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ABSTRACT  

Islet transplantation is an attractive treatment for type 1 diabetes (T1D) to restore the 

body’s ability to endogenously produce insulin and rapidly respond to changes in blood glucose 

levels. Current clinical strategies where donor islets were intrahepatically transplanted have 

demonstrated success in a small number of patients. However, the widespread use of this 

approach is limited due the generation of allo- and autoimmune responses, which contributes to 

significant islet loss and eventual graft failure. This dissertation presents the development of an 

extrahepatic biomaterial scaffold that creates an alternative transplant site for the localized 

delivery of soluble factors and immunoregulatory proteins to enhance long-term transplant 

function. Two scaffold designs were employed to improve islet cell transplantation and explore 

the effects of different scaffold architectures on islet engraftment in the form of encapsulating 

and microporous polyethylene glycol (PEG)-based hydrogels to support islet function in the fat 

pad transplantation site of mice using syngeneic and allogeneic models. This allowed for the 

unique comparison of encapsulation and microporous techniques with the same material. 

Microporous hydrogels demonstrated rapid response to glucose challenge and were quickly 

infiltrated by host tissue. In contrast, islet-encapsulating PEG hydrogels both engraft and respond 

to fluctuations in blood glucose slower than microporous scaffolds. To modulate the local 

inflammatory environment, transforming growth factor β 1 (TGF-β1) was delivered from the PEG 

hydrogels and delayed rejection of allogeneic islets. Methods for sustained delivery of soluble 

factors were further explored by utilizing affinity peptides to localize lentiviral vectors for viral 
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gene delivery. Poly-L-lysine (PLL), a cationic polypeptide, was covalently attached to PEG 

hydrogels and demonstrated the ability to modulate the extent of virus adsorption and increase 

the half-life of the adsorbed virus by 20%. An alternative to PLL was discovered through phage 

display technology, with peptide sequences specific for the glycoprotein of the vesicular 

stomatitis virus (VSV-G) ectodomain, an envelope protein pseudotyped on the virus. These short, 

12 amino acid affinity peptides were easily incorporated into the hydrogel, and reporter protein 

expression was increased 20-fold relative to control peptide, comparable to levels observed with 

the high molecular weight PLL. Finally, the modification of biomaterials scaffolds with Fas ligand 

(FasL) was explored to create an immunoprivileged microenvironment that is translatable to the 

clinic. Poly(lactide-co-glycolide) (PLGA) was conjugated with biotin and fabricated into particles 

and microporous scaffolds to allow for rapid and efficient conjugation with the chimera protein 

streptavidin-FasL (SA-FasL). PLGA particles and microporous scaffolds coated with FasL 

demonstrated the ability to induce apoptosis in a mouse B lymphoma cell line. Scaffolds were 

functionalized with FasL, seeded with islets from BALB/c donors, and implanted in epididymal fat 

pad C57BL/6 recipients. Scaffolds with FasL and a short course treatment of rapamycin restored 

euglycemia and showed robust tolerance indefinitely without the sustained use of 

immunosuppressive drugs. Together, this dissertation presents work that will further our 

understanding of allogeneic transplants and create tools that can be applied to treat T1D. 
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CHAPTER 1. Introduction 

 

1.1 Motivation and objective  

Type 1 diabetes (T1D) is a disorder that affects up to 3 million people in the United States 

and results from destruction of ß-cells in the pancreas by autoreactive immune cells [1]. The 

disease requires constant management of the patient’s diet and activity in addition to frequent 

monitoring of the blood glucose level. Although insulin can be produced through exogenous 

sources and administered via intramuscular injections or subdermal pumps, these treatments do 

not entirely prevent serious symptoms such as kidney failure, blindness, and tissue necrosis [2-

5]. The highly dynamic nature of blood glucose levels makes regulating it with injections 

challenging and still leaves patients prone to complications [6]. 

An attractive alternative to insulin therapy is cell replacement therapy due to its ability to 

endogenously produce insulin and rapidly respond to changes in blood glucose levels. Due to 

these properties, islet transplants have been associated with reducing progression of diabetic 

microvascular diseases [7]. In order to provide long-term function, therapies must be developed 

that address immune system challenges and improve transplantation efficiency. The goal of this 

dissertation is to develop novel tools that modify the microenvironment and provide signals to 

resident cells that encourage tissue regeneration. By developing hydrogel scaffolds, which 

control cell-material interactions, an improved and translatable microenvironment was created 

that serves as a platform for future studies. These scaffolds were modified to locally deliver viral 

vectors which serve as a method to induce expression of therapeutically relevant proteins. 
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Additionally, scaffolds were modified with immunoregulatory proteins that locally modulate the 

immune system in order to prolong survival of transplanted cells. 

1.2 Overview of this dissertation  

 Following the introductory chapter, Chapter 2 provides background information for topics 

relevant to the experimental work. After Chapter 2.1 provides an overview on current clinical 

treatments for T1D, Chapter 2.2 describes alternatives to portal vein transplantation. Chapter 2.3 

covers biomaterials and their relation to treating T1D. Chapter 2.4 considers gene delivery and 

their importance in delivering soluble factors. Chapter 2.5 reviews techniques utilized to regulate 

the immune system in allogeneic transplants.  

The experimental work in this dissertation was focused on modulating the islet 

microenvironment to promote transplantation survival. Chapter 3 developed PEG hydrogel 

scaffolds as alternative transplant site and explored how hydrogel architecture affects islet 

engraftment and survival. In addition to encapsulating and microporous designs, short-term 

localized protein delivery was demonstrated.  

Chapter 4 discovered affinity peptides that bind lentivirus to enhance gene delivery from 

hydrogels. Although viral gene delivery is a potent tool for converting cells into bioreactors to 

produce therapeutic proteins, options for localizing the viral particles to PEG scaffolds are limited. 

Cationic peptides were investigated and phage display was utilized to identify lentivirus-specific 

peptides. 

Chapter 5 addressed challenges presented by the immune system by employing PLGA 

scaffolds decorated with FasL, an immunoregulatory protein, to create an immunoprivileged 
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microenvironment that protects allogeneic cell transplants. Together, these methods will control 

the scaffold microenvironment to create conditions conducive to the survival of insulin-

producing cells and subsequently provide a path towards a viable treatment of type 1 diabetes. 
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CHAPTER 2. Background 

 

2.1 Introduction  

 Type 1 diabetes is a metabolic disease characterized by insufficient insulin production 

and subsequently high blood glucose concentrations (hyperglycemia). Insulin functions as a 

peptide hormone that is secreted from β cells in the pancreas and stimulates the uptake of 

glucose from the bloodstream into muscle, liver, and fat cells. Although the cause of disease 

onset is not known, it is suspected that a combination of genetic and environmental factors 

play a role in initiating the T-cell mediated autoimmune response to β cells. This theory is 

supported by the frequency of patients with the disease and specific HLA haplotypes that are 

associated with autoimmune regulation [8].  

Although exogenous administration of insulin has vastly improved the prognosis for 

patients suffering from diabetes, it has become apparent that proper glycemic control is 

essential to prevent secondary microvascular complications (diabetic nephropathy, retinopathy, 

and neuropathy) and macrovascular complications (coronary artery disease, peripheral artery 

disease, and strokes) [9, 10]. Insulin pumps and continuous glucose monitors were a significant 

step forward in modulating glucose control and have made considerable advancements in 

recent years in approximating the pancreas. Despite advances in these technologies, 

maintaining proper glucose levels remains a challenge for many patients [11]. Long term 

imperfections in glycemic control lead to complications. Islet transplants reduces severe 

fluctuations. Furthermore, production of C-peptide, a byproduct of endogenous insulin 
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production, plays a role in minimizing nephropathy and improves peripheral nerve function 

[12]. 

A cell-based solution is preferable, as it can provide improved feedback regulation and 

endogenously produce insulin. Whole organ pancreas transplants have been performed since 

1966 and have seen considerable success, but the process is considered invasive, technically 

challenging, and requires management of the pancreatic exocrine secretions. Islet transplants 

offer more flexibility and, similar to whole pancreas transplants, can reverse many of the 

secondary complications. Notably, the technique known as the Edmonton Protocol has shown 

promising results in which islets from several donors are implanted into the hepatic portal vein 

and administered a life-long regimen of immunosuppressants. Following the procedure, 44% of 

the patients were insulin independent with adequate glycemic control three years after the final 

transplantation [13]. However, this approach faces serious short and long-term challenges as 

intraportally transplanted islets are directly exposed to blood that triggers an instant blood-

mediated inflammatory reaction (IBMIR), a pathological nonspecific inflammatory response that 

results in severe islet damage and significant graft loss. Islets introduced into the portal vein must 

also remodel and vascularize their microenvironment as the low oxygen tension in the liver 

results in ischemia-induced cell loss [14]. Together, the inflammatory response can account for 

more than 60-80% of islet loss days post-transplant within a matter of hours to days [15].  

Furthermore, IMBIR promotes a pro-inflammatory environment which then leads to 

activation of the adaptive immune system in the form of activated T- and B-cells that causes 

additional injury to islets [16]. The combined effects of the auto- and alloimmune response 

require the administration of a lifelong regimen of immunosuppressants that leaves the patient 
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vulnerable to infection and cancer [17]. Despite refinements in specific immunosuppressive 

drugs and dosage used in islet transplantation [18, 19], these challenges have resulted in only 

15% of cases still euglycemic after nine years [20]. Furthermore, the number of islets required 

for the procedure is unsustainable for widespread use, as the harmful effects of IBMIR 

necessitate the need for multiple transfusions from two to four donors into a single recipient [21, 

22]. 

2.2 Alternative transplant sites 

Although the liver has historically been a favored islet infusion site due to its ease of 

access, the inflammatory effects from IBMIR and hepatic tissue ischemia make it a suboptimal 

location [23]. Furthermore, the liver cannot be extensively modified since it carries out important 

functions such as blood detoxification and aids in digestion. In order to avoid many of these 

complications, an alternative transplant site must be established in which the environment 

around the islets can be carefully modulated. Qualities that are considered desirable for islet 

transplants include sufficient vascularization for the high oxygen requirement of the islets, 

creation of a microenvironment that prevents early islet loss, minimally invasive procedure, and 

easily retrievable transplants for follow-up studies. Of particular note, revascularization is 

essential not only for the high oxygen requirements of the islets, but also to allow for rapid 

response to fluctuations in the blood glucose concentration [24]. Furthermore, the islet isolation 

process puts stress on the islets, thus highlighting the importance of rapid revascularization in 

the post-transplant environment. Otherwise, poor vascularization leads to islet dysfunction and 

impairs metabolic function [25].  
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Besides the intravascular portal vein, extravascular sites (pancreas [26], omentum [27], 

kidney capsule [28], and gastric submucosa [29]) and immunoprivileged sites (anterior chamber 

of the eye [30] and testis [31]) have been considered. The pancreas is the native tissue site of 

islets and is expected to be an ideal environment for islet transplantation. Indeed, in studies 

utilizing mouse models that compared intraportal to intrapancreatic transplants, the pancreas 

demonstrated better insulin production and control, improved glucose oxidation, and higher 

(pro)insulin biosynthesis [25]. These results also highlighted the challenges faced with intraportal 

transplants in which islets are chronically exposed to high glucose levels produced by the 

surrounding hepatocytes in addition to functioning in environment that is the site of blood 

detoxification. Islets still experience physiological changes when transplanted back into the 

pancreas, as suggested by evidence showing they are slightly hypoglycemic and undergo some 

gene expression changes [25, 32]. Even though intrapancreatic transplants have provide a viable 

microenvironment that requires fewer islets to reverse hyperglycemia than other sites like the 

portal vein or the kidney capsule and provide efficient glycemic control [33], many of these 

studies have been performed in syngeneic models that do not take into account the immune 

response. Furthermore, the surgery site is technically challenging as it risks acute complications 

from digestive enzyme leakage and it is theorized that the autoimmune response from T cells will 

respond quicker [34]. As such, it is not considered a viable option for clinical applications.  

The omentum is a layer of peritoneum that surrounds abdominal organs and provides 

several attractive properties, including its good vascularization, portal drainage, and has been 

shown to safely handle large transplant volumes in large animals models [35]. Previous studies 

in rats and dogs that utilized an omental pouch successfully restored euglycemia but required an 
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increased graft volume when compared to intraportally transplanted islets. [36, 37].The 

omentum in mice differs significantly from humans in that it is considerably smaller and poorly 

vascularized. Therefore, studies with mice wishing to translate to the human omentum often 

utilize the epididymal fat pad which is well vascularized and is similarly easily accessible and 

removed from the animal without disrupting any vital bodily functions [38]. This site has also 

been the site of numerous studies implanting biomaterial scaffolds to further modify the 

microenvironment [39-41]. However, the epididymal fat pad differs from the human omentum 

in that it lacks portal drainage. Overall, the omentum offers sustained insulin control due to its 

high vasculature and pro-angiogenesis cytokines [42], but the requirement for large islet number 

necessitates the need for additional long-term data. 

 A widely used option is the renal subcapsular site (also known as the kidney capsule) 

which is frequently applied in murine models. Compared to the native tissue in the pancreas, the 

renal capsule has relatively poor blood supply (15 mmHg O2) and does not provide an oxygen-

rich environment required for maximal islet viability (40 mmHg O2) [43]. However, the capsule in 

mice is readily accessible and has been demonstrated to reverse chemically-induced diabetes 

within a few days after transplants [44]. It is also considered an attractive site as it requires less 

islet volume when compared to intraportal transplants (250 islets in the subcapsular site versus 

700 islets in the portal site [45, 46]) and the ease of retrieval via a simple nephrectomy [47]. 

Unfortunately, the surgery in humans is more difficult and access is much more invasive. Finally, 

the space available for transplanting islets severely limits its use beyond a tool in murine models. 

 The gastric submucosa is an appealing option as it is a natural entry site for glucose into 

the body which makes it a strong candidate for islet transplants as it allows for rapid response to 
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glucose stimuli. It consists of a dense network of vasculature, lymphatics, and connective tissue 

that makes it a suitable environment for islets and is available via endoscopy [48]. Because of its 

relative ease of access, follow-up analysis is straightforward. Although it has shown efficacy in 

rat, hamster, and pig models with better glycemic control than the kidney capsule, there has not 

been any head to head study with portal vein transplants [29, 49, 50]. As such, it has not yet been 

translated into the clinical studies and further studies must be completed before it can be 

considered a viable alternative to portal vein transfusion.  

In regards to immunoprivileged transplant sites, the anterior chamber of the eye and the 

testis are commonly studied sites due to their ability to promote engraftment while not requiring 

the use of immunosuppressants. The ocular microenvironment’s immune privileged status is 

well-characterized and is maintained by a blood barrier along with immunoregulatory and 

immunosuppressive molecules [51]. In vivo characterization of the anterior eye chamber using 

laser-scanning microscopy has shown allogeneic islet transplants engraft into the iris, became 

vascularized, responded to glucose stimuli, and reversed chemically-induced diabetes in all mice 

within two weeks [52]. In this study, mice were euglycemic for over 200 days until transplant 

removal. More long-term studies have demonstrated survival of α, β, and δ-cells after 1.5 years, 

although function was not assessed [53], and the procedure has been proven safe in non-human 

primates without causing vision problems or other adverse effects [30].  

The testes have a developed immune privileged mechanisms similar to the eye, but with 

its own unique features. The Sertoli cells provide a physical blood barrier to isolate germ cells 

from the immune system along with a host of immunoregulatory compounds that suppress pro-

inflammatory responses from the immune cells to maintain the immunoprotective environment. 
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Allographs [54] and even xenographs [55] into the testes have been proven successful in delaying 

rejection and it has been shown that graphs generate much less CD8(+) T cells while inducing 

increased numbers of CD4(+)CD25(+) regulatory T cells when compared to subrenal transplants 

[56]. Interestingly, Sertoli cells have been transplanted under the renal capsule with allogeneic 

islets and slightly delayed rejection by 15 days even when no immunosuppression was used [57]. 

Despite the success that these immunoprivileged sites have seen in animal models, these sites 

are generally not considered clinically relevant due to the small size of their organs. 

2.3 Biomaterial scaffolds 

As no transplant site is clearly superior and meets all the requirements for islet 

transplantation, an alternative site can be engineered. Scaffolds are biomaterial devices that 

provide chemical and physical cues to control the microenvironment and subsequently alter 

cellular behavior. Cells sense and respond to physical cues on the scaffold surface via integrins 

and other cell adhesion molecules which integrate these signals into cellular processes and gene 

expression [58]. Scaffolds also serve as a platform for controlled release of chemical cues such as 

anti-inflammatory drugs, growth factors, or inhibitors [59-61]. Three dimensional scaffolds can 

even be engineered to spatially regulate drug release in the microenvironment to fulfill specific 

functions [62, 63]. In addition to providing signals, the scaffold is space filling and provides an 

environment that resists compression and tension to create an environment in a part of the body 

that would normally not be possible [64]. The porous nature of scaffolds is essential to promote 

cellular infiltration, nutrient transfer, and vascularization to increase cell survival. In the context 
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of transplanting ß cells, vascularization is required for sensing and release of insulin in addition 

to efficient nutrient and oxygen transfer.  

