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Abstract 

Novel genes are a contributor to species diversity and specialization.  Determining when, how, 

and in which lineages novel genes formed is a major challenge in evolutionary biology.  A key 

step in this process is identifying novel genes.  Phylostratigraphy is a method developed to 

identify novel sequences.  This method relies on the detection of homologs, existing sequences in 

different species which derive from a common ancestral sequence.  This method uses homology 

detection programs, such as the BLAST suite of algorithms, to identify genes that are specific to 

a lineage and infer from there when this sequence arose.  When done for large numbers of 

sequences, they can be grouped by age and trends with gene age can be identified.  This 

methodology assumes that homology detection error—the failure of a homology detection 

program to accurately detect homologs—is negligible.  I show that this is a faulty assumption.  I 

demonstrate that homology detection error is more common than previously believed, and that it 

is non-random.  Homology detection error is biased in a way that may produce spurious 

biological trends.  I demonstrate that this kind of error has major influence on theories of gene 

emergence.  I further develop a methodology which addresses and mitigates the effects of error 

on phylostratigraphy, and use this method to approach phylostratigraphic problems and produce 

novel biological insight. In total, this thesis demonstrates a major problem in phylostratigraphic 

methodology, produces a new methodology which addresses these limitations, and applies this 

methodology to investigate problems of gene age, the mechanisms by which genes emerge, and 

trends in evolution.
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Chapter 1  

Introduction to the Field 

“In principle, the recovery of homology only requires a source of information with two 

properties: sufficiently numerous and sufficiently independent items to preclude, on grounds of 

mathematical probability alone, any independent origin in two separate lineages.” 

- Stephen Jay Gould, 1986 

 

Introduction 
 

We see among the myriad species on Earth both incredible diversity of structure and cases of 

curious similarities.  We naturally wonder how each of these arises.  Based on modern 

understandings of biology, we can be sure that the genetic material of organisms helps to 

determine their development, structure, and function.  When comparing the genetic material 

between species, we can similarly see remarkable similarities and differences—both small 

changes at single points in the genome as well as enormous structural differences between the 

genomes of organisms.  Of particular interest is the fact that when comparing the genes in any 

two organisms, some genes appear in very similar forms in both species, whereas other genes are 

found in only one of the two species.  Given that common ancestry of all life, one must wonder 

how these differences in gene number arise.  This thesis focuses on methodologies for 

determining evolutionary trends of gene origin as well as the contributions of various 

mechanisms to novel gene formation. 
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Homology 
 

Homology is perhaps one of the oldest concepts in western biology.  Aristotle used homologies 

as a key factor in classifying animals in his History of Animals (Aristotle, 1984).  In this context, 

the term generally referred to parts or behaviors of animals which were analogous in form or 

function.    This concept has influenced biology ever since, most famously in the classification 

system of Linnaeus in his Systema Naturae (Linnaeus, 1735), which went on to influence all of 

European biology.  Such homologies were typically explained by the perfect formation of the 

universe for humans in particular and all animals in general (Paley, 1802).  It was Darwin’s 

classic text On the Origin of Species by Natural Selection (Darwin, 1859) which provided an 

alternative explanation: these homologies exist because they were inherited from a common 

ancestor.   

 

Mendel unwittingly lent credence to this idea with his studies on inheritance.  His experiments 

showed that variation within the population could be inherited with predictable patterns.  But it 

would be a long time before Friedrich Meischer’s discovery of nuclein (Dahm, 2005), now 

known as Deoxyribonucleic Acid (DNA), and its establishment as the hereditary factor (Avery, 

Macleod, & McCarty, 1944).  Once this was done, it was possible to start identifying more 

precisely the segments of DNA which corresponded to certain heritable traits (Rubin & Lewis, 

2000). Developmental biology, and indeed even Mendel’s experiments, showed that the 

relationship was not a simple one-to-one relationship between genes and homologous traits.  

Nonetheless, it was clear through key experiments that some genes clearly played a similar role 

in forming homologous structures between species, as when a mouse gene spurred the formation 
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of an eye in Drosophila melanogaster (Gehring, 2002).  It became only natural to integrate 

evolution with the molecular revolution and begin to ask about homologies between genes. 

 

It is worth here identifying three distinct types of homologies.  The first is historical homology, 

which is the relationship between structures such that if you followed two organisms back along 

their ancestral paths, tracking the analogous feature in parent and offspring , the features in each 

species would correspond to the same feature in their common ancestor.  As an example, one 

could identify the wing of a pigeon and the wing of a cardinal as historically homologous.  

However, the wing of a pigeon and the wing of a bat would not have historical homology, as the 

wing formed independently in mammals.  An important feature of this historical homology is 

that it is inferred, as the tape of evolution cannot be rewound and played for us to observe the 

historical relationships.  Instead, we must infer historical homologies through observation and 

proxy homologies.  The first of these was structural similarity. 

 

Structural similarity is, briefly, the kind of homology used from Aristotle to Darwin.  By 

examining the structure, anatomy, and sometimes function of the parts of various organisms as 

well as the structure of the organisms as a whole, biologists classify structural similarities as 

historically homologous.   In order to establish historical homology from happenstance structural 

similarity, various methods which were based on parsimony were introduced.  This structural 

similarity was insufficient to establish the homologous nature of genes, as their structure was 

difficult to identify, and it was not clear if a similar function between genes in different 

organisms corresponded to similar structure.  It was therefore necessary to introduce a new 

method for homology: sequence homology. 



 4 

 

Once DNA had been identified as the hereditary molecule, the ability to determine its sequence 

became crucial.  An important step toward this goal was the work of Rosalind Franklin, Maurice 

Wilkins, Francis Crick and James Watson (Watson & Crick, 1953), which enabled Frederick 

Sanger and colleagues to introduce a method for rapidly sequencing segments of DNA (Sanger, 

Nicklen, & Coulson, 1977).  This opened up the possibility for researchers to compare gene 

sequences and determine if segments of DNA which performed similar functions in different 

organisms also looked similar.  Like the form of structural similarity previously described, if two 

sequences in different organisms had a similar enough sequence, they were called homologous, 

and it was assumed that they bore a historical homology.  Since then, the efficiency, speed, and 

power of sequencing techniques has astronomically improved (Heather & Chain, 2016).  This 

has necessitated the automation of the detection of sequence homology. 

 

Even before the massive amount of sequence information existed, it was necessary to automate 

the process of comparing gene sequences.  The length of these sequences and the known 

molecular processes of nucleotide substitution, insertions, deletions, and inversions, made it 

difficult to compare sequences with the human eye.  The Smith-Waterman algorithm was 

developed to explore the possible alignments between two sequences and give a quantifiable 

result about their homologous status (T. F. Smith & Waterman, 1981).  Generally, the logic goes 

thus:  If two sequences shared a common ancestor, then they have had some period of time to 

acquire differences between one another.  Sequence space is enormous—a gene with only 30 

nucleotides has a potential 4^30 sequences.  It therefore seems reasonable that if two sequences 

are very close in sequence space, this is due to a historically homologous relationship with one 
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another.  Conversely, it was extremely unlikely that two gene sequences which were not 

historically homologous would wander close to each other in sequence space (Figure 1-1, red 

and green points).  The Smith-Waterman algorithm allowed researchers to define a score which 

quantified how close together two sequences must be in order to be considered historical 

homologs (Figure 1-1, expanding circles).   

 

The major limitation of the Smith-Waterman algorithm was its exhaustive comparison of all 

possible alignments between two sequences, many of which were not worth considering, 

practically.  This feature of the algorithm meant that it worked in O(n*m) time, where m and n 

refer to the length of the two sequences being compared.  While this was tractable for comparing 

small numbers of sequences, it was intractable for the increasingly large amount of sequence 

data that was being generated (Benson et al., 2013).  This required the development of heuristic 

algorithms.  Many such methods of sequence comparison have been developed (S F Altschul et 

al., 1997; Finn, Clements, & Eddy, 2011; Grundy & Grundy, 1998; H. Li & Homer, 2010), but 

they all follow the same general principles as the Smith-Waterman algorithm:  if two sequences 

are close enough in some description of sequence space, they are homologs and as such share a 

common ancestry.   

 

There is, however, a common problem with all of these algorithms: they cannot tell you anything 

about the actual historical homology relationship between two sequences, only a measure of how 

similar two sequences are.  If a researcher is too restrictive with the score cutoff or if evolution is 

proceeding rapidly, historical homologs may not be identified as sequence homologs (Figure 1-
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1).  If a researcher is too loose with the score cutoff then non-historical homologs may be 

counted as historical homologs (Figure 1-1).  

 

The evaluation of the accuracy of these tools has typically been done by comparison of their 

results to well-curated “Gold Standard” databases such as the Structural Classification of 

Proteins (SCOP) (Conte et al., 2000).  These databases are constructed and curated based on 

expert study of protein function, their three-dimensional structures, and other characteristics.  

The underlying logic of their construction is that by comparing many aspects of a gene—

including its sequence properties, function, genomic location, and structure—in relation to the 

property of other proteins, researchers can construct relationships between genes for which we 

can be highly confident of their accuracy.  The sequence homology tools developed and the 

recommendation of score cutoffs are designed with the goal of reconstructing these gold 

standards as accurately as possible.   

 

An interesting question regarding origins can arise when comparing the gene sets of two species.  

When using one of these tools to identify homologs between the species pair, one often finds that 

a substantial number of genes will have a historical homolog in the other species, but each 

species will have some number of genes which does not bear homology with any gene in the 

other species.  Just as one might ask where the homologous wings of al birds come from, one 

might also ask where homologous genes come from. 

 

Gene formation 
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When a gene appears in one species but not in some other species, it implies that since the 

divergence of the most recent common ancestor of the two, either one species has lost a gene, 

one has gained a gene through gene duplication, or a new genic sequence has somehow formed 

from non-genic sequence.  There are several possibilities of where a new gene may have come 

from.  I briefly give here a description of the major mechanisms. 

 

Because homology detection programs generally rely upon sequence identity, genetic divergence 

is one of the first possibilities to explain a lack of homologs between species.  After splitting of 

the population, the same genetic sequence will undergo independent sequence changes in each 

lineage.  Over sufficient time, this may cause a sufficient lack of sequence identity for two true 

historical homologs to no longer be identified as such.  This is thought to be a relatively rare 

occurrence in the lack of a change in gene function, as evidenced by the work of Alba and 

Castrasanna 2007 (Albà & Castresana, 2007).  This is because gene function often relies on 

conserved stretches of the protein to maintain the appropriate structure.  These conserved 

sequences are a major part of the correct function of homology detection programs.  However, 

this phenomenon does occur at least sometimes, and if species have undergone a change in 

functional constraint which affects a given gene, then two historical homologs may diverge 

wholly independently and lose detectable homology. 

 

Related to this possibility, a new sequence may be produced by duplication of an existing gene 

sequence (M Lynch & Conery, 2000).  This is a well-documented method for the formation of 

new genes, and was proposed as a major drive of evolutionary innovation by Susumu Ohno 

(Ohno, 1970).  However, gene duplicates are at least sometimes identifiable as homologs on the 
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basis of either sequence homology (Henikoff et al., 1997) or syntenic (gene order) analysis 

(Byrne & Wolfe, 2005).  In fact, if a sequence has historical homology with another sequence in 

the same species, these are a special kind of historical homolog called a paralog.  However, it is 

possible that a duplication event will create a situation in which the two paralogs individually 

change their functional constraints or one of the two has a change in its functional constraint 

(Jianzhi Zhang, 2013).  There are two specific models in which this kind of change is expected to 

have an effect on sequence identity between paralogs.   

 

The first model is subfunctionalization.  If a protein is performing more than one function, it is 

sometimes possible that its sequence is constrained in such a way that the gene cannot specialize 

more closely to any of its multiple functions.  We can take the example of an enzyme that 

displays promiscuity in its target (Figure 1-2).  If a single gene is responsible for breaking down 

multiple metabolites, it may not be particularly good at breaking down any one metabolite.  

When a duplication occurs, the two daughter genes are free to specialize more closely to one 

metabolite, or one set of metabolites.  This allows finer-tuning, and may drive a loss of some 

conserved sites between the two proteins.  This can drive the loss of detectable homology. 

 

The second model is neofunctionalization.  After the duplication of a sequence, one of the two 

copies is free to accrue mutations.  This is because a loss or change of some essential function in 

one copy is compensated for by the existence of the second copy.  Frequently, this will allow one 

of the two daughter genes to accrue mutations, lose function, and undergo pseudogenization.  

However, it sometimes happens that the mutations acquired by one of the copies grants a novel 

function (M Lynch & Conery, 2000).  The gene can then specialize for this new function, which 



 9 

may select for very different conserved regions (Figure 1-3.  This can therefore drive loss of 

detectable homology. 

 

 

It is possible that one may compare the genes of several species and discover a pattern that 

suggests that a gene has potentially been lost many times independently (Figure 1-4).  While it is 

possible that such a pattern may have occurred, it is also possible that a gene has been donated 

from one species to one or more other species in a process known as Horizontal Gene Transfer 

(HGT) (Soucy, Huang, & Gogarten, 2015).  This has been well-documented in bacteria 

(Martínez, 2008; Ochman, Lawrence, & Groisman, 2000; Pál, Papp, & Lercher, 2005) but there 

is evidence functional proteins have also been passed to eukaryotes from other kingdoms of life, 

despite initial skepticism (Hotopp et al., 2006; Keeling & Palmer, 2008; Salzberg, White, 

Peterson, & Eisen, 2001).  However, due to both a lack of confirmed cases in many species and 

lack of plausible biological mechanisms for this being a common occurrence outside of bacteria, 

it is generally thought that this is rare. 

 

Another possible mechanism is the de novo formation of a new gene in a given species.  This can 

occur in a number of methods, as outlined by McLysaght and Hurst in their thorough review on 

the topic (Mclysaght & Hurst, 2016).  It is thought that de novo gene birth can occur in several 

ways.  The recruitment of an open reading frame along with the relevant transcriptional and 

translational signals can produce a novel gene (Knowles & McLysaght, 2009).  Alternatively, the 

fusion of a gene fragment due to transposition or duplication of a genomic segment can induce 

the creation of a novel gene sequence (Mclysaght & Hurst, 2016; Song, Wachi, Doi, Ishino, & 
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Mutsuhashi, 1987).  The formation of a novel sequence due to frame shift mutations, after gene 

duplication for instance, has also been suggested as a source for novel sequence formation 

(Vandenbussche, Theissen, Van de Peer, & Gerats, 2003).  These mechanisms have generally 

been disregarded as realistic sources for functional new genes due to the random nature of the 

resulting sequences.  This sentiment is epitomized by Francois Jacob’s 1977 quote, “The 

probability that a functional gene would form by random association of amino acids is practically 

zero,” (Jacob, 1977).  And, even granting that this is possible, there are many outstanding 

questions which are being approached by researchers:  How are regulatory signals recruited to 

new locations, whether or not there is an open reading frame (A. Carvunis et al., 2015; 

Eichenlaub & Ettwiller, 2011)?  How is the leap made from a transcribed gene to a translated 

gene (Banfai et al., 2012; Ingolia et al., 2014)?  How frequently do these events happen (A.-R. 

Carvunis et al., 2012; Neme & Tautz, 2013)?  

 

These questions of homology and gene origin have spawned a renewed interest in general 

evolutionary patterns of how genes emerge, under what conditions, and how their properties 

changed over time.  This has led to the desire to identify the formation of de novo genes.  

However, distinguishing de novo genes from genes formed by other mechanisms is challenging 

for at least two major reasons. First, lack of homologous sequences could be merely due to 

sequence divergence.  Second, an apparently new open reading frame may not be transcribed or 

translated, or perform any function at all.  It has been therefore suggested that three criteria are 

necessary to confidently identify a recent de novo gene (Knowles & McLysaght, 2009).  One 

must find 1) a gene which is both transcribed and translated 2) which has an orthologous 

sequence in related species which does not code for a protein and 3) the ancestral sequence is 
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also noncoding.  If you cannot find the appropriate genomic region in closely-related species, 

this suggests that some other event has occurred, such as a horizontal gene transfer, a 

translocation, a gene fusion, or some form of duplication.  If you find the appropriate sequence in 

nearby species and find that a protein is produced, then the gene has not been recently born de 

novo. 

 

Once such a gene has been identified, its properties can be studied, and we can make attempts to 

reconstruct its history.  However, this method is extremely limited, and can only examine case-

studies.  It tells us relatively little about the broad strokes and patterns of gene formation over 

evolutionary time.  For that, a high-throughput method is required. 

 

Phylostratigraphy and de novo Gene Birth 
 

In this earnest effort to identify patterns of gene formation, an interesting idea was introduced in 

genomics: the idea of phylostratigraphy.  In a sense, the concept was a molecular twist on an old 

idea.  It was already recognized that one could approximately date the emergence of biological 

structures by identifying all species with that structure and determining approximately when the 

most recent common ancestor of that species lived.  For instance, the bilateral body plan can be 

dated to the Ediacaran period some 600 million years ago (Peterson, Cotton, Gehling, & Pisani, 

2008), the emergence of the clade Bilatera.  Phylostratigraphy was a method introduced by 

Diethard Tautz and colleagues in 2007 (Domazet-Lošo, Brajkovic, & Tautz, 2007) with similar 

logic.  If one can identify all species which have the homolog for a given gene, then that gene 

emerged at approximately the date of the most recent common ancestor for all of those species.  

This method had two major advantages.  First, it allowed gene emergence studies to see further 
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back in time by comparing distantly-diverged species rather than only closely-related species.  

Second, it could be done in a high-throughput manner, instead of on a gene-by-gene basis. 

 

The method is this:  identify a query species, and create a database of all of its genes.  Create a 

target database consisting of all of the known sequences of many species, whose evolutionary 

relationship to your query species is known.  Then, for every query protein, perform a homology 

search to identify which species do or do not have homologs of that gene.  Once all homologs are 

identified, the researcher can determine the approximate age of a protein by identifying the Last 

Common Ancestor of all species with a homolog.  The age of a gene is thus defined in this 

method by its detectable homologs. 

 

This method also allowed the study of trends with gene age.  Typically, after performing this 

homology detection for all proteins, researchers will attempt to identify some relevant 

association of gene age and a biological property.  Many such analyses have been performed, 

and associations have been found between gene age and length (A.-R. Carvunis et al., 2012; 

Wolf, Novichkov, Karev, Koonin, & Lipman, 2009), evolutionary rate (Albà & Castresana, 

2005), tissue expression in various developmental times and species (Domazet-Lošo & Tautz, 

2010), the emergence of multicellularity (Hemmrich et al., 2012), the formation of the head and 

neck sensory systems (M S Sestak, Bozicevic, Bakaric, Dunjko, & Domazet-Loso, 2013), and 

several other properties (Abrusán, 2013; J. J. Cai & Petrov, 2010; A.-R. Carvunis et al., 2012; 

Domazet-Lošo & Tautz, 2008; Prat, Fromer, Linial, & Linial, 2009).  Most importantly for 

discussion of novel gene emergence, it has been used to suggest that de novo gene birth occurs 

frequently (A.-R. Carvunis et al., 2012; Neme & Tautz, 2013).  It is a powerful method that has 
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presumably opened new avenues of evolutionary thinking, and is influencing the development of 

evolutionary theory. 

 

Outstanding problems with phylostratigraphy 
 

Phylostratigraphy poses several concerns, both practical and theoretical.  First, its definition for 

the age of a gene and the meaning of homology differ significantly from traditional meanings.  

The method of phylostratigraphy uses an operational definition of homology based on homology 

detection algorithms such as BLASTP or PHMMER.  These tools have been used in the past to 

confirm historical homology.  However, phyostratigraphy turns this on its head and says that if 

two genes are not detectable as homologs through these programs, then they are not historical 

homologs (Figure 1-1).  These leads to substantial questions regarding the definition of a gene’s 

age, and what that means in biological terms. 

 

In phylostratigraphy, if a pair of historically homologous genes undergo sufficient evolution, 

they will be considered entirely new genes due to the limitations of our tools to detect them.  

This process is sped up in the case of duplication mechanisms (Pegueroles, Laurie, & Alba, 

2013).  As it currently stands, knowing the relative contributions of divergence, duplication-

divergence, de novo gene birth, and other mechanisms to such novel sequences is not known.  It 

is therefore unclear what this definition of “gene age” tells us biologically.  It also means that the 

method will sometimes rank genes as much younger than their actual historical time of 

formation.  These theoretical concerns translate to several more concrete technical concerns 

regarding the efficacy of homology detection programs to reproduce historical homology.  Two 



 14 

kinds of error are important for the efficacy of homology detection programs: false positives and 

false negatives.   

 

False negatives occur when two proteins which are historical homologs are not detected as 

homologs by a homology detection program (Figure 1-1).  This can occur for a number of 

reasons, as outlined previously.  The degree to which the BLAST algorithm is subject to this 

kind of error in phylostratigraphy was first investigated by Elhaik and Graur in 2006 (Elhaik, 

Sabath, & Graur, 2006), who simulated the evolution of the DNA sequence of many genes and 

then performed homology detection using BLASTN to see if the program could recapitulate the 

known, simulated historical homology.  These researchers noted that, depending on the 

evolutionary rate of a gene, the BLASTN algorithm might make an extremely high number of 

false negative errors.  This assertion was challenged in 2007 when Alba and Castressana 

performed a more refined simulation (Albà & Castresana, 2007).  They noted that Elhaik and 

Graur used nucleotide sequences in their simulation even though it was known that homology 

detection using protein sequences was a more sensitive method.  They also noted that Elhaik and 

Graur, when simulating evolution, allowed all sites to evolve at the same rate.  This was an 

inaccurate feature of the simulation, as it is known that some sites are highly conserved 

(Masatoshi Nei & Kumar, 2000).  The BLAST suite of algorithms relies on these highly-

conserved sites to detect homologs (see Chapter 2).  Alba and Castresanna therefore performed a 

more accurate simulation using protein sequences and respecting rate heterogeneity among sites.  

They found that BLAST error was minimal.  However, a major problem for their simulation was 

that they only inferred evolutionary rates from proteins which had detectable homology out to 

450 MYA.  If homology detection programs do not always recapitulate historically homologous 
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relationships, this selection method would choose proteins that tend to evolve very slowly, and 

which have long blocks of conserved sites which allow detection out to such great distances.  

This subset of proteins may not be representative of the evolutionary trends of all proteins.  

Additionally, since they used only 19 genes from which to infer such information, small sample 

size may have skewed their results. 

 

False positive errors would occur when two genes which do not share historical homology are 

falsely called as homologs by a homology detection program (Figure 1-1).  Because of the vast 

size of sequence space and the mechanics of sequence evolution, it is expected very few proteins 

which start from random points in sequence space will wander close enough toward each other to 

be called as false positives.  Nonetheless, it is conceivable that two sequences may strike upon a 

similar function which happens to select for the same sequence despite a lack of historical 

homology.  While convergent evolution between homologous proteins (Christin, Weinreich, & 

Besnard, 2010; J Zhang & Kumar, 1997) and non-homologous proteins (Chen, DeVries, & 

Cheng, 1997) have been noted, it seems unlikely that the full sequence of two non-homologous 

proteins would converge to largely the same sequence.  We can imagine, for example, that if two 

separate organisms have a duplication occur in a pair of non-homologous enzymes, these 

enzymes may be recruited to break down the same nutrient available to both species.  It could 

happen, then that in order to break down this nutrient their active site must converge upon a 

highly similar sequence.  So it may be possible that this convergent molecular evolution occurs, 

though it is unlikely.   
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In the assessment of phylostratigraphy, we expect that false negatives will play a role in observed 

associations of traits with age.  There are three relevant evolutionary parameters which may 

reduce the ability of BLAST or similar algorithms (see chapters 2 and 4) to detect historical 

homology: evolutionary rate, sequence length, and the prevalence of conserved blocks of sites.  

If a sequence is very short, then even a small number of substitutions may cause a large portion 

of an alignment with its homologs to be mismatched.  Because homology detection programs 

wish to exclude potential false positive errors and shorter proteins have a smaller sequence 

space, shorter proteins are less likely to be called as historical homologs.  If a protein evolves 

very quickly, again mismatches in the alignment between true historical homologs will break 

down more quickly.  This will make it more likely that BLAST will not be confident in their 

homologous relationship, and will thus exclude them as homologs.  Finally, the prevalence of 

conserved blocks of sites plays an important role in the BLAST suite of algorithms (see chapter 

2).  BLAST relies upon highly-conserved blocks of sites across homologs to establish an initial 

match.  If a given protein does not have many or any blocks which are highly conserved, BLAST 

will never even consider two of these historically homologous sequences as potential homologs. 

 

These features, by themselves, pose major problems for theory developed via phylostratigraphy.  

Phylostratigraphic studies have claimed that proteins become longer as they age (A.-R. Carvunis 

et al., 2012; Wolf et al., 2009), and that their evolutionary rate slows as they age (Albà & 

Castresana, 2005).  These two traits may be explained equally well by homology detection error 

from the above theoretical considerations.  It is therefore important to assess the contribution of 

homology detection error to these trends.  However, this opens the possibility that less obvious 

phylostratigraphic trends are similarly due to homology detection error.  For instance, it is known 
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that genes which are highly expressed tend to evolve more slowly (Jianzhi Zhang & Yang, 

2015).  It is therefore possible that trends which show older genes are more highly expressed (A.-

R. Carvunis et al., 2012) are due to homology detection error.  Similarly, if a mutant gene is 

associated with a genetic disorder, it is likely that that gene evolves more slowly, as a fast 

evolutionary rate would produce a greater prevalence of the disorder and therefore be selected 

against.  It is therefore possible that a finding that disease genes tend to be older (Domazet-Lošo 

& Tautz, 2008) may be due to homology detection error. 

 

Thesis Overview 
 

The above considerations suggest that a critical evaluation of phylostratigraphy in light of 

homology detection error was necessary.  I therefore set out to investigate the contributions of 

error to phylostratigraphy and theory developed using this method.  I develop a framework for 

evaluating the contribution of homology detection error to phylostratigraphy under various 

evolutionary contexts.  I then apply this framework to various problems in phylostratigraphy, and 

identify problems with theory as developed by current phylostratigraphic methods.  I then 

develop an error-aware phylostratigraphic framework and use it to identify new trends which are 

robust to homology detection error.  Using this framework, I make initial estimates of the 

contributions of various gene birth mechanisms to novel gene sequence formation. 

 

Chapter 2 of this thesis, quantifies the amount of error that occurred when using a more 

representative set of genes than was present in Alba and Castresanna (Albà & Castresana, 2007).  

I demonstrate that when genes which are less highly conserved are used to perform a simulation, 

error rates can be non-negligible.  I also demonstrate that more realistic modes of evolution are 
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likely to increase the degree of false negative error.  I demonstrate that several previously-

reported relationships are also present in simulation alone, where all proteins are equally old.  

These associations are therefore likely due to homology detection error.  Finally, I demonstrate 

that not all such trends are attributable to homology detection error, and it is therefore important 

to assess the potential contribution of homology detection error to any phylostratigraphic finding 

in order to be sure of its reality. 

 

In Chapter 3, I apply these findings to a particular report using phylostratigraphy, the claim that 

de novo gene birth is extremely common.  In 2012, Carvunis et al claimed that de novo gene 

birth was extremely common (A.-R. Carvunis et al., 2012), and that it in fact contributed more to 

the formation of new genes than did duplication.  If this were true, this would be extremely 

surprising.  Their hypothesis was termed the “proto-gene” hypothesis and was expressed in terms 

of a model wherein a non-coding sequence became a coding sequence through the formation of 

an open reading frame.  It was expected, due to the frequency of stop codons in the genome, that 

these novel ORFs would at first be short.  It was also expected that they would be fast-evolving 

and lowly expressed due to an initial lack of function.  Authors also asserted that if genes 

survived, they would increase in length, slow their evolutionary rate, and become more highly 

expressed, though no clear reason for these expectations were given.  Nonetheless, authors used 

phylostratigraphy to date the age of genes in yeast, and searched for correlations of these 

properties with age.  They found these properties, and others which they claimed supported their 

model.  As previously stated, many of these properties are expected to be associated with gene 

age on the basis of false negative homology detection errors alone.  I therefore set out to assess 

the contribution of error to these findings by simulating the evolution of the yeast genes in 
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question.  I found that homology detection error alone could fully explain the strength of 

observed trends.  I further pointed out that the qualitative nature of their trends were not fully 

predicted by nor consistent with their proto-gene model.  I concluded that it is currently not clear 

that de novo gene birth is a more common contributor to novel gene formation than is 

duplication.  Supplementary data for this chapter can be found in Appendix A. 

 

In late 2016, my work came under attack by established phylostratigraphy researchers who 

argued that error was not a major contributor to evolutionary trends identified by 

phylostratigraphy (Domazet-Lošo et al., 2016).  In Chapter 4, I offer a response to the criticisms 

of our work, re-analyzing their data to account for error.  I demonstrate that error contributes 

significantly and disproportionately to phylostratigraphic trends, and that phylostratigraphy 

cannot be done in the absence of corrections for homology detection error.  Supplementary data 

for this chapter can be found in Appendix B. 

 

Having established major problems with phylostratigraphic method, I next sought to improve 

upon the state of the field by searching for a more accurate and biologically meaningful 

phylostratigraphic method.  Additionally, several criticisms of my research were published along 

with outstanding problems to explore for phylostratigraphy, including the contributions of false 

positive error.  These concerns are the focus of Chapter 5 of this thesis.  There are four methods 

to potentially eliminate the effects of homology detection error:  1) Choose a more accurate 

homology detection tool or method to reduce the incidence of false negatives and thus their 

impact on observed trends.  2) Develop a model to identify error-prone genes a priori based on 

their properties to remove them from analysis, thus reducing error and its impact on observed 
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trends.  3) Restrict phylostratigraphy to closely-related clades, where error may be much lower 

due to the small amount of divergence time that has occurred, allowing genetic distance to 

accumulate.  4) When performing phylostratigraphy, restrict to only those genes which can have 

their error rate determined via simulation, and then remove any error-prone genes from analysis 

to be confident of observe trends.  I performed new simulations using both real genes and genes 

with simulated sequences and properties to better match the full range of genetic property space.  

I applied several homology detection algorithms, machine learning models, and evolutionary 

contexts to the data to identify which of the proposed methods of reducing error were effective.  I 

found that the fourth was the only method in which error and its effects could be largely 

eliminated.  I then performed real phylostratigraphy on the same set of human genes which we 

had simulated, after removing any error-prone genes.  I show that this improved 

phylostratigraphic method produced trends in complete opposition to previously-published 

findings.  In addition, the data presented in this chapter serve to refute several criticisms and 

apparent limitations of my previous simulations.  I therefore established a more accurate and 

biologically meaningful phylostratigraphy, as well as established a framework in which error-

aware phylostratigraphy must be used in drawing biological conclusions.  Supplementary data 

for this chapter can be found in Appendix C. 

