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ABSTRACT

Intercalated Injection, Target Model Construction and H2 Performance of
Retrospective Cost Adaptive Control

by

Yousaf Rahman

Chair: Dennis S. Bernstein

This dissertation extends retrospective cost adaptive control (RCAC) by devel-

oping a novel interpretation of RCAC, wherein the retrospective cost minimization

uses intercalated injection between the controller numerator and denominator to fit a

specific closed-loop transfer function to a target model. The target model thus incor-

porates the modeling information required by RCAC. To demonstrate the effect of the

target model on closed-loop performance, RCAC is applied to a collection of problems

that demonstrate adaptive pole placement, where the target model is used to place

closed-loop poles; adaptive PID control, where RCAC adaptively tunes PID gains;

and LQG cost minimization, where the optimality and closed-loop frequency response

of RCAC is compared with the performance of discrete-time LQG controllers.

Next, RCAC is applied to plants that are difficult to control using fixed gain con-

trollers, including an aircraft lateral dynamics model that has an unknown transition

from minimum-phase to nonminimum-phase (NMP) dynamics, as well as plants with

severely limited achievable gain and delay margin.

xvi



Methods are developed to control NMP plants without knowledge of the NMP

zero. Specifically, a decentralized feedback-feedforward architecture as well as quasi-

FIR controllers are considered, where the FIR controller operates in parallel with

an internal model controller in order to follow commands for NMP plants without

knowledge of the NMP zeros.

Next, the following question is considered: Are all full-order dynamic compen-

sators observer-based? It is shown that the only case where a dynamic compensator

is not observer-based is the case where n is odd and the closed-loop spectrum has no

real eigenvalues. Since this is the case, such controllers are necessarily suboptimal

in the sense of LQG. This question is relevant to understanding the closed-loop pole

locations arising from full-order RCAC compensators.

Finally, retrospective cost model refinement (RCMR) is used to estimate parame-

ters in a mass-spring-damper system and an aircraft lateral dynamics model. RCMR

is compared to the extended Kalman filter (EKF) and the unscented Kalman fil-

ter (UKF), and the ability to estimate parameters without knowledge of the noise

characteristics using RCMR is demonstrated. RCMR is then paired with a forward-

propagating Riccati-based controller for indirect adaptive control of the aircraft lateral

dynamics model considered earlier.
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CHAPTER 1

Introduction

1.1 Motivation for Adaptive Control

The development and implementation of model-based feedback control systems

requires an accurate model of the physical process being controlled, actuators capa-

ble of producing the required control effort, and reliable sensors that provide accurate

measurements. The aircraft fly-by-wire system shown in Figure 1.1 is an example of a

feedback control system, where navigation computers and other sensors provide mea-

surements of position, airspeed, altitude, and angular velocity to a controller designed

using a model of the aircraft dynamics. The controller requests the required control

inputs from the engines and aerodynamic control surfaces based on the desired tra-

jectory, which is provided by either the pilot or autopilot, as well as the disturbances

affecting the vehicle. Control research is typically focused on applications for which

accurate models, precise sensing, and effective actuators are available, and the goal is

to use this technology reliably and efficiently in order to develop control algorithms

to achieve stabilization, command following, and disturbance rejection objectives.

Despite the wide-scale use of model-based feedback control design, many applica-

tions remain beyond the reach of modern tools and techniques. These applications

may be highly under-sensed and under-actuated relative to the order of their dy-

namics; they may be required to perform in hostile environments, where obtaining
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Figure 1.1: Aircraft fly-by-wire control architecture

accurate measurements is difficult or unpredictable disturbances may be present; and

they may be subject to complex, unknown, or unpredictably changing physics. These

applications may also require reliable high-performance control systems that must be

engineered within restricted budgets, and tight deadlines that leave limited time for

modeling, simulation, and verification.

These reasons motivate the desire to develop adaptive control algorithms that

are able to learn about the physics underlying the plant, actuator constraints, sen-

sor failures, and other obstacles to achieving a desired performance objective. We

now consider two such examples, where designing a traditional fixed-gain feedback

controller that is robust to uncertainties is difficult or even infeasible.

Example 1.1. Plants with limited achievable margins. Consider the unstable,

minimum-phase, continuous-time plant from [1] given by

A =




1 1

0 1


 , B =




0

1


 , D1 =




1

1


 , (1.1)

C = E1 =

[
1 1

]
, D2 = 1. (1.2)

It is shown in [1] that there are no guaranteed margins for this plant using an LQG

controller. Although LQG controllers are optimal in the H2 sense, they often yield
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unstable controllers that result in feedback loops with low gain and phase margin,

particularly in the high-authority case. This raises the question of whether there may

exist an adaptive method that can yield near-optimal controllers, and also adapt to

changes in the plant dynamics that may destabilize the system.

As another example, consider the unstable, minimum-phase, continuous-time plant

given by [2]

A =




−0.08 −0.03 0.2

0.2 −0.04 −0.005

−0.06 0.2 −0.07



, B = D1 =




−0.1

−0.2

0.1



, (1.3)

C = E1 =

[
0 −1 0

]
, D2 = 0. (1.4)

This plant has an unstable pole at 0.1081. It is shown in [2] that the maximum

achievable delay margin for this plant is 18.51 sec. Such plants may be problematic

for fixed-gain controllers. As shown in this dissertation, a controller designed to yield

the achievable delay margin delivers poor transient response, and is also unable to

stabilize the system in the presence of destabilizing delays. Adaptive control may

provide a viable alternative to fixed-gain controllers for the difficult cases considered

here. We consider both plants in this example in Chapter 5. �

Example 1.2. Plant with unmodeled time-varying dynamics. Consider the

3



aircraft lateral dynamics model

A0 =




−0.0771 0.269 −0.9631 0.0397

−25.60 0.0218 0.0995 0

0.6160 0.0376 −0.2687 0

0 1 −0.4202 0.0058



, B0 =




−0.0002

2.519

−0.0222

0



, (1.5)

A1 =




−0.0771 0.269 −0.9631 0.0397

−108.8 0.0218 0.0995 0

0.4107 0.0376 −0.2687 0

0 1 −0.4202 0.0058



, B1 =




−0.0002

2.519

−0.0665

0



, (1.6)

where A0 and B0 represent the nominal plant dynamics and A1 and B1 represent the

off-nominal dynamics. With the feedback y = x4, the off-nominal dynamics have a

NMP zero at 1.274. The change from nominal to off-nominal dynamics is witnessed

by an effect similar to roll reversal, and represents a challenge for fixed-gain con-

trollers. We consider this example in Chapters 3 and 8. �

These examples show that fixed-gain control laws may suffer from extreme sen-

sitivity to modeling information. Consequently, these examples motivate the need

for adaptive control, where online adaptation can potentially account for changing

dynamics.

Adaptive control techniques typically use one of the following two architectures,

namely, indirect adaptive control, where parameter estimates are used to update a

model-based controller online at each data assimilation step, or direct adaptive control,

where the controller itself is adjusted based on a performance measure. In most

cases, direct adaptive control is used to fit the closed-loop system to a reference

model, that is, model reference adaptive control (MRAC). Another application is to

use an adaptive controller in conjunction with a model-based controller in order to
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prevent unpredictable perturbations or unmodeled dynamics from destabilizing the

closed-loop system.

Adaptive control differs from robust control, which also accounts for uncertainty.

In particular, robust control considers uncertainty as static and seeks to trade per-

formance for robustness to the assumed level of uncertainty. In contrast, adaptive

controllers attempt to learn about the plant during operation, in order to overcome

prior uncertainty or unexpected changes in the dynamics. Consequently, by tun-

ing itself to the actual plant, an adaptive controller may be able to avoid the per-

formance/robustness tradeoff inherent to robust control at the possible expense of

undesirable transient performance as the controller adapts to the uncertainty.

The underlying motivation for research in adaptive control is to develop algorithms

that can accommodate sensor and actuator limitations, communication constraints,

account for complex, uncertain, unmodeled, and time-varying dynamics, and also be

robust to matched and unmatched disturbances, sensor noise, and sensor/actuator

failure. The promise of adaptive control is the ability to account for all of these

effects with minimal prior modeling, tuning, and analysis for applications that are

beyond the applicability of fixed-gain and fixed-logic model-based control design.

Adaptive control algorithms for continuous-time plants are developed in [3–11]

and for discrete-time plants in [12–23]. For discrete-time plants, the ability to handle

plants with nonminimum-phase (NMP) zeros, that is, zeros outside of the open unit

disk, is demonstrated in [13–16]. We now consider a plant with an unmodeled NMP

zero, which may be a difficult case even for adaptive control techniques.

Example 1.3. Plant with unmodeled NMP sampling zero. Consider the

asymptotically stable, continuous-time plant T (s) = Λ(s)T0(s), where

Λ(s) =
229

(s− 15 + 2)(s− 15− 2)
, T0(s) =

2

s+ 1
, (1.7)
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where Λ(s) represents unmodeled high-frequency dynamics [24]. Since the relative de-

gree of T0(s) is 1, the discrete-time sampled-data plant G0(z) obtained by discretizing

T0(s) does not yield any sampling zeros [25]. However, since the relative degree of

T (s) is 3, the discrete-time sampled-data plant G(z) obtained by discretizing T (s)

possesses two sampling zeros due to Λ(s). It can be shown that, if the sampling

period h . 0.2, then one of the sampling zeros is NMP. This plant may be partic-

ularly difficult to control, because the nature of the zeros depends on the sampling

rate. Therefore it may be difficult to predict if the plant is minimum phase or NMP.�

This dissertation focuses on retrospective cost adaptive control (RCAC). RCAC is

a discrete-time, direct adaptive control algorithm, that may be used for stabilization,

command following and disturbance rejection applications.

RCAC was initally based on the concept of retrospectively optimized control [26],

where past controller coefficients used to generate past control inputs are re-optimized

in the sense that if the re-optimized coefficients had been used over a previous window

of operation, then the performance would have been better. However, unlike signal

processing applications such as estimation and identification, it is impossible to change

past control inputs, and thus the re-optimized controller coefficients are used only

to generate the next control input. Since RCAC depends heavily on data for the

controller update, this technique is similar to data-driven control [27–32]. Some

elements of RCAC appear in [16].

Although RCAC has been developed and applied to many systems [26, 33–58],

much work remains to be done. Firstly, the role of the filter Gf and the modeling

information required for RCAC is not well understood. Also, the H2 optimality of

the controllers produced by RCAC has not been investigated. Thus, the goals of this

dissertation are
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• Determine the role of the filter Gf and use this understanding to present the

minimal modeling information required by RCAC.

• Compare the optimality and closed-loop response of RCAC with discrete-time

LQG control.

• Develop techniques for the application of RCAC in cases where the required

modeling information is erroneous or unavailable.

1.2 Development of RCAC

RCAC was originally developed within the context of active noise control experi-

ments [26]. The algorithm used in [26] is gradient-based, where the gradient direction

and step size are based on different cost functions. In subsequent work [36], the

gradient algorithm was replaced by batch least-squares optimization. In both [26]

and [36], the modeling information is given by Markov parameters (impulse response

coefficients) of the open-loop transfer function Gzu from the control input u to the

performance variable z.

More recently, in [37], a recursive least squares algorithm was used, along with

knowledge of the NMP zeros of Gzu. The approaches in [26, 36] and [37] are closely

related in the sense that all of the NMP zeros outside of the spectral radius of Gzu

are approximate zeros of a polynomial whose coefficients are Markov parameters of

Gzu. RCAC uses a filter Gf to define the retrospective cost by filtering the differ-

ence between the actual past control inputs and the re-optimized control inputs. To

construct Gf , Markov parameters are used in [26, 36], and NMP zeros are used in

[37].

The theoretical development of RCAC includes gradient optimization with Markov

parameters [26], batch optimization with Markov parameters for NMP plants [36], and

RLS optimization using the NMP zeros in Gf [37]. RCAC was applied to the Rohrs
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counterexamples in [38] and demonstrated for broadband disturbance rejection in [39].

Application of RCAC to Hammerstein plants with monotonic input nonlinearities is

considered in [40]. Extensions to MIMO systems was considered in [41], where it is

shown that RCAC squares non-square plants, which may introduce NMP squaring

zeros.

RCAC has been implemented in both simulation and laboratory experiments. Nu-

merical simulation studies are given in [42, 43] for flow control; in [44] for noncolocated

control of a linkage; in [39, 45–47] for vibration control; in [48] for engine control; in

[49–53] for aircraft control; in [54] for spacecraft control; in [55] for quadrotor control;

in [56] for missile control; in [57] for scramjet control; and in [58] for control of systems

with hysteresis. Laboratory experiments are reported in [26, 33, 34] for noise control;

in [35] for ducted flame control; and in [59] for 6DOF motion control.

In addition to adaptive control, the retrospective cost optimization used by RCAC

may also be used for model refinement. We call this application retrospective cost

model refinement (RCMR) [60–65]. RCMR can be used to estimate the dynamics of

a possibly dynamic subsystem in feedback interconnection with a main subsystem;

the unknown subsystem is assumed to be inaccessible in the sense that its inputs and

outputs are not measured. A special case of an inaccessible subsystem occurs when

the unknown subsystem is static; in this case, inaccessible subsystem identification

is equivalent to parameter estimation. We compare RCMR to other parameter esti-

mation techniques in Chapter 8, and use RCMR for indirect adaptive control of the

aircraft lateral dynamics model from Example 1.2.
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1.3 Contributions

The major contributions of this dissertation are listed below.

• We apply RCAC on systems with unknown transitions to NMP dynamics, and

using system identification techniques, we show that RCAC can adapt to a

transition from minimum phase to NMP dynamics.

• We demonstrate the modeling information required by RCAC, as incorporated

in the filter Gf , and we develop the target model interpretation of Gf .

• We use the target model for adaptive pole placement using RCAC, develop the

connections of RCAC with discrete-time LQG, and compare the H2 cost and

closed-loop frequency response of RCAC with LQG.

• We apply RCAC on plants that are practically impossible to control by fixed-

gain control laws due to limited gain margin and delay margin, and demonstrate

the ability of RCAC to re-adapt and restabilize the closed-loop system following

destabilizing perturbations.

• We answer the question: Are all full-order dynamic compensators observer-

based? We show that the only case where a dynamic compensator is not ob-

server based is the case where the order of the plant n is odd and the closed-loop

spectrum has no real eigenvalues.

• We apply RCMR on plants with unknown subsystem dynamics, and compare

RCMR to established techniques for parameter estimation. We pair RCMR

with a Riccati-based controller for indirect adaptive control of an aircraft with

an unknown transition to NMP dynamics.
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1.4 Dissertation Outline

This dissertation is organized as follows.
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Chapter 2 Summary

In Chapter 2, we present the RCAC algorithm, and apply RCAC to several ex-

amples, including step command-following and disturbance rejection, harmonic com-

mand following and disturbance rejection. We demonstrate the ability of RCAC to

automatically develop internal models. Next, we apply RCAC on adaptive PID con-

trol, and use RCAC to adaptively tune PID controllers and avoid integrator windup.

Finally we apply RCAC with feedforward for adaptive control of NMP plants without

knowledge of the NMP zero.

Chapter 3 Summary

In Chapter 3, we apply RCAC to linearized aircraft lateral dynamics with an

unknown transition to NMP dynamics. We extend the use of RCAC to command

following for cases where the dynamics transition from minimum-phase to NMP. We

use system identification techniques to identify the NMP zero, and use this informa-

tion to construct the target model. We consider both full-state feedback and output

feedback, and in both cases we follow step commands with transitioning dynamics.

We first consider the case where RCAC is unaware of the change and NMP zero iden-

tification is unavailable to RCAC. In this case, we show that RCAC does not cause

the closed-loop system to become unstable as the plant becomes nonminimum phase.

We then assume that NMP-zero information is available to RCAC from system iden-

tification, and show that RCAC is able to re-adapt to the transitioning dynamics and

follow step commands.

Chapter 4 Summary

Chapter 4 contains the main contributions of this dissertation. This contribution

concerns the modeling data used by RCAC as incorporated in Gf . In particular, we

show that Gf serves as a target model for a closed-loop transfer function G̃zũ,k whose

zeros include the zeros of Gzu. The special closed-loop transfer function G̃zũ,k arises

from the way in which RCAC updates the controller coefficients. This controller
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update can be interpreted as a virtual external control perturbation ũ that is injected

internally to the control update. We call this intercalated injection.

We show that the intercalated injection of ũ gives rise to the closed-loop transfer

function G̃zũ,k, and minimization of the retrospective cost updates the controller

coefficients so as to fit G̃zũ,k to the target model Gf . We then use these insights

to show that RCAC requires knowledge of the relative degree, leading numerator

coefficient, and NMP zeros of Gzu.

Chapter 5 Summary

In Chapter 5, we consider LTI plants that are practically impossible to control due

to extremely small gain and phase margins. These plants tend to be either unstable

or nonminimum phase or both. Since practical control of these plants using fixed-

gain controllers is not feasible, it is of interest to determine whether adaptive control

can overcome these difficulties. To investigate this question, we apply RCAC to a

collection of plants that are practically impossible to control from an LTI perspec-

tive. For each plant, we introduce a destabilizing perturbation in order to determine

whether or not RCAC can re-adapt in such a way as to compensate for the loss of

margin and restabilize the closed-loop system without manual retuning. Since these

plants are inherently difficult to control, it is of interest to determine whether or not

restabilization is possible and, if so, assess the severity of the transient response.

Chapter 6 Summary

Chapter 6 considers plants that are stabilizable by asymptotically stable con-

trollers but result in unstable LQG controllers, and we apply RCAC to these plants.

We ensure controller stability by using quasi-FIR compensators, where most of the

controller poles are confined to the origin. We define quasi-FIR controllers as con-

taining a high-order FIR component and a low-order IIR component. We apply a

reflection technique to enforce stability of the IIR component of the compensator.

We then compare the H2 cost and the closed-loop frequency response of the RCAC
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controller to the unstable LQG controller. Next, we use an FIR controller in parallel

with an internal model controller for step-command following for Lyapunov stable,

NMP plants without knowledge of the NMP zero.

Chapter 7 Summary

In Chapter 7, we focus on the state observer followed by state-estimate feedback.

We answer the question posed in the title of the chapter, namely, Are All Full-Order

Dynamic Compensators Observer-Based? It turns out that the answer to the question

posed in the title of the chapter is “no.” To see that this is the case, consider a plant

of odd order n controlled by a compensator such that none of the 2n closed-loop

eigenvalues are real. Since the closed-loop spectrum arising from an observer-based

compensator must be the union of the spectra of two real matrices of odd order, it

follows that the closed-loop system must have at least two real eigenvalues. However,

we demonstrate that this is the only case where full-order dynamic compensators are

not observer based. Since the LQG controller is based on the separation principle, it

follows that, in the case where n is odd, there exists a set of full-order compensators

that are never quadratically optimal.

Chapter 8 Summary

In Chapter 8, we compare RCMR with nonlinear estimation techniques that are

often used for parameter estimation. We use illustrative examples to compare the

accuracy of two estimation techniques (the extended Kalman filter and the unscented

Kalman filter) with RCMR. Both constant and time-varying examples are considered.

Each algorithm is tuned to illustrate its capabilities for the given examples. Next,

we use RCMR to provide parameter estimates to forward-propagating Riccati-based

control, which is applicable to time-varying systems with dynamics that are known at

the present time but not in the future. Both full-state-feedback and output-feedback

architectures are considered, where the goal is to follow roll commands for the aircraft

lateral dynamics model with a transition to NMP behavior from Chapter 3. We show
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that RCMR is able to provide parameter estimates sufficient for stabilization, despite

the lack of persistent excitation.

Finally, we present conclusions and explore possible extensions to this research in

Chapter 9.
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CHAPTER 2

Retrospective Cost Adaptive Control

2.1 Introduction

RCAC is a direct, digital adaptive control algorithm, that has been in development

since 1999 [26]. In the original interpretation, RCAC was based on using past data to

retrospectively optimize the controller to find the optimal controller for the past data.

The rationale was that if the optimized controller had been used, the performance

would have been better. However, in Chapter 4, we show that RCAC minimizes the

residual between the performance variable z, and the difference between the actual

control input and the optimal control input, passed through the filter Gf .

RCAC can be applied to stable or unstable systems, minimum phase or NMP

systems, linear or nonlinear systems, on stabilization, command following or distur-

bance rejection problems. In this dissertation, we extend RCAC for applications

such as adaptive pole placement, adaptive PID control, and we compare RCAC to

discrete-time LQG.

In this chapter, we present the development of the RCAC algorithm and define

the filter Gf . Next, we apply RCAC for step and harmonic command following and

disturbance rejection, adaptive PID control, and we present a feedforward architecture

for command following for NMP systems and investigate the effect of sensor noise on

RCAC.

15



Although all examples in this dissertation use a cumulative cost function and an

RLS minimization, we may also implement RCAC with either an instantaneous cost

function, a sliding window batch cost function, or use gradient based optimization.

For numerical examples, we use either the adaptive standard problem or the adaptive

servo problem, described below.

2.2 Standard Problem

Consider the standard problem consisting of the discrete-time, linear time-invariant

plant

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (2.1)

y(k) = Cx(k) +D0u(k) +D2w(k), (2.2)

z(k) = E1x(k) + E2u(k) + E0w(k), (2.3)

where x(k) ∈ Rn is the state, y(k) ∈ Rly is the measurement, u(k) ∈ Rlu is the

control input, w(k) ∈ Rlw is the exogenous input, and z(k) ∈ Rlz is the performance

variable. The plant (2.1)–(2.3) may represent a continuous-time, linear time-invariant

plant sampled at a fixed rate. The goal is to develop a feedback or feedforward

controller that operates on y to minimize z in the presence of the exogenous signal

w. The components of w can represent either a command signal r to be followed, an

external disturbance d to be rejected, or sensor noise v that corrupts the measurement

as determined by the choice of D1, D2, and E0. Depending on the application,

components of w may or may not be measured, and, for feedforward control, the

measured components of w can be included in y by suitable choice of C and D2.

For fixed-gain control, z need not be measured. For adaptive control, however, z is

assumed to be measured.
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Using the forward shift operator q, we can rewrite (2.1)–(2.3) as

z(k) = Gzw(q)w(k) +Gzu(q)u(k), (2.4)

y(k) = Gyw(q)w(k) +Gyu(q)u(k), (2.5)

where

Gzw(q)
4
= E1(qI − A)−1D1 + E0, Gzu(q)

4
= E1(qI − A)−1B + E2, (2.6)

Gyw(q)
4
= C(qI − A)−1D1 +D2, Gyu(q)

4
= C(qI − A)−1B +D0. (2.7)

Furthermore, the discrete-time, linear time-invariant controller has the form

u(k) = Gc(q)y(k). (2.8)

Note that q is a time-domain operator that accounts for initial conditions, and, al-

though (2.6) and (2.7) are written as transfer functions, these expressions are con-

venient representations of time-domain dynamics. For pole-zero analysis, q can be

replaced by the Z-transform complex variable z, in which case (2.4), (2.5), and (2.8)

do not account for the initial conditions. Figures 2.1 and 2.2 illustrate (2.4)–(2.8).

Gzw Gzu

GyuGyw

Gc

w z

yu

1

Figure 2.1: Transfer function representation of the standard problem.

The closed-loop transfer function from the exogenous signal w to the performance
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Gyw Gc Gzu

Gzw

Gyu

uw y z

Figure 2.2: Equivalent transfer function representation of the standard problem.

variable z is given by

G̃zw
4
= Gzw +GzuGc(I −GyuGc)

−1Gyw. (2.9)

We refer to the poles of G̃zw as the closed-loop poles, and the transmission zeros

of G̃zw as the closed-loop zeros. In the case where y, z, u, and w are scalar signals,

(2.6)–(2.7) and (2.9) can be written as

Gzw =
Nzw

D
, Gzu =

Nzu

D
, Gyw =

Nyw

D
, Gyu =

Nyu

D
, (2.10)

G̃zw =
Ñzw

D̃zw

=
NzuNywNc +Nzw(DDc −NyuNc)

D(DDc −NyuNc)
, (2.11)

where

Gc =
Nc

Dc

. (2.12)

We assume that D and Dc are monic. In the case where y = z, that is, C = E1,

D0 = E2, and D2 = E0, (2.10) and (2.11) can be written as

Gzw = Gyw =
Nw

D
, Gzu = Gyu =

Nu

D
, G̃zw =

NwDc

DDc −NuNc

. (2.13)

In the case where w is matched with u, that is, B = D1, E0 = E2, and D0 = D2,

18



(2.10) and (2.11) can be written as

Gzw = Gzu =
Nz

D
, Gyw = Gyu =

Ny

D
, G̃zw =

NzDc

DDc −NyNc

. (2.14)

In the case where y = z and w is matched with u, (2.10) and (2.11) can be written as

G
4
= Gzw = Gyw = Gzu = Gyu =

N

D
, G̃zw =

NDc

DDc −NNc

. (2.15)

For examples where y = z and w is matched with u, we use G to define the plant

(2.1)–(2.3); otherwise, we use the state space representation.

2.2.1 Servo Problem

As a special case of the standard problem, we consider the discrete-time, linear

time-invariant plant

x(k + 1) = Ax(k) +Bu(k) + D̄1d(k), (2.16)

y0(k) = C̄x(k) + D̄0u(k), (2.17)

yn(k) = y0(k) + v(k), (2.18)

e0(k) = r(k)− y0(k), (2.19)

en(k) = r(k)− yn(k), (2.20)

where x(k) ∈ Rn is the state, yn(k) ∈ Rly is the measurement, u(k) ∈ Rlu is the

control input, d(k) ∈ Rld is the disturbance, r(k) ∈ Rly is the command, v(k) ∈ Rly is

the sensor noise, and en(k) ∈ Rly is the performance variable. We can rewrite (2.17)

in terms of q as

y0(k) = Gu(q)u(k) +Gd(q)d(k), (2.21)
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where

Gu(q)
4
= C̄(qI − A)−1B + D̄0, Gd(q)

4
= C̄(qI − A)−1D̄1. (2.22)

Furthermore, the linear time-invariant controller has the form

u(k) = Gc(q)en(k). (2.23)

The measured error signal en is the difference between the command r and the mea-

surement yn, which may be corrupted by noise. Since only the measured error is

available for feedback, it serves as the performance variable within RCAC. However,

the true error signal e0, which is the difference between the command r and the plant

output y0, provides a true measure of the command-following performance. Since this

signal is not available for feedback, it is used only as a diagnostic. If, however, sensor

noise is absent, then en and e0 are identical. Figure 2.3 illustrates (2.21)–(2.23).

