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ABSTRACT 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

 The intestine is a vital organ responsible for several functions, including excretion 

of waste, acting as a major site of host immunity, and most importantly, absorption of 

nutrients. In order to fulfill the body’s daily demands for energy and nutrients, the 

intestine evolved to expand the absorptive surface area by undergoing a morphogenetic 

process that generates finger-like units called villi. These villi house specialized cell 

types critical for both absorbing nutrients from food and for protecting the host from 

commensal and pathogenic microbes. Villus morphogenesis occurs in the developing 

embryo and is a complex process that requires the successful coordination of many 

events, during which the epithelium, initially a tube with a flat apical surface, remodels 

into a complex structure with stereotypical villus units. During this process, the 

epithelium and mesenchyme undergo rapid cell division to support tissue expansion. 

Concomitantly, cell signaling crosstalk between the epithelium and mesenchyme drives 

the formation and patterning of regularly distributed mesenchymal cell clusters, which 

aggregate adjacent to the pseudostratified epithelium and demarcate nascent villi.  

  

Currently, our understanding of the molecular mechanisms regulating these 

processes is incomplete. This thesis work focuses on one part of villus morphogenesis, 

specifically the propagation of epithelial progenitors before and during the remodeling of 

the flat epithelia into protruding villus structures. It is unclear what signaling pathway 
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drives epithelial proliferation before villus formation. One candidate pathway is 

canonical WNT/β-CATENIN signaling, as WNT/β-CATENIN signaling is essential for 

maintenance of the adult intestinal stem cell population and loss of WNT/β-CATENIN 

signal transduction results in the collapse of villus and crypt structures. 

  

In this work, I elucidated the role of WNT/β-CATENIN signaling before and during 

villus morphogenesis. First, I characterized WNT/β-CATENIN signal transduction using 

a reporter mouse model and found that before villus formation, reporter activity was very 

low in the pseudostratified epithelium, but after the emergence of nascent villi, reporter 

activity was robust and restricted to the intervillus domains. Next I conducted loss-of-

function studies with two genetic mouse models that perturb WNT/β-CATENIN signal 

transduction in the epithelium and observed defects in epithelial proliferation and villus 

formation at E15.5, while mutant animals displayed no defects at earlier time points 

(prior to E14.5). Additionally, I found that secretion of mesenchymal WNT ligands, 

possibly WNT3 and WNT7b, were required for normal epithelial proliferation. Together, 

these data indicate that there are two phases of growth during villus morphogenesis: 

One before villus morphogenesis, in which WNT/β-CATENIN signal transduction is low 

and dispensable for epithelial proliferation, and another after villus emergence, 

characterized by robust and patterned epithelial WNT/β-CATENIN signal transduction 

(requiring mesenchymal WNT ligands) that is critical for epithelial proliferation. In sum, 
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this dissertation provides novel insight into the role of WNT/β-CATENIN signaling to 

drive proliferation of epithelial progenitors during villus morphogenesis. 
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CHAPTER 1 

 

INTRODUCTION* 

 

 

Intestine overview 

The mature intestine is a highly complex organ with several essential functions. 

The small intestine interacts with food after it has been broken down in the stomach. 

Carbohydrates, proteins, and other nutrients are absorbed by intestinal enterocytes into 

a highly integrated vascular network.  

 

In addition to absorbing nutrients, the intestine has important roles in host 

immunity. Within the intestine, luminal contents come into contact with an epithelial 

layer, which must serve as a barrier to the outside environment and protect the body 

against indigenous (commensal) microbes and pathogens. Critical to this barrier are 

epithelial tight junctions which selectively limit the passage of luminal contents in 

between epithelial cells (Turner, 2009). In addition, the epithelium secretes mucus, 

                                            
*This chapter is based off of the following review article in press: 
 
Alana M. Chin, David R. Hill, Megan Aurora, Jason R. Spence. Morphogenesis and 
maturation of the embryonic and postnatal intestine. Seminars in Cell and 
Developmental Biology. doi.org/10.1016/j.semcdb.2017.01.011 
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which lines the intestinal tract and serves as a dense barrier that can trap microbes to 

inhibit infection (Turner, 2009), and can also provide a rich source of nutrients for 

commensal bacteria (Ley et al., 2006; Dethlefsen et al., 2007).  Specialized cells of the 

intestinal epithelium also play an important role in host immunity by secreting 

antibacterial and antifungal peptides (Salzman et al., 2003; Chu et al., 2012; Clevers 

and Bevins, 2013). Moreover, colonization by commensal bacteria at birth stimulates 

immune system development and is necessary for proper immune function (Round and 

Mazmanian, 2009).  

 

To adequately fulfill the cellular demands of these complex functions, the small 

intestinal epithelium is organized into villi, which are finger-like structures that protrude 

into the lumen. The intestine has a high rate of epithelial cell turnover, driven by 

proliferative epithelial stem cells housed at the base of the villi in domains called crypts 

(Figure 1.1). Stem cell-driven proliferation fully regenerates the intestinal lining every 5-

7 days (Creamer et al., 1961; Cheng and Leblond, 1974a; 1974b; Potten et al., 1974; 

Barker et al., 2007; Sato et al., 2009). As these stem cells divide, they differentiate and 

move along the villus structures like a conveyor belt. Once they reach the villus tips, 

cells undergo programmed cell death and slough off into the lumen.  

 

The highly archetyped crypt-villus structures of the adult intestine emerge over 

developmental time through the coordination of several complex processes that govern 

tissue patterning, cell fate, and morphogenesis. Early in embryonic development, the 

intestinal epithelium is a relatively flat, tube-shaped structure which undergoes a 
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process called villus morphogenesis through which the relatively flat tube-shaped 

intestine gives rise to villus structures. Villus structures project into the lumen, 

expanding the apical surface area of the absorptive epithelium. Morphogenesis of these 

projections is evolutionarily conserved, and therefore a positive adaptation of fitness, 

found in many vertebrates including the chicken and mouse, but also in zebrafish, 

seahorses, snakes, and amphibians (McAvoy and Dixon, 1978; Shyer et al., 2013). This 

morphogenesis is responsible for a massive expansion of intestinal surface area; it is 

estimated that the absorptive surface area of the adult human intestine is 30 m2, with 

villus structures amplifying the surface area by 6.5 fold (Helander and Fändriks, 2014). 

Abnormal loss of absorptive surface area hinders nutritional uptake and can lead to 

malabsorption or intestinal failure (Goulet et al., 2004).   

 

Here, I will discuss the molecular, biochemical, and biophysical events that guide 

normal intestine development, with a focus on mammalian development including 

human intestinal development where possible. Specifically, I will cover developmental 

events starting after gut tube formation and through early postnatal life. 

 

Models of the developing intestine 

Historically, many studies of vertebrate intestinal development have been carried 

out in the chick and mouse. Chick embryos are easy to acquire, develop rapidly, are low 

cost, and can be easily manipulated experimentally. However, tools for genetic 

manipulation in a tissue specific manner are more limited in the chick. Additionally, there 

are significant differences between avian and mammalian gut development that may 
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limit cross-species comparisons (Walton et al., 2016a). The embryonic mouse develops 

in a similar time frame to the avian embryo (19-21 days), and as an advantage, has an 

extensive set of tools for tissue specific genetic manipulation. Drawbacks include larger 

housing costs, long breeding times to obtain genetic crosses, relatively small litter sizes, 

and internal development which hinders experimental access to the developing tissue. 

Most importantly, it is not entirely clear which aspects from these models may be 

directly applicable to human intestine development, since our understanding of human 

intestine development is severely limited at this time.   

 

However, access to human fetal tissue and in vitro tissue culture techniques 

using human pluripotent stem cells (hPSCs) have begun to shed some light into human 

intestine development. Indeed, recent access to high-resolution 3D-reconstructions of 

early stage human embryos in addition to histological sections will likely improve our 

understanding of the early stages of human fetal gut development (de Bakker et al., 

2016). However, most studies of human fetal tissue are limited to descriptive analyses. 

hPSCs, which include both embryonic and induced pluripotent stem cells, provide a 

highly tractable solution to the limitations inherent to fetal tissue. hPSCs can be 

differentiated into complex 3-dimensional (3D) intestinal tissue using soluble growth 

factors and/or small molecules in a step-wise process known as directed differentiation 

(Spence and Wells, 2007; Finkbeiner and Spence, 2013; Wells and Spence, 2014). 

Directed differentiation aims to recapitulate key developmental stages in vitro. In the 

case of intestinal tissue, hPSCs undergo a gastrulation-like process that gives rise to a 

mixed endoderm/mesoderm population, followed by posterior patterning events, 
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intestinal specification and gut-tube morphogenesis which gives rise to small self-

assembling 3D structures that can be expanded into ‘organoids’ (McCracken et al., 

2011; Spence et al., 2011; Forbester et al., 2016; Turner et al., 2016). Intestinal 

organoids have been reviewed extensively elsewhere (Wells and Spence, 2014; 

Finkbeiner et al., 2015; Sato and Clevers, 2015; Aurora and Spence, 2016; Dedhia et 

al., 2016).  

 

Recent studies have shown that intestinal organoids derived from hPSCs are 

most similar to fetal intestine but do not form villi in culture (Spence et al., 2011; Watson 

et al., 2014; Finkbeiner et al., 2015; Aurora and Spence, 2016; Hill and Spence, 2016). 

Intestinal organoids transplanted into the mouse kidney capsule engraft, form villus and 

crypt structures, and undergo enhanced cellular, molecular and structural maturation, 

resulting in more adult-like tissue (Watson et al., 2014; Finkbeiner et al., 2015). In 

addition to hPSC-derived organoids, in vitro culture of primary human fetal intestinal 

epithelium (fetal organoids) is also shedding light on the cellular dynamics of the human 

fetal intestine (Fordham et al., 2013). Collectively, hPSC-derived organoids and fetal 

organoids provide a powerful new platform for investigating human development, since 

both systems are experimentally tractable, allowing for long-term growth, and genetic 

and pharmacologic manipulation.  

 

Intestinal specification and gut tube patterning. 

In the case of human gastrulation, like the chick, the endoderm, mesoderm and 

ectoderm lineages are specified and are present as a flat, layered disc-shaped structure 
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(reviewed elsewhere: (Zorn and Wells, 2009; Spence et al., 2011; Le Guen et al., 2015; 

Deglincerti et al., 2016; Shahbazi et al., 2016). As development progresses, the body of 

the embryo rotates from a flat to a fetal position where the ectoderm is present on the 

outside of the embryo and the endoderm, wrapped by mesoderm, is present on the 

inside of the embryo (Lewis and Tam, 2006). Conceptually, the endoderm can be 

visualized as a flat sheet of paper that is folded into a tube that must be sealed in the 

middle as the two sides come together. In the mouse, gut tube closure is complete by 

embryonic day (E) 9.0 (reviewed in Lewis and Tam, 2006; Spence et al., 2011), but 

mutant mice lacking GATA4, SOX17, and FURIN/SPC1 fail to rotate properly and have 

open gut tubes (Molkentin et al., 1994; Kuo et al., 1997; Roebroek et al., 1998; Constam 

and Robertson, 2000; Kanai-Azuma et al., 2002). 

 

During embryo rotation and coinciding with complex morphological events that 

shape the tissue, the nascent gut tube is patterned into different domains along the 

anterior-posterior axis. Secreted morphogens help to establish region-specific gene 

regulatory networks, segmenting the gut tube into domains with distinct molecular 

characteristics that will ultimately give rise to different organs (Wells and Melton, 2000; 

McLin et al., 2007; Rankin et al., 2011). This process is reviewed in detail elsewhere 

(Wells and Melton, 1999; Lewis and Tam, 2006; Spence and Wells, 2007; Sherwood et 

al., 2009; Zorn and Wells, 2009; Sherwood et al., 2011; Spence et al., 2011; Tanaka et 

al., 2011; Arkell et al., 2013; Wells and Spence, 2014). For example, the foregut and 

hindgut domains of the endoderm are separated by expression of SOX2 and CDX2, 

respectively (Que et al., 2007; Gao et al., 2009; Sherwood et al., 2009; 2011). The 
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anterior region of the gut tube, which gives rise to the esophagus and stomach in 

addition to the lungs, liver, and pancreas, initially expresses SOX2, which sets up a 

sharp boundary at the pylorus (Li et al., 2009; Sherwood et al., 2009).  Adjacent to this 

SOX2 boundary is the posterior region of the gut tube, which will give rise to the small 

and large intestine, marked by CDX1, 2, and 4 expression (Dufort et al., 1998; Martinez 

Barbera et al., 2000; Chawengsaksophak et al., 2004; Kinkel et al., 2008; Gao et al., 

2009; Sherwood et al., 2009; Zorn and Wells, 2009; Grainger et al., 2010).  

 

Interestingly, while CDX (CDX1, 2, 4) proteins have been shown to play 

redundant roles in intestinal patterning during development (van den Akker et al., 2002; 

Savory et al., 2009; Verzi et al., 2011), Cdx2 is considered to be a master regulator of 

intestinal identity; conditional deletion of Cdx2 in the epithelium resulted in complete 

loss of the intestinal gene expression program as well as loss of intestinal structure 

(Gao et al., 2009; Grainger et al., 2010). In these mouse mutants, the gut tube formed 

normally; however, mutant tissue adopted an esophagus-like fate suggesting Cdx2 is 

absolutely required for intestinal commitment. Conditional deletion of Cdx2 later in 

development, around E13.5, resulted in transformation of the intestine into stomach-like 

tissue (Grainger et al., 2010). Collectively, these studies suggest that Cdx2 is critical for 

not only for specification but also for maintenance of intestinal identity during 

development. Interestingly, in the adult, loss of Cdx2 does not lead to homeotic 

transformations, but instead impairs enterocyte differentiation, suggesting that Cdx2 

affects intestinal identity only in the developing embryo (Verzi et al., 2010; 2011).  
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The WNT/β-CATENIN signaling pathway and its role in gut tube patterning 

WNT signaling is critical for mid- and hindgut development, and plays a central 

role in inducing Cdx2 gene expression and specifying the intestinal endoderm both in 

vivo and in vitro (Gregorieff et al., 2004; McLin et al., 2007; Sherwood et al., 2011; 

Spence et al., 2011; Ren et al., 2015). WNT ligands are secreted molecules that bind to 

cognate receptors and transduce downstream signaling. In vertebrates, WNT ligands 

are lipid modified with the addition of a palmitate group by the palmitoyltransferase 

PORCUPINE (Najdi et al., 2012).  These lipid groups are recognized by the 

transmembrane protein WNTLESS and shuttled to the plasma membrane for secretion. 

Deletion of Wntless or Porcupine prevents secretion of WNT ligands and abrogates 

WNT signaling (Willert et al., 2003; Galli et al., 2007; Komekado et al., 2007; Kurayoshi 

et al., 2007). Secreted WNT ligands interact with neighboring cells and bind to 

FRIZZLED and lipoprotein receptor-related proteins (LRP) receptors (Figure 1.2). 

Unpalmitoylated WNT proteins cannot bind to FRIZZLED receptors (Komekado et al., 

2007; Kurayoshi et al., 2007). It is thought that the hydrophobic palmitylated lipid side 

chains (Willert et al., 2003) create a high affinity to cell membranes, and therefore 

operate as short-range signals, rather than long-range morphogens; although how 

exactly specific WNT ligands travel and bind to their targets is not well understood.  

 

In canonical WNT signaling, also known as WNT/β-CATENIN-dependent 

signaling, WNT ligands bind to FRIZZLED receptors and LRP co-receptors, allowing 

them to form a receptor complex and undergo conformational change that allows their 

phosphorylation by protein kinases (Tamai et al., 2004; Davidson et al., 2005; Zeng et 
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al., 2005). When the cytoplasmic tail of LRP5/6 receptors are phosphorylated, AXIN is 

sequestered and glycogen synthase kinase 3 (GSK3) activity is inhibited. Without WNT 

ligand binding, GSK3 forms a destruction complex with AXIN and anaphase-promoting 

complex (APC) (Clevers, 2006) where GSK3 phosphorylates co-regulator β-CATENIN, 

marking it for ubiquitination by E3 ubiquitin ligases and proteasomal degradation (Figure 

1.2). Simultaneously, TCF/LEF transcription factors are bound to the corepressor 

GROUCHO, which keeps transcription off (Arce et al., 2006). However, with WNT ligand 

binding to FRIZZLED and LRP5/6 receptors, phosphorylated LRP5/6 sequesters AXIN, 

preventing the formation of the destruction complex and subsequent GSK3 

phosphorylation of β-CATENIN (Tamai et al., 2004; Zeng et al., 2005). This allows β-

CATENIN to accumulate in the cytosol. Once cytosolic β-CATENIN accumulates to a 

certain threshold, β-CATENIN translocates into the nucleus, replaces GROUCHO to 

bind to TCF/LEF transcription factors, and activates transcription of downstream target 

genes. Some well-characterized target genes include Axin2, Lgr5, Cd44, Myc, and 

Ccnd1 (Clevers and van de Wetering, 1997; He et al., 1998; Shtutman et al., 1999; 

Tetsu and McCormick, 1999; Blache et al., 2004; Li et al., 2009; Shyer et al., 2015). 

