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which suggests that the echo amplitude for this fish school is non-Rayleigh, even though visually 

it appears that it might be Rayleigh.        139 

Figure 6-9: The probability distribution function of ψ = |p|/<|p|2>1/2 in the backscatter direction 

for a small pelagic fish school at 200kHz (o) is considered. The points are fitted using a best fit 

smeared Rayleigh distribution (----). Of all the in situ measurement data considered, this 

distribution function had the worst fit to the points (r2 is 0.9486). This is likely because the 

resonance frequency of krill (co-located with this school) is also at 200kHz which would have 

contributed to the poorly fit high amplitude scattering tail.     144 

Figure 6-10: The probability distribution function of ψ = |p|/<|p|2>1/2 in the backscatter direction 

for a school of rockfish at 18kHz (o) is considered. The points are fitted using a best fit smeared 

Rayleigh distribution (----). This smeared Rayleigh distribution yielded a goodness of fit value of 

r2 = 0.9712 and is around the average r2 for the smeared Rayleigh distribution fitted to the 

probability distribution function of ψ = |p|/<|p|2>1/2 for the fish schools.   145 

Figure 6-11: The probability distribution function of ψ = |p|/<|p|2>1/2 in the backscatter direction 

for a school of rockfish at 70kHz (o) is considered. The points are fitted using a best fit smeared 

Rayleigh distribution (----). This smeared Rayleigh distribution yields a goodness of fit value of 

r2 = 0.9931. This fitting was one of the best smeared Rayleigh distributions considered for the in 

situ measurements analyzed.         146 
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Abstract 

 

 When sound is projected into the ocean, the backscattered signal may provide 

information about the object(s) from which the sound has scattered. When the backscattered 

sound comes from an aggregation of strong scatterers, such as a school of fish at their swim 

bladder resonance frequency, a phenomenon known as the Coherent Backscatter Enhancement 

(CBE) may occur and this may aid in discriminating fish schools from other scatterers in the 

ocean water column. When CBE occurs, the addition of the in-phase path pairs enhances the 

scattered field by as much as a factor of two in the direction opposite to that of the incident wave. 

This thesis describes the results obtained from simulating aggregations of randomly placed 

omnidirectional point scatterers (kas << 1, where k = wave number of the illuminating wave and 

as = effective radius of the scatterers) using the Foldy (1945) multiple scattering equations and 

the conditions under which CBE may occur in the free space. 

 To ensure that the Foldy (1945) equations are implemented correctly, simulations are first 

verified and validated. The verification tasks include ensuring that the phasing of the scattering 

from a linear array of scatterers is correct and using the effective medium theory approximation 

also given in Foldy (1945). In both of the verification tests, the agreement between simulation 

and provided formulae is excellent. The validation was done by first ensuring that energy is 

conserved for the aggregation of scatterers. Here, the multiple scattering effects were gradually 
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increased by decreasing the average spacing between the scatterers and by increasing a 

scatterer’s strength. In all cases, energy was conserved with numerical error up to 1/6th of the 
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power incident on a single scatterer. The second test was through the replication of near field 

optics (Wolf et al., 1988) and acoustics (Bayer and Niederdränk, 1993) experiments. In both 

these experiments, a semi-infinite scattering medium is considered. After taking into account the 

differences in the resolution of the receivers and the sizes of the aggregation using a coherence 

function, the comparisons were good: the near field optics experiment replication yielded an 

enhancement of 1.030±0.005 via simulation (1.034 from experiment) and the near field acoustics 

experiment replication yielded an enhancement of 1.5 (1.5 from experiment).  

 In addition, simulations of far field CBE from spherical aggregations of scatterers are 

presented and compared with backscattering from ideal spherical scatterers. These results 

indicate that for high multiple scattering effects, the corresponding backscatter equivalent ideal 

spherical scatterer may be bigger than the spherical aggregation itself. Interestingly, a spherical 

aggregation consisting of strong scatterers with radius of ka = 32 may yield a backscattered 

equivalent sphere up to ka = 53. 

 To compare the CBE simulations with actual acoustic backscatter measurements from 

fish schools, the probability density function of the backscattered returns from aggregations of 

scatterers, a school of rockfish and small pelagics1 are also considered as a method of 

classification.  For an aggregation of scatterers, the distribution may be Rayleigh, using a 

|p|/<|p|2>1/2 normalization. In the in situ measurements, the distribution is non-Rayleigh and 

instead, a Lorentzian-weighted smear of Rayleigh distributions is proposed for the backscatter 

returns from the schools considered. 

                                                           
1 In situ measurements provided by Dr. Kelly Benoit-Bird of the Monterey Bay Aquarium Research Institute. 
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CHAPTER 1 

Introduction 

 

 The acoustic signal from an active sonar source traveling in an underwater medium may 

be backscattered by targets, known environmental features, and ocean clutter. Scattering from 

unknown targets and clutter is easily confused and this leads to difficulties in sensing the 

acoustic environment. Typically, clutter consists of rough surface scattering from the ocean’s 

surface or bottom, seaweed and other forms of plant life, and marine animals, particularly fish 

(Abraham et al., 2011). In the case of scattering from marine life, sound may be scattered in all 

different directions and statistical information from fish schools can be gathered from the active 

sonar returns in the backscattered direction. For aggregations of very strong scatterers, the 

interaction of sound bouncing between individual scatterers may result in an added enhancement 

in the intensity of the backscattered sound called the Coherent Backscatter Enhancement (CBE) 

(Akkermans et al., 1986). Knowledge of the scattering from marine life can be useful for remote 

sensing. In military applications, an understanding of the scattering behavior can aid in locating 

and detecting obstacles (Lurton, 2002) and targets (Zhu et al., 2005). Additionally, locations of 

the sources of nutrients for the plant life in the ocean can be obtained using acoustic 

backscattering from the biologics (Proni et al., 2008). Particularly, knowledge of the scattering 

behavior in the water column could help in environmental monitoring of the ocean and also help 

with fish population surveys (Jain et al., 2014, Andrews et al., 2011). 
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In order to classify and locate objects using remote sensing, there are two types of sonar 

which could be utilized. The first possibility is through the use of passive systems. In passive 

sonar, the system is only listening for receiving sounds from a target that radiates sound or that 

scatters sound from another source. In this case, hydrophones are stationed at known locations to 

listen to the sound coming from the target. The second case is to use an active sonar system, 

where a signal is transmitted and the incident signal is reflected from the target (Lurton, 2002). 

Here, the sending and the listening positions could be co-located (monostatic active sonar) or 

separated (bistatic active sonar) (Urick, 1983).  

 The work in this dissertation develops an understanding of the scattering characteristics 

that could be observed in active sonar signal returns from aggregations of pelagic fish to aid in 

the development of remote sensing techniques for the U.S. Navy. Such fish commonly have a 

gas-filled swim bladder having a non-negligible acoustic scattering cross section. Aside from 

pelagic fish in the underwater environment, there are also nonpelagic fish, other organisms, plant 

life, rough surfaces, and volume inhomogeneities in the ocean’s water column and bottom. All of 

these may cause some amount of acoustic scattering, too. Consequently, active sonar returns can 

come from nearly any object or direction in the ocean environment. Additionally, this research 

may also provide information relevant to acoustic sampling of the fish populations (Benoit-Bird 

et al., 2013). Understanding backscattering from schools of fish may help with characterizing 

and classifying remote aggregations of marine life.  

1.1: Fish Behavior and Model 

 

 In the underwater environment, fish typically travel in schools, or shoals, for protection 

against predators, for reducing the risk of being eaten, for spawning and for foraging for food 
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(Pitcher, 1993, Partridge, 1982). Typically shoals are in spherical or spheroidal geometries, 

depending on the fish school and the school behavior (Partridge, 1980). Similar findings were 

also seen by Hemelrijk and Hildenbrandt (2012), who also saw that fish schools tend to be in 

spheroidal or oblong geometries, and Misund (1993), who used a downward looking 

echosounder to experimentally observe the geometries of schools of herring, saithe and sprat. For 

this reason, since the primary aim in this research is to simulate schools of fish, spherical and 

spheroidal aggregation geometries are predominately considered, though rectangular and cubical 

aggregations are utilized in Chapter 3 for verification and validation. 

Certain kinds of pelagic fish have swim bladders, which is a gas filled organ which helps 

fish remain neutrally buoyant. It has also been found that the swim bladder has acoustical 

properties. In 1980, Foote found that the acoustic scattering from the swim bladder produces 

about 90-95% of measured fish target strengths. Through both measurement and simulation, 

Reeder et al. (2004) found that the maximum scattering from a species of fish occur from the 

swim bladder and the skull. A similar finding was also observed by Jørgensen (2002), who found 

that the acoustic target strength for capelin depended on the length of the swim bladder. 

Consequently, and for simplicity, in this research effort the fish’s swim-bladder is solely 

considered to represent the fish since it is the primary contributor in the scattering.  

 Since a fish’s swim bladder consists of a volume of gas, it can be modeled as a bubble. In 

1978, Love added a viscous outer shell to enclose the bubble and saw that at low frequencies, the 

shell does not contribute much scattering. Thus, fish flesh viscosity is not directly included into 

the work discussed in this thesis. Instead, in Chapter 5, it is included as the frequency dependent 

scattering and extinction cross sections. At an illuminating acoustic frequency near resonance in 

water, a gas bubble’s volume may under large-amplitude damped oscillations. However, the 
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acoustic wavelength at resonance is much larger than the bubble’s radius. Therefore, the 

scattered radiation is omnidirectional (Devin, 1959). Consequently, when sound illuminates a 

bubble, it could travel past the bubble without interaction or either be scattered or absorbed or 

both (Foldy, 1945). The portion of the sound that is scattered and absorbed is characterized by 

the extinction cross section, defined as the area of the incident field that carries the same acoustic 

power as that scattered and absorbed by a scatterer. The extinction cross section of an individual 

bubble in water is a function of the incident sound frequency, bubble size and the properties 

(density, surface tension, thermal conductivity and viscosity) of the water (Kinsler et al., 2000). 

While in Chapters 3, 4, 6 and part of 5, it is assumed that the scattering and extinction cross 

sections are equal, for the herring fish scattering simulations, the scattering and extinctions cross 

sections are based off the formula given in Love (1978). Therefore, they are not equal for those 

particular simulations. 

 In Chapter 5 of this thesis, omnidirectional point scatterers are considered with scattering 

and extinction cross sections which are that of the particular fish species using the forms of the 

Love (1978) model in Raveau and Feuillade (2015). These point scatterers are mainly arranged 

in aggregations which are in spherical and spheroidal geometries with an exclusion distance to 

account for the other anatomical features of the fish as well as the distance between fish in the 

school. It is assumed that the size of the swimbladder is much smaller than that of an acoustic 

wavelength. 

1.2: Single Large Scatterer Model 

 

 In comparison to low-frequency scattering from a fish’s swimbladder, the interaction 

between an incident acoustic wave of arbitrary frequency and a single scattering object is 
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potentially more complicated. Typically, an accurate model would require consideration of fluid-

structure interaction via numerical techniques (Hou et al., 2012) or consideration of other effects 

such as surface or Franz waves through the use of the Watson transformation (Überall, 1985). 

Überall (1985) experimentally confirmed the equations to verify the physics scattering theory of 

solid elastic spheres and cylinders. Simpler techniques were also considered by van Bladel 

(1968) who studied an ideal spherical scatterer and neglected fluid structure interactions or any 

other waves impinging on it, aside from the acoustic wave. Pierce (2000) used the van Bladel 

(1968) equations, but assumed the wave number scaled radius to be much less than 1, ka << 1 

and kept the first few terms in the series expansion. Additionally, Hay and Burling (1982) 

derived the equations for modeling a single large spherical scatterer with various different 

conditions pertinent to marine applications and compared the equations with experiment.  

 In this thesis, the equations from Morse and Ingard (1968) are considered to model a 

single large sphere to minimize the complexities of the scattering behavior and runtime. First, the 

van Bladel (1968) spheres with zero pressure gradient (hard) and pressure release (soft) 

boundary conditions are considered. These spheres are considered to compare the returns from a 

school of fish with a large bubble or manmade spherical object without considering fluid-

structure interactions or expansion or contraction of the bubbles. The sizes of the sphere range 

from ka = 12 to 32 and, therefore, the form of the equations from Pierce (2000) is insufficient to 

model the single large scatterer. This sphere is oriented in the same configuration as the spherical 

aggregation of scatterers and then the far field radial intensity is approximated as a pressure 

magnitude squared using a far field (ka2/R << 1, where k is the incident wave number, a is the 

radius of the aggregation and R is the distance the aggregation is from the receivers) receiving 

ring. In Chapter 4, the backscattered pressure magnitude squared from the sphere is matched 



6 
 

with the mean square pressure for an aggregation of scatterers. Second, a theoretical comparison 

with the sphere considered in Hahn (2007) is also performed in Chapter 4 for an aggregation of 

scatterers. This was done by considering the impedance boundary condition in Morse and Ingard 

(1968). Foldy’s (1945) effective medium theory was used to determine the effective wave 

number, ke, effective sound speed, ce, for an aggregation of scatterers. These values, along with 

the effective density, ρe, were used to model a single sphere with properties ke, ρe and ce. In 

Chapter 4, comparisons are made between this ideal sphere as the magnitude backcatterered 

pressure, |p|, with an aggregation of scatterers as the magnitude of the average backscattered 

pressure, |<p>|. The comparisons were done in dB and plotted as a function of the small 

parameter, 1)()(4 32
1 kskg , where (kg1) is the wave number scaled scattering coefficient of 

each scatterer and (ks) is the dimensionless average spacing between scatterers. This small 

parameter was provided in Hahn (2007), though originally obtained in Frisch (1968). 

Additionally, in Chapter 5, the van Bladel (1968) equations are again considered by matching the 

aggregation radius with that of the hard and soft sphere. 

1.3: Multiple Scattering 

 

 When an incident wave interacts with a scattering object, a portion of the incident wave 

scatters away from the object. When an aggregation of N >> 1 scatterers is considered, each 

scatterer is still illuminated by the incident wave, but now the scattered waves from all the other 

scatterers also impinge on each scatterer. When the scattered illumination is comparable to (or 

larger than) that of the incident field, multiple scattering effects are important. In this case, the 

overall scattering interaction is more complicated and can differ significantly from the field 

produced by a superposition of N isolated scatterers. In 1945, Foldy derived exact multiple 
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scattering equations that represent all scattering interactions between N omnidirectional point 

scatterers (Chapter 2 discusses the mathematical detail of the equations). To generate a solution, 

the equations are solved for the scattered field from each scatterer in the aggregation 

individually, excluding the scatterer itself and then for the field at the location of interest. These 

equations are particularly advantageous in that they work for any kind of incident wave that is a 

solution of the Helmholtz equation. The disadvantage of using these equations is that it typically 

involves an N × N matrix inversion that can be computationally taxing when N is large. In order 

to avoid this inversion, Foldy (1945) developed an approximate effective medium theory, which 

neglects some higher order scattering. This effective medium theory formula is briefly 

considered in Chapter 3 for verification purposes and in Chapter 4, in conjunction with modeling 

the Hahn (2007) sphere. Depending on the application and kind of wave considered, different 

studies have modified the formula modeling the effective medium theory accordingly (Ye and 

Ding, 1995). This was done as early as 1951 by Lax, who modified the effective medium theory 

for quantum waves and neutron scattering, in 1961 by Waterman and Truell, for 

electromagnetics and also in acoustics by Twersky in 1957, who considered scattering from 

rough surfaces (Lax, 1951, Lax 1952, Waterman and Truell, 1961, Twersky, 1957). While the 

effective medium theory is a way to obtain the configurational average of the pressure field from 

lower order scattering, in order to simulate the coherent backscatter enhancement, all orders of 

scattering is needed. Thus, much of this thesis predominately uses the exact form of the multiple 

scattering equations, though there are sections in Chapters 3 and 4, which utilize the effective 

medium theory, but are not used to simulate the coherent backscatter enhancement. Additionally, 

the parameters have been selected such that the N × N matrix inversion is possible to perform 
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(average spacing between the scatterers, ks, ranging from around 2π to a little less than π, and 

dimensionless scattering strength, kσs
1/2, is less than 2π1/2). 

 Particularly, in acoustics, the Foldy (1945) equations have since been used depending on 

the setup and purpose. Most of the time, the effective medium theory version of the Foldy (1945) 

equations are utilized and are appropriately modified based on the application of interest. In 

1982, Tsang et al. used the effective medium theory equations from Twersky (1957) and 

modified it to include corrections when the medium consists of discrete spherical scatterers 

(Tsang et al., 1982). Additionally, Henyey (1999) also employed a correction term for Ye and 

Ding’s (1995) formulation for bubble clouds which Hahn (2007) also further modified. Aside 

from its use in bubbles, Foldy’s effective medium theory and possible corrections were also used 

by Linton and Martin (2006) for solid spheres, by Norris and Conoir (2011) for developing 

corrections for random assemblages of cylindrical rods, and by Derode et al. (2006), which also 

considered rods as the scattering medium and compared experimental findings with the 

theoretical effective medium corrections. Additionally, Raveau and Feuillade (2016) also 

considered the effective medium theory for fish school scattering and compared it to the full 

form of the multiple scattering equations. Ye et al. (1996) also used the effective medium theory 

formulae to model fish schools for forward scattering. Similar approximations, though not the 

Foldy’s effective medium theory, were also done by Stanton (1983) where expressions for wave-

fish interactions were considered up to the second order echo. While Foldy’s effective medium 

theory is briefly considered in Chapter 3 of this dissertation as a verification technique, in order 

to sufficiently simulate the statistics of a fish school, the full form of the Foldy (1945) multiple 

scattering equations is needed and this approach is pursued in this thesis. 
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 The full form of the Foldy (1945) equations in bubble acoustics have been used by 

Feuillade (1995), where the Foldy (1945) equations where modified to include bubble properties 

such as density, bubble radius, damped resonant frequency, and ratio of gas specific heats.  

These equations have been used in conjunction with the Love (1978) model to consider schools 

of fish as well taking the fish flesh viscosity into account in the damping (Feuillade et al., 1996) 

to model structured cubical arrangements of fish. Since then, these equations have been used in 

Nero (1996) to simulate small oblate spheroidal schools of yellowfin tuna, which had an 

assumed wave number scaled effective swimbladder size ranging from kas ~ 0.0075-0.3 for the 

frequencies considered, in Alfaro et al. (2015) to analyze the statistics of the target strength of 

dynamic unspecified fish schools, and in Raveau and Feuillade (2015) to study the forward 

scattering behavior from collections of fish, particularly sardines (kas ~ 0.04 (Machias and 

Tsimenides 1995)). In Chapter 5, the Foldy (1945) equations are used along with the Love 

(1978) model, like Raveau and Feuillade (2015). However, the focus here is on backscattered 

sound. 

 To compare the theoretical and simulated scattering behavior from fish schools, results 

are often compared with in situ measurements. In 2006, Jaffe used a multi-angle sensing system 

to theoretically sense the size of the swimbladder of a fish. The derivations were implemented in 

simulation and were compared with the data provided in Foote (1985) for a 31.5 cm pollack fish 

(kas ~ 1.1-3.3 for the frequencies considered). In 2011, Andrews et al. used a statistical Monte-

Carlo model to numerically simulate a 2006 Gulf of Maine Experiment with schools consisting 

of Atlantic herring (kas ~ 0.0015-0.0035). The work described in this thesis also utilizes Monte 

Carlo techniques to simulate schools of fish and in Chapter 5, a school of herring is simulated at 

varying ocean depths, though the effects of the ocean waveguide are neglected.  
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 Additional in situ measurements have also been done to obtain information on the 

scattering from fish schools. In 2014, Jain et al. used an ocean acoustic waveguide remote 

sensing system (OAWRS) to sense Atlantic cod in the Gulf of Maine to estimate the extent of the 

scattering from the sea floor. Charef et al. (2010) performed acoustic measurements in the East 

China Sea to classify the groups of the fish via discriminant function analysis and artificial 

neural networks. Additionally, Benoit-Bird et al. (2013) also obtained volumetric scattering data 

from schools of pollock (kas ~ 3.3-36) and zooplankton to determine the location of pollock 

schools. While the work in this thesis is primarily focused on simulation, part of Chapter 6 is 

based on in situ echo-sounder measurements obtained in 2012 that include the natural variability 

of the fish schools.  

1.4: Backscattering 

 

 When a plane wave illuminates a scatterer, the backscatter direction is the opposite of the 

incident wave propagation direction. In 1980, Foote derived the theory behind averaging target 

strength (backscattering cross section in dB) for fish schools and compared it with computational 

examples of cod, saithe and pollack at frequencies of 38 kHz and 120 kHz. Additionally, in 

2003, Towler et al. simulated backscattering of walleye pollock (kas ~ 7.0-22) and capelin (kas ~ 

0.8-2.5) using a Kirchoff-ray mode (KRM) model to predict the anatomy of the fish and the fish 

behavior. Using a similar approach, McClatchie and Ye (2000) also obtained the target strength 

for orange roughy fish and compared findings with in situ measurements, which is also done in 

Chapter 6 of this thesis, though probability distribution functions of normalized pressure 

magnitude squared in dB and normalized echo amplitude are considered. Additionally, Gorska 

and Ona (2003) also performed a similar study as McClatchie and Ye (2000) but with a 

deformed cylinder model from Stanton (1989) and Reeder et al. (2004) using KRM and a Fourier 
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matching model for alewife fish. The work herein also considers simulation though via the Foldy 

(1945) equations for a school of fish where the wave number scaled effective swim bladder 

radius is significantly less than 1. 

 Acoustic surveys have also been done which measured the backscattering from schools of 

fish as well. In 2003, Melvin et al. used multi and single beam sonar to obtain area and 

volumetric backscattering strength in dB for different pings for a herring fish school (kas ~ 5.9).  

Similarly, Kang et al. (2002) used volumetric backscattering strength and target strength as well 

to identify fish (primarily walleye pollock (kas ~ 7.0 and 22.0) and zooplankton for frequencies 

of 38 kHz and 120 kHz. Additionally, Yasuma et al. (2003) calculated target strength of different 

species of lanternfish (mainly kas ~ 0.002) with different swimbladder sizes. Lastly, Benoit-Bird 

et al. (2013) studied schools of walleye pollock (kas ~ 3.3-36) using volumetric scattering 

strength to determine the spatial heterogeneity. In Chapter 6 of this thesis, acoustic survey 

measurements of fish schools using volumetric scattering strength are considered to extend the 

distribution functions from the backscattered returns of an aggregation of scatterers obtained via 

simulations and factor in the natural variability of the fish schools in the water column. Unlike 

the aforementioned simulation models used to model backscattering from a fish, this thesis will 

discuss backscattering from fish schools via the Foldy (1945) equations, assuming that the wave 

number scaled effective swim bladder radius is significantly less than 1. Thus, the findings 

discussed in this document would be most applicable to the acoustic survey results obtained by 

Yasuma et al. (2003). 
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1.5: Coherent Backscatter Enhancement 

 

 The coherent backscatter enhancement (CBE) was first observed in the 1980s as an optics 

finding, notably by Kuga and Ishimaru in 1984 as an experimental study. Upon its finding, it was 

studied extensively by van Albada (1987, 1988), Wolf and Maret (1985), Akkermans et al. 

(1986, 1988) and Wolf et al. (1988). Gradually, the interest in CBE shifted over to acoustics with 

experimental studies done by Bayer and Niederdränk (1993) and Sakai et al. (1997). 

 In perfect backscatter, the incident wave number vector and the backscattered wave 

number vector are equal and opposite. In this situation, scattering paths within the scattering 

medium may be traced forward and backward by different portions of the single wave front so 

that wave pairs emanating from the scattering medium are in phase, and add coherently. When 

the scattering locations are random, different scattering paths lead to random phases and will be 

uncorrelated. However, in the precise backscatter direction, scattering path pairs are correlated 

leading to an intensity enhancement of up to a factor of two. This factor of two enhancement is 

known as the coherent backscatter enhancement (CBE) and has been observed in several 

different wave propagation applications in optics (Kuga and Ishimaru, 1984), acoustics (Sabra, 

2010) and quantum mechanics (Jendrzejewski et al, 2012) in simulation (Weaver and Burkhardt, 

1994, Margerin et al, 2001), experiments (Wolf and Maret, 1985, Wolf et al., 1988, Derode et al., 

2005, Aubry et al., 2007, Lobkis and Weaver, 2008)  and theory (Akkermans et al., 1986, 

Akkermans et al., 1988, Garnier and Sølna, 2008, de Hoop et al., 2012).  

 1. Optical Coherent Backscatter Enhancement 

 The study of the coherent backscatter enhancement originally started in optics in the 

1980s and later transitioned over to acoustics in the mid 1990s. In 1984, Kuga and Ishimaru were 
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one of the first studies to consider experiments involving coherent backscattering using latex 

microspheres as scatterers illuminated with laser light. However, they found an enhancement of 

just 15%. Akkermans et al. (1988) later determined that this may have been due to the 

experimental resolution of the setup. Based on the Kuga and Ishimaru (1984) experimental setup, 

Wolf and Maret (1985) and Wolf et al. (1988) performed an experiment illuminating an aqueous 

solution of polystyrene spheres, resulting in an enhancement of a factor of 1.7 for varying 

diameter beads. These experiments are discussed in greater detail in Chapter 3 as part of a 

validation procedure for the simulations. Additional experiments were done by van Albada et al. 

(1987) and van Albada et al. (1988) where effects of anisotropy were considered in a finite slab, 

as well as polarization effects resulting when light is the incident wave. These two issues are not 

present in the acoustical coherent backscattering studied here. 

 Optical coherent backscatter enhancement was considered extensively by Akkermans et 

al. (1986) and Akkermans et al. (1988). A result in the Akkermans et al. (1986) paper provides a 

description of the CBE peak as a function of mean free path, l, incident wave number, k, and 

scattering angle, which they defined as θ (not to be confused with the polar angle, θ, which is the 

convention used in this dissertation). Akkermans et al. (1986) used this formula along with the 

experimental results from Wolf and Maret (1985) to compare experiment with theory. In the 

Akkermans et al. (1988) paper, this formula is described further and modified for absorption 

effects, varying scales and polarization. Like Akkermans et al. (1986) which compared a 

theoretical derivation to Wolf and Maret (1985), the work presented in Chapter 3 also considers 

the experiments from Wolf and Maret (1985) and Wolf et al. (1988), particularly the scattering 

medium. However, it considers the simulation techniques via the Foldy (1945) equations, instead 

of the Akkermans et al. (1986) formula. 
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 Optical coherent backscatter enhancement simulations have been minimal. In 2002, 

Picard et al. used the Foldy-Lax equations via iterative techniques to predict backscattering for 

wheat canopies, which were modeled as cylinders. Like Picard et al. (2002), the Foldy-Lax 

equations are considered in this dissertation, but the actual matrix inversion is performed. 

Additionally, Eddowes et al. (1995) performed Monte Carlo simulations of biological tissues to 

obtain the angular dependence of intensity and compared it with Akkermans et al. (1986) for 

different indices of refraction. In this thesis, a similar approach is undertaken, though with 

acoustic scalar waves and omnidirectional point scatterers via the Foldy (1945) equations. While 

electromagnetics are not considered here, the simulations could certainly be extended to these 

applications. For this reason, all length scales have been rendered dimensionless by incident 

wave number, k, and pressure fields have been nondimensionalized by incident amplitude.    

 Though the work discussed in this dissertation involves acoustics, a significant portion of 

Chapter 3 focuses on optics as a part of the validation of the codes, particularly Wolf and Maret 

(1985), Wolf et al. (1988) and Akkermans et al. (1986). Here, the wave number scaled spacings 

and mean free paths are nominally matched to that of Wolf and Maret (1985) and Wolf et al. 

(1988) for the smallest sized beads considered by them. The results from this undertaking appear 

in Mookerjee and Dowling (2015). 