Material selection plays a central role in scaffold creation. Scaffolds are formed from 

natural materials (e.g. collagen, fibrin, or alginate) or synthetic polymers (e.g. poly(lactic-co-

glycolic acid) (PLGA), polycaprolactone (PCL), or polyethylene glycol (PEG)). Natural scaffolds 

possess intrinsic signals such as cell binding domains and cell-triggered degradation [65, 66]. 

However, these materials may elicit immunogenic responses due to purification concerns [67].  

Synthetic materials offer greater control as they consist of well-defined polymers and their 

mechanical properties can be engineered for specific applications.  

Alternatively, materials can be classified based on their mechanical properties, with 

hydrogels being of especial interest for tissue engineering. Hydrogels are a promising platform 

for therapeutic applications due to their tissue-like mechanical properties and ease of cell 

encapsulation.  Hydrogels are typically categorized as either natural (e.g. fibrin, alginate, and 

collagen) or synthetic (e.g. PEG and poly(hydroxyethyl methacrylate) (pHEMA)).  Whereas 

natural hydrogels have established interactions with cells, synthetic hydrogels allow for more 

precise interactions and can be modified with proteolytically degradable linkers to target 

specific cell populations [68].  To provide dynamic control of cell integration and release of 

encapsulated factors, both natural and synthetic hydrogels have been engineered to degrade in 

response to pH or temperature [69, 70]. Of particular interest are PEG hydrogels, which is a 

versatile material that can be easily functionalized with peptides and proteins for localized 

delivery, or chemical cues can be encapsulated and released via diffusion. Degradation can be 

controlled by incorporating proteolytically degradable peptide linkers. Furthermore, PEG is a 
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biologically inert material and known to have a low immunogenic response [71]. By reducing 

the response of the innate immune system to the scaffold, activation of the adaptive immune 

system can be minimized, thus reducing the risk of transplant rejection [72].  

2.4 Viral delivery of soluble factors 

Delivery of soluble factors to the local environment of the transplanted islets can promote 

survival, vascularization, and growth. Systemic delivery frequently results in off-target effects and 

requires higher doses. The localized delivery of gene therapy vectors represents a versatile 

method to promote the sustained expression of inductive factors in numerous applications of 

regenerative medicine. The delivery of gene therapy vectors is considered versatile as the 

nucleotide sequence can readily be exchanged to express one or more factors using a single 

delivery system [73, 74]. Both non-viral and viral vectors can promote prolonged transgene 

expression, with non-viral vectors generally considered to be safer as they generally do not 

integrate into the host chromosome, yet have significantly lower levels of transgene expression 

than viral vectors. Viral vectors have evolved mechanisms for effectively transducing target cells 

and thus provide the greatest levels of expression.  

Of particular interest, lentiviral vectors are well-suited for clinical gene delivery 

applications due to their capacity for stable, long-term integration by inserting its genes into the 

host genome [75], and  have recently received approval in a Phase 2/3 clinical trial [76].  Lentiviral 

tropism has been greatly expanded by pseudotyping its envelope with the glycoprotein of the 

vesicular stomatitis virus (VSV-G) which not only allows for the virus to infect a wide range of cell 

types, but also deliver genes to both dividing and non-dividing cells [77-80].  Additionally, their 
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ease of production, relatively low immunogenic profile [81], and large genetic payload make 

them excellent candidates as gene delivery vectors.  Advances in lentiviral vector design have 

yielded improvements in their safety and efficiency over early generation viruses, and have been 

effectively used in clinical research to treat a variety of diseases including immune disorders [82], 

brain disease [83], and retinal dystrophy [84, 85].   

Current methods to localize lentivirus to scaffolds have applied a variety of methods that 

take advantage of properties of the virus and scaffold material.  A simple approach is the direct 

adsorption of the virus to a charged polymer’s surface like poly(1,8-octanediol citrate) (POC) and 

poly(glycerol-sebacate) (PGS) which utilize electrostatic interactions between the viral particle 

and negatively charged carboxyl groups on the materials’ surface [86].  Similarly, positively 

charged hydroxyapatite nanoparticles have been incorporated into poly(lactide-co-glycoolic acid) 

(PLGA) scaffolds and demonstrated a 10-fold increase in transgene expression and increased the 

half-life of the virus by 17% [87, 88].  However, these approaches rely on electrostatic 

interactions, which are subject to non-specific adsorption by unwanted proteins, and are 

material-specific.  Alternatively, methods that utilize specific interactions avoid these off-target 

effects.  Phosphatidylserine (PS), a phospholipid, has been implicated in lentiviral binding to cell 

membranes and has been incorporated into PLGA microspheres to enhance localized lentiviral 

delivery [89].  Not only did the PS prolong the expression of the reporter gene, but its specific 

binding capability was demonstrated by lack of non-specific adenovirus binding.  Another 

approach is the modification of the lentiviral coat proteins to enable covalent crosslinking with 

fibrin hydrogels, which allows for release of lentiviral particles as the hydrogel degrades [90].  

However, these specific-binding approaches still face significant challenges.  The incorporation 
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of PS into other scaffold materials is difficult and its role in signaling apoptosis may make it 

undesirable for further in vivo applications.  Although the modification of the lentiviral coat 

protein provides excellent specificity for localization to the fibrin hydrogel, the virus is covalently 

cross linked to the material.  Due to the half-life of the lentivirus being only 8-9 hours at 37oC, 

most of the virus will deactivate before coming in contact with cells. 

2.5 Immunoregulation 

Although considerable progress has been made with transplanting islets in biomaterial 

scaffolds, much of the success has occurred in syngeneic transplants with chemically-induced 

diabetes. A critical challenge that needs to be addressed is the immune system’s role in the 

destruction of insulin-producing cells. T1D is mediated by CD4 positive T cells that react to 

antigens specific to ß cells [91]. In addition to recurrence of the original autoimmune disease, the 

allogeneic response to transplanted tissue represents a significant hurdle. Tissue transplants are 

rejected via the adaptive immune system which senses mismatched MHC’s and induces a 

subsequent inflammatory cascade. The Edmonton protocol’s principle innovation was the special 

combination of immunosuppressants to limit immune-mediated islet destruction, but the lifelong 

systemic administration results in undesirable side effects. Complications such as lymphopenia 

and expansion of autoreactive CD8 positive T cells motivate the need for a targeted approach 

that locally modulates the immune system [92].  

In an effort to isolate islets from the immune system, groups have tried to encapsulate 

islets in a semi-permeable membrane that physically shields insulin producing cells from the 

immune system while still allowing for oxygen, nutrients, and protein transport [93, 94]. 
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However, mass transport limitations, insufficient immunoprotection, and the inability to 

reproduce results in large animal models have limited use of micro- or macro-encapsulating 

technologies. Encapsulated islets inherently limit vascularization and subsequently delays the 

response of β cells to fluctuations in blood glucose concentrations. Many encapsulating systems 

suffer graft failure as a result of fibrosis around capsules [95]. Finally, these membranes do not 

limit the transport of inflammatory cytokines and other immunoreactive molecules [96, 97].  

An alternative approach to achieve localized immunosuppression is the controlled release 

of immunoregulatory proteins from biomaterial scaffolds. Due to the central role of T-cells in 

allogeneic rejection, FasL is a viable option due to its role as a major regulator of T cell 

homeostasis. After antigen clearance by CD 8 positive T cells, deletion of effector cells by FasL-

mediated apoptosis occurs [98]. FasL works by binding the Fas receptor (FasR) which forms the 

death-inducing signaling complex (DISC) which is composed of Fas-associated protein with death 

domain (FADD) and caspase 8 which subsequently transduces a downstream signal cascade that 

leads to cell death. The challenge with protein or drug delivery is that rejection is only delayed 

and will fail as soon as the compounds are depleted from the local environment unless tolerance 

is induced.  

Early studies in inducing tolerance demonstrated that development of autoimmune 

diabetes in NOD mice can be prevented and reversed with bone marrow (BM) transplants from 

non-autoimmune allogeneic sources and subsequently inducing donor-specific tolerance [99, 

100]. However, this approach suffers from graft vs host disease (GvHD) in which T cells 

transplanted with the BM attack the host. This approach has been refined to use hematopoietic 

stem cells (HSC’s) [101]. Tolerance can also be induced by treating donor splenocytes with 1-
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ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) which target recipient antigen presenting 

cells (APC’s) and induce expression of co-inhibitory molecules [102]. 
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CHAPTER 3. Evaluation of Encapsulating and Microporous Hydrogel Scaffold 
Designs on Islet Engraftment in Rodent Models of Diabetes 

 

3.1 Introduction 

Islet transplantation is therapy which can mimic normal pancreas physiology and aid in 

maintenance of normoglycemia [9]. However, this procedure is not widely employed in the clinic 

due to graft failure post-transplant, largely mediated by inflammatory factors and the host 

immune response. Upon injection into the hepatic portal vein, transplanted islets are subject to 

IBMIR, which can account for significant islet death within hours to days after the transplant [15]. 

Furthermore, IBMIR promotes a pro-inflammatory environment, which then leads to activation 

of adaptive immunity and additional islets loss [16]. Scaffold-based strategies have been 

successfully employed to create alternative transplant sites [103-105]. Previous work in our lab 

has made extensive use of PLGA scaffolds, but its material properties are dissimilar to tissue and 

the mechanical disparity can promote inflammation [106]. In contrast, PEG hydrogels are a 

versatile material ideally suited for tissue engineering due to its tissue-like mechanical properties, 

ease of functionalization, and controlled rate of degradation [107]. Furthermore, its 

macrostructure can be further modified to contain pores and channels to enhance cell infiltration 

and promote entrapment of viral or non-vectors [108].   

PEG-maleimide hydrogels were adapted into an encapsulating and microporous scaffold 

architecture using polydimethylsiloxane (PDMS) molds to easily and reproducibly fabricate the 

gels with matching dimensions. PEG functionalized with maleimide offers a fast and efficient 



18 
 

reactive group for functionalization [109]. PEG-acrylate, which is commonly used to form 

photopolymerized hydrogels, is prone to hydrolysis of conjugated peptides [110], whereas 

maleimide groups can form covalent bonds that are resistant to uncontrolled degradation [111]. 

Pores for cellular infiltration can be created by casting the PEG precursor around sacrificial 

particles followed by photocrosslinking of hydrogel. Photocrosslinked hydrogels are favorable 

because they quickly form at ambient conditions while providing spatial and temporal control, 

thus allowing for geometrically complex hydrogels to be formed with relative ease [112]. The 

particles are leached from the scaffold in an aqueous buffer, leaving behind a porous structure. 

This particle leaching process is advantageous compared to other porogen approaches such as 

freeze drying or gas foaming due to the ease of which pore size and porosity can be controlled 

[113]. Encapsulating hydrogels were formed utilizing Michael-type addition reactions to 

eliminate any concerns associated with free-radical polymerization affecting the viability of the 

cells. Initial studies employed a syngeneic transplant model in an extrahepatic site (i.e. 

epididymal fat pad) of diabetic mice to evaluate islet survival and function, and to characterize 

the innate immune response to the transplantation and surgical process. Subsequent studies 

employed allogeneic islet transplantation, with similar characterization of the islet function, and 

characterization of both the innate and adaptive response to the transplanted cells.  

Finally a method to locally deliver proteins from the PEG scaffolds was developed. In 

addition to mechanical cues provided by the scaffold, another method of modulating the 

microenvironment is controlled release of soluble compounds from the scaffold. There are a 

variety of delivery mechanisms such protein entrapment in the nanoporous PEG network [114], 

peptide affinity binding [115], or viral gene delivery [116]. Previous work in our lab has indicated 
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that proteins entrapped in the PEG rapidly diffuse out of the scaffold during the leaching step 

which results in insufficient protein delivery. Additionally, the high salt concentration used in the 

fabrication of the scaffold may damage any protein that is retained. We demonstrated that a 

PLGA disc loaded with protein and inserted inside of the porous PEG scaffolds was able to deliver 

therapeutically relevant amounts of protein. Herein, we used TGF-ß due to its ease of detection 

in in vitro and in vivo, in addition to its release being well characterized in PLGA scaffolds [117]. 

3.2 Materials and methods 

3.2.1 Encapsulated and microporous hydrogel fabrication  

Encapsulated hydrogels were formed by mixing PEG-maleimide (4-arm, 20kDa MW, 

JenKem Technology USA) and CGRGDS (CelTek Peptides) in HEPES Buffer (pH 7.2) to yield a final 

PEG concentration of 10% (wt/vol) and RGD concentration of 5 mM. The PEG-CGRDS solution 

was allow to react via Michael-Type addition for 5 minutes at room temperature and then stored 

on ice.  Next, the functionalized PEG precursor was added to sedimented islets in an Eppendorf 

tube (in approximately 6 μL of HBSS 1X media (Corning) supplemented with 10% FBS). The 

bottom of a disc-shaped PDMS mold (diameter = 5 mm, height = 1 mm) was covered with 3 μL of 

a non-degradable peptide crosslinker solution (GCYDKNDRGCYDKNDRCG, custom synthesis and 

purification by CelTek Peptides). The peptide contained tyrosine (Y) and asparagine (N) amino 

acids in the D-configuration to prevent cleavage from plasmin, which inhibits hydrogel 

degradation. The PEG precursor containing islets was added to the mold containing the YKNR 

solution and an additional 3 μL of YKNR was added on top for a final YKNR concentration of 9.6 
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mM. The hydrogel was incubated at 37C for 30 minutes to allow the crosslinking reaction to 

reach completion. Final gel volume was approximately 25 μL. 

Gelatin microspheres were formed by dissolving type A gelatin, bloom strength 300 

(Sigma), into ultrapure water heated to 80 oC for a final concentration of 10% (w/w). The gelatin 

solution was added dropwise into mineral oil heated to 80 oC and stirred at 500 rpm. The water-

oil emulsion was cooled using an ice jacket while maintaining a stir speed of 500 rpm for 1 hour. 

The ice jacket was removed and acetone was added while the stirring speed was maintained. 

Next, the stirring was stopped and the mineral oil and acetone were allowed to separate, 

followed by removal of the mineral oil. The acetone wash and mineral oil removal was repeated 

for a total of three times before all liquid was removed and the remaining gelatin microspheres 

were mixed by hand until all acetone evaporated. Particles were stored under dry inert gas until 

use. 

Microporous PEG hydrogels were fabricated by dissolving 20 kDa 4-arm PEG-maleimide 

(JenKem Technology USA) in HEPES buffer for a final concentration of 20% (wt/vol).  The 

photoinitiator, Irgacure 2959 (BASF) was dissolved in N-vinylpyrrolidone at a concentration of 

600 mg/mL and added to the PEG precursor solution for a final concentration of 1 wt%. For 

hydrogels utilizing NaCl as a porogen, NaCl was added to the PEG precursor to make a saturated 

solution. Forty milligrams of NaCl particles (average diameter = 250 µm) or gelatin microspheres 

were then added to a polydimethylsiloxane (PDMS) mold (diameter = 5 mm, height = 1 mm) and 

10 μL the saturated PEG solution was added. After irradiation with UV light, the porogen was 

leached from the scaffolds by incubating in ultrapure water overnight. Final gel volume was 

approximately 25 μL. 
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Non-porous PLGA discs containing TGF-β1 were fabricated as described in Liu, et al [117]. 

Briefly, 2 mg of PLGA microparticles and 2 µg of TGF-β1 were reconstituted in 100 μL of an 

aqueous 10 mg/mL D-mannitol solution and lyophilized. The PLGA-protein-mannitol powder was 

pressed in a 3 mm KBr pellet hand press (Pike Technologies) and gas-foamed at 800 psi under 

CO2
 gas for eight hours using a previously described technique [118]. These discs were either 

placed on top of the encapsulated hydrogels or the microporous scaffold was formed around the 

disc.  

3.2.2 Islet isolation and transplantation 

For syngeneic studies, islets were isolated from healthy 10-12 week old male and female 

C57BL/6J mice (Jackson Laboratories) following standard islet isolation procedures. Male 

C57BL/6J recipient mice were between 14-18 weeks of age. For allogeneic transplants, female 

BALB/c (Jackson labs) islet donors and male C57BL/6J transplant recipients between 10-12 weeks 

were used. Four days prior to islet transplantation, recipient mice were injected with 220mg/kg 

of streptozotocin (Sigma) to chemically induce irreversible diabetes. Nonfasting blood glucose 

levels were taken using a OneTouch Basic Glucose Monitor (Aviva) and only those mice with a 

measurement of 300 mg/dL or greater on consecutive days (day before and day of transplant) 

were used as recipients. Normoglycemia was denoted as <200 mg/dL in syngeneic studies. All 

hydrogel scaffolds in syngeneic studies were loaded with 700 islet equivalents (IEQ). To load 

microporous hydrogels, islets were concentrated in 30 μL and applied to the top of a dehydrated 

hydrogel. Each mouse received one gel into the fat pad transplantation site. For allogeneic 

studies, 10-12 week old female BALB/c mice (Harlan Laboratories) were used as donors. 
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Normoglycemia was denoted as <250 mg/dL and mice received 1,300 IEQ for allogeneic 

transplant studies. Each mouse received one hydrogel implant into the fat pad. All studies were 

approved by the Northwestern University Animal Care and Use Committee. 

