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Abstract 
 

 The polyglutamine (polyQ) diseases, including Spinocerebellar Ataxia type 3 

(SCA3), are inherited neurodegenerative diseases caused by glutamine-encoding CAG 

expansions in disease genes. All polyQ diseases exhibit accumulation and aggregation of 

the disease protein in affected brain regions, yet central questions remain regarding the 

pathogenesis of these untreatable disorders, including which factors can influence disease 

protein aggregation, the extent to which aggregation drives disease, and the processes by 

which aggregation might contribute to toxicity.  

My thesis addresses these questions in a novel knock-in mouse model of SCA3. 

Chapter 1 reviews central features of polyQ disease, the use of knock-in mouse models to 

study polyQ disease, and aspects of SCA3. Chapter 2 provides the materials and methods 

used for the dissertation. Chapter 3 describes the generation and characterization of a 

SCA3 knock-in mouse model. SCA3 knock-in mice show striking mutant ATXN3 

accumulation and aggregation in brain. This accompanies aberrant splicing of the mutant 

Atxn3 transcript, emulating an important feature of the human ATXN3 transcript. Chapter 

4 further explores how alternative Atxn3 splicing influences aggregation in a “variant” 

SCA3 knock-in mouse that exhibits minimal aggregate pathology. Using various mouse 

models I explore the relationship between mutant ATXN3 aggregation and transcriptional 

alterations in the pons, a susceptible brain region. Chapter 5 concludes the dissertation 

with thoughts regarding moving forward with this work. 
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This thesis establishes the utility of SCA3 knock-in mice for studying early 

molecular pathogenic events and provides evidence supporting a critical role for 

alternative splicing in influencing disease protein aggregation. The results further suggest 

a molecular link between the process of ATXN3 aggregation and transcriptional 

dysregulation in the brain. Together, these findings support a pathogenic role for disease 

protein aggregation in SCA3 and perhaps other polyQ diseases.    
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Chapter 1 

 

Introduction 

 
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease 

(MJD), is a hereditary neurodegenerative disorder caused by a glutamine-encoding CAG 

repeat expansion in the ATXN3 gene. This dissertation utilizes, among a diverse set of 

resources, novel knock-in mouse models of disease to study the intriguing relationship 

between alternative splicing of the disease transcript, disease protein aggregation, and 

transcriptional alterations in the brain. SCA3 also belongs to a larger group of 

polyglutamine (polyQ) diseases caused by CAG expansions in different genes. Despite 

considerable advances in the last two decades in understanding the molecular 

pathogenesis of these diseases, central questions remain unresolved. In this introductory 

Chapter, I review the central features of polyQ disease, the role of knock-in mouse 

models in polyQ disease research, and the clinical and molecular features of SCA3. This 

overview seeks to put into context the dissertation work on SCA3 disease pathogenesis 

described in subsequent chapters.  

1.1 Toward understanding the polyglutamine diseases  

 
1.1.1 The polyglutamine disease genes and proteins 

 

Abnormally expanded CAG nucleotide repeat expansions in coding regions of 

distinct genes are responsible for a group of neurodegenerative disorders known as the 
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polyglutamine (polyQ) diseases. The CAG expansion in the X-linked androgen receptor 

gene AR was first identified in 1991 as the cause of spinal and bulbar muscular atrophy 

(SBMA) (1). SBMA has since been joined by eight other polyQ diseases caused by CAG 

expansions in different genes. These diseases include Huntington disease (HD), the 

Spinocerebellar Ataxias (SCA) types 1, 2, 3, 6, 7, 17, and dentatorubralpallidoluysian 

atrophy (DRPLA). With the exception of SBMA, which is an X-linked disease, the polyQ 

diseases are autosomal dominantly inherited.  

Despite sharing CAG repeat expansions, the polyQ disease genes and their 

encoded proteins are diverse. Table 1.1 lists the polyQ diseases and highlights some of 

these features. One point of diversity is the number of different exons/introns in polyQ 

disease genes, with the CAG repeat located in different exons. Consequently, the location 

of the polyQ tract in the different disease proteins differs greatly. For example, the polyQ 

tract resides close to the N-terminus of HTT in HD and close to the C-terminus in 

ATXN3 in SCA3, while some polyQ tracts are found towards the center of their 

respective disease protein. Table 1.1 also shows the relative size of the polyQ proteins by 

primary amino acid length, with HTT being the largest (>300 kD) and ATXN3 and TBP 

(disease protein in SCA17) the smallest (<50 kD), with other polyQ disease proteins 

being intermediate in length.  The size range of polyQ expansions and threshold for 

disease-causing repeat length also varies. For example, while expansions greater than 

approximately 60 CAG repeats in ATXN3 cause SCA3, repeat lengths as small as 20 in 

CACNA1A cause SCA6; the other diseases show threshold lengths in the mid to upper 

30s. Finally, the functions of the polyQ disease proteins are diverse and distinct. While 

several polyQ proteins are associated with transcriptional function, they are rarely linked 
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to the same cellular pathways. The fact that distinct clinical disorders are caused by 

similar CAG expansions in different genes likely reflects one or more of these several 

points of diversity.  

Nonetheless, the shared CAG expansion still leads to important common features 

among the different polyQ diseases. The polyQ diseases are generally late-onset disorders 

associated with selective dysfunction and degeneration of the nervous system, even 

though the polyQ disease proteins are expressed throughout the body. The affected 

regions of the CNS differ among the polyQ diseases, yet some brain regions like the 

cerebellum and brainstem are particularly vulnerable, as indicated by seven of the nine 

known polyQ disorders showing prominent brainstem and cerebellar degeneration (2, 3). 

All polyQ diseases are characterized by the misfolding, accumulation, and aggregation of 

the disease protein in the nervous system, which I will further discuss below. These 

shared features between polyQ diseases suggest common disease mechanisms. Thus, the 

study of a specific polyQ disorder could shed light on others. Conversely, studying 

individual polyQ diseases may help solve the puzzle of selective regional vulnerability 

among the polyQ diseases.  

Protein misfolding and aggregation is not a unique feature of polyQ diseases. A 

number of other neurodegenerative diseases, including Alzheimer disease (AD), 

Parkinson Disease (PD), and amyotrophic lateral sclerosis (ALS) are characterized by the 

accumulation of different aggregated disease proteins in the nervous system (4). In most 

affected individuals, these diseases occur sporadically with no known genetic mutation or 

family history, though all of them can be caused by specific mutations in the respective 

disease proteins. While hundreds of thousands of individuals with polyQ disease may 
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benefit from an effective therapy, the polyQ diseases are rare compared to AD and PD. 

Nonetheless, the polyQ diseases serve as a simpler paradigm to study the relationship 

between protein misfolding, aggregation, and neurodegeneration. A better understanding 

of these relationships could provide insight on the neurodegenerative processes of more 

common diseases.  

1.1.2 Disease protein misfolding and aggregation: central to pathogenesis? 

   

Despite their monogenic inheritance pattern, polyQ diseases have a complex 

etiology involving widespread cellular effects, and disease pathogenesis can be 

influenced by various factors along the pathogenic cascade. Figure 1.1 depicts a 

simplified model of the path from expanded CAG repeat to neurodegeneration that 

includes disruption of several important cellular processes. This figure also highlights 

some of the pathogenic properties that may be exerted directly by mutant RNAs and 

proteins and lists several factors that can modify disease pathogenesis. At the DNA level, 

the length of the repeat and its stability within tissues are important factors that influence 

disease onset and severity. The transcribed RNA itself can potentially exert toxicity by 

sequestering RNA binding proteins, or the mutant disease transcript can be misspliced to 

produce more toxic isoforms. MicroRNAs can influence the stability or translation of the 

disease transcript. The misfolded and aggregated polyQ protein can misbehave in 

different ways to exert toxicity: it can engage in altered interactions with its normal 

binding partners, initiate new toxic interactions with other proteins, sequester important 

cellular factors, and alter/impair the native function of the disease protein. The toxic 

properties of a polyQ disease protein can be further influenced by other factors including 

the differing solubility of alternate disease protein isoforms, post-translational 
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modifications (e.g. proteolytic processing), and protein clearance pathways (e.g. 

chaperones and autophagy). The impaired clearance of the aggregated polyQ protein 

leads to its accumulation in the nervous system and in different cellular compartments, 

especially in the nucleus of neurons. Eventually, these proteotoxic processes lead to 

several possible downstream consequences, including disrupted transcriptional processes, 

organelle (e.g. mitochondria) dysfunction, ion channel/electrophysiological dysfunction, 

DNA damage with apoptotic pathway activation, altered protein quality control systems, 

among others. Ultimately, these processes lead to neuronal and non-neuronal 

dysfunction, disrupted neuro-circuitry, and neurodegeneration. While this chapter will not 

cover all the different aspects of polyQ disease introduced here, it will touch on certain 

important features that are relevant to the work presented later in the dissertation.  

A key early event and potential central mediator of disease processes is disease 

protein aggregation. Pioneering studies examining polyQ disease brains immunostained 

for the mutant protein revealed large intraneuronal inclusions in various brain regions (5, 

6). These inclusions co-immunostain for ubiquitin, molecular chaperones, and 

proteasome subunits, suggesting that cellular degradation machinery is engaged in the 

clearance of the disease protein (7, 8). The presence of inclusions of the disease protein in 

the nervous system is now recognized as a pathologic hallmark of polyQ diseases. 

Importantly, longer CAG repeat lengths in the disease gene are associated with earlier 

disease-onset, in some cases accelerated disease progression, and increased disease 

protein aggregation in the brain (9–11). In conjunction with the dominantly-inherited 

nature of all but one polyQ disease, these early findings led to the hypothesis that polyQ 
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expansions cause disease through toxic gain-of-function mechanisms exerted by disease 

protein misfolding and aggregation.  

A large body of evidence establishes a strong association between polyQ disease 

aggregation and toxicity in numerous models of disease. Overexpression of the polyQ 

protein or polyQ-containing fragments recapitulate aggregate formation and toxicity in 

various systems, including cell culture, yeast, worms, fruit flies, and mice. Studies in 

these models established that altering protein quality control factors implicated in the 

proper folding or clearance of misfolded proteins, namely molecular chaperones and 

associated proteins, could affect aggregation and toxicity (12–21). This prior work 

includes previous studies in our lab showing that the loss of CHIP, a ubiquitin ligase that 

interacts with molecular chaperones, accelerates aggregation and lethality in a transgenic 

mouse model of SCA3 (16). Conversely, overexpression of specific chaperones or CHIP 

can reduce aggregation and disease-associated phenotypes (12, 18, 22).  

 Just as the length of the polyQ tract can alter disease protein solubility and 

toxicity, so too can the sequence of the disease protein outside the polyQ tract. For 

example, early studies established that fragments of polyQ disease proteins are highly 

aggregate-prone and toxic in cell culture and mouse models, suggesting a “toxic fragment 

hypothesis” (23–26). Caspase and calpain proteases are primary suspects in driving 

polyQ disease protein cleavage, including in SCA3 and HD (27–31). Recent studies have 

shown in mouse models of SCA3 that increasing or decreasing the levels of calpastatin, 

an endogenous inhibitor of calpain, respectively attenuates or accelerates ATXN3 

aggregation and disease-associated phenotypes (32, 33). These findings underscore the 

importance of the protein sequence that harbors the polyQ tract (i.e. protein context) in 
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polyQ disease and provide additional correlative evidence between polyQ protein 

aggregation and disease pathogenesis.  

Several studies, however, called into question the role of aggregation in disease 

pathogenesis and suggested instead benign or even protective roles for aggregates. This 

debate is reviewed by Todd and Lim (34). Initial observations of polyQ disease brain 

pathology showed that the presence of inclusions in disease brain did not correlate 

(directly or inversely) with the regions most affected in disease (35–37). A landmark 

study by Arrasate and colleagues used automated microscopy to longitudinally examine 

neurons overexpressing a polyQ-containing fragment of mutant HTT and found that 

neurons that formed large HTT inclusions survived longer than those that did not (38). 

Further mismatch between aggregation-pathology and behavior phenotypes in mouse 

models raised questions on the role of aggregation in disease. A mouse model of HD 

expressing a mutant HTT fragment exhibited widespread neuronal inclusions but no 

behavioral phenotype (39) and, conversely, a transgenic mouse model of SCA3 exhibits a 

motor phenotype in the absence of detectable aggregate pathology (40). While 

chaperones could rescue toxicity in different disease models as mentioned above, a study 

by Chafekar et al showed that activated Hsp70 solubilizes aggregated polyQ proteins and 

increased toxicity (41). Together, studies have raised understandable concerns that polyQ 

aggregation may not necessarily represent a pathogenic disease process. 

The potential disconnect between polyQ disease protein aggregation and toxicity 

may stem from the different toxic properties associated with different polyQ aggregate 

species. It is now generally accepted that microscopically visible polyQ protein 

inclusions are unlikely to be directly neurotoxic, but increasing evidence suggests the 
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polyQ protein may still exert toxicity through misfolded monomeric or oligomeric 

species (11, 42, 43) (Figure 1.2). Nagai et al demonstrated that purified misfolded 

monomers of polyQ expanded protein in a -sheet conformation can induce toxicity in 

cell culture (44).  Automated longitudinal microscopy also revealed that the binding of an 

antibody that recognizes specific misfolded conformers of the polyQ monomer correlated 

with neuronal death (45, 46).  Legleiter et al. have proposed that misfolded monomers 

and oligomers adopt multiple conformations and can access or initiate several gain-of-

function interactions which may be toxic (11). In contrast, polyQ proteins sequestered 

into aggregates would not be able to exert these toxic properties.  

While the toxicity of different conformers has been demonstrated in vitro, directly 

isolating and demonstrating the relative toxicity of different polyQ species in vivo 

remains challenging. To support the potentially differing roles of aggregate species in 

vivo, overexpressing p62 improved motor symptoms in a mouse model of SBMA with a 

concomitant increase in the number and size of AR inclusions in the spinal cord (47). 

These mice also showed decreased monomeric and oligomeric AR detected 

biochemically (47).  

 In summary, the extent to which aggregation propensity of the polyQ disease 

protein directly drives pathogenesis in vivo remains debated. While overexpressing 

chaperones, protease inhibitors, or other factors can reduce aggregation and toxicity, 

these broad-acting factors may exert beneficial effects indirectly. Work presented in this 

dissertation avoids this potential pitfall by demonstrating that expressing different mutant 

ATXN3 isoforms with the same polyQ tract length, but differing solubility, leads to 
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marked differences in aggregate formation in vivo and subsequent molecular events, 

particularly transcriptional changes.  

1.1.3 Transcriptional dysregulation and gene expression profiling in polyQ disease 

 The mechanisms that drive polyQ toxicity remain the subject of investigation, but 

key observations support a critical role for nuclear localization of the disease protein. 

Firstly, a central feature of all polyQ diseases is the nuclear concentration and 

aggregation of the disease protein in neurons. Secondly, SBMA preferentially affects 

males due to androgen dependent effects of the polyQ-expanded AR protein that requires 

nuclear residence, and this is supported by mouse models of SBMA. Only male mice 

carrying mutant AR develop motor behavior symptoms, which diminish with castration 

(48) or by removing nuclear localization signals from AR (49). Other studies have added 

nuclear localization/export signals to the mutant polyQ proteins in mouse models, 

including for HD(50), SCA1(51), and SCA3 (52), which preferentially show disease 

phenotypes when there is nuclear localization of the disease protein. These observations 

and the fact that transcriptional roles have been suggested for all polyQ proteins have led 

to the major hypothesis that transcriptional dysregulation contributes to disease 

pathogenesis (53) 

PolyQ expansions can alter transcriptional activities of the disease protein through 

different means, as recently reviewed by Mohan et al (54).  The polyQ expansion in HTT 

alters its interactions with or sequesters important transcription factors, including CREB-

binding protein (55, 56), Sp1 (57), or REST/NRSF (58). PolyQ expansions can alter 

transcription factor activities of the disease protein, as seen with AR in SBMA (59). AR’s 

ability to bind DNA is also required for mutant AR-induced toxicity in flies (60).  The 
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polyQ expansion in ATXN1 alters its interaction with different transcriptional factors, 

including the transcriptional repressor Capicua, and this leads to both loss- and gain-of-

function changes in target genes (61, 62).  Direct alterations in transcription-associated 

functions of expanded polyQ have also been observed in SCA7 (63) and SCA17 (64, 65).  

A useful way to assess transcriptional dysregulation is through gene profiling of 

affected human disease tissue and equivalent brain regions in mouse models of disease. 

Transcriptional profiling has been a powerful tool in identifying early molecular 

correlates to disease including dysregulated transcriptional pathways (66). Extensive 

transcriptional profiling in HD, as reviewed by Seredenina and Luthi-Carter (67), has 

revealed numerous perturbed biological pathways associated with mutant HTT 

expression: neurotransmitter signaling, calcium signaling and homeostasis, 

mitrochondrial function, and others. Transcriptional profiling of SCA17 recently 

identified that the loss of an important age-related transcription factor, MANF, could 

accelerate disease (68). Transcriptional profiling in SCA1 and SCA7 revealed robust 

downregulation of Igfbp5 to indicate possible converging pathways in SCAs (69). 

Profiling of DRPLA mouse models has shown CAG repeat length- and age-dependent 

transcriptional alterations in pathways associated with calcium-dependent signaling and 

neuropeptide signaling (70). Profiling of muscle tissue in mouse models of SBMA has 

indicated alterations in mitochondrial and metabolic pathways (71, 72).  

In short, gene expression profiling has implicated possible transcriptional 

pathways in the pathophysiology of multiple polyQ diseases. Characterizing these 

disrupted transcriptional networks in polyQ disease could help move the field toward 

therapies by either identifying critical factors (e.g. transcription factors) that elicit 
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observed transcriptional changes or by identifying pharmacologically accessible 

downstream targets (e.g. ion channels) that exacerbate neuronal dysfunction. At a 

minimum, gene expression profiles provide a sensitive and early readout of disease-

associated processes in vivo (73). Kuhn et al showed that expression profiles of seven 

different HD mouse models showed good concordance with profiles of human HD 

caudate (74), supporting the view that expression profiling of mouse models can provide 

insight into human disease pathogenesis. However, agreement between human disease 

tissue and animal model expression profiling cannot be assumed for all disease models, 

and confidence in the data set of any profiling experiment improves with validation of 

one or more predicted changes in human disease tissue. 

To date, polyQ disease gene expression profiles largely have utilized microarray 

technology. The advent of next-generation sequencing technology, such as RNA-

sequencing, has greatly increased the sensitivity of detecting altered transcripts, and 

performing RNA sequencing today is equally if not more cost-effective than performing 

microarrays. Moreover, continually improving bioinformatic analytical tools allow 

scientists to better characterize transcriptional networks and the processes that might 

drive their disruption. Work in this dissertation utilizes RNA-sequencing to 

comprehensively identify transcripts associated with mutant ATXN3 aggregation.  

1.2 Knock-in mouse models of polyglutamine disease 

The ability to address important questions about polyQ disease pathogenesis 

hinges on the availability of appropriate model systems. The range of model systems in 

polyQ disease research is vast, spanning from the in vitro characterization of purified 

disease protein (75) to the insertion of disease genes into non-human primates (76). Each 
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disease model has advantages and disadvantages and can provide complementary 

information on different aspects of disease. Work in this dissertation extensively uses 

knock-in mouse models of disease, which are particularly suited to study early molecular 

pathogenic events in vivo under pathophysiological expression conditions. This section 

reviews the major aspects of knock-in mouse models and their utility in studying polyQ 

disease pathogenesis.  

