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ABSTRACT 

Type 2 diabetes is an important cause of death and disability worldwide. Causes 

of the growing epidemic have been primarily attributed to obesity, unhealthy diets, and 

physical inactivity. Prevention of diabetes, therefore, has focused largely on individual 

behavioral modification. However, the recognition that health behaviors are structured by 

social conditions and environmental resources has highlighted the importance of thinking 

about the multi-level causes of diabetes. With continued increases in diabetes prevalence 

and incidence, population-based prevention strategies that account for both individual 

and environmental causes of disease are necessary. In this dissertation, we used a large, 

multi-ethnic, prospective cohort, to examine the social and environmental contributions 

to the development of diabetes. Our goal was to understand: (1) if neighborhood 

environments, including the availability of physical resources to support healthy diets and 

physical activity and social resources to promote safety and social cohesion, are related to 

diabetes incidence; (2) how neighborhood environments interact with and shape 

individual genetic susceptibility to diabetes; and (3) the utility of including individual and 

area-level social information in public health and clinical decision-making using risk 

prediction models. In the first study, we found that long-term exposure to neighborhoods 

with greater availability of healthy food and physical activity resources was associated 

with a lower incidence of diabetes over 10 years. Neighborhood social environments 

were largely unrelated to diabetes risk. Our second study found that individual genetic 

susceptibility to diabetes was modified by the availability of healthy food and physical 
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activity resources. High genetic risk was most harmful for individuals living in 

neighborhoods with few healthy food and physical activity resources, but was 

considerably less harmful for individuals living in neighborhoods with more health-

promoting resources. In the third study, we found that including social information in risk 

prediction models helped correct the systematic misestimation of risk for individuals at 

high and low levels of social disadvantage. The results all support the notion that social 

and environmental factors play an important role in the development of diabetes, and that 

altering neighborhood environments may represent a viable, population-based approach 

to diabetes prevention.
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CHAPTER 1 :  

INTRODUCTION 

Type 2 diabetes is an etiologically complex disease that affects an estimated 18.8 

million adults in the US.
1
 Despite robust epidemiologic evidence demonstrating the 

preventability of type 2 diabetes through changes in individual health behaviors,
2-4

 such 

behavioral changes have been limited thus far on a population level as evidenced by the 

continued increases in diabetes prevalence and incidence.
5-7

 This failure to prevent type 2 

diabetes may be partially attributable to the limited attention afforded to the multi-level 

causes of the disease. A growing body of research linking health behaviors
8
 and chronic 

disease risk factors
9-11

 to the social circumstances and environment in which individuals 

live has suggested that altering environments may foster behavioral changes and promote 

wellbeing.
12-15

 Such an approach has been advocated for in both chronic and infectious 

disease prevention,
9,16

 yet few studies have evaluated the potential utility of such 

approaches.
17

 Furthermore, whether information on social and environmental 

circumstances can be used to guide public health and clinical decision making for type 2 

diabetes prevention is currently unknown.
18

 Considering environmental contributions to 

type 2 diabetes may be especially salient given the profound disparities in disease burden 

by race/ethnicity and socioeconomic status (SES), which are hypothesized to be driven in 

part by differences in residential environments.
19,20

 Further research investigating the 

links between environments, individual behaviors, and diabetes risk, and the application 

of this multi-level information to guide prevention strategies, is thus needed. With this in 
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mind, this dissertation  seeks to answer three questions: (1) are neighborhood 

environments related to the risk for developing type 2 diabetes?; (2) do neighborhood 

environments modify the effect of traditional risk factors for type 2 diabetes, including 

genetic susceptibility?; and (3) can ignoring individual and area-level social information 

bias clinical and public health decision making, particularly when it is based upon risk 

prediction models which incorporate only traditional biological risk factors? 

Background 

 

Neighborhoods, Health Behaviors, and Type 2 Diabetes 

 

 The literature documenting associations between neighborhood features and 

health outcomes is vast, and has expanded tremendously in the past 20 years.
21

 Growing 

from the recognition that individual-level risk factors are insufficient to explain 

population patterns of disease, studies of neighborhood influences on health outcomes 

have become a mainstay of contemporary epidemiology.
22

 Of particular recent interest 

has been the relationship between neighborhood physical and social environments and 

health behaviors. A recent systematic review of studies published from 1998-2005 

concluded that there is generally a positive relationship between number of physical 

activity resources in a neighborhood, including parks and recreational centers, and the 

level of physical activity among its residents.
23

 Similarly, many,
24

 but not all,
25

 studies 

have demonstrated a positive association between the presence of stores selling healthy 

food options and the quality of residents’ diets. Features of the social environment, 

including levels of collective efficacy and safety, have also been linked to physical 

activity levels and cardiometabolic outcomes,
26,27

 though results have been 

inconsistent.
28,29

   Drawing on these relationships, a growing number of cross sectional 
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and longitudinal studies have begun to link neighborhood physical and social 

environments to BMI.
14

 For instance, a recent longitudinal analysis using the MESA 

Neighborhood Study found that lower levels of healthy food availability was associated 

with increased risk of becoming obese over a 5 year period.
9
  

Despite the extensive literature documenting the links between neighborhood 

environments and both health behaviors and obesity, few studies have proceeded to 

demonstrate a relationship between neighborhood environments and type 2 diabetes.
30

 

This is curious, as type 2 diabetes is a disease that can be both prevented and 

substantially controlled though behaviors like increased physical activity.
3
 Previous work 

using three sites of the MESA Neighborhood Study demonstrated that better access to 

neighborhood physical activity and healthy food resources at baseline was associated 

with decreased levels of insulin resistance
11

 and diabetes.
12

 Other work from the British 

Women’s Heart and Health Study found that area-level deprivation was cross-sectionally 

associated with higher odds of type 2 diabetes, independent of individual-level 

socioeconomic position.
31

 The strongest evidence to date comes from a randomized study 

(the Moving to Opportunity [MTO] project) that relocated low-income families to low-

poverty neighborhoods. After 10 years of follow-up, researchers found that individuals 

randomized to low-poverty neighborhoods had a decreased prevalence of obesity and 

lower levels of hemoglobin A1c.
32

 

Though literature linking residential neighborhood environments to the risk of 

type 2 diabetes is growing, the extent to which the observed associations are causal 

remains unclear.
33,34

 Causal inference from prior studies has been limited due to the 

cross-sectional nature of many of the associations,
30,31,35

 and the lack of specificity of 
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mechanisms by which neighborhood environments (defined largely by SES) may 

influence diabetes risk.
32,36

 The few longitudinal studies that exist have been unable to 

evaluate long term neighborhood exposures as they relate to incident diabetes, further 

limiting causal inference.
12,36

 Furthermore, while providing important evidence that 

neighborhood relocation may lead to a reduced incidence of obesity and type 2 diabetes, 

the MTO study failed to answer the more policy-relevant question regarding how changes 

in the neighborhood environment where people continually live influence their risk of 

developing diabetes. It also gave few indications regarding which neighborhood features 

may be most important, stating, “The mechanisms underlying these associations remain 

unclear but warrant further investigation…”.
32

Longitudinal studies that seek to identify 

the specific components of neighborhoods that affect diabetes development are thus 

warranted.   

Gene-Environment Interactions in Type 2 Diabetes 

 

 While neighborhood environments are important, type 2 diabetes is likely caused 

by the interplay of both genetic and environmental factors. The concordance of type 2 

diabetes between identical twins is 70-90%, and individuals with two diabetic parents 

have a 40% increased risk of developing the disease,
37

 suggesting substantial genetic 

contributions to disease development (overall heritability is estimated to be 26%). 

Through genome-wide association studies (GWAS), over 70 single nucleotide 

polymorphisms (SNPs) that increase the risk of disease have been identified.
38,39

 In total, 

these SNPs only explain approximately 10% of the overall heritability of type 2 

diabetes,
40

 though considerable efforts are now being directed towards identifying less-
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common genetic variants that may have larger effects on diabetes susceptibility than 

those discovered so far. 

