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Chapter I 

Developmental and Regulatory Functions of Na+ Channel Non-pore-forming  Subunits 

(Portions of this chapter have been published in Current Topics in Membranes 2016, 

doi:10.1016/bs.ctm.2016.07.003) 

 

Voltage-gated Na+ channels (VGSCs) isolated from mammalian neurons are 

heterotrimeric complexes containing one pore-forming  subunit and two non-pore-forming  

subunits.  In excitable cells, VGSCs are responsible for the initiation of action potentials.  VGSC  

subunits are type I topology glycoproteins, containing an extracellular amino-terminal 

immunoglobulin (Ig) domain with homology to many neural cell adhesion molecules (CAMs), a 

single transmembrane segment, and an intracellular carboxyl-terminal domain.  VGSC  

subunits are encoded by a gene family that is distinct from the  subunits.  While  subunits 

are expressed in prokaryotes,  subunit orthologs did not arise until after the emergence of 

vertebrates.   subunits regulate the cell surface expression, subcellular localization, and gating 

properties of their associated  subunits.  In addition, like many other Ig-CAMs,  subunits are 

involved in cell migration, neurite outgrowth, and axon pathfinding and may function in these 

roles in the absence of associated  subunits.  In sum, these multifunctional proteins are critical 

for both channel regulation and central nervous system development. 

 

1. Introduction to the  Subunits 

Voltage-gated Na+ channels (VGSCs), anticipated by the classic voltage clamp 

experiments of Hodgkin and Huxley, were first discovered and biochemically-isolated from rat 

brain over 30 years ago.  The purified constituents included one large (~260 kD)  subunit and 

two much smaller (~33 to 36 kD)  subunit proteins (Beneski & Catterall, 1980; Hartshorne & 
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Catterall, 1984; Hartshorne, Messner, Coppersmith, & Catterall, 1982; Hodgkin & Huxley, 1952).  

Although Na+ currents can be measured by expression of an  subunit alone, e.g. in Xenopus 

oocytes (Goldin et al., 1986; Noda et al., 1986) in order to approximate physiological kinetics 

and gating properties,  subunits need to be co-expressed (Isom et al., 1992, 1995).  

Mammalian VGSCs are heterotrimeric complexes (Messner & Catterall, 1985).  At the center of 

each channel is a pore-forming  subunit, flanked by one non-covalently associated  subunit 

(1 or 3) and one covalently-associated  subunit (2 or 4) (Hartshorne & Catterall, 1981; 

Isom et al., 1992, 1995; Morgan et al., 2000; Yu et al., 2003).  As components of the VGSC 

complex,  subunits function in ion conduction by regulating channel expression at the cell 

surface, anchoring the complex to intracellular proteins, and by directly modulating the gating 

properties of the  subunit (Aman et al., 2009; Bennett, Makita, & George, 1993; Brackenbury 

et al., 2010; Chen et al., 2004; Isom et al., 1992, 1995, 1995b; Kazarinova-Noyes et al., 2001; 

Kazen-Gillespie et al., 2000; Ko, Lenkowski, Lee, Mounsey, & Patel, 2005; Lopez-Santiago, 

Brackenbury, Chen, & Isom, 2011; Lopez-Santiago et al., 2007; McEwen, Meadows, Chen, 

Thyagarajan, & Isom, 2004; Medeiros-Domingo et al., 2007; Patino et al., 2009; Watanabe et al., 

2008; Yu et al., 2003; Zhou, Potts, Trimmer, Agnew, & Sigworth, 1991).  In addition, 1 subunits 

have now been shown to modulate currents carried by voltage-gated K+ channels (VGKCs), 

expanding the known  subunit functions outside of the realm of Na+ channel physiology 

(Brackenbury, Yuan, O’Malley, Parent, & Isom, 2013; Deschenes & Tomaselli., 2002; 

Marionneau et al., 2012; Nguyen et al., 2012).  Beyond that, it is now clear that in the CNS  

subunit proteins are involved in a wide array of developmental functions that may be 

independent of the VGSC complex (Brackenbury et al., 2008, 2013; Brackenbury & Isom, 2011b; 

Davis, Chen, & Isom, 2004; Fein, Wright, Slat, Ribera, & Isom, 2008; Patino et al., 2011).    

subunits each contain an extracellular immunoglobulin (Ig) domain, common to many cell-

adhesion molecules (CAMs), with important roles in brain development (Isom et al., 1995; 

Maness & Schachner, 2007).  This feature makes them unique amongst ion channel subunits 

and places them in the Ig-superfamily of CAMs.  Binding partners include other VGSC  

subunits, CAMs such as contactin and neurosfascin-186 (NF186), and extracellular matrix 

proteins such as tenascin (Malhotra, Thyagarajan, Chen, & Isom, 2004; McEwen & Isom, 2004; 
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Ratcliffe, Westenbroek, Curtis, & Catterall, 2001; Srinivasan, Schachner, & Catterall, 1998; Xiao 

et al., 1999).  Finally, 1 interacts with ankyrins. This interaction may regulate VGSC subcellular 

localization and brain development (Malhotra et al., 2002, 2004; Malhotra, Kazen-Gillespie, 

Hortsch, & Isom, 2000).  In sum, VGSC  subunits are promiscuous and multifunctional.  This 

chapter will review the known regulatory and developmental functions of the VGSC  subunits, 

1, 2, 3, 4, and 1B. 

 

2.  Subunit Evolution, Genes, and Structure 

2.1 Genes and Evolution 

Ancestral orthologs to the mammalian VGSC  subunits have accompanied  subunits in 

the genome since the evolution of early vertebrate species (Chopra, Watanabe, Zhong, & 

Roden, 2007; Vilella et al., 2009).  Mammalian  subunits are glycoproteins encoded by a gene 

family distinct from that of the  subunits, with the genes SCN1B through SCN4B encoding 1 

through 4, respectively (Isom et al., 1992, 1995; Morgan et al., 2000; Qin et al., 2003; Yu et al., 

2003).  The gene SCN1B also encodes the secreted splice variant 1B, originally called 1A 

(Kazen-Gillespie et al., 2000a; Patino et al., 2011).  While VGSC  subunit orthologs are 

expressed in prokaryotes, the  subunits evolved much later.  In prokaryotes, VGSC  subunit 

genes are closely related to those of voltage-gated Ca2+ channels.  Bacterial Na+ channels and 

Ca2+ channels are each composed of 6 transmembrane repeats that form homotetramers to 

construct the ion-conducting pore.  They have a high degree of sequence similarity, especially in 

the pore domains, exhibit similar pharmacological profiles, and ultimately share common 

descent from VGKCs (Catterall, 2000; Goldin, 2001; Ren et al., 2001).  By contrast, the VGSC  

subunits share sequence homology and common ancestry with other proteins that have V-type 

Ig domains, including myelin P0 (McCormick et al., 1998).    subunits are present in mammals, 

birds, and fish, but are absent from invertebrates (Chopra et al., 2007; Isom et al., 1992; Patino 

et al., 2009; Ren et al., 2001).  subunits were notably absent from purified VGSCs of the 

electric organ and brain of Electrophorus electricus (electric eel), shown to consist of  subunits 
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alone (Miller, Agnew, & Levinson, 1983; Sutkowski & Catterall, 1990).   The recently reported 

Electrophorus electricus genome provided the opportunity to search for sequences homologous 

to the human proteins (Gallant et al., 2014).  Our pBLAST analysis reveals orthologs to all four 

human  subunits.  Perhaps in Electrophorus electricus these proteins serve functions separate 

from the VGSC complex.  A 1 ortholog is expressed in the electric organ of the weakly electric 

fish Sternopygus macrurus.  This ortholog modulates the properties of human Nav1.4 as well as 

the orthologous  subunit smNav1.4b, accelerating the rate of inactivation (Liu, Ming-Ming, & 

Zakon, 2007).  The genome of another teleost, Danio rerio (zebrafish), contains six  subunit 

genes, homologous to 2, 3, and two duplicates each of 1 and 4, respectively (Chopra et al., 

2007; Fein et al., 2008).  Remarkably, important structural features of mammalian  subunits, 

including the extracellular Ig domain, an intracellular tyrosine-phosphorylation site in 1, and 

potential sites for N-linked glycosylation, are conserved in the zebrafish and electric eel 

orthologs (Chopra et al., 2007; Gallant et al., 2014).  Zebrafish scn1b and scn2b have several 

splice variants and, similar to mammalian SCN1B encoding 1B, the zebrafish scn1b splice 

variants have variable carboxyl-termini (Chopra et al., 2007; Fein, Meadows, Chen, Slat, & Isom, 

2007).  Analysis of the zebrafish genome suggested that 2/4 and 1/3 subunits arose from 

the duplication of two distinct precursor genes early in vertebrate evolution (Chopra et al., 

2007).  In agreement with this estimate, no genes homologous to the sequences of zebrafish 

and human  subunits exist in the genomes of the invertebrate filter-feeding tunicates Ciona 

intestinalis and Ciona savignyi (sea squirts) (Azumi et al., 2003; Chopra et al., 2007; Du Pasquier, 

Zucchetti, & De Santis, 2004).  The Drosophila melanogaster VGSC is composed of the pore-

forming  subunit paralytic and the associated subunit tipE, but this protein is not homologous 

to vertebrate  subunits (Li, Waterhouse, & Zdobnov, 2011).  Vertebrate genomes including 

jawless fishes, cartilaginous fishes, ray-finned fishes, and lobe-finned fishes all have predicted  

subunit orthologs (Amemiya et al., 2013; Shin et al., 2014; Smith et al., 2013; Venkatesh et al., 

2014; Vilella et al., 2009).  The genomes of Gallus gallus (chicken) and other birds reveal that 

they have only 3  subunit genes, with 1 being absent from all available sequences (Hillier, 

Miller, Birney, Warren, & Hardison, 2004; Vilella et al., 2009). Figure 1.1 shows a phylogenetic 

tree of selected vertebrate and invertebrate species, revealing homologous genes to human 
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SCN1B-SCN4B found in the sequenced genomes of those organisms.  Note that the vertebrate 

jawless fish, Petromyzon marinus (sea lamprey) is the most evolutionarily distant species from 

humans that possesses a predicted  subunit ortholog.  This finding suggests that these 

proteins arose in early fishes at least 500 million years ago.  Notably, orthologs to MPZ, the 

human gene which encodes myelin P0, occur in ray-finned fish genomes but not in more 

distantly-related jawless fishes or in invertebrates (Vilella et al., 2009).  This corresponds with 

the evolutionary origin of myelin, the insulating sheath that is a necessary feature of saltatory 

axonal conduction, which characterizes the nervous systems of hinged-jawed fishes and their 

descendants, but is absent in jawless fishes such as lampreys and hagfish (Zalc, Goujet, & 

Colman, 2008).  Myelinated axons have specialized structures, the nodes of Ranvier, where 

VGSC complexes, including  subunits, are highly concentrated (Buffington & Rasband, 2013; 

Chen et al., 2002, 2004; Kaplan, Cho, Ullian, & Isom, 2001; Patino et al., 2009).  This could 

explain why genes encoding these proteins emerged alongside myelin proteins.  Myelin P0, one 

of the most abundant proteins in the peripheral myelin sheath, shares a highly homologous Ig 

domain with VGSC  subunits and is predicted to have a common ancestral gene (Vilella et al., 

2009).   
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Figure 1.1 Phylogenetic tree of selected vertebrate and invertebrate species showing genes 
homologous to human SCN1B-SCN4B.  Macaca mulatta = rhesus macaque (Gibbs et al., 2007); 
Rattus norvegicus = Norway rat; Monodelphis domestica = opossum (Mikkelsen et al., 2007); 
Ornithorhynchus anatinus = duck-billed platypus (Warren et al., 2008); Gallus gallus = chicken 
(Hillier et al., 2004); Anolis carolinensis = anole lizard (Alföldi et al., 2011); Xenopus tropicalis = 
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western clawed frog (Hellsten et al., 2010); Latimeria chalumnae = coelacanth (Amemiya et al., 
2013); Danio rerio = zebrafish (Chopra et al., 2007; Fein et al., 2008); Electrophorus electricus  = 
electric eel (Gallant et al., 2014); Callorhinchus milii = elephant shark (Venkatesh et al., 2014); 
Petromyzon marinus = sea lamprey (Smith et al., 2013); Strongylocentrotus purpuratus = sea 
urchin (Sodergren et al., 2006); Ciona intestinalis = sea squirt (Azumi et al., 2003); Drosophila 
melanogaster = fruit fly (Adams et al., 2000); Caenorhabditis elegans = nematode (The C. 
elegans Sequencing Consortium, 1998).  Homologous genes and evolutionary history were 
analyzed using Ensembl (Vilella et al., 2009). 

 

2.2 Structure 

The structural features of VGSC  subunits predict diverse intracellular and extracellular 

interactions with ion channels, adhesion molecules, and cytoskeletal elements.  Figure 1.2 

diagrams the structures of 1 and 2, illustrating many of these important features.  

Mammalianand are type I topology transmembrane proteins, each having an 

extracellular amino-terminus containing an Ig domain, a single transmembrane segment, and 

an intracellular carboxyl-terminus (Isom, 2001).  By contrast, 1B, formed by in-frame extension 

of the SCN1B third exon into intron 3, shares the extracellular amino-terminal domain of 1 but 

lacks a transmembrane domain, and has instead an alternate carboxyl-terminus (Kazen-

Gillespie et al., 2000a; Patino et al., 2011).  This results in a soluble protein that is secreted from 

the cell.  Two subunits, 1 and 3, which share 57% sequence homology, interact exclusively in 

a non-covalent manner, via their amino- and carboxyl-termini, with the associated  subunit 

(McCormick et al., 1998; Meadows, Malhotra, Stetzer, Isom, & Ragsdale, 2001; Morgan et al., 

2000; Spampanato et al., 2004).  2 and 4, which share 35% sequence identity, each interact 

covalently with the  subunit by means of a single extracellular disulfide bond between 

cysteine residue 26 of 2 or cysteine residue 28 of 4 (residue 58 from the initiator methionine) 

and one of the cysteine residues in the  subunit S5-S6 loops (Buffington & Rasband, 2013; 

Chen et al., 2012; Gilchrist, Das, Van Petegem, & Bosmans, 2013; Hartshorne & Catterall, 1984; 

Hartshorne et al., 1982; Messner & Catterall, 1985; Yu et al., 2003).  The extracellular Ig 

domain, common to all five  subunits, is homologous to the V-type Ig loop motifs of members 

of the Ig-superfamily of CAMs (Ig-CAMs) (Isom & Catterall, 1996; Kazen-Gillespie et al., 2000; 

McCormick et al., 1998; Morgan et al., 2000; Yu et al., 2003).  Figure 1.3 compares the 
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structures of the V-type Ig-CAMs N-CAM, L1, neurofascin, NrCAM, contactin, and myelin P0 with 

the VGSC  subunits.  Molecules of the Ig-superfamily are characterized by one or more tandem 

Ig-domain repeats with homology to the motif first identified in Ig proteins of the immune 

system.  Neural Ig-CAMs, including N-CAM, L1, and contactin, bind homophilically and 

heterophilically and mediate important developmental processes such as neurite outgrowth, 

axon fasciculation, and cell migration (Crossin & Krushel, 2000; Vaughn & Bjorkman, 1996; 

Williams & Barclay, 1988).  Sequence analysis of the 2 Ig loop shows remarkable homology to 

the third Ig repeat of the CAM contactin (Isom et al., 1995).  The 1 and 3 Ig loops show 

homology to another Ig-CAM, myelin P0 (Isom et al., 1995; McCormick et al., 1998; Morgan et 

al., 2000) (Figure 1.3). The recently reported 3 and 4 extracellular domain crystal structures 

revealed that the Ig loop of each  subunit, containing multiple -sheets, is formed by a 

disulfide bridge between two cysteine residues (Gilchrist et al., 2013; Namadurai et al., 2014).  

This structure is consistent with V-type Ig domains (Vaughn & Bjorkman, 1996).  An additional 

intramolecular disulfide bridge, unique to 3, results in further protein stability.  Interestingly, 

the 3 crystal structure showed the formation of homodimers and homotrimers.  Since Nav1.5 

contains multiple sites for interaction with 3, it follows that it may form oligomeric complexes 

(Namadurai et al., 2014).  

 subunits contain recognition sequences that subject them to sequential proteolytic 

cleavage by BACE1 (-secretase) and -secretases, resulting in the release of amino-terminal 

and carboxyl-terminal fragments (H. K. Wong et al., 2005).  This processing has important 

consequences.  In particular, 1-mediated neurite outgrowth requires -secretase activity 

(Brackenbury & Isom, 2011a). 2-cleavage by -secretase leads to translocation of the 

intracellular domain (ICD) to the nucleus and subsequent changes in VGSC gene expression (Kim 

et al., 2007).  Finally, the carboxyl-termini of 1 and 2 interact with the cytoskeleton-linked 

proteins ankyrinG and ankyrinB (Malhotra et al., 2000, 2002).  This interaction, which may be 

critical to localizing channel proteins to specific cellular domains, is disrupted in 1 by 

phosphorylation of an intracellular tyrosine residue (Malhotra et al., 2002, 2004).  Together, the 

extracellular and intracellular features of  subunit structures equip them for involvement in a 

diverse range of cellular functions.   
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Figure 1.2 Structural features of 1 and 2.  Features shown for 1 include extracellular sites 
for  subunit interaction (McCormick et al., 1998), N-linked glycosylation () sites (McCormick 
et al., 1998), the splice site for 1B indicating the first residue (A131) that is not shared by the 
splice variant (Kazen-Gillespie et al., 2000a; Patino et al., 2011; Qin et al., 2003), a putative 
palmitoylation site (McEwen & Isom, 2004), secretase cleavage sites (H. K. Wong et al., 2005), 
and a tyrosine phosphorylation site (Y181) which interacts with ankyrin (Malhotra et al., 2002, 
2004).  Boxes indicate the known Ig domain homophilic interaction (Malhotra et al., 2000) and 
heterophilic interactions with 2, N-cadherin, contactin, neurofascin-155 and -186, NrCAM 
(McEwen & Isom, 2004; Ratcliffe et al., 2001), and tenascin-R (Xiao et al., 1999) and intracellular 
domain interactions with the  subunit (Spampanato et al., 2004), RPTP-(Ratcliffe et al., 
2000, and, potentially, fyn kinase (Brackenbury et al., 2008; Malhotra et al., 2002, 2004).  
Features shown for 2 include N-linked glycosylation () sites (Isom et al., 1995), the cysteine 
residue (C26) that interacts covalently with the associated  subunit (Chen et al., 2012), and 
secretase cleavage sites (H. K. Wong et al., 2005).  Also noted is the translocation of the cleaved 
2 intracellular domain (ICD) to the nucleus (Kim et al., 2007).  Boxes indicate known Ig domain 
homophilic interactions (Malhotra et al., 2000) and heterophilic interactions with 1 (McEwen 
& Isom, 2004), tenascin-C and tenascin-R (Srinivasan et al., 1998; Xiao et al., 1999) as well as 
the intracellular ankyrin interaction (Malhotra et al., 2000). 
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Figure 1.3 Comparison of VGSC  subunits with other V-type members of the Ig superfamily of 
CAMs.   
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3.  Subunit Expression, Localization, and Posttranslational Modification 

 

3.1 Expression 

Specific combinations of VGSC  and  subunits (and other proteins of the channelome 

complexes in which they reside) contribute to the particular physiological characteristics of 

divergent cell types.  A model of such a complex is represented in Figure 1.4, which shows an  

subunit associated with 1 and 2 to form a heterotrimer in addition to potential interacting 

partners that make up the channelome. Along with other molecular components of these 

channel complexes, VGSC  subunits are highly expressed in excitable cells of the CNS, 

peripheral nervous system (PNS), heart and skeletal muscle (Brackenbury & Isom, 2011a; Isom 

et al., 1992, 1995; Lopez-Santiago et al., 2006, 2011; Maier et al., 2004; Morgan et al., 2000; Yu 

et al., 2003).  VGSC  subunits are also expressed in non-excitable cells, including astrocytes and 

radial glia, vascular endothelial cells, and cancer cells (Andrikopoulos et al., 2011; Aronica et al., 

2003; Chioni, Brackenbury, Calhoun, Isom, & Djamgoz, 2009; Davis et al., 2004; Diss et al., 2008; 

Fein et al., 2008; Oh & Waxman, 1995).  In a mouse model of breast cancer, 1 is postulated to 

enhance adhesion and increase tumor growth and invasion (Nelson, Millican-Slater, Forrest, & 

Brackenbury, 2014; Patel & Brackenbury, 2015).  Reactive astrocytes in a rat temporal lobe 

epilepsy model and those associated with human pathologies show increased 1 protein 

expression, which might affect their ability to migrate toward an area of CNS injury (Aronica et 

al., 2003; Gorter, van Vliet, da Silva, Isom, & Aronica, 2002).  In zebrafish, however, the SCN1B 

orthologs scn1ba and scn1bb, are differentially expressed in cells of the CNS and PNS, with 

scn1ba expression being greatest in neurons and skeletal muscle cells and scn1bb being 

expressed in Schwann cells, supporting cells of the olfactory pit and inner ear, and CNS 

myelinating glia (Fein et al., 2007, 2008).  In addition,  subunit expression is developmentally 

regulated, with certain subunits generally decreasing during development and others generally 

increasing (Sutkowski & Catterall, 1990).  In rodents, 1B and 3 are highly expressed prenatally 

with decreasing abundance after birth (Kazen-Gillespie et al., 2000a; Patino et al., 2011; Shah, 

Stevens, Pinnock, Dixon, & Lee, 2001).  By contrast, 1 and 2 expression increases during 
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postnatal development and remains high in adulthood (Isom et al., 1995; Kazen-Gillespie et al., 

2000; Patino et al., 2011).  The developmental time course of 4 expression is unknown, but it 

is expressed postnatally in rat (Yu et al., 2003).   Notable exceptions to these generalities exist.  