1.2.1  Mouse models of polyQ disease and general features of knock-in mice 

  

The study of polyQ disease in vivo extensively utilizes mice, which are valuable 

for several reasons: 1) they breed quickly, allowing faster assessment of disease features, 

2) they are relatively easy to genetically manipulate compared to other vertebrate models, 

and 3) as mammals they exhibit good morphological and functional similarity to the 

human brain and its cellular components, including neurons, glia, other cell types, and 

functional circuitry. Modeling these diseases has been aided by the fact that transgenic 

overexpression of mutant polyQ proteins from human mutant cDNAs often elicits robust 

neuropathological and behavioral changes in mice, consistent with the dominant 

inheritance of disease in humans. Even the transgenic insertion of a full-length human 

disease gene through a bacterial or yeast artificial chromosome (BAC or YAC) can lead 

to robust expression of the disease protein. Of course, mice cannot recapitulate every 

feature of disease in humans, who have more complicated nervous systems and harbor 

CAG mutations for decades before exhibiting symptoms. An unsolved challenge in the 

polyQ field has been defining the best type of mouse model and the most critical features 

of mouse models that will best predict the success of therapeutic interventions in humans. 
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Nonetheless, mouse models of polyQ disease have been useful in exploring the properties 

and effects mutant polyQ proteins expressed in a mammalian nervous system.  

Among the possible types of mouse models are knock-in mouse models of polyQ 

disease. Knock-in models take advantage of the presence of closely related orthologues to 

human disease genes in mice. Knock-in mouse models of polyQ disease, in which the 

endogenous CAG repeat within the gene of interest is expanded, represent a genetically 

precise in vivo approximation of human polyQ disease. In contrast to overexpression 

mouse models, knock-in mice express the mutant transcript and protein at physiological 

concentrations, which are regulated by endogenous murine regulatory factors and 

elements. Some polyQ knock-in mice exhibit key features of human disease, including 

neuropathological and behavioral abnormalities. By being genetically precise and within 

the animal genomic and protein contexts, knock-in mice allow scientists to identify the 

consequences, for a given  mutant protein, of loss-of-function, disrupted native 

interactions, and novel interactions, and to  identify cis- and trans-acting gene regulatory 

elements that control the mutant gene’s expression.  

Importantly, the physiological nature of knock-mice makes them well suited to 

investigate early molecular changes associated with expression of a disease gene in the 

brain. To date, several disease-modifying polyQ disease therapeutic trials have been 

performed in symptomatic subjects and so far have failed (77–79). Earlier 

presymptomatic interventions may be necessary for improved outcomes. Therefore, 

defining early molecular changes in disease using knock-in mouse models may be the 

key to identifying early presymptomic biomarkers of disease processes en route to 

finding effective therapies.  
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Knock-in mouse models, however, present several caveats and challenges. The 

most evident drawback is that most knock-in mice do not exhibit robust behavioral 

abnormalities even at relatively advanced age. The exception is in knock-in mouse 

models expressing hyper-expanded repeats (that is, well beyond known human disease 

repeat lengths or so long as to cause an atypical infantile onset disease in humans). 

Hyperexpanded repeats may not be the most appropriate models of the common, adult-

onset form of disease. In addition, subtle differences between mouse and human genes 

and proteins can pose a challenge for designing and testing therapeutic targets that are 

specific to the human disease gene or protein. The mouse and human proteins also may 

behave differently when an expanded polyQ tract is inserted. These considerations 

underscore the importance, when using mouse models to identify disease-related changes, 

of striving to validate critical findings in human disease tissue. One could argue knock-in 

mice provide the best prediction of early molecular changes, since they most closely 

mimic the genetic cause of the disease in humans. However, such a comparative analysis 

has not been systematically performed across the different polyQ disease mouse models 

and the respective diseases they model.  

1.2.2 Lessons from knock-in mouse models of polyQ disease 

The greatest number of available knock-in mice is for HD (Table 1.2) and, with 

the exception of DRPLA, all other polyQ diseases now have at least one knock-in mouse 

model available (Table 1.3). Table 1.3 includes two recently reported knock-in mouse 

models of SCA3, one of which was generated in our lab and is utilized throughout this 

dissertation. All published polyQ disease knock-in mice were generated through 

homologous recombination techniques to replace the endogenous murine CAG repeat 
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with a segment containing a long CAG repeat. Some knock-in mice were generated using 

a human exon with the expanded CAG tract to replace the mouse exon, resulting in a 

chimeric human/mouse exon. Other groups have simply expanded the endogenous CAG 

repeat in the mouse exon. All knock-in mouse models express the mutant polyQ protein 

and exhibit some degree of intraneuronal accumulation of the mutant protein, thus 

recapitulating a key early disease feature. Only a few knock-in mouse models with 

especially long CAG expansions exhibit behavioral phenotypes, and most do not show 

clear neurodegenerative changes.   

The study of knock-in mouse models of polyQ disease has been instrumental to 

understanding different aspects of disease pathogenesis including behavior of the mutant 

gene, transcript and protein, and their effects on downstream processes. To highlight a 

few key findings: Several polyQ disease knock-in mouse models exhibit intergenerational 

and somatic instability of the CAG repeat (80–82), and reducing repeat instability in HD 

knock-in mice correlates with reduced aggregation in the brain (83, 84); knock-in mice of 

HD and SCA6 have helped characterize alternative splicing of their respective disease 

transcripts (85, 86); SCA1 knock-in mice have paved the understanding of how polyQ-

driven alterations of native interactors, for example via a specific phosphorylation site, 

can affect disease pathogenesis (87, 88); Chua and colleagues recently altered 

SUMOylation sites in SBMA knock-in mice to demonstrate that functional recovery of 

expanded AR protein was associated with improved muscle function (72); a conditional 

knock-in mouse model of SCA17 helped identify critical age-associated factors and their 

contribution to disease (68); Finally, knock-in mice have been useful for pre-clinical 

testing of several novel therapies (89–92).  
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In general, knock-in mouse models have proved to be a valuable tool, but the 

concurrent use of other disease models is important to identify converging affected 

pathways or to confirm hypotheses. These additional models include transgenic mice that 

overexpress the human disease protein. Transgenic mice expressing the full-length 

disease gene containing all introns and exons can be especially useful for investigating 

disease gene splicing in vivo. The work in this dissertation uses multiple SCA3 mouse 

models and human tissues samples to strive for findings that have a high probability of 

occurrence in human disease. Ultimately, there is no perfect model of disease until we 

clearly identify predictive markers or interventions that translate directly from model to 

disease. Until then, a combinatorial and interdisciplinary approach with models for 

disease is most likely to bring us closer to therapies.  

1.3 Toward understanding spinocerebellar ataxia type 3  

The studies described here on SCA3 are motivated by several factors. Although 

SCA3 is among the most prevalent of the polyQ diseases, no SCA3 knock-in mouse 

model was published at the time my dissertation work began. The size of the SCA3 

disease gene, transcript, and protein are all fairly small, which allows straightforward 

visualization and manipulation of these elements in vivo. The function of the ATXN3 

protein is also well characterized, which facilitates investigation of both loss-of-function 

and gain-of-function contributions to disease. Together, these factors helped ensure my 

capacity to make important contributions toward understanding SCA3 pathogenesis. An 

improved understanding of SCA3 could benefit the substantial number of individuals 

affected by SCA3, as well as other polyQ diseases. The remainder of this introduction 

highlights some of the major clinical and pathogenic features of SCA3 and how this 
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dissertation aims to address critical questions on polyQ disease pathogenesis using SCA3 

knock-in mice.  

1.3.1 Clinical and pathological features of SCA3  

 

Several reports in the 1970s described an ataxic disorder in different families of 

Portuguese ancestry, particularly those of Azorean descent (93–96). The mysterious 

disease at the time went by different names such as nigro-spino-dentatal degeneration, 

striatonigral degeneration, or Azorean disease. The study of two different families with 

this ataxic disorder who were respective descendants of William Machado  and Antone 

Joseph led to the name Machado-Joseph disease (97). Geneticists in Europe in the 1990s 

had also designated what seemed to be a distinct hereditary ataxia as SCA3. The 

identification of the causative mutation in 1994 unified Machado-Joseph disease and 

SCA3 as one disorder that is now believed to be the most common dominantly inherited 

ataxia in the world (98, 99).    

Along with ataxia, SCA3 is clinically characterized by a constellation of signs and 

symptoms that can vary greatly among affected persons. These symptoms include speech 

difficulty, rigidity, spasticity, proptosis, ophthalmoplegia, eye movement and vision 

difficulties (100). Some affected individuals exhibit prominent Parkinsonism. SCA3 can 

be phenotypically classified into four subtypes, which are not clinically very helpful but 

demonstrate the heterogeneous presentation of disease (101). Increasing studies also 

recognize cognitive symptoms associated with SCA3 (102–104).  

Post-mortem analysis in SCA3 brain has shown prominent degeneration of the 

deep cerebellar nuclei, as well as various associated nuclei of the brainstem and spinal 

cord (2, 105). The pons is especially affected as signified by some of SCA3’s alternative 
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names: olivopontocerebellar degeneration and spinopontine atrophy. As such, work in 

this dissertation frequently examines molecular alterations in the pons. As described 

above, these brain regions exhibit large intraneuronal ATXN3 inclusions. Furthermore, 

large axonal ATXN3 inclusions can also be found along different fiber tracts, particularly 

in the brainstem (106). Degeneration is not prominent in the SCA3 cortex and 

hippocampus, but aggregate pathology in these regions has not yet been systematically 

assessed.  

1.3.2 The ATXN3 gene, splice isoforms, and aggregation 

 

 The genetic structure of the ~48 kb ATXN3 gene and the location of the CAG 

repeat in the 10
th

 exon are shown in figure 1.3. Also shown are the spliced full-length 

ATXN3 transcript, containing all 11 coding exons, and a schematic of the encoded 

protein. When the disease gene was initially cloned by Kawaguchi and colleagues, the 

cDNA and gene were reported to contain only 10 exons (98). Three years later another 

group identified the 11
th

 coding exon (107). Bettencourt et al reported up to 50 different 

ATXN3 splice isoforms in patient blood samples though how many of these are 

expressed in specific tissues is unknown (108). The splice isoform encoded by full-length 

transcript with 11 exons (ATXN3-11e) appears to be most abundantly expressed (109), 

but the relative abundance of different ATXN3 isoforms has not yet been clearly 

established. A fair portion of published work on SCA3 studies the first identified 10 exon 

(ATXN3-10e) isoform, including studies using SCA3 mouse models that overexpress this 

minor isoform (110).  

Different ATXN3 isoforms exhibit differences in solubility and their expression 

may influence disease pathogenesis. The ATXN3-10e transcript does not splice to exon 11 



19 
 

and instead retains intron 10, which encodes a more hydrophobic stretch at the C-

terminus. Our lab previously determined that the ATXN3-10e isoform is more 

aggregation-prone in cell culture (109). However, the extent to which the expression of 

different ATXN3 isoforms can drive differences in aggregation and pathogenesis in vivo 

has not been explored. A significant part of this dissertation aims to show that the 

expression of a mouse ATXN3-10e isoform markedly accelerates ATXN3 aggregation in 

vivo. 

1.3.3 ATXN3 as a deubiquitinating enzyme  

The full-length ATXN3 protein is a small deubiquitinase (~42 kD, ~355 amino 

acids) with an evolutionarily conserved, globular catalytic domain at the N-terminus (so 

called Josephin domain), and an unstructured, flexible C-terminus (Figure 1.3). The 

Josephin domain contains two ubiquitin binding sites and a catalytic cysteine at the 14
th

 

residue (not depicted). The unstructured C-terminus stretch of the full-length isoform 

contains three ubiquitin interacting motifs (UIMs) as depicted in figure 1.3.  

ATXN3 localizes diffusely throughout the cell, found in both the cytoplasm and 

nucleus, where it functions in protein surveillance pathways. Using its multiple UIMs and 

enzyme activity, ATXN3 binds and trims polyubiquitinated chains conjugated to 

proteins, particularly Ub chains containing four or more ubiquitin (111, 112). As a result 

of ATXN3’s broad substrate activity, ATXN3 knockout mouse brains exhibit elevated 

total levels of polyubiquitinated proteins (113, 114). Of note, the third UIM is encoded by 

exon 11 and is therefore missing in the ATXN3-10e isoform. this does not, however, lead 

to obvious differences in the ubiquitin binding or deubiquitinating activity of ATXN3 

(109). 
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The deubiquitinating role of ATXN3 has raised the intriguing possibility that its 

enzymatic activity may influence its own aggregation and disease pathogenesis. In 

support of this concept, a fly model of SCA3 showed that overexpressing wild-type 

ATXN3 protects against eye degeneration, and that this protection required ATXN3’s  

deubiquitinating activity (115). However, a protective effect of ATXN3 was not 

confirmed in mammalian models overexpressing wild-type ATXN3 (116, 117). Work in 

our lab by Dr. Li Zeng also found that knocking out endogenous ATXN3 did not alter 

disease progression in a knock-in mouse model of HD (118). ATXN3 does not seem to 

be an essential protein since ATXN3 knockout mice are healthy (113), suggesting that the 

toxicity of mutant ATXN3 predominantly arises from gain-of-function mechanisms. This 

does not, however, exclude the possibility that ATXN3’s function and polyQ-dependent 

dysfunction may influence disease pathogenesis and selective regional vulnerability. 

1.3.4 ATXN3 function and dysfunction in the nucleus 

ATXN3 plays an active role in the nucleus and mutant ATXN3 dysfunction in the 

nucleus may contribute to disease pathogenesis. ATXN3 can freely shuttle between the 

cytoplasm and nucleus (119) and concentrates in the nucleus with heat or oxidative stress 

(120). ATXN3 has been reported to act as a transcriptional co-repressor (121), and 

ATXN3 can work in concert with HDAC3 and NCor to repress transcription (122). 

Mutant ATXN3 is not as effective at this repression (122), which may lead to 

dysregulation of various target genes. ATXN3 also interacts with the transcription factor 

FOXO4 to upregulate superoxide dismutase 2 (SOD2), a protein that helps break down 

oxygen radicals (123). Mutant ATXN3 expression reduces SOD2 transcription, possibly 

increasing cellular vulnerability to oxidative stress (123). While ATXN3 has clear effects 
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on the transcription, the extent to which ATXN3 acts as a traditional transcription 

cofactor rather than as a deubiquitinase that regulates other transcription factors is 

unclear.  

Emerging evidence on the role of ATXN3 in DNA damage repair supports a role 

for impaired DNA repair in SCA3 pathogenesis (124). ATXN3 is well-known to interact 

with DNA repair-associated proteins, including RAD23A (125–127). Recently, mutant 

ATXN3 was shown to interact with and inhibit mammalian polynucleotide kinase 3’-

phosphatase (PNKP), an enzyme involved in DNA repair, leading to increased DNA 

damage and activated apoptotic pathways, which may drive cell death in disease (128, 

129). The authors further showed that induction of apoptotic pathways by mutant 

ATXN3 is mediated by the protein ataxia telangiectasia mutated (ATM) (129), an 

important DNA damage checkpoint component of the cell cycle that is mutated in a 

childhood onset form of ataxia. ATM mediates toxicity in models of HD, and its 

reduction can reduce mutant HTT-induced toxicity (130).  As other studies converge on 

DNA damage in polyQ diseases (131–133), disrupted nuclear processes continue to be a 

dominant theme in polyQ disease pathogenesis. 

1.4 Summary and aims of the dissertation 

SCA3, caused by a CAG repeat expansion in the ATXN3 gene, is likely the most 

common of the polyQ diseases with many unresolved questions regarding disease 

pathogenesis. Like other polyQ diseases, SCA3 appears to be predominantly mediated by 

toxic gain-of-function mechanisms, and emerging evidence implicates important roles of 

ATXN3 dysfunction in disease pathogenesis, particularly in the nucleus. However, the 

extent to which mutant polyQ protein aggregation contributes to disease pathogenesis is 
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still debated. To address this further, I sought to identify factors that modify mutant 

ATXN3 aggregation in a physiologically-relevant disease model.  

Current understanding of SCA3 pathogenesis benefits from various disease 

models that include worms, fruit flies, cell cultures, mice, and rats.  With the exception of 

patient fibroblasts and IPSC-derived neurons, prior models of SCA3 have overexpressed 

mutant disease protein and few had explored molecular pathogenesis of SCA3 under 

physiological expression conditions. This prompted me to approach the disease in a new 

way by using a knock-in mouse model. The generation of a knock-in model was started 

by Dr. Ginny Harris in the Paulson lab during her dissertation and completed by me.  

By approaching SCA3 using a novel and previously uncharacterized knock-in 

mouse model of disease, this dissertation addresses three main aims. The first aim is to 

demonstrate features of the SCA3 knock-in mouse model and its suitability for modeling 

disease, particularly with respect to disease protein aggregation and splicing of the 

disease transcript. Characterization of these mice led to the serendipitous identification of 

two separate lines of SCA3 knock-in mice that differentially express mutant Atxn3 splice 

isoforms, leading me to the second aim: determine the extent to which alternative splicing 

of Atxn3 contributes to ATXN3 aggregation. The third and final aim takes advantage of 

differences in aggregation in nearly identical SCA3 knock-in mice to address the extent 

to which mutant ATXN3 aggregation contributes to pathogenesis, assessed through 

transcriptional profiling of these knock-in and other SCA3 mouse models.  
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Table 1.1: The diversity of polyglutamine (polyQ) disease genes, proteins, and 

function. Provided are the list of diseases, the exon in which the CAG repeat is expanded 

in disease, and the total number of exons in the gene. The diagrams show the relative size 

of the disease protein with the relative location of the polyQ expansion and includes the 

range of polyQ expansions known to cause disease. A general description of the protein’s 

known function is also given.  
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Figure 1.1: Pathogenic factors from CAG expansion to disease. This simplified 

diagram shows the CAG repeat expansion leading to mutant RNA expression, mutant 

protein expression, and aggregation. Left, a list of properties directly exhibited by disease 

transcript and disease protein (and its aggregation) that may drive toxicity. Right, a list of 

factors at the level of the disease gene, transcript, and protein that can further influence 

pathogenesis. The misfolding and aggregation of disease protein may critically drive 

several downstream events listed below that lead to neurodegeneration. 

