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ABSTRACT

Composite Adaptive Internal Model Control: Theory and Applications to Engine
Control

by

Zeng Qiu

Co-Chairs: Prof. Jing Sun and Dr. Mrdjan Jankovic

To meet customer demands for vehicle performance and to satisfy increasingly strin-

gent emission standard, powertrain control strategies have become more complex and

sophisticated. As a result, controller development and calibration have presented a

time-consuming and costly challenge to the automotive industry. This thesis aims to

develop new control methodologies with reduced calibration effort. Internal model

control (IMC) lends itself to automotive applications for its intuitive control struc-

ture with simple tuning philosophy. A few applications of IMC to the boost-pressure

control problem have been reported, however, none offered an implementable and

easy-to-calibrate solution. Motivated by the need to develop robust and easily cali-

bratable control technologies for boost-pressure control of turbocharged gasoline en-

gines, this thesis developed new control design methodologies in the IMC framework.

Two directions are pursued: adaptive IMC (AIMC) and nonlinear IMC.

A plant model and a plant inverse are explicit components of IMC. In the presence

of plant-model uncertainty, combining the IMC structure with parameter identifica-

tion through the certainty equivalence principle leads to adaptive IMC (AIMC), where

xiv



the plant model is identified and the plant inverse is derived by inverting the model.

We propose the composite AIMC (CAIMC), which identifies the model and the in-

verse in parallel, and reduces the tracking error through the online identification.

“Composite” refers to the simultaneous identifications. The constraint imposed by

the stability of an n-th order model is nonconvex, and it is re-parameterized as a linear

matrix inequality. The parameter identification problem with the stability constraint

is reformulated as a convex programming problem. Stability proof and asymptotic

performance are established for CAIMC of a general n-th order plant.

CAIMC is applied to the boost-pressure control problem of a turbocharged gaso-

line engine. It is first validated on a physics-based high-order and nonlinear pro-

prietary turbocharged gasoline engine Simulink model, and then validated on a tur-

bocharged 2L four-cylinder gasoline engine on a Ford Explorer EcoBoost. Both sim-

ulations and experiments show that CAIMC is not only effective, but also drastically

reduces the calibration effort compared to the traditional PI controller with feedfor-

ward.

Nonlinear IMC is presented in the context of the boost-pressure control of a tur-

bocharged gasoline engine. To leverage the available tools for linear IMC design, the

quasi-linear parameter varying (quasi-LPV) models are explored. A new approach

for nonlinear inversion, referred to as the structured quasi-LPV model inverse, is de-

veloped and validated. A fourth-order nonlinear model which sufficiently describes

the dynamic behavior of the turbocharged engine is used as the design model, and

the IMC controller is derived based on the structured quasi-LPV model inverse. The

nonlinear IMC is applicable when the nonlinear system has a special structural prop-

erty and has not been generalized yet. Simulations on a high-fidelity turbocharged

engine model are carried out to show the feasibility of the proposed nonlinear IMC.
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CHAPTER I

Introduction

1.1 Motivation

The automotive industry had made tremendous progress over the last few decades

in terms of vehicle performance and energy efficiency. As shown in Fig. 1.1, while

the average weight of a vehicle is similar between model year 2016 and 1975, the

horsepower and fuel economy are improved significantly. For more efficient vehicles,

many improved powertrain technologies have been adopted, for example, variable

valve timing, direct fuel injection, engine down-sizing with turbochargers [2]. As the

powertrain complexity increases, in order to meet the legislative emission standards,

the number of calibration parameters of the powertrain control increases exponentially

as shown in Fig. 1.2. The “curse of dimensionality” drives the calibration process

lengthier, more expensive, and labor-intensive [4]. The calibration process typically

starts with many months of experimental work in engine test cells and experimental

vehicles. The finalization of the control and diagnosis can easily take two to three

years [5].

The automotive control problem is out-pacing the traditional control design tech-

nique, which poses challenges and opportunities for control technology development

[5]. Control frameworks that provide easy calibratability are essential for the way

of working in the automotive industry [6]. Internal model control (IMC) lends itself

1



Figure 1.1: Average change in adjusted fuel economy, weight, and horsepower of a
vehicle since 1975 [1].

Figure 1.2: Progress of memory size (in MByte), calibration parameters (number),
and calculation power (in mega instructions per second / MIPS) of engine
control units since 1995 [3].
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Controller Q 

Model 𝑀 

IMC controller 
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𝑦𝑀

Figure 1.3: Internal model control structure.

to automotive industry for its intuitive control structure with simple tuning philoso-

phy [7, 8].

As shown in Fig. 1.3, IMC incorporates the plant model as an explicit part of the

IMC controller, and the feedback is the difference between the plant and the plant

model responses. When the model is the same as the plant, the feedback will cease to

have an effect and the IMC structure will be equivalent to an open-loop feedforward

control [9]. The controller Q in Fig. 1.3 can be simply chosen as the approximate

inverse of the model. IMC offers several salient features that make it attractive,

especially from the controller tuning point of view. When the plant is stable and

minimum phase, this inverse can be obtained by inverting the plant model M and

augmenting it with a low pass filter, where the latter is used to assure causality of

the controller. The time constant of the filter, as the only tuning parameter in this

design, can be calibrated to achieve the desired bandwidth of the control system,

thereby ensuring robustness [10, 11]. IMC has been applied to many automotive

applications, such as boost-pressure control [12–17], air/fuel ratio control [18–20],

idle speed control [21], throttle control [22], traction control [23], and vehicle yaw

control [24].
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1.2 Background on Internal Model Control

IMC was first introduced by Garcia and Morari in 1982 [9], but similar concepts

were used previously and independently by other researchers. Richalet et al. [25]

and Cutler and Ramaker [26] proposed similar but heuristic control algorithms in

the process industries, which were applied successfully to complex process control

applications. Morari and Zafiriou put IMC on a firmer footing in [8].

The design, analysis, and implementation of IMC for linear systems have been

well explored [8]. It has numerous successful applications [27–32]. Besides being

directly applied, many linear IMCs are shown to lead to PID controllers, occasionally

augmented with a first-order lag filter. The superiority of using IMC for PID tuning

is demonstrated in terms of closed-loop performance and robustness [33,34].

For nonlinear plants, the results and tools for IMC design and implementation are

very limited. Particularly, the online nonlinear inversion presents a great challenge.

Hirschorn studied the invertibility condition, inverse structure, and derivation for

nonlinear dynamic system inverse [35], but his derivation of the nonlinear inverse

involved higher-order derivatives and caused problems when noises and disturbances

were present in the system. A few nonlinear IMC algorithms are proposed based on

Hirschorn nonlinear inverse [13–15,36,37]. Some nonlinear IMCs assumes the higher-

order derivatives to be known, which is unrealistic. Others solve the nonlinear inverse

numerically using the contraction principle method or Newton’s method. It is prone

to noise and has high algorithmic and computational complexity.

The nonlinear model is often linearized to exploit the linear IMC design tools.

Feedforward/feedback linearization approach was adopted by Calvet and Arkun to

derive the model for the nonlinear plant in IMC [38]. Toivonen et al. derived the

linear model based on the velocity-based linearization, then developed the IMC con-

troller based on linear IMC theory [39]. It was only applicable when there were a

small number of scheduling parameters. Another possible avenue to exploit the lin-

4



ear IMC design tools for nonlinear systems would be through the linear parameter

varying (LPV) model [40]. It is, however, shown that such a treatment only works

in limited cases, and when it works, the derivation is computationally expensive and

the subsequent design in the LPV framework is very demanding. Mohammapour

et al. applied IMC on a quasi-LPV model with two approaches [41]. In the first

approach, the IMC controller parameters were scheduled based on the LPV model

parameters which were assumed to be known in real time and not vary rapidly. In

the second approach, the design problem was formulated in the H∞ framework as a

set of linear matrix inequalities (LMI). Solving the associated LMI problem, however,

was computationally intensive.

In this thesis, we showed that for some specific nonlinear systems, the structure

of the nonlinearity can be explored so that the inversion can be decomposed into

cascaded inversions of several first-order systems [42, 43], thereby alleviating the dif-

ficulty in high-order nonlinear system inversion. However, this is only applicable if

the nonlinear system has the special structural property that lends itself for such a

decomposition.

In addition to nonlinearity, a challenge in IMC design is dealing with variations in

the underlying plant and its operating environment. Many identification techniques

have been exploited for adaptive IMC (AIMC). Applying the artificial neural networks

on IMC has been well studied, where the feasibility of simultaneous identifying the

model and its inverse with neural networks was demonstrated [44–49]. Application

of IMC with neural networks have been documented in a few publications [50, 51],

where the identifications of the neural networks were performed off-line due to its

computational complexity. IMC has been explored with fuzzy logic [52–54], where

the dynamic model and its inverse were represented by fuzzy logic, and found success

in a few applications [55, 56]. A Bayesian Gaussian process was exploited to identify

the model in IMC [57]. A few kernel-based identification techniques were combined

5



with IMC [58–60]. AIMC with an adaptive inverse control strategy was investigated

in [61,62], in which the inverse is approximated by an adaptive finite impulse response

(FIR) filter as presented in [63]. However, for neural network, fuzzy logic, Gaussian

process, kernel-based model, and adaptive FIR filter, their black-box identifications

make it difficult to incorporate physical knowledge about the plant in the controller

design.

AIMC with the certainty equivalence principle and parameter estimation incor-

porated physical knowledge about the plant [64–67]. By certainty equivalence design

principle, the model was identified based on known structure of the plant, and the

inverse was derived by inverting the estimated model. Stability, robustness, and per-

formance issues are addressed in [64]. AIMC with parameter estimation is intuitive

and simple to implement. Many successful applications have been discussed [68–70].

For AIMC designed with the certainty equivalence approach, simultaneous iden-

tification of the model and the inverse is very tempting: IMC performs better with

a more accurate model and a more accurate inverse. Intuitively by identifying the

inverse directly, as opposed to calculating the inverse model from the identified plant

model, one can achieve a more accurate inverse dynamic model. Moreover, the di-

rect identification of the inverse avoids online inversion of the identified model, which

might be non-invertible under unspecified excitation conditions. This inspired us to

design composite AIMC (CAIMC) as presented in this thesis, where the model and

the inverse are identified simultaneously [71–73].

1.3 Background on Boost-Pressure Control of Turbocharged

Gasoline Engines

In this thesis, we choose the boost-pressure control problem of turbocharged gaso-

line engines to illustrate the design and calibration challenges as well as to demon-
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Figure 1.4: Turbocharged gasoline engine structure [75].

strate the proposed solutions. As shown in Fig. 1.3, the turbocharger extracts the

energy from the exhaust gas to pressurize the ambient air, which increases the power

density and fuel efficiency of the engine [74]. The air is compressed by the compres-

sor, and passes through an intercooler and a throttle before entering the engine intake

port. The engine exhaust port is connected to the turbine, which is mechanically con-

nected to the compressor. An wastegate actuator controls the opening of the turbine

bypass path in this application [17], affecting the compressor speed and therefore

the boost-pressure. While providing adequate boost at low speed and load, the tur-

bocharger system also has to avoid over-boost situation at high speed and load [76].

Traditionally, the boost-pressure is measured and PI control with feedforward on the

wastegate is used to regulate the boost-pressure to desired set-point [74, 76, 77]. A

few applications of IMC to boost-pressure control of turbocharged gasoline engines

emerged in the last few years.

Thomasson et al. utilized IMC for PID tuning of wastegate control in tur-

bocharged gasoline engines [16]. Karnik et al. [17] applied IMC directly to wastegate

control for a turbocharged gasoline engine. They used a first-order gain-scheduled

linear model which was simplified from a fourth-order nonlinear model using singular

perturbation. While the simplicity of the first-order model-based design was an ad-
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vantage for implementation, its performance was limited by the linear approximation,

as it is defined for a particular operating point. Overall, none of these applications

has offered a general, implementable, and easy-to-calibrate solution.

Motivated by the need for an easy-to-calibrate control framework, we first explored

the application of nonlinear IMC to the boost-pressure control problem. A first

principle fourth-order nonlinear model is derived, and its inverse is derived from

the quasi-linear parameter varying version of the nonlinear model. It is presented

in the context of the boost-pressure control, and it is hard to generalize due to its

requirement for a special structural property of the nonlinear model. We then applied

CAIMC to the boost-pressure control problem. The design of CAIMC assumes that

the plant model and its inverse are represented by the first-order linear dynamics.

The simultaneous identification of the model and the inverse reduces the tracking

error through the online identifications. CAIMC is validated on the boost-pressure

control problem in both simulations and experiments, which shows that CAIMC is

not only effective, but also reduces the calibration effort significantly.

1.4 Contributions

This thesis aims at developing an analytical framework and associated tools to

facilitate the design and implementation of easy-to-calibrate control solutions. We

proposed a general control framework CAIMC, and developed new technologies for

the boost-pressure control problem: CAIMC and nonlinear IMC. Therefore, the con-

tributions are two-fold.

The first contribution is the development of new and improved control method-

ologies in the IMC framework.

• CAIMC, where the forward plant model and the plant inverse are identified

simultaneously, is developed. It is an improvement upon AIMC, where the
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model is obtained from system identification of a plant, and the inverse is the

inversion of the identified model.

• For the first time, the IMC tracking error is represented as the sum of the

forward plant modeling error and the right-inverse modeling error, based on

which the advantage of CAIMC can be established analytically.

• A general approach to identify the parameter with the constraint imposed by

the stability of an n-th order model is developed. The constrained parameter

identification is reformulated as a convex programming problem.

• The stability proof and asymptotic performance are established for CAIMC. All

the signals in the closed-loop system are uniformly bounded, and the tracking

error converges to zero when there is no unmodeled dynamics.

The second contribution is the development of new control technologies for the

boost-pressure control problem of turbocharged gasoline engines.

• CAIMC is applied to the boost-pressure control problem of a turbocharged

gasoline engine. It is first applied to a physics-based high-order and nonlinear

Ford proprietary turbocharged gasoline engine model, and then validated on

a turbocharged 2L four-cylinder gasoline engine on a Ford Explorer EcoBoost

with vacuum actuated wastegate. It is shown to be effective and robust and it

drastically reduces the calibration effort.

• The feasibility, performance, advantages, and limitations of a nonlinear IMC

for the boost-pressure control are explored. The challenges for inverting the

nonlinear model are addressed by representing the nonlinear dynamics with a

quasi-LPV model. Simulations on a high-fidelity turbocharged engine model

are carried out to show the feasibility of the proposed nonlinear IMC. The non-

linear IMC is applicable only when the nonlinear system has a special structural
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property, and it remains an open problem to generalize the nonlinear IMC and

develop a guideline for calibration.

1.5 Outline

This thesis reports the comprehensive research efforts on IMC and boost-pressure

control of turbocharged gasoline engines. Specifically, we first present the control

methodology development of CAIMC, then we presented the technology development

for boost-pressure control, including CAIMC and nonlinear IMC. This thesis is orga-

nized as follows:

Chapter I is an introduction. Chapter II presents what initiates and motivates

this work: internal model control(IMC) and adaptive IMC (AIMC).

Chapter III presents the composite AIMC (CAIMC) for a first-order plant. The

tracking error for CAIMC is expressed as the sum of the forward modeling error and

inverse modeling error to justify the simultaneous identifications in CAIMC. Two

different designs of CAIMC: CAIMC with left-inverse (CAIMC-LI) and CAIMC with

right-inverse (CAIMC-RI) are presented for the first-order model and compared. The

stability proof in the ideal case without unmodeled dynamics is presented.

Chapter IV generalizes the first-order CAIMC presented in Chapter III to n-th

order. The CAIMC design procedure and stability proof are both presented. The

challenge when extending CAIMC from first-order to n-th order lies in handling the

constraint imposed by the stability of an n-th order model. A constrained parameter

identification algorithm is reformulated as a convex programming problem to tackle

the challenge.

Chapter V presents the detailed design procedures of applying the first-order

CAIMC to the boost-pressure control of a turbocharged gasoline engine. The result-

ing CAIMC is first applied to a physics-based high order and nonlinear proprietary

turbocharged gasoline engine model, and then validated on a turbocharged 2L four-
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cylinder gasoline engine on a Ford Explorer EcoBoost.

Chapter VI present the application of a nonlinear IMC to the boost-pressure

control problem. A fourth-order nonlinear model which sufficiently describes the

dynamic behavior of the turbocharged engine is used as the design model in the IMC

structure. A new approach for nonlinear inversion, referred to as the structured quasi-

LPV model inverse, is developed and validated. Finally, simulations on a validated

high-fidelity model are carried out to show the feasibility of the proposed IMC. Its

closed-loop performances are compared with a well-tuned PI controller with extensive

feedforward and anti-windup built in. Robustness of the nonlinear IMC design is

analyzed using simulations.

Chapter VII draws the conclusions.
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CHAPTER II

Adaptive Internal Model Control

2.1 Internal Model Control (IMC)

Internal model control (IMC) is a control structure as shown in Fig. 1.3, where G,

M , and Q represent the plant, model, and inverse, respectively. It is called internal

model control because the model M is an explicit component in the controller, which

offers an alternative to the classical feedback control structure.

The difference between the responses of G and M , y − yM is fed back to Q.

When the model is exact, i.e., M = G, the feedback signal is zero and IMC structure

becomes open-loop. This open-loop feedforward structure obviously requires that G

and Q are stable. We assume that the plant of interest is stable for the rest of the

thesis. Q can be designed as a stable open-loop feedforward controller. Therefore,

one approach to IMC design is to optimize the tracking error in the H2 sense, that is

minimize
Q

‖e‖2 = minimize
Q

‖r − y‖2 = minimize
Q

‖{1−GQ}r‖2, (2.1)

subject to the constraint that Q is stable and causal. The optimization (2.1) reaches

the minimum 0 atQ = G−1 without constraints. For a stable and minimum phase(MP)

plant, Q can be designed as G−1 appended with a filter to make it causal. But for a

stable and non-minimum phase (NMP) plant, Q = G−1 is unstable. For a particular
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reference r, an inverse of G = M that minimize the tracking error in the H2 sense

can be found through the following lemma [8].