Additional modulators of canonical WNT signaling include Dickkopf (DKK) and secreted 

Frizzled-related proteins (SFRP) inhibitors, which disrupt ligand-receptor binding 

(reviewed in Kawano and Kypta, 2003) (Figure 1.3). Agonists of canonical WNT 

signaling include R-spondin (RSPO) proteins, which stabilize FRIZZLED receptors by 

antagonizing their degradation by E3 ubiquitin ligases RNF43/ZNRF3 (Hao et al., 2012; 

Koo et al., 2012) (Figure 1.3). 
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Several studies have shown that WNT/β-CATENIN signaling transduction is 

present at higher levels on the posterior end of the developing embryo and several 

WNT ligands are highly expressed in this region (Christian et al., 1991; Krauss et al., 

1992; Moon et al., 1993; Kelly et al., 1995; McLin et al., 2007; Hong et al., 2008; Hikasa 

and Sokol, 2013). In addition, as the embryo elongates, WNT/β-CATENIN signaling 

transduction remains active in the posterior end of the embryo after WNT/β-CATENIN 

signaling transduction turns off in the anterior. This sets up both temporal and spatial 

gradients within the embryo, where the developing midgut endoderm is exposed to 

WNT signaling at lower levels and for shorter periods of time whereas hindgut 

endoderm is exposed to WNT signaling at higher levels for a longer period of time. 

There is emerging evidence that these early signaling gradients in the embryo 

endoderm may help to establish intestinal regional identity, setting up the different 

domains of the intestine: the duodenum, jejunum, ileum and colon. This notion is 

supported by studies using mouse embryonic explants. Stimulating endoderm with high 

levels of WNT signaling transduction led to induction of posterior small intestine and 

colonic gene expression in the endoderm (Sherwood et al., 2011). Interestingly, 

stimulating mouse embryonic stem cell (mESC) derived endoderm with high levels of 

WNT signaling induced a CDX2-positive small intestinal fate, but was unable to induce 

a colonic fate, suggesting that other factors may cooperate with WNT signaling to drive 

colonic specification (Sherwood et al., 2011). In line with these studies in mouse 

embryos and mESCs, recent studies using hPSC-derived intestinal organoids 

demonstrated that the duration of Wnt/β-catenin stimulation in hPSC-derived endoderm 

cultures was associated with intestinal patterning, with shorter durations specifying 
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proximal small intestine-like organoids (duodenum) and longer durations specifying 

distal small intestine-like organoids (ileum). Interestingly, and similar to mESC-derived 

endoderm, colonic gene expression was not induced in these studies, suggesting that 

colonic specification may require additional signals (Tsai et al., 2016b). 

 

Non-canonical WNT signaling as a regulator of gut tube elongation  

WNT ligands can also signal independently of β-CATENIN through non-canonical 

pathways (Kestler and Kühl, 2008). These pathways are less understood than the β-

CATENIN dependent pathway, and manifest in at least three distinct mechanisms (for 

detailed reviews, please see (Veeman et al., 2003; Fanto and McNeill, 2004; Kohn and 

Moon, 2005; Semenov et al., 2007; van Amerongen et al., 2008). Briefly, one of these is 

the WNT/calcium pathway where certain WNT ligands bind to FRIZZLED receptors and 

activate calcium/calmodulin-dependent kinase II (CAMKII) and protein kinase C (PKC) 

(Kühl et al., 2000). Alternately, certain FRIZZLED receptors can interact with GTP-

binding proteins to activate phospholipase C (PLC) and phosphodiesterase (PDE). 

Lastly, the planar cell polarity pathway (PCP) occurs when FRIZZLED activates Jun-N-

terminal kinase (JNK) (Qian et al., 2007). The PCP pathway has been implicated in gut 

tube elongation during development through WNT5a (Qian et al., 2007; Cervantes et 

al., 2009) (further discussed below). 

 

After gut tube patterning, by E9.5 in the mouse the CDX2+ epithelium becomes a 

simple pseudostratified epithelium (Grosse et al., 2011). From E9.5 to E14.5 in the 

mouse, the epithelium and mesenchyme rapidly proliferate, resulting in elongation of the 
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gut tube and increased intestinal length, circumference, and luminal area (Lepourcelet 

et al., 2005; Cervantes et al., 2009). It is known that the increase in intestinal 

length/girth during early development is mediated in part by non-canonical WNT 

signaling through the PCP pathway (Qian et al., 2007; Cervantes et al., 2009). 

Misregulation that either decreases or increases WNT5a signaling leads to defects in 

gut lengthening. Studies on Wnt5a null mice demonstrated significantly shorter gut 

tubes with bifurcation of the duodenum and perturbed midgut elongation as well as a 

truncation at the cecum (Cervantes et al., 2009). Defects were apparent by E10.5, at 

the onset of midgut elongation, and corresponded to reduced epithelial proliferation. 

Similarly, mice lacking Sfrp, an inhibitor of WNT5a, display shortened guts with ectopic 

clumps of epithelia that protrude into the lumen at E13.5. Epithelial clumps displayed 

aberrant localization of aPKC, β1-INTEGRIN, and E-CADHERIN, indicating defects in 

apicobasal polarity (Matsuyama et al., 2009). Notably, improper cell intercalation in 

frogs also results in gut lengthening defects (Dush and Nascone-Yoder, 2013).  

 

HH signaling and its role in the early intestine 

In addition to WNT signaling, Hedgehog (HH) signaling is an important regulator 

of intestinal development as it is required for differentiation of smooth muscle and villus 

formation. Mechanistically, in the absence of HH ligands, Patched (PTCH) receptors, 

12-transmembrane pass proteins, inhibits the 7-transmembrane pass protein 

Smoothened (SMO) and renders it inactive (Figure 1.4).  When HH ligands Sonic 

Hedgehog (SHH), Indian Hedgehog (IHH), or Desert Hedgehog (DHH) (Marigo et al., 

1995) bind to PTCH receptors, PTCH releases inhibition of SMO (Alcedo et al., 1996; 
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van den Heuvel and Ingham, 1996; Taipale et al., 2002). Active SMO activates glioma-

associated oncogene (GLI) transcription factors, GLI1, GLI2, and GLI3, whose behavior 

varies in different contexts. In most contexts, GLI1 is both the main activator and target 

gene of the pathway, while GLI2 and GLI3 can act as activators or repressors in 

different systems. During development of the gut, GLI2 and GLI3 appear to be the main 

activators of the pathway, as mice null for Gli2 display esophageal defects while mice 

null for Gli3 display stomach defects (Motoyama et al., 1998; Mo et al., 2001; Kim et al., 

2005). Gli1 null mice display normal embryonic development (Park et al., 2000; Bai et 

al., 2002). In the developing intestine, GLI2, and not GLI3, appears to be the major 

effector of HH signaling. Loss of Gli3 is dispensable for normal growth while activation 

of GLI2 fully rescues Smo-null intestinal defects (Huang et al., 2013). Several 

transcriptional targets and faithful readouts of the pathway include Ptch1, Ptch2, and 

Gli1. Other mediators of the HH pathway include co-receptors CDO, BOC, and GAS1 

that also bind HH ligands and can interact with PTCH to positively regulate signaling 

(Tenzen et al., 2006; Yao et al., 2006; Zhang et al., 2006).  

 

The HH signaling pathway is required for normal intestine lengthening during 

early intestinal development. Conditional epithelial-specific deletion of Ihh by E10.5 

resulted in loss of mesenchymal proliferation and dramatically shortened intestines. 

E12.5 IHH-deficient intestines were 10% the length of their control counterparts (Mao et 

al., 2010). Also taking place during this early developmental time is formation of the 

smooth muscle layers, which surround the gut tube to provide structure and later aid in 

peristalsis (reviewed in McHugh, 1996).  Smooth muscle differentiation starts around 
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E11 in the mouse and proceeds in a proximal to distal wave along the length of the 

intestine. At E12, a layer of mesenchymal cells become circularly arranged and forms a 

distinct layer of alpha smooth muscle actin (αSMA) expressing circular muscle 

(Sbarbati, 1982; Geske et al., 2008; Walton et al., 2016b). Through the remainder of 

development, three distinct layers of smooth muscle are patterned—the circular smooth 

muscle and longitudinal smooth muscle of the muscularis propria, and the longitudinal 

smooth muscle of the muscularis mucosae (McHugh, 1996). Smooth muscle 

differentiation is dependent on HH signaling from the epithelium. HH ligands, SHH and 

IHH, are expressed in the epithelium and signal to PTCH1 and GLI1 expressing 

mesenchymal cells at early developmental stages (Ramalho-Santos et al., 2000; 

Kolterud et al., 2009).  Classical experiments conducted in chick and mouse 

demonstrate that overexpression of SHH expands gut mesoderm and induces smooth 

muscle differentiation (Roberts et al., 1995; Apelqvist et al., 1997; Roberts et al., 1998). 

Mice deficient in SHH or IHH display a 20-30% reduction in thickness of the circular 

smooth muscle layer at E18.5 (Ramalho-Santos et al., 2000). Epithelial-specific 

conditional deletion of Ihh by Shh-Cre results in the complete loss of smooth muscle 

actin (SMA) expressing cells at E12.5 (Mao et al., 2010). Gain of function studies 

expressing constitutively active SMO in early gut mesenchyme or overexpression of 

IHH in the epithelium demonstrated that ectopic activation of HH signaling resulted in an 

expansion of SMA expressing cells, indicating that HH drives expansion of smooth 

muscle cell progenitors (Mao et al., 2010; Zacharias et al., 2011).   
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Early intestine development 

Once the smooth muscle has formed, muscular contractions controlling 

peristalsis are coordinated by the enteric nervous system (Hatch and Mukouyama, 

2015; Hao et al., 2016). The gut tube becomes innervated upon migration of vagal 

neural crest cells starting at E9. These neural crest cells proliferate and migrate 

caudally throughout the myenteric region and later populate the submucosa. Around 

E14, neural crest progenitors give rise to sensory and motor neurons, which project 

nerve fibers into the gut, allowing colonization of Schwann cell precursors. Neurons and 

glial cell differentiation occurs and continues postnatally (McHugh, 1996; Uesaka et al., 

2016).  The detailed molecular mechanisms surrounding the enteric system in the gut 

exceeds the scope of this review and are reviewed elsewhere (Furness et al., 1990; 

McHugh, 1996; Kuo and Erickson, 2010; Uesaka et al., 2016), but of note the 

RET/GDNF signaling pathway is perhaps the best characterized. Absence of 

RET/GDNF signaling abrogates the migration and differentiation of enteric neural crest 

cells and leads to enteric nervous system disorders like Hirschsprung’s disease (Manié 

et al., 2001; Burns, 2005). Also of note, tissue engineered systems using hPSC-derived 

intestinal organoids and/or neural crest progenitors are now being implemented to 

better study human mutations that lead to innervation defects, causing improper gut 

function and dysmotility at birth (Fattahi et al., 2016; Workman et al., 2016). 

 

Simultaneous with ENS development, the early intestine becomes vascularized. 

PECAM+ endothelial cells are present in the gut by E9.5 (Hatch and Mukouyama, 

2015). By E11 in the mouse, the serosal mesothelium begins to form on the surface of 
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the gut and covers the peritoneal cavity (Hatch and Mukouyama, 2015), and at E12.5, 

mesothelial cells undergo EMT and enter the submesothelial space of the gut and over 

the next few days, they differentiate into vascular smooth muscle of the newly forming 

vascular network of intestinal arteries and veins (Wilm et al., 2005). 

 

Rapid proliferation of the epithelium also takes place in the early intestine, and is 

required for intestinal lengthening and expansion of the surface area. Prior to villus 

morphogenesis at E14.5, the pseudostratified intestinal epithelium is uniformly 

proliferative, but upon the emergence of villus architecture, epithelial proliferation 

becomes restricted to the intervillus domains (Korinek et al., 1998). The signaling 

mechanisms that drive epithelial proliferation during the pseudostratified stages remain 

unknown. It is well documented that proliferation in the intervillus domains that emerge 

following villus morphogenesis (starting around E15.5 in mice) and in the crypts of the 

adult intestine, is highly dependent on WNT/β-CATENIN signaling (Korinek et al., 1998; 

Pinto et al., 2003; Farin et al., 2012; Das et al., 2015; Chiacchiera et al., 2016; Valenta 

et al., 2016). Yet, recent studies have suggested that epithelial proliferation in the 

pseudostratified epithelium prior to villus formation is regulated by mechanisms 

independent of WNT/β-CATENIN signaling. TOPGAL reporter mice suggested that 

WNT/β-CATENIN signal transduction was low at E14.5 and dramatically increased over 

developmental time in the intestinal epithelium (Kim et al., 2007). Supporting the notion 

that WNT signaling is low in the pseudostratified epithelium, mice null for Tcf4 (Tcf7l2), 

which is a transcriptional binding partner of β-CATENIN and is required for β-CATENIN-

dependent WNT signaling, did not display proliferation defects in the pseudostratified 
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epithelium, but completely lost epithelial proliferation after villus formation (Korinek et 

al., 1998). Collectively, these studies suggest that WNT/β-CATENIN signaling is 

dispensable for proliferation during pseudostratified intestinal development. In this 

context, it is interesting to note that several separate studies have shown that the 

WNT/β-CATENIN target gene, and well described adult intestinal stem cell marker, Lgr5 

(Barker et al., 2007), is expressed during this time of low WNT activity (Shyer et al., 

2015; Tsai et al., 2016a; Nigmatullina et al., 2017).  Recent lineage tracing experiments 

in Lgr5-creER mice have shown that lineage tracing can occur as early as E12.5 (Tsai 

et al., 2016a). Mechanistically, it appears that the transcription factor ID2, restricts WNT 

activity during this window of development and Id2-deficient intestinal epithelial tissue 

had more LGR5+ cells starting at E9.5 compared to controls (Nigmatullina et al., 2017). 

Evidence also suggested that Id2 deletion increased WNT/β-CATENIN signaling activity 

in these animals. Collectively, these studies point to an interesting and unexplained 

paradox. While Lgr5 is considered a sensitive WNT/β-CATENIN target gene in the adult 

intestine, it appears that it is already expressed during a time when WNT/β-CATENIN 

signal transduction is very low in the fetal gut (E12.5-E13.5) (Shyer et al., 2015; Tsai et 

al., 2016a; Nigmatullina et al., 2017). On the other hand, removing ID2, which 

presumably leads to an increase in WNT/β-CATENIN signal transduction, increased the 

number of cells expressing LGR5 (Nigmatullina et al., 2017). Thus, it is unresolved if, 

how and why LGR5 is present when WNT-signaling is very low but still seems to 

respond as a target gene when WNT-signaling is activated in Id2-null epithelium. It is 

possible that LGR5 is regulated by multiple mechanisms. In addition, given that Id2 is a 

Bone Morphogenetic Protein (BMP) target gene in other systems (Hollnagel et al., 1999; 
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Miyazono and Miyazawa, 2002), this work would suggest that BMP is highly active in 

the epithelium during the pseudostratified stage of development; however, this idea has 

not yet been experimentally tested. 

 

One candidate regulator of proliferation prior to villus development is GATA4. 

ChIP-Seq of adult mouse intestinal epithelia shows that GATA4 binds to many cell-cycle 

genes (Kohlnhofer et al., 2016). Additionally, conditional epithelial deletion of Gata4 

disrupts epithelial cell proliferation by E10.5, resulting in delayed villus morphogenesis 

(Kohlnhofer et al., 2016). It is interesting to speculate that GATA4 may act through 

retinoic acid signaling to regulate proliferation as it has been shown to be a downstream 

target of retinoic acid in the intestine and other endoderm derived tissues (Arceci et al., 

1993; Ghatpande et al., 2000).  

