near-tip portion of potential crack interface, xO ≤ x ≤ xB,

will be modeled by a cohesive zone while the rest, 0 ≤ x ≤ xO, will be considered as

perfectly bonded in the axial direction as well, for which the solution form is,

w0(x) =
1

6
g1x

3 +
1

2
g2x

2 + g3x+ g4 (4.33a)

u0(x) =
B11

2A11

g1x
2 + g5x+ g6 (4.33b)

where A11 and B11 are the stiffness for the whole specimen. Boundary conditions at

x = 0 and the continuities at x = xO will change correspondingly to,

at x = 0 : u0 = 0 , w0 = 0 , M0 = 0 (4.34)

at x = xO : u0 −
h

2

dw0

dx
= u1u(1) , u0 +

h

2

dw0

dx
= u1l(1) , N0 = N1u(1) +N1l(1)

w0 = w1 ,
dw0

dx
=

dw1

dx
, Q0 = Q1u(1) +Q1l(1) ,

M0 = M1u(1) +M1l(1) +
h

2
(N1u(1) −N1l(1)) (4.35)

4.5 Solutions of MMB Test (Mixed-mode I/II Frac-

ture)

The MMB test [79] is conducted in a system of a loading lever and a simply supported

test specimen. Only one external loading P is applied to the lever at the location

which is at a distance C from the mid-span of the specimen. Two proportional
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P1 = P C
L

∆C ∆E

Figure 4.10: Diagram and variables of the MMB test.

forces resulting from this external load, P1, as an opening force at the tip and P2,

as a bending force at the center, will be applied to the specimen by the lever. The

diagram of the MMB test is shown in Figure 4.10. The weight of the lever is considered

negligible compared to the external load. The loading position C controls the relative

magnitude of P1 and P2 and therefore, determines the mode mixity, GII/G, which is

the fraction of mode II to total strain energy release rate [80]. The value of mode

mixity ranges from 0 to 1, representing pure mode I and II, respectively. Pure mode

II loading occurs when C ≤ L/3 because P1 is not large enough to open the split end.

More mode I loading can be obtained by increasing C.

The cohesive constitutive relation for mixed-mode I/II fracture follows the uncou-

pled cohesive laws of pure mode I and mode II [28, 81, 82], shown in Figure 4.3 and

4.9, where the normal and shear cohesive traction only depend on the transverse and

axial separation displacement, respectively. The cohesive secant modulus of normal

and shear direction will be degraded respectively after reaching the corresponding

critical strength, resulting in two process zone lengths. When the final failure cri-

terion of crack growth is satisfied, both secant moduli will be set to zero whatever

values they are. Thus, there is an abrupt jump in the traction at this point depend-

ing on the criterion that is used. This can be a source of numerical inaccuracy in

FE solutions that use cohesive elements. Some widely used failure criteria are stated

below, starting with the linear power law criterion [83],(
GI

GIc

)α
+

(
GII

GIIc

)α
= 1 (4.36)

and the B-K criterion [84],

GI +GII = GTc ≡ GIc + (GIIc −GIc)

(
GII

GI +GII

)η
(4.37)
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The coefficients α and η are usually measured experimentally. The fracture energy

consumed by the crack tip B is defined as,

GI =

∫ ∆w(xB)

0

σ d∆w , GII =

∫ ∆u(xB)

0

τ d∆u (4.38)

which are the integrated area on the left of ∆w = ∆w(xB) and ∆u = ∆u(xB) under

the corresponding cohesive law.

It should be pointed out that coupled cohesive laws can be introduced to avoid

jumps in traction and secant moduli. These laws can be either pre-defined by intro-

ducing two separate criteria for crack initiation and propagation [24, 25], or implicitly

obtained by a given potential function [21, 54] or J integral analysis [85]. As a re-

sult, one process zone exists ahead of the crack tip and progressive damage occurs

before final failure. In this sense, these cohesive models are more physically correct

and numerically stable. However, the coupled cohesive laws are more suitable to be

implemented in discretized numerical modeling such as FE analysis since every point

in the cohesive zone may follow a different coupled mixed-mode law. The nonlin-

earity and variations of mixed-mode laws require much further study on developing

closed-form solutions with coupled cohesive laws.

4.5.1 Method without Superposition

Consider a point x in the cohesive zone as following the ith segment of the mode I

cohesive law and the jth segment of the mode II law. Its cohesive traction is shown in

Eqn. (4.8) and (4.23). After some efforts on solving the governing equations shown

as Eqn. (4.3), two coupled ordinary differential equations are obtained

Ds(B11u +B11l)

B11u −B11l + A11sh

∂4w̄ij
∂x4

= Ds
∂4ŵij
∂x4

+ 2bKN(i)ŵij − bKN(i)

i−1∑
k=1

(
1

KN(k)

− 1

KN(k+1)

)
σck (4.39a)

(B11u +B11l)(B11u −B11l + A11sh)

2A11s

∂4ŵij
∂x4

=
A11sDs

bKS(j)

∂6w̄ij
∂x6

−
(

2Ds +
(B11u −B11l + A11sh)2

2A11s

)
∂4w̄ij
∂x4

(4.39b)

where

w̄ij =
1

2

(
wu(ij) + wl(ij)

)
, ŵij =

1

2

(
wu(ij) − wl(ij)

)
(4.40)
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When B11u = −B11l ≡ B11s, the left hand side of both equations vanish. Noticing

that the two de-coupled ordinary differential equations have an identical form to

Eqn. (4.9) and (4.24), respectively, the solution form of the MMB configuration can

be easily expressed by those of the DCB and ENF configuration,

wu(ij) = ŵij + w̄ij = wDCB
u(i) + wENF

(j) (4.41a)

wl(ij) = −ŵij + w̄ij = −wDCB
u(i) + wENF

(j) (4.41b)

uu(ij) =
B11s

A11s

dwDCB
u(i)

dx
+ uENF

u(j) (4.41c)

ul(ij) =
B11s

A11s

dwDCB
u(i)

dx
+ uENF

l(j) (4.41d)

which contains 12 unknown coefficients for each combination of ij that will be solved

by the boundary conditions and continuities. The solution form of the cracked region

with zero traction, denoted by the subscript (cc), also satisfies the expression above.

When B11u = B11l, the coupled ordinary differential equations can be further

simplified to a 6th-order ordinary differential equation of ŵij which requires more

efforts to solve. In this analysis, discussions of the solutions of the MMB test is

limited within the assumption of mid-plane symmetry.

Based on the cohesive behavior of the crack tip, the solution forms can be combined

in several ways for solving. The possible combinations by using bi-linear cohesive laws

for both mode I and II are shown in Figure 4.11. The boundary conditions are simply

supported at the two ends of the specimen,

at x = 0 : ul(11) = 0 , Nu(11) = 0 ,

w(11) = 0 , Ml(11) = Mu(11) = 0 , Qu(11) = 0 (4.42)

at x = 2L : Nl(cc) = 0 , Nu(cc) = 0 ,

wl(cc) = 0 , Ml(cc) = Mu(cc) = 0 , Qu(cc) = P1 (4.43)

The conditions for matching between segments requires the continuities of ul, uu, Nl,

Nu, wl, wu, w
′
l, w

′
u, Ml, Mu, Ql and Qu. The special case is that at x = L, where the

continuity of Qu contains the center force P2,

P2 +Qu(L
−) = Qu(L

+) (4.44)

Similar to the DCB and ENF tests, the flexural response can be divided into three

stages. The linear response as Stage 1 corresponds to Figure 4.11(a). The other four
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Figure 4.11: Possible combinations of different sections in the MMB configuration by
using bi-linear traction-separation laws for both mode I and II.

figures are non-linear responses as Stage 2. Crack propagation as Stage 3 can occur at

either Stage 1 or 2 as long as the failure criterion for crack growth has been satisfied.

The algorithm to solve the MMB configuration by using bi-linear traction-separation

laws for both mode I and II is shown in Figure 4.12. The algorithm for multi-linear

traction-separation laws is more complicated but can be implemented by analogy with

the bi-linear law that is used here for purposes of demonstration.

If a numerical singularity occurs, the far-field portion of the potential crack inter-

face 0 < x < xO will be set as perfectly bonded in both axial and normal directions.

The solution form and the corresponding boundary conditions at x = 0 are shown in

Eqn. (4.33) and (4.34). The continuities at x = xO are,

u0 −
h

2

dw0

dx
= u1u(1) , u0 +

h

2

dw0

dx
= u1l(1) , N0 = Nu(11) +Nl(11) ,

w0 = wu(11) = wl(11) ,
dw0

dx
=

dwu(11)

dx
=

dwl(11)

dx
, Q0 = Qu(11) +Ql(11)

M0 = Mu(11) +Ml(11) +
h

2
(Nu(11) −Nl(11)) (4.45)

As the delamination propagates beyond half of the span length a > L, the crack

may be closed near the crack tip if the ratio of P1/P2 is small, resulting in pure mode
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Figure 4.12: The algorithm to find equilibrium (EQM) state in the MMB configura-
tion by using triangular (bi-linear) cohesive laws for both mode I and II. (The contact
algorithm is not shown.)

II failure. In this case, the contact between the upper and lower surface of the crack

in a finite area near the crack tip need to be considered. The contact starts at the

first occurrence of negative normal separation of the crack tip, ∆w(xB) < 0, of which

the location of crack tip is recorded as xC . As the delamination propagates further,

the crack surfaces between the current crack tip to the recorded one, xB < x < xC ,

will be considered in contact. A penalty spring with stiffness KN(1) is applied to

model the contact in the normal direction, allowing a moderate penetration of the

upper surface to the lower one, while it is frictionless in the shear direction. In this

sense, a point in the contact area is following the 1st segment of the mode I law, with
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negative separation, and the cracked segment with zero shear traction of the mode II

law. The solution form of the contact area can be denoted with subscript (1c), which

also satisfies Eqn. (4.41).

4.5.2 Method of Superposition

In the SBT solutions, the MMB configuration can be considered as the superposition

of the DCB and ENF configuration [79, 22] when the crack length is less than the half-

span length of the specimen (a < L). Since the crack will be opened at the half-span

when the delamination extends beyond this point, a > L, the load decomposition

shows that the MMB configuration is superposed by a DCB configuration with an

additional pair of center forces and an ENF configuration [86]. However, it should be

noticed that the boundary conditions of the DCB configuration is inconsistent with

those of the ENF and MMB configuration. It is necessary to have an infinitesimal

rigid-body rotation of the DCB configuration [49].

The presented analytical CZM solutions, shown in Eqn. (4.41), also confirm that

the superposition is feasible kinematically if and only if the specimen is crack-plane

(mid-plane) symmetric in terms of material properties, stacking sequences and geom-

etry. It is believed that the superposition is allowable because: 1) this is the only

case that can obtain pure mode I fracture (zero shear cohesive traction) in the DCB

configuration; 2) this case allows zero normal contact (expect center-loaded point)

between upper and lower sub-laminates in the ENF configuration; 3) the normal and

shear cohesive traction are linear to the mode I and II separation displacement, re-

spectively, so that the loading conditions and cohesive zone of the DCB and ENF

configuration can be clearly separated from the MMB test. Since Qu(j) = Ql(j) is a

natural inference of our formulation of the ENF configuration, Eqn. (4.31) is strictly

equivalent to

P/2 +Qu(L
−) = Qu(L

+) , P/2 +Ql(L
−) = Ql(L

+) (4.46)

regardless of the crack length. Therefore, in the CZM analysis, the MMB test can be

superposed by a rotated cDCB (DCB with additional central loads PII/2) configura-

tion subject to opening forces PI and the ENF configuration subject to center loading

PII, illustrated in Figure 4.13. The superposition can be mathematically written as,

wMMB
u (x) = wcDCB

u (x) +
x

2L
wcDCB
u (2L) + wENF(x) (4.47a)
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wMMB
l (x) = −wcDCB

u (x) +
x

2L
wcDCB
u (2L) + wENF(x) (4.47b)

uMMB
u (x) =

B11s

A11s

dwcDCB
u(i)

dx
+ uENF

u (x) (4.47c)

uMMB
l (x) =

B11s

A11s

dwcDCB
u(i)

dx
+ uENF

l (x) (4.47d)

where the rotation is assumed to be small. Note that this superposition happens after

the cDCB and ENF test are individually solved, which is different from the method

without superposition that combines unsolved solution forms of the DCB and ENF

tests followed by obtaining the unknown coefficients by solving the conditions of the

MMB configuration.

Since the center load will be cancelled out by contact when the crack is shorter

than the mid-span length, the center load will be added to the continuity of x = L

in the DCB calculation only after the first turning point AN1 reaching the mid-

span of the specimen, namely xAN1
= L. The general algorithm for solving the

MMB configuration by the superposition method is provided in Figure 4.14, where

rI = PI/P = 3C−L
4L

and rII = PII/P = C+L
L

. The idea is to solve the cDCB and ENF

configuration respectively with their own boundary conditions and continuities, while

keeping the position of crack tip same and propagating the crack at the same time

when the failure criterion is fulfilled. Any combination of multi-linear cohesive laws

of mode I and mode II failure can be applied. The initiation and renewal of turning

points, AN(k) and AS(k) (k > 1), are considered to be included in the calculation of

the cDCB and ENF configuration, of which the detail algorithm can be referred to

the dotted block of Figure 4.7. After the equilibrium state is found, the displacement

fields of the MMB test can be obtained by using Eqn.(4.47).

Similar to the method without superposition, the contact near the crack tip in the

cDCB configuration should be considered when the crack length is longer than the

half-span length. Therefore, after the first occurrence of negative normal separation

at the crack tip, the growth of delamination will be purely shear driven.

4.6 Results and Discussions

Numerical evaluations of the analytical CZM solutions have been performed for uni-

directional laminates made of IM7/8552 graphite/epoxy. The material properties and

interfacial fracture properties have been taken from Ref. [87], shown in Table 4.1.

The dimensions are shown in Table 4.2.
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Figure 4.13: The superposition method of the MMB configuration.

Table 4.1: Homogenized lamina properties and interface fracture properties of
IM7/8552 graphite/epoxy [87]. The strength values were assumed from literature.

E11 161 GPa
E22 = E33 11.38 GPa
ν12 = ν13 0.32
ν23 0.45
G12 = G13 5.2 GPa
G23 3.9 GPa
GIc 0.212 N/mm
GIIc 0.774 N/mm
σc 50 MPa
τc 70 MPa
If bi-linear traction-separation law is used:
∆w0 8.48 ×10−6 mm
∆wc 8.48 ×10−3 mm
∆u0 2.21 ×10−5 mm
∆uc 2.21 ×10−2 mm

A specific category of traction-separation laws, consisting of only one hardening

and several softening segments, is considered in the numerical evaluation. The sim-

plest form is the bi-linear (triangular) law. The initial elastic stiffness is determined

so that the magnitude of ∆w0 is three-orders of magnitude smaller than ∆wc, and a
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Figure 4.14: General algorithm to find equilibrium (EQM) state in the MMB con-
figuration by the superposition method with arbitrary multi-linear cohesive laws of
mode I and mode II. (The contact algorithm is not shown.)

Table 4.2: Key dimensions used in numerical evaluations.

Supported span length 2L 100 mm
Beam width b 20 mm
Total thickness 2h 3 mm
Initial crack length a0 30 mm

similar assumption holds true for mode II. Thus,

KN1 =
σ2
c

2GIc

∆wc
∆w0

=
σ2
c

2GIc

× 103 , KS1 =
τ 2
c

2GIIc

∆uc
∆u0

=
τ 2
c

2GIIc

× 103 (4.48)

All other multi-linear traction separation laws considered in this chapter will use the

same definition of the initial stiffness. For the critical energy release rate and the criti-

cal stress reported in Table 4.1, KN1 = 5896.2 GPa/mm and KS1 = 3165.4 GPa/mm.
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Since the value of the initial elastic stiffness is very large, a numerical singularity did

occur in our calculations. The adaptive length of cohesive zone is set by keeping the

distance between point O and softening zone tip A1, or the crack tip B if A1 does not

exist, as 10 mm for pure mode I or 5 mm for pure mode II, respectively. For mixed

mode, 5 mm is set from point O to the first softening zone tip. The increments used

in the calculations are δAN = δAS = 0.01 mm, δB = 0.001 mm.

4.6.1 Applications of a Bi-linear Traction-separation Law

Load-displacement responses of the DCB and ENF configuration by using a bi-linear

traction-separation law are shown in Figure 4.15. Compared against the flexural re-

sponse from one-parameter SBT solutions that only consider critical energy release

rate (see Appendix C), the nonlinear pre-peak responses of the cohesive zone analysis

are clearly shown. The load corresponding to the actual start of nonlinearity, P0,

which is influenced by the value of initial elastic stiffness and critical stress, is much

lower than visual estimation. The nonlinearity of the pre-peak response, as we dis-

cussed, can only be introduced by using more-than-one-piece linearized or a nonlinear

traction-separation law. Because of the nonlinearity, the failure load (strength) of the

cohesive zone analysis, Pc, is lower than that of the SBT solutions. The post-peak

load-displacement response of the two solutions agree well since it is considered to be

mainly governed by the value of energy release rate, [88]. Both the CZM solutions

and the SBT solutions have captured the snap-back in the post-peak response of the

ENF configuration when the crack length is between 30 mm and 40 mm, which is

difficult to obtain using an FE simulation.

A parametric study has been conducted to investigate the influence of strength

and fracture energy. As can be seen in Figure 4.16, the pre-peak responses are mainly

affected by the material strength. As the strength increases, the peak load increases

and the pre-peak response converges to the SBT solutions which assumes infinite

strength. The post-peak response of the DCB configuration is insensitive to strength,

as reported in Ref. [88]. For the ENF configuration, a small strength can signifi-

cantly affect the post-peak response while the influence of larger strength values is

limited. However, it should be noticed that though the post-peak responses for dif-

ferent strength values agree well, the crack lengths corresponding to the same point

in the load-displacement response are different. The relation of peak load and the

delamination length for both tests with different strength values are shown in Fig-

ure 4.17. As expected, the critical failure load of the DCB test is more sensitive to the
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Figure 4.15: Load-displacement response with crack length markers as well as the
maximum load of linear response P0 and the failure load Pc.
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Figure 4.16: Parametric study of strength on the load-displacement response.

strength value when the crack is shorter. For the ENF test, the critical failure load

initially decreases then increases after the crack length reaches a certain value that

is influenced by the strength. The influence of strength on failure load is significant

for both smaller and larger crack lengths. The fracture energy is the dominant factor

of the post-peak flexural response, as shown in Figure 4.18. As the critical energy

release rate increases, the fracture load gets higher for the same deflection because

more energy is gained and dissipated to advance the crack.

The length of process zone is reported in Figure 4.19, where, for each response

a value during one calculation with given strength and fracture energy is recorded.

The length of process zone of the DCB test is almost constant as the crack advances,

which is a good finding for FE simulations of pure mode I crack propagation in
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Figure 4.17: Parametric study of strength and crack length on the failure load.
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Figure 4.18: Parametric study of fracture energy on the load-displacement response.

that the meshing can be decided independently of the crack length. For the ENF

test, the process zone initially has a relatively constant length until the process zone

tip AS1 reaches the mid-span of the specimen. The process zone then assumes a

different but constant length during its occupation at the mid-span. Therefore, in

FE simulations, the element size should be chosen more carefully in modeling pure

mode II crack propagation so that the influence of both initial and terminated crack

length should be taken into account. The influence of crack length on process zone

length is also affected by the strength value: smaller strength has a stronger influence.

A parametric study has also been performed to reveal the influence of strength and

fracture energy on the process zone length corresponding to the initial crack length,

shown in Figure 4.20. As can be seen, the process zone length exponentially decreases

with increasing strength. Higher fracture energy results in longer process zone sizes

86



Crack Length a [mm]
30 40 50 60 70

P
ro

ce
ss

 Z
on

e 
Le

ng
th

 L
p 

[m
m

]

0

1

2

3

4

5

6

7

DCB test: Uni-directional (IM7/8552)
G

Ic
= 0.212 N/mm, a

0
=30 mm

σ
c
= 10 MPa

σ
c
= 50 MPa

σ
c
=100 MPa

σ
c
=200 MPa

σ
c
=400 MPa

(a) The DCB test

Crack Length a [mm]
30 40 50 60 70

P
ro

ce
ss

 Z
on

e 
Le

ng
th

 L
p 

[m
m

]

0

5

10

15

20

25

ENF test: Uni-directional (IM7/8552)
G

IIc
= 0.774 N/mm, a

0
=30 mm

τ
c
= 20 MPa

τ
c
= 50 MPa

τ
c
= 70 MPa

τ
c
=100 MPa

τ
c
=200 MPa

(b) The ENF test

Figure 4.19: Process zone length as the crack advances.

while the length of the process zone tends to converge for the larger strength values.

The computed process zone length for the DCB configuration is further compared

against the damage zone size that assumes an infinite value of KN1 [45]2

` =
χ√
2

∆ (4.49)

where χ is the first root of the equation

1 + coshχ cosχ

sinhχ cosχ+ coshχ sinχ
= − ∆√

2a
and ∆ =

(
1

3

EGIc

σ2
c

h3

)1/4

(4.50)

Definition of the effective Young’s modulus as E = 12Ds
bh3

is used. When assuming

a→∞, `/∆ = 1.326 can provide a quick estimation. Using the parameters displayed

in Figure 4.20(a), this ratio calculated from the above equation is between 1.331 to

1.368 for a = 30 mm. The formula also suggests a slight decrease of process zone

length as the crack advances, and that is more significant with smaller strength, which

matches our observation of Figure 4.19(a). Good agreement between the proposed

method and the published formula is shown in Figure 4.20(a). Since finite values of

KN1 is assigned and cohesive zone is considered everywhere along the potential crack

surface, the published damage zone length will be the upper bound of the results of

the current analysis.

2Note that all formulations in Ref. [45] are for the the upper beam partly supported by the elastic
foundation. The separation they formulated was not doubled to recover the DCB test. Therefore,
their GIc is actually GIc/2 in this dissertation. The formulation of ∆ in Eqn.(4.50) has been corrected
by using our notation.
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Figure 4.20: Parametric study of strength and fracture energy on the process zone
length.

4.6.2 The MMB Configuration

Three different loading configuration are studied in the analysis of the MMB configu-

ration: C = 30 mm, C = 43.7 mm and C = 60 mm, of which the failure mode respec-

tively correspond to mode II dominant (GI < GII), mode I/II equivalent (GI ∼ GII)

and mode I dominant (GI > GII). According to the SBT solutions, the mode mixity

GII/G for these three positions, 0.75, 0.5, 0.35, are independent of the crack length

before the crack reaches the mid-span.

The response of both end opening and center deflection to the external loading

are shown in Figure 4.21. The B-K criterion is chosen as the failure criterion to

predict the crack growth. The coefficient η = 2.1 for IM7/8552 graphite/epoxy [87]

is used. As shown in the figure, the methods with and without superposition are in

perfect agreement, which mutually verify the closed-form solutions and algorithms

introduced in this chapter. Compared to the SBT solutions, the nonlinearity of the

pre-peak solution has been captured, and that results in a lower failure load, while

the post-peak responses are consistent. The dominance of the failure mode can also

be seen in the response of the center deflection, of which the positive direction is

defined as downward. As the crack propagates after the initial bending, the center

displacement bounces back more if C is larger, and that brings in more mode I loading.

After the crack grows beyond the mid-span, downward bending is still dominant when

C = 30 mm because the crack opening is small. As C increases, the crack opening

gets larger and becomes the major contributing factor to the center deflection.

The mode mixityGII/G during the MMB configuration, corresponding to the three
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Figure 4.21: Load-displacement responses of the MMB test with three different load-
ing positions. The failure criterion for crack propagation is B-K criterion. The crack
length are marked.

loading cases is plotted in Figure 4.22. The results of the methods with and without

superposition still agree well, except that small but acceptable numerical uncertainties
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Figure 4.22: Mode mixity of the MMB configuration with three different loading
positions. The failure criterion for crack propagation is B-K criterion.

are shown in the response for C = 60 mm of the latter method. The mode mixity

calculated from the cohesive zone model before the crack grows to the mid-span is

relatively constant with respect to the crack length but has a higher lower than the

SBT solutions. Once the mode I process zone extends to the mid-span, the mode I

fracture starts to be suppressed by the center loading, bringing in the additional pair

of center force to the DCB configuration in the superposition method. After that,

the mode I fracture will become either dominant or not, depending on the ratio of

the mode I and mode II loading that is further determined by the loading position

C. Especially for the case of C = 30 mm, the crack propagation will be purely mode

II, once the crack extends to around 66 mm.

Since the method with and without superposition for solving the MMB config-

uration provide identical results shown in Figure 4.21 and 4.22, the superposition

method that is more computationally efficient will be chosen to conduct all of the

following analysis. The process zone length for mode I and mode II during the calcu-

lation of the MMB configuration is shown in Figure 4.23. In the MMB configuration,

the process zone is still defined as the cohesive zone between the softening zone tip

A1 and the crack tip B, although the secant modulus of the crack tip may not be

degraded to zero. It is obvious that the length of the process zone will be influenced

by the loading position which determines the mode mixity and further, by the energy

dissipated at the crack tip. As shown in the figure, the length of process zone is al-

most constant for two failure modes when the crack length is less than the half-span

length. However, this aspect is also influenced by the values of strength and fracture

energy, similar to the DCB and ENF configuration shown in Figure 4.19. After the
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Figure 4.23: Process zone length of mode I and II failure during the MMB test with
three different loading positions. The failure criterion for crack propagation is B-K
criterion.

delamination extends beyond the mid-span, the process zone follows the change of

the mode mixity: as the mode mixity increases, the process zone of mode II expands

while that of mode I is shortened. For the case of C = 30 mm, the mode I process

zone length gradually decreases and becomes zero around 66 mm, meaning that no

mode I failure occurs beyond this point.