Gc

[Gd Gu]u

d

r

−

en

e0

y0
v
yn

−

1

Figure 2.3: Transfer function representation of the servo problem.

In the notation of the standard problem,

w =




r

d

v



, y = en, z = en. (2.24)
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The servo problem is a special case of the standard problem with

D1 = [0 D̄1 0], C = E1 = −C̄, D0 = E2 = −D̄0, (2.25)

D2 = [Ily 0 − Ily ], E0 = [Ily 0 0], (2.26)

Gzw = [Ily −Gd 0], Gzu = −Gu, Gyw = [Ily −Gd − Ily ], Gyu = −Gu.

(2.27)

In the case where d and u are colocated, it follows that D̄1 = B and D̄0 = 0, and

thus Gd = Gu. In this case, we define G
4
= Gd = Gu. However, w is not necessarily

matched with u. Moreover, if r = v = 0, and d and u are colocated, then w is

matched with u. For examples where d and u are colocated, we use G to define the

plant (2.16)–(2.20); otherwise, we use the state space representation.

2.3 Retrospective Cost Adaptive Control Algorithm

2.3.1 Adaptive Standard Problem and Adaptive Servo Problem

Figure 2.4 shows the adaptive standard problem, which is the standard problem

with an adaptive controller, while Figure 2.5 shows the adaptive servo problem, which

is the servo problem with an adaptive controller. Note that, for the adaptive servo

problem, it is desirable to minimize the true error e0. However, since e0 is not avail-

able, RCAC minimizes the measured error en, which may be corrupted by noise, as

shown in Figure 2.3. In terms of the adaptive standard problem, z = en.

2.3.2 Controller Structure

Define the dynamic compensator

u(k) =
nc∑

i=1

Pi(k)u(k − i) +
nc∑

i=kc

Qi(k)y(k − i), (2.28)
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Gzw Gzu

GyuGyw

Gc,k

w z

yu
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1

Figure 2.4: Transfer function representation of the adaptive standard problem with the adaptive
controller Gc,k.

Gc,k
[Gd Gu]u

d

r

−

en

e0

y0
v
yn

−

1

Figure 2.5: Transfer function representation of the adaptive servo problem with the adaptive con-
troller Gc,k.

where Pi(k) ∈ Rlu×lu and Qi(k) ∈ Rlu×ly are the controller coefficient matrices, and

kc ≥ 0. For controller startup, we implement (2.28) as

u(k) =





0, k < kw,

Φ(k)θ(k), k ≥ kw,

(2.29)
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where the regressor matrix Φ(k) is defined by

Φ(k)
4
=




u(k − 1)

...

u(k − nc)

y(k − kc)

...

y(k − nc)




T

⊗ Ilu ∈ Rlu×lθ , (2.30)

kw ≥ nc is an initial waiting period during which Φ(k) is populated with data, and

the controller coefficient vector θ(k) is defined by

θ(k)
4
= vec

[
P1(k) · · · Pnc(k) Qkc(k) · · · Qnc(k)

]T

∈ Rlθ , (2.31)

lθ
4
= l2unc + luly(nc + 1− kc), “⊗” is the Kronecker product, and “vec” is the column-

stacking operator. Note that kc = 0 allows an exactly proper controller, whereas

kc ≥ 1 yields a strictly proper controller of relative degree of at least kc. In all

examples in this dissertation, we use kc = 1, and, unless specified otherwise, we use

kw = nc. In terms of q, the time-domain transfer function of the controller from y to

u is given by

Gc,k(q) =
(
qncIlu − qnc−1P1(k)− · · · − Pnc(k)

)−1 (
qnc−kcQkc(k) + · · ·+Qnc(k)

)
.

(2.32)

Note that the coefficients of Gc,k are given by the components of θ(k), which are time-

dependent, and thus Gc,k is a linear, time-varying controller. Also, note that (2.32) is

expressed in terms of the forward-shift operator q rather than the Z-transform variable

z. Consequently, although (2.32) is written as a transfer function, this expression is

merely a convenient representation of the time-domain operator represented by (2.28).
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If y and u are scalar signals, then Gc,k is SISO and (2.32) can be written as

Gc,k(q) =
qnc−kcQkc(k) + · · ·+Qnc(k)

qnc − qnc−1P1(k)− · · · − Pnc(k)
. (2.33)

Note that (2.32) is an infinite impulse response (IIR) controller. By removing

u(k− 1), . . . , u(k−nc) from (2.28) and Φ(k), and by modifying the structure of θ, we

can enforce a finite impulse response (FIR) controller structure, where

u(k) =
nc∑

i=kc

Qi(k)y(k − i). (2.34)

In this case (2.32) becomes

Gc,k(q) =
1

qnc

(
qnc−kcQkc(k) + · · ·+Qnc(k)

)
. (2.35)

2.3.3 Retrospective Performance Variable

We define the retrospective performance variable as

ẑ(k, θ̂)
4
= z(k) +Gf(q)[Φ(k)θ̂ − u(k)], (2.36)

where θ̂ ∈ Rlθ and Gf is an nz × nu filter specified below. The rationale underlying

(2.36) is to replace the control u(k) with Φ(k)θ̂∗, where θ̂∗ is the retrospectively

optimized controller coefficient vector obtained by optimization below. The updated

controller thus has coefficients θ(k+ 1) = θ̂∗. Consequently, the implemented control

at step k + 1 is given by

u(k + 1) = Φ(k + 1)θ(k + 1). (2.37)

24



The filter Gf is constructed based on the required modeling information. This filter

has the form

Gf
4
= D−1

f Nf , (2.38)

where Df is an lz × lz polynomial matrix with leading coefficient Ilz , and Nf is an

lz× lu polynomial matrix. For reasons given in Chapter 4, we refer to Gf as the target

model. By defining the filtered versions Φf(k) ∈ Rlz×lθ and uf(k) ∈ Rlz of Φ(k) and

u(k), respectively, (2.36) can be written as

ẑ(k, θ̂) = z(k) + Φf(k)θ̂ − uf(k), (2.39)

where

Φf(k)
4
= Gf(q)Φ(k), uf(k)

4
= Gf(q)u(k). (2.40)

Note that implementation requires kw ≥ max(nc, nf), where nf is the McMillan degree

of Gf .

2.3.4 Retrospective Cost

Using the retrospective performance variable ẑ(k, θ̂) defined by (2.36), we define

the cumulative retrospective cost function

J(k, θ̂)
4
=

k∑

i=1

λk−i[ẑT(i, θ̂)Rz(i)ẑ(i, θ̂) + (Gf(Φ(i)θ̂))TRu(i)Gf(Φ(i)θ̂)]

+ λk(θ̂ − θ(0))TRθ(θ̂ − θ(0)), (2.41)

where λ ∈ (0, 1] is the forgetting factor, Rθ ∈ Rlθ×lθ is positive definite, and, for all

i ≥ 1, Rz(i) ∈ Rlz×lz is positive definite and Ru(i) ∈ Rlz×lz is positive semidefinite.
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The performance-variable and control-input weighting matrices Rz(i) and Ru(i) are

time-dependent and thus may depend on present and past values of y, z, and u. For

example, choosing Ru(i) to be a function of z(i)Tz(i) can help prevent unstable pole-

zero cancellation in the case of unmodeled NMP zeros [66]. Recursive minimization

of (2.41) is used to update the controller coefficient vector θ̂. The following result

uses recursive least squares to obtain the minimizer of (2.41).

Proposition: Let P (0) = R−1
θ , and, for all k ≥ 1, let θ̂∗ be the unique global

minimizer of the retrospective cost function (2.41). Then, θ̂∗ is given by

θ̂∗ = θ(k)− P (k)ΦT
f (k)Υ−1(k)

[
Φf(k)θ(k) + (Rz(k) +Ru(k))−1Rz(k)(z(k)− uf(k))

]
,

(2.42)

P (k + 1) =
1

λ
P (k) − 1

λ
P (k)ΦT

f (k)Υ−1(k)Φf(k)P (k), (2.43)

where

Υ(k)
4
= λ(Rz(k) +Ru(k))−1 + Φf(k)P (k)ΦT

f (k). (2.44)

Setting θ(k + 1) = θ̂∗, (2.42) yields the recursive controller coefficient update

equation

θ(k + 1) = θ(k)

− P (k)ΦT
f (k)Υ−1(k)

[
Φf(k)θ(k) + (Rz(k) +Ru(k))−1Rz(k)(z(k)− uf(k))

]
.

(2.45)

Note that, if λ = 1, then the covariance P (k) decreases monotonically, and thus

the rate of adaptation decreases. To maintain adaptation in cases where the plant or

exogenous signals are changing, the covariance can be reset using suitable logic. Al-
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ternatively, choosing the forgetting factor λ < 1 prevents monotonic decrease of P (k),

but can lead to instability in the presence of noise and in the absence of persistency

[67, 68]. An alternative approach is to include an additional positive-semidefinite

term Q(k) on the right-hand side of (2.43) of the form

P (k + 1) = P (k) − P (k)ΦT
f (k)Υ−1(k)Φf(k)P (k) +Q(k), (2.46)

where λ = 1 in (2.44). Note that (2.46) is the discrete-time Kalman predictor Riccati

error-covariance update equation with the dynamics matrix A = Ilθ , output matrix

C(k) = Φf(k), and process-noise covariance Q(k) [69]. Consequently, persistency in

(2.46) is determined by the observability of the time-varying pair (Ilθ ,Φf), and the

corresponding state-estimate update is given by (2.42). Alternatively, we can also use

the discrete-time Kalman filter Riccati error-covariance update equation

P (k + 1) = P (k) − P (k)ΦT
f (k + 1)Υ−1(k)Φf(k + 1)P (k) +Q(k), (2.47)

where the corresponding state-estimate update is given by

θ(k + 1) = θ(k)− P (k)ΦT
f (k + 1)Υ−1(k + 1)

·
[
Φf(k + 1)θ(k) + (Rz(k) +Ru(k))−1Rz(k)(z(k + 1)− uf(k + 1))

]
.

(2.48)

Note that in (2.48), the estimate θ(k+ 1) depends on z(k+ 1). Therefore, implemen-

tation of (2.48) requires instantaneuous update of the controller coefficient vector. In

contrast, in (2.45), θ(k + 1) depends on z(k), and thus (2.45) is implementable.

For all examples in this dissertation, we initialize θ(0) = 0 in order to reflect the

absence of additional prior modeling information. Furthermore, for all i ≥ 1, we use

Rz(i) = Ilz . Note that RCAC may use batch least squares optimization instead of
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recursive minimization.

2.4 Modeling Information Required for Gf

In this section we specify the modeling information required by RCAC. For the

standard problem, this information includes the relative degree, the first nonzero

Markov parameter, and all of the NMP zeros of Gzu. For the servo problem, it follows

from (2.27) that this information is obtained from Gu = −Gzu. All of the modeling

information required by RCAC is used to construct the filter Gf . The discussion in

this section is confined to the case where z and u are scalar signals. Note, however,

that y may be a vector signal, and thus the controllers based on Gf as specified below

may be multiple-input, single-output.

2.4.1 First Nonzero Markov Parameter

The first nonzero Markov parameter Hdzu of Gzu is equal to the leading numerator

coefficient of Gzu. We choose the leading numerator coefficient of Gf to be equal to

the leading numerator coefficient of Gzu, and thus RCAC requires knowledge of the

first nonzero Markov parameter Hdzu of Gzu [37]. This choice is explained in Chapter

4.

2.4.2 Relative Degree

We choose the relative degree of Gf to be equal to the relative degree of Gzu, and

thus RCAC requires knowledge of the relative degree dzu of Gzu [37]. This choice is

explained in Chapter 4.

2.4.3 NMP Zeros

We choose to include all of the NMP zeros of Gzu in Nf , and this RCAC requires

knowledge of the NMP zeros of Gzu. This choice is explained in Chapter 4.
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2.4.4 FIR Gf

In the case where Gzu is minimum phase, we define the FIR filter

Gf(q)
4
=
Hdzu

qdzu
. (2.49)

This choice of Gf requires knowledge of the relative degree dzu of Gzu and the first

nonzero Markov parameter Hdzu of Gzu. Note that, for the adaptive servo problem,

since Gzu = −Gu, it follows that Hdzu = −Hdu , where Hdu is the first nonzero Markov

parameter of Gu.

In the case where Gzu is NMP, we define the FIR filter

Gf(q)
4
=
HdzuNzu,u(q)

qdzu+deg(Nzu,u)
, (2.50)

where the roots of the monic polynomial Nzu,u are the NMP zeros of Gzu. This choice

of Gf requires knowledge of the relative degree dzu of Gzu, the first nonzero Markov

parameter Hdzu of Gzu, and the NMP zeros of Gzu. In both cases, the relative degree

of Gf is equal to the relative degree of Gzu.

2.4.5 Markov Parameters

In [26, 36], Gf is based on the Markov parameters of Gzu. In particular, for each

complex number z whose absolute value is greater than the spectral radius of A, it

follows that Gzu has the Laurent expansion

Gzu(z) = E1(zI − A)−1B =
∞∑

i=dzu

Hi

zi
, (2.51)
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where H0
4
= E2 and, for all i ≥ 1, the ith Markov parameter of Gzu is given by

Hi
4
= E1A

i−1B. (2.52)

As shown in [36], a sufficiently large number n̄ > dzu of Markov parameters in a

truncation of (2.51) yields an FIR target model Gf(z) =
∑n̄

i=dzu
Hi
zi

whose zeros ap-

proximate the NMP zeros of Gzu with absolute value greater than the spectral radius

of A. In addition, every truncation of (2.51) with n̄ ≥ dzu has the correct relative

degree, that is, the relative degree of Gzu. Note that, since Gzu = Nzu
D

and D is monic,

Hdzu is the leading numerator coefficient of Gzu.

2.5 Step Command Following and Disturbance Rejection

Example 2.1. Effect of Rθ on command-following performance for a step

command. Consider the asymptotically stable, minimum-phase plant

G(q) =
q− 0.85

(q− 0.8)(q− 0.9)
. (2.53)

Let r be a unit-height step command, and let d = v = 0. We use the FIR target model

(2.49), and set nc = 3. Figure 2.6 shows the command-following performance for

Rθ = 20Ilθ and Rθ = 0.2Ilθ . For Rθ = 20Ilθ , RCAC follows the step command in about

2000 time steps, whereas, for Rθ = 0.2Ilθ , RCAC follows the step command in about

200 time steps. For both values of Rθ, the converged controllers have integrators, as

shown by the controller poles at 1. �

Example 2.2. Step disturbance rejection for the adaptive servo problem
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Figure 2.6: Example 2.1: Effect of Rθ on command-following performance for a step command for
(2.53). For Rθ = 20Ilθ (upper plots), RCAC follows the step command in about 2000 time steps,
whereas, for Rθ = 0.2Ilθ (lower plots), RCAC follows the step command in about 200 time steps.
For both values of Rθ, the converged controllers have integrators, as shown by the poles at 1.

Consider the asymptotically stable, minimum-phase plant

G(q) =
q2 − 1.44q + 0.81

(q− 0.9)(q2 − 1.71q + 0.903)
. (2.54)

Let r = v = 0 and let d be a unit-height step disturbance. We use the FIR target

model (2.49), and set Rθ = 10−10Ilθ and nc = 4. RCAC rejects the step disturbance,

as shown in Figure 2.7. �
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Figure 2.7: Example 2.2: Step disturbance rejection. RCAC rejects the step disturbance.

2.6 Adaptive Harmonic Command Following and Disturbance

Rejection

In this section, we demonstrate the ability of RCAC to develop internal models

of harmonic commands and disturbances by considering two examples of adaptive

harmonic command following and disturbance rejection. In the first example, we use

RCAC to follow harmonic commands with an IIR feedback controller as well as with

combined feedback-feedforward control. Next, for harmonic disturbance rejection, we

investigate the ability of RCAC to readapt to changing disturbance frequencies.

Example 2.3. Harmonic command following for the adaptive servo prob-

lem. Consider the asymptotically stable, minimum-phase plant

G(q) =
q− 0.8

(q− 0.95)(q− 0.99)
. (2.55)

Let r be the harmonic command r(k) = cosωk, where ω = 0.5 rad/sample, and let

d = v = 0. We apply RCAC with Rθ = 0.2Ilθ , Ru = 0, and nc = 5, and we use the

FIR target model (2.49). We restrict Gc,k to be an FIR controller (2.34), (2.35). Since
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RCAC cannot develop an internal model of the command due to the FIR structure of

Gc,k, the command-following performance is severely restricted, as shown in Figure

2.8. The closed-loop system is instantaneously unstable at most time steps up to

k = 500.
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Figure 2.8: Example 2.3: Harmonic command following for the adaptive servo problem using an FIR
controller. Since RCAC cannot develop an internal model of the command due to the FIR structure of
Gc,k, the command-following performance is severely restricted. Note that the controller coefficients
do not converge, and the closed-loop system alternates between asymptotic stability and instability.
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Figure 2.9: Example 2.3: Harmonic command following for the adaptive servo problem. RCAC
achieves an internal model of the harmonic command signal by placing controller poles on the unit
circle at the command frequency. The internal model poles of the controller are evident in the form
of two closed-loop zeros on the unit circle at the command frequency, which are shown by the red
plus signs. The closed-loop poles and zeros are shown at step k = 300.

Next, we allow Gc,k to be IIR. In this case, RCAC asymptotically follows the

harmonic command and develops an internal model in the form of controller poles
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located on the unit circle at the command frequency ω, as shown in Figure 2.9. �

Example 2.4. Two-tone harmonic disturbance rejection for the adaptive

servo problem using an IIR controller. Consider the asymptotically stable plant

A =




0.9 −0.5625 0

1 0 0

0 1 0



, B =




1

0

0



, D̄1 =




0 0

1 0

0 1



, (2.56)

C̄ = [0.78 − 1.18 1], D̄0 = 0, (2.57)

where Gu is NMP. Let r = v = 0 and d(k) = [cosω1k cosω2k]T, where ω1 = π
8

rad/sample and ω2 = π
12

rad/sample. We apply RCAC with kw = 50, Rθ = 0.01Ilθ ,

Ru = 0, and nc = 12, and we use the FIR target model (2.50) with an IIR controller.

RCAC rejects the harmonic disturbance and develops an internal model, as shown in

Figure 2.10.

Next, let r(k) = cosω1k, v = 0, and d(k) = [cosω2k 1]T, where ω1 = π
15

rad/sample and ω2 = π
5

rad/sample for 1 ≤ k ≤ 2000, and where ω2 = π
8

rad/sample

for 2000 < k ≤ 4000. RCAC asymptotically follows the harmonic command, rejects

the step and harmonic disturbances, and develops internal models of the command

and disturbance, as shown in Figure 2.11. Note that, after the disturbance frequency

changes at step k = 2000, RCAC adapts to the change and rejects the disturbance. �

2.7 Adaptive PID Control

Proportional-integral-derivative (PID) control is likely the most widely used feed-

back control technique [70–72]. Adaptive PID control is considered in [73]. In this
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Figure 2.10: Example 2.4: Two-tone harmonic disturbance rejection for the adaptive servo problem
using an IIR controller. y0,OL indicates the open-loop response. RCAC achieves an internal model
of the harmonic disturbance by placing controller poles at the two disturbance frequencies. The
internal model poles of the controller are evident in the form of four closed-loop zeros on the unit
circle at the disturbance frequencies , which are shown by the red plus signs. The closed-loop poles
and zeros are shown at step k = 104.

section, we consider the discrete-time PID controller structure

u(k) = uP(k) + uI(k) + uD(k), (2.58)

where

uP(k) = KP(k)en(k − 1), (2.59)

uI(k) = KI(k)γ(k − 1), (2.60)

uD(k) = KD(k)[en(k − 1)− en(k − 2)], (2.61)
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Figure 2.11: Example 2.4: Harmonic command following and step-plus-harmonic disturbance re-
jection for the adaptive servo problem. Note that, after the disturbance frequency changes at step
k = 2000, RCAC readapts and rejects the disturbance. RCAC achieves an internal model of the
command and disturbance signals by placing controller poles on the unit circle at the command
frequency and at the two disturbance frequencies. The internal model poles of the controller are
evident in the form of five closed-loop zeros on the unit circle at the command and disturbance
frequencies, which are shown by the red plus signs. The closed-loop poles and zeros are shown at
step k = 105.

and the integrator state γ satisfies

γ(k) = γ(k − 1) + en(k − 1). (2.62)

Note that the PID controller (2.58)–(6.5) is strictly proper. We use RCAC to adap-

tively tune KP, KI, and KD.

Example 2.5. Step command following for the adaptive servo problem us-

ing adaptive PID control. Consider the asymptotically stable, NMP plant

G(q) =
(q− 0.975)(q− 1.2)

(q− 0.99)(q2 − 1.6q + 0.965)
, (2.63)
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let r be a step command with height 2, let d be a step disturbance with height −1.1,

and let v = 0. We apply RCAC to the adaptive PID controller (2.58)–(2.62), with

Rθ = 104Ilθ and Ru = 0. RCAC rejects the step disturbance and asymptotically

follows the step command, as shown in Figure 2.12. �
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Figure 2.12: Example 2.5: Step command following for the adaptive servo problem using adaptive
PID control. RCAC rejects the disturbance and asymptotically follows the step command.

2.7.1 Application to Anti-Windup

The most common nonlinearity encountered in practice is control saturation,

which can lead to integrator windup and possibly instability. Since control mag-

nitude and rate saturation affect all real-world control systems, it is not surprising

that an extensive literature is devoted to this problem [74–77].

We now investigate the performance of RCAC in the presence of control magnitude

and rate saturation, as shown in Figure 2.13. The output of RCAC is the requested

control u(k), and the input to the plant is the actual control ua(k). In all examples,

the regressor Φ(k) contains ua(k). This means that either the nonlinearity is known

or its output is measured. The case where the nonlinearity is unknown and its output

is not measured is considered in [40].

Example 2.6. Control magnitude saturation for the adaptive servo problem

with adaptive PID control. Consider the asymptotically stable, minimum-phase
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Figure 2.13: Adaptive servo problem with control magnitude and rate saturation.

plant

G(q) =
(q− 0.09)(q− 0.8)

(q2 − q + 0.5)(q− 0.9)
. (2.64)

Let r be a sequence of step commands with heights ±0.4 and ±1, and let d = v = 0.

We use the PID controller structure (2.58), and set Rθ = 0.1Ilθ and Ru = 0. The

control u is saturated at ±0.2. This saturation level allows the controller to follow

step commands with height ±0.4, but not with height ±1. Figure 2.14 shows the

response of the adaptive PID controller. For step commands with height ±0.4, the

adaptive PID controller uses integral action to follow the step command. However,

for step commands with height ±1, the adaptive PID controller drives the integral

gain KI to zero. The reduction in KI allows RCAC to avoid integrator windup. �

2.8 Adaptive Feedforward Control

In this section we consider extensions of the adaptive servo problem to include

feedforward control. The first feedforward architecture uses centralized adaptation,

as shown in Figure 2.15.
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Figure 2.14: Example 2.6: Control magnitude saturation for the adaptive servo problem with adap-
tive PID control. For step commands with height ±0.4, the adaptive PID controller uses integral
action to follow the step command. However, for step commands with height ±1, which cannot be
followed due to the magnitude saturation, the adaptive PID controller reduces the integral gain KI

to zero, and thus avoids integrator windup.
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Figure 2.15: Transfer function representation of centralized feedback-feedforward control for the
adaptive servo problem.
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Alternatively, RCAC may use a decentralized feedback and feedforward architec-

ture that allows for decentralized adaptation, as shown in Figure 2.16. In this case,

the feedback controller Gfb,k may have poles that are different from those of the feed-

forward controller Gff,k, which is not possible with centralized feedback-feedforward

control. Moreover, we may choose the feedback controller to be FIR.

We use feedforward architectures for two reasons. Firstly, as shown in [78], it may

sometimes be difficult for RCAC to obtain an internal model for plants with high

spectral radius. By using a feedforward controller, RCAC is able to follow commands

without the need of an internal model. Secondly, we demonstrate that by using

decentralized feedback-feedforward control, RCAC may perform command following

for NMP plants without knowledge of the NMP zeros.
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r
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z
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y0

v
yn

−

1

Figure 2.16: Transfer function representation of combined feedback-feedforward control with decen-
tralized adaptation for the adaptive servo problem.

Example 2.7. Command following using centralized feedback-feedforward

control for the adaptive servo problem. Consider the asymptotically stable,

NMP plant

G(q) =
(q− 1.2)(q2 − 1.8q + 0.85)

(q− 0.9)(q− 0.95)(q2 − 1.4q + 0.74)
. (2.65)

Let r be the harmonic command r(k) = cosωk, where ω = 0.4 rad/sample, and let

d = v = 0. We apply the centralized feedback-feedforward control architecture shown
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in Figure 2.15 with Rθ = 10Ilθ , Ru = 0, and nc = 8, and we use the FIR target

model (2.50). Figure 2.17 shows the command-following performance for combined

feedforward and feedback control. RCAC follows the harmonic command without

developing an internal model. �
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Figure 2.17: Example 2.7: Centralized feedforward and feedback control. RCAC follows the har-
monic command without developing an internal model.