3.2.3 Intraperitoneal glucose tolerance test 

Intraperitoneal glucose tolerance tests (IPGTTs) were performed at 4 weeks post-

transplantation to assess the ability of the hydrogel materials to respond to glucose challenges. 

A D-glucose solution (250 mg/mL sterile PBS (-/-)) was created for injection. After a 3 hour fast 

period, 2 g/kg of D-glucose was injected intraperitoneally. Blood glucose levels were measured 

at baseline (before injection), 15, 30, 60, 90, 120, and 150 minutes after the glucose injection. 

3.2.4 Immunohistochemistry 

Snap-frozen histological sections were stained with primary antibodies guinea pig polyclonal anti-

swine insulin (Jackson Labs) and Hoechst (Invitrogen) at dilutions 1:250 and 1:2000, respectively. 

Secondary antibodies included Dylight donkey anti-guinea pig 488 (Jackson Labs) at a dilution of 

1:400.  

3.2.5 TGF-β1 in vitro release studies 

 Scaffolds were leached in 10 mL of water containing 1% BSA (Millipore), sterile filtered, 

for two 10 minute washes. Leached scaffolds were placed in a 24 well plate with 1 mL of media 

(DMEM supplemented with 10% FBS, 1% penicillin and streptomycin) and incubated at 37 oC. At 

days 1, 3, 7, 14, and 21 the supernatant was replaced with fresh media and the old media was 

frozen. TGF-β1 in the media was quantified with a TGF-β1 ELISA kit (R&D Systems).    
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3.3 Results 

3.3.1 Encapsulating and Microporous Hydrogel Fabrication 

Encapsulated hydrogels were formed by functionalizing 4-arm PEG maleimide with 5 mM 

CGRGDS and crosslinked in a PDMS mold, using a non-degradable, three-cysteine-containing 

crosslinking peptide (GCYKNRGCYKNRCG) (Fig. 3-1A). After 5 minutes at 37°C, gels were fully 

crosslinked and intact with no residual macromer (Fig. 3-2A). Resultant gels were 25 μL and 10% 

(wt/vol). Dimensions of the encapsulating gel were 5 mm in diameter and approximately 1 mm 

in height, adequate for implantation into the fat pad. Islet viability with these gelation conditions 

was confirmed in a previous study [41].  

To fabricate microporous hydrogels, 20 (w/v)% 4-arm PEG-maleimide (20,000 kDa) was 

dissolved in HEPES buffer and the cell adhesion peptide NH2-CGRGDS-Ac was conjugated to the 

PEG via Michael-type addition between the maleimide and the cysteine’s thiol group. Salt (NaCl) 

and gelatin were selected as porogens due to their nontoxic properties and their ability to be 

rapidly leached from the scaffold in mild conditions (Fig. 3-1B, C) [119, 120]. To prevent the salt 

porogen particles from dissolving in the aqueous environment prior to gelation, salt was added 

to the PEG precursor to make a saturated solution. Gelatin microspheres (size: 107±4 µm, n = 41, 

±SEM) or salt crystals (size: 274±12 µm, n = 41, ± SEM) were added to a polydimethylsiloxane 

(PDMS) mold followed by the PEG solution (Table 3-1, Fig. 3-2B, E). Hydrogels were cross linked 

with UV light and Irgacure-2959, a commercially available photoinitiator commonly used due to 

its relatively cytocompatible properties [121]. The scaffolds were incubated in ultrapure water at 

37oC for overnight to rapidly dissolve the porogen and leave a highly porous PEG scaffold (Fig. 3-

2C, D, F, G). The PEG wt% (wt/vol) of the microporous hydrogel was 20%, as lower concentrations  
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Figure 3-1. Fabrication of PEG-maleimide hydrogels. (A) Encapsulated hydrogels are formed by 
mixing the peptide cross linker GCYKNRGCYKNRCG with a PEG/islet solution in a PDMS mold. 
Cross linking is induced via Michael-type reaction between the thiols in the peptide and the 
maleimide groups on the PEG. (B) Microporous hydrogels are formed by packing gelatin particles 
into a PDMS mold and adding PEG. After initiating free-radical polymerization via UV light and 
the photoinitiator I-2959, the gelatin particles are leached out at 37 oC, leaving a porous hydrogel 
that can be seeded with islets. (C) Microporous hydrogels with salt pores are formed in a manner 
similar to the gelatin microspheres, but require the PEG precursor solution to be saturated with 
salt prior to being added to the salt-packed PDMS mold. After polymerization, the salt is quickly 
leached out and the scaffold can be seeded with islets. 
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Figure 3-2. Encapsulating and microporous hydrogels for islet transplantation. (A) 10% (wt/vol) 
bulk PEG hydrogels were fabricated to encapsulate islets. (B) Gelatin particles (size = 107± 4 μm, 
n =41) were fabricated, incorporated into 20% PEG (wt/vol), and subsequently leached to form a 
(C-D) resultant hydrogel with a microporous architecture for islet seeding. Similarly, (E) salt 
particles (size = 274 ±12 μm, n = 41) were incorporated into 20% PEG (wt/vol) to form a (F-G) 
microporous gel for islet seeding. Scale bar:  1 mm (A, C, F), 100 μm (B), 200μm (D,E,G). Gels were 
stained with sirius red for visualization.  

 
 

 
 

Table 3-1. Particle size of gelatin and salt particles used as a porogen for microporous hydrogels. 
Mean is reported with standard error mean. Gelatin (n = 52), salt (n=41). 
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resulted in collapsible gels with insufficient integrity for islet seeding. The volume and dimensions 

of the microporous hydrogel were the same as the encapsulating hydrogels. Following swelling, 

encapsulating and microporous hydrogels were approximately 6.5 mm in diameter and 1.5 mm 

in height, a size still suitable for transplantation.   

3.3.2 Syngeneic islet transplants in encapsulating and microporous hydrogels 

The engraftment and function of encapsulated islets and islets seeded on microporous 

hydrogels were investigated by transplantation into the fat pad site of streptozotocin-induced 

diabetic mice. Initial studies were performed in a syngeneic model to confirm the hydrogel 

materials can support islet function in the absence of an immune response. Bulk, non-degradable 

encapsulating hydrogels with 700 islet equivalents (IEQ) reversed diabetes in recipient mice, and 

an average normoglycemic (<200 mg/dL) blood glucose level of 175±31 mg/dL (n=3, ± SEM) was 

achieved by day 17 (Fig. 3-3A). Normoglycemic readings were recorded for all recipient mice at 

day 21 (140±6 mg/dL) and mice remained normoglycemic until the end of the 2-month study. 

Encapsulating hydrogels were removed (indicated with a black arrow) at day 62 and recipient 

mice reverted to hyperglycemic state within 2-4 days post-removal, which confirmed glycemic 

control is due to the hydrogel graft and not any remaining endogenous islets post-streptozotocin 

injection.  

A pilot study of the gelatin-leached microporous hydrogels were seeded with 700 IEQ 

demonstrated the ability to reverse diabetes by day 10. Interestingly the blood glucose levels 

spiked between days 87 and 100 for unknown reasons. Following removal of the hydrogel at day 

108, mice immediately reverted to hyperglycemia. Gelatin-leached hydrogels were more 
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extensively explored in Fig. 3-3C in which the microporous hydrogels were seeded with 200 islets, 

similar to previous studies in PLGA scaffolds [104, 122]. The average normoglycemic blood 

glucose level was 173±10 mg/dL (n=4, ± SEM) and all mice reversed diabetes by day 9. For 

comparison, a microporous PLGA scaffold was also seeded with 200 islets and restored 

euglycemia by day 7, two days earlier than the microporous hydrogel. Both scaffolds reverted to 

hyperglycemia within 2-4 days after graft removal.  

Salt-leached, microporous hydrogels seeded with 700 IEQ displayed an average 

normoglycemic blood glucose level of 190±20 mg/dL (n=5 pre-graft removal, n=4 post-graft 

removal, ± SEM) by day 15 post-transplant (Fig. 3-3D). Normal blood glucose levels were recorded 

for all recipient mice at day 20 (139±15 mg/dL). Upon removal of the transplanted microporous 

hydrogel at day 30, mice reverted to a hyperglycemic state within 2-4 days. Engraftment rates 

did not differ between encapsulating and microporous hydrogels containing 700 IEQ, as 

consistent normoglycemia was achieved approximately at 3 weeks post-transplant in both 

experimental groups. Collectively, these syngeneic transplant studies confirm the feasibility of 

non-degradable, encapsulating and microporous PEG hydrogels to support islet function post-

transplant in the fat pad transplant site.  

An intraperitoneal glucose tolerance test (IPGTT) was performed on mice that received 

hydrogels to investigate glucose responsiveness. The blood glucose levels of diabetic recipient 

mice with encapsulating hydrogels peaked at 30 minutes post-injection of glucose, versus control 

mice which peaked at 15 minutes post-injection (Fig. 3-4A). At 60 minute time points, blood 

glucose levels mice decreased toward normoglycemia in both groups. Normoglycemic levels 

(<200 mg/dL) were achieved at 120 minutes and 90 minutes for the encapsulating gel (175±9 
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Figure 3-3. Blood glucose monitoring post-transplant with hydrogel materials in fat pad 
transplantation site of diabetic mice. (A) Bulk, non-degradable encapsulating hydrogels with 700 
IEQ reversed diabetes in recipient mice, and approached normoglycemic levels by Day 12 (<200 
mg/dL), with consistent normoglycemia achieved after Day 17 (n=3, ± SEM).  (B) A gelatin-
leached, microporous hydrogel seeded with 700 IEQ (400 islets) reversed diabetes in a recipient 
mouse by Day 10 and displayed long-term function until graft removal at Day 106 (n=1, ± SEM). 
(C) Gelatin-leached, microporous hydrogels seeded with 200 islets reversed diabetes in recipient 
mice by Day 9 (n=4, ± SEM). Mice receiving a PLGA scaffold, used an internal control due to 
success in previous studies, reversed a few days earlier, by Day 7 (n=1). (D) Salt-leached, 
microporous hydrogels seeded with 700 IEQ displayed normoglycemic levels as early as Day 1 
post-transplant, and consistently maintained normoglycemia after Day 15 (n=5 pre-graft 
removal, n=4 post-graft removal, ± SEM). Recipient mice in all groups reverted to a diabetic state 
within 2-4 days following hydrogel removal (indicated with a black arrow).  
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mg/dL) (n=5, ± SEM) and control group (187±4 mg/dL) (n=4, ± SEM), respectively. Blood glucose 

levels remained stabilized for the remainder of time points. Area under the curve indicated 

statistical significance at 30 minute (p=0.0061), 60 minute (p=0.0007), and 90 minute time points 

(p=0.0005) between the encapsulating and control group. Glucose tolerance tests were also 

performed on diabetic mice which received microporous hydrogels (gelatin leached n=4 ± SEM, 

salt leached n=5 ± SEM) (Fig. 3-4B, C). In both of the hydrogel groups and the control group (n=5± 

SEM), the blood glucose levels peaked at 15 minutes post-injection of glucose. At 30 minutes, 

blood glucose levels in mice decreased toward normoglycemia in all groups. At 60 minutes, the 

microporous gel (153±14 mg/dL) and control group (150±18 mg/dL) both achieved 

normoglycemic levels and their blood glucose remained normoglycemic for the remainder of 

time points. For comparison, glucose tolerance of a PLGA microporous scaffold was also included, 

which followed identical trends to the hydrogels. Area under the curve indicated no statistical 

significance at any time point between the microporous hydrogels and controls. The glucose 

challenge results demonstrate recipient mice with microporous hydrogels containing 

transplanted islets can respond to a glucose load in a similar manner to mice with native 

pancreata. However, a slight delay in achieving normal blood glucose levels is observed in 

recipient mice with encapsulating hydrogels. Similar findings for this delay have been reported 

for hydrogels containing encapsulated islets in a recent study [41]. 

3.3.3 Histological Analysis of Hydrogel Explants from Syngeneic Transplants 

Hydrogel materials remained intact and well-secured in the highly vascular fat pad 

transplant site upon removal (Fig. 3-5D). Hydrogels were sectioned and stained with insulin  
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Figure 3-4. Glucose responsiveness of microporous hydrogels. (A) Encapsulated hydrogels with 
700 IEQ (n=5, ± SEM) achieved normoglycemia (<200 mg/dL) 120 minutes post-glucose injection. 
In contrast, (B) mice receiving gelatin-leached, microporous hydrogels with 200 islets (n=4, ± 
SEM), a PLGA scaffold with 200 islets (n=1), or (C) salt-leached, microporous scaffolds with 700 
IEQ (n=5, ± SEM) achieved normoglycemia 60 minutes post-glucose injection, similarly to control 
mice with native pancreata. IPGTT performed at Day 32 (A), and Day 30 (B) post-transplant. 
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and a Hoechst nuclear counterstain to confirm their functionality post-encapsulation in vivo. 

Insulin-positive islets were retained in and identified in implanted both gelatin leached and salt 

leached microporous hydrogels at day 32 and 30 post-transplant, respectively (Fig. 3-5A-C). 

Histological analysis of encapsulated hydrogels will be completed in the near future. These results 

indicate islets seeded on PEG hydrogels were able to maintain their morphology, function, and 

engraft in the fat pad transplant site. 

3.3.4 Allogeneic Islet Transplants in Encapsulating and Microporous Hydrogels  

 Encapsulating hydrogels containing 1500 IEQ islets from BALB/c donors were 

transplanted into C57/BL6 diabetic recipient mice (n=4) to evaluate graft function (Fig. 3-6A). For 

the first 1-2 days post-transplantation, blood glucose levels decreased to normoglycemic levels, 

typically indicative of some transplanted islet loss. After day 3, the mice returned to 

hyperglycemia. An additional study was performed and the islet loading was increased to 3000 

IEQ (n=2) which lead to extended graft function of up to two weeks, but still failed to provide 

protection from the immune response (Fig. 3-6A). This indicates that encapsulation is not 

sufficient to prevent graft rejection. Allogeneic studies involving microporous hydrogels focused 

on utilizing salt as a porogen, as the syngeneic data did not indicate any significant difference 

between gelatin and salt porogens, and salt was considered more easily translated into the 

clinical setting. Although microporous hydrogels, which offer no inherent protection against an 

immune response, failed to achieve normoglycemia (Fig. 3-6B), one mouse did maintain 

normoglycemia until day 8 (blue line).   
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Figure 3-5. Insulin-positive islets confirmed in microporous hydrogels (A-B) Insulin-positive islets 
were identified in gelatin-leached, microporous scaffolds removed at Day 32 and (C) salt-leached, 
microporous scaffolds removed at Day 30 (Scale bar: 100 μm). (D) Explanted salt-leached 
microporous hydrogel 1 month post-transplant. Histology for encapsulated hydrogels will be 
completed in the near-future.  
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Figure 3-6. Allogeneic transplants failed to engraft before rejection. (A) Encapsulating hydrogels 
with 500 (n=4,± SEM) or 1,000 islets (n = 2, ± SEM) are unable to maintain normal blood glucose 
levels more than 2 weeks post-transplant, indicating encapsulation alone is not sufficient to 
prevent graft rejection. (B) With the exception of one mouse (blue line), salt-leached 
microporous hydrogels with an IEQ of 1300 failed to achieve normoglycemia.  
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3.3.5 PEG hydrogels create a microenvironment conducive to islet survival 

Localized release of soluble factors from the scaffold can enhance the microenvironment 

and combat nonspecific inflammation at early stages of the transplant. Previous reports have 

demonstrated efficacy of the relatively simple technique of delivering proteins from a small PLGA 

disc loaded with protein [117, 123]. TGF-β1 was selected, as it is therapeutically relevant in 

nanogram quantities, thus making protein delivery easily detected. It inhibits inflammatory 

aspects of the immune system and stimulates regulatory T cell production, an important 

component of allogeneic tolerance [124, 125]. 

Non-porous PLGA inner layer scaffolds containing TGF-ß were formed by pressing PLGA 

microparticles with lyophilized protein and mannitol into a disc then CO2 foamed. The 

microporous hydrogel was formed around the inner layer by packing the PEG and salt mixture 

with the PLGA disc in a PDMS mold and cross linked. After leaching the salt, scaffolds were 

disinfected with ethanol and loaded with cells (Fig. 3-7D-F). Encapsulated hydrogels were simply 

implanted with the PLGA disc pressed between the adipose tissue and the scaffold (Fig. 3-7C). 