Lemma II.1. Assume that M is stable. Factor M into an allpass portion MA and a

MP portion MM , i.e.,

M = MAMM , (2.2)

so that MA includes all the RHP zeros and delays of M and

|MA(iω)| = 1,∀ω. (2.3)

In general, MA has the form

MA(s) = e−sθ
∏
i

−s+ ζi
s+ ζHi

, Re(ζi) > 0, θ > 0. (2.4)

where the superscript H denotes complex conjugate.

Factor R, the Laplace transformation of the reference signal r similarly

R = RARM . (2.5)

The controller Q which solves (2.1) is given by

Q = (MMRM)−1{M−1
A RM}∗. (2.6)

where the operator {·}∗ denotes performing a partial fraction expansion of the term

(·), and then omitting all components that involve the poles of M−1
A [8].

With (2.6), an approximate inverse Q of the model M is derived. In general, Q is

not proper, and it is to be augmented by a filter.
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IMC has many appealing properties [8], which were shown to carry over to IMC

with nonlinear models [36] and adaptive IMC [64], including:

• Zero offset The controller will lead to zero steady-state error as long as the

steady-state gain of Q is the inverse of the steady-state gain of M .

• Simple tuning philosophy The only tuning parameter in the IMC structure

is the time constant of the filter augmented to the inverse. It can be calibrated

to achieve the desired bandwidth of the closed-loop system.

2.2 Adaptive IMC (AIMC)

In practical applications, the plant parameters are often unknown or vary with

time. The plant uncertainty might be too large to be handled by a fixed controller,

making adaptive control a desirable solution. Adaptive control structure is usually

formulated by combining online parameter estimation with a control law that is mo-

tivated from the known parameter case [78]. The estimated parameters are treated as

if they are the true parameters. It is referred to as the certainty equivalence principle,

and is the key to adaptive control design.

Applying adaptive control to IMC structure with certainty equivalence principle

leads to Adaptive IMC (AIMC). It is shown in Fig. 2.1, where the model M is

derived using online plant parameter identification, and the inverse Q is derived from

inverting M following Lemma II.1 [64]. The design details of AIMC including the

online identification of the parameters and the controller design are presented.

We will use a linear model to approximate the plant. For a fixed nonlinear plant,

the parameters of its linearization vary with different operating points. An n-th order

linear dynamic model can be assumed to have the general form of [78]

y =

{
ZM(s)

RM(s)

}
u =

b∗0s
n + b∗1s

n−1 + · · ·+ b∗n
sn + a∗1s

n−1 + · · ·+ a∗n
u, (2.7)
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Figure 2.1: AIMC illustration.

where y and u are the output and input of the plant, θ∗ = [b∗0, . . . , b
∗
n, a

∗
1, . . . , a

∗
n]

are unknown. Throughout the thesis, {·} represents the dynamic operators, whose

transfer function is (·). A general certainty equivalence AIMC scheme can be designed

following the following steps:

1. Formulate a plant model structure based on the plant dynamics, i.e., define the

order and the relative degree of the plant model, while taking the accuracy and

complexity into consideration.

2. Derive the parametric model from (2.7) and estimate the unknown parameters

using an appropriate adaptive law. (This step is presented in Section 2.2.1.)

3. Calculate the appropriate Q from the estimated plant model M , using Lemma

II.1.

4. Using the certainty equivalence principle to implement Q. (This step is pre-

sented in detailed in Section 2.2.2.)

Note: the estimation of the plant parameters and the calculation of Q occur

online. Therefore, AIMC is capable of capturing the plant parameter variation caused

by aging and variation in the operating environment.

15



2.2.1 Plant Model and its Estimation

2.2.1.1 Linear Parametric Model

If one can obtain the linear expression

z =θ∗Tφ, (2.8)

where the parameter vector θ∗ contains all the unknown parameters in the dynamic

equation (2.7), z and φ are available to measure, then θ∗ can be easily estimated with

standard estimation approaches, such as the least-square and the gradient method.

Such linear expression (2.8) is referred to as a linear parametric model. z is referred

to as the observation, and φ is referred to as the regressor.

To derive the linear parametric model, (2.7) can be rewritten as

sny = b∗0s
nu+ b∗1s

n−1u+ · · ·+ b∗nu− a∗1sn−1y − · · · − a∗ny, (2.9){
sn

Λ(s)

}
y = b∗0

{
sn

Λ(s)

}
u+ · · ·+ b∗n

{
1

Λ(s)

}
u− a∗1

{
sn−1

Λ(s)

}
y − · · · − a∗n

{
1

Λ(s)

}
y,

where 1
Λ(s)

is introduced to avoid derivatives in generating signals needed for param-

eter estimation and to filter out the noise. Λ(s) is an n-th order Hurwitz polyno-

mial [78]. The observation z and regressor φ in (2.10) are defined as

z =

{
sn

Λ(s)

}
y, (2.10)

φ =[

{
sn

Λ(s)

}
u,

{
sn−1

Λ(s)

}
u, . . . ,

{
1

Λ(s)

}
u,−

{
sn−1

Λ(s)

}
y,−

{
sn−2

Λ(s)

}
y, . . . ,−

{
1

Λ(s)

}
y]T .

2.2.1.2 Continuous-time Adaptive Law

The normalized gradient algorithm with projection is presented here to identify the

unknown parameter vector θ∗ [78]. The gradient algorithm identifies the parameter

θ by minimizing certain performance cost w.r.t. θ. Projection algorithm can be used
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with the gradient algorithm to handle the constraints on θ.

Continuous-time Normalized Gradient Algorithm We will first discuss the

identification of the unknown parameters θ∗ without constraints on θ. Here the

gradient algorithm minimizes a quadratic cost function of the normalized estimation

error

ε =
z − θTφ
1 + φTφ

=
z − θTφ
m2

, (2.11)

where m2 = 1 + φTφ is the normalizing term. The quadratic cost function of ε is

defined as

J(θ) =
ε2m2

2
=

(z − θTφ)2

2m2
. (2.12)

J(θ) is convex over the space of θ. Applying the gradient method, we have

θ̇ = −Γ∇J(θ) = Γεφ, (2.13)

where Γ = ΓT is a scaling positive definite matrix that affects how rapid θ converges.

The properties of the normalized gradient algorithm are summarized as:

Lemma II.2. The adaptive law (2.13) applied to the linear parametric model (2.8)

guarantees that [78]

(i) ε, εm, θ, θ̇ ∈ L∞.

(ii) ε, εm, θ̇ ∈ L2 independent of the boundedness of the signal vector φ, and

(iii) if m,φ ∈ L∞ and φ is persistently exciting (PE), then θ(t) converges exponen-

tially to θ∗.
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When there is unmodeled dynamics, instead of (2.8),

z = θ∗Tφ+ η, (2.14)

where η is the unmodeled dynamics term. From (2.11), ε = (θ∗−θ)Tφ+η
m2 is used to

“drive” the adaptive law to estimate θ in the case of the gradient algorithm. When ε

is small, η may be more dominant than (θ∗− θ)Tφ in ε, and θ will drift unnecessarily.

To make the adaption law robust w.r.t. the unmodeled dynamics η, a deadzone is

often applied on ε(i) [78]. The deadzone with size g0 can be implemented as a function

g(ε) =


ε− g0, if ε > g0,

ε+ g0, if ε < −g0,

0, otherwise.

With the deadzone, the adaptation occurs only when the estimation error ε is large

relative to the modeling error η.

Continuous-time Normalized Gradient Algorithm with Projection The

normalized gradient algorithm (2.13) minimizes the cost function J(θ) with no con-

straints, i.e., it allows θ to lie anywhere in Rl, where l is the dimension of θ. When

there is priori knowledge about θ∗, or when θ has to be bounded for stability or safety

reasons, projection algorithm can be applied to the normalized gradient algorithm to

handle the constraints. Suppose the constraint is θ ∈ S, where S is a convex set with

a smooth boundary. The problem now is to minimize the cost function J(θ) subject

to θ ∈ S. Let S be given by

S = {θ ∈ Rm|g(θ) ≤ 0} (2.15)

where g : Rm → R is a smooth function. The normalized gradient algorithm with
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projection is given by

θ̇ = PrS(−Γ∇J)

:=

 −Γ∇J, if θ ∈ S0, or if θ ∈ δ(S) and − (Γ∇J)T∇g ≤ 0

−Γ∇J + Γ ∇g∇g
T

∇gTΓ∇gΓ∇J, otherwise.
(2.16)

where S0 is the interior of S, δ(S) is the boundary of S, and the initial condition

θ(0) ∈ S. The intuitive interpretation of the gradient algorithm with projection (2.16)

is as follows: θ is usually updated using the gradient algorithm, but when θ is going

to move to any θ̃ outside S, θ̇ is adjusted such that θ moves to the projection of θ̃ on

the boundary δ(S). Therefore, θ never leaves the subset S, i.e., the constraints are

always satisfied.

Lemma II.3. The gradient adaptive law of (2.13) with the projection modification

given by (2.16) retains all their properties that are established in the absence of projec-

tion and in addition guarantees that θ ∈ S, ∀t ≥ 0 provided θ(0) ∈ S and θ∗ ∈ S [78].

2.2.1.3 Hybrid Adaptive Law

For computational and robustness reasons, the updates of the identified parame-

ters can be performed at specific instants of time kTs, where Ts is the sampling time.

The updates of the identified θ(k) at the k-th sample will take the general form of

θ(k + 1) = θ(k) + f(φ(t), ε(t)), t ∈ [kTs, (k + 1)Ts], (2.17)

where f is the correction term, and the normalized estimation error

ε(t) =
z(t)− θT (k)φ(t)

m(t)2
, ∀kTs ≤ t < (k + 1)Ts, (2.18)
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where m(t)2 = 1 + φ(t)Tφ(t) is the normalizing term. (2.17) is referred to as hybrid

adaptive law.

Hybrid Normalized Gradient Algorithm Hybrid version of the normalized

gradient algorithm is presented here to obtain the estimated θ of the unknown pa-

rameter vector θ∗ in (2.8) [78]. Again we consider a quadratic cost function of ε:

J(θ) = ε2m2

2
. Applying the gradient method, we have

θ(k + 1) = θ(k) + Γ

(k+1)Ts∫
kTs

ε(t)φ(t)dt, (2.19)

where Γ = ΓT is a positive-definite matrix that affects how rapid θ converges.

Lemma II.4. [78] Let 2− Tsλmax(Γ) ≥ c for some c > 0. The adaptive law (2.19)

for (2.8) guarantees that

(i) θ ∈ l∞.

(ii) ∆θ ∈ l2, where ∆θ(k) = θ(k + 1)− θ(k).

(iii) ε, εm ∈ L2 ∩ L∞.

(iv) If m,φ ∈ L∞ and φ is persistently exciting, then θ(k)→ θ∗ as k →∞ exponen-

tially fast.

Hybrid Normalized Gradient with Projection Similarly with the continuous-

time case, projection algorithm can be applied to the hybrid normalized gradient al-

gorithm to handle the constraints given by θ ∈ S in (2.15). The normalized gradient

algorithm with projection is given by

θ(k + 1) = PrS

θ(k) + Γ

(k+1)Ts∫
kTs

ε(t)φ(t)dt

 , (2.20)
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and the initial condition θ(0) ∈ S. Projection of a point onto a convex set S always

exists and is unique.

Lemma II.5. The gradient adaptive law of (2.19) with the projection modification

given by (2.20) retains all their properties that are established in the absence of projec-

tion and in addition guarantees that θ ∈ S, ∀k ≥ 0 provided θ(0) ∈ S and θ∗ ∈ S [78].

2.2.2 Controller/Inverse Design

From Fig. 1.3, we see that the control input u in the IMC structure for a LTI

model is given by

u = {Q(s)}l = {Q(s)}(r − (y − yM)). (2.21)

An alternate approach to implement Q(s) that is well-suited for varying coefficients

is introduced as follows. Q can be expressed as Q = Qn
Qd

, where Qn(s) and Qd(s)

are polynomials with Qd(s) being Hurwitz. Choose Λ(s) to be an arbitrary monic

Hurwitz polynomial of order n with leading coefficient 1. Then the control law (2.21)

can also be implemented as

u =

{
Λ(s)−Qd(s)

Λ(s)

}
u+

{
Qn(s)

Λ(s)

}
(r − (y − yM))

= qTd

{
ξn−1(s)

Λ(s)

}
u+ qTn

{
ξn(s)

Λ(s)

}
(r − (y − yM)) (2.22)

where ξn(s) = [1, s, . . . , sn]T , qd is the vector of the coefficients of Λ(s) − Qd(s), and

qn is the vector of the coefficients of Qn(s).

With the parametric model (2.10) and the adaptive law (2.16) or (2.20), the

estimates of the numerator ẐM and denominator R̂M of the plants are obtained.

Using the estimated frozen-time plant model, we can derive Q(s, t) = Q̂n(s,t)

Q̂d(s,t)
following

Lemma II.1.
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With (2.22), the certainty equivalence principle leads to the control law

u =

{
Λ(s)− Q̂d(s, t)

Λ(s)

}
u+

{
Q̂n(s, t)

Λ(s)

}
(r − (y − yM))

= q̂Td

{
ξn−1(s)

Λ(s)

}
u+ q̂Tn

{
ξn(s)

Λ(s)

}
(r − (y − yM)) (2.23)

where q̂d is the vector of the coefficients of Λ(s)− Q̂d(s, t), and q̂n is the vector of the

coefficients of Q̂n(s, t).

22



CHAPTER III

First-order Composite Adaptive Internal Model

Control

The IMC structure explicitly includes a model and an inverse of the plant. In

Chapter II, we presented adaptive IMC, where the model is identified, and the inverse

is derived by inverting the estimated model. However, the inverse of the estimated

model does not necessarily represent a good inverse of the plant, especially when there

is no persistent excitation. To form a more accurate inverse, identifying the inverse

directly is very appealing, which yields the composite adaptive IMC (CAIMC) as

shown in Fig. 3.1. It is based on a standard IMC structure with two simultaneous

identifications, where the model identification estimates the unknown parameters of
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Figure 3.1: CAIMC illustration.
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the model, and the inverse identification estimates the unknown parameters of the

inverse. “Composite” refers to the simultaneous identifications of the plant model

and the plant inverse. The design procedure of CAIMC, following the certainty

equivalence principle, is described in steps as follows:

1. Formulate a forward plant model and an inverse model structure based on the

plant dynamics, i.e., define the order and the relative degree of the forward plant

model and the plant inverse model, while taking the accuracy and complexity

into consideration.

2. Derive the parametric models of the proposed forward plant model and inverse

model structures respectively, identify the unknown parameters using an appro-

priate adaptive law.

3. Treat the identified model and inverse as the true plant and plant inverse and

embed them into M and Q in the IMC structure.

In this chapter, we will focus on the design details of CAIMC for a first-order

plant. In Section 3.1, we first demonstrate the advantages of CAIMC analytically.

The tracking error is represented as the sum of the forward modeling error and the

inverse modeling error. If the identifications can minimize the modeling errors, then

CAIMC can reduce the tracking error through the simultaneous identifications of the

model and the inverse. In Section 3.2, CAIMC for a first-order plant, including the

parametric models, the parameter identification schemes, and the controller realiza-

tion, are explained in detail. In Section 3.3, the stability proof of the first-order

CAIMC structure without unmodeled dynamics and noises is presented.

3.1 Tracking Error Representation of CAIMC

Intuitively simultaneous identifications of the model and the inverse will yield

better IMC performance. Here we will discuss the advantage of simultaneous identifi-
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cations analytically. The tracking error of IMC is presented as e = {1−GQ}r in (2.1).

It is based on the assumption that there is no modeling error, which is unrealistic in

practical applications. When M 6= G, the tracking error of IMC can be represented

as

e = eQ + eM , (3.1)

where

eM = y − yM , (3.2)

eQ = l − y. (3.3)

yM is the model response, and l = r−y+yM is the input to the inverse Q as shown in

Fig. 1.3. (3.1) can be derived by noting that e = r−y = (r−y+yM−y)+(y−yM) =

(l − y) + (y − yM).

Note that eM is the difference between the plant and the model responses, which

is referred to as the forward modeling error, and eQ is the difference between the

input to Q and the plant response, which is referred to as the inverse modeling

error.

With (3.1), the tracking error e has been represented as the sum of the forward

modeling error eM and the inverse modeling error eQ. To the best of our knowledge,

this expression has not been presented in the literature. With the triangle inequality,

|e| ≤ |eM |+ |eQ|, (3.4)

The tracking error can be bounded from above by the sum of |eM | and |eQ|. This

expression inspires and justifies the separate estimations of M and Q. Intuitively the

forward modeling error eM should be related to the forward model estimation error
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Figure 3.2: CAIMC-LI illustration.

εM , and the inverse modeling error eQ should be related to the inverse estimation

error εQ. Recall that the gradient method is based on minimizing the quadratic cost

functions of the estimation error ε. Therefore, the minimization of the quadratic cost

functions of εM and εQ will contributes to reducing the tracking error.

Specifically, eQ is the right-inverse modeling error. For an operator G that maps

the input space U to the output space Y , it is often possible to find operators QL and

QR with the property

{QLG}u = u, u ∈ U, (3.5)

{GQR}y = y, y ∈ Y. (3.6)

QL and QR are called left and right-inverse operators of G, respectively [36]. For a

SISO LTI operator G, QR = QL, whereas they are generally different for nonlinear

or time-varying operators. l = {GQR}l matches the form in (3.6). Therefore eQ =

l − y = {GQR}l − {GQ}l characterizes how well Q represents QR, the right-inverse

of G.

Therefore, in step 2 of CAIMC design procedure, the identification of the inverse

model can be carried out in two different ways by assuming different inverses, lead-

ing to two different CAIMC schemes: CAIMC with left-inverse (CAIMC-LI) and
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Figure 3.3: CAIMC-RI illustration.

CAIMC with right-inverse (CAIMC-RI). They have the same structure as shown in

Fig. 3.1, the same overall design procedure following step 1 - 3, and the same model

identification for M . The differences are the identifications of the inverse Q.