 2. Acoustical Coherent Backscatter Enhancement 

 Nearly ten years after one of the first optical CBE studies, CBE started to move into the 

field of acoustics. Bayer and Niederdränk (1993) experimentally found CBE with an 

enhancement of 1.5 using gravel stones and brass rods at a 2 MHz center frequency. As a part of 

the validation technique, this experiment is discussed in detail in Chapter 3. Since then, Sakai et 
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al. (1997) experimentally found acoustic coherent backscattering as well with polystyrene beads 

and showed Schlieren images of the phenomenon. Similarly, Tourin et al. (1997) also considered 

acoustic scattering from rods using a center frequency of 3.5 MHz and observed an enhancement 

of a factor of two. Other ultrasound experiments were done by Lobkis and Weaver (2008), which 

observed localization effects using ultrasound on a plate with dense multiple scatterers; by 

Larose et al. (2007), which considered a plate, an array of sources and a distant receiver; by 

Derode et al. (2005), which used CBE to characterize human trabeculas structure; and by Aubry 

et al. (2007), which used plane wave beamforming to find coherent backscattering from rods. In 

Chapter 3 of this thesis, like Aubry et al. (2007), a linear receiving array and plane wave 

beamforming is utilized. However, the scattering medium consists of omnidirectional point 

scatterers and not rods. 

Coherent backscattering in acoustics has also been observed in cavities and waveguides, 

without the explicit presence of discrete scatterers. Sabra (2010) observed an enhancement at 

mid-frequencies (3-4 kHz) and saw a 3dB increase of the reverberation level in the exact 

backscatter direction from an experiment done in July 2004 in the ocean near Italy. Additionally, 

Gallot et al. (2011) considered coherent backscattering from cavities experimentally and 

numerically and studied the dependence of peak height with symmetry of the cavity and found 

the results to be positive. Another experimental study has been done in a seismological context 

by Larose et al. (2004), where the scattering medium includes geological inhomogeneities at a 

volcano, resulting in a backscatter enhancement of up to two for different frequency bands. 

While all these documented findings are interesting, the work in this thesis does not consider 

waveguides or cavities and instead focuses on the coherent backscatter enhancement and the 
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wave physics from an aggregation of many discrete scatterers only. Extension of the current 

effort to waveguides or cavities is suggested as a potential for future work. 

 Theoretical formulations of coherent backscattering in acoustics have also been 

provided. In 2008, Garnier and Sølna derived a general set of equations for random perturbations 

in an acoustic waveguide via a separation of scales technique and were able to mathematically 

show enhanced backscattering. Interestingly, in 1994, Weaver and Burkhardt (1994) proved 

theoretically and numerically that the potential exists that under some conditions an enhancement 

may exceed a factor of two and could be as high as three in reverberation rooms. A similar 

finding has also been seen and discussed in Chapter 3 of this thesis. Lastly, de Hoop et al. (2012) 

also considered backscattering enhancement using a waveguide which consists of three media for 

acoustic scalar surfaces. The waveguide occupied the region z ε (zi(x),0). For z > 0 (top surface), 

the surrounding medium has a wave number of k1 and density of 0 and on the bottom surface (z ≤ 

zi(x)), the surrounding medium has a wave number of k0 and density of ρ0. Inside the waveguide, 

the medium consists of a wave number of k1/(1+νk(z, x)) and density ρ1, where νk(z, x) is 

modeled as the medium fluctuations. Using these conditions, they were able to derive an 

expression for the enhanced backscattered intensity. In this thesis, an aggregation of 

omnidirectional scatterers is considered without the presence of a waveguide. An extension of 

the simulation capabilities to simulate an aggregation of omnidirectional point scatterers with an 

ocean wave guide is proposed as future work. 

Simulation studies of acoustic coherent backscattering have been few. One of the aims of 

the work in this thesis is to show that acoustic coherent backscatter enhancement can be 

simulated via the Foldy (1945) equations. Aside from Weaver and Burkhardt (1994), which was 

discussed earlier, other simulation studies have been done in the seismological context or by 
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using simple geometries involving cavities. In 2011, Catheline et al. simulated 1D, 2D and 3D 

cavities and compared the simulated results with experiments. They, too, found that depending 

on the geometry and dimensions of the cavity, the intensity of enhancement can exceed a factor 

of two, even up to as high as 3.55. Via simulation, in this thesis, it is also shown that the 

enhancement can exceed a factor of two, possibly up to 3.5, depending on the simulation setup. 

However, in this thesis, this is shown with a scattering medium consisting of omnidirectional 

point scatterers and not through the use of a cavity or waveguide. Similarly, Margerin et al. 

(2001) also considered simulations, though in a seismological context via Monte Carlo 

simulations of random walks, and compared their findings with theory. They also found that the 

enhancement is up to a factor of two and plotted the enhancement over time for different ranges. 

The work discussed in this thesis also considers Monte Carlo simulations through the random 

generation of scatterer positions and repeatedly evaluating the Foldy (1945) equations to obtain 

the pressure.  

In this thesis, Chapters 3 to 5 consider acoustic coherent backscatter enhancement using 

Monte Carlo simulations of the Foldy (1945) equations for finite sized aggregations of randomly 

placed omnidirectional point scatterers. In Chapter 3, simulations are validated by simulating 

existing optics and acoustics experiments (Wolf and Maret, 1985, Wolf et al., 1988, Bayer and 

Neiderdränk, 1993). Additionally, in Chapter 4, acoustic CBE is simulated for aggregations of 

scatterers with different spacings, sizes and strengths for single frequency signals. Lastly, in 

Chapter 5, a similar study is performed though with broadband pulses in frequency ranges which 

may be of interest to the US Navy.        
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1.6: Probability Distribution Function  

 

  In this thesis, two statistical techniques are considered in classifying schools of fish. 

Chapters 3-5 consider the coherent backscatter enhancement, which requires use the ensemble 

average of realizations for a wide range of angles, and Chapter 6 involves generating a 

probability distribution function using only the returns in the backscatter direction. While the 

work in this thesis is the first to show the distribution function using the Foldy (1945) equations, 

use of the probability distribution function in the backscattering returns from schools of fish has 

been of interest as early as the 1980s by Huang and Clay and has been considered as recently as 

2014. In 1980, Huang and Clay studied the echo amplitude and target strength distributions for a 

single shiner fish suspended to a tether illuminated at a frequency of 220kHz (kas ~ 6.5). They 

found that the distribution of the echoes is Rayleigh and the target strength distribution is a 

product of exponentials. The normalized echo amplitude and the target strength are algebraically 

related. Thus, via Billingsley (1995) and the formula given in Huang and Clay (1980) for 

converting between probability distribution functions, this finding is not surprising. Additionally, 

in 1986, Stanton and Clay analyzed normalized echo (or backscattered pressure) amplitude 

(|p|/<|p|2>1/2) distributions which appeared Rayleigh or Ricean via downward looking sonar using 

frequencies of 3.5-200kHz of an unspecified fish type. Like Huang and Clay (1980), MacLennan 

and Menz (1996) also studied target strength distributions, though they considered distributions 

from of Diplotaxodon spp. fish (fish swimbladder volume information, unavailable) in Lake 

Malawi (as opposed to a fish tethered in a pool) at 120kHz frequency. In 2004, Stanton et al. 

considered acoustic backscattering at frequencies of 45-85kHz of zooplankton, perwinkle, 

alewife fish (kas ~ 0.94-1.8) and shrimp and siphonophore and studied the resulting statistics. It 
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was found that the distribution, though close to being Rayleigh, was actually non Rayleigh, 

depending on the orientation of the fish. Demer et al. (2009) performed an acoustic survey as 

well and observed a form of a Ricean distribution for rockfish at frequencies of 18, 38, 70, 120 

and 200kHz (kas ~ 2.3-25.6). Like Demer et al. (2009), Chapter 6 of this thesis also considers 

rockfish at those frequencies as well, but considers a weighted continuous sum of Rayleigh 

distributions to describe the distribution of the normalized echo amplitude. Lastly, Stanton and 

Chu (2010) conducted acoustic surveys with different patches of herring fish schools using 

frequencies of 2-4kHz (kas ~ 0.006-0.12) and found that while the distribution is like Rayleigh 

for normalized echo amplitude, the actual fitted probability distribution is a mixture distribution. 

This is in agreement with the finding in Chapter 6 when in situ measurements were considered in 

the ocean for rockfish and small pelagics. However, unlike the aforementioned studies, Chapter 6 

uses a continuous weighted sum of Rayleigh distributions to sufficiently model the normalized 

echo amplitude distribution functions for the fish schools. Additionally, with the exception of the 

measurements considered by Stanton and Chu (2010), the Foldy (1945) omnidirectional 

scattering approximations do not hold. 

 Theoretical approaches have also been attempted to model the distribution of fish 

schools. In 2002, Moszynski formulated two different simple scenarios (a moving vessel and fish 

stationary and vice versa) to derive expressions for the probability distribution function of target 

strength for the school, assuming that the angular positions of the fish are known and the fish are 

uniformly distributed in the school. These theoretical expressions were compared with acoustic 

survey results and the findings were consistent. Additionally, Chu and Stanton (2010) derived a 

general expression of an echo probability distribution function from an aggregation of randomly 

placed scatterers in a directional beam, assuming direct paths. In doing so, they found that for a 
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large number of scatterers, the distribution appears more Rayleigh for normalized echo 

amplitude, compared to a smaller number of scatterers. Formulations were also done taking 

beam pattern effects into account. Lastly, Abraham et al. (2011) also proposed different models 

for fitting distributions resulting from clutter. In their paper, they suggested a mixture of 

Rayleigh or exponential model to fit the in situ measurement distribution. In this thesis, in situ 

measurements are considered. Unlike Abraham et al. (2011), rather than using a mixture model 

for the distribution, a weighted continuous sum (integral) of Rayleigh distributions is considered 

to describe the natural variability of the fish schools.  

   Simulation studies to understand the echo statistics of fish schools have also been 

performed, though there have been significantly fewer than acoustic surveys. In 1985, Stanton 

performed computer simulations using iterative techniques and found that the echo amplitude 

distribution appeared Rayleigh. In situ measurement comparisons were also made. Additionally, 

Jones et al. (1994) also considered statistical analysis via simulation using an ocean waveguide, 

though neglecting higher orders of multiple scattering. They also observed that the distribution of 

the normalized echo amplitude is Rayleigh, but often appears non-Rayleigh depending on the 

conditions. This was also seen by Lee and Stanton (2014).  In Chapter 6, using the Foldy (1945) 

equations, it is shown that the distribution of the normalized echo amplitude is Rayleigh, 

regardless of aggregation size, spacing and strength of the individual omnidirectional point 

scatterers as long as these parameters are unchanged over the realizations. Since in acoustic 

survey measurements, the geometry of the school and spacing between the fish, is constantly 

changing, this has not been previously observed or reported. 

In particular, in Chapter 6, the statistics of the backscattered returns is evaluated and the 

probability distribution function is obtained. In the first half of Chapter 6, probability distribution 
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functions for the backscattered returns of an aggregation of scatterers via the Foldy (1945) 

equations is obtained for different kinds of aggregation properties. As in the aforementioned 

studies, the distribution when considering backscattered normalized echo amplitude (ψ = 

|p|/<|p|2>1/2) is found to be Rayleigh. Additionally, when considering a decibel normalization (Ψ 

= 10log10(|p|2/<|p|2>)) for the backscattered returns, the distribution is a product of exponentials 

(extreme value distributed). As in Huang and Clay (1980), since this decibel normalization is 

algebraically related to the backscattered normalized echo amplitude (Ψ = 10log10(ψ
2), the 

probability distribution of the normalized echo amplitude, PDF(ψ) to the probability distribution 

function of the decibel normalization, PDF(Ψ) can easily be obtained (Billingsley, 1995). Here, 

all orders of multiple scattering are considered, though an ocean waveguide is not included in the 

simulation, unlike in Jones et al. (1994). The expected standard deviation is used to determine 

how few samples are needed to classify an aggregation of scatterers with 95% confidence. The 

second half of Chapter 6 focuses on analyzing the backscatter statistics from in situ measurement 

from various schools of fish in the ocean and a special probability distribution function is 

obtained to model the distribution of the normalized echo amplitude from fish schools. 

1.7: Thesis Goals and Organization 

 

 The goal of this research is to determine if acoustic backscattering characteristics can be 

used to remotely classify schools of fish from other objects which might primarily be of interest 

to the U.S. Navy. Knowledge of the acoustic scattering behavior of aggregations of marine life is 

valuable for Navy sonar applications (Myrberg 1990, Simmonds and Lopez-Jurado, 1991).  

Additionally, knowledge of the backscattering signature from schools of fish could also help in 

gaining more insight into the marine ecosystem and determining the location and distribution of 

the population of fish in the ocean’s water column (Makris et al., 2010, Benoit-Bird and Lawson, 
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2016). The same simulations can also be utilized for bubble clouds (Hwang and Teague, 2000, 

Hahn, 2007) In this thesis, two techniques are considered to aid in solving the classification 

problem: (1) the coherent backscatter enhancement, which previously has been primarily used 

for optics and acoustic ultrasound or seismological purposes, and (2) through analysis of the 

probability distribution functions for normalized echo (or backscattered pressure) amplitude, 

|p|/<|p|2>1/2, and 10log10(|p|2/<|p|2>), standard deviation and uncertainty analysis. In the current 

literature, the coherent backscatter enhancement has mainly been used in optics, 

electromagnetics, ultrasound and seismological contexts. The work in this thesis explores the 

possibility of exploiting the coherent backscatter enhancement for schools of fish for the purpose 

of remote sensing and fisheries acoustics. Additionally, while the current studies thus far have 

utilized the probability distribution function to analyze the statistics of the backscatter returns 

from a school of fish, this is the first to determine the distribution function for an aggregation of 

omnidirectional point scatterers simulated via the Foldy (1945) equations. Lastly, it also gives a 

weighted probability distribution function to model the returns from an actual school of fish 

which has not been previously considered in the echo statistics literature. 

 In this thesis, the following assumptions are made: (i) The simulation input parameters 

have been selected such that the N × N matrix is invertible. In particular, the dimensionless 

scattering strength of each scatterer, kσs
1/2, is less than 2π1/2 and the scatterers are randomly 

placed with a minimum exclusion distance apart. (ii) Since the speed a fish travels is much less 

than the speed of sound, Doppler effects or effects of fish motion are not considered in these 

simulations. (iii) Based on Reeder et al. (2004), it was found that much of the scattering from a 

fish comes from the fish’s swimbladder. Consequently, here, each fish is approximated by an 

omnidirectional point scatterer with properties of a fish’s swimbladder. (iv) In order to 
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effectively make comparisons between the spherical aggregations of scatterers with the 

backscatter equivalent spheres via van Bladel (1968), it is assumed that the sphere is an ideal soft 

(pressure release boundary conditions) or hard sphere. Thus, fluid-structure interactions are not 

considered in this dissertation.  

 This document is organized into six additional chapters. The next chapter describes the 

mathematical foundations of multiple scattering and scattering from isolated spheres, along with 

the postprocessing techniques considered. Particularly, it begins by showing the Foldy (1945) 

multiple scattering equations and how the omnidirectional point scatterers can be modeled as 

individual fish via the Love (1978) model. It, then, proceeds to present the formulae for a single 

isolated sphere based on the expressions derived in Morse and Ingard (1968). For this single 

isolated sphere, boundary conditions such as the pressure gradient set to zero at the surface of the 

sphere (hard) and pressure release at the surface of the sphere (soft) are applied to yield the van 

Bladel (1968) equations. Additionally, an impedance boundary condition is also applied where 

the medium within the sphere has an wave number of ke, which is the effective wave number 

obtained from Foldy (1945)’s effective medium theory. This formulation is discussed thoroughly 

in Hahn (2007). In addition to the scattering formulae, postprocessing techniques upon acquiring 

the pressure field, such as plane wave beamforming, Fourier transform definitions based on the 

conventions defined in Foldy (1945) and van Bladel (1968), and the formula for converting 

between one probability distribution function to another when the random variables are 

algebraically related are discussed. Lastly, the chapter concludes by describing the mathematical 

derivations involved in the coherent backscatter enhancement, which is also explained in Sabra 

(2010).  
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The study in the third chapter discusses the verification and validation techniques used to 

determine whether the Foldy (1945) equations can be used to simulate an aggregation of 

scatterers and acquire the information on the backscatter statistics. CBE simulations are 

considered, but in the near field. Verification techniques include comparisons by evaluating the 

Bragg scattering formula for different spacings with the results obtained via simulating a linear 

arrangement of scatterers using the Foldy (1945) equations and comparison of the results from 

simulating the exact multiple scattering equations for an aggregation of scatterers with Foldy 

(1945)’s effective medium theory. These two comparisons are considered verification 

techniques, because the simulation results can be readily checked with formulae available in the 

literature or through simple derivations. Validation techniques involve checking that energy is 

indeed conserved for an aggregation of scatterers (Foldy has already shown that energy is 

conserved for a single scatterer interacting with an incident wave) via numerical integration and 

a visual representation of the interaction between an aggregation of scatterers with an incident 

wave, and replicating existing optics (Wolf et al. 1988) and acoustics (Bayer and Niederdränk, 

1993) experiments via simulation. These checks are considered validation techniques since it 

ensures that the Foldy (1945) equations can be used to simulate the coherent backscatter 

enhancement and bring to light the limitations in the selections of the input parameters when 

simulating. Additionally, a near field parametric scaling is proposed which is a function of the 

strength of the scatterer and the average spacing between scatterers for a three dimensional 

rectangular aggregation when the receiving array is a wave number scaled distance kR = 18.2 

away.  

The work in Chapter 4 considers single-frequency simulations in the far field and 

compares the coherent backscatter enhancement simulation results with returns obtained from an 
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idealized comparable single scatterer in order to aid in the classification problem. This single 

scatterer is spherical in geometry and the formulae to model the scattering from the object is 

from Morse and Ingard (1968), van Bladel (1968) and Hahn (2007). Comparisons are done by 

matching backscattered mean square pressure, <|p(0)|2>, from an aggregation of scatterers with 

the pressure magnitude squared, |p(0)|2, for the hard and soft van Bladel (1968) spheres. 

Interestingly, in performing this comparison, for strong multiple scattering effects, there are 

instances where the corresponding hard and soft van Bladel (1968) spheres exceed that of the 

aggregation size. From this finding, the parametric scaling in Chapter 3 is improved upon to 

consider the effective aggregation radius. An additional comparison is also done by matching 

aggregation sizes, spacings and dimensionless scattering strengths for an idealized sphere with 

an effective wave number, ke, and density ρe, which is assumed to be the same as the surrounding 

medium. The comparison is done by considering the ratio of the backscattered magnitude 

average pressure from an aggregation of scatterers, |<ps(0)>|, to the backscattered magnitude 

pressure from this idealized sphere, |ps(0)|.  

The fifth chapter builds on the results from Chapter 4 to consider broadband pulses 

(frequency sweep) as the incident signal instead of a harmonic illumination signal. Aggregations 

of ideal scatterers, along with scatterers with the size of swimbladders and fish flesh viscosity 

from herring at varying depths, are considered. Comparisons are made between the original 

illuminating signal with the backscattered signal from the aggregation of scatterers, along with 

the returns from the van Bladel (1968) sphere with the backscattered signal from the aggregation 

of scatterers. Due to the complexity of the simulations, these comparisons are done by matching 

aggregation radii (radius of the aggregation geometry and the radius of the van Bladel (1968) 

spheres are the same).  
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Chapter 6 considers the backscatter statistics and uses it to show that the probability 

distribution function of the backscattered returns can be used in classifying schools of fish from 

other objects and is a more robust statistical method compared to the use of the coherent 

backscatter enhancement. Simulation results are extended to in situ measurements with the 

natural variability of actual fish schools in the ocean’s water column. Lastly, the final chapter 

summarizes the findings and discusses the overall conclusions and potential directions for future 

work.  
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CHAPTER 2 

Mathematical Formulation and Foundations 

 

 This chapter provides the mathematical foundations for this investigation into the 

acoustic coherent backscatter enhancement from aggregations of scatterers when multiple 

scattering is prevalent. It provides the formulations of the Foldy (1945) equations, the limitations 

in using the Foldy (1945) equations and the Love (1978) model, and the equations used to model 

idealized spheres (Morse and Ingard, 1968, van Bladel, 1968, Hahn, 2007). It also presents some 

definitions (Fourier transforms, statistical quantities), and describes techniques used for post 

processing the simulation results, such as plane wave beamforming.  

2.1: Foldy (1945) Equations 

 

 The Foldy (1945) multiple scattering equations for omnidirectional point scatterers are a 

direct solution to the Helmholtz equation (shown in Appendix A) and are a self consistent 

formulation for the acoustic interactions of the discrete scatterers with an incident field and with 

the scattered field from each other. In the formulation considered here, the scatterers are all the 

same and thus have the same scattering coefficient, g1. Additionally, each jth scatterer is located 

at a position jr


 and ),,( jrrG


 is the free space Green’s function for acoustic propagation from 

r


to jr


. The two field simulation equations on which this research is based on are:
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While both (2-1) is similar to (2-2), there are distinct differences. Whereas (2-1) is the field at the 

receiving location, (2-2) models the scattered field from a scatterer by all other scatterers at the 

position of the jth scatterer. Thus, j ≠ j’ in (2-2). The field scattered from the jth scatterer is 

assumed to be proportional to the field that would exist at the location of the jth scatterer if that 

scatterer were absent. The equation for the multiple scattered field at the receiver (2-1) is a 

superposition of the incident field, ),( rPo


, and the scattered field from each scatterer, which is 

the sum involving the ),,( jrrG


. These equations are suitable for any scalar wave, not just 

acoustic waves, provided that ),( rPo


 and the summation involving ),,( jrrG


 solve the 

Helmholtz equation and the scatterers are small compared to a wavelength = 2π/k. This 

formulation is akin to the direct boundary-integral formulation in computational acoustics with 

one computation element assigned to each scatterer (Kirkup, 2007).  

 The free space Green’s function for a point scatterer is obtained by solving the equation 

(2-3), where k = ω/c is the wave number and c is the speed of sound: 

)(422
jrrGkG


  . (2-3) 

Using a time dependence of eiωt and the Sommerfeld radiation condition, the solution to this 

equation is the free space Green’s function in three dimensions, where 1i : 
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 The scattering coefficient g1 was obtained by Foldy (1945) by considering the interaction 

of an incident plane wave and single scatterer using the radial intensity. Since the power is 

related to the intensity as an integral over the surface area of the enclosing surface, the power for 

the scatterer can be obtained. When the acoustic energy is conserved, the net power Π from the 

scatterer is 0.  Using this requirement for acoustic energy conservation, the scattering coefficient 

for a single omni-directional scatterer is (2-5). The derivation of g1 is discussed in Appendix B. 
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For ideal scatterers, the scattering, σs, and the extinction, σe, cross sections are assumed to be 

equal. Values for k and the scattering and extinction cross sections can be any value, as long as 

the real and imaginary parts of g1 exist.  

 In order to generalize the results, in this dissertation, all formulae have been rendered 

dimensionless and normalized. Length scales are rendered dimensionless using the incident wave 

number, k, and pressures by division with the incident pressure amplitude, A (p = P/A). The 

dimensionless form of the Foldy (1945) equations (2-6) and (2-7) and scattering coefficient (2-8) 

are: 
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These equations are implemented in the simulations, where the input parameters are the wave 

number scaled positions of the scatterers jrk


 are randomly generated from a seed value 

corresponding to the realization and 
sk  , which is the dimensionless scattering strength of an 

individual scatterer. Using the value for the dimensionless scattering strength, the dimensionless 

scattering coefficient (2-8) can be determined. A constraint on (2-8) is that both real and 

imaginary parts are required (see Appendix B). Thus, sk  has an upper bound of [4]1/2 ≈ 

3.5449. The solution to (2-8) is utilized in (2-7), to yield the normalized pressure for the 

scatterer-scatterer interactions. Together with (2-8), (2-7) is inputted in (2-6) to yield the 

normalized pressure at a particular receiving location of interest. Modifications to these 

equations to include fish properties are discussed in the next section. 

 In order to simplify the exact formulation, Foldy (1945) computed a configurational 

average (or ensemble average) of the multiple scattering equations over all possible random 

placements of the scatterers. This configurational average leads to a formula for the average field 

<p>, and to Foldy’s equation for the effective medium properties, shown in normalized form as 

(2-8). 
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Here, ke is the effective wave number inside the aggregation of scatterers, ks is the average wave 

number scaled spacing between the scatterers and 1gk is the result given by (2-7). Frisch (1968) 

finds that this relationship provides a valid description of <p> when  

1
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(2-10) 

 

 1. Love (1978) fish model 

 In order to adequately incorporate fish properties into the simulation, the Love (1978) 

model needs to be considered. The form of the fish model equations considered here are similar 

to that of Raveau and Feuillade (2015). Parameters specific to the fish needed in the Love (1978) 

model are the viscosity of the fish flesh, ξ, and the swim bladder radius, kas. The model is 

applicable at low frequencies and assumes a spherical swim bladder with the gas inside of it to 

have the same properties of air. It consists of a shell surrounding the spherical swim bladder that 

is composed of a viscous Newtonian fluid with fish flesh properties. When testing this model 

with different swimbladder bearing fish, Love (1978) noted that the damping due to thermal 

effects is negligible (Love 1978, Raveau and Feuillade 2015). Thus, this parameter is neglected. 

 While most of the aforementioned Foldy (1945) equations are the same, the main change 

to the aforementioned formulae is with equation (2-8). The scattering coefficient equation, taking 

into account the Love (1978) model, is: 
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Here, ωo is the resonant frequency of the swimbladder, ω is the frequency of the incident wave, 

and δ is the damping constant which consists of the radiation and viscous terms. The damping 

term can be expressed as (2-12), with Hr and Hv defined by (2-13) and (2-14), respectively with ρ 

= water density (1000kg/m3) and c = nominal speed of sound in water (1500m/s): 
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The resonance frequency of the swim bladder is a function of the ambient pressure, PA, along 

with the swimbladder radius, ratio of the specific heats, γ, and density of water (Minnaert 1933): 
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 These equations are a simple modification to (2-6) to approximately incorporate fish-

flesh properties into the simulations. The other Foldy (1945) equations and definitions are the 

same.  

2-2: Single Spherical Scatterer Equation – van Bladel (1968), Morse and Ingard 

(1968) and Hahn (2007) 

 In order to compare the returns from a spherical geometry school of fish from a large 

bubble or a manmade object, a single idealized spherical scatterer is used as the model. For the 

work in this thesis, three different scenarios are considered for predicting the backscattering from 

ideal spheres: (1) hard surface boundary condition, (2) pressure release boundary condition, and 
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(3) fluid-filled sphere with properties that match the effective density and sound speed predicted 

from Foldy’s effective medium theory for the corresponding aggregation of point scatterers. The 

spheres considered here are called ideal because they do not move (no fluid-structure interaction) 

and do not have any internal structure. The scattered sound field ps from such spheres can be 

predicted from the formulae in van Bladel (1968), Morse and Ingard (1968), or Hahn (2007): 
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(2-16) 

Here, φ is the angle measured with respect to the incident wave direction, ka is the wave number 

scaled radius of the sphere, kR is the wave number scaled receiving range (shown in Fig. 2-1), m 

is the summing index, 
)1(

mh is the mth spherical Hankel function of the first kind, mj  is the mth 

spherical Bessel function, Pm is the mth Legendre polynomial, and the prime denotes 

differentiation of a function with respect to its argument.  