 

Villus formation 

Villus morphogenesis is a process where the flat pseudostratified intestine begins 

to remodel and give rise to villus structures, which consist of finger-like epithelial 

protrusions into the intestinal lumen with an underlying mesenchymal core (Spence et 

al., 2011; Walton et al., 2016a). Villus formation massively expands the intestinal 

epithelial surface area, allowing for sufficient nutrient absorption to sustain life. As such, 

villus morphogenesis is a complex process that is driven by a combination of inductive 

cues and physical forces, which coincide to coordinate this morphological process 

(Walton et al., 2016a). Individual villi are connected to neighboring villi by proliferative 

intervillus domains (also called intervillus zones) (Figure 1.5). Within the past 5 years, a 
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plethora of work in the mouse and chick has shed significant light on the regulation of 

villus morphogenesis, and has highlighted significant species-specific differences in this 

process (Grosse et al., 2011; Walton et al., 2012; Shyer et al., 2013; 2015; Walton et 

al., 2016b). In addition, recent studies of human fetal development revealed that villi 

begin to form between 51-54 days of gestation correlating to the beginning of villus 

morphogenesis at E14.5 in the mouse embryo (Karlsson et al., 2000; Walton et al., 

2012; de Bakker et al., 2016). In mice, villi emerge in a proximal to distal wave, arising 

first in the duodenum and spreading to the ileum over a span of 36 hours (Walton et al., 

2012), and this trend appears to be consistent in the human fetal intestine (de Bakker et 

al., 2016). Interestingly, for many years it was thought that the human and mouse 

intestine initially formed micro-lumens in the flat epithelium, which then went on to fuse, 

giving rise to villi (Spence et al., 2011); however this was recently shown not to be the 

case in mice, and 3-dimensional reconstructions demonstrated that the lumen was 

continuous during villus formation (Grosse et al., 2011). Interestingly, new data from the 

‘three-dimensional digital atlas and quantitative database of human development’ (de 

Bakker et al., 2016) has shown that micro lumens may be present in the developing 

human intestine representing an interesting species-specific difference, although it 

should be noted that more detailed follow up studies will be needed to definitively show 

any potential differences (Figure 1.6).  

 

While little-to-nothing is known mechanistically about villus formation in humans, 

it is well appreciated in the mouse that signaling molecules secreted from the rapidly 

proliferating pseudostratified epithelium act as critical regulators of villus 
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morphogenesis. HH and Platelet Derived Growth Factor (PDGF) signaling are well 

established signaling pathways that regulate this process. Epithelial HH and PDGF 

ligands signal to the underlying mesenchymal cells, which express the pathway 

receptors PTCH1 and PDGFRA, respectively (Madison et al., 2005; Kolterud et al., 

2009; Walton et al., 2012). As HH signaling is activated in the mesenchyme adjacent to 

the epithelium, it stimulates these cells to exit the cell cycle and aggregate into small 

dense clusters (Madison et al., 2005; Kolterud et al., 2009; Walton et al., 2012). Cluster 

formation coincides with the initiation of a nascent villus in the epithelium overlying the 

cluster. While the cluster itself expresses several signaling molecules, including Bone 

Morphogenetic Protein (BMP) ligands, it is not clear how the epithelium-cluster unit 

initiates the formation of a nascent villus (Karlsson et al., 2000; Walton et al., 2016b). 

Nonetheless, formation of the cluster is an absolute prerequisite for villus formation, 

since mutations in the HH or PDGF pathways perturb normal mesenchymal cluster 

formation and disrupt subsequent villus formation, with HH signaling being the most 

critical to this process as blocking HH signaling can completely block all mesenchymal 

clustering and villus formation (Madison et al., 2005; Mao et al., 2010; Walton et al., 

2012; 2016b). Alternately, increased HH signaling in explant cultures by the addition of 

a pathway agonist (Smoothened agonist; SAG) increased the size of cluster and villus 

structures (Walton et al., 2012).  

 

Although mesenchymal clusters form and express BMP ligands, it does not seem 

that mesenchymal BMP’s immediately signal back to the epithelium, since genetic 

deletion of BMP receptors in the overlaying epithelium does not lead to perturbations in 
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villus formation (Harfe et al., 2004). Conversely, genetic deletion of BMP receptors in 

the mesenchyme lead to fused mesenchymal clusters and enlarged villi (Walton et al., 

2016b). In addition, mesenchymal clusters also express inhibitors of BMP signaling, 

including Noggin (NOG) and Twisted Gastrulation 1 (TWSG1), and functional 

experiments have shown that perturbing BMP signaling affects the spatial distribution of 

the mesenchymal clusters (Walton et al., 2016b). These functional experiments have 

led to the hypothesis that BMP signaling establishes the regular spacing and patterning 

of mesenchymal clusters in an activator-inhibitor reaction-diffusion style mechanism 

(Walton et al., 2016b).  

 

The reaction-diffusion model that may explain the distribution and patterning of 

mesenchymal clusters in the intestine as recently suggested by Walton et al., (Walton et 

al., 2016b) was first proposed by mathematician Alan Turing, who described a model 

where an activator and inhibitor emanating from the same source interact to establish a 

self-organized and predictable pattern (Turing, 1952). It is interesting to note that in his 

manuscript, Turing noted, “…the description of the state consists of two parts, the 

mechanical and the chemical”. He then goes on to state, “One cannot at present hope 

to make any progress with the understanding of such systems except in very simplified 

cases. The interdependence of the chemical and mechanical data adds enormously to 

the difficulty, and attention will therefore be confined, so far as is possible, to cases 

where these can be separated” (Turing, 1952).  Thus Turing acknowledged, but did not 

address, the mechanical forces that would normally be present in a biological system. In 

this light, it is interesting to note the work of Oster and colleagues many years later, who 
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used mathematical modeling of mesenchymal cell behavior to propose that mechanical 

traction forces exerted by the mesenchyme on the surrounding extracellular matrix 

could deform the matrix and affect both the direction of mesenchymal movements and 

the formation of the pattern (Oster et al., 1983; Murray and Oster, 1984b; 1984a).  In 

this work, it was proposed that mesenchymal traction forces would eventually lead to a 

uniform distribution of cells breaking up into local cell condensations, characterized by 

“islands of high cell density alternating with regions of low cell density” (Oster et al., 

1983). Oster’s model also predicted that as tissues grow and mature, developmental 

waves of mesenchymal condensations could form behind maturing tissue in regular 

patterns (Oster et al., 1983). For example, it was predicted that an anterior-to-posterior 

gradient of mesenchymal condensations could form in a developing tissue as a 

population of cells became developmentally competent to form cell aggregates in an 

age/time dependent manner (Oster et al., 1983). It is interesting to speculate that such 

traction forces could cooperate with morphogen signals, and that both may play a role in 

the formation or propagation of the anterior-posterior wave of mesenchymal clusters 

that condense during villus morphogenesis, since it is well described that the intestine 

matures in an anterior-posterior fashion. At this point in time there is no evidence in the 

developing mouse intestine to show how signaling and biomechanical forces may 

cooperate during the process of mesenchymal clustering in mice.  

 

On the other hand, it has been predicted that tension/force placed on the 

epithelium by the underlying mesenchymal clusters may instruct the overlying 

epithelium to start forming a villus (Freddo et al., 2016). Here, it has been proposed that 
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nascent clusters deform the epithelium as they form on the basal side of the epithelium, 

placing compression forces on the epithelium and placing strain on the apical epithelial 

surface.  When coupled with reduced tension in the apical F-ACTIN cortical network due 

to a mitotic event in the highly proliferative epithelium, sufficient strain from below the 

epithelium coupled with a local reduction in apical surface tension would lead the 

epithelium to deform and buckle in between the mesenchymal clusters, effectively 

forming nascent villi above the clusters (Freddo et al., 2016).  

  

Recent work has also linked tensile forces produced by radial smooth muscle on 

the development of villus structures in the developing chick gut (Shyer et al., 2013; 

2015). This work demonstrated that as the smooth muscle layers differentiate, they 

place a global compressive force on the intestine. As the highly proliferative epithelium 

continues to expand in a uniform manner circumferentially, the compressive forces 

created by the smooth muscle cause the epithelium to buckle. As each subsequent 

muscle layer differentiates in the developing gut – the circumferential muscle layer, 

followed by the exterior longitudinal muscle and then the interior longitudinal muscle – 

new mechanical strains are placed on the intestine, leading to an initial pattern of 

epithelial ridges, followed by a zig-zag pattern and finally, villus structures (Shyer et al., 

2013).  It is interesting to note that there are significant differences between chick and 

mouse intestine development. In the chick, the epithelial folding induced by mechanical 

constraint is suggested to help concentrate morphogenetic signals in the underlying 

tissue; epithelial HH ligands are concentrated in the underlying mesenchyme after 

epithelial buckling to induce changes in the mesenchyme (Shyer et al., 2015). However, 
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in the mouse HH signals drive formation of mesenchymal clusters and are a 

prerequisite to villus formation (Walton et al., 2012; Walton et al., 2016b). Collectively, 

these data suggest that the mechanisms driving villus development and regulating 

epithelial and mesenchymal differentiation in the two species are dramatically different, 

but also show the importance of both signaling molecules and biomechanical forces in 

tissue morphogenesis in both species (Shyer et al., 2013; 2015; Freddo et al., 2016; 

Walton et al., 2016b).   

 

Development and maturation of the intestine following villus formation 

Following villus formation, epithelial proliferation becomes rapidly restricted to the 

intervillus domains at the base of the villi for the remainder of development (Korinek et 

al., 1997; Bell et al., 2013). Two major signaling pathways that are important for 

intestinal proliferation in the late neonatal and adult intestine are the WNT/β-CATENIN 

and NOTCH signaling pathways (Harada et al., 1999; Pinto et al., 2003; He et al., 2004; 

Ireland et al., 2004; Kuhnert et al., 2004; van Es et al., 2005; van der Flier and Clevers, 

2009; VanDussen et al., 2012; Tsai et al., 2014). For detailed reviews on WNT and 

NOTCH signaling in the intestinal stem cell, see: (Demitrack and Samuelson, 2016; 

Mah et al., 2016).  Although proliferation in the pre-villus intestinal epithelium in mice 

can occur in the absence of WNT/β-CATENIN signaling, once villi form at E15.5, 

proliferation is dependent on WNT/β-CATENIN signaling. Blocking signaling activity 

using a variety of genetic methods results in a complete loss of epithelial proliferation 

(Korinek et al., 1997; Garcia et al., 2009; Joo et al., 2010; Zhong et al., 2012). In 

addition, several WNT/β-CATENIN target genes become restricted to the proliferative 
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intervillus domain following villus morphogenesis, including Axin2, Cd44, Ccnd1, Sox9 

and Lgr5, reinforcing the location of WNT/β-CATENIN signaling activity following villus 

formation (Korinek et al., 1997; Blache et al., 2004; Li et al., 2009; Zhong et al., 2012; 

Shyer et al., 2015). And while NOTCH signaling is a critical regulator of intestinal stem 

cells postnatally and in the adult (VanDussen et al., 2012; Tsai et al., 2014; Carulli et al., 

2015; Tian et al., 2015), the role that NOTCH signaling plays at earlier times of 

development is not clear. NOTCH genetic gain-of-function studies have been conducted 

in the developing intestinal epithelium, and have shown that developmental 

misregulation of Notch Intracellular Domain (NICD) expression can lead to increased 

epithelial proliferation (Fre et al., 2005), or can lead to a block in proliferation (Stanger et 

al., 2005). These opposing results are likely explained by the different Cre drivers used 

and the developmental timing of NICD expression. Recent studies in the developing 

mouse intestine, the human fetal intestine, and in hPSC-derived intestinal organoids 

have shown that the NOTCH target gene, OLFM4, is expressed at extremely low levels 

relative to the adult intestine (Fordham et al., 2013; Finkbeiner et al., 2015). 

Interestingly, inhibition of NOTCH function in fetal mouse intestine cultures resulted in 

secretory cell hyperplasia (VanDussen et al., 2012), consistent with NOTCH inhibition 

studies in the adult (Kazanjian et al., 2010; van Es et al., 2010; Kim and Shivdasani, 

2011).  

 

Shortly after villus emergence, around E16.5 in mice, the epithelium on the villi 

begins to undergo cytodifferentiation into the functional cell types of the small intestine, 

including secretory cells - mucus producing goblet cells and hormone-producing 
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enteroendocrine cells- and absorptive enterocytes, which comprise more than 80% of 

the intestinal epithelial cells in the proximal small intestine and are responsible for 

absorbing nutrients from the lumen (van der Flier and Clevers, 2009; Noah et al., 2011; 

Spence et al., 2011; Noah and Shroyer, 2013). A detailed review of the molecular 

mechanisms controlling differentiation in the intestinal epithelium is outside the scope of 

this discussion, but readers are encouraged to see the following reviews: (Noah et al., 

2011; Vooijs et al., 2011; Noah and Shroyer, 2013; Sancho et al., 2015).  In brief, 

NOTCH signaling is known to play an important role regulating the choice to 

differentiate into a secretory cell (NOTCH OFF) or into an absorptive enterocyte 

(NOTCH ON) (VanDussen and Samuelson, 2010; VanDussen et al., 2012; Milano et al., 

2004; Wong et al., 2004; van Es et al., 2005; Noah and Shroyer, 2013; Yin et al., 2014). 

While most of our understanding about cellular differentiation in the intestine has been 

established through studies in the postnatal intestine, in the developing gut, GATA4 and 

GATA6 function redundantly to suppress proliferation and regulate cytodifferentiation of 

goblet cells by modulation of NOTCH signaling (Walker et al., 2014). In addition, the 

transcription factor, KLF5, is required for initiation of differentiation in the developing gut, 

as genetic deletion of Klf5 from the intestinal epithelium lead to the reduction of goblet 

and enteroendocrine cells as well as the loss of the apical brush border (Bell et al., 

2013).  

 

In mice, the crypt of the intestine emerges around postnatal day 14. The 

mechanisms by which the embryonic intervillus domains give rise to the postnatal/adult 

crypt are completely unknown. However, crypt emergence coincides with differentiation 
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of Paneth cells in the intestine (Calvert and Pothier, 1990; Kim et al., 2012). In humans, 

Paneth cell differentiation occurs around week 20 of fetal gestation (Moxey and Trier, 

1978; Mallow et al., 1996).  Paneth cells initially emerge at the 5-7th cell position in the 

crypt and then migrate downwards to the base of the crypt adjacent to LGR5+ stem 

cells (Bjerknes and Cheng, 1981; Kim et al., 2012). Paneth cells secrete defensin 

proteins (Ouellette et al., 1992; Bevins and Salzman, 2011; Ouellette, 2011), which are 

known to have antimicrobial properties to protect against pathogen infection and also 

play a role as a niche cell, supporting intestinal stem cell maintenance (Salzman et al., 

2003; Sato et al., 2011; Chu et al., 2012; Clevers and Bevins, 2013). Paneth cell 

differentiation is initially controlled through a NOTCH dependent mechanism during 

secretory progenitor specification and further Paneth cell maturation is regulated by 

WNT signaling (van Es et al., 2005; Farin et al., 2012). Deletion of Lgr5 in the 

embryonic intestine led to increased levels of WNT signal transduction and precocious 

Paneth cell differentiation (Garcia et al., 2009). Further differentiation of Paneth cells 

requires the expression of the WNT target SOX9 (Blache et al., 2004; Formeister et al., 

2009) and mice with conditional deletion of Sox9 lack Paneth cells in the crypts (Bastide 

et al., 2007; Mori-Akiyama et al., 2007). 

 

One of the hallmarks of intestinal epithelial maturation is the acquisition of fully 

functional epithelial cell types (Fordham et al., 2013; Mustata et al., 2013; Finkbeiner et 

al., 2015) and reviewed in (Guiu and Jensen, 2015). In the human fetal intestine and in 

hPSC-derived intestinal organoids, this includes the differentiation of Paneth cells and 

many enzymes that function in nutrient absorption that are present on the enterocyte 
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brush boarder (Finkbeiner et al., 2015). In the mouse, epithelial maturation is regulated 

by the transcriptional repressor BLIMP1 (also known as PRMD1) (Harper et al., 2011; 

Muncan et al., 2011). BLIMP1 is expressed broadly throughout the intestinal epithelium 

of the embryonic intestine, with expression becoming restricted shortly after birth, when 

it is excluded from the proliferative domain (intervillus domain and emerging crypt) over 

the first 2 weeks postnatally.  By the third week of life and through adulthood, BLIMP1 is 

expressed only in the tip of the villus. Blimp1 mutant mice show early differentiation of 

Paneth cells, an increased differentiation of goblet cells, and a major metabolic shift 

towards the adult phenotype by postnatal day 7 at the expense of suckling-period-

specific enzymes (Harper et al., 2011; Muncan et al., 2011). Mechanistically, ChIP-seq 

experiments showed that BLIMP1 is able to bind to DNA associated with metabolic 

genes in the epithelium adding evidence to the notion that BLIMP1 repressed gene 

expression of adult genes during the embryonic period (Mould et al., 2015). Further, it 

was shown that BLIMP1 was bound to many of the same regions as the transcriptional 

activator, IRF1. IRF1 binds and can activate transcription of MHC class I pathway 

genes, and it was postulated that an additional role for BLIMP1 was to repress IRF1-

bound genes while the neonatal gut acquires tolerance during microbial colonization 

over the first few weeks of life (Mould et al., 2015).  