 

In chapter 6, I sought to apply this new framework in a relevant context.  I chose to further 

investigate the relative contributions of divergence, duplication, and de novo gene birth to novel 

sequences.  As stated, there are thought to be three major sources for novel sequences—i.e., 

those sequences which do not have detectable homologs beyond some particular clade.  They can 

arise due to sequence divergence, rapid sequence divergence following a gene duplication, or the 
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appearance of a de novo gene.  However, phylostratigraphic analysis alone cannot determine 

their relative contributions.  In my previous studies, I have essentially investigated the 

contribution of the first of these three mechanisms to the formation of new genes by simulating 

the evolution of genes and then determining their apparent ages.    I assessed the contribution of 

duplications to novel sequence formation by similarly simulating many models of duplication 

followed by punctuated and continued models of rapid or modified evolution.  These simulations 

of duplication showed how sequences might be retained and the mechanics of novel sequence 

formation under various models of duplication.  It is arguable that we could assess the 

contributions of de novo gene birth similarly, but the mechanics of de novo gene birth are not 

entirely known.  While there is conjecture that they start short and fast-evolving then generally 

become longer and slow their evolution, the precise mechanics are unclear.  Further, even these 

conjectures cannot be trusted, as they come from non-error-aware phylostratigraphic contexts, 

and are therefore influenced by homology detection error.  I therefore approached the problem 

indirectly by comparing the number of novel sequences actually observed in phylostratigraphy to 

the number of novel sequences derived via reasonable simulation of gene evolution with periodic 

duplications in the genome.  I found that even under a relatively extreme model, divergence and 

duplication-divergence could only account for approximately half of the observed novel 

sequences.  This implied that de novo gene birth has been common throughout evolution.  

Supplementary data for this chapter can be found in Appendix D. 

 

Chapters 2 through 6 demonstrate that homology detection error is a significant confounding 

factor in phylostratigraphic analyses and creates an error-aware context in which 

phylostratigraphy can be performed.  Chapter 7 assesses remaining outstanding problems in the 
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field, some of which were uncovered by my analyses.  I conclude with several suggested future 

directions. 
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Figure 1- 1 Two-dimensional rendering of sequence space 

Consider two proteins query proteins which do not share historical homology, A (red dot) and B (green dot).  Consider 

also sets of proteins in other species which do share historical homology with either protein A (orange dots) or B (blue 

dots).  We infer historical homology based on sequence homology.  Sequence homology is granted based on how 

close to the query protein a given target protein is in sequence space (represented by expanding circles A1-3 and B1-

2).  If a sequence similarity criterion is too rigid (A1), it will fail to detect some true historical homologs resulting in 

a false negative error.  However, if the criteria are too lax (A3) one will falsely identify some genes as having sequence 

(and therefore historical) homology when no historical homology is shared, resulting in a false positive error.  

Additionally, sometimes extending criteria identifies no further homologous proteins (B1 versus B2). 
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Figure 1- 2 Schematic of Subfunctionalization 

(A) Prior to duplication, an enzyme may perform multiple reactions at lower than peak efficiency.  Because its active 

site is restricted by both functions, it cannot specialize for either.  (B) After duplication, each copy is able to specialize 

for one particular reaction without destroying the organism’s ability to perform either reaction. 
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Figure 1- 3 Schematic of Neofunctionalization 

(A) Prior to duplication, an enzyme may be restricted to performing one reaction or a specific set of reactions, unable 

to break down a metabolite present in the environment.  (B) After duplication, one of the two copies lacks selective 

pressure, and may by mutations to its active site gain the ability to bind to and break down a novel metabolite. 
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Figure 1- 4 Potential horizontal gene transfer event 

Consider a scenario in which a given gene has strong support for having homologs in the five species marked with an 

asterisk.  There are at least two potential explanations for the pattern of homolog conservation.  First, the gene was 

present in the base of the tree.  This would require the gene to have been lost independently in four lineages.  Second, 

the gene could have undergone a horizontal gene transfer event from one of the species on the right to the single 

homolog-bearing species on the left.  In some cases, the parsimonious explanation is a horizontal gene transfer
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Chapter 2  

Phylostratigraphic bias creates spurious patterns of genome evolution 

Published as: Moyers, B.A. and Zhang, J (2015) Phylostratigraphic bias creates spurious patterns of genome 

evolution.  Mol. Biol. Evol., 32:258-267. 

Abstract 
 

Phylostratigraphy is a method for dating the evolutionary emergence of a gene or gene family by 

identifying its homologs across the tree of life, typically by using BLAST searches.  Applying 

this method to all genes in a species, or genomic phylostratigraphy, allows investigation of 

genome-wide patterns in new gene origination at different evolutionary times and thus has been 

extensively used.  However, gene age estimation depends on the challenging task of detecting 

distant homologs via sequence similarity, which is expected to have differential accuracies for 

different genes.  Here we evaluate the accuracy of phylostratigraphy by realistic computer 

simulation with parameters estimated from genomic data, and investigate the impact of its error 

on findings of genome evolution.  We show that (1) phylostratigraphy substantially 

underestimates gene age for a considerable fraction of genes, (2) the error is especially serious 

when the protein evolves rapidly, is short, and/or its most conserved block of sites is small, (3) 

these errors create spurious non-uniform distributions of various gene properties among age 

groups, many of which cannot be predicted a priori.  Given the high likelihood that conclusions 

about gene age are faulty, we advocate the use of realistic simulation to determine if observations 
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from phylostratigraphy are explainable, at least qualitatively, by a null model of biased 

measurement, and in all cases, critical evaluation of results. 

 

Introduction 
 

The term phylostratigraphy was first introduced in 2007 to refer to a method of dating the 

emergence of genes and gene families (Domazet-Lošo et al., 2007).  The method actually 

predates the term, and has been used to approach a large number of questions.  For example, 

phylostratigraphic analyses showed that, compared to relatively old genes, relatively young 

genes evolve faster (Albà & Castresana, 2005), have lower expressions (J. J. Cai & Petrov, 2010; 

Wolf et al., 2009), encode shorter proteins (Wolf et al., 2009), are subject to weaker purifying 

selection and stronger positive selection (J. J. Cai & Petrov, 2010), are less likely to be 

associated with human disease (Domazet-Lošo & Tautz, 2008), are less frequently expressed 

during the phylotypic stage in animal embryonic development (Domazet-Lošo & Tautz, 2010), 

and have different synonymous codon usage (Prat et al., 2009).  The method has also been 

applied to investigate the modes of gene origination (A.-R. Carvunis et al., 2012), the life cycle 

of genes (Abrusán, 2013), and the evolution of developmental structures and cell types in a 

variety of taxa (Hemmrich et al., 2012; Martin Sebastijan Sestak, Božičević, Bakarić, Dunjko, & 

Domazet-Lošo, 2013). 

 

Each phylostratigraphic study has a focal species.  The age of a gene from the focal species is 

defined by the time since the divergence between the focal species and its most distantly related 

taxon in which a homolog of the gene is found.  This exercise requires a method for homolog 

detection, for which the most common tool by far is Basic Local Alignment Search Tool 
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(BLAST) (Stephen F Altschul, Gish, Miller, Myers, & Lipman, 1990) and its derivatives 

(blast.ncbi.nlm.nih.gov/Blast.cgi).  We present below a highly simplified overview of the 

BLAST algorithm for reference (Madden & Morgulis, 2009).  BLAST is a heuristic algorithm 

for homolog detection that relies on both overall sequence similarity between a query and a 

database entry and multiple high-scoring matches.  BLAST begins its homolog search by taking 

“words” of a user-defined length from the query sequence and searching for high-scoring 

matches to these words among the entries in the database.  All database entries containing a user-

defined (default = 3) number of high-scoring matches with individual words are further 

investigated by extending the alignment and using a dynamic programming algorithm to score 

the alignment.  Missing a true homolog may result in gene age underestimation (if the most 

distant true homolog is missed) or a false conclusion that a particular lineage has lost a gene (if a 

homolog is not found in a species but found in a more distant species).  Therefore, conclusions 

based on phylostratigraphic analysis critically rely on the correct identification of homologs by 

BLAST.   

 

Importantly, BLAST error may vary nonrandomly among genes and create biased results.  For 

instance, because detection of homologs is affected by sequence similarity and because sequence 

similarity is lost faster for rapidly evolving genes than for slowly evolving genes, the former are 

expected to have a higher BLAST error rate than the latter, which would create a spurious 

pattern of faster evolution of younger genes.  This possibility was investigated by Elhaik et al. 

(Elhaik et al., 2006) using computer simulation.  Specifically, they simulated DNA sequence 

evolution along an evolutionary tree and used BLAST to search for homologs that were 
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generated in the simulation.  False negative error rates as high as 100% were observed, with 

quickly-evolving genes having larger errors and hence looking younger.   

 

Elhaik et al.'s study, however, was criticized for two reasons (Albà & Castresana, 2007).  First, 

they simulated nucleotide sequence evolution, but amino acid sequences allow for more sensitive 

detection of distant homologs and are preferred in phylostratigraphy.  Second, all sites in a 

sequence had the same evolutionary rate in the simulation, a major deviation from the general 

observation in real gene and protein sequences that the evolutionary rate varies among sites, 

often referred to as “among-site rate heterogeneity” (Jianzhi Zhang & Gu, 1998).  The rate 

heterogeneity is important in homolog detection, because BLAST relies on highly-conserved 

“words” among homologs.  Even very short conserved sequences (e.g., three letters) can greatly 

enhance BLAST’s performance.  Because of these two major weaknesses, Elhaik et al.'s results 

were considered unreliable and a new simulation was conducted by Albà and Castresana (2007).  

These authors estimated the among-site rate heterogeneity of 14 proteins and simulated protein 

sequence evolution either with or without rate heterogeneity.  They reported that gene age was 

underestimated by BLAST, but the fraction of genes affected is small when the sequences were 

simulated with rate heterogeneity.  They concluded that BLAST error is not an important 

element in phylostratigraphic analysis.  While Albà and Castresana’s simulation is more realistic, 

it also has serious drawbacks.  First, their simulation was based on only 14 real genes, which 

may not be representative.  Second and more importantly, the rate heterogeneity patterns were 

derived from the multiple sequence alignments of either seven vertebrates with a ~450 MY-old 

common ancestor or nine bilaterians with a ~980 MY-old common ancestor.  Thus, their study 

actually excluded those rapidly evolving genes whose vertebrate or bilaterian homologs are 
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missed by BLAST.  In other words, they studied a biased sample of relatively slowly evolving 

genes, which would lead to an underestimation of BLAST error.   

 

Because of the widespread use of phylostratigraphy, understanding how BLAST error affects the 

reliability of phylostratigraphy will have important implications for a diverse array of 

evolutionary studies.  Given the limitations of the previous researches on the subject, we 

undertake a genome-scale investigation.  We simulate the evolution of protein sequences using 

parameters estimated from the alignments of 6695 orthologous genes found in 12 Drosophila 

species.  These species share a most recent common ancestor ~62 MYA (Tamura, Subramanian, 

& Kumar, 2004), allowing for the study of both slowly-evolving genes and faster-evolving genes 

than were represented in Albà and Castresana (2007).  We simulate evolution across a wide 

range of divergence times and hence can gauge gene age estimation error with a greater precision 

than previous studies.  We report that BLAST error is abundant and may be responsible for many 

patterns of genome evolution previously identified in phylostratigraphic studies.   

 

Methods 
 

Simulation of protein sequence evolution 

 

We acquired 6698 protein alignments among the 12 Drosophila species from FlyBase 

(ftp://ftp.flybase.net/genomes/12_species_analysis/clark_eisen/alignments/all_species.guide_tree

.longest.translation.tar.gz ).  The 12 species are D. simulans, D. sechellia, D. melanogaster, D. 

yakuba, D. erecta, D. ananassae, D. pseudoobscura, D. persimilis, D. willistoni, D. mojavensis, 

D. virilis, and D. grimshawi.  We also acquired 5217 protein alignments among 12 mammalian 

species from Orthomam (Ranwez et al., 2007).  The mammalian species were chosen such that 

ftp://ftp.flybase.net/genomes/12_species_analysis/clark_eisen/alignments/all_species.guide_tree.longest.translation.tar.gz
ftp://ftp.flybase.net/genomes/12_species_analysis/clark_eisen/alignments/all_species.guide_tree.longest.translation.tar.gz
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there were 12 species and we retained at least 5000 proteins which had a full alignment.  This 

resulted in selecting species that diverged as much as 92 MYA.  The species included were 

rhesus macaque (Macaca mulatta), treeshrew (Tupaia belangeri), orangutan (Pongo pygmaeus), 

galago (Otolemur garnettii), rat (Rattus norvegicus), squirrel (Ictidomys tridecemlineatus), 

marmoset (Callithrix jacchus), guinea pig (Cavia porcellus), rabbit (Oryctolagus cuniculus), 

gibbon (Nomascus Leucogenys), human (Homo sapiens), and mouse (Mus musculus).  

 

We estimated among-site rate heterogeneity, amino acid frequency, and D. melanogaster–

D.grimshawi or human–mouse genetic distance (i.e., number of substitutions per site) for each 

protein using TreePuzzle (Schmidt, Strimmer, Vingron, & von Haeseler, 2002).  We used the 

JTT-f matrix (Jones, Taylor, & Thornton, 1992) with the observed amino acid frequencies in the 

protein and a discrete gamma model with 16 rate categories for parameter estimation.  Three 

alignments were excluded from the Drosophila data due to one or more species having only gaps 

or ambiguous characters for the entire alignment.   

 

We used three evolutionary guide trees.  The first tree (Figure 2-1A) was constructed according 

to the divergence times estimated in TimeTree (Hedges, Dudley, & Kumar, 2006).  For each 

species, we used the mean estimate of divergence time from D. melanogaster, with the following 

exceptions.  Nematode and sponge average divergence times were swapped, because they had 

very wide margins on their estimates and the average divergence times would misplace them 

compared to the known phylogeny.  INT1 and INT2 were entirely fictional, providing a 

smoother range of divergence times for a more informative analysis.  The second guide tree 

(Figure 2-3A) was constructed according to the divergence times provided by Domazet-Lošo and 
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Tautz (2007).  The third guide tree (Figure 2-4) was constructed using TimeTree divergence time 

estimates for a phylogeny provided by Domazet-Lošo and Tautz (2008).  

 

Once the above information was acquired, we simulated sequence evolution using ROSE (Stoye, 

Evers, & Meyer, 1998), which allows the evolutionary rate for each site to be specified by the 

user.  Additionally, following Albà and Castresana (2007), we set an insertion and deletion 

(indel) threshold to 0.0001.  For each branch in the simulation, the expected number of insertion 

attempts and the expected number of deletion attempts both equal the expected number of amino 

acid substitutions for that branch times 0.0001.  A random location along the protein is chosen to 

place an indel.  If the amino acid substitution rate at the random location is greater than the 

average substitution rate for the protein, the indel occurs; otherwise, the indel does not occur.  A 

proposed indel length between 1 and 14 amino acids is decided based on a predetermined 

probability function.  In our simulation, the probability was set at 0.1 for any length between 1 

and 6 amino acids and 0.05 for any length between 7 and 14 amino acids.  In the case of a 

deletion, only those sites with amino acid substitution rates higher than the average for the 

protein will be deleted, with the occurrence of a site with a lower-than-average rate truncating 

the deletion.  In the case of an insertion, all new sites are set to have amino acid substitution rates 

equal to the average substitution rate of the protein.  For each protein, we simulated its evolution 

using a JTT-f matrix with observed amino acid frequencies from the alignment.  We calculated 

the mean evolutionary rate of a protein by the number of substitutions per site per MY between 

D. melanogaster and D. grimshawi or between human and mouse.  Based on TimeTree, the 

former pair of species diverged 62 MYA and the latter 92 MYA.  The sequence provided as the 
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start sequence for evolution was the D. melanogaster sequence or human sequence.  The 

simulation of sequence evolution was performed 10 times for each protein.   

 

Covarion model of sequence evolution 

 

Under the covarion model, we simulated sequence evolution in 50 MY chunks.  After each 50 

MY iteration, we selected a subset of sites accounting for y = 0%, 1%, 2%, or 5% of the protein 

length, and shuffled their evolutionary rates.  We then continued evolution along that lineage for 

another 50 MY and repeated until the entire lineage had been evolved.  In cases where we were 

required to evolve for x < 50 MY, (xy/50)% of sites were shuffled in their evolutionary rates.  We 

also ran simulations in which we excluded the most conserved one or two rate categories from 

being shuffled.  In these constrained covarion models, at each 50 MY iteration, we selected 0%, 

1%, 2%, or 5% of sites such that no sites from the most conserved one or two rate categories 

were selected but the appropriate percentage of the full protein length was selected and shuffled.  

Evolution was continued according to this pattern until the entire lineage had been evolved. 

 

Detection of homologs using BLASTP 

 

We downloaded BLASTP (version 2.2.28+) from NCBI.  For each run, we took the simulation-

generated fruit fly (or human) database consisting of 6695 (or 5217) protein sequences and 

performed BLASTP searches against the simulation-generated sequence database from each of 

the other 11 species for that run.  We used an E-value cutoff of 1E-3 unless otherwise mentioned.  

Results of true homologs found were stored.  We then dated each gene to the common ancestor 
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of the query species and all taxa in which true positive hits were found.  This represented the 

“age” of the protein for that run.   

 

Analysis of BLASTP results: rate of new gene origination 

 

We divided the average number of new gene originations in a tree branch over 10 simulations by 

the evolutionary time represented by the branch.  This is not identical to the method used by 

Domazet-Lošo and Tautz (2007), who corrected for paralogs.  But, because our study did not 

involve gene duplication, we did not perform this correction. 

 

Analysis of BLASTP results: human disease genes 

 

We downloaded the MORBIDMap (Hamosh, Scott, Amberger, Bocchini, & McKusick, 2005), 

and restricted the data to only those genes marked with "[3]" (mutation was positioned by 

mapping the wild-type gene and the mutation is associated with the disorder).  We then 

determined which genes in each age group were disease genes and plotted the percentage of such 

genes against phylostratum.  We further used Spearman’s rank correlation to determine if there 

was a significant correlation between the inferred age of a gene and its status as disease gene. 

 

Results 
 

Characterizing gene age estimation errors 

 

We acquired from FlyBase (St Pierre, Ponting, Stefancsik, & McQuilton, 2014) 6695 

orthologous protein alignments from 12 Drosophila species that diverged ~62 MYA (Tamura et 

al. 2004).  For each protein, we used TreePuzzle (Schmidt et al., 2002) to classify all sites into 16 
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equal-sized rate bins according to a discrete gamma model of among-site rate heterogeneity and 

estimated the relative rates of the 16 bins.  We also inferred the mean absolute evolutionary rate 

across all sites of a protein by dividing the number of substitutions per site in the protein between 

D. melanogaster and D. grimshawi by 2×62 MY (Tamura et al., 2004).  Using all of these 

parameters, we simulated the evolution of 6695 proteins using ROSE (Stoye et al., 1998) along a 

tree with 11 taxa, representing species from fruit fly to bacteria (Figure 2-1A).  The divergence 

times among these taxa were assumed to equal what TimeTree (Hedges et al., 2006) estimated 

(see Materials and Methods).  Using the extant sequences generated from the simulation, we 

constructed protein databases and used BLASTP, a derivative of BLAST for searching protein 

homologs, to detect orthologs of the simulated fruit fly queries in the other 10 extant taxa.  

Unless necessary for distinction, BLASTP is simply referred to as BLAST in this chapter.  

Because in the simulation all genes originated in the common ancestor of eukaryotes and 

bacteria, any inferred gene age other than that was considered an estimation error.  Following 

Albà and Castressana (2007), we repeated this simulation 10 times to examine the stochasticity 

of the obtained results.  Unless otherwise noted, the averages from the 10 simulations were 

presented. 

 

BLAST searches require specifying an E-value cutoff to guard against false positives.  Because it 

was suggested that the E-value cutoff of 1E-3 be used in phylostratigraphy (Domazet-Lošo & 

Tautz, 2003), we used this cutoff in our simulation unless otherwise noted.  We found from our 

simulation that in 13.85% of cases a homolog was not detected in the most distant taxa (Table 2-

1).  This indicates that age estimation error is a relatively common phenomenon.  We also found 
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that in 2.77% of cases no homolog was found in any taxon (Table 2-1), indicating that age 

underestimation can be extreme.   

 

To examine the frequency of gene age underestimation under different E-value cutoffs, we tried 

cutoffs from 1E-1 to 1E-10.  Because we are examining false negative errors, the error rate 

should increase as the E-value cutoff becomes smaller.  This is indeed the case, although the 

variation in error rate under different cutoffs is relatively small (Table 2-1).  

It might be justifiably argued that in real phylostratigraphy there can be numerous potential 

orthologs that correspond to a particular divergence time (e.g., many bacteria rather than one), 

which may improve age estimation.  In order to examine the error rate under this scenario, we 

performed an additional database search using the simulated bacterial protein as the query and 

the simulated proteins for all other taxa as the database, providing 10 representatives of the 

“most distant homolog”.  We found that in 12.03% of cases, no homologs were found (under the 

E-value cutoff of 1E-3).  Thus, the use of multiple species for a given divergence has virtually no 

impact on the error rate. 

 

While it is expected that more distant homologs are more difficult to detect, the exact 

relationship between divergence time and mean detectability for a group of genes has not been 

examined.  Using the simulated data, we plotted the fraction of fruit fly genes whose homologs 

are not detected in a taxon as a function of the time since the separation between that taxon and 

fruit fly (Figure 2-1B).  Although the probability of missing a homolog by BLAST clearly 

increases with the divergence time, the relationship is decidedly non-linear (F = 333.5, P = 

7.1×10-7, Ramsey RESET test, (Ramsey, 1969)).  Rather, it can be approximated by a log-linear 
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curve (Figure 2-1B), with a faster increase in error rates for shorter divergence times and a 

slower increase for longer divergence times. 

 

Properties of genes that influence its age underestimation 

 

We sought to determine which properties of a gene influence its age underestimation by BLAST.  

Due to the way the BLAST algorithm works, two likely candidates are the rate of protein 

sequence evolution and the length of the protein.  Indeed, we found highly significant 

correlations between the inferred gene age and both rate (Spearman’s ρ = -0.57, P < 2.2×10-308; 

Figure 2-2A) and protein length (ρ = 0.19, P < 1.1×10-53; Figure 2-2B).  Both of these 

associations have been noted before in real phylostratigraphic studies (J. J. Cai & Petrov, 2010; 

Wolf et al., 2009), but are replicated by our simulation where all genes are equally old.  Hence, 

the trends previously observed in phylostratigraphic analyses may be entirely due to BLAST 

errors.  We further reasoned that, because of the requirement for high-scoring matches of 

"words" in BLAST searches, longer stretches of conserved blocks would result in fewer BLAST 

errors.  Indeed, we find the error rate to increase quickly as the maximum length of the stretch of 

the most conserved category of sites decreases, especially when the mean evolutionary rate is 

high (Figure 2-2C).  

 

To examine if the above three protein characteristics (mean evolutionary rate, protein length, and 

maximum length of the stretch of the most conserved category of sites) have independent 

contributions to gene age underestimation, we conducted a partial correlation between each of 

these characteristics and the inferred gene age, after controlling the other two characteristics.  

Significant partial correlations were found for evolutionary rate (ρ = -0.32, P < 1.3×10-171), 
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protein length (ρ = 0.11, P < 5.5×10-19), and maximum length of the stretch of the most 

conserved category of sites (ρ = 0.21, P = 4.2×10-68), demonstrating that these factors have 

independent influences on gene age underestimation.   

 

The above simulation assumed that a site has a constant evolutionary rate throughout the tree, 

which may not be true in reality because of potential evolutionary alterations in the functional 

constraint of the site due to either protein functional changes (Jianzhi Zhang, 2006) or epistasis 

(Breen, Kemena, Vlasov, Notredame, & Kondrashov, 2012).  To examine the level of gene age 

underestimation under this scenario, we simulated a covarion model of sequence evolution 

(Fitch, 1971; Penny, McComish, Charleston, & Hendy, 2001) along the tree in Fig. 1A.  To 

implement this model, at certain evolutionary times, we randomly picked a subset of sites and 

shuffled their rate categories.  This was done for a total of 1%, 2%, or 5% of sites every 50 MY 

of evolution.  As a negative control, 0% of sites were shuffled in rate categories.  We then 

attempted to detect the bacterial homologs of fruit fly proteins.  We found that the covarion 

evolution substantially increases the BLAST error rate.  When 5% of sites are shuffled in their 

evolutionary rates per 50 MY, more than 67% of bacterial homologs could not be detected, 

compared to 14% when no site is shuffled (Tabel 2-2).  Even a tiny amount of covarion evolution 

(1% per 50 MY) increases the probability of gene age underestimation by more than a factor of 

0.25 (Table 2-2).  Considering that functionally most critical residues in a protein may be largely 

immune to covarion evolution, we conducted an additional simulation shuffling 0%, 1%, 2%, or 

5% of sites every 50 MY, but excluding the sites belonging to the lowest one or two rate 

categories from being picked for rate shuffling.  Our result showed only a small increase in age 

estimation error by these constrained covarion models, compared with no rate shuffling (Table 2-
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2).  The reality is probably somewhere between the full convarion model and the constrained 

covarion models, although the fraction of sites subject to covarion evolution and the frequency of 

rate changes are currently unknown. 

 

Gene age underestimation generates spurious patterns of genome evolution 

 

Because phylostratigraphy by homology detection underestimates gene age and because the 

probability and extent of the underestimation vary among genes, it is possible for 

phylostratigraphic errors to create spurious patterns of genome evolution.  As demonstrated in 

our simulation (Figure 2-2), that young genes tend to evolve rapidly (Albà & Castresana, 2005) 

and encode short proteins (Wolf et al., 2009) is explainable by gene age estimation error.  While 

one can predict a priori, based on how BLAST works, that these correlations are likely artifacts, 

whether many other phylostraigraphy-based discoveries are genuine or artifactual cannot be 

easily predicted.  Below we two additional phylostraigraphy-based discoveries and examined 

whether they could have resulted from gene age underestimations. 

 

We first examined two genomic patterns reported in Domazet-Lošo and Tautz (2007), a paper of 

special importance to the phylostratigraphy field because the term phylostratigraphy was coined 

in this paper.  Using D. melanogaster as the focal species, these authors reported a peak in the 

number of new gene originations per MY in the common ancestor of bilatera.  Because these 

authors used a phylogeny that is different from the one used in our main simulation, we 

conducted another simulation using their tree (Figure 2-3A).   
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While all genes were simulated to have originated in the common ancestor of all cellular life, 

17% were inferred by phylostratigraphy to have originated more recently.  More disturbingly, the 

inferred number of new gene originations per MY is not uniform throughout evolution (X2 = 

46.38, P =5.1×10-7, chi-squared test), creating an intriguing pattern of rapid new gene origination 

at certain evolutionary times and slow new gene origination at other times (Figure 2-3B).  

Nevertheless, we did not observe in our simulation the peak of gene origination in the common 

ancestor of bilateria as reported by Domazet-Lošo and Tautz (2007).  Inaccuracies in tree 

topology and divergence times may account for the disparity between our simulation result and 

what was discovered by Domazet-Lošo and Tautz, given that the divergence times surrounding 

the ancestral node of the common ancestor of bilateria are relatively short (Figure 2-3A).   

 

All of the above simulations and analyses used D. melanogaster as the focal species.  It would be 

important to examine if our findings apply to other species.  To this end, we used simulation to 

examine a result from Domazet-Lošo and Tautz (2008).  These authors reported that disease 

genes tend to be older, and found a remarkable dearth of disease genes in the youngest group of 

genes.  We conducted a simulation according to the species relationships considered in their 

paper and constructed this tree using divergence time estimates from TimeTree (Figure 2-4).  

Using human as the focal species, we acquired orthologous proteins from Orthomam (Ranwez et 

al., 2007) using taxa diverged as much as 92 MY from human.  We inferred evolutionary rate 

and rate heterogeneity using TreePuzzle, evolved sequences using ROSE, and detected homologs 

using BLASTP.  From the simulated data, we observed a positive correlation between the 

inferred age of a gene and its probability of being a disease gene (Spearman’s ρ = 0.623, P = 

0.004; Figure 2-4).  Because the true ages of all genes are the same in our simulation, our finding 
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demonstrates that Domazet-Lošo and Tautz's finding was at least partly an artifact of gene age 

estimation error. 

 

Discussion 
 

Homology detection programs make a major common assumption.  If two sequences are similar 

enough on some measure, they are homologs—they share a common ancestry.  The researcher 

has freedom in deciding where the similarity cutoff should be.  This does not imply the converse 

assumption—that is, if sequences are not similar then they do not share a common ancestry.  

However, in phylostratigraphy this second assumption is made, because genes are grouped and 

analyzed based on their detected homologs.  It is thus critical to understand the amount of type-II 

error (i.e., false negatives) in homology detection used for phylostratigraphic analyses.   

 

We have systematically quantified the bias and effects of false negative errors of BLAST 

homolog detection on gene age estimation.  Under our model of sequence evolution, BLAST 

results in common errors in gene age underestimation, some of which are extreme.  For four 

reasons, our results are likely to be conservative.  First, our simulation used parameters estimated 

from proteins that can be detected from all 12 Drosophila genomes.  There are proteins that 

cannot be detected from all 12 Drosophila genomes (Palmieri, Kosiol, & Schlötterer, 2014).  

Apart from the true gene loss or new gene origination, some of them may actually exist in all 12 

genomes but are undetectable due to the limited power of homology detection.  Not including 

such genes in our simulation reduces the apparent error rate of BLAST.  Second, we estimated 

protein evolutionary rate per MY by comparing two Drosophila species and assumed that this 

rate applies to other organisms including fungi and bacteria.  Because mutation rate tends to be 
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constant per cell division (Michael Lynch, 2010) and the average (germline) cell cycle tends to 

be shorter in smaller organisms, mutation rate per year is expected to be much higher in smaller 

organisms such as bacteria than in Drosophila.  In other words, we underestimated the amount of 

BLAST error for a protein by assuming a constant evolutionary rate per MY across the tree of 

life.  Third, our main simulation assumed that the evolutionary rate of a site relative to the 

average of all sites in a protein is a constant.  When this assumption is violated, BLAST error 

tends to increase, as shown in our simulation of the covarion evolution.  Fourth, our simulation 

parameters were estimated from one-to-one orthologous proteins and the simulation considered 

neither gene duplication nor gene loss.  In reality, gene duplication is quite common in genome 

evolution (K. Wolfe, 2004; Jianzhi Zhang, 2003) and it often results in a change in evolutionary 

rate associated with post-duplication changes in gene function (Pegueroles et al., 2013; J Zhang, 

Rosenberg, & Nei, 1998).  This rate change will likely increase the BLAST error rate.  Gene loss 

can further compromise gene age estimation if a gene loss occurs to the most distant taxa where 

the homolog would otherwise be detected.  Taken together, it is most likely that the actual 

frequency of gene age estimation error by BLAST is greater than what is shown in this study.   