For example, 1B expression is maintained in adult heart and 3 continues to be expressed in 

adult dorsal root ganglion (DRG) neurons (Kazen-Gillespie et al., 2000a; Takahashi et al., 2003).   
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Figure 1.4 Model of the VGSC complex along with potential neuronal  subunit-interacting 
proteins.  At the center is the pore-forming  subunit, composed of four contiguous domains 
(orange cylinders).  1 and 2 (blue cylinders) are represented flanking the  subunit, each with 
one extracellular Ig domain (grey sphere).   Contactin, which has 4 fibronectin type-III domains 
(green rectangles) and 6 tandem Ig-domains (grey spheres), is shown anchored to the 
membrane adjacent to 1.  ECM proteins (purple tubes), such as tenascin-C and tenascin-R, 
which are known partners for 1 and 2, are positioned above the complex.   AnkyrinG (red 
hexagon), which binds to the intracellular domains of  and 1, is shown associated with the 
cytoskeleton (yellow filaments).   Finally, the kinase fyn (pink star) and RTP(green cylinder) 
appear to the left of the complex near their sites of interaction with the 1 carboxyl-terminus. 

 

3.2 Subcellular Localization in Neurons 

As components of VGSCs,  subunits localize to subcellular compartments where they 

engage in specialized tasks.   In neurons, these compartments include the axon initial segment 

(AIS) and the nodes of Ranvier.   subunits may also be present in the dendrites of certain 

neurons, such as subicular neurons, which have reduced dendritic arborization in a Scn1b 

mutant mouse (Reid et al., 2014).  Viewed ultrastructurally, Nav1.6 localizes to presynaptic and 

postsynaptic membranes in the cortex and cerebellum (Caldwell, Schaller, Lasher, Peles, & 

Levinson, 2000).  It is likely, though it has not been shown, that  subunits associate with the 

Nav1.6 channel complex at these synapses.  The AIS, a specialized neuronal structure at the 

base of an axon near the soma, is the site of action potential initiation.  Within this structure 

neuronal subtypes have diverse molecular compositions (Yoshimura & Rasband, 2014).  In 

cortical neurons, Nav1.6 is enriched in the distal AIS along with VGKCs, while Nav1.2 is localized 

to the proximal AIS (Hu et al., 2009; Yoshimura & Rasband, 2014).  Depending on the subtype, 

specific VGSC  and  subunits localize at high density to the neuron’s AIS along with the 

cytoskeletal adaptor protein ankyrinG, and CAMs such as 1 binding partners NrCAM and 

NF186.   2 and 4 localize to the AIS in some neuronal subtypes (Buffington & Rasband, 2013; 

Chen et al., 2012).  Nodes of Ranvier are axonal structures found in the gaps between 

myelinated segments. They are necessary for rapid, long-distance electrical signaling by means 

of saltatory conduction.  A high density of ion channels and CAMs, including VGSC  and  

subunits, are localized to nodes of Ranvier in CNS and PNS.  In the CNS, 1 and 2 are localized 
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to optic nerve nodes of Ranvier, with a subset also expressing 4 (Buffington & Rasband, 2013; 

Kaplan et al., 2001; O’Malley, Shreiner, Chen, Huffnagle, & Isom, 2009; Patino et al., 2009).  In 

the PNS, 1 and 2 localize to nodes of Ranvier in the sciatic nerve, while 4 localizes to most 

nodes of Ranvier in the dorsal and ventral spinal cord roots (Buffington & Rasband, 2013; Chen 

et al., 2002, 2004).  Of note, an important binding partner for 1, the Ig-CAM contactin, is 

transiently colocalized with VGSCs at newly-formed PNS nodes of Ranvier and persistently 

colocalized at CNS nodes of Ranvier from development to adulthood (Kazarinova-Noyes et al., 

2001).  During neuronal development, another subcellular structure, the axon growth cone, has 

been shown to express CAMs, including 1 (Brackenbury et al., 2010).  The axon growth cone is 

the dynamic, growing tip which senses its environment by means of cell adhesion and 

intracellular signaling to accurately direct axon pathfinding (Lowery & Van Vactor, 2009).   

 

3.3 Subcellular Localization in Cardiomyocytes 

VGSC  subunits are differentially localized to specialized subcellular domains of 

cardiomyocytes.  Intercalated disks, formed at junctions between cardiomyocytes, are 

necessary for mechanical and electrical coupling.  Transverse (T)-tubules are invaginations of 

the plasma membrane, linking it to the sarcoplasmic reticulum to allow for efficient Ca2+-

induced Ca2+ release upon stimulation (Brette & Orchard, 2003).   1 has been shown to localize 

to both intercalated disks and T-tubules in ventricular cardiomyocytes, and to intercalated discs 

in atrial cardiomyocytes (Kaufmann et al., 2013; Maier et al., 2004; Malhotra et al., 2001, 2004).  

2 has been alternately reported to localize to intercalated disks or to T-tubules in ventricular 

cardiomyocytes (Maier et al., 2004; Malhotra et al., 2001).  In the atrium, 2 is localized to T-

tubules (Kaufmann et al., 2013).   3 localizes to T-tubules in ventricular cardiomyocytes and to 

intercalated disks in the atrium (Kaufmann et al., 2013; Maier et al., 2004).  4, by contrast, 

localizes to intercalated disks in ventricular cardiomyocytes (Maier et al., 2004).   1B is also 

expressed in atrial and ventricular cardiomyocytes, and may be particularly important in 

junctions between cells (Kazen-Gillespie et al., 2000a).  Nav1.5 is highly expressed at 

intercalated disks, and 1B has been shown to regulate these  subunits in heterologous cells, 
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increasing peak Na+ current and negatively shifting the voltage-dependence of activation and 

inactivation (H. Watanabe et al., 2008). 

 

3.4 Glycosylation 

N-linked glycosylation sites of VGSC  subunits are conserved across highly divergent 

species (Chopra et al., 2007). Approximately one-third of the total  subunit molecular weight is 

glycosylation.  The Ig domain of each of these proteins contains 3 or 4 N-linked glycosylation 

sites (Figure 1.2; Isom et al., 1992; Messner & Catterall, 1985).  The potential importance of 

glycosylation in  subunit function has been demonstrated in heterologous systems.  In Chinese 

hamster ovary (CHO) cells lacking the capacity for sialylation, a prominent type of glycosylation 

in VGSC proteins, 1 is unable to modulate the gating of Nav1.2, Nav1.5, or Nav1.7 (Johnson et 

al. 2004).  In the same type of assay, 2 modulates Nav1.5 in a sialic acid-dependent manner, 

but modulates Nav1.2 even without sialic acid (D. Johnson & Bennett, 2006).  These in vitro 

studies suggest that glycosylation is likely to be important for the modulation and increased cell 

surface expression of certain  subunits by their partner  subunits.  Notably, myelin P0, which 

has homology to  subunit Ig domains, requires glycosylation for its homophilic interactions 

(Filbin & Tennekoon, 1993).  This suggests that  subunit CAM functions may also depend 

critically on carbohydrate components. 

 

3.5 Phosphorylation 

1 is regulated by phosphorylation of its carboxyl-terminal domain.  Basal tyrosine 

phosphorylation of 1 can be detected in rat brain membranes, and a tyrosine residue at 

position 181 is phosphorylated in vitro (Figure 1.2; Malhotra et al., 2002).  In Drosophila S2 cells 

expressing a 1 mutant construct (1Y181E) which mimics phosphorylation, CAM functions are 

intact but interaction with ankyrinG is disrupted (Malhotra et al., 2002).  1Y181E increases cell 

surface expression of  in transfected Chinese hamster lung (CHL) fibroblasts, but does not 

modulate Na+ current as 1 does (McEwen et al., 2004).  In cardiomyocyes, tyrosine-
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phosphorylated 1 colocalizes with tetrodotoxin (TTX)-resistant Nav1.5 at intercalated disks, 

while non-phosphorylated 1 localizes at T-tubules, where the TTX-sensitive channels, Nav1.1, 

Nav1.3, and Nav1.6 are known to reside (Malhotra et al., 2004).  This suggests that tyrosine-

phosphorylation may regulate the subcellular localization of 1, as well as its interactions with 

other proteins within the cell.  A screen for phosphorylated proteins in mouse synaptosomes 

revealed that 1 is also phosphorylated on threonine residues, but the functional impact of this 

modification remains unknown (Trinidad et al., 2012).  Finally, both  and 1, but not 2, 

interact with receptor protein tyrosine phosphatase  (RPTP, in a developmentally regulated 

manner resulting in altered VGSC function (Ratcliffe et al., 2000).  Data suggest that RPTP is a 

member of the VGSC signaling complex along with  subunits and other Ig-CAMs (Figure 1.4; 

Ratcliffe et al., 2000).   

 

3.6 Proteolytic Regulation 

The transmembrane VGSC subunits are targets for sequential proteolytic cleavage by 

BACE1 and -secretase (Figure 1.2).  First, BACE1 cleaves and releases the Ig-loop-containing 

extracellular domain, which may function as a soluble CAM (H. K. Wong et al., 2005).  The 1 

construct 1Fc and the secreted 1B subunit have been proposed to function in this way (Davis 

et al., 2004; McEwen & Isom, 2004; Patino et al., 2011).  Following that, -secretase cleavage 

releases the intracellular domain (ICD) into the cytoplasm (H. K. Wong et al., 2005).   

Pharmacological inhibition of -secretase prevents neurite outgrowth mediated by homophilic 

1-1 interactions, suggesting a role for the 1 ICD in signal transduction (Brackenbury & Isom, 

2011b).  The cleaved 2 ICD has been shown to translocate to the nucleus, leading to increased 

SCN1A mRNA expression and Nav1.1 protein levels in vitro (Figure 1.2; Kim et al., 2007).  Scn1b-

null mice have increased levels of Scn3a and Scn5a mRNA in the heart (Lin et al., 2015; Lopez-

Santiago et al., 2007).  This may result from the loss of 1 ICD regulation of Scn3a and Scn5a 

transcription in the nucleus.  No function is yet known for the 3 and 4 ICDs.  
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4.  Subunits Modulate  Subunit Localization and Function 

4.1 Modulation in Heterologous Cells 

Expression of VGSC  and  subunits in heterologous cells has provided much of what 

we know about the functions and interactions of these proteins.  Results in these systems are 

not always consistent with what is seen in the physiological context of the neuron or 

cardiomyocyte but have, nevertheless, yielded valuable insights.  Early VGSC studies expressing 

Nav1.2 in Xenopus oocytes revealed Na+ currents that activated and inactivated much more 

slowly than those recorded in neurons (Auld et al., 1988; Goldin et al., 1986; Joho et al., 1990).  

The first suggestion that modulatory proteins were necessary to achieve physiological currents 

came from co-injection of  subunit mRNA with low-molecular weight mRNA isolated from rat 

brain into oocytes (Auld et al., 1988; Krafte et al., 1990).  Recordings from these cells showed 

increased Na+ current density, more rapid inactivation, and altered voltage-dependence of 

inactivation, mimicking Na+ currents recorded from neurons. Because VGSC  subunits purified 

from rat brain to theoretical homogeneity contained  subunits, these were predicted to be the 

modulatory proteins encoded in the low-molecular weight mRNA (Hartshorne & Catterall, 

1984; Hartshorne et al., 1982).  The cDNAs for 1 and 2 were subsequently cloned, and 

mRNAs encoding these proteins were co-expressed in oocytes along with Nav1.2 (Isom et al., 

1992, 1995, 1995b).  Co-expression of Nav1.2 with 1 revealed increased peak Na+ current 

density (2.5-fold), negatively-shifted voltage dependence of inactivation (~19 mV), and 

accelerated inactivation compared with Nav1.2 alone (Isom et al., 1992).  Co-expression of 

Nav1.2 with 2 also led to increased Na+ current density (1.8- to 2.9-fold) and accelerated 

channel inactivation.  Additionally, 2 expression in the absence of  increased the oocyte 

surface area, likely by stimulating the fusion of intracellular vesicles with the plasma 

membrane.  The largest Na+ current levels (3.7-fold) were achieved when all three subunits 

were co-expressed. Most importantly, co-expression of Nav1.2 with both 1 and 2 resulted in 

rapidly inactivating currents similar to those recorded from neurons (Isom et al., 1995, 1995b).  

1 also modulates K+ currents carried by the K+ channels Kv1.1, Kv1.2, Kv1.3, Kv1.6, Kv4.2, and 

Kv7.2 when co-expressed in oocytes (Deschenes & Tomaselli., 2002; Nguyen et al., 2012).   In 
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this regard, the Kv4.2 channel complex immunoprecipitated from mouse brain contains VGSC 

1.  Furthermore, knockdown of 1 in isolated cortical neurons resulted in reduced A-type K+ 

currents and prolonged action potential waveforms (Marionneau et al., 2012).  These 

experiments show that subunits are capable of promiscuous alteration of ion channel 

function. 

Mammalian cell lines have been used extensively to study VGSC physiology.  These 

heterologous cells provide a more physiological context than Xenopus oocytes, but 

nevertheless do no fully recapitulate the VGSC properties seen in neurons and cardiomyocytes.  

Co-expression of Nav1.2 with 1 in CHL cells recapitulates the results seen in oocytes with 

regard to increased peak current density.  1 also causes negative shifts in the voltage 

dependence of activation (2-11 mV) and inactivation (10-12 mV) although these effects are 

smaller than those measured in oocytes (Isom et al., 1995; Patino et al., 2009).  The modulatory 

and localization effects exerted by 1 on Nav1.2 in mammalian cells are further amplified by 

interaction with other Ig-superfamily CAMs (Kazarinova-Noyes et al., 2001; McEwen et al., 

2004).  For example, when contactin is co-expressed with Nav1.2 and 1 in CHL cells,  subunit 

surface expression and Na+ current density are both increased dramatically (~4-fold) over that 

seen with just Nav1.2 and 1 (Kazarinova-Noyes et al., 2001).  Co-expression of NF186 with 

Nav1.2 and 1 also increases the expression of  subunits on the cell surface beyond that seen 

with Nav1.2 and 1 alone (McEwen et al., 2004).  Co-expression of Nav1.2 with 2 in CHL cells 

results in Na+ currents that are reduced or unchanged compared to Nav1.2 expressed alone 

(Kazarinova-Noyes et al., 2001; McEwen et al., 2004).  This result is in disagreement with 

experiments conducted in oocytes.  However, when 1 and 2 are both co-expressed with 

Nav1.2, 2 increases cell surface expression of  subunits above that seen with Nav1.2 and 1 

alone.  Thus, at least in this heterologous system, 2 requires expression of 1 to exert its 

effects (Kazarinova-Noyes et al., 2001).  When co-expressed with Nav1.3 in CHO cells, either 1 

or 3 induced a negative shift (~10 mV) in the voltage of inactivation without affecting the rate 

of inactivation.  2 co-expression had no effect on Nav1.3 in these cells (Meadows, Chen, 

Powell, Clare, & Ragsdale, 2002).  In rodent development 3 and Nav1.3 are expressed at their 

highest levels early, so the interaction of these two subunits could be relevant physiologically 
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(Shah et al., 2001).  3 co-expressed with Nav1.5 in CHO cells, results in a negative shift in the 

voltage dependence of inactivation and slows the rate of inactivation (Ko et al., 2005).  In 

human embryonic kidney (HEK) cells, co-expression of 4 with either Nav1.2 or Nav1.4 leads to 

a negative shift (6-7 mV) in the voltage dependence of activation (Yu et al., 2003).  Co-

expression of 4 with Nav1.1 in HEK cells has the same effect but also increases the amount of 

non-inactivating current (Aman et al., 2009).  Co-expression of Nav1.5 and 4 in HEK cells 

induces a negative shift in the voltage of inactivation (Medeiros-Domingo et al., 2007).  

Resurgent current, the influx of Na+ through VGSCs during membrane repolarization in neurons, 

has been proposed to involve the intracellular domain of 4 as a blocking particle of the open 

channel (Bean, 2005; Grieco, Malhotra, Chen, Isom, & Raman, 2005).  Indeed, in HEK cells a 4 

peptide was able to mediate resurgent current when coexpressed with Nav1.7, but not Nav1.6, 

(Chen et al., 2008; Theile & Cummins, 2011).  Co-expression of 1B with Nav1.2 in CHL cells, 

reveals a strong increase in  subunit surface expression and Na current density with only a 

subtle effect on channel activation and inactivation (Kazen-Gillespie et al., 2000a).  By contrast, 

when co-expressed in CHO cells1B has no effect on cell surface localization of Nav1.3 or its 

Na+ current density, despite both proteins being preferentially expressed in prenatal brain 

(Patino et al., 2011). 1B, which is also expressed in heart, interacts in an interesting way with 

Nav1.5, remaining at the cell surface along with the  subunit and increasing its expression 

there (Patino et al., 2011; H. Watanabe et al., 2008).  Thus 1B may function as a soluble CAM 

in some contexts and, in others, as an  subunit-modulator.   

 

4.2 Modulation in Native Cells 

The best experimental representation of VGSC physiology is found by investigating the 

native channels in neurons and cardiomyocytes.  In acutely isolated primary cells and tissue 

slices,  subunit regulatory effects on  subunit function and surface expression are more 

subtle than in heterologous systems and differ between cell types.  Scn1b-null mice lack both 

1 and 1B subunits.  These mice exhibit spontaneous seizures, ataxic gait, and premature 

death (Chen et al., 2004).  Recordings from P10-18 Scn1b-null acutely isolated hippocampal 
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pyramidal (excitatory) neurons and bipolar (inhibitory) neurons showed no differences in Na+ 

current properties compared to neurons from wildtype animals (Chen et al., 2004; Patino et al., 

2009).  By contrast, slice recordings from similarly-aged Scn1b-null brain reveal hyperexcitability 

in hippocampal CA3 neurons (Patino et al., 2009).  Because brain slices preserve intact 

dendrites and axons, 1 and 1B in these neuronal processes, not just the soma, may be 

important in regulating the cell’s activity.  Immunofluorescence experiments show a reduction 

in Nav1.1 and an increase in Nav1.3 in Scn1b-null CA3 neurons relative to wildtype neurons 

(Chen et al., 2004).  P16 Scn1b-null brain slices display epileptiform activities in cortical and 

hippocampal extracellular field potential recordings (Brackenbury et al., 2013).  These effects 

may require the presence of neuronal processes since they are not apparent in acutely-isolated 

cells.  In slice recordings, cerebellar granule neurons (CGNs) from P12-13 Scn1b-null mice have 

reduced resurgent current compared to wildtype controls, but normal transient current.  Thus, 

loss of 1 and 1B results in reduced CGN excitability. These cells also have reduced Nav1.6 at 

the AIS with concomitant increase in Nav1.1 (Brackenbury et al., 2010).  Acutely-dissociated 

Scn1b-null dorsal root ganglion (DRG) neurons, by contrast, are hyperexcitable (Lopez-Santiago 

et al., 2011).  Scn1b-null ventricular myocytes have increased Na+ current, and Scn1b-null mice 

exhibit prolonged QT and RR intervals.  These cardiac cells also have increased Scn5a mRNA, 

Nav1.5 protein, and [3H]-STX binding to cell surface channels compared to wildtype (Lopez-

Santiago et al., 2007).  Moreover, deletion of Scn1b in the heart, results in increased TTX-

sensitive Na+ currents and higher expression of Scn3a, encoding Nav1.3 (Lin et al., 2015). 

Together, these data clearly demonstrate that 1 and 1B are important regulators of 

subunit function and subcellular localization, in vivo.  Importantly, shRNA-mediated knockdown 

of Scn1b results in the reduction of K+ current carried by Kv4, and 1 co-immunoprecipitates 

with Kv4.2 from mouse brain (Marionneau et al., 2012).  Furthermore, prolonged action 

potentials and increased repetitive firing measured in Scn1b-null cortical pyramidal neurons 

supports a link between the 1 and 1B subunits and K+ current (Brackenbury et al., 2013; 

Marionneau et al., 2012).   

Unlike Scn1b-null mice, Scn2b-null mice do not have seizures or die early, but rather 

have increased susceptibility to pharmacologically induced seizures.  Nevertheless, compared 
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to wildtype, acutely-dissociated hippocampal neurons from Scn2b-null mice exhibit a negative 

shift in the voltage dependence of inactivation and significantly-decreased Na+ current density.  

Measurement of cell surface [3H]-STX binding in Scn2b-null brain neurons is decreased, while  

[3H]-STX binding in Scn2b-null brain membranes is unchanged, showing the importance for this 

 subunit as an  subunit chaperone (Chen et al., 2002).  In the peripheral nervous system, a 

subset of Scn2b-null DRG neurons have reduced Nav1.7 Na+ current density and slowed rates of 

activation and inactivation (Lopez-Santiago et al., 2006).  Thus, like 1 and 1B, 2 has different 

roles depending on the cell-type in which it is expressed.   

Scn3b-null mice have defects in cardiac excitability.  Specifically, ventricular and atrial 

tachycardia and fibrillation occur in stimulated Langendorff-perfused Scn3b-null, but rarely 

wildtype, hearts (Hakim et al., 2008, 2010).   

Transfection experiments carried out in cultured hippocampal neurons and CGNs 

suggest that 4 promotes resurgent Na+ current (Aman et al., 2009; Bant & Raman, 2010; Bean, 

2005; Grieco et al., 2005).  This is an important adaptation for high-frequency firing exhibited by 

certain types of neurons, such as Purkinje cells (Burgess et al., 1995; Raman, Sprunger, Meisler, 

& Bean, 1997).  In acutely-dissociated hippocampal CA3 neurons, which lack endogenous 4, 

addition of a peptide consisting of the carboxyl-terminal portion of 4 generates resurgent 

current (Grieco et al., 2005).  Knockdown of 4 expression in CGNs by siRNA reduces resurgent 

current and decreases repetitive action potential firing (Bant & Raman, 2010).   These data 

implicate the intracellular domain of 4 as an open-channel blocking particle that allows for 

resurgent current in neurons (Grieco et al., 2005).  Evidence suggests that Nav1.6 contributes 

strongly to resurgent current in Purkinje neurons and DRG neurons (Cummins, Dib-Hajj, Herzog, 

& Waxman, 2005; Raman & Bean, 1997).  Despite this, in HEK cells co-expression of Nav1.6 and 

4 is not sufficient to produce resurgent current (Chen et al., 2008).  This suggests that other 

proteins or cellular processes found in neurons are required for physiological responses.  These 

data support the emerging understanding that subunits impact neuronal and cardiac 

physiology in a manner that is dependent on the particular cell type. 