Recognition of the genetic and environmental contributions to type 2 diabetes has 

spurred great interest in exploring their interactions. While the results from some studies 

have been called into question due to insufficient sample sizes and publication bias,
41

 

several studies have provided robust evidence of interaction effects. In early studies of 

biological candidate genes, the effects of several diabetes-associated variants were shown 

to be attenuated in individuals with higher physical activity levels and specific dietary 

patterns.
42-45

  More recently, genetic risk scores that pool diabetes-associated genetic 

variants have become available. Gene-environment interaction studies using these risk 

scores have shown that an individuals’ pooled genetic risk can be modified by dietary 

patterns.
42

 For instance, in the Health Professionals’ Follow-up Study, researchers found 

that a Western dietary pattern led to increased risk of diabetes in individuals with higher, 

but not lower, genetic risk scores.
46

  

Though important in demonstrating the modifiability of genetic risk for diabetes, 

the prior gene-environment research is limited by restricted notions of what constitutes 

“environment”. Most work to date has focused exclusively on individual-level health 

behaviors like smoking and diet, ignoring how such “environments” are shaped by larger 

factors like neighborhood disadvantage and the spatial patterning of health promoting 

resources and norms.
8,24,47

 Despite this recognition, and calls in the literature for broader 

conceptualizations of “environment”,
48,49

 empirical examinations of the interaction 

between genetic risk and these larger environmental features remain rare, and no such 

studies have focused upon diabetes. To the extent that area-level factors both shape health 
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behaviors and represent policy-relevant realms for intervention, studies investigating the 

interaction between genetic risk for type 2 diabetes and broader neighborhood 

environmental features are needed.
48

 Such investigations may be important to accurately 

describe the health effects of social context (e.g. potential heterogeneity according to 

genetic risk), and to understand the contingent nature of genetic susceptibility.
49

 

Multilevel Frameworks to Guide Clinical and Public Health Decisions  

 

Given the growing recognition of individual and environmental contributions to 

diabetes, both public health practitioners and clinicians are increasingly interested in 

employing multilevel frameworks to guide prevention and treatment. While the 

healthcare system does not typically focus on these social determinants, health care is 

part of the larger system that seeks to address them.
50

 Discussions of population health 

strategies that address the social roots of disease are now common in the medical 

literature.
17,51

  Whether in publications about “comprehensive primary care”
52

 or in the 

application of community health workers,
53

 clinicians are increasingly encouraged to 

view patients within their social and environmental context. In 2014, an Institute of 

Medicine report recommend the inclusion of individual and area-level social information 

into electronic medical records to help promote research and clinical decision making that 

deliberately focuses on the social determinants of health.
54

 Yet, despite the recent 

enthusiasm for this multilevel framework, there have been few empirical demonstrations 

of how such information could be used to guide clinical and public health decision 

making, particularly with respect to type 2 diabetes. 

 One potential avenue for incorporating multilevel frameworks into public health 

and clinical practice is through the use of predictive risk scores.
18

 While best known for 
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their role in cardiovascular event prediction, risk scores are now used widely in clinical 

and public health practice for a variety of conditions.
55

 Such scores are used to stratify 

patients into different risk groups, with the goal of directing preventive or curative 

interventions to those who will benefit most. This is potentially important in diabetes, as 

intensive lifestyle modifications have been shown to prevent or delay disease onset in 

high-risk individuals.
3
 

 A range of diabetes risk scores currently exist.
56

 Most of these scores include 

clinical and biological risk factors such as waist circumference and fasting plasma 

glucose, and considerable efforts have been made to improve risk scores with novel 

biological information including genetic risk.
56-60

  However, virtually no risk scores 

include individual or area-level socioeconomic features that likely contribute to diabetes 

risk in ways not easily rendered by clinical biomarkers. Prior work examining the effect 

of including such socioeconomic information into cardiovascular risk scores is telling. 

For instance, researchers who added individual-level income and education to the 

Framingham Risk Score (FRS) discovered that the score systematically underestimated 

risk in low-SES individuals.
61,62

 Others have found that an individual’s FRS can change 

considerably when neighborhood SES is taken into account.
63

 No research has examined 

whether similar patterns exist with respect to diabetes risk scores. Given the growth of 

electronic health records (EHRs) and the prospect of linking “non-medical” 

environmental data to medical records,
64

 empirical assessments of the utility of including 

multi-level social information in risk assessment are warranted. 

Summary of Dissertation Aims 
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In light of the background above, this dissertation uses longitudinal data from the 

Multi-Ethnic Study of Atherosclerosis (MESA) to assess the contribution of residential 

environments, and their interactions with individual risk factors, to the development of 

type 2 diabetes. In particular, aim 1 (Chapter 2) investigates the relationship between 

cumulative exposure to neighborhood physical and social environments and incident type 

2 diabetes; aim 2 (Chapter 3) explores how genetic susceptibility interacts with 

neighborhood physical and socioeconomic environments to influence the development of 

type 2 diabetes; and aim 3 (Chapter 4) assesses the utility of incorporating individual and 

area-level socioeconomic information into a diabetes risk score.  

Specific Aim 1 

 

To examine if long-term exposures to neighborhood physical and social environments, 

including the availability of healthy food and physical activity resources and levels of 

social cohesion and safety, are associated with the development of type 2 diabetes. 

Hypotheses 

 

1. Individuals with greater cumulative exposure to neighborhoods with increased 

healthy food availability and physical activity resources will be at reduced risk of 

developing type 2 diabetes, relative to individuals residing in neighborhoods with 

fewer resources. 

2. Individuals with greater cumulative exposure to neighborhoods with increased 

levels of social cohesion and safety will be at reduced risk of developing type 2 

diabetes, relative to individuals residing in neighborhoods with lower levels of 

social cohesion and safety. 
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3. The association between neighborhood physical and social environments and type 

2 diabetes incidence will be partially mediated by individual health behaviors, 

including intentional physical activity and healthy diet. 

Specific Aim 2 

 

To investigate if genetic risk for type 2 diabetes, summarized using a genetic risk score, 

interacts with physical and socioeconomic features of residential neighborhoods to 

influence the risk for type 2 diabetes.  

Hypotheses 

 

1. The effect of genetic risk for type 2 diabetes will be significantly stronger for 

individuals living in neighborhoods with lower healthy food and physical activity 

resource availability and lower SES, relative to individuals living in 

neighborhoods with more healthy promoting resources and higher SES.  

Specific Aim 3 

 

To evaluate the utility of including individual and neighborhood-level socioeconomic 

information in type 2 diabetes risk scores, and to quantify the changes in predictive 

capacity and accuracy of the score when including such variables. 

Hypotheses 

 

1. Inclusion of individual and neighborhood-level SES into a diabetes prediction 

model based on traditional diabetes risk factors will significantly aid in the 

discrimination of people who will develop diabetes from those who will remain 

diabetes-free. 

2. Diabetes risk prediction models based upon traditional risk factors will 

underestimate risk in low-SES individuals or those living in low-SES 
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environments, and addition of SES information will improve prediction accuracy 

(i.e. model calibration) across the SES distribution. 

3. Adding social information to a diabetes prediction model based upon traditional 

risk factors will result in risk reclassification such that individuals of low 

individual or area-level SES will be reclassified into higher risk categories, and 

individuals of high individual or area-level SES will be reclassified into lower risk 

categories. 

Theoretical Framework 

 

 The theoretical framework underlying the dissertation aims is illustrated in the 

conceptual diagram shown in Figure 1.1. As illustrated in the figure, there are multiple 

pathways through which neighborhood environments may affect the development of type 

2 diabetes. The physical environment is hypothesized to exert an influence on health 

behaviors including diet quality and physical activity, which in turn influence BMI. 