 

Recent work has also suggested that major shifts in the metabolism of the 

developing intestinal epithelium play a significant role in maturation of the intestinal 

epithelium (Kumar et al., 2016). This study found that there was an increase in the 

expression of genes involved in oxidative phosphorylation coincident with villus 
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development, and that expression of these genes continued to increase throughout 

embryonic development. It is interesting to note that metabolism in the adult intestine 

shifts from glycolysis-to-oxidative phosphorylation along the crypt-villus axis (Stringari et 

al., 2012), indicating that this developmental switch may be critical in preparing the 

epithelium for postnatal life. The embryonic shift in oxidative phosphorylation genes was 

controlled by the transcription factor YY1, as genetic deletion of Yy1 in the epithelium 

led to reduced gene expression and stunted villus growth (Kumar et al., 2016). Further 

supporting the connection between oxidative phosphorylation and intestinal growth, 

pharmacological inhibition of the electron transport chain caused a similar stunting of 

villus growth (Kumar et al., 2016). Interestingly, oxidative phosphorylation was reduced 

in human neonates with necrotizing enterocolitis (NEC), indicating that this metabolic 

shift may be critical for the intestine to mature and adapt to neonatal life (Kumar et al., 

2016).   

 

Conclusion and goals of this thesis: 

The gastrointestinal tract is a highly complex and multifunctional organ system. 

Decades of work in multiple disciplines have resulted in a framework for our 

understanding of the development of the structures and functions that comprise the 

mature intestine. However, formation of an integrated, comprehensive understanding of 

the growth, development and maturation of the intestine and its dynamic function 

throughout life will require the continued use of multidisciplinary approaches that allow 

for new ways to further our understanding. Classical animal models such as the frog 

and chick have proven to be powerful experimental tools for understanding the cellular 
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and genetic basis of gut development, and have allowed us to explore the molecular 

pathways important during gastrulation, formation of the endoderm, and gut 

morphogenesis. Mice have also been an excellent model to study mammalian intestinal 

development and provided insights into similarities and differences between species; 

most notably are the distinct mechanisms behind the extension of luminal surface area 

and formation of villus structures.  

 

However, there are still many questions left unanswered. Our understanding of 

the process of villus formation is incomplete and warrants further investigation into the 

molecular mechanisms that instruct cellular behavior. The initiation of villus formation 

begins a complex process where the uniformly pseudostratified epithelium gives rise to 

alternating villus and intervillus domains. These previously uniform epithelial progenitors 

adopt distinct villus and intervillus properties that differ in cell shape, proliferative 

capacity, and gene expression. These changes occur quickly and between a brief 

window of developmental time (E13.5-E15.5), the uniform epithelium already transforms 

into distinct villus and intervillus domains. However, the molecular mechanisms that 

regulate the propagation of epithelial progenitors during this precise window of 

developmental time, is unknown. The work in this dissertation aims to gain insight into 

the signaling pathways that regulate epithelial proliferation during villus morphogenesis. 

We found that WNT/β-CATENIN signaling activity is dynamic before and after initiation 

of villus morphogenesis. Prior to villus formation, the intestine is independent of WNT/β-

CATENIN signaling and WNT/β-CATENIN signal transduction is very low. But after 

villus formation has begun, WNT/β-CATENIN signal transduction is robust and now 
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required for epithelial proliferation and villus formation. Lastly, we determined that 

reception of WNT signals occurs in a paracrine manner as secretion of WNT ligands 

from the mesenchyme, and not the epithelium, induces WNT/β-CATENIN-mediated 

epithelial proliferation.  
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Figure 1.1. The adult epithelial crypt-villus unit* 
The adult small intestinal epithelium is arranged in crypt-villus units. Intestinal stem cells 
and Paneth cells are housed in the crypt. A Transit Amplifying zone is a site for rapid 
proliferation and amplification of undifferentiated progenitor cells as they begin to make 
cell fate choices. Differentiated cell types continue to move up the villus in a conveyer-
belt fashion where they carry out their day-to-day function, until they reach the villus tip 
where they undergo apoptosis and slough off into the lumen.  Villus cell types include 
enterocytes, goblet cells and enteroendocrine cells, as well as tuft cells and M-cells (not 
shown).   
 

                                            
* Figure is from the review article in press: 
Alana M. Chin, David R. Hill, Megan Aurora, Jason R. Spence. Morphogenesis and 
maturation of the embryonic and postnatal intestine. Seminars in Cell and 
Developmental Biology. doi.org/10.1016/j.semcdb.2017.01.011 
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Figure 1.2. The canonical WNT/β-CATENIN signaling pathway 
In the absence of WNT ligand binding, GSK3 forms a destruction complex with AXIN 
and anaphase-promoting complex (APC) where GSK3 phosphorylates co-regulator β-
CATENIN, marking it for ubiquitination by E3 ubiquitin ligases and sent for proteasomal 
degradation. Simultaneously, TCF/LEF transcription factors are bound to the 
corepressor GROUCHO, which keeps transcription of target genes turned off. When 
WNT ligands bind to FRIZZLED receptors and lipoprotein receptor-related proteins 
(LRP) co-receptors, AXIN is sequestered and glycogen synthase kinase 3 (GSK3) 
activity is inhibited. This allows β-CATENIN to accumulate in the cytosol and translocate 
into the nucleus. β-CATENIN replaces GROUCHO to bind to TCF/LEF transcription 
factors and activate transcription of downstream target genes. 
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Figure 1.3. Modulation of the WNT/β-CATENIN signaling pathway  
(A) DKK and SFRP are inhibitors of WNT/β-CATENIN signaling and interfere with ligand 
binding. Competitive binding prevents WNT ligands from interacting with LRP and 
FRIZZLED co-receptors, permitting the degradation of cytosolic β-CATENIN. (B) RSPO 
proteins are agonists of the WNT/β-CATENIN signaling pathway. Without RSPO 
activity, E3 ubiquitin ligases RNF43 and ZNRF3 degrade FRIZZLED receptors, 
preventing LRP/FRIZZLED receptor complex formation. RSPO proteins interact with 
RNF43/ZNRF3 to prevent their degradation of FRIZZLED receptors.   
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Figure 1.4. The HH signaling pathway 
(A) In the absence of HH ligands, PTCH receptors inhibit the 7-transmembrane pass 
protein SMO and renders it inactive. (B) When hedgehog ligands bind to PTCH 
receptors, PTCH releases inhibition of SMO. Active SMO activates various GLI 
transcription factors which can then either behave as transcription activators or 
repressors in different contexts.  
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Figure 1.5. Developmental epithelial transitions and mesenchymal cluster 
formation in the mouse intestine*  
(A) The early murine intestinal epithelium (yellow), between E9.5-E13.5, is present as a 
flat pseudostratified epithelium within the gut tube. (B) Beginning around E14.5, 
mesenchymal clusters (red) aggregate adjacent to the epithelium where a nascent villus 
will form. Cluster formation causes a deformation in the epithelium above the cluster. 
(C) Villi form above the cluster, establishing the highly proliferative intervillus domain 
between villi. Several rounds of villus morphogenesis will occur, and new clusters will 
form (blue) adjacent to the intervillus domain following completion of the prior round of 
cluster-villus formation (red clusters).  
  

                                            
* Figure is from the review article in press: 
Alana M. Chin, David R. Hill, Megan Aurora, Jason R. Spence. Morphogenesis and 
maturation of the embryonic and postnatal intestine. Seminars in Cell and 
Developmental Biology. doi.org/10.1016/j.semcdb.2017.01.011 
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Figure 1.6. Human fetal intestine development* 
Sections through different Carnegie Stages (CS) of the developing human embryo were 
obtained (http://www.3dembryoatlas.com and de Bakker et al., 2016) and traces of the 
proximal small intestine (duodenum) were generated. The intestinal epithelium (yellow) 
appeared to have multiple lumens prior to villus morphogenesis (CS18), and nascent 
villi formation was apparent by CS20. Image resolution was not sufficient to determine if 
the human intestine formed villus clusters in the mesenchyme (red). Villus structures 
became more pronounced, and greater in number as development progressed (CS21-
CS23).  

                                            
* Figure is from the review article in press: 
Alana M. Chin, David R. Hill, Megan Aurora, Jason R. Spence. Morphogenesis and 
maturation of the embryonic and postnatal intestine. Seminars in Cell and 
Developmental Biology. doi.org/10.1016/j.semcdb.2017.01.011 
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CHAPTER 2 

 

A DYNAMIC WNT/β-CATENIN SIGNALING ENVIRONMENT LEADS TO WNT- 

INDEPENDENT AND WNT-DEPENDENT PROLIFERATION OF EMBRYONIC 

INTESTINAL PROGENITOR CELLS* 

 

 

Summary 

Much of our understanding about how intestinal stem and progenitor cells are 

regulated comes from studying the late fetal stages of development and the adult 

intestine. In this light, little is known about intestine development prior to the formation of 

stereotypical villus structures with columnar epithelium, a stage when the epithelium is 

pseudostratified and appears to be a relatively uniform population of progenitor cells 

with high proliferative capacity. Here, we investigated a role for WNT/β-CATENIN 

signaling during the pseudostratified stages of development (E13.5, E14.5) and 

following villus formation (E15.5) in mice. In contrast to the well-described role for 
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WNT/β-CATENIN signaling as a regulator of stem/progenitor cells in the late fetal and 

adult gut, conditional epithelial deletion of β-catenin or the FRIZZLED co-receptors Lrp5 

and Lrp6 had no effect on epithelial progenitor cell proliferation in the pseudostratified 

epithelium. Mutant embryos displayed obvious developmental defects, including loss of 

proliferation and disruptions in villus formation starting only at E15.5. Mechanistically, 

our data suggest that WNT signaling-mediated proliferation at the time of villus 

formation is driven by mesenchymal, but not epithelial, WNT ligand secretion. 

 

Introduction 

 To keep up with daily demands, the intestine is highly proliferative and has a high 

rate of cellular turnover. Self-renewing intestinal stem cells (ISCs) located in the crypt at 

the base of the intestinal epithelium constantly give rise to new progeny. Maintenance of 

the adult stem cell population requires β-CATENIN-dependent WNT signaling 

(‘‘canonical’’ WNT signaling, herein referred to as WNT/β-CATENIN signaling). 

Inhibition or loss of WNT/β-CATENIN signaling in the epithelium results in loss of stem 

cells in the crypt (Chiacchiera et al., 2016; Das et al., 2015; Farin et al., 2012; Pinto et 

al., 2003; Valenta et al., 2016), while activating mutations leading to constitutive WNT 

activation are causative in colorectal cancer (Barker et al., 2009; Fearon and Spence, 

2012; Fearon and Wicha, 2014; Korinek et al., 1997; Morin et al., 1997). Unlike the 

plethora of information about regulation of the adult ISC, it is much less clear whether 

and when WNT/β-CATENIN signaling plays a role in the embryonic intestine, and in 

particular we understand very little about intestine development prior to the formation of 

villi. For example, studies in mice null for the β-CATENIN transcriptional binding partner 
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Tcf7l2 (Tcf4) or mice in which the FRIZZLED co-receptors Lrp5 and Lrp6 have been 

conditionally deleted both demonstrate a loss of intestinal proliferation and collapse of 

the intervillus progenitor domain late in fetal development (embryonic day 17.5 [E17.5]) 

(Korinek et al., 1998; Zhong et al., 2012). However, WNT/β-CATENIN signaling has not 

been directly interrogated prior to villus morphogenesis, a time when the epithelium is a 

relatively flat, simple pseudostratified epithelium that proliferates uniformly, and lacks 

stereotypical intestinal villi and differentiated cell types seen following villus 

morphogenesis (Grosse et al., 2011; Shyer et al., 2013, 2015; Walton et al., 2012, 

2016). 

 

Due to specific and well-characterized genetic tools such as Villin-Cre mice, 

which allow for epithelium-specific transgene expression or Cre-mediated genetic 

excision of conditional alleles in the intestine, many studies have focused on late 

development (Madison et al., 2002; El Marjou et al., 2004). Villin-Cre lines efficiently 

mediate recombination after villus morphogenesis begins, around E14.5, and efficient 

deletion of conditional alleles is often achieved at mid-gestational stages (Bondow et al., 

2012; Walker et al., 2014). Therefore, the goal of the current work was to interrogate a 

functional role for WNT/β-CATENIN prior to villus morphogenesis. 

 

Our results demonstrate that disruption of WNT/β-CATENIN signaling, using 

Shh-Cre (Harfe et al., 2004) to achieve early epithelium-specific conditional deletion of 

Ctnn1b (β-catenin) (Brault et al., 2001) or the FRIZZLED co-receptors Lrp5 and Lrp6 

(Lrp5/6) (Zhong et al., 2012), had little effect on the pseudostratified epithelium, 
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indicating that WNT/β-CATENIN signaling was dispensable for proliferation at this time. 

Significant defects in proliferation and villus formation were only evident at later times, 

after villus morphogenesis had begun (E15.5). Furthermore, our results show that 

conditional deletion of Wntless, which is required for proper WNT ligand trafficking and 

secretion from the cell, from the mesenchymal, but not epithelial compartment, leads to 

a loss of epithelial proliferation at the time of villus formation. Collectively, our data 

demonstrate that WNT/β-CATENIN signaling is dispensable for regulating epithelial 

progenitor cell proliferation in the embryonic gut during the pseudostratified stage of 

development, whereas active signaling is absolutely required for proliferation and proper 

villus formation at the time when villus morphogenesis begins. 

 

Results 

WNT/β-CATENIN signaling activity increases over developmental time 

To identify the timing and location of active WNT signaling in the developing 

intestine, we first utilized an Axin2-LacZ reporter mouse (Lustig et al., 2002). Axin2- 

LacZ reporter activity was very low at E13.5 (Figures 2.1-A and 2.1-B). Activity was 

more apparent in the E14.5 epithelium (Figures 2.2-A–2.2-F) while at E15.5, Axin2-LacZ 

reporter activity was also apparent, and was restricted to the intervillus domains 

(Figures 2.1-C, 2.1-D, and 2.2-G – 2.2-L) Interestingly, as the Axin2-LacZ reporter 

activity increased across developmental time, we observed that the distal small intestine 

appeared to report WNT/β-CATENIN signaling first (Figures 2.2-A- 2.2-F), and we 

therefore focused our analysis on this region of the gut. To support our observations 

made in Axin2-LacZ reporter mice, we analyzed mRNA expression in whole-thickness 
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ileum for two down- stream targets of WNT/β-CATENIN signaling, Axin2 and Cd44. We 

found that both Axin2 and Cd44 mRNA was significantly upregulated in E15.5 ileum 

compared with E13.5 ileum (Figures 2.1-E and 2.1-F). In addition, CD44v6 antibody 

staining indicated increased protein expression as developmental time progressed 

(Figures 2.1-G– 2.1-I, 2.3-A, and 2.3-B). 

 

β-catenin or Lrp5/6 loss-of-function embryos have perturbed villus formation 

To elucidate a role for WNT/β-CATENIN signaling in the intestinal epithelium at 

early developmental times, we disrupted WNT/β-CATENIN signaling using two different 

genetic models: epithelium-specific Shh-Cre-driven conditional deletion of Ctnn1b (β-

catenin) or of FRIZZLED co-receptors Lrp5 and Lrp6. To observe the efficiency of 

deletion, we stained for β-CATENIN by immunofluorescence and did not detect 

epithelial β-CATENIN in E13.5 mice with β-catenin loss of function (βcat-LOF) (Figure 

2.4-A). In addition, while CD44v6 was low in controls at E13.5, βcat-LOF intestines did 

not have detectable CD44v6 protein at E13.5 (Figures 2.1-J and 2.3-C). It should be 

noted that while CD44v6 staining is weak in the control epithelium at E13.5, the loss of 

CD44v6 staining in βcat-LOF at E13.5 suggests that weak protein expression in controls 

is likely reflective of low levels of WNT/β-CATENIN signaling present in the epithelium 

(compare Figure 2.1-G with Figure 2.1-J and Figure 2.3-A with Figure 2.3-C). 

Importantly, loss of WNT/β-CATENIN signaling did not affect intestinal fate, since the 

βcat-LOF intestines maintained CDX2 protein expression (Figure 2.4-C). 
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To observe deletion efficiency in Shh-Cre-mediated Lrp5 and Lrp6 loss-of-

function (Lrp5/6-LOF) embryos, we mechanically separated the epithelium and 

mesenchyme of control and Lrp5/6-LOF embryos and analyzed them using qRT-PCR. 