 
Figure 2-1: Geometry used to model the scattering from the sphere considered in Morse and Ingard (1968) 

 

 

The term βm is the impedance contrast of the spherical scatterer from the surrounding medium 

and is defined in (2-17), where ρ, c, k are the density, speed of sound and wave number, 
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respectively, of the medium surrounding the sphere and ρe, ce, ke are the density, speed of sound 

and the wave number of the medium, respectively, within the sphere: 
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(2-17) 

For the spherical Bessel and Hankel function derivatives, the following identities were used: 
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(2-19) 

 In order to predict scattering from the sphere considered in Hahn (2007), ce and ke are 

values obtained via the Foldy effective medium theory (2-9). For the concentration of the 

scatterers considered, the effective density, ρe, was nearly the same as ρ so for the calculations 

completed for this thesis, ρe = ρ. The van Bladel (1968) hard sphere formula results when βm 

tends to 0 and the van Bladel (1968) soft sphere expression occurs when βm is very large and 

tends to infinity.   

Since the summation of the terms in (2-16) are from m = 0 to m , evaluating these 

expressions is computationally infeasible. As a result, a convergence study has been done to 

determine how many terms are needed for the sum to level off. At ka  = 32, the magnitude of the 

summand term for m = 38 was 1% of the total, so, to ensure convergence when evaluating (2-

16), the upper limit of the sums was set to 100. 

In order to verify that these equations have been implemented correctly into the codes, 

two replication tests were completed by (1) comparing approximate results from Pierce (2000) 
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for small ka and a rigid sphere and (2) comparing results from already available codes online. In 

Pierce (2000), the approximation for the scattered pressure for a small (ka << 1) hard sphere is: 
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(2-20) 

Comparing expression (2-20) with (2-15) for a sphere with radius 2101 ka  in the far field 

with the same receiving range kR, yields the Figure 2-2. Here, a relative error is calculated, 

defined as the difference in the pressure magnitude squared for the result obtained by (2-16), 

denoted as 
2

vbp , between the pressure magnitude squared for the result obtained via (2-19), 

denoted as 
2

Pp  divided by 
2

Pp . Here, the relative error is of order 10-5, likely due to the 

numerical errors in obtaining this approximation.   
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Figure 2-2: Relative error in pressure magnitude square between Pierce (2000) and van Bladel (1968) for 
2101 ka   

 

 

While this comparison does show that the expression is correct for the hard sphere, (2-15) still 

needs to be verified for the soft sphere. In order to do this, existing imaging results of the 

intensity available from (Turley, 2006) were replicated for a soft sphere with ka = 15.7. Results 

obtained from the calculation were comparable and the error for the formula of the soft sphere 

and the imaging results obtained online (Turley, 2006) gave zero. Thus, the van Bladel (1968) 

equations can be used to model both a soft and hard sphere and have been successfully 

implemented to draw comparisons between the returns from an aggregation of scatterers and a 

single ideal scatterer.  

To verify that the Hahn (2007) sphere formulae have been implemented correctly, results 

from (2-15) were compared with the result obtained using the Foldy (1945) equation for an 

aggregation of weak scatterers, kσs
1/2 = 0.01. This value was selected due to Frisch (1968)’s 
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requirement for the effective medium approximation, shown in (2-10). For kσs
1/2 = 0.01 and a 

spacing ks = 3.2, |4π(kg1)
2/(ks)3| is 

6101.3  . Figure 2-3 shows the results from comparing an 

aggregation of scatterers with dimensionless scattering strength kσs
1/2 = 0.01 for a spherical 

aggregation with radius ka = 16 and ks = 3.2 with the Hahn (2007) implementation of (2-16).  

For an aggregation of weak scatterers, the magnitude of the average pressure over the 

realizations |<ps(φ)>| should be nearly the same as |ps(φ)| from the Hahn (2007). While there are 

deviations of the simulations from the Hahn (2007) sphere, it would likely resolve with more 

realizations.  

 
Figure 2-3: Comparison of the normalized average scattered field amplitude |<p(φ)>|/|<p(0)>| from many 

realizations of a random aggregation of weak scatterers (solid line) with the normalized scattered field amplitude 

from the Hahn (2007) sphere |p(φ)|/|p(0)| (dashed line) for kσs
1/2 = 0.01, ks = 3.2 and ka = 16 
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2-3: Postprocessing Techniques 

 

 After the Foldy (1945) or the van Bladel (1968) equations have been evaluated for the 

simulation of interest, different techniques discussed in this thesis were implemented to analyze 

the results. In the latter part of Chapter 3, plane wave beamforming is used to obtain intensity 

and draw comparisons between near field acoustics simulations with near field optics and 

acoustics experiments. When considering broadband pulses in Chapter 5, the Fourier transform is 

needed to obtain time domain pressure results for pulses. Lastly, in Chapter 6, in order to 

perform the statistical analysis for comparisons with ocean experiments, a probability density 

function is needed and required to convert between different random variables. This section will 

discuss some of the formulae in order to perform these postprocessing calculations. 

1. Plane wave beamforming and the coherence function 

 To obtain the angular dependence of intensity, plane wave beamforming can be utilized. 

Plane wave beamforming is an array signal processing technique which involves a signal 

arriving at a steering angle with respect to the center of the array (Jensen et al., 2011). Delays are 

applied for each receiving element and then summed to yield a beam pattern. When the 

magnitude of the beam pattern is squared, the beamformed intensity is obtained. This technique 

is first employed for CBE purposes by Aubry et al. (2007) in their experiment. This section 

discusses plane wave beamforming and how, through algebraic manipulation, a spatial coherence 

function can be defined which will be used to connect results between different receiving 

resolutions in Chapter 3.  
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 Consider a linear array of Nr receiver elements with length kL spaced kΔy apart shown in 

Figure 2-4. 

 
Figure 2-4: A linear receiving array of length kL consists of Nr receiving elements which are spaced kΔy apart. The 

steering angle, ϕ, is measured with respect to the center of the receiving array and the beamformed intensity, B(ϕ), is 

evaluated at each steering angle. 

 

 

 With respect to the first receiver element in the receiving array, the time delay, τ, can be defined 

as follows:  

)sin()1(  ykn   (2-20) 

Here, n denotes the nth receiver element in the linear receiving array and ϕ is the steering angle. 

To obtain the beamformed intensity, )(B , the following formula is used: 

2

1

)exp()()( 



rN

n

n irkpB 


 

(2-21) 

Here, )( nrkp


 is the scattered pressure field obtained from evaluating (2-6) at the nth receiving 

element. Through algebraic manipulation, (2-21) can be expressed as (2-22) when the receiving 

array is parallel to y-axis: 
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When the receiving array is a continuous line array, the summations can be replaced by integrals. 

For the simulations, for multiple realizations, (2-22) can be written as follows where < > denote 

the ensemble average operation: 
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(2-23) 

 The spatial coherence function, )( yk , is represented as the normalized pressure terms 

within the < > in (2-23). In Chapter 3, the coherence function is expressed as the sum of a diffuse 

field and a backscattered field. The diffuse portion of the coherence function is a sinc function 

(Walker and Buckingham, 2012, Singer et al., 2005) and the backscattered part of the coherence 

function represented by )( ykf   for now. The selection of )( ykf   will be discussed in greater 

detail in Chapter 3. Thus, )( yk is hypothesized to have the following form:  

)(
)sin(

)( ykfA
yk

yk
Ayk bd 




  (2-24) 

Here, Ad is the amplitude of the pressure in the diffuse field and Ab is the amplitude of the 

pressure in the backscattered field. Selection of the values of the coefficients will be discussed in 

Chapter 3. 

2. Fourier Transform 

 In Chapter 5, broadband chirps in the time domain are considered as the illuminating 

signal, )(ts  with Fourier transform )(S . In this thesis, the Fourier transform definition 

considered for the Foldy (1945) equations is: 
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(2-25) 

For the convention in van Bladel (1968), the complex conjugate of (2-24) is considered. The 

Foldy (1945) and van Bladel (1968) equations are evaluated at the frequencies which compose 

the signal’s spectrum and the outcome, ),( rp


, is weighted by the Fourier transform of the 

pulse, )(S , to yield ),( rpw


: 

)(),(),(  Srprpw


  (2-26) 

 In order to return back to acoustic pressure in the time domain, the inverse Fourier 

transform is evaluated. When the Foldy (1945) equations are considered, the inverse Fourier 

transform definition is (2-27) and for the van Bladel (1968) equations, the complex conjugate of 

(2-27) is the inverse Fourier transform definition to be used, due to the differences in convention 

of the incident signals. 






  dtirptrp w )exp(),(),(


 
(2-27) 

  

In Chapter 5, comparisons of the returns from a school of fish using the Foldy (1945) equations 

with a single large ideal scatterer with the scattering modeled via the van Bladel (1968) are 

performed in the free space by considering time domain signals. Comparisons showing angular 

and time dependence will be shown. 

3. Statistical Analysis 

 In Chapter 6, a technique involving the backscattered probability distribution function is 

considered to determine whether a school of fish or an single isolated object is present. This 
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technique involves considering the statistical realizations of the backscatter direction only and 

normalizing these results to generate a probability density function. To do this, the Foldy (1945) 

equations are evaluated using equations (2-5) and (2-6) in just the backscatter direction. Samples 

of pressure magnitude squared or pressure magnitude, obtained from evaluating the Foldy (1945) 

equations, are considered and sorted into a histogram.  

 The backscattered pressure magnitude samples were first normalized by the average 

backscattered pressure magnitude, ψ = |p|/<|p|2>1/2, and then, the histogram is normalized to have 

unit area to yield a probability density function, )(PDF : 

))((

)(
)(






HArea

H
PDF   

(2-28) 

Here, )(H is the histogram of the normalized backscattered pressure and ))(( HArea  is the 

area under the histogram (Smith, 1997).  

 The probability density function (2-28) can also be converted to a decibel ((Ψ = 

10log10(|p|2/<|p|2>), in dB) independent variable or to other variables s which are a function of the 

pressure. To convert to a different probability density function, )(PDF , the following formula 

can be used (2-29) (Billingsley 1995): 




d

d
PDFPDF


 ))(()(  

(2-29) 

Here, it is assumed that the derivative is defined and that Ψ is defined and single valued. 

Ultimately, the area under (2-28) is the same as the area of (2-29). 

 In Chapter 6, the backscattered probability distribution function will be generated for an 

aggregation of omnidirectional point scatterers simulated using the Foldy (1945) equations. It 
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will show that the distribution when considering a ψ = |p|/<|p|2>1/2 normalization is always 

Rayleigh distributed and extreme value distributed when considering a Ψ = 10log10(|p|2/<|p|2>) 

normalization, regardless of average aggregation spacing, dimensions and strength of the 

scatterers making up the aggregation. However, interestingly, when in situ measurements are 

considered, the backscattered probability distribution function is non-Rayleigh and is better 

described as the sum of the product of a Rayleigh distribution and a weighting function for 

varying means.  
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Chapter 3 

Verification and Validation 

 

 This section describes the verification and validation tests done to ensure that the Foldy 

(1945) equations have been implemented correctly and that they meet the constraints for 

simulating far field acoustic coherent backscatter enhancement discussed in Chapters 4 and 5, 

and for performing the statistical analysis in Chapter 6. Here, verification is defined as ensuring 

that the computational implementation is done correctly and validation is defined as the 

determination that the model has a range of accuracy for the intended application (Sargent 2003, 

Schlesinger et al. 1979).  It is expected that the Foldy (1945) equations are: energy conserving 

for an aggregation of scatterers with minimal error, can properly model the physics of the waves, 

and are an exact solution to the Helmholtz equation without neglecting higher order terms so that 

the coherent backscatter enhancement can be simulated. In order to ensure that the Foldy (1945) 

equations do satisfy these constraints, several tests have been done. The verification tests 

considered here ensure that: the phasing of the scattered waves is correct via Bragg scattering for 

a linear arrangement of scatterers, and that the Foldy’s (1945) effective medium theory formula 

for an ideal aggregation of scatterers correctly predicts the effective wave number. Validation 

tests include: (1) ensuring energy is conserved for an aggregation of scatterers for different levels 

of multiple scattering effects, and (2) replicating two near field experiments (one in optics and 

one in acoustics). An extension of the near field simulations by considering parametric scaling to 
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predict peak heights is also considered and discussed. Findings from this chapter appear in 

Mookerjee and Dowling (2015). 

3-1: Verification 

 

The verification simulations performed use Bragg scattering from a structured, linear 

arrangement of scatterers and also compares results with the effective medium theory that was 

also proposed in Foldy’s (1945) paper. The first half of this section will describe the Bragg 

scattering simulations and the second half of this section will consider the results obtained from 

the full form of the Foldy (1945) equations and from the effective medium theory. These 

simulations are considered verification tests since the results from these simulations can readily 

be checked with established formulae from physics. 

 In Bragg scattering, a wave interacts with a structured arrangement of scatterers. The 

scattered waves from the scatterers can add constructively or destructively, resulting in strong 

radiation (Bragg peaks) at certain angles. The angles where the peaks occur can be predicted 

using trigonometric formula and basic geometry. The predicted angles, m , where these peaks 

are expected is shown by the formula (3-1) where ks is the wave number scaled spacing between 

the scatterers and m is any integer such that 2/20  ksm  (Bragg 1913): 









  1

2
cos 1

ks

m
m


  

(3-1) 

The location of the Bragg peaks vary depending on the wave number scaled spacing. 

      The simulation geometry is shown as Figure 3-1. Here, a linear array of scatterers are 

placed along the –x axis, denoted as dots in the figure, and the incident plane wave with wave 
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number k


 traveling into the page illuminates these scatterers. A receiving ring in the far field 

located at  90  with wave number scaled radius kR records the returns in the form of a far 

field normalized scattered intensity in dB (10log10(|p(φ)|2/|p(0)|2). For these simulations, there 

were 13 scatterers with a dimensionless scattering strength of 5.3sk  . In order to check for 

consistency, two different wave number scaled spacings were considered: ks = 3.2 and 8.4.  

 

Figure 3-1: Geometry used for the Bragg scattering simulations: Thirteen scatterers (black dots) are placed along the 

negative x-axis. The scatterers have a scattering strength of 5.3sk   and a spacing of ks = 3.2 and 8.4. A plane 

wave with wave number k


 illuminates the scatterers. The mean square pressure is evaluated on a ring with radius 

41038.8 kR  for varying φ and 2/  . The backscattered direction is 0  and 2/  . 

 

 

 Figure 3-2 shows the results of the Bragg scattering angles via simulation and through the 

use of (3-1) for the two different spacings. Here, a solid black line (___) is the normalized 

scattered intensity in dB as a function of angle  obtained via simulation and (----) is the location 

of the expected Bragg peaks obtained via equation (3-1). For a spacing of ks = 3.2 two Bragg 

peaks result at φm = 15.5 and 180 degrees. From evaluating the Foldy (1945) equations, Figure 3-
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2(a) show peaks at the same location. Similarly, for a spacing of ks = 8.4, Bragg scattering peaks 

occur at three different locations: 60, 104.5 and 180 degrees. From simulation, Figure 3-2(b) 

show peaks at the same location. This agreement suggests that the scattered field obtained from 

the simulations matches the expected scattering physics since the phasing of the scattered waves 

is consistent with results expected from theoretical Bragg scattering formulae. 

  

(a) (b) 

Figure 3-2: Simulation results for Bragg scattering simulations (___) and expected angles from theory (----) for  

(a) ks = 3.2 and (b) ks = 8.4. The Bragg peaks at the scattering angles are in agreement. 

 

 

 Since it seems that the Foldy (1945) equations follow Bragg scattering, the simulations 

are compared with the effective medium theory also discussed in Foldy’s (1945) paper. In this 

paper, Foldy (1945) used the multiple scattering equations discussed in Chapter 2, made a 

simplifying approximation, and took an ensemble average to obtained a relation between the 

wave number inside the scattering medium, ke, and the incident wave number, k, that includes the 
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average spacing between the scatterers, ks, and the dimensionless scattering coefficient 1gk . 

This equation is nondimensionalized and provided here as (2-8). In this section, a cube of 

scatterers is considered and the acoustic field is sampled inside the cube to determine the ratio 

ke/k from the simulation and comparing that value with that predicted by (2-8).  

 The aggregation of interest for this effective medium theory comparison was a cubical 

aggregation with wave number scaled dimensions kX = kY = kZ = 43. The number of scatterers 

considered was 3900, resulting in an average spacing between scatterers of ks = 2.7. The wave 

number scaled scattering strength of each scatterer was 21.0sk  . The acoustic field was 

sampled inside of a cylinder with diameter kW = 22 that passes through the center of the 

aggregation. The sample points are wave number spaced by kd = 0.8 in the ky and kz directions 

and kδx = 0.049 in the kx direction. The simulation setup is shown in Figure 3-3. 
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Figure 3-3: Geometry used for simulations of Foldy’s effective medium theory. Scatterers (denoted as black dots) 

are placed in a 3D cubical aggregation. A plane wave with wave number k


illuminates the scatterers. Receiver 

elements are in a cylinder with diameter 22kW  and the pressure is evaluated at varying depths into the 

aggregation. The 3900 scatterers have a scattering strength of 21.0sk  . The aggregation dimensions are

43 kZkYkX . 

  

In these simulations, the field values obtained from the sample points are averaged in the 

ky and kz directions to obtain the coherent field <p> as a function of distance kx into the 

aggregation. The resulting plot from this verification test is shown as Figure 3-4 where the real 

part of <p> (solid curve) and the real part of the incident plane wave po (dashed curve) are 

plotted as a function of wave number scaled distance, kx < 0, into the aggregation. Here, as 

expected, the presence of scatterers increases the effective wave number inside of the scattering 

aggregation. For the conditions of these simulations, the ratio ke/k from (2-8) is 1.0182 and the 

value of this ratio determined from the simulations is 1.0183. This is in good agreement and 

suggests that the Foldy (1945) equations have been implemented correctly for these simulations.  
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Figure 3-4: Effective medium theory verification test results for a 43 by 43 by 43 cube with Re(<p>) as the solid 

curve and Re(po) as the dashed curve. 

 

 Both of the tests discussed successfully verify the simulations. The Bragg scattering 

simulations show that Bragg peaks occur at angles expected by the Bragg scattering formulae. 

This suggests that the phasing of the scattered waves appear to be in agreement with expectations 

from the scattering physics. Additionally, the Foldy effective medium theory also holds and the 

simulation results are in agreement with the formula proposed by Foldy (1945). As a result, the 

Foldy (1945) equations have been properly implemented and can be used for further validation 

testing. 
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3-2: Validation 

 

 Since it seems that the Foldy (1945) equations have been correctly implemented into the 

codes and passes all verification checks, the simulations are now validated and tested to see if the 

Foldy (1945) equations are suitable to simulate the coherent backscatter enhancement and 

perform statistical analysis for sonar and remote sensing applications. The validation tests done 

involve: considering if the scattering aggregation is energy conserving, and replicating existing 

experimental results.  The first half of this section will discuss conservation of acoustic energy 

and analyzing intensity maps to visualize the physics of the interactions between an incident 

wave and an aggregation of scatterers. Here, a preliminary verification test is initially done by 

considering the interaction of an incident wave with a single scatterer to ensure that it is in 

agreement with Foldy (1945)’s assumptions in the derivation of g1 (see Appendix B). The 

additional energy conservation checks involving varying the parameters to increase the multiple 

scattering effects are considered validation checks. In this case, variations are made in the 

number of scatterers (or the average spacing between scatterers), and the strength of each 

scatterer to determine if energy is still conserved for the aggregation and if the resulting net 

power is sufficiently negligible to confirm the accurate use of the Foldy (1945) equations for 

simulating the coherent backscatter enhancement. The second half of this section describes 

existing near field CBE experiments and the current attempts to replicate these results. Part of the 

second half of the section considers replicating a near field optics experiment from Wolf et al. 

(1988) and the remainder will focus on replicating a near field acoustics experiment from Bayer 

and Niederdränk (1993). 
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1. Conservation of Energy  

 The Foldy (1945) equations assume that energy is conserved for a plane wave interacting 

with a single scatterer. However, it does not require energy to be conserved for an aggregation of 

scatterers. In order to check this, a preliminary verification test was done for only a plane wave 

with no scatterers present, and for a single scatterer interacting with an incident plane wave to 

ensure that the power calculation was done correctly and to determine the extent of numerical 

error for varying dimensionless scattering strengths. Then, the same calculations were done for 

100 and 3900 scatterers for varying dimensionless scattering strengths as a validation effort. In 

this section, the result from a single realization is considered for each of the calculations. In order 

to visualize the physics of the wave interacting with the scatterer(s), Mercator projected intensity 

maps are shown.    

  The first step in this validation test is to recognize that the Foldy (1945) equations have a 

limitation imposed on the wave number scaled scattering strength. This is discussed in extensive 

detail in Appendix B. The wave number scaled scattering strength can be any value such that 

 20  sk . If the wave number scaled scattering strength is larger than 2 p  , then the 

scattering cannot be omnidirectional. This region for the wave number scaled scattering strength 

is defined by acoustic energy conservation for a single scatterer interacting with an incident 

harmonic plane wave.  However, this constraint does not directly require acoustic energy 

conservation for a large number of interacting point scatterers. 
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 The second step in this validation test is to numerically compute the integral of the radial 

intensity Ir over a spherical surface that completely encloses the aggregation to determine the net 

power Π from the aggregation (Figure 3-5): 

  

sphere sphere

orrr dAIIdAI )( ,  (3-2) 

Here, orI ,  
is the radial intensity of the incident plane wave and its contribution to Π is zero. In 

order to increase the numerical accuracy of the final determination of Π when the scattering was 

weak and Ir is nearly equal to orI , , orI ,  is subtracted from Ir. For this validation effort, (3-2) was 

computed using two-dimensional Romberg integration. 

 

Figure 3-5: Simulation Geometry for the Acoustic Energy Calculation Validation Effort 

  

 The aggregation considered is a 3D rectangular geometry with dimensions kX = 64, kY = 

100 and kZ = 20. The number of scatterers in the rectangular geometry is increased (ks 

decreased) from N = 1 to 100 to 3900 scatterers. Additionally, the scatterer’s dimensionless 
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scattering strength is increased from sk  0.21 to 1 to 3.5. All these values for the 

dimensionless scattering strength are within the regime where energy is conserved for a single 

scatterer interacting with an incident plane wave so it would be expected that the power for a 

single scatterer would be zero. However, since the calculation is performed numerically, there 

may be some numerical error in the power evaluation.   

 In order to visualize the wave-aggregation interactions, a Mercator projected radial 

intensity map was generated. As a baseline, Figure 3-6 shows the radial intensity of a plane wave 

entering and exiting a sphere with kR = 100. Since the radial intensity is normalized by the 

theoretical intensity of a plane wave, by convention, the wave entering into the sphere is shown 

in blue as -1 and the wave exiting the sphere is shown in red as +1. This radial intensity map is as 

expected.    

 

Figure 3-6: Mercator projected radial intensity map for a plane wave entering and exiting a sphere 
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  Since the intensity map for a plane wave is as expected, intensity maps are considered 

for an increase in the multiple scattering effects. This occurs when sk   approaches its upper 

limit and ks decreases. Table 3-1 shows the effect of increasing the multiple scattering effects by 

increasing the scattering strength (horizontal changes) and also increasing the number of 

scatterers (vertical changes). The rectangular structure shown at the center of the intensity maps 

for 5.3sk 
 
and 100 scatterers, and the 3900 scatterer simulations is the acoustic shadow 

produced by the aggregation. Interestingly, the intensity map for 3900 scatterers and sk   = 3.5 

shows that the incident wave is unable to penetrate the aggregation very far and much of the 

wave is deflected by the edges of the aggregation. Thus, while the scattering coefficient 

constraint given by Foldy (1945) does ensure energy conservation for a single scatterer, there is 

an upper limit for sk   and N for the wave to fully enter and exit the aggregation. 

 For perfect energy conservation Π from (3-2) should be zero so when Π is nonzero, it 

indicates error within the simulations and/or the evaluation of (3-2). The extent and significance 

of such errors were assessed through simulations with widely varying N and sk   via the ratio 

ref /  where 

oxsref IN ,  (3-3) 

is the total power of the incident plane wave that would be scattered by the aggregation if each 

scatterer were separately illuminated with the incident plane wave intensity oxI , .  

 Results for the ratio ref /  are also shown above the intensity maps in Table 3-1 for 

the situation shown in Figure 3-5 with a fixed wave number scaled aggregation size of kX = 64, 
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kY = 100 and kZ = 20 and a fixed enclosing sphere with wave number scaled diameter kD = 

167.6 when sk  = 0.21, 1.0 and 3.5 and N = 1, 100 and 3900. Additional energy conservation 

calculations have also been done and are tabulated in Table 3-1 and in Mookerjee and Dowling 

(2015), as Table 3-2. For all cases, Π is less than 1/6th of the power incident on a single scatterer. 

Thus, the simulations, while imperfect, do approach the ideal energy conservation condition and 

this validation test was considered successful.  

Table 3- 1: Intensity maps and power calculation results for vary number of scatterers and dimensionless scattering 

strengths. 
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Table 3- 2: Ratio of acoustic powers from (3-2) and (3-3) for different numbers of scatterers and for different 

scattering cross sections  

Condition 1 scatterer 10 scatterers 100 scatterers 1000 scatterers 3900 scatterers 

21.0sk   4107.2   
4103.6   

5109.4   
5107.5   

5102.3   

1sk   5109.1   
6106.7   

6105.5   
7109.5   

5105.2   

5.3sk   6101.4   
5105.1   

6106.9   
5105.4   

5101.4   

 

2. Replication of Near Field Experiments – Optics (Wolf et al., 1988) 

 As a final validation of the simulations, comparisons between prior experiments were 

made with the simulations. Given the limitation of the Foldy (1945) equations (scalar waves, 

point scatterers, omnidirectional scattering) and the experimental history of CBE in optics and 

acoustics, both optics and acoustics experiments were considered. In both cases, the simulations 

parameters were matched – to the extent possible – to those of the available experiments. Thus, 

the optics measurement chosen for comparison was the smallest bead experimental results 

reported by Wolf and Maret (1985) and Wolf et al. (1988). The most relevant experimental result 

for this comparison reported in Wolf et al. (1988) is for the smallest optical scatterers, d = 

0.109μm diameter polystyrene sphere suspended in water and illuminated with green laser light 

(λ = 0.5145μm in air) so kd = 1.77. Here, some discrepancy with point scatterer simulations is 

anticipated since the Foldy (1945) equations assume omnidirectional point scatterers where kd 

<< 1. Additionally, multiple realizations are considered and an ensemble average is taken over 

the realizations. The volume fraction of the spheres was 10% leading to wave number scaled 

spacing of ks = 3.1 and a wave number scaled optical mean free path of kl = 925. Given that the 

scattering and geometrical cross sections of a scatterer may not be equal, a Mie scattering 
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calculation was performed by Wolf et al. (1988) to determine 23.0sk  . The size of the 

optical scattering aggregation (1mm by 1cm by 1cm) corresponds to wave number scaled 

dimensions of kX ≈ 16000 and kY = kZ ≈ 160000 and the peak to null angular resolution of the 

goniometer used for directional optical intensity measurements was 0.5 milli-radians.  

 The simulations were nominally matched to the experiments using a wave number scaled 

spacing of ks = 3.2 and a mean free path of kl = 926. The scattering strength was adjusted such 

that the wave number scaled mean free path and the spacing were near the experimental values, 

to yield a strength of 21.0sk  . The size of the scattering aggregation was significantly 

smaller than that of the experimental optical aggregation with dimensions initially oversized. A 

wave number scaled thickness of kt = 3.2 was removed from each face of the oversized 

aggregation, ultimately yielding an aggregation with dimensions, kX = 64, kY = 100 and kZ = 20, 

to ensure that the aggregation was statistically homogeneous. In order to make the aggregation 

appear as a semi-infinite medium, a linearly decreasing taper was added to the back of the 

rectangular aggregation from -84 ≤ kX ≤ -64 to prevent a structured reflection from the back 

surface of the aggregation. This linear tapering added 350 scatterers to the rear of the rectangular 

aggregation (not depicted in Figure 3-7). The backscattered sound was sampled at 81 locations 

placed a distance kR in front of the aggregation and having an overall length of kL = 64. The 

peak-to-first-null angular resolution of this linear receiving array (2/kL) was 98 mrd (5.6°). 
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Figure 3-7: Simulation geometry used to replicate the existing experiments 

 

The simulation results were assembled as an ensemble average of realizations of the 

beamformed scattered intensity B(ϕ) normalized by its value [B(ϕ)]not peak, near but not within the 

CBE peak. In this situation, B(ϕ) is related to the scattered field’s coherence function 
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, through a discrete finite-domain double Fourier transform: 
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(3-4) 

 

The angle brackets denote an ensemble average, A is the amplitude of the incident plane wave, J 

is the number of receivers, and pj = ArP js )(


 is the normalized complex pressure at the  jth 

receiving-array element located at (kR, kyj, 0) using the Cartesian coordinates shown in Fig. 3-8). 