Similarly, the social environment, through collective notions of social cohesion and 

safety, is hypothesized to influence both individuals’ psychological states and health 

behaviors. Psychological distress may directly influence metabolic processes, leading to 

increases in BMI and inflammation, and/or operate through behavioral mechanisms such 

as diet and physical activity. BMI is in turn causally related to the development of type 2 

diabetes through inflammation (or “metaflammation” – a term used to distinguish 

inflammation caused by metabolic rather than infectious sources).
65

 Genetic susceptibility 

to type 2 diabetes directly influences the risk for the disease, but its effect may be 

modified by environmental and/or behavioral factors. For instance, genetic susceptibility 

may only become manifest when individuals have certain behaviors that are shaped by 
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their environments (e.g. genetics is known to play a role in appetite, which may modify 

the effect of the food environment on diet quality
49

).  

Of note, in this conceptual framework, both the social and physical environment 

can be thought of as specific examples and/or consequences of neighborhood poverty and 

disadvantage. The “sorting” of people into high poverty neighborhoods is itself strongly 

influenced by factors such as race and SES, as has been widely discussed in the literature 

on residential segregation.
66

 It is thus important to keep in mind then that the physical and 

social environments are but small samples of a larger pattern of structural inequality that 

systematically places historically marginalized populations at greater risk for disease, and 

that broader, more fundamental, constructs like residential segregation and the “sorting” 

mechanism are worthy of study in their own right.
67,68

 Nonetheless, this dissertation seeks 

to highlight specific links between area-level resources and diabetes outcomes with the 

ultimate goal of helping complicate and combat the notion that disparities in the burden 

of type 2 diabetes arise simply due to “lifestyle choices” or inherent biologic differences. 
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Figure 1.1 Conceptual Diagram of Pathways Linking Individual Attributes and Neighborhood Exposures to the Development of Type 

2 Diabetes 
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CHAPTER 2 : 

 LONGITUDINAL RELATIONSHIPS BETWEEN NEIGHBORHOOD 

PHYSICAL AND SOCIAL ENVIRONMENTS AND INCIDENT TYPE 2 

DIABETES MELLITUS: THE MULTI-ETHNIC STUDY OF 

ATHEROSCLEROSIS (MESA) 

 

Introduction: 

 

Diabetes is an important cause of death and disability worldwide.
1
 Causes of the 

growing epidemic have been attributed to obesity, specific dietary patterns (e.g. diets 

with high glycemic load), physical inactivity, and to a lesser extent, smoking, alcohol use, 

and stress.
2-6

 Prevention of diabetes, therefore, has focused largely on behavioral 

modification.
3,7-9

 However, the extent to which individual behavioral modifications will 

succeed in unsupportive environments remains unknown.  

A growing body of research linking health behaviors
10

 and chronic disease risk 

factors
11-13

 to environmental features has suggested that altering environments may foster 

behavioral changes.
14

 Neighborhood physical environments, including access to healthy 

food and physical activity (PA) resources, may influence individual diet and exercise 

levels.
15,16

 Similarly, local social norms and concerns about neighborhood safety might 

affect behaviors and stress.
17,18

 Modifying environmental resources to support healthy 

diets, PA, and lower stress levels may therefore aid in diabetes prevention. 
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Most prior research linking environmental features to diabetes has been cross-

sectional, limiting causal conclusions.
14,19-21

 The few longitudinal studies that exist have 

been unable to evaluate long term neighborhood exposures as they relate to incident 

diabetes, further limiting causal inference.
22,23 

One randomized study (Moving to 

Opportunity [MTO]) that relocated low-income families from high-poverty to low-

poverty neighborhoods showed that changing neighborhood environments led to reduced 

prevalence of obesity and diabetes.
24

 However, the MTO study did not answer the 

equally policy-relevant question regarding how the environment where people 

continually live, rather than residential relocation, influences their risk of developing 

diabetes, nor did it indicate which neighborhood features may be most important.
24

 

Longitudinal studies that seek to identify the specific components of neighborhoods that 

influence diabetes development are thus warranted.  

No study, to our knowledge, has prospectively evaluated whether cumulative 

exposures to specific neighborhood features are related to incident diabetes in a large, 

multiethnic, geographically distributed sample. To that end, we investigated whether 

long-term exposures to neighborhood physical and social environments, including the 

availability of healthy food and PA resources and levels of social cohesion and safety, are 

associated with the development of type 2 diabetes over a 10-year period. 

Methods: 

 

Study population and analytic sample: 

 

Beginning in 2000, the Multi Ethnic Study of Atherosclerosis (MESA) recruited 

non-institutionalized adults (45-84 years) who self-identified as white, black, Hispanic, or 

Chinese from 6 locations (New York, New York; Baltimore, Maryland; Forsyth County, 
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North Carolina; Chicago, Illinois; St. Paul, Minnesota; and Los Angeles, California).
25

 

People with clinical cardiovascular disease were excluded. The first examination took 

place between 2000 and 2002, and 4 follow-up exams occurred an average of 1.6, 3.1, 

4.8, and 9.5 years later. Retention rates were 92%, 89%, 87%, and 76%, respectively. 

Written informed consent was obtained from participants, and the study was approved by 

institutional review boards at each site.  

For this analysis of incident diabetes, we utilized data from an ancillary study, the 

MESA Neighborhood Study. 
26

 Of the 6814 individuals enrolled at baseline, 6191 agreed 

to participate in the Neighborhood Study. We excluded individuals with prevalent 

diabetes at baseline (n=736) and those with missing exposure, outcome, or covariate data 

(n=331), leaving 5124 individuals available for analyses.  

Type 2 diabetes: 

 

Incident type 2 diabetes was determined at each exam according to the American 

Diabetes Association 2003 criteria
27

: fasting plasma glucose level ≥126 mg/dL (7 

mmol/L), or use of oral hypoglycemic medications or insulin. Glucose levels were 

obtained from blood samples taken after a 12-hour fast as previously described.
28

 The use 

of oral hypoglycemic medications and insulin was assessed by visual inspection of 

medications or self-report on the study questionnaire.   

Neighborhood physical and social environments: 

 

Assessment of neighborhood healthy food and PA resources was done in two 

ways using methods consistent with prior studies.
10,26,29-31

 First, we constructed 

Geographic Information System (GIS)-based measures of access to food stores more 

likely to sell healthier foods (supermarkets and fruit and vegetable markets) and 
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commercial recreational establishments (facilities for indoor conditioning, dance, 

bowling, golf, team and racquet sports, and water activities) using annual information 

from the National Establishment Time Series (NETS) database for years 2000-2012 (See 

Table 1 and Text 2.A1 for details).
32

 For simplicity, these measures will be referred to as 

“GIS-based supermarkets/FV markets” and “GIS-based commercial recreational 

establishments”. Simple densities per square mile were created for 1-mile buffers around 

each participant’s residence using ArcGIS, version 9.3 (Esri, Redlands, California). 

Densities were matched to participants annually such that changes over time occurred 

whenever neighborhood resources changed or a participant moved. One-mile densities 

were chosen as proxies for neighborhoods based on an area in which most individuals 

could reasonably walk  and federal government definitions of access to services.
33

  

As a complementary measure, we also used survey-based measures of 

neighborhood environments collected in 2003-2005 and 2010-2012 from both MESA 

participants, and from an independent, but co-located, sample of non-MESA participants 

recruited from the same census tracts via random-digit dialing or list-based sampling.
26

 

Respondents were asked to rate the area within 1 mile or a 20-minute walk of their home 

with respect to availability of healthy foods and walking environment. Social 

environment was also assessed using scales for safety and social cohesion (see Table 1 

and Text 2.A1). Survey responses within 1-mile of each participant’s residential address, 

excluding their own responses, were averaged to create neighborhood measures and 

assigned based on the closest survey time. A median of 78 responses were available 

within a 1-mile buffer (see Table 2.A1). All survey scales had good internal consistency 
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(Cronbach’s alphas: 0.64-0.83) and ecometric properties (neighborhood reliabilities: 

0.38-0.53).
26

  

Because different measures (e.g. GIS- and survey-based for healthy food and PA 

environments, safety and social cohesion scales for social environment) may reflect 

different aspects of the same environmental construct, we also calculated summary 

measures by summing the standardized component measures for healthy food, PA, and 

social environments (see Text 2.A1). The summary measures had good internal 

consistency for PA and social environments (α=0.68 and 0.78, respectively) but internal 

consistency for the healthy food environment was lower (α=0.39).Pearson correlations 

between the GIS- and survey-based measures were r=0.30 for food environment, and 

r=0.57 for PA environment. 