We saw a significant reduction of both Lrp5 and Lrp6 mRNA transcript in the epithelial 

fractions of E15.5 Lrp5/6-LOF, but not at E13.5 (Figure 2.4-B). To confirm deletion, we 

analyzed expression of Cd44 and Axin2 mRNA expression in isolated epithelium of 

Lrp5/6-LOF embryos (Figures 2.1-R and 2.1-S), and CD44v6 protein in tissue sections 

(Figures 2.1-M– 2.1-O, 2.3-E, and 2.3-F). These results showed a loss of CD44v6 

protein staining by E14.5 (Figures 2.1-N, 2.1-O, and 2.3-F) and a significant reduction of 

Cd44 and Axin2 at E15.5 (Figures 2.1-R and 2.1-S), suggesting that WNT/β-CATENIN 

signaling was not efficiently perturbed until E14.5 in this model. 

 

WNT/β-CATENIN signaling is dispensable for epithelial proliferation in the distal 

small intestine during the pseudostratified stage of development 

We examined proliferation at E13.5, E14.5, and E15.5 in the distal portion of 

control, βcat-LOF, and Lrp5/6-LOF intestines (Figure 2.5). We performed 

immunofluorescence staining for phospho-histone H3 (PHH3), a marker that detects 

cells in M phase, along with E-CADHERIN to visualize epithelial-specific proliferation 

and the formation of nascent villi (Figures 2.5-A–2.5-I). At E13.5 and E14.5, we 

observed no difference in proliferation in the epithelium of control or mutant intestines. 

PHH3 staining was easily visualized in all genotypes examined (Figures 2.5-A, 2.5-B, 

2.5-D, 2.5-E, 2.5-G, and 2.5-H), and there were no quantitative differences in epithelial 

proliferation at these stages (Figure 2.5-J). On the other hand, E15.5 epithelial PHH3 
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staining was reduced in βcat-LOF and Lrp5/6-LOF intestines compared with controls 

(Figures 2.5-C, 2.5-F, and 2.5-I). Quantitation of the percentage of epithelial cells that 

are PHH3+ (ECAD+PHH3+/total ECAD+DAPI+) showed that the E15.5 epithelium in 

βcat-LOF and Lrp5/6-LOF intestines had a significant reduction in proliferation (Figure 

2.5-J). In addition to proliferation defects, we also observed that mutant intestines failed 

to begin villus morphogenesis by E15.5 and instead, the epithelium remained flat 

(Figures 2.5-C, 2.5-F, and 2.5-I). Taken together, our results indicate that the intestinal 

epithelium does not require WNT/β-CATENIN signaling for proliferation at E13.5 and 

E14.5 but requires WNT/β-CATENIN signaling for proliferation after initiation of villus 

morphogenesis by E15.5. 

 

Deletion of E-cadherin does not phenocopy βcat-LOF  

Given that βcat-LOF and Lrp5/6-LOF embryos showed similar phenotypes, it is 

likely that the defects observed are due to perturbations in WNT/β-CATENIN signaling. 

However, given the important role that β-CATENIN plays in the adherens junctions, we 

wanted to rule out the possibility that cell-cell adhesion defects are leading to the 

observed phenotypes (Kintner, 1992; Nagafuchi and Takeichi, 1988; Ozawa et al., 

1989, 1990). To do this, we conditionally deleted Cdh1 (Shh-cre;Cdh1-flox/flox;Ecad- 

LOF), which encodes E-CADHERIN. In contrast to βcat-LOF intestines, which fail to 

form nascent villi, we found that Ecad-LOF mutants underwent villus morphogenesis 

prematurely and had obvious villus formation by E14.5 (Figures 2.4-E and 2.4-F). 

Consistent with this, Ecad-LOF animals had abundant platelet-derived growth factor 

receptor α (PDGFRA)-positive mesenchymal clusters under nascent villi whereas 
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controls had much less obvious cluster formation (Karlsson et al., 2000; Walton et al., 

2012) (Figures 2.4-I and 2.4-J). These data suggest that loss of WNT/β-CATENIN 

signaling leads to a phenotype very different from that of Ecad-LOF, and adds 

supporting evidence that defects in the βcat-LOF phenotype are not due to cell 

adhesion defects. 

 

Loss of WNT/β-CATENIN signaling does not perturb SOX9 expression in the 

intestine at pseudostratified stages 

Prior to villus morphogenesis, SOX9 is expressed throughout the intestinal 

epithelium while after villus morphogenesis, expression is restricted to the proliferating 

intervillus domain and is dependent on WNT signaling (Bastide et al., 2007; Blache et 

al., 2004). Interestingly, we found that SOX9 expression in the epithelium of βcat-LOF 

embryos at E13.5 and E14.5 is similar to that in controls (Figures 2.5-K, 2.5-L, 2.5-N, 

and 2.5-O), and that SOX9 protein expression is lost within βcat-LOF epithelium only at 

E15.5 (Figures 2.5-M and 2.5-P). These data suggest that Sox9 is not a sensitive WNT 

target gene during the pseudostratified stages of intestine development, and 

corroborate data suggesting that the intestinal epithelium is regulated by different 

mechanisms before and after villus morphogenesis. 

 

Loss of WNT/β-CATENIN signaling severely disrupts villus morphogenesis 

Both genetic models used to disrupt WNT/β-CATENIN signaling (βcat-LOF and 

Lrp5/6-LOF) led to a similar phenotype by E15.5 (Figures 2.1 and 2.5). Similarly, both 

βcat-LOF and Lrp5/6-LOF embryos had grossly smaller intestines compared with 
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controls at E15.5 (Figure 2.4-D). Based on these similarities, and the fact that β-catenin 

deletion was more efficient than Lrp5/6 deletion (Figures 2.4-A and 2.4-B), we focused 

the remainder of our analysis on βcat-LOF mice. Morphological analysis of βcat-LOF 

intestines via H&E staining shows that the control and mutant intestines appeared 

similar at E13.5 and E14.5, whereas abnormal villus morphogenesis in mutants resulted 

in a loss of nascent villi at E15.5 (Figures 2.6-A–2.6-F). To assess the mutant 

phenotype in greater detail, we performed several morphometric analyses. The 

percentage of epithelial cells present relative to all cells (epithelium plus mesenchyme) 

in a cross-section (represented as [(E-CADHERIN+/DAPI+)/ (total DAPI+ cells per 

section)]), showed that there was no significant difference at E13.5 or E14.5 between 

mutants and controls. However, a reduction in the percentage of epithelium was 

observed at E15.5 (Figure 2.6-G). Similarly, counting the absolute number of epithelial 

cells (E-CADHERIN+ DAPI+) per section showed no difference between controls and 

mutants until E15.5 (Figure 2.6-H). To further assess any changes in morphology 

associated with βcat-LOF, we performed a series of measurements (diagrammed in 

Figures 2.6-K, 2.6-N, and 2.6-Q) including the total cross-sectional length/width (Figures 

3I and 3J), cross- sectional length/width of the epithelium (Figures 2.6-L and 2.6-M), 

and apical surface area and epithelial thickness (Figures 2.6-O and 2.6-P). In several 

measurements, we did not observe statistical differences at any time point between 

βcat-LOF and controls (Figures 2.6-I, 2.6-L, and 2.6-M). However, for data shown in 

Figures 2.6-I– 2.6-N, measurements neglected to account for the size of the lumen, 

which can vary. Therefore, we measured the apical surface (Figure 2.6-Q, ‘‘A’’) as well 

as epithelial thickness (Figure 2.6-Q, ‘‘T’’), which both showed a significant decrease in 
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βcat-LOF intestines at E15.5, but not at earlier times (Figures 2.6-O and 2.6-P). These 

morphometric data are consistent with our findings that loss of WNT/β-CATENIN 

signaling does not affect intestinal morphology or proliferation during the 

pseudostratified stage of development. 

 

Disrupted villus morphogenesis is not due to epithelial cell death 

To determine whether the perturbed villus formation observed in mutants was 

due to apoptosis, we conducted cleaved-caspase 3 (CC3) staining on E13.5, E14.5, 

and E15.5 tissues in control, βcat-LOF, and Lrp5/6-LOF distal small intestines (Lrp5/6-

LOF data not shown). Across all time points, no CC3 staining was detected (Figure 2.7-

A), indicating that the loss of villus formation is not due to apoptosis. Importantly, 

positive CC3 staining was detected at the villus tips in the proximal small intestine, a 

site where apoptosis is normally occurring (Hall et al., 1994) (Figure 2.7-B). 

 

Loss of β-catenin in the epithelium does not affect smooth muscle differentiation 

Previous reports have shown that restrictive force from the surrounding smooth 

muscle is important for villus formation and acts to produce compressive stress on the 

highly proliferative epithelium and mesenchyme (Shyer et al., 2013). To determine 

whether the disruption in villus formation observed in βcat-LOF intestines is due to 

defects in smooth muscle development, we analyzed α-smooth muscle actin via 

immunofluorescence in E15.5 βcat-LOF and control intestines. We observed no 

differences between mutants and controls (Figure 2.7-C), suggesting that the inability of 
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the epithelium to properly form villi is not due to perturbations in the smooth muscle 

layer and is more likely caused by the lack of epithelial proliferation. 

 

Epithelium-specific loss of WNT/β-CATENIN signaling results in reduced 

aggregation of PDGFRA-positive mesenchymal clusters 

Just prior to the emergence of epithelial villus structures, aggregation of the 

underlying mesenchyme into ‘‘clusters’’ is evident, starting around E14.0 (Shyer et al., 

2013, 2015; Walton et al., 2016, 2012). PDGFRA is expressed in mesenchymal clusters 

that underlie villi, and PDGF signaling is functionally important for normal villus 

formation (Karlsson et al., 2000). We examined PDGFRA expression in control and 

mutant intestines at E15.5 (Figures 2.8-A and 2.8-B). As expected in controls, the distal 

small intestine had several nascent villi forming at E15.5, which were present as a 

buckling of the E-CADHERIN-positive epithelium. In addition, nascent villi were 

associated with clustered PDGFRA-positive cells of mesenchyme directly adjacent to 

the buckling epithelium. In contrast, E15.5 βcat-LOF lacked aggregated PDGFRA+ 

clusters (Figure 2.8-B). It should be noted that PDGFRA staining was still observed in 

mesenchymal tissue, but that no evidence of cell clusters was present. H&E staining on 

longitudinal sections showed the flat epithelium in the βcat-LOF intestines, where 

control tissue showed regularly patterned nascent villi (Figures 2.8-C and 2.8-D). These 

results suggested that a loss of epithelial WNT/β-CATENIN signaling during villus 

formation either directly or indirectly affected normal cluster formation. 
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Mesenchymal WNT ligand secretion is required for normal epithelial proliferation 

Collectively, our data suggest that WNT/β-CATENIN signaling activity is low in 

the pseudostratified stages of intestine development, and that deletion of β-catenin or 

Lrp5/ 6 has no discernible effect on proliferation at this time, but that active signaling is 

required for epithelial proliferation once villi are present. We wanted to elucidate the 

mechanism regulating the change in WNT/β-CATENIN signaling activity that occurs 

during the time of villus morphogenesis. One possibility is that expression of WNT 

ligands are increased as intestine development progresses. To determine whether WNT 

ligand expression increases over developmental time, we analyzed whole-thickness 

ileum from control intestines at E13.5 and E15.5 and looked for changes in mRNA for all 

19 Wnt ligands (MacDonald et al., 2009) (Figures 2.9-A and 2.10). Of the 19 Wnt ligand 

genes examined, only four ligands showed significant changes between E13.5 and 

E15.5. These included Wnt5a and Wnt11, which are involved in non-canonical WNT 

signaling, both of which were higher at E13.5 than E15.5. In contrast, we found that 

Wnt3 and Wnt7b were upregulated (Figures 2.9-A and 2.10-A). To further characterize 

where Wnt3 and Wnt7b are expressed, we mechanically separated E13.5 and E15.5 

ileum into epithelial and mesenchymal fractions, as demonstrated by qRT-PCR for E-

cadherin and Vimentin, respectively (Figure 2.9-B). Wnt3 was higher at E15.5 in both 

compartments while Wnt7b mRNA transcript was higher in the mesenchymal fraction 

(Figure 2.9-B). To determine whether WNT ligands were functionally important at 

different times during development, we conditionally deleted Wntless in the epithelium 

or mesenchyme, which has been shown to block all WNT ligand secretion (Belenkaya 

et al., 2008; Franch-Marro et al., 2008a, 2008b). Wntless-floxed mice were crossed with 
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Twist2-Cre for mesenchyme-specific deletion (Sosic et al., 2003) (MesWntless-LOF) 

and Shh-Cre for epithelium-specific deletion (EpWntless-LOF). MesWntless-LOF 

animals are embryonic lethal around E13.5, due to other organ defects (Cornett et al., 

2013; Lange et al., 2014). Therefore, we analyzed E13.5 embryos, and also explanted 

E13.5 intestinal tissue for ex vivo culture experiments. At E13.5 (0 hr of culture time), 

MesWntless-LOF intestines did not display any differences in proliferation compared 

with controls, as shown by the percentage of PHH3+ epithelial cells (Figures 2.9-C– 

22.9-E). This is consistent with βcat-LOF and Lrp5/6-LOF data demonstrating that 

WNT/β-CATENIN signaling is not driving epithelial proliferation at this developmental 

time (Figures 2.1, 2.5, and 2.6). However, following 72 hr of culture, MesWntless-LOF 

intestines had a significant reduction in the percentage of PHH3+ epithelial cells 

compared with controls (Figures 2.9-F–2.9-H). Consistent with these findings, 

MesWntless-LOF intestines, but not controls, cultured for 72 hr showed a loss in 

epithelial CD44v6 protein staining by immunofluorescence, suggesting that WNT/β-

CATENIN signaling is reduced in the epithelium (Figures 2.9-L and 2.9-M). In contrast, 

EpWntless-LOF did not show any changes in epithelial proliferation (PHH3) or CD44v6 

staining at E15.5 (Figures 2.9-I– 2.9-O). Collectively, our data show that blocking WNT 

ligand secretion at E13.5 from the mesenchyme or the epithelium does not result in 

proliferation defects. In contrast, we show that WNT ligands secreted from the 

mesenchyme at E15.5 are required for WNT/β-CATENIN target gene expression and 

proliferation in the epithelium. 
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Discussion 

Previous embryonic studies have shown that deletion of the β-catenin 

transcriptional binding partner Tcf7l2 (Tcf4) or the WNT ligand co-receptors Lrp5 and 

Lrp6 resulted in a loss of proliferation and collapse of the intervillus compartment at late 

stages of fetal development (E17.5–E18.5), indicating that WNT signaling is critical for 

proliferation at this developmental time (Korinek et al., 1998; Zhong et al., 2012). In 

contrast, results from transgenic Wnt reporter mice (TOP-GAL) have suggested that 

WNT/Β-CATENIN activity was absent from the proliferating intervillus domain until 

postnatal life (Kim et al., 2007). Our results collectively show that WNT/β-CATENIN has 

biphasic activity, with very low WNT signaling activity during the pseudostratified stages, 

and with robust WNT signaling activity after the onset of villus morphogenesis. Thus, it 

is possible that previously published studies have touched on both of these modes of 

regulation without full appreciation that there are different levels of WNT signaling at 

different developmental times. In addition, some conclusions in published literature have 

been drawn from transgenic reporter mice, which may not accurately report signaling 

activity in certain contexts. For example, while the TOP-GAL mouse has been shown to 

faithfully report WNT/β-CATENIN signaling in the adult intestine (Davies et al., 2008), 

side-by-side comparisons of TOP-GAL and Axin2-LacZ reporter activity have indicated 

that multimerized Tcf/Lef reporter mice may not always be faithful (Al Alam et al., 2011; 

Barolo, 2006). 

 

Here, we presented several lines of evidence that suggest that there are two 

distinct mechanisms regulating fetal intestinal progenitor cell proliferation. During the 
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pseudostratified stage of development at E13.5 and E14.5, epithelial progenitor cell 

proliferation occurs normally in the absence of WNT/β-CATENIN signaling, whereas 

after villus morphogenesis (E15.5), proliferating progenitor cells require WNT/β-

CATENIN signaling. Mechanistically, our data point to increased WNT ligand expression 

in the mesenchyme as a major player in this developmental switch to WNT-dependent 

proliferation. However, our data do not totally rule out alternative scenarios. For 

example, it is also possible that ligands that augment WNT signaling, such as RSPO 

proteins, also change over developmental time (Kamata et al., 2004; Kim et al., 2008); 

and yet a second alternative possibility exists whereby an inhibitor of WNT signaling, 

such as DKK proteins, may be reduced over developmental time (Bafico et al., 2001; 

Mao et al., 2001; Tamai et al., 2000). 

 

A current unresolved question that still remains is how proliferation is regulated 

during the pseudostratified stage. Interestingly, we also observed that SOX9 

expression, which is a strong WNT/β-CATENIN signaling target gene in the late 

embryonic and adult intestine (Bastide et al., 2007; Blache et al., 2004), was still 

present in mutant mice during the pseudostratified stages, and SOX9 expression was 

not lost until WNT-dependent proliferation began after villus morphogenesis. 