Prior to in vivo experiments, the release profile of protein from the scaffold was characterized by 

incubating the scaffolds in media for 30 days and the supernatant was periodically collected and 

replaced with fresh media. Eluted TGF-β1 was quantified with an ELISA and demonstrated that 

60% of the loaded protein is lost during the salt leaching step (Fig. 3-7A). Of the remaining 

protein, 60% was released by day 1 and 95% was released by day 7 (Fig 5-7B).  

Next, studies were performed in an allogeneic model to directly compare islet 

engraftment in encapsulating and microporous hydrogels, with or without TGF-β1 delivery, and 

to determine if rejection can be delayed. Rejection is denoted as two consecutive days of blood  
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Figure 3-7. Transforming growth factor-β1 (TGF-β1) in vitro release from PLGA scaffolds and 
incorporation into hydrogel materials. (A) A cumulative release of 0.66 µg was determined from 
PLGA disc loaded with 2 µg of TGF-β1.  (B) More than 80 % of total protein was released by Day 
3 (n = 5, ± SEM). (C) For encapsulating hydrogel transplants, a PLGA disc containing 2 µg of was 
placed on top of the hydrogel and wrapped in the fat pad. (D) For microporous hydrogels, the 
PLGA disc containing 2 µg was incorporated into the middle of the hydrogel. (E) Cross-section 
view of PLGA scaffold in microporous hydrogel. (F) Islets seeded on a microporous scaffold. A 
representative islet is indicated with a white arrow. 
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glucose >250 mg/dL in this study. Mice receiving encapsulating hydrogels with 1300 islets without 

TGF-β1 delivery were not able to maintain graft function and rejected after 2 weeks post-

transplant (Fig. 3-8A). Encapsulation and TGF-β1 delivery delayed rejection to day 24, compared 

to day 12 TGF-β1, which is a similar rejection timeframe to a microporous PLGA scaffold loaded 

with TGF-β1 [117]. A pilot study with microporous hydrogels loaded with TGF-β1 and 1300 IEQ 

demonstrated potential efficacy in which mice with TGF-β1 exhibited euglycemia by day 6 (Fig. 

3-8B). Scaffolds were removed at day 7 for immune cell analysis via flow cytometry, but no 

significant difference between the innate or adaptive immune cell populations was detected 

(data not shown). This time point was selected due to graft rejection typically occurring around 

day 10, and thus populations at day 7 may provide insight into local immune cell populations 

dampened by TGF-β1 delivery.  

3.4 Discussion 

In this study, we examined the utility of encapsulating and microporous PEG-based 

hydrogels for islet transplantation into the fat pad transplantation site in order to engineer an 

environment conducive to islet survival. Furthermore, this work offered the opportunity to study 

two unique scaffolds designs with the same material, allowing for a comparison to be made based 

on scaffold architecture. An important consideration in the development of biomaterial scaffolds 

is the ability to retrieve them for further studies without harming the host. Thus, non-degradable 

PEG scaffolds were developed for implantation into the epididymal fat pad to allow for 

straightforward recovery for further morphological analysis. Encapsulated islets are frequently 

microencapsulated in 400-800 µm spheres and deposited in the peritoneal cavity, 
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Figure 3-8. Allogeneic graft function of scaffolds with TGF-β1 (A) Encapsulating hydrogels 
combined with TGF-β1 delivery delays rejection until Day 24 compared to rejection at Day 12 
without TGF-β1 (n = 2 per group, ± SEM). Rejection is denoted as two consecutive days of blood 
glucose >250 mg/dL. (B) Graft Function 7-days post-transplant in salt-leached microporous 
hydrogels. - TGF-β1 condition (n=2, ± SEM), + TGF-β1 condition (n=4, ± SEM). At day 7, the 
microporous hydrogels were removed for flow cytometry.  
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subcutaneously, or under the renal capsule, making recovery challenging [126]. By comparison, 

the macroencapsulated hydrogels and integrated host tissue was be easily removed from the 

epididymal fat pad for further analysis.  

Microporous PEG hydrogels, comparable in design to PLGA scaffolds [104], allowed for 

rapid cellular infiltration and engraftment, a critical requirement for successful islet transplants. 

The average pore size of these microporous scaffolds was 107 µm and 274 µm for the gelatin- 

and salt-leached hydrogels, respectively. The minimum required pore size for vascularization has 

been determined to be 30 to 40 µm to facilitate endothelial cell entrance [127, 128], and 160 to 

270 is suggested as ideal for hydrogels [129]. The difference in porogen not only affects pore size, 

but also the pore shape, as the gelatin microparticles are spherical whereas the salt grains are 

cuboidal. The gelatin contacts other spheres at points whereas the salt contacts at faces, which 

may affect pore interconnectivity. Despite these difference, both appear to be interconnected 

and tissue infiltrated throughout both of them by day 30. In regards to ease of fabrication, the 

gelatin-leached hydrogels were more straightforward, as the gelatin microparticles are not 

soluble in water at room temperature but can be dissolved at 37 oC, whereas the salt porogen 

requires a saturated salt/PEG solution which introduces solubility concerns. To fabricate clinically 

viable gelatin-leached hydrogels, the manufacturing process would need to be modified to meet 

Good Manufacturing Process (GMP) standards due to the use of mineral oil and porcine gelatin.   

Normoglycemia in the syngeneic mouse model was achieved in both microporous 

hydrogels by day 15 and the encapsulated at day 21 post-transplant. Glucose responsiveness of 

islets seeded in microporous hydrogels was confirmed via an intraperitoneal glucose tolerance, 

with normoglycemic levels achieved by 60 minutes, identical to the nondiabetic control mice. 
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Restoration of normoglycemia post-transplant and in the glucose challenge was observed in a 

similar, if not earlier timeframe, than other rodent studies that have used natural or synthetic 

hydrogels for islet transplantation in vascularized sites [27, 130]. In contrast, the encapsulating 

hydrogels response to the glucose challenge was slower than the microporous and control mice 

and peaked at the later time point of 30 minutes. Similarly, the glucose readings at the 60 and 90 

minute time points were significantly different from the control mice (p≤0.05), and appeared to 

lag behind the control’s glucose response by approximately 30 minutes at these times. Whereas 

the microporous PEG and controls reached a maximum blood glucose of 300-350 mg/dL, the 

encapsulated reached a maximum of 450 mg/dL. This delayed responsiveness was expected due 

to the time needed for glucose and insulin to diffuse across the PEG barrier. It is also worth 

mentioning that the nondiabetic control mice for the microporous hydrogels were very similar 

whereas the encapsulated control was noticeably higher. This may be accounted by the fact that 

the microporous studies were completed at Northwestern University in Chicago, IL, while the 

encapsulated studies were done at the University of Michigan in Ann Arbor, MI. 

In the allogeneic model, we hypothesized rejection may be delayed with the barrier 

provided by the non-degradable, encapsulating hydrogel design. Preventing direct contact with 

immune cells has been shown in some cases to improve allogeneic islet engraftment, with the 

goal of eliminating the need for immunosuppressive drugs. Precise control over mesh size and 

mesh size uniformity is critical to prevent entry of cytokines or exit of islet antigens that can 

exacerbate the host immune response [131]. However, smaller mesh sizes that are close to the 

hydrodynamic radius of insulin can hinder molecular transport through the hydrogel. 

Furthermore, many cytokines are similarly sized to insulin, making it challenging to identify an 
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ideal mesh size that selectively excludes harmful proteins and small molecules [132]. The mesh 

size of the hydrogels presented here is approximately 10 nm [41], similar to other reported mesh 

sizes for PEG hydrogels [133, 134]. Encapsulating hydrogels were unable to delay graft allogeneic 

rejection and were not different from microporous hydrogels which offer no inherent protection 

from the immune system. Rejection occurred within a two-week timeframe post-transplant, 

similar to the microporous PLGA hydrogel, thus indicating that a semipermeable PEG membrane 

was not sufficient to delay graft rejection. However, in this study, a physical barrier to immune 

cells was not sufficient to prevent graft rejection. Precise control over mesh size and mesh size 

uniformity is critical to prevent entry of cytokines or exit of islet antigen that can exacerbate the 

host immune response.  

TGF-β1 release from PEG scaffolds delayed rejection of allogeneic islets. In vitro release 

of TGF-β1 from microporous hydrogels containing a protein loaded PLGA disc was similar to 

previously published porous PLGA systems in which 95% of the total delivered protein was 

detected by day 7 [117]. When encapsulating PEG scaffolds were implanted in the fat pad along 

with the TGF-β1 loaded disc, rejection was delayed until day 24 compared to rejection at day 12 

without TGF-β1. This demonstrates the ability to locally deliver proteins from the hydrogels and 

allows for the delivery of other anti-inflammatory molecules like IL-2, IL-10, or TNF-α inhibitors 

that could be useful to manage short-term inflammation due to scaffold surgery and islet 

transplantation. 
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CHAPTER 4. Localized Lentivirus Delivery via Affinity Peptides 

 

4.1 Introduction 

 Biomaterial scaffolds serve a central role in regenerative medicine by creating a space for 

tissue growth and a support for cell interactions serve as a vehicle for gene delivery vectors as a 

means to localize expression of tissue inductive factors. The delivery of soluble factors to the 

local environment of the transplanted islets can promote survival, vascularization, and growth 

[135-137]. Localized expression of tissue inductive factors enables some control over the local 

microenvironment that has been effective in multiple models such as spinal cord injury and bone 

regeneration [73, 138] . The delivery of viral vectors from scaffolds has been attempted through 

a variety of approaches, such as non-specific adsorption of the vector [86], modifying the vector 

to bind to a material [90], or modifying the material to interact with the vector. Material 

modifications have included modification of surfaces with hydroxyapatite [87, 88], or 

phosphatidylserine that is known to have specific interactions with the vector [89]. Proteins and 

peptides are regularly employed to functionalize biomaterials, and are emerging as a tool for 

providing binding sites for vectors on material surfaces. Poly-L-lysine (PLL) with a molecular 

weight of 70-150 kDa has been used for delivery of viral vectors [63]. Identifying the design 

requirements for peptides or proteins for promoting efficient gene delivery would be invaluable 

for developing biomaterials for use in regenerative medicine.  

We investigated the design parameters for peptides and proteins to enhance delivery of 

lentiviral vectors from biomaterial scaffolds. Poly(ethylene glycol) based hydrogels were 



42 
 

employed as the biomaterial scaffold in these studies as they are widely used in vitro and in vivo 

for studies with cell culture, encapsulation, and transplantation and ultimately tissue formation, 

and provide a relatively low amount of non-specific binding for lentiviral vectors [107, 108]. 4-

arm PEG-acrylate hydrogels were functionalized with peptides containing a cysteine to provide 

quick and straightforward functionalization via Michael-type addition. The design of proteins and 

peptides for gene delivery initially employed PLL at a range of molecular weights. These studies 

investigated the mechanism by which PLL enhances gene delivery through characterizing virus 

binding and stability. While PLL can produce efficient delivery, the relatively high molecular 

weight and polydispersity of PLL may be a challenge for translation. We thus sought to identify 

peptides using a phage display technology, which has had success with identifying ligands for 

multiple cell types [139-143], proteins [144-146], and small molecules [147-149]. The peptides 

can provide a high affinity and specific binding interactions with the viral vector, and we 

investigated multiple strategies for their presentation from the hydrogel. Modifying biomaterials 

with peptides offers great potential to enhance and modulate virus localization and promote 

transgene expression for numerous regenerative medicine applications.  

4.2 Materials and methods 

4.2.1 Virus production  

Lentivirus was produced by co-transfecting HEK-293T cells with lentiviral packaging 

vectors (pMDL-GagPol, pRSV-Rev, pIVS-VSV-G), as previously described [150], and the gene of 

interest (pLenti-CMV-GFP and pLenti-CMV-GLuc) using jetPRIME (Polyplus Transfection, Illkirch, 

France). After 17 h, supernatant was replaced with fresh media containing 4 mM caffeine. After 
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an additional 31 hours, supernatant was collected and cell debris was spun down and removed. 

Virus particles were concentrated using PEG-it (Systems Biosciences, Mountain View, CA) and re-

suspended in PBS. Lentivirus titers were determined by qRT-PCR lentivirus titration kit (ABM, Inc., 

Richmond, Canada). Virus was further purified for SDS-PAGE gel analysis via a Lenti-X Maxi 

Purification Kit (Clonetech, Mountain View, CA) and desalted using a PD-10 column (GE 

Healthcare, Buckinghamshire, England). The SDS-PAGE gel used a NuPAGE 4-12% Bis-Tris pre-cast 

polyacrylamide gel and ran in MES SDS running buffer (Thermo Scientific) and stained with 

Coomassie Blue. 

4.2.2 PLL functionalization with cysteine 

 A low molecular weight PLL (10 kDa, Alamanda Polymers, Huntsville, AL) and a high 

molecular weight PLL (30-70 kDa, Sigma Aldrich, St. Louis, MO) were functionalized with a 

cysteine using EDC/NHS chemistry to facilitate incorporation into the PEG-acrylate hydrogels. A 

solution of 2 mM EDC and 5 mM NHS was added to a 0.1 M MES buffer (pH 5.0) and the peptide 

was added to make a concentration of 1 mg/mL. After 15 minutes of incubation, the buffer was 

exchanged with centrifugal filtration (10 kDa, Amicon Ultra-0.5) to 0.1 M PBS (pH 8) containing 

30 mg/mL of oxidized cysteine. After allowing the solution to react for 2 hours, excess cysteine 

was removed via dialysis and any oxidized thiol groups were reduced with 50 mg/mL of 

dithiothreitol. The PLL was quantified with a fluorescamine assay and the cysteines were 

quantified via Ellman’s test. 
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4.2.3 Macrophage differentiation  

Bone marrow derived macrophages (BMDM) were harvested and differentiated 

according to established protocol [151]. Briefly, femurs from male 8-12 week-old C57BL/6 mice 

(Charles River) were flushed to isolate bone marrow. Macrophages were cultured in RPMI 1640 

(Life Technologies, Carlsbad, CA) supplemented with 10% FBS (Life Technologies), 1% 

penicillin/streptomycin (Life Technologies), and 20% L929 conditioned media in untreated cell 

culture plates. Media was replaced on days 3, 6, and 8. On day 10, cells were removed using 0.05 

mM EDTA treatment. PEG hydrogels were formed and loaded with virus as described in materials 

and methods. Briefly, hydrogels were loaded with 107 viral particles encoding for GFP, washed to 

remove non-binding virus, then seeded with 104 macrophages per well in a 96-well plate. GFP 

expression was measured 72 hours later. 

4.2.4 Peptide synthesis 

Peptides were synthesized at Northwestern University’s Peptide Synthesis Core Facility of 

the Institute for BioNanotechnology in Medicine. To facilitate peptide incorporation into the PEG-

acrylate hydrogels via Michael-type addition, a cysteine was added to the C-terminus of the 

synthesized phage display peptide. 

4.2.5 Biotinylated VSV-G 

The VSV glycoprotein ectodomain (kindly gifted by Yves Gaudin, CNRS, Unité Mixte de 

Recherche) was biotinylated using sulfo-NHS-LC-biotin (Thermo Scientific, Rockford, IL) according 

to the manufacturer’s recommended methods. Briefly, VSV-G was diluted in a 0.1 M NaHCO3 

buffer and the biotinylation reagent was added. The reaction was incubated on ice for two hours 



45 
 

then excess reagent was removed using centrifugal filtration (10 kDa, Amicon Ultra-0.5). The 

degree of biotinylation on the VSV-G proteins was assayed using a fluorescence biotin 

quantitation kit (Thermo Scientific). 

4.2.6 Solution phase phage display 

 Peptides that bind to the biotinylated VSV-G protein were identified using a 12-mer phage 

display library (New England Biolabs, Ipswich, MA) using the suggested methods for solution 

phase panning. The phage library and biotinylated protein were combined in a TBS buffer with 

Tween-20 and allowed to interact. The mixture was then added to a streptavidin-coated 96-well 

plate blocked with BSA and incubated for 10 minutes. Biotin (0.5 µL, 10 mM) was added to 

displace any phages bound to the streptavidin and the plates were washed 15 times with TBST 

to remove non-binding phages. Bound phages were eluted from the immobilized protein by 

incubating in an acidic glycine elution buffer (pH 2.2) for 30 minutes followed by neutralization 

with 1 M tris buffer (pH 9.1). Phages were then amplified in E.coli and purified using a PEG 

solution (20% w/v). 