Covariates: 

 

Covariates measured at baseline included age, sex, race/ethnicity, education, 

family history of diabetes, and the presence of chronic stress (>6 months of serious 

financial, health, job, or relationship problems). Time-varying information included 

household income per capita, alcohol use (no, moderate, or heavy use according to 

established guidelines),
34

 and smoking status (current, former, or never). Potential 

mediators of the neighborhood resource-diabetes association, including body mass index 

(BMI, measured weight in kg/(height in m
2
)), diet quality, and PA, were assessed via 

clinical exams (BMI) and questionnaires (see Text 2.A2). At the neighborhood-level, a 

time-varying socioeconomic index (neighborhood SES) was developed using principal 

components analysis of census tract data from the Census and American Community 
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Surveys and linked to each participant’s address at their closest exam date (see Text 

2.A3).   

Statistical Analysis: 

 

We performed descriptive analyses of individual-level variables by diabetes status 

and tertiles of the summary neighborhood exposures. Crude incidence rates across tertiles 

of each neighborhood exposure were calculated using Poisson regression. Cox 

proportional hazards models were used to estimate the hazard ratio (HR) of diabetes for 

each neighborhood exposure separately. Individuals were considered at risk until 

diagnosis of diabetes, last follow-up visit, or administrative censoring at exam 5, 

whichever occurred first. Incident diabetes cases were assigned to the midpoint between 

their previous diabetes-free and current exam dates. Because long-term neighborhood 

exposures are most relevant for slowly developing diseases like type 2 diabetes, we 

parameterized our exposures as time-varying cumulative averages, defined as the average 

across all months between the baseline and each follow-up exam. Though our outcome is 

interval censored, we elected to use Cox models because of our interest in time-varying 

exposures, which are not easily included in interval censored models.
35

 Clustering within 

census tracts was accounted for by computing robust standard errors.  

Potential confounders were defined a priori, and entered into models in stages. 

Our primary models adjusted for age, sex, family history of diabetes, per capita 

household income, education, race/ethnicity, smoking status, and alcohol consumption. 

Additional models were adjusted for neighborhood SES, though it is debatable whether it 

is a cause or consequence of some neighborhood exposures (e.g. safety).
36,37

 To examine 



 

25 

 

whether BMI, diet, and/or PA mediate the association between neighborhood resources 

and diabetes, we compared HRs before and after adjustment for these measures.
38,39

 

We evaluated the proportional hazard assumption by plotting Schoenfeld 

residuals against time, and no violations were found. There was limited evidence of 

nonlinearity for neighborhood exposures in adjusted Cox models, permitting their 

inclusion as continuous variables. To facilitate comparisons across exposures with 

different scales, we estimated HRs for an interquartile range (IQR) increase in the 

neighborhood exposure. This corresponded to increases of 2.2 supermarkets/FV markets 

and 3.2 commercial recreational establishments for GIS-based exposures, and between 

0.3 and 0.7-unit increases for survey-based exposures.  

Based upon prior literature, we evaluated effect modification of the summary 

measures by age at baseline, sex, and household income per capita using interaction 

terms.
13,14,23

 Because residential environments are hypothesized to be especially salient 

for individuals with  highly stressful lives,
40

 we also evaluated effect modification by the 

presence of chronic stress.  

We performed several sensitivity analyses. First, we ran interval censored parametric 

survival models with a Weibull distribution to assess sensitivity to our modeling 

approach. We also explored alternative exposure specifications using different 

geographic (3-mile buffer for GIS measures; census tracts for survey measures) and time 

(1-year lagged exposures for GIS measures; survey measures unavailable annually) 

scales. Because population density and regional norms may affect health behaviors 

independent of neighborhood resources,
29,42

 we ran additional models controlling for 

population density and study site. To help control for unmeasured confounding at the 
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neighborhood-level, we ran shared frailty models with random intercepts for each census 

tract (see Table 2.A5).
43,44

 Finally, though long-term neighborhood exposures are likely 

most relevant for diabetes risk, we examined baseline and change since baseline exposure 

measures to evaluate how these parameterizations were related to diabetes risk (see Text 

2.A4 for details). 

Results: 

 

Over a median of 8.9 years (37,394 person-years), 616 participants developed 

type 2 diabetes (12.0%; crude incidence rate = 16.47/1000 person-years; 95% CI, 15.22, 

17.83). Compared to participants who did not develop diabetes, incident cases were more 

likely to be black or Hispanic, had lower baseline household income, fewer years of 

education, less healthy diets, lower levels of moderate and vigorous PA, a higher BMI, 

and a family history of type 2 diabetes (Table 2). Participants developing diabetes also 

lived in poorer census tracts.   

Neighborhood physical and social resources were highly patterned by race, diet, 

PA levels, BMI, and neighborhood SES, such that racial/ethnic minorities, and those with 

greater risk factor profiles were generally more likely to reside in neighborhoods with 

fewer resources (Table 3). Temporal changes in neighborhood exposures varied by 

exposure type, ranging from mean 10-year changes of 2.01 for GIS-based commercial 

recreational establishments to -0.20 for GIS-based supermarkets/FV markets (Table 

2.A2). At baseline, the median duration of neighborhood residence was 15 years, and 

32% of individuals moved during follow-up. 

Higher baseline summary measures of neighborhood PA, social, and to a lesser 

extent, healthy food resources were associated with lower crude diabetes incidence rates 
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(Table 4).  For instance, participants residing in neighborhoods in the bottom tertile of 

summary PA environment developed diabetes at nearly double the rate as those living in 

the top tertile (incidence rates = 20.5 and 11.8 per 1000 person-years, respectively). GIS-

based supermarkets/FV markets and social cohesion were not related to diabetes 

incidence rates.  

After adjustment for baseline age, sex, income, education, race/ethnicity, and 

alcohol and smoking status, an IQR increase in cumulative exposure to survey-based 

healthy food resources was associated with a 16% lower diabetes  risk (HR, 0.84; 95% 

CI, 0.76, 0.93 ), but no association was found using the GIS-based measure (HR, 0.99; 

95% CI, 0.94, 1.04) (Figure 1, Model 1). An IQR increase in the summary healthy food 

environment measure was associated with a 12% lower risk for developing diabetes (HR, 

0.88; 95% CI, 0.79, 0.98). Further adjustment for neighborhood SES attenuated the 

associations (Figure1, Model 2). For PA environments, greater cumulative exposure to 

neighborhoods with resources supporting PA was inversely associated with diabetes 

incidence; IQR increases in GIS-based, survey-based, and summary environmental 

measures were associated with 4% (HR, 0.96; 95% CI, 0.92, 0.99), 21% (HR, 0.79; 95% 

CI, 0.71, 0.88) and 21% (HR, 0.79; 95% CI, 0.69, 0.90) lower risk for diabetes, 

respectively. Adjusting for neighborhood SES attenuated the GIS-based association, but 

left the other associations virtually unchanged. Social cohesion, safety, and the summary 

measure for social environment were largely unassociated with risk for diabetes (HRs per 

IQR increase, 0.99; 95% CI, 0.88, 1.10; 0.92; 95% CI, 0.80, 1.05; 0.96; 95% CI, 0.86, 

1.07, respectively). Further adjustment of models for BMI, diet, and PA as potential 
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mediators demonstrated minimal attenuation of most associations (≤25%, see Table 

2.A3).   

Neighborhood healthy food resources had a stronger inverse association with 

diabetes among participants who were younger, higher income, and reporting chronic 

stress burden (P-values for multiplicative and additive interaction≤ 0.06; Figure 2.A1). 