 

 

Figure 1.2: Basic model of polyQ disease protein aggregation. This diagram shows 

that the polyQ expanded protein has a tendency to misfold and aggregate, ultimately 

leading to the formation of microscopically visible puncta and inclusions in cells that are 

not directly toxic. Although a proteotoxic species in polyQ disease has not been clearly 

defined, increasing evidences suggests that monomeric and oligomeric states of disease 

protein may drive toxicity. Other intermediate species not depicted include amorphous 

aggregates, protofibrils, and fibrils. 
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HD knock-in mouse Neuropathological findings Behavioral changes Refs 

Q50 (HD/Hdh exon 1) No known abnormalities No known abnormalities (134) 

Q71 (HD/Hdh exon 1) No known abnormalities No known abnormalities (135) 

Q72-80  Increased nuclear localization neuronal 

intranuclear inclusions (NIIs), neuropil 

aggregates, axonal degeneration at >2 

years 

Aggression (~3 months), motor 

deficits at 4 months 

(136) 

Q77 (HD exon 1) Nuclear localization, NIIs, and 

neuropil aggregates 

Increased aggression >1 year (81, 137) 

Q80  Rare nuclear inclusions (up to 22 

months) 

Mild gait deficit at 10 months (138) 

Q94 (HD/Hdh exon 1) Increased nuclear localization and NIIs   Altered activity and motor deficits at 

~2 years 

(135, 

139) 

Q92 (HD/Hdh exon 1) Nuclear localization and NIIs  in 

neurons 

Mild motor and memory deficits in 

homozygous mice >14 months 

(82, 140, 

141) 

Q111  

(HD/Hdh exon 1) 

Nuclear localization and NIIs, gliosis, 

neuropil aggregates at 2 years 

Anxious/depressive-like behavior at 

4 months, memory deficits at 8 

months, mild motor deficits at ~2 

years,  

(82, 140) 

Q140-175  

(HD/Hdh exon 1) 

Nuclear localization and NIIs, neuropil 

aggregates. Reduced DARPP-32 in 

striatum, brain atrophy and neuronal 

loss 

Altered activity  and motor deficits at 

~1 year 

(142, 

143) 

Q140  

(N-term Flag tag) 

Nuclear localization and NIIs (6 

months) 

Not reported (144) 

Q150-250 Q150-200: Nuclear localization and 

NIIs, neurpil aggregates, axonal 

degeneration, reduced neurotransmitter 

receptor binding, autophagic changes, 

gliosis in striatum 

Q250+: Reduced DARPP-32 in 

striatum, myelination defects 

Q150: Hindlimb dragging, clasping, 

and activity 4 months, motor deficits 

100 weeks, weight loss in 

homozygotes ~1.5 years 

Q200: Weight loss ~5 months, 

reduced grip strength ~1.5 years, 

motor deficits ~ 1 year 

Q250: Motor deficits ~6 months 

(138, 

145–

148) 

Table 1.2: Knock-in mouse models of HD 
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Disease Knock-

in 

mouse  

Neuropathological findings Behavioral changes Refs 

SBMA Q113 

(AR/Ar 

ex 1) 

Neuronal intranuclear inclusions (NIIs) 

in spinal cord and skeletal muscle; 

neuromuscular pathology 

Decreased fertility,  androgen-

dependent early death, progressive 

motor deficits 

(48) 

SCA1 Q78 Not reported Mild motor incoordination in 

homozygous mice 

(80) 

Q154 Early nuclear accumulation and NIIs; 

synaptic deficits, Purkinje neuron 

atrophy and loss  

Weight loss, robust motor behavior 

and learning deficits 

(149) 

SCA2 Q42 NIIs in Purkinje neurons Motor deficits in homozygous mice 

(>18 months)  

(150) 

SCA3 Q82 Robust nuclear accumulation and NIIs; 

dystrophic neurites in hippocampus 

No detectable motor phenotype in 

heterozygous mice (1 year) 

(151) 

Q91 

(ATXN3 

ex 11)  

Nuclear accumulation, NIIs Mild motor behavior deficit in aged 

(>1 year) mice 

(152) 

SCA6 Q84 Mutant Cav2.1 aggregates in Purkinje 

neurons 

Progressive motor deficits (85) 

SCA7 Q266+  Neuronal accumulation and NIIs  Weight loss, visual and motor 

deficits, early death, robust motor 

behavior deficit 

(153) 

SCA17 Q105 Nuclear accumulation and NIIs, 

Purkinje neuron atrophy and loss 

Weight loss, moderate motor 

behavior deficits, Purkinje neuron 

loss 

(154) 

DRPLA N/A N/A N/A  

Table 1.3: Knock-in mouse models of polyQ disease excluding HD 
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Figure 1.3: SCA3 mutant gene, transcript, and protein.   The ATXN3 gene is ~48 kb 

with 11 coding exons with large introns (shown to scale), with the CAG repeat in the 10
th

 

exon.  The ATXN3 protein is ~42 kD consisting of a globular Joseph domain and an 

unstructured C-terminal stretch containing the polyQ stretch (red) and three ubiquitin 

interacting motifs (UIM, orange).  ATXN3 primarily functions  as a deubiquitinating 

enzyme, but plays diverse roles in cellular pathways. The sizes of the ATXN3 gene, 

transcript, and protein are not drawn in scale relative to each other.   
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Chapter 2  

Materials and methods 

 This chapter provides information on the materials and methods used in both 

Chapters 3 and 4. The majority of the protocols given here are used in the work of both 

Chapters with few minor differences. Most of the information in this chapter has been 

published in Ramani et al (151). 

2.1 Generation of SCA3 knock-in mice 

The protocol described in this section was performed by Dr. Ginny Harris as part 

of her dissertation. A more comprehensive protocol is provided in her thesis (155). For 

the reader’s convenience, I have provided the protocol from our published report of the 

SCA3 knock-in mouse (151). The generation of these mice was aided by collaboration 

with Dr. Thomas Saunders and the Transgenic Animal Model Core 

(http://www.med.umich.edu/tamc/).   

Genomic murine Atxn3 DNA from a C57BL/6-tyr(c-2J) albino embryonic stem 

(ES) cell line (Millipore, Cat SCR011) was used to amplify a 4 kb upstream flanking arm 

derived from intron 9-10 and a 2.6 kb downstream flanking arm that spans exon 10. NotI 

and SalI restriction sites were engineered to flank the upstream flanking arm and a novel 

KpnI restriction site was engineered onto the 5’ end of the downstream flanking arm. The 

5’ flanking arm was then subcloned into pBY49a upstream of a FRT-PGK-Neo-FRT 

positive selection cassette. The 3’ flanking arm was subcloned into pBluescript SK(-) and 
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the CAG repeat was expanded using a modified QuickChange approach (156). Briefly, a 

human expanded CAG template (At3-Q129-GFP and At3-Q166-GFP) was amplified 

with partially complementary primers to generate an expanded (CAG)n “megaprimer” 

flanked by murine genomic sequence. This double-stranded megaprimer was used to 

insert an expanded (CAG)n repeat into the Atxn3 gene using the QuickChange 

Mutagenesis method (Stratagene). One clone generated was chosen for additional repeat 

expansion through splicing by overlap extension (157). We inserted the 3’ flanking arm 

from one clone of the megaprimer expansion series, which contained a Q3KQ82-

encoding expansion, into the targeting vector between the FRT-PGK-Neo-FRT positive 

selection cassette and the PGK-TK negative selection cassette, using KpnI and EcoRI 

restriction sites.  

The complete targeting vector was purified with NdeI and electroporated into 

Bruce4.G9 ES cells (158).  G418 and ganciclovir selection were used to enrich for ES 

cell colonies with the positive selection cassette and loss of the negative selection 

cassette. Each colony was screened for homologous recombination and CAG repeat 

expansion by PCR- and Southern blot-based strategies. ES cell clones containing the 

expansion and confirmed to be sufficiently euploid were microinjected into homozygous 

albino B6(Cg)-Tyr<c-2J>/J blastocysts. Microinjected blastocysts were introduced then 

into the uterine horns of pseudopregnant female mice. Chimeras were crossed to albino 

B6(Cg)-Tyr<c-2J>/J mice, and all black pups were assayed for germline transmission of 

the knock-in allele by PCR.   

For in vivo excision of the FRT-site flanked positive selection cassette, F1 

heterozygous knock-in animals were crossed with homozygous FLP recombinase 
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transgenic mice driving FLPe expression under the human -actin promoter (Jackson 

Laboratories, strain B6.Cg-g(ACTFLPe)9205Dym/J). F2 mice positive for the Q82 

knock-in expansion were crossed with C57BL/6 mice (Jackson Laboratories) to remove 

the FLPe transgene and outbred for at least four generations. Homozygous Q82/Q82 mice 

were generated and sequenced across the FRT site to ensure removal of the neomycin 

cassette and identify the remaining sequences in intron 9 (Figure 2.1)  

2.2 Animals and ethical use 

YAC-84Q and YAC-15Q mice (159) and ATXN3 knockout mice (120) are 

described previously. Mice used here are available from Jackson Laboratories including 

YAC-84Q mice (B6;CBA-Tg(ATXN3*)84.2Cce/IbezJ), Q82/Q6 mice (B6(Cg)-

Atxn3tm1Hlp/J), and  Nestin-Cre mice (B6.Cg-Tg(Nes-cre)1Kln/J). The Nestin-Cre mice 

were kindly provided by Corinne Weisheit of Dr. William Dauer’s lab (University of 

Michigan). All mice are maintained by veterinarians and animal care staff from the 

University of Michigan Unit for Laboratory Animal Medicine (ULAM). All 

manipulations and handling were performed in accordance with guidelines of the 

University of Michigan Committee on Use and Care of Animals.  

2.3 Genotyping and CAG repeat sizing 

DNA was extracted from clipped mouse tails using a DNeasy Tissue kit (Qiagen) 

and used for genotyping by PCR. Primers flanked the endogenous CAG repeat of exon 

10 of Atxn3 (see section 2.8 for primers). The PCR conditions are as follows: 95 deg C/2 

min, 30 cycles of 95 deg/30s, 51degC/30s, 72degC/1m, 1 cycle 72degC/10min. Products 

were run on a 1.5% agarose gel and visualized with ethidium bromide. Purified tail DNA 

was submitted for CAG repeat sizing to Laragen, Inc. (Culver City, CA, USA).  
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2.4 Tissue lysate preparation, SDS-PAGE, SDS-agarose, and western 

blot analyses 

Tissue lysates were prepared as previously described (16) with minor 

modifications. Briefly, frozen tissue was homogenized in 10 vol RIPA + protease 

inhibitor (PI) cocktail containing RIPA buffer (50 mM Tris–HCl pH 7.4, 150 mM sodium 

chloride, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40) and protease inhibitors 

(Complete Mini tablets, Roche). Homogenates were centrifuged at 1500g for 15 min at 4 

deg C, and supernatants (soluble fraction) was transferred to a new tube and assayed for 

protein concentration using bicinchoninic acid (Pierce). The soluble fractions were 

diluted to a final concentration of 4 g/l in RIPA + PI + loading buffer (from 6X 

concentration of 0.35 M Tris-HCl, 10.3% SDS, 36% glycerol, 0.6 M dithiothreitol, and 

12% bromophenol blue), and boiled for 5 min. Samples were separated by 10%, 3% 

SDS-PAGE, or 2% SDS-Agarose (with 0.1% SDS), transferred onto polyvinylidene 

fluoride membrane (PVDF), and blotted as previously described (16). The 3% gel was 

transferred onto PVDF using the BioRad TransBlot SD semi-dry apparatus on 10V for 30 

min. 

For an alternative method for detecting high molecular weight ATXN3 aggregates 

(Chapter 4 only), a mouse brain hemisphere was homogenized in 1 ml RIPA + PI, 

sonicated briefly, and centrifuged at 12,000g for 20 min. The supernatant was saved and 

assayed for protein concentration. 1 mg of protein was then incubated overnight in 1 l of 

1H9 antibody + 20 l protein A beads (Life Technologies). The protein A beads were 

then pelleted, washed, eluted by boiling 5 min in 2x loading buffer,  resolved on a 3-12% 

Tris-acetate gel, transferred to PVDF, and blotted with anti-MJD.  



32 
 

For work in Chapter 4, human disease brainstem tissues from three Alzheimer’s 

disease and three SCA3 cases were kindly provided by the University of Michigan Health 

System Brain Bank. Roughly 0.5 cm
3

 of brain stem tissue was used for western blot 

analysis using the protocol described above.  

Antibodies: 1H9 1:2000 (MAB5360, Millipore), anti-MJD 1:10,000 (160), -

tubulin 1:5000 (Cell signaling), ACY3 1:2000 (Proteintech).  

2.5 Immunohistochemistry, immunofluorescence, and scoring ATXN3 

accumulation 

Mice were transcardially perfused with chilled PBS and the brains removed. One 

hemisphere was fixed in 4% paraformaldehyde at 4 deg C for 48 hours and the other 

hemisphere was frozen on dry ice and stored in -80° C for biochemical experiments. 

Fixed brains were transferred to 30% sucrose in 0.1M phosphate buffer for at least 48 

hours at 4 deg C. Brains were then serially sectioned and stained as previously described 

(16). Immunofluorescent images were taken by Zeiss LSM 510-META Laser Scanning 

Confocal Microscope at the University of Michigan Microscopy & Image Analysis Core.   

Antibodies include anti-ataxin 3 clone 1H9 1:1000, anti-MJD 1:5000, anti-RTN3 

R458 1:2000 (kindly provided by Riqiang Yan, Cleveland Clinic, Cleveland, OH, USA), 

anti-MAP2 1:2000 (M4403, Sigma), SMI32 1:2000 (NE1023, Calbiochem).  

 Three heterozygous SCA3 knock-in brains immunohistochemically stained for 

ATXN3 were systematically scored for diffuse nuclear staining, intranuclear inclusions, 

and extranuclear inclusions. Staining patterns indistinguishable from wild-type mice were 

scored as -. The presence of diffuse nuclear staining was represented by + or ++. 

Frequency of solitary intranuclear inclusions or extranuclear inclusions were scored by +, 
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++, or +++. Intranuclear versus extranuclear inclusions were further confirmed by co-

immunofluorescent staining with nuclear DAPI. Examples of scoring diffuse nuclear 

staining and intranuclear inclusions are shown in Figure 3.6 (Chapter 3).   

2.6 Motor behavior testing and fear conditioning 

The examiner was blinded to the genotype in all behavioral experiments. Motor 

function was assessed on SCA3 knock-in mice using tests as previously reported (145), 

including performances on accelerating rotarod, balance beam, and locomotor activity in 

an open field chamber for 30 min. In chapter 3, I tested Q82/Q6 and wild-type mice 

ranging from 47 to 57 weeks of age. Motor performance on day 4 and open field activity 

were analyzed using a Student t-test with a Bonferroni post-hoc correction for three 

comparisons. In chapter 4, I tested wild-type, Q82/Q6, and Q82V/Q6 mice ranging from 

53 to 61 weeks of age. I analyzed four day accelerating rotarod data by a two-way 

ANOVA, and I analyzed day 4 balance beam performance and open field locomotor 

activity by a one-way ANOVA with a Newman-Keuls multiple comparisons test.   

In chapter 3, fear conditioning was performed on Q82/Q6 mice and wild-type 

littermates ranging from 52 to 60 weeks of age using the protocol previously described 

for single-day experiments (161). These experiments were performed in collaboration 

with Dr. Geoffrey Murphy (University of Michigan) These mice were then sacrificed and 

examined for aggregates in the hippocampus and amygdala.  

2.7  RNA extraction, RNA sequencing, quantitative PCR, and 3’ RACE 

RNA was extracted from pons or half of the hindbrain of mice using TRIzol ® 

(Life Technologies) and further purified using the RNeasy kit with on-column DNase I 

digestion (Qiagen). Purified RNA was submitted to the University of Michigan 
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Bioinformatics Core for library generation and Illumina HiSeQ RNA-sequencing. The 

RNA-seq data reported in chapter 3 utilized a NuGen library with 50x50bp sequencing, 

while chapter 4 used a TruSeq library with 100x100bp sequencing. Each sample was 

sequenced on at least one lane. The sequencing reads for each mouse were aligned using 

TopHat and the output was sorted and indexed using SAMtools to generate a BAM file. 

We visualized Atxn3 transcript reads in each BAM file using Integrative Genomics 

Viewer (162, 163).  Fragments per kilobase of exon per million fragments mapped 

(FPKMs) reported for the full-length Atxn3 transcript (accession NM_029705)were 

created by CuffLinks. We used a locally developed R script, in conjunction with 

CummeRbund, to output a table of all expression values (raw, externally normalized, and 

FPKM).   

Chapter 4 presents altered transcripts from RNA-seq in a heat map format. To 

generate the heat map, the calculated Cuffdiff values were normalized to wild-type to 

determine relative fold-change for differentially expressed (DE) transcripts. Differentially 

expressed (DE) transcripts were identified through DEseq (DESeq.padj 0.1 cutoff, fold-

change 0.8 – 1.2). For the ~150 DE transcripts of YAC-84Q mice, fold-change values 

relative to wild-type were generated for different genotypes and inputted into 

MultiExperiment Viewer to generate a heat map (http://www.tm4.org/mev.html).  

Gene enrichment analysis was done through ToppGene (164). Cell-type 

expression was determined from publically-available RNA-seq data on mouse cerebral 

cortex (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) (165). 

For quantitative RT-PCR (qRT-PCR), 1g of RNA was reverse-transcribed using 

iScript™. 0.5 l was used with the SYBR® Green Master Mix and each reaction was 

http://www.tm4.org/mev.html
http://web.stanford.edu/group/barres_lab/brain_rnaseq.html
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performed in duplicate. qRT-PCR was performed on the BioRad iCycler with MyIQ 

single color real-time PCR detection system  module with the following parameters: 

95°C at 3min, (95°C 10 sec, 55°C 30sec) x 40, 95°C 1 min, 55°C 1 min. The fold-change 

in transcript levels was calculated using the Ct method (166). Gapdh and ACTB were 

used as controls for SCA3 knock-in mice and patient fibroblasts, respectively. For 

examining relative levels of ATXN3 transcripts in SCA3 YAC mice, human TRIP11 was 

used, since the YAC-15Q and YAC-84Q mice contain different copy numbers of the 

same integrated YAC construct, which also expresses the TRIP11 gene. 3’RACE was 

performed on 2g of RNA from an Q82/Q6 mouse hindbrain per the manufacturer’s 

instructions (Life Technologies). 3’ RACE products were run on an agarose gel and the 

300 bp band of interest was extracted, TA-cloned (Life Technologies), and sequenced. 

The primers used for RT-PCR and 3’RACE are listed below. 

In chapter 3, DNase I-treated RNA samples from six SCA3 fibroblast lines and 

one non-disease control fibroblast line were kindly provided by Dr. Guangbin Xia and 

Dr. Tetsuo Ashizawa (University of Florida, Gainesville, FL, USA). RNA was also 

isolated from three additional non-disease fibroblast lines that were graciously provided 

by Crystal Pacut and Dr. Eva Feldman (University of Michigan, Ann Arbor, MI, USA).  

2.8 Primers  

Amplicon Forward primer (5’ to 3’) Reverse primer (5’ to 3’) Exp. 

Atxn3 intron 9 

– exon 10 

TTCACGTTTGAATGTTTCAGG ATATGAAAGGGGTCCAGGTCG Genotype 

Atxn3 exon 10 -  

intron 10 

GGACGTAGGAGCGACCAAG CGAGGATCTTGGGTATCGAGT qRT-PCR  

Atxn3 exon 10 TAGACCGACCTGGACCCCTT CTTGGTCGCTCCTACGTCC qRT-PCR 

ATXN3 exon 

10- intron 10 

GAGCACTTGGGAGTGATCTAG 

  

ATCACATGGAGCTCGTATGTC

AG 

qRT-PCR 

ATXN3 exon 10 GACCTATCAGGACAGAGTTCAC CTAGATCACTCCCAAGTGCTC

C 

qRT-PCR 

Atxn3 exon 10- GAGCACTTGGGAGTGATCTAG ATCACATGGAGCTCGTATGTC qRT-PCR 
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exon 11   AG 

Atxn3 exon 1 – 

intron 10 

GACAAATAAACATGGAGTCCATCT

TC 

CGAGGATCTTGGGTATCGAGT PCR 

ATXN3 exon 1 

– intron 10 

GACAAATAAACATGGAGTCCATCT

TC 

ATCACATGGAGCTCGTATGTC

AG 

PCR 

Atxn3 exon 1 – 

exon 11 

GACAAATAAACATGGAGTCCATCT

TC 

CAAAGTGTGTGAGTAGCAAAA

TGACT 

PCR 

Atxn3 intron 10  TACTCGATACCCAAGATCCTCGTC Provided by 3’ RACE kit 

(Invitrogen) 

3’RACE 

Gapdh CTTTGTCAAGCTCATTTCCTG TCTTGCTCAGTGTCCTTG qRT-PCR 

TRIP11 GCCAGTCTCTGGGTCAAGTC AATTCTGCTTCCACTTCCTCCG qRT-PCR 

ACTB CGTCCACACCCGCCG CCACCATCACGCCCTGG qRT-PCR 

Acy3 CTTCAACCAAGGCATGGACT TCAAAGTCATGGTCCTGCAG qRT-PCR 

Polr2a CAGGACACTGGACCGCTCAT GCATAATATTCTCAGAGACTC

CCTTCA 

qRT-PCR 

Smoc1 TTCAGGAAGAAAAGATGATGGCT ATCCATAAGGTGGGGGCTGT qRT-PCR 

Agt TGTCTAGGTTGGCGCTGAAG GATGTATACGCGGTCCCCAG qRT-PCR 

Dao GTCAACACAGCCCAGAGAGT CCAATGACTCCTGCTCCGAT qRT-PCR 

Il33 AGGGAGAAATCACGGCAGAA TATTTTGCAAGGCGGGACCA qRT-PCR 

 

2.9 Plasmids and cell culture experiments   

Non-expanded mouse Atxn3 cDNA was amplified by PCR from a wild-type 

mouse, and different expanded mouse Atxn3 cDNA were amplified from SCA3 knock-in 

mice. Amplified PCR products were extracted from a 1% agarose gel and TA-cloned into 

a pcR2.1 plasmid (Invitrogen) and subcloned into pcDNA 3.1 between BamHI and NotI 

sites. All constructs were ligated with T4 DNA ligase (New England BioLabs) and 

transformed into TOP10 cells (Invitrogen). The final constructs included those expressing 

nonexpanded mouse ATXN3 (Wild-type), full-length Q74 mouse ATXN3 (Q74-FL), and 

intron 10-containing Q71 mouse ATXN3 (Q71-int10). Plasmids were isolated with the 

QIAprep Spin Miniprep Kit (QIAGEN) and confirmed by sequencing before transfecting 

into cells.  