CAIMC-LI and CAIMC-RI are illustrated in Fig. 3.2 and 3.3, where the forward

modeling error

eM = y − yM (3.7)

drives the model identification for both CAIMC-LI and CAIMC-RI. For CAIMC-LI

in Fig. 3.2, the left-inverse modeling error signal

eQ = u− ũ = {QLG}u− {Q̃G}u (3.8)

which characterizes how well Q̃ represent QL drives the left-inverse identification, and

the identified Q̃ is copied to Q. The left-inverse identification is simple and intuitive.

Its design is very similar to the forward model identification. However, it does not

directly minimize the right-inverse modeling error eQ.

For CAIMC-RI in Fig. 3.3, the right-inverse modeling error signal

eQ = l − y = {GQR}l − {GQ}l (3.9)
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which characterizes how well Q represent QR drives the right-inverse identification.

The right-inverse identification directly minimizes the right-inverse modeling error

eQ, which is of interest.

In the next section, the details of CAIMC-LI and CAIMC-RI are discussed for a

first-order linear plant. Their forward model and inverse parametric models, param-

eter identifications, and the controller realization are discussed.

3.2 CAIMC Design for a First-order Plant

For simplicity and clarity, CAIMC for a first-order linear plant is first introduced.

Later in Chapter IV, we will generalize it to n-th order systems. Here the plant is

assumed to have the first-order linear model

y =

{
k∗1

τ ∗s+ 1

}
u (3.10)

and inverse

u =

{
1

k∗2

b∗s+ 1

a∗s+ 1

}
y, (3.11)

where y and u are the output and input of the plant, τ ∗, k∗1, k∗2, a∗, and b∗ are

unknown. Note that k∗1 and k∗2 should be equivalent, but they are treated as indepen-

dent parameters for the model and inverse identification. Following step 2 of CAIMC

design procedure, the parametric models will be discussed for the model and the in-

verse, and the normalized gradient algorithm with projection presented in Chapter

II will be exploited to identify the unknown parameters. Then following step 3, the

identified parameters are treated as the real ones to implement M and Q in the IMC

structure.
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3.2.1 CAIMC-LI for a First-order Plant

CAIMC-LI is demonstrated in Fig. 3.2, where the model identification is driven

by minimizing the forward modeling error eM = y − yM as in (3.7), and the inverse

identification is driven by minimizing the left-inverse modeling error eQ = u− ũ as in

(3.8).

Forward model parametric model and identification

The first-order linear model is assumed to have the structure (3.10). The model

identification minimizes a quadratic cost function of εM =
zM−θTMφM

m2
M

as in (2.11). The

goal of the model identification design is to design zM and φM , such that the forward

modeling error eM = y−yM drives the identification, i.e., εMm
2
M = zM−θTMφM = eM .

With simple manipulation of (3.10), we have

τ ∗
{

s

τMs+ 1

}
y +

{
1

τMs+ 1

}
y = k∗1

{
1

τMs+ 1

}
u,

y = (τM − τ ∗)
{

s

τMs+ 1

}
y + k∗1

{
1

τMs+ 1

}
u,

where 1
τMs+1

is the regressor filter. Therefore, for the plant model identification, the

associated signals of the parametric model zM = θ∗TM φM can be defined as

zM = y, θ∗M = [τM − τ ∗, k∗1]T ,

φM = [

{
s

ΛM(s)

}
y,

{
1

ΛM(s)

}
u]T , where ΛM(s) = τMs+ 1, (3.12)

εM =
zM − θTMφM

m2
M

,m2
M = 1 + φTMφM .

Then, the continuous-time normalized gradient algorithm (2.16) that minimizes J(θM)

=
ε2Mm

2
M

2
can be adopted to estimate θM = [τM−τ, k1]T . τ has to be positive to ensure

the stability of the implemented model. Therefore the identification has to satisfy

the constraint τM − τ < τM . The detail of the normalized gradient algorithm with
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projection according to (2.16) is:

˙(τM − τ) =

 γ1εMφM1, if τM − τ < c1, c1 < τM , or if τM − τ = c1, εMφM1 < 0,

0, otherwise.

k̇1 = γ2εMφM2,

εM =
zM − θTMφM

m2
M

,m2
M = 1 + φTMφM . (3.13)

Model realization and forward modeling error eM

If M is designed such that

yM = θTMφM = (τM − τ)

{
s

ΛM(s)

}
y + k1

{
1

ΛM(s)

}
u, (3.14)

where τ and k1 are the identified parameters, we have

εMm
2
M =zM − θTMφM = y − yM = eM . (3.15)

The forward modeling error eM equals to the forward model estimation error εMm
2
M ,

which drives the identification of M .

Left-inverse parametric model and identification

By simply swapping the roles of the input and output of plant model, we have the

first-order inverse model as (3.11). This inverse is referred to as the left-inverse, in the

sense that if Q̃ = QL in (3.8), eQ = 0. Similarly to the model identification, the goal

of the left-inverse identification design is to design zQL and φQL, such that the left-

inverse modeling error eQ drives the identification, i.e., εQLm
2
QL = zQL− θTQφQL = eQ.

To formulate all the signals used in the inverse identification, we write the inverse
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model (3.11) as

a∗
{

s

τQs+ 1

}
u+

{
1

τQs+ 1

}
u = (

b

k2

)∗
{

s

τQs+ 1

}
y + (

1

k2

)∗
{

1

τQs+ 1

}
y,

where 1
τQs+1

is the regressor filter. It can be further expressed as

u = (
b

k2

)∗
{

s

τQs+ 1

}
y + (

1

k2

)∗
{

1

τQs+ 1

}
y + (τQ − a∗)

{
s

τQs+ 1

}
u.

For the left-inverse identification, the associated signals of the parametric model

zQL = θ∗TQ φQL are defined as

zQL = u, θ∗Q = [(
b

k2

)∗, (
1

k2

)∗, τQ − a∗]T ,

φQL = [

{
s

ΛQ(s)

}
y,

{
1

ΛQ(s)

}
y,

{
s

ΛQ(s)

}
u]T , where ΛQ(s) = τQs+ 1, (3.16)

εQL =
zQL − θTQφQL

m2
QL

,m2
QL = 1 + φTQLφQL.

With the continuous-time normalized gradient algorithm (2.16), the unknown pa-

rameters ( b
k2

)∗, ( 1
k2

)∗, and τQ − a∗ can be identified by minimizing J(θQ) =
ε2QLm

2
QL

2
.

θQ = [ b
k2
, 1
k2
, θQ3]T represent the estimated parameters, where θQ3 = τQ− a. Not only

does a has to be positive to assure the stability of the plant, a has to be bigger than

a certain constant to limit the bandwidth of the overall control system. Therefore,

the identification has to satisfy the constraint θQ3 < c2. The detail of applying the

normalized gradient algorithm with projection according to (2.16) is
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˙
(
b

k2

) = γ1εQLφQL1,

˙
(

1

k2

) = γ2εQLφQL2, (3.17)

˙θQ3 =

 γ3εQLφQL3, if θQ3 < c2, or if θQ3 = c2, εQLφQL3 < 0,

0, otherwise.

εQL =
zQL − θTQφQL

m2
QL

,m2
QL = 1 + φTQLφQL.

Left-inverse realization and inverse modeling error eQ

Similarly to the model realization (3.14), the left-inverse Q̃ can be designed as

ũ = θTQφQL =
b

k2

{
s

τQs+ 1

}
y +

1

k2

{
1

τQs+ 1

}
y + (τQ − a)

{
s

τQs+ 1

}
u. (3.18)

The left-inverse estimation error

εQLm
2
QL =zQL − θTQφQL = u− ũ = eQ. (3.19)

Note that Q̃ is copied to Q in Fig. 3.2, and the control is actually implemented

differently. For a fixed inverse Q = 1
k∗2

b∗s+1
a∗s+1

with input l = r − y + yM , u = Ql =

{ 1
k∗2

b∗s+1
a∗s+1

}(r − y + yM). A filter 1
τQs+1

is added for implementation.

a∗
{

s

τQs+ 1

}
u+

{
1

τQs+ 1

}
u =

b∗

k∗2

{
s

τQs+ 1

}
l +

1

k∗2

{
1

τQs+ 1

}
l,
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which can be further expressed as

a∗

τQ
u =

{
a∗

τQ
− 1

τQs+ 1

}
u+

b∗

k∗2

{
s

τQs+ 1

}
l +

1

k∗2

{
1

τQs+ 1

}
l,

u =

{
1− τQ

a∗

τQs+ 1

}
u+

τQb
∗

a∗k∗2

{
s

τQs+ 1

}
l +

τQ
a∗k∗2

{
1

τQs+ 1

}
l.

Using certainty equivalence principle, the identified parameters a, b, and k2 are

treated as if they are the true parameters,

u =

{
1− τQ

a

τQs+ 1

}
u+

τQb

ak2

{
s

τQs+ 1

}
l +

τQ
ak2

{
1

τQs+ 1

}
l. (3.20)

Then the left-inverse estimation error can be expressed as

εQLm
2
QL =zQL − θTQφQL = u− ũ

=

{
b

k2

s+
1

k2

}{
1

ΛQ(s)

}
(l − y) =

{
b

k2

s+
1

k2

}{
1

ΛQ(s)

}
eQ,

or equivalently

eQ =(

{
b

k2

s+
1

k2

}{
1

ΛQ(s)

}
)−1εQLm

2
QL = {X}εQLm2

QL, (3.21)

where {X} is a operator whose transfer function is ({ b
k2
s + 1

k2
}{ 1

ΛQ(s)
})−1. The

left-inverse identification derivation is simple and straightforward, however, the left-

inverse identification minimizes the quadratic cost function of εQLm
2
QL = eQ, which

is not exactly eQ.

3.2.2 CAIMC-RI for a First-order Plant

CAIMC-RI is demonstrated in Fig. 3.3, where the model identification is driven

by the forward modeling error eM = y− yM as in (3.7), and the inverse identification

is driven by eQ = l − y as in (3.9). The model identification is exactly the same as
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CAIMC-LI. The inverse identification poses the biggest challenge.

Right-inverse parametric model and identification

The goal of the right-inverse identification design is to minimize eQ, i.e., the right-

inverse estimation error εQRm
2
QR = eQ as in (3.9). It is essentially designing an

optimal feedforward controller that can minimize the quadratic cost function of the

tracking error resulting from the feedforward control structure. For the first-order

linear plant, the inverse is still assumed to be u = { 1
k∗2

b∗s+1
a∗s+1

}l in (3.11).

The right-inverse identification scheme can be designed based on the left-inverse

identification. To use eQ as the inverse estimation error, the associated signals of the

parametric model zQR = θ∗TQ φQR has to be rewritten as

zQR = {Xi−1}
{

1

ΛQ(s)

}
u, θ∗Q = [(

b

k2

)∗, (
1

k2

)∗, τQ − a∗]T ,

φQR = {Xi−1}[
{

s

ΛQ(s)

}
y,

{
1

ΛQ(s)

}
y,

{
s

ΛQ(s)

}
u]T ,ΛQ(s) = τQs+ 1, (3.22)

εQR =
zQR − θTQφQR

m2
QR

,m2
QR = 1 + φTQRφQR.

where {Xi−1} = ({ b
k2

(i − 1)s + 1
k2

(i − 1)}{ 1
ΛQ(s)
})−1 is added to the observation zQL

and regressor vector φQL given in (3.16). Xi−1 is the transfer function given in (3.21)

with b
k2

(i − 1) and 1
k2

(i − 1) be the identified b
k2

and 1
k2

from the previous sample

time (i − 1). Note that the continuous-time adaptive law is adopted in identifying

the parameters, so θ is a continuous-time signal. θ(i − 1) is defined as θ(ti − Ts),

where Ts is the sampling time. {Xi−1} is adopted because the identified parameters

for the current time are not available for calculation. Similarly to the left-inverse

identification, the identification has to satisfy the constraint θQ3 < c2. The detail of

applying the normalized gradient algorithm with projection according to (2.16) is
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˙
(
b

k2

) = γ1εQRφQR1,

˙
(

1

k2

) = γ2εQRφQR2, (3.23)

˙θQ3 =

 γ3εQRφQR3, if θQ3 < c2, or if θQ3 = c2, εQRφQR3 < 0,

0, otherwise

εQR =
zQR − θTQφQR

m2
QR

,m2
QR = 1 + φTQRφQR.

Right-inverse realization and modeling error eQ

The right-inverse is still designed as in (3.20). With this estimation reformulation,

the right-inverse estimation error can be expressed as

εQRm
2
QR =zQR − θTQφQR

={Xi−1}zQL − θTQ{Xi−1}φQL = {Xi−1}(zQL − θTQφQL) + ε1

={Xi−1}{Xi}−1eQ + ε1 = eQ + ε2, (3.24)

where ε1 and ε2 are residues from swapping the dynamic operators, and they are

bounded by θ̇Q [78]. When θQ vary slowly, for the right-inverse, εQRm
2
QR ≈ eQ.

3.2.3 Comparison of CAIMC-LI and CAIMC-RI

CAIMC-LI is simple and intuitive to derive. Its tracking error based on (3.1),

(3.15), and (3.21) is

e = eM + eQ = εMm
2
M + {X}εQLm2

QL, (3.25)

where eQ is represented as a function of εQLm
2
QL. However, the time-varying operator

X is hard to analyze. The reduction of tracking error is not directly related to the
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minimization of the inverse identification error εQLm
2
QL.

For CAIMC-RI, assuming the identified parameters vary slowly, based on (3.1),

(3.15), and (3.24), the tracking error is

e = eM + eQ ≈ εMm
2
M + εQRm

2
QR. (3.26)

With the tracking error representation (3.26), CAIMC-RI eases the performance anal-

ysis of CAIMC, and the direct minimization of eM and eQ will further improve the

CAIMC performance.

3.3 Stability Proof of First-order CAIMC in the Ideal Case

In this section, the stability and asymptotic performance of the first-order CAIMC

for the ideal case when there is no unmodeled dynamics is established.

Remark III.1. The inverse (3.11) is an approximate inverse of (3.10), because the

plant is strictly proper. For the simplicity of the presentation, the stability proof

and asymptotic performance are established for the ideal case without unmodeled

dynamics. The proof of a general CAIMC and effects of the unmodeled dynamics are

discussed in Chapter IV.

Theorem III.1. Consider the plant (3.10), (3.11) subject to the CAIMC-LI or

CAIMC-RI schemes without unmodeled dynamics. For any bounded reference r,

all the signals in the closed-loop system are uniformly bounded. The tracking error

e = r − y converges to zero as t→∞.

Proof: τM and τQ are design constants for the identifications. For simplicity of

the proof, let τM = τQ = τ0. Note that the same analysis can be carried out with

arbitrary choice of τM > 0 and τQ > 0 at the expense of some additional algebra. We
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define that

ẋ1 = − 1

τ0

x1 +
1

τ0

y, x1 =

{
1

τ0s+ 1

}
y

ẋ2 = − 1

τ0

x2 +
1

τ0

u, x2 =

{
1

τ0s+ 1

}
u (3.27)

ẋ3 = − 1

τ0

x3 +
1

τ0

εMm
2
M , x3 =

{
1

τ0s+ 1

}
(εMm

2
M),

where εMm
2
M = y − yM as shown in (3.15).

Step 1

Correlate u and y to the estimation error:

For the model estimation, from (3.14), (3.15), and (3.27), we have

εMm
2
M =τ0ẋ1 + x1 − k1x2 − (τM − τ)ẋ1,

ẋ1 =
1

τ
(−x1 + k1x2 + εMm

2
M). (3.28)

For the control Law (3.20) and (3.27), let r =
τQb

ak2
{ s
τQs+1

}r +
τQ
ak2
{ 1
τQs+1

}r,

u =τ0ẋ2 + x2 = (1− τ0

a
)x2 + r − b

ak2

εMm
2
M −

τ0 − b
ak2

x3.

ẋ2 =− 1

a
x2 −

τ0 − b
ak2τ0

x3 +
1

τ0

r̄ − b

ak2τ0

εMm
2
M . (3.29)

From (3.27),

ẋ3 = − 1

τ0

x3 +
1

τ0

εMm
2
M . (3.30)

Let x = [x1, x2, x3]T , from (3.28), (3.29), and (3.30), we have
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ẋ =


− 1
τ

k1
τ

0

0 − 1
a
− τ0−b
ak2τ0

0 0 − 1
τ0

x+


1
τ

− b
ak2τ0

1
τ0

 εMm2
M +


0

1
τ0

0

 r̄ (3.31)


u

y

εMm
2
M

 = τ0ẋ+ x

Note: The left-inverse and the right-inverse are implemented with the same structure.

Therefore, (3.31) applies to both CAIMC-LI and CAIMC-RI.

Step 2

Establish the exponential stability of the homogeneous part of (3.31):

All the elements of A(t) =


− 1
τ

k1
τ

0

0 − 1
a

τ0−b
ak2τ0

0 0 − 1
τ0

 are obviously differentiable. For each

fixed time t, A(t) has eigen-values at − 1
τ
, − 1

a
, and − 1

τ0
, which are all negative ∀t ≥ 0

because of projection (3.13), (3.17), and (3.23).

By Lemma II.2 and II.3, the adaptive law guarantees that θM , θQ ∈ L∞, εM , εMmM ,

θ̇M , εQ, εQmQ, θ̇Q ∈ L∞ ∩ L2. − 1
τ
,− 1

a
∈ L∞ because of projection. Since θ̇M , θ̇Q ∈

L∞ ∩ L2, ||Ȧ(t)|| ∈ L2. Lemma B.1 implies that the state transition matrix Φ(t, τ)

associated with A(t) satisfies ‖Φ(t, τ)‖ ≤ κ1e
−κ2(t−τ), ∀t ≥ τ ≥ 0 for some constant

κ1, κ2 > 0.