Similarly, the inverse association between neighborhood PA resources and diabetes was 

stronger in higher income participants (P-value for multiplicative and additive 

interaction, 0.07 and 0.04, respectively). Neighborhood social environment was inversely 

associated with diabetes in women but not men, and in low-income but not high-income 

participants (P-values for multiplicative and additive interaction all ≤ 0.07). 

Sensitivity analyses demonstrated qualitatively similar findings when using 

interval censored survival methods, different exposure specifications, controls for 

population density and study site, shared frailty models, and adjustment for baseline risk 

factors for diabetes (Tables 2.A4-6). Alternative modeling strategies showed that baseline 

and change in neighborhood exposure levels were associated with incident diabetes in the 

expected (inverse) direction for survey-based measures, though results were imprecise 

(Table 2.A7). Baseline levels, but not change, were associated with diabetes for GIS-

based commercial recreational establishments.  

Discussion: 

 

In this large, multiethnic cohort, long-term exposure to residential environments 

with greater resources to support PA, and to a lesser extent healthy diets, was associated 

with lower incidence of type 2 diabetes over 10 years. The associations were generally 

robust to adjustment for other risk factors and model specifications, though associations 
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were primarily found with survey-based, but not GIS-based, exposures. Inclusion of 

BMI, diet, and PA as hypothesized mediators only modestly attenuated the relationships. 

Neighborhood safety and social cohesion were largely unassociated with the development 

of diabetes. 

Unlike previous studies of residential environments and diabetes,
19,24

 we 

measured specific, time-varying features of participants’ neighborhoods using 

complementary measures. Both geographic proximity to commercial recreational 

establishments and greater survey-based assessments of the walking environment were 

inversely associated with diabetes incidence. Previous work using the MESA cohort has 

demonstrated that an increase in commercial PA resources is associated with less age-

related decline in PA.
45 

Other studies have found that residential relocation to 

neighborhoods more supportive of PA is associated with increased levels of PA, 

independent of reasons for relocation.
46,47

 Our study suggests that such neighborhood 

associations with PA behavior may translate to reduced diabetes risk. 

We found that geographic proximity to supermarkets and stores selling fruits and 

vegetables had no association with diabetes incidence. This finding is consistent with 

recent observational and quasi-experimental evidence demonstrating that simply 

improving retail food infrastructure may not translate into healthier diets and decreased 

risk for chronic diseases.
48-50

  On the other hand, survey-based measures of the local food 

environment were associated with diabetes, suggesting that such measures may take into 

account other factors like the affordability and quality of food that are known to influence 

diet and diabetes risk.
51-53
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Finally, though social features of residential environments have been 

hypothesized to be related to obesity and diabetes through their association with health 

behaviors and stress,
17,18

 we find limited support for these relationships. Additional 

research with alternative exposure measures is needed to further clarify the role of the 

social environment. 

While the use of multiple modalities for measuring neighborhood environments is 

a strength in our study, the difference in the associations for GIS-based and survey-based 

measures of the food and PA environments are noteworthy. The most likely explanation 

for the discrepancies is that the GIS counts and survey responses measure different 

aspects of the same construct.
10

 For instance, our survey-based PA exposure assesses 

non-commercial neighborhood features related to walkability and aesthetics not captured 

in the GIS-based measures. Neighborhood residents also likely consider unmeasured 

attributes such as cost or quality that are not captured with simple counts from tax parcel 

data.
54

 Differences between the GIS-based and survey-based associations could also be 

due reverse causation if individuals with less interest in healthy food or PA resources are 

less likely to perceive that such resources are available. We think this is unlikely for two 

reasons: the neighborhood survey assesses community ratings of the local environment 

(with a median of 78 residents in a 1-mile area whose survey responses were averaged), 

and we excluded an individual’s survey response from their own exposure measure. 

Nonetheless, future research would benefit from including multiple measures of the same 

neighborhood environmental constructs to further understand the most relevant features 

for diabetes risk.  
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We observed differences in the associations between neighborhood features and 

diabetes according to individual characteristics, though given the multiple comparisons 

assessed, caution should be exercised in interpreting the results. Household income 

appeared to be a consistent effect modifier, such that increased healthy food and PA 

resources were more beneficial to high-income households than low-income households. 

For low-income households, growing evidence suggests factors like cost may trump 

geographic proximity to healthy food and PA resources.
55,56

 Interestingly, the social 

environment demonstrated the opposite pattern: increasing safety and social cohesion was 

associated with lower diabetes risk in low-income but not high-income households. 

Community safety and social relationships have been associated with BMI and PA in 

several studies,
57-60

 but further work is needed to understand if and why such associations 

may differ by income. The presence of chronic stressors also modified the association for 

healthy food environments such that increasing healthy food resources was associated 

with lower diabetes risk for those with chronic stressors. We are unaware of other studies 

evaluating this question, though our findings are consistent with literature suggesting that 

environmental resources may be especially salient for individuals experiencing chronic 

stress.
40

  

Models adjusting for BMI as a mediator modestly attenuated the associations 

between residential healthy food and PA environments and diabetes incidence. Such 

modest attenuation is not surprising given the long-term nature of diabetes 

development,
61

 and the difficulty in separating direct and indirect effects in standard 

regression analyses.
62,63

 Diet and PA are also notoriously difficult to measure precisely, 

and measurement error can distort the magnitude of mediation observed.
64

 Further work 
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focusing specifically on mediation is warranted to quantify the behavioral and biological 

pathways through which features of the neighborhood environment may influence 

diabetes risk.  

The primary strength of our study is the longitudinal measurement of specific 

features of neighborhood environments and diabetes status over time in a multiethnic 

sample. Given that type 2 diabetes develops over a protracted period, such long-term 

exposure measures are more relevant than simple cross-sectional exposures. Furthermore, 

utilizing multiple measures for specific environmental features has several advantages. 

First, such measures can be used to evaluate which features may be most critical for 

mitigating diabetes risk, rather than focusing solely on neighborhood socioeconomic 

status, which may be a proxy for many interrelated neighborhood features.
65

 Second, 

specific measures of neighborhood environments may be less susceptible to problems of 

endogeneity or reverse causation, wherein the characteristics of a neighborhood 

environment are simply the result of the individual attributes and preferences of 

residents.
65

 Finally, prospective collection of covariate information allowed for updating 

of confounding variables. 

As with all observational studies of neighborhood exposures, residential self-

selection, wherein individuals with certain risk profiles select to live in certain 

neighborhoods, may bias the associations reported.
66

 While we attempted to minimize 

such bias by including individual-level variables related to neighborhood selection,
67

 

there may be unobserved or mismeasured characteristics that influence both 

neighborhood exposure and the risk for diabetes. Further use of experimental, quasi-

experimental, and observational data utilizing different methodologies may help to 
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increase our confidence in the associations observed. Other exposures, such as 

neighborhood traffic safety and availability of green spaces, or those encountered near 

work or during a commute (e.g. food stores), may also be relevant to diabetes risk.
14,68,69

 

Finally, 24% of eligible MESA participants were lost to follow-up by exam 5, raising the 

possibility of bias due to “informative censoring”. Dropout was not highly patterned by 

neighborhood exposures however, making this bias less likely. 

The prevalence of type 2 diabetes continues to increase in the US despite its 

preventability through behavioral modifications.
7,9

 While individualized prevention and 

treatment approaches are necessary to decrease the burden of diabetes, environmental 

modifications that promote healthy behaviors represent a complementary, perhaps 

prerequisite, population health approach. Our results suggest that modifying specific 

features of neighborhood environments, including increasing the availability of healthy 

foods and PA resources, may help mitigate the risk of diabetes, though additional 

intervention studies with measures of multiple neighborhood features are needed. Such 

approaches may be especially important for addressing disparities in type 2 diabetes, 

given the concentration of low-income and minority populations in neighborhoods with 

fewer health-promoting resources.
70-72

 

 

  



 

34 

 

References: 

 

1. Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in 

fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of 

health examination surveys and epidemiological studies with 370 country-years 

and 2.7 million participants. Lancet. Jul 2 2011;378(9785):31-40. 

2. Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 

diabetes mellitus in women. N. Engl. J. Med. Sep 13 2001;345(11):790-797. 

3. Mozaffarian D, Kamineni A, Carnethon M, Djousse L, Mukamal KJ, Siscovick 

D. Lifestyle risk factors and new-onset diabetes mellitus in older adults: the 

cardiovascular health study. Arch. Intern. Med. Apr 27 2009;169(8):798-807. 

4. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes 

Care. Jun 2011;34(6):1249-1257. 

5. Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. THe 

continuing epidemics of obesity and diabetes in the united states. JAMA. 

2001;286(10):1195-1200. 

6. Schulze MB, Hu FB. Primary prevention of diabetes: what can be done and how 

much can be prevented? Annu. Rev. Public Health. 2005;26:445-467. 

7. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of 

type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. Feb 7 

2002;346(6):393-403. 

8. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes 

mellitus by changes in lifestyle among subjects with impaired glucose tolerance. 

N. Engl. J. Med. May 3 2001;344(18):1343-1350. 

9. Danaei G, Pan A, Hu FB, Hernan MA. Hypothetical midlife interventions in 

women and risk of type 2 diabetes. Epidemiology. Jan 2013;24(1):122-128. 

10. Moore LV, Diez Roux AV, Nettleton JA, Jacobs DR, Jr. Associations of the local 

food environment with diet quality--a comparison of assessments based on 

surveys and geographic information systems: the multi-ethnic study of 

atherosclerosis. Am. J. Epidemiol. Apr 15 2008;167(8):917-924. 

11. Auchincloss AH, Mujahid MS, Shen M, Michos ED, Whitt-Glover MC, Diez 

Roux AV. Neighborhood health-promoting resources and obesity risk (the multi-

ethnic study of atherosclerosis). Obesity (Silver Spring, Md.). Mar 

2013;21(3):621-628. 

12. Mujahid MS, Diez Roux AV, Morenoff JD, et al. Neighborhood characteristics 

and hypertension. Epidemiology. Jul 2008;19(4):590-598. 



 

35 

 

13. Auchincloss AH, Diez Roux AV, Brown DG, Erdmann CA, Bertoni AG. 

Neighborhood resources for physical activity and healthy foods and their 

association with insulin resistance. Epidemiology. Jan 2008;19(1):146-157. 

14. Sallis JF, Floyd MF, Rodríguez DA, Saelens BE. Role of Built Environments in 

Physical Activity, Obesity, and Cardiovascular Disease. Circulation. February 7, 

2012 2012;125(5):729-737. 

15. Papas MA, Alberg AJ, Ewing R, Helzlsouer KJ, Gary TL, Klassen AC. The built 

environment and obesity. Epidemiol. Rev. 2007;29:129-143. 

16. Pearson TA, Palaniappan LP, Artinian NT, et al. American Heart Association 

Guide for Improving Cardiovascular Health at the Community Level, 2013 

Update: A Scientific Statement for Public Health Practitioners, Healthcare 

Providers, and Health Policy Makers. Circulation. April 23, 2013 

2013;127(16):1730-1753. 

17. Fowler-Brown AG, Bennett GG, Goodman MS, Wee CC, Corbie-Smith GM, 

James SA. Psychosocial stress and 13-year BMI change among blacks: the Pitt 

County Study. Obesity (Silver Spring, Md.). Nov 2009;17(11):2106-2109. 

18. Morenoff JD, Diez Roux AV, Hansen BB, Osypuk TL. Residential environments 

and obesity: what can we learn about policy interventions from observational 

studies? In: Schoeni RF, House JS, Kaplan GA, Pollack H, eds. Making 

Americans Healthier: Social and Economic Policy as Health Policy: Russell Sage 

Foundation; 2008:309-343. 

19. Muller G, Kluttig A, Greiser KH, et al. Regional and Neighborhood Disparities in 

the Odds of Type 2 Diabetes: Results From 5 Population-Based Studies in 

Germany (DIAB-CORE Consortium). Am. J. Epidemiol. Jul 15 2013;178(2):221-

230. 

20. Andersen AF, Carson C, Watt HC, Lawlor DA, Avlund K, Ebrahim S. Life-

course socio-economic position, area deprivation and Type 2 diabetes: findings 

from the British Women's Heart and Health Study. Diabet. Med. 

2008;25(12):1462-1468. 

21. Leal C, Chaix B. The influence of geographic life environments on 

cardiometabolic risk factors: a systematic review, a methodological assessment 

and a research agenda. Obes Rev. Mar 2011;12(3):217-230. 

22. Schootman M, Andresen EM, Wolinsky FD, et al. The Effect of Adverse Housing 

and Neighborhood Conditions on the Development of Diabetes Mellitus among 

Middle-aged African Americans. Am. J. Epidemiol. August 15, 2007 

2007;166(4):379-387. 

23. Auchincloss AH, Diez Roux AV, Mujahid MS, Shen M, Bertoni AG, Carnethon 

MR. Neighborhood resources for physical activity and healthy foods and 



 

36 

 

incidence of type 2 diabetes mellitus: the Multi-Ethnic study of Atherosclerosis. 

Arch. Intern. Med. Oct 12 2009;169(18):1698-1704. 

24. Ludwig J, Sanbonmatsu L, Gennetian L, et al. Neighborhoods, obesity, and 

diabetes--a randomized social experiment. N. Engl. J. Med. Oct 20 

2011;365(16):1509-1519. 

25. Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: 

objectives and design. Am. J. Epidemiol. Nov 1 2002;156(9):871-881. 

26. Mujahid MS, Diez Roux AV, Morenoff JD, Raghunathan T. Assessing the 

measurement properties of neighborhood scales: from psychometrics to 

ecometrics. Am. J. Epidemiol. Apr 15 2007;165(8):858-867. 

27. Genuth S, Alberti KG, Bennett P, et al. Follow-up report on the diagnosis of 

diabetes mellitus. Diabetes Care. Nov 2003;26(11):3160-3167. 

28. Bertoni AG, Burke GL, Owusu JA, et al. Inflammation and the incidence of type 

2 diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care. 

Apr 2010;33(4):804-810. 

29. Boone-Heinonen J, Diez-Roux AV, Goff DC, et al. The neighborhood energy 

balance equation: does neighborhood food retail environment + physical activity 

environment = obesity? The CARDIA study. PLoS One. 2013;8(12):e85141. 

30. Auchincloss AH, Moore KA, Moore LV, Diez Roux AV. Improving retrospective 

characterization of the food environment for a large region in the United States 

during a historic time period. Health Place. Nov 2012;18(6):1341-1347. 

31. Moore LV, Diez Roux AV. Associations of neighborhood characteristics with the 

location and type of food stores. Am. J. Public Health. Feb 2006;96(2):325-331. 

32. Walls & Associates. National Establishment Time-Series (NETS) Database. 2010; 

Database Description: 

www.youreconomy.org/nets/NETSDatabaseDescription.pdf. 

33. Ver PLoeg M, Bereneman V, Farrigan T, et al. Access to affordable and 

nutritions food - measuring and understanding food deserts and their 

consequences: Report to congress. Washington, DC: United States Department of 

Agriculture;2009. 

34. Allen JP, Wilson V, eds. Assessing alcohol probelms: A guide for clinicians and 

researchers. 2nd ed. Bethesda, MD: National Institute on Alcohol Abuse and 

Alcoholism; 2003. 

35. Allison PD. Survival Analysis Using SAS: A Practical Guide: SAS Institute; 2010. 

http://www.youreconomy.org/nets/NETSDatabaseDescription.pdf


 

37 

 

36. Greenbaum RT, Tita GE. The Impact of Violence Surges on Neighbourhood 

Business Activity. Urban Studies. December 1, 2004 2004;41(13):2495-2514. 