 A total of three rounds of panning were completed, with each round introducing more 

rigorous conditions to select for stronger binding candidates. Tween-20 concentration was 

increased 0.1, 0.5, and 1%, and NaCl concentration was increased 150, 300, and 750 mM. Time 

the phages spent incubating with the target protein was reduced to 60, 45, and 30 minutes. After 

the third round of panning, individual phage clones were randomly sampled and their DNA was 

extracted then purified. DNA was sequenced at Northwestern University’s Genomics Core 

Facility. 
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4.2.7 ELISA 

 VSV-G was incubated in 96-well plates overnight and phage solutions were allowed to 

bind at the listed concentrations. After 30 minutes of incubation, phages were washed with a 

buffered solution containing 1% Tween-20 and 750 mM NaCl. Phages were detected with an anti-

M13 bacteriophage antibody conjugated with horseradish peroxidase (HRP) (GE Healthcare) and 

reacted with a 1-step 2,2'-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt 

(ABTS) to produce a colorimetric reaction. The absorbance from the reaction was measured using 

a plate reader (Synergy 2, BioTek). 

4.2.8 Hydrogel preparation 

Hydrogels were formed by dissolving 4-arm polyethylene glycol acrylate (20 kDa) (Laysan 

Bio, Inc., Arab, AL) in 8.5 mM HEPES buffer (pH 8.0) at a concentration of 100 mg/mL. In hydrogels 

containing PLL, cysteine-functionalized PLL was added for a total concentration of 0.45 mg/mL, 

unless otherwise noted, in addition to 2.5 mM of the cell adhesion peptide, RGD (Ac-CGRGDS-

NH3) (Celtek Peptides). The RGD control gels contained 5 mM of the peptide. The PEG precursor 

solution was incubated at 37 ˚C for 30 minutes to facilitate the Michael-type addition between 

the acrylate and thiol. To initiate the free-radical polymerization of the acrylate groups, Irgacure 

2959 dissolved in N-vinylpyrrolidinone (600 mg/mL) was added to the PEG for a final 

concentration of 1% (wt/vol). Gel precursor was added to non-adhesive silicon molds (diameter 

= 4.5 mm, height = 0.8 mm), cross linked with UV light for 90 seconds, then washed with PBS to 

remove unbound peptide and unreacted photoinitiator. To determine if virus binding to the walls 

of the polystyrene plate affected the results, wells of a tissue culture treated 96-well plate were 
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blocked with bovine serum albumin (5 mg/mL in 0.1 M NaHCO3 buffer, pH = 8.6). No significant 

binding was observed.  

Hydrogels functionalized with peptides from the phage display panning used a 5 kDa PEG 

linker (acrylate – PEG – maleimide) (Creative PEG Works, Winston Salem, NC). The PEG linker was 

added to the PEG precursor solution at a 2.5 mM concentration then photopolymerized using UV 

light. The peptides were incubated with the virus for 3 hours and then incubated with the 

hydrogels for 15 minutes, with hydrogels subsequently washed 2x with PBS. 

4.2.9 Transgene expression 

 Lentivirus (1 x 107 particles) was added to the gels and allowed to incubate for 3 hours at 

room temperature (unless otherwise noted). Virus solution was then removed and gels were 

washed twice with 150 μL of PBS to remove unbound virus. HT1080 cells were added (104 cells / 

well) and incubated with Dulbecco’s modified Eagle’s medium plus 10% fetal bovine serum at 

37oC, and 5% CO2. Cells expressing GFP were imaged 72 hours later, unless noted otherwise, 

using Leica X fluorescent microscope. The supernatant of cells expressing GLuc was gathered 

after 72 hours of incubation and measured using a Gaussia luciferase assay kit (New England 

BioLabs) with a luminometer (Turner Design, Sunnyvale, CA).  

4.2.10 Statistics  

 One-way ANOVA followed by Tukey’s posttest for multiple comparisons and two-tailed 

Student’s t-test, where appropriate, was performed using GraphPad version 5.04 for Windows 

(La Jolla, CA). Statistical significance was set at p ≤ 0.05 unless noted. Values shown represent the 

mean ± SEM. 
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4.3. Results 

4.3.1 PLL length 

PEG hydrogels were functionalized with PLL of three molecular weights and subsequently 

investigated for their ability to localize lentiviral vectors to the substrate and promote gene 

transfer. PLL was modified with cysteine for attachment to the acrylate groups on the PEG 

hydrogel. Studies were performed with varying molecular weights of PLL, which were 

incorporated at equal masses (Table 4-1). Hydrogels functionalized with 1 kDa, 10 kDa, or 30-70 

kDa PLL were incubated for three hours with lentivirus encoding for GFP. Fluorescence images 

demonstrated that the high molecular weight PLL (30-70 kDa) provided the greatest number of 

GFP positive cells (Fig. 4-1C), while the 1 kDa PLL had almost no cells expressing the transgene 

(Fig. 4-1A). The high molecular weight PLL resulted in transduction of 25% of the cells, whereas 

the lowest molecular weight PLL transduced less than 0.1% of the cells (Fig. 4-1D). Based on its 

ability to promote the greatest extent of transduction relative to the other PLL’s, the 30-70 kDa 

was selected for further analysis. To demonstrate this system’s broad potential to transduce 

other cell types, bone marrow derived macrophages were isolated from mice and incubated with 

hydrogels functionalized with 30-70 kDa PLL (Fig. 4-2).  The extent of transgene expression for 

the virus immobilized to the hydrogel was subsequently characterized. The control condition for 

this study involved hydrogels without PLL, yet had the cell-adhesion peptide RGD, which is 

necessary for cell adhesion and provides minimal interactions with the virus. The assay displays 

effectively zero background signal in the absence of virus, indicating that any measured signal is 

produced via transgene expression (Fig. 4-3). Additionally, designated wells were blocked with 

bovine serum albumin (BSA) (5 mg/mL) for two hours prior to hydrogel formation and virus 
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Table 4-1. Equal masses of the different poly-L-lysines were added to provide an identical net 
charge for each condition. 
 
 

 

Figure 4-1. Influence of PLL molecular weight on virus localization. PEG hydrogels containing 2.5 
mM RGD were functionalized with 0.45 mg/mL of 1 kDa (n=3) (A), 10 kDa (n=3) (B), and 30-70 
kDa (n=5). (C) PLL and incubated with GFP-encoding lentivirus. Hydrogels were washed to remove 
non-binding virus then seeded with HT1080 cells for 72 hours. (D) Significantly more cells were 
transduced with 30-70 kDa PLL than the shorter PLL’s. (*p≤0.05; ***p≤0.001) 

 
 

 

Figure 4-2. PLL functionalized hydrogels promote transduction of macrophages. PEG hydrogels 
were functionalized with 2.5 mM RGD (A) and 2.5 mM RGD + 1.35 mg/mL of 30-70 kDa PLL (B). 
Conditions without PLL (A) had no GFP expression while PLL functionalized hydrogels 
demonstrated significant GFP expression (B). 
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addition in order to determine the contribution of virus binding to the plastic walls of the plate. 

No significant difference was detected between blocked and unblocked plates. Luciferase activity 

was more than 10-fold greater on the PLL-containing gels relative to the control hydrogels, and 

the control gels were not statistically different from gels without virus.  

4.3.2 Binding dynamics, release, and stability 

We subsequently investigated the duration over which virus was incubated with 

hydrogels and the density of functionalization, as both have been previously reported to 

influence the binding of non-viral vectors and the extent of transgene expression. Hydrogels were 

functionalized with PLL and incubated with virus for times ranging from 15 to 270 minutes. A 

significant increase in luciferase activity was observed for virus incubated for 90 minutes with the 

hydrogels, with longer incubations of 270 minutes having no significant effect on transgene 

expression (Fig. 4-4A). The PLL concentration similarly influenced transgene expression, with 

increasing transgene expression observed between 0.15 and 1.35 mg/mL, and subsequent 

increases to 4.05 mg/mL not significantly affecting transgene expression (Fig. 4-4B). These 

observed trends in incubation time and PLL concentration are consistent with those reported for 

non-viral vectors, and are likely due to the quantities of the lentivirus associated with the 

substrate.  

The release of lentivirus from PLL-functionalized PEG gels was investigated, as retention 

of the vector at the material can localize gene delivery. After virus incubation with the hydrogel 

and subsequent washing, released virus in the supernatant was collected and quantified with RT-

qPCR (Fig. 4-5A,B). After washing, the PLL modified hydrogel did not have detectable levels of 

virus in the supernatant (Fig. 4-5A). In contrast, the RGD control had a steady release of virus for 
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Figure 4-3. PLL enhances virus localization on PEG hydrogels. PEG hydrogels containing 2.5 mM 
RGD were functionalized with either 30-70 kDa PLL (0.45 mg/mL) or additional RGD (2.5 mM) 
(n=3). Designated wells were blocked with BSA (5 mg/mL) prior to forming the hydrogels. The 
“No virus” condition contains PLL but was incubated with PBS instead of lentivirus. Lentivirus 
encoding for GLuc was incubated with the hydrogels then washed with PBS to remove non-
binding virus. HT1080 cells were incubated with the hydrogels for three days and then luciferase 
activity was assayed. Significant difference compared to No virus and RGD (****p≤0.0001). 

 

 

 

Figure 4-4. Transgene expression can be modulated via virus-hydrogel incubation time and PLL 
concentration. (A) PEG hydrogels functionalized with 2.5 mM RGD and 0.45 mg/mL of PLL were 
incubated with virus for varying times (n=3). Fold increase in GLuc expression relative to RGD 
control. Significant difference compared to RGD control (**p≤0.01; ***p ≤0.001). (B) Hydrogels 
were functionalized with varied concentrations of PLL and incubated with virus for 3 hours (n=3). 
Significant difference compared to RGD control (****p≤0.0001).  
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the duration of the study (Fig. 4-5B). In a separate experiment, trypsin was added to PLL-

conjugated hydrogels loaded with virus to elute bound lentivirus, but no detectable amounts of 

eluted virus could be detected. It is hypothesized that the trypsin may have damaged the 

lentivirus or inhibited the RT-qPCR reagents. The stability of the immobilized virus, another factor 

affecting transduction, was subsequently investigated by incubating hydrogels with immobilized 

virus at 37 oC for varying amounts of time. Following incubation, cells were seeded onto the 

hydrogels and luciferase expression was assayed at 72 hours. Increasing times of incubation led 

to decreased levels of transgene expression for both the PLL condition and the RGD control, and 

this decline in activity was used to determine a half-life of activity. The half-life of lentivirus on 

the control hydrogel was 8.3 hours, consistent with previous reports [152-154], whereas the PLL-

functionalized hydrogels demonstrated a half-life of 10. hours, a 20% increase in half-life relative 

to control (p≤0.05) (Fig. 4-6).  

4.3.3 VSV-G protein solution-phase panning 

We subsequently sought to replace the high molecular weight PLL with a peptide, which 

are routinely used to functionalize biomaterials. The low molecular weight PLL has an insufficient 

affinity for lentivirus binding, and subsequently applied phage display to identify peptides with a 

high affinity for the lentivirus. Phage display requires a highly pure target to prevent undesired 

sequence selection, so two lentivirus purification techniques were explored and their purity was 

tested with an SDS-PAGE protein gel (Fig. 4-7). The PEG precipitation technique (lanes 7,8) 

resulted in a relatively large quantity of protein coprecipitated with the virus. The affinity column 

(lanes 5, 6) removed the majority of protein detected in the PEG precipitation, but a faint band 

at 60 kDa was detected. As a result, it was determined that the production of lentivirus resulted 
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Figure 4-5. Retention of lentivirus on PLL-functionalized PEG hydrogels. (A) PEG hydrogels 
containing 2.5 mM RGD were functionalized with either 30-70 kDa PLL or additional RGD (0.45 
mg/mL) (n=4). Virus was incubated with the hydrogels for three hours at 37 oC then washed with 
PBS to remove non-binding virus. Unbound virus in the supernatant was collected and assayed 
via qPCR at different time points. Following the two washes, no detectable level of virus was 
found in the PLL-functionalized hydrogels. (B) The fraction of lentivirus released from the 
hydrogel was calculated by dividing the eluted virus particles by the initial virus loading. 
Significant differences between corresponding RGD and PLL conditions are denoted by an 
asterisk (**p≤0.01; ****p≤0.0001).   
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Figure 4-6. Increased viral stability in PLL-functionalized hydrogels at 37oC. PEG hydrogels with 
2.5 mM RGD and either 30-70 kDa PLL or additional RGD (0.45 mg/mL) were incubated with virus 
at 37 oC for three hours (n=3). All hydrogels were washed and incubated with PBS. At each time 
point, the PBS was replaced with HT1080 cells and subsequent luciferase expression was assayed 
72 hours later. (**p≤0.01; ***p≤0.001) 

 

 
 
Figure 4-7. Analysis of lentivirus purification methods using SDS-PAGE protein gel. (Lane 1, 3 = 
VSV-G, 0.5 µg; lane 4, 5 = VSV-G, 2.0 µg; lane 6, 7 = Lentivirus, Lenti-X purification; lane 8, 9 = 
Lentivirus, PEG-it purification; lane 10 = ladder; Lane 2 intentionally left blank). The Lenti-X 
affinity column removed almost all detectable amounts of contaminating protein, except for a 
faintly detectable band at approximated 65 kDa whereas the PEG-it precipitation failed to 
remove significant amounts of undesired protein. 
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in the presence of contaminating proteins at sufficient quantities that prohibited solution-phase 

phage display. 

Phage display was thus applied to the envelope protein of the lentivirus, VSV-G (Fig. 4-8). 

VSV-G was biotinylated at a ratio of 0.8 mol of biotin per 1 mol of VSV-G protein. The protein was 

biotinylated at slightly less than a 1:1 ratio of biotin to protein in order to minimize the risk of 

phage display targeting excessive biotin groups on the protein. Initial panning experiments 

utilized a 7-mer sequence and resulted in strong selection of double insert phages. Phage display 

libraries contain a small percentage of phages containing multiple inserts of the randomized 

peptide sequence and these clones are strongly selected for when the ligand specificity spans a 

distance greater than the seven amino acid sequence. Consequently, panning experiments 

utilized phages with a longer 12-mer randomized sequence.  

Three rounds of panning with the VSV-G protein were performed to enrich the phage pool 

for VSV-G binding sequences. The binding specificity of these sequences was assessed using a 

fourth round of panning with and without the VSV-G protein, with 105 pfu/µL phages bound in 

the presence of the VSV-G protein, and 101 pfu/µL in the absence of the protein (Fig. 4-9), 

confirming the eluted phages are enriched in VSV-G specific phage clones. From solutions with 

the target protein, 108 phage clones were sequenced.  The relative variance of these sequences 

(repeated sequences were removed) was analyzed using the following equation: 

𝐷 =
𝑁𝑚𝑎𝑥

𝑁𝑇𝑜𝑡𝑎𝑙
 

𝑉 = 𝑁𝑠𝑒𝑞/𝐷 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉 − 1 
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Figure 4-8. Solution phase phage display. Biotinylated VSV-G and the phage library are mixed (1) 
and allowed to incubate (2). (3) Phage/VSV-G complexes are captured on a streptavidin-coated 
plate and non-binding phages are washed away (4). VSV-G bound phages are eluted from the 
plate using a low pH buffer (5) and the phages are collected for additional rounds of panning. 

 

 

Figure 4-9. After three rounds of panning, phages demonstrate binding affinity to VSV-G. A fourth 
round of panning was completed with (+) and without (-) VSV-G immobilized on the plate surface. 
After washing to remove non-binding phages, 105 PFU/µL were eluted from the plate surface 
coated with VSV-G whereas only 10 PFU/µL.  
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Where Nmax is the number of times the highest occurring amino acid appeared at a given position, 

NTotal is the total number of peptides sequences considered, and Nseq is the number of unique 

amino acids at a given position. The peptide sequence is listed N to C terminus, where the peptide 

is attached on the N-terminus of the phage’s pIII coat protein. Thus, amino acids at position 1 are 

farthest from the phage body and position 12 are closest. In between the randomized 12-mer 

sequence and the phage body is a GGGS spacer that is not included in the relative variance 

analysis. The results shows a high degree of relative variability at amino acids proximal to the 

phage (positions 9, 10, 11, 12) and an area of low variability in the center (positions 4, 5, 6, 7) and 

distal from the phage (position 1) (Fig. 4-10). This area of low variability in the center corresponds 

to a high frequency of the amino acid histidine. Next, the sequence STQHHHHSKQSR (STQ) was 

selected for binding analysis in an ELISA. Wells were coated with VSV-G and phages from either 

the naïve 12-mer library or phages displaying the STQ sequence were incubated with the target 

protein. After washing, bound phages were quantified with an anti-M13 bacteriophage antibody 

conjugated with HRP and reacted ABTS. Due to the high concentration of VSV-G bound on the 

plate which allows for multivalent binding to the phage, this technique cannot produce a 

dissociation constant (KD). However, it provides information on the relative binding affinities and 

can distinguish target binding from background binding to the plastic plate. ELISA results 

confirmed affinity binding for the STQ sequence compared to the non-specific binding of the 

naïve phage library (Fig. 4-11).  