The approximate equality of (3-4) holds when there are sufficient array elements to mimic a 
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continuous line receiver. Since the receiving array is parallel to the ky-axis, only the ky-

coordinates of the receiver locations are listed in (3-4). 

 Simulated CBE results for B()/[B()]not peak from directly evaluating the first equality of 

(8) for the geometry shown in Fig. 3-7 are shown in Fig. 3-8, when the linear receiving array is 

located at wave number scaled distances of kR = 5 (), 8.2 (-  -  -  -), 11.2 (– – – –), 13.2 

(- - - - -), 15.2 (–  –  –), and 18.2 (-  -  -  -).  Here the angular width of the CBE peaks is set by 

the resolution of the linear receiving array because the coherence width (or length) of the CBE 

contribution to Г is greater than kL. The heights of the simulated CBE peaks shown in Fig. 3-8 

decline monotonically with decreasing kR, and this is a geometrical effect of the finite size 

aggregation used in the simulations. Since the simulated aggregation is smaller than the 

experimental aggregation, in order for the simulated aggregation to appear infinite when viewed 

from the receiving array, the receiving array must be brought closer to the x-y plane, the beam 

steering angle between the center of the receiving edge of the aggregation is max(kR) = tan–

1(kY/2kR) (Figure 3-8). When kR decreases for fixed kY and kZ, the angular ranges from which 

scattered sound can be received by the array increase and this raises the level of [B()]not peak. In 

the combined limits kRkZ  and kRkY , the second of which implies max(kR) 90 , 

the aggregation appears to be infinite when viewed from the array, and this is the nominal 

geometric circumstance of the optics experiments. Thus, the limiting form of the simulation 

output for 0kR  is needed for comparison with the optical CBE measurement. 
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Figure 3-8: Simulation results for replicating the existing optics experiments for varying ranges: kR = 5 

(), 8.2 (-  -  -  -), 11.2 (– – – –), 13.2 (- - - - -), 15.2 (–  –  –), and 18.2 (-  -  -  -) 
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Figure 3-9: Simulation geometry for varying the range from kR1 to kR3  

 

This limiting form of the simulation results is shown as the solid curve in Fig. 3-8. The 

CBE peak height of this extrapolated curve was obtained by the extrapolation shown on Fig. 3-

10, where simulated values of B(0)/[B(ϕ)]not peak (circles) are plotted vs. ϕmax(kR). The limit 

max(kR) 90 , achieved via  kR 0 , is difficult to take in the simulation since the 1/r 

singularity near any scatterer causes convergence problems when the receiving array approaches 

the aggregation too closely. Therefore, quadratic and power law extrapolations to the simulation 

results are shown as short and long dashed curves. At max(kR) = º, these fits yield 

B(0)/[B()]not peak = 1.04 and 1.02, respectively. The lone triangle data point on Fig. 3-10, 

B(0)/[B()]not peak = 1.030 ± 0.005 atmax(kR) = º, is the average of these fitted values and it 

sets the CBE peak value of the extrapolated curve on Fig. 3-10. 
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Figure 3-10: Simulated CBE Peak ratios (circles) from Fig. 3-8 vs. ϕmax(kR), the angle to the edge of the scattering 

aggregation. For comparison, the expected peak ratio from the beamformed output of the proposed coherence 

function is also indicated at 90 degrees (triangle). Quadratic (- - - - -) and power law (– – – –) fits to the peak ratios 

for the different angles are shown. By extrapolating, the enhancement at 90 degrees is 1.030±0.005. The 

enhancement obtained from the coherence function is at 1.034. 

 

 To overcome angular-resolution differences, the extrapolated acoustic simulation CBE 

results are compared with experimental optics CBE results via a postulated coherence function 

that is appropriately integrated to separately match the different angular resolutions of the 

simulations and the experiments. This postulated coherence function was composed of an 

omndirectional diffuse-field component represented by a sinc function, and a CBE component, 

represented by a Lorentzian, a functional form used to model the CBE component since it leads 

to a reasonable match with the peak shapes reported in Wolf et al. (1988): 
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where y = y – y’. Here, the diffuse and CBE component coefficients, Ad and Ab, respectively, 

were first adjusted to match the extrapolated results from the acoustic simulations, and then 

along with kσy, the width parameter, all three parameters were fine tuned to match both the 

results from the optics experiments as well as the acoustics simulations. Additionally, because of 

the polarization effects in the optics experiments, only the ∆y dependence of Г is considered. The 

resulting parameter values are 21085.1 dA , 5102.3 bA , and 400yk , and they allow 

(3-5) to be used in the integral form of (3-4) to determine B(ϕ). By evaluating (3-4) for J = 81 

(kL = 64), the solid extrapolated CBE curve on Fig. 3-8 is produced where B()/[B()]not peak = 

1.034. Thus, (3-5) is consistent with the simulation results extrapolated to an effectively infinite 

aggregation.  

 To determine if (3-5) was also consistent with the experimental optics CBE results, it was 

combined with (3-4) and numerically evaluated for an array length (kL = 12,566) and angular 

resolution (0.5 mrd, half width) equivalent to that of the goniometer used in the optics 

experiments. The diffuse portion of the coherence function (the sinc term) gives the upward shift 

by Ad and the backscattered portion (Lorentzian) sets the peak height by Ab. Here, kL >> kσy, so 

the width of the CBE peak is primarily set by the backscattered field. The resulting plot is similar 

in shape to that reported in Wolf and Maret (1985) and Wolf et al. (1988). In addition, the 

theoretical predictions provided in Akkermans et al. (1986) correspond to the resolution, kL

. So, by appropriately choosing kL, (3-4) and (3-5) facilitate quantitative comparisons of all three 

types of CBE results.  
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 This overall comparison is provided in Fig. 3-11 where B()/[B()]not peak is plotted versus 

the beam steering angle  for the CBE measurements of Wolf et al. (1988) (long dash curve), for 

the theoretical result of Akkermans et al. (1986) (short dash curve), and for the postulated 

coherence function (3-5) integrated to match the resolution of the optics experiments using (3-4) 

(solid curve). The optics measurement and the coherence function results agree well and suggests 

that the current acoustic CBE simulations are consistent with the prior optical measurements. 

The small difference between the measured-optical and coherence-function CBE peaks is likely 

due to the effect of absorption, finite scatterer size and directional scattering which were present 

in the experiments but were absent in the simulations. In addition, Fig. 3-11 also shows that the 

theoretical CBE peak is somewhat taller and narrower than the other two, a discrepancy also 

noted by Wolf et al. (1988) that is not resolved in this thesis either. 
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Figure 3-11: Normalized beamformed intensity vs. steering angle using the proposed coherence function at kL = 

12566 (––––––), experimental results from Wolf et al. (1988) (– – – –) and theoretical results from Akkermans et al. 

(1986) (- - - - -). The close correspondence of the results from the proposed coherence function and the optical 

experimental suggests that the coherence function is consistent with both the current simulations and the prior 

experiments. 

 

3. Replication of Near Field Experiments – Acoustics (Bayer and Niederdränk 1993) 

 To extend the validation further from an optics experiment to acoustics experiment, an 

existing ultrasound acoustics experiment from Bayer and Niederdränk (1993) is also replicated. 

Here the scatterers were gravel stones submerged in water, having an average wave number 

scaled diameter of kd = 50.3. In this parametric range, the scattering is nearly omnidirectional 

away from the forward direction. The mean free path provided by Bayer and Niederdränk (1993) 

was kl = 69.2 and the aggregation geometry was semi-infinite with depth and width larger than 

the mean free path. An ultrasonic receiver was used to measure the intensity, though no receiver 



 

67 
 

distance or receiver resolution was reported. As in the optics experiment replication, multiple 

realizations were considered and then an ensemble average was taken. 

 To simulate this experiment, the aggregation geometry shown in Fig. 3-7 was used with 

N = 5400 and dimensions of kX = 20, kY = 100 and kZ = 20. Here to expedite convergence (only 

256-330 realizations were needed), the average scatterer spacing was reduced to ks = 1.95 and 

the scatterer strength was set to ks
1/2 =  0.70 to achieve a mean free path of kl = 69.6 (close to 

the experimental value). In addition, a linear taper was added to the shadowed side of the 

aggregation from -40 ≤ kx ≤ -20, adding 2000 more scatterers to the back of the aggregation. 

Plus, the wave number scaled exclusion distance was reduced to kh = 1.1 to facilitate scatterer 

placement. The removed thickness, kt, and the receiving array properties remained unchanged 

from those used in replicating the Wolf et al. (1988) experiment. 

 Since Bayer and Niederdränk (1993) state that the experimental aggregation is a semi-

infinite medium, the extrapolation to max(kR) 90 , achieved via 0kR , was again 

undertaken. Figure 3-12 shows the change in B(ϕ)/[B(ϕ)]not peak vs. the beam steering angle ϕ for 

decreasing values of kR = 18.2 (-  -  -  -), 15.2 (–  –  –), 13.2 (- - - - -), 11.2 (– – – –), 8.2 (-  -  

-  -) and 5 (). For comparison, the Bayer and Niederdränk (1993) experimental results 

(Figure 5 in their paper) are centered (a shift of 1.5°) and plotted (–––––––) as well. Here a fitted 

extrapolation is not necessary since the simulation results for kR = 8.2 and 5 are well matched to 

the shifted experimental results with all three providing a CBE peak of 1.5. Thus, if the 

experimental and simulation resolutions are comparable, Figure 3-12 shows that the simulations 

agree with the acoustic CBE experimental results when the mean free path is matched. 
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Figure 3-12: Normalized beamformed intensity vs. steering angle by replicating the Bayer and Niederdränk (1993) 

acoustics experiment for different receiving ranges: kR = 5 (), 8.2 (-  -  -  -), 11.2 (– – – –), 13.2 (- - - - 

-), 15.2 (–  –  –), 18.2 (-  -  -  -) and the Bayer and Niederdränk (1993) results (–––––––), evaluated using kL = 64. 

Since no receiving resolutions are given in the Bayer and Niederdränk (1993) experiment, it is assumed that the 

receiving resolution in their experiment is comparable to that of the simulations. As the receiving array in the 

simulations are brought closer to the aggregation, the peak height decreases and approaches the results from the 

experiment with an enhancement of about 1.5. 

 

3-3: Near field CBE Parametric Scaling   

 

 In the near field, for an infinite aggregation of point scatterers, ideally, the CBE peak 

height for any fixed receiving resolution should depend on average wave number scaled spacing 

between scatterers, ks, and the dimensionless scattering strength, sk  . In order to determine if 

a single combination of the two parameters can control the CBE peak height, a parametric study 

showing how well simple algebraic combinations of ks and sk  could collapse peak height 

results to a single curve was undertaken for a set of 24 CBE simulations for the 3D rectangular 



 

69 
 

aggregation geometry shown in Fig. 3-7. The 3D rectangular geometry had dimensions kX = 64, 

kY = 100 and kZ = 20 and the scatterers were spaced in the range of 4.69.2  ks  and had 

dimensionless scattering strengths in the range of 544.3032.0  sk  . The receiving array 

considered was located a distance kR = 18.2 away and the length of the linear receiving array 

was kL = 64. This receiving range was selected since the simulation results converged with 

moderate computational effort (512 realizations) and the CBE peaks were distinct even for weak 

multiple scattering conditions.  

 Fundamentally, the coherent backscatter enhancement is a multiple scattering 

phenomenon. Mathematically, the importance of the scattered field in the Foldy (1945) equations 

increases when 1gk  is larger, which would occur for large sk  , and when jn rrk


  is 

smaller, which would occur when ks is smaller. Therefore, the dependence of the CBE peak 

might follow a combined power law of the form of 
nm

s ksk )()(  , where m and n are positive 

numbers. Assuming that this is an adequate combined dependence, the CBE peak ratios, 

scattering cross sections and average spacings for the 24 simulations were collected and plotted 

to find suitable values of the exponents m and n. The final result of this search is shown as Figure 

3-13 where peaknotBB )](/[)0(  from each simulation is plotted versus 14/12 )()( ksk s . The 

mild scatter of the points may be caused by residual effects of the finite sized scattering 

aggregation and the fact that the peak height ratio may depend separately on ks and sk   and 

the parametric scaling 14/12 )()( ksk s
 
combines these parameters in a specific and slightly 

imperfect manner. 
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Figure 3-13: Simulated acoustic CBE peak heights peaknotBB )](/[)0(   versus 
14/12 )()( ksk s  when 64kX , 

100kY , and 20kZ , 4.69.2  ks  and 544.3032.0 2/1  sk  for 2.18kR . The simulated peak height 

increases approximately monotonically with 
14/12 )()( ksk s . The mild scatter of the points is caused by the 

residual effects of the finite-sized scattering aggregation and the fact that the peak height ratio may depend 

separately on ks  and sk 2  while the ratio 
14/12 )()( ksk s  combines these parameters 

. 

 The results in Figure 3-13 are interesting for two reasons: (1) They suggest any 

parametric change that increases 14/12 )()( ksk s  will increase the prominence of the CBE peak 

height and (2) these results show that the CBE peak height can exceed the factor of two when the 

aggregation is of finite size. However, this parametric scaling is solely based on findings from 

simulation and there has yet to be any connections of the exponents with physical phenomena. 

3-4: Summary and Conclusions 

 

 In this chapter, the fundamental equations for multiple scattering using the Foldy (1945) 

equations described in Chapter 2 have been solved numerically for structured and random 
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aggregations of scatterers. To ensure that the multiple scattering equations have been properly 

implemented, the simulations were verified via successful comparisons to scattering angles by 

Bragg scattering theory and wave number shifts calculated from Foldy’s effective medium 

theory. To ensure that the simulations were predicting realizable acoustic fields, they were 

validated using acoustic energy conservation and through comparison with prior optical and 

acoustical experiments. Here the simulations were found to conserve acoustic energy better than 

one part in 104 even when there are thousands of strong scatterers and they produce results that 

are consistent with a coherence function that also matches the optical CBE experiments when 

geometrical and angular resolution differences are accounted for. 

 Five primary conclusions can be drawn from this chapter. (i) The field equations for 

multiple scattering provided in Foldy (1945) can be cast in dimensionless form and used for 

simulating the coherent backscatter enhancement. Although there has been previous work 

involving the Foldy equations and CBE using electromagnetic waves (Tsang et al., 1995), the 

present work is the first to show this to be true using omnidirectional point scatterers in acoustics 

(ii) The current simulations are properly implemented for point scatterers. The two verification 

tests and the two validation tests were all successful. In particular, it should be noted that the 

simulations conserve acoustic energy well for thousands of interacting scatterers even though 

Foldy’s acoustic energy conservation requirement is only imposed on individual scatterers when 

isolated and subject to plane wave illumination. Plus, the second validation test with the optics 

experiment, although indirect, is the first attempt to quantitatively compare the results of optical 

CBE experiments and acoustic CBE simulations. To complete these comparisons, a coherent 

function for the scattered field was proposed and fitted, with some success, to the simulated and 

experimental results. (iii) The postulated coherence function may have value in describing 
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acoustic CBE in other circumstances when its parameters are appropriately adjusted. Here, the 

three constants in (3-5) must certainly depend on the dimensionless average scatterer spacing ks 

and scattering strength ks
1/2, and the values provided in Section 3-3 likely only pertain to this 

study. However, the form of (3-5) may be general enough to apply in other circumstances. 

Additionally, the extent of the beamforming integration of the coherence function described in 

(3-4) determines when the receiving array sets the observed CBE peak width (kL << ky) and 

when the backscattered field sets the observed CBE peak width (kL >> ky). (iv) Acoustic CBE 

experiments can also be replicated using the Foldy (1945) equations. The current simulations 

produce CBE peak heights and widths for a semi-infinite medium which are nearly the same as 

experimental results, assuming that the receiving resolutions are comparable. (v) The height of 

the CBE peak appears to monotonically increase with (k2s)
1/4(ks)–1. This parametric result is 

consistent with the notion that increased multiple scattering effects will occur when the scatterers 

are stronger and closer together. However, the exponents (1/4, –1) in this combined parameter 

can only be readily determined from broad parametric studies from simulation, like the ones 

reported here. The identification of such scaling exponents from experiments would be more 

difficult.  
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CHAPTER 4 

Far Field Single Frequency Coherent Backscatter Enhancement 

 

 This chapter starts to address some of the concerns which may be of interest to the U.S. 

Navy and the remote sensing applications where CBE could be applicable by considering single 

frequency signals for multiple realizations of positions of the scatterers (In Chapter 5, broadband 

pulses in the form of frequency sweeps are simulated). It begins by first considering the near 

field simulation setup and geometry and gradually modifying the geometry by backing up the 

linear receiving array and replacing it with a receiving ring in the far field of the aggregation. 

The rectangular aggregation is then replaced by a spherical or spheroidal aggregation geometry. 

These aggregation geometries are typical for fish schools (Partridge, 1980). The Foldy (1945) 

equations are still utilized. The dependence of the CBE peak width on the aggregation geometry 

and size is considered by studying spherical aggregations of different radii and spheroidal 

aggregations in different orientations.  

In order to understand the dependence of the strength of the CBE peak, a parametric 

study is done by considering a spherical aggregation and separately varying the wave number 

scaled aggregation size, the wave number scaled average spacing between scatterers, and the 

wave number scaled dimensionless scattering strength of a single scatterer. The backscattered 

returns from an aggregation of scatterers are compared with that of a single idealized (no fluid 

structure interaction) hard and soft sphere in the free space. This is done by matching the mean 
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square pressure in the backscatter direction for the aggregation of scatterers, <|ps(0)|2>, with the 

backscattered pressure magnitude-squared from a soft or hard sphere, |ps(0)|2, which was 

obtained using the van Bladel (1968) form of the Morse and Ingard (1968) equations. 

Comparisons are also done for prolate and oblate spheroids with soft and hard spheres. 

Modifications are made to the parametric scaling in Chapter 3 to consider the effect of 

aggregation geometry. Additionally, the magnitude of the average pressure in the backscatter 

direction from the aggregation of scatterers is compared with the formulae for the magnitude of 

the backscattered pressure from an ideal sphere have the effective medium properties of the 

aggregation (Hahn 2007) as a function of the small parameter, 1)()(4 32
1 kskg , briefly 

discussed in Chapter 2 in (2-10) and also in Frisch (1968). The backscatter results from these 

simulations are considered and discussed in the first part of Chapter 6. For simplicity, ps = 

, or the scattered pressure from evaluating the normalized form of the 

Foldy (1945) equations. 

These types of single scattering objects were considered for several reasons: (i) Spheres 

are the simplest three dimensional objects. (ii) The hard and soft spheres have perfectly 

reflecting surfaces and are strong scatterers. (iii) Comparing to spheres eliminates the need to 

specify distances when comparing backscattering strength. (iv) The backscattered mean square 

pressure from a single isolated sphere is deterministic. (v) The scattering from ideal spheres can 

be easily used to compare with single isolated manmade objects. A portion of this chapter has 

been recently accepted by the Journal of the Acoustical Society of America.  
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4-1: From Near Field to Far Field  

 

 In Chapter 3, the near field CBE simulation geometry consists of a 3D rectangular 

aggregation with dimensions kX by kY by kZ and a linear receiving array a distance kR away 

from the aggregation with length kL (see Figure 3-8). In the scenario considered in Chapter 3, 

Rayleigh far field parameter (kY2/4R) is significantly greater than 1. In this section, gradual 

modifications are made to the simulation geometry to account for the changes as the receiving 

geometry is brought to the far field of the aggregation (kY2/4R << 1) and the aggregation 

geometry is modified to be more realistic to better model a school of fish. First, modifications are 

made to the receiving geometry by increasing the receiving range in factors of four until the 

Rayleigh far field parameter is much less than 1 and then the linear receiving array is replaced 

with a receiving ring like that considered in Chapter 3 for the Bragg scattering simulations. To 

follow, modifications are made to the aggregation of scatterers by changing the 3D rectangular 

aggregation into a spherical aggregation and increasing the scattering strength.  

Here, the aggregation considered to replicate the optics experiment is considered. This 

aggregation has dimensions of kX = 64, kY = 100 and kZ = 20 and the linearly decreasing taper 

with dimensions of kX = 20 by kY = 100 by kZ = 20 is used. The dimensionless scattering 

strength of each individual scatterer composing the aggregation is kσs
1/2 = 0.21 and the spacing 

between the scatterers is ks = 3.2. Figure 4-1 shows the normalized beamformed intensity, 

B(ϕ)/[B(ϕ)]not peak as a function of steering angle ϕ. The receiving range originally considered is 

kR = 18.2 and the normalized beamformed intensity is shown as the black solid line (___) in 

Figure 4-1. Receiving ranges are increased in factors of four until kR ~ 74,000 or the Rayleigh 
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far field parameter is 0.0338 (__ 
● 

__ 
● 

__ in Figure 4-1). All of these simulations required 512 

samples. 

 

 
Figure 4-1: Effect on the CBE peak as the receiving range kR is increased. As the receiving range is increased, the 

peak height also increases. This is because the angular width of the finite-size aggregation decreases as the 

aggregation-array range increases until the aggregations appears as a single scatterer at the origin. In this case, there 

is no radiation coming from other directions, so [B()]not peak becomes the side-lobe level of the receiving array. 

 

 

 In Figure 4-1, the height of the peak at ϕ = 0 increases as the receiving range increases 

from a factor of 1.25 to 30. Additionally, the sides of the peak at around 5 degrees touch at 

normalized beamformed intensity of 0, unlike beamformed intensity curves for smaller receiving 

ranges, where the plot levels off to 1 at the sides of the peak. Consequently, the linear array 

responds to the aggregation of scatterers at the origin as a single scattering object for large 

receiving ranges and thus, it becomes less sensitive to the properties of the aggregation. As a 

result, an alternate simulation geometry is needed which is sensitive to variations in 
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dimensionless scattering strength, wave number scaled scatterer spacing, and any other 

properties which may influence the multiple scattering effects in the far field.  

 In the far field, a receiving ring is considered instead of the linear receiving array. 

Additionally, rather than considering the beam steering angle, ϕ, which was utilized in Chapter 3, 

the azimuthal angle, φ, is used to evaluate the returns at the different angles (shown in Figure 4-

2). The Foldy (1945) equations are evaluated on the receiving ring for each angle φ and a 

pressure magnitude squared is obtained. For the CBE plots, the ensemble average of the pressure 

magnitude squared is taken to yield a mean square pressure and the mean square pressure is 

normalized by the mean square pressure in the backscatter direction, unlike in Chapter 3 where 

the beamformed intensity was normalized by the beamformed intensity excluding the peak. The 

convention of the normalization was changed in the far field, because it was observed that the far 

field CBE peak results depend on the geometry which is in agreement with the expectation. 

Additionally, because of this influence of geometry on the CBE peak, the angular range 

considered is -90 ≤ φ ≤ 90 degrees (as opposed to –8 ≤ ϕ ≤ +8 degrees in the near field studies). 

This will be discussed in greater detail in sections 4-2 and 4-3 of this chapter. The scattering 

aggregation is the same as discussed. 
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Figure 4-2: Simulation geometry. The aggregation (not shown) is centered at the origin and a plane wave with wave 

number vector k


illuminates the aggregation of scatterers. The scattered sound field is received in the far-field of the 

aggregation on a ring of radius R lying in the x-y plane  The scattering angle  is measured in the x-y plane from the 

backscatter direction defined by  = 0° and  = 90°. 

 

 

 In Figure 4-3, the normalized mean-square pressure is plotted as a function of angle, φ for 

the 3D rectangular aggregation obtained via the far field receiving ring with 512 realizations. A 

peak appears even with this new receiving geometry. Additionally, unlike the results obtained 

via plane wave beamforming, while a peak at 0 degrees does occur after 512 realizations, in 

order to have the simulation results be nominally symmetric and smooth, it appears that 512 

realizations may not be enough for full convergence and possibly thousands of realizations may 

be required. This is due to the fact that beamforming is less sensitive to random scattering 

fluctuations (Aubry et al. 2007) and therefore, fewer realizations are needed to obtain a 

nominally symmetric and smooth curve.   
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Figure 4-3: Normalized mean square pressure for the 3D rectangular aggregation in Chapter 3. For the 3D 

rectangular aggregation considered in the near field, a very narrow and prominent peak occurs in the far field as 

well. 

 

 

 Since an objective of this thesis is to model schools of fish, the aggregation is modified to 

appear more typical to that of a school of fish, so the 3D rectangular aggregation is replaced with 

a spherical aggregation. The aggregation has radius of ka = 32, the same scatterer properties as 

the 3D rectangular aggregation (ks = 3.2 and kσs
1/2 = 0.21), resulting in 4200 scatterers, and the 

same receiving ring radius. Figure 4-4 shows the normalized mean square pressure as a function 

of the azimuthal angle, φ, in degrees for the spherical aggregation. As expected, thousands of 

realizations were required for nominal convergence. Interestingly, the shape of Figure 4-4 also 

changed with the modification of the aggregation geometry. Firstly, the CBE peak at φ = 0 is no 

longer present unlike in the case of Figure 4-3. Additionally, while the side ripples in the 

normalized mean square pressure plot for the rectangular aggregation at φ ≠ 0 levels off at <|ps(φ 

≠ 0)|2>/<|p(0)|2> = 0.6, the mean square pressure plot in Figure 4-4 does not do that and instead 
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curves downward. This suggests that the aggregation geometry also plays a role in the angular 

dependence of the normalized mean square pressure in the far field. 

 

 
Figure 4-4: Normalized mean square pressure for a spherical aggregation with ks = 3.2 and kσs

1/2 = 0.21. When the 

3D rectangular aggregation is replaced with a spherical aggregation, an aggregation geometry common to fish 

schools (Partridge 1980), the CBE peak disappears. This suggests that the aggregation geometry may also describe 

the prominence in the CBE peak in the far field. 

 

  

 Since the current aggregation conditions do not produce a CBE peak, the dimensionless 

scattering strength was increased to kσs
1/2 = 1.5 while the keeping all other parameters fixed. This 

yields a distinct CBE peak shown in Figure 4-5 with a similar shape in the plot as in Figure 4-4 

at the angles not at the peak. This suggests that the geometry of the aggregation plays an 

important role in the CBE peak width. While the work in this thesis primarily focuses on 

understanding the peak effects from aggregation geometries which are typical to fish schools, 
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additional analysis could also be performed to understand the peak effects for aggregation shapes 

which are more atypical to fish schools.  

 
Figure 4-5: Normalized mean square pressure for a spherical aggregation with ks = 3.2 and kσs

1/2 = 1.5. Increasing 

the dimensionless scattering strength up to 1.5 returns a very prominent CBE peak.  

 

 

4-2: Simulation Setup 

 

 In this chapter, the Foldy (1945) equations are evaluated for three different aggregation 

geometries: (1) spheres, (2) oblate spheroids (enlarged in the equatorial plane perpendicular to 

the axis of rotational symmetry) and (3) prolate spheroid (elongated along the axis of rotational 

symmetry). The aggregations were generated by first randomly placing point scatterers in an 

enclosing cube or rectangular prism centered at the origin with a distance h between scatterers of 

at least kh = 1.6. Then, scatterers which were outside of the desired spherical or spheroidal 

geometry were removed. The size of the aggregations is set by the dimensionless parameter ka, 
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where a is the radius of the spherical aggregations, and the spherical-volume-equivalent radius of 

the spheroidal aggregations. 