Example 2.8. Command following using decentralized feedback-feedforward

control for the adaptive servo problem. Consider the asymptotically stable,

NMP plant

G(q) =
(q− 0.9)(q− 1.1)

(q− 0.99)(q2 − 1.9z + 0.9925)
. (2.66)

Let r be a unit-height step command, and let d = v = 0. We apply the decentralized

feedback-feedforward control architecture shown in Figure 2.16, and for both con-

trollers we set Rθ = 105Ilθ , Ru = 0, and nc = 10, and we use the FIR target model

(2.49). We restrict Gfb to be an FIR controller. Figure 2.18 shows the command-

following performance. Note that, since the feedback controller is FIR, RCAC cannot

develop an internal model of the command. However, RCAC adapts Gff so that the

command is followed. In this example, we demonstrate step command following for

NMP plants using RCAC, without knowledge of the NMP zero. Since the feedback

41



controller is FIR, it cannot cancel NMP zeros. Therefore, we may use RCAC without

knowledge of the NMP zero in the target model. �
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Figure 2.18: Example 2.8: Command following using decentralized feedback-feedforward control for
the adaptive servo problem. Since the feedback controller is FIR, RCAC cannot develop an internal
model of the command. However, RCAC adapts Gff so that the command is followed. In this
example, we demonstrate step command following for NMP plants using RCAC, without knowledge
of the NMP zero. Since the feedback controller is FIR, it cannot cancel NMP zeros. Therefore, we
may use RCAC without knowledge of the NMP zero in the target model.

2.9 Conclusions

This chapter developed the formulation of the RCAC algorithm, and used numer-

ical examples to illustrate properties of RCAC. The examples in this chapter show

that, for harmonic command following and disturbance rejection, RCAC has the abil-

ity to develop an internal model of the command and disturbance without knowledge

of the spectrum of the exogenous dynamics.

Next, two contributions of this dissertation, namely Adaptive PID Control and

Adaptive Feedforward Control for NMP plants were presented. First, we applied

RCAC to step-command following using an adaptively tuned PID controller, and

demonstrated anti-windup using adaptively tuned PID control, whereby the integral

gain KI is reduced to zero when the actuator is saturated. Next, we used a combined

feedback-feedforward control architectures to perform step command following with-
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out developing an internal model, as well as for NMP plants without knowledge of

the NMP zero.

In the subsequent chapters, we apply RCAC to adaptive control of aircaft lateral

motion with NMP dynamics, develop the role of the filter Gf , and we apply RCAC to

stochastic disturbance rejection and compare the performance of RCAC with discrete-

time LQG.
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CHAPTER 3

Adaptive Control of Aircraft Lateral Motion with

an Unknown Transition to Nonminimum-Phase

Dynamics

3.1 Introduction

The performance limitations due to NMP zeros are inherent to fixed-gain feedback

control [79–81]. Within the context of adaptive control, NMP zeros pose an additional

challenge, namely, the tendency of the adaptive controller to cancel NMP zeros. This

issue can be overcome with full-state feedback, but in many cases full state measure-

ments are not available. Traditional output feedback model reference adaptive control

is typically based on positive real conditions, which cannot be met for NMP systems

[82–84]. In applications, however, such as aircraft flight control, robotics, and active

vibration control [85–88], NMP zeros arise due to sensor/actuator noncolocation. In

these applications, NMP zeros are unavoidable, and developing techniques that can

address this problem remains a research challenge.

To at least a limited extent, adaptive control laws have been developed to address

the challenge of NMP zeros. For example, RCAC has been shown to be effective for

NMP systems with known NMP zeros [89]. For systems with unknown NMP zeros,

a constrained optimization approach is used in [90] to prevent unstable pole-zero
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cancellation. However, it is clear that much remains to be done to address the effect

of NMP zeros within adaptive control.

With this motivation in mind, the goal of this chapter is to consider the lateral

dynamics of a flight vehicle under conditions of uncertainty that motivate the use of

adaptive control. In particular, the lateral dynamics are assumed to transition from

minimum phase to nonminimum phase. This scenario is reminiscent of the dynamics

of a hypersonic vehicle in glide phase with unknown thermal effects [91–93]. The

ultimate goal is to achieve reliable command following under the assumption that

the transition occurs over an interval of time whose onset and duration are unknown

and, in addition, the final NMP dynamics are also uncertain. As an intermediate step

in addressing this problem, we consider the case where the details of the transition

and the final NMP dynamics are known, provided by simultaneous identification.

RCMR has been used for model refinement of a lateral dynamics model with erro-

neous modeling information in the presence of noisy and biased measurements [64].

Nevertheless, this objective is nontrivial since the adaptive control law must account

for the transition from minimum-phase to NMP dynamics.

In this chapter we address this problem by applying RCAC in several ways, with

the objective of ascertaining how this problem can best be addressed. After presenting

the aircraft model in Section 3.2, we proceed in Section 3.4 to consider the case of

full-state feedback. In Section 3.5, we consider the output feedback case where only φ

is available for feedback. Finally, in Section 3.6 we consider NMP zero identification.

3.2 Aircraft Model

We consider the lateral dynamics of an aircraft with a transition to NMP dy-

namics. We present the transition as follows. The dynamics are first expressed in

terms of a nominal plant. Then, at an unknown time and in an unknown manner,
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the plant parameters transition from stable, minimum phase to stable, but NMP. We

call the stable and minimum phase plant the nominal plant and the NMP plant the

off-nominal plant.

The nominal continuous-time plant is given by

A0 =




−0.0771 0.269 −0.9631 0.0397

−25.60 0.0218 0.0995 0

0.6160 0.0376 −0.2687 0

0 1 −0.4202 0.0058



, B0 =




−0.0002

2.519

−0.0222

0



, (3.1)

and the off-nominal continuous-time plant is given by

A1 =




−0.0771 0.269 −0.9631 0.0397

−108.8 0.0218 0.0995 0

0.4107 0.0376 −0.2687 0

0 1 −0.4202 0.0058



, B1 =




−0.0002

2.519

−0.0665

0



, (3.2)

where x =
[
β P R φ

]T
, that is, sideslip angle, roll rate, yaw rate, and roll angle.

Note that there are two parameter changes in A and one parameter change in B,

and both plants are open-loop stable. Step commands are specified for the roll angle

φ. Therefore, we consider two approaches, namely,

1. Full-state feedback with dummy commands for β, P , and R; and

2. Output feedback with only φ available for feedback.
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3.2.1 Euler Discretization

We discretize the nominal and off-nominal plants with sampling period h = 0.1

sec using Euler discretization. The discretized nominal and off-nominal plants are

AD0 =




0.9553 0.0265 −0.0934 0.0039

−2.5210 0.9680 0.1310 −0.0050

0.0551 0.0045 0.9708 0.0001

−0.1282 0.0989 −0.0369 1.0004



, BD0 =




0.0034

0.2492

−0.0017

0.0126



, (3.3)

AD1 =




0.9482 0.0255 −0.0900 0.0038

−10.3212 0.9595 0.5152 −0.0210

0.0186 0.0041 0.9723 0.0001

−0.5304 0.0953 −0.0239 0.9999



, BD1 =




0.0036

0.2390

−0.0061

0.0124



. (3.4)

All examples in this chapter use these discretized plant dynamics. Unless stated

otherwise, we assume that the plant transition occurs at t = 250 sec and that it takes

10 sec to transition from the nominal plant to the off-nominal plant. We assume that

all parameters vary simultaneously with a linear transition.

3.3 NMP-Zero-Based Construction of Gf

We construct the target model Gf such that the numerator Nf is equivalent to

HdNosz,u(q) for the full-state feedback case and HdNzu,u(q) for the output feedback

case, where the roots of the monic polynomial Nosz,u are the NMP output subspace

zeros, and the roots of the monic polynomial Nzu,u are the NMP zeros of Gzu. We

explain output subspace zeros in the next section.
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3.4 Full-State Feedback

We now apply a full-state feedback control law where we command all four states.

The advantage of using full-state feedback is the lack of nonminimum-phase zeros in

the transfer function Gzu. However, as shown below, output subspace zeros arise due

to the nonsquare nature of the dynamics [41], and the plant may exhibit NMP behav-

ior. The drawback of using full-state feedback is the need to provide commands for

the three additional states, which is not straightforward in the presence of uncertain

dynamics. To overcome this problem, we specify dummy commands for the states x1,

x2, and x3 given by

r1(k) = x1(k − 1), (3.5)

r2(k) = x2(k − 1), (3.6)

r3(k) = x3(k − 1), (3.7)

where ri(k) denotes the command for state xi at step k.

3.4.1 Output-Subspace Zeros

A plant is nonsquare if lu 6= ly. In the case of the aircraft when using full state

feedback, the plant is nonsquare. Since in this case, ly > lu, the plant is ”tall”. As

shown in [41], RCAC implicitly squares the plant. We thus consider the notion of

output-subspace zeros, which for the servo problem are the zeros from the control

input to the scaled performance variable HT
i z, which drives the update of θ(k), where

Hi is the Markov parameter used by RCAC [41]. If Gzu is square or wide and has

full rank, then N (HT
i ) = {0}. Therefore, HT

i z = 0 if and only if z = 0. In this case,

it is reasonable to expect that the zeros from u to z and zeros from u to HT
i z are

identical. However, in the case where Gzu is tall, N (HT
i ) is a proper subspace of Rlz ,
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and thus HT
i z may be zero with nonzero z. In this case, the output-subspace zeros

and the transmission zeros of Gzu may be distinct. In fact, in the full state feedback

case, there are no transmission zeros but there may be output-subspace zeros. If

the output-subspace zeros are NMP, then NMP behavior arises despite the use of

full-state feedback.

Example 3.1. Step command following using full-state feedback. Let r4 be

a step command with height 0.15, and let d = v = 0. We apply RCAC with full-state

feedback, and with nc = 6, Ru = 50e2
0(k), λ = 1 and Rθ = Ilθ . Figure 3.1 shows

command following when the NMP dynamics are unmodeled. Notice that in this

case RCAC does not destabilize the closed-loop system.
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Figure 3.1: Example 3.1: Step command following using full-state feedback. We assume the NMP
dynamics are unmodeled. RCAC is able to follow the command until the transition to NMP behavior.
After the transition, RCAC does not cause instability, but there is a large steady state error.

Next, we assume that NMP information is known throughout the flight. We ap-

ply RCAC with full-state feedback, and with nc = 40, Ru = 350e2
0(k), λ = 0.9997

and Rθ = 1.1Ilθ . Figure 3.2 shows command following assuming NMP information
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is known throughout the flight. RCAC is able to follow the command despite hav-

ing poor transient performance during and immediately after the transition to NMP

dynamics. The adaptation is slower and a penalty is added to the control input at

the expense of performance before the transition. Figure 3.3 shows the controller

coefficients θ. The controller converges before the transition, adapts and converges

to different controller coefficients after the transition. �
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Figure 3.2: Example 3.1: Step command following using full-state feedback. We assume RCAC
uses the NMP zero information. RCAC is able to follow the command throughout, despite poor
transients and slow response before transition to NMP dynamics.

3.5 Output Feedback

We now consider output feedback, where measurements of only φ are available for

feedback. We follow step commands for φ. The nominal plant has one real zero at

−0.9959 and two complex zeros at 0.9818 ± 0.0556j. Figure 3.4 shows the transition

of the two complex zeros as the system transitions from minimum phase to NMP.
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Figure 3.3: Example 3.1: Step command following using full-state feedback. We assume RCAC uses
the NMP zero information. The controller coefficients converge before the transition, adapt and
converge to different controller coefficients after the transition.

The two complex conjugate zeros become real and diverge along the real line. At the

end of the transition, the plant has two NMP zeros at −1.0027 and 1.1369. Figure

3.5 shows the magnitude of the zeros as a function of time.

Example 3.2. Step command following using output feedback. Let r4 be a

step command with height 0.15, and let d = v = 0. We apply RCAC with output

feedback, and with nc = 15, λ = 1, Ru = 50e2
0(k), and Rθ = 2Ilθ . Figure 3.6 shows

step command following with unmodeled NMP dynamics. Notice that in this case

RCAC does not destabilize the closed-loop system.

Next, we assume that NMP information is known throughout the flight. We ap-

ply RCAC with with nc = 15, λ = 1, Ru = 0, and Rθ = 2Ilθ . Figure 3.7 shows

step command following performance in this case. After a transient, RCAC follows

the command despite the transition to NMP dynamics. Figure 3.8 shows the con-
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Figure 3.4: Zero Locations. The two complex conjugate zeros become real and diverge along the
real line. The transition to NMP dynamics occurs as the real zero crosses the unit circle.

troller coefficients θ. The controller converges before the transition, and adapts and

converges to different controller coefficients after the transition. The identified zeros

are shown in Figure 3.9. Note that the transition to NMP dynamics takes place over

1 sec, instead of 10 sec. RCAC performs better when using only output feedback,

because the zeros of Gzu better describe the system than the output subspace zeros.�

3.6 NMP Zero Identification

To perform the identification process we use the µ-Markov model. For all k ≥ 0,

µ ≥ 1, and each model order nmod ≥ n, the input u(k) and the output y(k) satisfy
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Figure 3.5: Zero Magnitudes. The system becomes NMP at approximately t = 252 sec. The zero
transitions to 1.1369 in 10 sec.

the µ-Markov model

y(k) =

µ−1∑

j=0

Hju(k − j) +

nmod+µ−1∑

j=µ

bju(k − j)−
nmod+µ−1∑

j=µ

ajy(k − j), (3.8)

where H0, . . . , Hµ−1 are Markov parameters of the system, that is, if the outputs

y(k − j) for all j ∈ {µ, . . . , nmod + µ − 1} are zero and the input is the impulse

u(0) = 1, u(k) = 0 for all k > 0, then the first µ outputs of (3.8) are the Markov

parameters H1, . . . , Hµ of the system. Models of the form (3.8) are of interest because

consistent estimation of H1, . . . , Hµ is possible in the presence of arbitrary output

noise using standard least squares [94, 95] when the input u is white.

The µ-Markov model (3.8) can be expressed as

y(k)= θµφµ(k) + θuφu(k)− θyφy(k), (3.9)
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Figure 3.6: Example 3.2: Step command following using output feedback. We assume the NMP
dynamics are unmodeled. RCAC is able to follow the command until the transition to NMP behavior.
After the transition, RCAC does not cause instability, but there is a large steady state error.

where

θµ
4
=

[
H0 · · · Hµ−1

]
,

θu
4
=

[
bµ · · · bnmod+µ−1

]
,

θy
4
=

[
aµ · · · anmod+µ−1

]
,

φµ(k)
4
=

[
u(k) · · · u(k − µ+ 1)

]T

,

φu(k)
4
=

[
u(k − µ) · · · u(k−nmod−µ+1)

]T

,

φy(k)
4
=

[
y(k − µ) · · · y(k − nmod − µ+ 1)

]T

.
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Figure 3.7: Example 3.2: Step command following using output feedback. We assume RCAC uses
the NMP zero information. RCAC is able to follow the command throughout, and yields better
performance than the full-state feedback case, with better minimum phase performance and quicker
adaptation to NMP dynamics.

The least squares estimates θ̂µ,`, θ̂u,`, θ̂y,` of θµ, θu, θy are given by

[
θ̂µ,` θ̂u,` θ̂y,`

]

=argmin
[ θ̄µ θ̄u θ̄y ]

∥∥Ψy,`− θ̄µΦµ,`− θ̄uΦu,`+ θ̄yΦy,`

∥∥
F
, (3.10)

where θ̄µ, θ̄u, θ̄y are variables of appropriate size, || . ||F denotes the Frobenius norm,

Ψy,`
4
=

[
y(nmod + µ− 1) · · · y(`)

]
,

Φµ,`
4
=

[
φµ(nmod + µ− 1) · · · φµ(`)

]
,

Φu,`
4
=

[
φu(nmod + µ− 1) · · · φu(`)

]
,

Φy,`
4
=

[
φy(nmod + µ− 1) · · · φy(`)

]
,

and ` is the number of samples. Since the system is time-varying, in order to track the
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Figure 3.8: Example 3.2: Step command following using output feedback. We assume RCAC uses
the NMP zero information. The controller coefficients converge before the transition, adapt and
converge to different controller coefficients after the transition.

change in the parameters, a sliding window of 70 data points moving 70 steps at a time

is used to obtain estimates of the Markov parameters. Once the Markov parameter

estimates are obtained for a specific window, the eigensystem realization algorithm

(ERA) [96] is applied to reconstruct the system from its Markov parameters. The

ERA provides a state space realization, from which a transfer function representation

is constructed to find the zeros of the system. Figure 3.9 shows a plot of the modulus of

all zeros of the system versus time. Note that before t = 250 sec the lateral dynamics

have three minimum phase zeros while after t = 265 sec the lateral dynamics have

two NMP zeros, one of which is a sampling zero.

3.7 Conclusions

In this chapter, we used RCAC together with system identification to control

aircraft lateral motion with an unknown transition to NMP dynamics. We considered
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Figure 3.9: Modulus of the zeros of the identified system. A window of width of 7 seconds and
moving 7 seconds at a time is used to perform the identification process. Note that before t = 250
sec the lateral dynamics have three minimum phase zeros while after approximately t = 265 sec the
lateral dynamics have two NMP zeros. Note the abrupt change in the modulus of the identified
zeros between t = 250 sec and t = 265 sec as the transition data enter the identification process.

both the full-state-feedback case with output-subspace zeros and the output feedback

case with NMP zeros. Even in the case where NMP zeros exist and are unmodeled,

RCAC did not cause instability. A µ-Markov model along with standard least squares

was used to identify the Markov parameters of the system given input-output data

obtained using a moving window of a specific size. Then, the ERA was used to

obtain a realization of the system from its Markov parameters, and the NMP zero

information was be used by RCAC. Future work will consist of improving the response

and identification during the transition from minimum phase to nonminimum phase

behavior.
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CHAPTER 4

Intercalated Injection and Target Model

Construction

4.1 Introduction

The contents of this chapter and the following two chapters represent the key

contributions of this dissertation. In its early development, RCAC was viewed as an

optimization of a dynamic compensator, using past data to optimize the control effort

to achieve an objective such as command following and/or disturbance rejection. To

this effect, the filter Gf was viewed as a model of the open-loop system, representing

the required modeling information. This chapter shows that in fact, RCAC updates

the controller coefficient vector θ to minimize the residual between z and the output

of Gf with input ũ. This added insight leads to the naming of Gf as the target model.

This chapter and the following chapters discuss the construction of the target model

Gf , and the modeling information required for the construction of the target model.

In addition, in this chapter, we also compare RCAC with discrete-time high-

authority LQG, comparing the closed-loop frequency response and also the H2 cost

of RCAC and high-authority LQG. In particular, we show that by constructing the

target model with the closed-loop denominator of high-authority LQG, RCAC can

approximate the closed-loop frequency response and H2 cost of LQG. However, note
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that constructing the target model with this denominator requires knowledge of the

open-loop poles and zeros. However, we also show that by using nc >> n, RCAC

approximates the closed-loop frequency response and H2 cost of discrete-time LQG

with minimal modeling information. Discrete-time high-authority LQG is discussed

separately in Appendix A.

We illustrate these properties through eight examples. First, we use RCAC to

approximate high-authority LQG for the adaptive standard problem with stochastic

w. Next, for the adaptive servo problem, we use RCAC for command following and

stochastic disturbance rejection, and show that RCAC approximates the closed-loop

frequency response of high-authority LQG, apart from at the command frequency,

where RCAC places an internal model. Next, we investigate the effect of sensor

noise, and compare the performance and frequency response of RCAC to LQG in the

case where sensor noise is present. Finally, we develop the IIR target model for pole

placement, and use RCAC for adaptive pole placement for command following and

disturbance rejection problems.

We use the developments of the intercalated transfer function and the IIR target

model for pole placement in Chapter 5 for adaptive control of plants that are either

difficult or even impossible to control using fixed gain control methods, and in Chap-

ter 6 to enforce stability of the adaptive controller Gc,k using Quasi-FIR controller

structures, particularly in cases where high-authority LQG yields unstable controller

designs. We also present a method for step command following for NMP plants,

without knowledge of the NMP zeros.

4.2 Virtual External Control Perturbation

The target model Gf is a key feature of RCAC. In [36], Gf is viewed as a model of

Gzu that captures the sign of the leading coefficient of Nzu along with the NMP zeros

of Gzu. In [37], the analysis of RCAC involves an ideal filter Ḡf , which is a closed-loop
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transfer function involving an ideal feedback controller Ḡc. These insights lead to an

alternative interpretation of Gf as a target model for a specific closed-loop transfer

function. These properties are demonstrated below.

Using (2.29), the retrospective performance variable (2.36) can be written as

ẑ(k, θ̂) = z(k)−Gf(q)[u(k)− Φ(k)θ̂]. (4.1)

It can be seen from (4.1) that minimizing the cumulative retrospective cost function

(2.41) determines the controller coefficient vector θ̂ that best fits Gf(q)[u(k)−Φ(k)θ̂]

to the performance data z(k). In terms of the optimal controller coefficient vector θ̂∗,

(4.1) can be written as

ẑ(k, θ̂∗) = z(k)−Gf(q)[u(k)− Φ(k)θ̂∗]. (4.2)

For convenience, we define

u∗(k)
4
= Φ(k)θ̂∗, (4.3)

ũ(k)
4
= u(k)− u∗(k), (4.4)

so that

u(k) = u∗(k) + ũ(k). (4.5)

With this notation, (4.2) can be written as

ẑ(k, θ̂∗) = z(k)−Gf(q)ũ(k). (4.6)

Using (4.5) to replace u in Φ by u∗ + ũ, it follows from (2.28)–(2.30) and (4.3) that
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u∗ satisfies

u∗(k) =
nc∑

i=1

P ∗i u
∗(k − i) +

nc∑

i=1

P ∗i ũ(k − i) +
nc∑

i=kc

Q∗i y(k − i). (4.7)

Note that the actual input to the plant at step k is u(k). However, in (4.5), u(k) is

written as the sum of the pseudo control input u∗(k) and the virtual external control

perturbation ũ(k). Note that the signals u∗ and ũ are not explicitly used by RCAC.

From (4.7) it follows that

u∗(k) = D∗−1
c (q)[(qncIlu −D∗c(q))ũ(k) +N∗c (q)y(k)], (4.8)

where

D∗c(q)
4
= qncIlu − qnc−1P ∗1 − · · · − P ∗nc

, (4.9)

N∗c (q)
4
= qnc−kcQ∗kc + · · ·+Q∗nc

, (4.10)

G∗c
4
= D∗−1

c N∗c . (4.11)

Figures 4.1 and 4.2 are equivalent transfer function representations of (4.5) and (4.8)

with ũ represented as an external input. Figure 4.1 illustrates the intercalated injec-

tion of ũ inside the control update.

It follows from (2.4), (2.5), (4.5), and (4.8) that

z(k) = Gzw(q)w(k) +Gzu(q)[D∗−1
c (q)[(qncIlu −D∗c(q))ũ(k) +N∗c (q)y(k)] + ũ(k)],

(4.12)

y(k) = Gyw(q)w(k) +Gyu(q)[D∗−1
c (q)[(qncIlu −D∗c(q))ũ(k) +N∗c (q)y(k)] + ũ(k)].

(4.13)
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Figure 4.1: Transfer function representation of (4.5) and (4.8) with the virtual external control
perturbation ũ represented as an external input. The inner feedback loop represents (4.8) and
illustrates the intercalated injection of ũ inside the control update.
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1

Figure 4.2: Equivalent transfer function representation of (4.5) and (4.8) with ũ represented as
an external input. In this representation, the inner feedback loop in Figure 4.1 is replaced by an
equivalent prefilter.

Solving (4.13) for y(k) and substituting y(k) into (4.12) yields

z(k) = G̃∗zw(q)w(k) + G̃∗zũ(q)ũ(k), (4.14)

where G̃∗zw is given by (2.9) with Gc replaced by G∗c, that is,

G̃∗zw
4
= Gzw +GzuG

∗
c(I −GyuG

∗
c)−1Gyw, (4.15)

and where

G̃∗zũ(q)
4
= qncGzu(q)[D∗−1

c (q) +G∗c(q)[Ily −Gyu(q)G∗c,(q)]−1Gyu(q)D∗−1
c (q)]. (4.16)

62



Now assume that y, z, and u are scalar signals. Using the notation in (2.10), (4.16)

can be written as

G̃∗zũ(q) =
Nzu(q)qnc

D(q)D∗c(q)
+

Nzu(q)N∗c (q)Nyu(q)qnc

D(q)D∗c(q)[D(q)D∗c(q)−Nyu(q)N∗c (q)]
(4.17)

=
Nzu(q)qnc

D(q)D∗c(q)−Nyu(q)N∗c (q)
. (4.18)

It can be seen from (4.6) that ẑ(k, θ̂∗) = z(k)−Gf(q)ũ(k) is the residual of the fit

between z and the output of the target model Gf with input ũ. However, it follows

from (4.14) that G̃∗zũ, whose coefficients are given by θ̂∗, is the actual transfer function

from ũ(k) to z(k). Therefore, minimizing the retrospective cost function (2.41) yields

the value θ(k + 1) = θ̂∗ of θ̂ and thus the controller Gc,k+1 that provides the best fit

of Gf(q) by the transfer function G̃zũ,k+1 from ũ(k, θ(k+ 1)) to z(k). In other words,

RCAC determines Gc,k+1 so as to optimally fit G̃zũ,k+1 to Gf(q).

The transfer function G̃zũ,k+1 is distinct from the transfer function Gzū,k from an

external control input perturbation ū to the performance variable z with the loop

closed, as shown in Figure 4.3. In the case where y, z, and u are scalar signals, this

transfer function is given by

Gzū,k =
NzuDc,k

DDc,k −NyuNc,k

. (4.19)

The difference between (4.18) and (4.19) is the fact that (4.18) uses the fixed poly-

nomial qnc in place of the time-varying polynomial Dc,k in (4.19). This distinction

implies that the only NMP zeros in (4.18) are those arising from Gzu, unlike (4.19),

which includes “time-varying” zeros arising from Dc,k.
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Figure 4.3: Adaptive standard problem with the external control perturbation ū for defining Gzū,k.