After confirming with ELISA that the STQ sequence demonstrated an affinity for VSV-G, it 

was synthesized along with three other peptides that appeared multiple times for further analysis 

(Table 4-2). The potential of these sequences to bind lentivirus and enhance gene delivery was 
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Figure 4-10. Relative variability analysis of the sequences derived from phage display shows a 
decreased variability at position 1 and 4-7. Position 12 is closest to the phage body and position 
1 has the most freedom of movement. This analysis removed any repeat sequences.  

 

 

Figure 4-11. ELISA results of the STQ phage shows increased binding compared to the naïve phage 
library. As the titer of phages added to VSV-G coated plates was increased, phages displaying the 
STQ sequence demonstrated increased binding whereas the non-specific naïve library did not 
demonstrate a noticeable change in binding.  
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subsequently investigated. Peptides were synthesized with a terminal thiol group, and initial 

studies incorporated these peptides through Michael type addition, consistent with the 

mechanism of attachment for PLL and RGD peptides. The peptide density and incubation time of 

the peptide with virus were those identified to maximize expression with PLL (Fig. 4-4). Peptides 

that were directly incorporated into the PEG hydrogel failed to promote transgene expression. 

Subsequent studies involved attaching a 5 kDa PEG linker to the peptide, which was hypothesized 

to provide greater flexibility for lentivirus binding. PEG hydrogels functionalized with linker-

modified peptides promoted substantial transgene expression (Fig. 4-12). The four peptides 

identified by phage display provided a 6- to 20-fold increase in luciferase activity relative to RGD 

modified hydrogels (with RGD presented on a linker), and had expression levels that were 

comparable to the 30-70 kDa PLL. The use of the linker to connect the peptide to the hydrogel 

enhanced expression by the 30-70 kDa PLL relative to the absence of the linker (Fig. 4-2). 

Interestingly, a 1 kDa PLL peptide immobilized on a linker did not promote significant gene 

transfer above that produced with RGD. Taken together, these results indicate that peptides can 

promote substantial transgene expression by immobilization to hydrogels, though their 

presentation on a linker is necessary.  

4.4 Discussion  

This chapter investigated the design of peptides for immobilization of lentivirus to 

hydrogels and subsequently promote transgene expression. PLL is a cationic polypeptide that has 

been previously employed in non-viral gene delivery and has also been used to modify 

biomaterials to promote virus association. PLL has been proposed to associate with the lentiviral 
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Table 4-2. Phage display clones that appeared multiple times were selected for further analysis. 
 

 

 

Figure 4-12. Phage display identified peptides specific to the VSV-G protein on the lentivirus. 
Specific binding of lentivirus to phage display peptides. PEG hydrogels were functionalized with 
2.5 mM RGD and 2.5 mM of the synthesized phage display peptides conjugated with a 5 kDa PEG 
linker (n=4). HLKHTHNTHYKTCG (“HLK”), HWKPHSNLHLSRCG (“HWK”), STQHHHHSKQSRCG 
(“STQ”), and WPGHHNHSMKHKCG (“WPG”). RGD and 30-70 kDa PLL (0.45 mg/mL) were also 
functionalized to the PEG linker to serve as negative and positive controls, respectively. Lentivirus 
was incubated with the hydrogels for 3 hours followed by washing to remove non-binding virus. 
HT1080 cells were seeded on the hydrogels and luciferase activity was assayed 72 hours later. 
Fold increase in GLuc expression relative to RGD control. Significant differences between RGD 
and PLL are denoted by an asterisk (p<0.05).  
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vector through non-specific interactions. Our studies, consistent with previous reports [155], 

demonstrated that relatively high molecular weight PLL led to greater transgene expression. The 

enhanced transgene expression likely results from the retention of virus at the surface, which 

would overcome mass transport limitations by localizing the virus to the substrate to which cells 

were adhered [156, 157]. Immobilization also served to increase the stability by approximately 

20%, and the extent of immobilization increased through concentrations of 1.35 mg/mL and 

subsequently reached a plateau. Hydrogels functionalized with PLL concentrations higher than 

4.05 mg/mL were generally associated with decreased cell viability. Gene expression could 

theoretically be further manipulated by modifying PEG concentration, the molecular weight of 

PEG, and the amount of loaded virus. The collection of positive charges presented by the PLL 

provide sufficient avidity to effectively act to bind, yet the interaction between the virion and cell 

is sufficient to disrupt the PLL-lentivirus binding. 

PEG hydrogels were functionalized with PLL at multiple molecular weights (1 kDa, 10 kDa, 

and 30-70 kDa). These studies were performed for a similar extent of surface modification to 

isolate the effect of chain length. These studies demonstrated a significant effect of the chain 

length, with the shortest not supporting binding, the intermediate providing low level 

transduction, and the longest providing the greatest levels of expression. The peptide RGD served 

as a control for these studies and small quantities of virus was associated with this condition; 

however, this low association may be influenced by non-specific interaction with the hydrogel.  

We sought to identify shorter peptides for virus immobilization, as large peptides can be 

difficult to work with, relatively expensive, and have potential for cytotoxicity. The results with 1 

kDa PLL indicated that the peptide would need greater affinity, and thus phage display was used. 
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Phage display requires a highly pure target, which was not achievable with the existing lentivirus 

purification kits (LentiX). The crystal structure for the pre-fusion form of the VSV-G protein had 

recently been determined [158], and the purified VSV-G ectodomain was generously provided by 

the Gaudin group. Using the 12-mer library, we identified 108 clones, and the sequences that 

were most commonly observed were investigated for lentivirus binding. The STQ sequence was 

obtained with the greatest frequency after sequencing the phage clones. Several of the non-STQ 

sequences displayed a preference for four histidines at amino acid positions 4, 5, 6, and 7. A high 

abundance of aromatic amino acids could signify that the phages are interacting with the plastic 

instead of the target protein [159, 160]. In a fourth round of panning, the phages showed a 

10,000-fold higher binding affinity for wells coated with VSV-G, suggesting that our experiments 

did not identify proteins based on non-specific binding to the plastic. The precise nature of how 

this histidine motif interacts with VSV-G will need to be explored in future studies.  

Peptides identified through phage display were able to support transduction if a linker 

was employed for peptide immobilization. Initial studies with direct peptide attachment to the 

PEG hydrogel had minimal levels of transgene expression. Linkers have been used by others to 

conjugate antibodies to epidermal growth factor (EGF) , which were hypothesized to reduce 

steric hindrance and thereby improve interactions between the target [161]. Peptide 

immobilization with a 5 kDa PEG linker led to significant transgene expression, with the STQ and 

WPG peptides providing the greatest levels of expression. Interestingly, the transgene expression 

levels obtained with the immobilized peptide were comparable to the levels obtained with the 

relatively high molecular weight PLL. A linker applied to the 30-70 kDa PLL increased transgene 

expression by approximately 80%, yet was required for the peptides. Finally, we note that the 
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affinity provided by the peptides identified by phage display was necessary for transduction, as 

a 1 kDa PLL did not support gene transfer.  

Viral gene delivery represents a versatile tool to modify the microenvironment of 

damaged or diseased tissue and promote regeneration by converting the transduced cells into 

bioreactors to produce therapeutic proteins or downregulate undesired genes. Hydrogels are 

employed as a substrate that creates a space to promote regeneration, possess mechanical 

properties similar to native extracellular matrices, and can be readily functionalized. Hydrogels 

functionalized with proteins or peptides capable of binding lentivirus retained the virus at the 

material, enhanced the virus stability, and ultimately promoted gene transfer. High molecular 

weight proteins that non-specifically bind the lentivirus were directly attached to support binding 

and gene transfer. Alternatively, short peptides that specifically bind the lentivirus had to be 

immobilized onto biomaterials through linkers in order to promote binding and gene transfer, 

yet offered comparable gene expression levels. Taken together, affinity peptides or proteins can 

be attached to biomaterials to promote the binding of gene therapy vectors and subsequent gene 

transfer, with the efficiency a function of the peptide length and binding affinity.  
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CHAPTER 5. Localized Immune Tolerance from FasL-Functionalized PLGA 
Scaffolds 

 

5.1 Introduction 

Graft rejection is a central limitation in current clinical islet transplants. Although 

improvements in immunosuppressants have improved graft survival, chronic administration of 

these drugs leads to additional complications [18, 162]. In contrast, localized modulation of the 

immune system provides tolerance in allogeneic hosts without body-wide negative side effects 

associated with systemic immunosuppressants. Encapsulating hydrogels are a widely explored 

alternative that create a semipermeable membrane designed to block immune cells and exclude 

inflammatory cytokines while allowing insulin, nutrients, and waste to diffuse across the barrier 

[163-166]. Consequently, this approach excludes blood vessel infiltration and, in the absence of 

adequate blood supply, islets face acute hypoxic stress and poor insulin exchange [167]. As 

demonstrated in Chapter 3, microporous scaffolds are an attractive option due to their rapid 

engraftment and response to changes in blood glucose levels, but they do not offer any inherent 

protection from the immune system. Therefore, the purpose of this chapter is to demonstrate 

the feasibility of functionalizing microporous scaffolds with immunoregulatory proteins to locally 

induce islet tolerance.  

Destruction of β cells in T1D is caused by autoreactive T cells responding to β cell-specific 

antigens [91]. Experimental evidence suggest that the direct recognition of class I MHC molecules 

on the surface of islet cells by CD8+ T cells plays a critical role in islet allograft rejection [168-171].  
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Controlling the auto- and allogeneic T cell response would allow for long term survival of 

transplanted islets. Fas ligand (FasL), a well-studied regulatory protein, binds to cells expressing 

the FasR and plays an important role in tolerance to self-antigens [172-175]. Previous attempts 

to utilize the regulatory capability of FasL were met with some success by transplanting a 

composite graft consisting of islets and syngeneic myoblasts transfected to express FasL [176], 

but it was later demonstrated that this approach was prone to neutrophil-mediated 

inflammation [177]. Similarly, other groups have utilized islets that directly expressed FasL, but 

also encountered rapid islet death from host neutrophils [178, 179]. As an alternative to ectopic 

gene expression, islets were biotinylated and functionalized with a streptavidin-FasL (SA-FasL) 

chimera protein that has shown indefinite cell survival when combined with a short course of 

rapamycin [180].  

It is clear that FasL is a potent immunoregulatory molecule and localized delivery of FasL 

represents an attractive option, but proper presentation of the protein remains a challenge. 

Although surface decoration of FasL on biotinylated islets has demonstrated robust tolerance, 

manipulating a biomaterial scaffold to present SA-FasL would eliminate the steps needed for 

direct islet engineering, and as such save time and overcome potential undesired effects 

associated with engineering process, such as cell fragmentation. The studies in this chapter 

describe the attachment of SA-FasL to microporous scaffolds to achieve chronic 

immunosuppression-free, long-term survival of allogeneic pancreatic islets transplanted into an 

extrahepatic site. Initial studies employed the established model in which islets are modified with 

SA-FasL, with subsequent transplantation onto a microporous scaffold. Subsequently, we 

developed the procedures for modifying microporous PLGA scaffolds with biotin for subsequent 
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immobilization of SA-FasL, and characterized the binding and functionality of the immobilized 

protein. Although it would be desirable to utilize PEG hydrogels due to their tissue-like 

mechanical properties and ease of functionalization, PLGA scaffolds were used in these studies 

as allogeneic transplants in this material is already well-characterized. These studies employed 

islets isolated from BALB/c mouse and transplanted into the epididymal fat pad of C57/BL6 

mouse, a fully mismatched transplantation model. The omentum has emerged as a leading 

candidate in human clinical trials due to its thin and highly vascularized membrane, and portal 

draining that recreates the physiological effects of insulin in the liver [34, 181]. In mice, the 

epididymal fat pad has many similar features to the omentum, and we have developed scaffolds 

to support engraftment of transplanted islets at this site. The function of the transplanted islets 

was monitored by blood glucose levels as well as an intraperitoneal glucose tolerance test. 

Collectively, these studies address two major issues with clinical islet transplantation; 

development of an extrahepatic site for islet engraftment, and overcoming immune rejection 

without of the use of chronic immunosuppression.  

5.2 Materials and methods 

5.2.1 Materials:  

Poly(lactide-co-glycolide) (75:25) (PLGA) (approx. 80,000 g/mol) with a single carboxylic 

acid end-group and an inherent viscosity of 0.76 dL/g was purchased from Lakeshore 

Biomaterials (Birmingham, AL). Poly(ethylene-alt-maleic anhydride) (PEMA) was purchased from 

Polyscience, Inc. (Warrington, PA). EZ link Amine-PEG2-Biotin was purchased from Fisher 

Scientific. 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-



67 
 

hydroxysuccinimide (NHS). Dichloromethane (DCM), dimethyl sulfoxide (DMSO). All other 

reagents were purchased from Sigma Aldrich (St. Louis, MO) unless noted otherwise.  

5.2.1 Biotinylation of PLGA and characterization  

PLGA (890 mg, 0.011 mmol) was added to a 20 mL glass scintillation vial and dissolved in 

10 mL DMSO.  The carboxyl end group of PLGA was activated by first adding EDC (10.6 mg, 0.056 

mmol) dissolved in 1 mL DMSO followed by NHS (6.4 mg, 0.056 mmol) dissolved in 1 mL DMSO 

and the reaction was allowed to stir for 15 min. Amine-PEG2-Biotin (5 mg, 0.056 mmol) was 

dissolved in 1 mL DMSO and added dropwise to the stirring solution of PLGA-NHS and the 

reaction was allowed to stir overnight. Excess biotin was removed by extraction. The reaction 

mixture was diluted into 200 mL of DCM and washed 4 times with 150 mL of brine.  The organic 

layer was dried over anhydrous sodium sulfate, filtered, concentrated by rotary evaporation, 

precipitated into ice cold methanol, and stored in vacuum overnight to remove residual solvents.  

Functionalization was confirmed with 1H-NMR (DMSO-d6). 

5.2.2 Particle and scaffold fabrication 

PLGA microparticles were formed for scaffold fabrication as previously described [182].  

Briefly, PLGA was dissolved in DCM at a concentration of 6 wt% and sonicated in a 1% solution of 

PEMA at 100% amplitude (Cole-Parmer, 130 W, 3 mm stepped tip). The emulsion was poured 

into 200 mL of 0.5% PEMA and the organic solvent were evaporated by stirring the emulsion 

overnight. The particles were recovered by washing four times with deionized water by 

centrifugation at 7000 x g for 15 min at 4 oC. Particles were lyophilized for 48 hours and stored 

under vacuum.  Biotin-PLGA microparticles were similarly fabricated, however biotin-PLGA 



68 
 

conjugates were combined with unmodified PLGA at a mass ratio of 3:1 (biotin-PLGA:PLGA) for a 

final concentration of 6 wt% in DCM.  

Porous scaffolds were formed by mixing PLGA particles with NaCl (250 µm< d < 425 µm) 

at a 1:30 ratio (PLGA:NaCl).  The mixture was pressed in a 5 mm KBr die using a Carver press at 

1500 psi and foamed in CO2 at 750 psi for 16 hours.  Scaffolds were leached in water for 1 hour 

followed by a second wash for 30 minutes.  Scaffolds were disinfected by soaking them in 70% 

ethanol and washed with deionized water. 

5.2.3 Particle characterization 

The size and zeta potential of the particles was determined by dynamic light scattering 

(DLS) by mixing 10 μL of a 25 mg/mL particle solution into 990 μL of MilliQ water using a Malvern 

Zetasizer ZSP (Westborough, MA) as previously described [Citation]. 

5.2.4 Scanning electron microscopy 

SEM images were taken using a scanning electron microscope (FEI Quanta 3D) 

instrument. A gold sputter coating was applied and the microscope was operated at 10 kV. 

5.2.5 Protein loading and quantification 

 Particles were incubated with various concentrations of fluorophore-labeled streptavidin 

at 1 mg particles/mL for 20 minutes at various concentrations.  Unbound streptavidin was 

removed by washing the particles with PBS by centrifugation (7000 x g, 5 min, 4 deg. C). To 

quantify the amount of fluorophore binding to the particles, particles were dissolved in DMSO 

and fluorescence was quantified using a plate reader,(Synergy 2 (BioTek)) at 578 nm excitation 

and 605 nm emission. 
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 Scaffolds were incubated with fluorescent streptavidin by applying 10 µL of the SA 

solution (0-40 ng/µL) to both sides of the disc (a total of 20 µL) for 20 minutes.  Unbound 

streptavidin was removed by washing the scaffold three times with 1.5 mL of PBS in a 

microcentrifuge tube.  Scaffolds were dissolved in DMSO and fluorescence was quantified as 

described above. 