Interestingly, studies in the embryonic lung have shown that Sox9 is not regulated by 

WNT/β-CATENIN; rather, it is likely downstream of FGF signaling (Chang et al., 2013; 

Rockich et al., 2013). More- over, Fgf10 has been demonstrated to play a role in 

suppressing cytodifferentiation in the developing intestine (Nyeng et al., 2011). Thus, it 

is interesting to speculate that fibroblast growth factor signaling may play a role 
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regulating progenitor cell proliferation during the pseudostratified stage. In addition, 

recent work has shown that GATA4 binds to several cell-cycle genes, and that epithelial 

deletion of Gata4 at the pseudostratified stage leads to a loss of proliferation, which 

recovers following villus morphogenesis (Kohlnhofer et al., 2016). Given that Gata4 is a 

retinoic acid (RA) signaling target gene in some contexts (Arceci et al., 1993; 

Ghatpande et al., 2000), it is also possible that an RA-GATA4 signaling axis controls 

early progenitor proliferation. Future studies aimed at elucidating the mechanisms 

regulating progenitor cell proliferation during the pseudostratified stages will no doubt 

prove interesting, as will studies demonstrating how stem/progenitor cells change 

across developmental time to acquire their adult state. 

 

Our results showing that mesenchymal, but not epithelial WNT ligands are 

required for epithelial proliferation are consistent with recent studies in the adult 

intestine showing that epithelial WNT ligands are dispensable for epithelial proliferation, 

and that the mesenchyme is the primary source for WNT ligand-driven epithelial 

proliferation (San Roman et al., 2014; Valenta et al., 2016). Interestingly, our qRT-PCR 

screen identified two Wnt ligands, Wnt3 and Wnt7b, which increase between E13.5 and 

E15.5. While additional studies are needed to determine whether these ligands are 

responsible for the transition from a WNT-independent stage of growth to a WNT-

dependent stage of growth, it is interesting to note that Wnt7b is not expressed in the 

adult intestine, and Wnt3 is strongly expressed in the epithelium (Farin et al., 2012). In 

the adult, evidence suggests that mesenchymal WNT2b may be a critical WNT ligand 

for epithelial proliferation, although there are likely redundant sources and redundant 
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WNT ligands that support the epithelium in the adult (Farin et al., 2012; Valenta et al., 

2016). Therefore, it is also interesting to speculate that the specific WNT ligands 

responsible for WNT-driven proliferation may be different in the E15.5 intestine when 

compared with the adult intestine. 

 

In summary, we report a stage of growth during the pseudostratified stage of 

intestine development whereby progenitor cell proliferation does not require WNT/β-

CATENIN signaling. Our data show that WNT target gene expression is low during this 

stage, and genetically blocking WNT/β-CATENIN signaling has no observable effect. In 

contrast, following the onset of villus morphogenesis, mesenchymal WNT ligands are 

required for β-CATENIN-dependent epithelial proliferation. These findings show that 

stem/progenitor cells are not regulated in the same way across development and into 

adulthood, and open up exciting opportunities to explore how ISCs acquire their adult 

identity and how embryonic progenitors differ functionally from their adult counterparts. 

 

Methods 

Mice 

All experiments conducted in this study were approved by the University of Michigan, 

the Van Andel Research Institute, and the Medical College of Wisconsin’s institutional 

animal use and care committees. All mice used in this study have been previously re- 

ported: Shh-Cre (Harfe et al., 2004), β-catenin f/f (Brault et al., 2001), Lrp5/6 f/f (Zhong 

et al., 2012), Axin2-LacZ (Lustig et al., 2002), E-cadherin f/f (Boussadia et al., 2002), 

Twist2-Cre (Sosic et al., 2003), and Wntless f/f (Carpenter et al., 2010). Control mice 
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used were of the following genotypes: β-catenin f/f, β-catenin f/+, Shh-cre; β-catenin f/+, 

Lrp5 f/f; Lrp6 f/f, Lrp5 f/f; Lrp6 f/+, Lrp5 f/+; Lrp6 f/f, Lrp5 f/+; Lrp6 f/+, Shh-cre; Lrp5 f/+; 

Lrp6 f/f, Shh-cre; Lrp5 f/+; Lrp6 f/+.Wntless f/f, Wntless f/+, and Twist2-cre; Wntless f/+. 

 

Ex vivo culture 

Ex vivo cultures were performed as described by Walton et al. (2012). In brief, E13.5 

intestines were dissected from the embryo and placed on 6-well transwell plates (Costar 

3428) in basal media: Advanced DMEM/F12 (Gibco 12634-010) supplemented with 1% 

penicillin-streptomycin (v/v) (Invitrogen 15140-122), 13 HEPES (Invitrogen 15630080), 

13 B27 (Invitrogen 0080085-SA), and 10% fetal bovine serum (FBS) (Invitrogen). E13.5 

control and Twist2-Cre; Wntless f/f intestines were cultured for 72 hr in basal medium at 

37C with 5% CO2 with medium changes every 24 hr. 

 

Tissue preparation 

For histology, Shh-Cre; Lrp5 f/f;Lrp6 f/f, Shh-Cre; β-catenin f/f, Twist2-Cre; Wntless f/f, 

Shh-Cre; Wntless f/f, and control tissues were fixed overnight in 4% paraformaldehyde 

and dehydrated through a 25:75, 50:50, 75:25, 100% methanol to PBSt (1x PBS with 

0.5% Triton X-100) series. Following dehydration the intestines were cut into equal 

segments, representing the proximal, middle, and distal thirds of the small intestine, and 

set into Histogel (Thermo Fisher HG-4000-012) to maintain orientation. Tissues were 

then equilibrated in 100% ethanol and embedded into paraffin. Sections were cut 7 mm 

thick by a microtome. 
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Epithelial/mesenchymal isolations 

For epithelium and mesenchymal isolations, E13.5 and E15.5 intestines were dissected 

from the embryo in cold PBS. Connective tissue was removed and the distal one-third of 

the small intestine (ileal segment) was placed into a fresh Petri dish on ice-cold PBS. 

PBS was removed from the Petri dish and tissues were incubated in Dispase (Corning 

40-235) for 30 min on ice. The Dispase was then removed and tissues were incubated 

in 100% FBS (Invitrogen) for 15 min on ice to stop Dispase activity. An equal volume of 

Advanced DMEM/F12 (Gibco 12634-010) was added to the Petri dish, and the 

epithelium and mesenchyme were mechanically separated with tungsten needles. 

 

Immunohistochemistry 

Paraffin sections were deparaffinized in Histoclear and rehydrated into PBS. Antigen 

retrieval for all primary antibodies (except anti-CD44v6 staining), was performed by 

heating slides to near boiling (99C) in a rice steamer in sodium citrate buffer for 20 min. 

Antigen retrieval for anti-CD44v6 was conducted in a 2100 Antigen Retriever (Electron 

Microscopy Sciences 62700-10) in 13 R-Buffer A (Electron Microscopy Sciences 62706-

10). Sections were blocked in donkey serum (5% serum in 1x PBS + 0.5% Triton X-100) 

for 1 hr. Antibody information and dilutions are presented in Table 2.1. Primary 

antibodies were diluted in blocking buffer and incubated on tissue sections overnight at 

4C. Slides were washed in 13 PBS and incubated in secondary antibody in blocking 

buffer for 2 hr at room temperature, then counterstained with DAPI. Slides were washed 

and mounted using Prolong Gold antifade reagent. DAB staining was performed as 



 74 

previously described (Spence et al., 2009). Immunohistochemistry for CD44v6 was 

additionally amplified with Tyramide Signal Amplification kits (Life Technologies T20935 

and T20932) according to the manufacturer’s protocol. Images were taken on an 

Olympus IX71 microscope at 40x. Higher-magnification images were taken on a Nikon 

A1 confocal microscope at 60x plus digital zoom. 

 

LacZ staining and histology analysis 

LacZ staining was performed as previously described (Spence et al., 2009). β-

Galactosidase activity was detected in fixed whole tissue using the Histomark X-gal 

substrate system (Kireguard and Perry Laboratories). For H&E staining, 6-mm paraffin 

sections were deparaffinized in xylene, rehydrated, and stained. 

 

Morphometric analysis, immunofluorescence quantification, and statistical 

analysis 

Morphometric measurements were conducted with ImageJ software using the Cell 

Counter plugin. Differences between two groups were evaluated using an unpaired two-

tailed Student’s t test. Homogeneity of variance was validated for these parametric tests 

using the Bartlett test. A p value of less than 0.05 was considered statistically 

significant. All statistical analyses were conducted using GraphPad Prism 6. For all 

genotypes, n ≥ 3. 
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RNA isolation and qRT-PCR analysis 

Embryos were dissected and tissues were frozen with liquid nitrogen for storage. For 

RNA extraction, tissues were ground with a pestle before RNA was extracted using the 

Purelink RNA Mini Kit (Life Technologies). RNA quantity and quality was assessed with 

a Nano Drop 2000 (Thermo Fisher Scientific). Reverse transcription was conducted 

using the SuperScript VILO kit (Invitrogen) according to the manufacturer’s protocol. 

 

qRT-PCR was conducted using Quantitect Sybr Green Mastermix (Qiagen) on a Step 

One Plus Real-Time PCR system (Life Technologies). Reactions for Wnt ligands were 

run for 45 cycles while all other reactions were run for 40 cycles. Gene expression 

analysis was determined using a standard curve and was normalized to the 

housekeeping gene GAPDH. See Table 2.2 for primer sequences. 
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Figure 2.1. WNT/-CATENIN signaling is active in temporally and spatially distinct 
domains in the small intestine. (A, C) Whole mount X-Gal staining of E13.5 and 
E15.5 stomach and intestines from Axin2-LacZ reporter mice. Black lines indicate plane 
of section. Scale bar: 1mm. (B) X-GAL staining in E13.5 intestinal sections shows low 
activity in the epithelium. (D) At E15.5, Axin2-LacZ reporter activity became restricted to 
the intervillus domains in the epithelium but at lower levels in the duodenum (C). (G-I) 
Immunofluorescence staining of E13.5, E14.5 and E15.5 control intestines show 
increasing CD44v6 staining (white) co-stained with Collagen IV (green). (J-O) Wnt/β-
catenin deficient ileums show efficient downregulation of CD44v6 target gene 
expression where CD44v6 is lost in βcat-LOF as early as E13.5 (J) and Lrp5/6-LOF by 
E14.5 (N). Scale bars: 50µm. (E, F) qPCR analysis of whole thickness ileal segments 
show upregulation of Axin2 and Cd44 from E13.5 and E15.5 (n=3 E13.5 embryos 
pooled from 2 litters and n=3 E15.5 embryos pooled from 3 litters for one independent 
experiment). (P-Q) Epithelial isolations from control and Lrp5/6-LOF intestines are 
enriched for E-cadherin and deficient in Twist2. (R, S) Lrp5/6-LOF epithelia are 
dramatically reduced for Cd44 and Axin2 mRNA transcript at E15.5, indicating efficient 
deletions by Shh-Cre. Both E13.5 genotypes have n=3 embryos pooled from 2 litters 
and both E15.5 genotypes have n=3 embryos pooled from 3 litters for one independent 
experiment. Statistical significance by t-test. *p-value 0.01-0.05, **p-value 0.001-0.01, 
***p-value 0.0001-0.001, ****p-value 0.00001-0.0001.  
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Figure 2.2. Axin2-LacZ reporter activity at E14.5 and E15.5. (A) Axin2-LacZ reporter 
mice show a gradient of WNT-signaling activity along the proximal-distal axis of the 
intestine at E14.5 and E15.5. Whole mount image of E14.5 gut tube stained for LacZ. 
Black bars indicate location of section in B-F. (B-E) Epithelial Axin2-LacZ reporter 
activity appears to be “patchy” with higher activity at putative proliferative intervillus 
domains. (F) Axin2-LacZ is very low to undetectable in the colon. (G) Whole mount 
E15.5 gut tube shows low WNT activity in the proximal duodenum and high WNT 
activity through the distal intestine (jejunum and ileum). Black bars indicate location and 
plane of section in H-L. (H-L) Sections from proximal to distal small intestine display a 
gradient of reporter activity in the epithelium and very low to undetectable levels in the 
colon (L). Note: the image shown in (K) is the same image that is shown in Figure 1D. 
Scale bars: 50µm. 
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Figure 2.3. High magnification immunofluorescence images of CD44v6 protein in 
distal small intestines. (A) Co-stained with Collagen IV (green), punctate CD44v6 
protein (white) is detected at low levels in E13.5 control intestines. (B) At E14.5, more 
robust membrane-bound CD44v6 is detected. (C-F) WNT/β-CATENIN signaling 
deficient intestines show efficient loss of CD44v6 in βcat-LOF as early as E13.5 (C) and 
Lrp5/6-LOF by E14.5 (F). Scale bar: 10µm.   
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Figure 2.4. β-catenin and Lrp5 and Lrp6 is efficiently deleted by Shh-Cre. (A) 
Immunofluorescence staining for β-CATENIN displays complete deletion in mutants 
compared with controls at E13.5. β-CATENIN (white), DAPI (blue). (B) qPCR of 
epithelial and mesenchymal tissue isolations in Lrp5/6-LOF and control at E13.5 (n=3 
embryos pooled from 2 litters) and E15.5 (n=3 embryos pooled from 3 litters) reveal 
efficient decrease in Lrp5 and Lrp6 transcript in E15.5 Lrp5/6-LOF epithelia. Asterisks 
indicate statistical significance of p<0.05. (C) Positive staining by DAB 
immunohistochemistry for intestinal epithelial marker CDX2 in βcat-LOF intestines at 