PC12 cells were maintained at 37°C, 5% CO2 in DMEM, 10% FBS, 1% 

penicillin/streptomycin/glutamine. Cells were transiently transfected with 500ng DNA in 

100 L OptiMem, using Lipofectamine PLUS Reagents, according to the manufacturer’s 

protocol. Coverslips were coated with polyD lysine (Millipore) and incubated for 24 
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hours at 37°C. Cells were plated on polyD lysine-coated coverslips and transfected 24 

hours later. 72 hours after transfection, cells were fixed in 4% paraformaldehyde/PBS and 

immunostained for ATXN3 (1H9, 1:1000).  To quantify ATXN3 puncta, several fields 

were randomly selected using a 60x objective on an Olympus IX71 inverted microscope 

per transfected coverslip. The number of inclusions among nine fields was averaged for 

three separate experiments and graphed for each construct.  

2.10 Statistical analysis    

All statistics were performed in Graphpad Prism. Western blot and qRT-PCR 

experiments comparing two conditions were analyzed by a Student’s t-test.  For studies 

comparing three conditions, I performed a one-way ANOVA with the Newman-Keuls 

multiple comparisons test. P-values less than 0.05 were considered statistically 

significant. Different statistical analyses that are used are noted throughout the 

dissertation.  
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Figure 2.1 Retained sequences in the mutant Atxn3 locus of SCA3 knock-in mice. 

Sequencing of a SCA3 knock-in mouse across the FRT site showed successful removal 

of the neomycin cassette from the SCA3 knock-in mouse, and the remaining sequences 

from the targeting vector (bold and in brackets) approximately 350 bp upstream of exon 

10. This 110 bp sequence includes the engineered SalI and KpnI sites at the ends, a single 

LoxP site (red), and a single FRT site (underlined). 
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Chapter 3 

 

A knock-in mouse model of Spinocerebellar Ataxia type 3 

exhibits prominent aggregate pathology and aberrant splicing 

of the disease gene transcript 

3.1 Abstract 

Polyglutamine diseases, including Spinocerebellar ataxia type 3 (SCA3), are 

caused by CAG repeat expansions that encode abnormally long glutamine repeats in the 

respective disease proteins. While the mechanisms underlying neurodegeneration remain 

uncertain, evidence supports a proteotoxic role for mutant proteins dictated in part by the 

specific genetic and protein contexts. To further define pathogenic mechanisms in SCA3, 

we generated a mouse model in which a CAG expansion of 82 repeats was inserted into 

the murine locus by homologous recombination. SCA3 knock-in mice exhibit region-

specific aggregate pathology marked by intranuclear accumulation of the mutant ATXN3 

protein, abundant nuclear inclusions and, in select brain regions, extranuclear aggregates 

localized to neuritic processes. Knock-in mice also display altered splicing of the disease 

gene, promoting expression of an alternative isoform in which the intron immediately 

downstream of the CAG repeat is retained. In an independent mouse model expressing 

the full human ATXN3 disease gene, expression of this alternatively spliced transcript is 

also enhanced. These results, together with recent 
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findings in other polyglutamine diseases, suggest that CAG repeat expansions can 

promote aberrant splicing to produce potentially more aggregate-prone isoforms of the 

disease proteins. This first report of a SCA3 knock-in mouse expands the repertoire of 

existing models of SCA3, and underscores the potential contribution of alternative 

splicing to disease pathogenesis in SCA3 and other polyglutamine disorders. The work of 

this chapter has been published in Ramani et al (151). 

3.2 Introduction 

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is 

the most common dominantly inherited ataxia and one of at least nine neurodegenerative 

diseases caused by polyglutamine-encoding CAG repeat expansions (167). In SCA3, this 

expansion occurs in the ATXN3 gene which encodes the deubiquitinase ataxin-3 

(ATXN3) (111). Like other polyglutamine diseases, SCA3 is a disabling and ultimately 

fatal disorder characterized by selective degeneration in specific brain regions and age-

dependent intraneuronal accumulation and aggregation of the mutant protein (2, 6). 

While neuronal inclusions formed by the disease protein may not be directly toxic in 

polyglutamine disease (37, 38), evidence supports the view that inclusions are a marker 

for accumulated, misfolded polyglutamine protein that is proteotoxic and contributes to 

neuronal dysfunction and cell loss in disease (16, 19–21, 168). Unfortunately, despite 

recent advances in understanding polyglutamine diseases, no preventive treatments are 

available for any.  

Animal models have been instrumental in providing insight into polyglutamine 

disease pathogenesis and suggesting routes to potential therapy.  Existing animal models 

of SCA3 have advanced the field in many ways, but all of them overexpress mutant 
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ATXN3 above physiological concentrations (110). While overexpression models are 

particularly good at recapitulating robust aggregation pathology and behavioral 

abnormalities, they may mask early molecular changes important to pathogenesis. 

Moreover, models overexpressing a single isoform of ATXN3 from cDNA do not permit 

investigations of the potential disease contribution of splicing changes in the mutant 

transcript. In contrast, “knock-in” models in which the CAG repeat expansion is inserted 

precisely into the endogenous murine locus  have proved useful in understanding various 

aspects of polyglutamine disease (48, 68, 80, 81, 85–87, 142, 147, 153) including altered 

splicing of mutant transcripts (85, 86). For example, Sathasivam et al. recently discovered 

that the CAG expansion in Huntington’s disease knock-in mice promotes aberrant 

splicing of the Htt transcript and the production of a truncated amino-terminal fragment 

of the disease protein, Htt (86). Genetically precise knock-in mouse models express the 

mutant protein from the endogenous promoter in the proper genomic context, including 

all regulatory elements that influence mutant gene expression.  

Knock-in mouse models have been generated for most polyglutamine diseases, 

but none exists for SCA3. Here, we report the first SCA3 knock-in mouse model, 

generated by replacing the endogenous murine CAG repeat with an 82 repeat CAG 

expansion. Expressing physiological levels of mutant ATXN3, the SCA3 knock-in mice 

exhibit robust ATXN3 accumulation both in regions known to be affected in human 

disease (e.g. brainstem and cerebellum) and in regions not previously described (e.g. 

hippocampus). SCA3 knock-in mice also display altered splicing of the mutant Atxn3 

transcript that results in the formation of a previously described alternative ATXN3 

transcript in human disease (98). We further show that CAG expansion results in similar 
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altered splicing in another mouse model expressing the full length human ATXN3 

disease gene. In summary, the SCA3 knock-in mouse model reported here recapitulates 

several important molecular features of disease and should facilitate the study of early 

pathogenic events in this polyglutamine disease.  

3.3 Results  

3.3.1 Generation of the SCA3 knock-in mouse model and mutant ATXN3 expression 

SCA3 is caused by CAG expansions ranging from  ~60 to 87 repeats in the 

ATXN3 gene (169). We inserted a CAG repeat expansion at the upper end of this disease 

range into the endogenous murine Atxn3 locus on a C57BL/6 background (Figure 3.1A). 

By homologous recombination we replaced the endogenous murine sequence 

CAA(CAG)5 with (CAG)2(CAAAAG)(CAG)82 which encodes 85 glutamines 

interrupted by a lysine at the fourth residue (i.e. Q3KQ82), replicating the polyglutamine 

stretch found in human mutant ATXN3 (98).  PCR across the endogenous CAG repeat 

confirmed successful insertion of the pathogenic expansion in heterozygous (Q82/Q6) 

and homozygous (Q82/Q82) SCA3 knock-in mice (Figure 3.1B). Sequencing of the 

intronic region upstream of the repeat expansion confirmed the removal of the neomycin 

cassette and the presence of the remaining FRT sequence (Figure 3.2), and sequencing of 

exon 10, all of intron 10 and exon 11 did not reveal any differences compared to wild-

type mice other than the expansion (data not shown).  CAG repeat length sizing in 

offspring of heterozygous Q82/Q6 mice revealed a modest tendency toward CAG repeat 

contraction upon maternal transmission of the mutant allele and stabilization or mild 

expansion upon paternal transmission (Figure 3.1C). Similar intergenerational repeat 
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instability has been reported in other polyglutamine disease mouse models, including a 

transgenic mouse model of SCA3 (40, 80, 81, 170).  

 Mutant ATXN3 is expressed widely throughout the SCA3 knock-in mouse, 

including in the brain, heart, liver, muscle and spleen (155). Western blot analysis of 

hindbrain lysates from one-year-old Q82/Q6 mice confirmed mutant ATXN3 expression 

in the brain, as well as aggregated ATXN3 protein in the stacking gel (Figure 3.1D). 

Electrophoresis of brain lysates from knock-in mice on low percentage (3%) SDS-PAGE 

further illustrated a range of high molecular weight aggregate species (Figure 3.1E). 

Analysis of hindbrain lysates from homozygous Q82/Q82 knock-in mice revealed 

exclusively mutant (expanded) ATXN3 expression with a corresponding loss of wild-

type ATXN3, confirming that mutant ATXN3 is expressed from the endogenous allele 

(Figure 3.1F). The increased high molecular weight aggregate species are consistent with 

detergent-resistant aggregates previously reported in a SCA3 transgenic mouse model 

(16, 171). In heterozygous mice, the decreased intensity of mutant ATXN3 monomer 

compared to wild-type ATXN3 monomer is also consistent with the aggregation 

propensity of expanded polyglutamine proteins (149).  

3.3.2 Neuropathological and behavioral characterization of the SCA3 knock-in 

mouse 

To begin defining neuropathological changes in SCA3 knock-in mice, we 

immunostained for ATXN3 in SCA3 knock-in brain. Compared to other polyglutamine 

disease knock-in mouse models in which CAG expansions within the human disease 

range often elicit relatively modest neuropathological findings (136, 139, 140, 150),  

SCA3 knock-in mice display comparatively robust aggregate pathology. In heterozygous 
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mice, enhanced intranuclear staining for ATXN3 is present by 10 weeks in several 

neuronal populations, including the deep cerebellar nuclei (DCN) (Figure 3.2A), and is 

often accompanied by small intranuclear puncta. We do not reliably detect 

immunohistochemical changes in Q82/Q6 mice that are less than ~ six weeks of age. One 

year old heterozygous Q82/Q6 knock-in mice display more prominent intranuclear 

puncta, as well as more frequent solitary inclusions that are characteristic of the human 

disease (Figure 3.2B). Neuronal inclusions in the SCA3 knock-in mice often co-localize 

with p62, an ubiquitin binding protein implicated in autophagy and previously reported  

to localize to intranuclear inclusions in SCA3 disease brains (172–174) (Figure 3.2D, 

Figure 3.3).  

SCA3 knock-in mice display striking regional differences in mutant ATXN3 

deposition. Table 3.1 (with Figure 3.6) qualitatively report the intensity of diffuse nuclear 

staining and frequency of intranuclear inclusions in various brain regions in one-year-old 

heterozygous mice (n=4). Neurons of the hindbrain, including the DCN and several brain 

stem nuclei, which are known to be vulnerable targets in the human disease, show strong 

diffuse nuclear staining that is often accompanied by multiple intranuclear puncta and 

less frequently by distinct solitary large inclusions. In contrast, neurons of the forebrain, 

including the hippocampus, cortex, and striatum, have moderately increased diffuse 

nuclear staining with frequent solitary intranuclear inclusions. Despite widespread 

aberrant accumulation of mutant ATXN3, including in the hindbrain, one year old 

Q82/Q6 mice (n=9) performed equally well as age-matched wild-type mice (n=10) on 

various motor tasks (Figure 3.2E). Examination of cresyl-violet-stained brains of one-

year-old Q82/Q6 mice (n=3) did not reveal obvious degenerative changes in any brain 
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regions. For example, a close examination of the DCN, a region known to be consistently 

affected in SCA3, did not suggest neuronal loss at one year of age (Figure 3.4).  

We also observed striking extranuclear neuronal aggregates in select brain 

regions, summarized in Table 3.1. In one-year-old knock-in mice, for example, ubiquitin-

positive extranuclear inclusions are especially abundant in the stratum radiatum of the 

hippocampus, which also shows frequent ubiquitin-positive intranuclear inclusions in 

pyramidal neurons (Figure 3.5A and B). Extranuclear inclusions are also present in the 

subiculum, central amygdala, and bed nucleus of the stria terminalis. Extranuclear 

inclusions in the hippocampus often co-localize with anti-MAP2 and SMI32 antibodies, 

suggesting that they reside in dendrites (Figure 3.5C). At three months of age they are 

detected as small puncta in the hippocampal neuropil and grow over time into large, often 

irregular structures by one year of age. In a two-year-old Q82/Q6 mouse, many of these 

large inclusions co-localized with reticulon-3 (RTN3), a potential marker for dystrophic 

neurites (175, 176) (Figure 3.5D). We also examined soluble lysates of SCA3 knock-in 

mouse hindbrain and hippocampus by western blot, but did not detect regional 

differences in levels of soluble, monomeric mutant ATXN3 or of high molecular weight, 

aggregated ATXN3 species (Figure 3.7).  

The presence of robust hippocampal pathology prompted us to perform a test of 

fear conditioning to shock, which broadly assesses hippocampal- and amygdala-

dependent memory consolidation (177).  We did not observe significant differences in 

freezing to context or tone in one-year-old Q82/Q6 mice (n=9) compared to wild-type 

littermates (n=9) (Figure 3.5E). All SCA3 knock-in mice tested in this experiment were 

later confirmed to contain extensive extranuclear aggregates in the hippocampus and 
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central amygdala nucleus (not shown). In summary, SCA3 knock-in mice exhibit robust 

aggregate pathology throughout the brain upon physiological expression of 

polyglutamine-expanded ATXN3 and thus are well suited to explore the early molecular 

changes contributing to disease pathogenesis.  

3.3.3 Alternative processing of mutant ataxin-3 transcript in SCA3 

Many polyglutamine diseases and mouse models of disease are associated with 

transcriptional changes that may contribute to disease pathogenesis (53, 67). To identify 

early transcriptional and splicing changes in SCA3 knock-in mice, including potential 

alterations in the Atxn3 transcript itself, we performed RNA-sequencing on a vulnerable 

brain region in SCA3, the pons, from 6 month old wild-type (n=7) and homozygous 

SCA3 knock-in mice (n=7). A full analysis of transcriptional changes will be reported 

later. In this study, we focus on intriguing differences noted in expression of the Atxn3 

transcript itself.  

The human ATXN3 and murine Atxn3 genes both contain 11 exons, with the CAG 

repeat residing in exon 10. At least two major ATXN3 transcript variants are expressed in 

humans: a full length, 11 exon ATXN3 (ATXN3-11e) transcript that contains the entire 

ATXN3 protein coding sequence; and a 10 exon (ATXN3-10e) transcript that retains 

intron 10 and lacks exon 11 (98, 178). The ATXN3-11e transcript (RefSeq NM_004993) 

encodes the ATXN3 isoform MJD1c (107, 178), whereas the ATXN3-10e transcript 

(RefSeq S75313), initially identified  by Kawaguchi et al. when they reported the disease 

mutation in SCA3 (98), encodes isoform MJD1a or MJD1b depending on a 

polymorphism that alters the location of the stop codon. In this study, we refer to these 

transcripts and corresponding protein isoforms by the number of exons (10e and 11e). We 
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previously reported that ATXN3-11e is normally the most abundantly expressed isoform 

in the brain and that the less abundant ATXN3-10e isoform is more unstable and 

aggregation-prone in cell models (109). The unstable, aggregation-prone nature of 

ATXN3-10e may reflect the presence of a carboxy-terminal hydrophobic domain that is 

encoded by read-through into the intron downstream of exon 10. This domain is absent 

from ATXN3-11e, which instead ends with a domain containing an Ubiquitin Interacting 

Motif (UIM).  

Unexpectedly, comparison of aligned sequencing reads revealed markedly 

elevated reads into intron 10 of Atxn3 in SCA3 knock-in mice, whereas few intronic 

reads were present in wild-type mice  (Figure 3.8B). These increased reads continue ~300 

bp into intron 10, ending near a putative polyadenylation site (ATTAAA) and suggesting 

that the transcript could terminate and become polyadenylated at this site.  Indeed, 3’ 

RACE on Q82/Q6 mouse RNA to the beginning of intron 10 revealed a ~300 bp band, 

which sequencing confirmed is a putative Atxn3-10e transcript polyadenylated at this 

predicted polyA site in intron 10 (Figure 3.8C). Importantly, despite the increased 

expression of the Atxn3-10e transcript, SCA3 knock-in mice still express the Atxn3-11e 

variant. RNA-sequencing reads containing exon 11 and the established Atxn3 3’ UTR 

appear to be equally present in wild-type and SCA3 knock-in mice (Figure 3.8D):  

normalized levels (FPKMs) of predicted full-length Atxn3-11e transcript (accession 

NM_029705.3) did not differ significantly between wild-type and mutant mice (Figure 

3.8E). Except for the differences noted at the exon 10/intron 10 junction, we did not 

observe striking or consistent changes in reads across the entire Atxn3 gene (Figure 3.9).   
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To further quantify Atxn3-10e transcript levels in SCA3 knock-in mice, we 

performed quantitative PCR on reverse-transcribed RNA (qRT-PCR) from brain using 

primers against the exon 10/intron 10 junction. We also separately performed qRT-PCR 

using primers that amplify only exon 10 to estimate total (exon 10-containing) Atxn3 

transcript levels (Figure 3.10A). Atxn3-10e transcript levels proved to be markedly 

increased in 3-month-old Q82/Q6 mice compared to age-matched wild-type mice, 

whereas total exon 10-containing transcripts (i.e., 10e and 11e variants combined) 

showed a more modest upregulation in knock-in mice (Figure 3.10B). The basis for the 

upregulation of total Atxn3 transcript in SCA3 knock-in mice is not clear but may reflect 

differences in the regulation of Atxn3-10e and Atxn3-11e transcripts since they utilize 

different 3’UTRs. We also cannot exclude the possibility that the manipulation of the 

endogenous murine Atxn3 gene, including the presence of the FRT site, alters its 

expression. 

To determine whether the increased levels of this alternative isoform reflect the 

presence of a CAG expansion, we investigated an independent SCA3 mouse model: YAC 

transgenic mice that express the full human ATXN3 gene with either a normal repeat 

(YAC-15Q) or an expanded repeat (YAC-84Q) (159). Employing qRT-PCR with primers 

against ATXN3 (Figure 3.10A), we observed significantly elevated ATXN3-10e transcript 

levels in the pons of ~5 month old YAC-84Q mice compared to age-matched YAC-15Q 

mice (Figure 3.10C).   These results suggest that CAG repeat expansions are associated 

with increased production of the ATXN3-10e transcript. To further explore this possibility 

we analyzed ATXN3 transcripts in fibroblasts derived from SCA3 patients (n=6) or non-
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disease controls (n=4) (Figure 3.10D). By qRT-PCR, however, ATXN3-10e transcript 

expression levels did not differ significantly between disease and control fibroblasts. 