 

There also exists the possibility of overestimation of gene age, especially in the context of 

horizontal gene transfer.  Imagine a gene that originated recently in bacteria but was horizontally 

transferred to some eukaryotes.  Phylostraigraphy could mistakenly date the gene to the common 

ancestor of eukaryotes and bacteria.  In future research, it would be important to explore the 

impacts of increasingly accurate and complex models of sequence and genomic evolution 

mentioned above on gene age estimation. 

 



 50 

By itself, the high error rate should encourage skepticism toward the statement that any gene is 

of a particular age.  We find, however, that this error is associated with the mean evolutionary 

rate of the protein, protein length, and the maximum length of the most conserved stretch of 

sites.  Thus, one may be able to temper this skepticism by further analyses (e.g., by controlling 

the confounding factors).  However, additional research will be needed to determine if these 

qualities can be parsed away from the effects of true gene age. 

 

We demonstrated in some cases that the gene age estimation error can result in statistically 

highly significant and biologically intriguing findings without any true biological meaning or, at 

the very least, with misinterpreted biological meaning.  Some of these spurious patterns may be 

predicted a priori given our understanding of how BLAST works and the correlates of factors 

that most seriously impact the performance of BLAST.  For instance, given that fast protein 

sequence evolution leads to gene age underestimation and that lowly expressed genes tend to 

evolve rapidly (Pal, Papp, & Hurst, 2001), one could predict that phylostratigraphic bias would 

create a positive correlation between gene expression level and age.  Thus, the report that young 

genes tend to be lowly expressed (Wolf et al., 2009) may be entirely artifactual.  Because gene 

expression level is correlated with codon usage bias, phylostratigraphic bias would also lead to 

the observation that genes with different ages have different codon usage (Prat et al., 2009).  

Similarly, because the evolutionary rate of a protein is negatively correlated with the strength of 

purifying selection and positively correlated with the strength of positive selection acting on the 

protein, the discovery that, compared to old genes, young genes are subject to weaker purifying 

selection and stronger positive selection (J. J. Cai & Petrov, 2010) can be artifactual.  However, 

not all patterns created by phylostratigraphic bias can be predicted a priori, such as the apparent 
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statistically-significant peak we observed in gene fixation, or the apparent ancient origin of 

disease-associated genes.  It is therefore crucial to consider phylostratigraphic error as the first 

possible cause of any nonrandom pattern observed in phylostratigraphic studies.  Further, many 

phylostratigraphic studies did not start with clear hypotheses, but attempted to explain whatever 

patterns that were observed in such studies.  The danger of offering post hoc explanations has 

been eloquently discussed in the context of gene ontology analysis (Pavlidis, Jensen, Stephan, & 

Stamatakis, 2012) and applies to phylostratigraphy.  

 

Nevertheless, we do not imply that all phylostratigraphic results are artifacts.  In fact, most of our 

simulations do not exactly recapitulate empirical findings, although one cannot exclude the 

possibility that the disparity is due to the use of inaccurate parameters (e.g., divergence times 

between taxa) and/or simplified models (e.g., constant evolutionary rate for a site) in the 

simulations.  Some of the disparities are so large that it is highly probable that true biological 

signals exist.  For instance, the age distribution of D. melanogaster genes in real 

phylostratigraphic analysis shows a peak for very young genes, but the corresponding 

distribution based on the simulated data does not have this peak (Figure 2-5).  Because it is 

improbable for BLAST to miss the honeybee homolog of a Drosophila gene if the homolog truly 

exists, the most likely cause of the disparity is an unusually high rate of new gene origination in 

Drosophila after its separation from the honeybee.  Furthermore, because the BLAST error rate 

increases with (real) gene age (Figure 2-1B), the overall error will be smaller than what is shown 

here if a large fraction of genes in a genome are younger than what was assumed in our 

simulation.  But, due to the BLAST error, it is difficult to know the true gene age and hence 

difficult to assess the likelihood of this scenario.  
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In order to analyze the effects of phylostratigraphic error on any particular data set, one must 

assess the probability that a given gene has been subject to BLAST error.  This is most easily 

determined by a simulation of protein evolution, but simulation has its own limitations.  For 

instance, it requires at least the knowledge of the protein’s rate of evolution and rate 

heterogeneity, typically inferred from the multiple sequence alignment of homologs.  But this 

begs the question, as the purpose of BLAST is to identify these homologs.  One could attempt to 

estimate rate heterogeneity of genes by using homologs detectable by BLAST, but this may 

produce biased estimates.  Furthermore, due to the limited understanding of the evolutionary 

models of individual proteins, investigators tend to assume relatively simple models, which can 

result in biased parameter estimation and unreliable simulations (J Zhang, 1999).  Additionally, 

in the case of true orphan genes, these homologs do not even exist in principle, independent of 

our ability to find them.  More studies are needed to design methods that differentiate true 

biological signals from artifacts in phylostratigraphic analysis. 

 

We must also note that we studied only false negative errors in homolog search.  In real 

phylostratigraphic analysis, the only indicator for gene age classification is how far out a hit is 

found.  This method does not and cannot differentiate between the hit of a true homolog and a 

false one.  In our analysis we were not able to assess the degree of false positive errors.  This is 

because the starting point for our protein evolution included a number of paralogous proteins, for 

which we would expect to find BLAST hits.  We did not bypass this problem by using random 

sequences, because these sequences might not represent real functional constraints and cannot 
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represent convergent sequence evolution that may happen in nature (J Zhang & Kumar, 1997).  

We see this as an open problem in future research. 

 

Our analysis focused on BLAST, because this is the method that has been used in the vast 

majority of phylostratigraphic studies.  Future studies should explore whether other methods 

such as HMMer (Finn et al., 2011) and PSI-BLAST (S F Altschul et al., 1997) perform better 

than BLAST for gene age estimation. 
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A       B 

     
Figure 2- 1 BLAST error rates at different divergence times 

(A) Phylogeny showing the relationship of simulated sequences in this study.  Organism names are for reference only.  

Branch lengths are proportional to divergence times, the sources of which are detailed in Materials and Methods.  

INT1 and INT2 are not true taxa, but are equally spaced between plant and bacterial divergence to allow a smoother 

range of distances.  (B) Fraction of proteins from a taxon that are missed by BLAST increases nonlinearly with the 

time since the divergence between the taxon and the query taxon (fruit fly).  This function is most likely log-linear 

(deltaAIC=-23.87 compared to the linear model).  Shown are the averages from 10 simulations, with the error bars 

depicting the range from the 10 simulations. 
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Figure 2- 2 Gene properties influencing BLAST error 

Gene age inference by BLAST is influenced by (A) protein evolutionary rate, (B) protein length, and (C) the maximum 

length of the block of the most conserved sites in the protein.  Presented are the average results from 10 simulations.  

In (A) and (B), each circle represents one fruit fly protein, whose age equals the average inferred age over 10 

simulations.  In (C), each row and each column represents an equal number of genes.  The number in each bin 

corresponds to the mean number of genes from 10 simulations that fall into the bin.  The color of each bin represents 

the average error rate in that bin, with the color scheme shown on the right of the figure.  Error was considered when 

a gene was inferred to have originated after the separation between bacteria and eukaryotes.  Max length is in the unit 

of amino acid.  As shown in the main text by partial correlations, each of the three factors has a significant contribution 

to BLAST error even when the other two are controlled.   
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Figure 2- 3 BLAST error mimics phylostratigraphic findings in Drosophila 

Shown are results from analysis of simulated data, in which all proteins originated in the common ancestor of 

cellular life.  (A) Phylogeny along which protein evolution is simulated.  Both the tree topology and node ages 

(shown in parentheses) are from Domazet-Loso and Tautz (2007).  (B) The inferred number of new gene 

originations per MY determined by dividing the number of genes inferred to have originated in a tree branch by the 

time represented by the branch, averaged over 10 simulations.  Error bars represent standard deviations.  The null 

hypothesis of equal numbers of gene originations per MY across all strata was examined by a chi-squared test   
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Figure 2- 4 BLAST error mimics phylostratigraphic findings in Human 

BLAST error mimics the finding in human genomic phylostratigraphy that old genes are more likely than young genes 

to be disease genes.  Shown are results from analysis of simulated data, in which all proteins originated in the common 

ancestor of eukaryotes and bacteria.  The time (in MY) since divergence between each taxon and human is from 

TimeTree and is shown in parentheses. 
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Figure 2- 5 Not all phylostratigraphic signals are due to error 

Phylostratigraphy produces signals beyond what BLAST error can account for.  Black bars represent the percentage 

of fruit fly genes inferred to be in each phylostratum based on the real phylostratigraphic analysis of Domazet-Lošo 

and Tautz (2007).  Grey bars represent the percentage of fruit fly genes inferred to be in each phylostratum in our 

simulated phylostratigraphic analysis.  The simulation is the same as in Fig. 3. 
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Table 2- 1 False negative error rates of BLASTP at various E-value Cutoffs 
E-value 

cutoff 

1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 1E-10 

Fly 

homolog 

not found 

in bacteria 

12.78%* 

(0.11%)** 

13.33% 

(0.11%) 

13.85% 

(0.14%) 

14.32% 

(0.18%) 

14.78% 

(0.18%) 

15.22% 

(0.15%) 

15.67% 

(0.17%) 

16.10% 

(0.17%) 

16.53% 

(0.13%) 

16.96% 

(0.10%) 

           

Fly 

homolog 

not found 

in any 

taxon 

2.18% 

(0.09%) 

2.48% 

(0.10%) 

2.77% 

(0.11%) 

3.05% 

(0.14%) 

3.32% 

(0.13%) 

3.58% 

(0.13%) 

3.85% 

(0.10%) 

4.11% 

(0.12%) 

4.34% 

(0.10%) 

4.62% 

(0.11%) 

           

Bacterial 

homolog 

not found 

in any 

taxon 

10.85% 

(0.12%) 

11.47% 

(0.09%) 

12.03% 

(0.12%) 

12.46% 

(0.11%) 

12.88% 

(0.08%) 

13.28% 

(0.09%) 

13.73% 

(0.12%) 

14.12% 

(0.10%) 

14.51% 

(0.11%) 

14.87% 

(0.12%) 

*The top value in each row represents the mean percentage over ten runs. 

**The bottom value in each row represents the standard deviation of the percentage over ten runs. 
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Table 2- 2 BLASTP error rates under covation evolution* 

Rates shuffled per 50 

MY 

All rate categories 

shuffled 

Lowest rate 

category cannot be 

shuffled 

Lowest two rate 

categories cannot be 

shuffled 

0% of sites 14.05% 14.05% 14.05% 

1% of sites 17.81% 14.97% 14.51% 

2% of sites 32.97% 15.24% 15.23% 

5% of sites 67.08% 16.60% 16.52% 
*Presented are the fraction of proteins in which the bacterial homolog of a fly protein is not found. 
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Chapter 3 

Evaluating phylostratigraphic evidence for widespread de novo gene birth in genome 

evolution 

Published as: Moyers, B.A. and Zhang, J. (2016) Evaluating phylostratigraphic evidence for widespread de novo 

gene birth in evolution.  Mol. Biol. Evol. 33:1245-1256. 

Abstract 
 

The source of genetic novelty is an area of wide interest and intense investigation.  Although 

gene duplication is conventionally thought to dominate the production of new genes, this view 

was recently challenged by a proposal of widespread de novo gene origination in eukaryotic 

evolution.  Specifically, distributions of various gene properties such as coding sequence length, 

expression level, codon usage, and probability of being subject to purifying selection among 

groups of genes with different estimated ages were reported to support a model in which new 

protein-coding proto-genes arise from noncoding DNA and gradually integrate into cellular 

networks.  Here we show that the genomic patterns asserted to support widespread de novo gene 

origination are largely attributable to biases in gene age estimation by phylostratigraphy, because 

such patterns are also observed in phylostratigraphic analysis of simulated genes bearing 

identical ages.  Furthermore, there is no evidence of purifying selection on very young de novo 

genes previously claimed to show such signals.  Together, these findings are consistent with the 

prevailing view that de novo gene birth is a relatively minor contributor to new genes in genome 
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evolution.  They also illustrate the danger of using phylostratigraphy in the study of new gene 

origination without considering its inherent bias. 

Introduction 
 

Different species tend to have different numbers of genes.  The human genome, for instance, has 

somewhere between 19,000 and 25,000 protein-coding genes (Ezkurdia et al., 2014; Hattori, 

2005).  By contrast, there are approximately 13,000 protein-coding genes in the genome of the 

fruit fly Drosophila melanogaster (Misra et al., 2002).  There is some amount of overlap 

between these two gene sets, but there are also genes unique to each of the two organisms.  The 

question of how these differences in gene number and content arise has been an area of interest 

and investigation for decades (Kaessmann, Vinckenbosch, & Long, 2009; Long, Betrán, 

Thornton, & Wang, 2003; M Nei, 1969; Ohno, 1970; K. H. Wolfe, 2001; Jianzhi Zhang, 2003, 

2013).  In general, these differences are attributable to differential gene gains and losses in 

different evolutionary lineages.  In terms of gene gains, three distinct mechanisms are known: 

horizontal gene transfer, gene (and genome) duplication, and de novo gene birth.  While the first 

two mechanisms and their contributions to organismal adaptation have been abundantly 

documented (Koonin, Makarova, & Aravind, 2001; Pál et al., 2005; Qian & Zhang, 2014; Jianzhi 

Zhang, 2013) , the arising of genes from non-genic material via de novo gene birth (Tautz & 

Domazet-Lošo, 2011) was thought nigh-impossible for a long time (Jacob, 1977).  Although the 

last decade has seen the discovery of de novo gene birth in several species (Begun, Lindfors, 

Kern, & Jones, 2007; J. Cai, Zhao, Jiang, & Wang, 2008; Heinen, Staubach, Häming, & Tautz, 

2009; Knowles & McLysaght, 2009; Levine, Jones, Kern, Lindfors, & Begun, 2006; C.-Y. Li et 

al., 2010; Wu, Irwin, & Zhang, 2011; Xiao et al., 2009; Yang & Huang, 2011), the number of 

reported cases remains small.  Because horizontal gene transfer merely transfers genes between 
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species, gene duplication is commonly regarded as the dominant source of new genes while de 

novo gene birth is thought to have a minimal contribution.   

 

The above view was recently challenged by Carvunis and colleagues, who claimed that de novo 

gene birth is common in evolution and is a larger source of new genes than gene duplication (A.-

R. Carvunis et al., 2012).  Specifically, they proposed that non-genic sequences are spuriously 

transcribed and translated, and the protein products may by chance possess biological functions, 

which could be selected for, resulting in a gradual enhancement of the protein function in 

evolution.  They named the open reading frames (ORFs) that are transcribed and translated but 

have not fully established their functions as proto-genes.  They asserted that their model predicts 

a number of trends as proto-genes gradually age, including, for example, increases in ORF 

length, expression level, codon usage bias, and probability of being under purifying selection.  

The ideal test of their hypothesis would be to conduct laboratory evolution experiments and 

watch in real time how a non-genic sequence turns into a functional protein-coding gene.  But 

because such evolutionary events are expected to be rare and the evolutionary processes slow, 

the authors took an indirect approach by comparing various properties among different age 

groups of proto-genes and genes from the genome of the budding yeast Saccharomyces 

cerevisiae, where gene ages were estimated using phylostratigraphy (Domazet-Lošo et al., 2007).  

In phylostratigraphy, the age of a gene from a focal species is defined by the time since the 

divergence between the focal species and its most distantly related taxon in which a homolog of 

the gene is found by a commonly used homology detection tool such as BLAST.  Carvunis et al. 

reported that multiple trends predicted by their model were observed.  The same claim was made 

in a similar study of vertebrates (Neme & Tautz, 2013).  Carvunis et al. further noted that 143 
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proto-genes originated in S. cerevisiae since its divergence from its sister species S. paradoxus 

and 19 of them are under purifying selection in S. cerevisiae.  By contrast, they noted that no 

more than five genes were estimated to have been generated by gene duplication in the same 

period of time.  These results led Carvunis et al. to conclude that de novo gene birth is 

widespread and is a bigger source of new genes than is gene duplication.  A subsequent study 

based on a similar analysis of age distributions of gene properties suggested that proto-genes are 

gradually integrated into cellular networks by for instance gradual gains of protein interactions 

and genetic interactions (Abrusán, 2013).   

 

While nothing is wrong with the theoretical model of de novo gene birth, whether the reported 

genomic patterns signify de novo gene birth and subsequent evolution is questionable for two 

reasons.  First, some of the asserted predictions from the de novo gene birth model do not seem 

to be definitive.  For example, it is unclear why the ORF of a gene should continually increase in 

length with time.  Although it is easy to imagine scenarios where length increases are beneficial, 

one can also come up with situations where length reductions are advantageous.  Because of the 

frequency of stop codons in the genome, it is likely that a de novo gene will be short and will 

increase in its early lifespan as a proto-gene.  But it is not clear that this trend would be 

monotonic or prolonged for hundreds of millions of years.  Once a function is established, why 

would increasing rather than decreasing its length tend to enhance or refine its function?  Even if 

increasing the ORF length is beneficial to the functional refinement of a proto-gene, why should 

the length continue to rise even long after the proto-gene has become a well-established gene 

(e.g., when the gene is over 500 million years old), as was observed by Carvunis and colleagues?  

Second, phylostratigraphy tends to underestimate gene age and the probability and amount of 
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underestimation differ among genes (Moyers and Zhang 2015).  For example, the probability of 

age underestimation decreases with the increase of ORF length, which could in principle explain 

Carvunis et al.’s observation of a gradual increase in ORF length with the estimated gene age.  In 

this work, we show that the age distributions of various gene properties supporting widespread 

de novo gene birth are in fact largely attributable to age estimation errors created by 

phylostratigraphy.  As such, there is no valid evidence to date for a larger contribution of de novo 

gene birth than gene duplication to new gene origination. 

 

Methods 
 

Yeast genes 

 

For simulation of sequence evolution, we acquired 5261 orthologous sequence alignments in 

protein format from the sensu stricto group of yeast species from 

http://www.saccharomycessensustricto.org/current//aligns/coding_allfiles.fasta.tgz (Scannell 

et al., 2011).  Except for two alignments, all contain five orthologous sequences from five sensu 

stricto yeast species.  The simulation of the 5259 genes that have alignments of five sequences 

used parameters estimated from the alignments.  The simulation of other genes in S. cerevisiae 

used parameters estimated from a set of sensu stricto restricted genes.  

 

To identify sensu stricto restricted genes, we acquired protein databases of four yeast species 

outside of the sensu stricto group.  These species were S. castellii and S. kluyveri, downloaded 

from the Saccharomyces Genome Database at http://www.yeastgenome.org/download-

data/sequence (Cherry et al., 2012), as well as K. thermotolerens and Z. rouxii, acquired from 

http://www.saccharomycessensustricto.org/current/aligns/coding_allfiles.fasta.tgz
http://www.yeastgenome.org/download-data/sequence
http://www.yeastgenome.org/download-data/sequence
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the Genolevures Consortium (Souciet, Dujon, & Gaillardin, 2009).  Using the alignments 

acquired from Scannell et al. (2011), we created five databases, one for each of the sensu stricto 

species.  We then performed a BLASTP (E-value = 0.01, in following with Carvunis et al.) 

search using each of these individually as a query, and the target being an aggregate of the S. 

castellii, S. kluyveri, K. thermotolerens, and Z. rouxii proteins.  We identified proteins for which 

none of the five sensu stricto yeast homologs found a hit in the target database, amounting to 148 

genes.  These 148 genes exist in all five sensu stricto yeasts but are not found in the four 

outgroup species.  While homology detection error may explain the apparent restriction of these 

genes to the sensu stricto group, this is not a problem for our simulation, because it is exactly our 

goal to identify patterns of genes that appear to be sensu stricto restricted, whether or not they 

are in reality.  

 

Main simulation of evolution 

 

The evolutionary tree including the relative branch lengths used in simulation was from a 

previous study of yeast genes (Wapinski, Pfeffer, Friedman, & Regev, 2007).  For each of the 

5259 proteins with alignments of five sequences, we used TreePuzzle (Schmidt et al., 2002) to 

classify all sites into 16 equal-sized rate bins according to a discrete gamma model of among-site 

rate heterogeneity and estimated the relative rates of the 16 bins.  We also inferred the mean 

evolutionary rate across all sites of the protein between S. cerevisiae and S. bayanus; all branch 

lengths for the protein concerned were then estimated using the relative tree branches 

aforementioned.  Using all of these parameters, we simulated the evolution of these proteins 

using ROSE (Stoye et al., 1998), which allows the evolutionary rate for each site to be specified 

by the user, along the tree in Figure 3-1A.  ROSE evolves sequences through amino acid 
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substitutions and insertions and deletions (indels).  For each branch of the tree, ROSE first 

performs the amino acid substitution function, and then performs the indel function.  If the 

branch is an internal branch in the tree, it then copies the resulting amino acid sequence to the 

base of each of the two branches after the split.   

 

We used the JTT-f model in the ROSE simulation of protein sequence evolution, where “f” 

refers to the amino acid compositions of the protein concerned (Masatoshi Nei & Kumar, 2000).  

Each site along the protein has a particular relative rate.  The relative rate for a site is multiplied 

by the length of the branch to obtain the expected amount of evolution along the branch at the 

site.  ROSE makes substitutions based on this expected amount of evolution and the substitution 

matrix supplied.  This is repeated for all sites along the amino acid sequence.  

 

For indels, there are two parameters that determine indel formation in ROSE, the indel threshold 

and the indel function.  The indel threshold measures how frequently indels occur and was 

determined in the following manner.  Taking the alignments of the yeast sensu stricto orthologs 

acquired from Scannell et al. (2011) and using a custom script, we determined the minimum 

number of indels necessary to produce the observed gapped alignments.  From this information, 

we determined the number of indels per amino acid, averaged over all proteins.  This indel 

threshold was then applied to all proteins in simulation.  The indel function is a vector that sums 

to 1 and gives, at each vector site i, the probability of an indel of size i, given that an indel is 

occurring.  For the indel function, we took the observed frequencies of indel sizes from 1 amino 

acid to 30 amino acids long (accounting for > 99% of all observed indels), and adjusted these 

frequencies to sum to 1.  Sequence simulation was performed once for each protein.   
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Simulation of other proteins  

 

Sequences were acquired as described above, but we could not determine evolutionary rate or 

rate heterogeneity for proteins lacking an alignment or the two proteins from Scannell et al. 

(2011) that do not have alignments of all five orthologous sequences.  We used parameters 

estimated from the group of sensu stricto limited genes to simulate these proteins.  To do this, we 

took each protein in this group and multiplied the relative rates of all sites by the average 

evolutionary rate for the protein.  This gave us an absolute evolutionary rate for each site.  We 

then concatenated these numerical vectors into a single vector from which we could sample rates 

for each protein (Figure A-2).  We specifically sampled the inferred absolute substitution rates of 

a contiguous set of sites.  From there, we performed a simulation of evolution as described 

above.  This simulation likely rendered our estimate of phylostratigraphic error rate conservative, 

because on average sensu stricto limited genes are expected to evolve more slowly than the 619 

genes which do not have homologs in all sensu stricto species, as fast evolution is a reason for an 

apparently young gene age (Moyers and Zhang 2015).  Note that smORF sequences were not 

simulated.  Instead, they were universally assigned to age group 0, as in Carvunis et al. (2012). 

 

Protein phylostratigraphy 

 

To perform protein phylostratigraphy, we used BLASTP with a permissive e-value of 0.01, 

following the methods of Carvunis et al. (2012).  We used the simulated sequences 

corresponding to S. cerevisiae as the query, and each other species as an independent database.  
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We ran BLASTP searches for each simulated species independently rather than as a single 

aggregate database to increase sensitivity of homology detection.   

 

Carvunis et al. conducted BLASTP, TBLASTX, and TBLASTN searches; the latter two searches 

require the use of DNA sequences.  We chose not to simulate the evolution of protein-coding 

DNA sequences because realistic simulation of codon sequence evolution is difficult and because 

protein-based homology searches are generally much more sensitive than DNA-based homology 

searches.  

 

NCBI homology searches 

 

We acquired from Saccharomyces Genome Database (SGD) the DNA and protein sequences of 

Carvunis et al.’s 16 genes of age group 1 that were purported to be under purifying selection.  

We used the NCBI BLAST tool to perform BLASTN, TBLASTN, and TBLASTX searches 

against the full non-redundant database of all species.  We restricted results to a permissive e-

value of 0.01, and only considered hits that had at least 40% query coverage.  

 

Testing purifying selection in 16 young genes 

 

We downloaded the reference sequence for each of the 16 young genes in question from the 

SGD, and noted exactly which nucleotides were not overlapped by another annotated open 

reading frame.  We then acquired single nucleotide polymorphisms (SNPs) for all chromosomes 

in all strains, available at ftp://ftp.sanger.ac.uk/pub/users/dmc/yeast/latest/cere_matches.tgz.  

We extracted the SNPs of 38 strains present in both the SGRP data and the phylogeny in Liti et 

ftp://ftp.sanger.ac.uk/pub/users/dmc/yeast/latest/cere_matches.tgz
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al. (Liti et al., 2009).  We extracted only those SNPs for which quality score was 55 or greater, 

following Carvunis et al. (2012).  We modified the reference sequence for each strain, producing 

FASTA files containing each strain’s sequence.  We removed all sections of the sequence which 

were overlapped with another ORF.  In order to retain full codons, we removed any codon which 

had even partial overlap with another ORF.  We then aligned these sequences using MUSCLE 

(Edgar, 2004).  We performed Fisher’s exact test using the observed numbers of synonymous 

and nonsynonymous SNPs and the potential numbers of synonymous and nonsynonymous sites 

estimated assuming 70% of random mutations are nonsynonymous (Jianzhi Zhang, Kumar, & 

Nei, 1997).  In no case was the result significantly different from the neutral expectation.   

 

The 38 strains used are as follows:  DBVPG6040, NCYC361, S288c, W303, 378604X, YJM789, 

YS2, YS4, YS9, 273614N, YIIc17_E5, RM11_1A, YJM975, YJM978, YJM981, DBVPG1853, 

322134S, BC187, DBVPG6765, DBVPG1788, L-1374, L-1528, DBVPG1106, DBVPG137, 

SK1, DBVPG6044, NCYC110, Y55, UWOPS87_2421, UWOPS83_787_3, UWOPS03_461_4, 

UWOPS05_227_2, UWOPS05_217_3, K11, Y12, Y9, YPS606, and YPS128. 

 

Other datasets 

 

We were provided with various gene properties from Carvunis et al. via email communication.  

We downloaded datasets used by Abrusan (2013) from the supplementary data of that paper.  

The definitions and measurements of all of these properties were detailed in the respective 

publications (Carvunis et al. 2012; Abrusan 2013).  
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Results 
 

Phylostratigraphy of simulated genes 

 

To examine whether gene age estimation error caused by phylostratigraphy could create spurious 

age distributions of gene properties resembling Carvunis et al.’s observations, we conducted a 

computer simulation of the evolution of all S. cerevisiae protein sequences along the tree shown 

in Figure 3-1A using protein-specific parameters for site-specific rates and overall evolutionary 

rate.  All S. cerevisiae protein sequences were simulated to have orthologs in all of the species 

shown in the tree (Figure 3-1A).  That is, they all have the same age of 10, and there is no de 

novo gene origination in our simulation.  We then applied phylostratigraphy to estimate the ages 

of the S. cerevisiae proteins by BLASTing them against the simulated sequences in all other 

species.  These ages are referred to as estimated ages of simulated proteins (Figure 3-1B).  We 

subsequently computed age distributions of various properties of S. cerevisiae proteins using the 

above estimated ages (Figure 3-2 and 3-3).  Note that we used the properties provided by 

Carvunis et al. for each S. cerevisiae protein in these distributions; the only difference is the 

estimated gene age.  In other words, we ask what would be the observed age distributions of 

gene properties if all S. cerevisiae genes have the same true age with no de novo gene birth.  If 

the age distributions we observed resemble what Carvunis et al. observed, their observations 

cannot be used to support the de novo gene birth hypothesis because these observations are 

expected even in the absence of de novo gene birth.   

 

To derive protein-specific parameters for simulation, we acquired 5261 published orthologous 

protein sequence alignments from five sensu stricto yeast species (S. cerevisiae, S. paradox, S. 
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mikatae, S. kudriavzevii, and S. bayanus) (Scannell et al., 2011).  For each of these proteins, we 

estimated the mean substitution rate per amino acid site and the substitution rate at each site 

relative to the mean rate of the protein (see Materials and Methods).  These parameters were 

used in the simulation of the evolution of the protein (see Materials and Methods).  For 619 S. 

cerevisiae proteins that do not have homologs in all five sensu stricto yeast species, we simulated 

their evolution in a conservative manner by sampling rate heterogeneity patterns and mean 

evolutionary rates from sensu stricto restricted proteins (see Materials and Methods).  In all, we 

simulated the evolution of all 5878 proteins present in the Carvunis et al. dataset.  The genetic 

distance of simulated orthologous proteins matches well that of real proteins (Figure A-1).  

 

Because the true ages are 10 for all genes in the simulation (Figure 3-1A), any observed age 

distribution in which not all genes are in age group 10 is spurious.  We found that, for 11.4% of 

simulated proteins, a homolog could not be found in the most distant species considered 

(Schizosaccharomyces pombe) (Figure 3-1B), which was estimated to diverge from S. cerevisiae 

approximately 788 million years (MY) ago (Heckman et al., 2001; Hedges et al., 2006).  The 

error rate of 11.4% is likely an underestimate, because a portion of our genes were evolved in a 

conservative manner (see Materials and Methods) and because we assumed that each site has a 

fixed substitution rate throughout its evolution, which is known to result in an underestimation of 

the error rate (Moyers and Zhang 2015).  Of the 669 simulated proteins whose ages were 

underestimated by phylostratigraphy, 185 had estimated ages of 1-4 (Figure 3-1B).  These genes 

would therefore be considered “candidate proto-genes” under Carvunis et al.’s definition, 

although they originated hundreds of millions of years ago in our simulation.  Most strikingly, 

phylostratigraphy determined that two of these genes are S. cerevisiae-specific, despite that they 
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originated in the common ancestor of S. cerevisiae and S. pombe.  Nevertheless, the number of 

genes with estimated age 1-9 is greater in the actual data than in the simulated data (Figure 3-

1B).  While this disparity may indicate the presence of some de novo genes, it may also be due to 

the fact that our simulation is conservative.  That is, evolutionary processes that are not 

simulated here, such as gene duplication followed by rapid divergence and changes in the 

evolutionary rate of a site during evolution, could be responsible for this disparity.  

