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ABSTRACT

Computational Studies of Turbulent Skin-Friction Drag Reduction with
Super-Hydrophobic Surfaces and Riblets

by

Amirreza Rastegari

Chair: Rayhaneh Akhavan

Skin-friction Drag Reduction (DR) with Super-Hydrophobic (SH) surfaces and ri-

blets was investigated using Direct Numerical Simulation (DNS) to study the scal-

ing and mechanism of DR, and the pressure loads on SH surfaces in turbulent flow

environments. The computations were performed using Lattice Boltzmann (LB)

methods in turbulent channel flow at a bulk Reynolds number of 3600. SH sur-

faces composed of Longitudinal Micro-Grooves (LMGs) of size 4 to 128 Base-flow

Wall Units (BWUs) with Shear Free Fractions (SFFs) of 1/2, 7/8 and 15/16, trans-

verse Micro-Grooves (MGs) of size 8 to 56 BWUs with SFFs of 1/2 and 7/8, and

micro-posts of size 8 to 56 BWUs with SFFs of 1/4 and 49/64 were studied by DNS.

The liquid/gas interfaces on the SH walls were modeled as ‘idealized’ flat, shear-free

boundaries in these simulations. Additionally, a second set of DNS studies, with SH

LMGs and scallop-shaped riblets of size 14 to 56 BWUs with a MG width to MG

pitch ratio of 7/8, were performed to investigate the effect of interface deformation

on SH LMGs, and compare the results to riblets. The liquid/gas interfaces on the

SH LMGs in these simulations were modeled as stationary curved, shear-free regions,
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with the meniscus shape obtained from the solution of the Young-Laplace equation.

Interface protrusion angles of 0, -30, -60 and -90 degrees were investigated. The same

geometries as those formed by the curved SH LMG interfaces were also studied as

riblets. DRs of up to 83% and 10% were realized in DNS with the SH surfaces and

riblets, respectively.

By analysis of the governing equations, it is shown that in laminar or turbulent

channel flow with any SH or riblet wall micro-pattern five elements contribute to DR:

(i) the effective slip at the wall, (ii) changes in the normalized structure of turbulence

due to the drop in the friction Reynolds number of the flow because of this wall

slip, (iii) other changes in the normalized structure of turbulence, (iv) changes in the

structure of mean flow, and (v) the minor flow rate through the wall micro-texture.

Comparison of DNS results to this expression shows that over 90% of the DR with SH

LMGs and all of the DR with riblets arises from effects (i, ii, v). Modifications to the

normalized structure of turbulence (iii) were found to be always drag increasing with

riblets and SH LMGs of size less than 20 wall units, and only mildly drag reducing

with SH LMGs of size greater than 20 wall units. For riblets, this effect leads to

diminishing DRs with riblets of size greater than 14 wall units. The presence of

interface deformation in SH LMGs led to increases of 2% to 5% in the magnitude of

DR at low protrusion angles (−30 degrees), and drops of −0.5% to −10% at high

protrusion angles (−90 degrees), compared to flat interfaces. Furthermore, interface

deformation led to significant drops in the magnitude of pressure fluctuations with

SH LMGs of size ∼ 14 BWUs at small protrusion angles (−30 degrees), compared to

flat interfaces, offering new opportunities for improving the stability of SH LMGs in

turbulent flows. With riblets, the highest DRs were always obtained at the largest

MG depths, with the peak DR obtained with MGs of size ∼ 14 BWUs.
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CHAPTER I

Introduction

Control of wall turbulence, for the purpose of skin friction DR, has been a long-

standing goal of turbulence research (Bushnell and McGinley , 1989; Bushnell and

Hefner , 1990). Numerous turbulence control strategies have been proposed over the

years (Bushnell and Hefner , 1990; Lumley , 1969; Bechert et al., 1997; Lumley and

Blossey , 1998; Karniadakis and Choi , 2003). Broadly, these can be classified into

active or passive control strategies. In active control strategies, the dynamics of tur-

bulence is manipulated through addition or removal of mass, momentum or energy

to/from the boundary layer, to reduce the skin-friction drag (Bushnell and Hefner ,

1990; Coustols and Savill , 1992a,b). Active control strategies can be either open-loop,

in which the control strategy is set a priori without monitoring the status of turbu-

lence, or closed-loop, in which the control mechanism is applied in real-time based

on signals received from arrays of sensors and activation through actuators. Passive

turbulence control strategies are implemented through changing the geometrical or

physical characteristics of the bounding walls of the flow (Bushnell and Hefner , 1990;

Coustols and Savill , 1992a,b). Unlike active turbulence control strategies, passive

strategies require no external source of energy, making them more likely to achieve

net energy savings. Furthermore, no extra arrays of sensors and actuators are used

with passive strategies, making their implementation and maintenance costs lower.
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Of the passive turbulence control strategies devised to date, micro-textured sur-

faces provide one of the oldest and most promising methods of skin-friction DR in

turbulent wall-bounded flows. Two classes of micro-textured surfaces have been ex-

tensively studied in the literature: riblets and SH surfaces.

1.1 Riblets

The earliest designs of micro-textured surfaces were inspired by shark skins, on

which the dermal denticles display rib-like protrusions (Chernyshov and Zayets , 1970).

In man-made implementations, the wall boundaries were carpeted with arrays of

LMGs, known as riblets. Numerous experimental (Bushnell and Hefner , 1990; Bechert

et al., 1997) and computational (Choi et al., 1993; Goldstein and Tuan, 1998; Kar-

niadakis and Choi , 2003; Garćıa-Mayoral and Jiménez , 2011) studies in turbulent

channel flows or boundary layer flows have shown DRs of up to 10% with riblets.

The DR performance has been shown to depend on the MG width in ‘wall units’, and

the cross-sectional shape of the riblets (Bushnell and Hefner , 1990; Choi et al., 1993;

Bechert et al., 1997; Goldstein and Tuan, 1998; Karniadakis and Choi , 2003; Garćıa-

Mayoral and Jiménez , 2011). Highest DRs were obtained with V-grooved or scallop

shaped riblets of width g+ ≈ 15 (Bushnell and Hefner , 1990; Bechert et al., 1997),

where g denotes the MG width, and the + superscript denotes non-dimensionalization

in ‘wall units’, using the wall-friction velocity, uτ , and kinematic viscosity, ν, of the

flow. Beyond groove widths of g+ & 15, the DR performance degrades, eventually

leading to a drag increase for groove widths greater than 30 wall units (Bushnell

and Hefner , 1990; Choi et al., 1993; Bechert et al., 1997; Goldstein and Tuan, 1998;

Karniadakis and Choi , 2003; Garćıa-Mayoral and Jiménez , 2011). The DR regime

observed in riblets of width up to 15 wall units is generally referred to as the ‘viscous

regime’, while that in riblets of width greater than 15 wall units is generally referred

to as the ‘breakdown regime’ (Bechert and Bartenwerfer , 1989; Garćıa-Mayoral and
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Jiménez , 2011). DR in the ‘viscous regime’ has been attributed to the hindering of

the spanwise turbulence fluctuations in the near wall regions by riblets (Choi et al.,

1993; Bechert et al., 1997; Karniadakis and Choi , 2003; Garćıa-Mayoral and Jiménez ,

2011). Choi et al. (1993) suggest that riblets reduce momentum transport by imped-

ing the cross-flow motion through reducing the strength of streamwise vortices above

the riblets. This, in turn, weakens the downwash and ejection motions and reduces

the Reynolds shear stress over the riblets. Bechert et al. (1997) suggest that riblets

impede the fluctuating turbulent crossflow near the wall, thus reducing momentum

transfer and Reynolds shear stresses. Karniadakis and Choi (2003) suggest that ri-

blets impede the spanwise movement of longitudinal vortices, thus hampering the

stretching of longitudinal vortices which reduces the strength of the downwash mo-

tions during the sweep events. The contribution of turbulence to the wall shear stress

arises from the downwash of high-momentum fluid by the streamwise vortices (Choi ,

1989). As such, the reduction in the strength of the downwash motions leads to a

reduced wall-friction (Karniadakis and Choi , 2003). Garćıa-Mayoral and Jiménez

(2011) suggest that impeding the spanwise flow induced by the overlying streamwise

vortices results in moving the streamwise vortices away from the wall, and leads to a

reduction in the turbulent mixing of the streamwise momentum. A number of theo-

ries also have been proposed to explain the degradation of the DR performance in the

‘breakdown regime’. Based on quadrant analysis of turbulent flow Choi et al. (1993)

proposed that the streamwise vortices lodge inside the riblets. As a result, a larger

surface area is exposed to the sweep motions induced by the streamwise vortices, thus

decreasing the DR performance. Garćıa-Mayoral and Jiménez (2011) proposed that

the breakdown regime is caused by the appearance of long spanwise rollers in the

flow, which results in additional Reynolds stresses.

Research on passive turbulence control by riblets has been mainly focused on

turbulent flows. The DR or Drag Increase (DI) effect of riblets in turbulent flow, in
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all the studies, has been attributed to the modification of vortical structures due to

the presence of riblets on the walls (Bushnell and Hefner , 1990; Choi et al., 1993;

Bechert et al., 1997; Goldstein and Tuan, 1998; Karniadakis and Choi , 2003; Garćıa-

Mayoral and Jiménez , 2011). Effect of riblets in laminar flows, however, has been

controversial, with some studies reporting DR (Mohammadi and Floryan, 2013, 2015)

while others report DI (Choi et al., 1991; Chu and Karniadakis , 1993). It has been

proposed that use of riblets in laminar flow leads to increased surface areas exposed to

the viscous friction, and thus increased frictional drag forces (Choi et al., 1991; Chu

and Karniadakis , 1993). However, recent studies suggest that proper configurations

of riblets can sufficiently reduce the shear in the bulk flow to compensate for the DI

associated with the increase in the wetted area, thus resulting in a net reduction in

the friction drag (Mohammadi and Floryan, 2013, 2015).

1.2 Super-Hydrophobic Surfaces

Another class of micro-textured surfaces, which has gained much attention during

the recent years, are SH surfaces. These were inspired by the water-repellent structure

of lotus leaves, on which a water-repellent ‘hydrophobic’ wax covers the rough exterior

of the leaves and allows rain drops to slide on the leaves (Ma and Hill , 2006; Rothstein,

2010). Mimicking the structure of natural surfaces, this class of micro-textured sur-

faces is made of a combination of surface micro-textures and liquid-repelling coatings.

Standard micro-manufacturing techniques, such as photolitography, are used to create

the surface micro-textures. These micro-textures are then covered by liquid-repelling

coatings. The resulting SH surfaces are characterized by a large apparent receding

contact angle, typically greater than 150o (Schellenberger et al., 2016). When such

surfaces come into contact with low surface energy liquids, such as water, gas pockets

form inside the surface indentations (Tyrrell and Attard , 2001; Tretheway and Mein-

hart , 2004). The liquid/gas menisci formed on top of these entrapped gas pockets
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prevent the liquids from penetrating into the cavities, leading to the so-called Cassie

state (De Gennes et al., 2002). In this Cassie state, liquids slip over the liquid/gas

menisci (Voronov et al., 2008; Rothstein, 2010), resulting in an apparent slip on the

SH surface. This apparent slip is generally characterized by an average slip velocity,

Us, on the wall, and a slip length, Ls, defined as Us = Ls∂U/∂n|∂Ω, where n denotes

the normal to the wall (Voronov et al., 2008).

1.2.1 Experimental Results with SH Surfaces in Laminar Flow

Numerous experiments have reported DR with SH surfaces in laminar flow. With

random SH roughness, DRs of 14% have been reported in laminar pipe flow (Watanabe

et al., 1999), 18% in laminar Taylor-Couette flow (Watanabe et al., 2003), 20% in

laminar boundary layer flow (Balasubramanian et al., 2004) and 13% (Watanabe

et al., 2007) to 22% (Papageorgiou et al., 2012) in laminar micro-channel flow. In

laminar channel flows with arrays of LMGs on the walls, DRs of 40% have been

observed when only one channel wall is covered with LMGs of size 0.01 . g/h . 0.63

& 1 ≤ g/w ≤ 4 (Ou et al., 2004; Choi et al., 2006; Truesdell et al., 2006), and up

to 50% when both channel walls are covered with LMGs of size 0 . g/H . 0.21 &

0 . g/w . 11.1 (Maynes et al., 2007), where g and w denote the with of the SH MGs

and the spacings between them, respectively, and H denotes the full height of the

channel. In channel flows with arrays of transverse MGs on the walls, the results show

Reynolds number dependence (Davies et al., 2006), with up to 21% DR at Reb ≈ 8.3

in micro-channels with transverse SH MGs of size g/H = 0.4 & 0.67 ≤ g/w ≤ 1 on

one wall (Karatay et al., 2013a), up to 30% DR at 4 . Reb . 41 with MGs of size

0.06 . g/H . 0.63 & 0.88 ≤ g/w ≤ 2 (Hao et al., 2009), and up to 13% DR at

150 ≤ Reb ≤ 770 with MGs of size 4× 10−4 . g/H . 8× 10−4 & 0.18 ≤ g/w ≤ 0.83

(Watanabe et al., 2007; Ogata and Shimizu, 2011) when both the channel walls are

covered with SH surfaces. SH surfaces with micro-pillars (Lee et al., 2008) or micro-
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posts (Ogata and Shimizu, 2011) have also been studied by different groups. It has

been suggested that, in the limit of small micro-pillar sizes, when the gas fraction

is large, these surfaces outperform SH surfaces with longitudinal or transverse MGs

(Davis and Lauga, 2010). However, only few experiments have reported DR with

SH micro-pillars or micro-posts. In laminar channel flow, Ou et al. (2004) have

reported DRs of up to 40% with SH square micro-posts of size 0.12 ≤ g/H ≤ 1.18 &

0.5 ≤ g/w ≤ 5 on one wall, while Ogata and Shimizu (2011) have reported only 4%

DR with SH square micro-posts of size g/H ≈ 8 × 10−4 & 0.63 ≤ g/w ≤ 3.4 on one

wall.

The physics of flow over SH surfaces has been investigated using Micro-Particle

Imaging Velocimetry (µ−PIV), optical diffraction techniques and nano-rheology.

Using µ−PIV , Ou and Rothstein (2005) showed that liquids slip along the liquid/gas

interfaces between the SH MGs, while the no-slip boundary condition holds on the

rest of the surface. Furthermore, their studies showed that the liquid/gas interfaces on

the SH surface are not flat. Using optical diffraction techniques, Rathgen and Mugele

(2010) showed that the interface curvature, which is caused by the pressure difference

across the interface, obeys the Young-Laplace law. Nano-rheology measurements of

Steinberger et al. (2007) in shear-driven flow on a SH surface with circular micro-posts

showed that increasing the interface curvature, at positive protrusion angles, leads to

a decrease of up to 241% in the resulting slip length in laminar flow, compared to that

with flat interfaces. At negative protrusion angles, increasing the interface curvature

in laminar flow leads to a decrease of up to 30% in the resulting slip length, compared

to that with flat interfaces (Steinberger et al., 2007). Based on results from µ−PIV

in pressure-driven channel flow with SH LMGs, Tsai et al. (2009) suggested that

the interface curvature leads to a drop of up to 83% in the resulting normalized slip

lengths at the SH wall, compared to the values obtained with the analytical solution

of Philip (1972a). Using µ−PIV in pressure-driven channel flow with SH transverse
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MGs, Karatay et al. (2013a) showed that increasing the interface curvature at small

positive protrusion angles, up to 10o, leads to an increase in the resulting DRs, while

increasing the interface curvature beyond protrusion angles of 10o leads to a decrease

in the resulting DRs. Furthermore, the detailed velocity measurements using µ−PIV

have been used to suggest that the surface slip on the liquid/gas interfaces of the SH

surface is the primary mechanism of SH DR in laminar flow (Ou and Rothstein, 2005).

1.2.2 Experimental Results with SH Surfaces in Turbulent Flow

Experiments with SH surfaces in turbulent flow have been less consistent. In

pipe flow with SH random micro-textures on the walls experiments have shown no

noticeable DR (Watanabe et al., 1999). In micro-channels with arrays of SH LMGs on

one or both walls, experiments have shown 0% DR with g+0 ≈ 0.2, g/w = 1, MGs on

one wall (Peguero and Breuer , 2009), 11% DR with 1.3 ≤ g+0 ≤ 2.5, g/w = 4, MGs

on one wall (Woolford et al., 2009), and up to 50% DR with 0.7 ≤ g+0 ≤ 4.8, g/w = 1,

MGs on both walls (Daniello et al., 2009), where the +0 superscript denotes non-

dimensionalization with respect to the wall friction-velocity and kinematic viscosity

of a no-slip base channel flow at the same bulk Reynolds number as the SH channel.

More recently, DRs of up to 75% have been reported in turbulent boundary layer

flows with LMGs of size 0.8 . g+0 . 1.6 and 1 ≤ g/w ≤ 19 (Park et al., 2014), and

up to 36% with random roughness of size k+0
rms ≈ 0.85 (Ling et al., 2016).

Despite these remarkable results in laboratory scale experiments, SH DR has not

yet evolved into a practical means of turbulent skin-friction control, because under

the high shear rates and high pressure fluctuations, typical of turbulent flows, the

air pockets in the surface micro-texture cannot be sustained either due to interface

collapse (Zheng et al., 2005; Checco et al., 2014), or due to the dissolving of the

air pockets into the working liquid (Samaha et al., 2012; Karatay et al., 2013b).

This has led to the development of more advanced, hierarchical, micro/nano-textured
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surfaces (Feng et al., 2002; Wang et al., 2007; Kwon et al., 2009; Lee and Kim, 2009;

Cha et al., 2010; Lee and Kim, 2011) or liquid infused surfaces (Wong et al., 2011;

Rosenberg et al., 2016). With dual scale micro/nano-textured surfaces, nano-scale

textures are etched on the sides of the SH micro-textures to increase the allowable

contact angles between the sides of the micro-textures and the meniscus (Lee and Kim,

2011). At larger contact angles, the liquid/gas meniscus can support larger pressure

loads. With liquid infused surfaces, the surface micro-textures are filled with a low

viscosity lubricating liquid, replacing the gas pockets in the SH surface micro-textures

(Wong et al., 2011). The resulting liquid layer can support large pressure loads and is

more durable under high shear rates. However, the DR performance of liquid infused

surfaces has so far been modest, with DRs of up to 16% at a viscosity ratio of 260

in laminar Couette flow on a liquid infused surface with micro-posts (Solomon et al.,

2014), and DRs of up to 15% at a viscosity ratio of 2.7 in turbulent Taylor-Couette

flow on a liquid infused surface with LMGs (Rosenberg et al., 2016). Furthermore,

the resulting surface is still prone to drainage of the lubricating liquid into the flow

under high shear rates (Wexler et al., 2015).

1.2.3 Analytical and Computational Studies of SH Surfaces in Laminar

Flow

Many analytical solutions have been developed for flow over the SH surfaces at

the limit of low Reynolds numbers (Philip, 1972a,b; Lauga and Stone, 2003; Davis

and Lauga, 2009; Belyaev and Vinogradova, 2010; Davis and Lauga, 2010). In these

analytical solutions, gas recirculation inside the SH micro-textures is neglected and

the SH surface is modeled as a pattern of flat shear-free regions interspersed among no-

slip regions on a wall (Philip, 1972a,b; Lauga and Stone, 2003; Davis and Lauga, 2009;

Belyaev and Vinogradova, 2010; Davis and Lauga, 2010). Using this assumption,

Philip (1972a,b) developed analytical solutions for the velocity profiles in shear-driven
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flows and pressure-driven channel flows at low Reynolds numbers over SH surfaces

with transverse or longitudinal MGs. These analytical solutions show that the key

features of flow over the SH surfaces scale with the fraction of shear-free to no-slip

surface area, and the geometrical parameters of the SH surface (Philip, 1972a,b).

These findings were further supported by analytical solutions developed by Lauga

and Stone (2003) for the slip length in pressure-driven Stokes flow through a pipe

with transverse or longitudinal MGs, and the analytical solutions developed by Davis

and Lauga (2009, 2010) for the slip length in shear-driven Stokes flow over a SH

surface with rectangular or circular micro-posts. Using the assumption of flat shear-

free liquid/gas interfaces, Feuillebois et al. (2009) showed that for a given ratio of

shear-free to no-slip surface area, SH LMGs provide the maximum apparent slip

in micro-channel flows (Feuillebois et al., 2009). Belyaev and Vinogradova (2010)

extended these studies to the case of pressure-driven channel flow at low Reynolds

number with SH LMGs on one wall, in which the liquid/gas interfaces on the SH

surface were low-shear, rather than shear-free, supporting a locally finite slip length.

By studying different orientations of the MGs with respect to the flow, Belyaev and

Vinogradova (2010) showed that flow past the SH LMGs is controlled by the ratio of

the local slip length to the MG sizes. In all these studies, the liquid/gas interfaces on

the SH surface were modeled as flat.

Gas/liquid interfaces on the SH surfaces, however, are not flat (Ou and Rothstein,

2005; Tsai et al., 2009). Measurements on the SH surfaces, using optical diffraction

techniques, show that the interface curvature obeys the Young-Laplace law, up to

a critical pressure, beyond which the interface irreversibly collapses (Rathgen and

Mugele, 2010). The effect of interface curvature on SH DR has been investigated in

recent analytical (Sbragaglia and Prosperetti , 2007; Crowdy , 2010, 2016) and com-

putational (Hyväluoma and Harting , 2008; Wang et al., 2014) studies in laminar

flow. Assuming small deflections around flat shear-free interfaces, Sbragaglia and
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Prosperetti (2007) developed an analytical solution for the slip length in pressure-

driven channel flow with LMGs on one wall, at the limit of very small MG sizes and

low Reynolds numbers. Using their analytical solution, Sbragaglia and Prosperetti

(2007) showed that interface curvature provides two competing effects in laminar

flow: (i) it can increase the flow rate in the channel, and the slip length, if the pro-

trusion is negative, or decrease them if the protrusion is positive (Sbragaglia and

Prosperetti , 2007), due to the changes in the cross-sectional area of the channel, (ii)

interface curvature alters the velocity profile on top of the SH surface, resulting in

a decrease in the slip length (Sbragaglia and Prosperetti , 2007). These studies were

extended to shear-driven Stokes flow on SH surfaces with LMGs, for the limit of

very small MG widths (Crowdy , 2010), and for MGs of arbitrary width (Crowdy ,

2016). Wang et al. (2014) investigated the effect of interface curvature on the slip

length in pressure-driven channel flow and pipe flows at low Reynolds numbers with

SH LMGs of arbitrary sizes on the walls, using semi-analytical and computational

approaches. Based on their analysis, Wang et al. (2014) showed that the normalized

effective slip length increases monotonically with increasing the interface curvature,

in the limit of vanishing micro-texture sizes. In contrast, the normalized effective slip

length generally decreases with increasing the interface curvature in the limit of very

large micro-texture sizes (Wang et al., 2014).

1.2.4 Analytical and Computational Studies of SH Surfaces in Turbulent

Flow

The first DNS studies of turbulent flow over SH surfaces were reported in turbulent

channels, in which the effect of the SH surface was modeled as uniform slip on the

channel walls (Min and Kim, 2004). DRs of up to 30% were reported with uniform

streamwise slip, while a DI of up to 26% was reported with spanwise slip. In the

case of combined slip in both the streamwise and spanwise directions, smaller DRs
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of up to 17% were observed compared to what would be obtained with streamwise

slip alone. Busse and Sandham (2012) later showed that the combined slip can lead

to DR if the magnitude of the streamwise slip length is larger than the spanwise

slip length, and DI if the spanwise slip length is larger than the streamwise slip

length. However, when the streamwise slip length exceeds L+0
sx ≈ 3.5, DR is observed

regardless of the magnitude of the spanwise slip. Fukagata et al. (2006) extended

the DNS studies of Min and Kim (2004) with uniform slip on the walls to higher

Reynolds numbers, and used these DNS results to propose a parametrization of the

magnitude of DR in terms of the streamwise and spanwise slip lengths and friction

Reynolds number of the base flow, given by (1/κ)ln(Reτ0) + F (0) = (1−DR)L+0
sx +

(
√
1−DR/κ)ln(

√
1−DRReτ0)+

√
1−DRF (

√
1−DRL+0

sy ), where κ = 0.41 is the

von Karman constant, L+0
sx and L+0

sy denote the streamwise and spanwise slip lengths,

respectively, and F is a function of the spanwise slip length. The logarithmic law

of the wall was used in the derivation of this parameterization, and the function

F was determined from a curve fit to the DNS data (Fukagata et al., 2006). The

approximation for this function was later improved by Busse and Sandham (2012)

through a more elaborate curve fitting to the DNS data. Later, Seo and Mani (2016)

proposed a relationship between the streamwise and spanwise slip lengths in Fukagata

et al. (2006) model and the SH micro-texture sizes.

Later DNS studies considered channels with SH LMGs, transverse MGs, or micro-

posts on the walls. In all these studies, the liquid/gas menisci were modeled as flat

shear-free interfaces. Martell et al. (2009) and Martell et al. (2010) reported DRs

of up to 25% in turbulent channel flow with SH LMGs of width 16 ≤ g+0 ≤ 110,

1 ≤ g/w ≤ 3 on one wall, 0% DR with transverse MGs of width g+0 ≈ 34, g/w = 1

on one wall, and DRs of up to 50% with square micro-posts of width 16 ≤ w+0 ≤ 55

separated by 34 ≤ g+0 ≤ 166. Based on their DNS results, Martell et al. (2010)

proposed that the magnitude of SH DR in turbulent flow scales with the fraction of
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shear-free to no-slip surface area and the width of the MGs in wall units. In addition,

Martell et al. (2010) suggested that the turbulent structures are shifted but otherwise

largely unaffected by the presence of the SH wall. Park et al. (2013) reported DRs

of up to 90% in turbulent channel flow with SH LMGs of width 8.4 ≤ g+0 ≤ 885

& 1 ≤ g/w ≤ 15 on both walls. They attributed the mechanism of SH DR to

significant attenuation of the near-wall streamwise vortices on the SH surface and

concluded that modification of turbulence structures by the SH surface plays a more

significant role in the mechanism of SH DR in turbulent flows than the direct effect

resulting from the surface slip (Park et al., 2013). Jelly et al. (2014) reported 21.6%

DR in turbulent channel flow with SH LMGs of width g+0 ≈ 33.75, g/w = 1 on

both walls. Based on their DNS results, they suggested that a significant reduction

in the strength of the streamwise vortical structures, together with suppression of

ejection and sweep motions, occurs in the presence of the SH wall (Jelly et al., 2014).