5.2.6 Apoptosis assay 

 Particles (1 mg) and scaffolds were incubated with SA-FasL (supplied by the Shirwan lab, 

University of Louisville, KY) (Particles: 1 mL, 400 ng/µL; scaffold: 20 μL, 0-50 ng/μL) and washed 

as described above.  To assess the ability for FasL particles or scaffolds to induce apoptosis in 

vitro, 1 mg/mL particles or a single scaffold was added to a 96 well plate containing A20 cells 

(mouse B lymphoma) at a concentration of 1.5x106 cells/mL and incubated for 18 hours.  Cells 

were removed from the plate, stained with annexin V and propidium iodide (Life Technologies), 

and analyzed via flow cytometry. 

5.2.7 Mice and recombinant proteins 

Animal studies were completed at the University of Louisville in collaboration with the 

Haval Shirwan lab. C57BL/6 (H-2b) and BALB/c (H-2d) mice were purchased from Jackson 

Laboratory and bred according to protocol as approved by the Institutional Animal Care and Use 

Committee in our specific pathogen-free animal facility at the University of Louisville. 

Recombinant SA and SA-FasL proteins were made with the Drosophila DES expression system 

(Invitrogen)[183].  



70 
 

5.2.8 Islet isolation and engineering with SA-FasL protein 

BALB/c islets were harvested from 8 to 12-week-old donors under anesthesia. Donor 

pancreases were perfused with 3 mL of cold Liberase TL (Roche Diagnostics) then removed and 

incubated for 20 minutes at 37oC.  Islets were isolated using a Ficoll gradient (Sigma-Aldrich). 

Islets were kept overnight in RPMI-1640 medium supplemented with penicillin/streptomycin 

(100 U/ml and 100 µg/ml) and 10% fetal bovine serum in an incubator at 37oC with 5% CO2.  Islets 

were transferred to a 14-mL round bottom tube and washed in PBS. Islets were then incubated 

in 5 µM EZ-Link™ Sulfo-NHS-LC-Biotin solution (Thermo Scientific) at 20oC for 30 minutes. After 

incubation, islets were washed twice in PBS to remove any unbound biotin. Then, islets were 

incubated in PBS containing SA-FasL protein (~200 ng SA-Fas/500-550 islets/200 µl PBS) at 20oC 

for 30 minutes. Islets were washed twice in PBS to remove any unbound protein before 

transplantation. Biotin-PLGA scaffolds were engineered by placing scaffolds to a round bottom 

tube and adding SA-FasL (0.5 or 2.5 µg /scaffold) diluted in PBS and incubating at 20oC for 30 

minutes while rotating and shaking the tube every 10 minutes. Scaffolds were washed twice 

before being loaded with islets. 

5.2.9 Islet transplantation 

C57BL/6 mice were chemically induced with diabetes by intraperitoneal (i.p.) injection of 

streptozotocin (200 mg/kg). Mice were monitored by reading blood glucose where ≥ 250 mg/dL 

for two consecutive days was considered diabetic.  Islets were loaded onto PLGA scaffolds (2 

scaffolds/mouse). Diabetic mice were given anesthesia and a small incision was made on the 

abdomen to allow scaffolds to be placed on epididymal fat pads. Adipose tissue was wrapped 

around scaffolds before being returned to the abdomen. Mice were then sutured. Select mice 
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were administered with rapamycin through i.p. injection of 0.2 mg/kg daily for 15 days starting 

the day of transplant. Mice were monitored for diabetes and those with ≥ 250 mg/dL blood 

glucose level for two consecutive days considered rejecting the islet graft. 

5.2.10 Intraperitoneal Glucose Tolerance Test 

Mice were put in clean cages without food and allowed to fast for 6 hours. After fasting, 

mice were injected with 25% glucose solution (2 gm/kg body weight). Mice were monitored for 

blood glucose levels before injection and at 10, 20, 30, 60, 90, and 120 minutes post glucose 

injection. 

5.2.11 Immune monitoring 

Spleen and draining lymph nodes were harvested from mice after rejection of graft or at 

experimental end point (> 200 days) if mice remained euglycemic up to that point. Organs were 

disassociated into single cell suspensions by shearing between two frosted slides. ACK lysis buffer 

(ThermoFisher Scientific) was added to spleen to lyse red blood cells. For T cell phenotyping, after 

washing and counting, cells were stained with antibodies for surface markers (Alexa 700-CD4 Ab, 

APC-Cy7-CD8 Ab, PE-Cy7-CD25 Ab from Pharmingen, BD, and eFlour 450-CD44 Ab and PerCP-

Cy5.5-CD62L Ab from eBioscience). Cells were then fixed and permeabilized, and FoxP3 staining 

was done using FoxP3 Transcription Factor Staining Buffer set (eBioscience).  

For mixed lymphocyte reaction, splenocytes were panned and labelled with CFSE. 

Stimulator cells were prepared from either naïve BALB/c (donor) or C3H (3rd party) mice, 

irradiated with 200 cGy, and cocultured with equal numbers of responder cells in 96-well plates 

(0.1x106 cells/well). Cells were cultured in 200 µL DMEM supplemented with HEPES buffer, 
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sodium pyruvate, penicillin/streptomycin, L-Glutamine (ThermoFisher Scientific), FBS, L-Arginine 

HCL, folic acid, L-Asparagine, 2-Mercaptoethanol (Sigma), and responder serum. Cells were 

harvested after four days of culture at 37°C and stained with Alexa 700-CD4 Ab, APC-Cy7-CD8 Ab, 

and 7AAD to separate dead cells (BD Pharmingen). Cells were analyzed using BD LSR II and 

analyzed using Diva software. 

5.2.12 Statistical analysis 

Flow data was tested for significance using a two tailed Welch’s t-test. Graft survival was 

tested for significance using the log-rank test. P values of <0.05 were considered significant. 

Survival curves, IPGTT, and flow graphs were created and analyzed using GraphPad Prism 

software. 

5.3 Results 

5.3.1 Transplantation of SA-FasL modified islets onto microporous scaffolds 

We investigated the transplantation of SA-FasL on microporous scaffolds implanted into 

the epididymal fat pad (Fig. 5-1A). Initial studies employed the transplantation of syngeneic islets 

into streptozotocin-induced diabetic mice to determine the impact of the scaffolds and short 

term rapamycin on the engraftment and function of the transplanted islets. Transplantation of 

the syngeneic islets led to the establishment of euglycemia within 10 days for all animals, and the 

animals maintained euglycemia for the duration of the study (200 days) (Fig. 5-1B). Subsequently, 

allogeneic islets modified with SA-FasL were transplanted on microporous scaffolds. Unmodified 

islets transplanted on scaffolds with transient rapamycin had rejection of the grafts, as indicated 

by increased blood glucose levels, by day 40 (Fig. 5-1B). Mice transplanted with allogeneic islets 
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modified with SA-FasL and receiving the transient rapamycin had normalized blood glucose levels 

that were sustained for 200 days (Fig. 5-1B), similar to the results with syngeneic islets. 

Rapamycin has been previously reported to synergize with FasL presentation to prolong graft 

survival [180], as either factor alone results in only short-term graft function. An IPGTT study 

demonstrated that the normalization of blood glucose levels by the transplanted islets was 

similar to that observed with naïve mice (i.e., non-diabetic) (Fig. 5-1C), which is consistent with 

previous reports of islets transplanted on scaffolds [122, 123].  

T cell proliferative responses were analyzed from the spleens and draining lymph nodes 

of the grafts. The collected cells were labeled with CFSE and used against BALB/c donor and third 

party C3H stimulators in a standard ex vivo mixed lymphocyte reaction. After 4 days of culture, 

the responses from CD8 T cells indicated similar proliferative responses for the SA-FasL islets, the 

unmodified islets, and an age-matched C57Bl6 control, with responses similar to both the donor 

and third party stimulators (Fig. 5-1D). Interestingly, CD4 T cell responses were greater for the 

SA-FasL modified islets relative to either the unmodified islets or age-matched control. This 

response was similar for both the donor and third party stimulators. These results demonstrate 

that CD4 and CD8 responsiveness is maintained outside the graft. Collectively, these studies 

demonstrate that the microporous scaffolds for transplantation of FasL modified islets to an 

extrahepatic, extra-renal site provides for engraftment of the islets and protection from the 

immune response similar to previous reports performed with transplantation into the kidney 

capsule or liver ([180, 184]). 



74 
 

5.3.2 Synthesis and characterization of biotin-poly(lactide-co-glycolide) conjugates and particle 

formation  

 While multiple strategies for functionalizing PLGA particles with ligands are available, 

evidence suggests that directly conjugating the polymer prior to particle fabrication enhances 

target binding [185]. To produce biotin-PLGA conjugates, the carboxyl-terminal group of PLGA  

 

 

 

Figure 5-1. SA-FasL engineered islets establish allogeneic tolerance when transplanted on PLGA 
scaffolds. (A) Schematic showing biotinylated allogeneic islets functionalized with SA-FasL are 
loaded on microporous PLGA scaffolds and planted in the epididymal fat pad of mice. (B) Kaplan 
Meier analysis of allogeneic BALB/c islets transplanted under the short cover of rapamycin on 
unmodified PLGA scaffolds in C57BL/6 recipients. Conditions include SA-FasL-engineered islets (n 
= 5, MST >200 days, P=0.0018 vs. rapamycin alone, P=0.0308), naïve islets (n = 5, MST = 23 ±2.19 
days), and unmodified syngeneic islets (n = 3, MST > 100 days). (C) Intraperitoneal glucose 
tolerance test of long-term islet grafts compared to naïve C57BL/6 mice after fasting for 6 hours, 
followed by i.p. glucose injection. Blood glucose of mice was taken starting just before injection 
and at the indicated time points. (D) T cell proliferative response from recipients of long-term (> 
200 days) BALB/c SA-FasL-engineered islets mounted on unmodified PLGA scaffolds plus 
rapamycin (n = 3) and naïve C57BL/6 as controls (n = 3). Responders were labeled with CFSE and 
used against BALB/c donor and third party C3H stimulators in a standard ex vivo mixed 
lymphocyte reaction. After 4 days of culture, cells were stained with antibodies against CD4 and 
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CD8 molecules and incubated with 7AAD to gate out dead cells before flow cytometry analysis. 
Bars represent mean and SEM. Asterisks represent level of significance (*p<0.05, **p<0.01) 
found by using a two-tailed Welch’s t-test.  
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was conjugated to the heterobifunctional linker NH2-PEG2-Biotin using carbodiimide chemistry 

and confirmed using 1H-NMR (Fig. 5-2A and 5-2B). Biotin-PLGA particles were prepared by 

employing a single emulsion-solvent evaporation procedure using the biotin-PLGA conjugates. 

The formed particles displayed an average size of 860 ± 40 nm and a zeta potential of –16 ± 5.0 

mV (Fig. 5-2C). SEM images confirmed the size and demonstrated the spherical morphology of 

the biotin-PLGA particles (Fig. 5-2D). When only biotin-PLGA was used in microparticle 

fabrication, particles did not form stable spheres (Fig. 5-3A). Thus, a 3:1 mix of biotin-PLGA to 

unmodified PLGA was used. When additional unmodified PLGA was blended in for a ratio of 1:1, 

there was no significant difference in the amount of protein absorbed at the concentrations 

tested (Fig. 5-3B). 

To demonstrate the ability of biotin-PLGA particles to load streptavidin-functionalized 

protein on their surface, we first quantified the maximum loading and efficiency of biotin-PLGA 

particle to load fluorescently-tagged streptavidin (AF568-SA) (Fig. 5-4A).  AF568-SA was 

incubated with biotin-PLGA particles at concentrations between 100 – 40,000 ng SA per mg of 

particles for 15 minutes. After incubation, the particles were with PBS to remove non-binding 

protein, dissolved in DMSO, and the fluorescence was measured (Fig. 5-4B). As expected, the 

loading of AF568-SA on the particles increased with increasing amounts of AF568-SA added but 

the loading did not increase linearly. The corresponding loading concentrations were 75 – 280 ng 

SA per mg of particles, and the loading efficiency (defined as the amount of protein bound divided 

by the amount incubated) decreased from 75% to 35% over this range as the particles became 

saturated with protein (Fig. 5-4C). A significant increase in the loading was observed between 

200 ng/mg and 400 ng/mg, which potentially indicated that threshold for binding was reached at  
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Figure 5-2. Characterization of biotin-PLGA microparticles. (A) Conjugation of NH2-PEG2-biotin to 
PLGA resulting in biotin-PLGA. (B) 1H-NMR of PLGA (top), biotin linker (middle), and biotin-PLGA 
(bottom). (C) Size (860 ± 40 nm) and charge (-15.8 ± 4.98 eV) of biotin-PLGA particles was 
measured using dynamic light scattering (DLS). (D) Scanning electron microscope (SEM) image of 
biotin-PLGA particles.  
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Figure 5-3. Blending unmodified PLGA with biotin-PLGA is necessary to consistently form 
spherical particles. (A) SEM image of particles formed only with biotin-PLGA formed unstable 
particles. (B) Two ratios of biotin-PLGA : PLGA (50:50 and 75:25) were analyzed. There was no 
significant difference in SA binding between the two blends. 
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400 ng/mg. This result was further supported by the measured loading efficiencies, where, as the 

amount of AF568-SA was increased, the loading efficiency decreased. Saturation of the particles 

was achieved by incubating the particles in a 40,000 ng SA per mg particles solution, which bound 

8600 ng SA per mg particles. To demonstrate that the protein binding is due to biotin-SA 

interaction and not passive adsorption of protein to the particle surface, unmodified PLGA 

particles were used as a control and demonstrated significantly lower binding and lower binding 

efficiency.  

Utilizing the information from the binding curves, it was determined that one milligram 

of particles incubated with 400 ng SA-FasL was optimal and this concentration was used for 

subsequent apoptosis assays. Particles were loaded with SA-FasL, washed three times with PBS, 

and incubated with 1.5 x 105 A20 cells (mouse B lymphoma cells) for 18 hours. Following 

incubation, cell death was quantified via propidium iodide (PI) live/dead stain and flow cytometry 

(Fig. 5-4D). As a positive control, soluble SA-FasL at concentrations known to induce apoptosis 

were included. While biotin-PLGA particles without FasL did not induce cell death, cells incubated 

with FasL-PLGA particles induced cell death in 50% of the population. 

5.3.3 FasL loading on biotin-PLGA scaffolds 

 Biotin-functionalized PLGA scaffolds were prepared by pressing biotin-PLGA and salt to 

form discs then gas foamed to fuse the particles (Fig. 5-5A). Following salt leach, porous scaffolds 

were left. In a similar manner to biotin-PLGA particles, the binding of SA-AF568 was evaluated by 

incubating the scaffolds with 100 to 800 ng SA-AF568 per mg of scaffold (one scaffold weighs 2.5 

mg) and quantifying the fluorescence (Fig. 5-5B). The amount of bound protein ranged from 70  
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Figure 5-4. Biotin-PLGA particles can be efficiently conjugated with SA-FasL and induce apoptosis 
in mouse B lymphoma cell line. (A) Schematic of biotin-PLGA particles being functionalized with 
SA-FasL. (B) The amount of fluorescently tagged SA bound to the particles was investigated by 
varying the protein concentration (0, 100, 200, 400, 800, and 40,000 ng SA/mL in 1 mL) incubated 
with 1 mg of biotin-PLGA particles (“biotin particles”). As a control, 1 mg of unmodified PLGA 
particles was incubated with the same SA concentrations (“blank particles”). After two spins and 
washes, particles were dissolved in DMSO and fluorescence was measured, n=3. (C) The loading 
efficiency was calculated by dividing the bound SA by the incubated SA, n=3. (D) Biotin-PLGA 
particles functionalized with SA-FasL induce cell death in A20 cells. Particles were incubated with 
400 ng / mL of SA-FasL in 1 mL with 1 mg of particles. After washing to remove unbound SA-FasL, 
particles were incubated with 1.5 x 105 A20 cells for 18 hours and cell death was analyzed via 
propidium iodide stain and flow cytometry (n=3). For comparison, soluble FasL was added to cells 
(0 and 10 ng) and demonstrated the ability to induce cell death at low concentrations (n=3).  
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to 620 ng SA per mg of scaffold, which was similar to particles at low concentrations, but more 

than twice as much at higher concentrations. This difference may be due to increased surface 

area of the porous scaffold compared to the spherical particles. Additionally, the loading 

efficiency for all conditions tested was near 70% with no decline in efficiency at higher protein 

concentrations, indicating that the scaffolds are capable of binding protein at considerably higher 

concentrations than what was tested (Fig. 5-5C). Unmodified scaffolds were used as a control, 

and showed similar concentrations of non-specific binding to unmodified particles at higher 

protein concentrations.  

 The effectiveness of FasL-loaded scaffolds to induce apoptosis in immune cells was 

subsequently investigated by incubating the biotinylated scaffolds with SA-FasL, washing three 

times to remove unbound SA-FasL, and incubated with 1.5 x 105 A20 cells for 18 hours. Apoptosis 

induction was evaluated using PI/annexin V staining and quantified using flow cytometry (Fig. 5-

6A). The induction of apoptosis was concentration-dependent as 40 ng FasL/mg scaffold was not 

significantly different than the control but 200 ng/mg and 400 ng/mg increased apoptosis (Fig. 5-

6B).  These results demonstrate that FasL could be functionalized to the surface of PLGA scaffolds 

and induce apoptosis in immune cells. 