 

Age distribution of six gene properties with statistical support 

 

We next compared the age distributions between the real genes and simulated genes for each 

gene property used by Carvunis et al. as evidence for their model of widespread de novo gene 

birth.  If the age distributions for a gene property are similar between the real genes and 

simulated genes, the age distribution observed by Carvunis et al. for the real genes can be 

explained by phylostratigraphy errors and hence cannot be used to support their model. 

 

We first examined the six trends for which statistical support was previously provided (A.-R. 

Carvunis et al., 2012).  These trends are significant increases in ORF length (Figure 3-2A), 

mRNA abundance (Figure 3-2B), proportion of genes in proximity of transcription factor 

binding sites (Figure 3-2C), proportion of genes under significant purifying selection (Figure 3-

2D), proportion of genes with optimal AUG context (Figure 3-2E), and codon adaptation index 

(Figure 3-2F) with gene age estimated through phylostratigraphy.  Here, proportion of genes 

under significant purifying selection was determined by testing the action of purifying selection 

on each gene based on sequence polymorphisms among eight S. cerevisiae strains.  All gene 

properties are defined as in Carvunis et al. (2012) and the property data were acquired from the 
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authors.  We found that, while qualitative appearances differed between the real and simulated 

data in these age distributions (Figure 3-2), statistical trends, quantified by Kendall’s  as in 

Carvunis et al. (2012), were almost identical between the two (Table 3-1).  Kendall’s  was used 

following Carvunis et al.  Using Spearman’s ρ did not alter our results.  Both effect size (i.e., 

correlation coefficient) and significance level were reasonably well matched.  This implies that 

the observed statistical trends of various gene properties with regard to gene age can be largely 

explained by gene age estimation errors.  

 

Carvunis et al. included in their analysis ~108,000 so-called small ORFs (smORFs) that were 

arbitrarily assigned the age of 0.  These S. cerevisiae smORFs are not annotated genes, are at 

least 30-nucleotide long, and are free from overlap with annotated features on the same strand.  

The similarity in the above six trends between real and simulated data holds whether or not these 

smORFs were included in our analysis (Table 3-1).  

 

Some of the S. cerevisiae genes analyzed are paralogous to one another, but our simulation and 

subsequent phylostratigraphy treated them as unrelated genes, rendering our result from the 

simulated data not directly comparable with that from the real data.  To solve this problem, we 

performed an all-against-all BLASTP search of the original S. cerevisiae proteins and recorded 

paralogous relationships.  From this information, we used the oldest age among each gene family 

as the age of all genes in that family.  This modification of phylostratigraphically estimated gene 

age on our simulated data did not change our results on the genomic trends studied above (Table 

3-1).   

 



 80 

Age distributions of four gene properties without statistical support 

 

Carvunis et al. (2012) also reported four additional trends without providing statistical support, 

including changes in amino acid usage, hydropathicity, proportion of transmembrane regions, 

and proportion of disordered regions with estimated gene age.  For the majority of these, the 

simulated data do not qualitatively match the real data (Figure 3-3A, B, and C).  A notable 

exception is the patterns found in amino acid usage, where simulated data matches real data quite 

closely (Figure 3-3D).  Note, however, no explicit explanation was provided by Carvunis et al. 

why these observed trends are expected from the de novo gene birth model (see Discussion).  As 

such, we do not see these trends as evidence for or against the de novo gene birth model. 

 

Age distributions of gene properties reflecting genetic integrations 

 

Subsequent to Carvunis et al.’s study, Abrusán used Carvunis et al.’s data in conjunction with the 

data in Wapinski (2007) to examine the phylostratigraphically-based age distributions of a 

number of additional gene properties that he proposed to reflect gradual genetic integrations of 

de novo genes into cellular networks or maturation of protein structures (Abrusán, 2013).  These 

included many factors that seemed to be reasonable proxies for the integration of a gene into the 

gene network, such as genetic coregulation, number of protein-protein interactions, number of 

genetic interactions, number of feed-forward loops regulating a gene, number of transcription 

factors regulating a gene, and epistatic effects   However, there were also a number of factors 

with questionable relationships to a gene’s integration, such as percent of a gene which was 

made up of alpha-helices or beta-sheets and the propensity of a protein to aggregate.  

Interestingly, all significant trends he found in real genes are also significant in simulated genes, 
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except for the case of alpha helices (Table 3-2).  We note that, in several but not all cases, effect 

sizes are comparable as well (Table 3-2).  Even in those cases where the effect size appears quite 

different between real data and simulated data, the differences do not necessarily support the de 

novo gene birth model, because the differences may be attributable to new genes created via gene 

duplication in the real data (He & Zhang, 2005).  Furthermore, it is unclear whether several of 

the trends observed (e.g., decrease in percent in beta sheets) indicate structure maturation of de 

novo genes.  These appear to be post hoc explanations rather than a priori predictions of the de 

novo gene birth model (see Discussion).  

 

Number of young genes under purifying selection 

 

Carvunis et al. (2012) noted that they observed 19 genes that are both S. cerevisiae-specific and 

under within-species purifying selection.  Based on their new analyses (Carvunis, personal 

communication), this number now drops to 16.  The abundance of these genes was suggested by 

Carvunis et al. to be evidence of high rates of de novo (functional) gene birth in comparison to 

gene duplication (A.-R. Carvunis et al., 2012; Gao & Innan, 2004).   

 

However, we noticed that 15 of the 16 genes are each overlapped with another gene on the 

opposite strand and the overlapping regions constitute between 73% and 93% of each of these 15 

genes (Table 3-3).  The remaining gene, YOL166C, has no overlap with any annotated gene in S. 

cerevisiae.  When searching for homologs in other fungal species, Carvunis et al. removed 

sections of query genes which overlapped.  We searched for homologs using the full sequences 

of these query genes and discovered that many of them are present in other species (Table 3-3).  

All hits occurred in true ORFs in the target sequence, which were at least 80 amino acids long 
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and were frequently annotated and known to be transcribed.  If these 15 genes are S. cerevisiae-

specific, they are not expected to have long ORFs (≥ 80 codons) in other species even when the 

opposite strand has an overlapping gene.  Thus, we conclude that these 15 genes are not S. 

cerevisae-specific and that Carvunis et al.’s results were erroneous because of their use of short 

query sequences that rendered BLAST powerless.   The gene of most interest is YOL166C, 

because it is not overlapped by any other gene and has no hit in any other sequenced species.  

There are two major questions to be addressed about this gene.  First, is there a homologous 

sequence in S. paradoxus, the species known to be the closest to S. cerevisiae, such that one can 

identify the source of YOL166C?  Second, is there direct evidence for translation of this gene?  

To approach the first question, we looked for the S. paradoxus genomic region aligned to S. 

cerevisiae chromosome 15, base pairs 1 to 2078, a region encompassing YOL166C.  No such 

alignment exists in this region, according to the Saccharomyces Genome Resequencing Project 

(SGRP) Genome Browser.  We further checked for the homologs of YOL166C’s neighboring 

genes TEL15L and YOL165C.  TEL15L found a significant hit in the S. paradoxus 

retrotransposons Ty5-10p and Ty5-5p, but YOL165C had no hit in S. paradoxus.  YOL165C and 

YOL166C are in the subtelomeric region of chromosome 15 in S. cerevisiae.  These regions are 

generally quite unstable (Brown, Murray, & Verstrepen, 2010), so it is not surprising that an 

orthologous region could not be found.  Additionally, when BLASTed against the S. cerevisiae 

genome, YOL166C only finds itself as a hit.    

 

To approach the second question, we searched for direct evidence of translation of YOL166C.  

Carvunis et al. did not find evidence of the translation of this gene under either rich or starved 

conditions based on yeast ribosome profiling data (Ingolia, Ghaemmaghami, Newman, & 
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Weissman, 2009).  Several papers report changes in the transcript concentration of YOL166C 

under different conditions (Fisk et al., 2006), but there is no evidence that YOL166C is expressed 

at the protein level.  Based on these analyses, YOL166C does not meet the strict definition of a de 

novo gene (see Discussion).  However, it also does not appear to be an instance of gene 

duplication.  This leaves open the possibility that this is an example of a de novo gene birth. 

 

A major question remains about whether or not these 16 genes are under selective constraint.  

Carvunis et al. estimated the nonsynonymous to synonymous substitution rate ratio on a 

phylogeny of eight S. cerevisiae strains and found this ratio to be significantly lower than 1, an 

indication of the action of purifying selection.  However, their method is commonly used for 

testing selection in gene sequences collected from different species and is inappropriate for 

testing selection in sequences from the same species, because, for intra-specific data, different 

regions of the genome can have different phylogenies due to recombination.  Additionally, 

because the majority of the sequence was overlapped by another gene, inferring selective 

constraint can be confounded (Wei & Zhang, 2015).  So, in the cases of these genes, only their 

non-overlapped portions should be used to infer selection.  To increase the accuracy and power 

of selection detection, we used 38 S. cerevisiae strains in the Saccharomyces Genome 

Resequencing Project (Cherry et al., 2012) and counted the number of synonymous and 

nonsynonymous polymorphisms in the region of a gene that is non-overlapping with other genes 

(Table 3-3).  Using Fisher’s exact test, we then examined whether the ratio between the observed 

number of nonsynonymous polymorphisms to that of synonymous polymorphisms is 

significantly different from the corresponding ratio under neutrality, which was calculated from 

the potential numbers of nonsynonymous and synonymous sites in the same region (Zhang et al. 
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1998).  In none of the 16 genes could the null hypothesis of neutrality be rejected in favor of the 

action of purifying selection or positive selection.  This is probably unsurprising, because no 

evidence was found for their translation by Carvunis et al. and these genes probably bear no 

protein function.  As a comparison, the same selection test was conducted for 100 randomly 

picked genes classified to age group 10 by Carvunis et al., and 86 of them were found to be 

under significant purifying selection.  However, these genes are among the longest and most 

conserved genes in the set, and it can be assumed that power for extremely short genes or gene 

fragments would be very low.  

 

Discussion 
 

The origin of new protein-coding genes from non-coding sequences is a fascinating hypothesis 

that has been supported by the discoveries of dozens of cases of de novo gene birth in human, 

Drosophila, yeast, and other species (J. Cai et al., 2008; Clark et al., 2007; Heinen et al., 2009; 

Knowles & McLysaght, 2009; Levine et al., 2006; C.-Y. Li et al., 2010; Wu et al., 2011; Xiao et 

al., 2009; Yang & Huang, 2011).  Previous studies established a set of criteria for identifying de 

novo gene birth: (1) the candidate de novo protein-coding gene is transcribed and translated, (2) 

its homologous sequence can be found in the syntenic region in related species but the sequence 

has no protein-coding capacity, and (3) the sequence is ancestrally non-coding (Knowles & 

McLysaght, 2009).  One should add the fourth criterion of action of natural selection for a de 

novo gene to be considered functional.  Satisfying all these criteria would prove de novo gene 

birth beyond reasonable doubt.  
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However, not all of the above criteria were used and satisfied in Carvunis et al.’s study.  Instead, 

Carvunis et al. relied on estimating gene age by phylostratigraphy and using age distributions of 

various gene properties to test widespread de novo gene birth.  For their approach to work, gene 

age estimation must be reliable and de novo gene birth must be widespread.  Unfortunately, 

phylostratigraphy is known to be biased (Elhaik et al. 2006; Moyers and Zhang 2015).  Thus, 

only those trends that are predicted by the de novo gene birth model but cannot be produced by 

phylostratigraphic bias may be used to support the model.  But, we found that essentially every 

trend reported by Carvunis et al. (2012) and Abrusán (2013) are explainable at least to some 

extent by phylostratigraphic bias.  One might argue that the age distributions observed from the 

actual data are not exactly the same as those observed from the simulated data, providing 

evidence for the de novo gene birth hypothesis.  This argument is flawed for two reasons.  First, 

a realistic simulation requires many parameters.  Because not all parameters are known, we 

conducted conservative simulations.  For example, the substitution rate of a site is unlikely to be 

constant in evolution (Fitch, 1971; Penny et al., 2001; Zou & Zhang, 2015) and this inconstancy 

increases phylostratigraphic error (Moyers and Zhang 2015).  But because of the lack of 

information on the extent of this rate variation over time, we assumed no such variation in our 

simulation, rendering the phylostratigraphic error underestimated and our results conservative.  

Furthermore, the parameters chosen in simulating genes that are not found in all five sensu 

stricto yeast species also made the results conservative.  Thus, the fact that the observed trends in 

real data are not exactly the same as in the simulated data does not necessarily indicate the 

existence of biological signals.  Second, even if a biological signal truly exists, it does not 

necessarily support the de novo gene birth hypothesis.  For instance, in Figure 3-2B, one can see 

a grey peak at age 7, indicating that genes of age 7 have unusually high expressions.  This feature 
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in the real data is not present in the simulated data, so might mean a true biological signal.  

Nevertheless, this signal is not predicted by the de novo gene birth model and thus cannot be 

used to support the model. 

 

A common pitfall of phylostratigraphy-based studies is to report whatever nonrandom trends 

observed and then provide post hoc explanations, as if all nonrandom trends have biological 

meanings.  The problem of these kinds of explanations has been pointed out in other contexts 

(Pavlidis et al., 2012).  Carvunis et al.’s and Abrusán’s studies also fall into this trap.  Many of 

the trends they reported are not predicted a priori from the de novo gene birth model.  These 

trends include ORF length in Figure 3-2, all four properties in Figure 3-3, genetic co-regulation, 

% alpha helices, and % beta sheets in Table 3-2.  As mentioned, there is no particular reason why 

the refinement of the biological function of an ORF has to occur by increasing the ORF length 

rather than decreasing the length.  Similarly, there is no prediction that as proto-genes age and 

mature, the mean hydropathicity should decrease, trans-membrane fraction of the protein should 

decrease, disordered fraction should increase, and certain amino acid frequencies should increase 

or decrease.  In fact, the authors offer no explanation of why these trends are expected under the 

de novo gene birth model.  Even for the trends that may be predicted by the de novo gene birth 

model, one cannot explain why some of them continue even for genes with age 10 (e.g., 

expression level and codon adaptation index), as if the maturation of de novo genes takes more 

than 500 MY.  Phylostratigraphic error remains the simplest and best explanation of the observed 

trends, whether or not they are predicted from the de novo gene birth model. 
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One might ask why phylostratigraphic error could result in seemingly nonrandom age 

distributions of so many gene properties.  Based on the property of BLAST search, we 

previously predicted and demonstrated that gene age underestimation in phylostratigraphy is 

more severe when the protein under investigation is shorter or evolves faster (Moyers and Zhang 

2015).  Thus, the increase in ORF length with age observed in the simulated data (Figure 3-2A) 

is a known bias of phylostratigraphy.  Lower protein evolutionary rates are caused by stronger 

purifying selection, so it is unsurprising that phylostratigraphic error causes a positive correlation 

between gene age and proportion of genes under purifying selection (Figure 3-2D).  Because 

protein evolutionary rate is strongly negatively correlated with its mRNA expression level 

(Jianzhi Zhang & Yang, 2015), mRNA expression level must also impact phylostratigraphic 

error, as seen in our simulated data (Table 3-1).  Hence, a positive correlation between gene age 

and expression level (Figure 3-2B) reflects an expected bias of phylostratigraphy.  

Phylostratigraphic error is also expected to create a positive correlation between gene age and 

codon adaptation index (CAI) (Figure 3-2F), because CAI is positively correlated with gene 

expression level (Sharp & Li, 1987).  Because the expression level of a gene is positively 

correlated with the probability that the gene is in proximity of TF binding sites (Wong et al., 

2015) ( = 0.094 in our data, p < 1E-300), phylostratigraphic error also causes a positive 

correlation between gene age and proportion in proximity of TF binding sites (Figure 3-2C).  It 

was reported (Miyasaka, Kanai, Tanaka, Akiyama, & Hirano, 2002) and confirmed here that the 

expression level of a gene is positively correlated with the probability that the gene has an 

optimal AUG context ( = 0.057, p < 1E-300), potentially explaining why a positive correlation 

between gene age and proportion in optimal AUG context is created by phylostratigraphic error 

(Figure 3-2E).  Amino acid usage is known to be correlated with gene expression level (Akashi 
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& Gojobori, 2002), potentially explaining the observed trends in Figure 3-3D.  In fact, we found 

that all gene properties examined by Carvunis et al. are significantly correlated with one or more 

of the three factors that impact phylostratigraphic bias: ORF length, evolutionary rate, and 

expression level (Table 3-4; Table A-1).  

 

The contribution of de novo gene birth compared with gene duplication to the origin of new 

(functional) genes is an important subject of evolutionary genomics.  Carvunis et al. suggested 

that there have been 16 de novo births of functional genes in S. cerevisiae since its split from S. 

paradoxus.  They compared this to a suggested five genes formed by duplication in the same 

time period (Gao & Innan, 2004), though this duplicate gene number has since been challenged 

(Casola, Conant, & Hahn, 2012).  If correct, Carvunis et al.’s comparison would contradict the 

paradigm that duplication is the primary source of new genes.  We found that 15 of the 16 genes 

claimed by Carvunis et al. to be S. cerevisiae-specific and under selection have homologous 

ORFs in at least one other species and that none of the 16 bear significant signals of natural 

selection or have evidence for translation.  To our knowledge, there are only two verified 

instances of functional de novo gene births in S. cerevisiae (J. Cai et al., 2008; D. Li et al., 2010), 

whereas approximately 144 functional duplications occurred in that time based on the inference 

from gene family expansions since the common ancestor of sensu stricto yeasts (Hahn, Bie, 

Stajich, Nguyen, & Cristianini, 2005).  While these estimates may not be precise, gene 

duplication appears to surpass de novo gene birth by two orders of magnitude in terms of 

contribution to the number of new functional genes.  Of course, apart from this rate difference, 

the two mechanisms of new gene origination may supply different kinds of genetic materials.  

Gene duplication confers a functional gene structure to the daughter gene, whereas de novo gene 
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birth provides something closer to a blank slate, a near-random form and function that may or 

may not be useful.  It is possible that de novo gene births offer a greater degree of novelty, even 

if they contribute less frequently to the genome. 

 

The investigation of de novo gene birth mechanisms brings up the question of what is meant by a 

(functional) gene.  There is no shortage of answers to this question (Demerec, 1933; Gerstein et 

al., 2007).  Clearly, in the de novo gene birth model discussed here, what is meant is a functional, 

protein-coding gene.  It is thus important to prove the functionality of a gene by demonstrating 

that it is under purifying or positive selection.  Given the widespread trancription of intergenic 

sequences in eukaryotes (Johnson, Edwards, Shoemaker, & Schadt, 2005) and widespread 

translation of non-coding RNAs (at least based on ribosome profiling data) (Ingolia et al., 2014), 

it is probably not rare for a random non-coding sequence to be spuriously transcribed and 

translated.  For example, over 100 human pseudogenes were reported to be translated, but the 

vast majority of them are not under purifying selection at the protein level (Xu and Zhang 2015).  

If one starts to call all such sequences as de novo genes, de novo gene birth rate is expected to be 

high, even if only a tiny fraction of them are functional.  The real question is the birth rate of de 

novo genes that have selected functions.  It is thus imperative to require the fourth criterion 

(natural selection) in identifying de novo genes.  Nonetheless, we recognize that statistical tests 

of natural selection may be powerless for species-specific genes because only intraspecific 

polymorphism data may be used and because newly created de novo genes may be short.  Thus, 

it appears that a more productive approach to estimating the rate of de novo gene birth is to 

identify de novo genes that arose in the common ansctor of a few closely related species such as 

that of S. cerevisiae and S. paradoxus rather than in S. cerevisiae.  While Carvunis et al. and this 



 90 

study focused on protein-coding genes, non-coding RNAs may also play important biological 

functions.  It is possible that the larger part of genetic novelty in evolution is in the aspect of non-

coding RNA genes.  When searching for de novo genes in the future, it may be beneficial to 

expand the scope of “gene” to include this group.   

 

In conclusion, it is clear that de novo gene birth plays some role in the formation of new genes in 

yeast, given previously identified cases.  However, compared with gene duplication, the relative 

contribution of de novo gene birth to new genes is minor.  Moving forward, evidence for de novo 

gene birth will need to be evaluated gene by gene based on the criteria mentioned rather than in 

aggregate, because current genomic studies for these trends are insufficient and confounded by 

phylostratigraphic error. 
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Figure 3- 1 Computer simulation for examining phylostratigraphic errors 

(A) Tree used in the simulation of protein sequence evolution.  The tree, including relative branch lengths, follows 

Wapinski et al. (2007).  Node label refers to the age group corresponding to that node.  (B) Numbers of genes 

estimated to belong to each age bin for real and simulated protein data.  Numbers of genes in bins 1-10 for simulated 

protein data are 2, 6, 6, 171, 33, 222, 119, 36, 74, and 5209, respectively.  Numbers of genes in bins 1-10 for real 

data, as provided by Carvunis et al., are 143, 169, 133, 314, 90, 476, 381, 78, 469, and 3625, respectively.  Carvunis 

et al. arbitrarily assigned 107,425 smORFs to bin 0, which is not shown here. 
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A    B    C 

       
D    E    F 

        
Figure 3- 2 Age distributions of six gene properties 

(A) Average coding sequence length of genes in each age bin.  Interestingly, although the same lengths are used for 

the real and simulated proteins, mean length is lower for simulated than real proteins in each bin.  This is an example 

of Simpson’s paradox in statistics and is not due to mistakes in our analysis.  (B) Mean expression level of genes in 

each age bin.  (C) Proportion of genes having a transcription factor (TF) binding site within 200 bp of the translation 

start site for each age bin.  (D) Proportion of genes under purifying selection for each age bin.  (E) Proportion of genes 

with optimal AUG context for each age bin.  (F) Median codon adaptation index (CAI) for each age bin. 
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A             B 

   
C       D 

   
Figure 3- 3 Age distributions of four additional gene properties 

(A) Mean hydropathicity value for each age bin.  (B) Mean proportion of transmembrane regions 

for each age bin.  (C)  Mean proportion of disordered regions for each age bin.  (D) Amino acid 

frequency ratios between age groups.  
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Comparison ORF 

length 

RNA 

abundance 

Proximity 

of TF 

binding 

sites or 

not 

Codon 

adaptation 

index 

Purifying 

selection 

or not 

Optimal 

AUG 

Context 

Age groups 0-10       

     Real proteins 0.31** 0.27** 0.11** 0.12** 0.45** 0.14** 

     Simulated proteins 0.31** 0.27** 0.11** 0.12** 0.45** 0.14** 

     Simulated proteins (assuming oldest 

paralog ages) 

0.31** 0.27** 0.11** 0.12** 0.45** 0.14** 

 

Age groups 1-10 

      

     Real proteins 0.39** 0.26** 0.08* 0.31** 0.32** 0.13** 

     Simulated proteins 0.33** 0.26** 0.06* 0.21** 0.27** 0.12** 

     Simulated proteins 

(assuming oldest paralog ages)  

0.31** 0.21** 0.04* 0.22** 0.26** 0.13** 

Table 3- 1 Correlations (Kendall's tau) between estimated gene age and various gene properties 

for real and simulated proteins 

*, P < 0.05; **, P < 1E-16; Note that two analyses ensure that these trends are not due to the dubious age group 0, 

i.e. smORFs.  See main text for further explanation. 
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Table 3- 2 Correlations (Kendall's tau) between estimated gene age and gene properties 

purported to reflect genetic integration or protein structural maturation 

 Real 

Proteins 

Simulated 

Proteins 

Genetic coregulation 0.05* 0.06* 

% in alpha helices 0.04* -0.01 

% in beta sheets -0.08* -0.11** 

Aggregation propensity -0.14** -0.15** 

Protein-protein interactions 0.22** 0.11** 

Genetic interactions 0.14** 0.08* 

Magnitude of epistasis 0.13** 0.08* 

Feed-forward loops 0.02 0.03* 

Number of transcription 

factors 

0.02* 0.03* 

*, P < 0.05; **, P < 1E-16. 
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Table 3- 3 Reexamining purported S. cerevisiae-specific selected genes 

Gene Age based on 

full sequence 

Non-overlapped length in 

nucleotides (full length) 

No. of synonymous 

polymorphisms in 

non-overlapped 

region 

No. of non-

synonymous 

polymorphisms in 

non-overlapped 

region 

P-value* 

YBR232C 6 55 (360) 1 0 0.29 

YCL046W 2 58 (324) 0 0 1.00 

YDR537C 7 47 (606) 0 2 0.57 

YER087C-A 7 62 (552) 0 0 1.00 

YFL013W-A 5 53 (804) 1 1 1.00 

YGL152C 6 71 (678) 2 2 0.58 

YHL030W-A 9 49 (462) 0 2 0.57 

YIL071W-A 6 111 (477) 0 0 1.00 

YLR232W 9 58 (348) 1 2 1.00 

YLR358C 6 50 (564) 0 1 1.00 

YNL105W 10 88 (429) 0 0 1.00 

YNL109W 8 50 (546) 0 0 1.00 

YOL150C 8  62 (312) 0 0 1.00 

YOL166C 1 339 (339) 3 3 0.37 

YOR055W 6  55 (435) 0 0 1.00 

YOR135C 10 91 (342) 1 0 0.30 

*Based on two-tailed Fisher’s exact test of the neutral hypothesis. 
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Table 3- 4 Correlations (Kendall's tau) between various gene properties and three properties 

known to bias phylostratigraphy 

 Evolutionary 

rate 

ORF 

length 

Expression 

level 

Transcription factor binding sites -0.09* 0.02* 0.08* 

Codon adaptation index -0.33** 0.15** 0.26** 

Optimal AUG context -0.14** 0.05* 0.14** 

Purifying selection -0.22** 0.37** 0.09** 

Mean hydropathicity 0.03* -0.14** -0.10** 

Percent in disordered regions 0.05* 0.13** 0.01 

Percent in transmembrane regions 0.07* -0.07* -0.07* 

Genetic coregulation -0.10** 0.03* 0.07* 

Number of transcription factors -0.07* 0.02* 0.02* 

Feed-forward loops -0.07* 0.02 0.03* 

Percent alpha helices -0.05* -0.07* 0.09** 

Percent beta sheets -0.01 -0.22** 0.03* 

Aggregation propensity 0.05* -0.06* -0.11** 

Protein-protein interactions -0.23** 0.11** 0.15** 

Genetic interactions -0.11** 0.11** 0.04* 

Average magnitude of epistasis -0.12** 0.05* 0.10** 
*, P < 0.05; **, P < 1E-16. 
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Chapter 4 

Defense of the Role of Error in Phylostratigraphic Trends 

Abstract 
 

We have previously demonstrated that some phylostratigraphic trends can be attributable, at least 

partially, to homology detection error.  Recently, these findings have been questioned, 

weaknesses have been suggested, and it has been argued that error plays virtually no role in 

creating spurious trends in phylostratigraphy.  Here, we present results which contradict this 

argument.  We also discuss problems with the theory of novel sequences and the future of 

phylostratigraphic analysis. 

 

 

Introduction 
 

Phylostratigraphy is a method for dating the origin of extant sequences, whether they have been 

generated through de novo gene birth or through some form of sequence divergence between two 

homologs.  The method uses homology detection programs, typically the BLAST suite of 

algorithms, to identify homologs between query sequences and a target database, most often 

some subset of the NCBI non-redundant database which is sometimes combined with additional 

sequence data (Domazet-Lošo et al., 2016; Domazet-Lošo, Brajkovic, & Tautz, 2007; Domazet-

Lošo & Tautz, 2003; Neme & Tautz, 2013).  After identifying the most distant homolog as 

measured by divergence time, the date of a novel sequence’s emergence is taken to be 
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approximately the time of the most recent common ancestor between the query species and target 

species of the hit. 

 

It is clear that such a method, being based on sequence similarity, can create the appearance of a 

novel sequence even under a model of general divergence.  It has been argued (Domazet-Lošo et 

al., 2016, 2007; Domazet-Lošo & Tautz, 2003) that this method detects novel sequences which 

arise through a rapid shift in sequence space, presumably due to some novel functional 

requirement.  This can most easily be understood in the example of a duplication-divergence 

model, in which a given gene is duplicated and undergoes a short period of rapid evolution 

followed by a subsequent slowing of the evolutionary rate (Pegueroles, Laurie, & Alba, 2013), 

though this is not the only example when such a burst of evolution might occur.  However, the 

method of phylostratigraphy itself cannot say anything about the existence of such bursts, only 

the sequence similarity of different genes.  It has previously been demonstrated that no such 

burst of evolution is necessary for a sequence to appear to be novel in a recent node, despite 

being much older than that node (Albà & Castresana, 2007; Elhaik, Sabath, & Graur, 2006; 

Moyers & Zhang, 2015, 2016).  Studies suggest that this mechanism for apparent novel sequence 

emergence, which we refer to as homology detection error, occurs in 5% to 14% of genes.  

However, because these methods have required the existence of some conservation, this is likely 

an underestimate of the rate.   

 

Two of these studies suggested that because homology detection error is biased it can reproduce 

phylostratigraphic trends (Moyers & Zhang, 2015, 2016).  If this is true, then the relative 

contribution of homology detection error and real biological signal to any phylostratigraphic 



 108 

trend must be determined.  These assertions have received several criticisms from well-

established phylostratigraphic researchers (Domazet-Lošo et al., 2016).  Several particular claims 

were leveled at the previous work of Moyers and Zhang, including: (1) using real sequences, real 

rates, and real heterogeneity patterns as starting sequences for the simulations is circular, and 

will by necessity recreate phylostratigraphic trends, (2) Associating gene features which are not 

simulated is inappropriate and circular, and cannot but reproduce known phylostratigraphic 

trends, (3) Homology detection error is virtually non-existent in some contexts, and if trends are 

robust in these contexts it promotes the efficacy of phylostratigraphic findings, (4) some 

parameters used in prior simulations, particularly those of covariation, are unrealistic, and (5) 

even in spite of all of these objections, when error-prone genes are removed from 

phylostratigraphic studies, the results remain unchanged.   

 

Here, we respond to these criticisms.  We first investigate homology detection error under 

randomization of various properties.  We further reanalyze the data of Domazet-Loso et al. under 

more appropriate constraints.  We demonstrate that error-prone genes do contribute significantly 

to homology detection error.  Finally, we offer several important questions and concerns for the 

current framing of “novel sequences” and their biological meaning.  We hope that this dialogue 

can continue, and phylostratigraphic theory and analysis can be further refined and improved. 

 

Methods 

 

Randomization of evolutionary properties 

 

We used the ROSE files for the 5217 human proteins described in Moyers and Zhang (2015).  