 Spherical aggregations were considered to determine how the CBE peak width and height 

depend on ka, ks, kσs
1/2

 and also for comparisons with scattering from single non-compact 

spheres having ideal hard and pressure-release (or soft) spherical-surface boundary conditions 

(discussed in Chapter 2) without fluid-structure interactions. Three parameter studies involving 

different dimensionless aggregation radii (ka = 12, 16, 25 and 32), dimensionless scatterer 

spacings (ks = 6.4, 4.8, 3.2 and 2.9), and dimensionless scatterer strengths (kσs
1/2 = 0.38, 0.75, 

1.5, and 3.0) were undertaken. The parameters for the baseline aggregation were ka = 16, ks = 

3.2 and kσs
1/2 = 1.5, and this aggregation involved 524 scatterers.  

 For the simulations involving the spheroidal aggregations, the orientation of the axis of 

symmetry was separately set parallel to the kx, ky and kz coordinate axes to identify the effect of 

elementary orientation changes on the CBE peak. For the oblate spheroids, the dimensionless 

equatorial and polar radii were kae = 32 and kap = 16, respectively. For the prolate spheroids, the 

dimensionless equatorial and polar radii were kae = 16 and kap = 32, respectively. Fixed values 

of ks = 3.2 and kσs
1/2 = 1.5 were used for all simulations involving spheroidal aggregations. 

 

4-3: Far-Field CBE Peak Width 

 

 This section provides CBE peak width results and comparisons for spherical and 

spheroidal aggregations in terms of the normalized average mean square scattered field 
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amplitude 
22

)0()( ss pp  . This normalization suppresses variations in CBE peak strength 

so that CBE peak width changes are more readily apparent.  

 Far-field backscattering results for spherical aggregations with dimensionless radii ka = 

12, 16, 25 and 32, are shown in Figure 4-6 for ks = 3.2 and kσs
1/2 = 1.5. The number of scatterers 

and realizations comprising these results are as follows: 220 and 100,000 for ka = 12, 524 and 

7449 for ka = 16, 2000 and 6144 for ka = 25 and 4200 and 4524 for ka = 32, respectively. The 

results in Figure 4-6a) show that a CBE peak appears in all four cases and that this peak is 

nominally symmetrical about φ = 0; additional realizations merely improve this symmetry. 

Furthermore, the CBE peaks monotonically narrow as ka increases, and this narrowing is directly 

related to the size of the aggregation as shown in Figure 4-6b) where the CBE peaks collapse 

nicely to a single curve for |ka| ≤ 5 when  is measured in radians. Therefore, in the far field of 

a spherical aggregation, the CBE peak width  is proportional 1/ka, a result that is consistent 

with diffraction-limited radiation from a non-compact spherical source distribution. Furthermore, 

with ka fixed, variations in ks and kσs
1/2 produced no discernible variations in CBE peak width; 

such variations only altered the strength of the CBE peak. 
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(a) (b) 

Figure 4-6: Normalized mean square pressure 
22

)0()( ss pp   versus scattering angle   in degrees (a), and 

versus the product of the dimensionless aggregation radius ka, and the scattering angle , when  is measured in 

radians (b). The results are for spherical aggregations with ka = 12, 16, 25, and 32 composed of scatterers spaced an 

average distance ks = 3.2 apart and having scattering strength ks
1/2 = 1.5. As ka increases, the CBE peak narrows, 

but, as shown in (b), all four CBE peaks collapse when plotted vs. kaφ. This suggests that the aggregation’s acoustic 

size, represented here by ka, sets the width of the CBE peak. 
 

 

 Results for the 2-to-1 oblate and prolate spheroidal aggregations in different orientations 

are shown in Figures 4-7 and 4-8, respectively. Here, the number of scatterers and realizations 

for these results are 2100 and 4096-4227 for oblate spheroids and 1050 and 4401-9050 for 

prolate spheroids, respectively. There are three curves on each plot corresponding to the 

orientation of the spheroidal axis of symmetry lying along the kx (______), ky (__ __ __ __) and kz (- - 

- -) coordinate directions. The oblate spheroid results in Figure 4-7 show that the CBE peak is 

narrower when the shorter polar axis is parallel to the kx and kz directions, while it is wider when 

the shorter polar axis is parallel to the ky direction. The prolate spheroid results in Figure 4-8 

show that the CBE peak is narrower when the longer polar axis is parallel to the ky direction, 

while it is wider when the longer polar axis is parallel to the kx and kz directions. For both types 

of spheroids, the CBE peak is narrower (wider) when the aggregation has a larger (smaller) 
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geometric extent along the ky axis, a finding that is expected for diffraction-limited far-field 

radiation.  

 
Figure 4-7: Same as Fig. 4-6 but for oblate spheroidal aggregations with equatorial radius kae = 32 and polar radius 

kap = 16 in three different orientations where the shorter polar axis was parallel to the kx (–––––), ky (– – – –), and 

kz (- - - - -) coordinate directions. These aggregation orientations are depicted below the plot. Depending on the 

orientation of the aggregation, the width of the CBE peak changes, further confirming that the aggregation geometry 

sets the width of the CBE peak. 
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Figure 4-8: Same as Fig. 4-6 but for prolate spheroidal aggregations with equatorial radius kae = 16 and polar radius 

kap = 32 in three different orientations where the longer polar axis was parallel to the kx (–––––), ky (– – – –), and kz 

(- - - - -) coordinate directions. These aggregation orientations are depicted below the plot. Depending on the 

orientation of the aggregation, the width of the CBE peak changes, further confirming that the aggregation geometry 

sets the width of the CBE peak. 

 

 

For both spherical and spheroidal aggregations, the back-propagating CBE radiation peak 

width approaches the narrowest possible radiation beam width that could be made by the 

aggregation if each scatterer were replaced by an omni-directional point source that radiates with 

the phase necessary to produce a back-propagating plane wave. In order to test this peak width 

claim, separate simulations were completed with this scatterer-to-back-propagation-phased-

source replacement. The resulting curves of <|ps()|2>/<|ps(0)|2> are shown in Fig. 4-9 where the 

solid line is for the scatterers and the dashed line is for the back-propagation-phased sources. The 

vertical dashed lines are at ±11.25° and show that the peak widths agree. This indicates that the 

far-field CBE peak width depends on the aggregation’s size and shape in the same way that 

sound radiated from an equivalent retro-directive distribution of acoustic sources depends on the 

distribution’s size and shape.  
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Figure 4-9: Sample comparison in the peak width of an aggregation of omnidirectional point scatterers from an 

oblate spheroid having ks = 3.2 and kσs
1/2 = 1.5 with an aggregation of omnidirectional point sources with their 

phasing set so that their radiation is retrodirective vs. the scattering angle, φ. Vertical dashed lines at ±11.25° (2π/ka 

in degrees) show that the widths of the peaks from an aggregation of scatterers and from an aggregation of 

omnidirectional retrodirectively-phased sources are comparable. 

 

 

 4-5: Far Field CBE Peak Strength 

 

 In Chapter 3, the strength of the CBE peak was reported as a ratio of the mean square 

pressure backscattered by the aggregation, 
2

)0(sp , and the spatially averaged mean square 

pressure the aggregation scatters into small nonzero angles near the backscatter direction, 

peaknot
sp

 

2
)( . However, as shown in Figures 4-6-4-8 for 20° ≤ || ≤ 90°, 

peaknot
sp

 

2
)(  
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depends on  and is not a consistent well-defined level in the far-field of the spherical and 

spheroidal aggregations. Thus, peak CBE backscattered radiation was compared to backscattered 

radiation from ideal hard and soft spheres as calculated from (2-16) for βm → 0 and βm → ∞, 

respectively. These comparisons were made in three ways. First, the backscattered pressure 

magnitude squared from ideal hard ( hardsp
2

)0( ) and soft ( softsp
2

)0( ) spheres were matched to 

2
)0(sp  from the aggregation by adjusting the radii of the ideal spheres. In this case, the 

relative sizes of the aggregation and the spheres indicate the aggregation’s backscattering 

strength. And second, the ratio of 
2

)0(sp  from the aggregation to the average of the 

backscattered pressure magnitude square from equal sized ideal hard and soft spheres was 

calculated to determine when backscattering from the aggregation is likely to be stronger than 

that from a single equivalent-size object. The final method involved use of the Hahn (2007) 

formulation using the effective medium theory discussed in Chapter 2 and used as a verification 

technique in Chapter 3. 

 The first set of CBE peak strength comparisons involving matched backscattered sound 

from ideal spheres are shown in Figures 4-10, 4-11 and 4-12, where the 
2

)(sp , hardsp
2

)( , 

and softsp
2

)(  are plotted versus  for –90° ≤  ≤ +90° when hardsp
2

)0(  and softsp
2

)0(  are 

separately matched to 
2

)0(sp . In these three figures, variations are individually made in ka, ks 

and kσs
1/2 to illustrate what happens as the prevalence of multiple scattering increases. In all these 

figures, the results for the aggregations are given by solid curves while those for the hard and 

soft spheres are given by longer and shorter dashed curves respectively. And, as a further 
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distinguishing feature, hardsp
2

)(  shows more variation in the plotted angular range than 

softsp
2

)( because of the Bessel function derivatives discussed in Chapter 2. 

 The results provided by the three figures are as follows. Figure 4-10 shows the 

normalized CBE peak results when the spherical aggregation’s radius is ka = 12 and 32, for ks = 

3.2 and and kσs
1/2 = 1.5. In Figure 4-10a), the radii of the backscatter equivalent hard and soft 

spheres (ka = 10.5 and 10.3), are smaller than that of the aggregation (ka = 12). However, in 

Figure 4-10b), the radii of the backscatter equivalent hard and soft spheres (ka = 39.7 and 39.7), 

are larger than that of the aggregation (ka = 32). 

  
(a) (b) 

Figure 4-10: Comparisons between mean-square scattered pressure 
2

)(sp  from spherical aggregations of 

scatterers having ks = 3.2 and kσs
1/2 = 1.5, and that from backscatter-equivalent ideal hard and soft spheres, 

calculated from (2-14) when 0n  and n , respectively, all divided by 
2

)0(sp  vs. the scattering angle 

. This normalization requires all curves to pass through (0,1). In (a), the aggregation’s radius is ka = 12, and the 

radii of the backscatter-equivalent hard and soft spheres are ka = 10.5 and 10.3, respectively. In (b), the 

aggregation’s radius is larger, ka = 32, and the radii of the backscatter-equivalent hard and soft spheres are both ka = 

39.7. These results suggest that an increase in the aggregation size for fixed dimensionless scattering strength and 

scatterer spacing yields an increase in the multiple scattering effects (a more prominent CBE peak). Consequently, 

the aggregation is larger than the backscatter-equivalent hard and soft spheres in (a), but this size relationship 

switches in (b). 
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Figure 4-11 shows normalized CBE peak results when the aggregation’s average spacing 

between scatterers is ks = 6.4 and 2.9, for ka = 16 and kσs
1/2 = 1.5. In Figure 4-11a), the CBE 

peak is weak, and the radii of the backscatter-equivalent hard and soft spheres (ka = 6.9 and 6.7) 

are smaller than that of the aggregation (ka = 16). However, in Figure 4-11b) the CBE peak is 

more apparent and the radii of the backscatter equivalent hard and soft spheres (ka = 16.6 and 

16.9) are slightly larger than that of the aggregation (ka = 16). 

  
(a) (b) 

Figure 4-11: Same as Fig. 4-10, except ka = 16, kσs
1/2 = 1.5 and the average spacing between scatterers ks is varied 

between (a) and (b). In (a), ks is 6.4, and the radii of the backscatter-equivalent hard and soft spheres are ka = 6.9 

and 6.7, respectively. In (b), ks is 2.9, and the radii of the backscatter-equivalent hard and soft spheres are ka = 16.6 

and 16.9, respectively. A decrease in ks leads to an increase in the multiple scattering (a more prominent CBE peak). 

Consequently, as in Fig. 6, the aggregation is larger than the backscatter-equivalent hard and soft spheres in (a), but 

this size relationship switches in (b). 

 

 

Figure 4-12 shows normalized CBE peak results when the dimensionless strength of the 

aggregation’s scatterers is kσs
1/2 = 0.38 and 3.0 for ka = 16 and ks = 3.2. In Figure 4-12a), the 

CBE peak is absent due to the weak multiple scattering effects stemming from a weaker 

dimensionless scattering strength of an individual scatterer and the radii of the backscatter 

equivalent hard and soft spheres (ka = 4.6 and 4.3) are smaller than that of the aggregation (ka = 
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16). However, in Figure 4-12b), the CBE peak is clearly present and the radii of the backscatter 

equivalent hard and soft spheres (ka = 25 and 24.8) are again larger than that of the aggregation 

(ka = 16). 

 

  
(a) (b) 

Figure 4-12: Same as Fig. 4-10, except ka = 16, ks = 3.2, and the dimensionless scatterer strength kσs
1/2 is varied 

between (a) and (b). In (a), kσs
1/2 is 0.38, and the radii of the backscatter-equivalent hard and soft spheres are ka = 

4.6 and 4.3, respectively. In (b), kσs
1/2 is 3.0, and the radii of the backscatter-equivalent hard and soft spheres are ka 

= 25.0 and 24.8, respectively. An increase in the dimensionless scatterer strength yields an increase in the multiple 

scattering effects (a more prominent CBE peak). Here again, the aggregation is larger than the backscatter-

equivalent hard and soft spheres in (a), but this size relationship switches in (b). 

 

 

 Calculations were also done for the baseline case and a few intermediate parametric 

values that fall in between the scenarios considered in Figures 4-10, 4-11 and 4-12 and show the 

transition of where the backscatter equivalent hard and soft spheres start to exceed that of the 

aggregation. For the baseline case of ka = 16, ks = 3.2 and kσs
1/2 = 1.5, the radii of the backscatter 

equivalent hard and soft spheres (ka = 15.5 and 15.5, respectively) are slightly smaller than that 

of the aggregation of scatterers. Increasing the aggregation size to ka = 25 with ks and kσs
1/2 held 

fixed at 3.2 and 1.5 respectively yielded a backscatter equivalent hard and soft sphere (ka = 28.6 



 

92 
 

and 28.2) larger than that of the aggregation. Holding ka = 16 and ks = 3.2 fixed and decreasing 

the kσs
1/2 to 0.75, the backscatter equivalent hard and soft spheres are smaller than that of the 

aggregation at ka = 9.1 and 8.4, respectively. Lastly, increasing the spacing to ks = 4.8, while 

holding ka and kσs
1/2 fixed at 16 and 1.5, respectively, resulted in a backscatter equivalent hard 

and soft sphere (ka = 9.9 and 9.9 respectively) to be small than that of the aggregation. Table 4-1 

summarizes the findings from the matching. 

Table 4- 1: Summary of the findings from the parametric study and the backscatter equivalent corresponding hard 

and soft sphere sizes. When multiple scattering effects are strong, the corresponding hard and soft spheres’ radii 

exceed that of the aggregations’ radii. Weaker multiple scattering effects yield backscatter equivalent spheres which 

are smaller in size compared to the aggregation. 

ka ks kσs
1/2 Shape CBE peak? (ka)hard (ka)soft 

12 3.2 1.5 Sphere Yes 10.5 10.3 

16 3.2 1.5 Sphere Yes 15.5 15.5 

25 3.2 1.5 Sphere Yes 28.6 28.2 

32 3.2 1.5 Sphere Yes 39.7 39.7 

16 6.4 1.5 Sphere Yes 6.9 6.7 

16 4.8 1.5 Sphere Yes 9.9 9.9 

16 2.9 1.5 Sphere Yes 16.6 16.9 

16 3.2 0.38 Sphere No 4.6 4.3 

16 3.2 0.75 Sphere Yes 9.1 8.4 

16 3.2 3.0 Sphere Yes 25.0 24.8 

32 3.2 0.21 Sphere No 7.0 6.8 

32 3.2 0.74 Sphere Yes 22.7 22.8 

32 3.2 2.56 Sphere Yes 52.7 52.5 

32 3.2 3.2 Sphere Yes 57.7 57.5 

20.2 3.2 1.5 Prolate  Yes 20.0 19.5 

20.2 3.2 1.5 Prolate  Yes 22.6 22.4 

20.2 3.2 1.5 Prolate  Yes 22.6 22.3 

25.4 3.2 1.5 Oblate  Yes 32.5 32.8 

25.4 3.2 1.5 Oblate  Yes 27.5 27.3 

25.4 3.2 1.5 Oblate  Yes 27.4 27.3 

  

When taken together, the results shown in Figures 4-10, 4-11 and 4-12 along with the 

intermediate calculations indicate that as the prevalence of multiple scattering (and of CBE) 

increases, the CBE peak becomes more prominent; the equivalent hard and soft sphere radii 

increase and the relative level of scattering from the aggregation at angles φ away from the CBE 
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peak declines. Thus, bistatic measurements of 
2

)(sp  over a sufficiently wide range of φ 

might be a possible remote means for discriminating between an aggregation of many small 

scatterers and a single large object. However, such measurements might be difficult in practice at 

ranges of several kilometers since the necessary angular range of φ might be several 10’s of 

degrees. An alternative approach to aggregation vs. large object discrimination that may be 

applicable at short ranges is described in Chapter 6. 

 The second set of CBE peak strength comparisons were intended to determine the 

parametric dependence of 
2

)0(sp  compared to that of the average backscattered pressure 

magnitude squared,  softshardsideals ppp
222

)0()0(
2

1
)0(  , from equivalent size ideal 

spheres with hard and soft surface boundary conditions. For this effort, the ratio, 

idealss pp
22

)0()0(  was plotted vs. (ka)(ks)(kσs
1/2) and the values of the scaling exponents 

(, , ) were adjusted so that the various simulation outcomes all fell near or on a single line. 

The values of the scaling exponents were solely based on the simulation results and the fact that 

the multiple scattering effects would increase for higher kσs
1/2, lower ks and higher ka, due to the 

increase in the strength and number of the scatterers. Specific physical relevance of the values of 

(, , ) have yet to be found. This comparison and fitting effort included 14 spherical 

aggregation parameter sets spanning the parametric ranges 12 ≤ ka ≤ 32, 6.4 ≥ ks ≥ 2.9, and 0.21 

≤ kσs
1/2 ≤ 3.2; and the six spheroidal aggregation parameter sets described for Figures 4-7 and 4-8 

where the volume equivalent radius was used for a.  

 The results of this comparison and fitting effort are shown on Figure 4-13 where 

idealss pp
22

)0()0( is plotted vs. (ka)1/3(ks)-1(kσs
1/2)1/2, and circles and squares represent 
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spherical and spheroidal parameter sets, respectively. This figure provides three important 

results. First, as expected, the fitted exponent values suggest that the relative height of a CBE 

peak increases when the aggregation is larger, when the scatterers are closer together and when 

the strength of each scatterer is larger. Second, when idealss pp
22

)0()0(  is above unity or 

equivalently when (ka)1/3(ks)-1(kσs
1/2)1/2 ≥ 0.94, the aggregation backscatters more sound than a 

single ideal spherical scatterer that is the same size as the aggregation. Thus, under the right 

conditions, a school of fish may appear as a single man-made object of the same or larger size 

when interrogated via a backscatter based sonar system. And third, the filled symbols in Figure 

4-13 indicate parameter sets where no discernible CBE peak was found. These parameter sets 

appear in the lower left of Figure 4-13 and occur when (ka)1/3(ks)-1(kσs
1/2)1/2 is less than 0.48.  
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Figure 4-13: Backscattering ratio idealss pp
22

)0()0(  vs. (ka)1/3(ks)-1(kσs
1/2)1/2 for 20 different parameter sets 

involving spherical aggregations (circles) and spheroidal aggregations (squares). The filled symbols indicate 

parameter sets where no discernible CBE peak was found. The scattered field from an aggregation of point scatterers 

is greater than that of equivalent sized ideal spheres when (ka)1/3(ks)-1(kσs
1/2)1/2 ≥ 0.94. 

 

 

 An alternate summary of the results shown in Figure 4-13 is provided in Figure 4-14 

where the difference between the average size of the ideal spheres, (ka)ref = [(ka)hard + (ka)soft]/2, 

and the size of the aggregation (ka) is plotted vs. a product of powers of independent 

dimensionless parameters, (ka)1/2(ks)-4/5(kσs
1/2)3/4. For this summary, the backscattered mean 

square pressure from the aggregation of scatterers is matched with the pressure magnitude 

squared from the ideal hard and soft sphere. The corresponding backscatter equivalent hard and 

soft spheres’ radii are then averaged and the difference of the average sphere from the 

aggregation is obtained. Here, again, the empirical scaling exponents (1/2, –4/5, 3/4) were 

chosen so that the various simulation outcomes all fell on or near a single line. As in Figure 4-13, 

the circles and squares in Fig. 4-14 represent spherical and spheroidal parameters, respectively, 
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and the two filled symbols are for parameter sets that did not produce discernible CBE peaks. 

Additionally, in Figure 4-14, the positive values of (ka)ref – (ka) indicate where the backscatter 

equivalent ideal sphere is larger than the aggregation, and the negative values show where the 

backscatter equivalent ideal sphere is smaller than the aggregation . 

 
Figure 4-14: Difference between the reference radius, the average in the radii of the hard and soft spheres, and the 

aggregation radius, (ka)ref – (ka) vs. an empirical product of powers of the dimensionless parameters, (ka)1/2(ks)-

4/5(kσs
1/2)3/4, for 20 parameter sets involving spherical aggregations (circles) and spheroidal aggregations (squares). 

The two filled symbols indicate parameter sets where no discernible CBE peak was found, (ka)1/2(ks)-4/5(kσs
1/2)3/4 < 

0.8. The aggregation radius is smaller than that of the reference sphere when (ka)1/2(ks)-4/5(kσs
1/2)3/4 ≥ 2.3. Thus, when 

strong enough, multiple scattering may cause an aggregation to appear to be a single larger object. 

 

 

 Figure 4-14 provides three important results. First, as in Figure 4-13, the exponent values 

indicate that the CBE peak strength increases when the aggregation, or its projected area normal 

to the incident wave vector, is larger, when the scatterers are closer together, and when the 

strength of each scatterer is larger. Second, when (ka)ref – (ka) is greater than 0, or equivalently 

when (ka)1/2(ks)-4/5(kσs
1/2)3/4 ≥ 2.3, the aggregation backscatters as much sound as a perfectly 

reflecting sphere of equal or larger size. Thus, under the right conditions, a school of fish may 
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appear to be single man-made object of the same or larger size when remotely interrogated via a 

backscatter-based sonar system. And third, the location of the filled symbols suggests that CBE 

is not apparent in the far-field of the aggregation when (ka)1/2(ks)-4/5(kσs
1/2)3/4 ≤ 0.8. 

The second backscattering strength comparison involves determining the extent to which 

the effective medium approximation can be used to determine the amplitude of the average 

backscattered pressure, |<ps(0)>|, from aggregations of scatterers. These results are shown in Fig. 

4-15 where 20log10(|<ps(0)>|/|ps(0)|Hahn) is plotted vs. |4π(kg1)
2/(ks)3|, the wave number scaled 

form of the small parameter described in Hahn (2007) from (2-19), where |ps(0)|Hahn is the 

amplitude of the pressure backscattered from a single sphere with the same radius as the 

aggregation that has the effective medium characteristics of the aggregation. Backscattered 

pressure amplitudes from the aggregations vary significantly, and this variation is quantified by 

the error-bars shown in the Fig. 4-15 which corresponds to plus and minus one standard 

deviation of the mean. 
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Figure 4-15: Average backscattered field ratio in dB,  
Hahns pp )0()0(log20 10  vs. 32

1 )/()(4 kskg , for 14 

parameter sets representing spherical aggregations. Here |p(0)|Hahn is the backscattered amplitude from an equal size 

sphere having properties predicted by Foldy’s effective medium theory for the aggregation (Foldy 1945, Hahn 

2007). The error bars represent plus and minus one standard-deviation of the mean. The variations in error bar size 

are due to the differences in the number of realizations considered for each parameter set. For 32
1 )/()(4 kskg  ≤ 

0.03, the average backscattered pressure from the aggregation matches the Hahn sphere predictions within the 

known statistical uncertainty. However, as 32
1 )/()(4 kskg  increases above 0.06, backscatter from the Hahn (2007) 

sphere overestimates the average-field amplitude from the aggregation because the effective medium theory is only 

valid when 32
1 )/()(4 kskg  << 1 (Frisch 1968, see also Hahn 2007). 

 

 

 Figure 4-15 provides two noteworthy results. First, the current average field backscatter 

results for spherical aggregations match those from the effective medium approximation, to 

within the known statistical uncertainty, when |4π(kg1)
2/(ks)3| is small, as expected from the 

dimensional and scattering-diagram analysis of Frisch (1968) who concluded that |4π(kg1)
2/(ks)3| 

must be small for the effective medium approximation to be valid. And second, the effective 

medium approximation is likely to overestimate the average backscattered field amplitude when 

|4π(kg1)
2/(ks)3| is not small. This overestimate occurs because the Foldy (1945) effective medium 

approximation excludes some multiple-scattering chains (Frisch 1968), which leads to an 
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underestimate (overestimate) of random (ensemble-average) scattering within and from the 

aggregation. Consequently, |<ps(0)>|/|ps(0)|Hahn falls below unity as |4π(kg1)
2/(ks)3| increases. 

 

4-6: Summary and Conclusions 

 

 In this chapter, the Foldy (1945) multiple scattering equations were considered to 

simulate acoustic CBE in the far field of a finite size aggregation of scatterers illuminated by a 

plane wave with wave number k in an unbounded uniform environment. The simulations 

involved thousands of realizations for each aggregation parameter set and included variations in 

the dimensionless aggregation size: 12 ≤ ka ≤ 32, in the dimensionless average scatterer spacing: 

6.4 ≥ ks ≥ 2.9, in the dimensionless strength of a scatterer: 0.38 ≤ kσs
1/2 ≤ 3.0, and in the shape of 

the aggregation (spherical, oblate spheroidal, prolate spheroidal). From these simulations, the 

dependence of the width and height of the CBE peak on ka, ks, kσs
1/2, and the aggregation’s 

shape was determined. Simulated backscattered mean square pressures from the spherical 

aggregations were also compared to that from single ideal spherical scatterers.  

 The results from this chapter support the following three conclusions. First, the 

aggregation geometry sets the width of the CBE peak in the far field, when a CBE peak exists. 

Larger aggregations produce narrower peaks, whereas smaller aggregations produce wider peaks. 

Overall, CBE peak widths were found to be proportional to 1/ka for spherical aggregations, and, 

for all aggregations, CBE peak widths were consistent with diffraction limited radiation from the 

aggregation when each scatterer is replaced by a monopole source and all the source phases are 

set to produce a retro-directed plane wave. Second, the mean square pressure backscattered from 

a spherical aggregation may exceed that from a single equivalent size sphere having an ideal 

hard or pressure release surface boundary condition. The likelihood of this occurring increases 
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when the aggregation is larger, the scatterers are closer together, and the strength of an individual 

scatterer is larger. When considered all together, the composite requirement for an aggregation to 

produce equivalent or stronger backscattering than an equivalent-volume ideal sphere is 

(ka)1/2(ks)-4/5(kσs
1/2)3/4 ≥ 2.3. Third, Foldy’s effective medium theory matches the simulation 

results to within the known statistical uncertainty when applied to the amplitude of the average 

field backscattered from an aggregation and equivalent size spheres with matched properties 

when |4π(kg1)
2/(ks)3| < 0.03. 