E12.5 and E15.5 indicates that the loss of -catenin did not affect intestinal cell identity. 
(D) Whole mount images demonstrate that E15.5 Lrp5/6-LOF and βcat-LOF intestines 
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were drastically shorter and thinner than controls. (E-J) Disrupted villus morphogenesis 
is not due to cell-cell adhesion defects. (E, F) H&E histological staining of E14.5 control 
and Ecad-LOF jejunum shows that Ecad-LOF epithelium is able to form villi. (G, H) E-
CADHERIN immunostaining showed that the protein was efficiently deleted in Ecad-
LOF (H). (I, J) Ecad-LOF intestines formed PDFRA+ mesenchymal clusters similar to 
controls undergoing normal villus morphogenesis. Scale bars: 50µm. Error bars 
represent SD. 
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Figure 2.5. WNT/β-CATENIN signaling deficient mice have epithelial proliferation 
defects and decreased SOX9 expression only at E15.5 and not at earlier time 
points. Immunofluorescence staining for phospho-histone H3 (PHH3, green) and E-
CADHERIN (white) demonstrates that epithelial proliferation was occurring in the distal 
small intestine of all genotypes at E13.5 and E14.5 (Control (A-B); βcat-LOF (D-E) 
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Lrp5/6-LOF (G-H)). At E15.5, villus morphogenesis and epithelial proliferation were 
perturbed in both βcat-LOF (F) and Lrp5/6 LOF (I) compared with control (C). (J) 
Quantification of the percent of PHH3+ epithelial cells (PHH3+ECAD+ /total 
ECAD+DAPI+) shows a significant reduction in proliferation only at E15.5. For all 
genotypes, n=3 to 6 embryos pooled from 2 to 5 litters for 5 independent experiments. 
Statistical significance by t-test. **p-value 0.001-0.01, ***p-value 0.0001-0.001. (K-P) 
Immunofluorescence staining for SOX9 (green) and E-CADHERIN (white) shows robust 
nuclear staining in the epithelium of control and βcat-LOF at E13.5 and E14.5 (K, L, N, 
O). At E15.5, SOX9 staining in controls is less robust at the tips of nascent villi (M) and 
is lost in βcat-LOF epithelia (P). Scale bars: 50µm. 
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Figure 2.6. βcat-LOF intestines do not display morphological defects before 
E15.5. (A-E) H&E staining of βcat-LOF intestines at E13.5 and E14.5 (D, E) are 
indistinguishable from controls (A, B). (F) E15.5 βcat-LOF do not have prominent villus 
structures as in controls (C). Quantification of E-CADHERIN and DAPI double-positive 
cells (immunostaining not shown) divided by the total number of DAPI positive cells per 
section (G) or as absolute cell number (H), reveals significant decrease in βcat-LOF 
intestines only at E15.5. Morphological analysis of total intestinal width/length (I, J), and 
epithelium width/length (L, M), was measured according to the schematic diagrams (K, 
N). No significant differences were observed across all time points. However, tracing the 
apical surface (demonstrated in Q, red), revealed a significant reduction in βcat-LOF at 
E15.5, reflective of the loss of villus structures. (P) Epithelial thickness, measured from 
the apical to basal surface (Q), was also reduced at E15.5. For all genotypes, n=3 to 6 
embryos pooled from 2 to 5 litters for 5 independent experiments. Statistical significance 
by t-test. *p-value 0.01-0.05, **p-value 0.001-0.01, ***p-value 0.0001-0.001. Scale bar: 
50µm. 
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Figure 2.7. Epithelial defects do not influence cell death or smooth muscle 
differentiation. (A) Immunofluorescence staining for apoptosis marker Cleaved-
Caspase3 (CC3, green) shows no CC3+ cells in βcat-LOF distal small intestine. β-
CATENIN (white) is completely deleted across all time points. (B) Absence of CC3+ 
cells in βcat-LOF distal small intestine was not an artifact of immunostaining as CC3+ 
cells were seen in the proximal duodenum at the tips of villi (arrows). (C)  βcat-LOF 
distal small intestine displayed normal alpha-smooth muscle actin at E15.5 compared 
with controls. Alpha-smooth muscle actin, αSMA (orange). E-cadherin (white), DAPI 
(blue). Scale bars: 50µm. 
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Figure 2.8. Loss of WNT/β-CATENIN signaling results in perturbed formation of 
PDGFRA+ mesenchymal clusters. (A) Immunofluorescence staining of E15.5 control 
distal small intestine shows clusters of PDGFRA+ (magenta) mesenchymal tissue 
beneath nascent villi. (B) PDGFRA was still expressed in the mesenchyme, but did not 
condense into clusters adjacent to the epithelium. (C) Longitudinal sections of E15.5 
control intestine stained with H&E display numerous villi while βcat-LOF epithelial is flat 
(D). All samples are biological replicates with an n≥3. Scale bars: 50µm. 
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Figure 2.9. Mesenchymal WNT ligand secretion regulates epithelial proliferation. 
(A) qPCR on whole thickness control ileums from E13.5 (n=3 embryos pooled from 2 
litters) and E15.5 (n=3 embryos from 1 litter) showed downregulation of Wnt5a and 
Wnt11 transcript and upregulation of Wnt3 and Wnt7b transcript. (B) E13.5 and 
E15.5epithelial isolations and mesenchymal isolations (each from n=3 embryos for one 
independent experiment) are enriched for E-cadherin and Vimentin respectively. Wnt3 
is significantly upregulated at E15.5 in both epithelial and mesenchymal compartments, 
while Wnt7b is only significantly upregulated in the mesenchyme and insignificantly 
increased in the epithelium. (C-H, L-M) MesWntless-LOF E13.5 intestines (n=3 embryos 
pooled from 2 litters for one independent experiment) cultured ex vivo for 0 hours show 
no proliferation defects, visualized by PHH3 (green) and E-CADHERIN (white) staining, 
compared to littermate controls (n=3 embryos) (C, D). At 72 hours in culture, 
MesWntless-LOF intestines (n=6 embryos pooled from 2 litters) have a significant 
reduction in epithelial proliferation compared to controls (n=5 embryos pooled from 2 
litters for two independent experiments) (F, G). PHH3+ epithelial cells were quantified in 
E and H. EpWntless-LOF intestines showed no significant differences in PHH3+ 
epithelial cells at E15.5 compared to controls (I-K). Wnt/β-catenin signaling target 
CD44v6 (white) is undetected in MesWntless-LOF when cultured for 72 hours (M) while 
controls exhibit robust membrane-bound epithelial staining (L). (N-O) EpWntless-LOF 
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E15.5 intestines do not show any differences in CD44v6 staining compared to controls. 
EpWntless-LOF and controls each have n=3 for one independent experiment. Statistical 
significance by t-test. *p-value 0.01-0.05, **p-value 0.001-0.01, ***p-value 0.0001-0.001, 
****p-value 0.00001-0.0001. 
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Figure 2.10. Mesenchymal-specific deletion of Wntless results in defects in gross 
morphology. (A) Whole thickness control ileums at E13.5 and E15.5 were analyzed for 
expression of the 19 Wnt ligands. Not detected, ND, reflects qPCR Ct value of 45. 
Asterisks indicate statistical significance: * = p<0.05, **  = p<0.01, ****= p<0.0001. All 
samples are biological replicates with n=3 embryos for one independent experiment. (B) 
Whole mount image of E13.5 MesWntless-LOF whole intestine shows a dramatic 
shortening of the small intestine and truncation at the ileum. Scale bar: 500µm. (C) 
Whole mount image of E15.5 EpWntless-LOF whole intestine do not display dramatic 
phenotypes and appear indistinguishable from controls. Error bars represent SD.  
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Table 2.1: Primary and Secondary Antibodies 

Primary Antibody Source Catalog # Dilution 

Anti-Actin, α Smooth Muscle-
Cy3 

Sigma-Aldrich C6198 1:300 

Chicken anti-GFP Abcam Ab13970 1:500 

Goat anti-Β-catenin Santa Cruz Biotech sc-1496 1:250 

Goat anti-E-Cadherin   R& D Systems AF748 1:500 

Goat anti-Sox9 R& D Systems AF3075 1:500 

Mouse anti-CDX2 BioGenex MU392A-UC 1:500 

Mouse anti E-Cadherin 
BD Transduction 
Laboratories 

610181 
1:500, 
1:4000 

Rabbit anti-Cleaved Caspase3 Cell Signaling Technology 9664 1:500 

Rabbit anti-Collagen IV Millipore AB756P 1:500 

Rabbit anti-Ki67 Thermo Scientific RM-9106 1:400 

Rabbit anti-PDGFRa Santa Cruz Biotech sc-338 1:500,1:1000 

Rabbit anti-PhosphoHistone H3 Millipore 06-570 1:500 

Rabbit anti-Shh Santa Cruz sc-9024 1:20 

Rat anti-CD44v6 eBioscience BMS145 1:1000 

    

  

Secondary Antibody Source Catalog # Dilution 

Biotin anti-rat Jackson Immuno 712-065-150 1:1000 

Biotin anti-rabbit Jackson Immuno 711-065-152 1:1000 

Donkey anti-chicken 488 Jackson Immuno 703-546-155 1:500 

Donkey anti-goat 488 Jackson Immuno 705-545-147 1:1000 

Donkey anti-goat 647 Jackson Immuno 705-605-147 1:1000 

Donkey anti-mouse 647 Jackson Immuno 415-605-350 1:1000 

Donkey anti-rabbit Cy3 Jackson Immuno 711-165-102 1:1000 

Donkey anti-rat Cy3 Jackson Immuno 712-165-153 1:1000 

Streptavidin 488 Jackson Immuno 160-540-084 1:1000 
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Table 2.2: qPCR Primer Sequences 
 

Primer 
Name 

Forward Sequence Reverse Sequence 

Axin2 TGCATCTCTCTCTGGAGCTG ACTGACCGACGATTCCATGT 

CD44 CACATATTGCTTCAATGCCTCA
G 

CCATCACGGTTGACAATAGTTA
TG 

E-cadherin GAGGTCTACACCTTCCCGGT AAAAGAAGGCTGTCCTTGGC 

GAPDH TGTCAGCAATGCATCCTGCA CCGTTCAGCTCTGGGATGAC 

Lrp5 CTGTACTGCAGCTTGGTCCC ACTCCAGCTTCACTCCGC 

Lrp6 TCTGCGTGCTGCTGAGAG ATCGTTGCATTCTCTTTGCC 

Twist2 GCCTGAGATGTGCAGGTG GTCTCAGCTACGCCTTCTCC 

Vimentin AGAGAGAGGAAGCCGAAAGC TCCACTTTCCGTTCAAGGTC 

Wnt1 AAATGGCAATTCCGAAACC 

 
GAAGATGAACGCTGTTTCTCG 
 

Wnt2 CCAACGAAAAATGACCTCGT GGGAAGTCAAGTTGCACACA 

Wnt2b CTGCTGCTGCTACTCCTGACT GGGGATGTTGTCACAGATCA 

Wnt3 CTGCTACTCGGCCTCCTG GAG ATGTGTACTGCTGGCCC 

Wnt3a CACCACCGTCAGCAACAG TCACTGCGA AAGCTACTCCA 

Wnt4 CCTGCGACTCCTCGTCTTC 

 
GTTTCTCGC ACGTCTCCTCT 
 

Wnt5a ACGCTTCGCTTGAATTCCT CCGGGCTTAATATTCCAATG 

Wnt5b GGGGAGAGACAGTGTGGAAG AACATCTTCCAAAGCGGAGC 

Wnt6 ACTGCTGCTGCTGCTCTTGT CCTGCAGATGCTGGTAGGAT 

Wnt7a TACACAATAACGAGGCGGGT TGTGGTCCAGCACGTCTTAG 

Wnt7b ACGTGTTTCTCTGCTTTGGC CCAGGCCAGGAATCTTGTT 

Wnt8a GGTGGAATTGTCCTGAGCAT GGATGGCATGAATGAAGGAT 

Wnt8b CCCGTGTGCGTTCTTCTAGT 

 
AGACCAGGTAAGCCTTTGGA 
 

Wnt9a GATGCTGGATGGGTCCCT GGGAGGATAGTCAGGGGTTC 

Wnt9b CGAGGAGATGCGAGAGTGC GGAAGGGTGTCAGGACCTC 

Wnt10a GAGTGCCAGCATCAGTTCC GCACTCTCTCGAAAACCTCG 

Wnt10b AACTGCTCGGCACTGGAG GCATGGAGAAGGAGAAAGCA 

Wnt11 CTGCGAGGCTCTGCTCTTT TCTGATTCAGTGCCAAGGCT 

Wnt16 TCTACACAACAACGAAGCGG TTTTCCAGCAGGTTTTCACA 
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CHAPTER 3 

 

DISCUSSION 

 

 

Summary of findings 

The research described in this thesis provides novel insight into the molecular 

mechanisms regulating intestinal development surrounding the formation of villi. In 

Chapter 2, I find that WNT/β-CATENIN signal transduction by the epithelium is dynamic 

during intestinal development. This conclusion is supported by evidence from reporter 

mice and loss-of-function genetic studies. Axin2-LacZ mice report very low WNT/β-

CATENIN signal transduction in the intestinal epithelium at E13.5, prior to villus 

formation, which becomes much more robust 48 hours later. Using a Shh-Cre mouse to 

drive conditional epithelial-specific deletion of the β-catenin gene CDH1 or of co-

receptors Lrp5 and Lrp6, we examined the distal intestine for morphological defects 

before, at the onset of, and after initiation of villus morphogenesis (E13.5, E14.5, and 

E15.5) and found that the intestine was indistinguishable from controls at E13.5 and 

E14.5, but displayed dramatic villus defects and loss of epithelial proliferation at E15.5. 

Together this represents two different stages of intestinal growth: one before villus 

morphogenesis has begun where WNT/β-CATENIN signal transduction is low and 

dispensable for epithelial proliferation, and another after villus morphogenesis has 
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begun where WNT/β-CATENIN signaling activity is high and required for epithelial 

proliferation. In order to understand how WNT/β-CATENIN ligand expression is 

behaving over this time, we analyzed the expression of Wnt ligand genes at E13.5 and 

E15.5 and found increased abundance of Wnt3 and Wnt7b transcripts in both the 

epithelium and mesenchyme. To determine whether WNT/β-CATENIN signal 

transduction in the epithelium is dependent upon epithelial- or mesenchymal-expressed 

WNT ligands, we used genetic mouse models to inhibit total WNT ligand secretion in a 

compartment-specific manner. We analyzed mice with either Shh-Cre or Twist2-Cre 

driven Wntless loss of function, which consequently prevents WNT ligand secretion 

from either the epithelium or mesenchyme respectively. These studies showed that loss 

of mesenchymal WNT secretion resulted in reduced epithelial proliferation and 

abrogated WNT/β-CATENIN signal transduction, while mice with loss of epithelial WNT 

secretion were indistinguishable from controls. While more work is required to identify 

the expression pattern and effects of WNT signaling modulators, these data suggest 

that mesenchymally expressed WNT ligands are critical for proliferation of the intervillus 

regions as villi begin to emerge. 

 

Contribution of work  

This work advances the field of intestinal biology and describes an interesting 

difference between the adult and embryonic intestine. While canonical WNT/β-

CATENIN signal transduction is required for stem cell maintenance in the adult 

intestinal epithelium, it appears that regulation of epithelial proliferation by WNT/β-

CATENIN signal transduction prior to birth is much more dynamic. As the epithelium 
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converts from pseudostratified growth to villus emergence, the proliferation of the 

epithelium changes from WNT/β-CATENIN-independence to dependence.  Prior to 

villus formation, the pseudostratified epithelium is uniformly proliferative; then upon 

emergence of nascent villi, the villus epithelium above clusters becomes columnar and 

withdraws from the cell cycle (Grosse et al., 2011). After villus emergence, proliferation 

becomes restricted to the intervillus domains and is driven by WNT/β-CATENIN 

signaling (Korinek et al., 1997; Garcia et al., 2009; Joo et al., 2010; Nigmatullina et al., 

2017). Before my studies, it was not clear whether WNT/β-CATENIN signaling drives 

epithelial proliferation prior to villus formation. One study analyzing the loss of Tcf4 at 

E14.5 showed no proliferation defects (Korinek et al., 1997), consistent with my 

findings. But a thorough analysis of the role of WNT/β-CATENIN signaling surrounding 

the initiation of villus morphogenesis had not been conducted. My work characterizes 

the role of WNT/β-CATENIN signaling to regulate proliferation of the intestinal 

epithelium before and after the onset of villus formation in order to enhance our 

understanding of the mechanisms guiding tissue morphogenesis. Additionally, my work 

uncovers how WNT/β-CATENIN signaling activity changes over developmental time 

and how mesenchymal versus epithelial WNT ligands affect epithelial proliferation, 

providing an excellent example of how mesenchymal-epithelial crosstalk can influence 

tissue morphogenesis. In light of the findings presented herein, newly published 

literature by others, and our unpublished data, this thesis raises new questions for 

future study. I will describe several of these questions and propose future experiments 

below.  
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Future Directions 

What drives epithelial proliferation before villus formation when the epithelium is 

pseudostratified?  

 At E12.5 and E13.5, prior to villus formation, the pseudostratified epithelium is 

highly proliferative. Our studies show that proliferation at this time is not driven by 

WNT/β-CATENIN signal transduction, so the mechanism driving proliferation of the 

pseudostratified epithelia is still unknown.  Recent work has shown that GATA4 

regulates proliferation of early epithelial progenitors from E10.5-E11.5, but not from 

E12.5-E16.5 nearer to the emergence of villus structures (Kohlnhofer et al., 2016). 

Noncanonical WNT signaling may also be regulating epithelial proliferation during 

pseudostratified growth as Wnt5a-null mice show elongation defects due in part to 

reduced epithelial proliferation, although cell apoptosis had not been investigated 

(Cervantes et al., 2009). Both of these studies conclude that epithelial proliferation was 

only moderately reduced, suggesting that other pathways may also be driving 

proliferation at these times.  

 

In other tissues, proliferation of pseudostratified epithelia is regulated by various 

signaling pathways. Proliferation of the developing vertebrate neural epithelium has 

been shown to be regulated by SHH and FGF signaling through the upregulation of 

CYCLIN and MYC proteins (Kenney et al., 2003; Oliver et al., 2003; Lobjois et al., 

2004). However, these are not attractive candidates in the pseudostratified intestinal 

epithelium because HH ligands signal in a paracrine manner to the mesenchyme 

(Kolterud et al., 2009; Ramalho-Santos et al., 2000) and FGF9-null mice display 
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elongation defects at E14.5 due to impaired mesenchymal proliferation (Geske et al., 

2008). A more attractive candidate may be mitogen-activated protein kinase (MAPK). In 

the pseudostratified Wolffian duct of the developing kidney, MAPK has been shown to 

regulate the G1/S transition during mitosis, which is required for sustained proliferation 

(Ihermann-Hella, et al, 2014). In vitro studies demonstrate that high levels of P42/44 

MAPK activate epithelial proliferation in human colon cancer cells (Aliaga et al., 1999) 

and E14.5 mouse intestinal enteroids require EGF for proliferation in culture through 

activation of ERK1/2-mediated signaling (Suzuki et al., 2010). Interestingly, adult mice 

with inducible p38 MAPK-deletion in colonic epithelium displayed increased proliferation 

and tumorigenesis, suggesting that MAPK may be suppressing epithelial proliferation in 

the adult mouse colon (Wakeman et al., 2012).  

 

 Additional studies need to be done in order to determine if these pathways or 

others regulate epithelial proliferation during pseudostratified growth. Experiments using 

genetic mouse models that manipulate specific signaling pathways or explant intestine 

cultures treated with small molecule libraries could be used to identify the signaling 

pathway (or multiple pathways) stimulating epithelial proliferation before villus formation. 