4.3 Modeling Information Required for Gf

In this section, we use the development of the intercalated injection to present a

rationale for the modeling information required by RCAC.

4.3.1 Relative Degree

Since G̃zũ,k+1 approximates Gf , it is advantageous to choose the relative degree

of Gf to be equal to the relative degree of G̃zũ,k+1. It follows from (4.18) that the

relative degree of G̃zũ,k+1 is equal to the relative degree of Gzu. We thus choose the

relative degree of Gf to be equal to the relative degree of Gzu. This choice requires

knowledge of the relative degree dzu of Gzu [37].

4.3.2 NMP Zeros

In [37], the target model Gf is chosen such that the roots of Nf include the NMP

zeros of Gzu. As can be seen from (4.18), a key feature of G̃zũ,k+1 is the factor Nzu in

its numerator. This means that, since RCAC adapts Gc,k so as to match G̃zũ,k+1 to

Gf , RCAC may cancel NMP zeros of Gzu that are not included in the roots of Nf in

order to remove them from G̃zũ,k+1. This observation motivates the need to include

all of the roots of Nzu,u in Nf . As an aside, Example 4.6 shows that RCAC cancels all

of the minimum-phase zeros of Gzu that are not included in the roots of Nf in order
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to remove them from G̃zũ,k+1.

4.3.3 FIR Target Models

In the case where Gzu is minimum phase, we use the FIR target model (2.49).

This choice of Gf requires knowledge of the relative degree dzu of Gzu and the first

nonzero Markov parameter Hdzu of Gzu. Note that, for the adaptive servo problem,

since Gzu = −Gu, it follows that Hdzu = −Hdu , where Hdu is the first nonzero Markov

parameter of Gu.

In the case where Gzu is NMP, we use FIR target model (2.50). This choice of

Gf requires knowledge of the relative degree dzu of Gzu, the first nonzero Markov

parameter Hdzu of Gzu, and the NMP zeros of Gzu. In both cases, the relative degree

of Gf is equal to the relative degree of Gzu.

4.4 Adaptive Control with Stochastic w and d

We now apply RCAC to the adaptive standard problem in the case where the

exogenous signal w is stochastic, as well as to the adaptive servo problem in the case

where the disturbance d is stochastic. We also compare the closed-loop frequency

response and the H2 cost of RCAC with high-authority LQG, presented in the ap-

pendices.

4.4.1 H2 Cost of Strictly Proper Controllers

For a plant (2.1)–(2.3), we can calculate the H2 cost of an arbitrary stabilizing

strictly proper controller Gc ∼



Ac Bc

Cc 0


 as follows. Defining

D̃
4
=




D1

BcD2


 , Ṽ = D̃D̃T, (4.20)
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the H2 cost is given by

J(Ac, Bc, Cc) = tr(Q1R1) + tr(Q2C
T
c R2Cc), (4.21)

where Q1 ∈ Rn×n, Q2 ∈ Rnc×nc satisfy

Q̃ =



Q1 Q12

QT
12 Q2


 , (4.22)

and Q̃ ∈ Rn+nc×n+nc is the solution of the discrete-time Lyapunov equation

Q̃ = ÃQ̃ÃT + Ṽ , (4.23)

where Ã is defined in (A.12).

4.4.2 High-Authority LQG Target Model

Since RCAC tends to match G̃zũ toGf , we chooseGf with the numeratorNzu(q)qnc

and the closed-loop denominator of high-authority LQG D̃HA in order to construct

the high-authority LQG target model

Gf(q) =
Nzu(q)qnc

D̃HA(q)
=

Hdzuq
mNzu,u(q)

Nzu,u(q−1)Nyw,s(q)Nyw,u(q−1)
, (4.24)

where m
4
= nc − dzu − dyu. Note that m may be negative. The target model (4.24)

is based on (A.17). By choosing (4.24), the goal is to compare the performance

of RCAC with the performance of high-authority LQG in the case nc = n. Note

that using (4.24) as the target model requires knowledge of D̃HA in addition to the

modeling information required by (2.49) and (2.50). The use of (4.24) is thus only

for conceptual illustration. Later, we use the FIR target models (2.49) and (2.50),

but with nc > n.
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4.4.3 Examples

In all examples in this section, unless specified otherwise, we set Rθ = 10−10Ilθ ,

kw = 50, and Ru = 0.

Example 4.1. Adaptive control with stochastic w for the adaptive standard

problem. Consider the asymptotically stable plant

A =




0.855 1 0 0 0

−0.1715 0.855 −0.4266 −0.3607 0.4952

0 0 0.5 −0.5072 0.6964

0 0 0 0.6716 1

0 0 0 −0.4514 0.6716




, (4.25)

B =




0

0

0

0

1




, D1 =




−0.6269

0.3985

−0.3306

0.4415

0.3794




, (4.26)

C = [0.7298 − 0.3954 − 0.3605 0.4003 0.1447], D0 = 0, D2 = 0, (4.27)

E1 = [0.1717 0.3351 − 0.5294 − 0.4476 0.6145], E0 = 0, E2 = 0, (4.28)

where Gzu, Gzw, Gyu, and Gyw are NMP. The H2 cost of the LQG controller is 1.059.

The exogenous signal w is zero-mean Gaussian white noise with standard deviation

0.1. We apply RCAC with nc = n, and we use the high-authority LQG target model

(4.24). RCAC places the closed-loop poles near the high-authority LQG closed-loop

poles and approximates the closed-loop frequency response of high-authority LQG,

as shown in Figure 4.4. The H2 cost of the RCAC controller is 1.0591.

Next, we show that, for sufficiently large nc > n, RCAC approximates the perfor-

mance of the high-authority LQG controller using the FIR target model (2.50), which
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uses knowledge of dzu, Hdzu , and the NMP zeros of Gzu, but no other modeling data

and no knowledge of D̃HA. We apply RCAC with nc = 4n = 20. In this case RCAC

approximates the closed-loop frequency response of high-authority LQG, as shown in

Figure 4.5, and the H2 cost of the RCAC controller is 1.061. �
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Figure 4.4: Example 4.1: Adaptive standard problem, with the high-authority LQG target model
(4.24). RCAC places the closed-loop poles near the high-authority LQG closed-loop poles and
approximates the closed-loop frequency response of high-authority LQG. The frequency-response
plots and closed-loop poles and zeros are shown at step k = 105.

Example 4.2. Adaptive control with nonzero-mean, stochastic w for the

adaptive standard problem. Consider the Lyapunov-stable, NMP plant

G(q) =
(q− 0.5)(q2 − 1.92q + 1.44)

(q− 1)(q− 0.9)(q2 − 1.62q + 0.81)
, (4.29)

and let w be Gaussian white noise with mean 0.1 and standard deviation 0.05. The H2

cost of the LQG controller is 28.96. We apply RCAC with nc = 5n = 20, and we use
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Figure 4.5: Example 4.1: Adaptive standard problem with nc = 20. RCAC approximates the
closed-loop frequency response of high-authority LQG. In addition, the frequency response of G̃zũ,k
approximates the frequency response of Gf . The frequency-response plots are shown at step k = 105.

the FIR target model (2.50), which uses no knowledge of D̃HA. RCAC approximates

the closed-loop frequency response of high-authority LQG except at DC due to the

internal model needed to reject the nonzero-mean disturbance, which has the form

of a notch at DC, as shown in Figure 4.6. Note that RCAC automatically develops

the internal model in response to the disturbance bias. The H2 cost of the RCAC

controller is 35.79. �

Example 4.3. Harmonic command following and stochastic disturbance

rejection for the adaptive servo problem. Consider the asymptotically stable,

minimum-phase plant

G(q) =
(q2 − 1.7q + 0.785)(q2 − 1.4q + 0.85)

(q− 0.5)(q2 − 1.8q + 0.97)(q2 − 1.4q + 0.98)
. (4.30)

The H2 cost of the LQG controller is 1.072. Let r be the harmonic command

r(k) = cosωk, where ω = 0.8 rad/sample, let d be zero-mean Gaussian white noise

with standard deviation 0.01, and let v = 0. We apply RCAC with nc = 8n = 40, and

we use the FIR target model (2.49), which uses no knowledge of D̃HA. RCAC asymp-

totically follows the harmonic command and approximates the closed-loop frequency
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Figure 4.6: Example 4.2: Adaptive standard problem with nc = 5n = 20. RCAC approximates the
closed-loop frequency response of high-authority LQG except at DC due to the internal model needed
to reject the step disturbance. The internal model has the form of a notch at DC corresponding to
the closed-loop zero at 1. In addition, the frequency response of G̃zũ,k approximates the frequency
response of Gf . The frequency-response plots and closed-loop poles and zeros are shown at step
k = 105.

response of high-authority LQG except at the command frequency due to the internal

model of the command, which has the form of a notch at the command frequency, as

shown in Figure 4.7. As in Example SD4.2, RCAC automatically develops an internal

model in response to the harmonic command. The H2 cost of the RCAC controller is

1.15. �

Example 4.4. Stochastic disturbance rejection for the adaptive servo prob-
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Figure 4.7: Example 4.3: Command following and stochastic disturbance rejection for the adaptive
servo problem with nc = 8n = 40. RCAC approximates the closed-loop frequency response of high-
authority LQG except at the command frequency due to the internal model. The internal model has
the form of a notch at the command frequency corresponding to the two closed-loop zeros on the
unit circle. The frequency-response plots and closed-loop poles and zeros are shown at step k = 105.

lem with sensor noise. Consider the asymptotically stable, minimum-phase plant

A =




0.9 1 0 0 0

0 0.95 −0.1507 −0.1674 0.5189

0 0 0.65 1 0

0 0 −0.4225 0.65 0.434

0 0 0 0 0.95




, B = D1 =




0

0

0

0

1




, (4.31)

C = E1 = [0.1596 0.3991 − 0.2405 − 0.2672 0.8283], (4.32)

D0 = E0 = E2 = 0, D2 = 1. (4.33)
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The H2 cost of the LQG controller is 2.5437. Let d and v be zero-mean Gaussian white

noise signals with standard deviation 1. We apply RCAC with kw = 50, Rθ = 10−20Ilθ ,

Ru = 0, and nc = 4n = 20, and we use the FIR target model (2.49). Instead

of approximating the closed-loop frequency response of high-authority LQG, RCAC

approximates the closed-loop frequency response of LQG in the presence of sensor

noise, that is, the closed-loop frequency response of the LQG controller designed for

the actual sensor noise level, namely, V2 = 1, as shown in Figure 4.8. The H2 cost of

the RCAC controller is 2.5441. �
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Figure 4.8: Example 4.4: Stochastic disturbance rejection for the adaptive servo problem with zero-
mean Gaussian white sensor noise. RCAC approximates the closed-loop frequency response of LQG
for V2 = 1. In addition, the frequency response of G̃zũ,k approximates the frequency response of Gf .
The frequency-response plots are shown at step k = 105.

Example 4.5. Step command following and stochastic disturbance rejection

for the adaptive servo problem with sensor noise. Consider the asymptotically
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stable, minimum-phase plant

A =




0.8882 1 0 0 0

−0.1715 0.8882 −0.3624 −0.3238 0.6679

0 0 0.693 1 0

0 0 −0.4802 0.693 0.7276

0 0 0 0 0.5




, (4.34)

B =




0

0

0

0

1




, D̄1 =




0.5537

0.0603

−0.5457

0.5596

−0.2806




, (4.35)

C̄ = [0.2158 0.4234 − 0.3861 − 0.3449 0.7115]. D̄0 = 0. (4.36)

Let r be a unit step command, let d be zero-mean Gaussian white noise with standard

deviation 0.05, and let v be zero-mean Gaussian white noise with standard deviation

0.025. In order to account for the standard deviation of the sensor noise, it follows

from (2.26) that

V2 = 0.025D2D
T
2 = 0.025[1 0 − 1][1 0 − 1]T = 0.05. (4.37)

We apply RCAC with Rθ = 10−10Ilθ , Ru = 0, and nc = 8n = 40, and we use

the FIR target model (2.49). RCAC asymptotically follows the step command and

approximates the closed-loop frequency response of LQG except at DC due to the

internal model of the command, which has the form of a notch at DC, as shown in

Figure 4.9. For this example, RCAC approximates the closed-loop frequency response

of the LQG controller designed for the actual sensor noise level, namely, V2 = 0.05.�
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Figure 4.9: Example 4.5: Command following and stochastic disturbance rejection for the adaptive
servo problem with zero-mean Gaussian white sensor noise. RCAC approximates the closed-loop
frequency response of LQG for V2 = 2 except at DC due to the internal model. The internal model
has the form of a notch at DC corresponding to the closed-loop zero at 1. This example suggests
that RCAC approximates the closed-loop frequency response of LQG in the presence of sensor noise.
The frequency-response plots and closed-loop poles and zeros are shown at step k = 105.

The examples in this section show that, as Gc,k adapts, the frequency response

of G̃zũ tends to the frequency response of Gf . It is also shown that, for sufficiently

large nc > n, the and H2 cost of the RCAC controller approximates the H2 cost of

high-authority LQG, and the frequency response of the closed-loop transfer function

G̃zw obtained from RCAC with the FIR target models (2.49) and (2.50) approximates

the closed-loop frequency response of high-authority LQG.
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4.5 Adaptive Pole Placement

In this section, we consider adaptive pole placement for the adaptive standard

problem and the adaptive servo problem using RCAC. We begin by defining IIR

target models for pole placement.

4.5.1 IIR Target Model for Pole Placement

Since G̃zũ approximates Gf , RCAC attempts to place the poles of G̃zũ at the loca-

tions of the poles of Gf . It can be seen from (2.11) and (4.18) that the denominator

of G̃zũ is equal to the denominator of the closed-loop transfer function G̃zw. Conse-

quently, RCAC attempts to place the closed-loop poles at the locations of the poles

of Gf . In order to use Gf for pole placement, let Dp be a monic polynomial of degree

np whose roots are the desired closed-loop pole locations. Then, in the case where

Gzu is minimum phase, we define the IIR target model

Gf(q)
4
=
Hdzuq

np−dzu

Dp(q)
, (4.38)

and, in the case where Gzu is NMP, we define the IIR target model

Gf(q)
4
=
Hdzuq

np−dzu−deg(Nzu,u)Nzu,u(q)

Dp(q)
. (4.39)

The target models (2.49) and (4.38) for minimum-phase Gzu along with the target

models (2.50) and (4.39) for NMP Gzu represent the modeling information required

by RCAC.

In the case where np < n + nc, RCAC attempts to place np closed- loop poles at

the locations of the poles of Gf . The remaining n+nc−np closed-loop poles are placed

at either the locations of the minimum-phase zeros of Gzu that are not included in

the roots of Nf or at zero.
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Example 4.6. Pole placement for the adaptive servo problem. Consider the

unstable, minimum-phase plant

G(q) =
q2 − 1.4q + 0.85

(q− 1.05)(q2 − 1.6q + 0.89)
. (4.40)

Let r be a unit step command, and let d = v = 0. To place five closed-loop poles at

0.3, 0.4, 0.6, and ±0.1, we use the IIR target model (4.38) with

Dp(q) = (q− 0.3)(q− 0.4)(q− 0.6)(q2 + 0.01), (4.41)

and set Rθ = 10−20Ilθ , Ru = 0, and nc = 4. RCAC asymptotically follows the step

command and places five closed-loop poles near the locations of the roots of Dp,

as shown in Figure 4.10. Note that the remaining two closed-loop poles cancel the

minimum-phase zeros of G, which are not included in the target model (4.38).

Next, we set Rθ = 10−40Ilθ . Figure 4.11 shows the locations of the closed-loop

poles. Note that RCAC places the closed-loop poles closer to the target locations as

Rθ is decreased and thus P (0) is increased. �

Example 4.7. Pole placement for the adaptive standard problem with y = z

and with w matched with u. Consider the asymptotically stable, minimum-phase

plant

G(q) =
q2 − 1.44q + 0.81

(q− 0.9)(q2 − 1.71q + 0.903)
. (4.42)

Let w be a unit step. We apply RCAC with kw = 50, Rθ = 10−10Ilθ , Ru = 0, and

nc = 4. To place four closed-loop poles at ±0.5 and ±0.8, we use the IIR target
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Figure 4.10: Example PP4.6: Pole placement for the adaptive servo problem. We apply RCAC
with Rθ = 10−20Ilθ . RCAC places five closed-loop poles near the locations of the roots of Dp. The
closed-loop poles and zeros are shown at step k = 100.

model (4.38) with

Dp(q) = (q− 0.5)(q + 0.5)(q2 + 0.64). (4.43)
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Figure 4.11: Example 4.6: Pole placement for the adaptive servo problem. We apply RCAC with
Rθ = 10−40Ilθ . Note that RCAC places the closed-loop poles closer to the target locations as Rθ is
decreased.

RCAC places four closed-loop poles near the locations of the roots of Dp, as shown

in Figure 4.12. Note that two closed-loop two poles cancel the minimum-phase zeros

of G, and the single unassigned closed-loop pole converges to 0. �

78



0 20 40 60 80 100
-40

-20

0

20

y(
k)

y,OL

y

0 20 40 60 80 100
Time Step

-20

0

20
3(

k)

-4 -3 -2 -1 0 1
Real Axis

-1

-0.5

0

0.5

1

Im
ag

in
ar

y
A

xi
s

eGzw

Dp

Figure 4.12: Example 4.7: Pole placement for the adaptive standard problem. RCAC places four
closed-loop poles near the locations of the roots of Dp. The single unassigned closed-loop pole
converges to 0. The closed-loop poles and zeros are shown at step k = 100.

Example 4.8. Pole placement for the adaptive standard problem. Consider

the unstable, NMP plant

G(q) =
q− 1.2

(q− 1.1)(q− 2)
. (4.44)

Let w be a unit step. We apply RCAC with Rθ = 10−40Ilθ , Ru = 0, and nc = 3. To

place five closed-loop poles at 0.1, 0.3, 0.5, and ±0.3, we use the IIR target model
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(4.39) with

Dp(q) = (q− 0.1)(q− 0.3)(q− 0.5)(q2 + 0.09). (4.45)

Note that the unstable zero of (4.44) lies between the two unstable poles. It follows

from root locus analysis and the parity interlacing property [97] that stabilization

of (4.44) requires that the controller be unstable [14]. RCAC places five closed-loop

poles near the locations of the roots of Dp, as shown in Figure 4.13. As expected,

Gc,k converges to an unstable controller. �
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Figure 4.13: Example 4.8: Pole placement for the adaptive standard problem. RCAC places five
closed-loop poles near the locations of the roots of Dp. Note that the controller becomes unstable
after a few steps, and the closed-loop system is stabilized at step k = 20. The closed-loop poles and
zeros are shown at step k = 100.
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4.6 Conclusions

In this chapter, we demonstrated that retrospective cost optimization updates the

controller coefficients so as to match the intercalated closed-loop transfer function

G̃zũ,k to a target model Gf . It was shown that G̃zũ,k is the transfer function from the

virtual external controller perturbation ũ to the performance variable z. The special

nature of G̃zũ,k is due to the fact that ũ enters the feedback loop through intercalated

injection, which means that ũ is injected internally to the controller as opposed to

simply being added to the control input.

The target model Gf is selected by the user, and the choice of Gf is guided by its

role in the controller adaptation. In particular, since RCAC tends to match G̃zũ,k to

the target model and, since the target model possesses the NMP zeros of Gzu, the

NMP zeros must be reproduced in the target model; otherwise, RCAC may cancel

them, resulting in a hidden instability. This modeling information, along with the

relative degree of Gzu and its leading numerator coefficient, constitutes the basic

modeling information required by RCAC. These statements apply to the case where

Gzu is SISO.

The role of the target model was examined from various angles. First, it was shown

that, in the absence of sensor noise and control weighting Ru, RCAC tends to match

the closed-loop frequency response of the high-authority LQG controller. This con-

nection is surprising in view of the fact that RCAC uses extremely limited modeling

information relative to LQG. In effect, RCAC uses data to compensate for missing or

erroneous modeling information. Next, it was shown that for command-following ap-

plications in the presence of stochastic disturbances, RCAC matches the closed-loop

frequency response of LQG, except at the command frequency, where RCAC places

an internal model. Finally, it was shown that in the presence of sensor noise, RCAC

approximates the closed-loop frequency response of the LQG controller designed for

the actual sensor noise level, without any knowledge of the noise characteristics.
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In addition to matching closed-loop properties of the LQG controller, we show

that RCAC can be used for adaptive pole placement by choosing the poles of the

target model as the desired closed-loop spectrum. We show that in order to match

G̃zũ,k to Gf , RCAC places closed-loop poles at the locations of the poles of Gf .
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CHAPTER 5

Adaptive Control of Plants That Are

Practically Impossible to Control by Fixed-Gain

Control Laws

5.1 Introduction

Feedback control presents numerous challenges due to dimensionality, uncertainty,

nonlinearity, state and control constraints, MIMO coupling, delays, disturbances, and

noise. Even in the SISO, LTI case, some plants are inherently difficult to control due

to unstable open-loop poles, NMP zeros, high relative degree, and time delays. These

properties limit the achievable gain and phase margins, thus undermining robust

stability and performance [98]. For example, the analysis in [2] shows that the ar-

rangement of the plant poles and zeros constrains the controller bandwidth and the

achievable delay margin. These limitations severely limit the feasibility of implement-

ing a feedback control law with the given sensors and actuators. Although robust and

adaptive control can account for plant uncertainty, the above limitations apply to all

LTI plants under LTI control.

For adaptive control, plants that are inherently difficult to control pose an espe-

cially troublesome challenge as explained in [99]:
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Control engineers grounded in classical control know it is possible to formulate

control design problems which in practical terms are not possible to solve. An

inverted pendulum with more than two rods is a well-known example; again,

a plant with nonminimum phase zeros well inside the passband and unstable

poles may be near impossible to control, unless additional inputs or outputs are

used; another famous example was provided in [1] and so on. When the plant

is initially known, as well as the control objective, it will generally become clear

at some point in the design process, if not ab initio, that the control objective is

impractical.

Now what happens in adaptive control? The catch is that a full description of

the plant is lacking. There may be no way to decide on the basis of the a priori

information that the projected design task is or is not practical. So what will

happen if an adaptive control algorithm is run in such a case? At the least, the

algorithm will not converge. At worst, an unstable closed loop will be established.

This chapter is motivated by these concerns. In particular, we consider a collection

of plants with severely limited achievable gain and phase margin. We apply RCAC to

each plant, and then we allow the adaptive controller to converge. Once convergence

is reached, we determine the gain and phase margin of the closed-loop system. We

then introduce a destabilizing perturbation that exceeds either the gain margin or

the phase margin. The objective is to determine whether or not RCAC can re-adapt

in such a way as to compensate for the loss of margin and restabilize the closed-loop

system without manual retuning. Since these plants are inherently difficult to control,

it is of interest to determine whether or not restabilization is possible and, if so, assess

the severity of the transient response.

We consider several examples. The first example entails an unmodeled change in

the static gain, and the next two examples consider unmodeled time delays. Next, we

consider a plant with an unmodeled change in the NMP zeros. Finally, we consider

discrete-time versions of the well-known examples from [1] and [2].
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5.2 Examples

Example 5.1. Unmodeled change in the static gain for the adaptive stan-

dard problem. Consider the asymptotically stable, NMP plant

G(q) =
(q2 − 1.7q + 0.785)(q2 − 1.4q + 0.85)

(q− 0.5)(q2 − 1.8q + 0.97)(q2 − 1.4q + 0.98)
, (5.1)

and let w be zero-mean Gaussian white noise with standard deviation σ = 0.01. We

set nc = 10, Rθ = 10−5Ilθ , and we use the FIR target model (2.50). Figure 5.1

shows that RCAC approximates the closed-loop frequency response of high-authority

LQG. At step k = 5000, the closed-loop system has a gain margin of 1.81 at the

phase crossover frequency ωpco = 0 rad/sample. At step k = 5000, the nominal

plant G is replaced by 2.9G. If Gc is fixed to be Gc,5000, then the closed-loop system

becomes unstable. However, under adaptation, the plant is restabilized, and RCAC

approximates the closed-loop frequency response of LQG for the modified plant, as

shown in Figure 5.1. �

Example 5.2. Unmodeled time delay for the adaptive servo problem. Con-

sider the asymptotically stable, minimum-phase plant G = GTDG0, where

GTD(q)
4
= q−kd , G0(q) =

q− 0.95

(q− 0.85)(q2 − 1.6q + 0.89)
, (5.2)

and GTD represents an unmodeled time delay of kd steps. Let r be the harmonic

command r(k) = cosωk, where ω = 0.35 rad/sample, and let d = v = 0. We set

Rθ = 0.03Ilθ , Ru = e2
0, and nc = 10. Since GTD is unmodeled, we use the FIR

target model (2.49) based on G0. Figure 5.2 shows the command-following error e0

for kd = 1, kd = 2, kd = 3, and kd = 4. RCAC follows the harmonic command in

each case, despite the unmodeled time delays. For this example, RCAC is robust to
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Figure 5.1: Example 5.1: Unmodeled change in the static gain for the adaptive standard problem.
At step k = 5000, the gain margin is 1.81, and G is replaced by 2.9G. If Gc is fixed to be Gc,5000,
then the closed-loop system becomes unstable. However, under adaptation, the plant is restabilized.

unmodeled delays of upto 6 steps. In the next example, we consider unmodeled time

delays during operation. �
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Figure 5.2: Example 5.2: Unmodeled time delay for the adaptive servo problem. For kd = 1 (top),
kd = 2 (second), kd = 3 (third), and kd = 4 (bottom), RCAC follows the harmonic command,
despite the unmodeled time delays.
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Example 5.3. Unmodeled time-varying time delay for the adaptive servo

problem. Consider the asymptotically stable, minimum-phase plant

G(q) =
q− 0.9

(q− 0.95)(q2 − 1.6q + 0.89)
. (5.3)

Let r be the harmonic command r(k) = cosωk, where ω = 0.5 rad/sample, and let

d = v = 0. We use the FIR target model (2.49), and set nc = 15, Rθ = 0.1Ilθ , and

Ru = 0.1e2
0. At step k = 15000, a 1-step delay is introduced into the closed-loop

system. At step k = 30000, an additional 2-step delay is introduced, and at step

k = 60000, an additional 6-step delay is introduced. Table 5.1 shows the magnitude

crossover frequency ωmco, the phase margin PM, and the delay margin DM prior to the

insertion of additional delays. Note that each delay exceeds the delay margin. In each

case, RCAC re-adapts and restabilizes the closed-loop system, as shown in Figure 5.3.