For each of sequence content, evolutionary rate, and rate heterogeneity patterns, we randomized 
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the properties either individually or combined.  To randomize sequence content, we shuffled the 

order of amino acids in each gene.  To randomize average evolutionary rate, we shuffled the 

guide trees among genes.  These guide trees provide the branch lengths that ROSE uses to 

determine how many substitutions and indels occur throughout evolution.  To randomize rate 

heterogeneity patterns, we concatenated the relative rates of all proteins, and then sampled 

contiguous strings of this vector of appropriate size to assign to each protein. 

 

Simulation of Evolution 

 

We simulated sequence evolution using ROSE (Stoye, Evers, & Meyer, 1998), which allows the 

evolutionary rate for each site to be set by the user.  We determined insertion and deletion 

thresholds based upon observed indel counts in our initial alignments of 4942 human sequences, 

similar to the methodology described in Moyers and Zhang 2016.  For each protein in all 

simulations, we simulated evolution using a JTT-f matrix with observed amino acid frequencies 

from the alignment.   

 

Phylostratigraphy of simulated sequences 

 

Phylostratigraphy was performed using default BLASTP parameters with an e-value of 0.001.  

The collection of simulated human sequences as the query and the sequences of all other 

simulated species as the target.   

 

Human disease data 
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For data on human disease, we used the list of disease genes described in Moyers and Zhang 

2015.  We acquired phylostratigraphic ages for human genes from Domazet-Loso and Tautz 

2008 (Domazet-Lošo & Tautz, 2008).  We acquired error-prone status of human genes from 

Moyers and Zhang 2015. 

 

Drosophila developmental data 

 

We used the developmental expression status of genes in Drosophila melanogaster  and 

phylostratigraphic ages for drosophila genes from Tautz and Colleagues (2016).  We acquired 

error-prone status of drosophila genes from Moyers and Zhang 2015. 

 

Statistical analyses 

 

All statistical analyses were performed using R version 3.2.3. 

 

Results 
 

Phylostratigraphy with randomized evolutionary properties 

 

In the work of Tautz and colleagues, they suggested that sequence evolution parameters should 

be randomized, generated in silico rather than taken from extant sequences.  This was 

highlighted as a fundamental error in our simulations. We therefore began by randomizing 

evolutionary properties for our simulations, and performing phylostratigraphy (Figure 4-1).   
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We find that when sequence is randomized, error increases slightly but significantly (mean 

number of error prone genes increases from 474.78 to 500.22, p=4641E-9, n=9, t.test).  This may 

be due to some degree of paralogy between the incipient human sequences which survived the 

simulation.  Because we began the simulation of each genes evolution with the extant human 

sequence, rather than first randomizing sequence content, if two human genes had any paralogy 

between them hey maintain some sequence similarity throughout the simulation of evolution.  

This sequence similarity will slightly increase the chances of finding a homolog during 

phylostratigraphy, because there are a greater number of potential targets.  Upon randomizing 

sequences, this paralogy was lost.  Therefore, on this measure, the randomized assignment of 

evolutionary properties increases error and makes its problematic contributions to 

phylostratigraphy worse. 

 

For all other randomizations, error was decreased.  The greatest decrease in error was when 

randomizing the relative rate of proteins.  This observation caused us to question whether or not 

we were observing a decrease in error because we were making the simulation less realistic.  

Because it is known that certain gene properties are correlated, we investigated the relationships 

between length, rate, and longest block of conserved sites in each of our simulations (Table 4-1).  

Unsurprisingly, we find that in the base and randomized sequence simulations, there are 

significant associations between length and evolutionary rate, length and longest block of 

conserved sites, and rate and longest block of conserved sites.  However, whenever a given 

property is randomized, its association with other properties is either destroyed or reduced (Table 

4-1).  This destruction of associations is what influences error.  While length is negatively 

correlated with error, a slowly-evolving short protein will have less error than a quickly-evolving 
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short protein.  Similarly, a slowly-evolving long protein will have less error than a quickly-

evolving long protein.  Because these and other features are correlated in real sequences, 

randomization of sequence parameters gives unrealistic estimates of actual homology detection 

error. 

 

These findings emphasize the need to retain real sequence evolutionary parameters when 

simulating and estimating error, as opposed to “randomization” of these parameters, as suggested 

by Tautz and colleagues.  The idea that making simulated proteins less like real proteins will 

give more realistic views of the influence of error is both counterintuitive and wishful thinking.  

By destroying these sequence parameter associations, one destroys the relationship between 

simulations and reality.  While this will produce lower error rates, these lower error rate 

estimates are unrealistic, and breed false complacency. 

 

Error Influences Phylostratigraphic Findings 

 

In the work of Domazet-Loso et al., they claimed that the effects of error are not influencing 

phylostratigraphic trends.  However, in doing so, they only removed those genes which we both 

(1) simulated and (2) found to be subject to error.  This methodology makes the assumption that 

those genes which we were unable to simulate are inherently not error-prone.  We strongly 

disagree with that assumption.  Our simulation was based on genes for which there was a 

homolog conserved in several species (5 to 12 species) diverged many millions of years (up to 

92MY).  Those genes which were not so conserved might be so for two reasons.  Either they are 

truly young, or they have lost detectable homology in the species of interest.  In either case, these 

genes are expected to have at least two properties: they are expected to be short, and fast-
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evolving (Carvunis et al., 2012; Moyers & Zhang, 2015).  These properties are expected to be 

associated with homology detection error.  Therefore, these genes are likely to be enriched with 

error-prone genes.  Therefore, in assessing phylostratigraphic trends in the absence of homology 

detection error, it is inappropriate to include genes for which there was insufficient information 

to simulate evolution. 

 

In order to assess this problem, we reanalyzed the data of Domazet-Loso et al (2016) restricting 

to only genes which were both simulated and found to be non-error-prone.  Tautz and colleagues 

specifically reanalyzed three arguments from our previous publications: disease-prone status of 

human genes, drosophila gene expression during development, and trends of sequence properties 

with age in yeast.   

 

We began by reanalyzing human disease genes.  Previously, Domazet-Loso and Tautz had 

demonstrated that the number of genes in each phylostratum was not correlated with age, but that 

the number of genes associated with disease was correlated with phylostratum, with older 

phylostrata having more disease-associated genes (Domazet-Lošo & Tautz, 2008).  We had 

demonstrated that homology detection error alone could produce a correlation between age and 

the proportion of genes which were associated with disease (Moyers & Zhang, 2015).  In their 

recent paper, Tautz and colleagues argued that our analysis was not the same as theirs, and was 

therefore an inappropriate comparison, and further demonstrated that when error-prone genes 

were removed from the dataset their trend was unaffected.  Because the central point of 

Domazet-Loso and Tautz (2008) was that disease genes have an ancient origin in humans, we 

plotted the proportion of genes which were disease-associated as a function of age as reported by 
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Domazet-Loso and Tautz (Figure 4-2A, black line).  We regard this as essentially the same 

experiment and, as expected from the original paper, there was a significant correlation between 

the age and proportion of disease genes (Rho=-0.85, p<2.2E-316).  However, when we restricted 

this gene set to those genes which were both simulated and found to be non-error-prone, we 

found that this correlation disappeared (Rho=-0.29, p=0.28), despite having a significant number 

of genes remaining (4587 genes total, 565 disease-associated genes, compared to 22845 and 

1760 prior to correction).  This suggests that the majority of the trend is found in genes which are 

fast-evolving and prone to losing detectable homologs.  Indeed, when we instead restrict to error-

prone genes (those which we could not simulate plus those which we simulated but found to be 

error-prone), the trends between all genes and error-prone genes match almost exactly (Figure 4-

2B).  This trend holds true when we instead plot the absolute number of genes in each 

phylostratum and the number of disease genes in each phylostratum (Figure B-1A, B-1B, B-1C).  

When error is not accounted for, there is a significant correlation between age and number in 

disease genes but not for absolute number of genes.  When genes are restricted to non-error-

prone sets, both sets are significantly correlated with age. When genes are restricted to error-

prone sets, the trends are as with all genes. 

 

We next reanalyzed drosophila developmental data.  Previously, Domazet-Loso and Tautz had 

demonstrated that genes dated to the emergence of Eukaryota or younger were overrepresented 

in ectodermal expression during development (Domazet-Lošo et al., 2007).  In our previous 

analysis, we had demonstrated that homology detection error alone could produce significant 

peaks in this kind of analysis (Moyers & Zhang, 2015).  In their recent critique of our work, 

Tautz and Colleagues correctly identified that we had made a statistical error in this analysis, and 
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none of our findings for this analysis were significant.  It is therefore interesting to reanalyze 

their work, because presumably there should be virtually no effect when removing error-prone 

genes, as our simulation did not suggest that there was a bias in the error.  We used data as 

provided by Domazet-Loso et al.  to reconstruct the expression of drosophila genes during 

development.    We first ensured that we replicated their peaks and significance using all data 

(Figure B-2A), noting that we successfully reconstructed peaks and significance values.  We also 

noted, though, that the numbers now made public by Tautz and colleagues suggested that they 

were counting genes multiple times during development.  This is true—if a gene was expressed 

in different regions of an ectodermal tissue, or in the same region but different timepoints, the 

gene was counted as “expressed” multiple times, providing numbers far greater than the actual 

number of genes analyzed, and greatly inflating the power of their analysis.  It is more 

appropriate to consider each gene as being either expressed or not expressed during development 

in a particular tissue.  We therefore reanalyzed their data under this methodology (Figure 4-3A).  

We find that while some trends are similar to their initial publication, significance of their trends 

are greatly deflated. 

 

However, this criticism is separate from the consideration of whether or not homology detection 

error contributes to phylostratigraphic trends.  To this end, we reanalyzed their data using only 

those genes whose evolution was possible to simulate, and which were not found to be error-

prone.  We found that while some peaks and significance changed, the broad strokes of the 

analysis was not largely affected (Figure 4-3B).  This was also true using the original 

methodology of Tautz and colleagues (Figure B-2B).  This emphasizes a point that we made in 

our initial criticisms of phylostratigraphy (Moyers and Zhang 2015), that not all 
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phylostratigraphic trends are attributable to error, but some are.  It also demonstrates that when 

simulation of genes does not produce significant trends, it is more likely that real 

phylostratigraphic observations can be trusted. 

 

Finally, we reanalyzed the data presented in Carvunis et al.   In their original work, Carvunis and 

colleagues analyzed various sequence properties of yeast genes and properties of these genes’ 

products and surrounding sequences, such as the proximity of transcription factor binding sites, 

expression levels, etc. (Carvunis et al., 2012).  In our previous analysis, we demonstrated that 

homology detection error could reproduce their statistical trends quite closely (Moyers & Zhang, 

2016).  In addition to analyzing their data with error-prone genes removed, they commented that 

our association of gene age with various properties was inappropriate.  We disagree, for reasons 

discussed elsewhere in this paper. In this analysis, we removed the genes for which we had 

randomly assigned evolutionary rate and rate heterogeneity parameters.  This is because, as 

mentioned and observed, it destroys the observable associations between evolutionary 

parameters, and was therefore a poor method to simulate genes (Figure 4-1, Table 4-1).  

Additionally, these genes were necessarily faster-evolving and had shorter conserved blocks in 

reality compared to simulation, as predicted by their phylostratigraphic theory or homology 

detection error.   

 

We find that restricting to non-error-prone gene sets tends to reduce the apparent effect size and 

significance of many apparent trends (Table 4-2).  However, it is important to note that these 

trends still exist, and are significant.  Therefore, there may yet be phylostratigraphic support for 

the proto-gene model of gene birth.  However, when observing only those genes which are error-
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prone (i.e. genes for which evolutionary parameters could not be inferred, or genes which were 

simulated and found to be error-prone), we find that the effect sizes and significance are 

generally greatly increased (Table 4-2).  Furthermore, in all associations except for proximity to 

a transcription factor binding site the trend observed in all genes is much closer to the trend 

observed for error-prone genes.  This is true despite the fact that there are over 3.6 times as many 

genes which are non-error-prone as opposed to error-prone genes.  Error-prone genes in this case 

have a disproportionate influence on phylostratigraphic trends.  This further emphasizes that 

phylostratigraphy is biased, and that error-prone genes influene observed trends in ways that 

cannot be ignored. 

 

Discussion 
 

We have here thoroughly responded to the criticisms of our work by Domazet-Loso et al (2016).  

We have demonstrated that error has non-negligible impact on phylostratigraphic trends, and 

that, though sometimes the minority, error-prone genes disproportionately impact trends.  For 

clearer phylostratigraphic findings and more accurate evolutionary theory, phylostratigraphy 

must be performed in an error-aware context. 

 

Efficacy of simulations 

 

It has been suggested that our previous simulations were inappropriate, as they associated too 

many real genetic properties with the simulated genes (Domazet-Lošo et al., 2016).  This is a 

confusion assertion, as a major point of Alba and Castresanna in 2007 was that one needs to 

respect these more realistic gene qualities of sequence content, length, evolutionary rate, and rate 
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heterogeneity patterns.  Nonetheless, at the urging of us to use “simulated” properties which have 

some correspondence to real genetic properties, we have run new simulations.  We do find that 

randomization of evolutionary parameters can reduce error, but only because known associations 

which, when combined, compound error, are broken in such randomizations.  Short, fast-

evolving genes have greater error rates than short-slow-evolving genes, and destroying 

observable associations between length and evolutionary rate destroys these real trends in 

homology detection error.  In short, less realistic simulations produce lower and less realistic 

estimates of error. 

 

Indeed, we expect the percentage of error to be higher in more realistic simulations.  Even 

ignoring potential impacts of covariation or rate heterogeneity among branches, it is expected 

that those genes which we are unable to simulate are likely to have higher degrees of error.  Such 

genes are conserved in fewer species.  Under a model of homology detection error, this is likely 

because they are short, fast-evolving, and have short blocks of conserved sites.  Therefore, 

simulations of these genes are likely to show that they are error-prone.  If, instead, they are truly 

young, they are predicted by trends produced from phylostratigraphy to be short and fast-

evolving.  Thus, simulating them is likely to show that they are error-prone.  In any case, those 

genes which are not represented in our simulations are likely to be more error-prone, and thus 

estimates of 5-15% are necessarily underestimates of the true influence of phylostratigraphic 

error.  The only sequence property which seems appropriate to randomize is the sequence 

content, as it destroys any latent relationship between simulated sequence.  Randomizing this 

property actually increases error. 
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It was also suggested that associating genetic properties with our simulations is inappropriate, 

because these simulations do not include models which incorporate these extra-sequence 

properties, such as AUG context, developmental expression, expression level, etc.  This is an 

unfair criticism, as it suggests that the purpose of our simulation is to fully reproduce biological 

properties through a simulation of evolution.  However, that is not the case.  Our simulations are 

meant to determine the propensity for error that a given gene is subject to.  It is therefore not the 

case that we are associating these biological features with our simulation, but we are measuring 

an evolutionary biological property—namely, error propensity—of existing genes.  This requires 

an assessment of existing genes and their evolutionary properties without somehow randomizing 

these properties. 

 

It may be argued that because such simulations are based on extant genetic properties, they 

cannot accurately assess the true propensity of error for a given gene, because estimates of 

evolutionary rate based on 90MY of conservation may suggest that a given gene is evolving 

quickly, whereas such fast evolution may only be the result of a temporary burst of evolution.  

Similarly, our simulations may suggest that a gene evolves slowly based on this time range, 

whereas it is possible that the rate of evolution for this sequence may have decreased and was 

faster in the past.  These are reasonable concerns, but no reason to entirely ignore the error 

propensity of genes.  There are numerous evolutionary traits which we are unable to investigate 

in many contexts, including the occurrence of temporary bursts in evolutionary rates.  But we 

still make inferences based on extant properties until such additional properties can be 

investigated.  Additionally, by requiring a moderate amount of conservation and inferring 

average evolutionary rate over that time, we can partially account for such changes in 
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evolutionary rate.  In total, we expect that these simulations generally underestimate propensity 

for error, as the species from which evolutionary rate information is inferred tend to be slower-

evolving than many clades, such as Bacterial or Fungal clades. 

 

The definition of novel sequences 

 

Tautz and colleagues (2016) have spent substantial space clarifying their meaning of “novel 

sequences” in phylostratigraphy in their recent criticism of our work.  This kind of clarification is 

of course paramount to the discussion.  They suggest that a loss of detectable homology 

(presumably only through the work-horse of phylostratigraphy, BLAST) constitutes the 

emergence of a new sequence.  They note two primary ways in which a new sequence arises: (1) 

through a rapid burst of evolution or sudden shift in sequence space, presumably due to a change 

in functional constraints, and (2) through the de novo birth of a gene.  While this is a reasonable 

model, like any nascent model it requires substantial revision to be intelligible. 

 

First, this separates the definition of novel sequences from that of historical homology—i.e. that 

genetic homologs are those sequences which came from the same ancestral sequence.  Under the 

model of phylostratigraphic novel sequences, novel sequences may indeed have historical 

homologs.  Given that the purpose of BLAST and other homology detection tools is to attempt to 

recapitulate historical homology, it is not clear that the tool under use is appropriate for the 

purpose it is being set to. 

 

Second, we demonstrate that, if homology detection programs are to be the measure of novel 

sequence emergence, there is clearly a third mechanism of the emergence of novel sequences: 
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false negative error due to steady sequence divergence.  We characterize this as “error” as 

opposed to novel sequence emergence as it is clear that no new sequences or sudden shifts in 

sequence space are necessary to miss a homolog.  Therefore, any phylostratigraphic conclusions 

under current methodology must recognize steady sequence divergence as a third method for 

novel sequences to emerge.  That is, they must be error-aware. 

 

Third, it has been suggested that current phylostratigraphic methodology may be “too sensitive” 

(Domazet-Lošo et al., 2016).  An example given by these researchers was the story of two 

historical homologs, one of which has undergone a rapid and temporary shift in sequence space, 

but for which BLASTP or another homology detection program identifies the historically 

homologous relationship due to a conserved domain between the proteins.  This argument and 

example wholly undermines the proposed method for detecting novel sequences.  It appears that 

the formal definition of a novel sequence is based on homology detection tools.  However, the 

suggestion that when a homology detection program detects a true historical homology between 

two proteins that this is an error is in direct contradiction to the methodology.  If this is truly a 

case in which phylostratigraphy should identify a novel sequence as opposed to two homologs, 

then researchers must propose a formal definition and measurement of novel sequences 

independent of homology detection tools like BLAST.  If no such formal definition and measure 

of novel sequence exists, then phylostratigraphic researchers must accept a situation like that 

proposed above as a case where a novel sequence has indeed not emerged.  One cannot rely on 

intuitive definitions of “novelty” in this case—a specific, numerical methodology has been 

proposed.  Allowing ad-hoc acceptance or rejection of this numerical methodology based on 

intuitions about what is or isn’t “novel” is hand-waving. 
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The Future of Phylostratigraphy Reconsidered 

 

Despite its current problems, phylostratigraphy may be a useful technique for future researchers.  

However, its current methodology must change if it is to produce reliable results.  In addition to 

the above discussion of clarifying the theoretical explanation of phylostratigraphy, we give here 

several recommendations. 

 

Other homology detection methods must be investigated to identify those techniques which have 

the lowest rates of false positive and false negative error.  This is a complex and computationally 

intensive topic.  There are numerous homology detection programs such as PSIBLAST (Altschul 

et al., 1997), PHMMER (Söding, 2005), HMMER (Finn, Clements, & Eddy, 2011), the MEME 

suite of algorithms (Bailey et al., 2009), PSIPRED (Buchan, Minneci, Nugent, Bryson, & Jones, 

2013), HHSEARCH (Söding, Biegert, & Lupas, 2005), and many other tools.  Each of these 

tools and BLAST have several parameters which might be altered to produce more accurate 

results.  This is further complicated by the fact that some tools cannot be reasonably or 

accurately assessed under our current simulation methodology, as they rely on structural and 

extra-sequence properties which are not a part of our simulation.   

 

In addition to raw concerns about the amount of homology detection error occurring is the more 

important problem of biased error.  If error exists, this may not be a major problem for 

phylostratigraphy if it is not biased with relation to biological properties.  With BLAST at least 

we have thoroughly demonstrated that error is biased, depending on at least length, evolutionary 

rate, and rate heterogeneity parameters.  There may be other as yet undetected biases, and there 
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is no reason to think that other homology detection tools which rely upon sequence similarity 

will not be biased.  These tools should therefore be investigated to determine whether or not they 

produce biased phylostratigraphic trends. 

 

Most importantly, unless and until the above two goals can be addressed and achieved, 

phylostratigraphy must be performed in an error-aware manner.  More precise and effective 

methodology is needed to evaluate the error-prone status of genes.  While prior studies have used 

far fewer genes than those in our methodology, and genes which are far older and therefore 

inappropriate for determining error rates (Albà & Castresana, 2007), our studies have greatly 

reduced this problem by incorporating orders of magnitude more proteins, and less conserved 

proteins (Moyers & Zhang, 2015, 2016).  But they still restrict analyses to a relatively small 

number of genes (<1/4 of human proteins in this study).  Methodology which can correctly 

assess the error-prone status of greater numbers of proteins will improve phylostratigraphic 

research and increase power to find meaningful results. 

 

Finally, while phylostratigraphy is meant to identify novel sequences, it is unable to make 

statements about how these sequences emerged.  The relative contributions of homology 

detection error, rapid divergence, and de novo gene birth must be more fully elucidated.  It is 

quite possible that these three mechanisms undergo different evolutionary dynamics, and a 

greater understanding of their contributions will shed light on phylostratigraphic findings. 
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A       B 

  

Figure 4- 1 Homology detection error under randomization of evolutionary properties 

In both panels, red lines refer to the base simulation with no parameters randomized; yellow lines refer to the 

simulation with amino acid sequence randomized; green lines refer to the simulation with average evolutionary rate 

randomized; blue lines refer to the simulation with the relative rates of sites along the protein randomized; purple 

lines refer to the simulation with all three of these sequence properties randomized.  (A) The number of genes which 

fall into each clade under various conditions.  Note that a bacterial clade is not shown for the sake of greater 

resolution.  (B) The percent of genes which miss a homolog at each age. 
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A       B 

   
Figure 4- 2 Phylostratigraphic findings in human disease genes when restricting to certain gene 

sets 

(A) The proportion of genes in each phylostratum which are disease-causing.  When all genes are considered, there is 

a clear correlation which implies that the older a gene is the more likely it is to cause disease.  However, when genes 

are restricted to those which are demonstrated to be non-error-prone (n = 4632), this correlation disappears.  (B) As 

(A), but restricting only to those genes which were either not simulated or found to be error-prone (n=18258).  Under 

this condition, both all genes and error-prone genes were found to have a significant correlation with age, implying 

that older genes are more likely to be disease-causing.   
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A       B 

   
Figure 4- 3 Phylostratigraphic findings in drosophila developmental genes when restricting to 

certain gene sets 

(A) Results when all genes in the dataset are considered, but considering each gene only once in the developmental 

dataset rather than counting genes multiple times based on expression at different time points or different regions of 

the same germ layer (n=4157). (B) Results as presented in (A), but when genes are restricted to only those genes for 

which evolution can be simulated and no error-prone status was found (n=1973).   
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Table 4- 1 Spearman's rho correlation between evolutionary properties under different 

randomizations 

 Rate Longest Block 

Length 
     Base 
     Randomized Seq 
     Randomized Rate 
     Randomized Sites 
     Randomized All 

 
-0.034* 
-0.034* 
-0.014 
-0.034* 
-0.014 

 
0.353*** 
0.353*** 
0.353*** 
0.254** 
0.254** 

Rate 
     Base 
     Randomized Seq 
     Randomized Rate 
     Randomized Sites 
     Randomized All 

  
-0.766*** 
-0.766*** 
-0.013 
-0.004 
-0.004 

* P < 0.05, ** P < 1E-10, *** P < 1E-100 
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Table 4- 2 Kendall’s Tau correlation between gene properties and age in non-error-prone and 

error-prone sets 

 Length RNA 
Abundance 

Proximity 
to TFBS 

CAI Purifying 
Selection 

Optimal AUG 
Context 

All real ORFs 
(n = 5878) 

0.386*** 0.261*** 0.077** 0.312*** 0.316*** 0.133*** 

Non-error-
prone (n = 
4620) 

0.179*** 0.093** 0.050* 0.208*** 0.166*** 0.045* 

Only error-
prone (n= 
1258) 

0.429*** 0.163** -0.002 0.324*** 0.331*** 0.212*** 

* P < 0.05, ** P < 1E-10, *** P < 1E-100 
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Chapter 5 

Toward an Improved Phylostratigraphic Analysis 

Abstract 
 

We have previously demonstrated that some phylostratigraphic trends can be attributable, at least 

partially, to homology detection error.  There has been a call for better methodology to reduce 

false negative error and a call to investigate the contributions of false positive error to such 

trends.  Here, we perform a diverse set of simulations to further explore homology detection 

error and avenues for reducing it.  We investigate both false positive and false negative error 

under BLASTP, PSIBLAST, PHMMER, HMMER, and GLAM2Scan.  We further explore a 

large number of parameter sets for each program to determine if false negatives and false 

positives can be reduced compared to the default parameter sets.  We generally find that using 

default BLASTP parameters for homology detection cannot be improved upon in a reasonably 

implementable way.  In an attempt to explore other methods for reducing homology detection 

error, we explore some machine learning algorithms to identify error-prone genes, and find that 

such methods are neither accurate nor precise.  We propose a simulation-based 

phylostratigraphic framework in which error is addressed and removed.  We find that when error 

is appropriately accounted for, some phylostratigraphic trends disappear and some are reversed.  

Finally, we give recommendations for the future of phylostratigraphy. 

 

Introduction 
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Phylostratigraphy is a method for identifying novel sequences, whether they have been generated 

through de novo gene birth or through sequence divergence between two homologs.  The method 

uses homology detection programs, typically the BLAST suite of algorithms, to identify 

homologs between query sequences and a target database, most often some subset of the NCBI 

non-redundant database which is sometimes combined with additional sequence data (Domazet-

Lošo et al., 2016; Domazet-Lošo, Brajkovic, & Tautz, 2007; Domazet-Lošo & Tautz, 2003; 

Neme & Tautz, 2013).  After identifying the most distant homolog as measured by divergence 

time, the date of a novel sequence’s emergence is taken to be approximately the time of the most 

recent common ancestor between the query species and target species of the hit. 

 

Because the definition of novel sequences is based on sequence similarity, novel sequences can 

be a product of false negative error in homology detection.  It has previously been demonstrated 

that this kind of error can cause a sequence to appear to be novel in a recent node, despite being 

much older than that node (Albà & Castresana, 2007; Elhaik, Sabath, & Graur, 2006; Moyers & 

Zhang, 2015, 2016).  Studies suggest that this mechanism for apparent novel sequence 

emergence, which we refer to as homology detection error, occurs in 5% to 14% of genes.  But 

even these estimates are based on the qualities of genes which have moderate to extreme 

conservation (60 million to 450 million years of conservation).  It stands to reason that genes 

with less apparent conservation have qualities—a fast evolutionary rate or short sequence—

which promote greater error (Moyers & Zhang, 2015). 

 

Because this error is non-random, it can produce phylostratigraphic trends (Moyers & Zhang, 

2015, 2016).  By controlling for error, one may reduce the influence of this bias (Chapter 4).  
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There are at least four potential methods for reducing homology detection error in 

phylostratigraphy.  First, there is an abundance of tools for homology detection.  The BLASTP 

(Stephen F Altschul, Gish, Miller, Myers, & Lipman, 1990) algorithm is used most commonly in 

phylostratigraphy.  But aside from BLAST there are a number of other tools including 

PSIBLAST (S F Altschul et al., 1997), PHMMER (Söding, 2005), HMMER (Finn, Clements, & 

Eddy, 2011), the MEME suite of algorithms (Bailey et al., 2009), PSIPRED (Buchan, Minneci, 

Nugent, Bryson, & Jones, 2013), HHSEARCH (Söding, Biegert, & Lupas, 2005), and many 

other tools.  Additionally, each of these tools has several parameters to tune the performance of 

the program which may produce more accurate results.  We apply a set of these programs to our 

simulated sequences and identify an ideal set of parameters for each.  We further assess the false 

positive and false negative rates of each when using ideal parameters.  Aside from the precise 

homology detection rates, it is also important to determine whether or not these programs have 

the same biases as BLAST, so we assess the correlation between homology detection error and 

various sequence features to determine if any of the methods is unbiased. 

 

Second, it is possible and has been suggested that phylostratigraphy is not subject to homology 

detection error under certain contexts, most notably among closely-related species (Domazet-

Lošo et al., 2016).  We perform two simulations using a tree consisting of primates and mouse to 

assess whether or not homology detection error exists in these contexts, and whether or not it is 

biased to preferentially create trends with apparent age. 

 

Third, one could develop some algorithm for assessing, a priori, a sequence’s propensity for 

homology detection error based on its sequence features.  We investigate multiple machine 
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learning methods to determine if there is a sufficiently sensitive and precise method to identify 

error-prone sequences. 

 

Fourth, one could assess the error-prone status of genes through direct simulation and remove 

any such genes from phylostratigraphic analyses.  While previous researchers have claimed to do 

this (Domazet-Lošo et al., 2016) we demonstrated that their method for control is insufficient 

(chapter 4).  Those genes which we are unable to simulate are likely to have properties which 

make them more error-prone (Carvunis et al., 2012; Moyers & Zhang, 2015; chapter 4).   

 

Finally, through real and error-aware phylostratigraphic analysis, we demonstrate that some 

phylostratigraphic trends disappear under error-aware phylostratigraphy, while others reverse 

direction.  We conclude with recommendations for error-aware phylostratigraphic methodology 

and comments on challenges for the future. 

 

Methods 
 

Sequence acquisition 

 

We acquired 4942 human sequences with 1-to-1 orthologs in 14 mammalian species diverged 

approximately 90MYA (Hedges, Dudley, & Kumar, 2006) from OrthoMaM (Ranwez et al., 

2007).  The specific species in question were: Homo, Pan, Gorilla, Pongo, Nomascus, Macaca, 

Callithrix, Tarsius, Otolemur, Microcebus, Rattus, Mus, Dipodomys, Cavia.   Separately, we 

acquired a full database of human protein sequences from Ensemble, current as of 20 September 
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2016, available at the following web address: 

http://ftp.ensembl.org/pub/current_fasta/homo_sapiens/pep/. 

 

Inferring evolutionary rate information 

 

From the orthologs of 14 mammalian species, we used TreePuzzle (Schmidt, Strimmer, Vingron, 

& von Haeseler, 2002) to infer evolutionary rate information including average evolutionary rate 

and rate heterogeneity patterns of each of the 4942 human proteins.  We used the JTT-f matrix 

(Jones, Taylor, & Thornton, 1992) with a discrete gamma model with 16 rate heterogeneity 

categories.   