Figure 4.24 shows the comparison of the flexural response of end opening and the

mode mixity by using three different criteria for predicting crack propagation: power-

law criteria with coefficient α = 1 and α = 2, and the B-K criterion. The flexural

response computed by the linear power-law and the B-K criteria are close, while the

quadratic power-law provides a higher prediction of the failure load. Though the

post-peak response differs by the failure criteria, the mode mixity is quite consistent.

The relation of the loading position and mode mixity of corresponding to the initial

crack length is shown in Figure 4.25(a). The difference between the cohesive zone and

the SBT solutions is more visible when increasing the loading distance. The process

zone length corresponding to the initial crack length for the different criteria with

the variation of the loading distance is summarized in Figure 4.25(b). As the loading

distance increases, the process zone length of mode I gets longer while that of mode

II is shortened due to the change of the mode mixity.

A parametric study of the influence of strength and fracture energy on the load-

displacement response has also been performed. The observations are similar to that

of the DCB and ENF configuration, reported before.
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Figure 4.24: Load-displacement responses and mode mixity of the MMB configura-
tion by using the method of superposition. Three failure criteria are computed and
compared: power law with α = 1 (PL1), α = 2 (PL2) and B-K criterion with η = 2.1
(B-K). The crack lengths are marked.
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Figure 4.25: Mode mixity and process zone length corresponding to the initial crack
length of the MMB configuration by using the method of superposition with three
failure criteria: power law with α = 1 (PL1), α = 2 (PL2) and B-K criterion with
η = 2.1 (B-K).

4.6.3 Influence of the Shape of the Cohesive Law

First, consider the variation of the shape of bi-linear cohesive law, shown in Fig-

ure 4.26. Fixing the value of strength and fracture energy, the ratio of initial and

critical separation, ∆w0/∆wc and ∆u0/∆uc, controls the shape of bi-linear cohesive

law as well as the initial stiffness, KN1 and KS1. In our previous examples, the ratio

is chosen as 1/1000.

Five ratios shown in Figure 4.26 have been investigated to study the influence

on flexural response, presented in Figure 4.27. For the special case that the ratio

equals to 1, the cohesive law is reduced to an elastic-brittle law of which the closed-

form solutions of the DCB, ENF and MMB tests have been studied [44, 48, 46, 49].

Consisting of only one elastic response without any softening segment, this simpler

traction-separation law implies that the crack initiation and propagation happen at

the same time, and meanwhile, the cohesive traction and secant modulus jump to

zero. As can be seen in Figure 4.27, the shape of bi-linear cohesive law mainly affects

the nonlinear pre-peak response. The pre-peak flexural response by applying the

elastic-brittle cohesive law (ratio = 1) is linear. As the ratio of initial and critical

separation decreases, the nonlinearity becomes significant and the pre-peak linear

elastic response agree better with the SBT solutions. Since the initial elastic segment

of cohesive law is required in analytical solutions and FE modeling, we suggest to

choose a lower ratio or a higher value of initial stiffness. Another observation is the

critical failure loads are insensitive to the shape of bi-linear law.
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Figure 4.26: Variations of the shapes of bi-linear cohesive laws. The laws for mode II
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Figure 4.27: Load-displacement responses of the DCB and ENF configuration by
varying the shape of bi-linear traction-separation law.

Figure 4.28 illustrates how the process zone length varies with the shape of bi-

linear cohesive law. It can be used with the definition of the process zone that

the process zone length will be shorter and finally vanish if the ratio of separations

increases and approaches 1. However, the plots show that this relation is significantly

nonlinear when the ratio is small while it becomes linear if the ratio is larger than

3/10. The estimation that ` = 2.664 mm is also shown in Figure 4.28(a) by using

Eqn. (4.49) and (4.50). It should be noticed that the relationship between the process

zone length and the bi-linear law may also influenced by strength and fracture energy.

Besides the bi-linear traction-separation law, another popular choice of cohesive
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Figure 4.28: Process zone length of the DCB and ENF configuration by varying the
shape of bi-linear traction-separation law.

law is linear-exponential law, of which the softening part can be expressed as

σexp(x) = σce
−γ(∆w−∆w0) , where γ =

σc
GIc − 1

2
∆w0σc

(4.51)

This linear-exponential law can be linearized into M pieces. The turning points

(k < M) are assumed to be evenly divided.

σck =
M − k
M − 1

σc ⇒ ∆wck = ∆w0 +
ln(M − 1)− ln(M − k)

γ
(4.52)

The critical separation ∆wc is determined by preserving the integrated area as the

fracture energy GIc. The bi-linear and linearized linear-exponential laws for mode I

that will be input into the calculation are shown in Figure 4.29(a). For additional

study, the ratio of σc2/σc of the tri-linear cohesive law is changed while ∆wc2 is kept

the same, shown in Figure 4.29(b). When this ratio approaches one, the tri-linear

cohesive law will converge to the Dugdale-Barenblatt model that assumes a constant-

stress (rectangular) cohesive law with infinite initial elastic and softening stiffness. In

these two variations of cohesive laws, the initial stiffness KN1 is fixed. The variations

for the mode II law are similar.

The load-displacement responses of the DCB and ENF configuration are shown in

Figure 4.30 and 4.31, respectively. Refining the linearization of the linear-exponential

law by increasing M results in the convergence of the flexural response. The expected

converged results would correspond to the results that are obtained by using an ex-

act linear-exponential law. In addition, increasing the ratio in the tri-linear laws
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Figure 4.29: Multi-linear cohesive laws for mode I used in the numerical evaluations.
The law for mode II is similar.

will result in another trend of convergence, possibly leading to the response obtained

had the Dugdale-Barenblatt model been used. Since the only parameter varied be-

tween different cohesive laws is the critical separation, it can be concluded that more

significant nonlinearity of the pre-peak response is introduced by the larger critical

separation ∆wc or ∆uc.

The effect of the critical separation on the process zone size is also studied, pre-

sented in Figure 4.32. The process zone length is proportional to the critical separa-

tion. The trend in convergence that corresponds to the two variations of the cohesive

laws can also be seen. Refining the linearization of the linear-exponential laws in-

creases the process zone length and leads to an expected converging value. As the

ratio of σc2/σc of the tri-linear law increases, the process zone length decreases ex-

ponentially with a decrease of critical separation. A formula for the DCB test by

applying the constant-stress cohesive law has also been given by Ref. [45] to estimate

the damage zone size `

∆4 = `4

(
a+ `/3

a+ l

)
(4.53)

For the given parameters shown in Figure 4.32(a), ` = 2.005 mm. Since the simplified

formula assumes infinite KN1, the process zone length it provides will be slightly larger

than the expected converged value of the CZM solutions presented in this chapter.
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Figure 4.30: Load-displacement responses of the DCB configuration by using different
cohesive laws.
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Figure 4.31: Load-displacement responses of the ENF configuration by using different
cohesive laws.

4.7 Conclusions

Closed-form CZM solutions have been developed for the DCB, ENF and MMB tests

with an application of arbitrary multi-linear traction-separation laws. The solutions

hold for orthotropic materials and laminates with uni-directional or mid-plane sym-

metric stacking sequences, and additionally laminates with mid-plane antisymmetric

lay-up for the ENF test are considered. The laminated panel is modelled as two

individual laminated beams connected at the potential crack interfaces by a virtual

deformable layer with vanishing thickness, following prescribed traction-separation

laws. The formulation and detailed solution algorithms have been provided, allowing

any mechanical quantity of interest to be calculated. The superposition method of
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Figure 4.32: Process zone length by using different cohesive laws. The linearized
pieces M of linear-exponential law and the ratio of σc2/σc of the tri-linear law are
marked.

the MMB configuration is proved both theoretically and numerically for the homo-

geneous material or mid-plane symmetric laminates, while its applicability to other

cases needs further study.

Compared with the one-parameter SBT solutions that only consider critical en-

ergy release rate, the pre-peak nonlinearity of load-displacement response has been

captured in current solutions. A parametric study has shown that the pre-peak re-

sponse is mainly influenced by the material strength. As the strength increases, the

peak load increases and the pre-peak response converges to the SBT solutions which

assume infinite strength. The post-peak response is considered to be mainly governed

by the value of energy release rate. However, this aspect is also influenced by the

crack length and the shape of the cohesive laws. The effect of the crack length on

the failure load and how it is influenced by the cohesive parameters have also been

studied. Additionally, the influence of the shape of the cohesive laws has been inves-

tigated by only varying the critical separation. It is shown that the critical separation

also has a significant influence on the flexural response.

A comprehensive parametric study has been performed on the process zone length,

revealing its relation with crack length, strength, fracture energy, critical separation

and mode mixity. The results of the DCB configuration have suggested that the

formulation provided by Ref. [45] is good to estimate the process zone length for

pure mode I crack propagation.

In conclusion, the closed-form solutions presented in this chapter consider the fi-

nite geometry and apply multi-linear cohesive laws, similar as setting to finite element
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simulations that use cohesive elements. Providing stable and computationally efficient

results, the approach is invaluable for performing parametric studies on cohesive pa-

rameters and the variation of cohesive laws, and thus offering a deeper understanding

of CZM. The solutions could therefore prove very useful for providing the length of

process zone analytically and serving as a cross-check against numerical simulations.
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CHAPTER 5

Estimating the Process Zone Length of

Fracture Tests Used in Characterizing

Composites

5.1 Introduction

1 Closed-form CZM solutions for the DCB, ENF and MMB tests, by applying ar-

bitrary multi-linear traction-separation laws that contain both elastic and softening

regimes, have been presented in Chapter 4. As a result, these benchmark solutions of

flexural responses can be obtained and cross-checked against numerical simulations.

Besides flexural responses, process zone length is another important outcome of

analytical CZM solutions. Defined by the length over which the cohesive zone enters

the post-peak degradation process, the process zone length is a key meshing parameter

for FE simulations that use cohesive elements. Past literature has suggested to use

three or more cohesive elements in the process zone to correctly capture the crack

propagation and maintain mesh objectivity [40, 41]. Analytical studies of process

zone lengths found in the literature fall into two categories: a strip yield model and a

large-scale crack bridging model [57, 29, 40, 41]. These two models consider different

scales of process zone length with respect to structural depth normal to the crack.

The strip yield model [13, 14, 15, 89, 90, 91], which assumes a small-scale fracture

process zone, analyzes a localized problem of infinite sheet with semi-infinite cracks

subjected to far-field loading conditions. The process zone lengths for infinite bodies

1Parts of this chapter are published in Xie, J., Waas, A. M., and Rassaian, M., “Estimating the
process zone length of fracture tests used in characterizing composites,” International Journal of
Solids and Structures, Vol. 100, 2016, pp. 111–126.
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under pure mode I and mode II loading have been summarized as, respectively,

`I = ME ′I
GIc

σ2
c

(5.1a)

`II = ME ′II
GIIc

τ 2
c

(5.1b)

where M is a parameter that depends on each cohesive zone model, ranging from

0.21 to 1.0 [40]. GIc and σc are critical energy release rate and interfacial strength of

mode I fracture, respectively, while GIIc and τc are parameters of mode II fracture. E ′I
and E ′II are effective Young’s Modulus of an infinite body under plane-stress condition

loaded in tension and shear, respectively. For orthotropic materials, they are provided

by Ref. [92, 41]

E ′I =

(
1

2E11E33

((
E11

E33

)1/2

+
E11

2

(
−2ν31

E33

+
1

G13

)))−1/2

(5.2a)

E ′II =

(
1

2E2
11

((
E11

E33

)1/2

+
E11

2

(
−2ν31

E33

+
1

G13

)))−1/2

(5.2b)

However, the process zone lengths can be comparable to the depth for delamination

in slender bodies, especially in laminated composites, where the assumption of a strip

yield model is invalid. The large-scale crack bridging model [93, 94, 57], which is

derived using beam theory and J-integral, has been proposed to estimate the process

zone lengths of slender laminates containing a mid-plane edge delamination as, [29]

`s,I = M

(
Eeff

GIc

σ2
c

h3

)1/4

(5.3a)

`s,II = M

(
Eeff

GIIc

τ 2
c

h

)1/2

(5.3b)

where h is half thickness of the beam. The scaling factor M is theoretically closed

to unity, while it has been suggested to apply M = 0.5 in both Eqn. (5.1) and (5.3)

and use the minimum possible length to estimate the process zone length in practice

[41]. Eeff is the effective Young’s Modulus of a beam under plane-strain assumption.

For orthotropic materials, or uni-directional laminates,

Eeff =
E11

1− ν13ν31

(5.4)
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It should be noticed that Ref. [41] used Eeff = E ′I in Eqn. (5.3a). However, Eeff shown

in Eqn. (5.4) is suggested to be used instead by past literature [93, 94] and formula-

tions shown in Section 5.3. The closed-form solutions, developed in Chapter 4, with

consideration of slender geometry, multi-linear traction-separation laws and loading

conditions of actual tests, can provide similar but more accurate predictions of the

process zone lengths. As a means to understand the effects of nonlinearity of the

cohesive laws, the solutions progressively track the crack tip and the cohesive zone

tip by using an iteration scheme that requires some effort to implement. In awareness

of the need to quickly estimate the CZM solution outcome of loading conditions of

actual tests, some simple expressions are provided in this chapter, so that the flexural

response and the process zone length can be obtained quickly.

Inspired by past solutions of the DCB test done by Williams and Hadavinia [45],

closed-form solutions for cohesive zone modeling of the ENF and MMB tests are pre-

sented by applying linear damage (quasi-brittle) cohesive laws that contain only one

softening regime. These simplified CZM problems can be solved explicitly. Expres-

sions are provided for process zone length, external loads and displacement fields.

Especially for the MMB configuration, the problem is solved by the superposition of

the DCB and ENF configurations. The mixed-mode cohesive laws are constructed by

constraints on both strength and fracture energy. The results of load-displacement

response are further compared against the one-parameter SBT solutions as well as

the closed-form CZM solutions, presented in Chapter 4, and FE simulations using co-

hesive elements by incorporating the bi-linear laws with large initial elastic stiffness.

Parametric studies have been performed to investigate the influence of strength, frac-

ture energy, specimen thickness, crack length and mode mixity on the process zone

length, based on which suggestions of estimating the process zone length have been

provided.

5.2 General Problem

Consider a laminated panel with effective span length, 2L, thickness, hu + hl, and

width, b, as shown in Figure 5.1. A through-width crack with length a, lying on one of

the interfaces between lamina, splits right end into two halves with thickness hu and

hl. Subscript u and l denote upper and lower halves, respectively. A zero-thickness

cohesive zone with length r is assumed ahead of the crack tip on the same interface.

Cohesive traction distributions acting on the bottom surface of the upper half and

top surface of the lower half of the cohesive section follow the traction-separation
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Figure 5.1: Configuration and partition of a pre-crack laminated composite panel.

laws. In this chapter, cases where the cohesive zone has not reached the mid-span of

the specimen, namely a + r ≤ L, are considerer. External loads are possible to be

applied at two locations: the mid-span, x = −L + a, and the right end, x = a. The

assumption of a+ r ≤ L can be released if there is no load applied at the mid-span.

Therefore, considering the split of the specimen by the crack and the cohesive zone, as

well as possible loading conditions, the laminated panel is modelled as an assemblage

of six sub-laminates: 1, 2, 3u, 3l, 4u, 4l, as labeled in Figure 5.1.

Each sub-laminate is considered separately within the framework of CLT, with

an additional assumption of a plane-strain state (cylindrical bending) in the width

direction. Displacement fields are defined in a local coordinate system located at the

mid-plane of each sub-laminate, Ui(x, z) = ui(x)− zdwi
dx

Wi(x, z) = wi(x)
,

 Uiα(x, zα) = uiα(x)− zα
dwiα
dx

Wiα(x, zα) = wiα(x)

(i = 1, 2) (i = 3, 4, α = u, l)

(5.5)

where ui(α) and wi(α) are axial and transverse displacement in the mid-plane, respec-

tively. The number of primes indicate the order of derivative with respective to x.

The constitutive relations for the internal generalized resultant forces are,{
Ni

Mi

}
=

[
A11 B11

B11 D11

]{
dui
dx

−d2wi
dx2

}
,

{
Niα

Miα

}
=

[
A11α B11α

B11α D11α

]{
duiα
dx

−d2wiα
dx2

}
(i = 1, 2) (i = 3, 4, α = u, l)

(5.6)

where A11, B11 and D11 are components of axial, bending-axial coupling, and bending

stiffness of the pristine beam [7], while A11α, B11α and D11α (α = u, l) are the stiffness
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components of the upper and lower halves. In this analysis, the delamination is

assumed to be lying on the mid-plane of the specimen. Additionally, we assume that

the specimen is made of orthotropic materials or laminates with symmetric stacking

sequences about its mid-plane. Therefore,

hu = hl ≡ h , B11 = 0 ,

A11u = A11l ≡ A11s , B11u = −B11l ≡ B11s , D11u = D11l ≡ D11s

(5.7)

where the subscript s generally stands for split sub-laminates.

The governing equations of equilibrium consisting of force and moment balances

are, 

dNi

dx
= 0

dMi

dx
= Qi(x)

dQi

dx
= 0

,



dNiu

dx
= −dNil

dx
= bτi(x)

dMiu

dx
= Qiu(x)− 1

2
hτi(x)

dMil

dx
= Qil(x)− 1

2
hτi(x)

dQiu

dx
= −dQil

dx
= bσi(x)

(i = 1, 2) (i = 3, 4)

(5.8)

where σi(x) and τi(x) are cohesive traction in the normal and shear direction, re-

spectively. The cracked surface is traction free and assumed frictionless, σ4(x) =

τ4(x) = 0. In the cohesive section, the traction are determined by the separating

displacements of cohesive surfaces, where zl = −h/2 and zu = h/2,

∆w3(x) = w3u(x)− w3l(x) (5.9)

∆u3(x) =

(
u3u(x) +

h

2

dw3u

dx

)
−
(
u3l(x)− h

2

dw3l

dx

)
(5.10)

In this chapter, the discussion is limited to solutions of a type of traction-separation

laws that consist of only one softening segment (with negative tangential stiffness),

shown in Figure 5.2. Mathematically, the traction-separation laws are,

σ(x) =

{
KN2 (∆wc −∆w(x)) , 0 ≤ ∆w(x) ≤ ∆wc

0 , otherwise
(5.11)

τ(x) =


KS2 (∆uc − |∆u(x)|) ∆u(x)

|∆u(x)| , 0 ≤ |∆u(x)| ≤ ∆uc

0 , otherwise

(5.12)
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Figure 5.2: Traction-separation laws used for modeling pure mode fracture.

where the cohesive parameters can be expressed by strength and fracture energy

∆wc =
2GIc

σc
, ∆uc =

2GIIc

τc
, KN2 =

σc
∆wc

, KS2 =
τc

∆uc
(5.13)

The linear damage laws can be considered as an extreme case of the bi-linear (trian-

gular) cohesive laws by assigning infinite stiffness to the initial elastic segment. Thus,

the fracture process zone length is equivalent to the length of the cohesive zone in the

present solutions when the cohesive zone is fully developed. Note that the length of

the cohesive zone is unknown, resulting in one more continuity at x = −r,

N2
du2

dx
−M2

d2w2

dx2
= N3u

du3u

dx
−M3u

d2w3u

dx2
+N3l

du3l

dx
−M3l

d2w3l

dx2
(5.14)

This condition is derived from the principle of minimum potential energy (see

Appendix D).

The application of the linear damage cohesive laws has certain limitations in mod-

eling the evolution of the cohesive zone and the crack because traction is discontinuous

at the cohesive zone tip, which is defined as the left end of the cohesive zone, x = −r.
Crack initiation cannot be captured. The solutions introduced are only available to

solve a snapshot of the configurations containing a partially or fully developed cohe-

sive zone. Another limitation is that rotation of the cohesive zone tip is prohibited.

However, we can obtain closed-form expressions on displacement fields, critical loads

of crack propagation and estimate the process zone length by using these simple co-

hesive laws. The expressions can serve as a quick estimate for cohesive zone modeling
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Figure 5.4: Diagram of the reduced DCB problem by the assumption of mid-plane
symmetry. Point A denotes the cohesive zone tip while point B denotes the crack
tip. The locations of point A and B in the linear damage law are also shown. The
cohesive zone is assumed to be fully developed in this figure.

as well as enhance the understanding of modeling artifacts.

5.3 Solutions of the DCB Configuration by Williams

and Hadavinia

Solutions for the DCB configuration with a fully developed cohesive zone by applying

five different cohesive laws, including the linear damage cohesive law, have already

been published by Williams and Hadavinia [45]. Herein the solutions are reproduced

for the completeness of this chapter.

The configuration of the DCB test is shown in Figure 5.3. The assumption of

mid-plane symmetry made in Eqn. (5.7) ensures the pure mode I fracture of the

DCB configuration. The symmetry also allows only the upper half of the cohesive
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section and the cracked section are analyzed.

w1(x) = w2(x) = 0 , w3u(x) = −w3l(x) , w4u(x) = −w4l(x) (5.15)

The diagram of the reduced problem is shown in Figure 5.4. Additionally, there

is no axial force acting on the system. The governing equations in Eqn. (5.8) can be

reduced to

d4w3u

dx4
+

b

Ds

KN2 (∆wc − 2w3u(x)) = 0 (5.16a)

d4w4u

dx4
= 0 (5.16b)

and Miu(x) = −Ds
d2wiu
dx2

, Qiu(x) = −Ds
d3wiu
dx3

, where the effective bending stiffness is

Ds = D11s − B2
11s/A11s. The effective Young’s Modulus satisfies, Ds = Eeff · bh3/12.

For orthotropic materials, Eeff is given in Eqn. (5.4).

The corresponding solution forms are,

w3u(x) = c1 sinh(αx) + c2 cosh(αx) + c3 sin(αx) + c4 cos(αx) +
1

2
∆wc (5.17a)

w4u(x) =
1

6
d1x

3 +
1

2
d2x

2 + d3x+ d4 (5.17b)

where α is a constant

α =

(
2b

Ds

KN2

)1/4

=

(
b

Ds

σ2
c

GIc

)1/4

(5.18)

Considering continuities between the pristine section and the cohesive section, a

clamped boundary condition is assigned to the cohesive zone tip A,

at x = −r : w3u = 0 ,
dw3u

dx
= 0 (5.19)

The additional boundary condition at point A due to the unknown length r, shown

in Eqn. (5.14), is reduced to

at x = −r :
d2w3u

dx2
= 0 (5.20)

Other continuities and boundary conditions are

at x = 0 : w3u = w4u ,
dw3u

dx
=

dw4u

dx
, M3u = M4u , Q3u = Q4u (5.21)
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at x = a : M4u = 0 , Q4u = PI (5.22)

Solving, using the nine boundary conditions and continuities, for the eight un-

known coefficients cj, dj (j = 1 − 4), the external load PI can be expressed by the

cohesive zone length r (see Appendix E.1). The external load PI and the end opening

∆I are,

PI =
bσc
α

sin(αr) sinh(αr)

aα cos(αr) + aα cosh(αr) + sin(αr) + sinh(αr)
(5.23)

∆I =

(
1 +

(−2aα cos(αr) + (a2α2 − 1) sin(αr)) cosh(αr)

aα cos(αr) + aα cosh(αr) + sin(αr) + sinh(αr)

+
(−(1 + a2α2) cos(αr) + (1/3)a3α3 sin(αr)) sinh(αr)

aα cos(αr) + aα cosh(αr) + sin(αr) + sinh(αr)

)
∆wc (5.24)

The transverse opening at crack tip B is

∆wB =

(
1− aα(1 + cos(αr) cosh(αr)) + sin(αr) cosh(αr) + cos(αr) sinh(αr)

aα cos(αr) + aα cosh(αr) + sin(αr) + sinh(αr)

)
∆wc

(5.25)

When the cohesive zone is fully developed, the crack tip B has critical separation,

∆wB = ∆wc. Thus, one can obtain an expression for finding the process zone length

r,

1 + cos(αr) cosh(αr)

sin(αr) cosh(αr) + cos(αr) sinh(αr)
= − 1

aα
(5.26)

The process zone length r is the first positive root of the equation above. It can

be found by a graphical method or the Newton-Raphson method with an initial

guess r0 = 1.8751/α, which is the solution obtained by assuming a → ∞ [45]. It is

interesting to find that the initial guess

r0 =
1.8751

α
= 1.8751

(
Eeffh

3

12

GIc

σ2
c

)1/4

= 1.0075

(
Eeff

GIc

σ2
c

h3

)1/4

(5.27)

has the same form as Eqn. (5.3a), with the model parameter M = 1.0075. As

shown Eqn. (5.27), it is more reasonable to use Eeff as effective Young’s Modulus of

a cylindrical bending beam instead of that of a infinite sheet (E ′I) in Eqn. (5.3a).

It can be seen in Eqn. (5.26) that the process zone length r is influenced by the

crack length a, and the constant α that relates to the bending stiffness Ds and the

cohesive parameter KN2. Therefore, the process zone length r is a system parameter

108



r a

L L

h

h

b

PII

∆II

1 2
3u

3l

4u

4l
x

z

A B

0
∆u

τ

KS2

∆uc

τc

GIIc

A

B

Figure 5.5: Diagram and variables of the ENF configuration. Point A denotes the
cohesive zone tip while point B denotes the crack tip. The locations of point A and
B in the linear damage law are also shown. The cohesive zone is assumed to be fully
developed in this figure.

that relates to not only the material properties and the cohesive law but also the

geometry, such as the crack length a and the arm half thickness h. This observation

agrees with the statements made in Ref. [57, 29] and Section 4.6.

The solution of the partially developed cohesive zone can be obtained by letting

∆wB/∆wc = t, where t is a given constant between 0 and 1.