After the third delay, RCAC restabilizes the system at step k = 100000 (not shown).�

k ωmco (rad/sample) PM (deg) DM (steps)
15000 1.8872 19.0799 0.1765
30000 1.4003 86.1123 1.0733
60000 0.5742 181.7065 5.5233

Table 5.1: Example 5.3: Unmodeled time-varying time delay for the adaptive servo problem. Mag-
nitude crossover frequency, phase margin, and delay margin prior to inserting additional delays.

Example 5.4. Unmodeled change in NMP zeros for the adaptive standard

problem. Consider the asymptotically stable, NMP plant

G(q) =
(q− 0.5)(q2 − 1.92q + 1.44)

(q− 0.35)(q− 0.6)(q2 − 0.8q + 0.32)
, (5.4)

and let w be zero-mean Gaussian white noise with standard deviation σ = 0.01. We

set nc = 4 , Rθ = 10−5Ilθ , Ru = 0.1z2, and we use the IIR target model (4.39)
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Figure 5.3: Example 5.3: Unmodeled time-varying time delay for the adaptive servo problem. At
step k = 15000, a 1-step delay is introduced into the closed-loop system. At step k = 30000, an
additional 2-step delay is introduced, and at step k = 60000, an additional 6-step delay is introduced.
With Gc fixed, each delay is destabilizing. In each case, RCAC re-adapts and restabilizes the closed-
loop system

with Dp(q) chosen to contain the closed-loop poles of high-authority LQG. RCAC

approximates the closed-loop frequency response of high-authority LQG. At step k =

5000, the NMP zeros move from 0.96 ± 0.72 to 0.99 ± 1.38. If Gc is fixed to be

Gc,5000, then Figure 5.4 shows that the closed-loop system becomes unstable. However,

under adaptation, the plant is restabilized, and RCAC approximates the closed-loop

frequency response of LQG for the modified plant, as shown in Figure 5.4. �
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Figure 5.4: Example 5.4: Unmodeled change in NMP zeros for the adaptive standard problem. At
step k = 5000, the NMP zeros move to 0.99±1.38. If Gc is fixed to be Gc,5000, then the closed-loop
system becomes unstable (not shown). However, under adaptation, the plant is restabilized.

Example 5.5. Severely limited gain margin for the adaptive standard prob-

lem. Consider the unstable, minimum-phase, continuous-time plant from [1] given

by

A =




1 1

0 1


 , B =




0

1


 , D1 =




1

1


 , (5.5)

C = E1 =

[
1 1

]
, D2 = 1. (5.6)

For the standard problem, we discretize (5.5) and (5.6) with a sampling period of 0.01

sec. Figure 5.5 shows that RCAC approximates the closed-loop frequency response of
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high-authority LQG. The LQG controller yields a gain margin of 0.04, and the RCAC

controller yields a gain margin of 0.0034. At step k = 10000, the nominal plant G is

replaced by 1.1G. If Gc is fixed to be Gc,10000, then the closed-loop system becomes

unstable. However, under adaptation, the plant is restabilized, as shown by Figure

5.5. �

Example 5.6. Limited delay margin for the adaptive standard problem.

Consider the unstable, minimum-phase, continuous-time plant from [2] given by

A =




−0.08 −0.03 0.2

0.2 −0.04 −0.005

−0.06 0.2 −0.07



, (5.7)

B =




−0.1

−0.2

0.1



, C = E1 =

[
0 −1 0

]
. (5.8)

This plant has an unstable pole at 0.1081. It is shown in [2] that the maximum

achievable delay margin for the plant is 18.51 sec. For the standard problem, we

discretize (5.7) and (5.8) with a sampling period of 0.1 sec. Using the controller given

by (23) in [2], and discretizing with a sampling period of 0.1 sec, the delay margin of

the discrete-time closed-loop system is 6.07 steps.

Next, we use RCAC with the adaptive standard problem in order to stabilize

(5.7) and (5.8). We apply RCAC with Rθ = 100Ilθ , Ru = 0.1z2, and nc = 3, and

we use the FIR target model (2.49). The delay margin of the closed-loop system at

step k = 3000 using RCAC is 0.31 steps, as shown by Table 5.2. Figure 5.6 shows

the closed-loop responses for the initial condition x(0) = [0.1 0.1 0.1]T for both the

controller given by [2] and RCAC discretized with the sampling period h = 0.1 sec.

Note that the controller given by [2], designed to achieve the maximum delay margin,
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Figure 5.5: Example 5.5: Severely limited gain margin for the adaptive standard problem [1]. At
step k = 10000, the gain margin is 0.0034, and the nominal plant G is replaced by 1.1G. If Gc is
fixed to be Gc,10000, then the closed-loop system becomes unstable. However, under adaptation, the
plant is restabilized.

has poor transient response compared to RCAC. At step k = 3000, an unmodeled 7-

step time delay is inserted into the loop, which destabilizes both closed-loop systems.

Under continued adaptation and a prolonged transient response, RCAC restabilizes

the closed-loop system at time step k = 11800. �
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Figure 5.6: Example 5.6: Limited delay margin for the adaptive standard problem. Closed-loop
responses for the initial condition x(0) = [0.1 0.1 0.1]T for both the controller given by [2] and
RCAC. Note that the controller given by [2], designed to achieve the maximum delay margin, has
poor transient response compared to RCAC. At step k = 3000, a 7-step delay is introduced into the
system, which destabilizes both closed-loop systems. However, RCAC re-adapts and restabilizes the
closed-loop system.

Controller ωmco (rad/sec) PM (deg) DM (steps)
[2] 0.3708 129.12 6.07
RCAC 2.1834 38.83 0.31

Table 5.2: Margins for the controller from [2] and RCAC at step k = 3000.
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5.3 Conclusions

In this chapter, we applied RCAC to a collection of examples involving plants

that are practically impossible to control using fixed-gain controllers due to extremely

small gain and phase margins. Plants of this type are viewed in [99] as potentially

problematic for adaptive control as well. At convergence, the closed-loop systems

possessed small gain or phase margin, as expected, and thus the insertion of additional

gain or time delay caused instability. However, with continued adaptation using

RCAC, it was shown that RCAC was able to re-adapt and restabilize the plant. The

recoverable range of perturbation was assessed numerically. Future research will focus

on deriving analytical bounds for recoverability.
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CHAPTER 6

Adaptive Control Using Quasi-FIR Asymptotically

Stable Controllers

6.1 Introduction

It is a well-known but unfortunate fact of feedback control that H2-optimal and

H∞-optimal dynamic control laws are often unstable. Unstable controllers are unde-

sirable for multiple reasons: they are difficult to start up; they are more susceptible

to the adverse effects of saturation; and momentary disconnection from the plant

due to delays or data loss can lead to divergence [100]. As discussed in [97, 101],

some unstable plants can be stabilized only by unstable controllers; such plants are

pathologically difficult to control but, fortunately, are rare in practice. We considered

such a plant in Example 4.8, but such plants are outside the scope of this chapter.

If the optimal controller is unstable, then all asymptotically stable controllers are

necessarily suboptimal; the problem then is to determine the performance tradeoff

due to the restriction to asymptotically stable controllers.

In some cases, it may be possible to obtain asymptotically stable H2- and H∞-

suboptimal control laws by adjusting the weights of the cost function, but such tech-

niques are ad hoc with no guarantee of success. In addition, by modifying the weights,

the resulting controller is suboptimal for the original weights. More systematic tech-
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niques have been developed [102–105], but these techniques add computational com-

plexity to H2 and H∞ controller synthesis.

In this chapter, we focus on the problem of obtaining asymptotically stable con-

trollers within the context of RCAC. As shown in [78], RCAC with full-order con-

trollers mimics high-gain LQG controllers and can place poles based on the choice of

the target model. Consequently, the adaptive controller may converge to an unsta-

ble controller. The goal of this chapter is to apply RCAC with a restricted class of

controllers in order to avoid convergence to unstable controllers.

There are various ad hoc techniques that can be used to enforce asymptotic sta-

bility of the controller. For example, if the updated controller Gc,k is unstable, then

Gc,k can be modified by replacing each unstable pole by its reflection inside the unit

circle. Unfortunately, this requires computation at each step of all of the controller

poles as well as the construction of the modified controller. More seriously, numerical

experiments show that this approach can destabilize the closed-loop system. A more

rigorous approach would be to update the controller subject to a stability constraint;

however, this constraint is not convex and thus is computationally expensive.

The approach taken in this chapter is to adapt FIR or quasi-FIR control laws,

that is, control laws all or most of whose poles are fixed at the origin. A related

approach is developed in [106], where the motivation for sparse controllers is based on

computational complexity and accuracy rather than controller stability. For a quasi-

FIR controller comprising of the product of an FIR component and a low-order IIR

component, the low-order IIR component provides the ability to adaptively develop

an internal model or to facilitate pole placement. Although the IIR component can

become unstable during adaptation, we reflect the unstable poles at each step in order

to enforce controller stability.

We use qausi-FIR control laws for two objectives. First, we attempt to obtain

near optimal controllers that are asymptotically stable in the case where the high-
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authority LQG controller is unstable. Secondly, we use a quasi-FIR control law to

perform command following for NMP plants without knowledge of the NMP zero.

6.2 Stochastic Disturbance Rejection

6.2.1 Quasi-FIR compensator

As an alternative to the IIR compensator (2.28), we consider the quasi-FIR com-

pensator

u(k) =
2∑

i=1

Pi(k)u(k − i) +
nc∑

i=1

Qi(k)y(k − i). (6.1)

The compensator (6.1) has at most two nonzero poles as well as nc − 2 poles fixed

at zero. At each step k, if either of the two free poles is unstable, then we reflect

the pole to its reciprocal inside the unit disk. This technique relocates at most two

poles, whereas, for the IIR controller, as many as nc poles may need to be reflected

within the unit disk. We use (6.1) to obtain asymptotically stable controllers in the

case where the high-authority LQG controller is unstable.

6.2.2 Pole Reflection

In order to enforce asymptotic stability of the controller, we apply a reflection

technique. In particular, if the updated controller Gc,k is unstable, then Gc,k is modi-

fied by replacing each unstable pole by its reciprocal inside the unit disk. For an IIR

controller of order nc, all of the poles may need to be reflected. However, in the next

section we consider controllers all or most of whose poles are fixed inside the open

unit disk. In this case, only a small number of controller poles may require reflection

in order to enforce controller stability.
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Example 6.1. Broadband Disturbance rejection for a NMP plant using an

IIR controller. Consider the Lyapunov-stable, NMP plant

G(q) =
(q− 0.8)(q− 1.1)

(q− 0.5)(q2 − 1.9q + 1)
, (6.2)

and let w be zero-mean Gaussian white noise with standard deviation 0.01. For this

plant, the high-authority LQG controller is unstable, with a pole at 1.0025. The H2

cost of the LQG controller is 1.4798. Next, we apply RCAC with an IIR controller

structure and the FIR target model (2.50) with nc = 5n, Rθ = 0.5Ilθ , and Ru = 0. The

RCAC controller has an unstable pole at 1.002 and the H2 cost is 1.4945. Figure 6.1

shows the closed-loop response and the closed-loop frequency response. Note that the

closed-loop frequency response of the converged RCAC controller, which is unstable,

approximates the closed-loop frequency response of the unstable high-authority LQG

controller. �

Example 6.2. Broadband Disturbance rejection for a minimum-phase plant

using a quasi-FIR controller. Consider the Lyapunov-stable, minimum-phase

plant

G(q) =
q2 − 1.52q + 0.9025

(q− 0.85)(q2 − 1.8q + 1)
, (6.3)

and let w be zero-mean Gaussian white noise with standard deviation 0.01. For this

plant, the high-authority LQG controller is unstable, with a pole at 1.13. The H2 cost

for the LQG controller is 1.7252. We apply RCAC with the quasi-FIR structure given

by (6.1) and with the FIR target model (2.49) with nc = 50, Rθ = 0.1Ilθ , and Ru = 0.

The RCAC controller is asymptotically stable, and the H2 cost is 2.3717. Figure 6.2

shows the closed-loop response of z as well as the closed-loop frequency response. Note

that the closed-loop frequency response of the converged RCAC controller, which is
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Figure 6.1: Example 6.1: Broadband disturbance rejection for the NMP plant (6.2) using the IIR
controller structure (2.28). RCAC approximates the closed-loop frequency response of the high-
authority LQG controller. The frequency-response plots are shown at step k = 105. However,
RCAC converges to an unstable controller (not shown).

asymptotically stable, approximates the closed-loop frequency response of the unsta-

ble high-authority LQG controller. �

Example 6.3. Broadband disturbance rejection for a NMP plant using a

quasi-FIR controller. We reconsider the Lyapunov-stable, NMP plant (6.2), and

apply RCAC with the quasi-FIR controller given by (6.1) and with the FIR target

model (2.50) with nc = 50, Rθ = 0.5Ilθ , and Ru = 0. The RCAC controller is

asymptotically stable, and the H2 cost is 1.4849, compared to the H2 cost of 1.4798
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Figure 6.2: Example 6.2: Broadband disturbance rejection for the minimum-phase plant (6.3) using
the quasi-FIR controller structure (6.1). RCAC approximates the closed-loop frequency response of
the high-authority LQG controller. The frequency-response plots are shown at step k = 105.

of the unstable LQG controller. Figure 6.3 shows the closed-loop response and the

closed-loop frequency response. Note that the closed-loop frequency response of the

converged RCAC controller, which is asymptotically stable, approximates the closed-

loop frequency response of the unstable high-authority LQG controller. �
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Figure 6.3: Example 6.3: Broadband disturbance rejection for the NMP plant (6.2) using the quasi-
FIR controller structure (6.1). RCAC approximates the closed-loop frequency response of the high-
authority LQG controller. The frequency-response plots are shown at step k = 105.

6.3 Command Following using Quasi-FIR Compensators

For command following, we use the quasi-FIR compensator with an FIR controller

implemented in parallel with an integrator

u(k) =
nc∑

i=1

Qi(k)y(k − i) +KI(k)γ(k), (6.4)
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where the integrator state satisfies

γ(k) = γ(k − 1) + Fy(k), (6.5)

γ(k) ∈ Rlγ and F ∈ Rlγ×ly selects components of y(k). The motivation for (6.4) is

to fix the poles of the compensator, in order to remove the possibility of unstable

pole-zero cancellation. We use (6.4) for step command following for the adaptive

servo problem.

Example 6.4. Step command following for a NMP plant using a quasi-FIR

controller. Consider the Lyapunov-stable, NMP plant

G(q) =
(q− 1.1)(q− 1.2)

(q− 0.99)(q2 − 1.8q + 1)
. (6.6)

Let r be an alternating sequence of step commands with heights ±1, d = 0, and let

v be zero-mean Gaussian white noise with standard deviation 0.1. Applying RCAC

with the IIR controller (2.28) results in an unstable controller (not shown). We apply

RCAC with the quasi-FIR controller given by (6.4). Since (6.4) consists of an FIR

portion and an integrator, there is no possibility of unstable pole-zero cancellation,

and thus we use the FIR target model (2.49) with nc = 10, Rθ = 108Ilθ and Ru = 0.

Figure 6.4 shows the closed-loop response. Note that RCAC follows the sequence of

step commands without knowledge of the NMP zeros of G. By using (6.4) for NMP

plants with the FIR target model (2.49), this approach alleviates the need to know

the NMP zeros of Gzu. �

Example 6.5. Step command following for a MISO NMP plant using a
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Figure 6.4: Example 6.4: Step command following for the NMP plant (6.6) using the quasi-FIR
controller structure (6.4). RCAC follows the sequence of step commands without knowledge of the
NMP zeros of G, and does not converge to an unstable controller.

quasi-FIR controller. Consider the asymptotically stable, NMP, MISO plant

G(q) =

[
(q−0.99)(q2+0.98)

D(q)
(q−0.925)(q−0.975)(q−1.2)

D(q)

]
, (6.7)

where D(q) = (q − 0.995)(q − 0.975)(q2 − 1.9q + 0.9125). Let r be an alternating

sequence of step commands with heights ±1, v = 0, and let d be zero-mean Gaussian

white noise with standard deviation 2×10−6. Applying RCAC with the IIR controller
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(2.28) results in an unstable controller (not shown). We apply RCAC with the quasi-

FIR controller given by (6.4). Since (6.4) consists of an FIR portion and an integrator,

there is no possibility of unstable pole-zero cancellation, and thus we use the FIR

target model (2.49) for both channels, with nc = 10, Rθ = 1010Ilθ and Ru = 0. Figure

6.5 shows the closed-loop response. Note that RCAC follows the sequence of step

commands without knowledge of the NMP zeros of G. �
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Figure 6.5: Example 6.5: Step command following for the MISO, NMP plant (6.7) using the quasi-
FIR controller structure (6.4). RCAC follows the sequence of step commands without knowledge of
the NMP zeros of G, and does not converge to an unstable controller.
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6.4 Conclusions

In this chapter, we demonstrated that RCAC can be implemented with quasi-

FIR compensators with a simple reflection technique to obtain asymptotically stable

controllers. The rationale for applying quasi-FIR controllers is two fold. Firstly, only

a small number of poles are unconstrained, and thus only a small number of controller

poles may require reflection. Secondly, when applying an FIR controller in parallel

with an integrator, all controller poles are fixed, and thus there is no need to constrain

any controller poles.

We applied RCAC with quasi-FIR controllers to several examples to achieve H2

cost near high-authority LQG, with asymptotically stable stabilization in cases where

the high-authority LQG controller is unstable. This approach leads to the possibilty

of using RCAC not as an adaptive control technique, but as a design tool for discrete

control laws in cases where high-authority LQG controllers are unstable.

Next, we applied an FIR controller in parallel with an internal model to achieve

command following without knowledge of the NMP zeros of the plant. Future work

may include methods to apply RCAC for stochastic disturbance rejection and com-

mand following using (6.1), using constrained optimization to enforce stability and

without knowledge of the NMP zeros of the plant, and also concurrent optimization

of the denominator Df of the target model and the controller Gc,k, in order to yield

target pole locations that require stable controllers.
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CHAPTER 7

Are All Full-Order Dynamic Compensators

Observer-Based?

7.1 Introduction

Linear-quadratic-Gaussian (LQG) control theory states that the optimal com-

pensator for a linear plant with white, Gaussian process and sensor noise and with

suitable stabilizability and detectability assumptions is given by an observer-based

compensator. The observer-based structure of the compensator reflects the separa-

tion principle, wherein an optimal state estimate is fed back by an optimal static

full-state-feedback control law and where the observer and regulator gains are de-

termined independently [107–109]. This result implies that every full-order dynamic

compensator that is not observer-based must be suboptimal in the sense of LQG

control.
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7.2 Observer Based Compensation

To clarify the distinction between an observer-based compensator and a compen-

sator of arbitrary structure, consider the SISO plant

ẋ(t) = Ax(t) +Bu(t), (7.1)

y(t) = Cx(t), (7.2)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n. We

assume that (A,B,C) is controllable and observable. We write a compensator in the

form

ẋc(t) = Acxc(t) +Bcy(t), (7.3)

u(t) = Ccxc(t), (7.4)

where the dimension nc of xc may be the same or different from the dimension n of

the state of the plant (7.1), (7.2). To illustrate an observer-based compensator, let

F ∈ Rn×1 and consider the observer

˙̂x(t) = Ax̂(t) +Bu(t) + F [y(t)− ŷ(t)] , (7.5)

ŷ(t) = Cx̂(t), (7.6)

where x̂(t) ∈ Rn. Note that (7.1) and (7.5) can be written as

ẋ(t) = (A− FC)x(t) +Bu(t) + Fy(t), (7.7)

˙̂x(t) = (A− FC)x̂(t) +Bu(t) + Fy(t). (7.8)
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Defining the error state

e(t)
4
= x(t)− x̂(t) (7.9)

and subtracting (7.8) from (7.7) yields

ė(t) = (A− FC)e(t). (7.10)

If A − FC is asymptotically stable, then e converges to zero for all x(0) and x̂(0).

Note that, since x(t) is not measured, e(t) is unknown and thus (7.10) is used only

for analysis.

Next, let K ∈ Rn and consider the observer-based feedback control law u(t) =

Kx̂(t) in (7.8). Then the observer-based compensator is

˙̂x(t) = (A+BK − FC)x̂(t) + Fy(t), (7.11)

u(t) = Kx̂(t). (7.12)

Notice that (7.11), (7.12) is a full-order dynamic compensator of the form (7.3), (7.4)

with

nc = n, Ac = A+BK − FC, Bc = F, Cc = K, xc(t) = x̂(t). (7.13)

The only distinction between (7.3), (7.4) with nc = n and (7.11), (7.12) is the fact

that the dynamics matrix Ac in (7.3) has the observer-based form A+ BK − FC in

(7.11). The structure of Ac suggests that observer-based compensators of the form

(7.11), (7.12) comprise a subset of full-order compensators relative to the arbitrary

structure (7.3), (7.4). LQG theory chooses an optimal compensator from this subset.

Comparing (7.3), (7.4) to (7.11), (7.12) motivates the question in the title of this
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chapter, namely, are all full-order compensators observer-based? It is easy to show

that the answer to this question is “no”. In particular, note that the closed-loop

system (7.1)–(7.4) is given by

˙̃x(t) = Ãx̃(t), (7.14)

where

x̃(t)
4
=

[
x(t)
xc(t)

]
, Ã

4
=

[
A BCc

BcC Ac

]
.

For the observer-based compensator, Ã has the form

Ã =

[
A BK
FC A+BK − FC

]
. (7.15)

Using (7.12), (7.1) can be written as

ẋ(t) = (A+BK)x(t)−BKe(t). (7.16)

Combining (7.10) and (7.16) yields

˙̃x′(t) = Ã′x̃′(t), (7.17)

where

x̃′(t)
4
=

[
x(t)
e(t)

]
, Ã′

4
= S̃ÃS̃−1 =

[
A+BK −BK

0 A− FC

]
, S̃

4
=

[
In 0
In −In

]
,

(7.18)

and Ã is given by (7.15). Since Ã and Ã′ are similar, they have the same eigenvalues.

In addition, the eigenvalues of Ã′ consist of the eigenvalues of A + BK and the
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eigenvalues of A − FC. Since A + BK is a real matrix, it follows that, if n is odd,

then A+BK has at least one real eigenvalue. The same statement can be made for

A − FC. Consequently, if n is odd, then Ã′ and thus Ã must have at least two real

eigenvalues. This observation is made in [110, p. 43] in order to stress the distinction

between observer-based controllers and dynamic compensators for pole placement

that are not intended to estimate inaccessible states.

Now, consider the closed-loop system (7.14) consisting of (7.1)–(7.4), where (7.3),

(7.4) is a full-order compensator. If n is odd and Ã has no real eigenvalues, then the

above discussion shows that (7.3), (7.4) cannot be an observer-based compensator.

This leads to the following fundamental question: Is this the only situation where the

full-order compensator is not observer-based in the sense that there does not exist a

basis such that (7.3), (7.4) can be written in the form of (7.11), (7.12)? The main

contribution of this chapter is to show that this is indeed the case.

To set the stage for the subsequent development, it is useful to recall that pole

placement techniques can be used to assign the eigenvalues of A+BK and A− FC.

Therefore, if either

n is even (7.19)

or

n is odd, and Ã has at least two real eigenvalues, (7.20)

then, for each full-order compensator (7.3), (7.4), there exists an observer-based com-

pensator that replicates the closed-loop spectrum. However, this does not prove

that (7.3), (7.4) is observer-based because we do not know whether or not the pole-

placement compensator that replicates the closed-loop spectrum arising from (7.3),

(7.4) is the unique full-order compensator with this property. The goal of this chapter
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is thus to demonstrate uniqueness.

It is important to stress that the focus in this chapter is on uniqueness rather

than existence. The existence of dynamic pole-placement controllers is extensively

addressed in the literature. For example, sufficient conditions are given in [110] for

the existence of a dynamic compensator of specified order that is able to place an

arbitrary conjugate-symmetric set of closed-loop poles.

7.3 Analysis of the Sensitivity Function

In order to clarify the required uniqueness property, we consider the servo problem

in Figure 7.1, where G(s)
4
= C(sI − A)−1B = N(s)

D(s)
,

z(t)
4
= r(t)− y(t), (7.21)

y(t) ∈ R is the measurement, and r(t) ∈ R is the command. Note thatD is monic and,

since (A,B,C) is controllable and observable, D and N are coprime. The closed-loop

Gc G
ur z y

−

Figure 7.1: Transfer function representation of the servo problem with Gd = Gu = G.

transfer function from r to z is given by the sensitivity function

S
4
=

1

1 +GGc

=
DDc

D̃
, (7.22)

where Gc = Nc

Dc
is a proper compensator of order nc ≥ 1, and Dc is monic. The

closed-loop characteristic polynomial is defined by

D̃
4
= DDc +NNc. (7.23)
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It follows from (7.22) that Gc is given by

Gc =
1− S
SG

, (7.24)

which shows that Gc is uniquely specified by S. Therefore, if two compensators

Gc1 and Gc2 of arbitrary order give rise to the same sensitivity function S, then

Gc1 = Gc2. However, this does not show that, if two compensators Gc1 and Gc2 give

rise to the same characteristic polynomial, then Gc1 = Gc2. In the following section,

we show that, if deg(Nc1) ≤ min{nc, n − 1} and deg(Nc2) ≤ min{nc, n − 1}, then

two compensator Gc1 = Nc1

Dc1
and Gc2 = Nc2

Dc2
that give rise to the same characteristic

polynomial are equal. This fact then allows us to show that, if either (7.19) or (7.20) is

satisfied, then every full-order compensator is observer-based. Before demonstrating

this fact, we review pole placement using observer-based compensation.