 

 
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5.  Subunits are CAMs that Have Roles in Brain Development 

5.1 CAM Functions 

Members of the Ig superfamily are neural recognition molecules involved in 

developmental functions ranging from axon growth and guidance to synaptogenenesis (Maness 

& Schachner, 2007).  VGSC  subunits each have an extracellular Ig domain with homology to 

the V-set of Ig-CAMs (Figure 1.3; Isom et al., 1995).  These subunits, especially 1, have been 

shown experimentally to function as CAMs.  Drosophila S2 cells transfected to express 1 or 2 

orm aggregates, showing that these molecules adhere to one another homophilically.  

Visualized by immunofluorescence, Drosophila ankyrin is recruited to sites of contact between 

these cells.  Ankyrin-recruitment occurs in the presence of full-length  subunits, but not when 

truncated 1 or 2 constructs lacking the intracellular carboxyl-terminal domain are expressed 

(Malhotra et al., 2000).  Homophilic binding is disrupted in the epilepsy-linked mutant 

1C121W, which lacks a cysteine residue that normally forms a critical disulfide bridge for Ig-

loop formation (Meadows et al., 2002; Wallace et al., 1998).  This suggests that in human 

patients loss of cell adhesive functions may contribute to SCN1B-linked pathologies.  In vitro 

experiments have shown that 1 also interacts with other neuronal and glial CAMs (Figure 1.2).  

These include contactin, N-cadherin, neurofascin-155 (NF155), neurofascin-186 (NF186), 

NrCAM, and VGSC 2 (Malhotra et al., 2004; McEwen & Isom, 2004; Ratcliffe et al., 2001).  1 

also interacts with the extracellular matrix protein tenascin-R (Xiao et al., 1999).  participates 

in homophilic as well as heterophilic binding, in vitro, with partners including 1 and the 

extracellular matrix proteins tenascin-R and tenascin-C (Figure 1.2; Malhotra et al., 2000; 

McEwen & Isom, 2004; Srinivasan et al., 1998; Xiao et al., 1999).  Both 1 and 2 regulate 

migration of transfected CHL cells away from tenascin-R (Xiao et al., 1999).  These data were 

the first evidence that 1 and 2 could function in cell migration.  While 3 homophilic binding 

leading to cellular aggregation was not observed in transfected Drosophila S2 experiments, a 

more recent study reported trans-homophilic interactions between 3 subunits expressed in 

HEK cells (McEwen, Chen, Meadows, Lopez-Santiago, & Isom, 2009; Yereddi et al., 2013).  In 

contrast to 1, 3 does not associate with either contactin or ankyrinG in transfected CHL cells 
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(McEwen et al., 2009).  With the exception of VGSC  subunit proteins, no known binding 

partners for 4 have been reported.  In agreement, 1 and 2, but not 4, influence neurite 

outgrowth (Davis et al., 2004).   subunit involvement in this process will be described in detail 

below.  Taken together, these data indicate that  subunits are functional adhesion molecules 

similar to other Ig-CAMs like NCAM and L1.   

 

5.2 Neurite Outgrowth 

Extensive experimental evidence has been collected showing a role for 1 in neurite 

outgrowth, at least in CGNs.  CGNs extend longer neurites when grown on monolayers of CHL 

fibroblasts expressing 1 than on mock-transfected CHL cells.  Importantly, Scn1b-null CGNs do 

not produce longer neurites in this assay, suggesting that trans-homophilic binding is required 

(Davis et al., 2004).  1-mediated neurite outgrowth also does not occur in CGNs isolated from 

contactin-null mice.  These mice have reduced 1 protein expression, further implying a 

functional connection between contactin and .   Interestingly, RPTP, which associates with 

1, has previously been demonstrated to promote neurite outgrowth through interactions with 

contactin and NrCAM (Peles et al., 1995; T. Sakurai et al., 1997).  EGF receptor and FGF receptor 

signaling have been implicated in L1-mediated adhesion and NCAM-mediated neurite 

outgrowth, respectively (Islam, Kristiansen, Romani, Garcia-Alonso, & Hortsch, 2004; 

Niethammer et al., 2002)  Investigation of the intracellular signaling cascade responsible for 1-

mediated neurite outgrowth shows that EGF and FGF receptor kinase inhibitors fail to reduce 

the effect, so a separate pathway is likely involved.  When grown on 1-expressing monolayers 

CGNs isolated from fyn-null mice do not extend longer neurites (Brackenbury et al., 2008).  In 

detergent-resistant membrane fractions solubilized from mouse brain Fyn, a member of the src 

family of tyrosine kinases. associates with 1 subunit polypeptides (Brackenbury et al., 2008).  

Contactin, a glycosylphosphatidylinositol-linked CAM, also associates with this membrane 

fraction (Krämer et al., 1999).  These data suggest a model in which 1-1 trans-homophilic 

binding, combined with 1-contactin heterophilic interactions in cis, within lipid rafts results in 

transmembrane signaling to induce neurite extension via a mechanism involving fyn kinase 
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(Brackenbury & Isom, 2011b).  The model of the VGSC complex shown in Figure 1.4 includes 

these and other important interacting partners.  1-mediated neurite outgrowth is abrogated 

in the absence of Nav1.6 or following TTX treatment.  Thus, for neurite outgrowth neuronal 

activity seems to be a requirement.  Significantly, TTX treatment has no inhibitory effect on 

FGF-mediated neurite outgrowth, further implicating a separate signaling cascade (Brackenbury 

et al., 2010).  Proteolytic processing of 1 is also important, as pharmacological inhibition of -

secretase activity prevents 1-mediated neurite outgrowth (Brackenbury & Isom, 2011b).  In 

cultured breast cancer cells that express 1, trans-homophilic interaction with 1-expressing 

CHL cells promotes the outgrowth of neurite-like extensions (Nelson et al., 2014).  Thus, 1 may 

have developmental functions outside of the nervous system.  1B-expressing CHL cells induce 

neurite outgrowth to the same degree as those expressing 1 (Patino et al., 2011).  Thus, it is 

proposed that either 1 or the secreted splice variant 1B can interact with neuronal 1 and its 

associated complex to induce neurite extension.  By contrast, 2-expressing CHL monolayers 

reduce neurite outgrowth of CGNs and 4 subunits appear to have no effect on neurite 

outgrowth in this assay (Davis et al., 2004). 

 

5.3 Scn1b in CNS development 

From an early postnatal stage, the Scn1b-null mouse CNS exhibits significant 

morphologic abnormalities, suggesting roles for 1 and 1B in brain development (Brackenbury 

et al., 2008, 2013).  Immunohistochemical analysis showed fewer nodes of Ranvier in the optic 

nerve.  This defect corresponds with reduced optic nerve conduction velocity.  Analysis at the 

ultrastructural level detected abnormalities in nodal architecture in the spinal cord, sciatic 

nerve, and optic nerve (Chen et al., 2004).  At P14, the Scn1b-null cerebellar cortex exhibited 

defects when visualized by immunofluorescence.  The external germinal layer (EGL), where 

CGNs first appear and proliferate, has increased thickness and increased total number of 4',6-

diamidino-2-phenylindole (DAPI)-positive cells compared to wildtype littermates.  By contrast, 

the number of recently-divided, 5-bromo-2'-deoxyuridine (BrdU)-labeled cells was not 

different.  These data suggest that Scn1b-null CGNs have slowed migration from the EGL inward 
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through the cerebellar cortex to populate the granule cell layer.  Axon pathfinding and parallel 

fiber fasciculation of CGNs are also abnormal in Scn1b-null cerebellum.  In the normal mouse 

cerebellar cortex, these axons extend from the granule layer outward through the molecular 

layer (ML) where they bifurcate and form the tightly-bundled parallel fibers.  In the mutant 

mouse, some of these axons in the ML deviate from their normal trajectory.  Most noticeably, 

the parallel fibers are highly defasciculated (Brackenbury et al., 2008).  It is noteworthy that 

contactin-null mice, which are Scn1b hypomorphs, also have cerebellar microorganization 

defects, ataxia, and early death, further suggesting a link between 1 and this Ig-CAM (E O 

Berglund et al., 1999; Brackenbury et al., 2010).  CNS defects are already apparent in Scn1b-null 

cerebellar cortex at P5, prior to the onset of behavioral seizures and elevated cFos-expression 

in the cortex and hippocampus (Brackenbury et al., 2013).  CGNs migrate and extend their 

axons along the processes of astrocytes known as Bergmann glia (BG), which express 1, in vivo 

(Brackenbury et al., 2008).  These cells may act as partners for 1 trans-homophilic binding in 

vivo, similar to 1-expressing CHL cells, which promote neurite outgrowth in cultured CGNs in 

vitro.  Brain defects are not limited to the cerebellum of Scn1b-null mice.  DiI-labeled Scn1b-null 

axons of the corticospinal tract (CST) exhibit abnormal pathfinding and defasciculation 

(Brackenbury et al., 2008).  At P5, the Scn1b-null hippocampus has several abnormal features as 

detected by immunohistochemistry. Mutant hippocampus shows ectopic Prox1-expressing cells 

and increased cellular proliferation in the hilus of the dentate gyrus (DG).  Additionally, the 

Scn1b-null DG shows dispersion compared to wildtype.  The microorganization of interneurons 

is unusual in the DG of these mice, as well, with parvalbumin-labeled cell bodies being spread 

laterally rather than being tightly arranged. Axon outgrowth and pathfinding are abnormal in 

the Scn1b-null hippocampus compared to wildtype (Brackenbury et al., 2013).  Finally, 

pyramidal neurons in the Scn1b-null subiculum have reduced dentritic arborization (Reid et al., 

2014).  Zebrafish scn1bb morphants also have defective axon pathfinding in the olfactory nerve 

(Fein et al., 2008).  This finding, together with the defects observed across the CNS and PNS of 

early postnatal Scn1b-null mice, and the seizures, ataxia, and early death that follow, highlight 

the importance of 1 and 1B for normal neurological development.  Thus, it is not surprising 

that human mutations in SCN1B have disastrous, sometimes fatal consequences. 
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6.  Subunit Gene Mutations Are Linked to Epilepsy and Cardiac Arrhthmia 

6.1 Epilepsy 

VGSC  subunit gene mutations are linked to epilepsy syndromes, cardiac arrhythmias, 

and other pathological conditions.  Epilepsy is a neurological disorder characterized by 

recurrent, unprovoked seizures, and events of excessive hypersynchronous action potential 

firing in one or more brain regions. They can have many causes, but a large percentage of cases 

are idiopathic and likely genetic (Stafstrom & Carmant, 2015).  Channelopathies, including 

mutations in VGSC  subunits, are responsible for many of these idiopathic epilepsy syndromes.  

Human mutations in SCN1B have been linked to generalized epilepsy with febrile seizures plus 

(GEFS+) and the severe pediatric epileptic encephalopathy Dravet syndrome (DS) (Audenaert et 

al., 2003; Escayg & Goldin, 2010; Ogiwara et al., 2012; Patino et al., 2009; Wallace et al., 1998, 

2002).  In DS, children in the first years of life present with frequent febrile seizures followed by 

afebrile seizures, cognitive decline, ataxia, and high risk of sudden unexpected death due to 

epilepsy (SUDEP).     Apnea and cardiac arrhythmia have been proposed to be significant causes 

of SUDEP (Surges & Sander, 2012).  SCN1A mutations resulting in haploinsufficiency have been 

determined to be responsible for most incidences of DS (Claes et al., 2001; Escayg et al., 2000; 

Meisler & Kearney, 2005; Shi et al., 2009; Sugawara et al., 2001).  However, homozygous SCN1B 

mutations have been found in at least two patients with DS, with one of these shown to be loss-

of-function (Ogiwara et al., 2012; Patino et al., 2009).  In addition to GEFS+, other epilepsy 

syndromes, including temporal lobe epilepsy (TLE) and early onset absence epilepsy (EOAE) 

have been linked to human mutations in SCN1B (Audenaert et al., 2003; Scheffer et al., 2007).  

A 1B-specific SCN1B mutation, the trafficking-deficient G257R, has been discovered in two 

separate cases of idiopathic epilepsy (Patino et al., 2011).  However, most of the epilepsy-linked 

mutations in SCN1B map to extracellular residues in the Ig domain shared by both 1 and 1B 

(Brackenbury & Isom, 2011b).  For example, the first SCN1B mutation to be associated with 

GEFS+ was the 1(C121W) mutation that replaces one of the cysteine residues in the disulfide 
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bridge that holds together the Ig-loop domain (Wallace et al., 1998).  Further epilepsy-linked 

mutations in SCN1B include R85C, R125C, and many others (O’Malley & Isom, 2015).    

1 and 1B are multifunctional proteins with varying effects on VGSC physiology 

depending on developmental and cell-type specific contexts.  Impaired regulation of Na+ 

current likely contributes to the mechanism of SCN1B-linked epilepsy.  In addition, all SCN1B-

linked epilepsy mutations identified to date, except for the one specific to 1B, are located in 

residues of the extracellular Ig-loop (Audenaert et al., 2003; Meadows et al., 2002; Patino et al., 

2009; Scheffer et al., 2007; Wallace et al., 1998).  Given the strength and quantity of 

experimental evidence demonstrating adhesive functions for 1/1B, it is reasonable to 

suggest that loss of these functions might be an important contribution to the CNS neuronal 

network hyperexcitability underlying SCN1B-linked seizures and epilepsy. 

 

6.2 Cardiac Arrhythmia 

Channelopathies, including mutations in VGSC  subunits, especially Nav1.5, have also 

been linked to cardiac arrhythmias.  Such mutations are linked to long QT syndrome (LQTS), 

Brugada syndrome, and fatal ventricular fibrillation (VF) (Remme & Bezzina, 2010).  Human 

mutations in SCN1B, SCN2B, and SCN3B have all been associated with Brugada syndrome, 

which carries a high risk of sudden cardiac death due to VF (Ishikawa & Takahashi, 2012; Riuró 

et al., 2013; H. Watanabe et al., 2008).  Other mutations in SCN1B, SCN2B, SCN3B, and SCN4B 

have been linked to atrial fibrillation (AF) (Li et al., 2013; Olesen et al., 2011; Watanabe et al., 

2009).  Further, a mutation in SCN4B has been linked to long QT syndrome (LQTS), in which 

slowed repolarization can lead to arrhythmia and VF (Medeiros-Domingo et al., 2007).  These 

findings suggest that all VGSC  subunits are important for healthy cardiac function in humans. 

In addition to epilepsy and cardiac arrhythmias,  subunits have been implicated in a 

number of other pathological conditions, including sudden infant death syndrome (SIDS), 

neuropathic pain, neurodegenerative diseases such as Huntington’s disease (HD) and multiple 

sclerosis (MS), and even cancer (O’Malley et al., 2009).  Recent reviews provide a detailed 
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treatment of the roles subunits have in pathophysiology (Calhoun & Isom, 2014; O’Malley & 

Isom, 2015). 

7. Scn1b and Development of the Cerebellar Cortex 

As described above, patients with Dravet syndrome present with recurrent, intractable 

seizures, ataxia, and delayed or impaired cognitive development.  The Scn1b-null mouse model 

of Dravet syndrome developed in our laboratory begins to display frequent, spontaneous 

seizures at P10 (C. Chen et al., 2004).  These mutants also have an apparent ataxic gait, which 

could correspond to defects in the formation and/or function of the cerebellar cortex.  Indeed, 

significant micro-organizational defects have been uncovered in this region of the Scn1b-null 

brain (Brackenbury et al., 2008, 2013).  The discussion that follows will broadly describe the 

development of the mouse cerebellar cortex, the phenotypical deficits that emerge from 

perturbation of development in spontaneous and transgenic mutants, functional defects in 

Purkinje cell activity that impact motor coordination, and a characterization of what is currently 

understood about the role of Scn1b in the cerebellum within the context of the larger field of 

developmental neurobiology. 

   

7.1 Development and Connectivity of the Cerebellar Cortex 

The murine cerebellum forms from dorsal rhombomere 1 of the hindbrain around 

embryonic day 9 (E9).  Purkinje cells become post-mitotic between E11 and E13, migrate 

radially from the ventricular zone on the dorsal surface of the fourth ventricle, and form a 

transient multilayer beneath the external germinal layer.  The external germinal layer covers 

the outer surface of the developing cerebellum.  This region first appears around E15, and 

remains an active mitotic area of dividing granule cell precursors for more than 2 postnatal 

weeks.  The major lobes form, divided by a series of shallow fissures, by about E18.  These early 

developmental processes, especially before E12.5 are stimulated spatially and temporally by 

secreted molecules such as Wnt1 and FGF8 under the direction of important transcription 

factors including Otx2, En2, and Pax2 (Hatten & Heintz, 1995; Sillitoe & Joyner, 2007).  A leading 
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hypothesis proposes that Purkinje cells, anchored to the deep cerebellar nuclei by their axons, 

are positioned at the bases of these fissures.  Granule cell precursor proliferation then causes 

the lobes to expand outward and assume their ultimate shape (J Altman & Bayer, 1997).  The 

cerebellar cortex largely develops its characteristic 3-layered structure and connectivity during 

the first three postnatal weeks.  From the most interior, these layers are the densely-populated 

internal granule layer, the Purkinje cell layer, which is composed of the Purkinje cell somata, 

and the molecular layer, which is home to the massive fan-shaped dendritic structures of the 

Purkinje cells.  Near the time of birth, Purkinje cells disperse into a single monolayer that will 

form the middle layer of the cerebellar cortex.  At the same time, granule cell precursors begin 

to exit the cell cycle and migrate along the processes of Bergmann glia down through the 

molecular layer, past the Purkinje cell bodies and into the nascent internal granule layer.  The 

two classes of molecular layer interneurons, stellate and basket cells, arise from the ventricular 

zone, proliferate in-transit and migrate through the white matter into the internal granule layer 

and outward into their final resting positions in the molecular layer.  This process mostly occurs 

during the first postnatal week.  Also early in postnatal development, foliation of the lobe 

surfaces begins to take place and results in the development of 10 distinct lobules visible in the 

sagittal plane through the cerebellar vermis (J Altman & Bayer, 1997; Larsell, 1970; Sillitoe & 

Joyner, 2007). 

Purkinje cells, which are the sole efferent projections from the cerebellar cortical circuit 

to the deep cerebellar nuclei, are stimulated directly by two different excitatory inputs, those of 

the parallel fibers and those of the climbing fibers (Palay & Chan-Palay, 1974).  Densely 

clustered in the internal granule layer, the granule cells receive excitation from nuclei in the 

brainstem and spinal cord by means of the mossy fibers.  In turn, granule cells project their 

bifurcated axons making up the parallel fibers, and form glutamatergic synapses throughout the 

dendritic extensions of multiple Purkinje cells during the first few weeks of life.  Secondly, the 

climbing fibers arising from neurons positioned in the inferior olives each innervate and form a 

separate class of glutamatergic synapses onto an individual Purkinje cell’s soma and major 

dendritic branches (Apps & Garwicz, 2005).  This arrangement of mono-innervation of the 

Purkinje cell by the climbing fiber proceeds in a series of steps beginning early in postnatal 



31 
 

development.  Initially, a number of climbing fibers form synaptic contacts onto the soma 

starting at around E18 (Mason & Gregory, 1984; Palay & Chan-Palay, 1974).  Then, between P3 

and P7, a single climbing fiber will become strengthened (Hashimoto & Kano, 2003; Kano et al., 

1995).  During the second and third postnatal weeks, translocation of this strengthened 

climbing fiber’s synaptic connections from the soma to the major dendrites takes place.  Finally, 

the somatic synapses are eliminated (Hashimoto, Ichikawa, Kitamura, Watanabe, & Kano, 

2009).  In addition to these excitatory connections, two types of interneurons, the stellate and 

basket cells, form GABAergic synapses onto distinct Purkinje cell domains.  Stellate cells migrate 

into scattered positions throughout the molecular layer and form synapses at relatively distal 

positions on the Purkinje cell dendritic arbor.  By contrast, basket cells are positioned at or near 

the Purkinje cell layer and form synapses onto the soma, proximal dendrites and axon initial 

segment (AIS).  The process of GABAergic synapse-formation begins around P7 and continues at 

a rapid pace for about the first three postnatal weeks (Takayama, 2005).  Together, these local 

cellular constituents and afferent projections converge onto and influence the firing behavior of 

the Purkinje cells, which indirectly guide motor functions and modulate forebrain activity 

through their GABAergic connections with neurons in the deep cerebellar nuclei (Sillitoe & 

Joyner, 2007). 

 

 

7.2 Mechanisms and Consequences of Cerebellar Cortical Malformation 

 

A number of now-classic spontaneous mouse mutants have been described, which 

demonstrate the behavioral impacts of cerebellar malformation.  Many such mutants undergo 

severe reduction or complete absence of critical cell-types in the cerebellar cortex.  For 

example, Lurcher mice lose all Purkinje cells starting at two weeks of age, then subsequently 

nearly all granule cells disappear (Caddy & Biscoe, 1979).  These mice express a gain-of-function 

mutation in Grid2, the gene encoding the GluR2 ionotropic glutamate receptor, resulting in an 

ataxic gait (Fortier, Smith, & Rossignol, 1987; Zuo et al., 1997).  Deletion of Grid2 results in a 

mild loss of granule cells and reduced synaptic contacts between parallel fibers and Purkinje 
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cells.  These mice also have motor coordination defects (Kashiwabuchi et al., 1995).  The 

Staggerer mouse carries a homozygous loss-of-function mutation in the gene Rora, which is 

highly expressed in Purkinje cells (Hamilton et al., 1996; Ino, 2004; Nakagawa, Watanabe, & 

Inoue, 1997; Sashihara, Felts, Waxman, & Matsui, 1996).  Prior to P5, Staggerer mice begin to 

lose Purkinje cells, which reduce in number to about 25% of wildtype.  As with Lurcher mice, 

they subsequently experience a loss of essentially all granule cells (Sonmez & Herrup, 1984).  