5.4 Solutions of the ENF Configuration

The diagram of the ENF test is shown in Figure 5.5. In this analysis, the specimen

is assumed to have a delamination at its right edge. In addition, since a case that

the cohesive zone has not reached the mid-span of the specimen is considerer, only

the right-hand-side part of the mode II traction-separation law with positive shear

traction is active in the analysis in this chapter.

Aiming to study the pure mode II fracture, the upper and lower halves in the

cohesive section and the cracked section are assumed to be perfectly bonded in the

transverse direction,

wiu(x) = wil(x) ≡ wi(x) (i = 3, 4) (5.28)

As a result, the contact pressure distribution σi(x) between the cohesive surfaces and

the crack surfaces is indeterminate rather than pre-scribed by a compressive traction-

separation law. The assumption is self-consistent as long as σi(x) ≤ 0.

The governing equations shown in Eqn. (5.8) can be further reduced to an ODE
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for the transverse displacement in each section,

d4wi
dx4

= 0 (i = 1, 2, 4) (5.29a)

d6w3

dx6
+

2b

A11s

KS2

(
1 +

R2

R3

)
d4w3

dx4
= 0 (5.29b)

where R2 and R3 are constants that have units of length

R2 =
2B11s + A11sh

2A11s

, R3 =
2Ds

2B11s + A11sh
(5.30)

The solution forms for each section arew1 =
1

6
a1x

3 +
1

2
a2x

2 + a3x+ a4

u1 = a5x+ a6

(5.31a)

w2 =
1

6
b1x

3 +
1

2
b2x

2 + b3x+ b4

u2 = b5x+ b6

(5.31b)



w3 = c1 sin(βx) + c2 cos(βx) +
1

6
c1x

3 +
1

2
c2x

2 + c3x+ c4

u3u =

(
R2 +R3 −

h

2

)
β (c1 cos(βx)− c2 sin(βx))− 1

4
hc3x

2 + c7x+ c8

u3l = −
(
R2 +R3 −

h

2

)
β (c1 cos(βx)− c2 sin(βx))

+

(
1

4
hx2 − 2

β2
R2

(
1 +

R2

R3

))
c3 + hc4x+ hc5 + c7x+ c8 −∆uc

(5.31c)



w4 =
1

6
d1x

3 +
1

2
d2x

2 + d3x+ d4

u4u =

(
R2 −

h

2

)
d1x

2 + d5x+ d6

u4l = −
(
R2 −

h

2

)
d1x

2 + d7x+ d8

(5.31d)

where

β =

(
2b

A11s

KS2

(
1 +

R2

R3

))1/2

=

(
b

A11s

τ 2
c

GIIc

(
1 +

R2

R3

))1/2

(5.32)

The boundary conditions and continuities are

at x = −2L+ a : u1 = 0 , w1 = 0, M1 = 0 (5.33a)
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at x = −L+ a : u1 = u2 , w1 = w2 ,
dw1

dx
=

dw2

dx
,

N1 = N2 , PII +Q1 = Q2 , M1 = M2 (5.33b)

at x = −r : u2 = u3u +
h

2

dw3

dx
= u3l −

h

2

dw3

dx
, w2 = w3 ,

dw2

dx
=

dw3

dx
,

N2 = N3u +N3l , Q2 = Q3u +Q3l ,

M2 = M3u +M3l +
h

2
(N3u −N3l) ,

N2
du2

dx
−M2

d2w2

dx2
= N3u

du3u

dx
−M3u

d2w2

dx2
+N3l

du3l

dx
−M3l

d2w3

dx2

(5.33c)

at x = 0 : u3u = u4u , u3l = u4l , w3 = w4 ,
dw3

dx
=

dw4

dx
,

N3u = N4u , N3l = N4l , Q3u +Q3l = Q4u +Q4l ,

M3u +M3l +
h

2
(N3u −N3l) = M4u +M4l +

h

2
(N4u −N4l)

(5.33d)

at x = a : w4 = 0 , N4u = 0 , N4l = 0 , M4u +M4l = 0 (5.33e)

Similar to the solution technique of the DCB configuration, twenty-eight coeffi-

cients here aj, bj (j = 1 − 6), cj, dj (j = 1 − 8) and the external loading PII can

be expressed by the cohesive zone length r (see Appendix E.2) after solving using

the twenty-nine boundary conditions and continuities. The external load PII and the

center deflection ∆II are

PII =
4bτc(R2 +R3) sin(βr)

sin(βr) + aβ ±R1(a+ r)β cos(βr)
(5.34)

∆II = − ∆uc
12(R2 +R3)(sin(βr) + aβ ±R1(a+ r)β cos(βr))((

3a− a3β2 +R2
1(a+ r)3β2 − 2

(
R2

1 +
R3

R2

)
L3β2

)
sin(βr)

+ 3aβ (a cos(βr)− (a+ r))± 3R1(a+ r) (sin(βr) + aβ − (a+ r)β cos(βr))

)
(5.35)

where R1 is a dimensionless constant

R1 =

(
2Ds

D11

(
1 +

A11s (4Ds − 2D11)

(2B11s + A11sh)2

))1/2

(5.36)
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For laminated composites with symmetric stacking sequences, it is always true that

D11 = 2D11s + 2B11sh+ A11sh
2/2 > 2D11s ≥ 2Ds (5.37)

because |B11s| < A11sh/4. Therefore, R1 < 1.

The tangential separating displacement of the crack tip B is

∆uB =

(
1− sin(βr) + aβ cos(βr)±R1(a+ r)β

sin(βr) + aβ ±R1(a+ r)β cos(βr)

)
∆uc (5.38)

By letting ∆uB = ∆uc, we can obtain an expression of the fully developed cohesive

zone,
1

sin(βr)

(
cos(βr)±R1

(
1 +

r

a

))
= − 1

aβ
(5.39)

where the process zone length r is the first positive root of this expression. Similarly,

the root can be found by the graphical method or the Newton-Raphson method with

an initial guess r0 = arccos(R1)/β, which is a rough estimate by taking a→∞. It is

also clearly shown in Eqn. (5.39) that the process zone length r is not a characteristic

constant of a given material and cohesive law because it is also related to the geometry

of the specimen, including the crack length a and arm thickness h.

Solutions of the partially developed cohesive zones can also be obtained by letting

∆uB/∆uc = t, where t is a given constant between 0 and 1.

If the specimen is made of isotropic or orthotropic materials, or uni-directional

laminates, the stiffness components and the constants are,

A11s = Eeffbh , B11s = 0 , D11s = Eeff
bh3

12
, D11 = Eeff

b(2h)3

12

⇒ β =

(
8

Eeffh
KS2

)1/2

, R1 = 0 , R2 =
h

2
, R3 =

h

6

(5.40)

The results can be reduced to,

PII =
8bhτc sin(βr)

3 (sin(βr) + aβ)
(5.41)

∆II = −∆uc ((9a− 3a3β2 − 2L3β2) sin(βr) + 9aβ(a cos(βr)− (a+ r)))

24h(sin(βr) + aβ)
(5.42)

∆uB =

(
1− sin(βr) + aβ cos(βr)

sin(βr) + aβ

)
∆uc (5.43)
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The process zone length r can be directly solved by using,

cot(βr) = − 1

aβ
(5.44)

Additionally, the rough estimate r0 can also be obtained by letting a→∞

r0 =
π

2β
=
π

2

(
Eeff

GIIc

4τ 2
c

h

)1/2

=
π

4

(
Eeff

GIIc

τ 2
c

h

)1/2

(5.45)

which coincides with Eqn. (5.3b) with the scaling factor of M = π/4.

5.5 Solutions of the MMB Configuration

In the setting of the SBT solutions, an MMB configuration can be generally consid-

ered as a superposition of a rotated DCB configuration with an additional pair of

center forces and an ENF configuration [79, 22, 86, 49]. The study in Section 4.5

has also confirmed that for the mid-plane symmetric specimen, the superposition is

kinematically feasible in cohesive zone modeling by applying uncoupled multi-linear

cohesive laws. In this chapter, the MMB configuration is solved by the superposition

method. Since the pair of center loads will be cancelled out when the cohesive zone

is within the right half of the specimen in the present model, the MMB configura-

tion can be simply superposed by a rotated DCB configuration subject to a pair of

opening forces PI and an ENF configuration subject to a center loading PII, shown in

Figure 5.6. The proportion of mode I and II loading are controlled by lever length C

of the MMB test apparatus,
PI

PII

=
3C − L

4(C + L)
(5.46)

As C increases, mode I loading dominates.

As shown in Figure 5.6(a), the cohesive constitutive relation for the mixed-mode

I/II fracture implemented in this chapter satisfies the following conditions. First,

there are only one cohesive zone tip A and one crack tip B. As a result, only one pro-

cess zone exists for the mixed-mode fracture. Second, the normal and shear traction

at the cohesive zone tip A reach mixed-mode strength value σ̂c and τ̂c, respectively.

The relation between the mixed-mode strength and the pure-mode strength are de-

termined by a quadratic stress condition, [70],(
σ̂c
σc

)2

+

(
τ̂c
τc

)2

= 1 (5.47)
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Figure 5.6: Superposition method of the MMB configuration.

Third, the crack tip B has zero traction in both normal and shear direction at the

moment of crack propagation. The mixed-mode fracture energy dissipated at the

crack tip, ĜIc and ĜIIc, satisfy an energy criterion. In this chapter, the linear power

law [83] is chosen as an example,

ĜIc

GIc

+
ĜIIc

GIIc

= 1 (5.48)

The solution can also be extended to other energy criteria such as higher-order power

law or the B-K law [84]. The mixed-mode cohesive laws are able to be reduced to

pure mode I or II laws under pure-mode loading conditions. It has been shown in

Figure 4.22 that both the SBT solutions and the CZM solutions that during the

114



MMB test, the mode mixity is relatively unchanged as the crack advancing but not

yet reaching the mid-span of the specimen. Therefore, it can be assumed that every

point in the cohesive zone follows the same mixed-mode cohesive laws. In this sense,

the mixed-mode strength and fracture energy are constants. The mixed-mode laws

used in this chapter are still linear and uncoupled, which means mode I traction is

solely depended on mode I separation displacement and similarly for mode II, so

that the superposition method is applicable. However, it should be noticed that the

mixed-mode cohesive constants are undetermined until the problem is fully solved.

A novel approach for mixed-mode fracture has recently being presented [26], which

consider coupled laws.

The first step to solve the MMB configuration is to solve the DCB and ENF

configurations respectively by solving their own boundary conditions and continuities,

while keep the cohesive zone length r undetermined. As a result, the displacement

fields and the external loads of the DCB and ENF configurations can be expressed by

r, as same as Eqn. (5.23), (5.24), (5.25) and Eqn. (5.34), (5.35), (5.38) except that

the parameters that were related to the pure-mode cohesive laws are now associated

to the mixed-mode cohesive laws (with a hat). Thus, Eqn. (5.46) can be written as

σ̂c
τ̂c

1

α̂(R2 +R3)

sin(α̂r) sinh(α̂r)

aα̂ cos(α̂r) + aα̂ cosh(α̂r) + sin(α̂r) + sinh(α̂r)

sin(β̂r) + aβ̂ ±R1(a+ r)β̂ cos(β̂r)

sin(β̂r)
=

3C − L
C + L

(5.49)

The key displacements of the MMB configuration, including the end opening ∆E and

the center deflection ∆C , can be obtained by the displacement superposition, shown

in Figure 5.6(b),

∆E = ∆I , ∆C = ∆II −
1

4
∆I (5.50)

If the cohesive zone has been fully developed, the crack tip B has critical mixed-mode

separation displacement,

∆wB = ∆̂wc ⇒
1 + cos(α̂r) cosh(α̂r)

aα̂ cos(α̂r) + aα̂ cosh(α̂r) + sin(α̂r) + sinh(α̂r)
= − 1

aα̂
(5.51)

∆uB = ∆̂uc ⇒
1

sin(β̂r)

(
cos(β̂r)±R1

(
1 +

r

a

))
= − 1

aβ̂
(5.52)

where α̂ and β̂ are also determined by the mixed-mode cohesive parameters shown in

Eqn. (5.18) and (5.32).
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Theoretically, the configuration with a partially developed mixed-mode cohesive

zone can also be solved by assigning ∆wB/∆̂wc = tI and ∆uB/∆̂uc = tII, where tI and

tII are between zero and one. However, since there is an intrinsic relation between

∆wB/∆̂wc and ∆uB/∆̂uc, a manual assignment may over-constrain the problem,

resulting in an inaccurate solution. Therefore, in this analysis, only the solutions for

the fully developed cohesive zone are considered.

After the superposition, one will have five unknowns, including four mixed-mode

parameters σ̂c, τ̂c, ĜIc, ĜIIc and the process zone length r. The unknowns will be

solved by five constraints, shown in Eqn. (5.47), (5.48), (5.49), (5.51) and (5.52).

Some more steps can reduce the problem to solve for three unknowns, α̂, β̂, r. By

using Eqn. (5.18) and (5.32), the mixed-mode fracture energy can be expressed as

ĜIc =
b

Ds

σ̂c
2

α̂4
=

(
σ̂c
σc

)2 (α
α̂

)4

GIc (5.53)

ĜIIc =
b

A11s

(
1 +

R2

R3

)
τ̂c

2

β̂2
=

(
τ̂c
τc

)2(
β

β̂

)2

GIIc (5.54)

where α, β are the pure-mode constants and σc, τc, GIc, GIIc are the pure-mode

cohesive properties. Substituting into Eqn. (5.48), we have(
σ̂c
σc

)2 (α
α̂

)4

+

(
τ̂c
τc

)2(
β

β̂

)2

= 1 (5.55)

Together with Eqn. (5.47), the mixed-mode strength can be expressed as

σ̂s =

(
1

σ2
c

+
1

ŝ2τ 2
c

)−1/2

, τ̂s =

(
ŝ2

σ2
c

+
1

τ 2
c

)−1/2

(5.56)

where ŝ is the ratio of mixed-mode strength

ŝ ≡ σ̂c
τ̂c

=
σc
τc

1−
(
β/β̂

)2

(α/α̂)4 − 1


1/2

(5.57)

Substituting into Eqn. (5.49), the new equation will contain only three unknowns, α̂,

β̂, r. Therefore, the reduced problem using Eqn. (5.51), (5.52) and new Eqn. (5.49)

is to find the three unknowns α̂, β̂, r.

In particular, for homogenous specimens or uni-directional laminates, the three

constraints are, Eqn. (5.51) and,
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cot(β̂r) = − 1

aβ̂
(5.58)

3

2α̂h

σc
τc

1−
(
β/β̂

)2

(α/α̂)4 − 1


1/2

sin(α̂r) sinh(α̂r)

aα̂ cos(α̂r) + aα̂ cosh(α̂r) + sin(α̂r) + sinh(α̂r)

sin(β̂r) + aβ̂

sin(β̂r)
=

3C − L
C + L

(5.59)

The Newton-Raphson method is applied to find the three unknowns. The initial

guess of α̂0 and β̂0 can be obtained by assuming a → ∞ in Eqn. (5.51) and Eqn.

(5.52) so that,

α̂0 = 1.8751/r0 , β̂0 = arccos(R1)/r0 (5.60)

Substituting the equations above into new Eqn. (5.49), the initial guess of r0 can be

found by a graphical method or Newton-Raphson method within the interval between

1.8751/α and arccos(R1)/β. In this way, the initial guess is close enough to the true

roots and therefore, the search of refined answers is efficient and stable.

5.6 Results and Discussions

In the numerical evaluation, unidirectional laminated panel made of IM7/8552 graphite-

epoxy was considered. The material and interfacial fracture properties [87] and the

geometry are shown in Table 4.1 and 4.2, respectively. The effective Young’s Modu-

lus under different assumptions are: E ′I = 13.92 GPa, E ′II = 5.23 GPa, Eeff = 162.17

GPa. The pure-mode constants can be obtained: α = 0.713 mm-1, β = 0.323 mm-1.

Built-in functions of the graphical method or the Newton-Raphson method in

commercial software were used in root finding, including FindRoot in Wolfram Math-

ematica and fzero, fsolve in MATLAB. The results of the current estimate method

(denoted as the Estm. CZM solutions) were further compared to the results of one-

parameter SBT solutions, summarized in Appendix C, as well as the results of the

closed-form CZM solutions, presented in Chapter 4, and 2D FE simulations using

Abaqus/Explicit with an application of bi-linear traction-separation laws. The initial

elastic stiffness of bi-linear laws were set to be large, KN1 = KS1 = 100 GPa ·mm-1

[41], so that the bi-linear law would approximate to the linear damage law and there-
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fore, the CZM solutions and FE simulations can be considered as a validating tool for

the estimation method. The corresponding separating displacement to crack initiation

were ∆w0 = 5× 10−4 mm, ∆u0 = 7× 10−4 mm. In FE analyses, the specimens were

modeled by elastic plane strain element (CPE4R) of size 0.05 mm (L)× 0.05 mm (H).

The potential interfaces were modeled by single-layer cohesive elements (COH2D4)

using quadratic stress criterion (QUADS) for crack initiation and linear power law of

fracture energy for crack evolution. The size of cohesive elements was 0.05 mm (L)×
0.02 mm (H). The process zone length was measured as the total length of cohesive

elements with non-zero stiffness degradation parameter (SDEG) right at the point of

initial crack propagation. Frictionless contact was assigned between the crack sur-

faces. Assignments of boundary conditions and constraints as well as modeling of

loading lever in the MMB configuration were followed Ref. [87]. Loading rates of

FE models were 0.01 mm/s. A mass scaling factor DT= 10−7 was used to obtain

optimized quasi-static results with less computational costs.

5.6.1 The DCB and ENF Configuration

The load-displacement responses of the DCB and ENF configurations are shown

in Figure 5.7. In the estimated CZM solutions, the pre-peak nonlinear responses

were determined by varying the relative separation displacement of the crack tip,

t = ∆wB/∆wc or t = ∆uB/∆uc, while the post-peak responses were obtained by

fixing t = 1 and increasing the crack length a. As shown in Figure 5.7, the pre-peak

and post-peak responses provided by the two CZM solutions perfectly overlap, while

the SBT solutions have a higher failure load and a stiffer linear pre-peak response. It

is shown in Figure 4.27 that the nonlinearity of the pre-peak response is more signif-

icant while the post-peak response is relatively invariant when increasing the initial

elastic stiffness of the bi-linear cohesive law with strength and fracture energy fixed.

As a result, the pre-peak response of the estimated CZM solutions with linear dam-

age laws is stiffer and more nonlinear than the CZM solutions that consider bi-linear

laws. However, the overlap between two CZM solution curves shows that the use of

simplified cohesive laws without elastic segment is acceptable to estimate the solu-

tions of commonly used bi-linear laws with large initial elastic stiffness. Compared

to the FE results, all analytical solutions over-predict the stiffness of the pre-peak

response and failure load of the DCB configuration, while the post-peak responses

are consistent. The over-prediction can be caused by the small length-to-thickness

aspect ratio (a + r)/h ≈ 20 of the cantilever arms that approaches the limitation
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of classical beam theory. For the ENF configuration, however, the response and the

prediction of failure load agree perfectly between analytical solutions and numerical

simulations since the length-to-thickness aspect ratio (2L)/(2h) = 33.3 is relatively

larger. Further corrections by incorporating CZM with shear deformation theories

might resolve the issue of overestimation, similarly as Ref. [95, 96] for the SBT solu-

tions. Above all, the pre-peak response calculated by the estimated CZM solutions

can be considered as the upper-bound of the FE simulations that use bi-linear laws.

The post-peak response can serve as a cross-check against numerical simulations as

well. All three analytical solutions can capture the snap-back in the post-peak re-

sponse of the ENF test condition while FE results has a load jump at the snap-back,

shown in Figure 5.7(b). This is because the analytical solutions control the energy

dissipation rather than the displacement which is controlled in FE simulations and

actual tests. Another interesting observation on two CZM solutions is that the load

has already peaked before the cohesive zone is fully developed in both the DCB and

ENF configurations. It can be clearly seen in Figure 5.7(c) that the data point with

t = 0.9 has a higher load value than that of the point with t = 1.

The process zone length calculated by different methods for pure-mode fracture

is summarized in Table 5.1, showing that all analytical models over-estimate the nu-

merical process zone lengths. The strategy of taking minimum value from Eqn. (5.1)

and Eqn. (5.3) and applying scaling factor M = 0.5, as suggested by Harper and

Hallett [41], gives a close estimation of process zone length. For further investiga-

tion, detailed parametric studies of fracture energy, strength, specimen thickness and

crack length on the process zone length for the DCB and ENF configurations were

performed, shown in Figure 5.8 and 5.9, respectively. Generally, the process zone

length is positively correlated with fracture energy while it has anti-correlation with

the strength. Eqn. (5.26) and (5.39) also suggest that thinner specimen or longer

crack can result in a shorter process zone. These trends are found to agree with

numerical measurements when r/h is relatively large, while the process zone lengths

are relatively invariant with geometry when r/h < 1. The parametric studies indi-

cate that neither the study of infinite sheet with the assumption of r � h nor the

study of slender beam that considers r ∼ h can independently capture the variation

of process zone length with material properties and geometries: the reality is that

their combination matters. As shown in Figure 5.8 and 5.9, Eqn. (5.1) and the es-

timated CZM solutions, shown in Eqn. (5.26) and (5.39), form the upper-bound of

numerical pure-mode process zone lengths. A close estimation can be obtained by

applying a scaling factor of 0.5, which is exactly the estimating strategy given by Ref.
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Figure 5.7: Load-displacement responses of pure-mode fracture toughness tests.
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Table 5.1: Process zone length calculated by various methods.

Method DCB (mode I) ENF (mode II)
FEA (Abaqus) 0.55 mm 3.35 mm
CZM 1.61 mm 4.55 mm
Estm. CZM 2.66 mm 5.19 mm
Eqn. (5.1) (M=1) 1.18 mm 8.27 mm
Eqn. (5.3) (M=1) 2.61 mm 6.20 mm
min(Eqn. (5.1), Eqn. (5.3)) (M=0.5) [41] 0.59 mm 3.10 mm

[41]. However, this estimating strategy is relatively conservative for mode II case. An

efficient estimation for mode II can be the minimum value of Eqn. (5.1b) (M = 0.5)

and either Eqn. (5.3b) (M = 0.6) or 0.8r calculated by Eqn. (5.39).

5.6.2 The MMB Configuration

In the analysis of the MMB configuration, three different loading configuration were

studied, C = 30 mm, C = 43.7 mm and C = 60 mm. As C increases, more mode

I loading is introduced to the system and therefore, more mode I failure occurs.

According to the SBT solutions, the mode mixity ĜIIc/Ĝc = ĜIIc/(ĜIc + ĜIIc) that

correspond to these three loading cases were 0.75, 0.5, 0.35.

Figure 5.10 shows the response of both end opening and center deflection to the

external loading of the MMB configuration. It can be observed that the failure load

predicted by the four methods are different. The reason is that the pre-peak re-

sponse and failure load are influenced by the strength value and the bending stiffness.

The SBT solutions which assume infinite strength have the stiffest linear pre-peak

response and therefore the highest prediction of the failure load. The closed-form

CZM solutions implement a simple mixed-mode cohesive law as a combination of

pure mode I and pure mode II laws that initiates the crack in the normal and shear

directions, respectively, if the pure-mode strength value has been reached, and prop-

agates the crack if the energy dissipated at the crack tip satisfies the power law. The

proposed estimate for CZM solutions have the mixed-mode strength values less than

the pure-mode ones due to the quadratic stress condition and therefore, provide a

lower prediction than the closed-form CZM solutions. The lowest failure load is given

by FE simulations, which calculate more accurate bending stiffness than the beam

theory. As mentioned earlier, the causes of the overestimation of pre-peak stiffness

by analytical solutions can be that the small length-to-thickness aspect ratio of the

cantilever arms is approaching the limitation of classical beam theory. The results

might be improved by extending the solutions to shear deformation theories or using
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Figure 5.8: Parametric study on the process zone length of the DCB configuration.

correction factors, similarly as Ref. [97, 98] for the SBT solutions. For shorter crack

lengths, the differences between the pre-peak responses of the four methods are more

significant.

The post-peak response of the three analytical solutions agree well while FE sim-

ulations show lower loads for the same displacement. Note that the failure load and
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Figure 5.9: Parametric study on the process zone length of the ENF configuration.

displacement corresponding to a certain crack length are different in the different

methods. Since the post-peak response is mainly governed by the chosen energy cri-

terion and, the mode mixity controlled by external loading conditions, Figure 5.10

indicates that the mode mixity calculated by FE simulations is lower than that of an-

alytical solutions. The values of mode mixity are listed in Table 5.2. The differences
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Table 5.2: Results of the MMB configuration with three different loading positions
and crack length a = 30 mm.

C/L = 0.60 C/L = 0.87 C/L = 1.20
Estm. CZM FEA Estm. CZM FEA Estm. CZM FEA

r 3.70 1.20 3.10 0.95 2.90 0.75 mm
α̂ 0.52 - 0.61 - 0.65 - mm-1

β̂ 0.45 - 0.53 - 0.56 - mm-1

σ̂c 19.49 34.50 32.91 42.02 39.32 45.34 MPa
τ̂c 64.47 50.62 52.70 37.51 43.25 29.49 MPa

ĜIc 0.117 0.129 0.167 0.171 0.185 0.187 N ·mm-1

ĜIIc 0.345 0.297 0.164 0.145 0.098 0.088 N ·mm-1

ĜIIc/Ĝc 0.75 0.70 0.50 0.46 0.35 0.32

in mode mixity can be caused by the loading condition, introduced by a rigid loading

lever in FE simulations instead of proportional point loads in analytical solutions.