7.4 Pole Placement Using Observer-Based Compensation

In this section, we review pole placement using observer-based compensation. We

discuss the regulator and observer separately, and then present several examples. We

also show that the observer-based compensator is independent of how the closed-loop

poles are allocated to the regulator and the observer.

Designing the regulator

Let the characteristic polynomial of A be given by p(s) = sn + αn−1s
n−1 + · · · +

α1s + α0. As shown in [111, pp. 309-311], since (A,B) is controllable, there exists a

change of basis matrix SC ∈ Rn×n such that

A+BK = SC (AC +BCKC)S
−1
C , (7.25)

where KC
4
= KS−1

C = [KC,1 · · · KC,n],
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AC
4
= SCAS

−1
C =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αn−1



, BC

4
= SCB =




0
0
...
0
1



, (7.26)

and thus

AC +BCKC =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−α0 +KC,1 −α1 +KC,2 −α2 +KC,3 · · · −αn−1 +KC,n



.

(7.27)

Note that A+BK and AC+BCKC have the same eigenvalues, and that the eigenvalues

of AC + BCKC can be placed arbitrarily by the choice of KC. The regulator gain K

can then be determined using K = KCSC. Finally, since C(AC, BC) = SCC(A,B), it

follows that SC = C(AC, BC)C(A,B)−1, where C(A,B) is the controllability matrix of

the pair (A,B).

Designing the Observer

Let the characteristic polynomial of A be given by p(s) = sn + αn−1s
n−1 + · · · +

α1s+α0. Since (A,C) is observable, there exists a change of basis matrix SO ∈ Rn×n

such that

A− FC = S−1
O (AO − FOCO)SO, (7.28)

where FO
4
= SOF = [FO,1 · · · FO,n]T,
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AO = SOAS
−1
O =




0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2
...

...
. . .

...
0 0 · · · 1 −αn−1



, CO = CS−1

O = [0 0 · · · 0 1] ,

(7.29)

and thus

AO − FOCO =




0 0 · · · 0 −α0 − FO,1
1 0 · · · 0 −α1 − FO,2
0 1 · · · 0 −α2 − FO,3
...

...
. . .

...
0 0 · · · 1 −αn−1 − FO,n



. (7.30)

Note that A−FC and AO−FOCO have the same eigenvalues, and that the eigenvalues

of AO − FOCO can be placed arbitrarily by the choice of FO. The observer gain F

can then be determined using F = S−1
O FO. Finally, since O(AO, CO) = O(A,C)S−1

O ,

it follows that SO = O(AO, CO)−1O(A,C), where O(A,C) is the observability matrix

of the pair (A,C).

Example 7.1. Let

A =

[
−1 4
0 −3

]
, B =

[
0
1

]
, C = [1 0] .

We assign the eigenvalues −5 and −4 to A + BK and the eigenvalues −2 and −6

to A − FC. Solving (7.27) and (7.30) for K and F yields K = [−3 − 5] and F =

[4 − 0.75]T. The transfer function representation of the observer-based compensator

is

Gc(s) =
8.26s+ 23.25

s2 + 13s+ 49
. (7.31)

As a check, we use the realization
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Ac =

[
−5 4
−2.25 −8

]
, Bc =

[
4

−0.75

]
, Cc = [−3 − 5]

of Gc(s) to find Ã. The closed-loop eigenvalues are given by the eigenvalues of

Ã =




−1 4 0 0
0 −3 −3 −5
4 0 −5 4

−0.75 0 −2.25 −8


 ,

which are the desired values −2,−4,−5,−6. �

Proposition 1. Let D̃ be a monic polynomial of degree 2n with real coefficients,

and assume that either n is even or both n is odd and D̃ has at least two real

roots. Furthermore, let (7.11), (7.12) be an observer-based compensator such that

the eigenvalues of Ã are given by the roots of D̃. Then, Gc corresponding to (7.11),

(7.12) is independent of how the poles are allocated to the regulator and observer.

The proof of Proposition 1 is presented after Proposition 2.

Proposition 1 shows that the same observer-based compensator is obtained re-

gardless of how the desired closed-loop poles are allocated between the regulator and

observer dynamics as long as a pair of complex poles is not separated between the

observer and the regulator. We illustrate this result by revisiting Example 7.1.

Example 7.2. We reconsider Example 7.1, but we now assign the eigenvalues −5

and −6 to A + BK and the eigenvalues −2 and −4 to A − FC. Solving (7.27) and

(7.30) for K and F yields K = [−5 − 7] and F = [2 − 0.25]T. The transfer

function representation of the resulting observer-based compensator is again (7.31),

as guaranteed by Proposition 1. �
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7.4.1 Uniqueness of the Compensator Based on Only the Closed-Loop

Poles

Given D̃, the objective of pole placement design is to find a proper dynamic com-

pensator Gc that assigns the n + nc closed-loop poles. In this section, we present

sufficient conditions for uniqueness of Gc based on only D̃. Pole placement using

dynamic compensators is considered in [110].

Lemma 1. Let a, b, p, and q be polynomials such that deg(a) ≤ deg(b), deg(p) <

deg(q), q is monic, p 6= 0, and p and q are coprime. Then bq + ap = 0 if and only if

a = b = 0.

Proof. Sufficiency is immediate. To prove necessity, suppose that bq + ap = 0,

a 6= 0, and b = 0. Then ap = 0. However, since p 6= 0, it follows that a = 0, which

is a contradiction. Next, suppose that bq + ap = 0, a = 0, and b 6= 0. Then bq = 0,

However, since q is monic, it follows that b = 0, which is a contradiction. Finally,

suppose that bq + ap = 0, a 6= 0, and b 6= 0. Then deg(ap) = deg(bq). However, since

deg(a) ≤ deg(b) and deg(p) < deg(q), it follows that deg(ap) < deg(bq), which is a

contradiction.

Proposition 2. Let D̃ be given by (7.23), where deg(D̃) = n + nc, and let

deg(Nc) ≤ min{nc, n− 1}. Then, Nc and Dc are uniquely determined.

Proof. Let Gc1 = Nc1

Dc1
and Gc2 = Nc2

Dc2
be such that deg(Dc1) = deg(Dc2) = nc,

mc1
4
= deg(Nc1) ≤ min{nc, n − 1}, mc2

4
= deg(Nc2) ≤ min{nc, n − 1}, and D̃ =

DDc1 + NNc1 = DDc2 + NNc2. Define a
4
= Nc1 − Nc2, b

4
= Dc1 − Dc2, p

4
= N ,

and q
4
= D. Then deg(a) ≤ max{mc1,mc2}, deg(b) ≤ nc, and deg(p) < deg(q).

Suppose that deg(a) > deg(b). Then Nc1 −Nc2 6= 0 and N
D

= − b
a

= −Dc1−Dc2

Nc1−Nc2
. Since

deg(D) = n, it follows that deg(a) = deg(Nc1 − Nc2) ≥ n. Hence, n ≤ deg(a) ≤

max{mc1,mc2} ≤ min{nc, n − 1} ≤ n − 1, which is a contradiction. Therefore,

deg(a) ≤ deg(b). Lemma 1 thus implies that Nc1 −Nc2 = Dc1 −Dc2 = 0. Therefore,
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Gc1 = Gc2, and thus Nc and Dc are uniquely determined.

We now use Proposition 2 to prove Proposition 1.

Proof of Proposition 1. For the observer-based compensator (7.11), (7.12),

deg(Nc) = n− 1 and nc = n. Since D̃ is monic, Proposition 2 implies that there exist

unique polynomials Nc and Dc satisfying (7.23). Hence Gc is uniquely determined

and is independent of how the poles are allocated to the regulator and observer.

Although Proposition 2 provides only sufficient conditions for uniqueness, the

following examples show that uniqueness can fail if these conditions are not satisfied.

Example 7.3. Let G(s) = 1
s+2

, and consider Gc(s) = −s−1
s+1

and Gc(s) = −2s−3
s+2

. Note

that n = 1, nc = 1, and deg(Nc) = 1, and thus the assumption deg(Nc) ≤ min{nc, n−

1} of Proposition 2 is not satisfied. For both compensators, D̃(s) = s2 + 2s+ 1. �

Example 7.4. Let G(s) = 1
s+2

, and consider Gc(s) = −3s−1
s2+2s+1

and Gc(s) = −4s−3
s2+2s+2

.

Note that n = 1, nc = 2, and deg(Nc) = 1, and thus the assumption deg(Nc) ≤

min{nc, n − 1} of Proposition 2 is not satisfied. For both compensators, D̃(s) =

s3 + 4s2 + 2s+ 1. �

We now state the main result, which answers the question posed in the title of

this chapter.

Theorem 1. Let Gc = Nc/Dc be a full-order strictly proper compensator. Then,

Gc is observer-based if and only if either i) n is even or ii) n is odd and D̃ = DDc+NNc

has at least two real roots.

Proof. To prove necessity, note that, since deg(Dc) = n and deg(Nc) ≤ n − 1,

Proposition 2 implies that Nc and Dc are the only polynomials that satisfy (7.23).

Therefore, Gc is the unique observer-based compensator such that D̃
4
= DDc +NNc.

Since Gc is an observer-based compensator, it follows that n of the 2n closed-loop
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eigenvalues are eigenvalues of the observer dynamics, while the remaining n closed-

loop eigenvalues are eigenvalues of the regulator dynamics. Hence, in the case where

n is odd, it follows that D̃ has at least two real roots.

Conversely, since either n is even or both n is odd and D̃ has at least two real roots,

Proposition 2 implies that there exists a unique compensator Gc,obc with closed-loop

poles given by the roots of D̃ and, in addition, Gc,obc is observer-based.

7.5 Pole Placement Without Observer-Based Compensation

Theorem 1 shows that an observer-based compensator cannot be used in all cases

to assign the closed-loop poles. For example, if n is odd, nc = n, and D̃ has no

real roots, then the closed-loop eigenvalues cannot be allocated to an observer and

a regulator, and thus no observer-based compensator that assigns the desired poles

exists. However, by using a dynamic compensator, it is nevertheless possible to assign

the desired closed-loop spectrum, albeit with a compensator that is not observer-

based. This section thus concerns existence and uniqueness of a pole placement

dynamic compensator in cases where an observer-based compensator does not exist.

An algorithm based on the Sylvester resultant for designing pole-placement dynamic

compensators is given in [112].

Let

N(s) = Nms
m + · · ·+N1s+N0, (7.32)

D(s) = sn +Dn−1s
n−1 + · · ·+D1s+D0, (7.33)

Nc(s) = Nc,m̂cs
m̂c + · · ·+Nc,1s+Nc,0, (7.34)

Dc(s) = snc +Dc,nc−1s
nc−1 + · · ·+Dc,1s+Dc,0, (7.35)

D̃(s) = sn+nc + D̃n+nc−1s
n+nc−1 + · · ·+ D̃1s+ D̃0, (7.36)

where m̂c ≤ nc. Note that Nc,m̂c may or may not be zero, and thus (7.34) implies
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that mc
4
= deg(Nc) ≤ m̂c. Substituting (7.32)–(7.36) into (7.23) and matching like

powers of s yields the linear system of equations

M




Dc,nc−1
...

Dc,0

Nc,m̂c

...
Nc,0




=




D̃n+nc−1 −Dn−1
...

D̃nc −D0

D̃nc−1
...

D̃0




, (7.37)

where M ∈ R(n+nc)×(m̂c+nc+1) is defined by

M
4
=




1 0 0 · · · · · · · · · · · · 0 · · · · · · 0

Dn−1 1 0 · · · · · · · · · · · · ... · · · · · · ...
... Dn−1

. . . . . . . . . . . .
... 0 · · · · · · 0

...
...

. . . . . . . . . . . .
... Nm 0

...
...

...
...

. . . . . . . . . . . .
... Nm−1 Nm

. . .
...

D1
...

. . . . . . . . . . . . 0
... Nm−1

. . . 0

D0 D1
. . . . . . . . . . . . 1

...
...

. . . Nm

0 D0
. . . . . . . . . . . . Dn−1

...
...

. . . Nm−1
... 0

. . . . . . . . . . . .
... N1

...
. . .

...
...

...
. . . . . . . . . . . .

... N0 N1
. . .

...
...

...
. . . . . . . . . . . .

... 0 N0
. . .

...
...

...
. . . . . . . . . . . . D1

...
...

. . . N1

0 0 · · · · · · · · · · · · D0 0 · · · · · · N0




.

(7.38)

The matrix M is constructed by listing the coefficients of D from 1 to D0 starting

at the top of the first column. In the second column, the coefficients of D are shifted

downward by one row; nc columns are constructed this way. Next, in column nc + 1,

the coefficients of N from Nm to N0 are listed starting after n + nc − m − m̂c − 1

zeros. In the next column, the coefficients of N are shifted downward by one row;
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m̂c + 1 columns are constructed this way. The matrix M thus has n + nc rows and

m̂c +nc + 1 columns. Hence M is square if and only if m̂c = n− 1. Therefore, M can

be made square by choosing m̂c = n − 1 if and only if mc ≤ n − 1. Since m̂c ≤ nc,

if M is square, then nc ≥ n− 1. Consequently, M can be made square if and only if

mc ≤ n− 1 ≤ nc.

The following result relates M defined by (7.38) with the Sylvester resultantsM1

andM2 defined by B.1 and B.2, respectively. Note that both Sylvester resultants are

square.

Proposition 3. M =M1(D,N) if and only if m̂c = n− 1 and nc ≤ n.

Proof. Suppose that M = M1(D,N). Then M is square, and thus m̂c =

n − 1. Hence, M1(D,N) = M ∈ R(n+nc)×(n+nc). Since n = deg(D), it follows

from the construction of M1(D,N) in Theorem A1 (note that l ≤ k in B.1) that

nc ≤ n. Conversely, suppose that m̂c = n − 1 and nc ≤ n. Then M is square,

M ∈ R(n+nc)×(n+nc), and m ≤ n− 1 = m̂c ≤ nc. Therefore, M =M1(D,N).

Proposition 4. M =M2(D,N) if and only if m̂c = n− 1 and nc = n.

Proof. Suppose that M =M2(D,N). Then M is square, and thus m̂c = n− 1.

Hence, M ∈ R(n+nc)×(n+nc). Furthermore, M2(D,N) ∈ R2n×2n. Therefore, nc = n.

Conversely, suppose that m̂c = n − 1 and nc = n. Then M is square, M ∈ R2n×2n,

and m < n. Therefore, M =M2(D,N).

Since m̂c ≤ n − 1, the above discussion shows that M is a Sylvester resultant if

and only if m̂c = n−1 and n−1 ≤ nc ≤ n. The case where mc = n−1 and nc = n−1

is discussed in [113]. These cases are summarized in Table 7.1.

Proposition 5. Assume that either M = M1(D,N) or M = M2(D,N). Then

there exist unique Nc and Dc satisfying (7.37).

Proof. Since N and D are coprime, Theorem A1 and Theorem A2 state that

M1(D,N) andM2(D,N) are nonsingular. It thus follows that there exist unique Nc
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nc = n− 1 nc = n

deg(Nc) ≤ n− 1 ≤ n− 1

deg(Dc) n− 1 n

deg(D̃) 2n− 1 2n

Table 7.1: Cases nc = n − 1 and nc = n. Note that, in the case nc = n − 1, Gc may be exactly
proper or strictly proper, whereas, in the case nc = n, Gc must be strictly proper.

and Dc satisfying (7.37).

In [112, p. 182], necessary and sufficient conditions for the existence and unique-

ness of Nc and Dc are given for the case where nc = n − 1, and, in [112, p. 182],

sufficient conditions for existence are given in the case where nc > n− 1. The results

in this chapter complement the results given in [112] by providing sufficient conditions

for uniqueness in the case where nc = n and deg(Nc) ≤ n− 1.

We now reconsider Example 7.1, which considers pole placement using an observer-

based compensator. However, instead of designing an observer-based compensator

with specified observer and regulator poles, we apply Proposition 5 by solving (7.37)

to determine a compensator that places all 2n poles directly. Theorem 1 implies that

there exists a unique nth-order compensator that places the closed-loop poles, and

thus we expect to obtain the same compensator obtained in Example 1.

Example 7.5. We reconsider Example 7.1, and place the poles at −6,−5,−4, and −2

without observer-based compensation. Solving (7.37) for Nc and Dc yields Nc(s) =

8.26s+ 23.25 and Dc(s) = s2 + 13s+ 49. Note that Gc is precisely the observer-based

compensator obtained in Example 7.1. �

We now consider an example where pole placement using an observer-based com-

pensator is impossible. The example takes advantage of Proposition 5.

Example 7.6. Consider the state space equations for a DC motor, where
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x
4
=




θ

θ̇

i


 , A =




0 1 0

0 −2 0.85

0 −3 −1


 , B =




0

0

1


 , C = [1 0 0] .

We assign the closed-loop poles to −0.5±0.1,−1±0.5,−2±. Solving (7.37) for

Nc and Dc yields Nc(s) = 5.585s2 +8.034s+1.912 and Dc(s) = s3 +4s2 +3.96s+0.73.

However, since three pairs of complex poles cannot be allocated separately to the

regulator and observer dynamics, it is impossible to design an observer-based com-

pensator that yields the desired closed-loop poles. Hence, Gc(s) = 5.585s2+8.034s+1.912
s3+4s2+3.96s+0.73

is not observer-based and therefore must be suboptimal in the sense of LQG control.�

7.6 Conclusions

A full-order dynamic compensator is observer-based if, in some basis, it has the

structure of an observer followed by state-estimate feedback. This chapter shows that

almost all full-order compensators are in fact observer-based. The essential idea of

the proof is that the observer-based compensator that achieves the desired spectrum

is unique. An exception to this fact, however, is the case where the plant order is

odd and the closed-loop spectrum has no real eigenvalues. In this case, the closed-

loop spectra cannot be partitioned into conjugate-symmetric regulator and observer

spectra, and therefore the compensator is not observer-based. All such compensators

are, of course, suboptimal in the sense of LQG control.
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CHAPTER 8

Parameter Estimation using Retrospective Cost

Model Refinement

8.1 Introduction

In many modeling and control applications, the structure of the model is known,

but the parameters may be uncertain. Within the context of system identification,

models of this type are called white box models. In contrast, models whose structure is

either partially or fully unknown are called grey-box and black-box models, respectively.

Parameter-estimation is related to, but distinct from, state estimation, where

states evolve due to external inputs and their interaction with other states. In con-

trast, an unknown parameter may either be constant or time-varying in a pre-specified

manner that is independent of initial conditions and outputs. Although a constant or

time-varying parameter is not technically a state, it can be modeled as a state by as-

signing it fictitious dynamics and stochastic forcing. In continuous time, these dynam-

ics are ẋ = w, whereas, in discrete time, these dynamics are x(k + 1) = x(k) + w(k),

where w is the external forcing. For a system with linear dynamics, the resulting

state estimation problem is nonlinear due to the multiplication between “real” and

“fictitious” states.

State-estimation techniques are widely used for parameter estimation [114–116].
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Among the earliest works is the paper [117], which analyzes the accuracy of the

extended Kalman filter within the context of linear dynamics. Convergence analysis

of the extended Kalman filter is provided in [118].

Beyond the extended Kalman filter, nonlinear estimation techniques have been

developed based on a wide variety of techniques, including stochastic ensembles [119–

121], deterministic ensembles [122, 123], Gaussian mixtures [124], density estimators

[125], Fokker-Planck solutions [126], moving horizon techniques [127], and adaptive

estimators [128, 129]. Each of these techniques can potentially be applied to param-

eter estimation. The goal of this chapter is to compare these established parameter

estimation techniques to RCMR.

With this plethora of techniques available, it is of interest to evaluate the relative

accuracy of these methods for parameter estimation. In this chapter, we apply sev-

eral nonlinear estimation techniques to two examples, namely, a mass-spring structure

and linearized aircraft dynamics. These low-order examples are chosen to provide a

transparent setting for numerical studies. The methods we consider are the extended

Kalman filter [116–118], the unscented Kalman filter [115], and RCMR. We consider

parameter estimation for both constant and time-varying parameters, and we inves-

tigate the effects of sensor noise.

8.2 Problem Statement

Consider the multi-input, multi-output discrete-time system

x(k + 1) = A(κ(k))x(k) +Bw(k), (8.1)

y(k) = Cx(k) + v(k), (8.2)

where x(k) ∈ Rn is the unknown state, w(k) ∈ Rm is an unknown input, y(k) ∈ Rp

is the output, v(k) is sensor noise, κ(k) ∈ R is an uncertain possibly time-varying
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parameter, and A(κ(k)) ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. The goal is to estimate

κ(k). For simplicity in comparing estimation algorithms, we consider only the case

where a single entry of A(κ(k)) is uncertain.

8.3 Parameter Identification Algorithms

To estimate the unknown parameter in (8.1), we use three algorithms, namely, the

extended Kalman filter (EKF), the unscented Kalman filter (UKF), and retrospective

cost model refinement (RCMR). For the Kalman filter approaches, we treat κ(k) as

an unknown state, and we augment the state vector to include κ(k). This causes the

augmented system to become nonlinear in κ(k). For RCMR, we model the unknown

parameter as an unknown subsystem. In this section, we briefly describe the EKF

and UKF. In the following section, we describe RCMR.

8.3.1 Extended Kalman Filter

For nonlinear systems, the EKF uses a Jacobian of the dynamics for state esti-

mation. Therefore, the EKF requires that the dynamics be differentiable functions.

Consider the nonlinear dynamics given below

x(k) = f(x(k − 1)) + w(k), (8.3)

y(k) = h(x(k)) + v(k), (8.4)

where w has covariance Q(k) ∈ Rm×m and v has covariance R(k) ∈ Rp×p. The state

estimate is given by

x̂(k) = f(x̂(k − 1)) +K(k)ỹ(k), (8.5)
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where ỹ(k) = y(k)− h(f(x̂(k − 1))), and K(k) and P (k) satisfy

K(k) =(Â(k − 1)P (k − 1)ÂT(k − 1) +Q(k))

· ĈT(k)(Ĉ(k)(Â(k − 1)P (k − 1)ÂT(k − 1) +Q(k))ĈT(k) +R(k))−1 (8.6)

P (k) =(I −K(k)Ĉ(k))(Â(k − 1)P (k − 1)ÂT(k − 1) +Q(k)), (8.7)

where

Â(k)
4
=
∂f

∂x

∣∣∣∣∣
x̂(k−1)

, Ĉ(k)
4
=
∂h

∂x

∣∣∣∣∣
x̂(k−1)

. (8.8)

8.3.2 Unscented Kalman Filter

The UKF approach to state estimation of nonlinear systems is developed in [122].

UKF does not use the Jacobian of the dynamics or a factorization of the dynamics to

propagate a pseudo error covariance. The starting point for UKF is a set of sample

points, that is, a collection of state estimates that capture the initial probability

distribution of the state. Let P ∈ Rn×n be positive semidefinite. The unscented

transformation provides 2n + 1 ensembles Xi ∈ Rn and corresponding weights γx,i

and γy,i, for i = 0, 1, . . . , 2n, such that the weighted mean and weighted variance of

the ensembles are x and P , respectively. Specifically, let S ∈ Rn×n satisfy

SST = P, (8.9)

and, for all i = 1, . . . , n, let Si denote the ith column of S. For α > 0, the unscented

transformation X = Ψ(x, S, α) ∈ Rn×(2n+1) of x with covariance P = SST is defined
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by

X
4
=





x, i = 0,

x+
√
αSi, i = 1, . . . , n,

x−√αSi−n i = n+ 1, . . . , 2n.

(8.10)

The parameter α determines the spread of the ensembles around x. Next, define the

weights γi ∈ R by

γ0
4
=
α− n
n

, γi
4
=

1

2α
, i = 1, . . . , 2n, (8.11)

Then,

2n∑

i=0

γiXi = x,
2n∑

i=0

γi(Xi − x)(Xi − x)T = P. (8.12)

The unscented transformation (8.9)-(8.12) is the scaled unscented transformation

given in [130]. This technique ensures that the distance between x and the sample

point Xi does not increase as n increases.

UKF uses the unscented transformation to approximate the error covariance and

estimate the state xk = x(k). Letting x−0 be an initial estimate of x0 with error

covariance P−0 , the data assimilation step of UKF is given by

x+
k = x−k +KF (Yk − y−k ), (8.13)

y−k = Ckx
−
k , (8.14)

X+
k = Ψ(x+

k , S
+
k , α), (8.15)

P+
k = P−k −KkPyy,kK

T
k , (8.16)
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where

Kk = Pxy,kP
−1
yy,k, (8.17)

Pxy,k =
2n∑

i=0

γi(X
−
i,k − x−k )(Y −i,k − y−k )T, (8.18)

Pyy,k =
2n∑

i=0

γi(Y
−
i,k − y−k )(Y −i,k − y−k )T +Rk, (8.19)

Y −i,k = h(X−i,k, k), i = 0, . . . , 2n, (8.20)

where h(X−i,k, k) maps the input to the output and S+
k ∈ Rn×n satisfies

S+
k (S+

k )T = P+
k . (8.21)

The forecast step of UKF is given by

X−i,k+1 = f(X+
i,k, uk, k), i = 0, . . . , 2n, (8.22)

x−k+1 =
2n∑

1=0

γiX
−
i,k+1, (8.23)

P−k+1 =
2n∑

1=0

γi(X
−
i,k+1 − x−k+1)(X−i,k+1 − x−k+1)T = Qk, (8.24)

where f(X+
i,k, uk, k) represents the dynamics of the nonlinear system. If the dynamics

are linear, then UKF is equivalent to the Kalman filter. Furthermore, in the linear

case, P+
k and P−k are the covariances of the errors xk − x+

k and xk − x−k , respectively.