To verify that the ATXN3/Atxn3-10e transcripts observed above contain the rest of 

the amino-terminal protein coding sequence, we performed non-quantitative PCR using 

primers to amplify from exon 1 to intron 10 (Figure 3.10A) on the same reverse-

transcribed RNA preparations described above. We note that this PCR is non-quantitative 

because large GC-rich repeats (i.e. expanded CAG repeats) are poorly amplified by the 

polymerase. PCR amplified a single band from Q82/Q6 mice but none from wild-type 

mice (Figure 3.10E). Sequencing confirmed this band to be Atxn3-10e cDNA containing 

the first 10 exons followed by read through into intron 10. Thus, SCA3 knock-in mice 

express the full Atxn3-10e transcript with a CAG repeat expansion, analogous to the 

ATXN3-10e transcript in humans. Importantly, non-quantitative PCR showed that the 

complete ATXN3-10e transcript is also expressed in YAC mice expressing normal or 

expanded ATXN3, in 3 of 4 control fibroblast lines, and in all SCA3 disease fibroblast 

lines, including from the non-expanded allele (Figure 3.10F, G). The one control line that 

did not produce a detectable PCR signal (lane 3) showed reduced levels of total RNA by 

quantitative PCR, which may prevent detection of the less abundant ATXN3-10e 

transcript by PCR. This sample demonstrated proportionally lower levels of ATXN3-10e, 

total ATXN3, and ACTB transcripts. PCR amplification from ATXN3 exon 7 to 11 

demonstrated that ATXN3-11e is present in this and all other fibroblast lines (Figure 

3.10G).  

The expression of the ATXN3-10e transcript even in normal human fibroblasts 

suggests that the relatively larger CAG repeat length of the normal human ATXN3 gene 
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(20-42 repeats) may support the production of the ATXN3-10e transcript. In contrast, 

wild-type mice, which have only 5 CAG repeats, show nearly undetectable levels of 

Atxn3-10e transcript, leading to a dramatically higher fold-change in the SCA3 knock-in 

mice. Tissue-specific differences could further mask CAG repeat-dependent splicing 

changes in SCA3 fibroblasts.  

3.4 Discussion 

The SCA3 knock-in mouse reported here expresses mutant ATXN3 with an 

expansion in the human disease range and exhibits robust accumulation and aggregation 

of mutant ATXN3 in the brain, detected biochemically and immunohistochemically. In 

addition to replicating the intranuclear accumulation and inclusions described in human 

disease tissue, SCA3 knock-in mice also develop extensive neuritic aggregates in select 

brain regions, most notably the hippocampus. SCA3 knock-in mice harboring a CAG 

expansion also display marked retention of intron 10 in Atxn3 transcripts, a finding we 

confirmed in an independent mouse model of SCA3 expressing the full human disease 

gene. Based on these results, this SCA3 knock-in mouse model represents an important 

addition to existing models of disease that should prove particularly useful for the study 

of early molecular changes including mutant protein aggregation and alternative splicing. 

Despite only modest expression of the mutant protein from the endogenous locus, 

SCA3 knock-in mice manifest relatively early signs of ATXN3 accumulation in the 

brain, including increased concentration in neuronal nuclei and the formation of 

intranuclear puncta and larger inclusions. ATXN3 accumulation is noted especially in 

neurons of the hindbrain known to be affected in SCA3, such as DCN and brainstem 

neurons (105). Nuclear localization of the mutant protein is believed to contribute to 
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disease pathogenesis in various polyglutamine diseases including SCA3 (50–52), and this 

new model could facilitate the study of factors acting early to regulate nuclear trafficking 

and handling of mutant ATXN3. The knock-in mouse model also should assist the 

dissection of posttranslational modifications occurring to mutant ATXN3 in vivo 

including proteolytic cleavage, phosphorylation, and ubiquitination, as well as their 

impact on disease protein behavior.  

SCA3 knock-in mice also develop striking neuritic inclusions, particularly in the 

synapse-rich stratum radiatum of the hippocampus. The mechanisms driving the 

formation of these aggregates remain unclear. Deficits in trafficking and/or clearance of 

misfolding proteins in the distal reaches of pyramidal neurons may precipitate the 

formation of inclusions in subcellular compartments far removed from clearance 

mechanisms concentrated in the cell soma. A recent study showed that removing p62 in 

HD mouse models led to increased MAP2-positive HTT aggregates in the stratum 

radiatum that look strikingly similar to the ones shown here (179). Alternatively, neuritic 

aggregates could arise as a consequence of neuronal activity, which has been proposed to 

promote cleavage and aggregation of mutant ATXN3 at synapses (180). While the 

hippocampus is not considered a major disease target in SCA3, the study of the 

anatomically layered and easily accessible hippocampus could provide unique 

opportunities to study misfolded protein handling in axons and dendrites. Furthermore, an 

increasing number of studies report cognitive dysfunction in SCA3, which may reflect 

forebrain pathology (102–104). Axonal and cytoplasmic inclusions have been reported in 

SCA3 (106), but the extent to which they affect neuronal function is unknown. Future 

studies on the formation of extranuclear aggregates in SCA3 knock-in hippocampus may 
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provide insight into the handling of misfolded protein in neurites. Our findings also 

underscore the need for further pathological characterization of SCA3 disease tissue, 

including of the cortex and hippocampus.  

The absence of behavioral deficits and overt neuropathological changes in 

heterozygous SCA3 knock-in mice despite prominent disease protein aggregation is 

perhaps not surprising given the low-level, physiological expression of the Atxn3 disease 

gene. Knock-in mice with CAG repeat lengths in the human disease range, as in this 

study, often display mild or no behavioral deficits (80, 138, 140, 150). For example, 

SCA1 78Q knock-in mice manifested mild abnormalities only when homozygous for the 

mutant allele (80). It will be important to look for motor deficits and molecular markers 

of degenerative change in aged homozygous SCA3 knock-in mice, which we are in the 

process of generating. The absence of an overt behavioral phenotype in this and many 

other age-related neurodegenerative disease models highlights the point that such models 

are best at providing insight into pathogenic mechanisms that precede neuronal loss.  

Intriguingly, SCA3 knock-in mice exhibit altered splicing of the mutant Atxn3 

transcript, mirroring the formation of a known alternative ATXN3 transcript in humans. 

Increased retention of intron 10 in mutant Atxn3 transcripts parallels the findings of 

Sathasivam and colleagues, who observed the retention of intron 1 in mutant Htt 

transcripts following the CAG repeat-containing exon 1 in a knock-in mouse model of 

HD and suggested that differential binding of splicing factors mediates aberrant splicing 

of the mutant transcript (86, 181). Alternatively, differences in the kinetics of 

transcription through an expanded repeat may shift polyadenylation site usage (182–184). 

Shared mechanisms across polyglutamine diseases may dictate aberrant splicing of CAG 
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repeat-containing transcripts, potentially producing more toxic isoforms of disease 

proteins in several polyglutamine disorders. We previously reported that even a non-

expanded form of the  ATXN3-10e variant is more aggregate-prone and less stable than 

the full-length isoform, suggesting that the higher hydrophobicity of the carboxy-

terminus encoded by translational read-through into intron 10 increases overall 

aggregation propensity (109). If identified, factors that shift splicing to favor production 

of the full-length (i.e. 11e) ATXN3 isoform might represent targets through which to 

lessen mutant protein aggregation. The SCA3 knock-in mouse should facilitate studies to 

identify such factors.  

Unfortunately, the high degree of similarity between the 10e and 11e ATXN3 

isoforms raises challenges in distinguishing the two encoded proteins. We previously 

showed that these two isoforms have slightly different electrophoretic properties, but 

were unable to distinguish the ATXN3-10e isoform from ATXN3-11e isoform in 

ATXN3Q84-YAC mice (109). In addition, decreased solubility of the ATXN3-10e 

isoform may impede its detection by conventional biochemical methods. While both the 

ATXN3-11e and ATXN3-10e transcripts are presumably made in the human brain, their 

relative abundance in the SCA3 disease brain is not known. Future studies will be needed 

to quantify the expression of alternative ATXN3 transcripts and ATXN3 protein isoforms 

in human brain in order to determine their relative contribution to disease pathogenesis. 
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Figure 3.1 Generation of a SCA3 knock-in mouse expressing mutant ATXN3 (Q82). 

(A) Schematic of the generation of the SCA3 knock-in mouse in which the endogenous 

murine (CAA)(CAG)5 was replaced with a human CAG expanded sequence, 

(CAG)2(CAAAAG)(CAG)82, by homologous recombination. The neomycin (neo) 

selection cassette, flanked by FRT sites, was removed by FLPe recombination. These 

steps were performed by Dr. Ginny Harris. (B) PCR across the CAG repeat shows the 

expanded repeat in heterozygous (Q82/Q6) and homozygous (Q82/Q82) SCA3 knock-in 

mice. (C) SCA3 knock-in mice show modest intergenerational repeat length instability 

with a tendency for CAG repeat contraction upon maternal transmission. (D) Western 

blotting shows expression of mutant ATXN3 accompanied by increased aggregates in the 

stacking gel in 1-year-old Q82/Q6 hindbrain lysates. (E) Electrophoresis of lysates from 

(D) on 3% SDS-PAGE further illustrates high molecular weight aggregates. (F) ~30-

week-old homozygous Q82/Q82 mice express only mutant ATXN3 with aggregates in 

the stack. D and F, arrow indicates wild-type ATXN3 and arrowhead indicates mutant 

ATXN3.  
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Figure 3.2 Mutant ATXN3 accumulation in the SCA3 knock-in mouse brain. (A) 

Immunohistochemical staining (IHC) for ATXN3 shows nuclear accumulation in the 

DCN of a 10-week-old Q82/Q6 mouse. Scale bar = 20m, inset scale bar = 2m. (B) 

IHC of one-year-old Q82/Q6 mice shows increased diffuse nuclear staining and 

intranuclear puncta/inclusions in several brain regions, including the brain stem (medulla 

shown), deep cerebellar nuclei (DCN), and the hippocampus (CA1 region is shown). 

Higher magnification insets show puncta and inclusions in nuclei. (C) Intranuclear 

accumulation of ATXN3 (DCN shown) is accelerated in a ~7-month-old homozygous 

Q82/Q82 mouse compared to a heterozygous littermate. Scale bar = 20 m (D) ATXN3-

immunoreactive (green) intranuclear puncta and inclusions in brainstem neurons from 

SCA3 knock-in mice frequently co-stain with p62 (red), whereas p62 is predominantly 

cytoplasmic in wild-type neurons. The nuclear border is outlined by a dashed line.  Scale 

bar = 10m. (E) Performance of one-year-old Q82/Q6 (Q82/Q6) mice (n=9) did not 

differ from age-matched wild-type (WT) mice (n=10) on motor behavior tasks, including 

from left to right, 5mm balance beam, accelerating rotarod, and open field exploration. 

Graphs represent mean + SE.  
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Figure 3.3 ATXN3 and p62 co-immunostaining in a heterozygous Q82/Q6 mice. 

Epifluorescent images showing that Atxn3 inclusions in a one-year-old Q82/Q6 mouse 

are immunoreactive for p62 in brainstem and hippocampal pyramidal neurons that 

coexpress NeuN. Scale bar = 10 m 

 

 

Figure 3.4 Cresyl-violet staining of Q82/Q6 brain. One-year-old Q82/Q6 mice do not 

show obvious degenerative changes in the DCN by cresyl violet staining. Left panels, 

scale bar 200 m. Right panel insets, scale bar = 50 m.  
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Figure 3.5 Extranuclear inclusions in the hippocampus of SCA3 knock-in mice. (A) 

Large extranuclear inclusions are concentrated in stratum radiatum (SR) of the 

hippocampus one-year-old Q82/Q82 mice. Right, immunofluorescence of a different 

Q82/Q82 mouse showing that inclusions do not colocalize with nuclear DAPI. Bottom 

panel shows magnified view of inclusions. (B) Hippocampal aggregates are often 

ubiquitin-positive, including both intranuclear inclusions in CA1 pyramidal neurons (left) 

and extranuclear inclusions in the stratum radiatum (right). (C) Extranuclear inclusions 

show overlap with dendritic markers MAP2 and SMI32. (D) Large Atxn3 extranuclear 

inclusions in the stratum radiatum of a two-year-old Q82/Q6 mouse stain for reticulon-3 

(RTN3), a marker for dystrophic neurites. (E) One-year-old Q82/Q6 mice (n=9) did not 

differ from wild-type mice (n=9) in tests of fear conditioning, including freezing to 

context (left) and tone (right). Scale bars in (A) top and bottom panels are 50m and 

10m, respectively. Scale bars in (B-D) are 10m.  
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Region Diffuse nuclear staining Intranuclear inclusions Extranuclear inclusions 

Purkinje cells - + - 

Granular cells + - - 

Deep cerebellar nuclei ++ ++ - 

Medulla ++ ++ + 

Pons ++ ++ + 

Substantia nigra + + - 

Red nucleus ++ ++ - 

Spinal cord ++ ++ + 

Striatum + +++ + 

Hippocampus + +++ +++ 

Amygdala + - ++ 

Cortex + +++ ++ 

Thalamus + - - 

 

Table 3.1 Regional differences in ATXN3 accumulation in SCA3 knock-in mouse 

brain. One-year-old Q82/Q6 mice (n=3) were immunohistochemically stained for 

ATXN3.  For diffuse nuclear staining, increasing + numbers indicate neurons with denser 

nuclear staining of Atxn3. For intranuclear and extranuclear inclusions, increasing + 

numbers indicate higher frequency of inclusions. Regions in knock-in mice that are 

indistinguishable from wild-type mice are indicated by -. 

 
Figure 3.6 Examples of scoring ATXN3 accumulation in an immunohistochemically 

stained SCA3 knock-in mouse brain. Scale bar = 10m 
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Figure 3.7 ATXN3 solubility and aggregation in different brain regions of Q82/Q6 

mice. (A) 10% SDS-PAGE of soluble lysates from hindbrain and hippocampus. (B) 2% 

SDS-Agarose gel of soluble lysates from different brain regions in a wild-type and 

Q82/Q82 mouse 
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Figure 3.8 Alternative splicing of the mutant Atxn3 transcript is enhanced in SCA3 

knock-in mice. (A) Diagram of 3’ alternative splicing of the human ATXN3 transcript, 

showing the 10 exon-containing ATXN3 transcript (right) generated from retention of 

intron 10, which encodes a hydrophobic segment that may accelerate mutant ATXN3 

aggregation. (B) RNA-sequencing on the pons of Q82/Q82 mice shows elevated reads in 

intron 10 following the CAG repeat-containing exon 10. Genomic sequence near the end 

of the reads in intron 10 (boxed) contains a putative polyadenylation (polyA) site 

ATTAAA (underlined). (C) 3’ RACE in a Q82/Q6 mouse amplified a 300 bp band 

containing this putative polyA site (underlined) followed by a polyA tail (black, bold). 

(D) Wild-type and homozygous Q82/Q82 mice showed similar frequency of sequencing 

reads in exon 11 and the 3’ UTR of the SCA3 knock-in mice. (E) Levels of predicted 

full-length Atxn3 transcript from the RNA-sequencing (FPKMs) do not significantly 

differ between wild-type (n=7) and Q82/Q82 mice (n=7). Graph represents mean plus 

standard deviation.  
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Figure 3.9 The mutant Atxn3 transcript in SCA3 knock-in mice does not exhibit 

obvious abnormalities outside the exon 10-intron 10 junction. Reads across the full 

Atxn3 transcript did not show consistent differences between representative wild-type and 

Q82/Q82 mice outside of the exon 10 – intron 10 junction (*), which shows dramatically 

elevated reads. The reads in intron 9 (~) do not consistently appear in other SCA3 knock-

in mice.  
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Figure 3.10 Expression of 10 exon Atxn3/ATXN3 transcript in SCA3 mouse models 

and SCA3 human fibroblasts. (A) Diagram of 10 exon ATXN3/Atxn3 (ATXN3/Atxn3-

10e) transcript and arrows indicating location of primer pairs used for quantitative PCR 

(qRT-PCR) and non-quantitative PCR (PCR) on reversed-transcribed RNA. (B) Atxn3-

10e transcript is highly upregulated (~8-fold) while total Atxn3 transcript is only 

modestly upregulated (~1.5-fold) in heterozygous SCA3 knock-in mice (n=3). (C) 

ATXN3-10e transcript is also upregulated (~2-fold) in YAC mice expressing the full 

human ATXN3 gene with 84 CAG repeats (YAC84Q, n=4) compared to 15 CAG repeats 

(YAC15Q, n=4). (D) ATXN3-10e transcript levels in SCA3 fibroblasts (n=6) did not 

significantly differ from non-disease control fibroblasts (n=4). qRT-PCR in B, C, and D 

were normalized to Gapdh, TRIP11, and ACTB, respectively. (E) PCR reveals the 

presence of mutant Atxn3-10e cDNA in SCA3 knock-in mice only. (F, G) PCR shows 

expanded and non-expanded ATXN3-10e in both YAC mouse lines, all SCA3 fibroblast 

lines, and three of four non-disease control fibroblast lines. Amplification of ATXN3 

exon 7 to exon 11 indicates the presence of ATXN3-11e in all fibroblast lines. Graphs 

represent the mean plus standard deviation. * p< 0.05  by an  unpaired t-test (Mann-

Whitney U). 
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Chapter 4 

Isoform-driven aggregation of the polyglutamine disease 

protein ATXN3 elicits early transcriptional changes in the 

brain 

4.1 Abstract 

Polyglutamine-encoding CAG repeat expansions cause at least nine different 

neurodegenerative diseases, all of which are associated with aggregation of the respective 

disease proteins. The role of protein misfolding and aggregation in disease pathogenesis, 

however, remains uncertain. To address this issue, we utilized newly developed knock-in 

mouse models of Spinocerebellar Ataxia type 3 (SCA3) that display differential splicing 

of the mutant Atxn3 disease gene transcript, resulting in different degrees of aggregation. 

Differential carboxy-terminal splicing markedly alters mutant ATXN3 aggregation in the 

brain of knock-in mice, with expression of a minor splice isoform accelerating 

aggregation of mutant ATXN3 and expression of a major splice isoform resulting in 

soluble mutant ATXN3. To determine whether transcriptional dysregulation, a common 

molecular feature of polyQ diseases, correlates with disease protein aggregation, we 

performed RNA-sequencing analysis in SCA3 knock-in mice and additional SCA3 

mouse models displaying differing degrees of aggregation.  In SCA3 mice, an altered 
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gene expression landscape correlated closely with degree of aggregation, with an 

unexpectedly high number of transcriptional changes predicted in oligodendrocytes. The 

encoded protein of one notably increased transcript, ACY3, was similarly increased in 

SCA3 disease brain, suggesting that similar transcriptional changes occur in the human 

disease. Finally, by utilizing Cre-recombinase’s binding to a LoxP site in the mutant 

Atxn3 locus, , we were simultaneously able to alter Atxn3 splicing, increase ATXN3 

solubility and reduce aggregate pathology, along with predicted gene expression changes.  

In summary, our findings delineate a clear relationship between mutant Atxn3 splicing, 

ATXN3 aggregation, and early transcriptional changes in vivo. These findings support a 

pathogenic role for protein misfolding and aggregation in polyglutamine disease that may 

be critically influenced by disease gene splicing.  

4.2 Introduction 

Polyglutamine (polyQ) diseases are caused by abnormally long glutamine 

stretches encoded by CAG repeat expansions in the respective disease genes. Like many 

other neurodegenerative disorders, polyQ diseases are characterized by the accumulation 

and aggregation of misfolded disease proteins (4). In the nine known polyQ diseases 

including Spinocerebellar ataxia type 3 (SCA3), the clearest evidence of this process is 

the appearance of ubiquitin-positive neuronal inclusions containing the disease protein 

and other sequestered proteins (6, 100). An unresolved question, however, is the extent to 

which the aggregation propensity of expanded polyQ proteins, and aggregates 

themselves, contribute to disease pathogenesis. In multiple studies, inclusions are not 

correlated with toxicity and have been interpreted as protective to cells (35–38), yet 

factors that reduce polyQ disease protein aggregation, such as molecular chaperones, 
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often correlate with improved phenotypes in disease models (168, 185–187). Broadly 

acting cellular factors like chaperones, however, may exert beneficial effects independent 

of the polyQ disease protein.  