Another possibility is that the model of mixed-mode delamination implemented by

Abaqus [99, 24] has limitations. Discussions on this numerical mixed-mode cohesive

model can be found in Ref. [100, 101, 102, 53, 26, 103]. It should also be noticed that

the estimate of the CZM method can only provide a snapshot of the MMB configu-

ration containing a fully developed cohesive zone. The mixed-mode parameters vary

with the crack length, resulting in the discontinuity as the crack is advancing.

The process zone length and the mixed-mode parameters corresponding to the

initial crack length 30 mm calculated by the estimate of the CZM method and FE

simulations are shown in Table 5.2. For the CZM solutions, the mixed-mode cohesive

laws can be plotted by using mixed-mode parameters, shown in Figure 5.11. The

trends of mixed-mode strength values and fracture energies agree with the change

of loading and failure mode. As C increases, the mixed-mode strength and fracture

energy of mode I are increasing while those of mode II are decreasing. As a result,

the mixed-mode cohesive laws are correspondingly being altered, of which the aspect

ratio of the right triangular shape is different from that of the pure-mode laws. The

cohesive traction distributions in the process zone (−r < x < 0) ahead of the crack tip

are shown in Figure 5.12. The conditions for constructing the mixed-mode cohesive

law have been satisfied: the cohesive zone tip A reaches mixed-mode strength value;

the crack tip B has zero traction. They also indicate that the results found by the

Newton-Raphson method is accurate. By comparing Figure 5.12(a) and 5.12(b), it

is found that the normal and shear traction are not proportionally degraded in the

process zone, namely, σ(x)/σ̂c 6= τ(x)/τ̂c.

Figure 5.13 shows the mode mixity and the mixed-mode strength with the varia-

tion of the lever length. The variation of mode mixity given by the current estimated
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Figure 5.10: Load-displacement responses of the MMB test with three different load-
ing positions. With an initial crack length 30 mm, each data point in the Estm. CZM
curves represents an increment of 2 mm in crack length.

method agree with the results calculated by the SBT solutions. As mentioned earlier,

lower mode mixity is obtained in FE analysis. When C/L = 1/3, the MMB config-
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Figure 5.11: Mixed-mode cohesive laws corresponding to the crack length a = 30
mm.
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Figure 5.12: Cohesive traction distribution in the fully developed cohesive zone with
the crack length a = 30 mm. The dashed lines shows the left boundary of cohesive
zone, i.e. the location of the cohesive zone tip.

uration will be reduced to the ENF configuration where the pure mode II fracture

occurs, with mode mixity ĜIIc/Ĝc = 1 and mixed-mode strength σ̂c = 0, τ̂c = τc.

The variations between the process zone length and the mode mixity correspond-

ing to the initial crack length a0 = 30 mm, obtained by both the estimated CZM

solutions and FE simulations, are shown in Figure 5.14. The process zone lengths,

ranging from pure mode I process zone length to that of pure mode II fracture, de-

pends nonlinearly on the mode mixity in the material system evaluated. For other

material systems, it is possible to obtain a reverse chart where the process zone length

of pure mode I fracture is longer than that of pure mode II fracture. As pointed out

earlier, the process zone lengths are system parameters and not material properties.
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Figure 5.13: Variations of mode mixity and mixed-mode strength values with lever
length.

The estimated CZM solutions that analyze slender beam can be helpful in determin-

ing process zone length in FE simulations. The advantage of this solution is it can

solve the problem with constant yet unknown mode mixity.

If the mode mixity is known or can be estimated, namely ĜIIc/Ĝc = MG, the

small-scale mixed-mode process zone length can also be obtained by combining Eqn.

(5.47), (5.48) with `I = `II using mixed-mode fracture parameters,

`mixed = M

E ′I
1−MG

σ2
c

+ E ′II
MG

τ 2
c

1−MG

GIc

+
MG

GIIc

(5.61)

Similarly, the large-scale process zone length `s,mixed of slender laminates with a cen-

tred, edge crack, under mixed-mode loading conditions, satisfies(
1−MG

GIc

+
MG

GIIc

)
`4

s,mixed − Eeff
MG

τ 2
c

h`2
s,mixed − Eeff

1−MG

σ2
c

h3 = 0 (5.62)

As shown in Figure 5.14, the upper bound of numerical mixed-mode process zone

length consists of Eqn. (5.61) and the proposed estimated CZM solutions. An efficient

estimation can be made by taking minimum value of Eqn. (5.61) (M = 0.5), Eqn.

(5.62) (M = 0.5) and the estimated CZM method with a scaling factor of 0.8.
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Figure 5.14: Relations between the process zone length and the mode mixity.

5.7 Conclusions

Inspired by the solutions of the DCB test provided by Williams and Hadavinia [45],

closed-form solutions have been presented for cohesive zone modeling of the ENF test

and the MMB tests for orthotropic materials or laminates with mid-plane symmetric

stacking sequences. Zero-thickness cohesive zones, inserted in a finite length of the

potential crack interface ahead of the crack tip, follows the linear damage (quasi-

brittle) traction-separation laws. Generally, considering the need in modeling the

crack and the cohesive zone as well as the loading conditions, the panel with an edge

delamination is modelled as an assemblage of six sub-laminates, of which each sub-

laminate is separately formulated in the framework of classical lamination theory.

The process zone length, external loads and other coefficients are analytically solved

by using boundary conditions and continuities as well as constraints introduced by the

cohesive laws. The superposition method, which also holds for cohesive zone modeling

in present problem setting, has been implemented to solve the MMB configurations.

As a result, the mixed-mode strength value and fracture energy can be obtained for

a given loading condition.

Expressions for finding the process zone length and the flexural response provided

in this chapter can be a reference to determine the element size and cross-check

against results of novel numerical simulations. The roots of the nonlinear equations

presented here can be easily found with the suggested methods and initial guesses.

Though the comparison against numerical simulations has shown over-predictions by

all closed-form solutions including the proposed ones, it is worth noting that analytical
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studies on the process zone length consider two extreme cases, infinite sheet and

slender beam, corresponding to the assumption on the length-scale of the process zone

with respect to the material depth. The proposed CZM solutions fall into the latter

case. Therefore, taking minimum of two categories of formulations by considering

the applicability of each extreme problem, followed by applying a reasonable yet

conservative scaling factor of 0.5-0.8 can be a good estimation of process zone length.

The parametric studies performed and expressions have indicated that the process

zone length is a system parameter that depends on the specimen thickness and the

crack length, as well as the mode mixity, the material stiffness, the interfacial strength

and the fracture energy. The process zone length, in particular for mode II, has shown

positive correlation with the specimen thickness but anti-correlation with the crack

length.
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CHAPTER 6

Analytical Predictions of Delamination

Threshold Load of Laminated Composite

Plates Subject to Flexural Loading

6.1 Introduction

For designing against delamination, it is beneficial to identify the following: the

weakest interface of a laminate subjected to flexural loading; a corresponding crit-

ical load level that initiates a delamination (or, namely, a delamination threshold

load); extending directions of the delamination; and their dependencies with design

parameters, such as geometry and stacking sequences.

A simple approach [71], which analyzes growth of an existing delamination at a

mid-plane in an axisymmetric plate using LEFM, was proposed to quickly estimate

the critical load to extend a delamination in a quasi-isotropic laminated plate

P 2
c =

8π2Eh3GIIc

9(1− ν2)
=

8π2

9
Eeffh

3GIIc (6.1)

where h is the laminate thickness, Eeff is the effective Young’s modulus of the plate,

and GIIc is the mode II critical energy release rate. The merit of this approach is that

the crack size term vanishes in the final equation, as shown in Eqn. (6.1), indicating

that the critical load of the delamination growth is independent of crack size. There-

fore, the model is also considered to estimate a load level corresponding to an initial

occurrence of damage. Though a 30% error was found in predicting the delamination

threshold load due to its simplicity, as mentioned in Ref. [104] and Section 3.7.2,

a proportional relation of the critical load and h3/2 suggested by this equation have

been found in good agreement with experiment measurements [105, 106]. The simple

fracture mechanic approach has been extended to consider multiple delaminations
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[107, 108, 109] and analyze high-velocity impact events [110]. However, this simple

approach cannot provide any evaluation on stacking sequences because of its ax-

isymmetric assumption. Qualitative models have also been proposed to analytically

explain a characteristic peanut shape of delaminations, with consideration of a mis-

match of their bending stiffness [111] or transverse displacement [112], by analyzing

a stacking of two plies with different material orientation.

Delamination growth, threshold loads and their relations to geometry and stacking

sequences of pre-delaminated beams under bending has been discussed in Chapter 3,

by using the 2D elasticity approach with strength- and energy-based criteria. In

Chapter 4 and 5, delamination evolution have also been discussed by developing

analytical CZM solutions of delamination characterizing tests on laminated beams.

As a result, a critical failure load, both pre-peak and post-peak flexural responses,

and a process zone length are obtained, on which parametric studies of interfacial

properties, geometry and loading conditions can be performed. However, analytical

CZM solutions found in past literature are limited to beam configuration with some

simplifications on stacking sequences and delamination locations.

In this chapter, analytical CZM solutions are extended to analyze delamination

evolution in quasi-static impact tests on laminated composite plates with arbitrary

stacking sequences. Considering possible extension-shear couplings, the Rayleigh-

Ritz method is used to find approximate solutions for pre-peak flexural responses

and delamination threshold loads. The Rayleigh-Ritz approximation derived from

FSDT for an elastic bending problem of a simply supported anisotropic plate, less

mentioned in textbooks, is re-visited in Section 6.2. The approach is then applied to

analyze an assembly of two anisotropic sub-laminates with an elastic-brittle cohesive

layer in between, shown in Section 6.3. Similar approach can also be developed with

CLT, of which formulations are given in Appendix H. Elastic stiffness of the pre-

peak response obtained by these two models are cross-checked between. Results of

elastic stiffness, traction distributions over potential crack interfaces, threshold loads

and initiating locations of delaminations are further compared against those of FE

simulations using shell elements and cohesive elements.

In this chapter, shear driven delamination, or mode II/III interfacial fracture, is

the only failure mode considered. Neither other occurrences of delamination that may

result in mode I open-crack failure or a state of mixed modes, such as matrix cracking

induced delamination [113, 114, 115] or buckling-delamination damage [116, 117],

nor other intra-lamina failure modes [2, 118], will be included. Note that failure

progression in composites is very complicated as a consequence of competitions among
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Figure 6.1: A simply supported laminated plate under transverse loading condition.

all possible failure mechanisms. To find out a leading failure mode, a strategy to

respectively determine a critical load for each mode is necessary. Following that

strategy, an analytical study on the delamination threshold load is presented.

6.2 Elastic Bending of a Laminated Plate

Consider an n-layer laminated plate with simply supported length, a, width, b, and

thickness, h, subject to transverse pressure loading q(x, y) on its top surface, as shown

in Figure 6.1. The displacement field of FSDT is of the form [7],
U(x, y, z) = u(x, y) + zφx

V (x, y, z) = v(x, y) + zφy

W (x, y, z) = w(x, y)

(6.2)

where u(x, y), v(x, y) and w(x, y) are the displacements of a mid-plane (z = 0) along

coordinate axes. φx(x, y) and φy(x, y) describe the rotations of a transverse normal

about the y- and x-axes, respectively. The constitutive relations between through-

the-thickness force resultants and mid-plane strain are,

Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





∂u
∂x
∂v
∂y

∂v
∂x

+ ∂u
∂y

∂φx
∂x
∂φy
∂y

∂φy
∂x

+ ∂φx
∂y
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⇔
{
N

M

}
=

[
A B

B D

]{
ε0

χ

}
(6.3a){

Qx

Qy

}
=

[
Kts

11 Kts
12

Kts
12 Kts

22

]{
φx + ∂w

∂x

φy + ∂w
∂y

}
⇔ Q = Ktsγ (6.3b)

where A, B and D are the axial, bending-axial coupling, and bending stiffness ma-

trices, respectively. The stiffness matrices are determined by lamina plane-stress

stiffness matrix Q̄
k

(k = 1, 2, . . . , n),

A =
n∑
k=1

∫ zk+1

zk

Q̄
k
dz , B =

n∑
k=1

∫ zk+1

zk

Q̄
k
zdz , D =

n∑
k=1

∫ zk+1

zk

Q̄
k
z2dz

(z1 = −h/2, zk is the z-coordinate of lower surface of the kth lamina, zn+1 = h/2)

(6.4)

Kts is the transverse shear stiffness matrices, obtained by equating shear strain energy

computed by transverse force resultants of laminate with an integration of shear strain

energy density of lamina [119] (see Appendix F).

Closed-form solutions of the problem described in Figure 6.1 are available for

cross-ply laminates (see Appendix G). However, for laminates containing off-axis an-

gle plies, closed-form solutions are unavailable due to an existence of extension-shear

couplings, represented as non-zero 16, 26 components of A, B, D. The Rayleigh-Ritz

method is used to determine approximate solutions for laminates with arbitrary stack-

ing sequences. Weak form of governing equations can be obtained by the principle of

virtual work,

∫ b

0

∫ a

0

[(
Nx

∂δu

∂x
+Nxy

∂δu

∂y

)
︸ ︷︷ ︸

1O

+

(
Nxy

∂δv

∂x
+Ny

∂δv

∂y

)
︸ ︷︷ ︸

2O

+

(
Qx

∂δw

∂x
+Qy

∂δw

∂y
+ qδw

)
︸ ︷︷ ︸

3O

+

(
Mx

∂δφx
∂x

+Mxy
∂δφx
∂y

+Qxδφx

)
︸ ︷︷ ︸

4O

+

(
Mxy

∂δφy
∂x

+My
∂δφy
∂y

+Qyδφy

)
︸ ︷︷ ︸

5O

]
dxdy = 0

(6.5)

Admissible approximation functions that satisfy simply supported boundary condi-
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tions are double sine series

u(x, y) =
M∑
i=1

N∑
j=1

aij cos

(
iπx

a

)
sin

(
jπy

b

)

v(x, y) =
M∑
i=1

N∑
j=1

bij sin

(
iπx

a

)
cos

(
jπy

b

)

w(x, y) =
M∑
i=1

N∑
j=1

cij sin

(
iπx

a

)
sin

(
jπy

b

)

φx(x, y) =
M∑
i=1

N∑
j=1

dij cos

(
iπx

a

)
sin

(
jπy

b

)

φy(x, y) =
M∑
i=1

N∑
j=1

eij sin

(
iπx

a

)
cos

(
jπy

b

)

(6.6)

where M and N are numbers of terms related to x and y, respectively.

Substituting Eqn. (6.3) and (6.6) into the weak form, Eqn. (6.5), one will get five

equations for each combination of p = 1, 2, . . . ,M and q = 1, 2, . . . , N ,

1O :

M,N∑
i,j

{[
A11

iπ

a

pπ

a
I ipss(a)Ijqss (b)− A16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−A16
iπ

a

qπ

b
I ipsc(a)Ijqsc (b) + A66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

]
aij

+

[
A12

jπ

b

pπ

a
I ipss(a)Ijqss (b)− A16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−A26
jπ

b

qπ

b
I ipsc(a)Ijqsc (b) + A66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
bij

+

[
B11

iπ

a

pπ

a
I ipss(a)Ijqss (b)−B16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−B16
iπ

a

qπ

b
I ipsc(a)Ijqsc (b) +B66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

]
dij

+

[
B12

jπ

b

pπ

a
I ipss(a)Ijqss (b) +B16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−B26
jπ

b

qπ

b
I ipsc(a)Ijqsc (b) +B66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
eij

}
= 0 (6.7a)

2O :

M,N∑
i,j

{[
− A16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) + A66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)
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+A12
iπ

a

qπ

b
I ipss(a)Ijqss (b)− A26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

]
aij

+

[
− A26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) + A66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+A22
jπ

b

qπ

b
I ipss(a)Ijqss (b)− A26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

]
bij

+

[
−B16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) +B66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+B12
iπ

a

qπ

b
I ipss(a)Ijqss (b)−B26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

]
dij

+

[
−B26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) +B66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+B22
jπ

b

qπ

b
I ipss(a)Ijqss (b)−B26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

]
eij

}
= 0 (6.7b)

3O :

M,N∑
i,j

{[
Kts

12

jπ

b

pπ

a
I ipsc(a)Ijqcs (b) +Kts

11

iπ

a

pπ

a
I ipcc(a)Ijqss (b)

+Kts
22

jπ

b

qπ

b
I ipss(a)Ijqcc (b) +Kts

12

iπ

a

qπ

b
I ipcs(a)Ijqsc (b)

]
cij

+

[
Kts

11

pπ

a
I ipcc(a)Ijqss (b) +Kts

12

qπ

b
I ipcs(a)Ijqsc (b)

]
dij

+

[
Kts

12

pπ

a
I ipsc(a)Ijqcs (b) +Kts

22

qπ

b
I ipss(a)Ijqcc (b)

]
eij

}
= −Qpq (6.7c)

4O :

M,N∑
i,j

{[
B11

iπ

a

pπ

a
I ipss(a)Ijqss (b)−B16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−B16
iπ

a

qπ

b
I ipsc(a)Ijqsc (b) +B66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

]
aij

+

[
B12

jπ

b

pπ

a
I ipss(a)Ijqss (b)−B16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−B26
jπ

b

qπ

b
I ipsc(a)Ijqsc (b) +B66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
bij

+

[
Kts

12

jπ

b
I ipsc(a)Ijqcs (b) +Kts

11

iπ

a
I ipcc(a)Ijqss (b)

]
cij

+

[
D11

iπ

a

pπ

a
I ipss(a)Ijqss (b)−D16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−D16
iπ

a

qπ

b
I ipsc(a)Ijqsc (b) +D66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

+Kts
11I

ip
cc(a)Ijqss (b)

]
dij
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+

[
D12

jπ

b

pπ

a
I ipss(a)Ijqss (b)−D16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−D26
jπ

b

qπ

b
I ipsc(a)Ijqsc (b) +D66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

+Kts
12I

ip
sc(a)Ijqcs (b)

]
eij

}
= 0 (6.7d)

5O :
∑
ij

{[
−B16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) +B66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+B12
iπ

a

qπ

b
I ipss(a)Ijqss (b)−B26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

]
aij

+

[
−B26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) +B66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+B22
jπ

b

qπ

b
I ipss(a)Ijqss (b)−B26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

]
bij

+

[
Kts

22

jπ

b
I ipss(a)Ijqcc (b) +Kts

12

iπ

a
I ipcs(a)Ijqsc (b)

]
cij

+

[
−D16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) +D66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+D12
iπ

a

qπ

b
I ipss(a)Ijqss (b)−D26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

+Kts
12I

ip
cs(a)Ijqsc (b)

]
dij

+

[
−D26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) +D66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+D22
jπ

b

qπ

b
I ipss(a)Ijqss (b)−D26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

+Kts
22I

ip
ss(a)Ijqcc (b)

]
eij

}
= 0 (6.7e)
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where the integration terms are

Imnss (l) =

∫ l

0

sin

(
mπξ

l

)
sin

(
nπξ

l

)
dξ =

0 m 6= n

l/2 m = n

Imncc (l) =

∫ l

0

cos

(
mπξ

l

)
cos

(
nπξ

l

)
dξ =

0 m 6= n

l/2 m = n

Imncs (l) =

∫ l

0

cos

(
mπξ

l

)
sin

(
nπξ

l

)
dξ =

0 m+ n even

2n
n2−m2

l
π

m+ n odd

Imnsc (l) = Inmcs (l)

(6.8)

and the load coefficient is

Qpq =

∫ b

0

∫ a

0

q(x, y) sin
(pπx
a

)
sin
(qπy

b

)
dxdy (6.9)

Therefore, the coefficients, aij, bij, cij, dij, eij, (i = 1, 2, . . . ,M , j = 1, 2, . . . , N), with

a total number of 5×M ×N , can be solved by assembling 5×M ×N equations.

6.3 Combined with Cohesive Zone Modeling

6.3.1 Formulations

Suppose it is of interests to study delamination evolution in one interface between

two adjacent plies in a laminated plate during bending. The potential crack interface,

parallel to the laminate plane, virtually divides the plate into an upper and a lower

sub-laminates, with thickness of h1 and h2, respectively. The subscript α = 1 denotes

the upper sub-laminate, while α = 2 denotes the lower one. Following the concept

of cohesive zone modeling, the laminated plate is considered as a stack of two sub-

laminates that are connected by a zero-thickness virtual deformable layer, referred to

as cohesive zone, at their interface, as shown in Figure 6.2. As a result, the cohesive

layer introduces three pairs of equal and opposite traction distributions, σz, τx and

τy, to the bottom surface of the upper sub-plate and the top surface of the lower sub-

plate. The traction distributions, as well as damage initiation and crack propagation

of the potential crack interface, is determined by separation displacements between

those two surfaces, i.e., subject to traction-separation laws.

Each sub-laminate is considered individually within a framework of FSDT. Dis-
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Figure 6.2: Modeling of a laminated plate with a potential crack interface.

placement is defined in a local coordinate system located at the mid-plane of each

sub-laminate, as shown in Figure 6.2,
U (α)(x, y, zα) = u(α)(x, y) + zαφ

(α)
x

V (α)(x, y, zα) = v(α)(x, y) + zαφ
(α)
y

W (α)(x, y, zα) = w(α)(x, y)

, (α = 1, 2) (6.10)

Laminate-level constitutive relations are{
N (α)

M (α)

}
=

[
A(α) B(α)

B(α) D(α)

]{
ε0

(α)

χ(α)

}
(6.11a)

Q(α) = Kts(α)γ(α), (α = 1, 2) (6.11b)

In this study, the upper and lower surface of the potential crack interface are

assumed perfectly bonded in the transverse direction,

w(x, y)(1) = w(x, y)(2) ≡ w(x, y) (6.12)

resulting in an unknown reaction traction σz(x, y) at the cohesive surfaces, while

deformations of the cohesive layer along tangential directions are allowed. Shear
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traction are determined by tangent separation displacements,

τx =
∆U

∆S
τ(∆S) , τy =

∆V

∆S
τ(∆S) (6.13)

where the separation displacements along x- and y-axes are

∆U = U (1)(x, y,−h1/2)− U (2)(x, y, h2/2)

= u(1) − u(2) − h1

2
φ(1)
x −

h2

2
φ(2)
x (6.14a)

∆V = V (1)(x, y,−h1/2)− V (2)(x, y, h2/2)

= v(1) − v(2) − h1

2
φ(1)
y −

h2

2
φ(2)
y (6.14b)

and ∆S is their resultant

∆S =
√

∆U2 + ∆V 2 (6.15)

The shear traction resultant τ is subject to a mode II/III cohesive law, chosen as a

linear elastic-brittle law here, as shown in Figure 6.3 or mathematically

τ(∆S) =

{
K1∆S ∆S ≤ δc

0 ∆S > δc
(6.16)

The parameters of the cohesive law satisfy

GIIc =
1

2
τcδc , K1 =

τc
δc

(6.17)

0
∆S

τ

K1

δc

τc

GIIc

Figure 6.3: A linear elastic-brittle traction-separation law of mode II/III fracture.

It is admitted that nonlinearity of the pre-failure response cannot be captured by

the simple application of a linear cohesive law without softening segments. With one
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possible cause by accumulations of microscopic damage, the pre-failure nonlinearity

of some materials can be significant in experiment measurements. However, previous

study on cohesive zone model has shown that the shape of bi-linear cohesive laws has

a limited influence on the critical failure load, as shown in Figure 4.27, indicating

that the peak is mainly determined by critical energy release rates. Considering that

the objective of this study is to analytically predict delamination threshold loads and

damage initiating locations of general laminates, the simplification on cohesive laws is

acceptable, as well as beneficial from saving efforts on formulations and computations.