Behaviorally, Staggerer mice display even more profound motor deficiencies than Lurcher mice 

(Lalonde, 1987; Lalonde et al., 1996; Lalonde, Bensoula, & Filali, 1995).  A third mutant, 

commonly referred to as the Reeler mouse, exhibits a disruption in the gene reln, encoding the 

extracellular matrix protein reelin (Beckers et al., 1994; D’arcangelo et al., 1995).  Reln mRNA is 

highly expressed in granule cells but not in Purkinje cells (Schiffmann, Bernier, & Goffinet, 

1997).  In agreement with this, the main cytological defect in Reeler mouse development is a 

nearly complete disappearance of granule cells following the second postnatal week (Caviness 

Jr & Rakic, 1978).  Reeler mice also show a loss of about half of their Purkinje cells (Heckroth, 

Goldowitz, & Eisenman, 1989).  As expected, these mice are ataxic and prone to loss of balance 

(Lalonde, Hayzoun, Derer, Mariani, & Strazielle, 2004).  Another classic ataxic mutant mouse, 

Weaver, contrasts with the aforementioned spontaneous mutants in that cerebellar 

morphology is largely normal prior to granule cell degeneration around the time of birth 

(Goldowitz & Smeyne, 1995; Signorini, Liao, Duncan, Jan, & Stoffel, 1997).  This mutation, which 

occurs in Girk2, affects an inward-rectifying K+ channel that is highly expressed in the 

cerebellum and midbrain (Patil et al., 1995).  These mutants demonstrate major examples of 

developmental defects in the cerebellum that result in profound motor abnormalities.  It is also 

worth noting that at least three of them, Lurcher, Staggerer, and Weaver, are susceptible to 

tonic-clonic seizures (Eisenberg & Messer, 1989; Seyfried & Glaser, 1985).  Purkinje cells send 

the sole efferent projections from the cerebellar cortex.  Thus, any disruption of Purkinje cell 

development or function, or any loss of cells which excite or inhibit Purkinje cells or alteration 

in the synapses they form onto Purkinje cells can result in motor deficits. 

A transgenic mouse that was generated as a model of spinocerebellar ataxias affecting 

humans is the SCA1/Q82 mouse, which is driven specifically in Purkinje cells by the Pcp2/L7 
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promoter (Burright et al., 1995).  SCA1, encoding ataxin-1, carries a varying number of CAG 

repeats in human patients with adult-onset degeneration in the cerebellum and brainstem, 

resulting in ataxia (H. B. Clark & Orr, 2000).  In contrast to the developmental mutants 

described above, the SCA1/Q82 mice do not lose large numbers of cells.  Instead, by one year of 

age they have smaller, less dendritically complex Purkinje cells which contain ataxin-1 

aggregates (Vig et al., 1998).  These mice begin to show ataxia near three months of age 

following the onset of Purkinje cell pathology (H. Clark et al., 1997).      

The Immunoglobulin-superfamily of cell adhesion molecules (Ig-CAMs) are a class of 

proteins which exhibit one or a number of tandem extracellular Ig-loops.   Cell adhesion 

molecules (CAMs) such as these are expressed on the cell surface where they mediate 

homophilic and heterophilic interactions with molecular components of other cells and the 

extracellular matrix.  Ig-CAMs are implicated in neurite outgrowth, axon fasciculation, and cell 

migration, among other important functions during nervous system development (Maness & 

Schachner, 2007).  Loss-of-function mutations in mice demonstrate substantial consequences 

for brain development, and cerebellar development is no exception.  Contactin is a 

glyosylphosphotidyl inositol (GPI)-anchored Ig-CAM composed extracellularly of a sequence of 

four fibronectin type III (FNIII) domains and six tandem Ig-loops (Erik O Berglund & Ranscht, 

1994; Brümmendorf, Michael Wolff, Frank, & Rathjen, 1989).  These domains allow for 

heterophilic interactions with ligands, including Ig-CAMs such as VGSC 1 (Buttiglione et al., 

1998; Morales et al., 1993; T. Sakurai et al., 1997).  Like many related molecules, contactin is 

known to promote neurite outgrowth (Durbec, Gennarini, Goridis, & Rougon, 1992; Gennarini 

G, Durbec P, Boned A, Rougon G, 1991).  Similar to 1, contactin is strongly expressed in the 

postnatal mouse cerebellar cortex (Faivre-Sarrailh, Gennarini, Goridis, & Rougon, 1992).  At P0, 

P11, and P16, contactin is expressed in the granule cell precursors of the external granule layer 

and in the developing parallel fibers, and it is maintained in the granule cells of the internal 

granule layer.  By contrast, immunoreactivity for contactin is not observable in Purkinje cell 

somata or processes.  Contactin-null mice exhibit a progressive ataxic gait starting at around 

P10, have a small body size compared to wild-type littermates, and die by P18 (E O Berglund et 

al., 1999).  These characteristics are very similar to those of Scn1b-null mice (C. Chen et al., 
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2004).  Brain sections collected from P15 contactin-null mice have normal development of 

cerebellar folia and layers of the cerebellar cortex but have misorientation and less compact 

fasciculation of PFs (E O Berglund et al., 1999).  It is noteworthy that Scn1b-null mutants share 

these developmental abnormalities in the cerebellar cortex.  Contactin has considerable 

sequence homology to VGSC  subunits, especially 2 (L L Isom et al., 1995).  Furthermore, 

contactin-null mice are 1 hypomorphs, strengthening the hypothesis that these two Ig-CAMs 

have closely related functions (Brackenbury et al., 2010).  

 

 

7.3 The Scn1b-null Cerebellar Cortex 

 

Similar to contactin-null mice (E O Berglund et al., 1999), Scn1b-null mice are born in 

expected Mendelian ratios, and are indistinguishable at P0 from wildtype and heterozygous 

littermates (C. Chen et al., 2004).  In agreement with a role in cerebellar cortical development, 

1 expression is highest in postnatal brain.  By contrast, 1B is most-highly expressed during 

embryological development of the brain (Kazen-Gillespie et al., 2000b; Patino et al., 2011).  It 

remains possible that Scn1b-null mice have delays in neuronal migration and axon pathfinding 

that precede P0, but these are likely subtle in effect.  The cerebellar cortex mostly develops 

postnatally, and Scn1b null mice have notable defects by P5 (Brackenbury et al., 2013).  Defects 

in the developmental processes that take place prenatally in the cerebellar formation would be 

predicted to have behavioral consequences, particularly with regard to gait.  The secreted splice 

variant 1B is much more highly expressed in the prenatal cerebellum than 1, and it is 

reasonable to hypothesize that it could participate in the early organization of the cerebellar 

cortex (Kazen-Gillespie et al., 2000b; Patino et al., 2011).  This has not been examined directly, 

but transgenic mice which express 1B on a Scn1b-null background do not rescue the overt 

phenotypes of the animals (unpublished observations).  Behavioral analysis of motor 

coordination has not been carried out in these mutants, however.  Further characterization of 

these mice is necessary to determine what, if any, contribution 1B gives to cerebellar 

development and function. 
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In common with other Ig-CAM mutants, Scn1b-null mice exhibit substantial micro-

organizational defects in the cerebellar cortex throughout postnatal development (Brackenbury 

et al., 2008, 2013).  Scn1b mRNA is strongly expressed throughout the postnatal cerebellar 

cortex.  In contrast with contactin, however, 1 is highly enriched in Purkinje cells as well as 

granule cells.  Granule cells, which first arise and proliferate in the transient external granule 

layer on the surface of the molecular layer of the cerebellar cortex, have a deficiency in 

migration into the Scn1b null internal granule layer (Brackenbury et al., 2008, 2013).  This 

process occurs along the fibers of Bergmann glia, which have their cell bodies arranged 

amongst the Purkinje cells in the Purkinje cell layer.  This defect measurable by P5 of postnatal 

development, with a significantly thicker external granule layer, more densely populated with 

newborn granule neurons, (Brackenbury et al., 2013).  Nevertheless, a prominent internal 

granule layer forms even in the absence of Scn1b expression.   

 

8. Concluding Remarks 

Descendent from and sharing structural homology with a family of proteins possessing 

V-like Ig domains and having diverse developmental functions in the nervous system, 1, 2, 

3, 4, and 1B might be thought of as Ig superfamily CAM proteins which, in excitable cells, 

also regulate ion channel function.  Indeed, the VGSC  subunits are expressed in non-excitable 

cells like astrocytes, oligodendrocyte precursor cells, and radial glia (Cahoy et al., 2008).  Like 

their cousins, the Ig-superfamily CAMs contactin, L1, and NCAM, these proteins, especially 

1/1B, are critical for development of the CNS.  They localize in neurons at specialized 

intracellular structures like the AIS and nodes of Ranvier, where they link other CAMs and 

extracellular matrix molecules with appropriate VGSC  subunits, VGKCs, and cytoskeletal 

proteins.  The importance of  subunits, especially those encoded by Scn1b, in this role is 

highlighted by the catastrophic pathological conditions that can occur when they are mutated.  

Scn1b-null mice, like contactin-null mice, exhibit ataxia and altered cerebellar 

microorganization, and both mutants have radically shortened lives.  Ongoing research seeks to 

determine whether 1 and 1B participate in other developmental processes common to Ig-
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superfamily CAMs, such as synaptogenesis.  Most-importantly, SCN1B mutations are linked to 

serious human pathologies, including epileptic encephalopathy.  Because these syndromes, 

especially DS, are usually caused by SCN1A mutations, there is a tendency to presume that 

SCN1A- and SCN1B-linked epileptic encephalopathy have the same underlying mechanism.  

However, we do not yet know whether loss of crucial adhesive functions of 1 and 1B 

contributes to the seizures, ataxia, and severe cognitive impairment of SCN1B-linked DS.  VGSC 

 subunits are multi-functional, regulating VGSC  subunit transcription, localization, and 

function and contributing to key aspects of CNS development as CAMs.  It might, therefore, be 

predicted that loss of function of SCN1B leads to even more severe epileptic encephalopathy 

than SCN1A-linked DS.  Additional cases will need to be evaluated before such a determination 

can be made. 

Ataxia has been observed in Scn1b-null mice since they were first developed in the lab 

(C. Chen et al., 2004).  This is consistent with the progressive ataxia seen in patients with Dravet 

syndrome.  Moreover, cognitive impairments in Dravet syndrome patients, including 

hyperactivity and features of autism, may implicate involvement of the cerebellum (Battaglia et 

al., 2013; Guzzetta, 2011).  Defects in the micro-organization of the Scn1b-null cerebellar cortex 

are visible early in postnatal development, but it is not known whether these abnormalities are 

sufficient to explain the motor coordination phenotype they exhibit (Brackenbury et al., 2008, 

2013).  Spontaneous mutants such as Lurcher and Staggerer show substantial cell loss, 

especially Purkinje cell loss, resulting in ataxia (Lalonde & Strazielle, 2007).  Purkinje cells are 

the sole efferent neurons which project from the cerebellar cortex.  Defective axon migration 

and pathfinding of granule cells, which form prolific glutamatergic synapses onto Purkinje cell 

dendrites, could be contributing to reduced Purkinje cell activity, but Ig-CAMs are involved in a 

variety of other processes including synaptogenesis (Crossin & Krushel, 2000).  Furthermore, 

intrinsic Purkinje cell function could be compromised in Scn1b-null mice, perhaps due to a 

reduction in VGSC  subunit expression at the AIS.  We hypothesized that Scn1b may be 

essential for normal Purkinje cell function.  We further hypothesized that 1/1B may regulate 

the formation of synapses.  The discovery that Scn1b is critical for cerebellar cortex function 
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would provide insight into the underlying neurobiology behind Dravet syndrome and its 

comorbidities.   
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Chapter II 

Reduced excitability in Purkinje cells and cerebellar cortical interneurons correlates with 

ataxia in a mouse model of SCN1B-linked Dravet syndrome 

 

Introduction 

Voltage-gated Na+ channels (VGSCs) are heterotrimers composed of a single pore-

forming  subunit and two  subunits (R P Hartshorne & Catterall, 1981; L L Isom et al., 1992, 

1995; Messner & Catterall, 1985; Morgan et al., 2000; Yu et al., 2003).  In neurons, these 

complexes are necessary for the initiation and propagation of action potentials.  VGSC  

subunits functionally modulate  subunits and regulate their subcellular localization (Aman et 

al., 2009; Bennett et al., 1993; Brackenbury et al., 2010; C. Chen et al., 2004; L L Isom et al., 

1995, 1992; Lori L. Isom et al., 1995; Kazarinova-Noyes et al., 2001; Kazen-Gillespie et al., 

2000a; Ko et al., 2005; Lopez-Santiago et al., 2007, 2011; McEwen et al., 2004; Medeiros-

Domingo et al., 2007; Patino et al., 2009; H. Watanabe et al., 2008; Yu et al., 2003; J. Zhou et al., 

1991).  In addition, these proteins, especially 1, play developmental roles in the brain including 

axon pathfinding and cell migration (Brackenbury et al., 2008, 2013; C. Chen et al., 2004; Fein et 

al., 2008; Patino et al., 2011).  , encoded by SCN1B, functions as an immunoglobulin-

superfamily cell adhesion molecule (Ig-CAM) (L L Isom et al., 1995; Jyoti Dhar Malhotra et al., 

2000; Maness & Schachner, 2007).  1B, a secreted splice variant, mainly expressed 

embryonically in brain, is encoded by the same gene (Kazen-Gillespie et al., 2000a; Patino et al., 

2011).  Along with the associated VGSC complex, 1 is expressed axonally, at highest 

concentrations at the axon initial segment (AIS) and within nodes of Ranvier (Brackenbury et al., 

2008; Kaplan et al., 2001; Patino et al., 2009).  1 may also be found in dendrites of certain 

neurons (Reid et al., 2014).  Mutations in SCN1B are associated with generalized epilepsy with 

febrile seizures plus (GEFS+) and the severe epileptic encephalopathy Dravet syndrome (DS) 
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(Audenaert et al., 2003; Kruger et al., 2016; Laurence S Meadows et al., 2002; Ogiwara et al., 

2012; Patino et al., 2009, 2011; Scheffer et al., 2007; Wallace et al., 1998, 2002; Wimmer et al., 

2010).  While DS is most commonly caused by heterozygous loss-of-function mutations of the 

subunit gene SCN1A resulting in haploinsufficiency, the disorder can also be caused by 

homozygous loss-of-function SCN1B mutations (L Claes et al., 2001; A Escayg et al., 2000; 

Meisler & Kearney, 2005; Patino et al., 2009; Shi et al., 2009; Sugawara et al., 2001).   Children 

with this catastrophic disorder present with intractable seizures, intellectual disability, and 

autism spectrum disorders in the first years of life (Dravet, Bureau, Oguni, Fukuyama, & Cokar, 

2005).  In addition, patients present with ataxia that progresses with development  (Scheffer, 

2012). 

Developmental processes in the brain such as neurite outgrowth, cell migration, and 

synaptogenesis rely on homophilic and heterophilic interactions of Ig-CAMs such as 

neurofascin, contactin, and L1 (Ango, di Cristo, et al., 2004; Buttermore et al., 2012; Crossin & 

Krushel, 2000; Vaughn & Bjorkman, 1996; Williams & Barclay, 1988).  1 participates in 

homophilic adhesion as well as heterophilic adhesion with other partners including neurofascin, 

contactin, and VGSC 2 (Jyoti D Malhotra et al., 2004; McEwen & Isom, 2004; Charlotte F. 

Ratcliffe et al., 2001).  Moreover, trans-homophilic 1 adhesion promotes neurite outgrowth in 

cultured cerebellar granule neurons (CGNs) (Davis et al., 2004).  This function requires 

contactin, NaV1.6, and fyn kinase (Brackenbury et al., 2008; Davis et al., 2004).  Scn1b-null mice, 

which model DS,  have spontaneous seizures at P10, are ataxic, and die by approximately P20, 

with abnormal development throughout the brain (Brackenbury et al., 2008, 2013; C. Chen et 

al., 2004).  In the cerebellar cortex, Scn1b-null cerebellar granule neurons (CGNs) have delayed 

migration into the internal granular layer (IGL) and the parallel fibers, composed of the axons of 

CGNs, exhibit pathfinding errors and defasciculation.  Disruptions such as these, which have 

already begun by P5, prior to the onset of seizures in the mice, may contribute to the cognitive 

and motor disabilities that are clinical hallmarks of DS (Brackenbury et al., 2013).  Furthermore, 

dysfunction of the cerebellum may be of consequence for hippocampal function and seizures 

(Krook-Magnuson, Szabo, Armstrong, Oijala, & Soltesz, 2014; Rochefort, Arabo, Andre, et al., 

2011). 
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The mouse cerebellar cortex is composed of a relatively simple, well characterized 

circuit that largely develops over the first 3 postnatal weeks (Joseph Altman, 1972; De Zeeuw et 

al., 2011; Eccles, 1967).  Purkinje cells, which project the only output from the circuit, receive 

molecularly-distinguishable excitatory synaptic inputs from parallel fibers and climbing fibers.  

In addition, two classes of interneurons, basket cells and stellate cells, form GABAergic 

inhibitory synapses onto PCs.  Basket interneurons selectively target the PC soma, proximal 

dendrites, and AIS where their axon collaterals make up the large, basket-shaped pinceau 

synapse (Ango, di Cristo, et al., 2004; Somogyi & Hámori, 1976)., Mice lacking neurofascin, a 

binding partner of 1, have disorganization of pinceau synapses and severe ataxia (Buttermore 

et al., 2012).    Importantly, 1 protein is localized at the Purkinje cell AIS, along with its 

associated VGSC  subunits.  The degree to which 1 is expressed in other PC compartments 

such as dendrites remains unknown.  Many related Ig-CAMs are expressed pre- and post-

synaptically where they instruct the formation and function of synapses.  Using antibody 

markers of distinct classes of excitatory and inhibitory synapses formed between parallel fibers, 

climbing fibers, and molecular layer interneurons, it is possible to determine the densities at 

which they have formed in postnatal cerebellar sections.  A role for Scn1b in the formation of 

excitatory and inhibitory synapses has not been previously investigated.  We hypothesized that 

1 and/or 1B might serve a function in the organization of one or more classes of synapses in 

the cerebellar cortex which could be contributing to the ataxia that has been observed in 

Scn1b-null mice. 

Scn1b-null Purkinje cell function has not been investigated.  These efferent projection 

neurons are solely responsible for conveying cerebellar cortical signals to the deep cerebellar 

nuclei and thus to rest of the nervous system.  Considering the significant comorbid symptoms 

presented by DS, attaining a better understanding of the role of Scn1b in the development and 

function of the cerebellar cortex is critical.  Here, we report that Scn1b-null Purkinje cells and 

molecular layer interneurons are hypoexcitable and show the first characterization of the 

Scn1b-null mouse’s ataxic gait.  We further show that loss of Scn1b does not result in abnormal 

PC morphology or reduced numbers of excitatory and inhibitory synapses formed between 

parallel fibers, climbing fibers, or basket interneurons and the Purkinje cell compartments that 
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they target.  We conclude that Scn1b is required for healthy intrinsic function of Purkinje cells 

and interneurons in the cerebellar cortex and propose that these defects are responsible for 

the ataxia exhibited by Scn1b-null mice. 
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Materials and Methods 

1. Animals:   

Scn1b +/+ and Scn1b -/- littermate mice were bred from Scn1b+/- mice congenic on the 

C57BL/6 background for more than 20 generations.  Animals were housed at the University of 

Michigan in the Unit for Laboratory Animal Medicine in accordance with University of Michigan 

Institutional Animal Care and Use Committee (IACUC) guidelines. 

 

2. Gait analysis:   

P16 Scn1b +/+ and Scn1b -/- littermate mice were subjected to footprint analysis of gait 

(Becker et al., 1988).  Paws were painted with non-toxic, washable paint.  Blue was used for 

hindpaws, and red was used for forepaws.  A strip of paper was laid in the floor of a customized 

open-topped chamber, into which each mouse was introduced and allowed to walk to the other 

side.  Mice were given repeated attempts to walk naturally to produce a series of at least 3 clear 

footprints along the paper until this was achieved, with fresh paint added to their paws each 

time.  Lines were hand-drawn between similar places on each footpad and measurements were 

recorded of stride lengths, stride widths, and angles of step for both hindpaws and forepaws.   

 

3. Immunohistochemistry:  

Littermate mice were anesthetized at P10 or P14 and transcardially perfused with cold 

PBS followed by 4% paraformaldehyde.  Brains were removed and postfixed overnight at 4° C, 

cryprotected in 10% sucrose followed by 30% sucrose, then frozen in isopentane between -20° 

and -30° C.  Frozen brains were stored at -80° C until they were sectioned.  50 m parasagittal 

cryostat sections were collected in cold PBS for free-floating immunohistochemistry.  Sections 

were blocked for 3 hours at room temperature in 0.1 M PB with 10% goat serum and 0.3% Triton 

X-100 followed by incubation with primary antibodies for about 42 hours at room temperature 

with gentle rocking.  Primary antibodies used in this study were as follows: anti-VGLUT1 (guinea 
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pig; 1:2000; Millipore), anti-VGLUT2 (mouse; 1:1000; Millipore), anti-VGAT (rabbit; 1:500; 

Synaptic Systems), anti-VGAT (mouse; 1:500; Synaptic Systems), anti-calbindin (mouse; 1:400; 

Sigma), anti-calbindin (rabbit; 1:400, Cell Signaling Technology), and anti-parvalbumin (rabbit; 

1:400; Abcam).  Sections were washed with 0.1M PB and incubated overnight at room 

temperature with Alexa fluor-conjugated secondary antibodies (Invitrogen or Life Technologies).   