 

Simulated sequence properties 

 

We created three sets of proteins for later simulation.  In our first set, we assigned to the 4942 

human proteins the exact evolutionary rate and rate heterogeneity parameters of the protein as 

determined by TreePuzzle, but shuffled the amino acid content of each protein so as to destroy 

any remaining parology between proteins, ensuring a set of truly unrelated sequences.  This is 

referred to as our Base set. 

 

In our second set, we randomly generated a set of 10,000 protein lengths by sampling the actual 

distribution of protein lengths found in the set of human proteins downloaded from Ensemble.  

Amino acid sequence was assigned randomly based upon the frequency of each amino acid in 

the 4942 human proteins downloaded from OrthoMam.  We assigned evolutionary rate 

information and rate heterogeneity information using a sampling method similar to Moyers and 

http://ftp.ensembl.org/pub/current_fasta/homo_sapiens/pep/
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Zhang 2016.  Briefly, for each of the 4942 proteins in our first set we multiplied the relative rate 

of each site by the absolute evolutionary rate of the protein.  We then concatenated each of the 

4942 evolutionary rate strings into a large ring structure.  Then, for each of the 10,000 proteins, 

we sampled a continuous string of sites equal to the length of the protein in question, requiring 

that the sampled string not have all sites equal to the same rate.  We then determined the average 

of this string as the average evolutionary rate of the protein, and we divided the string by the 

average rate to determine the rate heterogeneity pattern of the simulated protein.  Thus, in this 

simulation we have created a set of proteins whose length, rates, and rate heterogeneities are 

simulated and independent.  This is referred to as our Size Distribution set. 

 

In our third set of proteins, we sought to investigate more extreme models of evolution.  Because 

all rates were sampled from 4942 proteins with full conservation to a moderately old ancestor, it 

is highly likely that these evolutionary rates are not representative of the average evolutionary 

rates of all proteins.  We therefore created a set of proteins with faster evolutionary rates by 

using the exact same methodology as described for our second set, but multiplying the average 

evolutionary rate by a factor of 5.  This set represents a set of proteins with randomly and 

independently assigned lengths, evolutionary rates, and rate heterogeneity patterns, but under a 

more extreme model of evolution.  This is referred to as our Size Distribution Fast set. 

 

Construction of trees for simulation 

We evolved our sets of proteins through two trees (Figure 5-1A, and Figure 5-3B).  We 

simulated evolution of all three sets through the first tree, and the second and third sets through 
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the second tree.  In both cases, the trees were constructed based on average divergence times as 

listed by TimeTree (Hedges et al., 2006).   

 

Simulation of Evolution 

 

We simulated sequence evolution using ROSE (Stoye, Evers, & Meyer, 1998), which allows the 

evolutionary rate for each site to be set by the user.  We determined insertion and deletion 

thresholds based upon observed indel counts in our initial alignments of 4942 human sequences, 

similar to the methodology described in Moyers and Zhang 2016.  For each protein in all 

simulations, we simulated evolution using a JTT-f matrix with observed amino acid frequencies 

from the alignment.   

 

Comparison of simulated and real genetic distances 

 

We determined genetic distances between Human and Mouse sequences using TreePuzzle in 

both real and simulated sequences.  Comparison was done by plotting the real versus simulated 

genetic distances for each of the 4942 proteins. 

 

Phylostratigraphy of simulated sequences 

 

Phylostratigraphy using simulations along our first tree (Figure 5-1A) was performed using 

several programs, including BLASTP, PSIBLAST, PHMMER, HMMER, and GLAM2Scan.  In 

all cases, the “Human” simulated sequences were used as the query, whereas all other species 

were combined into a single target database.  
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For BLASTP, in addition to using the default parameters of the program, we also performed 

phylostratigraphic runs wherein we varied independently several parameters including Gap 

Extention and Gap Opening (using all possible combinations allowed by the program), 

Composition based statistics (setting to 0 and to 1), Threshold (testing values of 8 through 15), 

window size (testing 0), and word size (testing 2 through 6).  In total, 30 phylostratigraphic runs 

were performed for BLASTP for each of the three protein sets.  For all runs we set the evalue to 

100, which allowed us to progressively restrict E-value from 100 to 1E-10 for each run and 

observe the results. 

 

For PHMMER, in addition to using default parameters, we also performed phylostratigraphic 

runs wherein we modified three parameters.  We tested values of gap extension penalties from 

0.0 to 0.9 in steps of 0.1.  For each extension penalty, we also varied gap open penalty from 0.0 

to 0.4 in steps of 0.1.  We also varied the matrix used by PHMMER, testing all matrices allowed 

by the program.  In total, we performed 60 phylostratigraphic runs using PHMMER for each of 

the three protein sets.  For all runs we set the evalue to 100, which allowed us to progressively 

restrict E-value from 100 to 1E-10 for each run and observe the results. 

 

For each of PSIBLAST and HMMER, we ran the initial BLASTP and PHMMER searches using 

the ideal parameters as determined from each of BLASTP and PHMMER.  Using these starting 

points, we tested default parameters for each of BLASTP and HMMER using from 1 to 5 

iterations of the programs.  In total, we performed 5 phylostratigraphic runs for each of these 

programs for each of the three protein sets.  For all runs we set the evalue to 100, which allowed 

us to progressively restrict E-value from 100 to 1E-10 for each run and observe the results. 



 140 

 

For GLAM2Scan, we first used default BLASTP settings to identify homologs of a gene in the 

target database.  Once such sequences were identified, we used the MEME algorithm (Bailey et 

al., 2009) to identify motifs in the alignment of hits.  We chose the top motif and used 

GLAM2Scan to find matches to the motif in the target database, returning 36 hits which ensured 

that at least some false positives would arise in each scan.  From there, for each protein we 

determined the age of a protein based on the hits that remained when we required that at least 

10% of amino acid alignments were identical, 20% were identical, and so on until requiring 

100% of amino acids were identical.  We reasoned that requiring more identical hits would, to a 

point, exclude false positive hits in the database, and would with further restriction begin to 

exclude true positive hits as well.  In total, we performed 1 phylostratigraphic run using 

GLAM2Scan for each of the three protein sets. 

 

In addition, we performed phylostratigraphy using the results of simulation through our second 

tree (Figure 5-3B).  In this case, we used default BLASTP settings. 

 

Identification of ideal parameters 

 

In order to identify the ideal parameters under a particular simulation and homology detection 

program, we first determined for each phylostratigraphic run the minimum false positive rate as a 

function of e-value based on a program’s ability to detect the Bacterial false positive, and 

removed from consideration parameter sets that had an unusually high false positive rate (Figure 

C-4 through C-8).  We then identified the largest evalue for which the false positive rate was 

minimum.  Then, for all runs of all parameters, we compared the false negative rates at the e-
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value with minimum false positive rates, based on the program’s ability to detect the Bacterial 

homolog.  Whichever parameter set had the lowest degree of false negatives was selected as the 

ideal parameter set. 

 

Real phylostratigraphy 

 

We performed real phylostratigraphic analysis using two separate protein sets.  First, we 

performed phylostratigraphy using the 4942 human proteins acquired from OrthoMaM (Ranwez 

et al., 2007).  Second, we performed phylostratigraphy using 4942 randomly-chosen proteins 

from the Ensemble collection of human proteins.  For both phylostratigraphic runs we used the 

BLASTP algorithm using default parameters and an e-value of 0.001. We converted GI numbers 

of hits to corresponding taxon names.  We then acquired taxon lists corresponding to the 

following classifications:  Primate, Euarchontoglires, Boreouthera, Eutheria, Mammalia, 

Amniotes, Tetrapoda, Gnathostomata, Vertebrata, Chordata, Bilateria, Eumetazoa, Opisthokonta, 

and Eukaryota.  We determined the number of genes that fell into each clade in each run. 

 

Statistical analyses 

 

All statistical analyses were performed using R version 3.2.3. 

 

For the creation of support vector machines, we used the R packages “MASS” and “e1071” 

(Venables & Ripley, 2002).  For the creation of random forests, we used the R package 

“randomForest” (Liaw & Wiener, 2002).  For these models, we calculated sensitivity as the 

number of correctly identified error prone genes divided by the total number of error prone 
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genes.  We calculated specificity as the number of correctly ignored non-error-prone genes over 

the total number of gene which were not error prone.  We calculated precision as the number of 

correctly identified error-prone genes over the total number of genes which were identified as 

being error-prone.  Hypergeometric tests were performed using the methodology provided in 

Rivals et al 2006 (Rivals, Personnaz, Taing, & Potier, 2007). 

 

Results 
 

Identifying an idealized parameter set 

 

We created three sets of sequences for simulation (see methods).  There are three properties 

which are known to be relevant to homology detection error in BLASTP: sequence length, 

evolutionary rate, and the longest conserved block of sites (Moyers & Zhang, 2015).  The 

simulations varied in two of these properties (Figure C-1, C-2, and C-3).  We simulated 

evolution through a guide-tree (Figure 5-1A), and confirmed that the genetic distances generated 

by our simulation were comparable to real genetic distances (Figure 5-1B).  We then performed 

phylostratigraphy using a number of different programs to assess their relative performance.  A 

brief description of each is given below. 

 

We first assessed BLASTP, as the BLAST suite of algorithms is “the workhorse of 

phylostratigraphy” (Domazet-Lošo et al., 2016).  BLAST (Stephen F Altschul et al., 1990) is a 

heuristic algorithm for homolog detection that relies on both overall sequence similarity between 

a query and a database entry and multiple high-scoring matches.  BLAST begins its homolog 

search by taking “words” of a user-defined length from the query sequence and searching for 
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high-scoring matches to these words among the entries in the database.  All database entries 

containing a user-defined (default = 3) number of high-scoring matches with individual words 

are further investigated by extending the alignment and using a dynamic programming algorithm 

to score the alignment.  Once the score is determined, the algorithm compares the realized score 

versus a distribution of scores based on the expected maximum score obtained from a search 

using a randomized query.  If the realized score is sufficiently far on the right tail of this extreme 

value distribution, it is classified as a hit. 

 

PSIBLAST is a modification of the BLAST algorithm in which a set of homologs is used to 

construct a Position-Specific Scoring Matrix (PSSM).  This PSSM is then used as the query to a 

database to detect further homologs, operating under the same fundamental process that 

BLASTP uses (S F Altschul et al., 1997).  The additional homologs can then be incorporated into 

the PSSM for further runs, if the user desires.  The logic of this method is that by accounting for 

sites with greater variation, the program can detect more distant homologs. The potential danger 

is that by accounting for variant sites, one might include a hit which is not a true historical 

homolog into the PSSM.  This has the risk of inflating the false positive rate.   

 

PHMMER is typically used as a sequence similarity search tool that generates homologs which 

can then be used as inputs to the HMMER algorithm, described below.  PHMMER searches a 

target database for matches to a query using a substitution matrix to determine the score of an 

alignment.  The manual describes the algorithm as “BLASTP-like”.  Based on the query 

sequence offered, PHMMER creates a hidden markov model (HMM) which uses a pre-defined 
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substitution matrix to parameterize the model.  This HMM is then used as a query for searching 

the database.   

 

HMMER is an iterative, profile-based algorithm which searches a target database using an HMM 

query.  The algorithm compares query sequences to target sequences to produce an E-value, 

which is the log-odds score for the full alignment between the target and query.  Like 

PSIBLAST, this method can then be used to incorporate new sequences into the hidden markov 

model and the algorithm can be run again with a new query.   

 

We chose to test one additional program, GLAM2Scan.  GLAM2Scan is part of the MEME suite 

of algorithms (Bailey et al., 2009) and was not designed as a tool for homolog detection.  

Instead, its purpose was to identify sequences in a target database which most closely match a 

user-defined motif.  This is useful for identifying particular signal sequences or other commonly-

occurring amino acid strings.  It offers a potential benefit in terms of homology detection in that 

it focuses only on well-conserved strings of amino acids.  Because it does not directly 

incorporate more variant sites into the alignment, we reasoned that this method may be worth 

investigating as a potential tool in phylostratigraphy.  The algorithm itself finds among a target 

database a user-defined number of alignments between a motif and target sequences.  It further 

reports the number of exact matches to the motif.  Users can trim the reported alignments based 

on the total similarity to the motif of interest. 

 

There are numerous other homology detection tools which we did not test.  Most notably, tools 

which compare profiles with profiles, such as HHSearch (Söding et al., 2005) and PSIPRED 
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(Buchan et al., 2013). These are of particular interest in reducing false negative error in 

phylostratigraphy, as they tend to detect a greater number of homologs.  For instance, HHSearch 

was found to detect 4.2 times the number of homologs as HMMER (Söding, 2005).  In 

particular, it is important to evaluate the false positive rate of these programs, as they may be 

greatly inflated.  However, we were unable to assess these methods under our simulation 

paradigm.  These programs require comparison of query and target sequences to established 

databases or which structural information is available.  However, there is no reason to think that 

our simulations respect structural constraints on protein evolution, and the simulations further 

have destroyed amino acid sequence conservation between real sequences and simulated 

sequences, so any hits between simulated proteins and these databases must necessarily be a case 

of false positive error.   

 

We therefore applied each of these five homology detection programs to the simulated results of 

our three protein sets, separately.  For each set and each program, we determined the ideal set of 

parameters which minimizes first False Positives and then False Negatives (Figures C-4, C-5, C-

6, C-7, and C-8).  In attempting to identify ideal parameter sets and comparing the runs of 

various homology detection methods, we noticed several interesting patterns.  We next compared 

the ideal parameter sets and the default BLASTP parameters based on their ability to detect 

homologs in each phylostratum (Figure 5-2).  We note first that GLAM2Scan appears to be 

unsuited for this kind of analysis, which is not surprising given that it was never intended for this 

purpose.  Among the other programs, we note that the particular dynamics depends at least 

partially on the qualities of the protein set under consideration.  We also note that, generally 

speaking, HMMER and PSIBLAST tend to outcompete BLASTP in terms of false negative rate, 
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whereas BLASTP tends to have the lowest false positive rates.  However, these differences tend 

to be generally marginal, suggesting that default BLASTP may be sufficient under most 

conditions.  It is also interesting to note that under some conditions the ideal program in terms of 

false negative rate changes depending on the divergence time under consideration (Figure 5-2C).  

Finally, we find that false positive rate, while it differs among programs, is generally negligible 

(less than 1%), except when using PSIBLAST in the case of fast-evolving proteins (Figure 5-2F).   

 

In terms of the absolute error rate of BLASTP, we note that for our Base set of 4942 proteins, 

false negative error rate falls between 5 and 7%, depending on the program used (Figure 5-2A).  

However, for simulated protein lengths with a realistic Size Distribution (Figure 5-2C) false 

negative error approaches 15%, and when considering a realistic size distribution with faster 

evolutionary rates (generally expected for apparently species-specific genes), false negative error 

can approach as high as 30% (Figure 5-2E). 

 

Bias of homology detection 

 

Based on the above idealized results, we note that false negative error cannot be wholly 

eliminated and generally is not largely reduced by deviating from the standard practice of using 

default BLASTP.  However, there is a separate question of whether or not the error of these 

programs is biased with sequence properties.  We therefore determined the correlation of 

simulated age with sequence properties of length, evolutionary rate, and the maximum length of 

conserved block for each of BLASTP, PSIBLAST, PHMMER, and HMMER in each of our 

three simulation sets.  GLAM2Scan was excluded because its false positive and false negative 

error rates were high enough to be disregarded as a potential tool for phylostratigraphy.  We find 
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that except for a few cases homology detection error creates spurious correlations with age 

(Table 5-1).  No program is without this bias. 

 

Error in species-restricted contexts 

 

It was suggested that error may be negligible when performing phylostratigraphy in contexts 

where species are not very far diverged (Domazet-Lošo et al., 2016).  While no particular 

measure has been given for what constitutes such a context, we sought to investigate whether or 

not this claim had support.  First, we took the 4942 human proteins from which we inferred 

evolutionary rate information and performed real phylostratigraphy using BLASTP with an E-

value cutoff of 0.001, and sorted the results into 15 strata.  For each protein, we then paired its 

age by real phylostratigraphy to whether or not it was subject to error in simulation under default 

BLASTP settings.  We found that the younger a protein is found to be by real phylostratigraphy, 

the greater its propensity for error (Figure 5-3A).  One might argue, however, that our simulation 

is insufficiently connected to the real properties of these proteins to make such a claim.  While 

that argument effectively relegates error propensity of any given gene to the realm of the 

unobservable, it may yet be true.  We therefore sought to investigate via simulation whether 

homology detection error was found in closely-related clades.  We simulated our Size 

Distribution and Size Distribution Fast sets of proteins through a tree containing 13 primate 

species plus rat as an outgroup (Figure 5-3B).  We did not simulate our 4942 genes through this 

tree as these genes are sufficiently long and have properties associated with conserved genes so 

as to virtually ensure that error in these contexts would be rare.  The other two sets, though, have 

a more realistic length distribution and the Size Distribution Fast set is arguably more 

representative of the evolutionary rates of primate-specific genes. 



 148 

 

After completion of the simulation, we performed phylostratigraphy with the human proteins as 

query and all other species’ proteins as the target database.  As is standard in these studies, we 

next removed those genes which had a hit in the outgroup, Rat.  This left us with 103 proteins in 

the Size Distribution simulation and 273 proteins in the Size Distribution Fast simulation.  We 

then plotted the number of genes in each set which did not have homologs in each target species 

(Figure 5-3C and 5-3D).  We find that, among genes without a homolog in rat, error rates of 

approximately 90% can be observed.  While this corresponds to only ~1.0% and ~2.7% of all 

proteins in their respective simulations, the measure of error which is appropriate for such 

studies is the one provided in Figure 5-3, as studies in these contexts first restrict genes to those 

which are not found outside the clade of interest.  It is therefore clear that error is present and 

prevalent among genes in closely-restricted contexts.  This is corroborated by the finding that 5 

of 15 genes which had previously been classified as S. cerevisiae specific in Carvunis (2016) 

were found to be non-species specific upon application of syntenic methods (Domazet-Lošo et 

al., 2016).   

 

We further demonstrate that error even within this context is still biased with gene properties 

(Table 5-2).  We find significant correlation between gene ages and length and evolutionary rate 

for both simulations, and with the maximum length of conserved blocks for the Size Distribution 

Fast simulation.  This finding contradicts the assertion that phylostratigraphic trends in closely-

related clades is not influenced by homology detection error.  We do note, however, that there is 

an unexpected reversal in the correlation between age and evolutionary rate in the case of the 

Size Distribution simulation.  This is likely due to the fact that in this simulated gene set with 
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randomly-assigned properties and restricted to a relatively small amount, the effect of size 

overrides the effect of evolutionary rate, particularly given the large and highly-significant effect 

of length in this context.  However, it may be the case that for such closely-related species the 

dynamics of homology detection and the interrelation between length and rate in this process are 

more complicated than we currently understand.   

 

Predictive models of propensity for error 

 

Another possible way to remove the effects of homology detection error in phylostratigraphy is 

the application of a model which identifies a prior those genes which are likely to be subject to 

homology detection error before performing phylostratigraphy.  We reasoned that if we could 

construct a model which was able to correctly identify 90% or more of error-prone genes 

correctly without removing a substantial proportion of non-error-prone genes, this would be an 

effective model.  We therefore used BLASTP simulation results of Base, Size Distribution, and 

Size Distribution Fast gene sets simulated through the tree in Figure 5-1A to construct support 

vector machine (SVM) and random forest models.  We used ten-fold cross-validation to 

determine the average sensitivity, specificity, and precision of each model.  We tried as many 

combinations of the parameters length, evolutionary rate, and maximum length of conserved 

block for each model, using error (as measured by a missed bacterial homolog) as a response 

variable.  We then determined which of the predictor variable sets produced the model with the 

greatest sensitivity. 

 

We found that all models were insufficiently sensitive, though random forests performed better 

than SVM models (Table 5-3).  We reasoned that a less stringent definition of error might create 
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better-performing models, and thus created models wherein the response variable was whether or 

not a homolog was found in Fungi, a much less distantly removed homolog.  This did not change 

the results (Table C-1).   

 

An error-aware framework of phylostratigraphy using simulation results 

 

Having investigated several methods to remove the effects of error and found none, we were left 

with only one remaining method: removal of error-prone genes from real phylostratigraphic 

results.  In this context, error-prone genes are identified as those genes which experience any 

amount of homology detection error in a simulation of evolution.  We have previously 

demonstrated using this method that homology detection error significantly affects the outcome 

of phylostratigraphic results (Chapter 4).   

 

We sought to investigate whether or not this methodology might offer new insight into biological 

trends over evolutionary time.  To that end, we performed real phylostratigraphy against the 

NCBI non-redundant protein database on the 4942 human sequences acquired from OrthoMam 

and 4942 randomly-selected sequences from the Ensemble collection of human proteins. We 

then removed from the first of these sets those genes which were found in our base simulation 

any homology detection error.  We plotted the ages of these genes (Figure 5-4).  We note that 

while there are hundreds of genes which are dated to the common ancestor of humans and 

elephants or younger in the randomly-chosen gene set, the youngest genes in the non-error-prone 

gene dates to the common ancestor of all mammals.  It is not surprising that this is the case, 

given that we required these genes to have orthologs in all 14 mammalian species and then 

removed any which were error-prone.  This does highlight, however, that it is certainly possible 



 151 

to have a range of gene ages when restricting genes to a non-error-prone set.  However, it seems 

almost certain that the youngest clades will necessarily be left out of such analyses. 

 

Finally, we investigated previously-reported trends in these datasets.  Not having evolutionary 

rate information for the randomly-chosen set, we could only evaluate the relationship between 

length and phylostratigraphic age.  But for the 4619 non-error-prone genes which we used to 

determine simulation parameters, we were able to investigate relationships between age and 

three parameters: length, evolutionary rate, and the maximum length of conserved blocks in the 

protein (Table 5-4).  We find that the previously-reported association of older proteins generally 

being longer retained in our random phylostratigraphic set.  However, once restricted to a non-

error-prone set, we find that this trend is reversed, such that older genes are actually shorter than 

younger genes with a weak effect commensurate with the weak positive effect previously 

reported.  This is combined with the finding that evolutionary rate is not significantly associated 

with age, and that the older a gene is the shorter its conserved blocks tend to be, with relatively 

weak effect.  These findings provide insight into evolutionary dynamics of proteins that have 

moderate conservation and are not error-prone, and provide further insight into 

phylostratigraphic theory. 

 

Discussion 
 

We have demonstrated here that false negative error is prevalent in phylostratigraphy.  While the 

4942 human genes which we began simulation with has only a marginal degree of error (6.5% of 

genes missed their bacterial homolog in our simulation), this is expected.  These genes have 

necessarily been conserved for at least 90MY among 14 mammals.  Their lengths, evolutionary 
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rates, and rate heterogeneity patterns are therefore representative of genes which have no 

propensity for error at least out to 90MY.  However, even changing length distributions to be 

more realistic (Figure C-1) without substantially changing rate or rate heterogeneity properties 

(Figures C-2 and C-3) produces greatly increased error.  We observed that 14.3% of genes could 

not find a bacterial homolog in our Size Distribution set of genes.  When faster evolutionary 

rates are introduced, we find that this error rate can be greatly increased, with 33.4% missing a 

bacterial homolog.  Clearly, those genes which are reported to be the youngest in 

phylostratigraphy—short, fast-evolving genes—are most likely to be subject to homology 

detection error. 

 

This error is further not entirely accounted for by investigating only young clades.  It is 

obviously true that missing a bacterial homolog does not guarantee that a human gene will also 

miss a homolog in a closely-related species, this kind of error still does occur.  The contention 

that there are contexts “where no BLAST error could be reasonably invoked” (Domazet-Lošo et 

al., 2016) is demonstrably false, as such a context depends upon the particular genes under 

investigation and their properties.  In fact, we find that all efforts to decrease false-negative error 

through changing context or tool are ineffective (Figure 5-2).  This is in concordance with the 

results of Domazet-Loso (2016), who re-evaluated the species-specific status of 15 ORFs (as 

assigned by phylostratigraphy) and found that 1/3 of them were falsely classified as species-

specific. 

 

Comparatively, the concerns surrounding False Positive error are not well-supported by our 

results.  While we find that profile-based homology detection programs (PSIBLAST, HMMER) 
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generally have a higher degree of false-positive error than does BLASTP, we find that this error 

is small (<1% of genes) except for the case of small, fast-evolving genes using PSIBLAST.  We 

therefore cannot recommend the use of PSIBLAST as a reasonable tool for phylostratigraphic 

analysis.  Moreover, we find that false positive error is not time-dependent whereas false 

negative error is.  False positive error is therefore less likely to introduce spurious trends with 

gene evolution, as any bias in the trends will be randomly distributed throughout time. 

 

Future work should investigate alternative methods for identifying error-prone genes.  As has 

been previously mentioned (Chapter 4) and here, our simulation set is inappropriate for use with 

certain homology detection methods.  If a new simulation set can be performed which captures 

such features as structural evolution and similarity as well as sequence evolution constraints, 

homology detection error may be reduced by more sensitive tools.  The error-prone status of 

genes might be further probed by using a larger number of genes for simulation.  There is an 

inherent problem here, as simulation requires inference of evolutionary parameters, and 

inference of evolutionary parameters requires detectable homologs.  Thus, there is a set of genes 

which, by definition, cannot be simulated.  Additionally, for those genes with fewer detectable 

homologs (or when using fewer homologs to infer evolutionary parameters), issues of 

stochasticity become greater, and simulations are more likely to be inaccurate.  Therefore, error-

aware phylostratigraphy may have a necessary limitation in which sequences it can evaluate. 

 

We have here demonstrated that error-aware phylostratigraphy is not merely a conservative 

approach to phylostratigraphy, but can provide novel biological insight.  We hope that prior 



 154 

phylostratigraphic findings will be re-evaluated in this context, and that future work will consider 

error in inferring evolutionary trends. 
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A       B 

 
Figure 5- 1 Simulation for the assessment of homology detection error 

(A) Tree through which simulation was performed.  Branch lengths were determined by TimeTree estimation of 

divergence time of a given species from Humans.  (B) Comparison of genetic distance between humans and mouse in 

real and simulated proteins (R=0.6130, p=2.2E-316, Rho=0.7013, p=2.2E-316).  Though the correlation is only 

moderately strong, we note that there is a clear skew toward our simulation under-evolving the sequences, supporting 

the idea that this methodology is conservative.   
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Figure 5- 2 False negatives and positives by phylostrata 

False negative and false positive rates in detecting by phylostrata for default BLASTP parameters and the ideal 

parameters for all five programs.  The left column shows false negative rates while the right column shows false 

positive rates.  The first row shows the results of our Base set, the second row shows the results of our Size Distribution 

set, and the third row shows the results of our Size Distribution Fast set.  (A) False negative rates for Base set.  (B) 
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False positive rates for Base set.  (C) False negative rates for Size Distribution set.  (D) False positive rates for Size 

Distribution set.  (E) False negative rates for Size Distribution Fast set.  (F) False positive rates for Size Distribution 

Fast set. 
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A      B 

  
C      D 

 
Figure 5- 3 Homology detection error in closely-related species 

Homology detection error in close-related species.  (A) Proportion of genes in each phylostratum which, in simulation, 

were subject to homology detection error.  (B) Tree through which simulation was performed for Size Distribution 

and Size Distribution Fast gene sets.  Branch lengths were determined by TimeTree estimation of divergence time of 

a given species from Humans. (C and D) False negative error rate for each species in simulation for the Size 

Distribution (C, N=103) and Size Distribution Fast (D, N=273) sets. 
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Figure 5- 4 Ages of two distinct gene sets in real phylostratigraphy 

Age of two distinct gene sets in real phylostratigraphy.  Black bars represent the 4619 genes which were simulated 

and found to be non-error-prone.  Grey bars represent the ages of a randomly-selected 4942 genes.   
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Table 5- 1 Spurious correlations between age and biological features 

 BLASTP PSIBLAST PHMMER HMMER 

Base Simulation 

     Length 

     Rate 

     Block 

 

0.14** 

-0.37*** 

0.35*** 

 

0.16** 

-0.36*** 

0.35*** 

 

0.03 

-0.02 

0.03* 

 

0.11** 

-0.34*** 

0.32*** 

Size Dist. Simulation 

     Length 

     Rate 

     Block 

 

0.31*** 

-022*** 

0.37*** 

 

0.30*** 

-0.08** 

0.28*** 

 

0.28*** 

-0.22*** 

0.37*** 

 

0.27*** 

-0.22*** 

0.33*** 

Size Dist. Fast Simulation 

     Length 

     Rate 

     Block 

 

0.32*** 

-0.12** 

0.41*** 

 

0.36*** 

-0.12** 

0.44*** 

 

0.29*** 

-0.13** 

0.42*** 

 

0.28*** 

-0.13** 

0.38*** 
*P<0.05, **P<1E-10, ***P<1E-100 
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Table 5- 2 Correlation between gene properties and phylostratigraphic error in closely-related 

species 

 Length Rate Block 

Size Distribution  0.78** 0.28* 0.14 

Size Distribution Fast  0.75** -0.15* 0.58** 
*P<0.05, **P<1E-10, ***P<1E-100 
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Table 5- 3 Performance of machine learning algorithms for identifying error-prone genes 

 Base SVM Size Dist. 

SVM 

Size Dist. 

Fast SVM 

Base RF Size Dist. 

RF 

Size Dist. 

Fast RF 

Model* Error ~ 

L+E+B 

Error ~ 

L+E+B 

Error ~ 

L*E*B 

Error ~ 

L+E+B 

Error ~ 

L+E+B 

Error ~ B 

Sensitivity 0.504 0.253 0.512 0.711 0.629 0.633 

Specificity 0.987 0.984 0.863 0.967 0.900 0.730 

Precision 0.768 0.718 0.653 0.519 0.360 0.336 
*L=length, E=evolutionary rate, B=maximum length of conserved block 
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Table 5- 4 Spearman's rho correlation between age and gene properties in real 

phylostratigraphy 

 Random 4942 proteins Non-error-prone proteins 

Length v Age 0.16** -0.12** 

Evolutionary Rate v Age NA 0.002 

Block length v Age NA -0.09** 
*P<0.05, **P<1E-10, ***P<1E-100 
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Chapter 6 

De novo genes contribute significantly to novel sequence formation 

Abstract 
 

Phylostratigraphy is a method for identifying novel sequences based on homology detection.  A 

novel sequence may arise in at least three ways, de novo gene birth, homology detection error, or 

a sudden shift in sequence space, as expected after a gene duplication.  The relative contributions 

of these three mechanisms to novel sequence formation is still not known, and whether or not de 

novo gene birth accounts for a significant portion of novel sequences is not clear.  Here, we 

investigate the relative contributions of these sequences through an error-aware phylostratigraphic 

analysis.  We simulate the evolution of sequences and investigate the phylostratigraphic dynamics 

of several models of duplication. We find that, even under extreme models of duplication, 

phylostratigraphy suggests that alternative sources contribute a non-negligible number of novel 

sequences.  We also find that homology detection error contributes approximately twice as many 

sequences to novel sequence formation as does duplication and divergence, even under an extreme 

model. 