Weak form can be derived from the principle of virtual work of the system of two

sub-laminates and one cohesive layer,

∫ b

0

∫ a

0

{[
N (1)
x

∂δu(1)

∂x
+N (1)

xy

∂δu(1)

∂y
+ τxδu

(1)

]
︸ ︷︷ ︸

1O

+

[
N (2)
x

∂δu(2)

∂x
+N (2)

xy

∂δu(2)

∂y
− τxδu(2)

]
︸ ︷︷ ︸

2O

+

[
N (1)
xy

∂δv(1)

∂x
+N (1)

y

∂δv(1)

∂y
+ τyδv

(1)

]
︸ ︷︷ ︸

3O

+

[
N (2)
xy

∂δv(2)

∂x
+N (2)

y

∂δv(2)

∂y
− τyδv(2)

]
︸ ︷︷ ︸

4O

+

[(
Q(1)
x +Q(2)

x

) ∂δw
∂x

+
(
Q(1)
y +Q(2)

y

) ∂δw
∂y

+ qδw

]
︸ ︷︷ ︸

5O

+

[
M (1)

x

∂δφ
(1)
x

∂x
+M (1)

xy

∂δφ
(1)
x

∂y
+

(
Q(1)
x −

h1

2
τx

)
δφ(1)

x

]
︸ ︷︷ ︸

6O

+

[
M (2)

x

∂δφ
(2)
x

∂x
+M (2)

xy

∂δφ
(2)
x

∂y
+

(
Q(2)
x −

h2

2
τx

)
δφ(2)

x

]
︸ ︷︷ ︸

7O

+

[
M (1)

xy

∂δφ
(1)
y

∂x
+M (1)

y

∂δφ
(1)
y

∂y
+

(
Q(1)
y −

h1

2
τy

)
δφ(1)

y

]
︸ ︷︷ ︸

8O

+

[
M (2)

xy

∂δφ
(2)
y

∂x
+M (2)

y

∂δφ
(2)
y

∂y
+

(
Q(2)
y −

h2

2
τy

)
δφ(2)

y

]
︸ ︷︷ ︸

9O

}
dxdy = 0 (6.18)
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Substituting admissible approximation functions

u(α)(x, y) =
M∑
i=1

N∑
j=1

a
(α)
ij cos

(
iπx

a

)
sin

(
jπy

b

)

v(α)(x, y) =
M∑
i=1

N∑
j=1

b
(α)
ij sin

(
iπx

a

)
cos

(
jπy

b

)

w(x, y) =
M∑
i=1

N∑
j=1

cij sin

(
iπx

a

)
sin

(
jπy

b

)

φ(α)
x (x, y) =

M∑
i=1

N∑
j=1

d
(α)
ij cos

(
iπx

a

)
sin

(
jπy

b

)

φ(α)
y (x, y) =

M∑
i=1

N∑
j=1

e
(α)
ij sin

(
iπx

a

)
cos

(
jπy

b

)

, (α = 1, 2) (6.19)

and Eqn. (6.11) into Eqn. (6.18), one will get nine equations for each combination

of p = 1, 2, . . . ,M and q = 1, 2, . . . , N ,

1O :

M,N∑
i,j

{[
A

(1)
11

iπ

a

pπ

a
I ipss(a)Ijqss (b)− A(1)

16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−A(1)
16

iπ

a

qπ

b
I ipsc(a)Ijqsc (b) + A

(1)
66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

+K1Ĩ
ip
cc(a)Ĩjqss (b)

]
a

(1)
ij +

[
−K1Ĩ

ip
cc(a)Ĩjqss (b)

]
a

(2)
ij

+

[
A

(1)
12

jπ

b

pπ

a
I ipss(a)Ijqss (b)− A(1)

16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−A(1)
26

jπ

b

qπ

b
I ipsc(a)Ijqsc (b) + A

(1)
66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
b

(1)
ij

+

[
B

(1)
11

iπ

a

pπ

a
I ipss(a)Ijqss (b)−B(1)

16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−B(1)
16

iπ

a

qπ

b
I ipsc(a)Ijqsc (b) +B

(1)
66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

−K1
h1

2
Ĩ ipcc(a)Ĩjqss (b)

]
d

(1)
ij +

[
−K1

h2

2
Ĩ ipcc(a)Ĩjqss (b)

]
d

(2)
ij

+

[
B

(1)
12

jπ

b

pπ

a
I ipss(a)Ijqss (b)−B(1)

16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)
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−B(1)
26

jπ

b

qπ

b
I ipsc(a)Ijqsc (b) +B

(1)
66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
e

(1)
ij

}
= 0

(6.20a)

2O :

M,N∑
i,j

{[
−K1Ĩ

ip
cc(a)Ĩjqss (b)

]
a

(1)
ij +

[
K1Ĩ

ip
cc(a)Ĩjqss (b)

+A
(2)
11

iπ

a

pπ

a
I ipss(a)Ijqss (b)− A(2)

16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−A(2)
16

iπ

a

qπ

b
I ipsc(a)Ijqsc (b) + A

(2)
66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

]
a

(2)
ij

+

[
A

(2)
12

jπ

b

pπ

a
I ipss(a)Ijqss (b)− A(2)

16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−A(2)
26

jπ

b

qπ

b
I ipsc(a)Ijqsc (b) + A

(2)
66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
b

(2)
ij

+

[
K1

h1

2
Ĩ ipcc(a)Ĩjqss (b)

]
d

(1)
ij +

[
K1

h2

2
Ĩ ipcc(a)Ĩjqss (b)

+B
(2)
11

iπ

a

pπ

a
I ipss(a)Ijqss (b)−B(2)

16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−B(2)
16

iπ

a

qπ

b
I ipsc(a)Ijqsc (b) +B

(2)
66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

]
d

(2)
ij

+

[
B

(2)
12

jπ

b

pπ

a
I ipss(a)Ijqss (b)−B(2)

16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−B(2)
26

jπ

b

qπ

b
I ipsc(a)Ijqsc (b) +B

(2)
66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
e

(2)
ij

}
= 0

(6.20b)

3O :

M,N∑
i,j

{[
− A(1)

16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) + A

(1)
66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+A
(1)
12

iπ

a

qπ

b
I ipss(a)Ijqss (b)− A(1)

26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

]
a

(1)
ij

+

[
− A(1)

26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) + A

(1)
66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+A
(1)
22

jπ

b

qπ

b
I ipss(a)Ijqss (b)− A(1)

26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

+K1Ĩ
ip
ss(a)Ĩjqcc (b)

]
b

(1)
ij +

[
−K1Ĩ

ip
ss(a)Ĩjqcc (b)

]
b

(2)
ij
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+

[
−B(1)

16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) +B

(1)
66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+B
(1)
12

iπ

a

qπ

b
I ipss(a)Ijqss (b)−B(1)

26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

]
d

(1)
ij

+

[
−B(1)

26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) +B

(1)
66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+B
(1)
22

jπ

b

qπ

b
I ipss(a)Ijqss (b)−B(1)

26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

−K1
h1

2
Ĩ ipss(a)Ĩjqcc (b)

]
e

(1)
ij +

[
−K1

h2

2
Ĩ ipss(a)Ĩjqcc (b)

]
e

(2)
ij

}
= 0

(6.20c)

4O :

M,N∑
i,j

{[
− A(2)

16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) + A

(2)
66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+A
(2)
12

iπ

a

qπ

b
I ipss(a)Ijqss (b)− A(2)

26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

]
a

(2)
ij

+

[
−K1Ĩ

ip
ss(a)Ĩjqcc (b)

]
b

(1)
ij +

[
K1Ĩ

ip
ss(a)Ĩjqcc (b)

−A(2)
26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) + A

(2)
66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+A
(2)
22

jπ

b

qπ

b
I ipss(a)Ijqss (b)− A(2)

26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

]
b

(2)
ij

+

[
−B(2)

16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) +B

(2)
66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+B
(2)
12

iπ

a

qπ

b
I ipss(a)Ijqss (b)−B(2)

26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

]
d

(2)
ij

+

[
K1

h1

2
Ĩ ipss(a)Ĩjqcc (b)

]
e

(1)
ij +

[
K1

h2

2
Ĩ ipss(a)Ĩjqcc (b)

−B(2)
26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) +B

(2)
66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+B
(2)
22

jπ

b

qπ

b
I ipss(a)Ijqss (b)−B(2)

26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

]
e

(2)
ij

}
= 0

(6.20d)

5O :

M,N,2∑
i,j,α

{[
K
ts(α)
12

jπ

b

pπ

a
I ipsc(a)Ijqcs (b) +K

ts(α)
11

iπ

a

pπ

a
I ipcc(a)Ijqss (b)
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+K
ts(α)
22

jπ

b

qπ

b
I ipss(a)Ijqcc (b) +K

ts(α)
12

iπ

a

qπ

b
I ipcs(a)Ijqsc (b)

]
cij

+

[
K
ts(α)
11

pπ

a
I ipcc(a)Ijqss (b) +K

ts(α)
12

qπ

b
I ipcs(a)Ijqsc (b)

]
d

(α)
ij

+

[
K
ts(α)
12

pπ

a
I ipsc(a)Ijqcs (b) +K

ts(α)
22

qπ

b
I ipss(a)Ijqcc (b)

]
e

(α)
ij

}
= −Qpq

(6.20e)

6O :

M,N∑
i,j

{[
B

(1)
11

iπ

a

pπ

a
I ipss(a)Ijqss (b)−B(1)

16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−B(1)
16

iπ

a

qπ

b
I ipsc(a)Ijqsc (b) +B

(1)
66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

−K1
h1

2
Ĩ ipcc(a)Ĩjqss (b)

]
a

(1)
ij +

[
K1

h1

2
Ĩ ipcc(a)Ĩjqss (b)

]
a

(2)
ij

+

[
B

(1)
12

jπ

b

pπ

a
I ipss(a)Ijqss (b)−B(1)

16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−B(1)
26

jπ

b

qπ

b
I ipsc(a)Ijqsc (b) +B

(1)
66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
b

(1)
ij

+

[
K
ts(1)
12

jπ

b
I ipsc(a)Ijqcs (b) +K

ts(1)
11

iπ

a
I ipcc(a)Ijqss (b)

]
cij

+

[
D

(1)
11

iπ

a

pπ

a
I ipss(a)Ijqss (b)−D(1)

16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−D(1)
16

iπ

a

qπ

b
I ipsc(a)Ijqsc (b) +D

(1)
66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

+K
ts(1)
11 I ipcc(a)Ijqss (b) +K1

(
h1

2

)2

Ĩ ipcc(a)Ĩjqss (b)

]
d

(1)
ij

+

[
K1

h1

2

h2

2
Ĩ ipcc(a)Ĩjqss (b)

]
d

(2)
ij +

[
K
ts(1)
12 I ipsc(a)Ijqcs (b)

+D
(1)
12

jπ

b

pπ

a
I ipss(a)Ijqss (b)−D(1)

16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−D(1)
26

jπ

b

qπ

b
I ipsc(a)Ijqsc (b) +D

(1)
66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
e

(1)
ij

}
= 0

(6.20f)

7O :

M,N∑
i,j

{[
−K1

h2

2
Ĩ ipcc(a)Ĩjqss (b)

]
a

(1)
ij +

[
K1

h2

2
Ĩ ipcc(a)Ĩjqss (b)
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+B
(2)
11

iπ

a

pπ

a
I ipss(a)Ijqss (b)−B(2)

16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−B(2)
16

iπ

a

qπ

b
I ipsc(a)Ijqsc (b) +B

(2)
66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

]
a

(2)
ij

+

[
B

(2)
12

jπ

b

pπ

a
I ipss(a)Ijqss (b)−B(2)

16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−B(2)
26

jπ

b

qπ

b
I ipsc(a)Ijqsc (b) +B

(2)
66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
b

(2)
ij

+

[
K
ts(2)
12

jπ

b
I ipsc(a)Ijqcs (b) +K

ts(2)
11

iπ

a
I ipcc(a)Ijqss (b)

]
cij

+

[
K1

h1

2

h2

2
Ĩ ipcc(a)Ĩjqss (b)

]
d

(1)
ij +

[
K1

(
h2

2

)2

Ĩ ipcc(a)Ĩjqss (b)

+D
(2)
11

iπ

a

pπ

a
I ipss(a)Ijqss (b)−D(2)

16

jπ

b

pπ

a
I ipcs(a)Ijqcs (b)

−D(2)
16

iπ

a

qπ

b
I ipsc(a)Ijqsc (b) +D

(2)
66

jπ

b

qπ

b
I ipcc(a)Ijqcc (b)

+K
ts(2)
11 I ipcc(a)Ijqss (b)

]
d

(2)
ij +

[
K
ts(2)
12 I ipsc(a)Ijqcs (b)

+D
(2)
12

jπ

b

pπ

a
I ipss(a)Ijqss (b)−D(2)

16

iπ

a

pπ

a
I ipcs(a)Ijqcs (b)

−D(2)
26

jπ

b

qπ

b
I ipsc(a)Ijqsc (b) +D

(2)
66

iπ

a

qπ

b
I ipcc(a)Ijqcc (b)

]
e

(2)
ij

}
= 0

(6.20g)

8O :

M,N∑
i,j

{[
−B(1)

16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) +B

(1)
66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+B
(1)
12

iπ

a

qπ

b
I ipss(a)Ijqss (b)−B(1)

26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

]
a

(1)
ij

+

[
−B(1)

26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) +B

(1)
66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+B
(1)
22

jπ

b

qπ

b
I ipss(a)Ijqss (b)−B(1)

26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

−K1
h1

2
Ĩ ipss(a)Ĩjqcc (b)

]
b

(1)
ij +

[
K1

h1

2
Ĩ ipss(a)Ĩjqcc (b)

]
b

(2)
ij

+

[
K
ts(1)
22

jπ

b
I ipss(a)Ijqcc (b) +K

ts(1)
12

iπ

a
I ipcs(a)Ijqsc (b)

]
cij
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+

[
−D(1)

16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) +D

(1)
66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+D
(1)
12

iπ

a

qπ

b
I ipss(a)Ijqss (b)−D(1)

26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

+K
ts(1)
12 I ipcs(a)Ijqsc (b)

]
d

(1)
ij +

[
K
ts(1)
22 I ipss(a)Ijqcc (b)

−D(1)
26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) +D

(1)
66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+D
(1)
22

jπ

b

qπ

b
I ipss(a)Ijqss (b)−D(1)

26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

+K1

(
h1

2

)2

Ĩ ipss(a)Ĩjqcc (b)

]
e

(1)
ij +

[
K1

h1

2

h2

2
Ĩ ipss(a)Ĩjqcc (b)

]
e

(2)
ij

}
= 0

(6.20h)

9O :

M,N∑
i,j

{[
−B(2)

16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) +B

(2)
66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+B
(2)
12

iπ

a

qπ

b
I ipss(a)Ijqss (b)−B(2)

26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

]
a

(2)
ij

+

[
−K1

h2

2
Ĩ ipss(a)Ĩjqcc (b)

]
b

(1)
ij +

[
K1

h2

2
Ĩ ipss(a)Ĩjqcc (b)

−B(2)
26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) +B

(2)
66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+B
(2)
22

jπ

b

qπ

b
I ipss(a)Ijqss (b)−B(2)

26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

]
b

(2)
ij

+

[
K
ts(2)
22

jπ

b
I ipss(a)Ijqcc (b) +K

ts(2)
12

iπ

a
I ipcs(a)Ijqsc (b)

]
cij

+

[
−D(2)

16

iπ

a

pπ

a
I ipsc(a)Ijqsc (b) +D

(2)
66

jπ

b

pπ

a
I ipcc(a)Ijqcc (b)

+D
(2)
12

iπ

a

qπ

b
I ipss(a)Ijqss (b)−D(2)

26

jπ

b

qπ

b
I ipcs(a)Ijqcs (b)

+K
ts(2)
12 I ipcs(a)Ijqsc (b)

]
d

(2)
ij +

[
K1

h1

2

h2

2
Ĩ ipss(a)Ĩjqcc (b)

]
e

(1)
ij

+

[
−D(2)

26

jπ

b

pπ

a
I ipsc(a)Ijqsc (b) +D

(2)
66

iπ

a

pπ

a
I ipcc(a)Ijqcc (b)

+D
(2)
22

jπ

b

qπ

b
I ipss(a)Ijqss (b)−D(2)

26

iπ

a

qπ

b
I ipcs(a)Ijqcs (b)

146



+K
ts(2)
22 I ipss(a)Ijqcc (b) +K1

(
h2

2

)2

Ĩ ipss(a)Ĩjqcc (b)

]
e

(2)
ij

}
= 0

(6.20i)

According to the definition of the linear elastic-brittle law, the delaminated region of

the interface has zero shear traction and zero secant modulus while the rest uncracked

region still follows the elastic traction-separation relation. Therefore, the integrations

related to the cohesive elastic stiffness K1 are only performed over the uncracked

region of the interface

Ĩ ipcc(a)Ĩjqss (b) =

∫ ∫
uncracked

cos

(
iπx

a

)
cos
(pπx
a

)
sin

(
jπy

b

)
sin
(qπy

b

)
dxdy

= I ipcc(a)Ijqss (b)−
∫ ∫

delam.

cos

(
iπx

a

)
cos
(pπx
a

)
sin

(
jπy

b

)
sin
(qπy

b

)
dxdy

Ĩ ipss(a)Ĩjqcc (b) =

∫ ∫
uncracked

sin

(
iπx

a

)
sin
(pπx
a

)
cos

(
jπy

b

)
cos
(qπy

b

)
dxdy

= I ipss(a)Ijqcc (b)−
∫ ∫

delam.

cos

(
iπx

a

)
cos
(pπx
a

)
sin

(
jπy

b

)
sin
(qπy

b

)
dxdy

(6.21)

Therefore, the coefficients, a
(α)
ij , b

(α)
ij , cij, d

(α)
ij , e

(α)
ij , (i = 1, 2, . . . ,M , j = 1, 2, . . . , N ,

α = 1, 2), with a total number of 9 ×M ×N , can be solved by 9 ×M ×N coupled

equations.

6.3.2 Initiation of Delaminations on Pristine Interfaces

For a pristine interface,

Ĩ ipcc(a)Ĩjqss (b) = I ipcc(a)Ijqss (b), Ĩ ipss(a)Ĩjqcc (b) = I ipss(a)Ijqcc (b) (6.22)

After solving the series coefficients, interfacial shear traction distribution can be com-

puted by Eqn. (6.14), (6.15), (6.16). According to the definition of the linear elastic-

brittle law, delaminations will initiate at locations where the traction is maximum

over the interface when the maximum value reaches the critical strength value τc.

The critical load of delamination initiation is recorded as the load when the maxi-

mum traction reaches the critical strength value.

Repeating the calculation for every interface of interests, the minimum value of

the obtained critical loads can be considered as the delamination threshold load of

the laminates.
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6.3.3 Propagation of Existing Delaminations

For a given shape of delamination, the integrations, as shown in Eqn. (6.21), can

be analytically calculated by approximating the delamination area as a collection of

small rectangles, or computed by numerical integration methods.

It should be pointed out that the proposed method has a limited predicting ca-

pability on propagation of existing delaminations. Similar as delamination initiation,

propagation is also determined by the interfacial shear traction distribution. How-

ever, stress concentration in a narrow zone from the edge of delamination introduces

certain singularities and therefore, may require much more terms of series in compu-

tations than the case of pristine interfaces. Additionally, with the application of the

elastic-brittle cohesive law, the abrupt jump in traction at the edge of delamination

brings in discontinuity. Gibbs phenomenon can be significant and will not die out as

more terms added. With those restrictions, it can be difficult to obtain an acceptable

yet computationally efficient interfacial traction distribution for the problem with

existing delaminations.

Note that the Rayleigh-Ritz method finds approximate solutions by satisfying

essential boundary conditions and a principle of minimum total potential energy of

a system of two sub-laminates and one cohesive layer with existing delaminations.

Though it can be difficult to obtain localized details as mentioned, the proposed

method can provide information of system-level parameters. A recommend future

work is predictions of stiffness change due to delaminations.

6.4 Results and Discussions

Numerical evaluations of the proposed method have been performed in Matlab to an-

alyze configuration of quasi-static face-on impact tests of laminated composite plates.

As shown in Figure 6.4, a plate is simply supported on its four edges and loaded at

the center of its top surface by a hemispherical impactor. Dimensions are also given

in Figure 6.4. Material properties and interfacial fracture properties of IM7/8552

graphite/epoxy [87] was used, as shown in Table 4.1. If the linear elastic-brittle law

of mode II/III fracture is used, critical separation displacement is δc = 2.21 µm and

elastic cohesive stiffness is K1 = 3.17 GPa/m.

A parabolic distribution, centered at the impact location, was used to approximate
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Figure 6.4: Configuration of quasi-static face-on impact tests.
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Figure 6.5: FE model of the quasi-static face-on impact test of a laminated composite
plate.

transverse pressure applied by the impactor,

q(x, y) =


2

πr2
c

(
1− r2

r2
c

)
P , r ≤ rc

0 , r > rc

(6.23)

with total external force as F =
∫ b

0

∫ a
0
q(x, y)dxdy = P . rc is the radius of a small

but finite contact area between the impactor and the top surface of the plate, which

is taken as rc = R/9 by measuring the contact area in FE simulations, and r is the

distance from the center of the plate,

r =

√(
x− a

2

)2

+

(
y − b

2

)2

(6.24)

The load coefficient Qpq, shown in Eqn. (6.9), can be computed by Gaussian quadra-

ture in polar coordinates.

Accuracy of the Rayleigh-Ritz method was first evaluated. Elastic bending of
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center loaded pristine plates with eight stacking sequences was considered. FE sim-

ulations using Abaqus/standard were performed as references. In the FE model,

shown in Figure 6.5, the plate was modeled by conventional composite shell elements

(S4) of size 0.508 mm (L) × 0.508 mm (W) while the impactor was modeled as an

analytical rigid surface. Simply supported boundary conditions, similar as those of

analytical solutions, were applied to the edges of the plate. During the simulations,

the plate was loaded by the displacement-controlled impactor via a contact interac-

tion between them. The comparison of the stiffness or the slope of load-displacement

response, K = P/∆, is summarized in Table 6.1. It can be seen that the predictions

made by the Rayleigh-Ritz method with 80×80 double sine series agree well with the

results obtained by FE simulations within 2.5% error. The predictions are slightly

better for plates with the symmetric stacking sequences than the asymmetric ones.

For cross-ply laminates, the stiffness are found exactly same as those provided by

closed-form solutions shown in Appendix G. Convergence studies of the stiffness on

number of series considered in computation have been performed for laminates with

stacking sequences (0) and (+45/-45/0/90)2. As shown in Figure 6.6, convergence

errors between series for both laminates are less than 0.1% starting from 40×40 terms.

Delamination initiation in a uni-directional laminate (0)2 and a quasi-isotropic

laminate (0/90/+45/-45/0/-45/+45/90/0) have been studied by the proposed Rayleigh-

Ritz approximation with cohesive zone modeling. A corresponding FE model is shown

in Figure 6.7. A single layer of cohesive elements (COH3D8) of a small thickness,

0.01h, that are properly tied to the two sub-laminates, was used to model the in-

terface. A quadratic stress criterion for crack initiation and a linear power law of

fracture energy for crack propagation were assigned. Initial elastic stiffness of cohe-

sive elements were set as KI = 5.90 GPa/mm, KII = KIII = 3.17 GPa/mm, following

linear elastic-brittle laws. The FE model developed here was to validate the analytical

solutions in similar settings. The stiffness values used are smaller than the common

suggestions for bi-linear laws. The numerical simulations were less stable due to the

absence of softening behavior. The delamination was assumed initiated at locations

of the interface that first reaches the quadratic stress criterion while the load was also

recorded as the critical load.

The flexural stiffness and the critical loads for the two laminates are summarized in

Table 6.2 and 6.3, respectively. Good agreement is found between analytical solutions

and FE simulations, especially the stiffness. The stiffness also agree well with the

values shown in Table 6.1, indicating that the overall stiffness of the plate will not be

significantly affected by even inserting a thin and relatively soft interfacial layer.

150



Table 6.1: Stiffness predicted by the Rayleigh-Ritz method (80×80 series) and FE
simulations.

Stacking Sequences Stiffness K [N/mm]
(from bottom to top) FE R.-R. Error

(0) 382.34 386.96 1.21%
(0/90)s 490.01 496.69 1.36%

(+45/-45/0/90)s 938.13 956.44 1.95%
(-45/+45/90/0)s 987.14 1006.70 1.98%

(0/90)2 657.89 668.37 1.59%
(+45/-45/0/90)2 869.15 888.18 2.19%
(-45/+45/90/0)2 842.23 860.38 2.15%

(0/90/+45/-45/0/-45/+45/90/0) 732.24 743.56 1.55%

Table 6.2: Stiffness and critical loads predicted by the Rayleigh-Ritz method (80×80
series) and FE simulations of laminate with stacking sequence (0)2.

Interface Stiffness K [N/mm] Critical Load Pc [kN]
(from bottom to top) FE R.-R. Error FE R.-R. Error
#1: 0/0 377.94 376.92 0.27% 2.428 2.553 5.15%

Table 6.3: Stiffness and critical loads predicted by the Rayleigh-Ritz method (80×80
series) and FE simulations of laminate with stacking sequence (0/90/+45/-45/0/-
45/+45/90/0).

Interface Stiffness K [N/mm] Critical Load Pc [kN]
(from bottom to top) FE R.-R. Error FE R.-R. Error
#1: 0/90 735.44 737.66 0.30% 5.742 6.247 8.79%
#2: 90/+45 725.17 728.97 0.52% 4.289 4.590 7.03%
#3: +45/-45 716.03 722.19 0.86% 3.115 3.378 8.45%
#4: -45/0 713.42 719.41 0.84% 2.825 2.985 5.66%
#5: 0/-45 713.42 719.41 0.83% 2.848 2.985 4.79%
#6: -45/+45 715.85 722.19 0.89% 3.004 3.378 12.46%
#7: +45/90 725.35 728.97 0.50% 4.298 4.590 6.80%
#8: 90/0 736.77 737.66 0.12% 6.652 6.247 6.09%

The analytical solutions slightly over-estimate the critical loads yet within an

averaging error 8%. The delamination threshold load is predicted as 2.553 kN for the

uni-directional laminate (0/0) while it is 2.985 kN for the quasi-isotropic laminate

(0/90/+45/-45/0/-45/+45/90/0). The predicted delamination threshold load of the

quasi-isotropic laminate was further compared with the critical threshold load given

by the simple fracture mechanics model [71], shown in Eqn. (6.1). The effective

Young’s modulus is obtained as a range, Eeff = 62.2 ∼ 98.1 GPa, since it can be

estimated in many ways: Eeff = A11

h
or A22

h
or 12D11

h3
or 12D22

h3
. The threshold load

Pc = 3.379 ∼ 4.241 kN, given by Eqn. (6.1), has at least a 20% over-prediction

above the value found in FE simulations. The comparison suggests a considerable
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Figure 6.6: Convergence studies of the stiffness on number of series considered in the
Rayleigh-Ritz method.

improvement by the proposed method.

Moreover, the ranking of weakness of the interfaces is captured correctly. As

shown in Table 6.3, the fourth (-45/0) and fifth (0/-45) interface of the laminate with

stacking sequence (0/90/+45/-45/0/-45/+45/90/0) are the weakest ones. Because

of the assumption of perfectly bonded in the transverse direction between two sub-

laminates and the nature of FSDT, the proposed method does not distinguish the

relative vertical position of the two sub-laminates, nor the through-the-thickness lo-

cation where transverse loading and interfacial traction are applied. In other words,

the analytical solutions provide exactly same answers when configuration, with an

order of lower-sublaminate, interface and upper-sublaminate from bottom to top, is
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Tie constraint: bottom surface of cohesive layer & top surface of lower sub-laminate

Lower sub-laminate (S4) with its mid-plane at z = −h1/2

Tie constraint: top surface of cohesive layer & bottom surface of upper sub-laminate

Cohesive layer (COH3D8) with its mid-plane at z = (h2 − h1)/2

Contact interaction: impactor & top surface of upper sub-laminate

Upper sub-laminate (S4) with its mid-plane at z = h2/2

P,∆

Impactor (analytical rigid surface)

Figure 6.7: FE model with a cohesive layer.

flipped. Therefore, for symmetric laminates, the flexural stiffness and the delamina-

tion threshold load are the same for the interfaces symmetric about the mid-plane,

resulting in a symmetric look of the analytical results in Table 6.3.