Step 3

Establish signal boundedness: The L2δ norm ‖(•)t‖2δ for some δ > 0 is the

exponentially weighted L2 norm defined as ||xt||2δ := (
∫ t

0
e−δ(t−τ)xT (τ)x(τ)dτ)

1
2 . Ap-
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plying Lemma B.2 to the state space equation (3.31), we can obtain

‖xt‖2δ ≤ c‖(ε̂Mm2
M)t‖2δ + c, (3.32)

|x(t)| ≤ c‖(ε̂Mm2
M)t‖2δ + c,

where | • | is a vector norm, for any δ ∈ [0, δ1) where δ1 > 0 is any constant less

than 2κ2 and some finite constant c ≥ 0. For simplicity of the representation, in this

thesis, c is used to represent a generic constant.

We define the fictitious normalizing signal m2
f := 1 + ‖ut‖2

2δ + ‖yt‖2
2δ. From the

state space equation, we have ‖ut‖2δ + ‖yt‖2δ ≤ c‖xt‖2δ + c‖(ε̂Mm2
M)t‖2δ + c. With

equation (3.32), we have ‖ut‖2δ + ‖yt‖2δ ≤ c‖(ε̂Mm2
M)t‖2δ + c, implying

m2
f ≤ c‖(ε̂Mm2

M)t‖2
2δ + c.

From (3.12), applying Lemma B.3,

mM =
√

1 + φTMφM ≤ cmf , (3.33)

m2
f ≤ c‖(g̃mf )t‖2

2δ + c,

where g̃ = ε̂MmM ∈ L2e. Or

m2
f ≤ c

t∫
0

e−δ(t−τ)g̃2(τ)m2
f (τ)dτ + c,

where 0 < δ ≤ δ∗ and δ∗ = min[2λ, δ1], δ1 ∈ (0, 2κ2).

Applying Lemma B.4 the B-G lemma, we can establish that mf ∈ L∞. Then

with (3.33), we have mM ∈ L∞ and therefore φM , x, ẋ, u, y ∈ L∞, εQm
2
Q ∈ L∞,

mQ =
√

1 + φTQφQ =
√

1 + x2
1 + x2

2 ∈ L∞.
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Step 4:

Establish that the tracking error e converges to zero:

Since the tracking error e can be expressed as the sum of eM = y − yM and eQ =

l− y. We can demonstrate the convergence of e by demonstrating the convergence of

eM and eQ respectively.

First, we consider the forward model estimation error equation

εMm
2
M = y − yM . (3.34)

εMmM ∈ L2 ∩ L∞ based on the adaptive law. mM ∈ L∞ from Step 3. Therefore,

εMm
2
M ∈ L2 ∩ L∞. Operating on each side of εMm

2
M = y − yM = y − θTMφM with

s := d
dt

, we obtain

d

dt
(y − yM) =ẏ − θ̇TMφM − θTM φ̇M .

With (3.12),

d

dt
(y − yM) =ẏ + τ̇

{
s

ΛM(s)

}
y − k̇1

{
1

ΛM(s)

}
u− (τ0 − τ)(

1

τ0

ẏ −
{

1

τ0

s

ΛM(s)

}
y)

− k1

{
s

ΛM(s)

}
u

=
τ

τ0

ẏ + τ̇

{
s

ΛM(s)

}
y − k̇1

{
1

ΛM(s)

}
u+ (τ0 − τ)

1

τ0

{
s

ΛM(s)

}
y

− k1

{
s

ΛM(s)

}
u.

With (3.27),

d

dt
(y − yM) =

τ

τ0

ẏ + τ̇ ẋ1 − k̇1x2 + (τ0 − τ)
1

τ0

ẋ1 − k1ẋ2.
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ẏ ∈ L∞, x, ẋ, θM , θ̇M ∈ L∞. Therefore,

d

dt
(εMm

2
M) ∈ L∞.

Since εMm
2
M ∈ L2 ∩ L∞ and d

dt
(εMm

2
M) ∈ L∞, it follows that εMm

2
M → 0 as t→∞.

Similarly, we can show that εQLm
2
QL → 0 and εQRm

2
QR → 0 as t→∞.

For CAIMC-LI, e = eM + eQ = εMm
2
M + {X}εQLm2

QL, where {X} is a stable

transfer function. Therefore, e→ 0 as t→∞. For CAIMC-RI, eQ = εQm
2
Q− ε2, and

ε2 → 0 since θ̇Q → 0. Therefore, eQ → 0. e = eM + eQ.

Therefore, e→ 0 as t→∞.
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CHAPTER IV

Generalized n-th Order CAIMC

This chapter generalizes the first-order CAIMC as presented in Chapter III to

n-th order. With the generalization, CAIMC can be applied to a SISO n-th order

plant. We consider the n-th order stable plant

y =

{
ZM(s)

RM(s)

}
u, (4.1)

whose stable and proper inverse is represented by

u =

{
ZQ(s)

RQ(s)

}
y, (4.2)

where y and u are the output and input of the plant respectively. RM(s), RQ(s), and

ZQ(s) are n-th order Hurwitz polynomials. ZM is a polynomial with order no greater

than n. The leading coefficients of RM(s) and RQ(s) are 1. The other coefficients are

unknown.

The design procedure of CAIMC presented in Chapter III applies to n-th order

plant. The tracking error e = eM + eQ as presented in Section 3.1 also holds for

n-th order CAIMC. One fundamental assumption of the IMC design is that both

the plant and the inverse models are stable. The stability of a first-order and second-

order model yields linear constraints in the parameter space, whereas for an n-th order
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Feasible region 

Feasible region 

Figure 4.1: Feasible region constrained by the stability of a third-order model.

model (n > 2), the stability constraint yields nonlinear and nonconvex constraints

with non-smooth boundaries in the original parameter space. Shown in Fig. 4.1

is the feasible region constrained by the stability of a third-order transfer function

1
s3+θ1s2+θ2s+θ3

. The constraints include θ1 > 0, θ2 > 0, θ3 > 0, and θ1θ2 > θ3. The

feasible region is the area indicated in Fig. 4.1 in the first quadrant under the curved

surface, which is obviously nonconvex with non-smooth boundaries.

The main challenge in generalizing CAIMC is to develop an effective constrained

parameter identification algorithm with the following properties:

• It can handle the stability constraint, which yields nonlinear and nonconvex

constraints with non-smooth boundaries.

• It can produce a reasonable approximation for the unconstrained parameter

identification.

• It is computationally efficient as the identification is executed online.

• It can assure the closed-loop stability of the control system.
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In this chapter, the detail of n-th order CAIMC is discussed in Section 4.1, includ-

ing the parametric models and controller realization. In Section 4.2, the constrained

parameter identification problem is formulated as a convex programming problem,

with established properties for the identified parameters. In Section 4.3, the closed-

loop stability and asymptotic performance are established for the ideal case when

there are no unmodeled dynamics, and the effect of unmodeled dynamics is discussed.

In Section 4.4, CAIMC is applied to a third-order LTI plant.

4.1 CAIMC Design for an n-th Order Plant

Following is the development detail of CAIMC-LI and CAIMC-RI applied to the

plant (4.1, 4.2). Following step 2 of CAIMC design procedure, the parametric models

will be discussed for the model and the inverse, and the adaptive law will be dis-

cussed in Section 4.2 to identify the unknown parameters. Then following step 3,

the identified parameters are treated as the real ones to realize M and Q in the IMC

structure.

4.1.1 CAIMC-LI for an n-th Order Plant

CAIMC-LI is demonstrated in Fig. 3.2, where the model identification is driven

by the forward modeling error eM = y− yM as in (3.7), and the inverse identification

is driven by the left-inverse modeling error eQ = u− ũ as in (3.8).

Forward model parameterization and identification

The goal of the model identification is to define zM and φM , such that a parametric

model zM = θ∗TM φM can be used to identify θ∗M which includes the unknown parameters

of (4.1). Since the parametric model in the form of (2.8) for a given physical process

is not unique, we attempt to find the particular one with the property of εMm
2
m = eM ,
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in light of the discussion in Section 3.1, so that eM drives the model identification as

shown in Fig. 3.2.

With simple manipulation of (4.1), and introducing a regressor filter, we have

y =

{
ΛM −RM(s)

ΛM

}
y +

{
ZM(s)

ΛM

}
u, (4.3)

where ΛM is an n-th order Hurwitz Polynomial. We then define

zM =y, θ∗M = [θ∗Ta , θ∗Tb ]T , (4.4)

φM =[

{
1

ΛM

}
y, ...,

{
sn−1

ΛM

}
y,

{
1

ΛM

}
u, ...,

{
sn−1

ΛM

}
u]T ,

where θ∗a is the coefficients vector of ΛM −RM(s), and θ∗b is the coefficients vector of

ZM(s). (4.3) can be expressed as zM = θ∗TM φM and the estimation error εM can be

defined as

εM =
zM − θTMφM

m2
M

,m2
M = 1 + φTMφM , (4.5)

where θM is the estimation of θ∗M , εM is the normalized estimation error, and m2
M is

the normalizing term. Without constraints, the hybrid normalized gradient algorithm

(2.18) that minimizes J(θM) =
ε2Mm

2
M

2
can be adopted to identify θM .

Forward model realization and modeling error

Once the estimates θM are obtained, M can be designed as

yM = θTMφM , (4.6)
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then

eM = y − yM = zM − θTMφM = εMm
2
M . (4.7)

Consequently, the estimation algorithm that minimizes the estimation error εM also

minimizes eM .

Left-inverse parametrization and identification

The goal of the left-inverse identification is to define zQL and φQL, such that

a parametric model zQL = θ∗TQ φQL can be used to identify θ∗Q which includes the

unknown parameters of (4.2). For left-inverse, we can follow a similar parametric

model design with the model. From (4.2), we have

u =

{
ΛQ −RQ(s)

ΛQ

}
u+

{
ZQ(s)

ΛQ

}
y,

where ΛQ is an n-th order Hurwitz polynomial that serves as a filter. For the left-

inverse identification, the associated signals of the parametric model zQL = θ∗TQ φQL

are defined as

zQL = u, θ∗Q = [θ∗Tc , θ∗Td ]T ,

φQL = [

{
1

ΛQ

}
y,

{
s

ΛQ

}
y, ...,

{
sn−1

ΛQ

}
y,

{
sn

ΛQ

}
y,

{
1

ΛQ

}
u,

{
s

ΛQ

}
u, ...,

{
sn−1

ΛQ

}
u]T ,

εQL =
zQL − θTQφQL

m2
QL

,m2
QL = 1 + φTQLφQL, (4.8)

where θ∗c is the vector of coefficients of ZQ(s) whose size is n + 1, θ∗d is the vector of

coefficients of ΛQ−RQ(s) whose size is n. Without constraints, the hybrid normalized

gradient algorithm (2.18) that minimizes J(θQ) =
ε2QLm

2
QL

2
can be adopted to identify

θQ.
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Left-inverse realization and modeling error

Similarly to the model realization (4.6), the left-inverse Q̃ can be designed as

ũ = θTQφQL =

{
ẐQ(s)

1

ΛQ

}
y +

{
(ΛQ − R̂Q(s))

1

ΛQ

}
u. (4.9)

The left-inverse estimation error

εQLm
2
QL =zQL − θTQφQL = u− ũ = eQ. (4.10)

Note that Q̃ is copied to Q in Fig. 3.2, and the control is actually realized differently.

For a fixed inverse Q =
ZQ(s)

RQ(s)
with input l = r−y+yM , u = Ql =

{
ZQ(s)

RQ(s)

}
(r−y+yM).

{
RQ(s)

ΛQ

}
u =

{
ZQ(s)

ΛQ

}
l =

{
ZQ(s)

ΛQ

}
(r − y + yM),

which can be further expressed as

u =

{
ΛQ −RQ(s)

ΛQ

}
u+

{
ZQ(s)

ΛQ

}
l

=

{
ΛQ −RQ(s)

ΛQ

}
u+

{
ZQ(s)

ΛQ

}
(r − y + yM).

Using certainty equivalence principle,

u =

{
(ΛQ − R̂Q(s))

1

ΛQ

}
u+

{
ẐQ(s)

1

ΛQ

}
(r − y + yM) (4.11)

=

{
(ΛQ − R̂Q(s))

1

ΛQ

}
u+

{
ẐQ(s)

1

ΛQ

}
r −

{
ẐQ(s)

1

ΛQ

}
y +

{
ẐQ(s)

1

ΛQ

}
yM

=θTd

{
ξn−1(s)

ΛQ

}
u+ θTc

{
ξn(s)

ΛQ

}
r − θTc

{
ξn(s)

ΛQ

}
y + θTc

{
ξn(s)

ΛQ

}
yM ,

where ξn(s) = [1, s, . . . , sn]T , [θTc , θ
T
d ]T = θQ.
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From (4.9) and (4.11), the left-inverse estimation error can be expressed as

εQLm
2
QL = u− ũ =

{
ẐQ(s)

1

ΛQ

}
(l − y) =

{
ẐQ(s)

1

ΛQ

}
eQ,

or equivalently

eQ =(

{
ẐQ(s)

1

ΛQ

}
)−1εQLm

2
QL = {X}εQLm2

QL, (4.12)

where {X} is a operator whose transfer function is (
{
ẐQ(s) 1

ΛQ

}
)−1. The left-inverse

identification derivation is simple and straightforward, however, the left-inverse iden-

tification minimizes the quadratic cost function of εQLm
2
QL = eQ, which is not exactly

eQ.

4.1.2 CAIMC-RI for an n-th Order Plant

CAIMC-RI is demonstrated in Fig. 3.3, where the model identification is driven

by the forward modeling error eM = y− yM as in (3.7), and the inverse identification

is driven by eQ = l − y as in (3.9). The forward model identification is exactly the

same as CAIMC-LI. The inverse identification poses the biggest challenge.

Right-inverse parameterization and identification

The key challenge in the inverse identification is to define a parametric model that

directly relates to the inverse modeling error so that εQRm
2
QR = eQ, where eQ = l− y

as defined in (3.3). Then eQ drives the inverse identification as shown in Fig. 3.3.

Note that from (4.12)

eQ = {X}(zQL − θTQφQL) = {X}zQL − {X}θTQφQL

= {X}zQL − θTQ{X}φQL + ε1, (4.13)
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where the last equation is obtained by applying the Swapping Lemma [84], and ε1

is the residual term resulting from swapping. If we redefine the inverse parametric

model such that the new observation is {X}zQL and the new regressor is {X}φQL,

then the new estimation error is eQ−ε1. Since X depends on the identified parameters

whose value at current sample time are not available, zQR and φQR are defined as

zQR ={Xi−1}u, θ∗Q = [θ∗Tc , θ∗Td ]T , (4.14)

φQR ={Xi−1}[
{

1

ΛQ

}
y, ...,

{
sn

ΛQ

}
y,

{
1

ΛQ

}
u, ...,

{
sn−1

ΛQ

}
u]T ,

where Xi−1 is a transfer function with ẐQ(s) having the parameters identified at the

previous sample time (i−1) using the hybrid adaptive law (2.18). Now we can define

εQR =
zQR − θTQφQR

m2
QR

,m2
QR = 1 + φTQRφQR, (4.15)

εQR is the normalized estimation error, and m2
QR is the normalizing term. Without

constraints, the normalized gradient algorithm that minimizes J(θQ) =
ε2QRm

2
QR

2
can

be adopted to identify θQ.

Right-inverse realization and modeling error

Same as (4.11), the inverse model Q is designed as

u =

{
(ΛQ − R̂Q(s))

1

ΛQ

}
u+

{
ẐQ(s)

1

ΛQ

}
l (4.16)

=θTd

{
ξn−1(s)

ΛQ

}
u+ θTc

{
ξn(s)

ΛQ

}
r − θTc

{
ξn(s)

ΛQ

}
y + θTc

{
ξn(s)

ΛQ

}
yM .
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To establish the connection between eQ and εQ, from (4.13) note that the inverse

estimation error can be expressed as

εQRm
2
QR =zQR − θTQφQR = {Xi−1}zQL − θTQ{Xi−1}φQL

={Xi−1}(zQL − θTQφQL) + ε2

={Xi−1}{X}−1eQ + ε2 = eQ + ε3. (4.17)

where ε2 and ε3 are residues from swapping the dynamic operators, they are bounded

by θQ(k)− θQ(k − 1) [84]. For the inverse, we therefore have εQm
2
Q ≈ eQ.

4.2 Parameter Identification with Stability and Bandwidth

Constraints

The design procedure discussed in Section 4.1 does not consider constraints on

the identified parameters θM or θQ. Constraints have to be imposed on θM and θQ to

assure stability and to limit the bandwidth of the closed-loop system, because even if

θ∗M and θ∗Q satisfy the constraints, θM and θQ may not due to the transients or the lack

of excitations. Besides, the projection method adopted in Chapter III is not applicable

to an n-th order model with nonconvex constraints with non-smooth boundaries. In

this section, the stability constraints of M and Q are enforced as a linear matrix

inequality (LMI). The constrained parameter identification is formulated as a convex

optimization problem, which is solved at each sampling time to assure the stability

of the estimated M and Q.

4.2.1 Stability and Bandwidth Constraints

Similarly to the first-order case, one of the sufficient conditions for establishi the

CAIMC stability is the frozen-time stability of M and Q, namely their denominators

R̂M(s) and R̂Q(s) have to be Hurwitz for all time. To have a stable implementation
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of {X} in (4.14), ẐQ has to be Hurwitz as well. Moreover, to limit the bandwidth

of the closed-loop IMC, the real part of the solutions of R̂Q(s) = 0 have to satisfy

−λb < Re(s) < 0, where λb is a constant. Therefore, an algorithm to constrain the

locations of the roots of an n-th order polynomial is required. For simplicity, we will

focus on constraining the solutions on the left-half plane (LHP), as the other cases

can be dealt with using a simple linear transformation.

4.2.1.1 Routh-Hurwitz Criterion

Routh-Hurwitz criterion can be used to describe the stability constraint. As the

order of the polynomial increases (n > 2), the constraint becomes nonconvex with

non-smooth boundaries. Besides, the Routh-Hurwitz criterion introduces a set of

complicated high-order polynomial constraint that is hard to generalize for an n-th

order plant. To represent the constraint in a more general and compact form, we seek

Lyapunov inequality to represent the constraint.