One route to address the role of aggregation propensity in disease is to explore the 

consequences of expressing alternative disease protein isoforms that differ in 

aggregation. Alternative splicing of ATXN3, the disease gene in SCA3, can generate a 

diversity of ATXN3 isoforms (108).  Among these are two commonly studied isoforms: a 

major, full-length 11-exon containing transcript (ATXN3-11e, RefSeq NM_004993) (107) 

and a minor, 10-exon containing transcript lacking the 11th exon (ATXN3-10e, RefSeq 

S75313) (98). These two isoforms differ only in a small segment of the carboxy-terminus 

(Figure 4.1A). The ATXN3-10e transcript, which was the first reported isoform in SCA3, 

retains the intron following the CAG repeat-containing exon 10 and results in a more 

hydrophic carboxy-terminus that likely increases ATXN3 aggregation propensity (109). 

The extent to which differential expression of these two ATXN3 isoforms contributes to 

disease protein aggregation and disease pathogenesis is unknown. We therefore sought to 

address two key questions: Does differential expression of ATXN3 isoforms contribute to 

disease protein accumulation and aggregation in brain? And does the aggregation 

propensity of a polyQ-expanded isoform contribute to disease pathogenesis?  

To address these questions, we investigated parallel SCA3 knock-in mouse 

models that differ in alternative splicing of the mutant Atxn3 gene. In addition to the 

SCA3 knock-in mice discussed in Chapter 3 that preferentially express the aggregation-

prone isoform, we isolated a variant SCA3 knock-in mouse line that predominantly 

expresses the full-length, major splice isoform of mutant ATXN3 that is less prone to 
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aggregate. The existence of two lines expressing physiological levels of the disease gene 

with nearly identical polyQ expansions, yet differing in isoform expression, presented us 

with a rare opportunity to compare the effect of expressing different ATXN3 isoforms on 

disease protein aggregation and its downstream consequences. Because transcriptional 

dysregulation is a common feature of polyQ diseases and  likely contributes to disease 

processes (53), we carried out comparative transcriptional profiling in the nervous system 

of these knock-in lines and other SCA3 mouse models to identify molecular correlates of 

ATXN3 aggregation. Our findings shed light both on the role of alternative splicing in 

disease protein aggregation and on the potential contribution of aggregation to 

transcriptional dysregulation in SCA3 and perhaps other polyQ disorders. 

4.3 Results 

4.3.1 Distinct SCA3 knock-in lines express different mutant Atxn3 transcripts  

Alternative mutant Atxn3 transcripts expressed in distinct SCA3 knock-in mouse 

lines. For the current study we used SCA3 knock-in mice generated by homologous 

recombination, in which the endogenous Atxn3 exon 10 was replaced with a mutant exon 

10 harboring an expanded (82) CAG repeat (Chapter 3). We reported that SCA3 knock-in 

(Q82) mice robustly express the Atxn3-10e transcript and exhibit low levels of soluble 

mutant ATXN3, with a correspondingly high burden of aggregated mutant ATXN3 in the 

brain. In generating the SCA3 knock-in colony, we serendipitously identified a knock-in 

mouse variant that expresses comparatively high levels of soluble mutant ATXN3 despite 

having a nearly identical CAG repeat expansion. This more soluble ATXN3 phenotype 

segregated with the mutant allele and was maintained in subsequent generations, allowing 
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us to selectively breed a “variant” SCA3 knock-in line (Q82V mice) that could be studied 

in parallel to Q82 mice.   

Western blot analysis (Figure 4.1B) demonstrated that heterozygous Q82V/Q6 

mice express higher levels of soluble mutant ATXN3 in brain than do heterozygous 

Q82/Q6 mice.  As in other polyQ disease models (80, 81), repeat expansion lengths vary 

slightly from animal to animal in both lines due to mild repeat instability, but these subtle 

differences in repeat length did not correlate with or explain this difference in solubility. 

To explore the molecular basis of this difference, we performed non-quantitative PCR on 

reverse-transcribed RNA (RT-PCR) to examine different Atxn3 isoform transcripts in the 

brain. The aggregation-prone ATXN3-10e isoform was expressed in Q82/Q6 mice, as 

reported in Chapter 3, but not in Q82V/Q6 or wild-type mice (Figure 4.1C). In contrast, 

the full-length Atxn3-11e isoform was readily detected in Q82V/Q6 mice but not in 

Q82/Q6 mice (Figure 4.1C). Quantitative PCR on the same samples confirmed higher 

levels of Atxn3-10e transcript in Q82/Q6 mice (Figure 4.1D).  

To determine if the two SCA3 knock-in lines express mutant Atxn3 transcripts at 

similar endogenous levels, we calculated transcript levels using RNA-sequencing (RNA-

seq) reads from the pons of wild-type, Q82/Q6, and Q82V/Q6 mice. Total Atxn3 

transcripts are elevated ~2-fold in Q82/Q6 mice, whereas Atxn3-11e transcript levels are 

equal across genotypes (Figure 4.1E), suggesting that Q82/Q6 mice express mutant 

Atxn3-11e transcript in addition to mutant Atxn3-10e transcript. These results indicate 

approximately physiological expression of different mutant Atxn3 transcripts in SCA3 

knock-in lines with the Q82 line expressing more ATXN3.   
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We have not yet identified a genetic difference that delineates the two different 

SCA3 knock-in mouse lines. Sequencing of ~8,000 base pairs in homozygous Q82/Q82 

and Q82V/Q82V mice showed no differences in the sequenced regions, which spanned 

most of intron 9 including the FRT site, and all of Atxn3 exon 10, intron 10 and exon 11. 

In both lines we confirmed the presence of a LoxP site immediately upstream of the FRT 

site, included in the original targeting construct. Later in this study we exploit this LoxP 

site to convert Q82 mice to a phenotype similar to that of Q82V mice. We also cloned 

and sequenced the mutant Atxn3-10e and Atxn3-11e cDNA expressed in the respective 

homozygous SCA3 knock-in mice, and found no sequence differences apart from the 

alternatively spliced exons preferentially expressed in the two lines (not shown).  

In summary, we isolated two distinct SCA3 knock-in lines that differentially 

express, from the endogenous Atxn3 locus, mutant Atxn3 transcripts encoding two 

ATXN3 isoforms with alternative carboxy-termini predicted to differ in solubility (Figure 

4.2). These mice provide an ideal opportunity to investigate the pathophysiological 

consequences of altered mutant ATXN3 isoform expression on disease protein 

accumulation and aggregation.  

4.3.2 ATXN3 accumulation in neuronal nuclei and aggregation differs in the two 

SCA3 knock-in lines 

To determine if endogenous expression of the different isoforms leads to 

differences in ATXN3 accumulation in the nervous system, we performed 

immunohistochemical staining (IHC) for ATXN3 on one-year-old SCA3 knock-in brains. 

Q82/Q6 mice show robust intranuclear ATXN3 accumulation, both diffuse and punctate, 

as well as larger inclusions in neurons, both intranuclear and extranuclear. In contrast, 
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ATXN3 immunostaining in Q82V/Q6 mice showed no aggregate pathology and was 

indistinguishable from that of wild-type mice (Figure 4.3A). To identify biochemical 

differences in aggregation, we immunoprecipitated ATXN3 from both lines, resolved the 

eluted immunoprecipitates on polyacrylamide gradient gels, and immunoblotted for 

ATXN3. Compared to Q82V/Q6 mice, Q82/Q6 mice showed increased levels of high 

molecular weight ATXN3 species with correspondingly lower levels of soluble ATXN3 

monomer (Figure 4.3B).  

As reported in Chapter 3, aggregation-positive Q82/Q6 mice do not develop 

motor abnormalities. Conceivably, the higher levels of soluble mutant ATXN3 in Q82V 

mice could accelerate a behavioral phenotype. Thus, we assessed motor performance in 

aged (53-60 week old) SCA3 knock-in mice from both lines. Neither Q82/Q6 nor 

Q82V/Q6 mice showed deficits on any motor tasks compared to wild-type mice (Figure 

4.3 C-F). Q82/Q6 mice tend to be slightly smaller than wild-type or Q82V/Q6 mice 

(Figure 4.3E and F), but otherwise appear healthy.  

To exclude the possibility that the increased ATXN3 aggregation in Q82/Q6 mice 

is driven primarily by its ~2-fold increase in overall Atxn3 transcript levels, we generated 

homozygous Q82V/Q82V mice containing two mutant alleles. These mice show an even 

higher level of soluble mutant ATXN3 (Figure 4.4A) yet still relatively little ATXN3 

accumulation and aggregation in the brain. Even at one year of age, Q82V/Q82V mice 

show minimal ATXN3 diffuse nuclear accumulation and ATXN3 puncta by IHC 

compared to age-matched Q82/Q6 mice (Figure 4.4B). An exception is that, upon aging, 

Q82V/Q82V mice begin to exhibit large extranuclear aggregates in the hippocampus, 

reminiscent of the hippocampal aggregate in heterozygous Q82/Q6 mice. Blinded scoring 
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of aggregate pathology in the pons and hippocampus of SCA3 knock-in mice confirmed 

robust ATXN3 aggregation in Q82/Q6 mice, some in Q82V/Q82V mice, and none in 

Q82V/Q6 mice (Figure 4.4C).  

In further confirming the differing aggregation propensities of the different SCA3 

knock-in lines, IHC of a ~8-week-old Q82/Q82 mouse showed enhanced nuclear 

accumulation of ATXN3 in the DCN, while a Q82V/Q82V showed no nuclear 

accumulation (Figure 4.4D). These differences in accumulation correlated with differing 

relative expression of Atxn3-10e in the same mice (Figure 4.4E). Together, these results 

establish that expression of the mutant ATXN3-10e isoform is associated with increased 

ATXN3 aggregation and nuclear accumulation compared to equivalent expression of the 

alternative mutant isoform, ATXN3-11e. These differences may arise from the differing 

predicted solubility of ATXN3 isoforms (Figure 4.2). Therefore, alternative splicing of 

the ATXN3 disease allele may influence disease protein aggregation.   

4.3.3 Transcriptional alterations are associated with ATXN3 nuclear accumulation 

and aggregation in SCA3 mouse models 

Transcriptional dysregulation is a frequent feature of polyQ diseases (188, 189), 

and transcriptional profiling readily detects early perturbations in gene expression elicited 

by abnormal disease proteins. Accordingly, we performed RNA-seq on a vulnerable brain 

region in SCA3, the pons, in both knock-in lines as well as in an unrelated mouse model 

of SCA3 to determine whether ATXN3’s propensity to accumulate and aggregate 

correlated with specific transcriptional changes. A list of the genotypes used for RNA-seq 

and the relative abundance of ATXN3 aggregates in the pons of the various lines are 

shown in Figure 4.5A. In addition to analyzing wild-type mice, heterozygous Q82, and 
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both heterozygous and homozygous Q82V mice, we also examined two transgenic lines 

that overexpress the full human ATXN3 gene with either a normal (15Q) or pathogenic 

(84Q) CAG repeat, the YAC-15Q and YAC-84Q lines (159). YAC-84Q mice show 

robust ATXN3 accumulation and aggregation throughout the brain, including in the pons, 

while YAC-15Q mice overexpress normal human ATXN3 without aggregation or 

intranuclear accumulation (159).  

The three tested aggregation-positive lines (YAC-84Q, Q82/Q6, and Q82V/Q82V 

mice) exhibited more than 200 differentially expressed (DE) transcripts compared to 

wild-type mice, whereas the aggregation-negative lines (YAC-15Q and Q82V/Q6 mice) 

exhibited fewer than 100. Thus, the presence of aggregate-prone ATXN3 generally 

correlated with increased transcriptional changes (Figure 4.5B).  

YAC-84Q mice have the most robust aggregation profile among tested genotypes. 

To determine the extent to which altered transcripts inYAC-84Q mice are shared with 

other SCA3 mice, we generated a heat map of the differentially expressed transcripts of 

YAC-84Q using fold-change values relative to wild-type, and we compared their 

expression across all tested genotypes. The greatest number of transcriptional changes 

was shared with Q82/Q6 mice which, like YAC-84Q mice, have a high aggregate burden. 

A significant subset of changes was also shared with Q82V/Q82V mice, which manifest 

aggregates albeit fewer than the other two lines. In contrast, aggregation-negative YAC-

15Q and Q82V/Q6 mice shared relatively few changes with YAC-84Q mice and were 

most similar to wild type mice (Figure 4.5C).  

To explore the trends in transcriptional changes, we graphed the number of shared 

transcripts between the different mutant ATXN3-expressing lines (Figure 4.5D). Only 



73 
 

seven changed transcripts, all but one downregulated, were shared across all four mutant 

ATXN3-expressing lines; none of these genes were altered in YAC-15Q mice. These 

seven may represent transcripts altered by polyQ-expanded ATXN3 expression 

independent of aggregation. A comparison of transcriptional changes shared by all three 

aggregation-positive genotypes revealed a balance of 21 upregulated and 18 

downregulated genes, suggesting that ATXN3 aggregation may drive upregulation of 

certain transcripts.  

Among the differentially expressed transcripts shared between any two genotypes, 

YAC-84Q and Q82/Q6 mice share the most: 56 upregulated and 33 downregulated 

transcripts. Based on predicted cell type expression patterns (165), differentially 

expressed transcripts are preferentially expressed in oligodendrocytes (Figure 4.5E).  

Consistent with this observation, gene enrichment analysis of these 89 transcripts 

identified categories associated with myelination and oligodendrocyte development 

(Figure 4.6).  

An unanswered question in SCA3 and other polyQ diseases is the extent to which 

disease pathogenesis is associated with loss of function of the mutant protein. To address 

this, we performed a separate RNA-seq experiment on the pons of Q82/Q82 mice and 

ATXN3 knockout (ATXN3-KO) mice at ~9 weeks of age. A heat map of the same list of 

transcripts from Figure 4.5C, the differentially expressed transcripts of YAC-84Q mice, 

showed a similar transcriptional signature in Q82/Q82 mice, but not in ATXN3-KO mice 

(Figure 4.7A). A Venn diagram of the differentially expressed transcripts showed that a 

much larger number of transcripts are altered in Q82/Q82 mice than in ATXN3-KO 

mice: 570 versus 91 transcripts, respectively (Figure 4.7B). This Venn diagram reveals 
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that 22 altered transcripts are shared between Q82/Q82 and ATXN3-KO mice, 

representing a small number of transcripts that could be altered due to loss of ATXN3 

function.  In contrast, a higher number of DE transcripts, 59, are shared between 

Q82/Q82, Q82/Q6, and YAC-84Q mice (Figure 4.7C). Together, these results indicate 

that majority of transcriptional changes in aggregate-containing mice do not represent 

changes due to loss of ATXN3 function. These findings further support the view that 

aggregation in SCA3, and perhaps other polyQ diseases, drives molecular changes 

through toxic gain-of-function mechanisms.   

We validated a subset of robustly altered transcripts in an independent set of 

Q82/Q6 mice to ensure reproducibility and to identify transcripts that might serve as 

biomarkers correlating with disease protein aggregation. qRT-PCR on pontine tissue 

from six month old Q82/Q6 and Q82V/Q6 mice confirmed selective upregulation of Acy3 

and Smoc1 and selective downregulation of Agt and Dao in Q82/Q6 mice; Il33, as 

predicted by RNA-seq, was reduced in both Q82/Q6 and Q82V/Q6 mice (Figure 4.8A). 

Only one tested transcript, Polr2a, was not confirmed as significantly altered.  

Because of the robust change in Acy3 associated with ATXN3 aggregation in 

mouse models, we analyzed ACY3 at the protein level. Western blotting for ACY3 in 

hindbrain lysates confirmed that the ACY3 protein is selectively upregulated in Q82/Q6 

mice (Figure 4.8B). Importantly, ACY3 protein levels are also significantly increased in 

SCA3 human brainstem compared to Alzheimer Disease (AD) brainstem controls (Figure 

4.8C), suggesting that altered transcripts in SCA3 mice may predict congruent changes in 

human disease. In summary, the propensity of ATXN3 to accumulate in neuronal nuclei 

and form aggregates in the pons correlates with specific robust transcriptional changes.  
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4.3.4 Cre-recombinase expression in Q82 mice alters Atxn3 splicing and attendant 

aggregation  

The molecular basis for differential splicing in the two knock-in lines may center 

on the LoxP site located  ~300 bp upstream of exon 10, because we can partially convert 

the Atxn3 splicing pattern of  Q82/Q6  mice to that of Q82V/Q6  mice (Figure 4.9A). We 

expressed Cre-recombinase in Q82/Q6 mice under control of the Nestin promoter 

(Q82/Q6+Cre) to drive Cre expression in the brain and elicit alterations in Atxn3 splicing. 

Q82/Q6+Cre mice show reduced levels of Atxn3-10e transcript by RT-PCR and qRT-

PCR (Figure 4.9A and B). Consistent with this change, Q82/Q6+Cre mice also showed 

detectable Atxn3-11e transcript by RT-PCR, similar to Q82V mice (Figure 4.9A). 

Consistent with this change in splice isoform expression, we observed reduced levels of 

high molecular weight, aggregated ATXN3 and increased soluble monomeric ATXN3 in 

two month old Q82/Q6+Cre mice (Figure 4.9C). Finally, of the four robustly 

dysregulated transcripts confirmed in Q82/Q6 mice (Figure 4.8), qRT-PCR showed that 

three of these four (Acy3, Smoc1, and Agt) were significantly corrected towards wild-type 

levels in Q82/Q6+Cre mice (Figure 4.9D). These experiments provide converging 

evidence for an association between ATXN3-10e isoform expression, mutant ATXN3 

aggregation, and selective transcriptional changes presumably linked to ATXN3 

aggregation.  

4.4 Discussion 

Our comparison of SCA3 knock-in mice differentially expressing the two most 

disease-relevant ATXN3 splice isoforms illustrates that isoform expression can 

profoundly influence polyQ disease protein accumulation and aggregation.  Comparison 
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of transcriptional changes in both knock-in lines and in independent transgenic lines 

expressing normal or expanded human ATXN3 further showed that the presence of 

aggregated ATXN3 correlates with transcriptional changes in the nervous system. While 

attention in the polyQ disease field has focused on neurons, many altered brain transcripts 

in aggregate-positive mice are known to be enriched in oligodendrocytes. Among these is 

ACY3, which encodes an aminoacylase that is predicted to hydrolyze N-acetylaspartate 

(NAA) into acetate and aspartate, and this upregulation may contribute to the decreased 

level of NAA reported in SCA3 brain (190). The contribution of nonneuronal cells to 

disease pathogenesis in SCA3 and other polyQ disorders warrants further study.  

The expression of two major mutant ATXN3 isoforms studied here, identical 

except for their extreme carboxy-termini, leads to marked differences in ATXN3 

accumulation and aggregation in vivo. Just as expressing polyQ fragments of full-length 

disease proteins can accelerate disease pathogenesis (23, 26), even a single exon 

difference in polyQ disease protein isoforms can markedly alter disease protein 

accumulation in the brain. Furthermore, our findings indicate that the diffuse nuclear 

accumulation of mutant ATXN3 is associated with its aggregation propensity. 

Importantly, an expanded polyQ tract in the disease range is not sufficient to drive 

ATXN3 into the nucleus in vivo. These results further underscore the importance of 

protein context in the polyQ diseases to influence disease pathogenesis.  

The relatively low-level of expression from the endogenous Atxn3 locus in the 

knock-in mice may have aided our ability to capture relatively subtle differences in 

ATXN3 isoform solubility. The human and mouse ATXN3 isoforms are predicted to 

show differences in solubility based on their amino acid composition (Figure 4.2). 
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However, overexpression of the mutant mouse ATXN3 in cell culture did not reveal 

dramatic differences in puncta and inclusion formation between the two different 

isoforms with similar polyQ lengths (Figure 4.10).  