 The findings in this chapter show CBE in a context more applicable to the interests of the 

U.S. Navy and fisheries acoustics groups. While CBE is observed in the far field and there are 

noticeable differences in the average backscattering from an aggregation of scatterers compared 

to that of a single ideal sphere, there are disadvantages which likely render the use of CBE for 

remote aggregation-vs.-single-object discrimination impractical. Here, it is assumed that the 

school of fish can be interrogated by many pings, the swimbladder of the fish can be 

approximated as an omnidirectional point scatterer (kas << 1) and the geometry would, for the 

most part, stay the same over the realizations. Additionally, in order to see a noticeable 

difference in the backscatter direction from other angles, returns would need to be measured over 

a wide range of angles, on the order of 10’s of degrees. Lastly, the fish composing the school 

need to be strong scatterers, spaced close together and the aggregation needs to be large enough 

to observe CBE. Thus, for sonar operations based on identifying the existence of CBE, a fish 

school consisting of weak scatterers may yield a false classification. In practice, however, the 

results shown in this chapter provide insight into the differences in the returns between a school 

of fish from that of a single scattering object, such as a bubble or manmade scattering object, 

under idealized circumstances (without fluid-structure interactions) in the free space.  Chapter 5 
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will consider broadband CBE to see if there are any changes in returns when the incident signal 

is a broadband pulse. Additionally, it will present results that explore whether or not a time 

domain signal would produce equivalent results with fewer realizations or if other features in the 

returned signal can be considered for aggregation-vs.-single-object discrimination.  
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CHAPTER 5 

Far Field Broadband Coherent Backscatter Enhancement 

 

 While the work considered in Chapter 4 started to address some of the concerns of 

interest to the U.S. Navy by considering narrowband, far field simulations in the frequency 

domain, this chapter presents work considering broadband pulses using frequency sweeps with 

ranges of interest to the Navy in the time domain (Nero 1996). The first half of this chapter 

focuses on aggregations of omnidirectional point scatterers with fixed scattering strength and is a 

parametric study considering the impact on the CBE peak for an increase in the number of 

scatterers and fixed scattering cross section in the time domain. The second half of this chapter 

involves: (i) simulating aggregations of scatterers with herring fish properties, particularly the 

effective swimbladder radius and fish flesh viscosity, at varying depths in the ocean and (ii) the 

impact that varying aggregation depth has on the CBE peak. Comparisons of the simulated 

results from the aggregations are made with the ideal hard and soft spheres as in Chapter 4 to 

show the differences in the returns from a school of herring, a fish species common in the pelagic 

zone of the ocean (Costello et al., 2010), with single isolated idealized scattering objects that also 

may be present in the ocean. Changes to the incident pulse after interacting with the aggregation 

of scatterers are also considered. Due to the complexity of the broadband simulations, most of 

the simulations considered here are not fully converged, but are sufficiently so to observe the 

CBE peak.  
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5-1: Simulation Setup 

 

In this chapter, the simulation geometry is the same as in Figure 4-2 with a spherical 

aggregation centered at the origin and the receiving ring radius of R = 5000m. Thus, in water (c 

= 1500m/s), the time delay of the scattered field should be at 3.33s. For these simulations, the 

aggregation has a radius, a, of 2.5m and the scatterers have fixed scattering cross section (σs = 

0.03 m2). The simulated school of herring has a radius of, a, of 2.85m. The fixed scattering cross 

section aggregations consisted of 1000 and 2000 scatterers, and the simulated herring school 

consisted of 1000 fish. For the herring fish school, the average spacing s was a typical fish length 

(s = 0.46m herring). The swim bladder volume was 1.45 ml (Fässler et al. 2008) with a 

swimbladder radius of as = 7.02mm and a viscosity coefficient approximating fish flesh is ξ = 20 

Pas (Love 1978). A 0.1s frequency sweep pulse is considered from f0 to f1, though simulations 

are performed for frequencies from f0 - 100 to f1 + 100 to cover the effects of spectral leakage in 

the Fourier transform of the signal as well, and a sampling frequency of 10kHz is considered.   

For the fixed scattering strength simulations, the frequencies considered range from f0= 

3kHz to f1 = 4kHz. For the simulated herring schools, the swim bladder radius and viscosity 

coefficient values have been used in the Love (1978) model discussed in Chapter 2 and the 

frequencies of interest have surrounded the resonance peak of the swim bladder radius for the 

three depths (shown in Figure 5-1 as kσs
1/2 vs. frequency in kHz). Thus, for a depth of z = 60m, f0 

= 1kHz and f1 = 2kHz (kas = 0.03-0.06); z = 236m, f0 = 1.5kHz and f1 = 3kHz (kas = 0.04-0.09); 

and for a depth of z = 430m, f0 = 2.5kHz and f1 = 4kHz (kas = 0.07-0.12). For the frequency 

ranges considered, the effective wave number scaled swimbladder radius is significantly less 

than 1. Thus, the Foldy (1945) equations are directly applicable herring schools at these depths 
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and frequencies. At the three depths, the maximum dimensionless scattering strengths are kσs
1/2 = 

0.9 at a frequency of 1.25kHz at z = 60m, kσs
1/2 = 1.9 at a frequency of 2.33kHz at z = 236m, and 

kσs
1/2 = 2.4 at a frequency of 3.1kHz at z = 430m. These depths are all in the pelagic zone in the 

ocean (Costello et al, 2010). 

 
Figure 5-1: Effect of the dimensionless scattering strength of each scatterer kσs

1/2 as a function of frequency (kHz) 

for varying depths z = 60m (____), 236m (_ _ _ _) and 430m (----) via the Love (1978) model. Each curve covers the 

bandwidth of the simulations at that depth.  

 

 

 The ideal hard and soft spheres are evaluated using van Bladel’s (1968) scattering 

formulae at the same frequencies as the simulations. Unlike in Chapter 4, where the simulations 

are matched to the corresponding sphere using the backscatter direction to set the sphere’s 

radius, in this chapter, due to the complexity of the simulations, the corresponding van Bladel 

(1968) hard and soft spheres are obtained by matching the radii of the aggregation: a = ahard = 

asoft.  
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5-2: Simulation Results with Fixed Scattering Cross Section and Comparisons with 

the Incident Signal 

 

 In Chapters 3 and 4, single frequencies with fixed average scatterer spacing ks and 

dimensionless scattering strength, kσs
1/2, were considered. Here, the dimensionless scattering 

strength could be any value as long as kσs
1/2 was less than or equal to 3.5449. Therefore, for the 

broadband simulations, since the wave number would be constantly changing as the frequencies 

change, the scattering cross section is held fixed at σs = 0.03m2, which for a 3-4kHz frequency 

sweep, yields a dimensionless scattering strength (kσs
1/2 = 2.2-2.9) well under the point scatterer 

constraint but still representing strong scatterers.  

 Figures 5-2 and 5-3 show the change in prominence of the CBE peak for 1000 and 2000 

scatterer aggregations after 64 realizations. For these figures, the ordinate is the azimuthal angle, 

φ, from  Fig. 4-2, in degrees and the time delay on the abscissa is in seconds. As in Chapter 4, the 

angular range of interest spans from φ = (–90°, +90°). The colors represent the scattered mean 

square pressure in the time domain. A comparison of these two figures, which have different 

color scales, indicates that, similarly to the far field single frequency simulations, the back-

scattered mean square pressure in the time domain increases as the multiple scattering effects 

increase (an increase in the number of scatterers causes a decrease in the average spacing 

between scatterers, and this increases the amount of multiple scattering). Additionally, since it 

was seen in Chapter 4 that the CBE peak width is dictated by aggregation geometry and the same 

frequency ranges are considered for these simulations, the peak width in Figures 5-2 and 5-3 are 

expected to be the same. Though the results at some times are off center due to incomplete 

convergence, generally, the peak widths do seem to follow this expected trend.  
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Figure 5-2: Scattered mean square pressure in the time domain for 1000 scatterers (ks = 5.1-6.7) in a spherical 

aggregation with radius = 2.5m, a dimensionless scattering strength each scatterer of kσs
1/2 = 2.2-2.9, and a 3-4kHz 

frequency pulse. Since the range of the dimensionless scattering strength is high for this simulation, a peak still 

occurs at φ = 0. 

 

 

 
Figure 5-3: Same as Fig. 5-2 except here there are 2000 scatterers (ks = 4.0-5.3). 
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 Figures 5-4 has three plots.  The incident original signal is the uppermost plot.  The 

original signal squared is the middle plot.  The resulting signal after it interacts with the 

scattering aggregation is the third plot.  Figure 5-4 (the two plots in the top) shows the original 

0.1s-duration 3-4kHz frequency sweep and (the third plot) is the scattered mean square pressure 

in the time domain in the backscatter direction for 1000 scatterers (shown in blue) and 2000 

scatterers (shown in black). If these simulations were fully converged, it would be that the mean 

square pressure in the backscatter direction would be smooth without the oscillations (see 

Section 5-3 for more converged results). The resulting backscattered mean square pressure signal 

after it interacts with the aggregation of scatterers is higher for the 2000 scatterer simulations 

than it is for the 1000 scatterer simulations, as expected.  

 
Figure 5-4: Backscattered mean square pressure for 1000 (blue) and 2000 (black) scatterers (bottom) corresponding 

to the original signal (top two plots)  
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 The correlation of the original signal with the backscattered pressure signal even further, 

the correlation coefficient of the two signals is considered for a single realization. Here, the real 

part of the backscattered pressure is considered. In both Figures 5-5 and 5-6, the correlation 

coefficient of the real part of the backscattered pressure with the original signal is plotted as a 

function of the time lag in seconds. The real part of the backscattered mean pressure is very 

poorly correlated with the original signal for both 1000 and 2000 scatterers. 

 
Figure 5-5: The correlation coefficient of the real part of the pressure of a single realization of 1000 scatterers is 

very poorly correlated with the original signal. 
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Figure 5-6: The correlation coefficient of the real part of the pressure of a single realization of 2000 scatterers is 

very poorly correlated. 

 

 

 Based on Figures 5-2 to 5-6, the following three important observations are made. They 

are: (i) in as few as 64 realizations, a CBE peak does start to emerge, though there are still some 

higher mean square pressure values at other angles. This is shown in Figures 5-2 and 5-3. (ii) 

Secondly, it also shows that as in the frequency domain considered in Chapter 4, an increase in 

the multiple scattering effects does yield an increase in the mean square pressure in the time 

domain. (iii) When the real part of the backscattered pressure is considered, the cross correlation 

of the two signals yields results which are very poorly correlated, because of the random 

placement of the scatterers.  

5-3: Resonant Scattering CBE and Comparisons with van Bladel (1968) Spheres 

 

 Thus far, the effects of an aggregation of idealized scatterers on the original signal have 

been studied using as many as 64 realizations and as few as a single realization. The work in this 
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section considers resonant point scatterers with herring fish properties.  Furthermore, it addresses 

relevant questions to practical sonar applications by considering the van Bladel (1968) spheres 

from Chapters 2 and 4. Given that the ocean environment can only be considered a free space 

environment over short ranges, these simulations may be relevant for downward looking 

echosounder recordings where direct path propagation is solely considered (no surface or bottom 

reflections). 

 For the simulations in this section, 4096-4900 realizations were conducted for the three 

depths. Thus, the results appear smoother and cleaner compared to that shown in Section 5-2. It 

should be noted, however, these simulations took close to 8-10 months on the supercomputing 

cluster, Flux, provided by the University of Michigan’s Advanced Research Computing facility, 

unlike the 4-6 week runtime on the same computer(s) for the single frequency signals. As in the 

previous section and Chapter 4, this study was performed as a parametric study, analyzing the 

effect of the depth on the CBE peak. From Figure 5-1, the increase in the depth causes the 

dimensionless scattering strength to increase so it would be expected that the peak should be 

more prominent. Additionally, a brighter band, representing stronger scattering, would be 

expected, corresponding to the time when the resonant frequency occurs (3.36s for the herring 

school at 60m depth, 3.39s for the herring school at 236m depth and 3.37s for the herring school 

at 430m depth).  

 Figure 5-7 shows the resulting scattered mean square pressure in the time domain for a 

school depth of 60m. A CBE peak does appear for this aggregation at the depth considered, 

though it is weak, as will be demonstrated for higher depths such 236m and 430m. Additionally, 

since a lower band of frequencies are considered (1-2kHz), the wave number scaled size of the 

aggregation is small (ka = 14.9 at the resonance frequency). Therefore, the CBE peak has a width 
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of ∆φ = 2π/ka = 24.2°, which is consistent with that expected from the single frequency signal 

results shown in Chapter 4. Additionally, as expected, the highest mean square pressure occurs at 

the time corresponding to the resonant frequency, as is seen in Figure 5-7 (dark red). The regions 

surrounding that time corresponding to the resonant frequency (orange-yellow) are still bright, 

but gradually dim with increasing or decreasing time. Figure 5-8 shows the backscattered mean 

square pressure as a function of time for the herring fish school at 60m corresponding to the 

original signal (top two plots). The backscattered mean square pressure tends to follow a similar 

trend as the dimensionless scattering strength as a function of frequency in Figure 5-1 since the 

frequency-sweep broadcast signal allows an approximate correspondence to be drawn between 

frequency and time.  

 
Figure 5-7: Mean square pressure as a function of φ (degrees) and time (s) for the herring fish school at a depth of 

60m. A CBE peak does result at the time corresponding to the resonant frequency and the peak is very broad. 
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Figure 5-8: Backscattered mean square pressure as a function of time for the herring fish school at  60m 

corresponding to the original signal (top two plots) 

 

 

 The comparisons with the van Bladel (1968) spheres of equivalent size show that the 

angular dependence of the pressure magnitude squared for the hard and soft spheres are similar, 

though there are small differences in magnitude between the hard and soft spheres (Figures 5-9 

and 5-10). Figures 5-9 through 5-11 show that the scattering from the equivalent size hard and 

soft sphere is much greater than that from the aggregation. This is contrary to what has been 

observed for the case of single frequency scaling developed in Chapter 4.  Additionally, Figure 

5-11 shows the comparison of the pressure magnitude squared from the soft and hard spheres 

with the mean square pressure of the herring school at 60m depth. The top two figures in Figure 

5-11 show the backscattered pressure magnitude squared of the soft and hard spheres, 

respectively, and the bottom plot is the backscattered mean square pressure over the 4096 

realizations for the herring fish school at 60m depth. The returns for the aggregation are 

significantly different from that of the hard and soft sphere. The pressure is much lower and the 
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returned signal ramps up gradually from 3.33 to 3.37s compared to the soft and hard sphere. The 

later part of the signal also ramps down later (3.43s) compared to that of the hard and soft sphere. 

This is due to the resonance curve shown in Figure 5-1 for 60m depth.  

 
Figure 5-9: Pressure magnitude square as a function of angle (φ) in degrees and time in seconds for a soft sphere 

with frequencies 1-2kHz, corresponding to the frequency range considered for the herring fish school at 60m depth 
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Figure 5-10: Pressure magnitude square as a function of angle (φ) in degrees and time in seconds for a hard sphere 

with frequencies 1-2kHz, corresponding to the frequency range considered for the herring fish school at 60m depth 

 

 

Figure 5-11: Pressure magnitude squared for the soft (top) and hard (middle) spheres and the spherical aggregation 

of herring fish at 60m depth (bottom) 
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Figure 5-12 shows the resulting plot of the mean square pressure as a function of the 

angle, φ, and time in seconds for the herring school at 236m for 1.5-3kHz. Here, again a CBE 

peak does occur, which is more prominent and the scattered mean square pressure for the 

aggregation at this depth is larger, due to the fact that the dimensionless scattering strength at this 

depth is also larger with a dimensionless scattering strength of 1.93 at the resonant frequency. 

The highest mean-square pressure in this figure occurs at 3.39s.  The angular width of this peak 

is narrower compared to Figure 5-7 since the aggregation radius at resonance is ka = 27.8, 

yielding a peak width of 2π/ka = 12.9 degrees. Figure 5-13 is the backscattered mean square 

pressure as a function of time for the herring fish school at 236m corresponding to the original 

signal (top two plots). As in Figure 5-8, this figure also shows that the shape of the time 

dependent signal follows that of Figure 5-1 with the peak at 3.39 s, corresponding to the resonant 

frequency because of the time-frequency correspondence inherent in a frequency-sweep signal.  
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Figure 5-12: Mean square pressure as a function of φ (degrees) and time (s) for the herring fish school at a depth of 

236m. A CBE peak does result at the time corresponding to the resonant frequency. 

 

 

 
Figure 5-13: Backscattered mean square pressure as a function of time for the herring fish school at  236m 

corresponding to the original signal (top two plots) 
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 Comparing these findings with the van Bladel (1968) spheres, the corresponding soft and 

hard spheres of the same size for this frequency band and the angular dependence, yields results 

(Figures 5-14 and 5-15) which look similar but different in magnitude, just as in Figures 5-9 and 

5-10. Comparing the time dependence of the pressure magnitude square of the soft and hard 

spheres (top and middle) with the aggregation (bottom), the mean square pressure of the 

aggregation ramps up gradually from 3.33-3.38s (Figure 5-16). It is also longer (3.43s) than the 

pressure magnitude squared of the soft and hard sphere. 

 
Figure 5-14: Pressure magnitude square as a function of angle (φ) in degrees and time in seconds for a soft sphere 

with frequencies 1.5-3kHz, corresponding to the frequency range considered for the herring fish school at 236m 

depth 
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Figure 5-15: Pressure magnitude square as a function of angle (φ) in degrees and time in seconds for a hard sphere 

with frequencies 1.5-3kHz, corresponding to the frequency range considered for the herring fish school at 236m 

depth 

 

 

 
Figure 5-16: Pressure magnitude squared for the soft (top) and hard (middle) spheres and the spherical aggregation 

of herring fish at 236m depth (bottom) 
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 The deepest fish school considered was at a depth of 430m. Here, the herring’s swim 

bladder resonant frequency was 3.1kHz and the dimensionless scattering strength at that 

frequency was 2.4. Figure 5-17 shows the mean square pressure as a function of angle in degrees 

and time (s). A more prominent CBE peak occurs at this depth and the peak width appears to 

have narrowed significantly since the aggregation radius at the resonant frequency is ka = 37, 

yielding a peak width of 2π/ka = 9.7 degrees. Figure 5-18 shows the resulting time dependent 

mean square pressure for this depth for frequencies of 3-4kHz. Here, the shape is similar to that 

of the resonant frequency and the peak is more distinct, compared to the other plots. 

 
Figure 5-17: Mean square pressure as a function of φ (degrees) and time (s) for the herring fish school at a depth of 

430m. A CBE peak does result at the time corresponding to the resonant frequency. 
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Figure 5-18: Backscattered mean square pressure as a function of time for the herring fish school at  430m 

corresponding to the original signal (top two plots) 

 

 

 Considering the van Bladel (1968) spheres for the frequencies of 3-4kHz, Figures 5-19 

and 5-20 show the pressure magnitude squared as a function of angle and time in seconds for the 

soft and hard spheres, respectively. As in the previous depths, the pressure magnitude squared of 

the soft and hard spheres look similar, with slight differences in magnitude. Figure 5-21 shows 

the time dependence of the backscattered pressure magnitude squared for the soft and hard 

spheres (top and middle, respectively) and the backscattered mean square pressure of the herring 

fish school at 430m depth. Once again, there are significant differences in the pressure 

magnitude squared of the soft and hard spheres from the mean square pressure of the herring fish 

school at 430m depth of the same size. The signal is smoother and more gradual, both early on 

(3.33s) and later on (3.43s), yielding in the pressure signal once again ramping down later than 

that of a soft or hard sphere of the same size.   
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Figure 5-19: Pressure magnitude square as a function of angle (φ) in degrees and time in seconds for a soft sphere 

with frequencies 3-4kHz, corresponding to the frequency range considered for the herring fish school at 430m depth 

 

 

 
Figure 5-20: Pressure magnitude square as a function of angle (φ) in degrees and time in seconds for a hard sphere 

with frequencies 3-4kHz, corresponding to the frequency range considered for the herring fish school at 430m depth 
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Figure 5-21: Pressure magnitude squared for the soft (top) and hard (middle) spheres and the spherical aggregation 

of herring fish at 430m depth (bottom) 

 

 

 The simulations discussed in this section are the most realistic set of simulations 

presented in this thesis, without considering multipath propagation, in that they consider 

scattering from omnidirectional point scatterers with herring fish properties such as fish flesh 

viscosity and swimbladder radius, obtained from a volume equivalent sphere of the swim 

bladder. Though clean results from the CBE simulations require thousands of realizations, which 

can be time consuming, these results show that there are significant differences in the scattered 

mean square pressure from the fish school from the original signal. Additionally, it shows that 

there are significant differences in the returns from the herring fish school from that of an 

equivalently sized hard or soft sphere in the shape of the backscattered time dependent signal and 

the start and end times of the signal for an aggregation of resonant scatterers. 
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5-4: Summary and Conclusions 

 

 In this chapter, broadband, frequency sweep signals were considered as the incident wave 

on spherical aggregations of scatterers. The first part of the chapter considered aggregations of 

ideal scatterers, with fixed scattering cross section, and the second half considered aggregations 

of scatterers with herring fish properties such as swimbladder volume and viscosity for varying 

depths. Results were compared by considering single, 64 and up to 4096 realizations with the 

original signal as well as the van Bladel (1968) spheres discussed in Chapter 4. The time delays 

in the signal were compared and the cross correlation was evaluated to draw more effective 

comparisons in the real part of the backscattered mean square pressure. 

 The findings from this chapter yield several conclusions: (i) The constraints considered in 

Chapters 3 and 4 to determine if a CBE peak results in the frequency domain are considered 

important in ensuring a CBE peak in the time domain as well. The CBE peak is still dependent 

on spacing, aggregation size and dimensionless scattering strength. In actual fish schools, 

however, an increase in the depth of the fish school in the ocean also increases the multiple 

scattering effects in the free space. (ii) The Foldy (1945) equations can be used to simulate an 

aggregation of omnidirectional point scatterers with herring fish school properties and CBE 

occurs for the aggregations considered. (iii) In the time domain, a backscattered pressure 

magnitude squared of a single realization of an aggregation of scatterers is very poorly correlated 

with the original signal, though the cross correlation fluctuations do increase with the number of 

scatterers. (iv) And, lastly, there are significant differences in the backscattered mean square 

pressure resulting from an aggregation of scatterers from that of an equivalently sized hard or 

soft sphere of the same size, both in the presence of a CBE peak as well as time delays in the 

signal.  
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 As in Chapter 4, while CBE still may be too weak a phenomenon for use in 

discriminating schools of fish from other objects in practice; only if a wide range of angles could 

be measured over thousands of realizations, then it might provide an effective means of 

discrimination. Additionally, the work reported in this chapter also suggests that CBE isn’t 

necessarily the only tool which can be used to gather information for discriminating fish schools 

from other scattering objects of comparable backscattering strength. In practice, the results 

shown in this chapter provide additional insight into how the returns from a fish school differ 

from that of a single scattering object which may be present in the ocean for all angles under 

idealized circumstances. Typically, in a downward looking echosounder system, where the 

simulation setup would be most applicable, information on the returns at other angles would not 

be able to be readily determined. However, the work reported in this chapter does not consider 

multiple scattering from scattering objects which are not omnidirectional and may also be 

present in the ocean or compression and expansion effects of the sphere which could also play a 

role. Discussion in Chapter 6 considers this even further by comparing the findings presented 

thus far with using the probability distribution function of the pressure amplitude and standard 

deviations of the collected samples which can be obtained in the backscatter direction.  
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CHAPTER 6 

Backscatter Statistics and Connections to Ocean Acoustics Measurements 

 

 The work in this chapter describes a more common statistical discrimination technique to 

classify schools of fish involving the use of the probability distribution function of the mean-

squared backscattered pressure. Analysis of this probability distribution function has been 

previously considered extensively (see Chapter 1). However, this chapter will explore the utility 

of the probability distribution function of the backscatter returns for classifying schools of fish 

from other objects. Additionally, the normalized echo amplitude probability distribution function 

from simulation is compared with distributions obtained via in situ measurements from schools 

of rockfish and small pelagic fish2. The chapter begins by first describing the methods and 

techniques utilized for analysis of the simulation and in situ measurement. Additionally, it also 

explains how an assessment is made for the goodness of a fit. It then shows the probability 

distribution functions for an aggregation of scatterers and how the standard deviation of a subset 

of samples can be used to effectively distinguish an aggregation of scatterers from a single large 

object in a free space environment. The conclusions from these findings are extended to schools 

of fish from ocean acoustics measurements and the distribution is modified slightly via a 

weighting function to account for the natural variability in the fish schools. Some of the findings 

in this chapter appear in Mookerjee and Dowling (accepted for JASA).  

                                                           
2 The in situ measurement data was provided by Dr. Kelly Benoit-Bird of Oregon State University and Monterey 

Bay Aquarium Research Institute. 
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6-1: Methods and Technique 

 

 In this chapter, simulations are done using the geometry of Fig. 4-2. A plane wave with 

wave vector k


along the x-axis illuminates an aggregation of scatterers centered at the origin. 

Unlike in Chapter 4 where a far field receiving ring is used to evaluate the returns at each angle 

from -180 to +180 degrees, only the backscatter direction, φ = 0, is considered here. The 

aggregations considered are spherical aggregations with scattering strengths of 0.21 ≤ sk  ≤ 

3.2, 2.9 ≤ ks ≤ 6.4 and 12 ≤ ka ≤ 32 and prolate and oblate spheroids, where the equatorial and 

polar radii are kae = 16 and kap = 32 for the prolate spheroid and vice versa for the oblate 

spheroid. As in the rest of this thesis, for the simulations, the Foldy (1945) equations discussed in 

Chapter 2 are used in their dimensionless forms with length scales scaled by incident wave 

number, k, and pressures scaled by incident amplitude, A. Additionally, in the backscatter 

direction, pressures are normalized in two ways: (1) normalized pressure magnitude squared in 

dB, 10log10(|ps(0)|2/<|ps(0)|2>), and (2) normalized echo amplitude, |ps(0)|/<|ps(0)|2>1/2 to describe 

the distribution of backscattered field amplitudes from the aggregation of scatterers.  

 The measurements were performed off the Oregon coast in the North Pacific Ocean at a 

latitude of 44°09’51.8”N and a longitude of 124°55’57.4”W. Two types of fish schools are 

considered: (1) rock fish, which were located near the seabed at depths of 100-175 meters and 

(2) small pelagic fish [typically consisting of herring, anchovies, sardines, shad and menhaden 

(NOAA fisheries, 2014)] which were located near at depths of 4-50 meters. Frequencies 

considered which illuminated the schools of fish were 18, 38, 70, 120 and 200 kHz via a 

downward looking echosounder, Simrad EK60. Figure 6-1 shows the scattering cross section σs 

(in m2) obtained from the Love (1978) model (2-11) for (a) rockfish (kas = 2.3-25.6) at 150m 
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depth (resonance frequency at 430Hz) and (b) small pelagics (assuming the school is primarily 

composed of herring, kas = 0.53-5.88) at 25m depth (resonance frequency at 880Hz) in the 

ocean’s water column for the frequencies of interest. Because the wave number scaled effective 

radius of the swimbladder is greater than one, here, the Foldy (1945) equations would not be 

comparable. Though the dimensionless scattering strength of each rockfish (kσs
1/2 = 3.25-3.5449 

for 18-200kHz) is slightly higher than for each small pelagic fish (kσs
1/2 = 1.6-3.5 for 18-

200kHz), rockfish are also bigger in size (28cm, ks = 21.1-235) compared to small pelagics 

(18cm, ks = 13.5-150) (Froese et al., 2012, Gauthier and Rose, 2001). Therefore, for these 

frequencies, the multiple scattering effects would be comparable, assuming that the small 

pelagics are primarily composed of herring. 