4.2.1.2 Lyapunov Inequality

Given a transfer function whose denominator is sn +
∑n

1 θ̂is
n−i and the corre-

sponding controllable canonical form of its state-space realization has its A matrix in

the form of

A =

 −θ̂

In−1 0

 ,
where θ̂ = [θ̂1, ..., θ̂n] ∈ Rn. The stability condition can be expressed as the non-

emptiness of the set defined by P = {P |P � 0, AP + PAT ≺ 0}.
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Note that AP has the special expression as

AP =

 −θ̂

In−1 0

P =

 −θ̂P

[In−1 0]P

 , (4.18)

which will be exploited next to handle the technical difficulties in the constrained

parameter identification.

The Lyapunov inequality has the structure of an LMI. Therefore some background

on LMI and its application to system stability is included.

Linear Matrix Inequality (LMI) with Applications to System Stability

An LMI has the form

F (χ) := F0 +
m∑
i=1

χiFi � 0, (4.19)

where χ = [χ1, χ2, ..., χm]T ∈ Rm is the variable, Fi ∈ Sk, i = 0, ...,m are given, and

Sk is the set of k × k symmetric matrices. F (χ) � 0 means that F (χ) is positive-

definite. LMIs are convex constraints, i.e., the subsets in the space of χ constrained

by LMIs are convex [79].

LMIs have a wide application in system and control theory [79], because many

control problems can be reformulated as LMIs [80]. For a continuous-time linear time-

invarient (LTI) system ẋ = Ax, the necessary and sufficient condition for its stability

is that ∃P � 0, such that ATP + PA ≺ 0 [81]. The Lyapunov inequality is an LMI

if either A or P is known. In the literature, LMI have been applied to the stability

analysis of a linear system with a known A with a specified class of uncertainty [82]

and an unknown A that lies in a polytope with known vertices [83].

Parameter identification with an LMI constraint can be casted as a constrained

optimization problem that minimizes a convex cost function of a variable χ ∈ Rm
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subject to an LMI [85]:

minimize
χ

f(χ), subject to F (χ) � 0, (4.20)

where f : Rn → R, the LMI F (χ) is defined in (4.19), except that F (χ) is positive

semi-definite, i.e., the constraint is a non-strict LMI. If f(χ) is convex, the optimiza-

tion problem (4.20) can be solved effectively with interior point methods for which

many commercial or open source tools are available [85].

4.2.2 Convex Optimization Problem Formulation

Let θ ∈ Rn be an estimate of the parameter vector of an n-th order transfer

function identified using standard techniques, such as the gradient algorithm. In this

section, we will formulate an optimization problem to find a stable θ̂ ∈ Rn that

best approximates the unconstrained parameter θ. Since the optimization problem

is solved at kTs, where Ts is the sampling time. Hybrid normalized gradient method

(2.19) is adopted to calculate θ.

Standard projection algorithm projects θ onto the feasible region by minimizing

the distance between θ and θ̂ in the feasible region. Similarly, a natural formulation of

the optimization problem is to minimize the quadratic error between θ and θ̂, subject

to that θ̂ satisfies the stability constraint:

minimize
θ̂,P

||θ − θ̂||22, (4.21)

subject to P � 0 and

 −θ̂P

[In−1 0]P

+

 −θ̂P

[In−1 0]P


T

≺ 0.

However, θ̂P in (4.21) introduces a nonconvex bilinear matrix inequality (BMI).

The bilinear optimization problem (4.21) can be solved with global approaches such
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as branch and bound, but it is computationally expensive [85]. To reduce the com-

putational complexity, the bilinear optimization problem is reformulated as a convex

optimization problem. We define a new variable

H = θ̂P ∈ Rn. (4.22)

A weighting matrix P is added to the quadratic cost function ||θ − θ̂||22, and (4.21)

becomes

minimize
P,H

||θP −H||22, (4.23)

subject to P � 0 and

 −H

[In−1 0]P

+

 −H

[In−1 0]P


T

≺ 0.

Note that the reformulated cost function and redefined parameters, (4.23) has an LMI

constraint.While (4.23) is not equivalent to (4.21), the new optimization formulation

eliminates the BMI and replaces it with an LMI, thereby leading to a simpler problem

amendable to many effective solvers.

For uniqueness of the optimal solution P ∗ andH∗, a regularizing term γ||[vec(P ), H]||22

is added to the cost function in (4.23) to make the cost strictly convex, where γ > 0

is a small constant, vec(P ) is a vector with all the unknown parameters in P . The

constraint in (4.23) are tightened by P � ε0I and PAT +AP � −ε0I where ε0 > 0 is

a small constant. These modifications transform (4.23) to:

minimize
P,H

||θP −H||22 + γ||[vec(P ), H]||22, (4.24)

subject to P � ε0I and

 −H

[In−1 0]P

+

 −H

[In−1 0]P


T

� −ε0I.

Solving the optimization problem returns the optimal P ∗ and H∗, and θ̂ can be
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calculated as θ̂ = H∗P ∗−1 according to (4.22). (4.24) can be solved efficiently with

interior point methods, for which there are many mature tools available [79].

4.2.3 Constrained Parameter Identification Implementation

Given the parametric model (2.8) with the normalized estimation error ε defined

in (2.11), and the convex optimization problem proposed in Section 4.2.2, the imple-

mentation of the constrained parameter identification is summarized as following:

At the k-th sample:

1. Use unconstrained hybrid adaptive law (2.19) to calculate θ(k).

2. Solve the convex optimization problem in (4.24) for the optimal solution P ∗

and H∗, with θ = θ(k).

3. Set θ̂(k) = H∗P ∗−1, and use θ̂(k) for control signal computation.

4.2.4 Constrained Parameter Identification Analysis

The continuity and boundedness properties of the identified parameter θ̂ are cru-

cial for establishing the closed-loop stability of the adaptive control system. In this

section, we establish these properties by borrowing tools from the optimization field

to analyze the optimization problem (4.24).

When γ > 0, (4.24) has a strictly convex cost. Since the feasible set is nonempty,

closed, and convex, from Lemma A.1, there exists a unique optimal solution. Let

f(χ, θ, γ) represent the cost function of (4.24), where χ = [vec(P ), H]. Let P ∗(θ, γ)

and H∗(θ, γ) represent the optimal solution. θ̂(θ, γ) = H∗(θ, γ)P ∗(θ, γ)−1.

Lemma IV.1. θ̂(θ, γ) has the following properties:

(i) θ̂(θ, γ) is Lipschitz continuous w.r.t. θ and γ when γ > 0.
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(ii) When θ is stable, limγ→0 θ̂(θ, γ) = θ, i.e., θ̂(θ, γ) is Lipschitz continuous w.r.t.

γ when γ ≥ 0.

Proof: (i) The Lipschitz continuity of P ∗(θ, γ) and H∗(θ, γ) are first proven using

Lemma A.3 of Appendix A: The second-order growth condition holds because the cost

function f(χ, θ, γ) is a strictly convex quadratic function of χ when γ > 0. Consider

the difference between f(χ, θ0, γ) and f(χ, θ, γ), namely ||θP −H||22 − ||θ0P −H||22.

It is Lipschitz continuous w.r.t. P and H, modulus c||θ − θ0|| for some c > 0 for

bounded P , H, and θ.

Applying Lemma A.3, ||χ∗(θ, γ)−χ∗(θ0, γ)|| ≤ c||θ−θ0|| for some c > 0. Therefore,

the optimal solution P ∗(θ, γ) and H∗(θ, γ) are Lipschitz continuous w.r.t. θ with

γ > 0.

θ̂(θ, γ) = H∗(θ, γ)P ∗(θ, γ)−1. Since P ∗(θ, γ) � ε0I, θ̂(θ, γ) is also Lipschitz con-

tinuous w.r.t. θ when γ > 0.

Similarly, θ̂(θ, γ) is Lipschitz continuous w.r.t. γ when γ > 0.

(ii) Let v∗(θ, γ) represent the optimal value of the cost function. When γ = 0, and

θ is stable, the optimal cost value v∗(θ, 0) = 0. Therefore, θP ∗(θ, 0) −H∗(θ, 0) = 0,

and θ̂(θ, 0) = θ.

From Lemma A.2 of Appendix A, limγ→0 v
∗(θ, γ) ≤ v∗(θ, 0) = 0. v∗(θ, γ) is a

non-negative quadratic function. Thus,

lim
γ→0

v∗(θ, γ) = lim
γ→0

(||θP ∗(θ, γ)−H∗(θ, γ)||22 + γ||[vec(P ∗(θ, γ)), H∗(θ, γ)]||22) = 0,

which implies

lim
γ→0

(θP ∗(θ, γ)−H∗(θ, γ)) = 0.
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Thus,

lim
γ→0

(θ −H∗(θ, γ)P ∗(θ, γ)−1) = lim
γ→0

(θ − θ̂(θ, γ)) = 0.

Therefore, when θ is stable, limγ→0 θ̂(θ, γ) = θ.

Theorem IV.2. For a linear parametric model z = θ∗Tφ, using the unconstrained

hybrid gradient method to estimate θ(k + 1) = θ(k) + Γ
∫ (k+1)Ts
kTs

ε(t)φ(t)dt, the con-

strained adaptive law presented in Section 4.2.3 guarantees that

(i) θ̂ ∈ l∞.

(ii) ∆θ̂ ∈ l2, where ∆θ̂(k) = θ̂(k + 1)− θ̂(k).

(iii) ε̂, ε̂m ∈ L∞, where ε̂(t) = z(t)−θ̂(k)Tφ(t)
m(t)2

, m(t)2 = 1 + φ(t)Tφ(t), ∀kTs ≤ t <

(k + 1)Ts.

(iv) If θ(k) is stable ∀k, limγ→0 ε̂ = ε, limγ→0 ε̂m = εm.

Proof: (i) From Lemma II.4, θ ∈ l∞. From Lemma A.1, P ∗,M∗ ∈ l∞. Since

θ̂ = H∗P ∗−1, P ∗ � ε0I, we can conclude that θ̂ ∈ l∞.

(ii) From Lemma II.4, ∆θk ∈ l2. From Lemma IV.1 (i), θ̂ is Lipschitz continuous

w.r.t. θ, i.e. ∃c > 0, ||∆θ̂k|| ≤ c||∆θk||. Therefore, ∆θ̂ ∈ l2.

(iii) ε̂(t) = ε(t) + (θ(k)−θ̂(k))Tφ(t)
m(t)2

, ∀kTs ≤ t < (k + 1)Ts. From Lemma II.4, ε ∈ L∞,

φ
m2 ∈ L∞, θ − θ̂ ∈ l∞. Therefore, ε̂ ∈ L∞. Similarly, ε̂m ∈ L∞.

(iv) ε̂(t) = ε(t) + (θ(k)−θ̂(k))Tφ(t)
m(t)2

, ∀kTs ≤ t < (k + 1)Ts. From Lemma IV.1 (ii),

when θ(k) is stable, limγ→0 θ̂(k) = θ(k). Since φ(t)
m(t)2

∈ L∞, limγ→0 ε̂ = ε. Similarly,

limγ→0 ε̂m = εm.
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4.3 Stability Proof of n-th order CAIMC in the Ideal Case

In this section, the stability and asymptotic performance of the n-th order CAIMC

for the ideal case is established. Before the analysis, the CAIMC scheme is summa-

rized as following:

Plant:

Model: y =
{
ZM (s)
RM (s)

}
u. Inverse: u =

{
ZQ(s)

RQ(s)

}
y.

Parametric Model:

Model: zM = θ∗TM φM with zM and φM defined in (4.4).

θ∗M = [θ∗Ta , θ∗Tb ]T , where θ∗a is the coefficient vector of ΛM −RM(s) and θ∗b is the

coefficient vector of ZM(s).

Inverse: zQ = θ∗TQ φQ with zQ and φQ defined in (4.14).

θ∗Q = [θ∗Tc , θ∗Td ]T , where θ∗c is the coefficient vector of ZQ(s), and θ∗d is the coeffi-

cient vector of ΛQ −RQ(s).

Adaptive Law:

θM and θQ are identified by the unconstrained hybrid adaptive law (2.19).

θ̂M and θ̂Q are identified by the constrained parameter identification approach in

Section 4.2.3, where the stability constraints are imposed on θ̂a, θ̂c, and θ̂d and the

bandwidth constraints are imposed on θ̂d.

Control Law:

u = {(ΛQ − R̂Q(s)) 1
ΛQ
}u+ {ẐQ(s) 1

ΛQ
}l as in (4.16),

where l = r − y + yM , yM = θ̂TMφM as in (4.6). R̂Q and ẐQ are the identified RQ

and ZQ with θ̂Q.

Remark IV.1. In general, the inverse (4.2) is an approximate inverse of (4.1). When

the plant is strictly proper, some residual unmodeled dynamics are unavoidable when

using a proper transfer function to represent the inverse dynamics. For the simplicity
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of the presentation, the stability proof and asymptotic performance are established

for the ideal case without unmodeled dynamics. The ideal case assumes that the

plant is stable, minimum phase, and has relative degree zero. The effects of

the unmodeled dynamics are discussed later.

Theorem IV.3. Consider the plant (4.1), (4.2) subject to the CAIMC scheme with-

out unmodeled dynamics. For any bounded reference r, all the signals in the closed-

loop system are uniformly bounded. When θM and θQ identified from the unconstrained

adaptive law are Hurwitz stable ∀t > tc, where tc is a finite number, the tracking error

e = r − y converges to zero as γ → 0.

Proof: Given that ΛM in (4.4) and ΛQ in (4.14) are Hurwitz polynomials that

serve as the regressor filters, we choose ΛM = ΛQ = Λ with the coefficients θλ through-

out the proof. Note that the same analysis can be carried out with arbitrary choice

of Hurwitz ΛM and ΛQ at the expense of some additional algebra. Define that

yf =

{
1

Λ

}
y, uf =

{
1

Λ

}
u, εf =

{
1

Λ

}
(ε̂Mm

2
M), (4.25)

and establish signal boundedness in the following steps:

Step 1:

Correlate u and y to the estimation error: Defining the augmented states x

as [yf , y
(1)
f , ..., y

(n−1)
f , uf , u

(1)
f , ..., u

(n−1)
f , εf , ε

(1)
f , ..., ε

(n−1)
f ]T , we have

ẋ = A(t)x+ b1(t)ε̂Mm
2
M + b2r,y

u

 = C(t)x+ d1(t)ε̂Mm
2
M + d2r. (4.26)
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where

A(t) =



0(n−1)×1|In−1 0(n−1)×n 0(n−1)×n

(θ̂a − θλ)T θ̂Tb 01×n

0(n−1)×n 0(n−1)×1|In−1 0(n−1)×n

01×n (θ̂d − θλ)T −(θ̂cn − ηθλ)T

0(n−1)×n 0(n−1)×n 0(n−1)×1|In−1

01×n 01×n −θTλ


,

b1(t) =



0(n−1)×1

1

0(n−1)×1

η

0(n−1)×1

1


, b2(t) =



0n×1

0(n−1)×1

1

0n×1


,

C(t) =

 θ̂Ta θ̂Tb 0(1×n)

0(1×n) θ̂Td −(θ̂cn − η)T

 ,
d1(t) =

1

η

 , d2(t) =

0

1

 ,

where

θ̂cn
η

 = θ̂c, θ̂cn ∈ Rn and η is the (n+ 1)-th entry of θ̂c, r = {ẐQ(s) 1
Λ
}r.

The derivation (4.26) are given in Appendix C.

Step 2:

Establish the exponential stability of the homogeneous part of (4.26):

A(t) has a block upper-triangular structure, whose eigen-values are the same as the

eigen-values of its diagonal matrices, i.e., for each fixed time t, A(t) has the same

60



eigen-values as

A1 =

 0(n−1)×1|In−1

(θ̂a − θλ)T

 , A2 =

 0(n−1)×1|In−1

(θ̂d − θλ)T

 , and A3 =

 0(n−1)×1|In−1

−θTλ

 .
Since θ̂a is the coefficient vector of Λ − R̂M(s), and θ̂d is the coefficient vector of

Λ−R̂Q(s), the eigen-values of A1 and A2 are the solutions of R̂M(s) = 0 and R̂Q(s) = 0

respectively, which have negative real parts ∀t ≥ 0 because of the constraint enforced

in deriving the estimated parameters, as discussed in Section 4.2. The eigen-values

A3 are the solutions of Λ = 0 which also have negative real parts.

By Theorem IV.2, the constrained parameter identification guarantees that θ̂a, θ̂b,

θ̂c, θ̂d ∈ l∞, ∆θ̂a,∆θ̂b, ∆θ̂c,∆θ̂d ∈ l∞ ∩ l2. Their zero-order hold (ZOH) signals are

used in A(t). Thus, A(t) is piecewise differentiable w.r.t. t. ‖A(t)‖ ∈ L∞. Applying

Lemma B.1, let k0 = Ts, the system is exponentially stable, and the state transition

matrix Φ(t, τ) associated with A(t) satisfies ‖Φ(t, τ)‖ ≤ κ1e
−κ2(t−τ), ∀t ≥ τ ≥ 0 for

some constants κ1, κ2 > 0.

Step 3:

Establish signal boundedness: The L2δ norm ‖(•)t‖2δ for some δ > 0 is the

exponentially weighted L2 norm defined as ||xt||2δ := (
∫ t

0
e−δ(t−τ)xT (τ)x(τ)dτ)

1
2 . Ap-

plying Lemma B.2 to the state space equation (4.26), we can obtain

‖xt‖2δ ≤ c‖(ε̂Mm2
M)t‖2δ + c, (4.27)

|x(t)| ≤ c‖(ε̂Mm2
M)t‖2δ + c,

where | • | is a vector norm, for any δ ∈ [0, δ1) where δ1 > 0 is any constant less

than 2κ2 and some finite constant c ≥ 0. For simplicity of the representation, in this

thesis, c is used to represent a generic constant.
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We define the fictitious normalizing signal m2
f := 1 + ‖ut‖2

2δ + ‖yt‖2
2δ. From the

state space equation, we have ‖ut‖2δ + ‖yt‖2δ ≤ c‖xt‖2δ + c‖(ε̂Mm2
M)t‖2δ + c. With

equation (4.27), we have ‖ut‖2δ + ‖yt‖2δ ≤ c‖(ε̂Mm2
M)t‖2δ + c, implying

m2
f ≤ c‖(ε̂Mm2

M)t‖2
2δ + c.