Türk et al. (2014) reported DRs of up to 60% in turbulent channel flow with SH

LMGs of width 4.4 ≤ g+0 ≤ 140.8, 1 ≤ g/w ≤ 3 on both walls. More recent studies

have investigated the effect of a uniform gas layer on DR (Jung et al., 2016). Using

a two fluid model, in which a uniform gas layers was placed between the working

fluid and the walls of a channel, Jung et al. (2016) studied the effect of a gas layer

on DR, and suggested that increasing the gas layer thickness on the surface leads

to increases in the slip length, slip velocity and the magnitude of DR. In all these

studies, however, the gas/liquid interfaces on the SH surface have been modeled as

‘idealized’ flat boundaries, neglecting the dynamics of the liquid/gas interfaces. Seo

et al. (2015) studied the stability of the liquid/gas interfaces on the SH surfaces, a

posteriori, based on the pressure fields obtained from DNS of turbulent channel flow

with ‘flat’ SH walls. The liquid/gas interfaces on the SH surface in their studies were

modeled as a pattern of flat shear-free regions on a no-slip surface. Based on their

DNS results, Seo et al. (2015) proposed that an upper bound exists for the SH micro-
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post sizes, at g+0 ≈ 33 & w+0 ≈ 16, which limits the range of robust operation of the

SH surfaces in turbulent flows to low Reynolds numbers.

1.3 The Present Study

Successful implementation of the SH surfaces as a turbulence control strategy in

practical applications requires a detailed understanding of the scaling and mechanism

of skin-friction DR with SH surfaces in turbulent flow, as well as the pressure and

stress loads on the liquid/gas interfaces in the SH surfaces. This understanding is not

yet at hand.

The objective of the present study is to contribute to the understanding of skin-

friction DR with SH surfaces in wall-bounded turbulent flow environments, using

DNS results in turbulent channel flow with SH walls. In chapter § II, the numerical

methodology and simulation parameters used for the DNS studies are presented and

discussed. In chapter § III the scaling and mechanism of DR in channel flows with

a variety of SH micro-patterns on the walls, including LMGs, transverse MGs, and

micro-posts, is investigated based on results from DNS. As with all DNS studies per-

formed to date, the liquid/gas interfaces on the SH surface were modeled as ‘idealized’

flat and shear-free boundaries. In chapter § IV the effect of interface curvature on SH

DR is investigated based on results from the first DNS studies performed to date of

SH LMGs with curved liquid/gas interfaces. The results are compared to riblets, and

it is shown that both SH LMGs and riblets have the same mechanism of DR. These

are followed by a summary and conclusions in chapter §V. Possible avenues for fu-

ture works are discussed in chapter §VI. The material presented in chapter § III have

appeared previously in Rastegari and Akhavan (2013, 2015, 2016a). The materials

presented in chapter § IV are in the process of publication (Rastegari and Akhavan,

2016b).
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CHAPTER II

Numerical Methodology

2.1 The Lattice Boltzmann Method

Standard Lattice Boltzmann (LB) BGK Methods with single relaxation time

(Succi , 2001) have been used for all the simulations reported in this thesis. The

Lattice Boltzmann Method (LBM) provides an alternative approach for numerical

solution of the Navier-Stokes equations. Although it first emerged as an offspring

of the Lattice Gas Cellular Automata (LGCA) (Wolf-Gladrow , 2000), it has been

shown that the LBM can also be derived directly from the Boltzmann equation (He

and Luo, 1997). This offers a bottom up approach, from the discrete gas kinetic to

the continuum hydrodynamics, for the study of fluid mechanics. The method has

been the subject of rapid developments in the recent years, with the introduction of

multiple relaxation times (D’Humières et al., 2002), and entropic schemes (Chikata-

marla et al., 2006). In parallel with these advances, the domain of application of

LBM has been extended to a wide variety of problems, including high Mach number

(Ma), Non-Newtonian, Multi-Phase, and turbulent flows (Chen and Doolen, 1998;

Nourgaliev et al., 2003; Aidun and Clausen, 2010).

In its basic formulation, LBM tracks the evolution of sets of particle Distribution

Function (DF)s, in space and time, based on the Boltzmann equation. The DFs

represent the density of particles at time t, near point x, with a velocity, v. Dur-
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ing the time increments of the LBM, the distributions stream and collide in space,

reproducing the convective/dissipative dynamics of a fluid system.

The Boltzmann equation describes the evolution of a set of DFs in space and time,

and is given by (Wolf-Gladrow , 2000)

Df

Dt
= Q(f, f), (2.1)

where f(x,v, t) and Q(f, f) denote the DF and the collision integral, respectively.

The DFs are defined such that f(x,v, t)d3xd3v represents the probability of finding

a particle in the volume d3x around the point x, with a velocity ranging between v

and v + dv. The collision integral, Q(f, f), accounts for the inter-particle collisions,

and is defined as

Q(f, f) =

∫

d3v1

∫

dΩσ(Ω)|v − v1|
(

f(v
′

)f(v
′

1)− f(v)f(v1)
)

, (2.2)

with σ(Ω) denoting the differential collision cross section for the particle collisions

which transform the velocities from v,v1 (incoming) into v
′

,v
′

1 (outgoing) (Wolf-

Gladrow , 2000). For analytical and computational simplicity, the collision integral is

usually represented with an approximate form, due to Bhatnagar, Gross, and Krook

(1954) (BGK), as

Q(f, f) = −1

τ

(

f(x,v)− f (0)(x,v)
)

. (2.3)

The inter-particle collisions in this approximate form are modeled by a relaxation

process, towards a local Equilibrium Distribution Function (EDF), f (0)(x,v), with a

single relaxation time, τ .

Using a finite set of discrete velocities, ci, the Boltzmann equation (2.1), with the

BGK approximation (2.3) for its collision operator, can be discretized in space and
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time to give

fi(x+ ci∆t, t+∆t) = fi(x, t)−
∆t

τ
(fi(x, t)− f

(0)
i ) + ∆tFi, (2.4)

where fi(x, t) denotes the DFs at a point x and time t moving with the discrete

velocity cis. Equation (2.4) denotes the fundamental equation of single relaxation

time LBM (Wolf-Gladrow , 2000; Succi , 2001), and describes the Lagrangian motion

of DFs, during a time increment ∆t, within which DFs are relaxed towards a local

equilibrium, f
(0)
i , and stream in space along the discrete velocity directions to the

neighboring points. The relaxation time, τ , represents the time rate of this local

relaxation. The force term, Fi, represents the force term per unit volume.

A uniform lattice, with spacings of ∆x in all directions, is utilized for the solution

of equation (2.4). The discrete velocity set, ci, is defined as ci ≡ cei, where c ≡ ∆x/∆t

is the lattice speed and eis are the velocity vector directions. The EDF is defined as

a function of the local density, ρ, and velocity, u, by (Succi , 2001)

f
(0)
i = ρwi

(

1 + 3
ci · u
c2

+
9

2

(ci · u)2
c4

− 3

2

u · u
c2

)

, (2.5)

where wis are the lattice weight factors, which depend on the set of the discrete

velocities. Both the discrete velocity set, ci, and the lattice weight factors, wi, are de-

termined based on symmetry preserving requirements (Cao et al., 1997; Succi , 2001).

The set of discrete velocities are chosen based on the trade off between the stability

and computational efficiency (Mei et al., 2000). The larger the set of velocities, the

better the stability of the method (Mei et al., 2000). However, a large set of discrete

velocities increases the computational costs of the LBM. Mei et al. (2000) have shown

that a set with 19 three dimensional velocity vectors, D3Q19, provides the best bal-

ance between the stability and computational efficiency. This set is shown in figure

2.1, and its corresponding lattice weight factors are listed in table 2.1, and is adopted
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Figure 2.1: Set of discrete velocity vectors for the D3Q19 LBM

i wi ei
0 1

3
(0, 0, 0)

i = 1, . . . , 6 1
18

(±1, 0, 0), (0,±1, 0), (0, 0,±1)
i = 7, . . . , 18 1

36
(±1,±1, 0), (±1, 0,±1), (0,±1,±1)

Table 2.1: Set of discrete velocity vectors, ei, and lattice weight factors, wi, of D3Q19
LBM Succi (2001)

in all the computations in the present study.

For computational purposes, equation (2.4) is solved in two separate steps: a

collision step

f ∗
i (x, t) = fi(x, t)−

∆t

τ
(fi(x, t)− f

(0)
i ) + ∆tFi, (2.6)

and a streaming step,

fi(x+ ci∆t, t+∆t) = f ∗
i (x, t), (2.7)

where f ∗
i (x, t) denotes the post-collision DF. The collision step corresponds to a com-

putationally local operation, representing the (dissipative) inter-molecular collisions

in a particle based system, while the streaming step represents a non-local operation,

corresponding to the spatial motion of the particles. It can be shown that in the

limit of low Mach (Ma) and Knudsen (Kn) numbers, the Navier-Stokes equations are

recovered by the solutions of equation (2.4) (He and Luo, 1997; Succi , 2001). The
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local velocity and density are related to the moments of DFs via (Succi , 2001)

ρ =
∑

i

fi(x, t), ρu =
∑

i

cifi(x, t), (2.8)

and the viscosity of the fluid is related to the relaxation time in equation (2.4) through

ν =
c2∆t

3
(
τ

∆t
− 1

2
). (2.9)

The force term, Fi, in equation (2.4) defines the magnitude of the body force per unit

volume, r, in the Navier-Stokes equations, via various expressions (Wolf-Gladrow ,

2000; Succi , 2001; Ladd and Verberg , 2001; Guo and Zhao, 2002). For spatially

constant but temporally variable body forces per unit volume of the domain, r(t), in

the Navier-Stokdes equations (Wolf-Gladrow , 2000)

Fi =
1

12c2
ci · (r(t) + r(t+∆t)) . (2.10)

In internal flows, this forcing function can be specified to maintain a constant friction

Reynolds number, Reτ , or a constant bulk Reynolds number, Reb, during the course

of the simulations.

2.2 Maintaining a Constant Friction Reynolds Number in

LB Simulations of Channel Flows

To maintain a constant friction Reynolds number, Reτ ≡ uτheff/ν, in the channel

during the course of the simulations, the average pressure gradient in the channel,
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−〈∂P/∂x〉, should be specified as

−〈∂P
∂x

〉 = ρu2
τ

heff

,

=

(

u2
τ

c2

)(

ρc2

∆x

)(

∆x

heff

)

, (2.11)

where 〈 〉 denotes averaging in the periodic directions in the domain, uτ =
√

τw/ρ is

the wall friction velocity, heff is the volume averaged half-height of the channel, and

ρ is the density of the fluid. Given the magnitude of the pressure gradient, the body

force term in equation (2.4), is specified in ‘lattice units’ as

Fi = − 1

6c2

(

∆x

ρc2

)

〈∂P
∂x

〉ci · ex,

= − 1

6c2

(

u2
τ

c2

)(

∆x

heff

)

ci · ex, (2.12)

where ex denotes the unit vector in the streamwise direction, and uτ/c is specified

as described in section § 2.6. Using the Chapman-Enskog expansion, it can be shown

that the resulting scheme provides second order accuracy in space and time (Wolf-

Gladrow , 2000).

2.3 Maintaining a Constant Bulk Reynolds Number in LB

Simulations of Channel Flows

Despite the great potential of LBM for studying turbulent wall-bounded flows

(Chen and Doolen, 1998; Eggels , 1996; Amati et al., 1997; Lammers et al., 2006;

Premnath et al., 2009), no method for imposing a constant bulk Reynolds number in

LB simulations has been described in the literature before. Here, a method is proposed

for imposing and maintaining a constant bulk Reynolds number in LB simulations of

channel flows which are periodic in the streamwise and spanwise directions.
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Figure 2.2: Schematic of the problem domain

For flow in a channel, similar to that in figure 2.2, with periodicity in the stream-

wise and spanwise directions, and no penetration condition on the walls, u ·n|wall = 0,

where n denotes the unit normal vector on the walls, the integral form of the mo-

mentum equation reads

R =
∂

∂t

∫

CV

ρudx3, (2.13)

where R = (Rx, Ry, Rz), and u = (ux, uy, uz) denote the the resultant force and

velocity vectors, respectively, and the flux terms,
∫

∂B
ρuu ·dA, on the right hand side

are equal to zero due to periodicity.

To maintain a constant bulk Reynolds number, Reb ≡ q/2ν, where q denotes the

flow rate per unit spanwise width of the channel, a force equivalent to the resultant

force, R, in equation (2.13), should be applied to the flow. The magnitude of the

force, Rα, in the alpha-direction should thus satisfy

t+∆t
∫

t

Rαdt =

∫

CV

ρuαdx
3|t+∆t −

∫

CV

ρuαdx
3|t. (2.14)

For incompressible flows, or low Mach number (Ma ≪ 1) compressible flows, the

streamwise component of equation (2.14) can be written as

t+∆t
∫

t

Rxdt = ρq|t+∆t
LxLy −

∫

CV

ρuxdx
3|t, (2.15)
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where Lx and Ly denote the channel lengths in the periodic streamwise and spanwise

directions, respectively. Therefore, the force per unit volume of the domain is given

by
t+∆t
∫

t

rxdt = ρq|t+∆t

LxLy

V
−
∫

CV
ρuxdx

3|t
V

. (2.16)

where V ≡
∫

CV
dx3 denotes the volume of the domain. Using the second order

trapezoidal rule, the left side of equation (2.16) can further be expanded to give

∆t

2
(rx(t+∆t) + rx(t)) =

ρq|t+∆t

2heff

−
∫

CV
ρuxdx

3|t
V

+O(∆t2). (2.17)

where heff ≡ V

2LxLy

denotes the volume-averaged half-height of the channel.

Similar equations can be derived for other components of the force if a net flow

rate in those directions is desired. In the simulations that are reported in this thesis,

however, the only non-zero component of the force is in the streamwise direction.

In time marching algorithms for solving the Navier-Stokdes equation, such as

LBM, at each time step t, the magnitude of the second term on the right hand side

of equation (2.17),
∫

CV
ρuxdx

3|t/V , is known. To impose a constant bulk Reynolds

number, Reb = q/2ν, the magnitude of q|t+∆t
in the first term should then be set

equal to the target flow rate per unit width, q. The force term, Fi, in equation (2.4)

of the LBM can be specified using equation (2.10), as

Fi =
1

6c∆t

(

ρ
( q

2c∆x

)

(

∆x

heff

)

−
(

∫

CV
ρuxdx

3|t
c∆x3

)(

∆x3

V

))

ci · ex, (2.18)

where
q

2c∆x
is specified as described in section § 2.6.

Using the Chapman-Enskog expansion on the basis of ǫ, where ǫ is proportional

to the Knudsen number, Kn, it can be shown that the resulting scheme is second
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order in space and time (Wolf-Gladrow , 2000). Given the expansions

fi = f
(0)
i + ǫf

(1)
i + ǫ2f

(2)
i +O(ǫ3), (2.19a)

r = ǫr, (2.19b)

∂

∂t
= ǫ

∂

∂t0
+ ǫ2

∂

∂t1
, (2.19c)

∇ = ǫ∇1, (2.19d)

where f
(0)
i denotes the EDF and the leading order of r is assumed proportional to ǫ

(Guo and Zhao, 2002), setting ∆xi = ∆tci, Taylor series expansions of the equations

(2.4) and (2.18) around the point x and time t, use of the expansions (2.19), and

separation of the resulting terms based on the order of ǫ, leads to

O(ǫ0) : f
(0)
i = f

(0)
i , (2.20a)

O(ǫ1) : D
(0)
i f

(0)
i = −1

τ
f
(1)
i +

1

6c2
ci · r, (2.20b)

O(ǫ2) :
∂

∂t1
f
(0)
i +

(

1− ∆t

2τ

)

D
(0)
i f

(1)
i = −1

τ
f
(2)
i , (2.20c)

where D
(0)
i ≡ ∂/∂t0 + ci · ∇1. Assuming that the perturbations from equilibrium do

not contribute to the mass and momentum (Wolf-Gladrow , 2000), i.e.

∑

i

f
(1)
i = 0,

∑

i

cif
(1)
i = 0, (2.21a)

∑

i

f
(2)
i = 0,

∑

i

cif
(2)
i = 0, (2.21b)

taking the first and the second moments of the equation (2.20b) in the velocity space
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leads to the Euler equations,

∂ρ

∂t0
+∇1 · ρu = 0, (2.22a)

∂ρu

∂t0
+∇1 ·Π(0) = r, (2.22b)

where Π(0) ≡∑ cicif
(0)
i . Using the properties of the lattice tensors (Wolf-Gladrow ,

2000), and the definition of the EDF, the tensor Π(0) can be evaluated as Π(0) =

ρuu+ ρc2/3.

The same procedure with the equation (2.20c) leads to

∂ρ

∂t1
= 0, (2.23a)

∂ρu

∂t1
+

(

1− ∆t

2τ

)

∇1 ·Π(1) = 0, (2.23b)

where Π(1) ≡ ∑

i cicif
(1)
i . Equation (2.20b), together with the equation (2.22), can

be used to evaluate this tensor, resulting in

Π(1) = −ρτ
c2

3

(

∇1u+∇1u
T
)

+O(Ma2), (2.24)

where Ma ≡
√
3umax/c denotes the Mach number, defined based on umax, the maxi-

mum velocity in the simulations. The terms of O(Ma2) are of the same order as the

compressibility error of the LBM, and the resulting scheme would provide a devia-

toric stress tensor, σ ≡ (1− 1/τ)
∑

i cicif
(1)
i , of O(Ma2), which has the same order

of accuracy as the LBM without a forcing term (Krüger et al., 2010).

Substitution of equation (2.24) into the equation (2.23b) and combining equations
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(2.22) and (2.23) gives rise to the Navier-Stokes equations,

∂ρ

∂t
+∇ · ρu = 0, (2.25a)

∂ρu

∂t
+∇ · ρuu = −∇p+∇ ·

(

ρν(∇u+∇uT )
)

+ r, (2.25b)

with the kinematic viscosity, ν, defined by the equation (2.9), and pressure, p, defined

as p ≡ ρc2/3. Terms of the order of O(∆t2, ǫ3,Ma2) have been truncated in the

process of the derivation of these equations, hence the resulting scheme is second

order in time and space.

2.4 Improving the Accuracy of LBM Using Grid Embedding

To improve the accuracy of the computations near the walls, while maintaining

the computational cost at a reasonable level, grid-embedding (Filippova and Hänel ,

1998; Lagrava et al., 2012; Touil et al., 2014) can be used for the simulations. With

grid embedding, conformal patches of fine grids replace the coarser grid in the near

wall region, as shown in figure 2.3(a). The flow variables density, ρ, velocity, u, and

viscosity, ν, are maintained continuous across the grids. This requires the lattice

speed, c = ∆x/∆t, to be kept constant on both grids. As a result, the time step size,

∆t, and the relaxation time, τ , of the fine grid depend on those of the coarse grid

through (Filippova and Hänel , 1998; Lagrava et al., 2012)

∆tfine grid =
∆tcoarse grid

GR
, (2.26)

τfine grid
∆tfine grid

= 1
2
+GR

(

2
τcoarse grid

∆tcoarse grid
− 1
)

, (2.27)

where GR = ∆xcoarse grid/∆xfine grid denotes the Grid-embedding Ratio.

Standard LBM is used on both grids. With a grid-embedding ratio of GR, each

step of computations begins with one iteration over the coarse grid, followed by GR
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iterations over the fine grid, corresponding to the difference between the time step

sizes of the grids (Filippova and Hänel , 1998; Lagrava et al., 2012). The time step

size of the simulation corresponds to the time step size of the coarse grid. With

each iteration over the coarse grid, its DFs are advanced from time t to the time

t + ∆t. The iterations over the fine grid, advance its DFs to times t + ∆t/GR, t +

2∆t/GR, ..., t + GR∆t/GR, consecutively. On the transition between the grids, the

incoming distribution functions are transfered from the adjacent grid. To reduce

the artificial disturbances associated with the data transfer between the grids, fine

grid and coarse grid are overlapped on each other (Lagrava et al., 2012), as shown

in figure 2.3(b). Fine grid is attached to the second layer of the coarse grid, while

the coarse grid is extended GR + 1 layers inside the fine grid. Transfer from the

fine to the coarse grid is a straightforward copy of the distribution functions to the

corresponding destination sites. Due to the difference between the time step sizes and

the resolutions of the grids, however, transfer from the coarse to the fine grid requires

interpolation, in both time and space. Second order Lagrangian interpolation in time,

between the times t−∆t and t+∆t, and third order bi-cubic interpolation in space,

using the 27 nearest points on the coarse grid to the point on the fine grid, are used

for data transfer between the grids in all the simulations reported in this thesis. In

addition, to account for the differences in grid resolutions, during the data transfer

the non-equilibrium part of the DFs, fne
i = (fi − f

(0)
i ), need to be rescaled (Filippova

and Hänel , 1998; Lagrava et al., 2012). In transfers from the fine to the coarse grid,

non-equilibrium DFs are scaled by (Filippova and Hänel , 1998)

α = GR
(1− ∆tcoarse grid

τcoarse grid
)(

∆tfine grid

τfine grid
)

(1− ∆tfine grid

τfine grid
)(

∆tcoarse grid

τcoarse grid
)
. (2.28)

In transfers from coarse to the fine grid, on the other hand, non-equilibrium DFs are

scaled by 1/α (Filippova and Hänel , 1998). As a result, a transfer from coarse to the
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Figure 2.3: Schematic of grid embedding strategy with a grid-embedding ratio of
GR = 4: (a) side view of the channel; (b) side view of the grid transitions.

fine grid corresponds to

fi, coarse grid = f
(0)
i + αfne

i, fine grid, (2.29)

and a transfer from fine to the coarse grid corresponds to

fi, fine grid = f
(0)
i +

1

α
fne
i, coarse grid. (2.30)

Both these rescaling steps preserve the mass and momentum conservation (Lagrava

et al., 2012). It should be noted that the equilibrium DF, f
(0)
i , remain the same, on

both the coarse and fine grids, as is required by equation (2.5), due to the continuity

of the mass and velocity across the solution domain.

2.5 Boundary Conditions

During the the streaming step of the LB iterations, DFs at each lattice site are

updated from the adjacent sites. For the grid points next to the boundaries, however,

a complete set of adjacent points does not exist. Various boundary treatment schemes

have been suggested to deal with this problem (Succi , 2001). In this thesis, half-way

bounce back (Succi , 2001), local specular reflection (Ginzburg and Steiner , 2003) and

Central Linear Interpolation (CLI) (Ginzburg et al., 2008) schemes have been used
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to impose the no-slip condition on flat boundaries, the free-slip condition on flat or

curved boundaries, and the no-slip condition on curved boundaries, respectively.

With the half-way bounce back scheme, the DFs leaving the grid point next to

the boundary, ‘bounce back’ on the wall, returning back to their original lattice site

along the opposite velocity vector,

f−i(x, t+∆t) = f ∗
i (x, t), if {x+ ei} ∈ wall, (2.31)

as seen in figure 2.4(a), where −i corresponds to the lattice velocity vector e−i in

the opposite direction of ei, i.e. e−i = −ei (Succi , 2001). The bounce back scheme

reproduces the no-slip condition on the wall, with second order accuracy, provided

that the wall is flat and located exactly in the middle of the grid points (Succi , 2001).

With local specular reflection, the DFs leaving the grid point next to the boundary

experience a mirror like reflection on the wall,

fī(x, t+∆t) = f ∗
i (x, t), if {x+ ei,x+ e−ī} ∈ wall, (2.32)

as seen in figure 2.4(b), where ī corresponds to the lattice velocity vector eī in the

mirror direction of ei, i.e. eī = ei − 2(ei · n)n, and n denotes the normal to the wall

(Ginzburg and Steiner , 2003). For grid points in the corners, where two or more mirror

directions coincide, the arithmetic mean of all those coinciding DFs is used (Ginzburg

and Steiner , 2003). The specular reflection scheme reproduces the free-slip condition

on the wall, with second order accuracy, provided that the wall is flat, parallel to the

grid lines, and located exactly in the middle of the grid points (Ginzburg and Steiner ,

2003). When dealing with curved surfaces or flat surfaces that are not parallel to

the grid lines, a stair-step approximation of the surface is used with local specular

reflection, to impose the shear-free boundary condition. With this approximation, the

order of accuracy of the boundary condition reduces to one (Ginzburg and Steiner ,
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2003).

The CLI scheme is used to impose the no-slip boundary condition, on curved walls

or flat walls which are not parallel to the grid lines, with the second order accuracy

(Ginzburg et al., 2008). In this scheme, a combination of DFs of the boundary point

and a point in its neighborhood is used for symmetric linear interpolation of the DFs

along the lattice velocity vector,

f−i(x, t+∆t) = f ∗
i (x, t)+γf ∗

i (x−ei∆x, t)−γf ∗
−i(x, t), if {x+ei} ∈ wall, (2.33)

where γ = (1− 2δi)/(1 + 2δi) is the wigthing factor in the interpolation, with δi 6 1

corresponding to the fraction of lattice link which sits inside the fluid domain, δi =

δ/∆, where ∆ and δ denote the full length of the lattice link, and the length of the

part which sits inside the fluid domain, respectively, as seen in figure 2.4(c).
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Figure 2.4: Boundary conditions for the LB simulations: (a) half-way bounce back, (b)
specular reflection, (c) CLI; •, fluid grid points; •� , wall grid points.

2.6 Parametrization

To perform fluid flow simulations with LBM, the relaxation time, τ , grid spac-

ing, ∆x, and the time step size, ∆t, need to be assigned. It is common in the

literature to express these parameters in ‘lattice units’, for which the variables are

non-dimensionalized with respect to the grid spacing, ∆x, the time step size, ∆t, and
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the density, ρ.

In simulations in which the bulk Reynolds number, Reb =
q

2ν
, is specified, where

q denotes the volume flow rate per unit spanwise width in the channel, and ν is

the kinematic viscosity, respectively, the relaxation time, τ , in lattice units, can be

defined from equation (2.9) as

τ

∆t
=

3ν

c∆x
+

1

2
,

=(
3

Reb
)(

q

2c∆x
) +

1

2
. (2.34)

where the lattice speed, c = ∆x/∆t = 1 in ‘lattice units’. The magnitude of
q

2c∆x

determines the Courant Friedrichs Lewy (CFL) condition in the simulations. The

CFL number is defined as

CFL = ∆t
Umax

∆x
,

=
Umax

c
, (2.35)

where Umax denotes the maximum velocity in the domain. It has been suggested that

LBM remains stable, for CFL numbers as high as 0.25 (Lammers et al., 2006). Large

CFL numbers correspond to large time step sizes, and thus large temporal errors.

As a result, in this thesis a small CFL number of CFL = 0.1 or CFL ≈ 0.1 has

been used for all the simulations. Given the CFL number, analytical or experimental

relations between the bulk velocity and maximum velocity in the channel can be used

to find the magnitude of
q

2c∆x
in equations (2.34) and (2.15). In laminar channel
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flow, analytical solution of the Navier-Stokdes equations give

q

2c∆x
= (

q

2cheff

)(
heff

∆x
),

= (
Ub

c
)(
heff

∆x
),

=
2

3
(
Umax

c
)(
heff

∆x
),

=
2

3
(CFL)(

heff

∆x
). (2.36)

In turbulent channel flow, experimental correlation of Dean (1978) suggests that

q

2c∆x
= (

q

2cheff

)(
heff

∆x
),

= (
Ub

c
)(
heff

∆x
),

= 0.788(
Umax

c
)Re0.0116b (

heff

∆x
),

= 0.788(CFL)Re0.0116b (
heff

∆x
). (2.37)

It should be noted that with this parameterization, in channel flow simulations with

micro-textured walls, the magnitude of the CFL condition is set to CFL ≈ 0.1.