37. Chaix B, Leal C, Evans D. Neighborhood-level confounding in epidemiologic 

studies: unavoidable challenges, uncertain solutions. Epidemiology. Jan 

2010;21(1):124-127. 

38. Hafeman DM, Schwartz S. Opening the Black Box: a motivation for the 

assessment of mediation. Int. J. Epidemiol. Jun 2009;38(3):838-845. 

39. Naimi AI, Kaufman JS, Howe CJ, Robinson WR. Mediation considerations: 

serum potassium and the racial disparity in diabetes risk. Am. J. Clin. Nutr. Aug 

2011;94(2):614-616. 

40. Mezuk B, Abdou CM, Hudson D, et al. "White Box" Epidemiology and the 

Social Neuroscience of Health Behaviors: The Environmental Affordances 

Model. Soc Ment Health. Jul 1 2013;3(2). 

41. Li R, Chambless L. Test for additive interaction in proportional hazards models. 

Ann. Epidemiol. Mar 2007;17(3):227-236. 

42. Boone-Heinonen J, Evenson KR, Song Y, Gordon-Larsen P. Research Built and 

socioeconomic environments: patterning and associations with physical activity in 

US adolescents. 2010. 

43. Hougaard P. Shared frailty models. Analysis of Multivariate Survival Data: 

Springer New York; 2000:215-262. 

44. Wienke A. Frailty Models in Survival Analysis: Taylor & Francis; 2010. 

45. Ranchod YK, Diez Roux AV, Evenson KR, Sanchez BN, Moore K. Longitudinal 

associations between neighborhood recreational facilities and change in 

recreational physical activity in the multi-ethnic study of atherosclerosis, 2000-

2007. Am. J. Epidemiol. Feb 1 2014;179(3):335-343. 

46. Giles-Corti B, Bull F, Knuiman M, et al. The influence of urban design on 

neighbourhood walking following residential relocation: longitudinal results from 

the RESIDE study. Soc. Sci. Med. Jan 2013;77:20-30. 

47. Calise TV, Heeren T, DeJong W, Dumith SC, Kohl HW, 3rd. Do neighborhoods 

make people active, or do people make active neighborhoods? Evidence from a 

planned community in Austin, Texas. Prev Chronic Dis. 2013;10:E102. 

48. Boone-Heinonen J, Gordon-Larsen P, Kiefe CI, Shikany JM, Lewis CE, Popkin 

BM. Fast food restaurants and food stores: longitudinal associations with diet in 

young to middle-aged adults: the CARDIA study. Arch. Intern. Med. Jul 11 

2011;171(13):1162-1170. 



 

38 

 

49. Cummins S, Flint E, Matthews SA. New neighborhood grocery store increased 

awareness of food access but did not alter dietary habits or obesity. Health Aff. 

(Millwood). Feb 2014;33(2):283-291. 

50. Lucan SC, Hillier A, Schechter CB, Glanz K. Objective and self-reported factors 

associated with food-environment perceptions and fruit-and-vegetable 

consumption: a multilevel analysis. Prev Chronic Dis. 2014;11:E47. 

51. Caspi CE, Kawachi I, Subramanian SV, Adamkiewicz G, Sorensen G. The 

relationship between diet and perceived and objective access to supermarkets 

among low-income housing residents. Soc. Sci. Med. Oct 2012;75(7):1254-1262. 

52. Anekwe TD, Rahkovsky I. The association between food prices and the blood 

glucose level of US adults with type 2 diabetes. Am. J. Public Health. Apr 

2014;104(4):678-685. 

53. Beydoun MA, Powell LM, Wang Y. The association of fast food, fruit and 

vegetable prices with dietary intakes among US adults: is there modification by 

family income? Soc. Sci. Med. Jun 2008;66(11):2218-2229. 

54. Brownson RC, Hoehner CM, Day K, Forsyth A, Sallis JF. Measuring the built 

environment for physical activity: state of the science. Am. J. Prev. Med. Apr 

2009;36(4 Suppl):S99-123 e112. 

55. Drewnowski A, Aggarwal A, Hurvitz PM, Monsivais P, Moudon AV. Obesity 

and supermarket access: proximity or price? Am. J. Public Health. Aug 

2012;102(8):e74-80. 

56. Breyer B, Voss-Andreae A. Food mirages: geographic and economic barriers to 

healthful food access in Portland, Oregon. Health Place. Nov 2013;24:131-139. 

57. Burdette HL, Wadden TA, Whitaker RC. Neighborhood safety, collective 

efficacy, and obesity in women with young children. Obesity (Silver Spring, Md.). 

Mar 2006;14(3):518-525. 

58. Mason P, Kearns A, Livingston M. "Safe Going": the influence of crime rates and 

perceived crime and safety on walking in deprived neighbourhoods. Soc. Sci. 

Med. Aug 2013;91:15-24. 

59. Bennett GG, McNeill LH, Wolin KY, Duncan DT, Puleo E, Emmons KM. Safe to 

walk? Neighborhood safety and physical activity among public housing residents. 

PLoS medicine. Oct 2007;4(10):1599-1606; discussion 1607. 

60. Fish JS, Ettner S, Ang A, Brown AF. Association of perceived neighborhood 

safety with [corrected] body mass index. Am. J. Public Health. Nov 

2010;100(11):2296-2303. 



 

39 

 

61. Reis JP, Hankinson AL, Loria CM, et al. Duration of abdominal obesity 

beginning in young adulthood and incident diabetes through middle age: the 

CARDIA study. Diabetes Care. May 2013;36(5):1241-1247. 

62. Cole SR, Hernan MA. Fallibility in estimating direct effects. Int. J. Epidemiol. 

Feb 2002;31(1):163-165. 

63. Blakely T. Commentary: estimating direct and indirect effects-fallible in theory, 

but in the real world? Int. J. Epidemiol. Feb 2002;31(1):166-167. 

64. le Cessie S, Debeij J, Rosendaal FR, Cannegieter SC, Vandenbroucke JP. 

Quantification of bias in direct effects estimates due to different types of 

measurement error in the mediator. Epidemiology. Jul 2012;23(4):551-560. 

65. Diez Roux AV. Estimating neighborhood health effects: the challenges of causal 

inference in a complex world. Soc. Sci. Med. May 2004;58(10):1953-1960. 

66. Oakes JM. The (mis)estimation of neighborhood effects: causal inference for a 

practicable social epidemiology. Soc. Sci. Med. May 2004;58(10):1929-1952. 

67. Sampson RJ, Sharkey P. Neighborhood selection and the social reproduction of 

concentrated racial inequality. Demography. Feb 2008;45(1):1-29. 

68. Cummins S. Commentary: investigating neighbourhood effects on health--

avoiding the 'local trap'. Int. J. Epidemiol. Apr 2007;36(2):355-357. 

69. Macintyre S. Deprivation amplification revisited; or, is it always true that poorer 

places have poorer access to resources for healthy diets and physical activity? Int 

J Behav Nutr Phys Act. 2007;4:32. 

70. Franco M, Diez Roux AV, Glass TA, Caballero B, Brancati FL. Neighborhood 

characteristics and availability of healthy foods in Baltimore. Am. J. Prev. Med. 

Dec 2008;35(6):561-567. 

71. Duncan DT, Kawachi I, White K, Williams DR. The geography of recreational 

open space: influence of neighborhood racial composition and neighborhood 

poverty. J. Urban Health. Aug 2013;90(4):618-631. 

72. Estabrooks PA, Lee RE, Gyurcsik NC. Resources for physical activity 

participation: does availability and accessibility differ by neighborhood 

socioeconomic status? nn. Behav. Med. Spring 2003;25(2):100-104. 