From (4.4), applying Lemma B.3,

mM =
√

1 + φTMφM ≤ cmf , (4.28)

m2
f ≤ c‖(g̃mf )t‖2

2δ + c,

where g̃ = ε̂MmM ∈ L2e. Or

m2
f ≤ c

t∫
0

e−δ(t−τ)g̃2(τ)m2
f (τ)dτ + c,

where 0 < δ ≤ δ∗ and δ∗ = min[2λ, δ1], δ1 ∈ (0, 2κ2).

Applying Lemma B.4 the B-G lemma, we can establish that mf ∈ L∞. Then

with (4.28), we have mM ∈ L∞ and therefore φM , x, ẋ, u, y ∈ L∞, εQm
2
Q ∈ L∞,

mQ =
√

1 + φTQφQ ∈ L∞. All the signals in the closed-loop system are uniformly

bounded.

Step 4:

Establish that the tracking error e converges to 0:

Since the tracking error e can be expressed as the sum of eM = y − yM and

eQ = l− y. We can establish the convergence of e by demonstrating the convergence

of eM and eQ respectively.

First, we consider the forward model estimation error equation ε̂Mm
2
M = y − yM :

With the assumption that θM is satisfy the constraints, according to Theorem IV.2,
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ε̂Mm
2
M → εMm

2
M as γ → 0.

There exists a continuous signal θ̄M such that |θ̄M − θM | ∈ L2 and ˙̄θM ∈ L2 ∩L∞.

Let ε̄Mm
2
M = zM − θ̄TMφM . ε̄MmM ∈ L2 ∩ L∞, because εMmM ∈ L2 ∩ L∞ based

on Lemma II.2. mM ∈ L∞ from Step 3. Therefore, ε̄Mm
2
M ∈ L2 ∩ L∞. Since

ẏ, x, ẋ, θ̄M ,
˙̄θM ∈ L∞, d

dt
(ε̄Mm

2
M) ∈ L∞. ε̄Mm

2
M → 0. It follows that eM = ε̂Mm

2
M →

εMm
2
M → ε̄Mm

2
M → 0 as t→∞.

Following the same procedure, it can be shown that ε̂Qm
2
Q → 0 as t→∞. From

Lemma II.2, we have ∆θQ ∈ l2∩ l∞, ∆θQ → 0. From (4.17), we have eQ = εQm
2
Q− ε3,

and ε3 → 0 since ∆θQ → 0. Therefore, eQ → 0.

e = eM + eQ. Therefore, e→ 0 as t→∞ and γ → 0, when θM and θQ satisfy the

constraints.

Remark IV.2. Note that εQ does not appear in the closed-loop representation (4.26),

therefore the property of εQ is not required for establishing the stability of CAIMC.

It is only needed for establishing the convergence of the tracking error.

Remark IV.3. Theorem IV.3 shows that the tracking error e → 0 as γ → 0. But

γ has to be non-zero to assure that the optimization problem (4.24) has an unique

optimal solution. Therefore, we will discuss here the implication when γ is a very

small non-zero number.

According to Lemma IV.1, when θ satisfies the constraints, θ̂(θ, γ) is Lipschitz

continuous w.r.t. γ ≥ 0. Therefore, ε̂Mm
2
M = zM − θ̂TMΦM and ε̂Qm

2
Q = zQ − θ̂TQΦQ

are Lipschitz continuous w.r.t. γ ≥ 0, which implies that e is Lipschitz continuous

w.r.t. γ ≥ 0. Therefore, when θ satisfies the constraints and γ << 1, e is small.

Remark IV.4. For simplicity and clarity, the stability analysis is performed under the

assumption that there are no unmodeled dynamics. As discussed in Remark IV.1,

in general there are unmodeled dynamics in the presentation of the physical plant or

its inverse dynamics. To handle the unmodeled dynamics, generally, a deadzone is
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added to the estimation error for robust estimation [78]. The robust CAIMC stability

proof follows a very similar procedure by expanding the proof here as shown in [78]

for robust adaptive pole placement control, and its tracking error e is bounded.

4.4 Simulation Results on a Third-order LTI Plant

In this section, CAIMC scheme as summarized in Section 4.3 is applied to a

third-order LTI plant. The constrained parameter identification approach proposed

in Section 4.2 is used to identify the unknown parameters of the plant dynamics and

its inverse simultaneously.

Given an LTI plant

y =
θ∗b0s

3 + θ∗b1s
2 + θ∗b2s+ θ∗b3

s3 + θ∗a1s
2 + θ∗a2s+ θ∗a3

u, (4.29)

whose inverse is

u =
θ∗c0s

3 + θ∗c1s
2 + θ∗c2s+ θ∗c3

s3 + θ∗d1s
2 + θ∗d2s+ θ∗d3

y, (4.30)

where all the θ∗ are unknown, θ∗a = [2, 2, 3]T , θ∗b = [2, 3, 1, 1]T , θ∗c = [0.5, 1, 1, 1.5]T , θ∗d =

[1.5, 0.5, 0.5]T . The plant is stable, minimum-phase, and has relative degree zero.

There are no unmodeled dynamics. The plant is third-order, thus the feasible region

that satisfies the stability constraint in the parameter space in nonconvex.

CAIMC scheme as summarized in Section 4.3 is applied to the plant. The plant

(4.29) and its inverse (4.30) are identified simultaneously using the constrained pa-

rameter identification approach proposed in Section 4.2. The constraints are imposed

by the stability of θa and θd. At each sample time, unconstrained adaptive law (2.17)

is first used to identify θ, then the constrained optimization problem (4.24) is solved

to find θ̂. The initial conditions of the parameters are θa(0) = [10, 0.5, 4]T , θb(0) =
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Figure 4.2: CAIMC simulation result.

[1.5, 3.5, 2, 1.5]T , θc(0) = [0.8, 1.5, 1, 1.2]T , θd(0) = [5, 0.3, 0.7]T .

The closed-loop result is shown in Figure 4.2. The reference r is a square wave

with period 5sec and amplitude 1. The plant response y tracks the reference, and the

performance is improved with the online identification of the parameters.

Due to the space limitation, not all identified parameters are shown here. The

identified parameters for θ∗d at 0− 6sec are shown in Figure 4.3. The initial condition

θd(0) is stable, and the true θ∗d is stable, however, θd from the unconstrained adaptive

law is unstable in the shaded area around 0.2 − 3.8sec. θ̂d from the constrained

optimization problem is always stable, and when θ is stable, θ̂d ≈ θd. The result is

consistent with the properties established in Lemma IV.1.
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Figure 4.3: CAIMC simulation parameters.
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CHAPTER V

Application of CAIMC to the Boost-Pressure

Control Problem of a Turbocharged Gasoline

Engine

In this chapter, CAIMC is applied to the boost-pressure control problem of a

turbocharged gasoline engine. In Section 5.1, the schematic of a turbocharged gasoline

engine is introduced, and the boost-pressure control problem is discussed. In Section

5.2.1, the model and inverse structures are proposed as first-order linear structures,

and their parametrization and identification are discussed in Section 5.2.2. In Section

5.3, CAIMC-LI and CAIMC-RI are implemented on a high-fidelity turbocharged

gasoline engine model. In Section 5.4, CAIMC-RI is applied on the Ford Explorer

EcoBoost with a 2.0 L four-cylinder engine. Its performance is compared to the

baseline controller, which is a PI controller with feedforward. CAIMC demonstrates

similar performance to the baseline, and great advantages in terms of calibration.

5.1 Turbocharged Gasoline Engine Boost-Pressure Control

Problem Overview

Gasoline engines have been aggressively downsized in an effort to reduce the fuel

consumption and CO2 emissions [74]. However, the torque provided by the engine

67



is proportional to the air delivered to the cylinders. To meet the consumer demands

for performance on the downsized engines, i.e., to maintain the engine output torque,

turbochargers are widely adopted due to their higher power density and better fuel

economy. The working principle of a turbocharged gasoline engine is shown in Fig.

1.3. The wastegate is the main actuator to control boost-pressure by changing the

rotational speed of the turbine/compressor. The air is compressed by the compressor,

and passes through an intercooler and a throttle before entering the engine intake port.

The engine exhaust port is connected to the turbine, which is mechanically connected

to the compressor. A wastegate actuator controls the opening of the turbine bypass

path in this application [17], affecting the compressor speed and therefore the boost-

pressure. The boost-pressure, which refers to the pressure before the throttle and

after the intercooler, is one of the main variables that affect the turbocharged engine

performance [75].

The turbocharged gasoline engine is expected to produce the desired engine torque,

with higher fuel efficiency and power density [86]. To achieve such goal, the desired

engine torque is calculated from the driver pedal position. The desired engine torque

is then mapped into desired intake manifold pressure and boost-pressure considering

the fuel economy and emission. These two pressures are then tracked through throttle

and wastegate. This two-input two-output control problem can often be tackled with

a decentralized controller: using the throttle to track the desired intake manifold

pressure, and using the wastegate to track the desired boost-pressure [74]. Here

we will focus on using the wastegate to track the desired boost-pressure, and the

throttle is considered as an exogenous input. Boost-pressure set-point tracking is a

critical enabling technology for achieving improved fuel efficiency, power density, and

reducing emissions [86].

There are many challenges in the boost-pressure control problem. First, the tur-

bocharged gasoline engine is high-order and nonlinear [41]. Second, an engine has

68



to operate in different operating points and ambient environment. While providing

adequate boost at low speed and load, the turbocharger system also has to avoid

over-boost situation at higher speed and load [76]. The tracking error has to be

kept small because under-delivering the desired boost is undesirable as it results in

under-delivered torque, over-delivering the desired boost-pressure is undesirable as it

causes NVH (Noise, Vibration, and Harshness) and compressor surge [74]. CAIMC

simultaneously identifies the linear models M and Q and minimizes the tracking er-

ror at different operating condition through adaptation, which makes CAIMC very

appealing to the boost-pressure control problem. First-order CAIMC as presented in

Chapter III is applied to the boost-pressure control problem in the next section.

5.2 Applying CAIMC to the Boost-Pressure Control Prob-

lem

5.2.1 Plant and Inverse Dynamic Models

The first step of CAIMC design is to find a feasible model and inverse structure to

capture the plant and inverse dynamics. To sufficiently describe the air dynamics of

a turbocharged gasoline engine, a fourth-order nonlinear first principle model is often

derived [42,43]. Karnik et al. simplified the fourth-order nonlinear model into a model

as shown in Fig. 5.1 [17]. It includes a steady-state mapping from the wastegate uw to

the turbo speed Nt, a first-order linear model whose time constant is gain-scheduled,

and a compressor map. This structure motivates us to further simplify and propose

a model structure as in Fig. 5.2(a), and first-order linear inverse structure as in Fig.

5.2(b). uw represents the fraction of wastegate closing (0 means open, and 1 means

closed), Pb is the boost-pressure, and Pb,ss is the boost-pressure steady-state value at

the current operating condition. Map A and B are exact inverses of each other. They

have ±5% accuracy.
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Figure 5.1: First-order gain-scheduled linear model for the turbocharged gasoline en-
gine proposed in [17].
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Figure 5.2: Plant and inverse dynamic models: (a) First-order plant model structure
for identification. (b) First-order inverse model structure for identifica-
tion.

5.2.2 Plant and Inverse Parametrization and Identification

The model and inverse to be identified are Pb = k∗

τ∗s+1
Pb,ss and Pb,ss = 1

k∗
b∗s+1
a∗s+1

Pb.

Let y = Pb and u = Pb,ss, the parametrization in (3.12, 3.16) can be adopted for

CAIMC-LI, and the parametrization in (3.12, 3.22) can be adopted for CAIMC-RI.

Note that k in the forward model and the inverse are kept the same due to property

1) of IMC. Two ks are identified simultaneously in the model and the inverse, but k

from model identification is adopted for controller implementation in this case. This

change will affect the tracking error representation. However, k serves as a gain to

compensate the mapping inaccuracy, and is always close to 1. Therefore using k

identified from the model parametric model is a reasonable approximation.

CAIMC has the layout as shown in Fig. 5.3 after incorporating the identified

forward and inverse models as M and Q. The two mappings do not affect the tracking

error representation of CAIMC. Note that

e =(Pb − P̃b) + (l − Pb),
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Figure 5.3: CAIMC applied to the boost-pressure control of a turbocharged gasoline
engine.

where Pb− P̃b = eM = εMm
2
M , (l−Pb) = eQ = {X}εQm2

Q for CAIMC-LI, and l−Pb =

eQ ≈ εQm
2
Q for CAIMC-RI. The cost functions J(θ1) =

ε2Mm
2
M

2
and J(θ2) =

ε2Qm
2
Q

2
are

minimized through forward model and inverse model identification respectively.

5.3 Simulation Results

CAIMC-LI and CAIMC-RI are evaluated by applying them to a proprietary model

of the turbocharged gasoline engine. Some details of the model can be found in

[75]. For comparison, all the calibration parameters and references of CAIMC-LI

and CAIMC-RI are kept the same. The calibration parameters are listed in Table.

5.1. For robustness purpose, a which is the filter time constant of the inverse Q is

lower-bounded at 0.5 to limit the bandwidth of the IMC control system. When the

airflow is low and the desired boost-pressure is low, the wastegate is set to be open

by default.

Table 5.1: Parameters for CAIMC simulation.
Identification τM,Q θ(0) Γ deadzone

Model 0.1

[
0.25

1

] [
2 0
0 0.5

]
1

Inverse 0.1

 0.6
1

0.55

  0.5 0 0
0 0.5 0
0 0 2

 1
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CAIMC-LI and CAIMC-RI are compared in two sets of simulations. In the first

simulation, the engine speed is kept constant at 3000 rpm and the desired airflow

is kept constant at 100 gps. The simulation results after the identified parameters

converge are shown in Fig. 5.4. The performance are very close. CAIMC-RI has

slightly less rise time and overshoot. As shown in TABLE 5.2, the RMS tracking

errors for CAIMC-RI and CAIMC-LI are 1.855 and 1.894 respectively.

In the second simulation, the engine speed, the desired airflow, and the boost-

pressure reference are from vehicle data. The vehicle data was obtained from driving

a Ford Explorer EcoBoost with a 2.0L engine on the US06 drive cycle, where the

engine is boosted for a good fraction of the time. The vehicle speed is shown in Fig.

5.5. It is favorable for testing the boost-pressure control performance. Fig. 5.6 is

the simulation result of applying CAIMC-RI and CAIMC-LI to the model with the

engine speed, the desired airflow, and the boost-pressure reference from the US06

vehicle data. Both CAIMC-RI and CAIMC-LI track the reference very well. The

RMS tracking error for CAIMC-RI is 2.648, whereas for CAIMC-LI is 3.027. Some

zoomed-in comparisons of CAIMC-LI and CAIMC-RI are shown in Fig. 5.7. CAIMC-

RI has faster rise time and less overshoot in all the simulations. All the RMS error

comparisons between CAIMC-RI and CAIMC-LI are summarized in TABLE 5.2;

CAIMC-RI has less RMS tracking error in all simulations.

Table 5.2: RMS Errors for CAIMC simulations.
Vehicle speed constant US06 zoom 1 zoom 2

CAIMC-RI 1.855 2.648 5.095 3.732
CAIMC-LI 1.894 3.027 5.780 4.257

5.4 Vehicle Testing Experimental Results

CAIMC-RI was implemented and tested on a Ford Explorer EcoBoost with a

2.0L cylinder turbocharged gasoline engine with vacuum actuated wastegate. The
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Figure 5.7: Comparison of simulation of CAIMC-LI and CAIMC-RI with the US06
vehicle data.

wastegate canister vacuum determines the position of the wastegate. On the specific

vehicle, higher wastegate canister vacuum corresponds to higher boost-pressure, and

vice versa. The application of CAIMC on the vehicle is the same as the proprietary

model as shown in Fig. 5.3, except that on the vehicle, CAIMC commands the

wastegate canister vacuum instead of the wastegate position.

5.4.1 Experimental Setup

For experiments the rapid control prototyping tools as shown in Fig. 5.8 were

adopted: the boost control strategy was coded in MATLABr/Simulinkr1, and then

compiled and executed in real time on the hardware platform dSPACEr2. dSPACEr

can communicate with powertrain control module (PCM) of the vehicle to access

vehicle data and command wastegate canister vacuum. The boost control strategy

was executing at the sample time of 15ms. Both the boost-pressure and the wastegate

1MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
2dSPACE is a registered trademark of dSPACE GmbH.
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Simulation Rapid 

prototyping 

hardware

Figure 5.8: Rapid control prototyping process.

canister pressure were measured by pressure sensors. An accurate estimation of the

engine airflow was accessible. The identifications of M and Q were performed online

simultaneously using the normalized gradient algorithm, and the identified parameters

τ , k, a, and b in M and Q were updated at each sample time.

The experiment was performed in a dynamometer by driving the vehicle through

a warm-up cycle, and then the US06 cycle as shown in Fig. 5.5. The calibration

parameters for vehicle testing are shown in TABLE 5.3.

5.4.2 Experimental Results

The vehicle testing result is shown in Fig. 5.9. The boost-pressure tracks the

reference closely, and it has RMS tracking error of 7.076. Zoom-in results are shown

in Fig. 5.10. For comparison, the baseline controller has six gain-scheduled look-up

tables, and its RMS tracking error is 7.268 for the same test.

Table 5.3: Parameters for CAIMC vehicle testing.