The slight deviation of the CFL condition, from 0.1, is caused by the changes in the

magnitude of the bulk velocity, Ub, as a result of the changes in the cross sectional

area of the channel due to the presence of the micro-textures on the walls. In the

simulations of fully developed steady state laminar flows, or stationary turbulent

flows, however, this slight deviation does not have any effect on the results.

When flow is driven by a constant pressure gradient, the magnitude of the relax-

ation time in lattice units is determined based on the friction Reynolds number of
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the flow, Reτ = uτheff/ν, using the equation (2.9),

τ

∆t
=

3ν

c∆x
+

1

2
,

=(
3

Reτ
)(
heff

∆x
)(
uτ

c
) +

1

2
. (2.38)

where uτ denotes the wall-friction velocity in the channel. The magnitude of the CFL

number can then be determined from analytical or experimental relations between uτ

and Umax. In laminar channel flow, analytical solutions give

(
uτ

c
)(
heff

∆x
) = 2(

Umax

c
)Re−1

τ (
heff

∆x
),

= 2(CFL)Re−1
τ (

heff

∆x
), (2.39)

while in turbulent channel flow, experimental correlations suggest that (Dean, 1978)

(
uτ

c
)(
heff

∆x
) = 0.110(

Umax

c
)Re−0.1296

τ (
heff

∆x
),

= 0.110(CFL)Re−0.1296
τ (

heff

∆x
). (2.40)

The total number of iterations required to reach a non-dimensional time of one,

as defined by TUmax/h = 1, is given by

T

dt
=

h

∆tUmax

,

=
h

∆x

c

Umax

,

=
h

∆x

1

CFL
. (2.41)

In turbulent flow simulations, at a bulk Reynolds number of Reb = 3600, statistical

steady state is achieved after around 100 non-dimensional times, TUmax/h = 100,

corresponding to around 6 eddy turnover times, Tuτ/h, after initialization of the
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flow. The simulations are continued afterwards, for about 300 non-dimensional times,

TUmax/h = 300, corresponding to 18 eddy turnover times, Tuτ/h, to provide enough

statistical samples for data analyses.

For a well-resolved DNS, the magnitude of the grid spacing, ∆x, should be of the

same order as the kolmogorov scale, η. For fully developed turbulent channel flow, it

can be shown that η+ ≈ 1.5 (Pope, 2000), where + denotes non-dimensionalization

with respect to the wall-friction velocity, uτ , and the kinematic viscosity of the flow,

ν. In this thesis, a grid spacing of ∆x+ . 2, corresponding to ∆x/h . 2/Reτ , has

been used for all the simulations. This grid spacing is comparable to those used in LB

DNS of turbulent channel flow by other investigators (Lammers et al., 2006; Bespalko

et al., 2012).

2.7 Initialization

Without proper initialization with appropriate disturbance fields, LB DNS in

channel flow results in a laminar solution, regardless of the Reb. To achieve tur-

bulent flow, LB DNS can be initialized in two ways, using the turbulent velocity and

pressure fields resulting from Direct Numerical Simulation (DNS) with other numeri-

cal schemes, such as pseudo-spectral methods, or from the velocity and pressure fields

which correspond to laminar flow plus a superposition of finite-amplitude 2D and in-

finitesimal secondary 3D eigenmodes of the Orr-Sommerfeld equation, as described

in Orszag and Patera (1983).

With either set of initial conditions, the DFs for LB DNS can be initialized using

first order approximations obtained from the Chapman-Enskog expansions (2.19),

given by

fi ≈ f
(0)
i + ǫf

(1)
i . (2.42)

Here, f
(0)
i denotes the EDF, defined in terms of the local velocity and density through
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the equation (2.5), and ǫf
(1)
i can be approximated by (Latt , 2007; Latt and Chopard ,

2008)

ǫf
(1)
i ≈ −3τwi

c2

(

Qi : ρ∇u− ci∇ : (ρuu) +
3

2c2
(ci · ∇(Qi : ρuu)

)

, (2.43)

where the tensor Qi is defined as Qi = cici − c2/3I, with I denoting the identity

tensor, u is the macroscopic velocity field, and the density, ρ, is related to the pressure

field through p = ρc2/3. In practice, the non-linear terms in equation (2.43) can be

neglected, resulting in the linear approximation

ǫf
(1)
i ≈ −3τwi

c2
(Qi : ρ∇u) , (2.44)

which reproduces the same stress tensor as equation (2.43) (Latt and Chopard , 2008).

Second order finite difference approximations were utilized to evaluate the deriva-

tives in equations (2.43) or (2.44), using the given velocity and pressure fields. The

results were then used to initialize the DFs.

2.8 Domain Decomposition and Parallelization

A two dimensional domain decomposition strategy was used to parallelize the

LB simulations that are presented in this thesis. Specifically, the simulation domain

was divided into a two dimensional array of sub-domains, in a toroidal topology, as

shown in figures 2.5. To perform the simulations, each sub-domains was assigned

to a separate processor of a parallel computer. The decomposition of the domain

does not have any effect on the collision step, due to the locality of the collisions.

For the streaming step, however, the DFs leaving a sub-domain are transfered to the

neighboring sub-domain during a data transfer step, for which the MPI2 routines

are employed (Gropp et al., 1999). Using the persistent non-blocking communication
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Figure 2.5: Domain Decomposition for the LB DNS of channel flow: (a) base domain;
(b) partitioned domain;

mode to overlap the communications with the computations at the lowest message

overhead, the parallel performance of the code has been maximized (Gropp et al.,

1999). The single process performance of the LBM was also optimized significantly

using cache optimization and vectorization (Wilke et al., 2003; Wellein et al., 2006).

The parallel performance of the code was tested in a turbulent channel flow,

corresponding to the geometry of the planned studies, both with grid embedding

and without it. This would present, in addition, the gains and overheads associated

with the grid embedding strategy. Use of the grid embedding is necessary for the

simulations presented in this thesis, due to the small size of the SH micro-grooves.

The simulations were performed in channel of size 5h× 2.5h× 2h in the streamwise

, spanwise, and wall-normal directions, respectively, at a bulk Reynolds number of

Reb = q/2ν = 3600 corresponding to Reτ = uτh/ν ≈ 223. The simulations without

grid refinement was performed with resolutions of 1024×512×223, in the streamwise,

spanwise and wall-normal directions, respectively, corresponding to a uniform grid

spacing of ∆+ ≈ 2 wall units in all three directions. In tests of LBS DNS with grid-

embedding, a grid spacing of ∆+
c ≈ 2 wall units on the coarse grid, and ∆+

f ≈ 1 wall

units on the fine grid, were used, corresponding to a grid refinement ratio of 2. The

resolutions used for the tests correspond to grid resolutions of 2048× 1024× 28 (nw)

/ 1024 × 512 × 195 (core)/ 2048 × 1024 × 28 (nw) and 2048 × 1024 × 120 (nw) /
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1024 × 512 × 103 (core) / 2048 × 1024 × 120 (nw), in the streamwise, spanwise and

wall-normal directions, respectively, and ‘nw’ denotes the region near the wall, for

which the finer grid was used.

(a) (b) (c)

Number of Processors

T
im

e 
pe

r 
S

te
p 

(s
)

100 101 102 103 10410-2

10-1

100

101

102

103

Number of Processors
T

im
e 

pe
r 

G
rid

 p
oi

nt

100 101 102 103 1040

2

4

6

8

pe
r 

S
te

p 
(1

0-7
s)

Number of Processors

S
pe

ed
up

100 101 102 103 104100

101

102

103

104

Figure 2.6: Parallel performance of the LB code on TACC DELL Linux Cluster (STAM-
PEDE) for DNS of turbulent channel flow: (a) CPU time per step vs. number
of processors, (b) time per grid point per step vs. number of processors, (c)
speedup. △, LB DNS without grid-embedding in small channel, resolution
512× 256× 223; ♦, LB DNS with grid-embedding, GR = 4, in small channel,
resolution 2048× 1024× 120 (nw)/ 512× 256× 103 (core)/ 2048× 1024× 120
(nw); ©, LB DNS with grid-embedding, GR = 4, in large channel, resolution
8192 × 4096 × 120 (nw)/ 2048 × 1024 × 103 (core)/ 8192 × 4096 × 120 (nw);
—–, ideal linear speedup.

Figure 2.6 displays the results of the tests in terms of parallel performance, based

on results obtained on TACC DELL Linux cluster (Stampede). Figure 2.6(a) shows

the drop of the cpu time spent per each time step of the simulation, as more pro-

cessors are used. In figure 2.6(b) the time spent per each grid point per each time

step of the simulation are presented, revealing the minimal overhead associated with

grid embedding. Despite the presence of overhead associated with data transfer and

interpolations required in the grid-embedding scheme, the time spent per each grid

point per time step goes form 3.6×10−7 to 4.5×10−7 (sec), for all the cases, indicating

less than 25% overhead for grid-embedding. Figure 2.6(c) shows the resulting parallel

speedup. Based on these results, it can be concluded that LBM codes used in this

thesis achieve a parallel efficiency of at least 97% on up to 1024 processes, suggesting

that the code scales well on thousands of processors of TACC Stampede.
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2.9 Verification of Numerical Methods

A number of numerical tests were performed to verify the validity and accuracy

of the LB simulations. These tests include error convergence studies of LB DNS of

Hagen-Poiseuille flow and laminar open channel flow at zero Froude number, Fr = 0,

comparisons of LB DNS, grid-embedded LB DNS and pseudo-spectral DNS results

in turbulent channel flow with no-slip walls, comparisons of LB DNS results and

experiments in turbulent open channel flow at zero Froude number, Fr = 0, and

comparisons of LB DNS results, experiments, and analytical solutions in laminar

channel flow with ‘idealized’ flat or curved Super-Hydrophobic (SH) Longitudinal

Micro-Groove (LMG)S on the walls. These test are described below.

The second order accuracy of the proposed scheme was verified through the con-

vergence studies on the L2 norm of the relative error,

L2(eu) =

√

∑ |uan − usim|2
∑ |uan|2

, (2.45)

for LB simulations in Hagen-Poiseuille flow and in laminar open channel flow at zero

Froude number, Fr ≡ Ub/
√
gH = 0, where uan and usim denote the velocity profiles

from the analytical solution and its corresponding LB simulation, respectively, and

H and g represent the full height of the channel and the gravitational acceleration,

respectively. Simulations were performed by maintaining a constant mass flow rate

between two parallel walls, with periodicity imposed in the streamwise and spanwise

directions, and no-slip or free slip conditions on the walls. Each set of simulations

was performed at bulk Reynolds numbers of Reb = 25 and 250. Half way bounce

back (Succi , 2001) and specular reflection (Benzi et al., 2006; Ginzburg and Steiner ,

2003) schemes were used for imposing the no-slip and slip boundary conditions in the

simulations, respectively. A set of wall-normal lattice resolutions of Nz = h/∆x =

10, 20, 40 and 80 was used for the studies. The corresponding resolutions in the
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Figure 2.7: Schematic of the channels used in the simulations: (a) channel flow with
no-slip walls; (b) open channel flow.
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Figure 2.8: Convergence of the L2 norm of the relative error, in LB simulations of
Hagen-Poiseuille flow and zero Froude number open channel flow at con-
stant mass flow rate: �, �, Hagen-Poiseuille flow, Reb = q/2ν = 25
and 250, respectively; N, H, zero Froude number open channel flow,
Reb = q/2ν = 25 and 250, respectively; —–, the second order slope.

streamwise and spanwise directions were irrelevant, due to the spatial periodicity,

and thus were set to 1. To obtain second order convergence in the LB simulations

on successively refined grids, it is necessary to perform all the simulations with a

similar relaxation time (Holdych et al., 2004). To ensure this, the CFL number in the

simulations needs to be varied (Holdych et al., 2004). Consequently, corresponding

to the set of wall-normal lattice resolutions, a set of CFL numbers of CFL = 0.1,

0.05, 0.025, and 0.0125 were used for the simulations. The second order convergence

in the L2 norm of the relative error is shown in figure 2.8.

The accuracy of LBM in turbulent flow was verified through comparison of the
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results from LB DNS in turbulent channel flow with results from pseudo-spectral

DNS and experiments. Three cases were studied, corresponding to turbulent channel

flow with no-slip walls in a small and a large channel, and turbulent open channel

flow at zero Froude number. The simulations in turbulent open channel flow were

performed without grid-embedding. The simulations in turbulent channel flow with

no-slip walls were performed with grid embedding, in a small channel, and without

grid-embedding, in a small and a large channel, to assess the accuracy of the grid-

embedding strategy, and investigate the effect of the channel size on the results.

LB DNS of turbulent channel flow with no-slip walls was performed at a bulk

Reynolds number of Reb = 3600, corresponding to a friction Reynolds number of

Reτ ≡ uτh/ν ≈ 227, based on Dean’s correlation (Dean, 1978). A channel of size

Lx×Ly×Lz = 5h×2.5h×2h in the streamwise, spanwise and wall-normal directions,

respectively, was used for LB DNS in small channel and pseudo-spectral DNS, as

shown in Fig. 2.7(a). A channel of size Lx × Ly × Lz = 20h × 10h × 2h in the

streamwise, spanwise and wall-normal directions, respectively, was used for LB DNS

in large channel. A uniform Fourier grid in the streamwise and spanwise directions,

with resolutions of ∆+
x ≈ 8 and ∆+

y ≈ 4, respectively, and a Chebyshev grid, with a

resolution of 0.07 . ∆+
z . 4.5, in the wall-normal direction, was used for the pseudo-

spectral DNS. For the LB DNS without grid- embedding, in small and large channels,

the lattice spacing was set at ∆+ ≈ 2. The corresponding lattice resolutions were

512× 256× 221 in the streamwise, spanwise and wall-normal directions, respectively,

for the simulations in small channel, and 2048×1024×221 in the streamwise, spanwise

and wall-normal directions, respectively, for the simulations in large channel. For the

LB DNS with grid-embedding, lattice spacings of ∆+
c ≈ 2 and ∆+

f ≈ 0.5 were used on

the coarse grid at z+ & 30 and the fine grid at z+ . 30, respectively, corresponding

to a grid ratio of GR = 4. Half way bounce back scheme was utilized for imposing

the no-slip conditions on the walls (Succi , 2001). The simulations were initialized
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from fully developed turbulent velocity and pressure fields obtained from DNS of

turbulent channel flow with pseudo-spectral methods. The statistical steady state

in LB DNS results was established within 100 non-dimensional times, tUc/h = 100.

Results were averaged over a statistical window of tUc/h = 300 afterwards. This

time span corresponds to 18 eddy turnover times, tuτ/h ≈ 18. LB DNS without

grid-embedding, when driven under a constant mass flow rate, results in a skin-

friction coefficient of Cf ≡ τw/0.5ρU
2
b = 0.007686 in small channel, and a skin-friction

coefficient of Cf = 0.007765 in the large channel, which are within 1% and 0.6% of

Cf = 0.007610 predicted by pseudo-spectral DNS in small channe, respectively, and

within 3% and 2% of Cf = 0.007925 predicted by Dean’s correlation (Dean, 1978),

respectively, while LB DNS with grid-embedding and GR = 4, in small channel,

predicted a friction coefficient of Cf = 0.007603 within 0.1% and 4.1% of the Cf

predicted by pseudo-spectral DNS, and Dean’s correlation (Dean, 1978), respectively,

as shown in figure 2.9(a).

Figure 2.9(b-h) show the comparison of results from LB DNS, with and without

grid-embedding, with results from pseudo-spectral DNS in turbulent channel flow with

now slip walls at Reb = 3600. The corresponding Reτ values are 223, and 224, for

the LB DNS without grid-embedding, in small and large channels, respectively, and

222, and 222, for LB DNS with grid-embedding, and pseudo-spectral DNS, in small

channels, respectively. The normalized profiles of the mean streamwise velocity, Ū+,

turbulence intensities, (u2
i

1/2
)+, and Reynolds shear stress, uw+, match with those of

pseudo-spectral DNS to within 1% error, as shown in figures 2.9(b-e). The normalized

profiles of the root-mean-square (rms) pressure fluctuations, (p2
1/2

)+, however, were

within 4% and 6% of that from the pseudo-spectral DNS in LB DNS without grid-

embedding and with grid-embedding, respectively, as shown in figure 2.9(f). This

deviation is caused by O(Ma2) terms (Qian and Orszag , 1993; Lammers et al., 2006).

Similar errors have been reported in LB DNS of turbulent channel flow with imposed
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Figure 2.9: LB DNS of turbulent channel flow with no-slip walls compared to pseudo-
spectral DNS and Dean’s experimental correlation (Dean, 1978): (a) skin-

friction coefficient, Cf ; (b) mean velocity profile, U
+
; (c,d) rms velocity

fluctuations, u2
i

1/2+
; (e) Reynolds shear stresses, uw+; (f) rms pressure

fluctuations, p2
1/2+

; (g) skewness; (h) flatness; - - -, LB DNS without grid-
embedding, in small channel; – ·· – ·· –, LB DNS without grid-embedding,
in large channel; —–, LB DNS with grid-embedding, GR = 4 up to
z+ ≈ 30, in small channel; · · · , pseudo-spectral DNS, in small channel.
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constant pressure gradient by other investigators (Lammers et al., 2006; Premnath

et al., 2009; Bespalko et al., 2012). The skewness profiles, shown in figure 2.9(g),

agree well with those of pseudo-spectral DNS, except for LB DNS results without

grid-embedding, in small and large channels, at z+ . 5, where LB DNS without grid-

embedding does not have adequate resolution. Using grid-embedding in LB DNS

remedies this shortcoming. Similarly, the flatness profiles, shown in figure 2.9(h),

also agree well with those of pseudo-spectral DNS, except for LB DNS results without

grid-embedding, in small and large channels, at z+ . 10, due to its relativly coarse

resolution in this region.

Figure 2.10 shows the profiles of two point velocity correlations, Rαα, with sepa-

ration in streamwise, ∆x, or spanwise, ∆y, directions, defined as

Rαα(∆x, z) =
〈uα(x, y, z)uα(x+∆x, y, z)〉

〈uα(x, y, z)uα(x, y, z)〉
, (2.46)

Rαα(∆y, z) =
〈uα(x, y, z)uα(x, y +∆y, z)〉

〈uα(x, y, z)uα(x, y, z)〉
(2.47)

and the one dimensional energy spectra, as a function of the streamwise, kx, and

spanwise, ky, wave numbers, defined as

Eαα(kx, z) =
2

π
〈ũα(kx, ky, z)ũ∗

α(kx, ky, z)〉, (2.48)

Eαα(ky, z) =
2

π
〈ũα(kx, ky, z)ũ∗

α(kx, ky, z)〉, (2.49)

where ũα(kx, ky, z) denotes the two-dimensional Fourier transform of uα(x, y, z),

ũα(kx, y, z) =

∫

∞
∫

−∞

u(x, y, z)e−2π
√
−1(kxx+kyy)dxdy, (2.50)

which is evaluated by a real to complex Fast Fourier Transform (FFT) (Frigo and

Johnson, 1998), and the superscript ∗ denotes the complex conjugate.
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Figure 2.10: Two point velocity autocorrelations and one dimensional energy spec-
tra in LB DNS of turbulent channel flow with no-slip walls compared
to pseudo-spectral simulations: (a-d) two point velocity autocorrela-
tions, Rαα; (e-h) one dimensional energy spectra, E+

αα; – –�– –, – –♦– –,
– –◦– –, LB DNS on uniform grid, streamwise, uu, spanwise, vv, and
wall-normal, ww, components, respectively; – ·· –�– ·· –, – ·· –♦– ·· –, – ·· –
◦– ·· –, LB DNS in large channel on uniform grid, streamwise, uu, span-
wise, vv, and wall-normal, ww, components, respectively; —�—, —♦—
, —◦—, grid-embedded LB DNS, streamwise, uu, spanwise, vv, and
wall-normal, ww, components, respectively; · · · �· · · , · · ·♦· · · , · · · ◦· · · ,
pseudo-spectral DNS, streamwise, uu, spanwise, vv, and wall-normal,
ww, components, respectively.

42



The two point correlations in figures 2.10(a,c,e,g) all agree well with those ob-

tained from pseudo-spectral DNS. Near the walls, at z+ ≈ 10, for both the LB DNS

and pseudo-spectral DNS, all the two point velocity correlations drop to zero at large

streamwise and spanwise separations, save for the streamwise velocity correlation as

a function of streamwise separation, Ruu(∆x+, z+), as seen in figures 2.10(a,c). This

behavior of Ruu(∆x+, z+), is caused by the small channel sizes used for the simula-

tions. The streamwise separation at which Ruu(∆x+, z+) drops to zero corresponds

to the length of the streamwise velocity streaks, of ∼ 1000 wall units (Smith and Met-

zler , 1983). As a result, due to the imposed periodicity in the streamwise direction,

a channel twice as long as the streamwise velocity streaks, of ∼ 2000 wall units, is

required for Ruu(∆x+, z+) to drop to zero. The small channel used for the simula-

tions, with a streamwise length of L+
x ≈ 1024, however, can only contain one full size

streak. As a result, Ruu(∆x+, z+) does not drop to zero in this channel. All corre-

lations, including the Ruu(∆x+, z+), however, agree well with those obtained in the

large channel, as seen in figures 2.10(a-d), suggesting that the small channel sizes have

not had any effect on the turbulence structures. The streamwise velocity correlation,

Ruu(∆x+, z+), drops to zero at the streamwise separation of ∆x+ ≈ 1000, for LB DNS

in the large channel. Figure 2.10(b) shows that the streamwise velocity correlation,

Ruu, obtains its local minimum at a spanwise separation of ∆y+ ≈ 55, predicting an

average streak-spacing of 110 wall units, in agreement with the predictions of pseudo-

spectral DNS and the numerical simulations of Kim et al. (1987). In addition, figure

2.10(c) shows that the wall-normal velocity correlation obtains its local minimum at a

spanwise separation of ∆y+ ≈ 28, predicting an average diameter of 28 wall units for

the near wall streamwise vortices. This is also in good agreement with the prediction

of pseudo-spectral DNS, and the observations made by other investigators (Kim et al.,

1987). Furthermore, away from the walls, at z/h ≈ 0.8, all the correlations obtained

from LB DNS without grid-embedding in the small and large channels, and from LB
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DNS with grid-embedding in the small channel, agree well with those obtained from

the pseudo-spectral DNS in the small channel, as seen in figures 2.10(c,d), suggesting

that the size of the large scales of the turbulence have been predicted correctly in

the simulations. The one dimensional energy spectra in figures 2.10(e-h), also, show

good agreement between the results obtained from LB DNS without grid-embedding

in small and large channels, those obtained from LB DNS with grid-embedding in a

small channel, and those obtained from pseudo-spectral DNS in a small channel, for

the entire range of the wave numbers.

To test the validity of the slip BCs in turbulent flow, simulations were performed

in turbulent open channel flow, at zero Froude number, driven under a constant mass

flow rate, and the results were compared to experimental data of Komori et al. (1993).

These simulations were performed at a bulk Reynolds number of Reb ≡ UbH/ν =

4000, corresponding to a Reτ ≡ uτH/ν ≈ 250 in channels of size Lx × Ly × Lz =

2.5H×2.5H×H in the streamwise, spanwise and wall-normal directions, respectively,

where H is the full channel height. Shear-free and no-slip boundary conditions were

imposed on the top and bottom walls of the channel, respectively, as shown in figure

2.7(b). Half-way bounce back (Succi , 2001) and specular reflection (Benzi et al.,

2006; Ginzburg and Steiner , 2003) schemes were utilized for implementing the no-slip

and free slip boundary conditions, respectively. Simulations were performed with a

resolution of 512× 256× 221 in the streamwise, spanwise and wall-normal directions,

respectively, corresponding to lattice spacings of ∆+ ≈ 1.1.

The simulation was initialized from fully developed turbulent flow field resulting

from LB DNS in turbulent channel flow with no-slip walls. Once a fully developed

turbulent state was established in the open channel, the results were averaged over

a time window of tUc/h = 300, corresponding to tuτ/h ≈ 19, or 19 eddy-turnover

times.

Figure 2.11 shows the results from LB DNS compared to LDA measurements
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Figure 2.11: LB DNS of zero Froude number turbulent open channel flow compared
to the LDA of Komori et al. (1993) for turbulent open channel flow:

(a) skin-friction coefficient, Cf ; (b) mean velocity profile, U
+
; (c) rms

velocity fluctuations, u2
i

1/2+
; (d) Reynolds shear stresses, uw+; —– —–,

LB DNS of zero Froude number turbulent open channel flow at Reb =
UbH/ν = 4000; ▽, LDA in turbulent open channel at Reb = UbH/ν ≈
3000 (Komori et al., 1993).
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of Komori et al. (1993) in a low Froude number turbulent open channel at Reb =

q/2ν = UbH/2ν ≈ 1500 (Reτ = uτH/ν ≈ 160). The normalized profiles of the

mean streamwise velocity, Ū+, turbulence intensities, (u2
i

1/2
)+ and the Reynolds shear

stress, uw+, show a similar behavior as in turbulent channel flow with no-slip walls, as

is expected for turbulent open channel flows at low Fr numbers (Borue et al., 1995).

Here + denotes non-dimensionalization with respect to the wall-friction velocity of

the no-slip wall, uτno−slip
, and the kinematic viscosity of the flow, ν. Near the no-

slip wall, the normalized profiles of the mean streamwise velocity, Ū+, turbulence

intensities, (u2
i

1/2
)+ and the Reynolds shear stress, uw+, all agree with the LDA

mesurements, to within the accuracy of the measurements, as seen in figures 2.11(b-

d). LB DNS predicts the existence of a linear viscous sub-layer, and a logarithmic

layer, in the normalized mean velocity profile, and the location of the maximum in the

normalized profiles of the turbulence intensities, at z+ ≈ 15, in agreement with the

experiments of Komori et al. (1993), as seen in figures 2.11(b,c). Near the free surface,

however, LB DNS under-predicts the normalized magnitudes of the mean velocity,

and the turbulence intensities, compared to the experiments of Komori et al. (1993),

as seen in figures 2.11(b-c). This error arises from the difference of the Reynolds

numbers, in the LB DNS and the experiments, and the possible fluctuations of the

interface in the experiments. LB DNS, however, predicts an isotropic behavior for the

streamwise and spanwise turbulence intensities, near the free surface, in agreement

with the experiments (Komori et al., 1993), as seen in figure 2.11(c).