However, in the nonlinear case, P+
k and P−k are pseudo-error covariances.

At each time step k, the ensemble X+
k is constructed using the unscented trans-

formation based on a square root S+
k of P+

k satisfying (8.21). However, the factor S+
k

satisfying (8.21) is not unique. For example, the singular value decomposition or the

Cholesky factorization can be used to obtain a square root of the pseudo-error co-
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variance P+
k . Moreover, if S+

k = Ŝ+
k satisfies (8.21), then, for any orthogonal matrix

U ∈ Rn×n, the matrix S+
k = Ŝ+

k U also satisfies (8.21). For linear dynamics, UKF is

equivalent to the Kalman filter, and the performance of UKF does not depend on the

choice of S+
k . However, for nonlinear dynamics, the performance of UKF depends on

the choice of S+
k , although simulation results indicate that the performance of UKF

is similar for different choices of S+
k .

8.4 Retrospective Cost Model Refinement

Consider the MIMO discrete-time main system

x(k + 1) = A0x(k) +D1w(k) +Bu(k), (8.25)

y0(k) = E1x(k) + v(k), (8.26)

y(k) = C0x(k), (8.27)

where x(k) ∈ Rn, y(k) ∈ Rly , y0(k) ∈ Rly0 , u(k) ∈ Rlu , w(k) ∈ Rlw , v(k) ∈ Rly0 , and

k ≥ 0. We assume that the excitation signal w(k) is known and v(k) denotes sensor

noise. The main system (8.25)–(8.27) is interconnected with the unknown subsystem

modeled by

u(k) = Gs(q)y0(k). (8.28)

The system (8.25)–(8.28) represents the true system. The dynamics of the true system

can also be expressed as

x(k + 1) = (A+BκE1)x(k) +D1w(k). (8.29)

where κ is the unknown parameter.
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Next, we assume a model of the main system of the form

x̂(k + 1) = Âx̂(k) + D̂1w(k) + B̂û(k), (8.30)

ŷ0(k) = Ê1x̂(k), (8.31)

ŷ(k) = Ĉx̂(k), (8.32)

where x̂(k) ∈ Rn, ŷ(k) ∈ Rlŷ , ŷ0(k) ∈ Rlŷ0 , û(k) ∈ Rlû . The model of the main system

is interconnected with the subsystem model

û(k) = Ĝs(q)ŷ0(k). (8.33)

We choose Ĝs(q) to be an FIR first order approximation of Gs(q). The goal is to

estimate the subsystem model Ĝs(q) by minimizing a cost function based on the

performance variable

z(k)
4
= ŷ(k)− y(k) ∈ Rlz . (8.34)

We estimate Ĝs(q) by retrospectively reconstructing the signal û(k) that minimizes

the performance at the current time step. The reconstruction of û(k) uses minimal

modeling information about the true system (8.25)–(8.27), namely, a limited number

of Markov parameters. We then use û(k) and ŷ0(k) to construct Ĝs(q). Figure 8.1

illustrates the model-refinement architecture.
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Physical System: G(q)

(A, [D1 B], [ET
1 CT]T)

Unknown Subsystem: Gs(q)

w ȳ0

yu

v

System Model: Ĝ(q)

(Â, [D̂1 B̂], [ÊT
1 ĈT]T)

ŷ0

−

y0

z

Subsystem Model: Ĝs(q)

ŷû

Figure 8.1: Model refinement architecture.

We begin by defining Markov parameters of the main system model Ĝ(q). For

i ≥ 1, let

Hi
4
= ĈÂi−1B̂. (8.35)

Let r be a positive integer. Then, for all k ≥ r,

x̂(k) = Ârx̂(k − r) +
r∑

i=1

Âi−1D̂1w(k − i) +
r∑

i=1

Âi−1B̂û(k − i), (8.36)

and thus

z(k) = ĈÂrx̂(k − r) +
r∑

i=1

ĈÂi−1D̂1w(k − i)− y(k) + H̄Ū(k − 1), (8.37)
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where H̄ 4
=

[

H1 · · · Hr

]
∈ Rlz×rlû , and Ū(k−1)

4
=

[

ûT(k − 1) · · · ûT(k − r)

]T

.

Next, we rearrange the columns of H̄ and the components of Ū(k−1) and partition

the resulting matrix and vector so that

H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (8.38)

where H′ ∈ Rlz×(rlû−lU ), H ∈ Rlz×lU , U ′(k − 1) ∈ Rrlû−lU , and U(k − 1) ∈ RlU . Then,

we can rewrite (8.37) as

z(k) = S(k) +HU(k − 1), (8.39)

where

S(k)
4
= ĈÂrx̂(k − r) +

r∑

i=1

ĈÂi−1D̂1w(k − i)− y(k) +H′U ′(k − 1). (8.40)

For example, let lu = 1, and H̄ =

[

H1 H2 H3

]
. Then

H′ =
[

H1 H2

]
, U ′(k − 1) =




û(k − 1)

û(k − 2)



,

and H = H3, U(k − 1) = û(k − 3). Next, we rewrite (8.39) with a delay of kj time

steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the form

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (8.41)
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where (8.40) becomes

Sj(k − kj) 4=ĈÂrx̂(k − kj − r)

+
r∑

i=1

ĈÂi−1D̂1w(k − kj − i)− y0(k − kj) +H′jU ′j(k − kj − 1) (8.42)

and (8.38) becomes

H̄Ū(k − kj − 1) = H′jU ′j(k − kj − 1) +HjUj(k − kj − 1), (8.43)

where H′j ∈ Rlz×(rlû−lUj ), Hj ∈ Rlz×lUj , U ′j(k−kj−1) ∈ Rrlû−lUj , and Uj(k−kj−1) ∈

RlUj . Now, by stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
4
=

[

zT(k − k1) · · · zT(k − ks)

]T

∈ Rslz . (8.44)

Therefore,

Z(k)
4
= S̃(k) + H̃Ũ(k − 1), (8.45)

where S̃(k)
4
=

[

ST(k − k1) · · · ST(k − ks)

]T

∈ Rslz , H̃ ∈ Rslz×lŨ , and Ũ(k − 1) ∈

RlŨ . The vector Ũ(k− 1) is formed by stacking U1(k− k1− 1), . . . , Us(k− ks− 1) and

removing repetitions of components. For example, with k1 = 0 and k2 = 1, stacking

U1(k−1) =




û(k − 1)

û(k − 2)




and U2(k−2) = û(k−2) results in Ũ(k−1) =




û(k − 1)

û(k − 2)




.

The coefficient matrix H̃ consists of the entries of H1, . . . ,Hs arranged according to

the structure of Ũ(k− 1). Furthermore, we assume that the last entry of Ũ(k− 1) is

a component of û(k − r).
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Next, we define the retrospective performance

ẑ(k − kj) 4= Sj(k − kj) +HjU
∗
j (k − kj − 1), (8.46)

where the actual past subsystem outputs Uj(k− kj − 1) in (8.41) are replaced by the

retrospective subsystem outputs U∗j (k − kj − 1). The extended retrospective perfor-

mance for (8.46), which is defined as

Ẑ(k)
4
=

[

ẑT(k − k1) · · · ẑT(k − ks)

]T

∈ Rslz , (8.47)

is given by

Ẑ(k) = S̃(k) + H̃Ũ∗(k − 1), (8.48)

where the components of Ũ∗(k−1) ∈ RlŨ are components of U∗1 (k−k1−1), . . . , U∗s (k−

ks − 1) ordered in the same way as the components of Ũ(k − 1). Subtracting (8.45)

from (8.48) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃Ũ∗(k − 1). (8.49)

Finally, we define the retrospective cost function

J(Ũ∗(k − 1), k)
4
= ẐT(k)R(k)Ẑ(k), (8.50)

where R(k) ∈ Rslz×slz is a positive-definite performance weighting. The goal is to

determine refined subsystem outputs Ũ∗(k − 1) that would have provided better

performance than the subsystem outputs U(k) that were applied to the system. The

refined subsystem outputs values Ũ∗(k − 1) are subsequently used to update the

subsystem estimate.
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8.4.1 Cost Function Optimization with Adaptive Regularization

To ensure that (8.50) has a global minimizer, we consider the regularized cost

J̄(Ũ∗(k − 1), k)
4
= ẐT(k)R(k)Ẑ(k) + η(k)Ũ∗T(k − 1)Ũ∗(k − 1), (8.51)

where η(k) = η̄zT(k)z(k) and η̄ ≥ 0. Substituting (8.49) into (8.51) yields

J̄(Ũ∗(k − 1), k) = Ũ∗(k − 1)TA(k)Ũ∗(k − 1) + B(k)Ũ∗(k − 1) + C(k), (8.52)

where

A(k)
4
= H̃TR(k)H̃ + η(k)IlŨ , (8.53)

B(k)
4
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)], (8.54)

C(k)
4
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1) + ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1).

(8.55)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this

case, J̄(Ũ∗(k − 1), k) has the unique global minimizer

Ũ∗(k − 1) = −1

2
A−1(k)B(k). (8.56)

8.4.2 Subsystem Modeling

The subsystem output û(k) is given by the strictly proper FIR time-series model

of order nc given by

û(k) =
nc∑

i=1

Ni(k)ŷ(k − i), (8.57)
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where, for all i = 1, . . . , nc, Ni(k) ∈ Rlû×lŷ . The subsystem output (8.57) can be

expressed as û(k) = θ(k)φ(k − 1), where θ(k) ∈ Rlû×nclŷ and φ(k) ∈ Rnclŷ ,

θ(k)
4
= [N1(k) · · · Nnc(k)] , (8.58)

φ(k − 1)
4
=
[
ŷT(k − 1) · · · ŷT(k − nc)

]T
. (8.59)

If nc = 1, then

û(k) = θ(k)ŷ(k − 1) = N1(k)ŷ(k − 1). (8.60)

Thus, θ(k) is the estimate of the uncertain parameter κ.

8.4.3 Recursive Least Squares Update

Let d > 0 such that Ũ∗(k − 1) contains u∗(k − d), and define the cost

JR(θ(k))
4
=

k∑

i=1

λk−i||u∗T(k − d)− φT(k − d− 1)θT(k)||2

+ λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T, (8.61)

where φ(k− d) is given by (8.59), ‖ · ‖ is the Euclidean norm, and λ(k) ∈ (0, 1] is the

forgetting factor. Minimizing the cumulative cost function recursively yields

θT(k) = θT(k − 1) + P (k)φ(k − d− 1) · (u∗(k − d)− φT(k − d− 1)θT(k − 1)),

(8.62)

P (k) =λ−1(k)P (k − 1)− λ−1(k)P (k − 1)φ(k − d− 1)

· [φT(k − d− 1)P (k − 1)φ(k − d) + λ(k)]−1φT(k − d− 1)P (k − 1). (8.63)

We initialize P (0) = βI, where β > 0.

136



8.5 Mass-Spring-Damper Example

Consider the mass-spring-damper system

mq̈ + cq̇ + κq = w, (8.64)

y = q̇ + v, (8.65)

where q and q̇ are the position and velocity of the mass, respectively, m = 1, c = 5,

and κ = 10 are the mass, damping, and spring constants, respectively, w is the force

input, and v is white Gaussian sensor noise with mean µv and variance σ2
v . The

stiffness is assumed to be constant and uncertain. The state space representation of

(8.65) is given by




q̇

q̈




=




0 1

− κ
m
− c
m







q

q̇




+




0

1
m



w, (8.66)

y =

[

0 1

]



q

q̇




+ v. (8.67)

Euler discretization of (8.66) and (8.67) with sampling period h = 0.1 yields




x1(k + 1)

x2(k + 1)




=




1 h

−κh
m

1− ch
m







x1(k)

x2(k)




+




0

h
m



w(k), (8.68)

y(k) =

[

0 1

]



x1(k)

x2(k)




+ v(k), (8.69)
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where x1(k)
4
= q(kh) and x2(k)

4
= q̇(kh). For each algorithm, we use κ̂(0) = 0,

x̂1(0) = 0.1 and x̂2(0) = 0.01. For EKF, we use R = σ2
v and Q = diag([0.1, 0.1, 5000]),

for UKF, we use R = σ2
v and Q = diag([0.1, 0.1, 200]), and, for RCMR, we use

β = 0.42, λ = 1, and H̃ = [H1 H2], unless otherwise specified.

Example 8.1. Estimation of a constant parameter. We first consider the case

where there is no sensor noise. Figure 8.2 shows that all algorithms estimate the

unknown parameter with roughly the same accuracy.
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Figure 8.2: Example 8.1: Estimation of a constant parameter. Estimates of κ with v = 0. (a)
EKF, (b) UKF, (c) RCMR. All algorithms estimate the unknown parameter with roughly the same
accuracy.

Next, we consider the case where v is Gaussian white noise with µv = 10−3 and

σ2
v = 10−5. Figure 8.3 shows that EKF, UKF, and RCMR yield estimates of κ. Note

that, EKF and UKF require estimates of the noise covariance, and RCMR does not.

However, the RCMR estimate is the least corrupted by the sensor noise. �
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Figure 8.3: Example 8.1: Estimation of a constant parameter. Estimates of κ with µv = 10−3 and
σ2
v = 10−5. (a) EKF, (b) UKF, (c) RCMR. The RCMR estimate is the least corrupted by the sensor

noise.

We now consider the case where κ is time varying. Specifically,

κ =





10, k < 200,

10 + (k − 200)/20, 200 ≤ k ≤ 400,

20, k > 400.

For each algorithm, we use κ̂(0) = 0, x̂1(0) = 0.1 and x̂2(0) = 0.01. For EKF,

we use R = σ2
v and Q = diag([0.1, 0.1, 5000]), for UKF, we use R = σ2

v and Q =

diag([0.1, 0.1, 200]), and, for RCMR, we use β = 0.3, λ = 0.985, η̄ = 0, and H̃ =

[H1 H2], unless otherwise specified.

Example 8.2. Estimation of a time-varying parameter. We first consider the

case where there is no sensor noise. Figure 8.4 shows that all algorithms identify the

unknown parameter with roughly the same accuracy. However, RCMR is slower in

tracking the shift in the parameter.

Next, we consider the case where v is Gaussian white noise with µv = 10−3 and

σ2
v = 10−5. Figure 8.5 shows that RCMR yields an estimate of κ with smaller error

than EKF and UKF, and is the least corrupted by the sensor noise. �
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Figure 8.4: Example 8.2: Estimation of a time-varying parameter. Estimates of κ with µv = 0 and
σ2
v = 0. (a) EKF, (b) UKF, (c) RCMR. All algorithms identify the unknown parameter with roughly

the same accuracy. However, RCMR is slower in tracking the shift in the parameter.

0 100 200 300 400 500 600

0

5

10

15

20

25

Time Step (k)

P
a
ra

m
e
te

r 
E

s
ti
m

a
te

 

 

EKF estimate

Initial estimate

True parameter

(a)

0 100 200 300 400 500 600

0

5

10

15

20

25

Time Step (k)

P
a
ra

m
e
te

r 
E

s
ti
m

a
te

 

 

UKF estimate

Initial estimate

True parameter

(b)

0 100 200 300 400 500 600

0

5

10

15

20

25

Time Step (k)

P
a
ra

m
e
te

r 
E

s
ti
m

a
te

 

 

refined parameter

initial paremeter

truth paremeter

(c)

Figure 8.5: Example 8.2: Estimation of a time-varying parameter. Estimates of κ with µv = 10−3

and σ2
v = 10−5. (a) EKF, (b) UKF, (c) RCMR. RCMR yields an estimate of κ with smaller error

than EKF and UKF, and is the least corrupted by the sensor noise.

8.6 Estimation of a Repeated Parameter

We next consider the case where one unknown parameter appears in multiple

locations within the model. Consider the continuous-time system

ẋ = Acx+Dcw, (8.70)
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where a parameter α in Ac and Dc is uncertain. Let α = α̂ + ∆α, where α̂ is the

initial estimate of α. The system model can be written approximately as

ẋ = (Ac +
∂Ac
∂α

∣∣∣∣∣
α=α̂

∆α)x+ (Dc +
∂Dc

∂α

∣∣∣∣∣
α=α̂

∆α)w. (8.71)

Discretizing (8.71) with sampling period h yields

x(k + 1) = (I + Ach+
∂Ac
∂α

∣∣∣∣∣
α=α̂

∆αh)x(k) + (Dch+
∂Dc

∂α

∣∣∣∣∣
α=α̂

∆αh)w(k)

= (A+
∂Ac
∂α

∣∣∣∣∣
α=α̂

∆αh)x(k) + (D1 +
∂Dc

∂α

∣∣∣∣∣
α=α̂

∆αh)w(k). (8.72)

We use (8.72) as the true system model with uncertain parameter ∆α. Since our goal

is to estimate ∆α, we rewrite (8.72)

x(k + 1) = Ax+

[

D1
∂Ac
∂α

∣∣∣
α=α̂

h ∂Dc
∂α

∣∣∣
α=α̂

h

]




w(k)

∆αx(k)

∆αw(k)




. (8.73)

Next, let

B̂ =

[
∂Ac
∂α

∣∣∣
α=α̂

h ∂Dc
∂α

∣∣∣
α=α̂

h

]
, (8.74)

ŷ(k) =




x̂(k)

w(k)



, (8.75)

∆α(k) = Ĝs(q) = θ(k), (8.76)

û(k) = ∆α(k)ŷ(k). (8.77)
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Note that (8.77) shows that û(k) is a function of ŷ(k). We define

Ŷ (k)
4
=

[

ŷT(k − k1) · · · ŷT(k − ks)

]T

∈ Rsly . (8.78)

Using (8.73)–(8.78), (8.52)-(8.56) can be written as

J̄(∆α∗(k − 1), k) =A(k)∆α∗2(k − 1) + B(k)∆α∗(k − 1) + C(k), (8.79)

where

A(k)
4
=Ŷ (k − 1)T [H̃TR(k)H̃ + η(k)IlŨ ]Ŷ (k − 1), (8.80)

B(k)
4
=2H̃TR(k)[Z(k)− H̃Ũ(k − 1)]Ŷ (k − 1), (8.81)

C(k)
4
=ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1), (8.82)

Ũ∗(k − 1) = ∆α∗(k − 1)Ŷ (k − 1) = −1

2
A−1(k)B(k)Ŷ (k − 1). (8.83)

We use one parameter in Ũ∗(k − 1) and the corresponding parameter in Ỹ (k − 1)

to compute the recursive least squares update. In the next section we use the same

mass-spring system to illustrate the algorithm.

Example 8.3. Mass estimation using RCMR. Consider the mass-spring-damper

structure where Ac =




0 1

− κ
m
− c
m




, Dc =




0

1
m




, and Ec =

[

0 1

]
. In this

example we assume that the parameter m is unknown. We demonstrate the algorithm

by choosing κ = 30 and c = 5, and we assume that m = 0.9. We use an initial estimate

is m̂(0) = 1, so that ∆m(0) = −0.1.
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From (8.74), we obtain

B̂ =




0 0 0

3 0.5 −0.1



, (8.84)

We choose P (0) = 1, λ = 1, η̄ = 0, µ = 0, σ2
v = 0 and H̃ =

[

H1 H2

]
, which are the

first and second Markov parameters of Ĝ. We choose the ramp input w(k) = 0.1k and

the initial state




x̂1(0)

x̂2(0)




=




x1(0)

x2(0)




=




0

0




. RCMR is turned on at k = 100

steps. Figure 8.6 shows the performance z and the estimate m̂. RCMR yields an

estimate of the mass, and the performance z approaches zero asymptotically.
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Figure 8.6: Example 8.3: Mass estimation using RCMR. The performance z and the estimate m̂.
RCMR yields an estimate of the mass, and the performance z approaches zero asymptotically.

We next consider the effect of zero-mean Gaussian white noise sensor noise. Figure

8.7 shows the estimation performance for several values of σ2
v . As σ2

v increases, the

accuracy of the estimate is degraded. �
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(a) σ2
v = 1× 10−10
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(b) σ2
v = 1× 10−9
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(c) σ2
v = 1× 10−8

Figure 8.7: Example 8.3: Mass estimation using RCMR. The estimate m̂ of m for various values of
σ2
v . As σ2

v increases, the accuracy of the estimate is degraded.

8.7 Estimation of Linearized Aircraft Dynamics in the Pres-

ence of Modeling Errors

In this section we consider an example where entries of A and B that are not being

estimated have modeling errors. We consider a discretized model of a hypersonic

aircraft, where x =

[

β P R φ

]T

. The true system model is obtained by Euler

discretization of the continuous-time plant (3.1)–(3.2) with h = 0.001. The discrete-

time matrices are given by

Atrue =




0.9999 0.000269 −0.000963 −0.000039

A2,1 1.00021 0.000099 0

0.00041 0.000037 0.9973 0

0 0.00100 −0.00042 1.0000




, Btrue =




0

0.002519

−0.0000665

0




,

(8.85)

Ctrue =

[

0 1 0 0

]
, (8.86)
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where

A2,1 =





−0.02560 k < 25000,

−0.02560− 1.6640× 10−6k 25000 ≤ k ≤ 75000,

−0.1088 k > 75000.

(8.87)

However, aside from A2,1, we assume that the (3, 1) entry of A and the (3, 1) compo-

nent of B are erroneous and are given by

Amodel =




0.9999 0.000269 −0.000963 −0.000039

Â2,1 1.00021 0.000099 0

0.000616 0.000037 0.9973 0

0 0.00100 −0.00042 1.0000




, Bmodel =




0

0.002519

−0.0000222

0




,

(8.88)

Cmodel =

[

0 1 0 0

]
. (8.89)

The goal is to thus estimate A2,1, despite Amodel and Bmodel having erroneous entries.

In all subsequent examples, the input signal w is zero-mean Gaussian white noise

with σ2
w = 0.001, the initial estimate is Â2,1(0) = −0.02560, and the initial conditions

are x(0) = 0. The examples below consider parameter estimation for each algorithim

under various scenarios of noise and bias in the measurement.

In all cases, we set, β = 1 and η̄ = 0. We do not compare UKF since it was found

to be difficult to tune for this example. In fact, considerable retuning was required

for each case when using EKF.
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Example 8.4. Estimation of aircraft dynamics using EKF and RCMR. We

first consider the case where v = 0. We choose λ = 0.97 for this case. Figure 8.8

shows the accuracy of EKF and RCMR. Both algorithms yield estimates of A2,1.
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Figure 8.8: Example 8.4: Estimation of aircraft dynamics using EKF and RCMR with v = 0. (a)
EKF, (b) RCMR. Both algorithms yield estimates of A2,1.

Next, we consider the case where zero-mean Gaussian white sensor noise is present.

We assume σ2
v = 1×10−8 and choose λ = 0.97. Figure 8.9 shows the accuracy of EKF

and RCMR for the hypersonic aircraft in this case. Both algorithms yield estimates

of A2,1, however RCMR is slower in tracking the shift in the parameter.

Next, we consider the case where biased sensor noise is present. We assume

µv = 1×10−2, σ2
v = 0 and choose λ = 0.97. Figure 8.10 shows the accuracy of RCMR.

Note that EKF is not able to estimate the parameter correctly despite considerable

tuning effort. Note that we do not attempt to measure the measurement bias when

using the EKF. �

Example 8.5. Estimation of aircraft dynamics using RCMR in the present

of nonzero-mean sensor noise. We now consider the case of nonzero-mean Gaus-

sian white sensor noise. We assume µv = 1×10−2, σ2
v = 1×10−8 and choose λ = 0.995
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Figure 8.9: Example 8.4: Estimation of aircraft dynamics using EKF and RCMR with σ2
v = 1×10−8.

(a) EKF, (b) RCMR. Both algorithms yield estimates of A2,1, however RCMR is slower in tracking
the shift in the parameter.
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Figure 8.10: Example 8.4: Estimation of aircraft dynamics using EKF and RCMR with µv = 1×10−2

and σ2
v = 0. (a) EKF, (b) RCMR. Note that EKF is not able to estimate the parameter correctly

despite considerable tuning effort. Note that we do not attempt to measure the measurement bias
when using the EKF.

for this case. Figure 8.11 shows the estimate accuracy of RCMR for the hypersonic

aircraft in this case. RCMR yields an estimate of A2,1, but the estimate is corrupted

by the sensor noise. �
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Figure 8.11: Example 8.5: Estimation of aircraft dynamics using RCMR with µv = 1 × 10−2 and
σ2
v = 1× 10−8. RCMR yields an estimate of A2,1, but the estimate is corrupted by the sensor noise.

8.8 Step Command Following with Forward-Propagating Riccati-

Based Control with identification using RCMR

In this section we use RCMR to provide parameter estimates for a forward-

propogating Riccati-based controller. We perform step command following for the

lateral aircraft dynamics model discussed in Chapter 3. We consider both full-state

feedback and output feedback. We first present forward-propogating Riccati-based

control.

8.8.1 Full-State Feedback

Consider the discrete-time system

x(k + 1) = A(k)x(k) +B(k)u(k). (8.90)
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We add an additional state representing the integral of the error in the form




x(k + 1)

γ(k + 1)




=




A(k) 0

−C(k) 1







x(k)

γ(k)




+




B(k)

0



u(k) +




0

1



r, (8.91)

where γ represents the integrator output, that is

γ(k + 1) = γ(k) + r(k)− Cx(k), (8.92)

where C(k) =

[

0 0 0 1

]
and r is a step command in φ. We thus obtain the

augmented system

xa(k + 1) = Aa(k)xa(k) +Ba(k)u(k) +




0

1



r (8.93)

where xa(k) =

[

x(k) γ(k)

]T

, and

Aa(k) =




A(k) 0

−C(k) 1



, Ba(k) =




B(k)

0




The LQR control law is given by

u(k) = K(k)xa(k), (8.94)
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where

K = −(R2 +BT
a PBa)−1BT

a PAa, (8.95)

where the argument k has been dropped. We update P by using the forward-

propagating Riccati equation

P (k + 1) =AT
a P (k)Aa +R1 − AT

a P (k)Ba(R2 +BT
a P (k)Ba)−1BT

a P (k)Aa. (8.96)

Equations (8.95) and (8.96) give the FPR regulator.