 

Introduction 
 

Lineage specific genes, or orphan genes, are genes which are restricted to a particular taxon.  

These genes are identified through the use of phylostratigraphy: that is, searching for homologs 
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in a set of species using BLAST and determining where homologs are and are not found.  

Phylostratigraphy is a method for identifying “novel sequences.”  Based on this analysis, a set of 

genes is found which is present only in a particular lineage.  There have been numerous studies 

associated with lineage-specific genes (Domazet-Lošo, Brajkovic, & Tautz, 2007; Domazet-Loso 

& Tautz, 2010; Domazet-Lošo & Tautz, 2010; Neme & Tautz, 2013; M. Sestak & Domazet-Lo 

o, 2014; M. S. Sestak, Bozicevic, Bakaric, Dunjko, & Domazet-Loso, 2013), and estimates of the 

rate of gene fixation have been performed based on these analyses (Domazet-Lošo et al., 2007). 

 

A major limitation of using phylostratigraphic analyses is that it cannot distinguish between the 

different mechanisms of novel sequence formation.  There are likely three major sources: de 

novo gene birth, rapid but short-lived periods of sequence divergence due to change in functional 

constraints or duplication, and homology detection error (or general divergence).  A major 

unanswered question is the relative contribution of each of these.  Some investigations have 

suggested that de novo gene birth is frequent, placing it as being more frequent than duplication 

(Carvunis et al., 2012).  However, these  have been subject to biased homology detection error 

(Moyers & Zhang, 2016), and this error is non-negligible, even for closely-related species 

(Chapter 4, Domazet-Loso et al. 2016). 

 

Another major question regarding the formation of orphan genes is whether or not their 

restriction corresponds to a biologically meaningful age, as defined by historical homology.    It 

has been previously established that homology detection error can make genes appear younger 

than they truly are on the basis of historical homology (Albà & Castresana, 2007; Elhaik, Sabath, 

& Graur, 2006; Moyers & Zhang, 2015, 2016).  However, the dynamics of duplication-
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divergence may exacerbate this problem, or create different kinds of problems, such as 

sequences mapping to dates older than the time of duplication.  This would not be surprising, as 

it has been demonstrated that sequence similarity measures as a measure for phylogeny 

reconstruction can produce incorrect phylogenies (Smith & Pease, 2016).  If this is the case, then 

studies of orphan genes are studying something entirely different than historical homology.  

While identifying orphan genes may provide interesting avenues of research, their precise ages 

are evolutionarily and biologically meaningless.   

 

These issues might be approached by a simulation of evolution which incorporates models of 

divergence and duplication-divergence.  Simulations have been applied to study rates of 

homology detection error (Elhaik et al 2006, Alba and Castresana 2007, Moyers and Zhang 

2015, Moyers and Zhang 2016, Chapter 4, Chapter 5).  It may be possible to study the 

contributions of duplication-divergence through simulation, though there are major questions 

about the models of duplication that might be used (Lynch & Conery, 2000; Zhang, 2013) and 

the frequency with which gene duplication and whole genome duplication occurs and how many 

of these genes survive (Carvunis et al., 2012; Cliften, Fulton, Wilson, & Johnston, 2006; De 

Smet et al., 2013; Gao & Innan, 2004; Moyers & Zhang, 2016).  However, de novo gene birth 

presents a special problem, as it is unknown how frequently it occurs despite some suggestions 

that it is common (Carvunis et al., 2012; Moyers & Zhang, 2016; Neme & Tautz, 2013), and 

there is scant information about how de novo sequences evolve in their early stages.  

Additionally, divergence in the absence of duplication due to supposed changes in functional 

constraints are ill-defined, and there is not a clear suggested model by which this kind of 
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evolution would occur.  Therefore, these contributions of these mechanisms can be studied only 

indirectly. 

 

Here, we assess these problems by simulating the evolution of protein sequences, including several 

models of gene duplication.  We also perform real phylostratigraphy on the same gene set from 

which we draw evolutionary parameters to compare the number of lineage-specific genes at each 

clade, both for real and simulated proteins.  We find that de novo gene birth is likely to account 

for a non-negligible portion of apparent orphan genes, as general homology detection error and 

models of duplication-divergence cannot fully account for the number of orphan genes identified 

in real phylostratigraphy.  When duplications do produce “novel sequences”, we find that they are 

not dated to the correct time of emergence—they are often said to be older or younger than the 

time of actual duplication-divergence, creating strange situations in which a “novel sequence” is 

said to have emerged prior to when a duplication occurred. 

 

We conclude that methods other than divergence and duplication-divergence are major 

contributors to orphan gene formation, but identification of orphan genes is insufficient as a 

measure of the contributions of these mechanisms to gene birth, as the number of orphan genes is 

also substantially influenced by homology detection error and duplication-divergence.  

Phylostratigraphy is, therefore, an important first step in identifying rates of ancient or recent de 

novo gene birth.  We also challenge the paradigm of phylostratigraphy as a measure for “gene 

age,” as it places the dates of emergence for novel sequences at times when sequences did not 

exist. 
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Methods 
 

Sequences 

 

For simulation of sequence evolution, we acquired 4942 orthologous sequence alignments in 

protein format from 14 mammalian species through OrthoMaM (Ranwez et al., 2007).  The 

specific species used were Pan, Homo, Gorilla, Pongo, Nomascus, Macaca, Callithrix, Tarsius, 

Otolemur, Microcebus, Rattus, Mus, Dipodomys, and Cavia.  All sequences had at least these 14 

species, and any other species included in the alignments were removed.   

 

Simulation of evolution 

 

The evolutionary tree was constructed from general species divergence times acquired from 

TimeTree (Hedges, Dudley, & Kumar, 2006).  For each of the 4942 proteins with alignments of 

fourteen sequences, we used TreePuzzle (Schmidt, Strimmer, Vingron, & von Haeseler, 2002) to 

classify all sites into 16 rate bins according to a discrete gamma model of among-site rate 

heterogeneity and estimated the relative rates of the 16 bins.  We also inferred the mean 

evolutionary rate across all sites of the protein between H. sapiens and M. myoxinus 

(Microcebus).  Using all of these parameters, we simulated the evolution of these proteins using 

ROSE (Stoye, Evers, & Meyer, 1998), which allows the evolutionary rate for each site to be 

specified by the user, along the tree in Fig. 1A.  ROSE evolves sequences through amino acid 

substitutions and insertions and deletions (indels).  For each branch of the tree, ROSE first 

performs the amino acid substitution function, and then performs the indel function.  If the 

branch is an internal branch in the tree, it then copies the resulting amino acid sequence to the 

base of each of the two branches after the split.   
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For amino acid substitution, ROSE uses an amino acid substitution matrix provided by the user.  

We used a JTT-f matrix for the amino acid substitution model (Nei & Kumar, 2000).  Each site 

along the protein has a particular relative rate.  The relative rate for a site is multiplied by the 

length of the branch to obtain the expected amount of evolution along the branch at the site.  

ROSE makes substitutions based on this expected amount of evolution and the substitution 

matrix supplied.  This is repeated for all sites along the amino acid sequence.  

 

For indels, there are two parameters that determine indel formation in ROSE, the indel threshold 

and the indel function.  The indel threshold measures how frequently indels occur and was 

determined in the following manner.  Taking the alignments of the orthologs acquired from 

OrthoMaM and using a custom script, we determined the minimum number of indels necessary 

to produce the observed gapped alignments.  From this information, we determined the number 

of indels per amino acid, averaged over all proteins.  This indel threshold was then applied to all 

proteins in simulation.  The indel function is a vector that sums to 1 and gives, at each vector site 

i, the probability of an indel of size i, given that an indel is occurring.  For the indel function, we 

took the observed frequencies of indel sizes from 1 amino acid to 30 amino acids long 

(accounting for the majority of observed indels), and adjusted these frequencies to sum to 1.  

Sequence simulation was performed once for each protein.  We confirmed that our methods of 

simulating sequence evolution were conservative by comparing evolutionary distances for real 

and simulated proteins (Fig. 1B). 

 

Models of Duplication 
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For duplication models, we identified the sequence which existed immediately following the 

Human-Urochordata split in the simulation of each gene, or for later simulations the sequence 

extant at each 200MY point.  We copied this gene, all evolutionary parameters, and the 

remaining tree branches to either one (baseline, neofunctionalization) or two 

(subfunctionalization) new files and manipulated heterogeneity parameters as appropriate for 

each simulation (Figure D-1). 

 

For the baseline simulation (Figure D-1A), no modifications were made to any parameters, and 

the two daughter genes continued evolution independently. 

 

For the first set of neofunctionalization models (Figure D-1B) in the copied Rose File we 

selected as much as 90% of the protein sequence to be set at the fastest rate category.  This was 

done by first selecting all sites with the most conserved category and determining whether or not 

this accounted for at least 10% of the sequence.  If not, we iteratively added the next most 

conserved rate category until at least 10% of the sequence was selected.  We then split all other 

sites into two equal categories and set their evolutionary rate to either the fastest rate category or 

twice the fastest rate category to simulate positive selection.  We then evolved this sequence 

along the branch for 0, 5, 10, or 20 million years.  After this “burst” of evolution, we set all sites 

back to their original rates.  Sites which were a result of insertions throughout this process were 

assigned the average rate of the protein, which is the rule of the ROSE program.  Once this burst 

of evolution was complete, we then randomly selected 2/3 of sites by randomly selecting 5-

amino-acid chunks of the gene.  The remaining 1/3 of sites then had their relative rates shuffled, 
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allowing some conserved sites to become non-conserved, and visa-versa.  After this shuffling, 

the simulation of evolution was allowed to complete. 

 

For the second set of neofunctionalization models (Figure D-1C), termed “neofunctionalization, 

all sites”, we made two changes.  First, we selected all sites as opposed to <=90% of sites for the 

burst of evolution which lasted 0, 5, 10, or 20 million years.  Second, after the burst of evolution 

was completed and all sites had been set back to their original rate categories, we shuffled the 

rate categories of all sites, rather than just a select 1/3 of sites.  

 

For the subfunctionalization models (Figure D-1D), we made two copies of the sequence 

immediately after the human-urochordata split, and these two copies were the only two 

considered afterwards (i.e. we did not consider the original third copy from the base simulation).  

In each of the two copies, we selected 1/3 of sites and set these sites to the maximum rate of the 

protein, to simulate neutral evolution of those sites.  There were four simulations in total, 

because we could either allow overlap between the sites selected in the two genes, or not, and we 

could also allow the most conserved rate category sites to be selected or not.  When disallowing 

the most conserved rate category from being selected, we selected 1/3 of the remaining sites, not 

all sites.  This is because for some genes the most conserved rate category makes up more than 

1/3 of the gene’s length, meaning that the two genes could not select 1/3 of all sites in a non-

overlapping manner.  When selection of sites was allowed to overlap between the two genes, no 

amount of overlap was forced, but random selection allowed for overlap to occur.  After setting 

the appropriate sites to the average rate of the protein, the simulation of evolution was allowed to 

complete. 
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Phylostratigraphy of simulated sequences 

 

After completing the simulation of evolution, we constructed two databases of sequences for 

subsequent phylostratigraphy in each of our 13 simulations.  The first of the two databases 

contained all genes that belonged to the human group, two copies of each gene.  The second 

database contained the genes for all other species.  In the species “Bacteria”, “Arabidopsis”, 

“Fungi”, “Choanoflagellida”, “Porifera”, “Cnidaria”, “Protostomia”, “Echinodermata”, 

“Cephalochordata”, and “Urochordata”, this was one copy of each gene.  For the species 

“Lamprey”, “Actinopterygii”, “Xenopus”, “Chicken”, “Opossum”, “Elephant”, “Cow”, and 

“Rat”, this was two daughter copies for each gene.  All genes were labelled with their 

appropriate species name to keep clear which species each particular gene came from during 

further analysis.  We used BLASTP (Madden & Morgulis, 2009) with default settings and an 

evalue of 0.001 to search for human homologs among the species.  A gene’s phylostratigraphic 

age was assigned as the age of the most recent common ancestor between human and the furthest 

species in which a homolog was found. 

 

Paralog control 

 

We performed a BLASTP search using the simulated human sequences as both query and target 

with an E-value of 0.001, and evaluated whether genes identified paralogs.  When reciprocal hits 

(not necessarily reciprocal best-hits) were identified, these genes were considered paralogs.  

While phylostratigraphic analysis does not commonly control for paralogs, it is necessary to 
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consider the potential controls available.  We considered three methods for dealing with 

paralogs, and the results of each (Figure D-2). 

 

First, one can take no actions based on paralogy relationships, and assign all genes an age based 

on where they found hits in the target database.  This is identical to performing no paralog search 

at all.  Second, one could assign both sequences to the oldest age of the two paralogous hits, 

counting the emergence of two sequences, but equating their age.  Finally, one could count all 

sequences as only one sequence emergence, based on their detectable paralogy, and assign that 

one sequence to the oldest age among the paralogs.  We regard this final method as the ideal 

method for controlling for paralogs, as it respects the idea of novel sequence emergence (based 

on detectable homologs) to the greatest degree. 

 

Phylostratigraphy of real sequences 

 

We took the 4942 human sequences from orthomam and performed a BLASTP search against 

the NCBI non-redundant protein database with an e-value cutoff of 0.001.  We converted GI 

numbers of hits to corresponding taxon names.  We then acquired taxon lists corresponding to 

the following classifications:  Primate, Euarchontoglires, Boreouthera, Eutheria, Mammalia, 

Amniotes, Tetrapoda, Gnathostomata, Vertebrata, Chordata, Bilateria, Eumetazoa, Opisthokonta, 

and Eukaryota.  We identified the number of genes which were restricted to each of these 

categories, cumulatively (that is, those genes which are primate-specific are also, by definition, 

eukaryote-specific).  We also performed a paralog correction for these genes, as described for 

simulated genes, with paralogs being placed in the oldest age category among reciprocal hits.  

However, we counted the age of each of the two as a separate sequence birth, because we were 
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unable to distinguish the precise relationship of these two genes (as we were able to do in our 

simulation).  Thus, the number of orphan genes for the real dataset is potentially inflated, making 

our results conservative. 

 

Comparison of real and simulated phylostratigraphy 

 

We took our simulated gene ages (after one of three paralog corrections), and classified them 

into these bins as well, based upon the taxa we simulated.  The following classifications were 

made:  Human was classified as Primate; Human to Rat was classified as Euarchontoglires; 

Human to Cow was classified as Boreouthera; Human to Elephant was classified as Eutheria; 

Human to Opossum was classified as Mammalia; Human to Chicken was classified as Amniotes; 

Human to Xenopus was classified as Tetrapoda; Human to Actinopterygii was classified as 

Gnathostomata; Human to Urochordata was classified as Vertebrata; Human to Echinodermata 

was classified as Chrodata; Human to Protostomia was classified as Bilateria; Human to 

Choanoflagellida was classified as Eumetazoa;  Human to Fungi was classified as Opisthokonta;  

Human to Arabidopsis was classified as Eukaryota.  We then compared the numbers, which gave 

us an estimate of the number of taxonomically-restricted genes attributable to error and 

duplication among this gene set.  Because the result of our duplications in simulation and the 

paralogy correction of each set cause different absolute numbers of genes in each of the real and 

simulated data, with the real data always having fewer effective genes than simulated data, we 

normalized the total number of sequences in our simulation (after any paralog correction) to the 

total number of sequences in real phylostratigraphy (after any paralog correction). 
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Results 
 

Simulation of gene duplication 

 

We acquired 4942 aligned gene sequences from 14 mammalian species diverged approximately 

90 MYA (Hedges et al., 2006; Ranwez et al., 2007).  From this information, we were able to 

infer evolutionary rate and rate heterogeneity information using TreePuzzle (Schmidt et al., 

2002).  We then simulated the evolution of each gene according to previously-described methods 

through a subset of the tree of life (Figure 6-1A) (Moyers & Zhang, 2015, 2016).  In order to 

assure that our results were approximately conservative, we compared the genetic distance 

between human and mouse orthologs in both real and simulated proteins (Figure 6-1B) and saw 

that our simulation of evolution correlated well with observed data. 

 

Just after the split between Humans and Urochordata, we simulated a duplication for each gene 

in the dataset (Figure 6-1A, asterisk).  While it is known that after duplication one copy typically 

evolves more quickly than the other (Pegueroles, Laurie, & Alba, 2013), the precise molecular 

dynamics are not clear.  Because the molecular dynamics of evolution after a duplication are not 

well understood, we performed 13 simulations of duplication, each with different assumptions 

(Figure D-1A, D-1B, D-1C, D-1D). 

 

In the first of these simulations, dubbed “baseline”, we created two protein copies at the node of 

duplication with the sequence and evolutionary rate patterns that existed at that node.  We did 

not change any of the molecular dynamics for either copy (Figure D-1A).  We regard this as a 
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baseline duplication as it makes very few assumptions about the molecular dynamics after gene 

duplication—it assumes that they do not change.   

 

In the next set of simulations, dubbed “Neofuctionalization”, we first duplicate the gene, and 

then modify the dynamics of one of the two copies (Figure D-1B).  First, we create a burst of 

evolution for 20, 10, 5, or 0 MY.  This burst is performed by selecting at most 90% of sites 

(progressively excluding the most conserved sites until 90% or fewer of sites are excluded).  We 

then set half of these sites to the maximum rate, and half to twice the maximum rate for the 

duration of the burst.  After the burst of evolution, the sites are then returned to their original 

rate.  We then select 1/3 of sites, excluding the most conserved category, and shuffle their rate 

category to simulate a change in function.   

 

In the above set of neofunctionalization simulations, it might be argued that the simulations are 

too conservative.  And, given that we are interested in probing a range of molecular dynamics for 

duplication, including more extreme simulations seems reasonable.  We therefore performed a 

separate set of neofunctionalization simulations (Figure D-1C).  In these simulations, the pattern 

followed the above description, but during the burst of evolution all sites were selected for the 

burst.  Then, after the burst of evolution, the rate categories were returned to their original and all 

sites were shuffled.  This simulation is meant to represent an extreme case in which all function 

is entirely lost and a new, unrelated function is then gained after the burst of evolution. 

 

Our last category of simulations corresponds to “subfuctionalization.”  In this simulation, we 

duplicated the gene, and then selected a subset of sites in each of the two daughter genes, setting 
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them to the maximum evolutionary rate of the genes (Figure D-1D).  We performed four 

modifications of this: one in which conserved sites could not be selected, and the two genes did 

not overlap in their selected sites; one in which conserved sites could not be selected and the two 

genes were allowed to overlap in their selected sites; one in which conserved sites could be 

selected and the two genes were not allowed to overlap in their selected sites; and one in which 

conserved sites could be selected and the two genes were allowed to overlap in their selected 

sites.  This simulation mimics the idea that upon duplication restrictions on some sites are 

loosened to allow specialization for an alternate function and relaxation of other functional 

constraints. 

 

We then performed phylostratigraphy (Domazet-Lošo et al., 2007) on these simulated genes, 

using all human genes as the queries and a database consisting of all other genes as the target.  

As in typical phylostratigraphic analyses, we did not distinguish between true positive and false 

positive hits, as it is difficult or impossible to determine them through phylostratigraphy in real 

contexts, and false positives contribute minimally if at all to such analyses (Chapter 5).  If a 

significant hit was found, it was considered to be true.  Depending on the particular duplication 

model used, we found that among our 4942 (9884 after duplication) genes, simulation of 

duplication produced 632-1020 genes out of 9884 genes (6.4%-10.3%) which were counted as 

novel either due to general divergence (homology detection error) or duplication-divergence 

(Figure 6-2) when no corrections for paralogs are made.   Dynamics of error were dependent 

upon the particular model of duplication, but were consistent with expectations—those models 

which had more extreme divergence produced a greater numbers of novel sequences.  For the 

remainder of the paper, we consider only the most extreme version of each of the four models 
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(baseline, neofuctionalization with 20MY burst, neofunctionalization all sites with 20MY burst, 

subfunctionalization allowing conserved sites and no overlap between the sites selected in the 

two paralogs).   

 

Identification of Novel Sequences 

 

In order to determine the relative contributions of homology detection error and duplication-

divergence models, we identified novel sequences.  In phylostratigraphy, novel sequences are 

those that do not have a homolog in the oldest age category.  When duplication has occurred, 

paralog correction can have an effect on the inferred number of inferred novel sequences (Figure 

D-2).  We therefore investigated the number of novel sequences in our duplication under no 

correction (method 1, Figure D-3), a strictly age-based correction (method 2, Figure D-4), and a 

full correction of both age and number (method 3, Figure 6-3).  We note that in the 

neofunctionalization models, we expect one paralog to behave in a substantially different way 

than the other, whereas in the baseline and subfunctionalization models we expect the two 

paralogs to have similar dynamics (Figure 6-2).  We therefore analyzed all four models one of 

the two sets of paralogs, and in the neofunctionalization cases we analyzed those paralogs that 

had undergone a special model of evolution with a burst and shuffling of sites. 

 

Looking at the two paralog sets together, we identify 334-832 novel sequences (Figure 6-3).  The 

true age of the novel sequences generated by duplicated genes should be in Lamprey, based on 

the time of our duplication (Figure 6-1).  It could be argued that some of these novel sequences 

require time to arise beyond that due to divergence after duplication, so we can consider any 

gene whose age is younger than lamprey as a reasonable novel sequence arising as a result of a 
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duplication.  However, we found that many sequences were dated to an age older than the time 

of sequence divergence even after a full paralog correction; they could not detect a paralog and 

yet were dated as older than lamprey.  For the second paralog, this corresponded to 8% of novel 

sequences in the baseline simulation, 16% of genes in the neofunctionalized simulation, 12% of 

genes in the neofunctionalized all sites simulation, and 79% of genes in the subfunctionalized 

simulation.  These sequences are therefore dated as being older than the event which created 

them.   

 

Comparison to Real Phylostratigraphy 

 

Our goal was to assess the relative contribution of divergence and duplication-divergence to 

novel sequences, and thus indirectly approach the contribution of de novo gene birth to novel 

sequence formation.  This required performing real phylostratigraphy on the same set of 4942 

genes in our dataset, and a more realistic distribution of duplication in our simulation. 

 

First, we ran another simulation with a whole-genome duplication every 200 MY using the 

subfunctionalization (condition 3), and performed phylostratigraphy separately for each 

duplication event.  It is known that not all genes survive duplication, and many duplicates are 

removed from the genome or pseudogenized.  So, to assess the percentage of genes which are 

duplicated and survive every 200 MY, we downloaded protein databases for human, mouse, and 

chicken.  We restricted each database to only the longest of all alternative splice forms.  We then 

performed two BLAST searches using Human as query and the combination of either human and 

mouse or human and chicken as the target.  For each of the BLAST searches, we reasoned that if 

the top (non-self) hit was a human protein, this was indicative of a duplication having occurred.  
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We were thus able to determine how many duplications had occurred since the split of human 

and mouse (~90MYA) and since the split of human and chicken (~320MYA).  We found that 

5618/22109 proteins were duplicates after the human-mouse divergence, and 8086/22109 

proteins were duplicates after the human-chicken split.  Because a single duplication is likely to 

result in two genes that have this property, we divided each of these numbers by 2.  The 

percentage of genes which were duplicated every 230MY was therefore 1234/22109 genes.  This 

implies that every 200M, the number is approximately 1073/22109, or 4.85%.  We therefore 

determined the number of novel sequences from duplications in each age by summing the 

number of novel sequences attributable to duplication from all of our sequential 200MY 

duplication events and taking 5% of their total.  For novel sequences not attributable to 

duplications, we simply took the average over the 12 duplications (Figure 6-4A).   

 

Next, we wished to compare these numbers of novel sequences to the number of true novel 

sequences in each age, as determined by phylostratigraphy.  We took the original human 

sequences of the 4942 genes we began with and performed a BLASTP search against the NCBI 

non-redundant database.  We further performed a self-BLAST of the original human sequence 

database, as we had done with our simulated sequences, which allowed us to perform paralog 

corrections (Figure D-2, method 3).  We then grouped these genes as being specific to primates, 

mammals, chordates, etc. (see methods).  We similarly grouped the genes which fell into each 

age category based on our simulations, either excluding (red line) or including (blue line) genes 

from duplication (Figure 6-4B, Table 1).  Note that after paralog correction, our simulation 

produced many more genes than real phylostratigraphy.  To account for this, we normalized our 



 184 

simulations to contain in total the same number of genes after paralog correction as real 

phylostratigraphy (see methods).   

  

We find that for closely-restricted taxa (primates to boreouthera), all species-specific genes are 

attributable to error.  However this is because no genes in the dataset are considered lineage 

specific under real phylostratigraphy until the taxonomy is considered out to boreouthera, at 

which point one of the 4942 genes is considered lineage specific.  Therefore, in this particular 

dataset, it is best to consider estimates only for eutherians (105 MYA) and beyond.   

 

We find that when not including duplications, the percent of taxonomically-restricted genes 

attributable to homology detection error ranges from 8.7% to 18.9%, with a typical value being 

somewhat stably around 14%, congruent with previous estimates (Chapters 2, 3, 4).  When 

considering error and duplications in conjunction, we find that these numbers range from 11.1% 

to as high as 37.5%, with a typical value being around 21%.  However, it is clear from this data 

that a non-negligible portion of orphan genes are not attributable to the combined effects of 

homology detection error or duplication-divergence.  When using other methods for paralog 

correction, these results do not differ substantially (Figures D-5 and D-6, Tables D-1 and D-2). 

 

The ratio of orphan genes attributable to duplication and those due to error remains relatively 

stable around 0.5 (Table 1).  This suggests that under our conditions duplications consistently 

contribute half as many novel sequences as general divergence. Of course, changes in the 

assumptions of duplication model and frequency would affect this estimate.  But the fact that a 

somewhat extreme model of duplication cannot account for as many sequences as general 
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divergence (homology detection error) suggests that homology detection error is a major 

contributor to phylostratigraphic findings and trends, and should be seriously considered in any 

phylostratigraphic study. 

 

Discussion 
 

Estimates of the lineage specific genes are influenced by several factors, including duplication 

rate, changes in functional constraint, de novo gene birth, and homology detection error.  

Because the specific dynamics of de novo gene birth and supposed sudden sequence shifts due to 

change in functional constraint are unknown, it is difficult to directly estimate their contribution. 

However, because divergence and duplications are better understood, it is possible to investigate 

these rates directly and other rates indirectly.  Additionally, the relationship between orphan-

gene status and gene age is unclear.   

 

Here, we have performed the first investigation into the relative contributions of these three 

sources to orphan gene formation.  We have simulated the evolution of 4942 human genes, 

including a duplication of each gene individually.  We demonstrate that while homology 

detection error and duplication-divergence are non-negligible contributors to the number of 

orphan genes observed, other mechanisms appar to contribute a non-negligible proportion of 

orphan genes.  However, the contribution of homology detection error and duplication vary 

depending on the particular taxon restricted to.  It is therefore impossible to precisely determine 

the contribution of each of these sources at any particular internal branch, and thus estimating 

rates of de novo gene formation and fixation via phylostratigraphy is difficult, as there are few 
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ways to distinguish this mechanism from others.  Still, the long-term contributions appear to be 

relatively stable. 

 

We also find that, whether or not any attempt is made to control for paralogs, homology 

detection error contributes more to orphan genes than does a duplication-divergence mechanism 

(Table 6-1, Tables D-1 and D-2).  Given that other researchers have pointed to rapid divergence 

as being a major contributor to phylostratigraphy (Domazet-Lošo et al., 2016), this implies that 

homology detection error cannot be ignored as a contributor to novel sequence formation and 

therefore phylostratigraphic trends.  Duplications would need to be over twice as frequent or 

substantially more extreme in order for them to be a greater contributor to novel sequence 

formation than homology detection error. 

 

We have also established that there is little relationship between age based on historical 

homology and age based on orphan gene status.  It was previously known that homology 

detection error can create the appearance that genes are phylostratigraphically younger than they 

are on the basis of historical homology.  In this study, we have demonstrated that “novel 

sequences” can actually appear to be older than their date of emergence, based on the fact that 

genetic distance does not correctly recapitulate phylogeny (Smith & Pease, 2016).  Though they 

are unable to detect their human paralogs, human duplicate genes were found to be older than 

their time of duplication on the basis of phylostratigraphy (Figure 6-3).  Therefore, 

phylostratigraphic age is biologically and evolutionarily meaningless, as the age of novel 

sequences has little bearing on their actual age and sequences can be dated as being both much 

older and much younger than their actual age.  While we were unable to simulate de novo gene 
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birth due to a lack of information about the dynamics of their evolution, we note that these are 

highly likely to be dated as younger than their actual time of emergence, as they are generally 

thought to be short and fast-evolving, two traits which are associated with homology detection 

error (Moyers and Zhang 2015, chapter 5).  It is also likely that “novel genes” formed through 

sudden shifts in sequence space would demonstrate the same problem as some duplicate genes, 

i.e. finding detectable homologs which are older than the timing of the proposed sudden shift in 

sequence space. 

 

There are a number of limitations to our study, but we do not regard these as problems for our 

arguments.  It might be argued that we have only simulated the evolution of one quarter of 

human genes, and therefore our dataset is not representative of actual biological patterns. This is 

not a meaningful argument, as we restricted our comparison of simulated and real 

phylostratigraphy to the same set of genes, and therefore the results are representative of the 

dataset in question.  Furthermore, there is no reason to think that our results would change were 

it possible to simulate the remaining three quarters of human genes (Chapter 5).  Those genes 

that we did not simulate the evolution of were not simulated because there was insufficient 

data—i.e., they did not have sufficient detectable homologs in the species in question (See 

methods).  In theory, genes with fewer detectable homologs are expected to be shorter and faster-

evolving, which gives them a greater propensity for error.  Therefore, arguments that a more 

complete study of orphan genes under our methodology would change the broad strokes of our 

conclusions are likely incorrect.  In fact, it is likely that the contribution of homology detection 

error to novel sequence formation in these cases would increase, as previously suggested 

(Chapter 5). 
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One might also argue that our simulation of duplication is inaccurate.  First, our simulations 

could be inaccurate in the model of duplication used, either being too extreme or too 

conservative. We have simulated a wide range of models, and compared the novel sequences 

produced by the most extreme model with real phylostratigraphy to estimate the contributions of 

duplications.  Under even this extreme model, other mechanisms appear to be large contributors.  