The accuracy of LB DNS in the presence of SH walls was verified by perform-

ing simulations in laminar channel flows with ‘idealized’, flat longitudinal arrays of

slip/no-slip stripes on one wall, and comparing the results to the analytical solution

of Philip (1972a) and experimental data of Ou and Rothstein (2005). The results are

shown in figure 2.12. LB DNS predicts Drag Reduction (DR)s, slip lengths, and slip

velocities in agreement with the analytical solution of Philip (1972b), as shown in
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Figure 2.12: Verification of LB DNS in laminar channel flow with idealized, flat SH stripes
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height; (c) ratio of slip velocity to bulk velocity; (d,e,f) spanwise variation of
the streamwise velocity at different wall-normal locations: (d) (g +w)/2H =
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surface; N, LB DNS at Reb = q/2ν = UbH/2ν = 50, longitudinal slip/no-
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(2005) in laminar flow, longitudinal micro-grooves with g = w on one wall;
· · · , analytical solution of Philip (1972a,b), longitudinal slip/no-slip stripes
with g = w on one wall.
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figure 2.12(a-c). Here DR is defined as DR = (C0
f −Cf )/C

0
f , where Cf is the average

skin-friction coefficient on the two channel walls, one of which has the slip/no-slip

pattern and the other is a regular no-slip wall, and C0
f is the skin-friction coefficient

in a channel at the same Reb with no-slip walls. Experiments show similar trends in

DR, but the magnitudes of DRs are slightly higher. The presence of the SH surface

gives rise to a spanwise variation in the mean streamwise velocity, which persists up to

a distance of z ≈ g from the SH wall, as shown in figures 2.12(d-f). These variations

are also predicted by the analytical solution of Philip (1972a), as shown in figures

2.12(d-f).

Finally, to verify the accuracy of LB DNS on curved gas/liquid SH interfaces, sim-

ulations were performed in laminar channel flow with SH LMGs with static curved

liquid/gas interfaces on both the walls, and the results were compared with the nu-

merical simulations of Wang et al. (2014). Similar to that in numerical simulations of

Wang et al. (2014), the liquid/gas interfaces on the SH LMGs in the LB DNS stud-

ies were modeled as curved shear-free interfaces, with the curvature of the interfaces

obtained from the solutions of the Young-Laplace equation. The simulations were

performed with Micro-Groove (MG)s of size (g + w)/2H = 0.049 & g/w = 1, corre-

sponding to the MG sizes in the simulations of Wang et al. (2014). Three different

interface curvatures of κ/g = 1, 1.732, and 2, corresponding to interface protrusion

angles of θ = −30o, −60o and −90o, respectively, were chosen for the studies, where κ

is the interface curvature, and interface protrusion angle is measured as shown in fig-
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Figure 2.13: Front view of LMG with the interface protrusion.
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1/32, GR = 4; ♦, LB DNS with grid-embedding, ∆/g = 1/64, GR = 4;
—–, numerical simulations of Wang et al. (2014).

ure reffig:element. A constant flow rate, corresponding to a bulk Reynolds number of

Reb = q/2ν = 150, was maintained in the channel for the simulations. Grid resolution

studies were performed using LB DNS with and without grid-embedding, for grid sizes

of ∆/g = 1/32 & 1/64 in the simulations without grid-embedding and grid sizes of

∆f/g = 1/32 & 1/64 and GR = ∆c/∆f = 4 in the simulations with grid-embedding.

Figures 2.14(a,b) show the resulting slip lengths, Ls/H, and slip velocities, Us/Ub0 ,

obtained with the two grids, where Ub0 denotes the bulk flow velocity of a base chan-

nel flow with no-slip walls at the same flow Reynolds number, Reb = q/2ν, as the

SH channel. For comparison, results from the simulations of Wang et al. (2014) are

also shown in figure 2.14(a). Grid independence was achieved with ∆/g = 1/64 for

all the protrusion angles studied. LB DNS results show grid-independence with less

than 3.5% difference between the two grid resolutions. Furthermore, LB DNS results

with and without grid-embedding at a given grid resolution show agreement to within

0.7%.
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CHAPTER III

SH Surfaces with ‘Idealized’ Flat Liquid/Gas

Interfaces

3.1 Magnitude of DR in Channel Flow with Idealized SH

walls

As a first step in the study of turbulent DR with SH surfaces, SH surfaces have

been modeled as ‘idealized’ surfaces (Martell et al., 2010; Park et al., 2013; Jelly et al.,

2014; Türk et al., 2014). With ‘idealized’ SH surfaces, the liquid/gas interfaces on

the SH micro-textures are modeled as flat, shear-free areas interspaced among no-slip

regions on the wall. For steady, fully-developed, turbulent flow in a homogeneous

channel, with any periodic pattern of ‘idealized’ SH micro-texture on the walls, the

streamwise Reynolds-averaged momentum equation is given by

∂

∂x
(ν

∂Ū

∂x
− uu− Ū Ū) +

∂

∂y
(ν

∂Ū

∂y
− uv − Ū V̄ ) +

∂

∂z
(ν

∂Ū

∂z
− uw − ŪW̄ ) =

1

ρ

∂P̄

∂x

(3.1)

where the overbar denotes Reynolds-averaging, Ū , V̄ , W̄ and u, v, w denote the

streamwise (x), spanwise (y), and wall-normal (z) components of the mean and fluc-

tuating velocity fields, respectively, and P̄ denotes the mean pressure. A similar
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equation also applies in laminar flow, but with V , W , uv and uw all set to zero.

Averaging equation (3.1) over the periodic pattern of the SH surface micro-texture

in the streamwise and spanwise directions, and integrating in the wall-normal direc-

tion gives

ν〈∂Ū
∂z

〉 − 〈uw〉 − 〈ŪW̄ 〉 = 〈u2
τ 〉(1−

z

h
), (3.2)

where 〈 〉 denotes averaging in wall-parallel directions over the periodic pattern of the

SH micro-texture, and 〈uτ 〉 ≡
√

−〈∂P/∂x〉h/ρ is the average wall-friction velocity in

the SH channel.

Integration of equation (3.2) in the wall-normal direction, once from 0 to z, and

again from 0 to h (Fukagata et al., 2002), and use of the boundary condition 〈Ū〉|wall =

Us, gives

Cf =
6

Reb
(1− Us

Ub

) + 3Cf

1
∫

0

[

−〈uw〉+ − 〈ŪW̄ 〉+
]

(1− ξ) dξ, (3.3)

where Cf ≡ 2〈uτ 〉2/U2
b is the friction coefficient, ξ = z/h is the normalized wall-

normal coordinate, and the + superscript denotes non-dimensionalization with re-

spect to the average wall-friction velocity, 〈uτ 〉, and kinematic viscosity, ν, in the

SH channel. Equation (3.3) extends to SH channel flows the analytical formulation

originally developed by Fukagata et al. (2002) for the breakdown of skin-friction drag

into its constituting elements on smooth no-slip walls, which was later generalized to

geometrically complex no-slip surfaces by Peet and Sagaut (2009). Here, the analysis

is taken further to derive an exact analytical expression for the magnitude of DR in

SH channel flow. To this end, equation (3.3) is rearranged as

Cf =
6

Reb

(

1− Us

Ub

)(

1

1− 3I+

)

, (3.4)

where I+ =
∫ 1

0

[

−〈uw〉+ − 〈ŪW̄ 〉+
]

(1−ξ) dξ, and I+ is bounded by 0 < I+ < 1/3 per
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(3.2). In channel flows with no-slip walls, equation (3.4) reduces to C0
f = (6/Reb)/(1−

3I+0), where I+0 =
∫ 1

0
[−〈uw〉+0](1− ξ)dξ.

Defining the Drag Reduction (DR) as DR ≡ (C0
f −Cf )/C

0
f , an expression for the

magnitude of DR in SH channel flow can then be obtained as

DR =
Us

Ub

+

(

1− Us

Ub

)(

3ε

1− 3I+

)

=
Us

Ub

+O(ε), (3.5)

where ε = I+0 − I+ is the difference between the values of the integrals in the base

channel flow with no-slip walls and the SH channel flow.

Equation (3.5) gives an exact analytical expression for the magnitude of DR in

laminar or turbulent SH channel flow, while providing a breakdown of the DR into:

(i) contributions arising from the effective slip at the wall, captured in the Us/Ub

term, and (ii) contributions arising from modifications to the turbulence structure

and dynamics and any additional secondary mean flows established in the SH channel,

captured in the O(ε) term. In laminar flow, where I+0 = I+ = ε = 0, the magnitude

of DR is given by DR = Us/Ub, and DR is entirely due to the effective slip at the wall.

In turbulent flow, the magnitude of DR is given by DR = Us/Ub+O(ε), where Us/Ub

represents the contribution of the effective slip on the wall to DR, while ε = I+0− I+

is a measure of the differences between the structure of turbulence in the SH channel

and any secondary mean flows established in the SH channel compared to a base

channel flow with no-slip walls. The relative importance of each of these terms in

turbulent flow can be assessed using results from DNS.

3.2 DNS Studies

Roles of the effective slip on the walls versus modifications to the turbulence

dynamics within the flow in the mechanism of DR by SH surfaces were quantified
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Figure 3.1: Schematic of the SH channels and the coordinate system: (a) longitudinal
MG; (b) transverse MG; (c) micro-posts.

using data obtained with Lattice Boltzmann (LB) Direct Numerical Simulation (DNS)

in laminar and turbulent SH channel flow with various patterns of longitudinal or

transverse MG or micro-posts on both walls. In these DNS studies, the liquid/gas

interfaces on the SH surfaces were modelled as ‘idealized’ flat, shear-free boundaries,

similar to previous analytical (Philip, 1972a) and computational (Martell et al., 2010;

Park et al., 2013; Jelly et al., 2014; Türk et al., 2014) studies.

The simulations were first performed in channels of size 5h × 2.5h × 2h, in the

streamwise (x), spanwise (y), and wall-normal (z) directions, respectively. A constant

flow rate was maintained in the channel during the course of all simulations, corre-

sponding to a bulk Reynolds number of Reb = 3600. Grid spacings of ∆+0 ≈ 2 in all

three directions was used for the simulations in turbulent flow. All the simulations

were initialized from a fully developed base turbulent channel flow with no-slip walls

at Reb = 3600, corresponding to Reτ0 ≡ uτ0h/ν ≈ 223.

A total of fifteen cases, with SH surface micro-patterns consisting of longitudinal

MG, transverse MG, or micro-posts, g/w ratios of 1, 7, 15, and geometric parameters

of 0.01 ≤ (g + w)/2H ≤ 0.29, corresponding to 4 . g+0 . 128, were studied, as

shown in figure 3.1 and table 3.1. Here H = 2h denotes the full-height of the channel,

and the parameters (g/w) and (g +w)/2H arise from analytical solutions in laminar

SH channel flow with longitudinal or transverse MG (Philip, 1972a). For comparison,

these fifteen cases were also studied by DNS in the laminar flow regime at Reb = 50.
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pattern longitudinal MG transverse MG micro-posts

Channel 5h× 2.5h× 2h 20h× 10h× 2h 5h× 2.5h× 2h 5h× 2.5h× 2h

(g/w) 1 1 1 1 1 1 7 7 7 7 15 15 7 7 15 1 1 7 1 1 7
SFF 1/2 1/2 1/2 1/2 1/2 1/2 7/8 7/8 7/8 7/8 15/1615/16 7/8 7/8 15/16 1/2 1/2 7/8 3/4 3/4 63/64
(g + w)/2H 0.01 0.02 0.04 0.07 0.14 0.29 0.04 0.04 0.07 0.07 0.14 0.14 0.04 0.07 0.14 0.02 0.07 0.07 0.02 0.07 0.07
g+0(turb) 4 8 16 32 64 128 28 28 56 56 120 120 28 56 120 8 32 56 8 32 56
w+0(turb) 4 8 16 32 64 128 4 4 8 8 8 8 4 8 8 8 32 8 8 32 8
GR 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1
DR-lam 2% 3% 5% 9% 17% 28% 22% - 33% - 58% - - - - 3% 6% 24% 9% 18% 73%
(Us/Ub)lam 0.02 0.03 0.05 0.09 0.17 0.28 0.22 - 0.33 - 0.58 - - - - 0.03 0.06 0.24 0.09 0.18 0.73
DR-turb 5% 11% 18% 23% 33% 47% 52% 49% 64% 61% 83% 81% 52% 64% 83% -4% 2% 20% 14% 29% 81%
(Us/Ub)turb 0.05 0.1 0.15 0.23 0.32 0.37 0.43 0.44 0.55 0.56 0.72 0.75 0.43 0.54 0.72 0.04 0.07 0.25 0.15 0.31 0.67

Table 3.1: SH surface geometries, resulting slip velocities, and DRs in laminar & turbulent channel flow.
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Furthermore, effects of the grid resolution and the channel size on the resulting

normalized slip velocities, DRs, turbulent statistics and kinetic energy dynamics were

also investigated using grid embedded LB DNS and LB DNS in large channels, re-

spectively, as reported in table 3.1. These studies were focoused on SH surfaces with

LMGs, due to their superior DR performance. Three cases with the highest DRs,

corresponding to SH LMGs of size g+0 ≈ 28 & g/w = 7, g+0 ≈ 56 & g/w = 7,

and g+0 ≈ 120 & g/w = 15, wrere used for these studies. The simulations with

grid-embedding were performed in channels of size 5h× 2.5h× 2h, in the streamwise,

spanwise, and wall-normal directions, respectively. Grid spacings of ∆+0
c ≈ 2 and

∆+0
f ≈ 1 in all three directions, on the coares grid and the fine grid, respectively,

corresponding to a grid-embeding ratio of GR = 2, were used for these simulations.

The fine grid in the simulations was extended up to z ≈ 1.5g away from the walls.

Coarse grid covered the rest of the domain. Large channel simulations were performed

in channels of size 20h× 10h× 2h, in the streamwise, spanwise, and wall-normal di-

rections, respectively. Grid spacings of ∆+0 ≈ 2 in all three directions was used for

the large channel simulations. Both the grid-embedded, and the large channel simu-

lations were performed by maintaining a constant flow rate in the channel during the

coarse of the simulations, corresponding to a bulk Reynolds number of Reb = 3600.

Fully developed base turbulent channel flows with no-slip walls at Reb = 3600, corre-

sponding to Reτ0 ≡ uτ0h/ν ≈ 223, were used for initializing all the simulations. The

grid-embedded LB DNS was initialized using Distribution Function (DF)s obtained

from LB DNS without grid embedding, in the base channel flow with no-slip walls,

using the second order Lagrange interpolation in space. Large channel simulations

were initialized using DFs obtained from LB DNS without grid-embedding in base

channel flows with no-slip walls at the same domain size as the large channels. In all

the cases, the resulting turbulent flow settled into a statistically steady state within

a non-dimensional time of tU0/h . 100. Figure 3.2 shows the time evolution of the
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skin-friction coefficient in the simulations.

3.3 Results

Table 3.1 presents the slip velocities and DRs obtained in laminar and turbulent

SH channel flow with LMGs, transverse MGs, and micro-posts of size g/w = 1, 7,

15. The largest slip velocities of Us/Ub = 0.72, and the highest DRs of DR = 83%,

in turbulent flow, are obtained with SH LMGS of size g+0 ≈ 120 & g/w = 15. The

resulting slip velocities, and DRs, obtained in the small channels, are within 1% of

those obtained in the large channels, suggesting that the channel size does not affect

the results. In addtition, the resulting slip velocities and DRs, obtained with LB DNS

without grid-embedding, are to within 7.7% of those obtained with grid-embedding,

with a grid-embedding ratio of GR = 2, suggesting that grid independence has been

achieved with the simulations.

3.3.1 The Magnitude of DR in Laminar and Turbulent SH Channel Flow

Figure 3.3(a) shows the DRs obtained in the present study in laminar and tur-

bulent SH channel flow with LMGs, transverse MGs, and micro-posts of size g/w =

1, 7, 15, as a function of the geometric parameter (g + w)/2H. Also shown are the

DNS data of Park et al. (2013), obtained in turbulent channel flow at Reτ0 ≈ 180,

395, 590 with LMGs and g/w ≈ 1, 3, 7, 16, and the DNS data of Türk et al. (2014)

in turbulent channel flow at Reτ0 ≈ 180 with LMGs and g/w = 1. The DNS of

Türk et al. (2014) were performed under an imposed constant pressure gradient, for

which Türk et al. (2014) report the increase in the bulk velocity in the presence of

SH walls, compared to the base turbulent channel flow with no-slip walls, with an

imposed constant pressure gradient. The DRs for the DNS of Türk et al. (2014) were

estimated using the relation DR = (C0
f −Cf )/C

0
f = 1−(Ub0/Ub)

2. However, it should

be noted that this expression assumes a different Reb in the SH channel compared to
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Figure 3.2: Time evolution of the skin-friction coefficient in turbulent channel flow with SH
walls: · · · , no-slip channel flow at Reτ0 ≈ 223, without grid-embedding; – ·· –
·· –, g+ = w+ ≈ 4, 5.0%DR, without grid-embedding; – · – · –, g+ = w+ ≈ 8,
10.9%DR, without grid-embedding; - - -, g+ = w+ ≈ 16, 18.2%DR, with-
out grid-embedding; —– ··—–, g+ = w+ ≈ 32, 22.6%DR, without grid-
embedding; — ·—, g+ = w+ ≈ 64, 38.2%DR, without grid-embedding; —–—–
, g+ = w+ ≈ 128, 47.3%DR, without grid-embedding; —�—, g+ ≈ 28, w+ ≈ 4,
51.6%DR, without grid-embedding; —△—, g+ ≈ 56, w+ ≈ 8, 63.5%DR,
without grid-embedding; —◦—, g+ ≈ 120, w+ ≈ 8, 83.2%DR, without
grid-embedding; – –�– –, g+ ≈ 28, w+ ≈ 4, 49.2%DR, with grid-embedding,
GR = 2; – –N– –, g+ ≈ 56, w+ ≈ 8, 61.4%DR, with grid-embedding, GR = 2; –
–•– –, g+ ≈ 120, w+ ≈ 8, 81.1%DR, with grid-embedding, GR = 2; – ·· –�– ·· –,
g+ ≈ 28, w+ ≈ 4, 51.8%DR, large channel, without grid-embedding; – ·· –N–
·· –, g+ ≈ 56, w+ ≈ 8, 63.7%DR, large channel, without grid-embedding; – ·· –
•– ·· –, g+ ≈ 120, w+ ≈ 8, 82.8%DR, large channel, without grid-embedding;
· · · (thin), Dean’s correlation (Dean, 1978).
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the base flow, and thus overestimates the magnitude of DR compared to the stan-

dard definition of DR, for which Cf and C0
f are evaluated at the same Reb. For each

category of SH surface micro-pattern, the DNS data show a trend for increase in DR

with increasing (g + w)/2H or g/w, at a given Reτ0 . The DNS data of Park et al.

(2013) also show a trend for increase in DR with increasing Reτ0 for LMGs. For

each category of SH surface micro-pattern, the DRs in laminar flow follow similar

trends to those in turbulent flow. However, for a given SH surface micro-pattern, the

magnitude of DR in turbulent flow is higher than that in laminar flow, by 143% to

267% with longitudinal MG, and by 10% to 61% with micro-posts, as shown in figure

3.3(a) and table 3.1. These trends are reversed with transverse MG, for which the

DRs in turbulent flow are always lower than the corresponding cases in laminar flow,

and in some cases even negative, indicating a Drag Increase (DI) in the presence of

the SH surface. The significantly higher DRs observed in turbulent flow compared

to laminar flow with LMGs has led a number of investigators (Daniello et al., 2009;

Martell et al., 2010; Rothstein, 2010; Park et al., 2013) to conclude that the enhanced

DRs observed in turbulent flow must be due to mechanisms beyond the effective slip

on the wall, such as modifications to the turbulence dynamics.

However, when the same DR data is plotted as a function of Us/Ub, as shown in

figure 3.3(b), the DRs from all DNS databases in laminar and turbulent flow, for all

SH surface micro-patterns, nearly collapse and cluster around the line DR = Us/Ub.

In laminar flow, the magnitude of DR exactly matches Us/Ub for all SH surface micro-

patterns, as shown in table 3.1, confirming that DR in laminar flow is entirely due

to the effective slip on the walls. In turbulent flow, the magnitude of DR either

falls slightly above Us/Ub, as with LMGs or micro-posts with high SFF, or slightly

below Us/Ub, as with transverse MGs or micro-posts with moderate SFF ratio. These

reflect the effect of the O(ε) term in equation (3.5), and indicate that changes to the

structure and dynamics of turbulence within the flow can lead to either a further
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Figure 3.3: Scaling of DR and Us/Ub in laminar and turbulent channel flow: (a) DR
as a function of the geometric parameter (g+w)/2H for different g/w and
Reτ0 ; (b) DR as a function of the average slip velocity Us/Ub; (c) average
slip velocity on the slip surfaces, (1 + 1/SFF )Us/Ub, as a function of
g/h; (d) DR as a function of the slip length L+0

s . •, �, �, present
study, Reτ0 ≈ 223, longitudinal MG, g/w = 1, 7, 15, respectively; ◮,
◭, present study, Reτ0 ≈ 223, transverse MG, g/w = 1, 7, respectively;
N, H, present study, Reτ0 ≈ 223, micro-posts, g/w = 1, 7, respectively;
©, �, ⋄, present study, Reb = 50, longitudinal MG, g/w = 1, 7, 15,
respectively; ⊲, ⊳, present study, Reb = 50, transverse MG, g/w = 1,
7, respectively; △, ▽, present study, Reb = 50, micro-posts, g/w = 1, 7,
respectively; ©\ , △\ , �\ , DNS of Park et al. (2013), Reτ0 ≈ 180, g/w = 1,
3, 7, respectively;

⊕

, △+, ⊞, ⊠, DNS of Park et al. (2013), Reτ0 ≈ 395,
g/w = 1, 3, 7, 15, respectively;

⊗

, △×, ⊠, ⊞, DNS of Park et al. (2013),
Reτ0 ≈ 590, g/w = 1, 3, 7, 15, respectively;

⊙

, DNS of Türk et al.
(2014), Reτ0 = 180, g/w = 1; ⊳+, experiments of Daniello et al. (2009),
2450 ≤ Reb ≤ 4000, g = w = 30µm, MG on one wall; —–, DR = Us/Ub

in (b), and DR = L+0
s /[1 + (Reb/Reτ0)] with Reb = 3600, Reτ0 ≈ 223

in (d); – · – · –, – ·· – ·· –, analytical expressions of Fukagata et al. (2006)
for uniform streamwise slip and uniform combined slip, respectively, at
Reτ0 ≈ 223.
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DR or a DI beyond the DRs resulting from the effective slip on the walls. For the

former, the modifications to the turbulence dynamics lead to a normalized Reynolds

shear stress, −〈uw〉+, in the SH channel which is lower than that in the base flow,

thus making ε positive. For the latter, the modifications the modifications to the

turbulence dynamics lead to a normalized Reynolds shear stress, −〈uw〉+, in the SH

channel which is slightly higher than that in the base flow, thus making ε negative.

The SH surface micro-pattern in the latter case acts similar to surface roughness,

enhancing the Reynolds shear stress. However, these additional DRs or DIs, resulting

from modifications to the turbulence dynamics, are in all cases small and contribute

no more than 10% to 15% additional DR with LMGs and micro-posts of high SFF,

and no more than 10% DI with transverse MGs or micro-posts of moderate SFF. In

all cases, 80% to 100% of the total DR arises from the effective slip on the walls.

The higher DRs observed in turbulent flow compared to laminar flow arise pri-

marily from the higher normalized average slip velocities on the slip surfaces, (1 +

1/SFF )Us/Ub, which can be achieved in turbulent flow compared to laminar flow

with a given SH surface micro-pattern, as shown in figure 3.3(c), not from mecha-

nisms beyond the effective slip on the wall. The only exceptions are transverse MGs

and micro-posts with high SFF, for which the normalized average slip velocities in

laminar and turbulent flow become comparable, either because the orientation of the

MGs relative to flow direction makes the flow regime immaterial, as with transverse

MGs, or because the nature of the flow is predominantly inviscid, as with micro-posts

of high SFF.

Using the relations U+
s = L+

s and Us/Ub = L+0
s (1−DR)Reτ0/Reb, equation (3.5)

can be rearranged to give an expression for the magnitude of DR in terms of the slip

length,

DR =
L+0
s

L+0
s + Reb

Reτ0

+O(ε). (3.6)

Similar to equation (3.5), the scaling given by equation (3.6) remains valid in both
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laminar and turbulent SH channel flow. However, unlike earlier similar expressions

(Fukagata et al., 2006), no assumptions about the shape of the mean velocity profile

or the SH surface micro-pattern is required in the derivation of equation (3.6). Good

agreement is seen in figure 3.3(d) between equation (3.6) and all available DNS data.

Reasonable agreement is also seen in figures 3.3(b, d) between equations (3.5) and

(3.6) and experimental data (Daniello et al., 2009) for which the slip velocities were

reported.

3.3.2 Turbulence Statistics

The roles of the effective slip on the wall and modifications to the turbulence

dynamics within the flow in the mechanism of turbulent DR with SH surfaces can be

further clarified by examining the one-point turbulence statistics and TKE budget in

the SH channel. Due to their superior DR performance in turbulent flow, SH surfaces

with Longitudinal Micro-Groove (LMG)s were used for these investigations.

The presence of SH LMGs on the channel walls gives rise to spanwise variations in

all Reynolds-averaged quantities in turbulent flow, within a ‘surface layer’ of thickness

z ≈ g. Figure 3.4 shows such spanwise variations in the Reynolds-averaged streamwise

velocity. Similar spanwise variations exist in all the Reynolds-averaged turbulence

statistics, including the Reynolds stresses. The latter gives rise to the development

of a secondary mean flow, in the form of pairs of counter-rotating vortices (Rastegari

and Akhavan, 2013; Jelly et al., 2014; Türk et al., 2014), within the ‘surface layer’ of

size z . g, as shown in figure 3.5. Presence of these vortices is also predicted by the

equation for the mean streamwise vorticity, Ω̄x, in turbulent channel flow (Perkins ,

1970),

V̄
∂Ω̄x

∂y
+ W̄

∂Ω̄x

∂z
=

(

∂2

∂y2
− ∂2

∂z2

)

(−vw) +
∂2

∂y∂z

(

v2 − w2
)

+
1

Reb
∇2Ω̄x, (3.7)
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Figure 3.4: Spanwise variation of the mean streamwise velocity in turbulent channel flow
with SH walls: (a) g+0 = w+0 ≈ 4, 5.0%DR; (b) g+0 = w+0 ≈ 8, 10.9%DR;
(c) g+0 = w+0 ≈ 16, 18.2%DR; (d) g+0 = w+0 ≈ 32, 22.6%DR; (e) g+0 =
w+0 ≈ 64, 38.2%DR; (f) g+0 = w+0 ≈ 128, 47.3%DR; (g) g+0 ≈ 28, w+0 ≈
4, 51.9%DR; (h) g+0 ≈ 56, w+0 ≈ 8, 63.5%DR; (i) g+0 ≈ 120, w+0 ≈ 8,
83.2%DR; —–, z/h ≈ 0.01; —– —–, z/h ≈ 0.01; — ·—, z/h ≈ 0.03; - - -,
z/h ≈ 0.07; – · – · –, z/h ≈ 0.19; – ·· – ·· –, z/h ≈ 0.37; · · · , z/h ≈ 0.58; blue
lines indicate location of no-slip surfaces.
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in which the first two terms on the right hand side represent production of Ω̄x by

turbulent stresses. For turbulent channel flow with SH LMGs on the walls, vw = 0,

as is evident from the DNS results, and thus the Ω̄x production by the first term is

negligible. However, the spanwise variations in the turbulent stresses, v2 and w2, lead

to the production of mean streamwise vorticity in the flow, through the second term

on the right hand side of equation (3.7).