Identification τM,Q θ(0) Γ deadzone

Model 0.2

[
0.35

1

] [
2 0
0 1

]
1

Inverse 0.2

 0.65
1

1.1

  2 0 0
0 0.5 0
0 0 2

 1
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Figure 5.10: Zoomed-in vehicle testing result of CAIMC-RI with US06 drive cycle.
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CHAPTER VI

Nonlinear IMC Design with Quasi-Linear

Parameter Varying Model for the Boost-Pressure

Control Problem

This chapter investigates the feasibility, performance, advantages, and limitations

of a nonlinear IMC for the boost-pressure control problem of a turbocharged gasoline

engine. Inverting the nonlinear model for the IMC design represents the major chal-

lenge. To facilitate the IMC design, a quasi-LPV model [40] for the nonlinear model

is developed. More importantly, the special quasi-LPV model structure is exploited,

and a structured quasi-LPV model is proposed, which leads to a feasible nonlinear

inverse, referred to as the structured quasi-LPV inverse. The IMC based on the struc-

tured quasi-LPV inverse is developed, and its performance is analyzed. Simulation

results, using a validated “virtual” plant model, are presented to demonstrate the

effectiveness of the proposed design. Nonlinear IMC is presented in the context of the

boost-pressure control of a turbocharged gasoline engine. Its generalization remains

to be an open problem.

Section 6.1 presents the main tools used: LPV model. Section 6.2 presents the

nonlinear model for the turbocharged gasoline engine. Section 6.3 exploits quasi-LPV

approach to derive the inverse of the nonlinear model. Section 6.4 analyzes the IMC
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implementation results on a high-fidelity turbocharged gasoline engine model.

6.1 Background on Quasi-Linear Parameter Varying (LPV)

Models

Quasi-LPV models are LPV models for nonlinear systems where nonlinearities

are hidden through state-dependent parameters, so that a nonlinear model can be

represented by an LPV model and treated by LPV design techniques [40].

In general, a nonlinear model in the form of

ẋ = f(x, u) (6.1)

can be expressed as an LPV model in the form of

ẋ = A(p)x+B(p)u (6.2)

if the model (6.1) is affine in u and the time varying parameter vector p in (6.2) is

allowed to be state-dependent to disguise the nonlinearities [40]. For example, the

nonlinear model

ẋ1 = x2
1 + x1x2, ẋ2 = sinx1 + u

can be expressed in quasi-LPV form as

ẋ = A(p)x+Bu =

 x1 x1

sin(x1)
x1

0

x+

0

1

u,
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Figure 6.1: System schematic of a turbocharged gasoline engine [75].

with p = [x1,
sin(x1)
x1

]T , or

ẋ = A(p)x+Bu =

x1 + x2 0

sin(x1)
x1

0

x+

0

1

u,
with p = [x1 + x2,

sin(x1)
x1

]T .

In the next section, a nonlinear model for the turbocharged gasoline engine is pre-

sented. The quasi-LPV approach is exploited for representing it in a linear structure

to aid deriving an inverse for the nonlinear model in IMC implementation.

6.2 A Nonlinear Turbocharged Gasoline Engine Model For

IMC Design

Control-oriented models serve the IMC design and implementation in two different

ways: first, the IMC incorporates a system model directly in its implementation as

shown in Fig. 1.3; second, the standard IMC design procedure takes an inverse of the

process model and augments it with a proper filter to avoid non-causal implementation

to form the inverse Q. The nonlinear model for the boost-pressure dynamics of a

turbocharged engine presented is based on the work of [75]. The nonlinear model has
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the following states and one input:

x = [Pb, Pi, Pe, Nt]
T , u = uw,

where Pb is the boost-pressure, Pi is the intake pressure, Pe is the exhaust pressure,

Nt is the turbocharger speed, and the input uw is the wastegate, which is the fraction

of the opening and takes values in the range of [0, 1]. The dynamics of the pressures

Pb, Pi, and Pe are derived using mass conservation along with isothermal manifold

assumptions, while the dynamics of the turbocharger speed Nt are derived by a power

balance between the turbine and the compressor as described in [17,75]. The equations

are summarized as follows:

dPb
dt

=
RTb
Vb

(Wc −Wth),

dPi
dt

=
RTi
Vi

(Wth −Wen), (6.3)

dPe
dt

=
RTe
Ve

(Wen
1 + A/F

A/F
−Wt −Ww),

dNt

dt
=

1

ItNt

(Ht −Hc),

where R is the ideal gas constant, A/F is the air to fuel ratio, T, V,W, I and H are

temperature, volume, mass flow rate, inertia, and power respectively. The subscript

indicates the physical location of the variable as in Fig. 6.1, and b, c, th, i, en, e, t, and

w are boost, compressor, throttle, intake, engine, exhaust, turbine, and wastegate

respectively. Modeling of W (mass flow rate) and H (power) are described in detail
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in [17, 75], and the resulting functional expressions are summarized as follows:

Wc = fc(
Pb
Pa
, Nt),

Wth =
sat(0, uth, 1)√

RTb
γPbφ(

Pi
Pb

),

Wen = Piηen
Ven
RTi

Nen

2
,

Ww =
sat(0, uw, 1)√

RTe
γPeφ(

Px
Pe

), (6.4)

Wt = ft(
Pe
Px
,
Nt√
Te

)
Pe√
Te
,

Ht = cp,eTeWtηtψt, ψt = 1− (
Px
Pe

)
γe−1
γe ,

Hc = cp,aTaWc
1

ηc
ψc, ψc = (

Pb
Pa

)
γa−1
γa − 1,

where Pa is the ambient pressure, Px is the turbine exit pressure, φ(·) is a function

of pressure ratio across the component, ψ is a mass flow parameter, γ is the specific

heat ratio for air, cp,(·) is the specific heat at constant pressure, η is the isentropic

efficiency, uth is the throttle opening, Nen is the engine speed, and sat(0, u, 1) limits

u to be in the range [0, 1]. The temperatures Tb, Ti, and Te are assumed to be

measured. Typically the temperature sensors have a slow response time and delay,

and the measurements are lead filtered to improve the response time. Therefore, the

measurement inaccuracy is not considered in this work. A/F is the stoichiometric

ratio of gasoline. uth and Nen are considered as exogenous inputs in this work and

they are measurable. All the variables and subscripts for the nonlinear model of

turbocharged gasoline engine are summarized in Table 6.1.

The nonlinear model is evaluated by comparing its responses with those of the

virtual “plant”, which is a high fidelity Ford proprietary model that has been validated

extensively. It includes the intercooler, throttle, engine, wastegate, turbine, and

compressor [75]. Responses to a step change in the wastegate setting from 0.25 to

0.75 at t = 5sec for the nonlinear model and the virtual “plant” are shown in Fig.
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Figure 6.2: Comparison of responses of the nonlinear model and the “plant” for a
step change in wastegate actuation.

6.2, confirming that the control-oriented nonlinear model and the “plant” have very

similar dynamic responses.

6.3 Quasi-LPV Model and its Inverse

6.3.1 Quasi-LPV Turbocharged Gasoline Engine Model

IMC control can be achieved by designing the inverse Q in Fig. 1.3 as the inverse

of the model M . For linear models, their inverses can be achieved by inverting their

transfer functions and appending a proper filter to assure causality. To extend this

approach to nonlinear models, the quasi-linear parameter varying model approach is

explored to represent the nonlinear model in a linear structure.

Note that there are an infinite number of quasi-LPV models in the form of (6.2)

that can match (6.1), depending on the choice of the varying parameter p. For the

turbocharged gasoline engine system, the physical couplings of state variables are

considered and the following structure that leads to the most sparse A,B matrices is
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Table 6.1: Nomenclature for modeling of turbocharged gasoline engine.
Variables Subscripts

A/F Air to fuel ratio a Ambient
cp,(·) Specific heat at constant pressure b Boost
f·(·) Compressor/turbine map c Compressor
I Moment of inertia e Exhaust
N Rotational speed en Engine
P Pressure i Intake
H Power t Turbine
R Ideal gas constant th Throttle
T Temperature w Wastegate
u Fraction/degree of opening x Turbine exit
V Volume
W Mass flow rate
φ(·) Function of pressure ratio

across the component
η Isentropic efficiency
ψ Mass flow parameter
γ Ratio of specific heats

chosen:

A =



a11 0 0 a14

a21 a22 0 0

0 a32 a33 0

0 0 a43 a44


, B =



0

0

b3

0


, (6.5)

x = [Pb, Pi, Pe, Nt]
T , u = uw, y = x1.

The non-zero elements in (6.5) are defined as follows:

a11 = −RTb
Vb

Wth

Pb
= −
√
RTb
Vb

sat(0, uth, 1)γφ(
Pi
Pb

),

a14 =
RTb
Vb

Wc

Nt

=
RTb
VbNt

fc(
Pb
Pa
, Nt),
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a21 =
RTi
Vi

Wth

Pb
=
RTi
Vi

sat(0, uth, 1)Amax√
RTb

φ(
Pi
Pb

)γ,

a22 = −RTi
Vi

Wen

Pi
= −RTi

Vi

VenNen

2RTi
, (6.6)

a32 =
1 + A/F

A/F

RTe
Ve

Wen

Pi
=

1 + A/F

A/F

TeηenVenNen

2VeTi
,

a33 = −RTe
Ve

Wt

Pe
= −R

√
Te

Ve
ft(

Pe
Px
,
Nt√
Te

),

a43 =
Ht

ItNtPe
=

1

ItNt

cp,eTe
Wt

Pe
ηtψt,

a44 = − Hc

ItN2
t

= − 1

ItN2
t

cp,aTaWc
1

ηc
ψc,

b3 = −RTe
Ve

Ww

sat(0, uw, 1)
= −
√
RTe
Ve

γPeφ(
Px
Pe

).

6.3.2 Structured Quasi-LPV Inverse

Given that the parameters defined by (6.6) are varying fast during transients,

treating the parameters as frozen and deriving the transfer function of (6.5) will not

be effective for deriving the inverse. Indeed, by numerical simulations it is confirmed

that the transfer function inverse does not represent the nonlinear model inverse. In

this section, the special form of the quasi-LPV structure of (6.5) is explored to derive

its inverse model in an effort to minimize the approximation error.

6.3.2.1 Quasi-LPV model inverse structure

Exploiting the sparsity of the A, B matrices of model (6.5), the quasi-LPV model

is expressed as an integration of several first-order sub-models. With this very special

structure of the nonlinear model, the inverse can be pursued by deriving the inverse

of multiple first-order nonlinear models, which will involve limited approximation.

Given the sparse matrices A, B in the form of (6.5), the following first-order
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Figure 6.3: Interconnection of the first-order quasi-LPV sub-models for the fourth-
order turbocharged gasoline engine LPV model.

sub-models Σ1,Σ2,Σ3,Σ4 are defined as

Σ1 : ẋ1 = a11x1 + a14x4 =⇒ x1 = Σ1(x4),

Σ2 : ẋ2 = a22x2 + a21x1 =⇒ x2 = Σ2(x1), (6.7)

Σ3 : ẋ3 = a33x3 + a32x2 + b3u =⇒ x3 = Σ3(x2, u),

Σ4 : ẋ4 = a44x4 + a43x3 =⇒ x4 = Σ4(x3).

Further expressing Σ3 to be

Σ3(x2, u) = Σ31(x2) + Σ32(u),

we can show that the input-output relation of the quasi-LPV model can be expressed

as a composition of these sub-models:

y = x1 = Σ1(Σ4(Σ3(Σ2(x1), u)))

= Σ1(Σ4(Σ31(Σ2(x1)) + Σ32(u))), (6.8)

whose block diagram representation is shown in Fig. 6.3.

Expressing the input u in terms of the output y based on (6.8),

u = Σ−1
32 (Σ−1

4 (Σ−1
1 (y))− Σ31(Σ2(y))), (6.9)
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which can be viewed as an inverse model of (6.8). Fig. 6.4 shows the block diagram

representation of the inverse of the quasi-LPV model through the integration of several

inverse models of first-order blocks as expressed in (6.9), in which Σ−1
1 , Σ−1

4 , and Σ−1
32

are approximate inverses of Σ1, Σ4, and Σ32. The derivations of the Σ−1
1 , Σ−1

4 , and

Σ−1
32 are explained in the following section. x1-x4 in Fig. 6.4 are approximations of

x1-x4 in Fig. 6.3.

6.3.2.2 First-order quasi-LPV inverse

We now derive the inverse of the first-order quasi-LPV model and define its prop-

erty in order to derive the representation for the inverse model (6.9).

For a first-order quasi-LPV model:

Σi : ẋ = ax+ bu, (6.10)

define

ū =

{
1

τs+ 1

}
u, (6.11)

where
{

1
τs+1

}
denotes the first-order filter with a transfer function 1

τs+1
. Then, the

following Lemma gives the representation of ū.

Lemma VI.1. Let a, b be time varying parameters with a, b ∈ L∞, b 6= 0, and b ∈ C1.

Σ1
−1 Σ4

−1 Σ32
−1

Σ2 Σ31

_+

𝑦 𝑢𝑥1

𝑥2

𝑥4 𝑥3

Σ−1

Boost 

pressure
Wastegate

Figure 6.4: Interconnection of first-order quasi-LPV sub-models for inverse of the
LPV model shown in Fig. 6.3.
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Then, for any u, ū given by (6.11) can be expressed in terms of the state x as:

ū =
1

τb
x− z, (6.12)

ż =
1

τ

(
−z +

(
1

bτ
− ḃ

b2
+
a

b

)
x

)
,

where x is given by (6.10).

Proof: Note that

ū =

{
1

τs+ 1

}
u =

{
1

τs+ 1

}(
ẋ

b
− ax

b

)
. (6.13)

Since

d

dt
(
x

b
) =

ẋ

b
− ḃx

b2
, (6.14)

we have, from (6.13), that

ū =

{
1

τs+ 1

}(
d

dt
(
x

b
) +

ḃx

b2
− ax

b

)

=

{
1

τs+ 1

}
{τs+ 1} (

x

τb
) (6.15)

−
{

1

τs+ 1

}[(
1

bτ
− ḃ

b2
+
a

b

)
x

]
.

Note that the time invariant operator {τs+ 1} can now be cancelled with
{

1
τs+1

}
since there is no time varying signal in between. Let

z =

{
1

τs+ 1

}[(
1

bτ
− ḃ

b2
+
a

b

)
x

]
, (6.16)
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then the dynamics from output x to ū can be represented by a first-order LPV model

ū =
1

τb
x− z, (6.17)

ż =
1

τ

(
−z +

(
1

bτ
− ḃ

b2
+
a

b

)
x

)
.

Remark VI.1. Treat x as the input, ū as the output, and a, b, and τ as the parameters,

the BIBO stability of the first-order system (6.12) can be easily established given that

the system has a single frozen-time pole at − 1
τ
, and 1

τb
, 1
τ
( 1
bτ
− ḃ

b2
+ a

b
) are bounded.

Remark VI.2. Note that since ū ≈ u for small τ , one can treat (6.12) as an approx-

imate inverse model of (6.10). Moreover, |ū − u| ∝ O(τ), namely, the inverse model

error can be made arbitrarily small with a properly chosen τ .

Remark VI.3. Lemma VI.1 assumes a continuous-time implementation of the inverse

of (6.10). When (6.12) is discretized for real engine implementation, its BIBO sta-

bility remains due to Remark VI.1. If the delay caused by discretization is small, its

performance will not be substantially affected.

Now the approximate inverse model Σ−1
i is given by (6.12). For simplicity, one

can drop the ḃ/b2 term if the parameter variation is substantially slower than the

system dynamics. However, this is not the case in this application. ḃ/b2 as in (6.6)

includes the states. Therefore, ḃ/b2 is not slower than the system dynamics. The

following simulation also verified that ḃ/b2 should not be omitted: To validate the

first-order sub-model inverse, the two systems Σi and Σ−1
i are connected in cascade

as shown in Fig. 6.5. According to Remark VI.2, the output v in Fig. 6.5 should

be close to the input v̄. A numerical analysis of the inverse performance is shown in

Fig. 6.6. It is obvious that the inverse incorporating the ḃ/b2 term with smaller time

constant τ has better accuracy. Therefore, the inverse incorporating ḃ/b2 is adopted

in the subsequent derivation. The time constant τ is the tuning parameter for the

IMC design. Fig. 6.6 indicates that smaller time constants lead to a better inverse,
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Figure 6.5: Structure for validation of first-order inverse.
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Figure 6.6: Analysis of first-order inverse Σ−1
1 with and without ḃ (ḃ is derived from

numerically differentiating b).

as expected.

6.3.2.3 Structured quasi-LPV inverse

Representing each first-order model inverse in (6.9) with (6.12), an inverse model

for the nonlinear model is derived, which will be referred to as the structured quasi-

LPV inverse.

To incorporate the quasi-LPV inverse model in the IMC structure, two imple-

mentable configurations are possible as shown in Fig. 6.7(a) and Fig. 6.7(b). First,

one can use the states in the nonlinear model Σ to schedule the parameters in the

inverse model Σ−1 (as in Fig. 6.7(a)). Since the states used for parameter scheduling

are external to Σ−1, Fig. 6.7(a) is referred to as the externally scheduled quasi-LPV

inverse. Secondly, since all the states in the original quasi-LPV model are explicit in

its inverse structure, one can derive parameters used in A and B (defined in (6.5))
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Figure 6.7: Validation structures: (a) Externally scheduled quasi-LPV inverse vali-
dation structure. (b) Internally scheduled quasi-LPV inverse validation
structure.

for Σ−1 based on the internal states in Σ−1 (as in Fig. 6.7(b)), which is referred to

as the internally scheduled quasi-LPV inverse.

While the externally scheduled quasi-LPV inverse looks appealing at first, its

utility is ruled out after more in-depth analysis and simulation. The dashed line in

Fig. 6.7(a) which represents the gain scheduling signal forms a feedback loop, which

causes instability. In this work, the proposed IMC controller uses the internally

scheduled quasi-LPV inverse model for its implementation. It should be noted that

the internally scheduled quasi-LPV inverse is not possible for inverse LPV model

derived by general system inverting methodologies, unless the states are preserved in

the inverse model. With the structured quasi-LPV inverse model shown in Fig. 6.4,

it is true that all states are explicitly preserved in the inverse model, thereby making

the internally scheduled quasi-LPV inverse implementation possible.

6.3.2.4 Stability of the structured quasi-LPV inverse

Even though each subsystem in the structured quasi-LPV model is BIBO stable,

the overall inverse Σ−1, with internally scheduled parameters, still has stability issues

due to the feedback loop introduced by those state-dependent parameters.