Therefore, our main conclusion that de novo gene birth is a non-negligible contributor to novel 

sequence formation is unaffected.  Second, we could be simulating too much duplication or too 

little.  While we estimated the number of duplications per 200 million years, it is possible that 

this rate is variable over time.  Of course, greater or lower amounts of gene duplication have 

predictable effects on our results. Our method also did not incorporate the effects of whole 

genome duplication (Figure 6-4), which is known to occur.  While there are estimates of the 

numbers of genes that survive after such an event they can vary widely by species, even within 

the same event (Mcgrath, Gout, Johri, Doak, & Lynch, 2014).  Therefore, further study into the 

frequency of duplications and whole genome duplications can be included in later studies. 

However, based on these considerations it is possible that we underestimate the contribution of 

duplications.  

 

It may be claimed that our results are in congruence with those of Carvunis et al (2012), despite 

our previous study contradicting their results (Moyers and Zhang 2016).  These results are not in 

conflict with our previous study.  The methods used in Carvunis et al 2012 are biased to produce 

patterns according to their expectations as they do not account for error (Chapter 5).  Because the 

primary support for their model of frequent de novo gene birth was fundamentally the trends 
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with gene age, the bias created by phylostratigraphic error confounds their findings.  In contrast, 

we here perform an error-aware analysis using models that consider various contributions to 

apparent orphan gene formation, and compare these to real orphan genes.  Though the 

conclusions of the present study and Carvunis are similar, they use fundamentally different 

evidences, and our previous criticisms of the work of Carvunis et al remain. 

 

The study of orphan genes is an interesting subject, because it may provide information about 

how species are specialized.  While it is clear from our experiment that de novo gene birth is a 

major contributor to novel sequences, further analyses are required to identify a sequence as de 

novo (Knowels and McLysaght 2009).  Additionally, ages assigned by phylostratigraphic study 

of orphan genes are not evolutionarily meaningful, whatever their use in comparative studies of 

active genes.  This study further delineates areas in which phylostratigraphy is and is not a useful 

and meaningful tool for biological analyses. 
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A        B 

  
Figure 6- 1 Simulation of evolution 

(A) The tree through which we simulated evolution, with proportional branch lengths.  Asterisk denotes the time of 

duplication event.  (B) Comparison of real and simulated sequence divergence between human and rat proteins for 

all proteins in the simulation.  Spearman’s Rho and the associated p-value are reported. 
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A      B 

  

C      D 

  

Figure 6- 2 Percentage of genes lacking a homolog in each phylostratum 

(A) Baseline, (B) Neofunctionalized, (C) Neofunctionalized, All Sites, and (D) Subfunctionalized. 
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A      B 

  

C      D 

 

Figure 6- 3 Number of novel sequences at each age 

Number of novel sequences at each apparent age when the age and number of sequences have been corrected with 

respect to paralogs (method 3).  Dark grey bars denote the first of the two paralogs, while light grey bars denote the 

second of the two paralogs.  Note that we do not display genes mapped to bacteria for dark grey bars, for scaling 

purposes.  In the two neofunctionalization simulations, the second of the two paralogs is the paralog which 

underwent a burst of evolution and subsequent shuffling of rates.  We include here a count for the number of genes 

at each age, for each of the two paralogs.  (A) Baseline; paralog 1: c(1, 0, 0, 0, 4, 2, 1, 10, 15, 8, 4, 7, 7, 10, 4, 30, 26, 

171, 4642), paralog 2: c(1, 1, 1, 0, 4, 3, 7, 5, 9, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0).  (B) Neofunctionalization; paralog 1: c(1, 

0, 0, 0, 4, 2, 4, 11, 30, 3, 5, 7, 4, 15, 3, 39, 34, 160, 4620), paralog2: c(0, 0, 0, 1, 5, 2, 4, 14, 64, 5, 2, 2, 3, 1, 0, 2, 1, 

0, 1).  (C) Neofunctionalization, all sites; paralog 1: c(1, 0, 0, 0, 4, 2, 1, 10, 28, 3, 3, 9, 6, 12, 9, 37, 35, 168, 4614), 

paralog 2: c(1, 0, 0, 0, 4, 7, 0, 13, 146, 7, 3, 5, 6, 2, 0, 1, 0, 0, 0).  (D) Subfunctionalization; paralog 1: c(1, 0, 0, 1, 
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13, 11, 17, 33, 39, 8, 7, 15, 17, 21, 20, 58, 40, 161, 4480), paralog 2: c(1, 0, 0, 2, 14, 12, 18, 35, 25, 11, 10, 15, 14, 

22, 18, 46, 28, 99, 142). 
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A      B 

  

Figure 6- 4 Results of regular small duplications under a subfunctionalization model 

(A) Number of genes in each age category in the simulation after paralog correction (method 3).  The numbers of 

genes in each bin are as follows, rounded up to the nearest whole number.  Paralog1: c(1, 0, 1, 1, 1, 7, 6, 7, 26, 24, 7, 

8, 11, 16, 18, 16, 61, 50, 217, 4474).  Paralog2: c(1, 0, 0, 1, 1, 4, 4, 4, 15, 14, 3, 4, 6, 8, 11, 10, 30, 25, 95, 221)  (B)  

The percent of orphan genes which are attributable to general error and to duplication under this model. 
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Table 6- 1 Numbers of genes in real and simulated phylostratigraphy, rounded to the nearest 

whole gene 

Div Time (MYA) Real orphans Simulated Orphans 
(with dups) 

Percent attributable to 
error (error+dups) 

Dups/Error 

85 0 1 (1) 100 (100) 0 

90 0 1 (1) 100 (100) 0 

97 1 1 (1) 100 (100) 0 

105 9 1 (1) 11.11 (11.11) 0 

164 16 4 (6) 25 (37.5) 0.5 

320 40 7 (10) 17.5 (25) 0.43 

356 53 10 (15) 18.87 (28.30) 0.5 

429 253 22 (34) 8.70 (13.44) 0.55 

631 260 36 (55) 13.85 (21.15) 0.53 

733 292 45 (69) 15.41 (23.63) 0.53 

847 466 52 (79) 11.16 (16.95) 0.52 

936 601 97 (147) 16.14 (24.46) 0.52 

1303 901 120 (183) 13.32 (20.31) 0.53 

1514 1628 223 (330) 13.70 (20.27) 0.48 
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Chapter 7 

Conclusions and Future Directions 

“I have no doubt that in reality the future will be vastly more surprising than anything I can 

imagine.  Now my own suspicion is that the Universe is not only queerer than we suppose, but 

queerer than we can suppose.” 

- J. B. S. Haldane, 1927 

Phylostratigraphy as a method has given us a new tool to investigate the molecular relationships 

between species and the nature of biological diversity.  However, because it is based on tools 

with known limitations (Albà & Castresana, 2007; Elhaik, Sabath, & Graur, 2006; Moyers & 

Zhang, 2015, 2016; Rost, 1999; Smith & Pease, 2016), this method does have a problem with 

homology detection error.  Whether this error is seen as a problem with the method (Chapters 2 

and 3) or as a contributor to novel sequences and biological innovation (Chapters 4 and 5), it is 

clear that the influence of these errors on phylostratigraphic analysis cannot be ignored.  This is 

made clear by the fact that the errors are nonrandom (Chapters 2 and 5) and can substantially 

influence phylostratigraphic findings (Chapters 2, 3, and 4).   

 

It is generally understood that in science a theory or method is only overturned when it can be 

replaced with a theory of greater accuracy and explanatory power (Kuhn, 1996).  I have here 

developed and applied a method for improving upon phylostratigraphic analysis to produce new 

biological insights (Chapters 5 and 6).  In even minor scientific revolutions, the replacement of a 

paradigm opens up new avenues for research and discovery.  Below I discuss the major 

outstanding problems for phylostratigraphy which should be addressed in the future. 
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Clarification of the definition of novels sequences 

It has been argued that phylostratigraphy is a method for identifying novel sequences (Domazet-

Lošo et al., 2016; Domazet-Lošo, Brajkovic, & Tautz, 2007).  This definition differs in an 

important way from the concept of a historical homolog, i.e. sequences which are derived from a 

common ancestral sequence.  The accepted way of identifying such sequences is through the use 

of a homology detection program, such as BLASTP.  However, the developers of this method 

recognize that there are at least two ways in which these tools can fail to reproduce their idea of a 

novel sequence.  They can either 1) fail to identify a homologous relationship which they 

consider to not represent a novel sequence or 2) identify a homologous relationship between two 

historically homologous proteins which they regard as two novel sequences.  This highlights a 

key failure in the definition: there is as of yet no independent measure and definition for novel 

sequences.  Future directions will require clarification of this concept. 

 

Improved simulation of molecular evolution 

Our assessment of the accuracy of phylostratigraphy and the capabilities of homology detection 

tools has been based on ROSE (Random mOdel of Sequence Evolution) (Stoye, Evers, & Meyer, 

1998), because it allows precise assignment of rate heterogeneity parameters along a sequence 

and modification of indel frequency and size.  However, this tool has several limitations for 

application to this problem.  It is unable to respect functional constraints in nucleotide sequence 

evolution, allowing the creation of stop codons and destruction of start codons.  It also does not 

simulate characteristics which are important for the use of some homology detection tools, such 

as the structure of a resulting protein.  Future work will require more accurate models of 
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sequence and structural evolution for a better understanding of both evolutionary trends and the 

assessment of homology detection tools.  This is an active area of research, with many exciting 

avenues being explored (Arenas, 2012; Carvajal-rodríguez, 2010). 

 

Related to the ability to simulate diverse evolutionary parameters is the necessary ability to 

determine those parameters accurately.  Most pointedly, understanding the dynamics of how de 

novo genes mature is a key problem which will require the collection of large numbers of well-

curated examples of de novo gene birth of varying ages.  While some phylostratigraphic studies 

have purported to do this (Carvunis et al., 2012; Neme & Tautz, 2013), we have demonstrated 

that these studies are subject to error (Chapters 4 and 5) and that these studies cannot distinguish 

between different contributors of novel sequences (Chapter 6).  Important reviews have been 

written outlining some of the challenges on this front (Mclysaght & Hurst, 2016; Schlotterer, 

2015). 

 

In addition to this problem, there are several other evolutionary events, parameters, and trends 

which require further elucidation.  Though we have performed an initial probe into this realm 

(Chapter 6), further research is needed into the relative contributions of homology detection 

error, duplication, and de novo gene birth to novel sequence formation, as well as consideration 

of other potential mechanisms for novel sequence formation.  Because our work has been 

criticized for not respecting lineage-specific evolutionary rates (Domazet-Lošo et al., 2016), 

further characterization of rate heterogeneity among branches is required.  Additionally, 

Domazet-Loso et al (2016) noted that changes in functional constraints may be a driver for novel 
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sequence formation, but it is not clear how frequently such events occur nor how drastic their 

effects on sequence divergence are. 

 

Conservative methodology and novel biological insight 

Our error-aware phylostratigraphic methods are clearly a generally conservative method, as they 

require evidence of the non-error-prone status of a gene for inclusion in phylostratigraphic study.  

One might argue that this method is too stringent, and that it discards many sequences which are 

not error-prone for lack of evidence.  That may well be true, but conservative methodology is 

generally accepted as a positive quality of scientific tests.  It is much better to fail to reject the 

null when an effect exists than reject the null when an effect does not exist.  This is therefore a 

more appropriate method.  As our ability to simulate molecular evolution improves, we expect 

that more sequences can be confidently included in phylostratigraphy, and biological signal can 

be rescued. 

 

It bears emphasizing that this conservative methodology has produced novel biological insight, 

as demonstrated in chapters 5 and 6.  In chapter 5, we demonstrated that two well-established 

phylostratigraphic trends were not found to be true—the relationship between age and length was 

reversed compared to previous findings, and the relationship between age and evolutionary rate 

was found to be non-existent.  One might argue that by being so restrictive with our dataset, we 

have removed real biological signal and these results are only due to the particular kinds of genes 

that we are able to simulate.  Even if this argument is true, this still provides an interesting 

biological insight.  By binning data in relevant ways, one can show that an average trend in the 

data may not hold true for all subsets of the data.  If that is occurring in this case, we might find 
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that increases of length with gene age are not true for all subsets.  It could be the case, for 

instance, that truly young genes do have a relatively rapid increase in length to allow 

specialization for their selected function.  In this hypothetical scenario, once a gene has reached a 

length sufficient to allow it to specialize for its function, selection could drive the gene toward 

pruning its length—by having a shorter length, there are fewer potential sites for mutation which 

could cause the protein to lose its function, and a shorter length of a gene also has less of an 

energetic burden to express the gene.  Therefore, even if one argues that our methodology is too 

conservative, it is still the case that this approach can provide novel biological insight by binning 

of genes into relevant categories—i.e. those that have some baseline level of conservation, and 

those which do not. 

 

Broader Implications 

The research here conducted has bearing only for dating the emergence of sequences based on 

homology, and downstream analyses.  However, its logic is potentially further reaching.  

Fundamentally, we note that the use of homology to determine the age of sequences can produce 

a false estimate of that sequence’s date of emergence, typically an underestimate due to a false 

negative error.  Evolutionary biologists are interested in the emergence of several kinds of 

features, though, including large structural phenotypes.  If one uses homology of some 

phenotype to estimate the date of emergence for that phenotype, one may similarly estimate the 

phenotype as having emerged more recently than it actually did.  As an instructive example, if 

one were to estimate the date of the emergence of feathers, they might use the most recent 

common ancestor of birds and the approximate time that it existed to date the emergence of 

feathers.  However, recent evidence has suggested that feathers existed outside of the dinosaur 
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lineage which lead to birds (Godefroit et al., 2014), suggesting a significantly older date for 

feathers may exist.  This emphasizes that the issues approached in this thesis have broad, if 

tenuous, implications for larger areas of evolutionary biology. 

 

Reassessment of phylostratigraphic trends 

We have demonstrated clearly the homology detection error, because it is biased, influences 

phylostratigraphic trends (Chapters 2 and 3), and that this kind of error disproportionately affects 

reported trends (Chapter 4).  We have further offered a method which accounts for this error, and 

demonstrated that it can offer novel biological insight (Chapters 5 and 6).  We encourage the 

community of researchers using phylostratigraphy to reassess previous findings in light of this 

new method, and to improve upon it.  The current method of assessing the error-prone status of 

genes can assess far fewer than all genes in a given species.  This means that large numbers of 

genes cannot be considered in error-aware phylostratigraphy.  Future work should focus on 

attempting to assess the error-prone status of these genes for the clearer inference of evolutionary 

trends. 
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Appendix A 

Supplementary Figures and Tables for Chapter 3 

 

 

 
Figure A- 1 Comparison of real and simulated genetic distances 

Correlation between distances estimated from real sequences and estimated from simulated sequences for 5259 genes 

between S. cerevisiae and S. bayanus.  Genetic distance was estimated by the maximum likelihood method in 

TreePuzzle.  Pearson’s correlation coefficient (R) and associate P-value are indicated.  The diagonal is shown by a red 

line. 
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B 

 
Figure A- 2 Sampling evolutionary rates for apparently young proteins 

(A) Hypothetical creation of vectors corresponding to evolutionary rates and rate heterogeneity of a protein found in 

all sensu stricto yeast species but not in other yeast species.  Evolutionary rate for a given site is the product of the 

rate category of that site and the protein evolutionary rate.  (B) Concatenation of vectors corresponding to site-specific 

evolutionary rates of proteins which are found in the five sensu stricto species of yeast, but not in other species.  This 

vector is then made into a ring by connecting the two ends.  (C) Example of sampling of site-specific evolutionary 

rates for a protein of length X.  A random location (Y) along the ring vector is selected as the start of this protein.  

Afterwards, a location Y+X is identified.  All sites in the vector are then copied to serve as the evolutionary rate 

information for the apparently young protein of interest. 

  

Y 

Y+X 
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Table A- 1 Correlations between various gene properties known to bias phylostratigraphy using 

gene ages 0-10 

 Evolutionary 

rate 

ORF 

length 

Expression 

level 

Transcription factor 

binding sites 

-0.09* 0.03** 0.09** 

Codon adaptation 

index 

-0.33** 0.04** 0.03** 

Optimal AUG context -0.14** 0.04** 0.06** 

Purifying selection -0.22** 0.47** 0.17** 

Mean hydropathicity 0.03* -0.14** -0.10** 

Percent in disordered 

regions 

0.05* 0.13** 0.01 

Percent in 

transmembrane 

regions 

0.07* -0.07* -0.07* 

Genetic coregulation -0.10** 0.03* 0.07* 

Number of 

transcription factors 

-0.07* 0.02* 0.02* 

Feed-forward loops -0.07* 0.02 0.03* 

Percent alpha helices -0.05* -0.07* 0.09** 

Percent beta sheets -0.01 -0.22** 0.02* 

Aggregation 

propensity 

0.05* -0.06* -0.11** 

Protein-protein 

interactions 

-0.23** 0.11** 0.15** 

Genetic interactions -0.11** 0.11** 0.04* 

Average epistasis -0.12** 0.05* 0.10** 
* P < 0.05; ** P < 1E-16. 
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Appendix B 

Supplementary Figures and Tables for Chapter 4 

A       B 

  
C 

 
Figure B- 1 Gene number in each phylostratum by disease status 

Note that the y-axis is plotted in log10 scale.  (A) All genes (black, Rho=-0.37, p=0.121) and disease-associated genes 

(grey, Rho=-0.81, p=2.49E-5) when no correction for error has been made.  (B) All genes (black, rho=-0.93, p=9.08E-

9) and disease-associated genes (grey, rho=-0.865, p=1.72E-6) when genes have been restricted to non-error-prone 

genes.   (C)  All genes (black, Rho=-0.26, p=0.282) and disease-associated genes (grey, rho=-0.78, p=9.11E-5) 
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A       B 

   
 

Figure B- 2 Reconstruction of drosophila developmental figures 

Reconstruction of figures using (A) all genes or (B) only genes which were simulated and not found to be error-prone.
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Appendix C 

Supplementary Figures and Tables for Chapter 5 

 
Figure C- 1 Length distribution of three protein sets prior to simulation 

The first row shows the length distribution of our Base set.  The second row shows the length distribution of our Size 

Distribution set.  The third row shows the length distribution of our Size Distribution Fast set. 
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Figure C- 2 Evolutionary rate distribution of three protein sets prior to simulation 

The first row shows the evolutionary rate distribution of our Base set.  The second row shows the evolutionary rate 

distribution of our Size Distribution set.  The third row shows the evolutionary rate distribution of our Size Distribution 

Fast set. 

 

  



 214 

 
Figure C- 3 Conserved block size distribution of three protein sets prior to simulation 

The first row shows the conserved block size distribution of our Base set.  The second row shows the conserved block 

size distribution of our Size Distribution set.  The third row shows the conserved block size distribution of our Size 

Distribution Fast set. 
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A      B 

  
C      D 

  
E      F 

  
Figure C- 4 False negative and false positive rates in detecting bacterial homologs for BLASTP 

The left column shows false negative rates while the right column shows false positive rates.  The first row shows the 

results of our Base set, the second row shows the results of our Size Distribution set, and the third row shows the 

results of our Size Distribution Fast set.  (A) False negative rates for Base set.  (B) False positive rates for Base set.  
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(C) False negative rates for Size Distribution set.  (D) False positive rates for Size Distribution set.  (E) False negative 

rates for Size Distribution Fast set.  (F) False positive rates for Size Distribution Fast set. 
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C      D 

  
E      F 

  
Figure C- 5 False negative and false positive rates in detecting bacterial homologs for 

PSIBLAST 
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False negative and false positive rates in detecting Bacterial homologs for all PSIBLAST parameter sets in our three 

simulated sets of proteins.  The left column shows false negative rates while the right column shows false positive 

rates.  The first row shows the results of our Base set, the second row shows the results of our Size Distribution set, 

and the third row shows the results of our Size Distribution Fast set.  (A) False negative rates for Base set.  (B) False 

positive rates for Base set.  (C) False negative rates for Size Distribution set.  (D) False positive rates for Size 

Distribution set.  (E) False negative rates for Size Distribution Fast set.  (F) False positive rates for Size Distribution 

Fast set. 
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C      D 

  
E      F 

  
Figure C- 6 False negative and fals positive rates in detecting bacterial homologs for PHMMER 

The left column shows false negative rates while the right column shows false positive rates.  The first row shows the 

results of our Base set, the second row shows the results of our Size Distribution set, and the third row shows the 
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results of our Size Distribution Fast set.  (A) False negative rates for Base set.  (B) False positive rates for Base set.  

(C) False negative rates for Size Distribution set.  (D) False positive rates for Size Distribution set.  (E) False negative 

rates for Size Distribution Fast set.  (F) False positive rates for Size Distribution Fast set. 
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C      D 
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Figure C- 7 False negative and false positive rates in detecting bacterial homologs for HMMER 

The left column shows false negative rates while the right column shows false positive rates.  The first row shows the 

results of our Base set, the second row shows the results of our Size Distribution set, and the third row shows the 
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results of our Size Distribution Fast set.  (A) False negative rates for Base set.  (B) False positive rates for Base set.  

(C) False negative rates for Size Distribution set.  (D) False positive rates for Size Distribution set.  (E) False negative 

rates for Size Distribution Fast set.  (F) False positive rates for Size Distribution Fast set. 
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Figure C- 8 False negative and false positive rates in detecting bacterial homologs for 

GLAM2Scan 

False negative and false positive rates in detecting Bacterial homologs for GLAM2Scan in our three simulated sets of 

proteins.  The left column shows false negative rates while the right column shows false positive rates.  The first row 

shows the results of our Base set, the second row shows the results of our Size Distribution set, and the third row 
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shows the results of our Size Distribution Fast set.  (A) False negative rates for Base set.  (B) False positive rates for 

Base set.  (C) False negative rates for Size Distribution set.  (D) False positive rates for Size Distribution set.  (E) 

False negative rates for Size Distribution Fast set.  (F) False positive rates for Size Distribution Fast set. 
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Table C- 1 Performance of machine learning algorithms for identification of error-prone genes 

with less strict criteria for error 

 Base SVM Size Dist. 

SVM 

Size Dist. 

Fast SVM 

Base RF Size Dist. 

RF 

Size Dist. 

Fast RF 

Model* Error ~ 

L+E+B 

Error ~ 

L*E*B 

Error ~ 

L*E*B 

Error ~ B Error ~ 

L+E+B 

Error ~ 

L+E+B 

Sensitivity 0.344 0.412 0.333 0.838 0.717 0.644 

Specificity 0.994 0.985 0.964 0.978 0.951 0.802 

Precision 0.624 0.675 0.706 0.301 0.354 0.247 
*L=length, E=evolutionary rate, B=maximum length of conserved block 
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Appendix D 

Supplementary Figures and Tables for Chapter 6 

A       B 

 
C       D 

 
Figure D- 1 Models of duplication 

Red dots indicate examples of sites being selected for changes in relative rate.  (A) Baseline.  (B) 

Neofunctionalization.  (C) Neofunctionalization All Sites.  (D) Subfunctionalization. 
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Figure D- 2 Different methods of correcting for paralogs 

For each gene, consider two paralogs (Paralog 1, Paralog 2) with a common ancestral sequence.  This paralogy is 

either detectable (blue connections between paralogs) or not detectable (no connection between paralogs) via standard 

homology detection through BLASTP.  Under each of three potential paralog correction methods, different numbers 

of sequences will be counted among different nodes (red box).  Under method 1, no correction, all genes will be 

assigned to a given age based solely on homologs detected in the target database in phylostratigraphy.  Under method 

2, age correction, all confirmed paralogs will be assigned the same age but will be considered as separate sequences.  

Under method 3, for detectable paralogs only one sequence will be considered, and its age will be the oldest of all 

detectable paralogs. 
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C      D 

  
Figure D- 3 Number of novel sequences at each age when no correction for paralogs is made 

(method 1) 

Dark grey bars denote the first of the two paralogs, while light grey bars denote the second of the two paralogs.  

Note that we do not display genes mapped to bacteria, for scaling purposes.  In the two neofunctionalization 

simulations, the second of the two paralogs is the paralog which underwent a burst of evolution and subsequent 

shuffling of rates.  We include here a count for the number of genes at each age, for each of the two paralogs.  (A) 

Baseline; paralog 1:  c(1, 0, 0, 0, 4, 2, 1, 11, 15, 11, 5, 6, 10, 8, 5, 33, 27, 173, 4630), paralog 2: c(1, 1, 1, 0, 4, 3, 7 , 

7, 21, 2, 4, 12, 10, 9, 6, 35, 31, 166, 4622).  (B) Neofunctionalization; paralog 1: c(1, 0, 0, 0, 4, 2, 4, 11, 30, 3, 5, 7, 

4, 15, 4, 38, 37, 159, 4618), paralog2: c(0, 0, 0, 1, 5, 2, 4, 14, 83, 8, 7, 7, 20, 21, 21, 64, 46, 182, 4457).  (C) 

Neofunctionalization, all sites; paralog 1: c(1, 0, 0, 0, 4, 2, 1, 10, 28, 3, 3, 9, 6, 12, 10, 36, 36, 169, 4612), paralog 2: 

c(1, 0, 0, 0, 4, 7, 0, 13, 176, 15, 12, 21, 38, 32, 32, 75, 60, 204, 4252).  (D) Subfunctionalization; paralog 1: c(1, 0, 0, 

1, 13, 11, 17, 33, 39, 8, 7, 15, 19, 23, 20, 59, 45, 176, 4455), paralog 2: c(1, 0, 0, 2, 14, 12, 18, 35, 25, 11, 10, 16, 15, 

24, 24, 59, 37, 195, 4444). 
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C      D 

  
Figure D- 4 Number of novel sequences at each age when only the age of paralogs is corrected 

(method 2) 

Dark grey bars denote the first of the two paralogs, while light grey bars denote the second of the two paralogs.  

Note that we do not display genes mapped to bacteria, for scaling purposes.  In the two neofunctionalization 

simulations, the second of the two paralogs is the paralog which underwent a burst of evolution and subsequent 

shuffling of rates.  We include here a count for the number of genes at each age, for each of the two paralogs.  (A) 

Baseline; paralog 1:  c(1, 0, 0, 0, 4, 2, 1, 11, 15, 11, 5, 6, 10, 8, 5, 33, 27, 173, 4630), paralog 2: c(1, 1, 1, 0, 4, 3, 7, 

7, 21, 2, 4, 12, 10, 9, 6, 35, 31, 166, 4622).  (B) Neofunctionalization; paralog 1: c(1, 0, 0, 0, 4, 2, 4, 11, 30, 3, 5, 7, 

4, 15, 4, 38, 37, 159, 4618), paralog2: c(0, 0, 0, 1, 5, 2, 4, 14, 83, 8, 7, 7, 20, 21, 21, 64, 46, 182, 4457).  (C) 

Neofunctionalization, all sites; paralog 1: c(1, 0, 0, 0, 4, 2, 1, 10, 28, 3, 3, 9, 6, 12, 10, 36, 36, 169, 4612), paralog 2: 

c(1, 0, 0, 0, 4, 7, 0, 13, 176, 15, 12, 21, 38, 32, 32, 75, 60, 204, 4252).  (D) Subfunctionalization; paralog 1: c(1, 0, 0, 

1, 13, 11, 17, 33, 39, 8, 7, 15, 19, 23, 20, 59, 45, 176, 4455), paralog 2: c(1, 0, 0, 2, 14, 12, 18, 35, 25, 11, 10, 16, 15, 

24, 24, 59, 37, 195, 4444). 
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Figure D- 5 Phylostratigraphic results under a model of regular small duplications (method 1) 

As figure 6-4, but using method 1 for paralog correction.  (A) Number of genes in each age category in the simulation 

after paralog correction (method 3).  The numbers of genes in each bin are as follows, rounded up to the nearest whole 

number.  Paralog1: c(1, 0, 1, 1, 1, 7, 6, 7, 26, 24, 7, 8, 12, 16, 19, 17, 62, 51, 225, 4460).  Paralog2: c(1, 0, 0, 1, 1, 4,  

4, 4, 17, 15, 4, 4, 7, 9, 12, 12, 37, 33, 131, 2678)  (B) The percent of orphan genes which are attributable to general 

error and to duplication under this model. 
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Figure D- 6 Phylostratigraphic results under a model of regular small duplications (method 2) 

As figure 6-4, but using method 2 for paralog correction.  (A) Number of genes in each age category in the simulation 

after paralog correction (method 3).  The numbers of genes in each bin are as follows, rounded up to the nearest whole 

number.  Paralog1: c(1, 0, 1, 1, 1, 7, 6, 7, 26, 24, 7, 8, 11, 16, 18, 16, 61, 50, 217, 4474).  Paralog2: c(1, 0 ,0, 1, 1, 4, 

4, 4, 16, 15, 3, 4, 7, 9, 12, 11, 36, 32, 128, 2686)  (B) The percent of orphan genes which are attributable to general 

error and to duplication under this model. 
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Table D- 1 Number of genes in each age category in real and simulated data under regular 

small duplications (method 1) 

Div Time (MYA) Real orphans Simulated Orphans 
(with dups) 

Percent attributable to 
error (error+dups) 

Dups/Error 

85 0 1 (1) 100 (100) 0 

90 0 1 (1) 100 (100) 0 

97 1 1 (1) 100 (100) 0 

105 9 1 (2) 11.11 (22.22) 1 

164 17 5 (8) 29.41 (47.06) 0.6 

320 65 9 (14) 13.85 (21.54) 0.56 

356 85 13 (20) 15.29 (23.53) 0.54 

429 732 29 (46) 2.96 (6.38) 0.59 

631 763 48 (76) 6.29 (9.96) 0.58 

733 888 60 (95) 6.76 (10.70) 0.58 

847 1430 69 (110) 4.83 (7.69) 0.59 

936 1781 130 (207) 7.30 (11.62) 0.59 

1303 2460 162 (260) 6.59 (10.57) 0.60 

1514 3730 302 (481) 8.10 (12.90) 0.59 
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Table D- 2 Number of genes in each age category in real and simulated data under regular 

small duplications (method 2) 

Div Time (MYA) Real orphans Simulated Orphans 
(with dups) 

Percent attributable to 
error (error+dups) 

Dups/Error 

85 0 1 (1) 100 (100) 0 

90 0 1 (1) 100 (100) 0 

97 1 1 (1) 100 (100) 0 

105 9 1 (2) 11.11 (22.22) 1 

164 14 5 (8) 31.25 (50) 0.6 

320 42 9 (14) 21.43 (33.33) 0.56 

356 55 12 (19) 21.82 (34.55) 0.58 

429 286 28 (45) 9.79 (15.73) 0.61 

631 296 47 (75) 15.88 (25.34) 0.60 

733 339 58 (93) 17.11 (27.43) 0.60 

847 577 68 (108) 11.79 (18.72) 0.59 

936 818 127 (202) 15.53 (24.69) 0.59 

1303 1240 158 (253) 12.74 (20.40) 0.60 

1514 2215 293 (468) 13.23 (21.13) 0.60 

 
 