8.8.2 Output Feedback

In the case of output feedback, we consider an observer-based compensator of the

form

xc(k + 1) = [Aa(k) +Ba(k)K(k)− F (k)Ca(k)]xc(k) +Bc(k)y(k), (8.97)

u(k) =Cc(k)xc(k). (8.98)

where

Ca =

[

0 0 0 1 0

]

The regulator gain K(k) is the full-state-feedback gain (8.95), and the observer gain

F (k) is given by

F (k) = AaQ(k)CT
a (CaQ(k)CT

a + V2)−1, (8.99)
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where Q(k) is obtained by the dual equation

Q(k + 1) =AaQ(k)AT
a + V1 − AaQ(k)CT

a (CaQ(k)CT
a + V2)−1CaQ(k)AT

a (8.100)

Equations (8.99) and (8.100) give the FPR Estimator. The structure of the observer-

based compensator (8.97), (8.98) represents a regulator/observer structure. The

closed-loop system with the observer-based dynamic compensator is given by

x̃(k + 1) = Ã(k)x̃(k), (8.101)

where

x̃(k)
4
=




xa(k)

xc(k)



, Ã

4
=




Aa BaK

FCa A+BK − FCa



. (8.102)

We now use the RCMR estimate to update the plant dynamics for the FPR regu-

lator and estimator. RCMR is turned on after 10 sec. In all cases where identification

is available, RCMR provides an estimate of only A2,1. In all examples in this sec-

tion, the transition to off-nominal takes place over one time step, that is, 0.01 sec.

The controller and observer both use incorrect modeling data for B, where we use

a weighted average of the nominal and off-nominal plants. For A, the compensator

uses the nominal system for all entries apart from A2,1.

Example 8.6. Step-command following with full-state feedback. We first

consider full-state feedback. Figure 8.12 shows step command following when using

full-state feedback, and Figure 8.13 shows the parameter estimate in this case. The

controller is able to follow the command after the transition to off-nominal conditions,

after an inital deviation. RCMR is not able to converge to the true parameter due

to modeling errors in the main system model, and the lack of persistent excitation.
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Figure 8.12: Example 8.6: Step-command following with full-state feedback with the RCMR estimate
available. The controller is able to follow the command after the transition to off-nominal conditions,
after an inital deviation.

The FPR tuning parameters are P (0) = 0, R1 = I5, and R2 = 10. The RCMR tuning

parameters are ly = lz = lu = 4, nc = 1, η̄ = 0, β = 2× 105, and λ = 1. �

Example 8.7. Step-command following with output feedback. Next, we con-

sider output feedback, where the RCMR estimate is available for the FPR estimator.

RCMR is turned on after 10 sec. RCMR is also using the state estimates provided by

the state observer. Figure 8.14 shows step command following with the RCMR esti-

mate available. After the transition, the controller is able to follow the step command

after an initial deviation. Note that the deviation is more severe than when using

full-state feedback . Figure 8.15 shows the parameter estimate provided by RCMR.

Figure 8.16 shows the observer error in this case. Notice that, after the transition to

off-nominal conditions at 60 sec, the observer is able to drive to observer error back

to zero, after an initial deviation.
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Figure 8.13: Example 8.6: Step-command following with full-state feedback. The RCMR parameter
estimate does not converge to the right value due to modeling errors and the lack of persistent
excitation.

The FPR regulator tuning parameters are P (0) = 0, R1 = I5, and R2 = 100. The

observer tuning parameters are P0 = I5, V1 = I5, and V2 = 1. The RCMR tuning

parameters are ly = lz = lu = 4, nc = 1, η̄ = 0, β = 2, and λ = 1. �

8.9 Conclusions

The goal of this chapter was to compare the accuracy of established techniques

for parameter estimation with RCMR, and present an online estimation and control

technique. A plethora of techniques exists for nonlinear estimation, and all of these

algorithms are candidates for parameter estimation. In this chapter we compared two

nonlinear estimation algorithms with RCMR, which is not an estimation technique

but rather is intended for subsystem identification, of which parameter estimation is

a special case. The results suggest that RCMR is less sensitive to sensor noise, par-
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Figure 8.14: Example 8.7: Step-command following with output feedback with the RCMR estimate
available. The controller is able to follow the command after the transition to off-nominal conditions,
after a deviation during which RCMR estimates are improving.

ticularly, biased measurements. No attempt was made to estimate the measurement

bias. Since RCMR does not involve an ensemble of models, it is computationally

efficient compared to UKF. However, unlike EKF and UKF, RCMR does not provide

an error probability distribution for the parameter estimates. Next, we used RCMR

to provide parameter estimates to a forward propogating Riccati based controller, for

command following for an aircraft lateral dynamics model with a transition to NMP

dynamics.
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Figure 8.15: Example 8.7: Step-command following with full-state feedback. The RCMR parameter
estimate does not converge to the right value due to modeling errors and the lack of persistent
excitation.
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Figure 8.16: Example 8.7: Step-command following with full-state feedback. Observer error with
the RCMR estimate available. The observer drives the observer error back to zero after a transient
during the transition to off-nominal conditions.
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CHAPTER 9

Conclusions and Future Work

9.1 Conclusions

Retrospective cost adaptive control (RCAC) is a direct adaptive control technique

that is applicable to stable or unstable, minimum-phase or NMP, linear or nonlin-

ear systems, for stabilization, command following, or disturbance rejection problems.

RCAC requires minimal modeling information, as demonstrated in this dissertation.

This dissertation expands on the development of RCAC, and explores several new ap-

plications for RCAC, including feedforward control, adaptive pole placement, adaptive

PID control, and compares the H2 cost and closed-loop frequency response of RCAC

with discrete time LQG control.

In past work, RCAC was viewed as retrospective optimization of a dynamic com-

pensator utilizing past performance data and control effort. The filter Gf was viewed

as an FIR approximation of the transfer function Gzu from the control input u to the

performance variable z. A key contribution of this dissertation was the demonstration

that retrospective cost optimization updates the controller coefficients to minimize

the residual of the fit between z and the output of the target model Gf with input

ũ. Doing so matches the intercalated closed-loop transfer function G̃zũ to Gf , thus

leading to the interpretation of Gf as a target model for G̃zũ. It was shown that

G̃zũ is the transfer function from the virtual external controller perturbation ũ to the
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performance variable z. The special nature of G̃zũ is due to the fact that ũ enters the

feedback loop through intercalated injection, which means that ũ is injected internally

to the controller as opposed to simply being added to the control input.

The target model Gf is selected by the user, and the choice of Gf is guided by its

role in the controller adaptation. In particular, since RCAC tends to match G̃zũ to the

target model and, since the target model possesses the NMP zeros of Gzu, the NMP

zeros must be reproduced in the target model; otherwise, RCAC may cancel them,

resulting in a hidden instability. This modeling information, along with the relative

degree of Gzu and its leading numerator coefficient, constitutes the basic modeling

information required by RCAC. These statements apply to the case where Gzu is

SISO.

We applied RCAC to problems that are difficult or even impossible for fixed gain

controllers, including plants with transitions from minimum phase to NMP dynamics,

as well as plants with erroneous modeling information or unmodeled dynamics, plants

with limited achievable stability margins. It was shown that RCAC can readapt to

destabilizing perturbations, and can restabilize the closed-loop system. We use quasi-

FIR control laws to achieve near optimal control for plants which yield unstable high-

authority LQG controllers, as well as for command following for NMP plants without

knowledge of the NMP zero.

Next, we considered the question, “Are all full-order compensators observer-

based?” It was shown that apart from the case where n is odd and the closed-loop

spectrum does not contain at least one real root, all full order compensators are

observer-based. Next, it was shown that since the LQG solution requires separation,

all such compensators are thus inherently sub-optimal. This question helps to under-

stand the closed-loop pole locations arising from full-order RCAC compensators.

Finally, we used retrospective cost model refinement (RCMR) to demonstrate

parameter estimation for several examples, and compare RCMR to established es-
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timation techniques, namely the extended Kalman filter and the unscented Kalman

filter. We then used RCMR for indirect adaptive control, performing closed-loop iden-

tification under conditions where persistent excitation is infeasible. RCMR was used

to provide estimates of time-varying parameters to a forward propagating Riccati

based controller.

9.2 Future Work

9.2.1 Extensions to MIMO Gzu

Although RCAC was presented in the case where Gzu is a MIMO transfer function,

the construction of the target model Gf was confined to the case where the control

and performance variable are scalar signals. In this case, it is easy to incorporate

the NMP zeros of Gzu in the target model. By comparison, the case of MIMO Gzu

is much more challenging. In this case, the target model Gf would need to be con-

structed so as to prevent the possibility of hidden cancellation of transmission zeros.

In principle, this is not difficult since transmission zeros are well understood in terms

of the Smith-McMillan form [131–133]. However, the minimal modeling information

required to determine the relevant zero directions remains to be determined. In ad-

dition, construction of the Smith-McMillan form depends on symbolic computation,

which can be numerically sensitive. An added challenge is the fact, as shown in [41],

that RCAC tends to square non-square plants, which may introduce squaring zeros

that are NMP.

9.2.2 Controller Stability

As shown in this dissertation, as a consequence of optimality, LQG may produce

unstable controllers in cases where an unstable controller is not required for closed-

loop stability. Since RCAC tends to match LQG, it is not surprising that RCAC may
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produce unstable controllers in cases where an asymptotically stable controller may

produce near-optimal performance. It is therefore of interest to develop extensions

of RCAC that enforce controller stability during adaptation without losing closed-

loop stability. One such method is to choose target pole locations that may be

achieved by stable controllers. However, since computing such pole locations requires

knowledge of the denominator and numerator of Gyu, it is not a desirable solution. An

alternative method may be to optimize the retrospective cost function with respect to

not just θ̂ but also the denominator Df of the target model. By defining an alternative

retrospective performance variable, with two FIR filters instead of one IIR filter, it

can be shown that this optimization problem is convex in θ̂ and Df , and tends to

yield stable controllers.

9.2.3 Dual Retrospective Cost Adaptive Control

It is a fundamental tenet of feedback control that poles can be moved but zeros

cannot, at least not by using linear time-invariant feedback. Consequently, NMP

zeros, which cannot be canceled, present one of the key impediments to feedback

control [98]. Not surprisingly, NMP zeros pose one of the key impediments to adaptive

control. For example, the positive real conditions that are invoked in classical adaptive

control techniques [4, 68, 134–137] cannot be satisfied for NMP plants. In the case of

RCAC, the locations of the NMP zeros are included in the basic modeling information

used to construct the target model Gf .

The analysis in this dissertation suggests a novel way forward. In particular, the

virtual external control perturbation ũ is the input to G̃zũ,k, whose zeros include

the zeros required to construct Gf . This suggests the possibility of identifying G̃zũ,k

during controller adaptation and using the estimates of the zeros of G̃zũ,k to update

Gf during adaptation. In effect, identification and adaptation are performed con-

currently, where the adaptation drives the identification through the virtual external
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control perturbation ũ, while the identification provides the modeling information to

the controller adaptation that is required to avoid cancellation of NMP zeros.

This approach–concurrent identification and adaptation where the identification

signal is the virtual external control perturbation ũ with intercalated injection–can

be viewed as a form of dual control. As discussed in [138–140], dual control is a

fundamental and longstanding problem in feedback control. In the spirit of dual

control, it is possible to exploit the immovability of the plant zeros by using the

virtual external control perturbation ũ to estimate their locations, which remain fixed

(viewed as “instantaneous zeros”) despite the time-dependent adaptation. In the case

of MIMO Gzu, this approach can potentially overcome difficulties associated with zero

directions and the construction of the Smith-McMillan form.
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APPENDIX A

Discrete-Time LQG Control

Discrete-time LQG is not as widely used as the continuous-time version [A1, A2];

the relevant equations for discrete-time LQG can be found in [131, p. 878], and

a complete derivation in a more general context is given in [A3]. Solutions of the

discrete-time Riccati equations are discussed in [A4]. Here we focus on the high-

authority LQG solution.

For the standard problem (2.1)–(2.3), define

R1
4
= ET

1 E1 ∈ Rn×n, R12
4
= ET

1 E2 ∈ Rn×lu , R2
4
= ET

2 E2 ∈ Rlu×lu , (A.1)

V1
4
= D1D

T
1 ∈ Rn×n, V12

4
= D1D

T
2 ∈ Rn×ly , V2

4
= D2D

T
2 ∈ Rly×ly . (A.2)

Assuming that w is zero-mean Gaussian white noise with covariance Ilw , the nth-order

strictly proper LQG controller Gc ∼




Ac Bc

Cc 0




minimizes

J(Ac, Bc, Cc)
4
= lim

k→∞
E

[
1

k

k∑

i=0

zT(i)z(i)

]
, (A.3)
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and is given by

Ac = A+BCc −BcC −BcD0Cc, (A.4)

Bc = (AQCT + V12)(V2 + CQCT)−1, (A.5)

Cc = −(R2 +BTPB)−1(RT
12 +BTPA), (A.6)

where the positive-semidefinite matrices P ∈ Rn×n and Q ∈ Rn×n are solutions of the

discrete-time algebraic Riccati equations

P = ÂT
RPÂR − ÂT

RPB(R2 +BTPB)−1BTPÂR + R̂1, (A.7)

Q = ÂEQÂ
T
E − ÂEQC

T(V2 + CQCT)−1CQÂT
E + V̂1, (A.8)

where

ÂR
4
= A−BR−1

2 RT
12, R̂1

4
= R1 −R12R

−1
2 RT

12, (A.9)

ÂE
4
= A− V12V

−1
2 C, V̂1

4
= V1 − V12V

−1
2 V T

12. (A.10)

The eigenvalues of the closed-loop system are given by

mspec(Ã) = mspec(A+BCc) ∪mspec(A−BcC), (A.11)

where

Ã
4
=




A BCc

BcC Ac +BcD0Cc




(A.12)

and “mspec” denotes the spectrum of a matrix including eigenvalue multiplicity.

Under the assumptions
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i) (A,B) is stabilizable.

ii) (ÂR, R̂1) has no unobservable eigenvalues on the unit circle.

iii) (A,C) is detectable.

iv) (ÂE, V̂1) has no uncontrollable eigenvalues on the unit circle.

it follows that (A.7) and (A.8) have unique positive-semidefinite solutions P and Q,

and, furthermore, Ã is asymptotically stable.

Note that the LQG controller is independent of E0. This is due to the fact that,

since LQG is based on the assumption that w is zero-mean Gaussian white noise,

the contribution of E0w to J(Ac, Bc, Cc) is not affected by the choice of Ac, Bc,

and Cc. However, for the servo problem shown in Figure 2.3, E0 is not zero, and

the command r, which is a component of w, is not Gaussian white noise. Likewise,

in some applications, the disturbance d in the servo problem is not Gaussian white

noise, and thus the exogenous signal w in the standard problem is not Gaussian

white noise. Therefore, in these cases the LQG controller is not necessarily optimal.

Nevertheless, for comparison with RCAC, we use the LQG controller in these cases

without modification. In examples 4.1–4.3, we compare the closed-loop frequency

response and H2 cost of RCAC to high-authority LQG.

Properties of Discrete-Time High-Authority LQG

In this section, we review properties of high-authority LQG, that is, the case

where R2 = 0 and V2 = 0. In this case, ÂR = A, R̂1 = R1, ÂE = A, and V̂1 = V1.

The properties of discrete-time high-authority LQG are analogous to the properties

of continuous-time high-authority LQG given in [A1, pp. 281–289].

For simplicity, we assume that y, z, u, and w are scalar signals. We consider the
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factorizations of the numerators Nzu and Nyw of Gzu and Gyw, respectively, given by

Nzu = HdzuNzu,sNzu,u, (A.13)

Nyw = HdywNyw,sNyw,u, (A.14)

where dzu ≥ 0 is the relative degree of Gzu, Hdzu is the first nonzero Markov pa-

rameter of Gzu, dyw ≥ 0 is the relative degree of Gyw, Hdyw is the first nonzero

Markov parameter of Gyw, the roots of the monic polynomials Nzu,s and Nyw,s are

the minimum-phase zeros of Gzu and Gyw, respectively, and the roots of the monic

polynomials Nzu,u and Nyw,u are the NMP zeros of Gzu and Gyw, respectively. Note

that Hdzu is the leading nonzero coefficient of Nzu, and Hdyw is the leading nonzero

coefficient of Nyw. With this notation it follows that

mspec(A+BCc) = mzeros(zdzuNzu,s(z)Nzu,u(z−1)), (A.15)

mspec(A−BcC) = mzeros(zdywNyw,s(z)Nyw,u(z−1)), (A.16)

where mzeros denotes the multiset of zeros of a rational function including multiplic-

ity. Note that the zeros of Nzu,u(z−1) are the reflections across the unit circle (that

is, the reciprocals) of the NMP zeros of Gzu. For example, if Nzu,u(z) = z− 1.2, then

Nzu,u(z−1) = 1−1.2z
z

. It follows from (A.15) and (A.16) that the closed-loop poles of

high-authority LQG control are the zeros of

D̃HA(z) = zdzu+dywNzu,s(z)Nzu,u(z−1)Nyw,s(z)Nyw,u(z−1). (A.17)

It thus follows from (A.11) that mspec(Ã) = mzeros(D̃HA). Similar observations

are made for continuous-time systems in [A1] and for discrete-time systems in [39].

A surprising aspect of high-authority LQG control is the fact that the poles and

zeros of Gyu, which is present in the feedback loop and thus determines the gain and
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phase margins, do not affect the locations of the closed-loop poles. In the subsequent

examples, we consider high-authority LQG control. For each example, w is zero-mean

Gaussian white noise with standard deviation 1.

Example A.1. High-authority LQG control for the standard problem with

y 6= z, with stochastic w not matched with u, and with minimum-phase

Gzu, Gzw, Gyu, and Gyw. Consider the asymptotically stable, minimum-phase plant

A =




0.4 0.0958 0.1183 0.3162

0 0.81 1 0

0 −0.1539 0.81 0.4813

0 0 0 −0.5



, B =




0

0

0

1



, D1 =




−0.3807

−0.2039

0.1771

0.8844



,

(A.18)

C = [0.4456 0.0832 − 0.332 − 0.8272], D0 = 0, D2 = 0, (A.19)

E1 = [−0.274 0.2625 0.3241 0.8666], E0 = 0, E2 = 0. (A.20)

The open-loop and closed-loop poles are shown in Figure A.1. Note that mspec(A+

BCc) consists of the zeros ofGzu as well as 0 with multiplicity 1, while mspec(A−BcC)

consists of the zeros of Gyw as well as 0 with multiplicity 1. This example illustrates

(A.15) and (A.16), which relate the closed-loop spectrum to the zeros of Gzu and

Gyw. �

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Gzu

Gzw

Gyu

Gyw

OL

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1 eGzw

Gzu

Gyw

Figure A.1: Example A.1: High-authority discrete-time LQG control for the standard problem. The
closed-loop transfer function G̃zw has one pole at each zero of Gzu and Gyw as well as two poles at
0.
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Example A.2. High-authority LQG control for the standard problem with

y 6= z, with stochastic w not matched with u, and with NMP Gzu, Gzw, Gyu,

and Gyw, all of which have different NMP zeros. Consider the asymptotically

stable, NMP plant

A =




0.81 1 0

−0.1539 0.81 0.6998

0 0 0.5


 , B =




0

0

1


 , D1 =




0.1841

0.1074

0.9770


 , (A.21)

C = [0.9280 0.1102 0.3558], D0 = 0, D2 = 0, (A.22)

E1 = [0.4531 − 0.3513 0.8193], E0 = 0, E2 = 0. (A.23)

The open-loop and closed-loop poles are shown in Figure A.2. Note that mspec(A+

BCc) consists of the reciprocals of the NMP zeros of Gzu as well as 0 with multiplicity

1, while mspec(A−BcC) consists of the reciprocals of the NMP zeros of Gyw as well

as 0 with multiplicity 1. This example illustrates (A.15) and (A.16) in the case where

both Gyu and Gzw are NMP. This example also shows that the NMP zeros of Gzw

and Gyu have no effect on the closed-loop poles. �
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Figure A.2: Example LQGA.2: High-authority discrete-time LQG control for the standard problem.
The closed-loop transfer function G̃zw has one pole at the reciprocal of each NMP zero of Gzu and
Gyw as well as two poles at 0.
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APPENDIX B

The Sylvester Resultant

The Sylvester resultant provides a necessary and sufficient condition for the co-

primeness of two polynomials [B1, pp. 459-461], [B2, pp. 234-236], and [B3, pp.

140-142].

Theorem A1. Let k and l be nonnegative integers such that k + l ≥ 1, let

a(s) = aks
k + ak−1s

k−1 + · · ·+ a1s+ a0 and b(s) = bls
l + bl−1s

l−1 + · · ·+ b1s+ b0, and

assume that ak 6= 0 and l ≤ k. Furthermore, define

M1(a, b)
4
=




ak 0 · · · 0 bl 0 · · · 0

ak−1 ak
. . .

... bl−1 bl
. . .

...
... ak−1

. . . 0
... bl−1

. . .
...

a1
...

. . . ak b1
...

. . . bl

a0 a1
. . . ak−1 b0 b1

. . . bl−1

0 a0
. . .

... 0 b0
. . .

...
... 0

. . . a1
...

...
. . . b1

0 · · · · · · a0 0 · · · · · · b0




∈ R(k+l)×(k+l). (B.1)

Then the number of common roots of a and b is k+ l− rank(M1(a, b)). Furthermore,

a and b are coprime if and only if M1(a, b) is nonsingular.
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The Sylvester resultant M1(a, b) is constructed by listing the coefficients of a

from ak to a0 starting at the top of the first column. In the second column, the

coefficients of a are shifted downward by one row; l columns are constructed this way.

Next, list the coefficients of b from bl to b0 starting at the top of column l+ 1. In the

next column, the coefficients of b are shifted downward by one row; k columns are

constructed this way. The final matrix has k + l rows and k + l columns.

Note that in Theorem A1 bl may be zero, and thus deg(b) ≤ l ≤ k = deg(a).

Therefore, since l ≤ k, without loss of generality, b(s) can be written with k + l − 1

additional leading zeros of the form b(s) = 0sk + · · · + 0sl+1 + bls
l + · · · + b0, and

Theorem A1 can be rewritten as follows.

Theorem A2. Let k be a nonnegative integer, let a(s) = aks
k + ak−1s

k−1 + · · ·+

a1s + a0, where ak 6= 0, and b(s) = bks
k + bk−1s

k−1 + · · · + b1s + b0. Furthermore,

define

M2(a, b)
4
=




ak 0 · · · 0 bk 0 · · · 0

ak−1 ak
. . .

... bk−1 bk
. . .

...
... ak−1

. . . 0
... bk−1

. . .
...

a1
...

. . . ak b1
...

. . . bk

a0 a1
. . . ak−1 b0 b1

. . . bk−1

0 a0
. . .

... 0 b0
. . .

...
... 0

. . . a1
...

...
. . . b1

0 · · · · · · a0 0 · · · · · · b0




∈ R2k×2k. (B.2)

Then the number of common roots of a and b is 2k − rank(M2(a, b)). Furthermore,

a and b are coprime if and only if M2(a, b) is nonsingular.

Note that in Theorem A2 bk may be zero, and thus deg(b) ≤ k. M1(a, b) appears

in [S3], whereas M2(a, b) appears in [S1] and [S2].
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Example B.1. Let a(s) = s + 1 and b(s) = s + 2, which are coprime. Then, using

B.1,

M1(a, b) =


 1 1

1 2


 ,

which is nonsingular. �

Example B.2. Let a(s) = s + 1 and b(s) = (s + 1)(s + 2) = s2 + 3s + 2, which are

not coprime. Then, using B.1,

M1(a, b) =




1 0 1

1 1 3

0 1 2


 ,

which has rank 2 and thus is singular. The number of common roots is k + l −

rank(M1(a, b)) = 1 + 2− 2 = 1. �

Example B.3. Let a(s) = s3 + 2s2 + 4s+ 1 and b(s) = 6. Since b is a constant and

nonzero, it has no roots, and thus a and b are coprime. Furthermore, using B.1,

M1(a, b) =




6 0 0

0 6 0

0 0 6


 ,

which is nonsingular. �
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Example B.4. In in this example, we use B.2 instead of B.1. We add leading zeros

to b in Example B.3 by writing b(s) = 0s3 + 0s2 + 0s+ 6. Thus, using B.2,

M2(a, b) =




1 0 0 0 0 0

2 1 0 0 0 0

4 2 1 0 0 0

1 4 2 6 0 0

0 1 4 0 6 0

0 0 1 0 0 6




,

which is nonsingular. In fact, det(M2(a, b)) = 216, as in Example B.3. �

Example B.5. Let a(s) = s3 + 2s2 + 4s+ 1 and b(s) = 0s3 + 0s2 + 0s+ 0 so that b

is the zero polynomial. Then, using B.2,

M2(a, b) =




1 0 0 0 0 0

2 1 0 0 0 0

4 2 1 0 0 0

1 4 2 0 0 0

0 1 4 0 0 0

0 0 1 0 0 0




.

Since rank(M2(a, b)) = 3, Theorem A1 implies that the number of common roots of

a and b is 2k − rank(M2(a, b)) = 6− 3 = 3, which shows that every root of a is also

a root of b. �
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