Finally, sections were washed, mounted onto microscope slides using Prolong® Gold with DAPI 

(Invitrogen), and coverslipped. 

 

4. Microscopy and image analysis:   

Immunohistochemistry-stained sections were imaged using a Nikon A1R laser scanning 

confocal microscope with 20x and 60x objectives.  Z-stack images were acquired using NIS-

Elements A1R software.  For in vivo synapse data, these confocal z-stacks were analyzed in 

Bitplane Imaris.  In brief, the ‘Create Surface’ feature was used to manually surround regions of 

interest (i.e. calbindin+ Purkinje cell somata) plane-by-plane.  The ‘create new spots’ feature was 

applied to the channel corresponding to the appropriate synaptic marker (i.e. VGAT signal) within 

this region of interest.  At a set size and threshold, the number of ‘spots’ was quantified and 

densities were calculated using the calculated surface area of the region of interest.   

 

5. Transmission electron microscopy:   

Scn1b +/+ and Scn1b -/- mice at P14 were anesthetized with isoflurane and transcardially-

perfused with a mixture of 3% paraformaldehyde (Electron Microscopy Sciences) and 2.5% 

glutaraldehyde (Ted Pella) in 0.1 M Sorensen’s buffer.  Cerebellar lobule 4/5 sections were 

dissected and postfixed at 40C overnight in perfusion solution.  They were then incubated for 1 

hour in OsO4 (1% solution in 0.1 M Sorensen’s buffer) and embedded in epoxy resin.  Ultrathin 

(75 nm) sections were cut at the University of Michigan Imaging Laboratory Core and visualized 

with a JEOL JSM 1400 transmission electron microscope. 
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5. Synaptosome fractionation:   

Cerebella were dissected from wild-type P14 mice and homogenized in a solution with a 

final concentration of 1.25 M sucrose.  In an ultracentrifuge tube, this homogenate (H) was 

overlayed with a 1M sucrose solution and then a 0.32M sucrose solution to form a three-step 

gradient.  Tubes were spun in an ultracentrifuge at 100,000 x g for 3 hours at 4° C.  The 

synaptosome fraction (S) was collected from the 1.25M:1M interface and resuspended in buffer 

(pH 6.0) containing 1% Triton® X-100, gently rotated for 30 minutes, and spun at 40,000 x g for 

30 minutes at 4° C to pellet the synaptic junction fraction.  This pellet was resuspended in buffer 

(pH 8.0) containing 1% Triton® X-100, gently rotated for 30 minutes, and spun again at 40,000 x 

g for 30 minutes at 4° C to pellet the post-synaptic fraction.  This final pellet was resuspended in 

5% SDS.  Sample buffer containing -mercaptoethanol and dithiothreitol (DTT) was added to each 

sample.  Then samples were heated to 85° C for 10 minutes and stored at -20° C until Western 

blot experiments were performed. 

 

6. Western blot analysis:   

Synaptosome fractions were loaded onto 10% polyacrylamide gels and separated by SDS-

PAGE, then transferred to nitrocellulose membranes.  Membranes were blocked at room 

temperature for 2-3 hours in TBS-Tween buffer (TBST) containing 1% bovine serum albumin (BSA) 

and 2.5% nonfat dry milk then incubated overnight at 4° C with primary antibodies as follows: 

anti-synaptophysin (rabbit; 1:10,000; Millipore), anti-PSD95 (mouse; 1:2000; Thermo Scientific), 

and anti-1 (rabbit; 1:1000; Cell Signaling Technology).  HRP-conjugated secondary antibodies 

were applied for 2-3 hours at room temperature.  Chemiluminescent detection was accomplished 

using the Thermo Scientific reagents Supersignal® West Dura (synaptophysin) or Supersignal® 

West Fempto (PSD95 and 1) to detect immunoreactive bands. 
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7. Preparation of cerebellar slices: 

All animal procedures adhered to NIH guidelines and were approved by the University of 

Michigan Committee on the Use and Care of Animals.  Acute cerebellar slices were prepared 

using similar procedures as described previously (Brackenbury et al, 2013).  In brief, the brain 

was removed rapidly following euthanasia by isoflurane inhalation and decapitation.  Both 

transverse (coronal) and parasagittal cerebellar slices (~250 µm) were prepared from postnatal 

day (P) 14 - 20 WT or Scn1b-/- mice in ice-cold, oxygenated “slicing” solution saturated with 95% 

O2 /5% CO2.  The slicing solution contained (in mM): 110 sucrose; 62.5 NaCl; 2.5 KCl; 6 MgCl2; 

1.25 KH2PO4; 26 NaHCO3; 0.5 CaCl2 and 20 D-glucose (pH 7.35-7.4 when saturated with 95% O2 

/5% CO2 at room temperature of 22 – 25 oC).  Slices were incubated initially in the same slicing 

solution for >30 min at room temperature and then in the mixture (1:1) of the “slicing” solution 

and artificial cerebrospinal fluid (ACSF), the latter contains (in mM): 125 NaCl; 2.5 KCl; 1 MgCl2; 

1.25 KH2PO4; 26 NaHCO3; 2 CaCl2 and 20 D-glucose, (pH 7.35-7.4) in a holding chamber aerated 

continuously with 95% O2 /5% CO2 at 25 oC for at least another 30 min before finally transferred 

to ACSF.  

 

8. Electophysiological recording: 

A given cerebellar slice was transferred to a recording chamber where it was superfused 

(2-3 ml/min) with (ACSF) bubbled continuously with 95% O2 /5% CO2.  Purkinje cells or 

interneurons (molecular layer) of lobule 4/5 or 6 in cerebellar slices were visually identified based 

on their size, shape and location using a NIKON E600FN upright microscope equipped with 

Nomarski optics (x 40 water immersion objective).  For recording of action potential (AP) firing, 

the recording electrodes had a resistance of 3-6 MΩ when filled with the potassium gluconate 

(K-Gluconate)-based pipette solution consisted of (in mM): 140, K-gluconate; 4, NaCl; 0.5, CaCl2; 

10, HEPES; 5, EGTA, 5 phophocreatine; 2, Mg-ATP and 0.4, GTP (pH 7.2-7.3 adjusted with KOH).  

Repetitive firing pattern and frequency of APs of individual neurons were examined using whole 

cell current-clamp recording technique. Repetitive AP firing was evoked by injections of a series 

of 1500 ms depolarizing currents varying from -60 pA to 180 pA at 10 pA-step from their resting 
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membrane potentials.  For recording spontaneous synaptic responses in Purkinje cells, whole cell 

voltage-clamp recording techniques were used with two different pipette solutions. For 

recording spontaneous inhibitory postsynaptic currents (sIPSCs), the pipette solution consisted 

of (in mM): 140, CsCl; 4, NaCl; 0.5, CaCl2; 10, HEPES; 5, EGTA, 2, Mg-ATP and 0.4, GTP (pH 7.3 

adjusted with CsOH).  sIPSCs were recorded at a holding potential of -70 mV in the presence of 

6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 µM) and amino-5-phosphonopentanoic acid 

(APV, 50 - 100 µM) in the external solution to block glutamate receptor-mediated synaptic 

responses. For recordings of miniature IPSCs (mIPSCs), 0.5 μM tetrodotoxin (TTX) was added 

subsequently to the external solution in addition to CNQX and APV to block spontaneous firing-

evoked release of neurotransmitters.  For recording spontaneous excitatory postsynaptic 

currents (sEPSCs), the pipette solution consisted of (in mM): 140, K-gluconate; 4, NaCl; 0.5, CaCl2; 

10, HEPES; 5, EGTA, 2, Mg-ATP and 0.4, GTP (pH 7.3 adjusted with KOH).  sEPSCs were recorded 

at a holding potential of -70 mV in the presence of bicuculline (10 μM) in the external solution to 

block GABAA receptor-mediated synaptic responses.  Similarly, miniature EPSCs (mEPSCs) were 

recorded in the presence of 0.5 μM TTX in the external solution in addition to bicuculline.  Signals 

were amplified with a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA) and filtered 

at 2-4 kHz and digitized at 20 kHz for off-line analysis.  Data were acquired with a Digidata 1440A 

interface and analyzed using pClamp10 offline.  All experiments were carried out at room 

temperature of 22-25 oC.  Data were analyzed offline as described previously (Brackenbury et al, 

2013). 

 

9. Statistics: 

Continuous variables with normal distribution were compared for significant differences 

using a 2-tailed student’s t-test or, in the case of synaptic puncta, repeated-measures ANOVA.  

The latter analysis was conducted in Graph Pad Prism 7.0.  Statistical significance of P < 0.05 is 

indicated by *.  P < 0.01 is indicated by **.  P < 0.001 is indicated by ***.   
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Results 

1. Scn1b-null mice exhibit an ataxic gait 

We used footprint analysis to characterize the abnormal gait phenotype of Scn1b null 

mice compared to wildtype littermates at P16 , an age at which the mice clearly show abnormal 

motor coordination (C. Chen et al., 2004).   Using this technique, we measured the stride 

length, stride width, and angle.  Stride lengths, measured from either hindlimb prints (Figure 

2.1C; wildtype, 38.4 + 1.36 mm vs. Scn1b-null, 34.3 + 1.32 mm; N = 9 wildtype and 8 null; P = 

0.577) or forelimb prints (Figure 2.1B; wildtype, 38.3 + 1.51 mm vs. Scn1b-null, 35.0 + 1.00 mm; 

N = 9 wildtype and 8 null; P = 0.451) were not significantly different between genotypes.  In 

contrast, Scn1b-null mice have greater stride widths, especially with the forepaws (Figure 2.1 D 

and E; wildtype hindpaw, 18.9 + 0.86 mm vs. Scn1b-null hindpaw, 20.6 + 0.85 mm; N = 9 

wildtype and 8 null; P = 0.19; wildtype forepaw, 11.3 + 0.38 mm vs. Scn1b-null forepaw, 17.5 + 

1.00 mm; N = 9 wildtype and 8 null; P < 0.000).  We found that Scn1b-null mice walk with their 

forepaws nearly at the same width as their hindpaws.  As expected, wildtype mice walk with a 

substantially wider hindpaw stance than forepaw stance (cite previous work).  Thus, the ratio 

between forepaw and hindpaw widths is significantly higher, closer to 1.0, for Scn1b-null mice 

compared to wildtype (Figure 2.1F; wildtype ratio, 0.60 + 0.017; Scn1b-null ratio, 0.85 + 0.027; 

N = 9 wildtype and 8 null, P = 0.000). Scn1b-null mice are considerably smaller than their 

wildtype littermates at comparable ages (Chen 2004), thus we dissected and measured the 

lengths of the humerus and femur bones to incorporate these differences into the analysis of 

forelimb and hindlimb gait, respectively.  Bone lengths were significantly shorter in Scn1b-null 

compared to wildtype mice.  Scn1b-null femurs were 8% shorter (wildtype, 9.79 + 0.14 mm vs. 

Scn1b-null, 9.04 + 0.23 mm; N = 6; P = 0.019).  Scn1b-null humeri were 5% shorter (wildtype, 

8.67 + 0.06 mm vs. Scn1b-null, 8.20 + 0.14 mm; N = 6; P = 0.011).  We next normalized the data 

for stride widths to the relevant limb bone to obtain a more accurate idea of the positioning of 

the limbs during walking. We found that Scn1b-null mice exhibit a significantly wider stance 

with both the forepaws, adjusted for humerus length (wildtype, 1.00 + 0.03 vs. Scn1b-null, 1.64 

+ 0.09; N = 9 wildtype and 8 null; P = 0.000) and the hindpaws, adjusted for femur length 

(wildtype, 1.00 + 0.05 vs. Scn1b-null, 1.18 + 0.05; N = 9 wildtype and 8 null; P = 0.016).  Finally, 
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we measured the angle formed by 3 consecutive steps made by each mouse.  In agreement 

with the observed difference in width of forepaw and hindpaw stances between genotypes, we 

found significantly different angles of forepaw steps (Figure 2.1G; wildtype, 116.8o + 3.08o vs. 

Scn1b-null, 87.8o + 3.39o; N = 9 wildtype and 8 null; P = 0.000) and hindpaw steps (Figure 2.1H; 

wildtype, 89.6o + 3.72o vs. Scn1b-null, 79.3o + 2.93o; N = 9 wildtype and 8 null; P = 0.048).  The 

Scn1b-null forepaw and hindpaw angles of step were more similar to one another than the 

wildtype angles of step.  Consequently, the ratio between the forepaw angle and the hindpaw 

angle was significantly higher for wildtype than for Scn1b-null mice (Figure 2.1I; wildtype, 1.31 + 

0.028 vs. Scn1b-null, 1.11 + 0.23; N = 9 wildtype and 8 null; P = 0.000).  Taken together, gait 

analysis shows a significant difference in gait parameters between wildtype and Scn1b-null mice 

at P16, suggesting that Scn1b deletion may have consequences for cerebellar function.    
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Figure 2.1 Scn1b-null mice exhibit an ataxic gait.  A, Representative examples of footprint 
analyses from wildtype and null mice showing hindpaw prints in blue and forepaw prints in red.  
Hand-drawn lines connecting the paw prints were made in the corresponding colors.  B, Mean 
forepaw stride length.  C, Mean hindpaw stride length.  D, Mean ratio between each individual 
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animal’s forepaw and hindpaw stride length.  E, Mean forepaw stride width.  F, Mean hindpaw 
stride width.  G, Mean ratio between each individual animal’s forepaw and hindpaw stride 
width showing that Scn1b-null mice position their forepaws nearly as widely as their hindpaws 
in contrast to wildtype mice.  H, Mean forepaw step angle.  I, Mean hindpaw step angle.  J, 
Mean ratio between each individual animal’s forepaw step angle and hindpaw step angle 
illustrating that Scn1b-null mice have a similar angle of step between forepaws and hindpaws, 
while wildtype mice do not. 

 

2. Scn1b-null Purkinje cells and interneurons are hypoexcitable. 

Purkinje cells represent the sole efferent neurons from the cerebellar cortex.  Abnormal 

development or function of these cells can have dramatic effects on behavior, most notably 

motor coordination (Lalonde & Strazielle, 2007).  We measured action potential firing rates in 

Purkinje cells under current clamp with increasing ranges of injected current from 0 pA to 180 

pA.  As shown in Figure 2.2, we found an increase in the threshold to fire an action potential 

and a marked reduction in the frequency of firing in Scn1b-null Purkinje neurons in cerebellar 

slices across the range of currents.  12 of 26 Scn1b-null Purkinje cells examined failed to fire 

repetitively, while only 3 of 17 wildtype Purkinje cells failed to do so.  We also measured action 

potential firing rates in molecular layer interneurons in wildtype and Scn1b-null cerebellar 

slices, as shown in Figure 2.3.  These cells also had an increased threshold for firing an action 

potential and were hypoexcitable.  Figure 2.4 summarizes the mean frequencies of AP firing in 

Purkinje cells (top) and molecular layer interneurons (bottom) at a range of current injections 

from -60 pA to 180 pA.  Figure 2.5 A and B show the mean maximal firing rates measured in 

Purkinje cells and interneurons, respectively.  In both Purkinje cells and interneurons, the 

maximal firing rates are significantly reduced in Scn1b-null slices recordings.  We conclude that 

Scn1b is essential for the high-frequency activities which characterize these cerebellar cortical 

neurons.  
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Figure 2.2 Purkinje cells from Scn1b-null mice have an increased threshold and reduced firing 
frequency.  Representative traces showing evoked repetitive firing of Purkinje cells in cerebellar slices 
from wildtype (Left) and Scn1b-/- (Right) mice.  Repetitive AP firing was evoked by injections of 1500 ms 
pulse currents of -60 pA to +180 pA (only 20 pA -180 pA-evoked responses are shown). Note that 
stronger depolarizing current injections are required for evoking repetitive firing in Purkinje cells from 
Scn1b-/- mice. Each trace is a representative example of wildtype (n = 10) and Scn1b-/- (n = 14) mice.  
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Figure 2.3 Molecular layer interneurons from Scn1b-null mice have an increased threshold and reduced 
firing frequency.  Representative traces showing evoked repetitive firing of an interneurons in lobule 4/5 
in parasagittal cerebellar slices from wildtype (Left) and Scn1b-/- (Right) mice, respectively.  Repetitive 
AP firing was evoked by injections of 1500 ms pulse currents of -60 pA to +180 pA (only selected -60 pA 
to 50 pA-evoked responses are shown).  Note that stronger depolarizing current injections are required 
for evoking repetitive firing in interneurons from Scn1b-/- mice. Each trace is a representative example 
of WT (n = 3) and Scn1b-/- (n = 3) mice.  

 

Figure 2.4 Purkinje cells and interneurons from Scn1b-null mice show a reduction in AP firing 
frequency at all stimulation intensity. APs in Purkinje cells (A) or interneurons (B) from wildtype 
or Scn1b-/- neurons were evoked by injections of 1500 ms currents varying from -60 pA to 180 
pA.  The input–output curves were constructed as number of AP firing vs. stimulation intensity 
(current injection).  All values are mean± SE of individual recordings from wildtype (n = 10) and 
Scn1b-/- (n = 14) mice for Purkinje cells and 3 wildtype and Scn1b-/- mice, respectively, for 
interneurons. 
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Figure 2.5 Scn1b-null Purkinje cells and interneurons display reduced maximum firing 
frequencies.  A, Maximal frequency of APs in Purkinje cells evoked by current injections of -60 to 180 
pA.  B, Maximal frequency of APs in interneurons evoked by current injections of -60 to 180 pA.  Each 
value is a mean ± SEM of 10 – 14 mice (Purkinje cells) or 3 mice interneurons).  Differences between 
wildtype and Scn1b-/- mice are statistically significant, ***, p<0.005; ****, p<0.001, Student’s t-test. 

 

3. Scn1b-null Purkinje cells show aberrant bursting activity.   

In mice, Purkinje cells develop their complex dendritic morphology, synaptic 

connections, and mature firing patterns over the first three postnatal weeks (Joseph Altman, 

1972).  As shown in Figure 2.2, wildtype current clamp recordings showed sustained tonic firing 
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of single action potentials that increased in frequency with increased injections of current.  In 

Scn1b-null Purkinje cell recordings, we observed two instances of aberrant bursting activity.  

These two recordings, one from a cerebellar slice taken at P15 and one at P19, are displayed in 

Figure 2.6.  We did not observe this behavior in any of our age-matched wildtype control 

Purkinje cells.  This type of burst firing has been described previously in spontaneously firing rat 

Purkinje cells at P12 but not in adulthood (Cingolani, Gymnopoulos, Boccaccio, Stocker, & 

Pedarzani, 2002; Crepel, 1972).  In the previous report, it was uncovered that this type of firing 

pattern was dependent on small conductance Ca2+-activated K+ channels (SK channels), which 

are highly expressed during early postnatal ages but not in the adult cells (Cingolani et al., 

2002).  This bursting activity may represent an indication of a developmental delay in Purkinje 

cells in the absence of Scn1b.   

 

 

Figure 2.6 Scn1b-null Purkinje cells show aberrant bursting activity.  Two cases of burst firing 
seen in Scn1b-null Purkinje cells under current clamp.  We did not observe this behavior in any 
wildtype Purkinje cells from which we recorded action potentials. 
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4. Scn1b-null mice have morphologically normal Purkinje cells. 

We hypothesized that Scn1b-null Purkinje cells might have less mature morphological 

features compared to age-matched wildtype animals.  The cerebellar cortex is composed of 3 

histological layers: the Molecular Layer (ML), Purkinje cell layer, and granule cell layer.  Previous 

work has shown that Scn1b-null mice exhibit abnormal or delayed granule neuron migration 

into the Granule cell layer (Brackenbury et al., 2008, 2013).  Furthermore, we have previously 

reported abnormal pathfinding of many CGN axons, in the developing Scn1b-null mouse 

(Brackenbury et al., 2008, 2013).  However, in spite of these abnormalities, the Scn1b null 

cerebellar cortex largely develops normally comparably to wildtype littermates.  At P14, for 

example, the Scn1b-null cerebellar cortex appears normal in most respects, with a densely-

populated layer of granule cells overlayed by a single layer of Purkinje cell bodies, each 

extending a complex dendritic arbor into ML, complete with secondary and tertiary branches 

and populous dendritic spines.  We observed no difference between genotypes in the thickness 

of the Purkinje cell layer or the number of Purkinje cells, at P14 (Data not shown).  In order to 

determine whether there could be subtle structural differences in Scn1b-null Purkinje cells, we 

labeled parasaggital sections with anti-calbindin and measured Purkinje cell somatic surface 

areas, primary dendrite widths, and the angle at which the primary dendrites extend from the 

surface of the cells.  We found no significant difference in the surface area of Purkinje cell 

somata in lobule 4/5 between genotypes (wildtype, 2291 + 78 m2 vs. Scn1b-null, 2402 + 100 

m2; N = 6; P = 0.382, Table 2.1), lobule 6 (wildtype, 2175 + 60 m2 vs. Scn1b-null, 2035 + 86 

m2; N = 6; P = 0.186, Table 2.1), or lobule 8 (wildtype, 2476 + 55 m2 vs. Scn1b-null, 2343 + 80 

m2; N = 6; P = 0.174, Table 2.1).  We also found no significant difference in the width of the 

primary dendrites in lobule 4/5 between genotypes (wildtype, 3.69 + 0.19 m vs. Scn1b-null, 

3.45 + 0.18 m; N = 6, P = 0.382, Table 2.1), lobule 6 (wildtype, 3.36 + 0.15 m vs. Scn1b-null, 

3.35 + 0.11 m; N = 6, P = 0.959, Table 2.1), or lobule 8 (wildtype, 3.31 + 0.39 m vs. Scn1b-null, 

3.42 + 0.18 m; N = 6, P = 0.659, Table 2.1).  Finally, we found no significant difference in the 

angle of the primary dendrite between genotypes, with 90 o defined as perpendicular to the 
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Purkinje cell layer, in lobule 4/5 (wildtype, 76.68 + 1.51o vs. Scn1b-null, 78.75 + 1.17o; N = 6, P = 

0.300, Table 2.1), lobule 6 (wildtype, 71.55 + 1.88o vs. Scn1b-null, 75.93 + 2.11o; N = 6, P = 

0.154, Table 2.1), or lobule 8 (wildtype, 74.98 + 2.27o vs. Scn1b-null, 73.39 + 2.70o; N = 6, P = 

0.662, Table 2.1). In sum, Purkinje cells are largely comparable in morphology between 

wildtype and Scn1b-null mice. 