  
(a) (b) 

Figure 6-1: Dimensionless scattering strength as a function of frequency (in kHz) for a school of (a) rockfish at 

150m depth (resonance at 430Hz) and (b) small pelagics at 25m depth (resonance at 880Hz) in the ocean’s water 

column for the frequencies considered in the in situ measurements (18kHz-200kHz)  

 

 

Returns were recorded in the form of volumetric scattering, Sv, in dB (Figure 6-2) using 

transducers 38-12 and 120-7C which were colocated broadcast transducer.  
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Figure 6-2: Ocean acoustic in situ measurement setup 

 

 

The decibel Sv-values were converted to |p|2 and then to pressure amplitude normalized by the 

root mean square of the pressure. Sample echograms, provided to the author by Dr. Kelly Benoit-

Bird of the Monterey Bay Aquarium Research Institute, of typical shapes, orientation and 

composition of the fish school in the near bottom and in the near surface of the ocean are shown 

in Figure 6-3. In Fig. 6-3a), a school of rockfish illuminated at 38 and 70kHz is near the bottom 

of the ocean at a depth of 100-150m. Fig. 6-3b) shows a school of small pelagics at the same 

frequencies located near the surface of the ocean at 4-40m depth. The colors indicate the 

volumetric scattering strength, Sv, ranging from -60 to -30dB for the small pelagic fish schools 

and -80 to -40 dB for the rockfish. Color bars for the range for Sv values in the echogram were 

not provided, so the Sv  dB ranges mentioned are extracted from the data set.  
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(a) (b) 

Figure 6-3: Sample echograms from in situ measurements from fish schools located (a) near the bottom of the ocean 

and (b) near the surface of the ocean at frequencies of 38 kHz and 70kHz (prepared and provided by Dr. Kelly 

Benoit-Bird of the Monterey Bay Aquarium Research Institute) 

 

 

In order to determine the distribution for the backscatter statistics, a histogram is prepared 

with 50-200 bins, depending of the number of samples collected of the fish school. The number 

of samples in the histogram is then normalized by the area under the histogram to produce a 

probability distribution function (PDF). Various types of fits are applied to the points which 

make up the probability distribution function from the aggregation of scatterers. The goodness of 

the fit, r2, can be obtained by considering a data set with values, y = [y1 … yn] which has a mean 

of y  and a model distribution consisting of values f = [f1 … fn]: 
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Typical values for r2 range from 0 ≤ r2 ≤ 1 where r2 = 0 indicates that there is no relationship 

between the data set and the prediction model and r2 = 1 which suggests that the fitted model 

describes the data perfectly. Figure 6-4 shows some sample fits for low and high r2 where the 

black hollow circles are the data and the black curve is of the model distribution. In Figure 6-4a), 
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the model misses all the points so it has an r2 of only 0.0774. However, in Figure 6-4b), the 

model captures the points almost perfectly with an r2 of 0.9975. Thus, r2 needs to be as close to 1 

as possible indicated the best fit to model to the actual distribution of the backscattering returns 

from the aggregation. 

  
(a) (b) 

Figure 6-4: Sample fits to model (____) the distribution of a data set (o) where the fit in (a) has a low r2 of 0.0774 and 

(b) has a high r2 of 0.9975 

 

 

 In this chapter, the probability distribution function for the backscattered returns from the 

simulation and the in situ measurements are plotted as points. A best fit distribution function is 

sought to fit these points. This distribution function is either a Rayleigh distribution or a smeared 

Rayleigh distribution (discussed in greater detail in Section 6-3). In order to assess how well the 

probability distribution function describes the backscattering, the goodness of fit parameter, r2 is 

utilized. The best fit distribution visually passes through or is relatively near most of the points 

and has an r2 as close to 1 as possible.      
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6-2: Simulation Results 

 

 In Chapter 4, the CBE peaks shown were determined as ensemble averages of 
2

)(sp  

from thousands of different realizations of the various random aggregations. For any particular 

scattering direction φ, the samples can be converted into a decibel value Ψ using their mean 

value:  = 





 22

10 )()(log10  ss pp . Then, the decibel values can be sorted into a 

histogram and normalized to form a probability density function (PDF) for Ψ. This conversion, 

sorting and normalization process was undertaken for the backscatter direction (φ = 0) for the 20 

different random aggregation sets shown in Table 4-1. The results of this PDF construction 

process are shown on Figure 6-5(a) along with the extreme value distribution (Lawless 1982): 
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having scale parameter,  = 10log10(e) ≈ 4.34. This distribution for the decibel-valued random 

variable Ψ is equivalent to a Rayleigh distribution, PDF() =  2exp2  
 for the amplitude 

ratio variable  = 
21

2
)()(  ss pp  [see Fig. 6-5(b)], and both distributions have been 

considered in prior studies of backscattering from fish schools (Chu and Stanton 2010, Demer et 

al. 2009, Stanton et al. 2004, Mozynski 2002). Since the scatterers are randomly placed in the 

aggregation and a large number of samples are considered for these simulations (O(103)), via the 

central limit theorem, the real and imaginary parts of pressure are normally distributed. Thus, the 

|ps| is Rayleigh distributed (Abraham et al. 2011, Rice 2010).  Here, the r2 for the distribution 

fitting was 0.9975. 
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(a) (b) 

Figure 6-5: Probability distribution functions (PDFs) for Ψ = 10log10(|p|2/<|p|2>) in dB (a),  and for  |p|/<|p|2>1/2  (b) 

from the 20 parameter sets considered in Chapter 4. The (a) extreme value distribution and (b) Rayleigh distribution 

appears as a solid curves. The PDFs from the simulations are statistically identical, regardless of aggregation 

geometry, dimensionless spacing and dimensionless scattering strength. Furthermore, all PDFs of  are well-

matched to the extreme value distribution, and all PDFs of  are well-matched to the Rayleigh distribution.  

 

 

 Interestingly, the - and - distributions from the simulations are all well matched to the 

fitted extreme value (6-2) and Rayleigh distributions, respectively, regardless of the shape or 

orientation of the aggregation for all values of ka, ks and kσs
1/2 considered in this study. Thus, 

backscatter samples (in dB) from an aggregation of omnidirectional scatterers follow (6-2) 

independently of: the size and shape of the aggregation, the spacing and strength of the scatterers 

and the importance of multiple scattering within the aggregation.  

 The invariance of the distribution for  shown in Fig. 6-5 suggests that a remote 

aggregation vs. large object discrimination technique might be possible when propagation 

fluctuations are weak or absent using a countable number of independent backscatter samples, 

perhaps obtained from multiple pings from a monostatic active sonar system. In real ocean 

remote sensing scenarios when variations in backscattered intensity are caused by target and 



 

133 
 

environmental fluctuations, echo statistics from hundreds or thousands of pings may be needed 

to discriminate between clutter and targets of interest (Abraham et al. 2011). Thus, the simpler 

objective of determining the number (q) of backscatter samples necessary to estimate the 

standard deviation of  to within a specific dB tolerance (ε) with 95% confidence is pursued 

here for the ideal case when multipath propagation and propagation fluctuations are weak or 

absent. This ideal case may be applicable to the usual downward looking echosounder geometry 

where single path acoustic propagation is most important. 

 Seven values of q (4, 8, 16, 32, 64, 128 and 256) were considered for this sample size 

determination effort and statistical results were generated by direct interrogation of the -

samples used to produce Figure 6-5(a). In particular, q samples of Ψ were repeatedly drawn at 

random from an ensemble of 15000 simulation samples. Then, the standard deviation, q, 

computed from each set of q samples was compared to that of the extreme value distribution 

given by (6-2) which has a mean of -2.507 dB and a standard deviation of evd = 5.570 dB. Using 

this information, the probability that |q – evd| ≤  was compiled as a function of  and q. 

Finally, the tolerance ε for a probability of 95% was determined for the seven q values listed 

above and these results are shown in Table 6-1. As expected, the tolerance ε falls as q increases, 

descending below 2.0 dB at q = 32, reaching a value of 1.0 dB at q = 128 and falling to 0.7 dB at 

q = 256. Although these results were generated for an ideal (free space) environment, they 

should still be relevant when the acoustic propagation is single path and relatively stable. But 

more importantly, these results indicate that the inherent fluctuations associated with 

independent backscatter samples from an aggregation of scatterers might be adequately 

characterized by tens or hundreds of independent samples, while thousands of independent 

samples were needed over a nontrivial range of the scattering angle φ from the same 
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aggregations to reveal CBE peaks shown in Chapter 4. Thus, even when confronting real ocean 

scenarios rich with natural variations not included in the simulations, the conventional active 

sonar approach of documenting and assessing backscatter fluctuations as a means of remote 

aggregation vs. large object discrimination should be superior to determining the presence or 

absence of a CBE peak for the same task. This conclusion is additionally supported by the fact 

that an aggregation of scatterers may not produce a CBE peak if it is too small or has an 

insufficient density of scatterers or is composed of scatterers of insufficient cross section. 

Table 6-1: 95% confidence tolerances () for estimating the population standard deviation from q samples of , the 

normalized backscattered mean-square pressure in dB. 

 

 

 

 

6-3: In situ measurement analysis 

 

 For the remainder of this chapter, in situ measurements are considered. Here, the 

comparisons are made in the ψ-distributions between an aggregation of scatterers in free space 

from a school of fish in the ocean. To perform this analysis, acoustic survey results are collected 

in the form of the volumetric scattering strength, Sv in dB (MacLennan et al. 2002): 
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q ɛ for 95% confidence (dB) 

4 4.7 

8 3.6 

16 2.7 

32 1.9 

64 1.4 

128 1.0 

256 0.7 
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 Pings are sent downward as a ship moves over the fish school and the returns are recorded at 

different depths via the timing of the backscattered signals to determine Sv values at each driving 

distance and depth, both of which are in meters. Figure 6-6 shows a sample volumetric scattering 

data set for a near surface fish school. Higher Sv values indicate the region occupied by the fish 

school and lower Sv values correspond to background of weak tenuous scattering from the nearby 

ocean.  

 
Figure 6-6: Sample in situ measurement Sv data from a near surface fish school in dB as a function of depth in 

meters and driving distance in meters. The samples in the black box make up the region which surrounds the 

aggregation in the calculation of the total backscattered pressure-magnitude-squared, 
i j

p
2

. 

 

 

 In order to isolate the fish school in an image such as Fig. 6-6, a threshold (6-4) is applied 

to ensure that 99% of the scattering from the fish school is considered. Here, 
i j

p
2

 is the 

total backscattered pressure-magnitude-squared in a rectangular region that surrounds the 
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aggregation, and 
i j

ij p
2

  is the total backscattered pressure-magnitude-squared from the 

background. Here, ηij is chosen so that equality is most closely approached in (6-4); it can either 

be 0 or 1, with ηij = 0 indicating a point within the fish school and ηij = 1 indicating a point in 

background region surrounding the fish school. The indices (i, j) correspond to horizontal and 

vertical locations in the (depth, driving distance) coordinates shown in Fig. 6-6. After ensuring 

that 99% of the scattering from the fish school is captured, any holes in the school are filled in to 

make the school continuous (simply connected). For the fish school in Fig. 6-6, the final mask is 

shown in Fig. 6-7. The black region indicates where ηij = 0 (the fish occupied region) and the 

while part indicates ηij = 1 (the background region). The Sv-values from the background region 

were not included in the backscattered probability distribution function analysis. 
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Figure 6-7: Mask for the fish school in Figure 6-6 where black (0) indicates the region considered to be a part of the 

fish school and white (1) indicates the background region 

 

 

However, the (i, j) indices where ηij = 0 are used to create a set of corresponding |p|2 samples, 

that are then normalized by the root-mean-squared of this set, <|p|2>1/2, to yield samples of the 

normalized echo amplitude, ψ.  

6-4: In situ Measurement Results and Discussion 

 

 In this section, two different distributions will be considered for fitting the various 

samples sets of ψ. Fish schools are first fitted to a Rayleigh distribution, because it was found to 

describe the simulation results well. However, a single Rayleigh distribution does not account for 

natural spatial variability in fish density. Thus, the second part of this section considers a 

smeared distribution, in the form of a continuous sum, or integral, of Rayleigh distributions with 

a weighting function. This distribution does a much better job of capturing the natural variability 

of fish schools, and possible predictions on the fish school composition will be discussed.  
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 1. Rayleigh Distribution 

 For the analysis of the distributions of the fish schools, the distributions of the 

backscattered returns from the aggregations are fitted to the Rayleigh distribution for 60 of the in 

situ measurement data sets which could be used for the 18, 38, 70, 120 and 200 kHz frequencies 

(6 schools and five frequencies for 30 data sets from the rockfish, and 6 schools and five 

frequencies for 30 data sets for the small pelagic fish schools). For this fitting, a Rayleigh 

distribution with mean <ψ> is considered (6-5). Here, this mean value is considered the free 

parameter and therefore, this fitting is considered a one parameter fit (Papoulis 1991). 
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Figure 6-8 shows the best fit Rayleigh distribution for backscatter samples from a natural 

fish school in linear-linear (top) and log-log (bottom) coordinates for the probability distribution 

function of the fish school against the normalized echo amplitude, ψ. Visually, the distribution 

shape of the normalized echo amplitude for this fish school does appear to resemble that of a 

Rayleigh distribution (initial increase for smaller values of ψ and then a gradual decrease, 

approaching 0 for larger values of ψ). However, the best fit distribution for the points shown 

produces an r2 of 0.51, and this indicates that the backscatter distribution for the particular fish 

school considered is not Rayleigh distributed. Results from the other in situ data sets are 

tabulated in Table 6-2. Here, <ψ> and r2 values are shown as the second and third columns in 

Table 6-2a) and b) for the rockfish and small pelagics, respectively.  There are a few values in 

Table 6-2a) and b) which produce an r2 near 1 (0.9543 and 0.9282). In Chu and Stanton (2010) 
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and Lee and Stanton (2014), it was found that the distribution may approach Rayleigh when the 

number density of the fish school is low. Therefore, this may be also the case for these schools.  

 
Figure 6-8: The probability distribution function is generated for ψ = |p|/<|p|2>1/2  (o) obtained from a school of small 

pelagic fish at 38kHz frequency (2, 38 in Table 6-2b)). The best fit Rayleigh distribution is fitted to these points (----

). The r2 for this fitted distribution is 0.5081, which suggests that the echo amplitude for this fish school is non-

Rayleigh, even though visually it appears that it might be Rayleigh.  

 

 

Table 6-2: The Rayleigh distribution is fitted to the probability distribution function of the normalized echo 

amplitude for the (a) rockfish and (b) small pelagic fish schools. In all the cases considered, the best fitted Rayleigh 

distribution was a poor fit with an r2 averaging around 0.51. 

 (a) Rockfish (School No., Frequency 

in kHz) 

<ψ> r2 

1, 18 0.5 0.3681 

1, 38 0.51 0.5252 

1, 70 0.03 0.822 

1, 120 0.03 0.8706 

1, 200 0.02 0.6791 

11, 18 0.68 0.3752 

11, 38 0.59 0.3512 

11, 70 0.65 0.3049 

11, 120 0.65 0.3585 

11, 200 0.63 0.4169 
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13, 18 0.57 0.6994 

13, 38 0.59 0.7177 

13, 70 0.21 0.6313 

13, 120 0.33 0.7153 

13, 200 0.42 0.7144 

16, 18 0.48 0.2848 

16, 38 0.42 0.5544 

16, 70 0.24 0.2378 

16, 120 0.4 0.3423 

16, 200 0.42 0.467 

20, 18 0.55 0.1783 

20, 38 0.46 0.6379 

20, 70 0.52 0.4768 

20, 120 0.64 0.5441 

20, 200 0.68 0.552 

22, 18 0.75 0.8272 

22, 38 0.52 0.9282 

22, 70 0.46 0.7495 

22, 120 0.45 0.817 

22, 200 0.54 0.7408 

 

(b) Small pelagics (School No., Frequency 

in kHz) 

<ψ> r2 

1, 18 0.34 0.3066 

1, 38 0.09 0.5031 

1, 70 0.15 0.3732 

1, 120 0.17 0.2306 

1, 200 0.22 0.2689 

2, 18 0.72 0.3737 

2, 38 0.09 0.5081 

2, 70 0.15 0.3732 

2, 120 0.17 0.2306 

2, 200 0.2 0.2689 

3, 18 0.39 0.4973 

3, 38 0.2 0.5915 

3, 70 0.15 0.6813 

3, 120 0.18 0.854 

3, 200 0.22 0.9513 

5, 18 0.6 0.4002 

5, 38 0.43 0.4569 

5, 70 0.29 0.6672 

5, 120 0.2 0.7013 
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5, 200 0.25 0.738 

7, 18 0.03 0.5544 

7, 38 0.28 0.4561 

7, 70 0.03 0.5412 

7, 120 0.05 0.8323 

7, 200 0.03 0.917 

9, 18 0.2 0.2837 

9, 38 0.11 0.7855 

9, 70 0.1 0.4872 

9, 120 0.01 0.5629 

9, 200 0.05 0.5892 

 

In this section, the Rayleigh distribution was used to fit the distribution of the normalized 

echo amplitude. This was utilized since it appeared to describe the backscattered returns from the 

simulation data remarkably well. Additionally, for a large number of samples, as per the central 

limit theorem, it would make sense that the distribution would be Rayleigh. However, for the in 

situ measurements, the Rayleigh distribution fails to describe the distribution of the 

backscattered returns because there is natural variability in fish schools located in the ocean’s 

water column that contribute to the differences in the backscattering returns. Consequently, to 

account for these differences, a smearing distribution is considered which allows an actual 

backscatter distribution to be composed of a continuous superposition of Rayleigh distributions 

having different values of <ψ>. 

 

 2. Smeared Rayleigh Distribution 

 In Section 1, a Rayleigh distribution was used to model the backscattering from the 

rockfish and small pelagic fish schools. This was utilized since it appeared to be successful in 

describing the normalized echo amplitude distribution for an aggregation of omnidirectional 
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point scatterers simulated via the Foldy (1945) equations. However, a single Rayleigh 

distribution is generally unsuccessful for describing the in situ measurements due to the natural 

variability of the ocean’s water column and the fish school itself. Thus, a smeared Rayleigh 

distribution function is considered, where a weighting function, A(<ψ>), and a continuous sum of 

varying-mean Rayleigh distributions is utilized to account for the natural variability. 

The smeared Rayleigh distribution consists of a normalized weighting function multiplied 

with a variable-mean-value Rayleigh distribution that is integrated over all possible mean values. 

This distribution models the natural variability of the fish school by considering allowing <ψ> to 

take on a range of values for a natural fish school. This approach generally performs well in 

fitting the 60 rockfish and pelagic fish data sets previously fitted with a Rayleigh distribution. 

This function appears as follows in (6-4) where A(<ψ>) is the weighting function, <ψ> is the 

mean, <ψ>min is the minimum mean considered, and <ψ>max is the maximum mean considered in 

the distribution. Here, the value for <ψ>min modulates the distribution function for the smaller 

values of ψ and <ψ>max adjusts the distribution function for larger values of ψ.  
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Since <ψ>max controls the larger values of the distribution and most of the PDF(ψ) values 

for large ψ approaches zero, for simplicity, <ψ>max is set to 2. This value was selected, because it 

appeared that in most cases, <ψ>max hovered between 1 and 3 to attain the maximum r2. There 

were a few instances where <ψ>max exceeded 3 to obtain the best r2, but for these cases, the r2 

only improved by a few ten thousandths.  
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  Additionally, it was found, from numerical exploration of several polynomial weighting 

functions which maximized the r2, that the Lorentzian most simply describes the weighting 

function for the small pelagics and rockfish. This weighting function was selected for this reason 

and because it is non-negative. Any biological relevance of the Lorentzian for the fish schools is 

not known and is suggested as future work in Chapter 7. Thus, the form of the weighting 

function considered to model the natural variability is shown as (6-6). 

12 )()(  bA   (6-6) 

For this function, b is a constant added to the mean squared <ψ>2.  When taken together, (6-4) 

and (6-5) describe a two parameter fit (<ψ>min, and b are the parameters) to the measured in situ 

backscatter data. 

 Table 6-3 summarizes the specific parameters needed to produce a best fit for the 

backscattered distribution in the form of the normalized echo amplitude (a) for the rockfish and 

(b) for the small pelagic fish. In comparison to the Rayleigh distribution, the r2 values have 

improved significantly averaging to 0.975. Additionally, it should also be noted that the 

normalized echo amplitude probability distribution function is frequency dependent for the fish 

schools, a finding consistent with that of Lee and Stanton (2016). Figure 6-9 shows the best fit 

distribution (----) in (top) linear scale and (bottom) logarithmic scale for the normalized echo 

amplitude of a school of the small pelagic fish school at 200kHz (o) with values of b = 0.0012 

and <ψ>min = 0.009. This fitted distribution produces r2 = 0.9486. Considering the logarithmic 

plot, it appears that the fit performs poorly because of the lowest bin of ψ. This may be due to the 

fact that at 120 and 200kHz, the scattering from krill is also the strongest (Miyashita et al., 

1996). Thus, the probability distribution function of the normalized echo amplitude from the 

school of fish may have also been impacted by the superimposed echoes from krill. Additionally, 
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applying the threshold (6-3) to the fish school yielded only 1500 samples. Other instances of 

lower values of r2 also occur at frequencies where other marine life are resonant (18kHz is also 

the resonance frequency of zooplankton (Korneliussen and Ona, 2003)) or when a limited 

number of samples are acquired from the in situ measurement.  

 
Figure 6-9: The probability distribution function of ψ = |p|/<|p|2>1/2 in the backscatter direction for a small pelagic 

fish school at 200kHz (o) is considered. The points are fitted using a best fit smeared Rayleigh distribution (----). Of 

all the in situ measurement data considered, this distribution function had the worst fit to the points (r2 is 0.9486). 

This is likely because the resonance frequency of krill (co-located with this school) is also at 200kHz which would 

have contributed to the poorly fit high amplitude scattering tail.  

 

 

 The average fit for the distribution of the backscattering from fish schools was r2 = 0.975. 

Figure 6-10 shows the distribution of the backscattered returns from a school of rockfish at 

18kHz (o) when fitted with the smeared Rayleigh distribution (----) for b = 0.1868 and <ψ>min = 

0.0196. The r2-value for the fitted smear distribution was 0.9712. In this case, the fit is looks 

significantly better in log-log coordinates compared to Fig. 6-9. In linear-linear coordinates, the 

distribution narrowly misses the maximum value for the measurement backscattered distribution. 
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For the other data sets considered, most of the fits appeared as in Figure 6-10 with just a couple 

of data points not lying on or near the fitted distribution. 

 
Figure 6-10: The probability distribution function of ψ = |p|/<|p|2>1/2 in the backscatter direction for a school of 

rockfish at 18kHz (o) is considered. The points are fitted using a best fit smeared Rayleigh distribution (----). This 

smeared Rayleigh distribution yielded a goodness of fit value of r2 = 0.9712 and is around the average r2 for the 

smeared Rayleigh distribution fitted to the probability distribution function of ψ = |p|/<|p|2>1/2 for the fish schools. 

 

 

 Figure 6-11 shows the distribution for the best fitted distribution. This school consisted of 

the rockfish which illuminated at a frequency of 70kHz. The parametric values for this fit were 

<ψ>min = 0.0437 and b = 0.0955. In this case, most of the points passed through the curve or 

were slightly above or below the curve. Additionally, since other marine life in the ocean which 

may contribute to the backscattering such as zooplankton and krill, are not resonant at this 

frequency, this fitting solely models the backscattered distribution from the rockfish with the 

scattering from other life forms minimized unlike in the cases where the r2 is low. 
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Figure 6-11: The probability distribution function of ψ = |p|/<|p|2>1/2 in the backscatter direction for a school of 

rockfish at 70kHz (o) is considered. The points are fitted using a best fit smeared Rayleigh distribution (----). This 

smeared Rayleigh distribution yields a goodness of fit value of r2 = 0.9931. This fitting was one of the best smeared 

Rayleigh distributions considered for the in situ measurements analyzed.  

 

 

Table 6- 3: The smeared Rayleigh distribution is fitted to the probability distribution function of ψ = |p|/<|p|2>1/2 of 

the in situ measurements for the fish schools. The fitting parameters in the smeared Rayleigh distribution of <ψ>min 

and b for the schools of (a) rockfish and (b) small pelagics are tabulated. In all these cases, since the r2 is close to 1, 

the fitted smeared distribution (r2
avg = 0.975) is a significant improvement to the best fit Rayleigh distribution (r2

avg 

= 0.51). 

 (a) Rockfish  

School No., 

Frequency in kHz 

Sample 

Size 

<ψ>min b r2 

1, 18 5800 0.0073 0.2916 0.9669 

1, 38 5800 0.0165 0.3913 0.9848 

1, 70 5800 0.0226 0.0139 0.9825 

1, 120 5800 0.0219 0.0091 0.9832 

1, 200 5800 0.0048 0.0081 0.9705 

11, 18 5037 0.0050 1.1109 0.9818 

11, 38 5037 0.0269 0.5062 0.9843 

11, 70 5037 0.0180 0.4755 0.9667 

11, 120 5037 0.0162 0.6969 0.9834 

11, 200 5037 0.0243 0.7682 0.9852 

13, 18 9456 0.0440 0.8115 0.9865 

13, 38 9456 0.0371 0.9303 0.9816 

13, 70 9456 0.0437 0.0955 0.9931 
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13, 120 9456 0.0699 0.1383 0.9903 

13, 200 9456 0.0483 0.2812 0.9823 

16, 18 6408 0.0000 0.2001 0.9723 

16, 38 6408 0.0305 0.3759 0.9788 

16, 70 6408 0.0000 0.0558 0.9922 

16, 120 6408 0.0188 0.1843 0.9931 

16, 200 6408 0.0247 0.3074 0.9917 

20, 18 17311 0.0124 0.2438 0.9623 

20, 38 17311 0.1135 0.3313 0.9929 

20, 70 17311 0.0079 0.5533 0.9918 

20, 120 17311 0.0065 1.3764 0.9765 

20, 200 17311 0.0061 1.4966 0.9564 

22, 18 66943 0.0402 4.0317 0.9633 

22, 38 66943 0.2593 0.0694 0.9848 

22, 70 66943 0.0926 0.3056 0.9854 

22, 120 66943 0.1355 0.2067 0.9812 

22, 200 66943 0.0587 0.5948 0.9815 

 

(b) Small Pelagics  

School No., 

Frequency in kHz 

Sample 

Size 

<ψ>min B r2 

1, 18 2705 0.0196 0.1868 0.9712 

1, 38 2705 0.0253 0.0083 0.9879 

1, 70 2705 0.0273 0.0251 0.9716 

1, 120 2705 0.0116 0.0278 0.9836 

1, 200 2705 0.0000 0.0422 0.9738 

2, 18 4209 0.0091 1.0952 0.9696 

2, 38 4209 0.0353 0.1583 0.9608 

2, 70 4209 0.0223 0.0795 0.9537 

2, 120 4209 0.0000 0.1286 0.9853 

2, 200 4209 0.0000 0.1755 0.9815 

3, 18 1058 0.0542 0.3101 0.9843 

3, 38 1058 0.0503 0.0461 0.9903 

3, 70 1058 0.0553 0.0232 0.9907 

3, 120 1058 0.0936 0.0033 0.9933 

3, 200 1058 0.1264 0.0000 0.987 

5, 18 1529 0.0193 0.5219 0.9553 

5, 38 1529 0.0414 0.2981 0.9924 

5, 70 1529 0.0638 0.0909 0.9911 

5, 120 1529 0.0524 0.0862 0.9873 

5, 200 1529 0.0679 0.1319 0.9862 

7, 18 2378 0.0000 0.0885 0.9673 

7, 38 2378 0.0408 0.2097 0.9849 
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7, 70 2378 0.0000 0.0366 0.9556 

7, 120 2378 0.0219 0.0065 0.9536 

7, 200 2378 0.0090 0.0012 0.9486 

9, 18 5992 0.0379 0.0677 0.9506 

9, 38 5992 0.0569 0.0024 0.9925 

9, 70 5992 0.0303 0.0096 0.9751 

9, 120 5992 0.0000 0.0116 0.9731 

9, 200 5992 0.0000 0.0035 0.9736 

 

 In this section, two different fits were considered to model the backscattered distribution 

obtained from the in situ measurements. The first fit was a Rayleigh distribution which fitted the 

simulation backscattered probability distribution function remarkably well and the second fit was 

a smeared Rayleigh distribution function which is a continuous sum of weighted Rayleigh 

distributions for varying means. The goodness of fit for the Rayleigh distribution typically 

averaged at r2 = 0.51, whereas the goodness of fit for the smeared Rayleigh distribution averaged 

at r2 = 0.975. For all the data sets considered, the smeared Rayleigh distribution was a clear 

improvement to a single Rayleigh distribution fit.   