After identifying the pathway driving epithelial proliferation before villus formation, it 

would be interesting to determine if it is then inactivated upon villus emergence, or if it 

plays a redundant role with WNT/β-CATENIN to drive epithelial proliferation after villus 

emergence. If it acts redundantly with WNT/β-CATENIN, compound loss of function 

experiments disrupting signal transduction of both the newly identified pathway and 

WNT/β-CATENIN may reveal more severe proliferation defects after villus emergence. 
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Or if this pathway is inactivated upon villus emergence, then two distinct regulatory 

mechanisms control epithelial proliferation before and after villus formation.  

 

 Epithelial WNT/β-CATENIN signal transduction between E13.5 and E15.5: How is 

the transition made? 

 Together with findings from published literature, the data presented in this thesis 

describes a dramatic morphological change that takes place over a very short period of 

time. At E13.5, the intestinal epithelium is entirely pseudostratified, proliferating and 

producing SHH, with no mesenchymal clusters and low WNT/β-CATENIN signal 

transduction (Figure 3.1- A). At E15.5, villus structures with PDGFRA+ and GLI1+ 

mesenchymal clusters are established and villus epithelial cells in direct contact with the 

clusters withdraw from the cell cycle and become columnar.  Between clusters, discrete 

intervillus domains are composed of proliferating epithelial cells that transduce WNT/β-

CATENIN signals and express SHH (Figure 3.1- C).  But importantly, the 

morphogenetic processes that occur between these two times (from E14.0-E14.5) and 

result in the restriction of WNT/β-CATENIN signal transduction to the intervillus domains 

are less clear. There are two distinct possibilities. One is that there is a transient 

intermediate stage at E14.0, prior to mesenchymal cluster formation, where all 

pseudostratified epithelial cells robustly transduce WNT/β-CATENIN signals and as a 

result, emit other signals that are necessary for cluster formation.  Subsequently, the 

newly formed clusters signal to the overlying epithelium to silence WNT signal 

transduction, possibly by secretion of a WNT inhibitor (Figure 3.1- B). This would 

implicate WNT/β-CATENIN signal transduction as an indirect driver of mesenchymal 
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cluster formation and also attribute mesenchymal clusters as local inhibitors of WNT/β-

CATENIN signal transduction. Alternatively, WNT/β-CATENIN signal transduction may 

be activated de novo in a patterned way, only in intervillus cells between clusters 

(Figure 3.1- B’). This implies that mesenchymal clusters and defined intervillus domains 

arise before the selective activation of WNT/β-CATENIN signal transduction in intervillus 

epithelium.  

 

 In support of the first possible mechanism, our data shows increased Axin2-LacZ 

reporter expression in all pseudostratified epithelial cells at E14.5, consistent with a 

transient intermediate stage of uniform WNT/β-CATENIN signal transduction (Figure 2.2 

–E).  We also found that epithelial-specific deletion of β-catenin or Lrp5/6 lacked 

PDGFRA+ mesenchymal clusters (Figure 2.8- A-B) and showed reduced epithelial SHH 

(Figure 3.2) and mesenchymal Ptch1 expression (Figure 3.3- A-B) compared to 

controls. It will be important in the future to carefully examine Shh and Ptch1 expression 

at E14.5, just before and during the time of cluster formation, in order to determine 

exactly when this expression is diminished. Additionally, 80% of β-catenin-deleted 

intestines examined displayed rescued mesenchymal cluster formation when cultured 

ex vivo in the presence of Smoothened agonist (SAG) (Figure 3.3- E, F). These data 

suggest that epithelial WNT/β-CATENIN signal transduction may induce mesenchymal 

cluster formation by promoting expression of epithelial SHH ligand. Interestingly, β-

catenin-deleted intestines cultured with SAG retained epithelial proliferation defects 

(Figure 3.3- I), suggesting that epithelial WNT/β-CATENIN signaling may mediate SHH 

expression and proliferation independently. However, the possibility that these genetic 
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deletions of epithelial WNT signal transduction leads to dramatic changes in the 

epithelial cells themselves, indirectly causing reduced SHH expression, cannot be ruled 

out at this time.  

 

 In support of the second mechanism in which WNT/β-CATENIN signal 

transduction is activated de novo in a patterned manner in intervillus epithelium, our 

data show that expression of the WNT target CD44 is heterogeneous in the epithelium 

of E14.5 wildtype mice (Figure 2.1- H). We can speculate that patterned activation of 

WNT/β-CATENIN signal transduction could be due to upregulation of FRIZZLED 

receptors, reception of the WNT agonist RSPO, or down-regulation of WNT inhibitors, 

only in epithelial cells between clusters.  Or aside from patterned activation or 

suppression of WNT ligands or modulators, mechanical signals may activate WNT/β-

CATENIN signal transduction. It has been shown that upon aggregation of 

mesenchymal clusters, epithelial cells overlying mesenchymal clusters undergo cell 

shape changes to become shorter and wider (Freddo et al., 2016: Walton et al., 2016). 

This widening puts intraepithelial compressive forces on epithelial cells between 

clusters, potentially causing mechanotransduction that may activate WNT/β-CATENIN 

signal transduction (Freddo et al., 2016). But further evidence that mesenchymal cluster 

formation and establishment of intervillus domains precedes activation of WNT/β-

CATENIN signal transduction needs to be provided to support this model.  

 

In order to distinguish between these two models, we need to first understand 

when WNT/β-CATENIN signal transduction is activated in relation to cluster formation. 
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Because mesenchymal clusters arise in a wave-like fashion that travels proximally to 

distally (Walton et al., 2012), we can observe WNT/β-CATENIN signal transduction at 

the “wave front” of cluster formation, analyzing epithelial and mesenchymal morphology 

and gene expression in pseudostratified epithelium immediately before and immediately 

after cluster formation. If we see WNT/β-CATENIN signal transduction in all 

pseudostratified epithelium before clusters are present, this will be consistent with (but 

not definitively prove) the first model (Figure 3.1- B), suggesting the existence of an 

important transient stage in intestinal development that has not been previously 

recognized or explored. It is also consistent with the notion that WNT/β-CATENIN 

signaling is involved in induction of cluster formation, perhaps through activation of 

SHH. If WNT/β-CATENIN signal transduction induces cluster formation through 

activation of SHH, then we would predict that intestinal explants cultured with beads 

coated with WNT inhibitors would display reduced SHH and subsequent loss of cluster 

formation. Furthermore, explant culture of Lrp5/6-deleted intestines would show rescued 

SHH expression and cluster formation upon addition of WNT agonist. Alternately, the 

second model (Figure 3.1- B’) would be supported if we observe cluster formation 

preceding activation of WNT/β-CATENIN signal transduction and WNT/β-CATENIN only 

turns on in intervillus epithelium. This would suggest that patterned activation of WNT/β-

CATENIN signal transduction is possibly due to upregulation of WNT receptors or 

activators, downregulation of inhibitors, or mechanotransduction.  We would predict that 

gene expression analysis after laser capture microdissection of intervillus epithelium 

versus epithelium overlying clusters and mesenchymal clusters versus mesenchyme 

adjacent to clusters would reveal distinct expression patterns. For example, we would 
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predict discrete expression of Frizzled in the intervillus, Rspo in the intervillus or 

mesenchyme beneath the intervillus, or WNT inhibitors in epithelia above clusters or in 

mesenchymal clusters. Additional investigation is also needed to elucidate the potential 

activation of mechanotransduction in the intervillus domains.  

  

How is WNT ligand expression upregulated at the time of villus emergence?  

Another important finding from these studies is that the onset of villus formation 

occurs concomitantly with upregulated WNT ligand expression. Figure 2.9- A-B reports 

increased Wnt3 and Wnt7b mRNA abundance in the mesenchyme at E15.5 compared 

to mesenchyme at E13.5. We also determined that mesenchymal WNT ligands, and not 

epithelial WNT ligands, are required for normal epithelial proliferation and expression of 

the WNT target gene CD44 (Figure 2.9- C-O). This prompts two questions: What is the 

mesenchymal cell population secreting WNT ligands? What promotes increased 

expression of Wnt ligands?  

 

Subepithelial myofibroblasts in the adult mouse have been proposed to be a vital 

source of WNT ligands. Previously, researchers had detected expression of Wnt2b, 

Wnt4, and Wnt5a in subepithelial cells by in situ hybridization (Gregorieff and Clevers, 

2005). Indeed, these mesenchymal cells appear to secrete ligands important for 

epithelial proliferation, since isolated human epithelium (enteroids) can be sustained for 

60 days in culture when grown with subepithelial myofibroblasts, compared to just 2-3 

days without (Lahar et al., 2011). However, Myh11-Cre specific deletion of Porcupine to 

abrogate total WNT ligand secretion in adult mouse subepithelial myofibroblasts did not 
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yield any defects (San Roman et al., 2014). Thus, the particular mesenchymal cell 

population that provides WNT ligands and drives epithelial proliferation is still unknown.  

 

Another recent study attempting to find the source of WNT ligands identified a 

non-myofibroblastic CD34+ GP38+ αSMA- population (Stzepourginski et al., 2017). 

They found that these cells localized in close proximity to LGR5+ stem cells, produce 

WNT2 and RSPO1 and are sufficient to maintain LGR5+ stem cells in human intestinal 

organoids (Stzepourginski et al., 2017). However, these cells develop after birth and 

therefore would not be the critical cells producing WNT ligands in the developing 

intestine (Stzepourginski et al., 2017). Another study ablating FOXL1+ cells in adult 

mice by diphtheria toxin administration observed dramatic reduction of epithelial 

proliferation and loss of WNT/β-CATENIN signal transduction (Aoki et al., 2016). In situ 

hybridization data suggested that these FOXL1+ cells produce Wnt2b, Wnt4, and 

Wnt5a (Aoki et al., 2016). And because Foxl1 knockout mice displayed 

hyperproliferation and increased WNT/β-CATENIN signal transduction (Kaestner et al., 

1997; Perreault et al., 2001), there is a clear difference in removing FOXL1 transcription 

factors and removing FOXL1+ cells. It is possible that these are the key cells that are 

producing WNT ligands. Further investigation may target FOXL1+ cells as an attractive 

candidate for the source of WNT ligands in the developing intestine. But first it would 

need to be elucidated if FOXL1+ cells exist in the embryonic intestine and if emergence 

of FOXL1+ cells coincides with epithelial WNT/β-CATENIN-dependent signaling. If so, 

functional experiments ablating FOXL1+ cells in the developing intestine would predict a 

loss of mesenchymal WNT ligand expression.  
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If FOXL1+ cells are the source of mesenchymal WNT ligands, we then ask, does 

FOXL1 play a functional role during intestinal development? Do FOXL1 transcription 

factors promote the transcription of Wnt ligands? FOXL1 is a member of the forkhead 

family of transcription factors. The forkhead box, or Fox, family of transcription factors 

has been shown to play important roles during development and are implicated in 

various human diseases (reviewed in Carlsson and Mahlapuu, 2002; Benayoun et al., 

2011; Golson and Kaestner, 2016). They are expressed in the intestinal mesenchyme 

(Kaestner et al., 1996; Mahlapuu et al., 2001; Ormestad et al., 2006; Nik et al., 2013) 

and have been shown to differentially affect epithelial proliferation at different times. 

While postnatal Foxl1 null mice demonstrate hyperproliferation of the epithelium, 

increased nuclear β-catenin, and enhanced tumorigenesis in mice with mutations in 

APC (Kaestner et al., 1997; Perreault et al., 2001; 2005), in late fetal stages (after 

E16.5) Foxl1 null mice develop fewer and blunted villi (Kaestner et al., 1997), 

suggesting that FOXL1 may have different roles in the intestine before and after birth. 

Another subfamily of Fox factors, the FOXF proteins (FOXF1 and FOXF2) negatively 

regulate proliferation and WNT signaling in both fetal and adult stages. Foxf1 and Foxf2 

mutants display hyperproliferation in colon epithelia at E18.5. The authors suggest that 

FOXF2 may be down regulating proliferation indirectly through upregulation of BMP4 

(Ormestad et al., 2006). Loss of Foxf2 promotes adenoma formation in adult Apc 

mutants (Nik et al., 2013). FOXF2 appears to regulate WNT signaling directly by 

promoting the expression of the WNT inhibitor SFRP1 (Nik et al., 2013). This evidence 

suggests functional differences between Fox subfamilies, where FOXL transcription 
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factors promote WNT signaling and epithelial proliferation during development, while 

FOXF transcription factors inhibit WNT signaling and restrict proliferation at all time 

points. And both FOXL and FOXF have been shown to be downstream of HH signaling 

(Ormestad et al., 2004; 2006; Madison et al., 2009). FOXL1 and FOXF1 loci are bound 

by GLI proteins, suggesting direct regulation (Madison et al., 2009). Together, we can 

imagine a mechanism in which epithelial HH ligands in the developing intestine activate 

mesenchymal FOXL transcription factors, promoting their secretion of WNT ligands, 

which signal back to the epithelium and drive epithelial proliferation. To support this 

model, it will be important to demonstrate that HH ligands induce FOXL expression in 

the developing intestine prior to epithelial WNT-dependence and that FOXL 

transcription factors directly regulate transcription of WNT ligands.  This information can 

expand our understanding of how WNT ligands in the mesenchyme are upregulated 

before the onset of villus morphogenesis.  

 

In conclusion, the work presented in this dissertation provides insight into the 

molecular mechanisms that control epithelial proliferation around the time of villus 

formation. This work describes dynamic WNT/β-CATENIN signaling activity in the 

developing intestine and elucidates a previously unrecognized transition during which 

WNT/β-CATENIN signal transduction increases at the onset of villus formation. Further 

loss of function studies show that during the pseudostratified stage of growth, 

proliferation in the intestinal epithelium is independent of WNT/β-CATENIN signal 

transduction. However, at the start of villus formation, the epithelium makes an 

important transition, requiring WNT/β-CATENIN signals for normal epithelial 
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proliferation. Yet many questions still remain. If not WNT/β-CATENIN signaling, what is 

driving proliferation of the pseudostratified epithelium? How does WNT/β-CATENIN 

signal transduction increase at the onset of villus formation and how is it restricted to the 

intervillus domains? These questions and others will drive further investigation and 

promise an interesting study. 
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Figure 3.1. Schematic of morphogenetic changes during villus formation. (A) At 
E13.5, the intestinal epithelium is pseudostratified and expressing SHH (green) WNT/β-
CATENIN signaling activity (red) is very low in the epithelium. (B) From E14.0-E14.5, 
WNT/β-CATENIN signal transduction becomes restricted to the intervillus domains by 
either one of two possible mechanisms: WNT/β-CATENIN signal transduction is briefly 
activated in all pseudostratified cells and then turns off in epithelial cells overlaying 
mesenchymal clusters (blue) (B), or the formation of mesenchymal clusters patterns the 
intervillus domains and WNT/β-CATENIN signal transduction is activated de novo in 
intervillus cells (B’). (C) At E15.5, villus and intervillus domains are established.  
Epithelial proliferation, SHH expression, and WNT/β-CATENIN signal transduction 
becomes restricted to the intervillus domains.   
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Figure 3.2. Lrp5/6 and β-catenin-deleted intestines display defects in epithelial 
SHH expression. (A) Immunofluorescence staining against SHH does not detect 
appreciable levels of SHH protein in Lrp5/6-LOF or βcat-LOF at E15.5. (B) qPCR 
analysis of epithelial (Epi) versus mesenchymal (Mes) isolations display significant 
reduction of Shh mRNA transcript in Lrp5/6-LOF epithelium compared to controls. 
Statistical significance by t-test. *p-value ≥ 0.05 
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Figure 3.3: β-catenin-deleted mice display loss of mesenchymal cluster formation 
due to defects in HH signaling (A-B). In situ hybridization shows that large 
condensations of mesenchymal cells positive for Ptch1 mRNA transcript aggregate 
adjacent to the epithelium in controls (A), but not in βcat-LOF at E15.5 (B). (C-I) To 
allow for the application of SAG, E14.5 distal small intestines were cultured ex vivo for 
48 hours and then analyzed by immunofluorescence. Staining for PDGFRA (green) and 
E-CADHERIN (white) revealed small clusters in Controls + DMSO (C). Controls + SAG 
displayed larger clusters and larger villi (D). Unlike the in vivo βcat-LOF which lacked 
cluster formation, βcat-LOF with SAG treatment had PDGFRA positive mesenchymal 
clusters surrounded by buckling epithelium (E). Insets show the cluster and nascent 
villus at higher magnification. (G-I) Immunostaining for PHH3 (green) and E-CADHERIN 
(white) demonstrated highly proliferative epithelium in controls with DMSO and SAG (G, 
H), whereas βcat-LOF + SAG epithelium was not proliferative (I). (F) Table summary of 
the number of biological samples in either in vivo or in vitro experiments that display 
nascent villi as defined as having both PDGFRA+ mesenchymal cluster and adjacent 
buckling. 