Convergence studies of the stiffness and the delamination threshold load on num-

ber of double sine series have been conducted for the uni-directional laminate. As

shown in Figure 6.8, the results are converged after 60×60 terms.

Comparisons of the normalized interfacial shear traction distribution computed

by the Rayleigh-Ritz approximations and FE simulations are shown in Figure 6.9

for the uni-directional laminates, and Figure 6.10 for the quasi-isotropic one. The

initiating locations of delamination of each interface can be directly seen in these

plots as red concentration areas, as an early form of peanut shaped crack patterns.

Good agreement between the analytical solutions and the numerical simulations can

be found. As mentioned earlier, the traction distribution of the analytical solutions

are the same for a pair of interfaces symmetric about the mid-plane of laminates with

stacking sequence (0/90/+45/-45/0/-45/+45/90/0). The symmetry can be observed

in the results of FE simulations as well.
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Figure 6.8: Convergence studies of the stiffness and the delamination threshold load
on number of series considered in the Rayleigh-Ritz method.

6.5 Conclusions

Analytical CZM solutions have been developed to determine the pre-peak flexural

response and the delamination threshold load in a simply supported laminated com-

posite plate subject to transverse loading, without any restriction on laminate stacking

sequences or locations of a potential or existing delamination. The laminated plate is

modeled as two anisotropic sub-laminates that are perfectly bonded in the transverse

direction while separable in the tangential directions in which the cohesive interac-

tions are subject to a linear elastic-brittle traction-separation law. In this sense, only

mode II/III driven delaminations are considered. The problem is formulated within

the framework of FSDT, and further solved by the Rayleigh-Ritz approximations that
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Figure 6.9: Normalized interfacial shear traction distribution over the interface of
laminate with stacking sequence (0)2 by the Rayleigh-Ritz method (left) and FE
simulations (right).

satisfy essential boundary conditions and the principle of minimum total potential en-

ergy of the system. A critical load of delamination initiation on each interface of a

laminate can be obtained as a load level when a maximum traction on that interface

reaches a critical strength value. The delamination threshold load of the laminate

is considered as the minimum value of all critical loads on all interfaces. The de-

lamination initiating locations are where the traction is maximum over the weakest

interface.

Convergence of the results shown is ensured by convergence studies. Results of

flexural stiffness of the pre-peak response obtained by the models without and with

a cohesive layer well agree with the values obtained in FE simulations. Though the

delamination threshold loads are averagely over-predicted by 8% above that of FE

simulations, the proposed method makes a considerable improvement compared with

the simple fracture mechanics model, in terms of accuracy, and capabilities on finding

the weakness ranking among all interfaces and delamination initiating locations.

Formulated analytical solutions can be used with confidence to predict delamina-

tion evolution in laminated composite plates and other general multilayered struc-

tures. The proposed method can also be formulated following classical lamination

theory (CLT) (see Appendix H).
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Figure 6.10: Normalized interfacial shear traction distribution over all interfaces of
laminate with stacking sequence (0/90/+45/-45/0/-45/+45/90/0) by the Rayleigh-
Ritz method (left) and FE simulations (right).
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CHAPTER 7

Concluding Remarks

7.1 Conclusions

In this dissertation, delamination evolution in fiber reinforced laminated composites

has been analytically studied mainly by cohesive zone modeling (CZM), and also by

approaches based on continuum damage mechanics (CDM) and linear elastic fracture

mechanics (LEFM). Analytical solutions have been developed within frameworks of

linear elasticity theory and structural mechanics of beam and plate configurations.

Formulations and evaluations of the proposed analytical approaches have been vali-

dated by comparing with results of finite element (FE) simulations in similar settings

and published experiment data.

A 2D elasticity approach has been extended to analyze dynamic flexural responses

of pristine laminated composite panels, presented in Chapter 2, and quasi-static flex-

ural responses of pre-delaminated panels, discussed in Chapter 3. A highlight of the

2D elasticity approach is exact solutions of displacement and stress fields it provides.

The exact solutions offer opportunities to examine simplified theories and numerical

models, evaluate delamination growth predictability among proposed criteria based

on strain, stress, or energy, and develop new criteria. Comparisons of results with

beam theories suggest that lower-polynomial formulations of transverse stress fields

cannot well approximate distributions of these stress components, making those sim-

plified theories indequate in continuum damage mechanics approaches for predicting

delaminations. Delamination threshold loads of pre-delaminated panels subject to

three-point bending have been provided using stress- and energy-based criteria for

delamination propagation, showing a big improvement compared against predictions

of simple fracture models. The 2D elasticity approach can be used with confidence to

study other multilayered structures subject to arbitrary transverse loading profiles.

Closed-form CZM solutions based on classical lamination theory (CLT) have been
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developed to analyze delamination characterizing tests on pre-delaminated beams,

including mode I double cantilever beam (DCB) tests, mode II end notched flex-

ure (ENF) tests and mixed-mode I/II bending (MMB) tests. In the CZM solutions

discussed in Chapter 4, a laminated composite beam is modelled as two individual

beams connected at a potential crack interface by a zero-thickness virtual deformable

layer, which is subject to prescribed multi-linear traction-separation laws contain-

ing elastic and softening segments. Formulations and detailed solution algorithms

have been provided, allowing any mechanical quantity of interest to be calculated.

Compared with one-parameter simple beam theory (SBT) solutions summarized in

Appendix C, the pre-peak nonlinearity of load-displacement responses of those tests,

which can be considered as accumulations of microscopic damage, has been captured

by the CZM solutions. Comprehensive parametric studies have been performed on

crack growth responses and process zone lengths, revealing the influences of specimen

geometry, cohesive parameters, shape of traction-separation laws, and mode mixity

that is controlled by external loading conditions. The analytical CZM problems have

been simplified by considering a special class of traction-separation laws with only

one softening segments, presented in Chapter 5. As a result, closed-form expressions

for quickly estimating crack growth responses and process zone lengths have been

provided. Having been known as depending on the mode mixity, material and inter-

facial fracture properties, process zone lengths are system parameters also influenced

by specimen thickness and crack length, as indicated by the expressions. Based on

parametric studies and comparison against FE simulations, suggestions for estimating

the process zone length are provided. Providing stable and computationally efficient

results, the analytical CZM solutions, provided in Chapter 4 and 5, are invaluable

for performing parametric studies on cohesive parameters and variations of cohesive

laws, and thus offering a deeper understanding of CZM.

It should be noticed that in analytical approaches that consider beam config-

urations, in-plane extension-shear coupling is neglected or avoided by making as-

sumptions on laminate stacking sequences. Parametric studies in Appendix B have

shown that an assumption of either a plane-strain or a plane-stress state in the width

direction, which is a common simplification for reducing three-dimensional (3D) con-

figuration to a beam type model, is valid for cross-ply laminates, while the stress state

in laminates containing off-axis angle plies is fully 3D. Extension-shear couplings in

angle plies can have significant influences on deformations of structures and therefore,

cannot be neglected. In other words, it is difficult to develop an approach to univer-

sally solve laminates with arbitrary stacking sequences without considering potential
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extension-shear couplings.

Analytical CZM solutions have been extended to plate configurations based on

first-order shear deformation theory (FSDT), presented in Chapter 6. The approach

can provide pre-peak flexural responses, threshold loads and initiating locations of de-

laminations of quasi-static face-on impact tests on laminated composite plates, with-

out any restriction on laminate stacking sequences or locations of potential or existing

delaminations. The laminated plate is modeled as two anisotropic sub-laminates that

are perfectly bonded in the transverse direction while separable in the tangential direc-

tions in which the cohesive interactions are subject to a linear elastic-brittle traction-

separation law. Considering potential extension-shear couplings, the problem is solved

by the Rayleigh-Ritz approximations that satisfy essential boundary conditions and

the principle of minimum total potential energy of the system. The proposed method

makes a considerable improvement in predicting delamination threshold loads when

compared against simple fracture models.

In this dissertation, delamination is the only failure mode considered. Neither

intra-lamina failure induced delamination nor buckling-delamination damage is con-

sidered. Note that failure progression in composites is very complicated as a conse-

quence of competitions and interactions among all possible failure mechanisms. A

preliminary research study, shown in Appendix A, has successfully simulated ma-

trix tensile cracking by a 3D crack band model, as well as the interactions between

matrix cracking and delamination in quasi-isotropic laminated composites subject to

three-point bending.

7.2 Suggestions for Future Studies

Closed-form CZM solutions, introduced in Chapter 4 and 5, focus on analyzing con-

figurations of DCB, ENF and MMB tests of laminated beams containing mid-plane

delaminations. Future work is suggested to analyze other delamination characterizing

tests, such as asymmetric DCB (ADCB) tests and moment loaded DCB (MLDCB)

tests, by similar approaches considering mixed-mode fracture.

The Analytical CZM approach of laminated plates, proposed in Chapter 6, has

potential to become a universal method to determine crack growth responses of lami-

nates with arbitrary stacking sequences. Current difficulties, including large memory

consumption and high computational cost, can be tackled by implementing parallel

computing in numerical evolution. Future work of this method is suggested as follows:

� The method is ready for application to analyze plates with an existing delami-
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nation, and predict stiffness changes due to delaminations.

� The method can be extended to consider more complicated traction-separation

laws by using similar iteration schemes and algorithms provided in Chapter 4.

� More interfaces can be considered in one model. As a result, more unknown

displacement quantities are introduced into the model, with expected increase

in computational cost. Therefore, an improvement on computational efficiency

is essential.

� The method can also be applied to solve plate configurations with other bound-

ary conditions. For some of the boundary conditions, admissible displacement

functions are provided in Ref. [7]. Admissible displacement functions can also

be obtained by analyzing mode shapes of beam configurations in both the longi-

tudinal and width directions of the plate. Additionally, it is of interest to apply

the plate solutions to analyze laminated beams with free boundary conditions

at one pair of edges. FE simulations using shell elements in modeling laminated

beams containing angle plies have found good agreement with simulations using

3D elements, shown in Appendix B. Plate theories, as analytical benchmarks

of shell elements, are expected to capture in-plane extension-shear coupling and

provide more accurate solutions than beam theories.

� Only mode II/III driven delaminations are considered in the present analysis.

It is of interests to extend the method to consider mode I and further, mixed-

mode delaminations, so that in-plane loading can be applied and buckling-

delamination damage can be modeled.

� It is also of interest to develop an analytical method to model initiation and

propagation of other failure modes, such as matrix cracking, and couple it with

the analytical CZM approach for modeling delaminations. Rotational springs

have been applied to model unilateral cracks in beams, as discussed in [120].

Another recommendation of future work is to develop a comprehensive 3D FE sim-

ulation technique to model impact damage progression in laminates, as an extension

of studies done in Appendix A. Experimental observations of matrix cracks rotating

at an angle from the vertical direction in the cross-section of non-zero plies, especially

±45-angle cracks in 90 plies that are typical shear failure in the matrix plane, suggest

that transverse strains and stresses can be important in matrix cracking formation

during bending. Therefore, a 3D modeling technique of intra-lamina failure modes is
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necessary. In addition to the current analysis, compressive and shear failure modes

need to be considered and characterized, with mixed-mode damage carefully handled.
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APPENDIX A

Numerical Simulations of Three-point

Bend Tests of Laminated Beams

A.1 3D Crack Band Model with Nonlinear Strain

Measures

The crack band theory proposed in, [121], combines the concept of cohesive zone mod-

eling with classical continuum mechanics, and smears fracture over a band of material

with known dimensions. The model proposes a softening stress-strain relation with

negative tangent stiffness to model the progression of random micro-cracking within

the crack band. A macro crack is assumed when the secant modulus of the crack

band is degraded to zero. Original formulations were derived for isotropic materi-

als by using engineering strains. The 2D crack band theory has been extended for

nonlinear strain measures [122]. Since nonlinear strains, especially logarithmic true

strains, are commonly used for FE simulations of composite materials, the formula-

tion in Ref. [122] is adopted and extended to the 3D case for transversely isotropic

materials. The formulation using the logarithmic true strain measure is discussed in

this section. Similar formulations can be derived for other nonlinear strains.

In the 1-2-3 material frame of transversely isotropic materials, 1 denotes the fiber

direction, and 2,3 transverse axes are in a plane perpendicular to the fiber direction.

The elastic constitutive relation is,

σ = Cε (A.1)
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where C is the elastic stiffness matrix

C =



1
E11

− ν12
E11

− ν12
E11

0 0 0

− ν12
E11

1
E22

− ν23
E22

0 0 0

− ν12
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− ν23
E22

1
E33

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 2(1+ν23)
E22



−1

(A.2)

When a damage initiation criterion of a failure mode is satisfied, micro-cracking

is assumed to start. Total strain is assumed decomposed into continuum strain and

crack strain,

ε = εco + εcr (A.3)

The crack plane is assumed fixed once the damage initiates. The crack strain can

be perpendicular or parallel to the crack plane, corresponding to the tensile (or com-

pressive) failure mode or shear failure mode, respectively. The crack strain, with its

magnitude represented by equivalent crack strain ecr, is of the form

εcr = Necr (A.4)

whereN is a unit vector of the direction of the crack strain, as well as a transformation

vector from the crack strain orientation to the material frame. The stress in the same

direction as the crack strain can be obtained,

σcr = NTσ (A.5)

The continuum stress-strain relation follows the elastic relation,

σ = Cεco = C (ε− εcr) = C (ε−Necr) (A.6)

while the crack stress-strain relation is determined by a traction-separation law, shown

in Figure A.1. The traction-separation law scales the energy dissipation with respect

to the length scale of the crack band and therefore, allows mesh objectivity of results

obtained by the crack band model. According to the definition of logarithmic strain,

the crack separation displacement-crack strain relation is

δcr = h (exp (ecr)− 1) (A.7)
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Figure A.1: The crack band model with non-linear strain measures and linear traction-
separation law.

where h is the characteristic length of the crack band that is numerically defined as

the element dimension normal to the crack plane. The crack stress-train relation can

be written as

σcr = σcr (δcr (ecr)) (A.8)

Assuming all elastic prosperities are constant, the incremental form of Eqn. (A.6)

is,

∆σ = C (∆ε−N∆ecr) (A.9)

⇒ n+1σ = nσ +C (∆ε−N∆ecr) (A.10)

where variables with left superscript n are variables at the beginning of the increment

while those with n + 1 are variables at the end of the increment. Changes in the

increment is denoted as variables with ∆.

Substituting Eqn. (A.8) and (A.10) into Eqn. (A.5), one will get

σcr (δcr (necr + ∆ecr)) = NT (nσ +C∆ε)−NTCN∆ecr (A.11)

Since the increment of total strain ∆ε can be obtained from deformation, the incre-
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ment of equivalent crack strain, ∆ecr, is the only unknown in Eqn. (A.11). ∆ecr can

be solved by the Newton-Raphson Method. Let

f (∆ecr) ≡ σcr (δcr (necr + ∆ecr)) +NTCN∆ecr −NT (nσ +C∆ε) (A.12)

Its derivative is,
∂f

∂∆ecr
=
∂σcr

∂δcr

∂δcr

∂ecr

∣∣∣∣
necr+∆ecr

+NTCN (A.13)

∆ecr can be obtained by iterating until a desired precision is obtained,

∆ecr(k+1) = ∆ecr(k) − f
(
∆ecr(k)

)
∂f

∂∆ecr

∣∣
∆ecr(k)

(A.14)

with an initial value ∆ecr(k=0) = 0. The equivalent crack strain at the end of the

increment can be updated by

n+1ecr = necr + ∆ecr (A.15)

The stress at the end of the increment can also be updated by Eqn. (A.10).

If the linear traction-separation law is used, as shown in Figure A.1,

σcr =


σc

(
1− δcr

min

δc

)
δcr

δcr
min

, δcr < nδcr
min

σc

(
1− δcr

δc

)
, δcr ≥ nδcr

min

(A.16)

⇒ ∂σcr

∂δcr
=


σcr

δcr
, δcr < nδcr

min

− σc
δc

, δcr ≥ nδcr
min

(A.17)

where δcr
min is the minimum crack separation displacement that records the maximum

material degradation,
n+1δcr

min = max
(
nδcr

min,
n+1δcr

)
(A.18)

Another commonly used traction-separation law is an exponential law,

σcr =


σc exp

(
− σc
Gc

δcr
min

)
δcr

δcr
min

, δcr < nδcr
min

σc exp

(
− σc
Gc

δcr

)
, δcr ≥ nδcr

min

(A.19)
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⇒ ∂σcr

∂δcr
=


σcr

δcr
, δcr < nδcr

min

− σc
Gc

σcr , δcr ≥ nδcr
min

(A.20)

The crack separation displacement-crack strain relation of logarithmic strain,

shown in Eqn. (A.7), gives

∂δcr

∂ecr
= h exp (ecr) = δcr + h (A.21)

while for linear strain, namely engineering strain, one will have

δcr = hecr ⇒ ∂δcr

∂ecr
= h (A.22)

The material Jacobian matrix, ∂∆σ
∂∆ε

, can also be derived after solving ∆ecr. Taking

the variation of Eqn. (A.11) with respect to all quantities at the end of the increment

∂σcr

∂δcr

∂δcr

∂ecr

∣∣∣∣
n+1ecr

∂∆ecr = NTC∂∆ε−NTCN∂∆ecr

⇒ ∂∆ecr =
1

∂σcr

∂δcr
∂δcr

∂ecr

∣∣
n+1ecr

+NTCN
NTC∂∆ε (A.23)

Substituting Eqn. (A.23) into the variation form of Eqn. (A.9),

∂∆σ = C∂∆ε−CN∂∆ecr

=

(
C − 1

∂σcr

∂δcr
∂δcr

∂ecr

∣∣
n+1ecr

+NTCN
CNNTC

)
∂∆ε (A.24)

the material Jacobian matrix can be obtained

∂∆σ

∂∆ε
= C − CN (CN)T

∂σcr

∂δcr
∂δcr

∂ecr

∣∣
n+1ecr

+NTCN
(A.25)

Five intra-lamina failure modes can be modeled by the crack band model, shown

in Figure A.2, of which the micro-damage is initiated by maximum strain criteria.

(a) Fiber tensile failure

Damage initiation criterion: maximum fiber tensile strain

εf = ε11 ≥ X11T (A.26)
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Transformation vector:

NT =
{

1 0 0 0 0 0
}

(A.27)

(b) Fiber compressive failure

Damage initiation criterion: maximum fiber compressive strain

εf = ε11 ≤ −X11C (A.28)

Transformation vector:

NT =
{

1 0 0 0 0 0
}

(A.29)

(c) Matrix tensile failure

Damage initiation criterion: maximum matrix principle tensile strain

εmt =
1

2
(ε22 + ε33) +

1

2

√
(ε22 − ε33)2 + γ2

23 ≥ Y22T (A.30)

Transformation vector:

NT =
{

0 cos2 θmt sin2 θmt 0 0 2 cos θmt sin θmt

}
(A.31)

where

tan 2θmt =
γ23

ε22 + ε33
(A.32)

(d) Matrix compressive failure

Damage initiation criterion: maximum matrix principle compressive strain

εmc =
1

2
(ε22 + ε33)− 1

2

√
(ε22 − ε33)2 + γ2

23 ≤ −Y22C (A.33)

Transformation vector:

NT =
{

0 cos2 θmc sin2 θmc 0 0 2 cos θmc sin θmc

}
(A.34)

where

θmc = θmt +
π

2
(A.35)

(e) Fiber-matrix shear failure

Damage initiation criterion: maximum shear strain

γfm =
√
γ2

12 + γ2
13 ≥ S12 (A.36)
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Figure A.2: Intra-lamina failure modes of fiber-reinforced laminated composites that
are modeled as homogenous anisotropic material with the crack band model: (a)
fiber tensile failure; (b) fiber compressive failure; (c) matrix tensile failure; (d) matrix
compressive failure; (e) fiber-matrix shear failure.

Transformation vector:

NT =
{

0 0 0 cos θs sin θs 0
}

(A.37)

where

tan θs =
γ13

γ12

(A.38)

A.2 Experiment Results of Three-point Bend Tests

Static three-point bend tests were performed on 64-ply laminated composite beams

made of IM7/8552 graphite/epoxy 1. The stacking sequences and the dimensions of

the laminates are shown in Table A.1. For each type of laminate, three specimens

1Experiments were conducted by Solver I. Thorsson and Jaspar L. Marek.
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Table A.1: Stacking sequences and dimensions of laminate specimens.

Stacking sequences (from bottom to top)
Type-A (-458/+458/908/08)s
Type-B (+458/-458/08/908)s
Specimen length 152.4 mm
Supported span length 120 mm
Specimen width 12.7 mm
Total thickness 8.7 mm
Roller diameter 12.7 mm

were tested. Loading rate is 0.01 mm/s.

As shown in Figure A.3 and A.4, dominant failure modes of type-A and type-B

laminates are different. Type-A lamiantes shows progressive failure that combines

matrix cracking and delaminations, slowly propagating from bottom -45 plies to 90

plies. Since fiber tensile failure in these plies occurs in a higher load level, the trend

of propagation is suppressed by middle 0 plies. The energy is further dissplated by

delamination at the interface between 0 and lower 90 plies. In contrast, a catastrophic

failure event is observed for type-B laminates, as an interaction between shear cracks

in middle 90 plies and delaminations at adjacent interfaces. The characteristic zig-zag

crack pattern of type-B laminates is comparable to the failure initiating in the core

of a sandwich structure leading to delaminations at face sheet-core interfaces [115].

A.3 Results of Finite Element Simulations

FE analysis was performed using Abaqus/Explicit. Laminae were modeled by 3D

elements with reduced integration (C3D8R) of size 0.254 mm (L) × 0.254 mm (W)

× 0.22 mm (H). Structured meshes were used, or in other words, FE meshes of

each lamina were aligned with material axes of the lamina. The 3D crack band

model was implemented through a user subroutine VUMAT with considerations of

only intra-lamina failure modes observed in the experiments, including fiber tensile

failure and matrix tensile failure, as provided in Section A.4. Mixed-mode fracture

was not considered. To reduce computational costs, only laminae of interests were

simulated by the crack band model with element deletion: bottom -45, +45, 90

plies of type-A and middle 90 plies of type-B, while other laminae were assumed

elastic. Material properties and interfacial fracture properties are shown in Table A.2
2. Interfaces between plies of different fiber orientations were modeled by a cohesive

2Properties were measured from experiments, and provided by Ashith Joseph, Stewart Boyd,
Wooseok Ji, Solver Thorsson, Paul Davidson.
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Figure A.3: Failure progression observed in experiments of the type-A laminate spec-
imens (-458/+458/908/08)s. DIC contour shows the transverse strain field.
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Figure A.4: Failure progression observed in experiments of the type-B laminate spec-
imens (+458/-458/08/908)s. DIC contour shows the transverse strain field.
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Table A.2: Homogenized lamina properties and fracture properties of IM7/8552
graphite/epoxy.

Homogenized lamina properties
E11 154.46 GPa
E22 = E33 7.2 GPa
ν12 = ν13 0.34
ν23 0.412
G12 = G13 4.3 GPa
G23 2.55 GPa
Maximum strain
X11T 0.0147
X11C 0.0131
Y22T 0.0040
Y22C 0.0462
S12 0.0227
Fracture energy
G11Tc 40.5 N/mm
G11Cc 10.1 N/mm
G22Tc 0.15 N/mm
G22Cc 0.384 N/mm
G12c 2.184 N/mm
Interfacial fracture properties
σc 15 MPa
τc 28 MPa
GIc 0.3 N/mm
GIIc 2.184 N/mm

contact interaction using initial elastic stiffness Kn = Ks = Kt = 100 GPa/mm,

quadratic stress criterion (QUADS) for delamination initiation and linear power law

of fracture energy for delamination evolution. Delamination at the interfaces between

plies of same fiber orientations was not observed in the experiments and, therefore,

was not considered in the FE simulations. Thus, both type-A and type-B laminates

can be considered consisting of eight laminae and six interfaces. Loading and support

rollers were modeled by analytical rigid surfaces. Frictionless contact interactions

were assigned between rollers and the specimen. The loading rate was applied as a

velocity boundary condition on the loading roller. A mass scaling with DT=0.1 ms

was assigned to the entire system to further improve computational efficiency.

Damage progression obtained by the FE simulations for the type-A and the type-

B laminates are shown in Figure A.5 and A.6, respectively. For each laminate, a

front view on the x-z cross-sectional plane is provided. Additionally, damage extent

of the selected layers and interfaces are provided in a top (x-y) view. Damage extent

of intra-lamina failure modes were evaluated as a ratio of dissipated energy to the

critical value, and recorded by a solution dependent variable, SDV DAMAGESTATE, of

the user subroutine while the damage variable for evaluating delamination evolution
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Figure A.5: FE simulations of failure progression the type-A laminate specimens
(-458/+458/908/08)s. Contour plots show damage extent.
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6

Figure A.6: FE simulations of failure progression the type-B laminate specimens
(+458/-458/08/908)s. Contour plots show damage extent.

was provided as CSDMG. Both damage variables range from 0 to 1, where 0 (blue in the

contour plots) denotes an elastic, pre-damage state and 1 (red in the contour plots)

denotes a cracked state. Elements that reach the fully cracked state of intra-lamina

failure (SDV DAMAGESTATE=1) will be deleted so that the cracks are also visible in

the results of the FE simulations.