6-5: Summary and Conclusions 

 

 Unlike in Chapters 3-5 where the coherent backscatter enhancement was considered to 

simulate and analyze the backscattered returns from aggregations of omnidirectional point 

scatterers, this chapter (6) has focused on using only the returns in the backscatter direction to 

classify schools of fish. Via simulation, it has been shown that the distribution of the 

backscattered normalized pressure magnitude squared, 10log10(|ps|
2/<|ps|

2>), in dB, is the extreme 

value distribution, or a product of exponentials, and the distribution of the normalized echo 

amplitude, |ps|/<|ps|
2>1/2, is the Rayleigh distribution. Using the expected standard deviation of 

the fitted extreme value distribution, σevd, and the standard deviation of a subset of simulation 
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samples, σq, it has been shown that as few as 32 samples were needed to get within 2dB of the 

standard deviation of the extreme value distribution 95% confidence. In contrast, thousands of 

samples were needed to observe a peak from the coherent backscatter enhancement, which was 

only observed if the multiple scattering effects were strong. Therefore, it was observed that 

classification using a standard deviation of the backscattered normalized pressure magnitude 

square is a more robust technique than using the mean of the pressure magnitude squared. The 

second part of this chapter focused on using in situ measurements from schools of rockfish and 

small pelagics in the water column. In this set up, it was found that a single Rayleigh distribution 

does not fit in situ measured probability distribution functions, yielding best fits with average r2 

values of 0.51. However, a weighted continuous sum of varying-mean Rayleigh distributions (a 

smeared Rayleigh distribution), is a better fit with average r2 values 0.975. The weighting 

function considered to describe the returns from the different fish schools was a Lorentzian.  

 The findings in this chapter suggest the following: (i) Using simulation, the probability 

distribution function describing the backscattered normalized pressure magnitude squared in dB 

is the extreme value distribution and the normalized echo amplitude is the Rayleigh distribution. 

These two findings are unsurprising since the two random variables, ψ and Ψ, are algebraically 

related. (ii) Fewer samples are needed to classify an aggregation of omnidirectional point 

scatterers using the standard deviation of the samples. While thousands of realizations were 

needed to notice a peak using the ensemble average of scattered pressure magnitude squared, as 

few as 32 samples were needed to estimate the population’s standard deviation to within 2 dB at 

the 95% confidence level. (iii) When considering normalized echo amplitude, using in situ 

measurements, the Rayleigh distribution fails to model the backscattered distribution for rockfish 

or small pelagics. Instead, a weighted continuous sum of Rayleigh distributions of varying means 
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is utilized and this distribution performs significantly better for the data sets considered. (iv) This 

continuous sum is expressed as an integral and the weighting function for the rockfish and small 

pelagics was the Lorentzian function. Thus, two free fitting parameters are used for the fitting. 

Both the fitting parameters <ψ>min and b influence the probability distribution function for 

smaller values of the normalized echo amplitude. While <ψ>min gives a rough estimate of the 

lower values of ψ, b fine tunes the function so that the distribution better fits the points. Since it 

was observed that the maximum mean of the normalized echo amplitude was around two, 

<ψ>max was set to two. (v) Lower r2 values primarily occur at frequencies where zooplankton 

(18kHz) or krill (120 and 200kHz) are also resonant. This suggests that in addition to 

determining the presence of a fish school in the ocean, multi-frequency echo sounder 

investigations have the potential to determine the homogeneity of the marine life also within the 

region considered the fish school. 

 In comparison to using the coherent backscatter enhancement to classify schools of fish, 

the statistical techniques for analyzing backscatter returns are superior. Measuring a coherent 

backscatter enhancement peak requires thousands of realizations and many angular 

measurements which are typically not possible. Additionally, if a school of fish consists of weak 

scatterers, there may not necessarily be a CBE peak, whereas the probability distribution 

function would always exist, regardless of the strength of the multiple scattering effects. 

 In this chapter, the method of using the probability distribution function to characterize 

the backscattered returns from schools of fish was considered, an approach has been utilized for 

the last 30 years (Huang and Clay, 1980). During this time, the distributions fitted to the 

normalized echo amplitude probability distribution functions have been as Rayleigh (Huang and 

Clay 1980), Ricean (Stanton and Clay 1986), mixture (Abraham et al 2011) or k-distributions 



 

151 
 

(Stanton and Chu 2010). The work shown in this chapter suggests a distribution not previously 

considered in the literature, which is an integral of the product of a weighting function and a 

Rayleigh distribution for varying means (6-4). There are still many directions and developments 

that can come from it. Thus far, while there have been a several distributions of interest to 

describe the backscattered normalized echo amplitude of the probability distribution function, a 

specific connection of the measured distributions to the fish school behavior has yet to be 

considered (Stanton and Chu, 2010, Lee and Stanton, 2014, Lee and Stanton 2016). The work 

presented in this chapter is the first which starts to consider the contribution of the natural 

variability of the school of interest. Chapter 7 highlights some more of the future directions this 

study can go in and summarizes this chapter along with the findings discussed in the rest of this 

thesis. 
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CHAPTER 7 

Summary and Conclusions 

 

 This chapter reiterates the findings from each of the previous chapters and summarizes 

some of the conclusions discussed in Chapters 3-6. It will also propose and suggest some future 

directions the work in this thesis can go in and some of the expected challenges which would 

need to be overcome based on the work documented in this thesis. 

7-1: Summary 

 

When sound is projected into the ocean, the backscattered signal may provide 

information about the object(s) from which the sound is scattered. When the backscattered sound 

comes from an aggregation of strong scatterers, such as a school of fish at their swimbladder 

resonant frequency, a phenomenon called the Coherent Backscatter Enhancement (CBE) occurs, 

and this phenomenon could aid in discriminating fish schools from other similar-strength 

scatterers in the ocean water column. This phenomenon is studied in this thesis to determine 

under which conditions a strong CBE peak occurs and the backscattered mean squared pressure 

is compared with the backscattered pressure magnitude squared of an idealized object, modeled 

as spheres in this thesis. Additionally, the use of a probability distribution function is also 

considered to gather statistical information on the backscattered amplitude from an aggregation 
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of scatterers. The normalized echo amplitude distribution from an aggregation of scatterers is 

compared with that of actual fish schools. 

It has been shown that coherent backscatter enhancement can be simulated both in the 

near and far fields of random aggregations of omnidirectional point scatterers. The scattering 

from the fish schools were modeled through the use of the Foldy (1945) equations, which are 

applicable for fish with an effective swimbladder size, as, that are illuminated by an incident 

wave, with wave number, k, when kas << 1. Comparisons of the scattering were made with 

idealized spheres considered in van Bladel (1968) and in Hahn (2007). 

In addition, coherent backscatter enhancement from aggregations of omnidirectional 

point scatterers can be simulated using single frequencies and frequency sweeps. Since a 

frequency sweep is composed of single frequency signals, the results obtained from single 

frequency signals are also applicable when considering broadband pulses as long as the length 

scales are adjusted accordingly.  

To discriminate the backscatter returns fish schools against other isolated objects present 

in the ocean, the probability distribution function of the normalized echo amplitude or magnitude 

pressure squared from an aggregation of scatterers or a fish school is considered. The 

backscattered probability distribution function for a simulated aggregation of omnidirectional 

point scatterers is a Rayleigh distribution. For actual fish schools, the backscattered probability 

distribution function is a smeared Rayleigh distribution. Although there is not an exact or 

approximate reasoning that justifies the Lorentzian to be the weighting function, it has been used 

primarily for convenience, thereby resulting in a continuous sum of weighted Rayleigh 

distributions with varying means.    
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7-2: Conclusions  

 

 Several very important conclusions are arrived at from the chapters in this thesis which 

have already been mentioned at the end of each chapter, but are summarized here in the table 

below. 

Table 7-1: Overall conclusions from each of the chapters in this thesis 

Conclusion 

Number 

Conclusion Chapter Figures Tables 

1 An aggregation of omnidirectional point 

scatterers simulated via the Foldy (1945) 

equations conserve energy. 

 While Foldy’s paper showed the 

conservation of energy for a single 

omnidirectional point scatterer, 

the dissertation extends it to show 

the same for an aggregation of 

point scatterers with negligible 

amount of error  

3 3-6 

 

3-1, 3-2 

2 The Foldy (1945) equations can be used 

to simulate the coherent backscatter 

enhancement under the following 

conditions: 

 dimensionless scattering strength 

of an individual scatterer is high 

 wave number scaled spacing 

between scatterers is small 

 sufficient number of scatterers 

 In the far field, the CBE peak is 

also more prominent when the 

aggregation is bigger in size. 

3, 4 3-13, 4-6, 

4-10, 4-

11, 4-12, 

4-13, 4-

14 

 

3 Existing optics and acoustics CBE 

experiments can be replicated using 

simulation. 

 Wolf et al 1988 and Bayer 

Niederdrank 1993 experiments 

were replicated 

3 3-8, 3-10, 

3-11, 3-

12 

 

4 In the near field, the CBE peak height 

increases with increasing (k2σs)
1/4(ks)-1. 

3 3-13  
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 An enhancement exceeding a 

factor of two was also shown in 

the near field  

5 CBE can also be simulated and observed 

in the far field. 

 Due to a low Rayleigh far field 

parameter a simulation geometry 

involving a receiving ring was 

appropriate 

 For strong multiple scattering 

effects, a CBE peak emerged 

4, 5 4-10, 4-

11, 4-12, 

5-2, 5-3, 

5-7, 5-12, 

5-17  

4-1 

6 In the far field, the peak width is 

dependent on the aggregation geometry. 

4 4-9  

7 When comparing a spherical aggregation 

of scatterers with a single spherical 

scatterer by matching backscattered 

pressure magnitude square in the 

frequency domain, an overestimate of size 

may occur when the multiple scattering 

effects are strong. 

4 4-13, 4-

14 

4-1 

8 An aggregation of scatterers compares 

well with the Hahn (2007) sphere when 

the wave number scaled spacing is high 

and the dimensionless scattering strength 

is low, so that |4π(kg1)
2/(ks)3| << 1. 

 As the multiple scattering effects 

increase, there is a significant 

difference in the magnitude 

pressure from the Hahn (2007) 

sphere and the magnitude average 

pressure from simulating the 

aggregation of scatterers. This 

occurs because |4π(kg1)
2/(ks)3| 

approaches 1 (Frisch, 1968). 

4 4-15  

9 When considering broadband pulses, the 

CBE peak is dependent on the same 

parameters (ks, ka and kσs
1/2) as when 

considering simulations of CBE using 

single frequency signals. 

5 5-7, 5-12, 

5-17 

 

10 When considering the time dependence of 

the backscattered mean square pressure of 

the aggregation of scatterers, there are 

several features that are different from the 

5 5-3-5-17  
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backscattered pressure magnitude squared 

of an idealized sphere. These differences 

can be obtained from a single realization, 

64 realizations and thousands of 

realizations. 

11 A herring fish school can be simulated in 

the free space and does exhibit CBE, if 

enough samples and angles are 

considered. The depth of the fish school 

also plays a role in the strength of the 

multiple scattering effects. 

 Three different depths in the 

pelagic zone (60m, 236m and 

430m) were simulated at different 

frequencies surrounding the 

resonance peak 

 The CBE peak was widest and 

least prominent at 60m depth and 

narrowest and most prominent at 

430m depth. 

5 5-7, 5-12, 

5-17 

 

12 The returns from a school of fish are very 

different from that of a single spherical 

scatterer of the same size. 

 Peak corresponding to the time 

of the resonant frequency is 

the distinguishing feature. 

 The time dependent signal is 

slightly longer for the school 

of fish which is not present in 

the spherical scatterer. 

 When considering the angular 

dependence, CBE may occur 

for strong multiple scattering 

effects.  

4, 5 5-5-5-17 4-1 

13 Regardless of dimensionless spacing, 

aggregation size and scatterer strength, 

via simulation, the distribution is always 

Rayleigh or extreme value, depending on 

the normalization, as long as the 

scattering parameters are consistent over 

all the realizations.  

 The use of the distribution can be 

another way to classify an 

aggregation of scatterers from a 

single scattering object and may 

6 6-5  
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be a more robust method for 

classification, especially since the 

distribution is always the same 

regardless of the strength of the 

multiple scattering. 

14 In contrast to simulation, the distribution 

of the backscattered pressure amplitude 

for in situ measurements can best be fitted 

using a continuous sum of Lorentzian 

weighted Rayleigh distributions for 

varying means for the fish schools 

considered. Using this distribution 

commentary may also be provided on the 

homogeneity of the fish school. 

6  6-3, 6-10, 6-

11, 6-12 

15 Observing a CBE peak is not a robust 

alternative to existing conventional 

methods based on backscatter statistics 

for the task of remotely discriminating 

between an aggregation of scatterers and 

single isolated scatterer 

 Many backscatter samples are 

needed over an extended angular 

range to observe a CBE peak 

4,6 4-10, 4-

11, 4-12 

6-1 

 

7-3: Future Work 

 

 The research presented in this thesis is about the utility of the coherent backscatter 

enhancement and the probability distribution function of the backscattered returns for remote 

aggregation-vs.-single-object discrimination in active sonar scenarios. Most of the results have 

been presented in the form of feasibility studies conducted via simulation and many of these 

simulations were limited by runtime. Therefore, the conclusions in this dissertation are based on 

what was computationally feasible and could be completed in a timely fashion. Therefore, there 

are many directions that the future work can take. 

The possible problem statements are summarized in bullets in bold and are briefly discussed: 
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 Broadband Near Field CBE 

The primary aim of this thesis was to simulate the coherent backscatter enhancement with 

sufficient fidelity so that its likely utility for remote aggregation-vs.-single-object 

discrimination in active sonar scenarios could be assessed. As a result, much of the analysis 

has been focused on far field scattering. However, near field CBE has been of interest in 

optics (Akkermans et al. 1986) and ultrasound applications (Aubry et al. 2007). While 

experimental studies have been done with broadband, near field CBE, simulation studies, 

particularly with the Foldy (1945) equations have yet to be considered or explored. 

Additionally, simulation studies involving optics have been few so this may be an area which 

could be of interest in optics and ultrasound. 

 Adding other anatomical features of the fish 

Reeder et al. (2004) found that the swimbladder and skull yields the most scattering from 

the fish. This thesis only considered the swimbladder as the contributing factor of the fish 

school. If both the swimbladder and skull are considered together, it may be that fewer 

realizations may be necessary to get a peak and the scattering may be stronger for a distinct 

CBE peak. In this case, however, the Foldy (1945) equations may not suffice since they 

assume omnidirectional point scatterers. Alternatively, finite element or more complex 

boundary element techniques may be needed which are likely more time consuming than the 

currently-required N by N matrix inversion. In practice, adding more anatomical features of 

the fish would provide a better representation of the scattering from fish schools. 

 Inclusion of the fluid-structure interactions instead of the van Bladel (1968) or Hahn 

(2007) spheres 
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In this thesis, the hard, soft and Hahn (2007) spheres are idealized and their scattering 

characteristics are computed from standard textbook formulae (Morse and Ingard, 1968) due 

to its relative simplicity for evaluation. In practice, however, the mechanics of an actual 

sphere in the ocean would have static pressure effects involving expansion and contraction 

due to variations in depth. Better models for the spheres would include these fluid-structure 

interactions and might change the backscatter returned pressure magnitude squared for the 

soft and hard spheres. However, for simplicity, such complex interactions were not 

considered in this thesis.  

 Inclusion of the ocean waveguide into the simulations 

In this thesis, it was assumed that a downward looking echosounder need only consider 

direct path propagation. However, in reality, active sonar systems are commonly horizontal 

looking and the ocean water column includes many complications: plant life, bottom and 

surface roughness, along with other fish and marine life. Adding these features may impact 

the strength or width, if applicable, of the peak. Inclusion of the ocean waveguide would 

further increase the run time of the simulations which is why it was not considered in this 

thesis. 

 Improvement of the simulation runtime 

In this project, a major limitation for the simulations has been the runtime. While the 

codes were optimized to the author’s ability to produce results in a reasonable duration, there 

have definitely been instances where shorter runtimes were needed, especially when 

considering broadband pulses. For fully converged results, broadband simulations took 

approximately 8-10 months on the supercomputing cluster (Flux) provided by the Advanced 



 

160 
 

Research Computing group at the University of Michigan. If the runtime can be further 

improved either via a different programming language or through parallelization, additional 

simulations could be considered, particularly with many scatterers or larger aggregations, 

with different waveforms as the illuminating signal or through inclusion of an ocean 

waveguide. 

 Additional Far Field Broadband CBE Studies 

If more simulations of broadband CBE could be performed, the parametric scalings 

considered in Chapters 3 and 4 could be further improved to include depth of the fish school. 

Additionally, if high resolution receivers can be considered, analysis of the impact of the 

slightly longer signal could be considered. This was briefly explored, but it was determined 

that for the resolutions considered for the receivers, it was computationally infeasible to 

simulate or study further. Additionally, it was also observed that the fluctuations in cross 

correlation of the original signal with the scattered signal seemed to increase with the number 

of scatterers. Lastly, while the work in this thesis considered scattering from herring fish 

schools, other schools could certainly be considered.  

 Impact of the scattering from scatterers with different strengths 

Here, a primary assumption was that all the scatterers composing the aggregation have 

the same dimensionless scattering strengths. However, in reality, an aggregation may have 

scatterers with different strengths (i.e. fish in a school may be of different sizes or have 

different swim bladder sizes). While this was considered at the very beginning of this project, 

ultimately, this was not explored very thoroughly and this change could impact the 
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prominence of the CBE peak, parametric scalings, and the echo statistics distribution, even, 

may no longer be Rayleigh.  

 More detailed investigations on the impact of geometry of the aggregation on the 

prominence of the CBE peak 

In Chapter 4, aggregations which are realistic to fish schools, particularly spheres and 

spheroids (Partridge, 1980) were considered. However, when simulating the rectangular 

aggregation, there were definite differences in the appearance of the CBE peak strength and 

width. Additionally, when the aggregation was rotated, there were peaks present at angles 

other than in the backscatter direction. This was attributed to edge effects, but the importance 

of the edge effects on the CBE peak was not thoroughly explored. Additionally, it was 

assumed that the aggregation is perfectly spherical or spheroidal with no changes in the shape 

over the realizations. In actual fish schools, the geometry may change slightly.  

 Consideration of Other Fish Schools  

In Chapter 6, the in situ data obtained were for rockfish and small pelagic fish schools. 

Therefore, the distributions considered to model the fish schools are specific to rockfish and 

small pelagics. If more types of fish schools were considered, while the Rayleigh distribution 

portion of the function may be the same, the weighting function, A(<ψ>) and the maximum 

mean, <ψ>max, may change and be no longer set to two. 

 Biological Relevance of the Parameters Considered 

In Chapter 6, the smeared Rayleigh distribution was utilized with a weighting function, 

A(<ψ>), which was a Lorentzian function. The role of the weighting function was to 
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separately distinguish the natural variability of fish schools in the ocean’s water column from 

other objects in the ocean.  

This smeared distribution function is a new function considered for the probability 

distribution function of the backscattered normalized pressure magnitude. This is the first 

distribution function considered thus far which may provide insight into the statistical 

homogeneity of the fish schools. However, biological implications or interpretation of the 

parameters b, <ψ>min and <ψ>max, and a scientific rationale of selecting the Lorentzian are 

still unknown. These specifics of connecting the distribution with the fish schooling behavior 

has not yet been considered previously in the echo statistics modeling literature, though 

estimating of the density of a fish school from the backscattered probability distribution 

function has been studied (Chu and Stanton, 2010, Lee and Stanton, 2014). Therefore, 

additional work in this area might strengthen the utility of the smeared Rayleigh distribution, 

giving a more representative model for the fish school. 

 Extensions to other fields and applications 

While use of the probability distribution functions of the backscattering from fish schools 

has been widely used in fish school classification, this tool may also be explored and 

analyzed in optics, ultrasound or other applications where the coherent backscatter 

enhancement was considered. It would be interesting to see if the probability distribution 

function stemming from the sample considered in Wolf et al. (1988) or Aubry et al. (2007) 

also produces a Rayleigh distribution since the setup is more controlled compared to the fish 

school in the water column. Additionally, radar applications involving flocks of birds or 

other objects as the scattering medium may also be of interest and could even provide a 
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stronger comparison with the simulation results using the Foldy (1945) equations for the 

frequencies of interest.   
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APPENDIX A 

Fundamental Equations of Acoustics 

 

 The fundamental equations in acoustics consist of the lossless linearized equations, 

representing conservation of mass (A-1), conservation of momentum (A-2), conservation of 

energy (A-3) and the constitutive relations (A-4), where ),( trp


= acoustic pressure at a point, co 

= speed of sound, t = time, ρo = density at a point, ),( tru


= particle velocity of a fluid element, γ 

= ratio of specific heats, Rg = gas constant, Po = ambient pressure at a point, To = ambient 

absolute temperature at a point, determined by the ideal gas law, ),(' trT


= temperature 

fluctuation, cv = specific heat with constant volume, ),(' tr


 density fluctuation, ),(' tru


= 

velocity fluctuation, ),(' tre


= specific energy, ),( trM
 = rate of mass addition per unit volume, 

),( trF


force per unit mass applied to the fluid and ),( trE
 = rate of energy addition per unit 

mass. Here the molecular transport coefficients as assumed to be too small to consider, while the 

forcing terms on the right sides of (A-1), (A-2) and (A-3) serve as idealizations of real physical 

processes that may lead to acoustic waves. 
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Through algebraic manipulation and cross differentiation of (A-1)-(A-4), the following forced 

acoustic wave equation in the time domain may be deduced: 
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(A-5) 

The forcing (right hand side) terms in (A-5) can be expressed by a function ),( trq


. When (A-5) 

is transformed from the time domain to the frequency domain using the Fourier transform 

definitions discussed in Chapter 2, the forced Helmholtz equation (A-6) results. 

),(),(),( 22  rqrpkrp


  (A-6) 

Here, ),( rp


= pressure in the frequency domain, ock / = acoustic wave number and 

),( rq


= source terms in the frequency domain (the Fourier transform of the source terms in (A-

5)). The Foldy equations discussed in Chapter 2 are a direct solution to (A-6) with 0),( rq


. 
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APPENDIX B 

The Scattering Coefficient and Its Role in Acoustic Energy Conservation 

 

 The definition of the scattering coefficient, g1, (shown in Chapter 2) is to ensure that 

energy is conserved. This is done by having both a real and imaginary part for g1. This is not 

readily obvious from Foldy’s (1945) paper, but is implicit in evaluating the multiple scattering 

equations when selecting values for the dimensionless scattering strength, sk  . Therefore, 

Appendix B will show the problem set up and derivation of the scattering coefficient. 

Additionally, it will also discuss the limitations in the selection of the dimensionless scattering 

strength and explain why any arbitrary value cannot be selected for the dimensionless scattering 

strength.  

B-1: Problem Setup and Geometry 

 

 In order to derive the scattering coefficient, g1, a single scatterer and an incident 

harmonic plane wave with wave number k


 is considered. For simplicity, unlike in the rest of the 

thesis, the incident wave is traveling along the +kz axis and the listening location is at the origin. 

The scatterer, designated as a black dot, is located at the position
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))cos(),sin()sin(),cos()sin((  krkrkr , in spherical coordinates based on Figure B-1. 

Additionally, the polar angle is defined as θ with respect to the kz axis and the azimuthal angle is 

defined as φ with respect to the kx axis.  The location kr is the radial position for the single 

scatterer. 

 

Figure B-1: Problem geometry used to derive the scattering coefficient 

 

 

 The pressure field from the incident plane wave interacting with a single scatterer can be 

expressed as the sum of the incident pressure field and a spherical wave emanating from the 

single scatterer (B-1). Here, A is the amplitude of the incident plane wave and B is the complex 

amplitude from the spherical wave resulting from the plane wave interacting with the single 

scattterer.   
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 Using (B-1), the velocity can be determined using (A-2) with 0),( trF


 as (B-2): 
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With (B-1) and (B-2), the radial intensity, Ir, can be determined using (B-3) where * denotes the 

complex conjugate: 

 ),(*)],([Re
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1
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(B-3) 

The power, Π, can be calculated by taking an integral of (B-3) over a sphere as (B-4): 
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 Using the formula for (B-4) and some additional algebraic manipulation, it is possible to 

show that in order for energy to be conserved ((B-4) = 0), that the definitions given by Foldy 

(1945) result, ultimately, yielding the definition for g1. The next section will show the simplified 

result from (B-1)-(B-4) and the definitions given in Foldy’s (1945) paper for the scattering terms. 

B-2: Simplification and Foldy (1945) Definitions 

 

 After (B-1) and (B-2) have been considered in the formula for (B-4), the resulting 

simplified expression for (B-4) is listed as (B-5).  
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(B-5) 

Thus far, the scatterer resembles a single point source. In order for this scatterer to have 

omndirectional point scattering properties, Foldy (1945) relates the amplitude of the spherical 



 

169 
 

wave B to the incident amplitude A via the scattering coefficient to be AgB 1 . Simplifying (B-

5) further gives (B-6): 
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Dividing (B-6) by incident intensity gives the expression in Foldy (1945) as well: 
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(B-7) 

The first term in (B-7) is the scattering cross section, σs (
2

14 gs   ). In order to ensure 

that acoustic energy is conserved, the following system of equations can be expanded and 

solved: 

0)Im(
4

1  g
k

s


  

(B-8) 

 2
1

2
1 )][Im()][Re(4 ggs    

(B-9) 

Simplifying (B-8) and (B-9) yields the following two constraints for the real (B-10) and 

imaginary parts (B-11) of g1: 
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 Therefore, in order for energy to be conserved both a real and imaginary part of g1 need 

to exist. Consequently, the selection of values for k and σs needs to be carefully done so that the 

scattering coefficient is such that it is not purely imaginary since this would violate conservation 
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of energy for the point scatterer. The next section will discuss the constraints for the values and 

show why there is an upper bound in selecting a value for the dimensionless scattering strength 

for a point scatterer.  

B-3: Limitations in the Foldy (1945) Equations 

 

 In the previous section, it was shown that the scattering coefficient needs to be a complex 

constant with both real and imaginary parts to ensure that energy is conserved. Thus, arbitrary 

selection of σs is not feasible since it can violate acoustic energy conservation. Additionally, 

since the scattering cross section is defined as 
2

14 gs   , it must be a positive, real number. 

Therefore, the scattering cross section needs to be greater than 0 and less than a maximum value, 

max)( s  such that (B-10) is greater than 0. This maximum value is (B-12): 

2max

4
)(

k
s


   

(B-12) 

 or in terms of dimensionless scattering strength, sk  : 

5449.32)( max   sk  (B-13) 

 Therefore, the Foldy (1945) equations can be used to simulate omnidirectional point 

scatterers which have dimensionless scattering strength  20  sk . This constraint 

successfully ensures that energy is conserved for a single scatterer interacting with a harmonic 

incident plane wave. In Chapter 3, this is checked by simulation to ensure that simulations are 

implemented correctly and also expanded to check that that energy is still conserved for an 
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aggregation of scatterers interacting with a harmonic incident plane wave for dimensionless 

scattering strengths sk  = 0.21, 1 and 3.5.  
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