Both this secondary mean flow and the spanwise variations in the Reynolds-

averaged turbulence statistics need to be properly accounted for to obtain accurate

turbulence statistics in the SH channel. To facilitate comparison of these statistics to

those in turbulent channel flows with no-slip walls, all Reynolds-averaged statistics

in the SH channel are reported here after performing an additional spanwise average,

〈 〉, over the pattern of slip and no-slip surfaces on the SH walls.

Figures 3.6(a-c) show the normalized profiles of the spanwise-averaged mean stream-

wise velocity, 〈Ū〉+, turbulence intensities, {〈ū2
i 〉

+}1/2, and shear stresses, 〈τxz〉+, in

the SH channel, compared to a base channel flow with no-slip walls, where the su-

perscript + denotes non-dimensionalization with respect to the wall-friction velocity,

uτ and kinematic viscosity, ν, of the corresponding flow. The mean velocity profiles

display increasing slip velocity with increasing DR, as shown in figure 3.6(a) and ta-

ble 3.1. The resulting mean velocities profiles are offset from those obtained in large

channels, by 1%, and from those obtained with grid-embedding, by up to 7%, con-

comitant with the differences in the magnitude of the slip velocities on the SH wall,

as seen in figure 3.6(a) and table 3.1. With the average slip velocity subtracted, the

mean streamwise velocity profiles, 〈Ū〉+−U+
s , in the SH channel display a progressive

thinning of the buffer layer, along with a downward shift of the logarithmic layer, with

increasing DR. These features are in stark contrast to other examples of drag reduced

turbulent flow, for which DR is generally accompanied by a thickening of the buffer

layer and an upward shift of the logarithmic layer (Bushnell and Hefner , 1990). The
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Figure 3.5: Vector plots of the secondary mean flow in turbulent channel flow with SH
walls, (a) g+0 = w+0 ≈ 4, 5.0%DR; (b) g+0 = w+0 ≈ 8, 10.9%DR; (c) g+0 =
w+0 ≈ 16, 18.2%DR; (d) g+0 = w+0 ≈ 32, 22.6%DR; (e) g+0 = w+0 ≈ 64,
38.2%DR; (f) g+0 = w+0 ≈ 128, 47.3%DR; (g) g+0 ≈ 28, w+0 ≈ 4, 51.9%DR;
(h) g+0 ≈ 56, w+0 ≈ 8, 63.5%DR; (i) g+0 ≈ 120, w+0 ≈ 8, 83.2%DR; blue
lines indicate location of no-slip surfaces.
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difference lies in the mechanism of DR in the present flow, which is primarily the ef-

fective slip on the walls. The presence of this effective slip leads to weaker gradients of

the mean streamwise velocity over the slip surfaces up to distances of z ≈ g, as shown

in figure 3.4, which when mixed and averaged with the mean streamwise velocities

over the no-slip surfaces, leads to weaker gradients in 〈Ū〉+ within the ‘surface-layer’,

and manifests as a progressive thinning of the buffer layer and a downward shift of

the logarithmic layer in the profiles of 〈Ū〉+ − U+
s .

Figure 3.6(c) shows the normalized profiles of the spanwise-averaged Reynolds

shear stress, 〈τR,xz〉+ ≡ −〈uw〉+, viscous shear stress, 〈τv,xz〉+ ≡ 〈∂U/∂y〉+, mean

convective stress, 〈τc,xz〉+ ≡ −〈ŪW̄ 〉+, and total stress, 〈τt〉+ ≡ 〈τR,xz〉+ + 〈τv,xz〉+ +

〈τc,xz〉+, in the SH channel, compared to the base flow. The normalized profiles

of the Reynolds shear stress display a progressive drop in their peak magnitudes

compared to the base flow, with increasing DR. However, the magnitudes of these

drops are nowhere as large as those observed at comparable DR with other means

of skin-friction DR. Indeed, the profiles of normalized Reynolds shear stress remain

comparable to those which would be observed in a turbulent channel flow with no-

slip walls at the Reτ of the drag reduced SH channel flow, as shown in figure 3.6(c).

This keeps the differences between the Reynolds shear stress in the SH flow and that

in the base flow small, thus keeping the O(ε) term in equation (3.5) small. The

normalized profiles of the viscous shear stress, 〈τv,xz〉+, reflect the changes in the

slope of the mean velocity profiles observed in figure 3.6(b). In computing the total

balance of shear stresses, in addition to the Reynolds and viscous shear stresses, a

small contribution is also observed from the mean convective stress, −〈ŪW̄ 〉+, arising

from the secondary mean flow in the channel. With this contribution, the total stress

shows good agreement with the theoretical line 〈τt〉+ = (1 − z/h), as required by

equation (3.2). These secondary flows are found to make a negligible contribution to

the O(ε) term in equation (3.5). It should be noted that all the profiles in figure 3.6(c)
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Figure 3.6: Spanwise-averaged turbulence statistics in channel flow with SH walls: (a)
mean streamwise velocity; (b) mean streamwise velocity with the slip velocity
subtracted; (c) Reynolds shear stress 〈τR,xz〉+ = −〈uw〉+, viscous shear stress
〈τv,xz〉+ = 〈∂Ū/∂z〉+, convective stress 〈τc〉+ = −〈ŪW̄ 〉+, and total shear

stress 〈τt〉+ = 〈τR,xz〉++〈τv,xz〉++〈τc〉+; (d,e,f) streamwise, 〈u2〉1/2+, spanwise,
〈v2〉1/2+, and wall-normal, 〈w2〉1/2+, turbulence intensities; (g,h,i) streamwise,
spanwise and wall-normal turbulence intensities; · · · , no-slip channel flow at
Reτ0 ≈ 223, without grid-embedding; – ·· – ·· –, g+ = w+ ≈ 4, 5.0%DR, without
grid-embedding; – · – · –, g+ = w+ ≈ 8, 10.9%DR, without grid-embedding; - - -
, g+ = w+ ≈ 16, 18.2%DR, without grid-embedding; —– ··—–, g+ = w+ ≈ 32,
22.6%DR, without grid-embedding; — ·—, g+ = w+ ≈ 64, 38.2%DR, without
grid-embedding; —– —–, g+ = w+ ≈ 128, 47.3%DR, without grid-embedding;
—�—, g+ ≈ 28, w+ ≈ 4, 51.6%DR, without grid-embedding; —△—, g+ ≈
56, w+ ≈ 8, 63.5%DR, without grid-embedding; —◦—, g+ ≈ 120, w+ ≈ 8,
83.2%DR, without grid-embedding; – –�– –, g+ ≈ 28, w+ ≈ 4, 49.2%DR,
with grid-embedding, GR = 2; – –N– –, g+ ≈ 56, w+ ≈ 8, 61.4%DR, with
grid-embedding, GR = 2; – –•– –, g+ ≈ 120, w+ ≈ 8, 81.1%DR, with grid-
embedding, GR = 2; – ·· –�– ·· –, g+ ≈ 28, w+ ≈ 4, 51.8%DR, large chan-
nel, without grid-embedding; – ·· –N– ·· –, g+ ≈ 56, w+ ≈ 8, 63.7%DR, large
channel, without grid-embedding; – ·· –•– ·· –, g+ ≈ 120, w+ ≈ 8, 82.8%DR,
large channel, without grid-embedding; · · · (green), no slip channel flow at
Reτ0 ≈ 100, without grid-embedding.
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fall within 1% of those obtained in the large channels, suggesting that the channel size

has not affected on the results. Furthermore, LB DNS results obtained without grid

embedding show differences of up to 10% with those obtained with grid-embedded

LB DNS, with GR = 2, due to the low resolution in the near-wall region. Beyond

z/h ≈ 0.2, however, the differences are negligible, as seen in figure 3.6(c), and all the

profiles collapse.

Figures 3.6(d-i) show the normalized profiles of the spanwise-averaged turbulence

intensities in the SH channel compared to the base flow. Within a ‘surface layer’ of

size z . g, the normalized streamwise, spanwise, and to a lesser extent wall-normal

turbulence intensities are enhanced compared to the base flow, as shown in figures

3.6(d-i). Outside of the ‘surface layer’, the normalized profiles of the turbulence inten-

sities approach those in the base flow, save for differences which can be attributed to

the lower Reτ of the drag reduced flow compared to the base flow, as is suggested by

comparing the figures 3.6(d-f) with figures 3.6(g-i). It will be shown in section § 3.3.3

that the enhanced production of turbulence intensities within the ‘surface layer’ arises

from the spanwise gradients of the mean streamwise velocity, ∂U/∂y, at the boundary

between the slip and no-slip stripes (see figure 3.4). This enhanced production occurs

in the streamwise component of the turbulence kinetic energy, 〈u2〉, and is transferred

to the other components through the pressure-strain transport term. Furthermore,

the normalized profiles of the spanwise-averaged turbulence intensities all fall within

1% of those obtained in large channels, suggesting that the channel size has no effect

on the results. In addition, near the walls, within a region of z+ . 5, the normal-

ized profiles of the spanwise-averaged turbulence intensities obtained with LB DNS

without grid-embedding show a difference of up to 10% with those obtained with

grid-embedding, with GR = 2, due to the low resolution in this region, as seen in fig-

ures 3.6(g-i). Outside this region, however, for z+ & 5, all the differences disappear,

as seen in figures 3.6(g-i), suggesting that the effect of grid resolution is limited to
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the near-wall region.

Furthermore, the presence of spanwise gradients in the mean streamwise velocity,

∂Ū/∂y (see figure 3.4), gives rise to an additional Reynolds shear stress, τ+R,xy = −uv+,

in the SH channel, as shown in figure 3.7. This Reynolds shear stress is anti-symmetric

over the spanwise extent of the slip or no-slip stripes, and thus leads to a zero stress

when averaged over the periodic pattern of the SH surface, 〈τR,xy〉+ = 0. However, as

will be shown in more details in § 3.3.3, it leads to an additional turbulence production

term, −〈uv∂Ū/∂y〉+. It is this term which gives rise to enhanced production of

turbulence at distances of z . g in figure 3.6.

3.3.3 Turbulence Kinetic Energy Dynamics

The features described in the previous section are also borne out in the dynamics

of turbulence kinetic energy (TKE). In stationary turbulence, the TKE dynamics in

the α direction is governed by (Hinze, 1975)

D

Dt

uαuα

2
= Pαα − εαα + t(Σ)

αα +Παα, (3.8)

where,

Pαα = −uαuγ
∂Ūα

∂xγ

,

εαα = 2νsαγ
∂uα

∂xγ

,

t(Σ)
αα = t(R)

αα + t(press)αα + t(v)αα

= −1

2

∂

∂xγ

uαuαuγ −
1

ρ

∂

∂xα

puα + 2ν
∂

∂xγ

uαsαγ ,

Παα =
1

ρ
p
∂uα

∂xα

.

Here, Pαα is the rate of TKE production per unit mass, εαα is the rate of vis-

cous dissipation, t
(R)
αα , t

(press)
αα , and t

(v)
αα are the rates of TKE transport by turbu-
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Figure 3.7: Spanwise variation of the Reynolds stress, τ+R,xy = −uv, in turbulent chan-

nel flow with SH walls: (a) g+0 = w+0 ≈ 4, 5.0%DR; (b) g+0 = w+0 ≈ 8,
10.9%DR; (c) g+0 = w+0 ≈ 16, 18.2%DR; (d) g+0 = w+0 ≈ 32, 22.6%DR;
(e) g+0 = w+0 ≈ 64, 38.2%DR; (f) g+0 = w+0 ≈ 128, 47.3%DR; (g)
g+0 ≈ 28, w+0 ≈ 4, 51.9%DR; (h) g+0 ≈ 56, w+0 ≈ 8, 63.5%DR; (i)
g+0 ≈ 120, w+0 ≈ 8, 83.2%DR; line types as in figure 3.4.
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lent fluctuations, pressure fluctuations and viscous stresses, respectively, which con-

stitute the total transport, t
(Σ)
αα . Also, Παα is the pressure-strain correlation, and

sαγ = 1/2(∂uα/∂xγ + ∂uγ/∂xα) is the fluctuating strain-rate tensor. No summation

is implied over the index α.

Summation of equation (3.8) over all α directions gives the TKE balance as (Hinze,

1975)

D

Dt
k2 = Pii − εii + t

(
∑

)
ii , (3.9)

where k2 = u2
i /2 is the turbulence kinetic energy per units mass, and the pressure-

strain term is eliminated because Πii = 0.

Figures 3.8 and 3.9 show the spanwise-averaged balance of Turbulence Kinetic

Energy (TKE) and its components in the SH channel, respectively. When normalized

with the bulk variables, h and Ub, the production, dissipation, and transport of TKE

in the SH channel display significant drops compared to the base flow, as shown in

figures 3.8(a-c), consistent with the presence of DR and the lower Reτ in the SH chan-

nel. When normalized in wall units, however, the profiles of TKE production, 〈P 〉+,

and dissipation, 〈ε〉+, collapse to those in the base flow outside of the ‘surface layer’

(z & g), while within the ‘surface layer’ (z . g), there is additional production and

dissipation of TKE compared to the base flow, as shown in figure 3.8(d). Similar to

that in regular turbulent channel flows, here, production of turbulence only occurs in

the streamwise component. However, in addition to the usual production of stream-

wise TKE due to the gradients of the mean streamwise velocity in the wall-normal

direction, −〈uw∂Ū/∂z〉, there is now additional production of streamwise TKE due

to gradients of the mean streamwise velocity in the spanwise direction, −〈uv∂Ū/∂y〉,

as shown in figures 3.8(e). The normalized production through −〈uw∂Ū/∂z〉 is little

changed from that in the base flow at low DR, but displays a small drop from the base

flow values throughout the cross-section of the channel at high DR, as shown in figure

3.8(e). The production due to −〈uv∂Ū/∂y〉 occurs inside the ‘surface layer’, within
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Figure 3.8: Spanwise-averaged turbulence kinetic energy budget in channel flow with SH
walls: (a) production 〈Pii〉+ and dissipation, 〈ε〉+; (b,c) breakdown of the

production term; (d) transport by the fluctuating Reynolds stress, 〈t(R)
ii 〉+;

(e) transport by the fluctuating viscous stress, 〈t(v)ii 〉+; (f) transport by the

fluctuating pressure, 〈t(press)ii 〉+; (g) total transport, 〈t(Σ)
ii 〉+; line types as in

figure 3.6.
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Figure 3.9: Spanwise-averaged budgets of streamwise, spanwise and wall normal turbulence
kinetic energy in channel flow with SH walls: (a,b,c) turbulence production,

〈Pαα〉+, dissipation, 〈ǫαα〉+, and total transport, 〈t(Σ)
αα 〉+ = 〈t(v)αα + t

(press)
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t
(R)
αα 〉+; (d,e,f) pressure strain correlation, 〈Παα〉+; (g,h,i) sum of transport

terms, 〈t(Σ)
αα 〉+ = 〈t(v)αα + t

(press)
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(R)
αα 〉+; line types as in figure 3.6.
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z . g from the walls, as shown in figure 3.8(e). This is where there are spanwise gradi-

ents in the mean streamwise velocity, mainly over the SH LMGs (see figure 3.4). This

additional production due to −〈uv∂Ū/∂y〉, however, is not drag reducing, but gives

rise to enhanced streamwise turbulence intensities, 〈uu〉, which is further transferred

to the spanwise 〈vv〉 and wall-normal 〈ww〉 components through the pressure-strain

correlation, as shown in figures 3.9(d-f). This leads to enhanced Π+
αα terms at z . g

as seen in figures 3.9(d-f), and the trends in the turbulence intensities observed at

z . g in figures 3.6(d-i).

These results all show that the effect of the SH surface on the dynamics of turbu-

lence remains confined to a thin ‘surface layer’ near the walls, within the region z . g,

where there is additional production of TKE, by −〈uv∂Ū/∂y〉, over the SH LMGs.

This enhanced TKE production is balanced locally by viscous dissipation within the

‘surface layer’, in low DR regime, as shown in figure 3.8(f). In the high DR regime,

the additional production of TKE within the ‘surface layer’ cannot be fully dissipated

locally, thus it is transported to the interior of the flow, mainly though the viscous

transport mechanisms, as seen in figure 3.8(h), where it is dissipated. This leads to

a reversal in the sign of the transport terms within the ‘surface layer’, compared to

the base flow, as shown in figures 3.8(f,h). The main effect of the SH surface on the

dynamics of turbulence is thus additional production of TKE within a ‘surface layer’

of thickness on the order of the width of the SH MG. This effect, however, is not drag

reducing, but turbulence enhancing. Outside of this ‘surface layer’, the normalized

dynamics of turbulence in the SH channel proceeds as in channel flows with no-slip

walls at the Reτ of the SH channel flow. Collectively, these results indicate that

the effect of the SH surface on the internal dynamics of turbulence is small, and the

dominant mechanism of turbulent DR with SH surfaces remains the effective slip on

the wall.

It should be noted that, due to the strongly inhomogeneous nature of this flow, the
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commonly used ‘isotropic’ definitions of the viscous dissipation, εii = ν(∂ui/∂xj)2,

and the viscous transport, t
(v)
ii = ν∂2k2/∂x2

j , differ from the correct thermodynamic

definitions, and the correct definitions have to be used for the comparisons (Corrsin,

1953).

3.3.4 Vortex Structures

Features similar to those that appeared in the turbulence statistics and TKE bud-

get, are also observed in the vorticity field over the Super-Hydrophobic (SH) surface.

Figure 3.10 displays the normalized profiles of the spanwise averaged root-mean-

square (rms) vorticity fluctuations in the SH channel, compared to a base channel

flow with no-slip walls. Within the ‘surface layer’ of size z . g near the SH walls, there

is enhanced vorticity fluctuations in all directions, as seen in figures 3.10(a-c). Outside

of the ‘surface layer’, however, the normalized profiles of the spanwise-averaged vor-

ticity fluctuations revert back to those of the no-slip wall, once again suggesting that

effect of the SH surface on the dynamics of turbulence remains confined to a narrow

region near the wall. Furthermore, LB DNS results fall within 1% of those obtained

in the large channel, suggesting that the channel size has not had any effect on the

results. In addition, LB DNS results with grid embedding, with GR = 2, remain

within 10% of those obtained without grid-embedded. These differences, however, all

are limited to a region of width z+ . 5 near the SH walls. Beyond z+ ≈ 5, there is no

difference between the LB DNS results obtained without grid-embedding and those

obtained with grid-embedding, suggesting that the grid resolution has only affected

the results within z+ . 5.

Within the ‘surface layer’, with z . g, figure 3.10(a) shows that with increasing

the width of the SH LMGs, the local maximum of the normalized profile of the stream-

wise vorticity fluctuations moves towards the wall, while its minimum disappears. On

a flat no-slip wall, the normalized profile of the streamwise vorticity fluctuations, in
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Figure 3.10: Spanwise-averaged root mean square (rms) vorticity fluctiations in channel
flow with SH walls: (a) streamwise component, 〈ω2

x〉1/2+; (b) spanwise com-
ponent, 〈ω2

y〉1/2+; (c) wall-normal component, 〈ω2
z〉1/2+; line types as in figure

3.6.

wall units, contains a local maximum, at z+ ≈ 20, and a local minimum, at z+ ≈ 5

(Kim et al., 1987). It has been suggested that the location of its local maximum

corresponds to the average location of the centers of the streamwise vortices near the

wall (Kim et al., 1987). These near-wall streamwise vortices, induce streamwise vor-

ticity of the opposite sign on the wall, due to the no-slip condition (Kim et al., 1987).

Since the streamwise vorticity must become zero somewhere between the center of

the vortex and the wall, Kim et al. (1987) have suggested that the local minimum

of the normalized profile of the streamwise vorticity fluctuations, in wall units, cor-

responds to the average location of the edge of the vortices. The average radius of

the streamwise vortices, in wall units, corresponds to the difference between the loca-

tions of these extrema (Kim et al., 1987). On a slip surface, however, the streamwise

vortices do not induce streamwise vorticity of the opposite sign. As a result, they

would stay closer to the wall. In agreement with Kim et al. (1987)’s interpretation of

the extrema of the normalized streamwise vorticity fluctuations, figure 3.10(a) shows

that with increasing the width of the SH LMGs, the local maximum of the streamwise

vorticity fluctuations moves towards the wall, while its minimum disappears.

Furthermore, within the ‘surface layer’, with z . g, increasing the width of the

SH LMGs leads to an increase in the normalized magnitudes of the spanwise vorticity
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fluctuations, as shown in figure 3.10(b). Similar behavior is also observed with the

normalized magnitudes of the wall-normal vorticity fluctuations in this region, as

seen in figure 3.10(c). Investigation of the vortex structures over the SH surface

suggests that formation of spanwise shear layers of ∂u/∂y between the high speed

flow on the slip regions and the low speed flow on the adjacent no-slip regions leads

to the development of additional wall-normal vorticity on the SH surface, which is

further observed in figure 3.10(c). The resulting wall-normal vorticity is then bent

and stretched under the mean spanwise shear, ∂Ū/∂y, leading to the formation of

additional spanwise vorticity, observed in figure 3.10(b).

All the changes in the vorticity dynamics over the SH surface, however, are con-

fined to the ‘surface layer’, in z . g. Outside this region, the normalized dynamics

of turbulence reverts back to that of regular wall-bounded turbulent flows, as seen

in figures 3.10(a-c). As a result, DR with the SH surfaces is a surface phenomenon,

without any significant effect on the dynamics of turbulence in the core region.
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CHAPTER IV

Effect of Interface Deformation

and Comparison to Riblets

The Direct Numerical Simulation (DNS) studies reported in chapter § III, and all

other simulations of Super-Hydrophobic (SH) surfaces in turbulent flow reported in

the literature to date (Min and Kim, 2004; Fukagata et al., 2006; Martell et al., 2009,

2010; Busse and Sandham, 2012; Park et al., 2013; Jelly et al., 2014; Türk et al.,

2014; Seo et al., 2015; Jung et al., 2016), are based on an idealization of SH surfaces

in which the liquid/gas interfaces are assumed to be flat. The liquid/gas interfaces on

real SH surfaces, however, are not flat, but deform under the influence of pressure and

surface tension forces, according to the Young-Laplace equation (Ou and Rothstein,

2005; Tsai et al., 2009; Rathgen and Mugele, 2010). Experimental (Steinberger et al.,

2007; Tsai et al., 2009; Karatay et al., 2013a), analytical (Sbragaglia and Prosperetti ,

2007; Crowdy , 2010, 2016) and computational studies (Wang et al., 2014) in laminar

flow have shown that interface curvature can have negligible or significant effect on

the resulting slip lengths and Drag Reductions (DRs) obtained with the SH surfaces,

depending on the size, geometry and orientation of the surface micro-texture relative

to the flow domain, and whether the protrusion angle is positive or negative. In

laminar channel flow with SH Longitudinal Micro-Grooves (LMGs) of size 0.64 . (g+

w)/h . 2.56 & g/w = 1 on one wall, experiments have suggested that a small negative
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protrusion angle can lead to decreases of 66% to 83% in the resulting slip lengths

(Tsai et al., 2009), compared to the values obtained with the analytical solution of

Philip (1972a). In laminar channel flow with SH transverse Micro-Grooves (MGs) of

size 1.6 . (g + w)/h . 2 & 0.67 . g/w . 1 on one wall, and positive protrusion

angles, Karatay et al. (2013a) have shown that, increasing the protrusion angle up

to 10o leads to a monotonic increase, of up to 7%, in the resulting slip lengths, while

increasing the interface protrusion angle beyond 10o leads to a monotonic drop, of

up to 30%, compared to flat interfaces. Experiments of Steinberger et al. (2007) with

a vibrating sphere over a bubble mattress have shown that at negative protrusion

angles, increasing the protrusion angle leads to a monotonic decrease, of up to 30%, in

the resulting slip length, while at positive protrusion angles, increasing the interface

protrusion angle leads to a monotonic drop, of up to 241%, in the resulting slip

length, compared to that with flat interfaces. Analytical solutions in laminar flow

suggest that in the limit of vanishing confinement ratios, (g + w)/h → 0, and shear-

free fractions, g/w → 0, the normalized slip length only depends on the interface

protrusion angle (Crowdy , 2010). Negative protrusion angles lead to monotonic drops,

of up to 20%, in the resulting slip lengths, while positive protrusion angles give rise to

monotonic increases, of up to 80% (Crowdy , 2010). Increasing the shear-free fraction,

g/w, makes the dependence of the normalized slip lengths to the protrusion angles

stronger (Wang et al., 2014), resulting in monotonic drops, of up to 30%, in the

resulting slip lengths, with positive protrusion angles, and monotonic increases, of up

to 270%, with negative protrusion angles, as shown by the computational studies of

Wang et al. (2014) and analytical studies of Crowdy (2016). At larger confinement

ratios, (g + w)/h, computational studies in channels with SH LMGs suggest that

there are two distinct regimes for the effect of interface protrusion angle on the slip

length, depending on the magnitude of the confinement ratio, (g+w)/h (Wang et al.,

2014). With small confinement ratios, (g + w)/h ∼ 0.2, and a shear-free fraction of
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g/w = 0.75, negative protrusion angles lead to monotonic drops, of up to 18%, in the

resulting slip length, while positive protrusion angles lead to monotonic increases, of

up to 100% (Wang et al., 2014). With large confinement ratios, (g + w)/h ∼ 3, and

g/w = 0.75, negative protrusion angles lead to monotonic increases, of up to 240%,

in the resulting slip length, while positive protrusion angles lead to monotonic drops,

of up to 100% (Wang et al., 2014). The effect of interface deformation on DR with

SH surfaces in turbulent flow, however, has not been studied before.

In this chapter, a first set of DNS studies of the effect of interface deformation on

DR with SH LMGs in turbulent channel flow is reported. The liquid/gas interfaces

in these studies were assumed to be stationary, curved and shear-free. Interface

protrusion angles of θ = 0o, −30o, −60o and −90o were studied in the simulations. In

addition, the same geometries as those formed by the interfaces of the SH LMGs are

investigated as riblets, by replacing the shear-free boundary conditions with no-slip,

to compare the mechanism of DR with riblets to SH LMGs.