Good agreement in stiffness and failure loads of load-displacement responses can

be seen between the FE simulations and the experiment data, for both laminates.

The stable responses provided by the FE simulations suggest that the mass scaling

chosen is appropriate for simulating quasi-static tests.

As shown in Figure A.5, the failure progression observed in the experiments is

captured by the FE simulations for the type-A laminates. The initial failure is matrix

cracking in bottom -45 layer, which further induces delamination at the interface with

the adjacent +45 layer. As those matrix cracks extend in the width direction and more

cracks develop in the -45 layer, matrix cracks also initiate in +45 and 90 layers. The

large load drop of the load-displacement response, which indicates a loss of stiffness,

is caused by the development of through-width matrix cracks in those three layers

and a large delamination at the lower 90/0 interface. The ’noise’ seen in results at

the lower +45/90 interface may be caused by the mismatch of structured meshes in

the adjacent +45, 90 layers.

The failure progression is also well captured by the FE simulations for the type-B

laminates, as shown in Figure A.6. In experiments, strain concentration is initially

seen near the center location of middle 90 layer closed to its interface with lower

0 layer, as shown in Figure A.4. The FE simulations predict damage initiation at
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a similar location. Due to the existence of angle plies, the specimen is asymmetric

about the vertical center line. Therefore, the damage pattern is also asymmetric

as observed in both experiments and FE simulations. As the load increases, more

matrix cracks form, grow in the thickness direction with a -45 angle, and extend in

the width direction. Similarly, matrix cracks that initiate at the back face slowly

propagate through the width and arrive in the front face as +45-angle matrix cracks.

The ±45-angle matrix cracking seen in the cross-section of laminates is a typical

transverse shear failure mode. The load drop occurs when the characteristic zig-zag

crack pattern finally forms: one matrix crack becomes dominant and largely separates

between its surface, followed by complete delaminations in the adjacent interfaces.

Simulations of both types of laminates have some issues that need further im-

provement. In current results of type-A laminates, matrix cracks initially followed

the fiber orientation while the crack paths were not aligned later when the stress state

was disturbed by damage evolution in other layers. For type-B laminates, too many

matrix cracks were predicted by the FE simulations while only one or two cracks

were observed in the experiments. Considering that relatively simple fracture criteria

were implemented and the proposed 3D crack band model is a homogenized method

that does not distinguish fiber and matrix in real laminae, these issues were expected.

The FE simulations can yet be improved by assigning randomized fracture proper-

ties with a proper distribution, and adding considerations of other failure modes and

mixed-mode cases.

A.4 Source Code: User Subroutine VUMAT for

3D Crack Band Model

c Author: Jiawen Xie

c User subroutine VUMAT for 3D crack band mode

c

subroutine vumat (

c Read only -

* jblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal,

* stepTime, totalTime, dt, cmname, coordMp, charLength,

* props, density, strainInc, relSpinInc,

* tempOld, stretchOld, defgradOld, fieldOld,

* stressOld, stateOld, enerInternOld, enerInelasOld,

* tempNew, stretchNew, defgradNew, fieldNew,

c Write only -

* stressNew, stateNew, enerInternNew, enerInelasNew )

c

include 'vaba_param.inc'

c
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dimension jblock(*), props(nprops),density(*), coordMp(*),

1 charLength(*), strainInc(*),

2 relSpinInc(*), tempOld(*),

3 stretchOld(*),

4 defgradOld(*),

5 fieldOld(*), stressOld(*),

6 stateOld(*), enerInternOld(*),

7 enerInelasOld(*), tempNew(*),

8 stretchNew(*),

9 defgradNew(*),

1 fieldNew(*),

2 stressNew(*), stateNew(*),

3 enerInternNew(*), enerInelasNew(*)

c

character*80 cmname

c

parameter (

* i_umt_nblock = 1,

* i_umt_npt = 2,

* i_umt_layer = 3,

* i_umt_kspt = 4,

* i_umt_noel = 5 )

c

call vumatXtrArg ( jblock(i_umt_nblock),

* ndir, nshr, nstatev, nfieldv, nprops, lanneal,

* stepTime, totalTime, dt, cmname, coordMp, charLength,

* props, density, strainInc, relSpinInc,

* tempOld, stretchOld, defgradOld, fieldOld,

* stressOld, stateOld, enerInternOld, enerInelasOld,

* tempNew, stretchNew, defgradNew, fieldNew,

* stressNew, stateNew, enerInternNew, enerInelasNew,

* jblock(i_umt_noel), jblock(i_umt_npt),

* jblock(i_umt_layer), jblock(i_umt_kspt))

c

return

end

c -------------------------------------------------------------------------------

c NPROPS: 22

c

c props(1): E11

c props(2): E22

c props(2): E33

c props(3): nu12

c props(4): nu13

c props(5): nu23

c props(6): G12

c props(7): G13

c props(8): G23

c props(9): G23

c props(10): X11t

c props(11): X11c

c props(12): Y22t

c props(13): Y22c

c props(14): Z12

c props(15): G11t
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c props(16): G11c

c props(17): G22t

c props(18): G22c

c props(19): G12s

c props(20): length of the element

c props(21): width of the element

c props(22): height of the element

c -------------------------------------------------------------------------------

c NSTATEV: 23 (*DEPVAR, DELETE=3)

c

c statev(1): failure type: 0-no failure, 1-fiber tension, 2-fiber compression

c 3-matrix tension, 4-matrix compression, 5-fiber/matrix(12) shear

c statev(2): damage state: 0 (pristine) to 1 (completed failed)

c (ratio of energy dissipation)

c statev(3): delete_flag

c statev(4): N/A

c statev(5:10): strain at the beginning of the increment

c statev(11): epsFbr

c statev(12): epsMtxTen

c statev(13): epsMtxCmp

c statev(14): epsFbrMtxShr

c statev(15): crack angle thetaCr

c statev(16): charateristic length hCr

c statev(17): peak stress sig_c

c statev(18): equivalent crack strain epsEqCr

c statev(19): minimum equivalent crack strain epsEqCr

c statev(20): equivalent crack stress sigCr

c statev(21): energy dissipation Gdispp

c statev(22): energy dissipation ratio: Gdispp/Gc

c statev(23): crack separation displacement deltaEqCr

c -------------------------------------------------------------------------------

subroutine vumatXtrArg (

c Read only -

* nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal,

* stepTime, totalTime, dt, cmname, coordMp, charLength,

* props, density, strainInc, relSpinInc,

* tempOld, stretchOld, defgradOld, fieldOld,

* stressOld, stateOld, enerInternOld, enerInelasOld,

* tempNew, stretchNew, defgradNew, fieldNew,

c Write only -

* stressNew, stateNew, enerInternNew, enerInelasNew,

c Read only extra arguments -

* nElement, nMatPoint, nLayer, nSecPoint )

include 'vaba_param.inc'

c subroutine arguments

dimension props(nprops), density(nblock), coordMp(nblock,*),

1 charLength(nblock), strainInc(nblock,ndir+nshr),

2 relSpinInc(nblock,nshr), tempOld(nblock),

3 stretchOld(nblock,ndir+nshr),

4 defgradOld(nblock,ndir+nshr+nshr),

5 fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr),

6 stateOld(nblock,nstatev), enerInternOld(nblock),

7 enerInelasOld(nblock), tempNew(nblock),

8 stretchNew(nblock,ndir+nshr),

9 defgradNew(nblock,ndir+nshr+nshr),
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1 fieldNew(nblock,nfieldv),

2 stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev),

3 enerInternNew(nblock), enerInelasNew(nblock)

c

c Documentation of extra arguments:

c nElement: Array of internal element numbers

dimension nElement(nblock)

c nMatPoint: Integration point number

c nLayer : Layer number for composite shells and layered solids

c nSecPoint: Section point number within the current layer

c

character*80 cmname

c local variables

dimension epsOld(6), epsNew(6), deps(6), sigOld(6), sigNew(6), depsCr(6)

dimension Cmat(6,6), aNvec(6), aNtC(6)

parameter ( zero = 0.0d0, one = 1.0d0, two = 2.0d0 )

parameter ( ptTwoFive = 0.25d0, half = 0.5d0 )

parameter ( distSD = 0.05d0 )

parameter ( j_no_damage = 0,

* j_fbr_ten_damage = 1,

* j_mtx_ten_damage = 3)

parameter ( j_lnr_strain = 0,

* j_log_strain = 1)

parameter ( j_lnr_law = 0,

* j_exp_law = 1)

parameter ( epsEqCrInit = 1.0d-6 )

parameter ( tol = 1.0d-6 )

parameter ( PI = 3.1415926d0 )

parameter ( nIter = 30 )

c error reporting

character*256 str_err, charv_err

parameter ( nErrMax = 3 )

dimension intv_err(nErrMax), realv_err(nErrMax)

c -------------------------------------------------------------------------------

c * always using engineering shear strain

c * order of component in this file is

c VUMAT order: 11, 22, 33, 12, 23, 13

c -------------------------------------------------------------------------------

c

c read in properties

E11 = props(1)

E22 = props(2)

E33 = props(3)

anu12 = props(4)

anu13 = props(5)

anu23 = props(6)

G12 = props(7)

G13 = props(8)

G23 = props(9)

X11t = props(10)

X11c = props(11)

Y22t = props(12)

Y22c = props(13)

Z12 = props(14)

G11t = props(15)
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G11c = props(16)

G22t = props(17)

G22c = props(18)

G12s = props(19)

elemL = props(20)

elemW = props(21)

elemH = props(22)

c

iTypeStran = j_log_strain

iTypeLaw = j_lnr_law

c

c calculate 6x6 elasticity matrix from engineering constants

Cmat = zero

deltaMat = E11*(E22-E33*anu23**two)

$ -E22*(E22*anu12**two+E33*anu13*(anu13+two*anu12*anu23))

Cmat(1,1) = E11**two*(E22-E33*anu23**two)/deltaMat

Cmat(2,2) = E22**two*(E11-E33*anu13**two)/deltaMat

Cmat(3,3) = -E22*E33*(-E11+E22*anu12**two)/deltaMat

Cmat(1,2) = E11*E22*(E22*anu12+E33*anu13*anu23)/deltaMat

Cmat(2,1) = Cmat(1,2)

Cmat(1,3) = E11*E22*E33*(anu13+anu12*anu23)/deltaMat

Cmat(3,1) = Cmat(1,3)

Cmat(2,3) = E22*E33*(E22*anu12*anu13+E11*anu23)/deltaMat

Cmat(3,2) = Cmat(2,3)

Cmat(4,4) = G12

Cmat(5,5) = G23

Cmat(6,6) = G13

c

do i = 1,nblock

c

stateNew(i,1:nstatev) = stateOld(i, 1:nstatev)

c

c read in state variables

iCrackType = int(stateNew(i,1))

c

c strain increment

epsOld(1:6) = stateNew(i,5:10)

deps(1:3) = strainInc(i,1:3)

deps(4:6) = strainInc(i,4:6)*two

epsNew = epsOld + deps

stateNew(i,5:10) = epsNew

c old stress

sigOld(1:6) = stressOld(i,1:6)

c elastic preditor stress

sigNew = sigOld + matmul(Cmat, deps)

c

if (iCrackType .eq. j_no_damage) then

c

c critical strains

epsFbr = epsNew(1)

epsMtxTen = half*(epsNew(2)+epsNew(3)

$ +sqrt((epsNew(2)-epsNew(3))**two+epsNew(5)**two))

epsMtxCmp = half*(epsNew(2)+epsNew(3)

$ -sqrt((epsNew(2)-epsNew(3))**two+epsNew(5)**two))
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epsFbrMtxShr = sqrt(epsNew(4)**two+epsNew(6)**two)

c

stateNew(i,11) = epsFbr

stateNew(i,12) = epsMtxTen

stateNew(i,13) = epsMtxCmp

stateNew(i,14) = epsFbrMtxShr

c

if (epsFbr .ge. X11t) then ! fiber tensile failure

iCrackType = j_fbr_ten_damage

thetaCr = zero

hCr = elemL

aNvec = zero

aNvec(1) = one

G_c = G11t

else if (epsMtxTen .ge. Y22t) then ! matrix principal tension

iCrackType = j_mtx_ten_damage

c crack angle

if (abs(epsNew(2)-epsNew(3)) .lt. tol) then

if (abs(epsNew(5)) .lt. tol) then

thetaCr = zero

else if (epsNew(5) .gt. zero) then

thetaCr = PI*ptTwoFive

else

thetaCr = -PI*ptTwoFive

end if

else if (epsNew(2) .gt. epsNew(3)) then

thetaCr = half*atan(epsNew(5)/(epsNew(2)-epsNew(3)))

else

if (epsNew(5) .ge. zero) then

thetaCr = half*PI + half*atan( epsNew(5)

$ /(epsNew(2)-epsNew(3)) )

else

thetaCr = -half*PI + half*atan( epsNew(5)

$ /(epsNew(2)-epsNew(3)) )

end if

end if

c characteristic length

if (abs(tan(thetaCr)) .le. elemH/elemW) then

hCr = elemW/cos(thetaCr)

else

hCr = elemH/abs(sin(thetaCr))

end if

aNvec = zero

aNvec(2) = cos(thetaCr)**two

aNvec(3) = sin(thetaCr)**two

aNvec(5) = two*cos(thetaCr)*sin(thetaCr)

G_c = G22t

end if

c

if (iCrackType .ne. j_no_damage) then

damage_state = zero

sig_c = dot_product(aNvec, sigNew)

epsEqCr = epsEqCrInit

c

call getDeltaC(iTypeLaw, G_c, sig_c, delta_c)
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c

call getDelta(iTypeStran, hCr, epsEqCr,

* deltaEqCr, dummy)

c

if (sig_c .gt. zero) then !real tension

if (delta_c .le. deltaEqCr) then

intv_err = 0

intv_err(1) = iCrackType

intv_err(2) = nElement(i)

realv_err = zero

realv_err(1) = delta_c/deltaEqCr*hCr

!write(*,*) delta_c, deltEqCr, hCr

str_err = 'Error in crack type %I:

1element (#%I) size is too large,

2please make the characteristic length less than %R'

charv_err = ''

call XPLB_ABQERR(-1, str_err,

1 intv_err, realv_err, charv_err)

end if

c

stateNew(i,1) = float(iCrackType)

stateNew(i,2) = damage_state

stateNew(i,15) = thetaCr

stateNew(i,16) = hCr

stateNew(i,17) = sig_c

stateNew(i,18) = epsEqCr

stateNew(i,19) = epsEqCr

stateNew(i,20) = sig_c

stateNew(i,21) = zero

stateNew(i,22) = zero

stateNew(i,23) = deltaEqCr

end if

end if

else

damage_state = stateNew(i,2)

delete_flag = stateNew(i,3)

thetaCr = stateNew(i,15)

hCr = stateNew(i,16)

sig_c = stateNew(i,17)

epsEqCrOld = stateNew(i,18)

epsEqCrMin = stateNew(i,19)

Gdispp = stateNew(i,21)

ratioGdispp = stateNew(i,22)

c

aNvec = zero

if (iCrackType .eq. j_fbr_ten_damage) then

aNvec(1) = one

G_c = G11t

else if (iCrackType .eq. j_mtx_ten_damage) then

aNvec(2) = cos(thetaCr)**two

aNvec(3) = sin(thetaCr)**two

aNvec(5) = two*cos(thetaCr)*sin(thetaCr)

G_c = G22t

end if

c
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call getDeltaC(iTypeLaw, G_c, sig_c, delta_c)

aNtC = matmul(Cmat, aNvec) ! NtC = NT*Cmat = (Cmat*N)T

aNtCN = dot_product(aNtC, aNvec)

aNtSig = dot_product(aNvec, sigNew)

c

call getDelta(iTypeStran, hCr, epsEqCrMin,

* deltaEqCrMin, dummy)

c

depsEqCr = zero

do iter = 1, nIter

c

call getDelta(iTypeStran, hCr, epsEqCrOld + depsEqCr,

* deltaEqCr, ddeltadeps)

c

call getSig(iTypeLaw, damage_state,G_c,sig_c,delta_c,

* deltaEqCrMin, deltaEqCr,

* sigCr, dsigddelta, dummy)

c

rhs = sigCr - aNtSig + aNtCN*depsEqCr

drhs = dsigddelta*ddeltadeps + aNtCN

depsEqCrInc = -rhs/drhs

depsEqCr = depsEqCr + depsEqCrInc

if (epsEqCrOld+depsEqCr .lt. epsEqCrInit .or.

* abs(depsEqCrInc/(epsEqCrOld+depsEqCr)).lt.tol) then

exit

end if

end do

if (iter .gt. nIter) then

intv_err = 0

intv_err(1) = iter

intv_err(2) = iCrackType

intv_err(3) = nElement(i)

realv_err = zero

realv_err(1) = depsEqCrInc

realv_err(2) = epsEqCrOld+depsEqCr

realv_err(3) = realv_err(1)/realv_err(2)

str_err = 'Error in finding depsEqCr:

1too many iterations (%I) attemped,

2crack type %I, element (#%I), depsEqCrInc/epsEqCr=%R/%R=%R'

charv_err = ''

call XPLB_ABQERR(-1, str_err,

1 intv_err, realv_err, charv_err)

end if

epsEqCrNew = epsEqCrOld + depsEqCr

depsCr = depsEqCr*aNvec

c update stress

sigNew = sigNew - matmul(Cmat, depsCr)

c

call getDelta(iTypeStran, hCr, epsEqCrNew,

* deltaEqCrNew, dummy)

c

call getSig(iTypeLaw, damage_state, G_c, sig_c, delta_c,

* deltaEqCrMin, deltaEqCrNew,

* sigCr, dummy, ratioGdispp)
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c

damage_state = ratioGdispp

Gdispp = ratioGdispp*G_c

c

if (damage_state .ge. one) then

delete_flag = zero

end if

c

stateNew(i,2) = damage_state

stateNew(i,3) = delete_flag

stateNew(i,18) = epsEqCrNew

stateNew(i,19) = max(epsEqCrNew, epsEqCrMin)

stateNew(i,20) = sigCr

stateNew(i,21) = Gdispp

stateNew(i,22) = ratioGdispp

stateNew(i,23) = deltaEqCrNew

end if

c update state variables

stressNew(i,1:6) = sigNew

c

end do

return

end

c --------------------------------------------------------

c obtain delta from eps based on strain selection

subroutine getDelta(iTypeStran, h, eps,

* delta, ddeltadeps)

include 'vaba_param.inc'

c local parameters

parameter ( j_lnr_strain = 0,

* j_log_strain = 1)

parameter (zero = 0.d0, one = 1.d0)

c

if (iTypeStran .eq. j_lnr_strain) then

delta = h*eps

ddeltadeps = h

else if (iTypeStran .eq. j_log_strain) then

delta = h*(exp(eps)-one)

ddeltadeps = delta + h

end if

return

end

c --------------------------------------------------------

c obtain critial separation based on law selection

subroutine getDeltaC(iTypeLaw, G_c, sig_c, delta_c)

include 'vaba_param.inc'

c local parameters

parameter ( j_lnr_law = 0,

* j_exp_law = 1)

parameter (zero = 0.d0, one = 1.0d0, two = 2.0d0)

parameter (tol = 1.d-3)

c

if (iTypeLaw .eq. j_lnr_law) then

delta_c = two*G_c/sig_c

else if (iTypeLaw .eq. j_exp_law) then
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delta_c = -G_c/sig_c*log(tol)

end if

return

end

c --------------------------------------------------------

c obtain sig from delta based on law selection

subroutine getSig(iTypeLaw, damage_state, G_c, sig_c, delta_c,

* deltaMin, delta,

* sig, dsigddelta, ratioGdispp)

include 'vaba_param.inc'

c local parameters

parameter ( j_lnr_law = 0,

* j_exp_law = 1)

parameter (zero = 0.d0, one = 1.0d0, two = 2.0d0)

c

if(damage_state .lt. one) then

if (delta .ge. deltaMin

$ .and. delta .lt. delta_c) then

if (iTypeLaw .eq. j_lnr_law) then

sig = sig_c*(one-delta/delta_c)

dsigddelta = -sig_c/delta_c

ratioGdispp = one - (sig/sig_c)**two

else if (iTypeLaw .eq. j_exp_law) then

sig = sig_c*exp(-sig_c/G_c*delta)

dsigddelta = -sig_c/G_c*sig

ratioGdispp = one-sig/sig_c

end if

else if (delta .ge. delta_c) then

sig = zero

dsigddelta = zero

ratioGdispp = one

else

if (iTypeLaw .eq. j_lnr_law) then

slope = sig_c*(one/deltaMin-one/delta_c)

else if (iTypeLaw .eq. j_exp_law) then

slope = sig_c*exp(-sig_c/G_c*deltaMin)

$ /deltaMin

end if

sig = slope*delta

dsigddelta = slope

end if

else

sig = zero

dsigddelta = zero

ratioGdispp = one

end if

return

end
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APPENDIX B

3D Effects of Laminated Beam Containing

Off-axis Angle Plies

The elasticity approach, proposed by [4], and discussed in Chapter 2 and 3, assumes

a plane-strain state in the width direction so that the problems are reduced to 2D.

Similar formulations can also be obtained with a plane-stress assumption. With either

assumption, the approach naturally neglects in-plane extension-shear coupling terms

of the stiffness matrix, C16 and C26. The 2D simplifications are valid for cross-ply

laminates since the in-plane extension-shear coupling terms are all zero. Therefore,

it is of interest to evaluate the capability of the 2D approach in modeling laminates

containing off-axes angle plies, which have more practical applications.

The 2D elasticity approach (2D Elastic.) and classical lamination beam theory

(1D CLT) have been applied to analyze three-point bend tests of laminated composite

beams with a stacking sequence (+454/-454/04/904)s. As a result of the plane-strain

(PE) or the plane-stress (PS) assumption, those analytical approaches have a linear

scaling with the width of laminated beams. To investigate the effect of width scaling,

laminated beams with two different widths were analyzed. Dimensions of the beams

are shown in Table B.1. Material properties are shown in Table A.2. As shown

in Figure B.1, elastic flexural responses obtained by the analytical approaches were

further compared against experiment results 1 as well as results of FE simulations

with Abaqus/Standard using different element types, including 2D plane-strain ele-

ments (CPE4), 2D plane-stress elements (CPS4), 3D shell elements (S4R) and 3D

solid elements (C3D8R). Note that the nonlinearity of experiment-measured curves is

caused by progressions of micro-damage rather than the material nonlinearity. The

2D elasticity solutions are found in perfect agreement with 2D FE simulations with

the plane-strain and the plane-stress assumptions, respectively. However, among all

analytical and numerical methods, only FE simulations using 3D elements can well

1Experiments were conducted by Solver I. Thorsson and Jaspar L. Marek.
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capture the experiment measurements. The results of 1D CLT with both plane-

stress assumptions in the thickness and the width direction coincidentally matches

the experiment results of the narrower specimen. Figure B.1 indicates that modeling

laminates containing off-axes angle plies is a 3D problem: neither plane-strain nor

plane-stress assumption is valid.

Table B.1: Dimensions of laminate.

Specimen length 152.4 mm
Supported span length 120 mm
Specimen width 12.7 mm or 50.8 mm
Total thickness 4.5 mm
Roller diameter 12.7 mm

To further investigate the capability of the 2D approaches, parametric studies of

fiber orientation θ of angle plies on flexural stiffness of laminated beams with stack-

ing sequences (+θ4/-θ4/04/904)s have been performed. Comparisons of the results

obtained by different analytical and numerical methods are shown in Figure B.2.