 

   Wildtype     Knockout   

 
Lobule 

4/5 Lobule 6 Lobule 8 
Lobule 

4/5 Lobule 6 Lobule 8 

Somatic surface area (m2) 2291 + 78 2175 + 60 2476 + 55 
2402 + 

100 2035 + 86 2343 + 80 

Primary dendrite width (m) 
3.69 + 
0.19 

3.36 + 
0.15 

3.31 + 
0.39 

3.45 + 
0.18 

3.35 + 
0.11 

3.42 + 
0.18 

Primary dendrite angle (o) 
76.68 + 

1.51 
71.55 + 

1.88 
74.98 + 

2.27 
78.75 + 

1.17 
75.93 + 

2.11 
73.39 + 

2.70 
 

Table 2.1 Scn1b-null mice have morphologically normal Purkinje cells. 

 

5. 1 is not post-synaptically enriched at excitatory synapses. 

Since many Ig-CAMs are localized to pre- and post-synaptic membranes where they are 

positioned to contribute to synaptic organization and function, we wondered where 1 

localizes with respect to synapses.  VGSC  and  subunits are enriched in rodent synaptosomal 

preparations (Beneski & Catterall, 1980; Robert P Hartshorne & Catterall, 1984; Robert P 

Hartshorne et al., 1982).  To ask whether 1 subunits are enriched in post-synaptic fractions of 

synaptosomes, we prepared homogenates from P14 wildtype mouse cerebellum and 

fractionated them as described in Methods.  Western blot analysis with anti-1 revealed that 

1 protein is expressed in the homogenate (H) and synaptosome (S) fractions.  To determine 

whether 1 is expressed post-synaptically, we isolated the post-synaptic density (PSD) fraction 

from these synaptosome preparations.  As shown in Figure 2.7, Western blot analysis showed 

that the PSD fraction strongly expresses the post-synaptic protein PSD-95 but not the pre-
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synaptic protein synaptophysin.  In comparison to the S fraction, the PSD fraction is almost 

completely depleted of 1.  This result suggests that 1 is not enriched post-synaptically in 

excitatory synapses of the mouse cerebellum, which express post-synaptic densities. In 

contrast, expression of 1 subunits at the Purkinje cell AIS, which is a post-synaptic target for 

basket cells, is well known (Kruger et al., 2016; Jyoti Dhar Malhotra et al., 2000; McEwen et al., 

2004).  Thus, a post-synaptic role for 1 at specific types of synapses cannot be ruled out. 

 

Figure 2.7 1 is not post-synaptically enriched.  Results of representative Western blots using 
anti-synaptophysin, anti-PSD95, and anti-1 antibodies in fractionated wildtype synaptosome 
preparations.  H = homogenate; S = synaptosome fraction; PSD = post-synaptic fraction 

 

6. Scn1b-null mice have normal density of parallel fiber-Purkinje cell synapses. 

The mossy fibers, afferent projections from outside of the cerebellum, form synaptic 

connections with CGNs.  During the first weeks of postnatal development, the CGNs project 

their axons outward through the molecular layer (ML) of the cerebellar cortex where they 

bifurcate to form the densely bundled parallel fibers (Eccles, 1967).  These axons interact with 

PC dendritic spines to form glutamatergic synapses, which can be specifically labeled with anti- 

Vglut1 antibodies.  We used anti-Vglut1 to evaluate the density of parallel fiber synaptic 

boutons in the outer ML of parasagittal cerebellar sections taken from wildtype and Scn1b-null 

mice at P14.   We found no difference between the genotypes in lobule 4/5 (Figure 2.8C; 
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wildtype, 9.8 + 0.59 puncta/100m3 vs. Scn1b-null, 8.2 + 0.49 puncta/100 m3; N = 6; P = 0.38), 

lobule 6 (Figure 2.8D; wildtype, 9.8 + 0.69 puncta/100 m3 vs. Scn1b-null, 8.5 + 0.54 puncta/100 

m3; N = 6; P = 0.56), or lobule 8 (Figure 2.8E; wildtype, 11.7 + 0.64 puncta/100 m3 vs. Scn1b-

null, 10.4 + 0.57 puncta/100 m3; N = 6; P = 0.51). 

 

Figure 2.8 Scn1b-null mice have a normal density of parallel fiber-Purkinje cell synapses.  A and 
B, representative images (180X), labeled with anti-calbindin (green) and anti-Vglut1 (red) 
antibodies, captured from the outer molecular layer of wildtype and knockout cerebellar 
cortex, respectively.  Scale bar = 20 m.  Graphs show the mean number of Vglut1+ puncta per 
100 m3 in wildtype and knockout lobules 4/5 (C), 6 (D), and 8 (E).  N = 6.  Error bars represent 
SEM. 

   

7. Scn1b-null mice have normal climbing fiber synapse density. 

The second afferent projection which forms excitatory synapses onto Purkinje cells is 

composed of the climbing fibers (Eccles, 1967).  In postnatal mouse development, these axons 

initially form synapses onto PC somata and major dendritic branches.   After about postnatal 

week 3, the somatic synapses are no longer present, and each PC is innervated by a single 



59 
 

climbing fiber (M. Watanabe & Kano, 2011).  The synapses formed by climbing fibers can be 

specifically labeled with anti-Vglut2 antibody.  Using this marker, we examined the quantity of 

climbing fiber synaptic puncta on both the PC somata and the PC primary dendrite in 

parasagittal cerebellar sections from wildtype and Scn1b-null mice at P14.  We found no 

significant difference in the density of somatic climbing fiber synaptic puncta in lobule 4/5 

(Figure 2.9C; wildtype, 1.16 + 0.15 puncta/100 m2 vs. Scn1b-null, 1.81 + 0.16 puncta/100 m2; 

N = 6; P = 0.10), lobule 6 (Figure 2.9D; wildtype, 1.74 + 0.19 puncta/100 m2 vs. Scn1b-null, 1.58 

+ 0.19 puncta/100 m2; N = 6; P = 0.75), or lobule 8 (Figure 2.9E; wildtype, 0.94 + 0.12 

puncta/100 m2 vs. Scn1b-null, 1.16 + 0.17 puncta/100 m2; N = 6; P = 0.61).  We also found no 

difference in the density of dendritic climbing fiber synaptic puncta in lobule 4/5 (Figure 2.9F; 

wildtype, 2.49 + 0.19 puncta/100 m2 vs. Scn1b-null, 3.02 + 0.23 puncta/100m2; N = 6; P = 

0.31), lobule 6 (Figure 2.9G; wildtype, 2.93 + 0.17 puncta/100 m2 vs. Scn1b-null, 3.08 + 0.23 

puncta/100 m2; N = 6; P = 0.68), or lobule 8 (Figure 2.9H; wildtype, 2.56 + 0.16 puncta/100 

m2 vs. Scn1b-null, 3.14 + 0.24 puncta/100 m2; N = 6; P = 0.46).  As the mouse cerebellar 

cortex develops, the climbing fibers extend outward into the ML along the PC dendritic arbors.  

To determine whether there is a defect in this process in the null mice, we measured the range 

of the Vglut2+ puncta and expressed it as a percentage of the total ML starting from the base of 

the PCs.  We observed no difference in this range between the genotypes in lobule 4/5 (Figure 

2.9I; wildtype, 68.1 + 2.4% vs. Scn1b-null, 68.9 + 1.7%; N = 4; P = 0.88), lobule 6 (Figure 2.9J; 

wildtype, 61.8 + 2.5% vs. Scn1b-null, 61.1 + 1.9%; N = 4; P = 0.92), or lobule 8 (Figure 2.9K; 

wildtype, 64.5 + 1.8% vs. Scn1b-null, 62.7 + 1.9%; N = 4; P = 0.67).  We conclude that climbing 

fiber-PC synapses develop normally in mice lacking Scn1b. 
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Figure 2.9 Scn1b-null mice have a normal density of climbing fiber synapses.  A and B, 
representative images (180X), labeled with anti-calbindin (green) and anti-Vglut2 (red) 
antibodies, showing Purkinje cell somata and proximal dendrites of wildtype and knockout 
cerebellar cortex, respectively.  Scale bar = 20 m.  Graphs C, D, and E show the mean density 
of Vglut2+ puncta per 100um2 of Purkinje cell somatic surface in wildtype and knockout lobules 
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4/5, 6, and 8, respectively.  Graphs F, G, and H show the mean density of Vglut2+ puncta per 
100um2 of Purkinje cell primary dendritic surface in wildtype and knockout lobules 4/5, 6, and 
8, respectively.   Graphs I, J, and K show the mean range of Vglut2+ puncta measured from the 
base of the Purkinje cell bodies outward toward the surface of the cerebellar cortex in wildtype 
and knockout lobules 4/5, 6, and 8, respectively.  N = 6.  Error bars represent SEM.    

 

8. Scn1b-null mice have comparable densities of GABAergic synapses formed between basket 

interneurons and Purkinje cell somata at P10 and at P14. 

Two classes of ML interneurons form GABAergic synapses with PCs, stellate cells and 

basket cells.  Situated adjacent to the PCs, the basket cells innervate their somata and proximal 

dendrites between about P7 and P18 in the mouse.  Basket cell axons extend collaterals that 

construct a specialized, basket-shaped structure directly onto the PC AIS called a Pinceau 

synapse (Bayer & Altman, 1987; Somogyi & Hámori, 1976).  This synaptogenic process begins at 

~P16 and remains incomplete until P30 or later (Ango, di Cristo, et al., 2004; Buttermore et al., 

2012).  While Scn1b-null mice do not survive long enough to form the Pinceau synapse, basket 

cells prolifically form synapses onto Purkinje cell somata earlier than the time of death in these 

mice.  In order to determine the contribution of 1 subunits to basket cell synapse-formation, 

we analyzed the number of VGAT+ puncta on the somatic surface of PCs at P10 and 14.  We 

found no significant difference in the density of GABAergic synaptic puncta in lobule 4/5 (Figure 

2.10C; wildtype, 3.70 + 0.31 puncta/100 m2 vs. Scn1b-null, 3.52 + 0.27 puncta/100 m2; N = 6; 

P = 0.67), lobule 6 (Figure 2.10D; wildtype, 3.54 + 0.42 puncta/100 m2 vs. Scn1b-null, 3.24 + 

0.27 puncta/100 m2; N = 6; P = 0.56), or lobule 8 (Figure 2.10E; wildtype, 2.58 + 0.14 

puncta/100 m2 vs. Scn1b-null, 3.12 + 0.45 puncta/100 m2; N = 6; P = 0.28) at P10.  In 

agreement, we found no significant differences in their density in lobule 4/5 (Figure 2.11C; 

wildtype, 2.99 + 0.13 puncta/100 m2 vs. Scn1b-null, 2.65 + 0.36 puncta/100 m2; N = 6; P = 

0.40), lobule 6 (Figure 2.11D; wildtype, 3.27 + 0.39 puncta/100 m2 vs. Scn1b-null, 2.65 + 0.34 

puncta/100 m2; N = 6; P = 0.26), or lobule 8 (Figure 2.11E; wildtype, 2.80 + 0.26 puncta/100 

m2 vs. Scn1b-null, 3.30 + 0.50 puncta/100 m2; N = 6; P = 0.40) at P14.  Viewed 

ultrastructurally at P14, wildtype and Scn1b-null synaptic boutons appear comparable in size 

and density.  Representative examples are shown in Figure 2.11 F and G.  Based upon these 
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experiments, we conclude that Scn1b is expendable for the formation of basket interneuron-

Purkinje cell synapses, in vivo.  However, a potential role in the organization of the Pinceau 

synapse cannot be evaluated. 

 

 

Figure 2.10 Scn1b-null mice have comparable densities of GABAergic synapses formed between 
basket interneurons and Purkinje cell somata at P10.  A and B, representative images (180X), 
labeled with anti-calbindin (green) and anti-Vgat (red) antibodies, showing Purkinje cell somata 
and proximal dendrites of wildtype and knockout cerebellar cortex, respectively.  Scale bar = 20 
m.  Graphs C, D, and E show the mean density of Vgat+ puncta per 100um2 of Purkinje cell 
somatic surface in wildtype and knockout lobules 4/5, 6, and 8, respectively.  N = 6.  Error bars 
represent SEM. 
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Figure 2.11 Scn1b-null mice have comparable densities of GABAergic synapses formed between 
basket interneurons and Purkinje cell somata at P14.  A and B, representative images (180X), 
labeled with anti-calbindin (green) and anti-Vgat (red) antibodies, showing Purkinje cell somata 
and proximal dendrites of wildtype and knockout cerebellar cortex, respectively.  Scale bar = 20 
m.  Graphs C, D, and E show the mean density of Vgat+ puncta per 100um2 of Purkinje cell 
somatic surface in wildtype and knockout lobules 4/5, 6, and 8, respectively.  N = 6.  Error bars 
represent SEM.  F and G show representative TEM images (50,000X) taken of GABAergic 
synaptic boutons on the surface of wildtype and knockout Purkinje cells, respectively.  Scale bar 
= 500 nm. 
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9. Molecular layer interneurons exhibit normal migration in the Scn1b-null cerebellar cortex 

Previous work has shown that Scn1b-null mice have defects in the migration of CGNs 

(Brackenbury et al., 2008, 2013).  It is possible that 1 also plays a role in the migration of other 

types of neurons.  Under normal conditions, interneurons migrate into the cerebellar cortex 

from the white matter during the first few postnatal days in mouse development.  By the end of 

the first postnatal week, they pass arrive in the ML and differentiate into mature, functional 

stellate or basket interneurons (Ango, di Cristo, et al., 2004; L. Zhang & Goldman, 1996).  Both 

types of ML interneurons express parvalbumin but not calbindin.  By contrast, PCs are 

detectable using both anti-parvalbumin and anti-calbindin antibodies.  Thus, we used these 

combined staining strategies to discriminate and quantify interneurons in parasagittal 

cerebellar sections from P14 wildtype and Scn1b-null mice.  We found no difference in the 

density of ML interneurons in lobule 4/5 (Figure 2.12C; wildtype, 48.94 + 5.05 cells/100,000 

m2 vs. Scn1b-null, 43.18 + 4.09 cells/100,000 m2; N = 4; P = 0.41), lobule 6 (Figure 2.12D; 

wildtype, 58.53 + 5.25 cells/100,000 m2 vs. Scn1b-null, 54.16 + 2.47 cells/100,000 m2; N = 4; 

P = 0.48), or lobule 8 (Figure 2.10=2E; wildtype, 72.13 + 9.34 cells/100,000 m2 vs. Scn1b-null, 

67.09 + 1.10 cells/100,000 m2; N = 4; P = 0.61).  We also measured the distance of migration of 

the interneurons into the ML.  Starting from the base of the PC bodies and expressed as a 

percentage, we detected no difference in the mean distance between genotypes in lobule 4/5 

(Figure 2.12F; wildtype, 37.3 + 1.8% vs. Scn1b-null, 40.3 + 1.3%; N = 4; P = 0.22), lobule 6 (Figure 

2.12G; wildtype, 42.8 + 2.9% vs. Scn1b-null, 40.3 + 2.8%; N = 4; P = 0.56), or lobule 8 (Figure 

2.12H; wildtype, 40.3 + 1.3% vs. Scn1b-null, 38.0 + 2.4%; N = 4; P = 0.43).  Thus, there are no 

overt migration defects in ML interneurons in the Scn1b-null cerebellar cortex. 
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Figure 2.12 Molecular layer interneurons exhibit normal migration in the Scn1b-null cerebellar 
cortex.  A and B, representative images (20X), labeled with anti-calbindin (green) and anti-
parvalbumin (red) antibodies, from wildtype and null (KO) cerebellar cortex, respectively.  Scale 
bar = 50 m.  Graphs C, D, and E show the mean density of molecular layer interneurons (MLI) 
in wildtype and knockout lobules 4/5, 6, and 8, respectively.  Graphs F, G, and H show the mean 
range of MLIs measured from the base of the Purkinje cell bodies outward toward the surface 
of the cerebellar cortex in wildtype and null lobules 4/5, 6, and 8, respectively.  N = 4.  Error 
bars represent SEM. 
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Discussion 

As the sole efferent projections from the cerebellar cortical network, Purkinje cells are 

critical to all cerebellar functions.  This is particularly evident when considering spontaneous 

mutant mice with substantial malformation of the cerebellar cortex.  Examples include Lurcher 

and Staggerer, which carry unrelated mutations that converge upon a profound loss of Purkinje 

cells (Caddy & Biscoe, 1979; Fortier et al., 1987; Lalonde, 1987; Lalonde et al., 1996; Sonmez & 

Herrup, 1984; Zuo et al., 1997).  Another mutant, Weaver, undergoes early postnatal 

degeneration of granule neurons, which ultimately exert their effects through stimulation of 

Purkinje cell activity (Goldowitz & Smeyne, 1995; Signorini et al., 1997).  Ataxia is common to all 

such mutants, and is the most common behavioral outcome associated with cerebellar 

dysfunction (Lalonde & Strazielle, 2007).  Importantly, it is not necessary to lose large quantities 

of cells within the cerebellar cortex in order to have a consequent ataxic gait.  Contactin-null 

mice, for example, have a progressive ataxic gait which correlates with micro-organizational 

defects not dissimilar from those observed in Scn1b-null mice, namely aberrant axon 

pathfinding and fasciculation in the parallel fibers (E O Berglund et al., 1999; Brackenbury et al., 

2010, 2013).  Contactin is an Ig-CAM, a binding partner for 1, and Cntn1-null mice have 

reduced expression of 1 protein in the brain (Brackenbury et al., 2010).  It is not clear whether 

the micro-organizational defects seen in either of these mutants are responsible for the gait 

abnormalities they exhibit.  Indeed, involvement of the cerebellum in the motor phenotypes of 

DS patients has been questioned (Scheffer, 2012).  The main difference between wildtype and 

Scn1b-null walking gait is a significant spreading out of the limbs, especially the forelimbs.  This 

widened stance is a common feature of cerebellar ataxia (Lalonde & Strazielle, 2007), but is not 

sufficient to directly implicate the cerebellum. 

Current clamp experiments in Purkinje cells demonstrate firing deficits in the absence of 

Scn1b.  Such hypoexcitability could be the consequence of reduced functional synaptic inputs, a 

change in the balance between excitation and inhibition at such inputs, or reflect an intrinsic 

deficit in the Purkinje cells themselves.  We also observed bursting activity which could reflect a 

developmental delay in at least a subset of Scn1b-null Purkinje cells.  We used 

immunohistochemistry to distinguish specific classes of synapses converging onto the surface of 
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Purkinje cells in wildtype and Scn1b-null brain sections.  We found no reduction in the apparent 

density of excitatory or inhibitory synapses.  This is in agreement with the lack of strong 

immunoreactivity for 1 in the post-synaptically enriched fraction of cerebellar synaptosomes 

analyzed by Western blot.  1 localizes to axons, especially at nodes of Ranvier and AISs 

(Brackenbury et al., 2010; C. Chen et al., 2004; Wimmer et al., 2010).  The Purkinje cell AIS, 

notably, is highly enriched in 1(Brackenbury et al., 2010; Kruger et al., 2016), along with Ig-

CAM heterophilic partners such as NF186 and AnkyrinG (Jyoti Dhar Malhotra et al., 2000; 

McEwen & Isom, 2004).  It is also detectable at axon growth cones in developing neurons, 

including CGNs (Brackenbury et al., 2008).  Thus, 1 is likely present at presynaptic terminals.  

However, in the present study we did not observe a significant reduction in Vglut1+ parallel 

fiber synaptic specializations.  Thus, we conclude that Scn1b is not critical for the formation of 

synapses between Purkinje cells and their most prominent innervating partners.  Antibodies 

which detect 1 are not of sufficiently high affinity to detect low levels of expression outside of 

the AIS and nodes of Ranvier (C. Chen et al., 2012; Kruger et al., 2016).  However, basket 

interneurons form Vgat+ synapses onto the somata, proximal dendrites, and ultimately the AIS 

of their target Purkinje cells (Ango, di Cristo, et al., 2004; Buttermore et al., 2012).  Thus, 1 is in 

position to have a post-synaptic adhesive function in the organization of the Pinceau synapse.  

Because this specialized synapse does not fully form until much later in development than 

Scn1b-null mice survive, we were not able to assess its formation in this model.  Finally, 1 is 

known to have a role in the localization of VGSC  subunits (Brackenbury et al., 2010).  Perhaps 

Purkinje cell hypo-excitability in Scn1b-null brain slices can be accounted for by a reduction in 

the number of functional Na+ channels on the cell surface and clustered at the AIS, resulting in a 

failure to produce supra-threshold currents and fire action potentials with fidelity.  This is an 

attractive hypothesis, given the findings of the current study.  [3H]-Saxitoxin binding provides a 

quantitative method for examining the number of VGSC  subunits expressed in a sample 

(McEwen & Isom, 2004; Patino et al., 2011).  Carried out in membranes collected from wildtype 

and Scn1b-null cerebellum, this experiment will be highly informative.  A significant reduction in 

 subunits could, at least in-part, explain the reduced excitability displayed by neurons in the 

cerebellar cortex in the absence of Scn1b. 
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Homozygous SCN1B loss-of-function mutations have been shown to cause the Dravet 

syndrome in previous reports (Ogiwara et al., 2012; Patino et al., 2009).  The Scn1b-null mouse 

is a model of this rare form of Dravet syndrome.  It remains unknown whether a common 

mechanism exists between SCN1A- and SCN1B-linked syndromes.  Under most circumstances, 

Dravet syndrome presents with febrile seizures during the first years of life.  Subsequently, 

patients exhibit seizures and episodes of status epilepticus even in the absence of fever (Surges 

& Sander, 2012).  Cognitive development slows or stagnates in the young children, and as they 

age, they show a progressive ataxic gait (Scheffer, 2012).  Our previous results showing micro-

organizational defects in the Scn1b-null cerebellar cortex, together with the mouse’s gait defect 

and dysfunctional Purkinje cell excitability point to the potential for a cerebellar role in the 

pathology of SCN1B-linked epileptic encephalopathy (Brackenbury et al., 2008, 2013).  In 

addition to motor functions, it has become clear in recent years that the cerebellum serves 

functions in cognition, including language perception, memory, and temporal ordering 

(Noroozian, 2014).  Importantly, clinical evidence has been gathered that suggests a cerebellar 

role in the neuropsychological profile of Dravet syndrome patients (Battaglia et al., 2013).  