4.1 DNS Studies

To investigate the effect of interface curvature, a set of DNS studies were performed

in turbulent channel flow with SH LMGs on the walls. The liquid/gas interfaces on

the SH LMGs were modeled as stationary, curved, shear-free boundaries, with the

meniscus shape determined from the balance between the pressure difference across

the interface and surface tension, as given by the Young-Laplace equation (De Gennes

et al., 2002; Rathgen and Mugele, 2010)

∆P̃ = − 1

Weτ0
∇̃ · n. (4.1)

Here, ∆P̃ = ∆P/ρu2
τ0

is the non-dimensional Laplace pressure across the meniscus,

Weτ0 = ρu2
τ0
g/σ is the Weber number, σ is the surface tension, g is the width of the

79



SH LMGs, n is the unit normal to the interface, and ∇̃ · () denotes the divergence

operator in the non-dimensional coordinate system, (ξ̃, η̃, ζ̃) = (ξ/g, η/g, ζ/g), defined

using a local coordinate system (ξ, η, ζ) centered on the SH LMG, as shown in figure

4.1.

Equation (4.1) can be integrated analytically, between −1/2 ≤ η̃ ≤ 1/2, subject

to the boundary conditions (dζ̃/dη̃)|(η̃=0) = 0 and ζ̃|(η̃=±1/2) = 0, to give the shape of

the interface, F̃ (η̃, κ̃), as

F̃ (η̃, κ̃) = − 1

2κ̃
(2
√

1− κ̃2η̃2 −
√
4− κ̃2), (4.2)

where κ̃ = ∆P̃ Weτ0 is the non-dimensional curvature of the interface, which is related

to the interface protrusion angle through

θ = tan−1

(

κ̃

2
√

1− (κ̃/2)2

)

. (4.3)

Static interface protrusion angles of θ = 0o (κ = 1), corresponding to flat in-

terfaces, θ = −30o, −60o, and −90o (κ = 2), corresponding to maximum negative

protrusion angles, were investigated by DNS. Although negative protrusion angles be-

yond −30o cannot be sustained on smooth SH walls, because of the theoretical limit

on the maximum possible contact angle on smooth surface (150o) (Nishino et al.,

1999), this limit can be bypassed by using hierarchical, dual-structured SH surfaces

in which nano-scale textures are etched on the sides of surface micro-textures (Lee

and Kim, 2009). Hence, the full range of protrusion angles was studied by DNS.

Furthermore, to compare the mechanism of DR with SH surfaces to that with

riblets, a set of DNS studies was performed in turbulent channel flow with scallop

shaped riblets on the walls. The riblets in these DNS studies had the same geometries

as those formed by the SH LMG interfaces, with the slip boundary condition on the

curved interfaces replaced with the no-slip condition.
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Figure 4.1: (a) Schematic of the channel and the coordinate system; (b) detailed view of
the MG and the computational grid.

All the DNS studies were performed in channels of size 5h × 2.5h × 2h, in the

streamwise (x), spanwise (y), and wall-normal (z) directions, respectively. Grid-

embedding, with GR = 4, was used for all the simulations. The fine grid in these

studies extended from the domain boundaries up to a distance of z+0 ≈ 30 away

from the walls, as shown in figure 4.1. Grid resolutions of 2048 × 1024 × 56 in the

streamwise, spanwise, and wall-normal directions, respectively, on the fine grids, and

512×256×197 in the streamwise, spanwise, and wall-normal directions, respectively,

on the coarse grid, were employed in the simulations. The corresponding grid spacings

were ∆+0
c ≈ 2, and ∆+0

f ≈ 0.5 on the coarse and fine grids, respectively, in all

three directions. All the simulations were initialized from a fully developed base

turbulent channel flow with no-slip walls, and GR = 4 grid-embedding ratio at a bulk

Reynolds number of Reb ≡ q/2ν = 3600, corresponding to a friction Reynolds number

Reτ0 ≈ 222. The simulations with SH LMGs were first initialized from this base flow

DNS by maintaining a constant pressure gradient in the channel. The magnitude of

this pressure gradient was adjusted several times during this initial stage, to drive

the flow towards the target bulk Reynolds number, Reb = 3600. Once the target

bulk Reynolds number was obtained, the simulations were continued by maintaining

a constant flow rate in the channel.

A total of twenty one cases, corresponding to SH LMGs or riblets of size g+0 ≈ 14,
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28, 56 and g/w = 7 were studied, as reported in table 4.1. With each set of SH LMGs

sizes, interface protrusion angles of θ = 0o, −30o, −60o, and −90o, corresponding

to non-dimensional interface curvatures of κ̃ = 0, 1, 1.736, and 2, respectively, were

studied in the simulations. With the interface protrusion angles of θ = −30o, −60o,

and −90o, the slip boundary condition on the curved interfaces of the SH LMGs was

replaced with the no-slip condition, to investigate DR with riblets. For comparison,

all these simulations were also repeated in laminar channel flow, at Reb = 150.

4.2 The Magnitude of DR in Channel Flows with Micro-

Textured Walls

To analyze the results obtained with DNS, an analytical expression for the break-

down of DR in laminar and turbulent channel flows with any pattern of micro-texture

on the walls, was derived. This expression separates the contributions arising from

different sources to DR. Using the results obtained from DNS, the effect of each of

these contributions can be evaluated and compared.

For a stationary turbulent flow in a channel with any pattern of micro-texture on

the walls, the streamwise Reynolds-averaged momentum equation, is given by

∂

∂x
(ν

∂Ū

∂x
− uu− Ū Ū) +

∂

∂y
(ν

∂Ū

∂y
− uv − Ū V̄ ) +

∂

∂z
(ν

∂Ū

∂z
− uw − ŪW̄ ) =

1

ρ

∂P̄

∂x
,

(4.4)

where the overbar denotes Reynolds-averaging, Ū , V̄ , W̄ and u, v, w are the stream-

wise (x), spanwise (y), and wall-normal (z) components of the mean and fluctuating

velocity fields, respectively, and P̄ is the mean pressure. Equation (4.4) can also

describe steady, laminar flow in a channel with any pattern of micro-textures on the

walls, if u, v, and w are all set equal to zero.

In a channel large enough to accommodate the largest of turbulence structures,
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(g+w)/2H 0.018 0.018 0.018 0.018 0.036 0.036 0.036 0.036 0.072 0.072 0.072 0.072
g+0 14 14 14 14 28 28 28 28 56 56 56 56
w+0 2 2 2 2 4 4 4 4 8 8 8 8
θ 0◦ -30◦ -60◦ -90◦ 0◦ -30◦ -60◦ -90◦ 0◦ -30◦ -60◦ -90◦

S
H

L
M
G
s

DRlam 13.1% 12.8% 12.8% 12.8% 20.5% 19.9% 19.7% 20.0% 32.5% 31.5% 31.8% 32.7%
DRslip 13.1% 12.7% 12.6% 12.5% 20.5% 19.6% 19.2% 19.0% 32.5% 30.8% 30.1% 29.6%
DRQg

- 0.1% 0.2% 0.3% - 0.3% 0.5% 1.0% - 0.7% 1.7% 3.1%

DRturb 36.6% 38.5% 37.2% 36.1% 48.2% 53.1% 48.1% 38.4% 59.5% 63.3% 59.6% 55.8%
DRslip 31.1% 26.9% 26.0% 26.0% 44.4% 39.4% 40.5% 45.3% 57.1% 55.1% 57.4% 60.6%
DRǫ 5.5% 11.4% 10.8% 9.4% 3.8% 13.2% 6.5% -9.3% 2.4% 6.9% -0.9% -11.2%
DR〈τc〉 -0.1% -0.3% -0.2% -0.3% -1.9% -3.9% -1.2% -6.3% -2.6% -1.4% -7.6% -9.5%
DR〈τR〉 5.6% 11.7% 11.0% 9.7% 5.7% 17.1% 7.7% -3.0% 5.0% 8.3% 6.7% -1.7%
DR〈τR〉,Reτs 11.0% 8.4% 8.3% 8.4% 14.6% 10.6% 12.2% 17.6% 17.0% 14.4% 17.4% 21.5%
DR〈τR〉,mod -5.4% 3.3% 2.7% 1.3% -8.9% 6.5% -4.5% -20.6% -12.0% -6.1% -10.7% -23.2%
DRQg

- 0.2% 0.4% 0.7% - 0.5% 1.1% 2.4% - 1.3% 3.1% 6.4%

R
ib
le
ts

DRlam - 1.2% 2.2% 3.0% - 2.4% 4.4% 5.8% - 4.9% 8.4% 11.2%
DRslip - 1.2% 2.2% 3.0% - 2.4% 4.3% 5.7% - 4.8% 8.2% 10.7%
DRQg

- 0.0% 0.0% 0.0% - 0.0% 0.1% 0.1% - 0.1% 0.2% 0.5%

DRturb - 1.2% 5.9% 10.9% - 3.0% 5.9% 9.0% - 2.1% 0.9% -8.5%
DRslip - 5.6% 9.4% 11.8% - 11.2% 18.9% 23.8% - 22.5% 36.6% 43.7%
DRǫ - -4.4% -3.6% -1.0% - -8.3% -13.2% -15.3% - -20.7% -36.8% -54.8%
DR〈τc〉 - -1.9% -1.4% -1.2% - -0.4% -2.4% -3.1% - -4.2% -10.7% -24.5%
DR〈τR〉 - -2.5% -2.2% 0.2% - -7.9% -10.8% -12.2% - -16.5% -26.1% -30.3%
DR〈τR〉,Reτs - 1.4% 3.8% 4.3% - 4.1% 8.2% 10.0% - 10.7% 20.5% 28.6%
DR〈τR〉,mod - -3.9% -6.0% -4.1% - -12.0% -19.0% -22.2% - -27.2% -46.6% -58.9%
DRQg

- 0.0% 0.1% 0.1% - 0.1% 0.2% 0.5% - 0.3% 1.1% 2.6%

Table 4.1: Breakdown of DR in laminar and turbulent channel flow with SH LMGs or riblets.
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with periodic boundary conditions in the streamwise and spanwise directions, averag-

ing equation (4.4) over the wall-parallel directions, and integrating in the wall-normal

direction from the tip of the surface micro-indentations at z = 0, to a height z inside

the channel gives

ν〈∂Ū
∂z

〉 − 〈uw〉 − 〈ŪW̄ 〉 = −h

ρ
〈∂P̄
∂x

〉
(

1− z

h

)

. (4.5)

Here, 〈 〉 denotes averaging in the wall-parallel directions, h denotes the nominal

half-height of the channel, defined as the distance between the tips of the surface

micro-indentations on the center of the channel, as seen in figure 2.7(a), and we

have used
(

ν〈∂Ū/∂z〉 − 〈uw〉 − 〈ŪW̄ 〉
)

|z=0 = −〈∂P/∂x〉h/ρ, which is required by

the force balance in the channel between z = 0 and z = 2h.

Integration of equation (4.5) in the wall-normal direction, once from 0 to z, and

again from 0 to h (Fukagata et al., 2002; Peet and Sagaut , 2009; Rastegari and Akha-

van, 2015), gives

− h

ρU2
b0

〈∂P̄
∂x

〉



1− 3

1
∫

0

(

−〈uw〉 − 〈ŪW̄ 〉
−h

ρ
〈∂P̄
∂x
〉

)

(1− χ) dχ



 =
3

Reb

(

1− Qg

Q
− Us

Ub0

)

,

(4.6)

where Ub0 is the bulk velocity in a ‘base’ turbulent channel flow with smooth no-slip

walls at the same bulk Reynolds number, Reb ≡ q/2ν, hence the same flow rate per

unit spanwise width, q ≡ Q/Ly, and the same flow rate, Q, as the channel with

micro-textured walls, and a cross-sectional area, A0, equal to the ‘nominal’ cross-

sectional area, An, of the channel with micro-textured walls, as defined by the area

enclosed between the tips of the surface micro-indentations on the opposing walls

of the channel; Qg is the volume flow rate through the micro-texture indentations;

Us ≡ 〈Ū〉|z=0 is the average slip velocity at the tip of the surface micro-texture;

and χ = z/h is the non-dimensional wall-normal coordinate. Equation (4.6) can be
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rearranged as

− h

ρU2
b0

〈∂P̄
∂x

〉 = 3

Reb

(

1− Qg

Q
− Us

Ub0

)(

1

1− 3I

)

, (4.7)

where the integral I is defined as

I =
1

−〈∂P̄
∂x
〉h
ρ

1
∫

0

(

−〈uw〉 − 〈ŪW̄ 〉
)

(1− χ) dχ

=
1

−〈∂P̄
∂x
〉h
ρ

1
∫

0

(〈τR〉+ 〈τc〉) (1− χ) dχ

= I〈τR〉 + I〈τc〉. (4.8)

The integral I denotes the contributions of the Reynolds shear stress, 〈τR〉 ≡ −〈uw〉,

and any mean convective shear stresses, 〈τc〉 ≡ −〈ŪW̄ 〉, to the overall wall shear

stress in the channel with micro-textured walls, and I is bounded by 0 < I < 1/3 per

equation (4.5). For the base channel flow with smooth no-slip walls, equation (4.7)

reduces to

− h

ρU2
b0

〈∂P̄
∂x

〉0 =
3

Reb

(

1

1− 3I0

)

, (4.9)

where

I0 =
1

−〈∂P̄
∂x
〉0 hρ

1
∫

0

−〈uw〉0 (1− χ)dχ

=
1

−〈∂P̄
∂x
〉0 hρ

1
∫

0

〈τR〉0 (1− χ)dχ

= I〈τR〉0 . (4.10)

Defining the DR as

DR ≡
(

1− Cd

Cd0

)

, (4.11)
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the magnitude of DR can be expressed as

DR ≡
(

1− Cd

Cd0

)

=



1−

(

Fd

ρ(Q/An)2A

)

(

Fd0

ρ(Q/A0)2A0

)



 =

(

1− 〈∂P̄
∂x
〉

〈∂P̄
∂x
〉0

)

, (4.12)

where Cd ≡ Fd / [ρ (Q/An)
2A] and Cd0 ≡ Fd0 / [ρ (Q/A0)

2A0] are the drag coefficients,

Fd and Fd0 are the drag forces, A and A0 are the cross-sectional areas, and (Q/An) and

(Q/A0) are the characteristic velocities in the channel with micro-textured walls and

the base channel flow, respectively. Here, the characteristic velocity in the channel

with micro-textured walls has been defined using its ‘nominal’ cross-sectional area,

An, instead of its actual cross-sectional area, A, because many surface micro-textures

do not allow any net flow rate through the micro-indentations, and even with micro-

texture, such as SH LMGs or riblets, which do allow a flow through, both the present

DNS studies, as well as prior investigations (Garćıa-Mayoral and Jiménez , 2011),

show that the fractional flow rate, Qg/Q, through the SH LMG or riblet indentations

is disproportionately low compared to the fractional cross-sectional area, Ag/A, of the

micro-grooves, such that (Q/An) provides a much better estimate of the characteristic

velocity in the micro-textured channel than (Q/A).

Substitution of equations (4.7) and (4.9) into equation (4.12) gives the magnitude

of DR as

DR =

{

Us

Ub0

}

+

{

(1− Us

Ub0

− Qg

Q
)(

3ε

1− 3I
)

}

+

{

Qg

Q

}

= {DRslip}+ {DRε}+
{

DRQg

}

, (4.13)

where ε = (I0 − I) is the difference between the values of the I integrals in the base

channel flow and the channel flow with micro-textured walls.

The quantity ε = (I0−I) = (I〈τR〉0−I〈τR〉−I〈τc〉) in equation (4.13) is a measure of

the differences in the normalized structure and dynamics of turbulence and the mean
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flow in the channel with micro-textured walls compared to the base turbulent channel

flow with smooth no-slip walls. These two effects can be separated by decomposing

ε into

ε = ε〈τR〉 + ε〈τc〉, (4.14)

where ε〈τR〉 = (I〈τR〉0 − I〈τR〉) represents the changes in the normalized structure of the

turbulence, and ε〈τc〉 = (−I〈τc〉) represents any changes in the structure of the mean

flow. The contributions to ε〈τR〉, in turn, can be further decomposed into two effects:

(a) changes in 〈τR〉 attributable to the drop in the friction Reynolds number of the

flow due to the presence of the slip velocity at the tip of surface micro-indentations,

and (b) other changes in 〈τR〉 attributable to other modifications to the structure

and dynamics of turbulence due to the presence of the surface micro-textures on the

walls. These two effects can be separated by decomposing ε〈τR〉 into

ε〈τR〉 = ε〈τR〉,Reτs + ε〈τR〉,mod, (4.15)

where ε〈τR〉,Reτs = (I〈τR〉0 − I〈τR〉,Reτs ) represents the change in the I integral in a

smooth-walled, no-slip turbulent channel flow when the friction Reynolds number is

dropped from Reτ0 to Reτs , where Reτs = Reτ0
√

(1− Us/Ub0) is the friction Reynolds

number which would be obtained in the channel with micro-textured walls based on

the effect of the wall slip-velocity alone, and ε〈τR〉,mod = (I〈τR〉,Reτs − I〈τR〉) represents

any other changes in the I integral due to the presence of the micro-texture on the

walls, and I〈τR〉,Reτs = 1/(−〈∂P̄ /∂x〉Reτs h/ρ)
∫ 1

0
−〈uw〉Reτs (1− χ)dχ is the I integral

in a smooth-walled, no-slip turbulent channel flow with friction Reynolds number

equal to Reτs .
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Using this decomposition, equation (4.13) can be written as

DR =

{

Us

Ub0

}

+

{(

1− Us

Ub0

− Qg

Q

)(

3ε

1− 3I

)}

+

{

Qg

Q

}

= {DRslip}+ {DRε}+
{

DRQg

}

=

{

Us

Ub0

}

+

{(

1− Us

Ub0

− Qg

Q

)(

3(ε〈τR〉 + ε〈τc〉)

1− 3I

)}

+

{

Qg

Q

}

= {DRslip}+
{

DR〈τR〉 +DR〈τc〉
}

+
{

DRQg

}

=

{

Us

Ub0

}

+

{(

1− Us

Ub0

− Qg

Q

)(

3(ε〈τR〉,Reτs + ε〈τR〉,mod + ε〈τc〉)

1− 3I

)}

+

{

Qg

Q

}

= {DRslip}+
{

DR〈τR〉,Reτs +DR〈τR〉,mod +DR〈τc〉
}

+
{

DRQg

}

. (4.16)

Equation (4.16) provides an analytical expression for the magnitude of DR in laminar

or turbulent channel flow with any pattern of SH or riblet micro-textures on the walls,

while providing a breakdown of DR into five contributions: (i) the DR arising from

the effective slip on the wall, as embodied in the normalized average slip velocity at

the tip of the wall micro-indentations, {Us/Ub0}, represented by {DRslip}; (ii) the

DR arising from changes to the structure of turbulence due to the drop in the friction

Reynolds number of the flow due to the presence of this effective slip at the wall,

represented by
{

DR〈τR〉,Reτs

}

; (iii) the DR or Drag Increase (DI) arising from other

modifications to the normalized structure and dynamics of turbulence due to the

presence of the micro-textures on the walls, represented by
{

DR〈τR〉,mod

}

; (iv) the

DR or DI arising from modifications to the structure of the mean flow due to the

presence of the micro-texture on the walls, represented by
{

DR〈τc〉
}

; and (v) small,

and generally insignificant, DR arising from the fractional flow rate {Qg/Q} through

the micro-texture indentations, represented by
{

DRQg

}

. For ‘idealized’ SH channel

flows with ‘flat’ liquid/gas interfaces, Qg = 0, and equations (4.13) and (4.16) reduce

to equation (3.5).

The integral I〈τR〉,Reτs , required for the evaluation of ε〈τR〉,Reτs , can be computed

directly from its definition, I〈τR〉,Reτs =
[

1/(−〈∂P̄ /∂x〉Reτsh/ρ)
] ∫ 1

0
−〈uw〉Reτs (1 −
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χ)dχ, by performing additional DNS in smooth-walled, no-slip turbulent channel

flows at friction Reynolds number equal to Reτs . This is the approach adopted in

this thesis. Alternatively, I〈τR〉,Reτs can be computed using the relation I〈τR〉,Reτs =

(1/3) [1− (3/Rebs)(Ubs/uτs)
2], which can be obtained from the analog of equation

(4.9) for a smooth-walled, no-slip turbulent channel flow at a bulk Reynolds number

Rebs and a friction Reynolds number Reτs . The term I〈τR〉,Reτs can then be evaluated

using estimates of (Ubs/uτs) from experimental correlations such as Dean’s correlation

(Dean, 1978).

4.3 Results

4.3.1 DR and its Breakdown in Channel Flows with SH LMGs or Riblets

on the Walls

Figure 4.2 shows the normalized slip velocities, DRs and breakdown of DR, ob-

tained in DNS of laminar and turbulent channel flow with SH LMGs or riblets on the

walls. In laminar channel flow with SH LMGs on the walls, equation (4.13) reduces

to DR = DRslip +DRQg
, where DRslip = Us/Ub0 is the normalized slip velocity and

DRQg
= Qg/Q0 is the fraction of flow rate through the micro-texture indentations.

The contribution to DR arising from DRQg
is generally negligible, except for large

SH LMGs, where it can be as large as 3%, as shown in figures 4.2(b,c) and table 4.1.

The normalized wall slip velocity, Us/Ub0 , hence DRslip, increases with increasing

MG width for both SH LMGs and riblets, as shown in figure 4.2(a). However, the

normalized slip velocities obtained with SH LMGs are ∼ 3 to 10 times larger than

those obtained with riblets, depending on the width and depth of the MGs. Interface

protrusion angle has a small effect on the resulting slip velocities and DRs with SH

LMGs, leading to drops of up to 3% in DRslip and up to 1% in DR, compared to

flat interfaces. With riblets, however, the effect of interface protrusion angle on the
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resulting slip velocities and DRs is more pronounced. Increasing the riblet MG depth

from d/g = 1/7 (θ = −30o) to d/g = 1/2 (θ = −90o) led to increases of ∼ 220% to

250% in both the slip velocity and DR. The drop in the slip velocities obtained with

the SH LMGs, as the protrusion angle increases, and the increase in the slip velocities

obtained with riblets, as the MG depth increases, both arise from the displacement

of the boundary condition inside the MGs away from the tip of the MG. Such a

displacement weakens the effect of the boundary conditions on the slip velocity at

the tip of MGs, thus resulting in a drop of the slip velocities with SH LMGs, and an

increase in the slip velocities with riblets.

Similar features to those observed in laminar flow for DRQg
and DRslip, can also

be observed in turbulent flow, as seen in figures 4.2(d,f) and table 4.1. However, the

magnitude of DRQg
in turbulent flow is larger than in laminar flow with both SH

LMGs and riblets. Similarly, the normalized slip velocities, Us/Ub0 , in turbulent flow

are larger than those in laminar flow for both SH LMGs and riblets, by factors of

∼ 2 and ∼ 4 − 5, respectively. The effect of interface protrusion angle on the slip

velocities with SH LMGs in turbulent flow also remains minor, giving rise to drops of

up to 5% or increases of up to 3.5% in DRslip, compared to flat interfaces, depending

on whether the maximum interface depth is d+ & 10 or d+ . 10. In the latter

case, when the maximum interface depth is d+ . 10, the trends in the slip velocities

remain similar to this in laminar flow. In the former case, when maximum interface

depth is d+ & 10, the MGs are deep enough for the flow inside the SH LMGs to

become turbulent, resulting in an enhancement of the slip velocities compared to flat

interfaces. With riblets, the normalized slip velocities increase by a factor of ∼ 2,

regardless of MG size, as the riblet MG depth increases from d/g = 1/7, at θ = −30o,

to d/g = 1/2, at θ = −90o, similar to laminar flow.

The trends of DRslip in turbulent flow, however, do not translate into similar

trends in the resulting DRs, because there are additional contributions arising from
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Figure 4.2: Normalized slip velocities, DRs and breakdown of DRs in laminar and turbu-
lent channel flow with SH LMGs and riblets: (a,b,c) Normalized slip velocity,
DR, and breakdown of DR in laminar channel flow with SH LMGs or riblets;
(d,e,f) normalized slip velocity, DR, and breakdown of DR in turbulent channel
flow with SH LMGs or riblets; (g,h,i) DR arising from DRε, DR〈τR〉, DR〈τc〉,
DR〈τR〉,Reτs

and DR〈τR〉,mod in turbulent channel flow with SH LMGs or riblets.

�, �, ©, SH LMGs, θ = 0o, g+0 = 14, 28, 56; �| , �| , ©| , SH LMGs, θ = −30o,
g+0 = 14, 28, 56; ⊞, ⊞,

⊕

, SH LMGs, θ = −60o, g+0 = 14, 28, 56; ⊠, ⊠,
⊗

, SH LMGs, θ = −90o, g+0 = 14, 28, 56, respectively; �|� , �|� , ©|� , riblets,
θ = −30o, g+0 = 14, 28, 56; ⊠� , ⊞� ,

⊕� , riblets, θ = −60o, g+0 = 14, 28, 56; ��× ,

⊠� , ⊗• , riblets, θ = −90o, g+0 = 14, 28, 56; · · · , DR = Us/Ub0 .
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the modifications to the normalized structure and dynamics of turbulence and the

mean flow, embodied in DRε, as predicted by equation (4.13) and shown in figures

4.2(e,g). With SH LMGs, the contributions from DRε can result in up to ∼ 13%

additional DR at low protrusion angles (θ = −30o), and up to −11% Drag Increase

(DI) at high protrusion angles (θ = −90o). As a result of these contributions, for

a given SH LMG width, the highest DRs were always obtained at low protrusion

angles (θ = −30o), and the lowest DRs were always obtained at high protrusion

angles (θ = −90o). The resulting overall DRs differ from those obtained with flat

interfaces by up to +5% to −10%, for low and high protrusion angles, respectively.

With riblets, the contributions of DRε are always drag increasing. But the magnitude

of DRslip significantly increases for riblets of size g+0 & 14, as seen in figure 4.2(g).

This drag reducing contribution from DRε negates the drag reducing effect of DRslip,

and leads to diminishing DRs for riblets of size g+0 & 14 and eventual DIs with riblets

of size g+0 & 28, as seen in figure 4.2(e). This drop in DR with riblets of MG size

g+ & 15 is a well-known feature of DR with riblets, which has been observed in many

experimental studies of riblet DR (Bushnell and Hefner , 1990; Bechert et al., 1997),

as shown in figure 4.3.