Efforts to identify the presumed genetic difference that drives differential Atxn3 

splicing in the Q82 and Q82V lines are ongoing. Intriguingly, both the SCA3 knock-in 

lines were generated from one founder mouse. This founder was crossed with a FLPe 

transgenic mouse, generating two F1 (FLPe-expressing) SCA3 knock-in mice that were 

further bred with wild-type mice to generate F2 mice harboring the CAG expansion in 

Atxn3 with the Neo cassette removed (Figure 4.11A). We retrospectively examined 

protein and brain from these two F1 mice and found no differences in solubility between 

the two lines (Figure 4.11B). Moreover, RT-PCR revealed Atxn3-10e and Atxn3-11e 

transcripts at similar levels in both mice (Figure 4.11C). These results, together, suggest 

that the Q82 and Q82V lines appeared subsequent to the removal of the Neo cassette. We 

have not yet examined F2 mice to test this hypothesis.  

The close segregation of this difference with the mutant Atxn3 allele, persisting 

even in homozygous mice, implies a cis-acting factor. To rule out a potentially protective 

trans-acting factor in the Q82V line that can rescue ATXN3 aggregation, we generated a 

“hybrid” homozygous Q82V/Q82 mouse. IHC of this mouse at ~12 weeks did not show 

increased or decreased nuclear ATXN3 or inclusion formation in the brainstem or 

hippocampus (Figure 4.11D). Western blotting of this mouse also segregated two distinct 

mutant ATXN3 bands with differing intensities (Figure 4.11E), further supporting the 

possibility that the knock-in lines differ with respect to a cis-acting element at the Atxn3 

gene. However, sequestration of the more soluble ATXN3 species by the aggregation-
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prone ATXN3 species generated by the Q82 mouse may confound this interpretation. 

These findings are preliminary and must be repeated, but still exclude the possibility that 

a trans-acting factor in the Q82V line rescues ATXN3 aggregation. We are currently 

performing whole genome sequencing to identify possible mutations that explain the 

differences between the two lines. 

The ability of coexpressed Cre-recombinase to partially convert the splicing 

pattern of Q82 mice to that of Q82V mice further supports the view that the different 

molecular phenotypes of the two lines directly reflect different ATXN3 isoform 

expression. We speculate that Cre-recombinase may act by binding the single LoxP 

sequence, potentially altering kinetics of Atxn3 transcription, thereby affecting splicing 

(183). The ability of Cre-recombinase to drive these phenomena indicates that the Q82 

mice resemble a “conditional” mouse in which aggregation could be manipulated in 

different cell-types. One could exploit this to address the extent to which ATXN3 

aggregation drives transcriptional changes in neurons versus non-neuronal cells through 

cell-autonomous mechanisms.  

Although the reduced solubility of the polyQ expanded disease protein likely 

contributes to disease pathogenesis, isolating the disease protein species responsible for 

this toxicity in vivo remains an active area of pursuit. The aggregation propensity of 

disease protein drives the formation of intranuclear puncta/inclusions and biochemically 

insoluble aggregate species associated with disease. These easily visualized structures 

themselves may not be directly toxic and do not exclude the pathogenic role of 

monomeric or oligomeric polyQ protein species upstream in the aggregation cascade that 

are more difficult to detect (11, 42, 46). We suggest that the inclusions and aggregates in 
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vivo represent disease biomarkers that reflect the overall increased presence of abnormal 

disease protein, including both toxic and non-toxic conformers.  Ongoing studies aim to 

identify levels of polyQ disease protein conformers in vivo that best predict toxicity. At 

present, therapies to reduce the aggregate burden should remain a viable approach, 

provided that therapies primarily do so by improving disease protein folding or clearance.  

Our findings support the notion that transcriptional alterations reflect disease-

associated processes imposed by disease protein accumulation and aggregation. 

Accordingly, only SCA3 mouse models showing signs of aggregation also shared robust 

transcriptional changes. In contrast, high levels of soluble, expanded ATXN3 in Q82V 

mice were not sufficient to drive the early transcriptional changes seen in ATXN3 

aggregate-positive mice, and overexpression of nonexpanded ATXN3 in YAC-15Q mice 

caused almost no transcriptional perturbation. Moreover, ATXN3-KO mice did not show 

much overlap with ATXN3 aggregation-associated transcriptional profiles. Studies from 

models of HD and SCA3 have shown that treatments that improve disease phenotypes 

correlate with corrected transcriptional changes (191–193). Our findings are particularly 

novel in establishing that, for mutant ATXN3 isoforms harboring the same polyQ repeat 

length, the propensity for ATXN3 to accumulate and aggregate most directly correlates 

with an altered transcriptional signature in vivo. These transcriptional changes 

conceivably occur alongside or may even directly connect with pathways that drive 

toxicity. However, a lack of neurotoxic readouts in these SCA3 mouse models limits 

conclusions we can draw about causal links between disease protein aggregation, 

transcriptional changes, and toxicity. The future identification of neuropathological 
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abnormalities that coincide with disease protein aggregation in the SCA3 mouse models 

would be informative.  

Increasing evidence supports glial contributions to polyQ disease (194). In SCA7, 

for example, mutant ATXN7 drives dysfunction of Bergmann glia that ultimately drives 

Purkinje neuron dysfunction and death (195, 196). Recently, a HD knock-in mouse 

model was reported to exhibit early myelination defects potentially precipitated by 

altered oligodendrocyte differentiation (148). Another recent study showed that 

expressing mutant HTT in oligodendrocytes alone is sufficient to induce demyelination 

and behavioral abnormalities in mice (197). Oligodendrocyte dysfunction is also featured 

in ALS (198), in which the expression of aggregation-prone mutant SOD1 in 

oligodendrocyte progenitors contributes to disease onset in a mouse model (199). Our 

analysis of transcriptional changes in SCA3 mouse models showed that the majority of 

altered transcripts are most highly expressed in oligodendrocytes, but the process that 

driving this is unclear. The transcriptional profile probably does not reflect changes in 

oligodendrocyte number since the identified oligodendrocyte-associated transcripts in 

SCA3 mice include large portions of elevated and reduced transcripts. Although we did 

not observe clear nuclear ATXN3 accumulation or aggregation in oligodendrocytes by 

immunofluorescence, small ATXN3 oligomers and microaggregates may drive 

transcriptional changes cell-autonomously. 

While oligodendrocyte pathology has not been closely studied in SCA3, the 

human disease exhibits clear white matter abnormalities. Magnetic resonance imaging 

(MRI) of SCA3 brains have shown significant reduction in pontine white matter that 

correlates with clinical disease severity (200, 201). Outside the CNS, cytoplasmic 
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ATXN3 aggregates have been detected in Schwann cells of SCA3 disease tissue (202), 

andYAC-84Q mice exhibit diminished myelination of the sciatic nerve (159).  SCA3 

knock-in mice may not practically allow examination of demyelination in the pons, 

where myelinated fibers are particularly heterogeneous and difficult to quantify, but 

further analysis of aged YAC-84Q and homozygous Q82 mice may help establish 

functional consequences of dysregulated oligodendrocyte transcripts.  
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Figure 4.1 SCA3 knock-in lines express different Atxn3 transcripts. (A) The human 

ATXN3 gene expressed at least two different transcripts: a full-length ATXN3 transcript 

with 11 exons (ATXN3-11e, right) and alternate transcript generated by retaining intron 

10 (ATXN3-10e, left), which encodes a different carboxy-terminus that makes it more 

aggregation-prone. This chapter shows that the Atxn3-10e transcript in SCA3 knock-in 

mice is associated with accelerated disease protein aggregation in the brain and may 

accelerate pathogenesis. (B) Western blot analysis of brain shows that “variant” SCA3 

knock-in mice (Q82V/Q6) express high soluble levels of mutant ATXN3 compared to 

our previously reported Q82/Q6 mice despite  harboring similar CAG repeat lengths. (C) 

Non-quantitative RT-PCR amplified mutant Atxn3-10e cDNA in only Q82/Q6 mice and 

full-length mutant Atxn3 cDNA only in Q82V/Q6 mice. (D)Quantitative RT-PCR (qRT-

PCR, left) with primers specific to Atxn3-10e confirmed enhanced relative expression in 

Q82/Q6 mice (E) Calculated transcript levels from RNA-seq reads (FPKM, right) of the 

pons showed ~2-fold increase in total Atxn3 in Q82/Q6 mice compared to wild-type or 

Q82V/Q6 mice, but equal Atxn3-11e between all genotypes. Arrows: wild-type ATXN3; 

arrowhead: mutant ATXN3. *p < 0.05 
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Figure 4.2. Human and murine ATXN3-10e isoforms are predicted to have greater 

hydrophobicity. Protein sequences encoded from ATXN3/Atxn3 Exon 10/11 and Exon 

10/intron 10 are shown above. Calculating the grand average of hydropathicity (GRAVY) 

for the full-length protein or differentially encoded segment showed a higher positive 

value for 10e isoforms, reflecting a higher amount of hydrophobic amino acids.   
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Figure 4.3 ATXN3 aggregation is increased in SCA3 knock-in mice expressing 

Atxn3-10e. (A) Immunohistochemical staining (IHC) for ATXN3 in ~1-year-old brains 

shows prominent nuclear accumulation and intraneuronal inclusions throughout the brain 

in Q82/Q6 mice, including in the pons, deep cerebellar nuclei (DCN), in hippocampus 

(CA1 and stratum radiatum, StRad),  but not in Q82V/Q6 mice. Scale bar = 10mm. (B)  

ATXN3 immunoprecipitated from  brain lysates,  resolved on a polyacrylamide gradient 

gel and probed for ATXN3, show reduced high molecular weight (HMW) ATXN3 

species in Q82V/Q6 mice compared to Q82/Q6 mice with a corresponding increase in 

soluble ATXN3 (arrowhead).  Quantification of the HMW ATXN3 is shown on the right. 

(C-F) 53 to 60-week-old mice showed no differences in motor performance on rotarod 

(C), balance beam (D), or open field (E). Genotypes included wild-type (n=19), Q82/Q6 

(n=19), and Q82V/Q6 (n=18) mice. Female Q82/Q6 mice showed a slightly reduced 

weight (F). Graphs represent the mean +/- SD (B) or SEM (C-F) *p < 0.05. 
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Figure 4.4. ATXN3 aggregation remains low in homozygous variant SCA3 knock-in 

mice. (A) Western blot analysis of Q82V/Q82V mouse brain show higher levels of 

soluble mutant ATXN3 (arrowhead) compared to a Q82/Q6 mouse. Arrow: wild-type 

ATXN3. (B) IHC of ATXN3 in a ~48-week-old homozygous Q82V/Q82V still show 

markedly reduced nuclear accumulation and inclusion formation in the brainstem and 

hippocampus compared to an age-matched Q82/Q6 mouse. Q82V/Q82V mice contain 

large extranuclear inclusions in the hippocampus similar to Q82/Q6 mice. Scale bar = 

10m (C) Table summarizing the aggregate amount scored in different regions of n=3 

SCA3 knock-in mice at ~48 weeks of age. (D) IHC for ATXN3 mice shows further 

enhanced nuclear ATXN3 in the DCN of a ~8-week-old Q82/Q82 mouse and no apparent 

nuclear accumulation in an age-matched Q82V/Q82V mouse. (E) qRT-PCR of hindbrain 

RNA of the mice from (D) showed ATXN3 nuclear accumulation correlated with relative 

Atxn3-10e expression.  
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Figure 4.5. Increased aggregation-propensity of ATXN3 associates with robust 

distinct transcriptional changes in the pons. (A) Summary of the genotypes used for 

RNA-seq and the relative amount of ATXN3 aggregation in the brain of each mouse, 

including transgenic SCA3 YAC mice expressing ATXN3 from full-length ATXN3 gene 

with 15 (YAC-Q15) or 84 (YAC-Q84) CAG repeats. Transcripts differentially expressed 

(DE) from wild-type were obtained from DESeq. (B) Mice containing ATXN3 

aggregates (Q82/Q6, Q82V/Q82V, and YAC-Q84) exhibit a higher number of DE 

transcripts than mice with little or no aggregates (Q82V/Q6 and YAC-Q15). (C) 

Clustered heat map of the ~100 most significant DE transcripts in YACQ84 mice parallel 

the changes in Q82/Q6, and to a lesser extent, in Q82V/Q6 mice. (D) Graphing shared 

DE transcripts between different genotypes shows an increasing amount of upregulated 

transcripts associated with mice with increasing ATXN3 aggregation. (E) DE transcripts 

shared in Q82/Q6 and YAC-Q84 mice are expressed in several cell-types in the brain, but 

are predominantly enriched in oligodendrocyte-lineage cells.  
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Figure 4.6 Transcripts associated with ATXN3 aggregation are enriched in 

biological processes linked to oligodendrocytes. Left, Venn diagram showing DE 

transcripts shared between different genotypes. Q82/Q6 and YAC-84Q mice share the 

highest number transcripts among these comparisons. These transcripts were subjected to 

gene enrichment analysis, shown right. Both upregulated (red) and downregulated (green) 

transcripts were associated with indicated pathways.   
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Figure 4.7 Transcriptional alterations in Q82/Q82 mice are minimally associated 

with ATXN3 loss of function. (A) Heat map of the same transcripts from Figure 4.4C 

shows similar alterations in pontine RNA-seq of 9-week-old Q82/Q82 mice (n=3), but 

not in ATXN3 knockout (ATXN3-KO) mice (n=3). (B) Venn diagram showing a large 

number of DE transcripts in Q82/Q82 with 22 transcripts shared with ATXN-KO mice. 

(C) Q82/Q82 mice share a larger number of altered transcripts (59) with Q82/Q6 and 

YAC-84Q mice. 
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Figure 4.8. Validation of altered transcripts in Q82 versus Q82V SCA3 knock-in 

mice. (A) qRT-PCR of several DE transcripts including some upregulated (left: Acy3 , 

Polr2a, and Smoc1) and downregulated  (right: Agt, Dao, and Il33) in ~6-month-old 

SCA3 knock-in mice (n=5). (B) Western blot of ACY3 in ~1-year-old SCA3 knock-in 

mice hindbrain and with quantification shown on the right. (C) Western blot of ACY3 in 

Alzheimer disease (AD) and SCA3 brainstem lysates with quantification shown on the 

right. Graphs represent the mean +/- SD, *p < 0.05. 
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Figure 4.9. Expression of Cre recombinase in the brain of Q82/Q6 mice reduces 

Atxn3-10e expression, ATXN3 aggregation, and transcriptional changes. (A) 

Schematic of Q82 knock-in locus showing a single LoxP site in intron 9 that can bind Cre 

recombinase. Below, RT-PCR of the pons showed reduced Atxn3-10e expression and 

recovery of Atxn3-11e signal in Q82/Q6 mice expressing Cre-recombinase under the 

Nestin promoter (Q82/Q6+Cre). (B) qRT-PCR of the same samples showed significant 

reduction Atxn3-10e and total (exon 10-containing) Atxn3 transcript in Q82/Q6+Cre mice 

(n=3). (C) Western blotting of brain lysates IP-ed for Atxn3 and resolved on a 3-12% 

Tris-Acetate gel showed reduced aggregation of ATXN3 in Q82/Q6+Cre mice relative to 

Q82/Q6 mice that coincided with increased soluble monomeric mutant ATXN3 . (D) 

qRT-PCR on pons of ~2-month-old Q82/Q6+Cre mice (n=3) showed correction toward 

wild-type levels of three of four tested transcripts (Acy3, Smoc1, and Agt) relative to 

Q82/Q6 littermates (n=3). Graphs represent the mean +/- SD. *p < 0.05 by one-way 

ANOVA.  
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Figure 4.10. Overexpressing mutant ATXN3 isoforms in cell culture did not show 

differences in puncta formation. Left, western blot of Atxn3 from pcDNA 3.1 shows 

expression of nonexpanded ATXN3 (Wild-type), mouse Q74 ATXN3-11e (Q74-FL), and 

mouse Q71 ATXN3-10e (Q71-int10) in HEK293 cells. Right, average number of puncta 

and inclusions per field following 72 h expression of Atxn3 constructs in PC12 cells (n=3 

experiments).  
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Figure 4.11 Identifying the  origin and heritability of the different mutant Atxn3 

phenotypes in SCA3 knock-in mice. (A) Simplified pedigree of the SCA3 knock-in 

lines, which were generated by breeding the founder with a FLPe transgenic mouse. (B, 

C) F1 (FLPe expressing) SCA3 knock-in mice did not show differences in mutant Atxn3 

solubility and show expression of both mutant Atxn3 transcripts by RT-PCR. (D) 

Preliminary experiments showed that generating a hybrid Q82V/Q82 mouse did not 

markedly increase or decrease ATXN 3 aggregation relative to an age-matched Q82/Q6 

mouse (~12 weeks).  (E) Western blot of the Q82V/Q82 separated two distinct ATXN3 

bands with different intensities. Arrow: wild-type ATXN3. Arrowhead: mutant ATXN3 
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Chapter 5 

 

Conclusions and future directions 

 
 The results described in this dissertation lead to four main conclusions. Firstly, the 

Q82 SCA3 knock-in mouse model represents a significant new disease model for the 

field that exhibits key molecular features of disease, including robust disease protein 

aggregation and alternative splicing of the mutant transcript. Secondly, alternative 

splicing of ATXN3 can markedly affect mutant ATXN3 aggregation in the brain. Thirdly, 

the aggregation of mutant ATXN3 correlates with an early and robust transcriptional 

signature in the brain. And finally, the altered transcriptional profile of SCA3 mice 

containing ATXN3 aggregates alerts us to the potential involvement of oligodendrocytes 

in disease pathogenesis. Together, the main findings of this thesis suggest that the 

misfolding tendency of polyQ disease protein is a, if not the, driving force in disease. 

Nevertheless, substantial gaps remain in our understanding of SCA3 and the polyQ 

diseases as we strive for new therapies. In this section I outline some of the opportunities 

moving forward from this work.  

5.1 Diverse uses of the SCA3 knock-in mice and extended 

characterization 

 

 No SCA3 knock-in mouse had been reported before 2014. By the end of 2015, the 

field will likely have three SCA3 knock-in mice: our two SCA3 knock-in mouse lines, 
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one of which is already published (151), and a chimeric exon 10/11 SCA3 knock-in 

mouse model reported by Switonski et al.(152). Our published Q82 SCA3 knock-in line 

is already available to the public through Jackson Laboratories. We plan to publish the 

Q82 variant line described in chapter 4 shortly. Scientists will be able to utilize one or 

more of these knock-in mice to explore early molecular changes, alterations to native 

interactors, and the potential contribution of loss of function effects to SCA3 disease 

pathogenesis. Among the available SCA3 knock-in mice, the Q82 line shows the most 

early and robust mutant ATXN3 aggregation throughout the CNS and will likely be the 

most useful for studying disease processes.  

 Future characterization of behavioral and neuropathological changes in the Q82 

and Q82V lines could establish the detrimental effects of mutant ATXN3 expression and 

aggregation. I found no differences between one-year-old heterozygous knock-in lines on 

motor testing, but homozygous knock-in mice at one year of age or older may further 

exhibit the consequences ATXN3 aggregation. I would predict that aged Q82/Q82 mice 

will weigh significantly less than age-matched wild-type and Q82V/Q82V mice, but may 

not exhibit robust differences on motor performance. However, homozygous mice should 

be further tested for other neuropathological changes including neuronal loss, gliosis, 

decreased neurotransmitter binding, synaptic/electrophysiological changes, or other 

subtle deficits that would indicate neuronal dysfunction or degeneration. In the end, 

however, the strength of the SCA3 knock-in probably lies not in studies of motor 

behavior or neurodegeneration, but in studies of early molecular and cellular changes in 

disease.  
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 Delineating the genetics between the SCA3 knock-in lines remains a high priority. 