Substantial deficits are visible in both the form and the function of Scn1b-null cerebellar cortex, 

warranting further investigation into the potential importance of this structure in the pathology 

of epilepsy disorders including Dravet syndrome.  
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Chapter III 

 

Conclusions and Future Directions 

 

 
1. Introduction 

Previous work from our lab showed neuronal migration and fasciculation defects in 

Scn1b-null cerebellum (Brackenbury et al., 2008, 2013).  Here, we show that Scn1b deletion 

leads to substantially reduced firing activity in Purkinje cells and interneurons as well as micro-

organizational defects in the mouse cerebellar cortex. Consistent with these results, Scn1b-null 

mice exhibit an abnormal gait. In spite of this, our data also suggest that structural formation of 

the major classes of synapses within this circuit is preserved in Scn1b-null mutants. 

Homozygous SCN1B loss-of-function mutations in humans are linked to the severe epileptic 

encephalopathy Dravet syndrome (O’Malley & Isom, 2015).  This chapter will build a case for 

the possible role of cerebellar dysfunction in the hallmark symptoms of Dravet syndrome and 

related diseases, namely ataxia, cognitive impairment, and possibly seizures.  Further, I will 

propose potential functional roles for sodium channel 1 subunits with regard to regulating the 

expression of NaV1.6 at key subcellular locations, because this VGSC  subunit is characterized 

by the passage of persistent current and has previously been shown to be deficiently-expressed 

at the Scn1b-null Purkinje cell axon initial segment (AIS) (Brackenbury et al., 2010).  Finally, a 

prescription for future studies directed at the cerebellum will be proposed for continued work 

toward understanding the developmental and functional mechanisms underlying the pathology 

associated with SCN1B-linked epileptic encephalopathy and related disorders.  

 

2. Scn1b in cerebellar cortex development 
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Previous investigations have revealed that Scn1b-null mice have micro-organizational 

defects in the postnatal cerebellar cortex (Brackenbury et al., 2008, 2013).  These include a 

delay in granule cell migration, abnormal axon targeting and fasciculation of the parallel fibers.  

These processes rely on adhesive interactions between granule cells and Bergmann glia.  In 

Scn1b-null mice, the Bergmann glia are similar in density and morphology to those of wildtype 

mice (unpublished observations).  Furthermore, the Purkinje cell layer of Scn1b-null mice forms 

normally by P14, and Purkinje cell morphology does not appear to be significantly different 

from wildtype (Table 2.1).  These cells are comparable in number, and they have similar somatic 

surface area and primary dendrite width as wildtype littermates.  The molecular layer 

interneurons are also similar in number and position in P14 wildtype and Scn1b-null mice 

(Figure 2.12).  Largely, the layers of the cerebellar cortex form on a comparable timeline with 

that of wildtype mice.  Thus, there are specific abnormalities in the organization of the 

postnatal cerebellar cortex in mice deficient in Scn1b, but the layers, cellular constituents, and 

lobules of these mutants are largely normal.   

With spontaneous mutation models such as Lurcher and Staggerer in mind, one might 

not expect to observe meaningful behavioral phenotypes from the relatively mild 

developmental abnormalities seen in contactin-null and Scn1b-null mice (Lalonde & Strazielle, 

2007).  Indeed, the former mutants undergo losses of entire classes of cells, including the 

millions of granule cells and the projectors of the sole output from the cerebellar cortical 

circuit, the Purkinje cells.  As expected, these mice show profound motor abnormalities.  Can 

the axon pathfinding and cell migration defects observed throughout postnatal development in 

Scn1b-null mice fully account for their apparent ataxic gait?  Recent data in our laboratory 

might provide an answer to this question.  SLICK mice express Cre-recombinase under the 

direction of the neuron-specific Thy-promoter, in a tamoxifen-dependent manner (Young et al., 

2008).  Breeding these mice with our Scn1bFlox/Flox mutants (Chen et al., 2007) produces SLICK/ 

Scn1bFlox/Flox pups, which develop and survive with no overt abnormalities.  However, injection 

of tamoxifen at any time point causes a severe and progressive behavioral phenotype and 

death within two weeks (Chen, Hull, and Isom, unpublished results).  This phenotype includes 

severe, spontaneous seizures, ataxia, and episodic limb paralysis.  Importantly, performing this 
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experiment in adult mice older than P30 allows the cerebellar cortex to develop normally, well 

after the migration of granule cells into the internal granule layer and the extension and 

pathfinding of their axonal projections has taken place.  This finding strongly suggests that 

developmental abnormalities in cerebellar micro-organization are not necessary for loss of 

Scn1b to produce motor abnormalities.  Thus, it now seems likely that functional deficits in 

neurons arising from the acute loss of 1, e.g. loss of sodium channels at the cell surface 

resulting in decreased sodium current, lead directly to circuit-level abnormalities and the severe 

phenotypes which result in death.   

 

3. Ataxia in Scn1b-null mice   

 

Ataxia, characterized by a significantly widespread walking stance and a lack of motor 

coordination in humans and in mice, is common to spontaneous and transgenic mutant mice 

with developmental defects or cell degeneration in the cerebellum (Lalonde & Strazielle, 2007).  

It also occurs in association with micro-organizational defects such as those seen in contactin-

null mice (E O Berglund et al., 1999).  Our gait analysis in Scn1b-null juvenile mice showed that 

they walk with a sprawled, widened stance.  This is especially apparent with regard to the front 

paws, which are positioned more closely to the body in control mice.  The hind paws, too, show 

greater width in the walking gait of Scn1b-null mice.  Together, the developmental defects that 

have been described in the Scn1b-null cerebellar cortex and the functional deficits measured in 

Scn1b-null Purkinje cells, build a compelling case for the involvement of the cerebellum in the 

ataxic gait seen in these mice. 

In addition to gait analysis, a variety of behavioral tests have been developed to 

investigate the motor coordination of mouse mutants exhibiting ataxia.  Among these, the 

vertical grid, stationary beam, suspended wire, and rotorod tests use the measure of latency to 

fall from the apparatus to compare motor coordination abilities amongst mice (Lalonde & 

Strazielle, 2007).  Distance travelled along the stationary beam can also be measured.  The 

rotorod requires mice to synchronize their walking pace with the rate of the device’s rotation 

(Lalonde & Strazielle, 2007).  These methods have been applied to many spontaneous and 
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transgenic ataxic mutants at juvenile ages, comparable to the survivable age of Scn1b-null mice.  

Lurcher, Staggerer, Reeler, and Weaver mice all have a reduced latency to fall from round 

stationary beams when compared to wildtype controls.  Furthermore, all four of these 

spontaneous mutants fell sooner when suspended from a coat-hanger and showed significantly 

poorer performance on the rotorod (Lalonde & Strazielle, 2007).  In contrast to these mutants, 

SCA1 transgenic mice begin to show abnormal performance on the rotorod starting at five 

weeks of age, at the onset of Purkinje cell pathology (H. Clark et al., 1997).  Unfortunately, tests 

such as these are not feasible for evaluating Scn1b-null mouse behavior.  Their small body size 

and frequent seizures would provide a considerable confound to such analyses.  Later in this 

discussion, I will propose experiments to address this limitation and permit the evaluation of 

Scn1b’s role in motor and other behavioral phenotypes that may be caused by cerebellar 

dysfunction. 

 

4. Scn1b in synapse-formation 

 

CAMs are involved in the formation of synapses.  These proteins accumulate at 

presynaptic and postsynaptic sites and direct the formation and stabilization of nascent 

synapses during development.  This is accomplished by means of organizing the assembly of 

signaling molecules, neurotransmitter receptors, and cytoskeletal components in addition to 

adhering membrane components between the two cells forming the synapse.  Among the 

CAMs involved in synaptogenesis are cadherins, neurexins and neuroligins, CAMs containing 

leucine-rich repeats (LRRs), ephrins and Eph receptors, and Ig-CAMs, a family of proteins with 

particular relevance to the study of VGSC 1 and 1B.  Ig-CAMs with important synapse-

formation functions include NCAM, L1, CHL1, contactins, and others.  These examples are 

highlighted because they contain extracellular Ig-loops of the V-type, which is also common to 

the VGSC  subunits (L L Isom et al., 1995).  NCAM, neural cell adhesion molecule, plays a 

number of well-characterized roles at synapses, including in their formation, maturation, and 

function.  NCAM is expressed both pre- and post-synaptically.  It interacts homophilically as well 

as heterophilically with other molecules, including 1-spectrin, and directs the conversion of 
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cell-cell contacts into functional synapses (Sytnyk et al., 2002).  Hippocampal culture 

experiments from NCAM-null mice revealed reduced excitatory synapse numbers, decreased 

PSD size, and reduced expression of PSD-associated proteins (Dityatev, Dityateva, & Schachner, 

2000; Sytnyk, Leshchyns’Ka, Nikonenko, & Schachner, 2006).  L1-null mice have fewer 

perisomatic inhibitory synapses in the hippocampus and abnormalities at presynaptic terminals 

when viewed ultrastructurally (Saghatelyan et al., 2004).  Like VGSC 1, L1 has been shown to 

interact intracellularly with ankyrin.  Loss of this interaction resulted in impairments in 

perisomatic GABAergic synapses in the cingulate cortex (Guan & Maness, 2010).  Neurofascin is 

a member of the L1-CAM subfamily that is involved in GABAergic synapse formation between 

basket interneurons in the cerebellar cortex and Purkinje cells.  Like L1, neurofascin-mediated 

synapse-formation depends on interactions with ankyrin (Ango, di Cristo, et al., 2004).  CHL1, 

close homolog of L1, is another related Ig-CAM with a role in inhibitory synaptogenesis.  Unlike 

L1-null mice, CHL1-null mice have an increased number of inhibitory synapses in the 

hippocampus.  These synapses also have increased size and density of active zones (Nikonenko 

et al., 2006).  Contactins are a subfamily of Ig-CAMs that are GPI-anchored to the extracellular 

membrane.  Contactin-6 is expressed at presynaptic membranes.  Mice deficient in contactin-6 

were found to have a reduced number of excitatory presynaptic terminals in the hippocampus 

and cerebellum (K. Sakurai et al., 2009; K. Sakurai, Toyoshima, Takeda, Shimoda, & Watanabe, 

2010).   

Our investigation into the potential roles of Scn1b in the formation of synapses during 

development was focused on the cerebellar cortex.  The decision to examine this brain 

structure was informed by a number of advantages that it offers.  First, the murine cerebellar 

cortical network largely develops postnatally.  This affords the opportunity to characterize the 

processes of synaptogenesis without sacrificing the pregnant mothers.  It also likely limits the 

investigation to the functions of 1, which is expressed in the postnatal cerebellum at a much 

higher level than the splice variant 1B (Patino et al., 2011).  Second, the cerebellar cortex of 

the Scn1b-null mouse is known to have micro-organizational defects that occur 

contemporaneously with the formation of synapses during development (Brackenbury et al., 

2008, 2013).  These abnormalities are especially relevant to the glutamatergic synapses formed 
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between the parallel fibers and Purkinje cell dendritic spines in the molecular layer because 

these axonal projections have pathfinding defects and defasciculation in the mutants at the 

same age-range examined in the present study.   Moreover, the granule cells which extend 

those projections also have delayed migration throughout that age-range (Brackenbury et al., 

2008, 2013).  This observation might lead to the prediction that fewer parallel fiber synapses 

would have formed in the Scn1b molecular layer than in that of age-matched controls.  Cultured 

cerebellar granule neurons express 1 protein at the axon growth cone, which potentially 

positions 1 pre-synaptically to interact with postsynaptic targets and play a role in cell-cell 

adhesion at points of contact (Brackenbury et al., 2010).  Third, Scn1b-null mice, like contactin-

null mice, have an apparent ataxic gait, which could correspond to defects in cerebellar 

development (E O Berglund et al., 1999).  Thus, further investigation of the cerebellum was 

warranted by the behavioral phenotype exhibited by the mutants.  Since Purkinje cell 

projections represent the only output from the massive circuitry of the cerebellar cortex, and 

all of the cell types that make up this circuit ultimately influence behavior by means of directly 

or indirectly acting through synapses with Purkinje cells, it follows that significant differences in 

the number of one or more classes of these synapses in Scn1b-null mutants could contribute to 

their ataxic gait.  Fourth, the simple 3-layered structure and limited number of cell types that 

make up the cerebellar cortex provide advantages for experimental design.  Previous in vivo 

studies have laid the groundwork for studying the various classes of synapses within this 

structure (Fritschy, 2006; E. M. Johnson, Craig, & Yeh, 2007; Qiao et al., 2013; K. Sakurai et al., 

2009; B. Zhang et al., 2015).  These studies have identified antibody markers, namely anti-

Vglut1, anti-Vglut2, and anti-Vgat, which target distinct classes of presynaptic specializations.  

These markers label the excitatory parallel fiber synapses formed between granule cells and 

Purkinje cell dendritic spines, excitatory climbing fiber synapses which initially form on the 

somatic surface of Purkinje cells and subsequently translocate to the major dendritic branches 

of Purkinje cells, and the inhibitory synapses formed between stellate and basket cells in the 

molecular layer and Purkinje cells, respectively.  This enables the isolation of distinct classes of 

synapses composed of known neuronal partners, and a number of researchers have previously 

taken advantage of this feature.   
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Our synaptosome-fractionation results strongly suggest that 1 protein is not expressed 

to a great extent at glutamatergic postsynaptic sites in the cerebellum.  The vast majority of 

synaptically-enriched proteins isolated from the cerebellum should correspond to the 

excitatory synapses formed between parallel fibers and Purkinje cells.  Purkinje cells receive 

thousands of these connections from the granule cells of the internal granule layer, which are 

the most densely-populated and numerous neurons in the brain.  In contrast, GABAergic 

synapses, which are far fewer in number, would not be expected to be well represented in 

postsynaptic fractions collected from synaptosome preparations because they do not possess 

the insoluble PSD proteins which characterize these fractions.  Thus, while it is likely that 1 is 

not highly present at glutamatergic synapses, we cannot yet make the conclusion that 1 is not 

enriched at GABAergic synapses, such as those formed between basket cells and Purkinje cell 

somata.  Further, we know that 1 is strongly expressed at the Purkinje cell AIS and likely on 

the somatic surface, where it may be involved in post-synaptic functions (C. Chen et al., 2012; 

Kruger et al., 2016).  The third class of synapses, those formed by the climbing fibers, would be 

expected to be represented in the synaptosome fractions enriched for PSD components.  

However, the relatively small number of climbing fiber synapses may be overwhelmed in the 

synaptosome preparation by the extremely high density of parallel fiber synapses that a specific 

expression of 1 at the postsynaptic membrane of climbing fiber synapses would not appear in 

the results of a Western blot experiment.  Thus, we cannot conclude with any confidence that 

1 is absent from climbing fiber synapses.  With the future development of higher quality anti-

1 antibodies, immuno-EM experiments will be able to solve these important questions. 

The expression of 1 protein at pre-synaptic membranes in the cerebellum remains 

undetermined.  Evidence suggests that this is a strong possibility.  Cultured CGNs express 

detectable levels of 1 at the axon growth cone, which would allow it to participate in 

homophilic or heterophilic adhesive interactions upon contact with a post-synaptic target 

(Brackenbury et al., 2010).  Expression of 1 in axonal projections extended from granule cells 

in vivo is compellingly, though indirectly, indicated by the robust defasciculation visible in IHC-

labeled parallel fibers (Brackenbury et al., 2008, 2013).     
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The inability of available antibodies to detect low or moderate concentrations of 

subunit proteins by IHC presents a substantial experimental limitation.  Current antibodies are 

only able to reliably show 1 at nodes of Ranvier and the AIS, where the protein is most densely 

expressed in neural tissue.  A transgenic mouse line being generated in our lab expressing 

carboxyl-terminal V5 epitope-tagged 1 subunits will enable us to delineate the localization of 

this protein with much greater acuity than what has been possible up to this point (Chen and 

Isom, unpublished results).  Such a mouse will allow for the dual-labeling of pre- and 

postsynaptic proteins with an anti-V5 antibody to determine with confidence whether 1 is 

present at these sites within neurons, including basket cells and Purkinje cells.   

We compared the densities of all three classes of synapses formed with Purkinje cells in 

three separate lobules, lobule IV, lobule VI, and lobule VIII of postnatal Scn1b-null and wildtype 

mice, and found that there were no significant differences.  It remains possible that Scn1b-

encoded proteins have some impact on the formation of cerebellar synapses but that other, 

perhaps more consequential synaptic organizing molecules have dominant or redundant 

capacities.  Moreover, a role for 1 in organizing or modulating the functional machinery of 

these synapses remains untested. 

Of particular interest are the basket cell synapses that initially form on the somata and 

proximal dendritic arbors of the Purkinje cells and then subsequently move to construct the 

elaborate pinceau synapse that engulfs their target’s AIS.  Because 1 subunits are located at 

the Purkinje cell axon initial segment (Buffington & Rasband, 2013; C. Chen et al., 2012), 

pinceau synapses may be affected by Scn1b deletion. Importantly, the 1 binding partners 

neurofascin (McEwen et al., 2004), the VGSC  subunit NaV1.6 (Brackenbury et al., 2010), and 

the cytoskeletal adaptor protein ankyrin-G that regulates the targeting and formation of this 

special GABAergic synapse (Ango, di Cristo, et al., 2004; Buttermore et al., 2012) are enriched at 

the Purkinje cell AIS.  Neurofascin, an Ig-CAM related to L1, is expressed in basket cell axonal 

projections as well as the somatic surface and AIS of developing Purkinje cells, where it 

coordinates the localization and formation of the pinceau synapse (Ango, di Cristo, et al., 2004; 

Buttermore et al., 2012).  Due to early mortality of Scn1b-null mice, the pinceau synapse does 

not fully form in this model.  This prevents us from characterizing the role that Scn1b-encoded 
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proteins may play in development of this synapse.   Our recent experiments utilizing SLICK/ 

Scn1bFlox/Flox mice, injected with tamoxifen in young adulthood, result in severe phenotypes, 

including progressive motor abnormalities (Chen, Hull, and Isom, unpublished observations).  

Since this experimental model permits normal expression of 1 throughout the time period 

during which pinceau synapses form, it suggests that their improper development is not 

responsible for the ataxia that occurs in Scn1b-null mutants.  Nevertheless, 1 may play an 

undiscovered role in the formation or maintenance of these synaptic complexes.   

  

5. Scn1b in the function of the cerebellar cortex 

 

It is not necessary for the number of apparent structural synapses to differ significantly 

between Scn1b-null mutants and wildtype littermates in order for there to be a direct or 

indirect function for/1B at cerebellar synapses.  1/1B may have roles in synaptic function 

without being necessary for their structural formation.  Precedent for this is found in the Ig-

CAM literature.  For example, NCAM impacts the targeting of NMDA receptors and other PSD 

components (O. Bukalo, 2004; Muller et al., 1996).  In addition, NMDA receptor-dependent 

forms of long-term potentiation (LTP) and long-term depression are impaired in some brain 

areas in NCAM-null mice (O. Bukalo, 2004; Muller et al., 1996).  In terms of presynaptic 

function, NCAM-null mice have defects in some types of neurotransmitter release (Chan et al., 

2005).  These mutants also have deficits in paired-pulse facilitation (PPF), at least at 

neuromuscular junctions (Rafuse, Polo-Parada, & Landmesser, 2000).  Researchers have 

observed impairment of LTP at selective perforant path synapses in the hippocampus of L1-null 

mice (Olena Bukalo & Dityatev, 2012).  Mice deficient in the closely related CHL1, have reduced 

LTP in CA1 (Nikonenko et al., 2006).  Contactin-null mice have selective defects that reflect the 

involvement of contactin in pre- as well as post-synaptic functions.  These include impaired LTD 

in CA1 pyramidal neurons and impaired PPF mediated by AMPA receptors (Murai, Misner, & 

Ranscht, 2002).  Thus, members of the Ig-superfamily of CAMs are widely involved in synaptic 

functions such as synaptic plasticity. 
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1 may be necessary for the normal function of one or more classes of synapses that 

influence the behavior of Purkinje cells.  This is one possible explanation for the reduced 

excitability seen in Scn1b-null Purkinje cell whole-cell recordings, and it is not inconsistent with 

other data we have collected.  First, we found no difference in the number of parallel fiber, 

climbing fiber, or interneuronal synapses formed with Purkinje cells in wildtype and Scn1b-null 

cerebellar cortex.  Secondly, our experiments in SLICK/ Scn1bFlox/Flox mice, injected with 

tamoxifen after postnatal development, could indicate a need for 1 at synapses to regulate 

their function without having a role in their formation.   