The contributions to DR arising from DRε can be broken down into DRε =

DR〈τR〉 +DR〈τc〉, as given by equation (4.16), where DR〈τR〉 represents the contribu-

tions arising from modifications to the Reynolds shear stresses, and DR〈τc〉 represents

the contributions arising from any mean convective shear stresses developed in the

presence of the wall micro-texture. Analysis of DNS results show that the contribu-

tions arising from mean convective shear stresses, DR〈τc〉, are always drag increasing

with both SH LMGs and riblets, as shown in figure 4.2(h) and table 4.1. The contri-

butions arising from modifications to the Reynolds shear stresses, DR〈τR〉, are shown

by DNS to be always drag increasing with riblets of any size and SH LMGs of depth

d+ & 10, and only moderately drag reducing with SH LMGs of depth d+ . 10, as
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Figure 4.3: Wall-friction reduction with scallop shape riblets in turbulent boundary layer
flow as a function of riblet size: △, experiments of Bechert et al. (1997), d/g =
0.5; ♦, experiments of Bechert et al. (1997), d/g = 0.7; ©, experiments of
Bechert et al. (1997), d/g = 1.0.

seen in figure 4.2(h). The finding that DR〈τR〉 is always drag increasing with riblets,

indicates that the contributions arising from modifications to the Reynolds shear

stresses are always drag increasing with riblets. This stands in contrast with current

understanding of the mechanism of DR with riblets, which has always attributed DR

with riblets to the weakening of turbulent vortical structures in the near wall region

(Bushnell and Hefner , 1990; Choi et al., 1993; Bechert et al., 1997; Karniadakis and

Choi , 2003; Garćıa-Mayoral and Jiménez , 2011).

The contributions arising from modifications to the Reynolds shear stresses,DR〈τR〉,

can be further broken down into DR〈τR〉 = DR〈τR〉,Reτs +DR〈τR〉,mod, as shown by

equation (4.16), where DR〈τR〉,Reτs represents the DR arising from modifications to

the turbulence structure due to the drop in the friction Reynolds number of the flow

from Reτ0 to the friction Reynolds number, Reτs , which would be obtained in the

channel because of the effect of the wall slip velocity alone, and DR〈τR〉,mod represents

the DR or DI arising from any other modifications to the normalized structure of

turbulence in the presence of the wall micro-texture. The contributions arising from

DR〈τR〉,Reτs are always drag reducing by definition, as shown in figure 4.2(i) and table

4.1. The contributions from the DR〈τR〉,mod are shown by DNS results to be drag
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increasing for riblets of any size and SH LMGs of size g+ & 20, and only minimally

drag reducing for SH LMGs with deformed interfaces of size g+ . 20, contributing

no more than 6.5% DR.

Overall, these results point to a common mechanism of DR for both SH LMGs

and riblets, in which 90% to 100% of the DR with SH LMGs and 100% of the DR with

riblets arises from surface slip, modifications to the normalized structure of turbulence

due to the drop in the friction Reynolds number of the flow because of this surface

slip, and the negligible flow rate through the wall micro-texture. Modifications to the

structure of turbulence, beyond the effect of the drop in the friction Reynolds of the

flow due to the presence of surface slip, were always drag increasing with riblets and

SH LMGs of size g+ & 20, and only minimally drag reducing with SH LMGs with

deformed interfaces of size g+ . 20, contributing no more than 6.5% DR.

4.3.1.1 On the Definition of DR

In the derivations of equations (4.13) and (4.16) in section 4.2, DR was defined

as DR ≡ (1− Cd/Cd0), based on the drag coefficient, Cd, rather than the more

conventional definitionDRf ≡ (1− Cf/Cf0), which is based on the friction coefficient,

Cf . This choice was made because the drag coefficient, Cd, is a more direct measure of

the drag force, which is the main quantity of interest in skin-friction DR. Furthermore,

defining the DR based on Cd circumvents the need to define the wall shear stress on

‘fictitious’ or ‘virtual’ planes (Garćıa-Mayoral and Jiménez , 2011), or based on the

hydraulic radius from ‘virtual’ origins (Luchini , 1995), both of which have proved

problematic in assessing the true magnitude of DR in internal flows (Garćıa-Mayoral

and Jiménez , 2011; Luchini , 1995).

In practice, the difference between the DR as defined by equation (4.12) and DR as

defined by DRf ≡ (1− Cf/Cf0) is small, and does not change any of the conclusions
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of the present study. Specifically, if one were to define the DR as

DRf ≡
(

1− Cf

Cf0

)

=



1−

(

〈τw〉
ρ(Q/An)2

)

(

〈τw0
〉

ρ(Q/A0)2

)



 =

(

1− 〈∂P̄
∂x
〉A

〈∂P̄
∂x
〉0A0

)

, (4.17)

equation (4.16) would be modified to

DRf=

{

(
A

A0

)(
Us

Ub0

)

}

+

{

(
A

A0

)

(

1− Us

Ub0

− Qg

Q

)(

3ε

1− 3I

)}

+

{

1− (
A

A0

)(1− Qg

Q
)

}

=

{

(
A

A0

)(
Us

Ub0

)

}

+

{

(
A

A0

)

(

1− Us

Ub0

− Qg

Q

)(

3(ε〈τR〉,Reτs + ε〈τR〉,mod + ε〈τc〉)

1− 3I

)}

+

{

1− (
A

A0

)(1− Qg

Q
)

}

= {DRf,slip}+
{

DRf,〈τR〉,Reτs +DRf,〈τR〉,mod +DR〈τc〉
}

+
{

DRf,Qg

}

= {DRf,slip}+ {DRf,ε}+
{

DRf,Qg

}

. (4.18)

Figures 4.4 and 4.5 and table 4.2 show the comparison between DR, and its break-

down as defined in equation (4.18), andDRf and its breakdown, as defined in equation

(4.18) for all the turbulent channel flow simulations with SH LMGs and riblets re-

ported in the present study. The magnitudes and the trends in the data for DRf ,

DRf,ε, DRf,〈τR〉,Reτs , DRf,〈τR〉,mod and DRf,〈τc〉 are seen to be similar to those in the

data for DR, DRε, DR〈τR〉,Reτs , DR〈τR〉,mod and DR〈τc〉, respectively. The magnitude

of DRf,slip is higher than DRslip by a factor equal to A/A0, per its definition, while

the presence of the same A/A0 factor in the definition of DRf,Qg
leads to negative

values of DRf,Qg
, while DRQg

always remains positive, as would be physically plau-

sible. Overall, these results indicate that DR, as defined by equation (4.12), provides

a more physically plausible definition of DR than the more conventional definition,

DRf , given by equation (4.17).

Another quantity of interest in internal flows is the power requirement for pumping

a desired flow rate, Q, of a fluid through a channel of a given ‘nominal’ cross-sectional
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g+0(turb) 14 14 14 14 28 28 28 28 56 56 56 56
w+0(turb) 2 2 2 2 4 4 4 4 8 8 8 8
(g + w)/2H 0.018 0.018 0.018 0.018 0.036 0.036 0.036 0.036 0.072 0.072 0.072 0.072
θ 0◦ -30◦ -60◦ -90◦ 0◦ -30◦ -60◦ -90◦ 0◦ -30◦ -60◦ -90◦

A/A0 1 1.006 1.012 1.023 1 1.011 1.024 1.044 1 1.021 1.046 1.088

S
H

L
M
G
s

DRlam 13.1% 12.8% 12.8% 12.8% 20.5% 19.9% 19.7% 20.0% 32.5% 31.5% 31.8% 32.7%
DRslip 13.1% 12.7% 12.6% 12.5% 20.5% 19.6% 19.2% 19.0% 32.5% 30.8% 30.1% 29.6%
DRQg

- 0.1% 0.2% 0.3% - 0.3% 0.5% 1.0% - 0.7% 1.7% 3.1%

DRturb 36.6% 38.5% 37.2% 36.1% 48.2% 53.1% 48.1% 38.4% 59.5% 63.3% 59.6% 55.8%
DRslip 31.1% 26.9% 26.0% 26.0% 44.4% 39.4% 40.5% 45.3% 57.1% 55.1% 57.4% 60.6%
DRǫ 5.5% 11.4% 10.8% 9.4% 3.8% 13.2% 6.5% -9.3% 2.4% 6.9% -0.9% -11.2%
DR〈τc〉 -0.1% -0.3% -0.2% -0.3% -1.9% -3.9% -1.2% -6.3% -2.6% -1.4% -7.6% -9.5%
DR〈τR〉 5.6% 11.7% 11.0% 9.7% 5.7% 17.1% 7.7% -3.0% 5.0% 8.3% 6.7% -1.7%
DR〈τR〉,Reτs 11.0% 8.4% 8.3% 8.4% 14.6% 10.6% 12.2% 17.6% 17.0% 14.4% 17.4% 21.5%
DR〈τR〉,mod -5.4% 3.3% 2.7% 1.3% -8.9% 6.5% -4.5% -20.6% -12.0% -6.1% -10.7% -23.2%
DRQg

- 0.2% 0.4% 0.7% - 0.5% 1.1% 2.4% - 1.3% 3.1% 6.4%

R
ib
le
ts

DRlam - 1.2% 2.2% 3.0% - 2.4% 4.4% 5.8% - 4.9% 8.4% 11.2%
DRslip - 1.2% 2.2% 3.0% - 2.4% 4.3% 5.7% - 4.8% 8.2% 10.7%
DRQg

- 0.0% 0.0% 0.0% - 0.0% 0.1% 0.1% - 0.1% 0.2% 0.5%

DRturb - 1.2% 5.9% 10.9% - 3.0% 5.9% 9.0% - 2.1% 0.9% -8.5%
DRslip - 5.6% 9.4% 11.8% - 11.2% 18.9% 23.8% - 22.5% 36.6% 43.7%
DRǫ - -4.4% -3.6% -1.0% - -8.3% -13.2% -15.3% - -20.7% -36.8% -54.8%
DR〈τc〉 - -1.9% -1.4% -1.2% - -0.4% -2.4% -3.1% - -4.2% -10.7% -24.5%
DR〈τR〉 - -2.5% -2.2% 0.2% - -7.9% -10.8% -12.2% - -16.5% -26.1% -30.3%
DR〈τR〉,Reτs - 1.4% 3.8% 4.3% - 4.1% 8.2% 10.0% - 10.7% 20.5% 28.6%
DR〈τR〉,mod - -3.9% -6.0% -4.1% - -12.0% -19.0% -22.2% - -27.2% -46.6% -58.9%
DRQg

- 0.0% 0.1% 0.1% - 0.1% 0.2% 0.5% - 0.3% 1.1% 2.6%

Table 4.2: Comparison of DR and its breakdown to DRf and its breakdown.
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Figure 4.4: Comparison of DR and DRf in turbulent channel flow with SH LMGs:
(a,c,e,g,i) DR; (b,d,f,h,j) DRf ; �, �, ©, θ = 0, g+0 = 14, 28, 56,
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Figure 4.5: Comparison of DR and DRf in turbulent channel flow with riblets:

(a,c,e,g,i) DR; (b,d,f,h,j) DRf ; �|� , �|� , ©|� , θ = −30, g+0 = 14, 28, 56,
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⊗
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area. The effectiveness of micro-textured walls in this metric can be measured by

defining a Power Reduction (PR) ratio as

PR ≡
(

1− −〈∂P̄
∂x
〉Q

−〈∂P̄
∂x
〉0Q

)

=

(

1− −〈∂P̄
∂x
〉

−〈∂P̄
∂x
〉0

)

. (4.19)

Comparison of equations (4.19) and (4.12) shows that PR and DR have identical

expressions. Consequently, all the analysis and conclusions reported for DR also

applies to PR.

4.3.2 Turbulence Statistics

Figure 4.6 shows profiles of the spanwise-averaged mean streamwise velocity,

〈Ū〉+−U+
s , turbulence intensities,

{

〈ū2
i 〉1/2

}+
, viscous shear stresses, 〈τv〉+ = 〈µ∂Ū/∂z〉+,

Reynolds shear stresses, 〈τR〉+ = −〈ρuw〉+, mean convective shear stresses, 〈τc〉+ =

−〈ρŪW̄ 〉+, and the total shear stresses, 〈τt〉+ = 〈τv〉++ 〈τR〉++ 〈τc〉+, obtained in

DNS of turbulent channel flow with SH LMGs or riblets, compared to the base flow.

Here, the superscript + denotes normalization using the kinematic viscosity, ν, and

the wall-friction velocity, defined as uτ ≡
√

−〈∂P̄ /∂x〉h/ρ. The common mechanism

of DR with SH LMGs and riblets also leads to common features in the profiles of

the spanwise-averaged mean streamwise velocity, turbulence intensities, and shear

stresses in the two flows, as seen in figure 4.6.

The presence of wall slip and nonzero Reynolds shear stresses and mean convective

shear stresses at the tip of MGs leads to a shortening of the viscous sublayer and the

buffer layer and a downward shift of the logarithmic layer in the profiles of the mean

velocity, with both SH LMGs and riblets. From Taylor series expansion, the mean

streamwise velocity in the near wall region can be expressed as

〈Ū(z)〉 = Us +

{

〈∂Ū
∂z

〉|z=0

}

z +
1

2

{

〈∂
2Ū

∂z2
〉|z=0

}

z2 +O(z3). (4.20)
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Figure 4.6: Turbulence statistics in turbulent channel flow with SH LMGs or riblets, nor-
malized in wall units: (a,d,g,j,m) mean streamwise velocity subtracted with the
slip velocity; (b,e,h,k,n) turbulence intensities; (c,f,i,l,o) Reynolds shear stress,
〈τR〉+ = −〈ρuw〉+, viscous shear stress, 〈τv〉+ = 〈µ∂Ū/∂z〉+, mean convective
stress, 〈τc〉+ = −〈ρŪW̄ 〉+, and total shrear stress, 〈τt〉+ = 〈τR〉+〈τv〉++〈τc〉+;
(a-c,g-i,m-o) SH LMGs; (d-f,j-l,p-r) riblets; - - -, 〈τR〉+ in smooth, no-slip chan-
nel flow with Reτ equal to Reτs of SH LMGs or riblets at θ = −30o.
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From equation (4.5), ν〈∂Ū/∂z〉|z=0 = −h/ρ〈∂P̄ /∂x〉+ 〈uw〉+ 〈ŪW̄ 〉. Thus, equation

(4.20) can be written as

〈Ū(z+)〉+ = U+
s +

{

1 + 〈uw〉+|z=0 + 〈ŪW̄ 〉+|z=0

}

z+

+ O(z+
2

). (4.21)

This gives the shape of the mean velocity profile in the viscous sublayer as

〈Ū(z+)〉+ − U+
s =

{

1 + 〈uw〉+|z=0 + 〈ŪW̄ 〉+|z=0

}

z+ +O(z+
2

)

=
{

1− 〈τR〉+|z=0 − 〈τc〉+|z=0

}

z+ +O(z+
2

). (4.22)

Equation (4.22) shows that the presence of nonzero Reynolds and mean convective

shear stresses at the tip of MGs leads to a deviation of the mean velocity profile in

the viscous sublayer from the linear profile, 〈Ū(z)〉+ − U+
s = z+, as seen in figures

4.6(a,d,g,j,m,p).

Furthermore, the presence of wall slip leads to weaker wall-normal gradients in

the mean streamwise velocity over the MGs, which when mixed and averaged with

the mean streamwise velocities over the MG tips, results in weaker gradients in 〈Ū〉+

over the wall, as seen in figures 4.6(c,f,i,l,o,r). This results in a thinning of the buffer

layer and a downward shift of the logarithmic layer in the profiles of 〈Ū〉+−U+
s , with

both SH LMGs and riblets, as seen in figures 4.6(a,d,g,j,m,p).

Figure 4.7 shows profiles of the spanwise-averaged mean streamwise velocity, 〈Ū〉+,

without subtracting the wall slip velocity. Increasing the interface protrusion angle

with SH LMGs leads to only negligible changes in the magnitude of slip velocities

normalized in wall units, as seen in figures 4.7(a-c). This trend is consistent with

the trends in the normalized slip velocities, Us/Ub, shown in figure 4.2(d). In the

logarithmic region, however, increasing the interface protrusion angle leads to a drop

in the normalized profiles of 〈Ū〉+, as seen in figures 4.7(a-c). This slip velocity is
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Figure 4.7: Mean streamwise velocity in turbulent channel flow with SH LMGs or riblets,
normalized in wall units: (a-f) mean streamwise velocity; (a-c) SH LMGs; (d-f)
riblets; Line types as in figure 4.6

retained throughout the domain, leading to an upward shift of the profiles of 〈Ū〉+

in the logarithmic layer. In addition, the presence of large non-zero 〈τc〉|z=0 at large

MG widths and large protrusion angles, leads to modifications of not only the viscous

sublayer and the shortening of the buffer layer, but also deviations of the mean velocity

profile in the logarithmic layer from that in the base channel flow with no-slip walls,

as shown in figure 4.7(a-c). With riblets, increasing the MG depth leads to noticeable

increases in the magnitude of the slip velocities normalized in wall units, as seen in

figures 4.7(d-f). However, the effect of this slip velocity disappears beyond the buffer

layer, resulting in mean velocity profiles in the logarithmic layer which are not that

different from those in the base flow, except for riblet with large MG widths and

depths, where deviations similar to those observed for SH LMGs can be observed, as

shown in figure 4.7(d-f).

The presence of surface micro-texture also leads to enhancement of the normal-

ized streamwise, spanwise, and to a lesser extent wall-normal turbulence intensities

compared to the base flow, in a surface layer of thickness ∼ g, as shown in figures

4.6(b,e,h,k,n,q). These enhanced turbulence intensities arise from enhanced produc-

102



tion of the streamwise turbulence intensities due to the presence of spanwise gradients

in the mean streamwise velocity, 〈∂Ū/∂y〉+, and additional production of streamwise

Turbulence Kinetic Energy (TKE) through the −〈uv∂Ū/∂y〉+ term near the walls, as

discussed in section § 4.3.3. This additional production of streamwise TKE is redis-

tributed into the spanwise and wall-normal turbulence intensities through the pressure

strain terms, as discussed in section § 4.3.3, giving rise to enhanced turbulence inten-

sities at z . g for all components of the velocity fluctuations, as shown in figures

4.6(b,e,h,k,n,q). With SH LMGs, increasing the interface protrusion angle leads to

a drop in the production of streamwise turbulence intensity, and an increase in the

spanwise, and to a lesser extent wall-normal turbulence intensities, compared to flat

interfaces, as seen in figures 4.6(b,h,n). With riblets, increasing the MG depths leads

to an increase in the production of streamwise turbulence intensity, and an increase

in the normalized magnitudes of the spanwise and wall-normal turbulence intensities,

compared to flat interfaces, as shown in figures 4.6(e,k,q).

Despite these dramatic changes in the mean velocity profiles and turbulence inten-

sities, the normalized profiles of the Reynolds shear stresses, 〈τR〉+ = −〈uw〉+, display

only very subtle changes compared to the base flow, as seen in figures 4.6(c,f,i,l,o,r)

and figure 4.8. It is these subtle changes which lead to the contributions of DR〈τR〉

to DR. Because of the wighting factor (1 − χ) in the definition of I〈τR〉 in equation

(4.8) and the small values of (1− 3I) for SH LMGs and riblets in equation (4.16), a

small change in the profiles of 〈τR〉 in the near-wall region leads to large variations

in DR〈τR〉. Figures 4.8(a-c) show that SH LMGs of size g+0 ≈ 14 at all protrusion

angles, and SH LMGs of size g+0 & 28 at protrusion angles of θ = −30o,−60o, which

all have an interface depth d+ . 10, the normalized profiles of 〈τR〉+ display a shift

towards the center of the channel, thus resulting in drag reducing contributions from

DR〈τR〉, as seen in figure 4.2(h). For SH LMGs of size g+0 & 28 at protrusion angles

of θ ≈ 90o, which all have an interface depth of d+ & 10, however, the normalized
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Figure 4.8: Shear stresses in turbulent channel flow with SH LMGs or riblets, normalized
in wall units: (a-f) Reynolds shear stress, 〈τR〉+ = −〈ρuw〉+, viscous shear
stress, 〈τv〉+ = 〈µ∂Ū/∂z〉+, mean convective stress, 〈τc〉+ = −〈ρŪW̄ 〉+, and
total shrear stress, 〈τt〉+ = 〈τR〉+ 〈τv〉+ + 〈τc〉+; (a-c) SH LMGs; (d-f) riblets;
Line types as in figure 4.6

profiles of 〈τR〉+ display a shift towards the wall, as seen in 4.8(b,c), resulting in drag

increasing contributions from DR〈τR〉, as seen in figure 4.2(h). With riblets, figures

4.8(d-f) show that, for all MG sizes and depths, the normalized profile of 〈τR〉+, are

shifted towards the wall, compared to the base flow, resulting in drag increasing con-

tributions fromDR〈τR〉 to the overall DR, as seen in figure 4.2(h). The finding that the

contributions from DR〈τR〉 are always drag increasing with riblets stands in contrast

with all previous theories of the mechanism of DR with riblets, which all attribute

DR by riblets to the weakening of turbulence activity (Bushnell and Hefner , 1990;

Choi et al., 1993; Bechert et al., 1997; Karniadakis and Choi , 2003; Garćıa-Mayoral

and Jiménez , 2011).

Figures 4.6(c,f,i,l,o,r) and 4.8 also show the comparison between the normalized

profiles of 〈τR〉+ with the profiles of 〈τR〉+ which would be obtained in a no-slip

channel flow at a friction Reynolds number corresponding to Reτs of the SH LMGs

and riblets at protrusion angle θ = −30o. The relative position of these profiles
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compared to 〈τR〉+ of the channels with SH LMGs and riblets is a measure of the

contributions of DR〈τR〉,mod to DR. Figures 4.8(a,b) show that for small SH LMGs of

size g+0 ≈ 14 at all negative protrusion angles, and for SH LMGs of size g+0 ≈ 28 at

small negates protrusion angles, θ = −30o, the normalized profiles of 〈τR〉+ display

a shift towards the center of the channel, compared to the profiles of 〈τR〉+ obtained

in a no-slip channel flow at the friction Reynolds number Reτs . This implies drag

reducing contributions from DR〈τR〉,mod, as seen in figure 4.2(i). With SH LMGs of

size g+0 ≈ 28 at medium and large protrusion angles, θ = −30o,−60o, and large SH

LMGs of size g+0 ≈ 56 at all protrusion angles, however, the shift in the profiles of

〈τR〉+ is towards the wall. In this case, the shift leads to drag increasing contributions

from DR〈τR〉, as seen in figure 4.2(i). With riblets of all size and MG depth, also,

there is a shift in the profiles of 〈τR〉+ is towards the wall, as seen in figures 4.8(d-f),

resulting in drag increasing contributions from DR〈τR〉,mod, shown in figure 4.2(i).

4.3.3 Turbulence Kinetic Energy Budget

In statistically stationary turbulence, the equation for TKE budget in the α di-

rection is given by (Hinze, 1975)

D

Dt

uαuα

2
= Pαα − εαα + t(Σ)

αα +Παα, (4.23)
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where,

Pαα = −uαuγ
∂Ūα

∂xγ

,

εαα = 2νsαγ
∂uα

∂xγ

,

t(Σ)
αα = t(R)

αα + t(press)αα + t(v)αα

= −1

2

∂

∂xγ

uαuαuγ −
1

ρ

∂

∂xα

puα + 2ν
∂

∂xγ

uαsαγ ,

Παα =
1

ρ
p
∂uα

∂xα

.

and no summation is implied over α index. Here, Pαα is the rate of TKE production

per unit mass, εαα is the rate of viscous dissipation, t
(R)
αα , t

(press)
αα , and t

(v)
αα are the

rates of TKE transport by turbulent fluctuations, pressure fluctuations and viscous

stresses, respectively, t
(Σ)
αα is the total transport, Παα is the pressure-strain correlation,

and sαγ = 1/2(∂uα/∂xγ + ∂uγ/∂xα) is the fluctuating strain-rate tensor.

Summation of equation (3.8) over all three α directions results in the TKE balance

equation, given by (Hinze, 1975)

D

Dt
k2 = Pii − εii + t

(
∑

)
ii , (4.24)

where k2 = u2
i /2 is the turbulence kinetic energy per units mass, and the pressure-

strain term is eliminated because Πii = 0.

Figures 4.9, 4.10 and 4.11 show the profiles of the terms in the spanwise-averaged

equations for the components of TKE, normalized in wall units, for SH LMGs and

riblets of size g+0 ≈ 14 & w+0 ≈ 2, g+0 ≈ 28 & w+0 ≈ 4 and g+0 ≈ 56 & w+0 ≈ 8,

respectively. With both the SH LMGs and riblets, production of turbulence mainly

occurs through the streamwise TKE, 〈Puu〉+. Although some minor negative con-

tributions arising from the spanwise and wall-normal TKE production, 〈Puu〉+ and

〈Puu〉+, respectively, are also present, as seen in figures 4.9(a-c), 4.10(a-c) and 4.11(a-
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Figure 4.9: Breakdown of the TKE budget in turbulent channel flow with SH LMGs or
riblets of size g+0 ≈ 14 & w+0 ≈ 2, normalized in wall units: (a-c) produc-
tion, 〈Pαα〉+, and dissipation, 〈εαα〉+ of TKE; (d-f) pressure strain correlation,

〈Παα〉+; (g-i) total transport of TKE, 〈t(Σ)
αα 〉+; Line types as in figure 4.6.
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Figure 4.10: Breakdown of the TKE budget in turbulent channel flow with SH LMGs or
riblets of size g+0 ≈ 28 & w+0 ≈ 4, normalized in wall units: (a-c) production,
〈Pαα〉+, and dissipation, 〈εαα〉+ of TKE; (d-f) pressure strain correlation,

〈Παα〉+; (g-i) total transport of TKE, 〈t(Σ)
αα 〉+; Line types as in figure 4.6.
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Figure 4.11: Breakdown of the TKE budget in turbulent channel flow with SH LMGs or
riblets of size g+0 ≈ 56 & w+0 ≈ 8, normalized in wall units: (a-c) production,
〈Pαα〉+, and dissipation, 〈εαα〉+ of TKE; (d-f) pressure strain correlation,

〈Παα〉+; (g-i) total transport of TKE, 〈t(Σ)
αα 〉+; Line types as in figure 4.6.
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c). With both SH LMGs and riblets, the presence of effective slip at the walls leads to

the formation of spanwise gradients in the mean streamwise velocity, 〈∂Ū/∂y〉, which

gives rise to additional production of 〈Puu〉+ through −〈uv∂Ū/∂y〉+ within a ‘surface

layer’ of thickness z ∼ g. For both SH LMGs and riblets, the magnitude of this addi-

tional contribution to 〈Puu〉+ increases with increasing MG width. However, due to

the higher wall slip velocities, with SH LMGs, the magnitude of the additional TKE

production through −〈uv∂Ū/∂y〉 is always larger with SH LMGs, by factors of up to

∼ 10, compared to riblets. For a given MG width, increasing the interface protrusion

angle from θ = −30o to θ = −90o with SH LMGs, or increasing the MG depth from

d/g = 1/7 (θ = 30o) to d/g = 1/2 (θ = 90o) with riblets, leads to an increase in the

magnitudes of 〈Puu〉+ production through −〈uv∂Ū/∂y〉+, within the ‘surface layer’,

compared to the base flow, as seen in figures 4.9(a), 4.10(a) and 4.11(a). However,

the magnitude of this additional production of 〈Puu〉+ never reaches those obtained

with flat SH LMGs.