5.3.4 FasL scaffolds support allogeneic graft function without sustained immunosuppression 

We examined whether FasL modified scaffolds could prevent allogeneic islet rejection 

and support long-term engraftment and function of allogeneic islets to maintain normoglycemia. 

Scaffolds decorated with SA-FasL were loaded with 500-550 islets from BALB/c donors and 

transplanted into the IP fat pad of diabetic C57BL/6 mice (two scaffolds per animal). Naïve islets 
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Figure 5-5. Biotin-PLGA scaffolds can be efficiently conjugated with SA-FasL. (A) Schematic of 
biotin-PLGA particles functionalization with SA-FasL. (B) The amount of fluorescently tagged SA 
bound to scaffolds was investigated by varying the protein concentration (0, 100, 200, 400, and 
800 ng SA/20µL) incubated with 2.5 mg biotin-PLGA scaffolds (“biotin”). As a control, unmodified 
PLGA scaffolds were incubated with the same SA concentrations (“blank”). After two washes, 
scaffolds were dissolved in DMSO and fluorescence was measured, n=3. (C) The loading efficiency 
was calculated by dividing the bound SA by the incubated SA, n=3.  
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Figure 5-6. FasL-decorated scaffolds induce apoptosis in mouse lymphoma cell line. (A) Scaffolds 
were incubated with SA-FasL (0, 40, 200, and 400 ng / 20 µL). After washing to remove unbound 
SA-FasL, scaffolds were incubated with 1.5 x 105 A20 cells for 18 hours. Apoptotic and dead cells 
were analyzed via propidium iodide and annexin V staining and flow cytometry (n=3). (B) 
Scaffolds required a minimum loading of 200 ng FasL / mg scaffold to induce apoptosis in the 
majority of A20 cells.  

0 ng FasL / mg scaffold 40 ng FasL / mg scaffold 200 ng FasL / mg scaffold 

400 ng FasL / mg scaffold 
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mounted on SA-FasL-engineered PLGA scaffolds along with transient rapamycin demonstrated 

graft survival for more than 200 days in more than 80% of the animals (Fig. 5-7A), with one animal 

rejecting at day 30. Normoglycemia was established within days of transplantation (Fig. 5-7B), 

and an IPGTT performed at day 200 demonstrated restoration of normoglycemia on similar times 

as naïve animals (Fig. 5-7C). Rapamycin without FasL had a mean graft survival time of 23±2 days 

(Fig. 5-7A, B). The combination of SA-FasL-engineered islets mounted on SA-FasL-engineered 

PLGA scaffolds did extend graft function beyond that provided by rapamycin alone (Fig. 5-6A), 

yet unexpectedly was substantially shorter in duration (mean survival time = 46 days) than the 

SA-FasL engineered scaffolds. Prior to rejection, an IPGTT performed at day 200 demonstrated a 

restoration of euglycemia on the same time scales as naïve mice (Fig. 5-7C).  

5.4 Discussion 

This chapter investigated the combination of FasL and biomaterial scaffolds as a means 

to create a site that supports the engraftment and long term function of allogeneic islets at an 

extrahepatic and extrarenal site. Immunoprivileged sites, such as the testes, anterior chamber of 

the eye, brain, and tumors, have the ability to suppress destructive immune responses by various 

mechanisms [186-188]. Importantly, FasL was initially discovered as one of the molecules that 

plays a critical role in immunoprivileged sites [172, 173]. Indeed, we have recently reported that 

SA-FasL-engineered allogeneic islets induced localized immune privilege when transplanted 

under the kidney capsule [180]. Therefore, FasL not only contributes to the regulatory 

mechanisms in naturally occurring immunoprivileged sites in the body, but can also be used to 

create “induced” immunoprivileged sites [180].  While inducing tolerance in the subrenal model  
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Figure 5-7: Islets on scaffolds conjugated with SA-FasL demonstrate robust long-term tolerance. 
(A) Survival of allogeneic BALB/c islets mounted on PLGA scaffolds and transplanted in the 
epididymal fat pad of chemically diabetic C57BL/6 recipients. Groups included naïve islets 
mounted on SA-FasL-engineered PLGA scaffolds plus rapamycin (n = 6, MST > 200 days, P=0.0007 
vs rapamycin alone), SA-FasL-engineered islets mounted on SA-FasL-engineered PLGA scaffolds 
(n = 6, MST = 46 days, P = 0.0007 vs rapamycin alone), and naïve islets transplanted under a short 
cover of rapamycin (n = 5, MST = 23 ±2.19 days). All mice received islets loaded on 2 PLGA 
scaffolds. PLGA scaffolds were engineered with 2.5 μg/scaffold, except 3 mice in the islet-
FasL+PLGA-SA-FasLthat were transplanted with PLGA scaffolds engineered with 0.5μg/scaffold 
and all 3 animals rejected their grafts. Rapamycin was given to the indicated groups through i.p. 
injection at 0.2 mg/kg daily for 15 days starting on the day of transplantation. Mice were 
monitored twice weekly for blood glucose levels. Those with > 250 mg/dL for two consecutive 
readings 24 hours apart were considered diabetic and rejecting the graft. Analysis done using log-
rank test, **P<0.01, ***P<0.001. (B) Blood glucose readings of two groups of mice from (A). (C) 
Intraperitoneal glucose tolerance test (IPGTT) of long-term islet grafts compared to naïve 
C57BL/6 mice after fasting for 6 hours, followed by i.p. glucose injection. Blood glucose of mice 
was taken starting just before injection and at the indicated time points. 
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was 100% effective, the SA-FasL immunomodulatory protocol had moderate efficacy in inducing 

tolerance to allogeneic islets transplanted intraportally as practiced in the clinic [184]. This 

finding provided rationale for the development of an extrahepatic site for islet transplantation. 

Herein, we demonstrated that allogeneic SA-FasL-engineered islets engrafted and normalized 

blood glucose levels for more than 200 days under a transient cover of rapamycin (0.2 mg/kg 

daily starting the day of transplantation for a total of 15 doses) with transplantation on PLGA 

scaffold into an extrahepatic site, one that has translational potential [38]. 

Given that localized presentation of SA-FasL on islets supported long-term function, we 

subsequently investigated the immobilization of SA-FasL to the scaffold as a means to minimize 

the cellular manipulation prior to transplantation. Manipulating the scaffold to present SA-FasL 

would eliminate the steps needed for direct islet engineering, and as such save time and 

overcome potential undesired effects associated with engineering process, such as cell 

fragmentation. Importantly, the presentation of SA-FasL from surfaces has previously been 

reported not to interfere with its apoptotic function [180, 189]. To create scaffolds modified with 

SA-FasL, we initially modified the polymer in solution [190, 191], which was subsequently formed 

in to particles and then into scaffolds. Initial attempts to functionalize scaffolds involved 

conjugation of biotin to the surface of a pre-formed scaffold, which produced inconsistent 

modification with SA-FasL and thus the direct modification of the polymer was pursued based on 

prior reports indicating enhanced target binding [185]. Stable spherical particles could only be 

formed from mixtures of the biotinylated and non-biotinylated polymer, as particles formed from 

only biotinylated polymer were unstable. The microspheres were employed to construct the 

scaffold using a gas foaming and particulate leaching process [39, 118, 192]. As a potential off-
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the-shelf product, further studies will be needed to test long-term storage of SA-FasL pre-

engineered scaffolds for downstream applications. 

The microporous structure of the scaffold enhanced protein loading and bioactivity 

relative to the particles. This observation likely results from the higher surface area of the 

scaffolds. Protein loading and efficiency were similar to other techniques like carbodiimide 

coupling to PLGA particles [193, 194]. The presentation of SA-FasL from particles or scaffolds 

maintained the ability to induce apoptosis, although it was not as efficient as delivering soluble 

SA-FasL which induced apoptosis with 10 ng, which may reflect the availability of FasL for binding 

to receptors. Interestingly, for concentrations between 40 and 400 ng/mg, the extent of binding 

was highly consistent within experiments (i.e., low standard deviation), yet considerable 

variation in apoptosis was observed between experiments, suggesting a sensitivity to the protein 

loading or presentation within this range. Previous reports of surface modified apoptosis systems 

utilized surface anchored polymer chains with covalently linked anti-Fas antibodies but were only 

able to achieve up to 34% apoptosis in cells expressing FasR, whereas the method presented here 

achieved 92% apoptosis and in vivo protection of allogeneic islets [195]. This may be due to the 

far greater surface density of protein (up to 150 ng/cm2 vs 1.6 ng/cm2) and the choice FasR 

binding protein. 

Importantly, microporous scaffolds functionalized with SA-FasL supported engraftment 

and function of the transplanted allogeneic islets that maintained normoglycemia for more than 

200 days. Islets transplanted on unmodified PLGA scaffolds promptly rejected 6-12 days after the 

rapamycin treatment ended, consistent with our previous results [180]. This long-term function 

without immunosuppression has a likely contribution from rapamycin allowing for the expansion 
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of regulatory T cells, an important cell population in establishing alloimmunity [180]. SA-FasL 

alone without rapamycin was able to delay rejection, consistent with previous reports suggesting 

that tolerance is dependent on the presence of SA-FasL yet a short course of rapamycin may 

accentuate the effect. In conclusion, our approach of functionalizing SA-FasL onto the surface of 

biotin-PLGA scaffolds is an effective method to induce long-term function without 

immunosuppression.  
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CHAPTER 6. Conclusions and Future Directions 

 

6.1 Conclusions 

Type 1 Diabetes can be successfully treated with islet transplants to restore the body’s 

ability to endogenously produce insulin and rapidly respond to changes in blood glucose levels. 

However, current clinical practice requires an unsustainable number of donors and long-term 

success is limited. This may change if we are able to engineer an alternative transplant site that 

does not suffer from immediate islet loss and provides long-term protection from the immune 

system.  

Herein, we present the utility of encapsulating and microporous PEG hydrogels for islet 

transplantation and subsequent engraftment in vivo in a syngeneic mouse model of diabetes. 

Hydrogels are employed as a substrate that creates a space to promote regeneration, possess 

mechanical properties similar to native extracellular matrices, and can be readily functionalized.  

In an allogeneic model, encapsulating hydrogels and microporous hydrogels containing islets 

rejected in a similar timeframe, demonstrating that unmodified PEG hydrogels do not offer 

sufficient allogeneic protection. This result underscores the need for sustained release strategies 

and incorporation of cytokine antagonists to further protect islets, in either encapsulating or 

microporous materials, from apoptosis. These findings provide a basis for continued studies with 

allogeneic islets and demonstrate the need for improvements in delivery of immune-modulating 

agents to extend graft function. 
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Viral gene delivery represents a versatile tool to modify the microenvironment of 

damaged or diseased tissue and promote regeneration by converting the transduced cells into 

bioreactors to produce therapeutic proteins or downregulate undesired genes. Hydrogels 

functionalized with proteins or peptides capable of binding lentivirus retained the virus at the 

material, enhanced the virus stability, and ultimately promoted gene transfer. High molecular 

weight proteins that non-specifically bind the lentivirus were directly attached to support binding 

and gene transfer. Alternatively, short peptides that specifically bind the lentivirus had to be 

immobilized onto biomaterials through linkers in order to promote binding and gene transfer, 

yet offered comparable gene expression levels. Taken together, affinity peptides or proteins can 

be attached to biomaterials to promote the binding of gene therapy vectors and subsequent gene 

transfer, with the efficiency a function of the peptide length and binding affinity. 

The surface of biomaterial scaffolds were modified with SA-FasL to create a localized 

immunoprivileged site and provide long-term protection and function. Initial studies utilized 

allogeneic islets modified with SA-FasL seeded on PLGA microporous scaffolds to establish long-

term tolerance. As an alternative to modifying islets, PLGA was conjugated with biotin that 

created a fast and efficient method to present SA-FasL on the polymer surface at concentrations 

that induced apoptosis in cells expressing FasR. Scaffolds functionalized with FasL demonstrated 

robust engraftment and tolerance similar to the FasL functionalized islets. In summary, this study 

introduces a new method to surface functionalize PLGA particles and scaffolds with 

immunoregulatory proteins and offers an alternative to systemic immunosuppression for 

allogeneic islet transplants.  
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6.2 Future directions 

6.2.1 Scaffold improvement 

 Future work should focus on the PEG microporous scaffolds as they provided better 

glucose response and faster tissue infiltration compared to the encapsulating hydrogels. 

Without significant modification to address inflammatory cytokine infiltration, the 

encapsulating hydrogels do not offer significant protection in the allogeneic transplant model. 

Additionally, scale up of the current macroencapsulating design poses serious challenges. In 

contrast, the microporous hydrogels are easily scalable and have already been modified for 

non-human primate studies in a collaboration with the Oberholzer lab at the University of 

Illinois at Chicago. Future improvements to the hydrogel can optimize the pore size. Based on 

simulations, the ideal pore size in PEG hydrogels is 160 to 270 µm, whereas the pore sizes 

presented here were just above and below the suggested range. Micropore size is readily 

adjusted by adding different grain size salt, which is sorted by a series of simple mechanical 

sieves. To improve ease of transplant, we recommend future hydrogels utilize a smaller mold 

than the current 5 mm diameter PDMS mold. After swelling, the hydrogels are approximately 

6.5 mm in diameter, making implantation into a diabetic mouse’s epididymal fat pad 

challenging. Based on preliminary experiments, a 3 mm mold produced hydrogels too small to 

properly load desired volumes of islets. Thus, a 4 mm diameter mold is predicted to balance 

scaffold size and loading capacity.  

Although encapsulating hydrogels inherently limit vascularization, a hybrid design that 

incorporates microporous aspects into an encapsulated hydrogel may improve glucose 
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response. Efforts to increase surface area of macroencapsulated islets has seen early success in 

PEG hydrogels and has been translated into the clinic in devices like the TheraCyte System and 

Nanogland device [41, 196, 197]. If scaffold degradation for the microporous or encapsulating 

hydrogel is required, plasmin-degradable peptides (e.g. YKNR) can be incorporated into the 

design, thus allowing the hydrogel to degrade as cells infiltrate and establish native ECM. 

Although not the focus of this dissertation, stem cells have the capacity for infinite expansion 

and are a renewable source, but require a microenivornment that promotes stem cell 

maturation. Degradable microporous hydrogels might be useful for β-progenitor stem cells as 

they provide a three-dimensional environment for cell-material signaling during stem cell 

maturation.  

6.2.2 Localized protein delivery from biomaterial scaffolds 

In the context of islet transplantation, a sophisticated release system may be needed to 

promote long-term engraftment. Such a delivery system would deliver a combination of agents 

in phases, designed to coincide with host immune response to transplanted islets. The short-term 

release of anti-inflammatory molecules like TGF-β1 coupled with long-term tolerance provided 

by FasL may provide synergy and enhance graft function beyond their individual components. To 

further modify the microenvironment, lentiviral vectors can transduce infiltrating cells to 

produce a variety of growth factors and inhibitors. 

The release profile of soluble factors from PLGA discs implanted with PEG scaffolds can 

be modified by adjusting the ratio of lactic acid to glycolic acid monomers or modifying the 

carboxylic acid end group to control the rate of polymer hydrolysis [198]. However, based on the 
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rate of protein release from the disc, the release kinetics are likely primarily determined by the 

dissolution of the mannitol cryoprotectant. Replacing the mannitol with a slower dissolving sugar 

may not only extend the release profile, but reduce protein lost during the salt leaching step. In 

an effort to address this protein loss during the leaching step, we have developed a PDMS insert 

that is placed in the mold with the PEG and salt instead of the PLGA disc. After polymerization 

and porogen leaching, the insert is pulled out and the protein loaded disc is slid in. However, this 

process has not been tested and it is unknown if the PLGA disc can slip out when transplanted in 

an animal. 

Localized lentiviral delivery from hydrogels is a versatile tool that allows for the delivery 

and long-term expression of a wide range of therapeutic proteins and small molecules in 

scaffold microenvironment. VEGF is a particularly attraction option, as it has been extensively 

utilized in bioengineering to stimulate angiogenesis, a critical requirement for the survival of 

insulin producing cells [199, 200]. Additionally, sustained expression of exendin-4 (Ex4), an 

insulin-like growth factor-1 (IGF-1) has demonstrated useful applications in enhancing islet 

function [123, 201]. Long-term tolerance from these hydrogel scaffolds may be achieved by 

functionalizing SA-FasL to their surface. PEG-maleimide is easily functionalized with a biotin-

PEG-thiol linker in a single step reaction that that requires no purification. Taken together, the 

tools presented in this dissertation can be applied to treat T1D and may someday be used to 

develop minimally invasive techniques that do not require chronic immune suppression to 

achieve routine islet transplantations. 
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