Electrophysiological experiments designed to measure synaptic currents will help us to 

determine whether this is the case.  Whole-cell voltage clamp recordings in wildtype and Scn1b-

null Purkinje cells will be carried out in the presence of pharmacological agents to isolate 

spontaneous excitatory post-synaptic currents (EPSCs) and inhibitory post-synaptic currents 

(IPSCs).  Specifically, spontaneous EPSCs will be measured in Purkinje cells in the presence of 

bicuculline in the external solution.  The frequency of EPSCs will provide data with regard to the 

number of action potentials arriving at the presynaptic parallel fiber and climbing fiber 

terminals.  The previous finding that Scn1b-null granule cells are hypo-excitable predicts a 

reduction in the frequency of spontaneous EPSCs in such experiments.  However, the firing 

properties of inferior olive neurons which project the climbing fibers has never been examined.  

Spontaneous IPSCs will be measured in Purkinje cells in the presence of CNQX and APV to block 

glutamate-mediated synaptic responses.  The finding that Scn1b-null molecular layer 

interneurons have a profoundly reduced capacity to fire action potentials predicts a reduction 

in the measured frequency of spontaneous IPSCs in Scn1b-null Purkinje cells.  Reduced 

amplitude of these spontaneous post-synaptic currents might be caused by a reduction in 

neurotransmitter receptors situated at the post-synaptic membrane in the Scn1b-null Purkinje 

cells.  This would suggest a potential new role for 1 in neuronal physiology.  Miniature EPSCs 

(mEPSCs) and IPSCs (mIPSCs) will be measured in wildtype and Scn1b-null Purkinje cells by 

application of tetrodotoxin (TTX) to the external solution to block synaptic activity.  The 

frequency of these currents provides an indication of the number of functional glutamatergic 

and GABAergic synapses, respectively.  Our immunohistochemistry data strongly suggest that 
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Scn1b-null mice and wildtype littermate mice form comparable numbers of structural synapses 

between parallel fibers, climbing fibers, and interneurons and their target Purkinje cells.  Thus, 

a reduction in the frequency of miniature post-synaptic currents could indicate that some of 

these synapses do not function normally in mice lacking Scn1b.  Reduced amplitude of mEPSCs 

or mIPSCs in Scn1b-null Purkinje cells could correspond to a reduction in the relevant 

neurotransmitter receptors concentrated at the post-synaptic membrane. 

 NaV1.6 has been shown using immuno-EM techniques to be post-synaptically expressed 

at parallel fiber synapses in Purkinje cells  (Caldwell et al., 2000).  Because NaV1.6 channels are 

known to generate persistent sodium currents, their localization in the post-synapse would be 

expected to amplify local depolarizations resulting from excitatory synaptic activity.  This 

expression could be reduced in or absent from Scn1b-null post-synaptic membranes.  This 

would be in agreement with previous evidence of reduced NaV1.6 at the Scn1b-null Purkinje 

cell AIS (Brackenbury et al., 2010).  A reduction in the amplitude of spontaneous EPSCs in 

Scn1b-null Purkinje cells would support, though not prove, this hypothesis.  A change in the 

amplitude of mEPSCs would not be expected, however, because of the inclusion of TTX in the 

external solution.  A reduction in both of these EPSC amplitudes might indicate an alternative 

explanation such as reduced AMPA receptors at the post-synapse.  One possible explanation for 

this alternative result could be aberrant synaptic plasticity as a result of reduced 

backpropagation of action potentials into somato-dendritic cellular domains.  Backpropagation 

would be expected to be adversely affected by a reduction in NaV1.6.   

 Parallel fiber-Purkinje cell synaptic plasticity may be important for motor learning.  The 

principle EPSC caused by activity at these synapses is associated with AMPA receptors situated 

immediately opposite the active zone (Hoxha, Tempia, Lippiello, & Miniaci, 2016).  Repeated 

action potentials arriving at the parallel fiber terminal is sufficient to activate NMDA receptors 

located nearby.  This causes further depolarization and a local increase in Ca2+ concentration.  

Endocytotic mechanisms subsequently reduce AMPA receptor expression on the post-synaptic 

membrane, leading to LTD (Hoxha et al., 2016).  Reduced post-synaptic NaV1.6 in Scn1b-null 

Purkinje cells might lead to a deficit in this function and decrease the cells’ capacity for this type 

of synaptic plasticity.  Insufficient backpropagation could further decrease this type of LTD. 
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Another possibility is that the hypo-excitability associated with Scn1b deletion occurs 

solely as a result of a failure in the proper localization or modulation of voltage-gated Na+ 

channel  subunits at the Purkinje cell AIS.  This site of action potential initiation requires a 

spatially and temporally ordered set of molecular components, including the 1 binding 

partners, ankyrin-G and neurofascin (Ango, Di Cristo, et al., 2004; Buttermore et al., 2012; 

Grubb & Burrone, 2010).  The scaffolding protein ankyrin-G is essential for the construction of 

the AIS (Grubb & Burrone, 2010).  Mice with cerebellum-specific ankyrin-G deletion exhibited a 

disruption of VGSC and neurofascin localization to the Purkinje cell AIS.  This resulted in 

reduced capacity to fire action potentials and an inability to maintain spontaneous bursting 

activity.  Consequently, the mice presented with ataxia and tremor starting at P16 and 

progressing into adulthood (D. Zhou et al., 1998).  Both 1 and contactin are important for 

surface expression of VGSC  subunits (Kazarinova-Noyes et al., 2001; McEwen & Isom, 2004).  

In agreement with the phenotypes in other mutants, it is conceivable that Scn1b-null mice have 

hypo-excitable Purkinje cells due to a deficiency in the concentration of sodium channels at the 

AIS.  Reduced expression of VGSC  subunits can be quantitatively measured using [3H]-

Saxitoxin binding.  We recently measured a ~40% reduction in [3H]-Saxitoxin binding in 

forebrain membranes collected from Scn1b-null mice (Hull, Jameson, and Isom, unpublished 

observations).  Conducting [3H]-Saxitoxin binding experiments using membranes collected from 

wildtype and Scn1b-null cerebellum will determine whether this reduction is also seen there, a 

result which seems probable.  We have now seen that cerebellar granule cells, Purkinje cells, 

and molecular layer interneurons all have reduced excitability (Brackenbury et al., 2010, Figures 

2.2-2.6).  The density of VGSCs, especially at the AIS, could be sufficient to explain this.  

However, previous work has demonstrated that resurgent current remains intact in Scn1b-null 

Purkinje cells despite smaller sodium currents (Grieco et al., 2005).  This would be expected to 

counteract the functional impact of reduced VGSC numbers at the AIS.  Purkinje cells are 

massive in size, but their numbers are vastly lower than those of all other cerebellar neurons, 

especially granule cells, combined.  Thus, I will propose a binding experiment later in this 

chapter that would illuminate the altered numbers of VGSCs to the Purkinje cells and provide 

valuable data for interpreting the reduced firing activity we have seen in these cells in Scn1b-
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null cerebellar slices.  A more complex mechanism may bear responsibility for hypo-excitability 

occurring in Scn1b-null Purkinje cells.  For example, a switch in the relative prominence of 

specific  subunits, such as NaV1.1 and NaV1.6 could also contribute to a loss in excitability.  A 

reduction in NaV1.6 and concomitant increase in NaV1.1 has been reported at the AIS of Scn1b-

null Purkinje cells (Brackenbury et al., 2010).  This could certainly be of consequence to Purkinje 

cell firing properties.  But, immunohistochemistry is not a quantitative measure, and a 

comparison of relative immunoreactivity between different antibodies is difficult to extrapolate 

from. A consequent reduction in NaV1.6-mediated resurgent current, could also provide an 

explanation for the inability of a high number of Scn1b-null Purkinje cells to rapidly fire 

repeated action potentials.  Recall for Chapter II that 12 out of 26 Purkinje cells we measured in 

Scn1b-null cerebellar slices failed to fire repetitively.   

I propose two possible explanations for Purkinje cell hypo-excitability in Scn1b-null 

cerebellar slice recordings.  First, reduced functionality in one or more classes of synapses 

which stimulate Purkinje cells could result in their incapacity to fire sufficient action potentials.  

Second, a reduction in the expression of VGSC  subunits at the Purkinje cell AIS could be the 

cause.  These two possibilities are not mutually exclusive.  Perhaps, the localization of NaV1.6 at 

both the AIS and at post-synaptic membranes relies on 1, at least in Purkinje cells.  A 

concomitant increase in NaV1.1 might also be occurring at these domains, as suggested by 

previous immunohistochemistry results at the Scn1b-null Purkinje cell AIS (Brackenbury et al., 

2010).  A failure in backpropagation could impact synaptic plasticity and prevent strengthening 

of active glutamatergic synapses.  Thus, Scn1b-null mice having reduced NaV1.6 expression 

throughout Purkinje cells could add up to a pronounced reduction in action potential 

frequency. 

NaV1.6 and 1 are also highly concentrated at nodes of Ranvier in myelinated axons.  An 

interesting and untested hypothesis is whether there are defects in Purkinje cell nodes of 

Ranvier, which could impact the velocity and reliability of action potentials projected to the 

deep cerebellar nuclei.  If a common mechanism in Scn1b-null mice leads to reduced NaV1.6 at 

the Purkinje cell AIS and at post-synaptic sites, as I have suggested above, it is reasonable to 

propose that Scn1b-null Purkinje cell axon nodes of Ranvier might also show a reduced density 
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of NaV1.6 channels.  Scn1b-null optic nerves have fewer nodes of Ranvier and reduced velocity 

of compound action potential propagation (C. Chen et al., 2004).  This could also be the case for 

Purkinje cell axons.  Together with the hypo-excitability of Scn1b-null Purkinje neurons, this 

could exacerbate the behavioral phenotype and lead to more pronounced ataxia and other 

deficits.   

Genetic mutations which lead to changes in Purkinje cell firing, including some 

channelopathies, have been linked to ataxia in mouse models and human diseases (Rinaldo & 

Hansel, 2010).  Two such channelopathies, spinocerebellar ataxia type 6 (SCA6) and episodic 

ataxia type 2 (EA2) both result from mutations affecting CACNA1A, a gene which encodes for 

the -1A subunit of the P/Q-type voltage-gated calcium channel (Rinaldo & Hansel, 2010).  

Mouse models show that CACNA1A is strongly expressed in Purkinje cells, where its mutation 

results in marked changes in firing properties and motor deficits (Hoebeek et al., 2005).  

CACNA1A-null mutant mice showed an absence of P-type Ca2+ currents from Purkinje cells and 

both P- and Q-type currents from CGNs.  In addition, they exhibited ataxia and dystonia and 

lived for less than 4 weeks (Jun et al., 1999).  Some mutations known to impair Purkinje cell 

synaptic plasticity have also resulted in severely ataxic phenotypes (Rinaldo & Hansel, 2010).  

These include mice deficient in mGluR1 and CaMKII (Aiba et al., 1994; van Woerden et al., 

2009).  Current clamp experiments measured in mouse brain slices show that Scn1b-null 

Purkinje cells are significantly hypo-excitable compared to age-matched wildtype controls, 

requiring much higher inputs of current to evoke action potentials and then evoking fewer of 

them (Figures 6.2-6.4). While the number of Purkinje cells is comparable between Scn1b-null 

mice and wildtype littermates (Table 2.1), this reduction in firing may be functionally 

comparable to other genetic mutants in which a large percentage of the Purkinje cells fail to 

develop or succumb to degeneration.  Whether the cause is reduced cell numbers, abnormal 

firing patterns, or reduced firing, the cellular targets of Purkinje cell projections in the deep 

cerebellar nuclei are predicted to receive abnormal signals from the cerebellar cortex that 

would predict dysfunction in behavioral phenotypes.   A reduction in the concentration of 

NaV1.6 across Scn1b-null Purkinje cell domains, resulting in decreased synaptic strength due to 

smaller depolarization and failed backpropagation, increased threshold to fire action potentials 
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at the AIS, and sluggish or unreliable saltatory conduction along the axons, could ultimately 

lead to a heavy loss of Purkinje cell function comparable in severity to mutations with 

diminished Purkinje cell survival.  Deficits in Purkinje cell function, rather than micro-

organization defects in the cerebellar cortex, might represent the most parsimonious 

explanation for cerebellum-associated behavioral phenotypes in the mutants.    

   

6. Cerebellar dysfunction in SCN1B-linked epileptic encephalopathy 

 

The vast majority of cases of Dravet syndrome are linked to haploinsufficiency in SCN1A, 

the gene encoding the  subunit NaV1.1 (L Claes et al., 2001; A Escayg et al., 2000; Meisler & 

Kearney, 2005; Shi et al., 2009; Sugawara et al., 2001).  Loss-of-function of both copies of 

SCN1B has also been shown to cause Dravet syndrome (Ogiwara et al., 2012; Patino et al., 

2009).  Thus, Scn1b-null mice are a model of severe pediatric epileptic encephalopathy, which is 

clinically diagnosed as Dravet syndrome (O’Malley & Isom, 2015; Ogiwara et al., 2012; Patino et 

al., 2009).   Children with Dravet syndrome often present initially with febrile seizures in the 

first years of infancy then progress to afebrile seizures and status epilepticus (Surges & Sander, 

2012).  Extreme cognitive decline often appears around the second year of life (Scheffer, 2012).  

Ataxia begins in children around nine years old and progresses with age (Scheffer, 2012; Surges 

& Sander, 2012).  Gait abnormalities and a characteristic crouch have been described as 

Parkinsonian in nature, and cerebellar involvement is questioned (Scheffer, 2012).  However, 

only SCN1A- and not SCN1B-linked epileptic encephalopathy was included in this clinical 

characterization.  Two cases of SCN1B-linked Dravet syndrome have been reported in the 

literature (Ogiwara et al., 2012; Patino et al., 2009) with two additional cases soon to be 

reported by our lab.  The first case presented early with developmental deterioration and death 

at just 13 months of age (Patino et al., 2009).  In the second case, the patient showed seizure 

onset at just 6 months of age along with developmental stagnation.  At 4 years of age, the 

patient was reportedly ataxic (Ogiwara et al., 2012).  The Scn1b-null mouse has a substantially 

more severe phenotype than Scn1a +/- mice, which model the more common genetic cause of 

disease (C. Chen et al., 2004; Lieve Claes et al., 2003; Fukuma et al., 2004; Sugawara et al., 
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2002).  Scna1 +/- Dravet syndrome model mice have reduced firing in Purkinje cells and a mild 

ataxic phenotype at P21 (Kalume, Yu, Westenbroek, Scheuer, & Catterall, 2007).  Perhaps in this 

mutant, like in patients, the ataxic gait is a progressive phenomenon that would worsen with 

age.   

Evidence has mounted in recent years supporting the importance of the cerebellum in a 

variety of cognitive functions, including language perception, temporal ordering, implicit 

memory, and visuospatial attention (Noroozian, 2014).  The cerebral cortex sends more 

projections to the cerebellum than to any other area of the nervous system, and projections 

from the deep cerebellar nuclei interact, mainly via the thalamus, with cerebral cortical areas 

beyond just motor areas.  These areas include the prefrontal cortex, medial frontal cortex, 

anterior cingulate cortex, superior temporal cortex, and parietal cortex (Dolan, 1998; Middleton 

& Strick, 1997).  Furthermore, a number of hereditary ataxia disorders, including types of SCA, 

have symptoms of cognitive dysfunction (Bürk, 2007).  Systematic study of a variety of diseases 

limited to lesions of the cerebellum, especially the posterior cerebellum, led to the discovery of 

what researchers termed cerebellar cognitive affective syndrome, which is characterized by 

dysregulation in executive functions such as planning and abstract reasoning, spatial cognition, 

language processing, and regulation of affect.   The features of this syndrome were noted, for 

example, in a study of children with cerebellar tumor resection (Levisohn, Cronin-Golomb, & 

Schmahmann, 2000).  These findings suggest that disruption of connections between the 

cerebellum and cerebral cortical areas associated with cognitive functions causes selective 

deficits that implicate an important role for the cerebellum (Noroozian, 2014).  Autism 

spectrum disorder is widely understood to involve altered connectivity between brain regions, 

including the cerebellum where abnormalities are seen in neuroimaging studies, animal 

models, and post-mortem human brains (Becker & Stoodley, 2013).  Also, damage to the 

cerebellum during early development has been linked to symptoms of autism (Crippa et al., 

2016).  Studies have also highlighted abnormalities in this brain structure in attention deficit 

hyperactivity disorder, showing reduced cerebellar volume as well as alterations in structural 

and functional cerebellar connectivity (D’Mello & Stoodley, 2015).  Perhaps most significantly, 

there is clinical evidence for a cerebellar role in neurological and neuropsychological 
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examination of patients with Dravet syndrome.  Cognitive defects detected in Dravet syndrome 

patients include many which are thought to involve the cerebellum, including in the expression 

of language, executive functions, and visual-spatial organization (Battaglia et al., 2013).  Of 

note, autistic features and hyperactivity are common behavioral characteristics of Dravet 

syndrome (Guzzetta, 2011).  Furthermore, along with ataxia, cerebellar symptoms including 

intention tremor, eye movement disorder, and motor speech problems, worsen as Dravet 

syndrome patients grow into adolescence and adulthood.  These symptoms progress even as 

the incidence of seizures levels off or improves (Genton, Velizarova, & Dravet, 2011).  Finally, 

there is evidence for cerebellar modulation of hippocampal seizures (Krook-Magnuson et al., 

2014).  There are direct connections between the hippocampus and cerebellum, and recent 

evidence demonstrates cerebellar involvement in hippocampal processing (Rochefort, Arabo, 

André, et al., 2011; J. C. Wong & Escayg, 2015).  In conclusion, there is sufficient experimental 

and clinical justification for considering an important cerebellar role in epileptic 

encephalopathies, including Dravet syndrome.  Further research is warranted to examine the 

potential link between cerebellar dysfunction and the range of pathological phenotypes 

associated with SCN1B mutations.     

   

7. Future directions   

 

Using a transgenic approach to restrict the deletion of Scn1b to Purkinje cells, by means 

of the well characterized Purkinje cell-specific Pcp2/L7-Cre mouse line would be highly 

informative in delineating the contributions of cerebellar dysfunction to the pathological 

phenotypes modeled in the Scn1b-null mouse (Oberdick et al., 2016; Vandaele et al., 1991).  It 

is unlikely that Pcp2/L7-Cre/Scn1bFlox/Flox mice would exhibit spontaneous seizures or die prior 

to reaching adulthood.  This would permit the examination of a number of significant 

comorbidities seen in epileptic encephalopathies such as Dravet syndrome.  Most obviously, 

the controversy over the cerebellar nature of the ataxia and tremor could be addressed 

directly.  We limited our ataxia study in Scn1b-null mice to footprint analysis of gait because the 

mutants are small in size, have frequent seizures, and do not survive past ~P21 (C. Chen et al., 
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2004).  More sophisticated methods such as vertical grid, rotorod, suspended wire, and 

stationary beam tests, which measure latency to fall, would be much more feasible in Pcp2/L7-

Cre/Scn1bFlox/Flox mice, permitting a more thorough characterization (Lalonde & Strazielle, 

2007).  Moreover, these phenotypes could be examined at different ages ranging into 

adulthood.  In Dravet syndrome patients, ataxia and cognitive symptoms progress with age 

starting as children and worsening in adolescence.  Behavioral analyses designed to measure 

cognitive and affective functions would likely be feasible in Pcp2/L7-Cre/Scn1bFlox/Flox mice, as 

well, allowing the examination of cerebellar contributions to these symptoms.  Examples might 

include novel object recognition and Morris water maze tests to examine memory, open field 

and elevated plus maze tests to examine anxiety and activity levels, and approach and 

avoidance tests to examine social behaviors.  By contrast, Scn1b-null mice are not healthy 

enough and do not live long enough for those kinds of experiments.  Finally, seizure-

susceptibility could be compared between Pcp2/L7-Cre/Scn1bFlox/Flox and control mice using 

pharmacological challenges such as kainite, electrical-stimulation, or hyperthermia challenge.  

These experiments would help determine the contribution of cerebellar dysfunction to this 

aspect of SCN1B-linked epileptic encephalopathy.  Since the Pcp2/L7 promoter is limited in 

expression to Purkinje cells (Oberdick et al., 2016; Vandaele et al., 1991), the cell-autonomy of 

developmental and functional properties could be evaluated.  [3H]-Saxitoxin binding would 

permit the evaluation of VGSC a subunit expression in Purkinje cells alone, in order to 

determine the degree of reduction in these cells.  Immuno-EM experiments would permit the 

evaluation of NaV1.6 localization and expression, in particular.  These data would indicate 

whether loss of Scn1b in Purkinje cells results in loss or depletion of NaV1.6 at the AIS, somato-

dendritic regions, post-synaptic membranes, and nodes of Ranvier.  With regard to expected 

outcomes, I predict that Pcp2/L7-Cre/Scn1bFlox/Flox mice would have a comparable lifespan to 

control animals, exhibit ataxia and selective behavioral abnormalities reflecting cerebellum-

dependent cognitive functions such as working memory and hyperactivity and, potentially, a 

modest increase in seizure susceptibility.  I further expect that Purkinje cells would exhibit 

reduced [3H]-Saxitoxin binding, implicating a decrease in VGSCs in their hypo-excitability.  I also 

anticipate a reduction in NaV1.6 across Purkinje cell domains.  This animal model would have 
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the potential to provide valuable new insights into the mechanisms of SCN1B-linked Dravet 

syndrome and related epileptic encephalopathies, including the spectrum of comorbid 

symptoms that these disorders manifest. 

 

8. Conclusions 

 

This chapter provides a comprehensive overview of the known cerebellar defects 

associated with Scn1b deletion.  Genetic mutations leading to the disruption of cerebellar 

cortical organization, cellular development and longevity, synaptic connectivity and plasticity, 

and Purkinje cell intrinsic excitability all converge on motor coordination problems in mice.  The 

cerebellum is now understood to modulate cognition as well.  The experimental evidence along 

with the severe comorbid symptoms observed in epileptic encephalopathies compels 

researchers who wish to understand their mechanisms to strongly consider a role for the 

cerebellum.  Toward this end, I have proposed a practical next step toward achieving this goal, 

at least with regard to SCN1B.  A closer look at the cerebellum may yet lead to valuable and 

unexpected insights into the catastrophic pathophysiology of these syndromes. 
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