Perfect agreement can be found between results of the 2D elasticity approach and 2D

FE simulations with the same assumptions, proving the accuracy of the 2D elasticity

approach. As shown in Figure B.2, when θ is small (θ < 5◦) or large (θ > 55◦),

the laminates can be modeled with the plane-strain or the plane-stress simplification,

respectively. However, the problem can be fully 3D for θ ranging from 5◦ to 55◦

since the in-plane extension-shear couplings are important and therefore, cannot be

neglected in the angle plies. The effect of width scaling can also be seen by comparing

the results of the narrower and the wider specimens shown in Figure B.2. 2D elastic-

ity approach, 1D CLT and 2D FE simulations are all linearly scaling with the width,

while 3D FE simulations suggests the scaling is nonlinear. The range of angles that

is applicable for plane-strain, plane-stress or 3D modeling can vary with the width

and the stacking sequences of laminates.
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Figure B.1: Load-displacement responses of laminates (+454/-454/04/904)s with two
different width, 12.7 mm and 50.8 mm, by using different theories and elements. (PE:
plane strain, PS: plane stress).
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Figure B.2: Parametric studies of the fiber orientation θ on the flexural stiffness of
laminates (+θ4/-θ4/04/904)s by using different theories and numerical models.
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APPENDIX C

Simple Beam Theory (SBT) Solutions

C.1 The DCB Test

Before the growth of delamination, a = a0,

P =
3Ds

2a3
0

∆ (C.1)

where Ds is the effective bending stiffness of the sub-beam under plane-strain assump-

tion in the width direction. For isotropic material, Ds = E
1−ν2

bh3

12
. When the crack

propagates, a0 < a < 2L, using the compliance method for linear elastic material [3],

the energy release rate is

GI =
a2

bDs

P 2 (C.2)

By letting GI = GIc, the load-displacement response can be obtained

∆ =
2Pa3

3Ds

=
2(bGIc)

3/2D
1/2
s

3P 2
(C.3)

where

P =
(bDsGIc)

1/2

a
(C.4)

When the beam is fully split, a = 2L,

P =
3Ds

2(2L)3
∆ =

3Ds

16L3
∆ (C.5)

If the material is isotropic, the equations above will be the same as those in Ref.[22].
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C.2 The ENF Test

Before the growth of delamination, if a = a0 < L,

P =
24DDs

(D − 2Ds)a3
0 + 4DsL3

∆ (C.6)

or a = a0 > L,

P =
24DDs

−(D − 2Ds)(2L− a0)3 + 2DL3
∆ (C.7)

where D is the effective bending stiffness of the whole beam. For isotropic material,

D = E
1−ν2

b(2h)3

12
= 8Ds. When the crack propagates but not yet reaching the mid-span

of the specimen, a < L, the energy release rate is

GII =
(D − 2Ds)a

2

16bDDs

P 2 (C.8)

By letting GII = GIIc, the load-displacement response can be obtained

∆ =
1

24DDs

(
(16bDDsGIIc)

3/2

(D − 2Ds)1/2

1

P 2
+ 4DsL

3P

)
(C.9)

where

P =

(
16bDDsGIIc

D − 2Ds

)1/2
1

a
(C.10)

After the crack propagating beyond the mid-span, a > L, the energy release rate is

GII =
(D − 2Ds)(2L− a)2

16bDDs

P 2 (C.11)

The corresponding flexural response is

∆ =
1

24DDs

(
−(16bDDsGIIc)

3/2

(D − 2Ds)1/2

1

P 2
+ 2DL3P

)
(C.12)

where

P =

(
16bDDsGIIc

D − 2Ds

)1/2
1

2L− a (C.13)

Finally, when the beam is fully split, a = 2L,

P =
12Ds

L3
∆ (C.14)

If the material is isotropic, the equations above will be the same as those in Ref.[22].
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C.3 The MMB Test

Initially, if a = a0 < L, the MMB configuration can be superposed by the DCB con-

figuration subject to opening forces PI = 3C−L
4L

P and the ENF configuration subject

to center loading PII = C+L
L
P [79, 22],

∆E =
2a3

0

3Ds

PI

∆C =
(D − 2Ds)a

3
0 + 4DsL

3

24DDs

PII −
a3

0

6Ds

PI

(C.15)

or a = a0 > L, the DCB configuration has an additional pair of center forces, PII/2,

because the crack is opened at the mid-span [86],

∆E =
2a3

0

3Ds

PI −
(a0 − L)2(2a0 + L)

6Ds

PII

∆C =
−(D − 2Ds)(2L− a0)3 + 2DL3

24DDs

PII −
1

6Ds

(
(a0 − L)2(2a0 + L) + a3

0

)
PI . . .

+
1

6Ds

(
(a0 − L)3 +

1

4
(a0 − L)2(2a0 + L)

)
PII (C.16)

Note that the DCB configuration needs an infinitesimal rigid-body rotation, which

is expressed by the additional terms in above equations comparing to the DCB and

ENF load-displacement response, to accommodate the boundary conditions of the

MMB test [49]. When the crack has not propagated to the mid-span of the specimen,

a < L, the total energy rate can be obtained by the compliance method as well [49].

The energy release rate of different modes are

GI =
a2

bDs

P 2
I =

a2

bDs

(
3C − L

4L

)2

P 2

GII =
(D − 2Ds)a

2

16bDDs

P 2
II =

(D − 2Ds)a
2

16bDDs

(
C + L

L

)2

P 2

(C.17)

The mode mixity is independent of the crack length

GII

G
=

GII

GI +GII

=
1

D
D−2Ds

(
3C−L
C+L

)2
+ 1

(C.18)
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If the power law [83] with the coefficient α = 1 is used as the failure criterion for

crack propagation, the load-displacement response is

∆E =
2a3

3Ds

3C − L
4L

P

∆C =

(
(D − 2Ds)a

3 + 4DsL
3

24DDs

C + L

L
− a3

6Ds

3C − L
4L

)
P

(C.19)

where

P =

(
16bDsL

2

(3C−L)2

GIc
+ D−2Ds

D
(C+L)2

GIIc

)1/2
1

a
(C.20)

The application of other failure criteria, such as B-K criterion [84], will be obtained

by analogy. After the crack propagates beyond the mid-span, a > L, the energy

release rate is

GI =
1

bDs

(
aPI − (a− L)

PII

2

)2

=
1

bDs

(
a

3C − L
4L

− (a− L)
C + L

2L

)2

P 2

GII =
(D − 2Ds)(2L− a)2

16bDDs

P 2
II =

(D − 2Ds)(2L− a)2

16bDDs

(
C + L

L

)2

P 2 (C.21)

The mode mixity depends on the crack length

GII

G
=

1
D

D−2Ds
1

(2L−a)2

(
a3C−L
C+L

− 2(a− L)
)2

+ 1
(C.22)

The corresponding flexural response when using linear power law (α = 1)

∆E =

(
2a3

3Ds

3C − L
4L

− (a− L)2(2a+ L)

6Ds

C + L

L

)
P

∆C =

(−(D − 2Ds)(2L− a)3 + 2DL3

24DDs

C + L

L
. . .

− 1

6Ds

(
(a− L)2(2a+ L) + a3

) 3C − L
4L

. . .

+
1

6Ds

(
(a− L)3 +

1

4
(a− L)2(2a+ L)

)
C + L

L

)
P

(C.23)

where

P =

(
1

bDsGIc

(
a

3C − L
4L

− (a− L)
C + L

2L

)2

+
(D − 2Ds)(2L− a)2

16bDDsGIIc

(
C + L

L

)2
)−1/2

(C.24)
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It should be noticed that the crack tip may be closed when a > L. At this time,

the propagation of crack will be purely mode II driven. The closure condition of the

crack tip is

PI

PII

<
a− L

2a
⇔ L

3
≤ C < L and a ≥ ac ≡

2(C + L)

3L− C L (C.25)

which has also been studied in Ref.[86]. The crack is closed in the region of 2L− a <
x < 2L − ac while opened in 2L − ac < x < 2L. The energy release rate is purely

mode II

GI = 0 , GII =
(D − 2Ds)(2L− a)2

16bDDs

(
C + L

L

)2

P 2,
GII

G
= 1 (C.26)

The corresponding flexural response can be obtained by letting GII = GIIc

∆E =

(
2a3

c

3Ds

3C − L
4L

− (ac − L)2(2ac + L)

6Ds

C + L

L

)
P

∆C =

(−(D − 2Ds)(2L− a)3 + 2DL3

24DDs

C + L

L
. . .

− 1

6Ds

(
(ac − L)2(2ac + L) + a3

c

) 3C − L
4L

. . .

+
1

6Ds

(
(ac − L)3 +

1

4
(ac − L)2(2ac + L)

)
C + L

L

)
P

(C.27)

where

P =

(
16bDDsGIIc

D − 2Ds

)1/2
L

C + L

1

2L− a (C.28)
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APPENDIX D

Derivation of Additional Continuity in

Estimated CZM Solutions

Consider a laminated composite panel, of which the axial coordinate of its left and

right ends are x = x1 and x = x2, respectively. A state of plane-strain (cylindrical

bending) is assumed in the width direction. Based on the CLT, the only non-vanishing

strain component is

εx =
du

dx
− zd2w

dx2
(D.1)

where u and w are the axial and transverse displacements of the mid-plane, respec-

tively. Therefore, the strain energy of the laminated composite panel is

U =
1

2

∫
V
σijεijdV =

1

2

∫ x2

x1

∫ b

0

∫ h/2

−h/2
Q̄

(k)
11 ε

2
11dzdydx

=
1

2

∫ x2

x1

∫ b

0

∫ h/2

−h/2
Q̄

(k)
11

((
du

dx

)2

− 2z
du

dx

d2w

dx2
+ z2

(
d2w

dx2

)2
)

dzdydx (D.2)

where Q̄
(k)
ij are the stiffness for kth lamina [7]. The axial, bending-axial coupling, and

bending stiffness of the beam are defined as

[
Aij, Bij, Dij

]
=

∫ b

0

∫ h/2

−h/2
Q̄

(k)
ij

[
1, z, z2

]
dzdy (D.3)

Therefore, the strain energy can be expressed as

U =
1

2

∫ x2

x1

(
A11

(
du

dx

)2

− 2B11
du

dx

d2w

dx2
+D11

(
d2w

dx2

)2
)

dx

=
1

2

∫ x2

x1

(
Nx

du

dx
−Mx

d2w

dx2

)
dx (D.4)
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The virtual strain energy is

δU =
1

2

(
Nx

du

dx
−Mx

d2w

dx2

) ∣∣∣∣
x=x2

δx2 −
1

2

(
Nx

du

dx
−Mx

d2w

dx2

) ∣∣∣∣
x=x1

δx1

+

∫ x2

x1

(
Nx

dδu

dx
−Mx

d2δw

dx2

)
dx

=

(
Nxδu−Mx

dδw

dx
+

dMx

dx
δw +

1

2

(
Nx

du

dx
−Mx

d2w

dx2

)
δx

) ∣∣∣∣x2
x1

−
∫ x2

x1

(
dNx

dx
δu+

d2Mx

dx2
δw

)
dx (D.5)

If x1 is known, δx1 = 0. Similarly, δx2 = 0 if x2 is known.

Then consider the problem shown in Figure 5.1. The strain energy of the beam is

Ubeam = U1 + U2 + U3u + U3l + U4u + U4l

=
1

2

∫ −L+a

−2L+a

(
N1

du1

dx
−M1

d2w1

dx2

)
dx+

1

2

∫ −r
−L+a

(
N2

du2

dx
−M2

d2w2

dx2

)
dx

+
1

2

∫ 0

−r

(
N3u

du3u

dx
−M3u

d2w3u

dx2
+N3l

du3l

dx
−M3l

d2w3l

dx2

)
dx

+
1

2

∫ a

0

(
N4u

du4u

dx
−M4u

d2w4u

dx2
+N4l

du4l

dx
−M4l

d2w4l

dx2

)
dx (D.6)

The strain energy stored in the cohesive zone is

UCZ =

∫ 0

−r

∫ b

0

(∫
σ(∆w3)d∆w3 +

∫
τ(∆u3)d∆u3

)
dydx

=

∫ 0

−r

(
bKN2

(
∆wc −

1

2
∆w3

)
∆w3 + bKS2

(
∆uc −

1

2
∆u3

)
∆u3

)
dx (D.7)

The work done by external applied loads P1 and P2 is

W = P1w4u(a)− P2w2(−L+ a) (D.8)

The total potential energy of the system is

Π = Ubeam + UCZ −W (D.9)

The principle of minimum potential energy requires δΠ = 0. Collecting the terms
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that contains δr, we have

0 = δrΠ = −1

2

(
N2

du2

dx
−M2

d2w2

dx2

) ∣∣∣∣
x=−r

δr

+
1

2

(
N3u

du3u

dx
−M3u

d2w3u

dx2
+N3l

du3l

dx
−M3l

d2w3l

dx2

) ∣∣∣∣
x=−r

δr

+ bKN2

(
∆wc −

1

2
∆w3

)
∆w3

∣∣∣∣
x=−r

δr

+ bKS2

(
∆uc −

1

2
∆u3

)
∆u3

∣∣∣∣
x=−r

δr (D.10)

Consider the continuities at the cohesive zone tip x = −r,

w2 = w3u = w3l ⇒ ∆w3(−r) = 0

u2 = u3u +
h

2

dw3u

dx
= u3l −

h

2

dw3l

dx
⇒ ∆u3(−r) = 0

(D.11)

Therefore, the additional continuity at x = −r is

N2
du2

dx
−M2

d2w2

dx2
= N3u

du3u

dx
−M3u

d2w3u

dx2
+N3l

du3l

dx
−M3l

d2w3l

dx2
(D.12)

The governing equations as well as other boundary conditions and continuities

can also be derived from the principle of minimum potential energy.
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APPENDIX E

Coefficients of Estimated Solutions of

CZM

E.1 Coefficients in the Solutions of the DCB Con-

figuration

For the reduced DCB configuration, we have nine boundary conditions and continu-

ities, shown in Eqn. (5.19-5.22). Therefore, eight coefficients cj, dj (j = 1 − 4) and

the external load P can be expressed by the process zone length r:

c1 = −−1 + cosh(αr) (cos(αr)− aα sin(αr)) + sinh(αr) (aα cos(αr) + sin(αr))

4 (aα cos(αr) + aα cosh(αr) + sin(αr) + sinh(αr))
∆wc

c2 = −aα sin(αr) + cosh(αr)

sin(αr)− sinh(αr)
c1 +

aα sin(αr)− cos(αr)

sin(αr)− sinh(αr)
c3

c3 =
−1 + cosh(αr) (cos(αr)− aα sin(αr)) + sinh(αr) (aα cos(αr)− sin(αr))

−1 + cosh(αr) (cos(αr)− aα sin(αr)) + sinh(αr) (aα cos(αr) + sin(αr))
c1

c4 = aα(c1 − c3) + c2

d1 = α3(c1 − c3)

d2 = α2(c2 − c4)

d3 = α(c1 + c3)

d4 = c2 + c4 +
∆wc

2

P = −Dsd1 (E.1)
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where α is a constant shown in Eqn. (5.18). The end opening ∆ and the opening of

the crack tip ∆wB are

∆ = 2w4u(a) =
1

3
a3d1 + a2d2 + 2ad3 + 2d4

∆wB = 2w4u(0) = 2d4

(E.2)

E.2 Coefficients in the Solutions of the ENF Con-

figuration

For the ENF configuration, we have twenty-nine boundary conditions and continuities,

shown in Eqn. (5.19-5.22). Therefore, twenty-eight coefficients aj, bj (j = 1− 6), cj,

dj (j = 1− 8) and the external load P can be expressed by the process zone length r:

a1 = −
(
R2

1 +
R3

R2

)
β2

a
c2

a2 = −(−2L+ a)a1

a3 =
1

2
(−L+ a)2(a1 − b1) + b3

a4 =
1

3
(−2L+ a)3a1 − (−2L+ a)a3

a5 = a6 = 0

b1 =

(
R2

1 +
R3

R2

)
β2

a
c2

b2 = La1 − (−L+ a)b1

b3 = β cos(βr)c1 −
(
r(2a+ r)

2a
R2

1β − sin(βr)

)
βc2 + c5

b4 = −1

6
L
(
3(−2L+ a)2 − L2

)
a1 +

1

6
(−5L+ 2a)(−L+ a)2b1 − (−2L+ a)b3

b5 = b6 = 0

c1 =
± (a+ r)R1 + a cos(βr)

a sin(βr)
c2

c2 = − a sin(βr)

2(R2 +R3) (sin(βr) + aβ + (a+ r)R1β cos(βr))
∆uc

c3 =
R3

R2

β2

a
c2

c4 = −R3

R2

β2c2
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c5 = −aβ − (−2L+ a+ r)β cos(βr) + sin(βr)

2L
c1

+

(
a2β2 + 3(cos(βr)− 1) + 3(−2L+ a+ r)β sin(βr)

6L
. . .

+
R3

R2

β2

2a
(−L2 + a2)− R2

1β
2

6aL

(
3L3 − 3(a+ r)2L+ (a+ r)3

))
c2

c6 = −aβc1 +

((
1 +

R3

R2

)
a2β2

3
− 1

)
c2 − ac5

c7 = R3β
2c2 +

(
R2− h

2

)
c4

c8 = −(R2 +R3)β cos(βr)c1 − (R2 +R3)β sin(βr)c2 −
h

2
c5

d1 =

(
R2

R3

+ 1

)
c3

d2 = −
(

1 +
R3

R2

)
β2c2

d3 = βc1 + c5

d4 = c2 + c6

d5 =

(
R2 −

h

2

)
d2

d6 =

(
R2 +R3 −

h

2

)
βc1 + c8

d7 = −
(
R2 −

h

2

)
d2

d8 =

(
(R2 +R3)(2 cos(βr)− 1) +

h

2

)
βc1 + 2(R2 +R3)β sin(βr)c2 + hc5 + c8

P = D11(a1 − b1) (E.3)

where β, R1, R2 and R3 are constants shown in Eqn. (5.32), (5.36), (5.30). The

center deflection ∆ and the separation displacement of crack tip ∆uB are

∆ = −w2(−L+ a) = −1

6
(−L+ a)3b1 −

1

2
(−L+ a)2b2 − (−L+ a)b3 − b4

∆uB = u4u(0)− u4l(0) + hw4u(0) = hd4 + d6 − d8 (E.4)
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Additionally, the coefficients imply that

c7 = − (hc4 + c7)

c8 = −
(
− 2

β2
R2

(
1 +

R2

R3

)
c3 + hc5 + c8 −∆uc

)
d5 = −d7

d6 = −d8

(E.5)

Therefore, antisymmetric expressions for the upper and lower sub-laminates are ob-

tained as,

u3u(x) = −u3l(x) , u4u(x) = −u4l(x) (E.6)
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APPENDIX F

Transverse Shear Stiffness for Laminated

Plates

Following Ref. [119], consider only bending and shear of a laminated plate with

an assumption of cylindrical bending along the width direction. Therefore, force

resultants are zero except Mx and Qx, and all derivatives with respect to y are zero.

Assume the reference plane associated with pure bending in the x-direction, de-

noted as z = zx0, is not necessarily the mid-plane (z = z0 = 0). Thus, in-plane strain

has the form

ε = ε0 + (z − zx0)χ (F.1)

where mid-plane strain can be represented by force resultants as the inverse of the

laminate constitutive relation in Eqn. (6.3a){
ε0

χ

}
=

[
A B

B D

]−1{
N

M

}
≡H

{
N

M

}
(F.2)

Substituting Eqn. (F.1) and (F.2) into lamina stress-strain relation

σ = Q̄
k
ε (F.3)

the normal stress in x-direction for the kth lamina can be written as

σkx =
(
Bk
x1 + (z − zx0)Bk

x2

)
Mx (F.4)

where
Bk
x1 = Qk

11H14 +Qk
12H24 +Qk

16H34

Bk
x2 = Qk

11H44 +Qk
12H54 +Qk

16H64

(F.5)
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Further combined Eqn. (F.4) with a stress equilibrium in the x-direction

∂σkx
∂x

+
∂τ kxz
∂z

= 0 (F.6)

and a moment equilibrium about the y-axis

Qx =
∂Mx

∂x
(F.7)

one will get a relation between laminate shear force resultant and lamina transverse

shear stress
∂τ kxz
∂z

= −
(
Bk
x1 + (z − zx0)Bk

x2

)
Qx (F.8)

Integrating Eqn. (F.8) through the thickness of the laminate, and using boundary

conditions and continuities

at z = z1 = −h/2 : τ 1
xz = 0

at z = zn+1 = h/2 : τnxz = 0

at z = zk : τ kxz = τ k+1
xz

(F.9)

gives the transverse shear stress for the kth lamina

τ kxz = −
(

1

2
(z − zk)2Bk

x2 + (z − zk) B̃k
x1 +Bk

x0

)
Qx (F.10)

where

B̃k
x1 = Bk

x1 + (zk − zx0)Bk
x2

Bk
x0 =

k−1∑
i=1

ti

(
1

2
tiB

i
x2 + B̃i

x1

)

zx0 =

∑N
k=1 tk

(
Bk
x1 + 1

2
(zk+1 + zk)B

k
x2

)∑N
k=1

(
tkBk

x2

)
=
A11H14 + A12H24 + A16H34 +B11H44 +B12H54 +Q16H64

A11H44 + A12H54 + A16H64

= 0

(F.11)

and tk is the thickness of the kth lamina.

Eqn. (F.11) indicates that the reference plane associated with pure bending in

the x-direction is the reference plane chosen for formulation, which is the mid-plane

in this paper 1.

1It can also be proven that zx0 = z0 is true even if the reference plane (z = z0 6= 0) is offset from
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Similarly, assuming pure bending in the y-direction gives

τ kyz = −
(

1

2
(z − zk)2Bk

y2 + (z − zk) B̃k
y1 +Bk

y0

)
Qx (F.12)

Consider that shear strain energy computed by transverse force resultants of lam-

inate is equivalent to an integration of shear strain energy density of lamina,

1

2

{
Qx Qy

}
F ts

{
Qx

Qy

}
=

1

2

n∑
k=1

∫ zk+1

zk

{
τxz τyz

}
S̄
k

{
τxz

τyz

}
(F.13)

where lamina transverse shear compliance matrices are

S̄
k

=

[
Q̄k

44 Q̄k
45

Q̄k
45 Q̄k

55

]−1

, k = 1, 2, . . . , n (F.14)

For 0-ply, Q̄44 = G12, Q̄55 = G23, Q̄45 = 0. Substituting Eqn. (F.8) and (F.12) to

Eqn. (F.13) and performing an through-the-thickness integration gives the transverse

shear compliance component of laminate

F ts
11 =

n∑
k=1

S̄k44tk

[ (
Bk
x0

)2
+ tkB

k
x0B̃

k
x1

+
1

3
t2k

((
B̃k
x1

)2

+Bk
x0B

k
x2

)
+

1

4
t3kB̃

k
x1B

k
x2 +

1

2
t4k
(
Bk
x2

)2

]

F ts
22 =

n∑
k=1

S̄k55tk

[ (
Bk
y0

)2
+ tkB

k
y0B̃

k
y1

+
1

3
t2k

((
B̃k
y1

)2

+Bk
y0B

k
y2

)
+

1

4
t3kB̃

k
y1B

k
y2 +

1

2
t4k
(
Bk
y2

)2

]

F ts
12 =

n∑
k=1

S̄k45tk

[
Bk
x0B

k
y0 +

1

2
tk

(
Bk
x0B̃

k
y1 + B̃k

x1B
k
y0

)
+

1

3
t2k

(
B̃k
x1B̃

k
y1

+
1

2

(
Bk
x0B

k
y2 +Bk

x2B
k
y0

))
+

1

8
t3k

(
B̃k
x1B

k
y2 +Bk

x2B̃
k
y1

)
+

1

2
t4kB

k
x2B

k
y2

]
(F.15)

Transverse shear stiffness can be further obtained as

Kts =
[
F ts
]−1

(F.16)

the midplane.
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For an orthotropic plate, Bx0 = By0 = 0. The plate is naturally symmetric about

its mid-plane, B = 0, and the laminate compliance matrix is

H =

[
1
h
Q−1

12
h3
Q−1

]
(F.17)

resulting in Bx1 = By1 = 0, Bx2 = By2 = 12
h3

, B̃x1 = B̃y1 = − 6
h2

. Therefore,

Kts
11 = 5

6
G12h, Kts

22 = 5
6
G23h, Kts

12 = 0, where 5
6

is the shear correction factor known

for orthotropic plates.
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APPENDIX G

Closed-form Solutions for Cross-ply

Laminates

For cross-ply laminates,

Q̄k
16 = Q̄k

26 = Q̄k
45 = 0(k = 1, 2, . . . , n)

⇒ A16 = A26 = 0 , B16 = B26 = 0 , D16 = D26 = 0 , Kts
12 = 0 (G.1)

Governing equations are 

∂Nx

∂x
+
∂Nxy

∂y
= 0

∂Nxy

∂x
+
∂Ny

∂y
= 0

∂Qx

∂x
+
∂Qy

∂y
= q(x, y)

∂Mx

∂x
+
∂Mxy

∂y
= Qx

∂Mxy

∂x
+
∂My

∂y
= Qy

(G.2)

Substituting Eqn. (6.3), (6.6) and (G.1) into the governing equations, one will get

five equations for each combination of p = 1, 2, . . . ,M and q = 1, 2, . . . , N :[
A11

(pπ
a

)2

+ A66

(qπ
b

)2
]
apq +

[
(A12 + A66)

pπ

a

qπ

b

]
bpq

+

[
B11

(pπ
a

)2

+B66

(qπ
b

)2
]
dpq +

[
(B12 +B66)

pπ

a

qπ

b

]
epq = 0 (G.3a)[

(A12 + A66)
pπ

a

qπ

b

]
apq +

[
A66

(pπ
a

)2

+ A22

(qπ
b

)2
]
bpq

+
[
(B12 +B66)

pπ

a

qπ

b

]
dpq +

[
B66

(pπ
a

)2

+B22

(qπ
b

)2
]
epq = 0 (G.3b)
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[
Kts

11

(pπ
a

)2

+Kts
22

(qπ
b

)2
]
cpq +Kts

11

pπ

a
dpq +Kts

22

qπ

b
epq = − 4

ab
Qpq (G.3c)[

B11

(pπ
a

)2

+B66

(qπ
b

)2
]
apq +

[
(B12 +B66)

pπ

a

qπ

b

]
bpq +Kts

11

pπ

a
cpq

+

[
D11

(pπ
a

)2

+D66

(qπ
b

)2

+Kts
11

]
dpq +

[
(D12 +D66)

pπ

a

qπ

b

]
epq = 0 (G.3d)[

(B12 +B66)
pπ

a

qπ

b

]
apq +

[
B66

(pπ
a

)2
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Unlike Eqn. (6.7), the equations above are de-coupled between different terms in

double sine series. For each combination of p and q, five coefficients, apq, bpq, cpq, dpq,

epq can be solved by five equations directly using Eqn. (G.3).
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APPENDIX H

The Rayleigh-Ritz Method with the

Classical Lamination Theory (CLT)

CLT assumes the transverse normals remain perpendicular to the mid-plane during

deformation, namely,

φx = −∂w
∂x

, φy = −∂w
∂y

(H.1)

For elastic bending of an anisotropic plate, as shown in Section 6.2, the weak form of

governing equations are

∫ b

0

∫ a

0

[(
Nx

∂δu

∂x
+Nxy

∂δu

∂y

)
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+My

∂2δw

∂y2
− qδw

)
︸ ︷︷ ︸

3O

]
dxdy = 0

(H.2)
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Additionally considering a cohesive layer at a potential crack interface of a plate, as

described in Section 6.3, the weak form becomes

∫ b

0

∫ a

0
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