My analysis of the pedigree of these knock-in lines suggests that the differences likely 

appeared during the removal of the Neo cassette using the FLP/FRT system, but PCR and 

Sanger sequencing of this region did not show any differences in this region. I have 

submitted tail DNA from a Q82/Q82 and a Q82V/Q82V mouse for whole genome 

sequencing to broadly assess the full Atxn3 locus. Identifying a critical genetic difference 

between the knock-in lines could inform aspects of splicing biology, including cis- and 

trans-acting factors that underlie Atxn3 splicing. Moreover, scientists would appreciate a 

report of how gene manipulation in biological models can deviate from expectations, 

especially since these techniques are pervasively used. To my knowledge, genetic 

aberrations driven by the FLP/FRT have not been documented.  

Expressing Cre recombinase in the Q82 line intriguingly substantiates my 

conclusions by recapitulating features of the Q82V line, but the mechanism that drive this 

phenomenon is unknown. I could not identify another nearby LoxP site that might 

recombine with the LoxP site in intron 9. My working hypothesis is that Cre recombinase 

simply binds the LoxP in intron 9 to alter the kinetics of RNA polymerase action at that 

junction, which could influence splicing (183). Cre recombinase binding to LoxP may 

reduce mis-splicing of Atxn3 by extending the time for splicing machinery to efficiently 

join exon 10 and 11. To test if Cre recombinase can reversibly alter splicing of Atxn3, one 

could transiently express Cre recombinase in Q82 mice under a tamoxifen-inducible 

promoter and test levels of Atxn3-10e transcript before and after the clearance of Cre 

recombinase.  
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Cre recombinase-driven differences in splicing and ATXN3 aggregation in our 

Q82 line may serendipitously help future study of ATXN3 aggregation in different cell 

types. Directing Cre recombinase to specific cell-types by driving expression under 

different promoters could be a novel way to assess both neuronal and non-neuronal 

contributions to disease. Studies in SBMA, HD, and SCA7 have provided evidence for 

non-cell-autonomous effects of the polyQ disease protein (194, 196, 203), but this is 

unexplored in SCA3. Our Q82 knock-in mouse would have the added benefit of testing 

the effects of ATXN3 aggregation in vivo without overexpression or complete deletion of 

the mutant protein. A study of this type is unprecedented in the polyQ disease field.  

A final note on the utility of SCA3 knock-in mice is its ability to test new gene-

editing technologies for study and therapy.  Nucleases engineered to specifically edit 

genomes have recently emerged as a powerful way to specifically modify genes in vivo 

(204). While these techniques are in their infancy, they could easily expand as a novel 

type of gene therapy that could apply to the polyQ disease (205). Since the goal of such a 

therapy would be to target the endogenous disease gene, polyQ disease knock-in mice 

would be ideal to test the effects of altering the disease gene in vivo. The modifications 

could include altering or removing the CAG repeat expansion or simply ablating disease 

gene expression. SCA3 is in a favorable position among polyQ diseases to silence ATXN3 

as a therapy, since ATXN3 knockout mice do not exhibit deleterious features. Therefore, 

SCA3 knock-in mice could be at the forefront in testing advanced genome editing 

therapies in polyQ disease.   
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5.2  ATXN3 isoforms and protein context in polyQ disease 
 

The work of this dissertation is the first to show the striking extent to which 

altering disease protein isoforms can affect disease protein aggregation in vivo. Even a 

subtle difference between ATXN3 isoforms, differing by only one exon, markedly affects 

ATXN3 aggregation in the brain. The influence of different disease protein isoforms 

could pertain to other polyQ diseases. HD knock-in mice show retention of intron 1 

following the CAG repeat-containing exon 1, resulting in the expression of a highly 

aggregation-prone exon 1 fragment (86). In SCA6, a downstream cistron within 

CACNA1A can drive the production of a C-terminal polyQ-containing fragment that may 

drive SCA6 pathogenesis (206). Our findings further argue for the exploration of even 

subtle differences in polyQ protein isoforms that could potentially influence disease. 

Alternative splicing of the disease gene has been reported for all other polyQ diseases, 

including SCA1 (207), SCA2 (208), SCA6 (209), SCA7 (210), SCA17 (211), SBMA 

(212), and DRPLA (213). Scientific understanding of the role of protein context in polyQ 

diseases would benefit from the exploration of even subtle differences exhibited by 

alternative isoforms of the disease protein.   

Future studies in SCA3 are needed to establish the relative contribution of the 

expression of human ATXN3-10e isoform in vivo. One way to address this is through 

YAC-84Q mice, which express both the ATXN3-10e and -11e transcripts. The Paulson 

lab and their collaborators together have shown that RNA interference targeting the 

3’UTR of the ATXN3 transcript dramatically reduces ATXN3 aggregation in YAC-Q84 

mice (214, 215). This silencing strategy presumably knocks down the ATXN3-11e 

isoform which contains the 3’UTR, and this was shown to abrogate ATXN3 expression 
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and aggregation. However, whether the expression of the mutant ATXN3-10e remains 

after siRNA treatment is uncertain. Selectively targeting the ATXN3-10e transcript with 

siRNA or promoting splicing to the full-length transcript with anti-sense oligonucleotides 

may also reduce ATXN3 aggregation in YAC-84Q mice, further establishing a 

pathogenic contribution of ATXN3-10e isoform.  

To explore different splice isoforms of SCA3, a recently developed human 

embryonic stem cell line (hESCs) containing a CAG expansion in ATXN3 may prove to 

be useful. This cell line, which is already being studied in the Paulson lab, can be 

differentiated into neurons and expresses mutant ATXN3 at physiological levels (not 

shown). Based on the results presented in this thesis, I expect that these cells will be 

found to express both ATXN3-10e and -11e transcripts. Moreover, hESCs can be 

modified by gene-editing (216) to directly test the consequences of altering the disease 

gene. For example, gene editing can be used to drive the selective expression of different 

ATXN3 transcripts (i.e. -10e vs. -11e) at physiological levels in differentiated neurons to 

examine their respective effects on aggregation and disease-relevant cellular pathways.  

The factors driving the mis-splicing of ATXN3 and other polyQ disease genes are 

unknown. The enhanced expression of Atxn3-10e transcript in Q82 mice first suggested a 

CAG-repeat-length-dependent process, supported with data from SCA3 YAC mice 

(Chapter 3), but its absence in Q82V mice argues that the presence of an expanded CAG 

repeat is not sufficient. CAG-dependent mis-splicing of other polyQ disease genes has 

not yet been shown to converge on a common role of CAG expansions in affecting 

splicing. Sathasivam and colleagues identified SRSF6 as a putative splicing factor that 

preferentially binds to CAG expansions (86). Testing SRSF6’s binding to disease repeats 
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in the differentially spliced SCA3 knock-in lines may reveal differences that suggest a 

SRSF6-dependent mechanism. However a higher priority is identifying the cis-acting 

genetic differences between these two lines. As more information on alternative splicing 

of different polyQ disease genes becomes available, we may begin to uncover common 

elements that regulate splicing and their roles in disease.   

5.3 Disease protein aggregation in polyQ disease pathogenesis 
 

 Along with the finding that alternative splicing can modify disease protein 

aggregation in vivo, the work in this dissertation sheds light on the pathogenic role of 

aggregation. Studies have increasingly shifted away from using aggregation as a readout 

for the pathogenic disease process with the understandable concern that the presence of 

non-toxic aggregates, or possibly even protective aggregates, may confound the results. 

Nonetheless, my view is that prominent aggregates and intraneuronal inclusions still 

serve as important biomarkers of the abnormal process of mutant protein accumulation 

with toxic properties. My findings indirectly suggest that the aggregation propensity of 

polyQ-expanded ATXN3 drives disease. However, this raises two issues that relate to 

investigating aggregation and toxicity in disease models. 

The first issue is the difficulty of establishing a causal relationship between 

aggregation and disease pathogenesis in an animal model that lacks robust behavioral or 

degenerative phenotypes. In this dissertation, I infer pathogenicity of aggregates from the 

altered transcriptional profiles of the SCA3 knock-in mice. My reasoning is that a higher 

number of transcriptional changes most likely reflects the presence of a stressful stimulus 

that perturbs the transcriptional network. Consistent with this, aggregate-containing 

SCA3 mice showed a greater number of altered transcripts than YAC-Q15 
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overexpressing nonexpanded ATXN3, Q82V/Q6 mice with non-aggregated mutant 

ATXN3, or ATXN3-KO mice, suggesting that the misfolding tendency of ATXN3 

stresses cells in some manner. These findings complement a large body of literature 

discussed in Chapter 1 that supports a clear association between aggregation and toxicity. 

The strength of my work here is in investigating this association under physiological 

conditions and without overexpression of other cellular factors, but this comes at a cost of 

easily accessible toxic phenotypes. Future studies examining other early molecular 

changes, such as electrophysiological (217), neurometabolic  (190), cytoarchitectural (i.e. 

morphology of subcellular structures) , or subtle white matter abnormalities, could further 

elucidate the role of aggregation in disease pathogenesis in the SCA3 knock-in mice. 

Furthermore, establishing additional early readouts of toxicity would also help in the 

future assessment of treatment efficacies in mouse models of disease. 

The second issue is the importance of identifying the toxic polyQ species or 

conformers that lead to neurodegeneration. One challenge is that a sufficient 

concentration of misfolded mutant polyQ protein monomers may aggregate to form both 

toxic and non-toxic polyQ protein species, thus adding difficulty to dissociating the 

relative contributions of each polyQ protein species to toxicity. To partially address this, 

Miller et al developed an antibody, 3B5H10, specific to misfolded conformations of 

polyQ monomer that predicted toxicity in cell culture (42, 46). It would be interesting to 

see if this or other conformer-specific antibodies show differences in reactivity between 

Q82 and Q82V lines to provide an additional correlate of toxicity. Antibodies or methods 

specific to toxic polyQ conformers in vivo that serve as better predictive markers or 

pathogenesis could replace aggregate burden and inclusion formation as disease markers.   
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With aggregation as a central mediator of disease, my findings support continued 

efforts to target factors that influence disease protein aggregation. For example, I have 

already discussed how alternative isoforms and proteolytic processing of the disease 

protein can affect aggregation and pathogenesis. Various post-translational modifications 

also can play important roles in aggregation, as reviewed by Pennuto et al (218), 

including ubiquitination, SUMOylation, phosphorylation, acetylation, palmitoylation, and 

transglutamination. An improved understanding of the proteostasis network has led to 

insights on quality control factors that can help refold or clear the mutant polyQ disease 

protein (168). In addition to Hsp70, different Hsp40 proteins are recognized as potent 

suppressors of mutant polyQ disease protein aggregation that may prove beneficial (219). 

Lastly, induction of autophagy has been supported as a viable therapeutic option to clear 

aggregates in the nervous system (220). With the increasing identification of key 

modifiers of aggregation, major efforts are taking place to identify pharmacological 

compounds that can act through these pathways. These therapies include protease 

(calpain) inhibitors (221), chaperone activators (222), and autophagy inducers (220). 

Moreover, future studies may reveal novel factors that can influence disease protein 

aggregation.   

5.4 Understanding transcriptional changes in polyQ disease 

 The importance of nuclear localization in driving polyQ disease toxicity in 

different disease models supports transcriptional dysregulation as a major contributor to 

disease pathogenesis.  This possibility is supported by a large body of evidence in HD 

and other polyQ diseases that have demonstrated detrimental effects of altered activity of 

specific transcription factors and the corresponding changes in expression of their 
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downstream targets. This has led to increased efforts to use gene expression profiling via 

microarray and RNA-seq, which sensitively and rapidly provide vast amounts of 

transcriptional data, to identify pathways that lead to toxicity. However, despite 

significant technological advances in transcriptional profiling and its analysis, this 

strategy still poses an immense challenge for several reasons.  

When presented with extensive transcriptional data from disease models or tissue, 

several factors complicate the interpretation of altered transcripts and their role in disease 

pathogenesis. An altered transcript in a disease model may fall under at least one of these 

categories: 1) The transcriptional change is directly detrimental, 2) it represents a neutral 

marker of a detrimental disease process, 3) it correlates with the presence of the disease 

mutation, but is unrelated to the disease process, or 4) it is a protective response to the 

disease process. Furthermore, when expression profiles are obtained from brain tissue, 

other factors must be considered: altered transcripts may reflect cell-autonomous 

mechanisms elicited by effects of the disease protein in that cell, non-cell autonomous 

responses to changes in another cell, or an epiphenomenon caused by changes in cellular 

composition of the analyzed tissue, as occurs with neuronal loss or gliosis. Finally, the 

cascade of events leading to an observed change in gene expression can be extremely 

complex and indirect, with potentially dozens of intermediate changes set forth by 

disruption of major cellular components.   

Nevertheless, a tissue-based gene expression profile provides a broad signature 

that can serve as a useful and sensitive biomarker of disease progression in mouse 

models. By analyzing multiple SCA3 mouse models in our RNA-seq datasets, we were 

able to focus attention on a specific candidate transcript associated with mutant ATXN3 
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aggregation, ACY3, and validate the observed changes in human disease tissue. A 

transcriptional profile of SCA3 human disease tissue, or of iPSCs or hESCs with the 

disease mutation, would be invaluable in assessing the validity of the SCA3 mouse 

models. Future therapeutic studies that target ATXN3 levels or aggregation in YAC-84Q 

or Q82 SCA3 knock-in mice can assess several transcripts, including ACY3, to determine 

if therapies are effective. Furthermore, transcriptional alterations, as I have shown in my 

work, can also easily be assessed presymptomatically. Therefore, testing a focused set of 

transcripts by qRT-PCR would be a time- and cost-effective way to assess disease 

progression in these mouse models.  

 Ongoing analysis of our RNA-seq data could help distill information about the 

SCA3 disease network in the brain to identify critical altered factors. The analytical 

process remains challenging, but continues to evolve with increasingly available data and 

improved computational technology. Researchers are more commonly integrating vast 

databases of information on transcriptional alterations, protein-protein interactors, 

functional biological pathways, metabolic pathways and more, to develop a complex 

disease network (223). Gene co-expression analyses are now increasingly used to sort 

transcriptional data and identify major transcriptional networks and their “hubs” in 

disease, which may represent critical transcription factors (224, 225). For example, our 

collaboration with the Guan group at the University of Michigan will make use of unique 

algorithms (226) that examine co-expression to generate a transcriptional network in 

different SCA3 mouse models to extract information on central factors that drive 

transcriptional perturbation in SCA3. The altered transcripts or factors themselves may 
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not necessarily play direct pathogenic roles, but this information can provide important 

clues to the disease process in the nervous system elicited by aggregation.  

Substantial gaps still exist in our understanding of the transcriptome, including its 

diversity and dynamic regulation in different cell types. These gaps include a poor 

understanding of the differences in alternative splicing across the transcriptome which 

could provide clues to disease processes and its effects in RNA-associated 

pathways(227); such differences can be further explored in our RNA-seq data.  In 

addition, while scientists have focused on coding transcripts in SCA3, the vast majority 

of our transcriptome is non-coding (228). Our RNA-seq data could provide a unique look 

into some non-coding RNAs that may be dysregulated in disease. Unfortunately, because 

our RNAseq selected for polyadenylated transcripts, we cannot directly examine 

microRNAs. Future studies should examine the microRNAs altered in disease in a 

directed manner, as their regulation can crucially influence aging and degenerative 

processes (229, 230). Our data can potentially be mined for alterations in polyadenylated 

long non-coding RNAs (lncRNAs). The study of lncRNAs is on the rise in 

neurodegenerative disease, with few reports in polyQ disease emerging over the last few 

years (231–234), but is unexplored in SCA3.  

5.5 Oligodendrocytes and glial contributions to polyQ disease 
 

A central goal for researchers studying neurological disease is to improve 

neuronal function, since neuronal activity and action directly dictate behavior/cognition. 

Accordingly, attention in polyQ diseases and most other neurodegenerative disorders has 

been on neurons and their dysfunction. However, a large body of evidence now supports 

the importance of non-neuronal cells in nervous system function and specific diseases 
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(235). Even beyond primary glial loss as a cause of neurological disease, as in multiple 

sclerosis, glial dysfunction can play critical roles in neurodegenerative disease and 

ultimately affect neuronal function. Therefore, an improved understanding of non-

neuronal dysfunction can lead to better insight into polyQ disease pathogenesis.  

White matter dysfunction may contribute to disease symptoms in SCA3 but 

requires further exploration. Our analysis of RNA-seq data in SCA3 mouse models 

implicates a robust transcriptional response by oligodendrocytes, the primary myelin-

producing cell of the CNS.  Previous studies using MRI of SCA3 brain have revealed 

consistent and prominent white matter abnormalities that correlate with symptoms (200, 

201), but these have not been as well characterized neuropathologically. The polyQ 

research field would benefit from improved white matter characterization in disease and 

disease mouse models to begin uncovering the consequences of myelin dysfunction.   

 A primary step to understanding oligodendrocyte dysfunction is to determine the 

factors that drive transcriptional changes in the SCA3 knock-in mice. Two main 

questions arise from our profiling data in SCA3 mice: 1) Are the transcriptional changes 

driven in oligodendrocytes cell-autonomously and 2) do the transcriptional changes 

depend on mutant ATXN3’s nuclear localization? A recent study by Huang et al showed 

that mutant HTT alters MYRF, a myelin-associated transcription factor, to alter 

transcription directly in oligodendrocytes (197). However, immunostaining for Olig2 or 

CC1, markers of oligodendrocytes, did not show clear colocalization with ATXN3 or its 

aggregates in SCA3 knock-in mouse brain. Based on cell-type specific RNA-seq 

expression data of mouse cortex (165), ATXN3 is expressed in oligodendrocytes. While 

we do not detect ATXN3 in oligodendrocytes by immunostaining, oligomers or 
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microaggregates of ATXN3 that cannot be easily visualized may still contribute to cell-

autonomous changes in oligodendrocytes. As discussed earlier, one could express Cre-

recombinase via an Olig2 promotor in the Q82 line to reduce  ATXN3 aggregation in 

oligodendrocytes to determine if alteration of Acy3 and other oligodendrocyte-associated 

transcripts are normalized. Alternatively, generating a novel mouse model of SCA3 that 

allows cell-type specific deletion of the mutant gene may prove worthwhile to delineate 

the contribution of ATXN3 aggregation in different cell types of the nervous system, as 

well as cell-autonomous and non-cell-autonomous contributions to neuronal dysfunction. 

Finally, transcriptional profiling of mouse brain with aggregation-prone mutant ATXN3 

prevented from entering the nucleus by adding an NES (52) may provide information on 

the nuclear dependence of mutant ATXN3 on eliciting transcriptional changes.  

5.6 Concluding remarks 

 The polyQ diseases and related neurodegenerative diseases pose a significant 

burden worldwide without any available disease-modifying therapies. Disease protein 

misfolding and aggregation has been recognized as a central feature of the polyQ diseases 

nearly since their discovery, and for almost as long has been a major point of debate. My 

work in this dissertation helps cement a central role for mutant ATXN3 aggregation in 

SCA3 pathogenesis, and this concept likely applies to other polyQ diseases. Dissecting 

polyQ disease pathways has proved to be complicated and challenging.  Building relevant 

disease models is a crucial step towards understanding disease and moving towards 

therapies. In this regard, mouse models of disease, and in particular knock-in mouse 

models that express endogenous levels of disease proteins, will continue to be important 

tools for exploring disease pathogenesis. My dissertation work in uncovering the 
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characteristics of novel SCA3 knock-in mouse models is a major step for future studies 

that will utilize these mice to explore disease pathways.   

Considering the incomplete understanding of these disease processes and the 

desperate need for therapies for polyQ disease, a simple and direct strategy targeting the 

mutant disease protein and its misfolding tendency remains the most sensible avenue for 

therapy.  Importantly, my work argues that the effectiveness of such strategies can be 

tested in mouse models that do not exhibit a motor phenotype. Along with disease protein 

aggregation, early transcriptional changes and other markers can help assess treatment 

efficacy in preclinical trials. My work and the works of others further support pre-

symptomatic administration of polyQ disease-modifying therapies, including those that 

reduce disease protein aggregation, to prevent or delay onset of disease. An effective 

treatment for polyQ disease would help a large number of people and would also serve as 

an important proof-of-concept to open doors to treatments for other proteinopathies.   
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