Along with the changes in 〈Puu〉+ production, increasing the MG widths with

both SH LMGs and riblets leads to an increase in the normalized magnitudes of the

pressure strain terms, 〈Παα〉+, which transfer parts of 〈Puu〉+ to the spanwise and

wall-normal TKEs, as seen in figures 4.9(d-f), 4.10(d-f) and 4.11(d-f). Increasing the

interface protrusion angle from θ = −30o to θ = −90o with SH LMGs, or increasing

the MG depth from d/g = 1/7 (θ = 30o) to d/g = 1/2 (θ = 90o) with riblets, leads

to an increase in the normalized magnitudes of 〈Πii〉+ terms, compared to the base

flow, as seen in figures 4.9(d-f), 4.10(d-f) and 4.11(d-f). When compared to 〈Puu〉+

production, however, the relative magnitudes of 〈Πuu〉+ terms with SH LMGs are

much larger than those with either riblets or SH LMGs with flat interfaces. This

results in streamwise turbulence intensities which display two different trends with

SH LMGs and riblets. Increasing the interface protrusion angle, from θ = −30o to

θ = −90o, with SH LMGs leads to a gradual decrease in the normalized magnitudes
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of streamwise turbulence intensities, within the ‘surface layer’, while increasing the

MG depth with riblets, from d/g = 1/7 (θ = −30o) to d/g = 1/2 (θ = −90o), leads

to an increase in the normalized magnitudes of streamwise turbulence intensities,

within the ‘surface layer’, as seen in figures 4.6(b,h,n). Furthermore, turbulence

intensities obtained with SH LMGs, with flat interfaces in the ‘surface layer’ were

always significantly larger than those obtained with curved SH interfaces.

Figure 4.12 shows profiles of the spanwise-averaged balance of total TKE, nor-

malized in wall units. With both the SH LMGs and riblets, TKE production occurs

mainly through the spanwise and wall-normal gradients in the mean streamwise veloc-

ity, 〈∂Ū/∂y〉, and 〈∂Ū/∂z〉, respectively. The TKE production through −〈uw∂Ū/∂z〉

displays a shift of the peak of production towards the walls, with both the SH LMGs

and riblets, and negative production with SH LMGs for z+ . 2, the magnitudes of

which increases with increasing MG width and protrusion angle. In addition, the

presence of spanwise gradients in the mean streamwise velocity, −〈uv∂Ū/∂y〉, leads

to enhanced production of TKE, 〈P 〉+, within the ‘surface layer’, as seen in figures

4.12(b,e,h,k,n,q). When the above tow contributions are added together, the resulting

total TKE displays an increase, near the walls, within the ‘surface layer’, together

with a shift in the location of its local maximum, towards the wall, as seen in figures

4.12(a,d,g,j,m,p).

4.3.4 Vorticity Dynamics

Figure 4.13 shows the profiles of spanwise-averaged root-mean-square (rms) vortic-

ity fluctuations,
{

〈ω2
i 〉1/2

}+

, normalized in wall units, in channel flows with SH LMGs

or riblets, compared to the base flow. For riblets of any size and SH LMGs of size

g+ & 20, where the contributions from DR〈τR〉,mod are drag increasing (DR〈τR〉,mod <

0), the normalized profiles of
{

〈ω2
x〉1/2

}+

fall above that in the base flow, as seen

in figures 4.13(a,g,m), indicating an enhancement of turbulence activity due to the
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Figure 4.12: TKE budget in turbulent channel flow with SH LMGs or riblets, normal-
ized in wall units: (a,d,g,j,m,p) production 〈P 〉+, and dissipation 〈ε〉+ of
TKE; (b,e,h,k,n,q) breakdown of TKE production into −〈uw∂Ū/∂z〉+ and
−〈uv∂Ū/∂y〉+; (c,f,l,i,o,r) total transport of TKE; (a-c,g-i,m-o) SH LMGs;
(d-f,j-l,p-r) riblets; Line types as in figure 4.6.
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Figure 4.13: rms vorticity fluctuations in turbulent channel flow with SH LMGs or ri-
blets, normalized in wall units: (a,d,g,j,m,p) streamwise vorticity fluctuations;
(b,e,h,k,n,q) spanwise vorticity fluctuations; (c,f,i,l,o,r) wall-normal vorticity
fluctuations; (a,b,c,g,h,i,m,n,o) SH LMGs; (d,e,f,j,k,l,p,q,r) riblets; line types
as in figure 4.6.
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presence of wall micro-texture. For SH LMGs of size g+ . 20, where the contribu-

tions from DR〈τR〉,mod are drag reducing (DR〈τR〉,mod > 0), the normalized profiles

of
{

〈ω2
x〉1/2

}+

fall bellow that in the base flow, indicating a suppression of turbu-

lence activity due to the presence of the wall micro-texture. In addition, with SH

LMGs, effective slip at the wall leads to an increase in the normalized magnitudes

of spanwise-averaged spanwise vorticity fluctuations,
{

〈ω2
y〉1/2

}+

, within the ‘surface

layer’, compared to the base flow, as seen in figures 4.13(b,h,n). This effect increases

as the interface protrusion angle is increases from θ = −30o to −90o. However, the

enhancements never become as large as those observed with flat SH interfaces. With

riblets, increasing MG depth, from d/g = 1/7 (θ = −30o) to d/g = 1/2 (θ = −90o),

leads to a drop in the normalized magnitudes of
{

〈ω2
y〉1/2

}+

within the ‘surface layer’,

compared to no-slip channel flows, as seen in figures 4.13(e,k,q). Furthermore, with

both SH LMGs and riblets, the formation of a shear layer, ∂u/∂y, between the low

and high speed regions on top of the wall MGs, leads to an increase in the normalized

magnitudes of the wall-normal vorticity fluctuations,
{

〈ω2
z〉1/2

}+

, within the ‘surface

layer’, compared to the base flow, as seen in figures 4.13(c,f,i,l,o,r). Due to the much

smaller magnitudes of the slip velocities with riblets, this increase in
{

〈ω2
z〉1/2

}+

is

less prominent with riblets. With SH LMGs, these shear layer are weakened with

increasing interface deformation. Hence, for a given MG size, increasing the interface

protrusion angle, from θ = −30o to −90o, with SH LMGs, leads to a drop in the mag-

nitudes of
{

〈ω2
z〉1/2

}+

, within the ‘surface layer’, as seen in figures 4.13(c,i,o). With

riblets, however, increasing the MG depths, from d/g = 1/7 (θ = −30o) to d/g = 1/2

(θ = −90o), strengthens the shear layers, leading to an increase in the normalized

magnitudes of
{

〈ω2
z〉1/2

}+

, within the ‘surface layer’, as seen in figures 4.13(f,l,r).

In general, the near wall regions of turbulent boundary layers are dominated by

a set of quasi-streamwise vortices (Jimenez , 1994). The effective slip at the walls

alters dynamics of these near-wall streamwise vortical structures, within the ‘surface
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layer’, through the combination of two competing effects: (i) a weakening effect re-

sulting from the drop in wall-normal gradients of the streamwise velocity, and (ii)

a strengthening effect due to establishment of spanwise wall slip. The former effect

dominates for SH LMGs of size g+ . 20, resulting in drag reducing contributions aris-

ing from DR〈τR〉,mod and near-wall streamwise vorticity fluctuations which are weaker

than the base flow, while the latter dominates for SH LMGs of size g+ & 20 and ri-

blets, resulting in drag increasing contributions arising from DR〈τR〉,mod and near-wall

streamwise vorticity fluctuations which are stronger than the base flow, as shown in

figure 4.13(a,d,g,j,m,p).

4.3.5 Pressure Fluctuations

Figure 4.14 shows profiles of the spanwise-averaged rms pressure fluctuations,
{

〈p̄2〉1/2
}+

, normalized in wall units. The trends in the normalized profiles of the

spanwise-averaged streamwise vorticity fluctuations,
{

〈ω2
x〉1/2

}+

, are also reflected in

the normalized profiles of
{

〈p̄2〉1/2
}+

, as seen in figures 4.14 and 4.13(a,d,g,j,m,p).

With SH LMGs, increasing the MG sizes leads to an increase in the normalized

magnitudes of
{

〈p̄2〉1/2
}+

, within the ‘surface layer’, as seen in figure 4.14(a-c). For a

given MG size, at small protrusion angles, θ ∼ −30, the presence of interface curvature

with SH LMGs leads to drops of ∼ 12% to 26% in the normalized magnitude of
{

〈p̄2〉1/2
}+

, within the ‘surface layer’, compared to flat interfaces. Larger protrusion

angle, beyond θ = −30o, however, lead to an increase in the normalized magnitudes

of
{

〈p̄2〉1/2
}+

, within the ‘surface layer’, as seen in figures 4.14(a-c).

The magnitude of the pressure fluctuations at the wall directly affects the stability

of the liquid/gas interfaces on SH surfaces. The smaller the pressure forces, the more

stable the liquid/gas interfaces. Figures 4.14(a-c) and table 4.3 show that the lowest
{

〈p̄2〉1/2
}+

on the SH wall are obtained at small MG sizes, g+0 ≈ 14, and small

interface protrusion angles, θ ≈ −30. At this MG sizes, significant drops, of up
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Figure 4.14: Spanwise-averaged rms pressure fluctuations in turbulent channel flow with

SH LMGs and riblet, normalized in wall units: (a,b,c)
{

〈p̄2〉1/2
}+

, SH LMGs;

(d,e,f)
{

〈p̄2〉1/2
}+

, riblets; Line types as in figure 4.6.

to a factor of ∼ 2, are also observed in the instantaneous magnitudes of pressure

fluctuations, p+, as seen in figures 4.15(a-d). With larger MG widths, g+0 & 28,

however, the drop in
{

〈p̄2〉1/2
}+

and p+ at small protrusion angles is smaller, and less

pronounced, as seen in figures 4.14(b) and 4.16(a-d) and table 4.3.

With riblets of small MG sizes, g+0 ≈ 14, increasing the riblet depth from d/g =

1/7 to d/g = 1/2 give rise to small drops of up to 4% in the normalized magnitudes of

g+0 14 14 14 14 28 28 28 28 56 56 56 56
w+0 2 2 2 2 4 4 4 4 8 8 8 8
θ 0◦ -30◦ -60◦ -90◦ 0◦ -30◦ -60◦ -90◦ 0◦ -30◦ -60◦ -90◦

SH LMGs
{

〈p̄2〉1/2
}+ |z=01.57 1.38 1.52 2.25 2.01 1.73 2.33 2.93 2.54 1.87 2.19 2.22

Riblets
{

〈p̄2〉1/2
}+ |z=0 - 1.62 1.62 1.55 - 1.72 1.78 2.07 - 1.76 1.96 2.29

Table 4.3: Spanwise-averaged magnitudes of r.m.s. pressure fluctuations at the tip of
MGs,

{

〈p̄2〉1/2
}+ |z=0, in turbulent channel flow with SH LMGs and riblets,

normalized in wall units.
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(a) (b)

(c) (d)

Figure 4.15: Contour plots of instantaneous pressure fluctuations in turbulent channel flow
with SH LMGs of size g+0 ≈ 14 & w+0 ≈ 2, normalized in wall units: (a)
θ = 0o; (b) θ = −30o; (c) θ = −60o; (d) θ = −90o.
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(a) (b)

(c) (d)

Figure 4.16: Contour plots of instantaneous pressure fluctuations in turbulent channel flow
with SH LMGs of size g+0 ≈ 28 & w+0 ≈ 4, normalized in wall units: (a)
θ = 0o; (b) θ = −30o; (c) θ = −60o; (d) θ = −90o.
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(a) (b)

(c)

Figure 4.17: Contour plots of instantaneous pressure fluctuations in turbulent channel flow
with riblets of size g+0 ≈ 14 & w+0 ≈ 2, normalized in wall units: (a)
d/g = 1/7 (θ = −30o); (b) d/g = 2/7 (θ = −60o); (c) d/g = 1/2 (θ = −90o).
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(a) (b)

(c)

Figure 4.18: Contour plots of instantaneous pressure fluctuations in turbulent channel flow
with riblets of size g+0 ≈ 28 & w+0 ≈ 4, normalized in wall units: (a)
d/g = 1/7 (θ = −30o); (b) d/g = 2/7 (θ = −60o); (c) d/g = 1/2 (θ = −90o)..
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{

〈p̄2〉1/2
}+

, within the ‘surface layer’, as seen in figure 4.14(d). With riblets of larger

MG sizes, however, increasing the riblet depth leads to an increase in the normalized

magnitudes of
{

〈p̄2〉1/2
}+

, within the ‘surface layer’, as seen in figures 4.14(e-f). The

smallest instantaneous pressure fluctuations with riblets are obtained at g+0 ≈ 14

and d/g = 1/7 (θ = 30o), similar to SH LMGs, as shown in figures 4.17 and 4.18.

These features suggest that the durability and robustness of SH surfaces can be

improved by embedding the SH surface inside scallop-shaped riblets of size g+0 ≈ 14

and d/g = 1/7 (θ = 30o). Figures 4.15, 4.16, 4.17 and 4.18 show that, with both SH

LMGs and riblets, the lowest instantaneous magnitudes of p+ are observed with MGs

of size g+0 ≈ 14 at a MG depth of d/g = 1/7 (θ = −30o) with riblets and interface

protrusion angle θ ≈ −30o, with SH LMGs. With lower p+, the liquid/gas interfaces

on the SH surface are more stable. By designing a hierarchical SH surface, in which a

set of SH LMGs of size are placed inside shallow (θ = −30o) scallop shaped riblets of

width g+0 ≈ 14, these features can be utilized to improve the stability and robustness

of SH surfaces for DR in practical applications.
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CHAPTER V

Summary and Conclusions

5.1 Summary and Conclusions

Micro-textured surfaces have long been used for skin-friction DR in wall-bounded

turbulent flows. One of the most successful designs of micro-textured surfaces for skin-

friction DR were made with arrays of LMGs, known as riblets. The DR efficiency

of riblets, however, has been limited to less than 10% to date. Recent advances in

surface treatment techniques have made it possible to bypass this limit, by covering

the micro-textured surfaces with non-wetting ‘hydrophobic’ coatings, thus creating

Super-Hydrophobic (SH) surfaces. SH surfaces are characterized with a large apparent

receding contact angle, typically greater than 150o. When such surfaces come into

contact with liquids, gas pockets form inside the surface indentations, thus preventing

the liquid from penetrating into the cavities, and resulting in an apparent slip. It

has been shown that when the surface micro-textures are in the form of LMGs,

the resulting slip lengths are maximized. Experiments with SH LMGs in turbulent

boundary layer flows have shown up to 75% DR. However, neither the scaling nor

the mechanism of DR with SH surfaces is yet well understood. In addition, a detailed

understanding of the pressure and stress loads on the liquid/gas interfaces in the SH

surfaces is not yet at hand. These issues were investigated in this thesis, using results

from DNS, and analysis of the governing equations in turbulent channel flow. To this
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end:

• A D3Q19 single relaxation time Lattice Boltzmann Method (LBM) code was

developed for the simulation of laminar and turbulent flow in channels with

various patterns of surface micro-texture. In its basic formulation, LBM tracks

the evolution of sets of particle Distribution Function (DF)s in space and time.

This particle based Lagrangian view provides a completely local computational

algorithm, which is inherently parallel, and highly efficient for the simulations

of flows with complex boundaries, with second order accuracy. Because of its

Lagrangian base, the boundary conditions in LBM are implemented through

applying a set of bounce back, translation or reflection rules on the DFs at

the boundaries. In this thesis, the no-slip boundary conditions on the flat

and curved solid walls were imposed using half-way bounce back (Succi , 2001)

and Central Linear Interpolation (CLI) (Ginzburg et al., 2008) schemes, and

the shear-free boundary condition was imposed using the specular reflection

scheme (Ginzburg and Steiner , 2003). Because measurements of DR need to

be performed by keeping the flow rate the same in the micro-textured channel

and the base flow, a method for maintaining constant flow rate in channel flow

simulations with LBM was developed and implemented in the code. In addi-

tion, to improve the accuracy of the simulations near the wall boundaries, while

keeping the computational costs in check, a grid-embedding strategy (Lagrava

et al., 2012) was implemented in the code, which allows employment of patches

of fine grids near the domain boundaries, and a coarse grid in the rest of the do-

main. Bi-cubic interpolation in space and second order Lagrange interpolation

in time were used for data transfer between the grids.

• The code was parallelized using the MPI2 routines (Gropp et al., 1999). A

two dimensional domain decomposition strategy was employed, in which the

simulation domain was divided into a two dimensional array of sub-domains,
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in a toroidal topology. Single processor and parallel efficiency of the codes was

optimized using cache optimization, vectorization, and persistent non-blocking

communications. The simulation codes achieved a parallel efficiency of at least

97% on up to 1024 processes, on TACC’s Stampede supercomputer.

• DNS studies were performed in turbulent channel flows, by maintaining a con-

stant flow rate, at a bulk Reynolds number of Rebulk = 3600 (Reτ0 ≈ 222).

Channels of size Lx × Ly × Lz = 5h × 2.5h × 2h, in the streamwise, span-

wise and wall-normal directions, respectively, were used for all the simula-

tions, where h denotes the half-height of the channel. The simulations were

performed both with and without grid-embedding. For the LB DNS without

grid-embedding, the lattice spacing was set at ∆+0 ≈ 2, where +0 denotes non-

dimensionalization with respect to wall-friction velocity and kinematic viscosity

of the base flow. The corresponding lattice resolutions were 512×256×221 in the

streamwise, spanwise and wall-normal directions, respectively. The simulations

with grid-embedding were performed by placing patches of fine grids adjacent

to the walls, in the regions between the domain boundaries and the buffer layer

(z+0 . 30), while a coarser grid covered the rest of the domain. Lattice spacings

of ∆+0
c ≈ 2 and ∆+0

f ≈ 0.5 were used on the coarse grid at z+0 & 30, and the

fine grid at z+0 . 30, respectively, corresponding to a grid refinement ratio of

4 : 1. The corresponding lattice resolutions were 512× 256× 197 in the stream-

wise, spanwise and wall-normal directions, respectively, on the coarse grid, and

2048 × 1024 × 56 in the streamwise, spanwise and wall-normal directions, re-

spectively, on the fine grids.

• DNS studies were performed in turbulent channel flow with SH LMGs of size

4 . g+0 . 128 & g/w = 1, 7, 15, SH transverse MGs of size 8 . g+0 . 56

& g/w = 1, 7 and SH micro-posts of size 8 . g+0 . 56 & g/w = 1, 7 on both
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walls, where g and w denote the width of the MGs and the separation in between

them, respectively. The liquid/gas interfaces on the SH walls were modeled as

‘idealized’ flat, shear-free boundaries in these simulations. DRs of 5% to 83%,

−4% to 20%, and 14% to 81% were realized in DNS with LMGs, transverse

MGs, and micro-posts, respectively.

• A second set of DNS studies, in turbulent channel flows, with SH LMGs or

scallop-shape riblets of size 14 . g+0 . 56 & g/w = 7, on both walls, were

also performed to investigate the effect of interface curvature, and compare the

results to riblets. The liquid/gas interfaces on the SH wall in these simulations

were modeled as stationary curved, shear-free regions, with the meniscus shape

obtained from the solution of Young-Laplace equation. Simulations were per-

formed for interface protrusion angles of θ = −0o,−30o,−60o,−90o, covering

the full range of negative interface protrusion angles. The same geometries as

to those formed by SH LMGs were also used for riblets, by replacing the shear-

free condition inside the MGs with the no-slip condition. DRs of 36% to 63%

and 11% to −9% were realized in DNS with theses SH surfaces and riblets,

respectively.

• By analysis of the governing equations, an exact expression for the magnitude

of DR in channel flows with any pattern of SH or riblet micro-textures on the

walls was derived. This expression provides a breakdown of DR into contribu-

tions from five sources: (i) the effective slip on the wall, (ii) the drop in the

friction Reynolds number of the flow due to the presence of this surface slip, (iii)

modifications to the normalized structure of turbulence due to the presence of

surface micro-texture, (iv) the modifications to the structure of the mean flow

due to the presence of surface micro-texture and (v) the minor changes in the

cross-sectional area of the channel by the surface micro-texture.
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• The contributions to DR which arise from effects (i) the effective slip on the wall,

(ii) the drop in the friction Reynolds number of the flow due to the presence of

this surface slip, and (v) the changes in the cross-sectional area of the channel,

are always drag reducing by definition. Examination of DNS results showed

that over 90% of the DR with SH LMGs and all of the DR with riblets arises

from these contributions.

• The contributions to DR which arise from (iii) modifications to the normalized

structure of turbulence, due to the presence of surface micro-texture, were shown

by DNS to be always drag increasing with riblets. For riblets of size g+0 & 14,

these contributions became significant, and led to diminishing DRs and eventual

DI with riblets of size g+0 > 14. With SH LMGs, these contributions were found

to be drag enhancing for LMGs of size g+ & 20, and mildly drag reducing

(contributing . 6.6% DR) with LMGs of size g+ . 20.

• The presence of interface curvature on SH LMGs led to increases of 1.9% to

4.9% in the magnitude of DR, at low protrusion angles, θ = −30o, and drops of

−0.5% to −9.8% in the magnitude of DR, at high protrusion angles, θ = −90o,

compared to flat interfaces. For a given MG width, the highest DRs were always

obtained at low protrusion angles (θ = −30).

• The presence of interface curvature on SH LMGs led to drops of −3.5% to

−13.5% in the slip velocity, at low protrusion angles, θ = −30o, and either drops

of up to −16.4% or increases of up to 6.1% in the slip velocity, at high protrusion

angles, θ = −90o, compared to flat interfaces. Because of the contributions

arising from (iii) modifications to the normalized structure of turbulence, due

to the presence of surface micro-texture, however, higher slip velocities with SH

LMGs do not necessarily translate into higher DRs.

• The presence of interface curvature in SH LMGs also led to significant drops

126



(of up to 100%) in the normalized magnitudes of the pressure fluctuations with

small MGs widths (g+0 ≈ 14) at small protrusion angles, θ ∼ −30. This has

significant implications for design of more robust SH surfaces.

• The highest DRs with riblets were obtained at the largest MG depths (θ =

−90o), with the best DR performance achieved with MGs of size g+0 ≈ 14.

The slip velocity increased with MG depth and MG width, with the highest

slip velocities obtained with the largest MG depths (θ = −90) at g+0 ≈ 56.

However, for g+0 & 14, this effect was negated by (iii), leading to diminishing

DRs and eventual DI with riblets of size g0+ > 14.

• The effect of the SH surface on the dynamics of turbulence was found to be

confined to additional production of TKE within a ‘surface layer’ of thickness

on the order of the width of SH surface indentations.

The main findings of the present study are the common mechanism of DR with SH

surfaces and riblets, and the drop in the pressure loads on the liquid/gas interfaces

of the SH surface at low curvatures and small MG sizes. Using results from DNS and

mathematical analysis, it was shown that, DR, with both the SH surfaces and riblets,

arises from a common mechanism. This common mechanism is the surface slip, which

is the sole mechanism of DR with riblets, and the dominant mechanism of DR with

SH surfaces. In addition, by analysis of the DNS results, it was found that interface

curvature has an important effect on the magnitude of pressure fluctuations on the

liquid/gas interfaces on the SH surface. Small interface curvatures on narrow SH

LMGs lead to significant drops in the magnitude of pressure fluctuations. This can

be used for the design of hierarchical SH surfaces with better longevity and stability

in turbulent flow environment.
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CHAPTER VI

Future Works

6.1 Future Works

For successful application of SH surfaces as a means of skin-friction DR in wall-

bounded turbulent flows, many issues remain to be addressed in future works.

In the DNS studies presented in this thesis, the SH surfaces were modeled as

stationary, shear-free surfaces. However, on real SH surfaces in turbulent flows, the

liquid/gas interfaces are not stationary. Interface dynamics can have significant effects

on the resulting DRs, through providing compliance effects or introducing additional

dissipation caused by its fluctuations. Hence, it would be beneficial to extend the

current studies to include the dynamics of the liquid/gas interfaces. In addition, the

liquid/gas interfaces on the SH surfaces are not totally shear-free. The additional

shear on the interface can degrade the slip velocities developed on the surface, and

thus the resulting DRs. As a result, investigation of the effect of this additional shear

on the resulting slip velocities and DRs can be beneficial.

Furthermore, the simulations in this thesis were performed at a bulk Reynolds

number of Reb = 3600, corresponding to a friction Reynolds number of Reτ0 ≈ 222.

Turbulent flows in practical settings, however, are at much higher Reynolds numbers.

Therefore, it would be beneficial to repeat the present DNS studies at higher Reynolds

numbers, and investigate the effect of the Reynolds number of the flow on the results.
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In addition, to maintain the stability of liquid/gas interfaces, the MG sizes on

real SH surfaces are very small, of size on the order of 1 wall unit. To capture the

dynamics of flow near such small MGs, however, an extremely fine grid is required

near the walls. Nevertheless, the current DNS studies were performed on MGs of

larger sizes, in order to keep the computational costs feasible. Future works should

focus on smaller MG sizes by using several levels of grid-embedding, to avoid excessive

computational costs.

Moreover, the DNS studies presented in this thesis were performed on SH sur-

faces with periodic patterns of surface micro-textures, such as LMGs, transverse MGs

and micro-posts. In practice, however, SH surfaces with random patterns of micro-

textures are easier to fabricate. Future studies should therefore focus on DR with SH

surfaces with random patterns of micro-textures.

Finally, robustness and longevity of SH surfaces in turbulent flows are still open

questions. It is not clear for how long a SH surface can sustain the high shear rates of

turbulent flows, before the air inside the surface cavities is dragged out by the flow.

In addition, robustness of liquid/gas interfaces on the SH surface under the pressure

fluctuations in turbulent flows has not been investigated to date. Previous studies on

this subject have been limited to a one-way coupling, in which the interfaces are mod-

eled as stationary. Interaction of a dynamically moving interface with the pressure

fields of a turbulent flow, however, is a non-linear problem for which a one-way cou-

pling can not be justified. Future studies should focus on the robustness and longevity

of the interface, by considering both the interface dynamics and shear, in order to

design robust and enduring drag reducing surfaces for applications in turbulent flows.

The current study showed that the normalized magnitudes of pressure fluctuations

are smaller on small SH MGs at low interface curvatures. This feature can be used

to design hierarchical surfaces, made of scallop-shaped riblets which are embedded

with multiple narrow SH LMGs. The liquid/gas interfaces on the SH LMGs, with
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these hierarchical surfaces, will experience lower pressure and shear loads. As a result,

such hierarchical surfaces would provide more stable and durable SH surfaces. Future

studies should investigate the DR characteristics of such hierarchical surfaces.
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