Since the state-dependent parameters are the root cause for the instability phe-

nomenon in the structured quasi-LPV inverse model, an in-depth analysis of the pa-
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Figure 6.8: Parameter scheduling relationship in the internally scheduled quasi-LPV
inverse (Blue solid lines indicate that the states are actually used for
scheduling. Red dotted lines represent the use of the steady-state value
generated from steady-state mapping in scheduling.).

rameter scheduling is carried out in the inverse model. Fig. 6.8 shows the scheduling

of the varying parameters in each sub-model for the internally scheduled quasi-LPV

inverse. One can see that some of the interconnections, shown by the blue solid lines

in Fig. 6.8 from the states x1 and x2, do not introduce additional feedback loops

except those within their own sub-models. Others, that are shown by red dotted

line for the parameters scheduled based on x3 and x4, form additional feedback loops

within the structured quasi-LPV inverse. Meanwhile, the errors from Σ−1
1 , Σ−1

4 , and

Σ−1
32 propagate within the structure, leading to complicated dynamic responses. To

construct a stable inverse, the scheduling signals x3 (approximate exhaust pressure)

and x4 (approximate turbo speed) are replaced by their steady-state values. The

steady-state maps are generated with respect to different engine speed and throttle

opening.

Remark VI.4. Note that, based on the dual stability property of IMC [9], the stability

of the closed-loop system can be assured if P and Q are stable and M = P . The

stability of the quasi-LPV inverse Q can be established given that it is made up by

stable sub-models Σis and Σ−1
i s through feedforward connections. All feedback loops
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in Q are eliminated after replacing the gain-scheduling elements that forms feedback

loops using their steady-state values. Therefore, the stability of the closed-loop system

with IMC can be assured using Q = Σ−1 given in Fig. 6.8.

6.3.2.5 Structured quasi-LPV inverse model validation

The inverse model shown in Fig. 6.8, with some of the state-dependent parame-

ters replaced by steady-state mapping values, is validated through simulation. The

validation is performed by connecting the inverse to the original model as in Fig.

6.7(b) and the validated results are shown in Fig. 6.9.

Note that the quality of the inverse model depends on the tuning parameters,

which are the time constants τ as in each first-order LPV sub-model inverse Σ−1
1 ,

Σ−1
4 , and Σ−1

32 as shown in Fig. 6.4. Theoretically if the time constants are small,

the output has faster responses but also potential oscillations during transients. If

the time constants are large, the transient response will be slow. Two results with

different tuning parameters are shown in Fig. 6.9, which validates the inverse model.

Inverse 1 has the time constants 0.1s, 0.04s, and 0.02s in Σ−1
1 , Σ−1

4 , and Σ−1
32 , respec-

tively. Inverse 2 has the time constants 0.05s, 0.04s, and 0.02s in Σ−1
1 , Σ−1

4 , and Σ−1
32 ,

respectively. Inverse 1, which has the larger time constant, is more damped than

inverse 2 and has little overshoot, which matches the intuition. The time constant

for Σ−1
1 is chosen to be larger than the others, considering the error in its output x4

propagates to x3 and u, as shown in Fig. 6.8.

6.4 Application of the Nonlinear IMC on the Boost-Pressure

Control Problem of a Turbocharged Gasoline Engine

With the fourth-order nonlinear model and the model inverse developed, IMC can

be designed by applying the nonlinear model and its inverse into Fig. 1.3. The IMC is
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Figure 6.9: Validation of structured quasi-LPV inverse.

implemented in continuous-time domain, and is applied to the virtual “plant”, which

is a validated Ford proprietary model. The structure of the resulting nonlinear IMC

system is shown in Fig. 6.10. The tuning parameters are the time constants in each

first-order LPV sub-model inverse Σ−1
1 , Σ−1

4 , and Σ−1
32 , as shown in Fig. 6.4. The

time constants are chosen at 0.1s, 0.04s, and 0.02s, which are the same as in inverse

1. The pressure and temperature sensors are assumed to be accurate. Performance of

the resulting control system is evaluated in this section together with the robustness

analysis with respect to different operating conditions and measurement noises.

6.4.1 Performance Evaluation

To evaluate the performance of IMC, some features have to be considered [87]:

• The overshoot of Pb has to be minimized to avoid throttle re-closing.

• The pressure oscillation of Pb while tracking a step function is undesirable be-

cause they could generate torque oscillations that are noticeable to the driver.

IMC is compared with a well-tuned PI controller with extensive feedforward and
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anti-windup built in, which is referred to as PI control in the context. The system

response and control input are compared in two cases: constant engine speed of 3000

rpm (as in Fig. 6.11(a)); varying engine speed(as in Fig. 6.11(b)). Here varying

engine speed rises from 1500 to 3000 rpm gradually. The throttle opening is 45

degrees in both simulations. In Fig. 6.11(a), it can be observed that IMC achieved a

faster reference tracking than PI with less overshoot or oscillation. In Fig. 6.11(b), the

IMC response does not overshoot, even without incorporating an explicit anti-windup

strategy.

Overall, the nonlinear IMC for the wastegate control of a turbocharged gasoline

engine shows promising performance. It shows good reference tracking, no steady-

state error, no need for a separate anti-windup design, and intuitive tuning. Its

performance matches, and in cases exceeds, that of a well-tuned PI control with

extensive feedforward and anti-windup built in.

6.4.2 Performance in the Presence of Disturbances

In real applications of boost-pressure control of a turbocharged gasoline engine, the

reference and operating points vary. More analysis is performed herein to evaluate the

system performance sensitivity with respect to the variation of operating conditions
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Figure 6.11: Simulation results: (a) IMC performance: constant engine speed. (b)
IMC performance: varying engine speed.
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(engine speed and throttle opening). Note that only one set of tuning parameters is

used for all the tests.

First, the impact of the engine speed Nen is considered. Two sets of tests are per-

formed: the same Pb reference step at different engine speed Nen (as in Fig. 6.12(a)),

constant Pb reference with a step change in Nen (as in Fig. 6.12(b)), in which case

the variation in Nen can be viewed as a disturbance. The step change in Nen is from

2500 to 3000 rpm. The throttle opening is 45 degrees in all simulations. The results

show that IMC performs well at all engine speeds, and it rejects the disturbance in

Nen.

Next, the impact of the throttle opening uth is considered. Two sets of tests are

performed: the same Pb reference step at different throttle opening uth (as in Fig.

6.13(a)), constant Pb reference with a step change in uth (as in Fig. 6.13(b)), in which

case the variation in uth can be viewed as a disturbance. The step change in uth is

from 45 to 30 degrees. The engine speed is 3000rpm in all simulations. The results

show that IMC performs well at all throttle openings, and it rejects the disturbance

in uth.
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Figure 6.12: IMC robustness evaluation with respect to engine speed: (a) IMC ro-
bustness: different engine speed. (b) IMC robustness: varying engine
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Figure 6.13: IMC robustness evaluation with respect to throttle opening: (a) IMC
robustness: different throttle opening. (b) IMC robustness: step change
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CHAPTER VII

Conclusions

7.1 Conclusions

In this thesis, motivated by the need for a control design approach to reduce the

controller design and calibration effort for the automotive industry, we exploited the

internal model control (IMC) framework, which offers an intuitive control structure

and simple tuning philosophy. Two directions are pursued: adaptive IMC (AIMC)

and nonlinear IMC.

By combining IMC and parameter identification techniques, we developed com-

posite AIMC (CAIMC), which simultaneously identifies the plant model and the plant

inverse online. Through the simultaneous online identification of the model and the

inverse, CAIMC minimizes the forward and inverse modeling errors, and further re-

duces the tracking error. CAIMC is first developed for a first-order plant, and then

extended to an n-th order plant. The design procedure, stability proof, and asymp-

totic performance are presented. The general CAIMC design procedure follows very

closely to the first-order CAIMC, but the stability requirement poses non-trivial con-

straints for parameter identification. A convex programming problem with a linear

matrix inequality constraint is formulated to handle the stability constraint.

For the problem of boost-pressure control of a turbocharged gasoline engine,

CAIMC is first validated on a proprietary model, and then validated on a vehicle
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with a 2.0L four-cylinder turbocharged gasoline engine. Both simulations and experi-

ments show that CAIMC not only improves tracking performance, but also drastically

reduces the calibration effort compared to the traditional PI controller with feedfor-

ward.

A nonlinear IMC design is presented in the context of the boost-pressure con-

trol. A nonlinear fourth-order dynamics model is adopted in the controller. The

challenges for inverting the nonlinear model are addressed by: (1) representing the

nonlinear dynamics with a quasi-LPV model, (2) exploring the special quasi-LPV

model structure, (3) using inverse of the simple first-order quasi-LPV model, and

(4) assuring the stability of the inverse model by eliminating the internal loops. It

is shown to be effective and robust for the boost-pressure control, but it is hard to

generalize due to its special structural requirement for the nonlinear model.

7.2 Future Research Directions

Two directions are presented in this thesis: adaptive IMC and nonlinear IMC.

While contributions are made in both directions, they also lead to new open chal-

lenges:

7.2.1 Adaptive IMC

• Generalization of CAIMC: First, CAIMC for a SISO plant can be general-

ized to be applicable to a MIMO plant. Second, CAIMC for a linear plant can

be generalized to CAIMC with nonlinear plant. As discussed in Chapter IV,

there are almost always unmodeled dynamics in CAIMC from representing the

inverse dynamics. When approximating a nonlinear plant with a linear plant,

more unmodeled dynamics are introduced. Therefore, robust adaptive control

techniques have to be adopted in CAIMC. Because transient performance and

robustness are trade-offs in adaptive control framework, it may be desirable to
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adopt nonlinear models to identify the plant and its inverse to achieve better

transient performance.

• IMC with coordinative model and inverse identifications In terms of

the inverse design philosophy, AIMC and CAIMC are the two extremes. As

shown in Fig. 2.1, AIMC identifies the model, and the inverse is derived from

inverting the model. As shown in Fig. 3.1, CAIMC identifies the model and

inverse in parallel. At the expense of the extra identification of the inverse,

CAIMC reduces the tracking error when compared with AIMC. However, the

inverse identification is independent of the model identification, while their dy-

namics are closely related. Coordinating the simultaneous model and inverse

identification as shown in Fig. 7.1 is the middle ground between AIMC and

CAIMC, which has not been explored yet. It has a great potential in terms

of further improving the control performance or reducing the computational

complexity.

7.2.2 Nonlinear IMC

• Generalization of the nonlinear IMC In this thesis, nonlinear IMC is

presented in the context of the boost-pressure control of a turbocharged gasoline

engine. It is applicable when the nonlinear system has a special structural
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property and has not been generalized yet. Future work in this direction includes

expanding this specific nonlinear IMC design into a more general methodology,

and developing a systematic approach for calibration.
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APPENDIX A

Preliminaries for Convex Programming Problem

Analysis

Relevant results for a convex optimization problem are introduced as following.

Consider the optimization problem

minimize
χ

f(χ), subject to χ ∈ Φ. (A.1)

χ ∈ Rn is the optimization variable, and the function f : Rn → R is the objective or

cost function. The optimal value of the cost function is defined as v∗ = inf{f(χ)|χ ∈

Φ}. χ∗ is an optimal solution, if χ∗ ∈ Φ and f(χ∗) = v∗.

Lemma A.1. [88] For (A.1), let Φ be a nonempty closed convex set and f be a

strictly convex function over Φ, then the optimal solution χ∗ is unique.

Consider the parameterized optimization problem

minimize
χ

f(χ, p), subject to χ ∈ Φ, (A.2)

where the cost function f(χ, p) depends on the parameter vector p ∈ Π ⊂ Rm, and
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the feasible region Φ is independent of p. Let v∗(p) : Rm → R represent the optimal

cost value function.

Lemma A.2. [89] For (A.2), the optimal cost value function v∗(p) is upper semi-

continuous, i.e., limp→p0 v
∗(p) ≤ v∗(p0).

Assume that the optimal solution is unique and let χ∗(p) : Rm → Rn represent

the optimal solution function.

Lemma A.3. [89] For (A.2), suppose that

(i) The second order growth condition holds for f(χ, p) at χ∗(p0), i.e. there exists

a neighbourhood N of χ∗(p0) and a constant c > 0 such that f(χ) ≥ f(χ∗) +

c(χ− χ∗)2, ∀χ ∈ Φ ∩N .

(ii) The difference function f(χ, p) − f(χ, p0) is Lipschitz continuous with respect

to χ modulus κ on Φ ∩ N , i.e. ∃κ < ∞, ||(f(χ1, p) − f(χ1, p0)) − (f(χ2, p) −

f(χ2, p0))|| ≤ κ||χ1 − χ2||, ∀χ1, χ2 ∈ Φ ∩N .

Then ||χ∗(p)− χ∗(p0)|| ≤ c−1κ.
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APPENDIX B

Mathematical Tools for Stability Proof

The stability proof of CAIMC is done by representing the closed-loop system as a

linear time-varying (LTV) system. Relevant results are introduced here to establish

the exponential stability and signal boundedness of linear systems.

Lemma B.1. For a LTV system

ẋ = A(t)x,

where x ∈ Rn, and the elements of A(t) are piecewise differentiable and bounded.

Assume that Re{λi(A(t))} ≤ −δs ∀t ≥ 0 and for i = 1, 2, . . . , n where δs > 0 is some

constant. ||A(t)|| ≤ c, for some constant c > 0, ∀t ≥ 0, where ||A(t)|| is the induced

norm. If one of the following statements holds:

• ||Ȧ(t)|| ≤ c, for some c > 0, where ||Ȧ(t)|| is the induced norm.

• ∃k0 > 0, δ0 > 0, sup0≤τ≤k0 ||A(t+ τ)− A(t)|| ≤ δ0.

Then the equilibrium state xe = 0 is exponentially stable, i.e., the state transition

matrix

||Φ(t, τ)|| ≤ λ0e
−α0(t−τ),∀t ≥ τ ≥ 0
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for some λ0, α0 > 0 [90].

Lemma B.2. Consider the LTV system given by

ẋ = A(t)x+B(t)u,

where x ∈ Rn, y ∈ Rr, u ∈ Rm, and the elements of the matrices A(t), B(t) are

bounded piecewise continuous functions of time. If the state transition matrix ||Φ(t, τ)|| ≤

λ0e
−α0(t−τ) for some λ0, α0 > 0 and u ∈ L2e, i.e. ||ut||2 := (

∫ t
0
|u(τ)|2dτ)

1
2 exists for

any finite t. Then for any δ ∈ [0, δ1) where 0 < δ1 < 2α0 is arbitrary, we have

• |x(t)| ≤ cλ0√
2α0−δ

||ut||2δ + εt

• ||xt||2δ ≤ cλ0√
(δ1−δ)(2α0−δ1)

||ut||2δ + εt

where c = sup
t
||B(t)||, and εt is an exponentially decaying to zero term due to the

initial condition [78].

Lemma B.3. Consider a LTI system given by

y = {H(s)}u,

where H(s) is strictly proper and analytic in Re(s) ≥ − δ
2

for some δ > 0 and u ∈ L2e.

Then we have

|y(t)| ≤ c||ut||2δ

for some c [78].

Lemma B.4. Bellman-Gronwall (B-G) Lemma: [78]

Let λ(t), g(t), k(t) be nonnegative piecewise continuous functions of time t. If a
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function f(t) satisfies the inequality

f(t) ≤ g(t)

t∫
t0

k(s)f(s)ds+ λ(t),∀t ≥ t0 ≥ 0,

then

f(t) ≤ g(t)

t∫
t0

λ(s)k(s)[exp(

t∫
s

k(τ)g(τ)dτ)]ds+ λ(t),∀t ≥ t0 ≥ 0.

In particular, if λ(t) ≡ λ is a constant and g(t) ≡ 1, then

f(t) ≤ λexp(

t∫
t0

k(s)ds),∀t ≥ t0 ≥ 0.
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APPENDIX C

Derivation of the Closed-loop State-space

Equation of CAIMC

Combining (4.4), (4.6), and (4.25), we have

ε̂Mm
2
M = zM − θ̂TMφM

= {sn}yf + θTλ





1

s

...

sn−1




yf − θ̂Ta





1

s

...

sn−1




yf − θ̂Tb





1

s

...

sn−1




uf .

Therefore,

y
(n)
f =(θ̂a − θλ)T





1

s

...

sn−1




yf + θ̂Tb





1

s

...

sn−1




uf + ε̂Mm

2
M . (C.1)
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From (4.16), let r = {ẐQ(s) 1
Λ
}r and θ̂c =

θ̂cn
η

, where θ̂cn ∈ Rn and η is the

(n+ 1)-th entry of θ̂c. Then,

{R̂Q(s)}uf = r −
{
ẐQ(s)

1

Λ

}
ε̂Mm

2
M = r − {ẐQ(s)− ηΛ}εf + ηε̂Mm

2
M ,

and

{sn}uf + (θλ − θ̂d)T





1

s

...

sn−1




uf = r − (θ̂cn − ηθλ)T





1

s
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sn−1




εf + ηε̂Mm

2
M ,

u
(n)
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εf + ηε̂Mm

2
M + r.

(C.2)

From (4.25),

ε
(n)
f = −θTλ





1

s

...

sn−1




εf + ε̂Mm

2
M . (C.3)
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Combining (C.1), (C.2), and (C.3), we have

ẋ = A(t)x+ b1(t)ε̂Mm
2
M + b2r,y

u

 = C(t)x+ d1(t)ε̂Mm
2
M + d2r,

where

A(t) =



0(n−1)×1|In−1 0(n−1)×n 0(n−1)×n

(θ̂a − θλ)T θ̂Tb 01×n

0(n−1)×n 0(n−1)×1|In−1 0(n−1)×n

01×n (θ̂d − θλ)T −(θ̂cn − ηθλ)T

0(n−1)×n 0(n−1)×n 0(n−1)×1|In−1

01×n 01×n −θTλ


,

b1(t) =



0(n−1)×1

1

0(n−1)×1

η

0(n−1)×1

1


, b2(t) =



0n×1

0(n−1)×1

1

0n×1


,

C(t) =

 θ̂Ta θ̂Tb 0(1×n)

0(1×n) θ̂Td −(θ̂cn − η)T

 ,
d1(t) =

1

η

 , d2(t) =

0

1

 .
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