  



 

40 

 

Table 2.1 Neighborhood measures for healthy food, physical activity, and social 

environments, Multi-Ethnic Study of Atherosclerosis, 2000-2012 

Neighborhood Summary and 

Component Measures
 

Scale
a
 

Healthy food environment 

summary score
 

Sum of standardized component measures 

GIS-based density of 

supermarkets/fruit and vegetable 

markets
 

Number of food stores likely to sell healthier 

foods (supermarkets, fruit and vegetable 

markets) per square mile 

Survey-based healthy food 

availability
 

Likert scale, 1-5 (example: “A large selection 

of fresh fruits and vegetables is available in 

my neighborhood”) 

Physical activity environment 

summary score
 

Sum of standardized component measures 

GIS-based density of 

commercial recreational 

establishments
 

Number of commercial recreational 

establishments (gyms, pools, etc.) per square 

mile 

Survey-based walking 

environment
 

Likert scale, 1-5 (example: “My neighborhood 

offers many opportunities to be physically 

active”) 

Social environment summary 

score
 

Sum of standardized component measures 

Survey-based social cohesion
 

Likert scale, 1-5 (example: “People in my 

neighborhood can be trusted”) 

Survey-based safety
 

Likert scale, 1-5 (example: “I feel safe walking 

in my neighborhood, day or night”) 

Abbreviations: GIS, geographic information system 
a All measures are constructed such that higher values indicate more favorable environments 
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Table 2.2 Baseline sociodemographic, behavioral, and type 2 diabetes risk factor 

characteristics for the total study population, incident diabetes cases, and non-cases, 

Multi-Ethnic Study of Atherosclerosis, 2000-2012 
  Type 2 Diabetes During 

Follow-up 

 Total Sample Yes No 

No. of participants 5124 616 4508 

Sociodemographics    

Age, mean (SD) 60.7 (9.9) 60.9 (9.6) 60.7 (9.9) 

Female, No. (%) 2747 (53.6) 325 (52.8) 2422 (53.7) 

Race/ethnicity, No. (%)    

  White 2168 (42.3) 190 (30.8) 1978 (43.9) 

  Black 1311 (25.6) 190 (30.8) 1121 (24.9) 

  Hispanic 1041 (20.3) 161 (26.1) 880 (19.5) 

  Chinese American 604 (11.8) 75 (12.2) 529 (11.7) 

Household per capita income, mean 

(SD), per $10,000  

51.8 (34.4) 48.0 (32.5) 52.4 (34.6) 

Education, mean (SD), y 13.4 (3.8) 13.0 (4.0) 13.5 (3.8) 

Behavioral Characteristics and Risk Factors 
Smoking status, No. (%)    

  Former 1892 (36.9) 234 (38.0) 1658 (36.8) 

  Current 650 (12.7) 70 (11.4) 580 (12.9) 

Alcohol use, No. (%)
a 

   

  Moderate 1582 (30.9) 152 (24.7) 1430 (31.7) 

  Heavy 419 (8.2) 29 (4.7) 390 (8.7) 

Alternative Healthy Eating Index 2010, 

mean (SD)
b 

52.1 (11.7) 50.8 (11.4) 52.2 (11.8) 

Intentional physical activity, No. (%)
c 

   

Low 1821 (35.5) 248 (40.3) 1573 (34.9) 

Middle 1599 (31.2) 186 (30.2) 1413 (31.3) 

High 1704 (33.3) 182 (29.6) 1522 (33.8) 

Body mass index, No. (%)    

  Normal (18-<25) 1568 (30.6) 77 (12.5) 1491 (33.1) 

  Overweight (25-<30) 2044 (39.9) 221 (35.9) 1823 (40.4) 

  Obese (≥30) 1512 (29.5) 318 (51.6) 1194 (26.5) 

Family history type 2 diabetes, No. (%) 1791 (35.0) 298 (48.4) 1493 (33.1) 

Neighborhood Characteristics    

Socioeconomic index, mean (SD)
d
 0.5 (1.3) 0.2 (1.2) 0.6 (1.3) 

Healthy food environment, median 

(IQR) 

   

GIS-based supermarkets/fruit and 

vegetable markets
e 

1.0 (2.2) 1.0 (1.9) 1.0 (2.2) 

Survey-based measure
f 

3.5 (0.7) 3.4 (0.6) 3.5 (0.7) 

Summary measure
g 

-0.2 (2.1) -0.4 (2.0) -0.3 (2.2) 

Physical activity environment, median 

(IQR) 

   

GIS-based commercial recreational 

establishments
e 

1.9 (2.9) 1.9 (2.7) 2.1 (2.9) 

Survey-based measure
f 

3.9 (0.4) 3.8 (0.3) 3.9 (0.4) 

Summary measure
g 

-0.1 (1.2) -0.5 (1.0) -0.4 (1.2) 

Social environment, median (IQR)    

Survey-based social cohesion
f 

3.5 (0.3) 3.5 (0.4) 3.5 (0.3) 

Survey-based safety
f 

3.7 (0.7) 3.6 (0.7) 3.7 (0.7) 

Summary measure
g 

-0.0 (2.1) -0.1 (2.5) -0.0 (2.0) 
Abbreviations: No., number; SD, standard deviation; IQR, interquartile range; GIS, geographic information system 
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a Alcohol use defined according to National Institute on Alcohol Abuse and Alcoholism definitions for men and women. Moderate 

drinking is defined as no more than 4 drinks on any single day and no more than 14 drinks per week for men, and no more than 3 

drinks on any single day and no more than 7 drinks per week for women. Heavy drinking is defined as consumption in excess of 

moderate. 
b The Alternative Healthy Eating Index 2010 is an index designed to capture a “healthy diet”, and was compiled based upon a food 
frequency questionnaire. The index ranges from 2.5 to 87.5, and higher scores indicate a better quality diet (high intake of fruits, 

vegetables, soy, protein, white meat, cereal fiber, polyunsaturated fat, and multivitamins, and lower intake of alcohol, saturated fat and 

red meat). Some individuals are missing data for Alternative Healthy Eating Index 2010 (n=595).  
c Refers to moderate and vigorous intentional physical activity, including walking for exercise, dance, team sports (e.g. basketball, 

softball), dual sports (e.g. tennis), individual activities (e.g. golf, yoga), and conditioning activities (e.g. running, swimming, cycling). 

Physical activity is measured in metabolic equivalent of task minutes per week (MET-min/week), and is categorized into tertiles for 
descriptive purposes. 
d The neighborhood socioeconomic index includes census tract information on percent with a Bachelor’s degree, percent in a 

managerial occupation, median home value, percent with a high school education, percent with interest, dividend, or rental income, 
median household income, and percent with household income > $50,000. A higher value indicates higher socioeconomic status. 
e Number of supermarkets/fruit and vegetable markets or commercial recreational establishments per square mile within a 1-mile 

buffer of the participant’s residential address. 
 f Survey score based upon Likert scale (1-5) rankings of healthy food and physical activity resource availability, and neighborhood 

social cohesion and safety within 1-mile of participant’s residential address; higher scores indicate more favorable environments. 
g Sum of standardized component measures (GIS- and survey-based measures for food and physical activity environment, or social 
cohesion and safety surveys for social environment); higher scores indicate more favorable environments. 
h Number of commercial recreational and physical activity establishments, including gyms, dance studios, places to play team and 

racquet sports, and water-related activities, per square mile within a 1-mile buffer of the participant’s residential address. 
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Table 2.3 Baseline sociodemographic, behavioral, and type 2 diabetes risk factor characteristics by tertiles of baseline neighborhood 

healthy food, physical activity, and social environment summary measures, Multi-Ethnic Study of Atherosclerosis, 2000-2012 
 Total 

Sample 

Summary Healthy Food Environment Summary Physical Activity 

Environment 

Summary Social Environment 

  Low Middle High Low Middle High Low Middle High 

No. of participants 5124 1704 1739 1681 1785 1705 1634 1793 1680 1651 

Sociodemographics           

Age, mean (SD) 60.7 (9.9) 60.7 (10.0) 61.9 (10.2) 61.8 (10.3) 61.0 (10.0) 61.3 (10.3) 62.3 (10.2) 60.9 (10.3) 61.9 (10.4) 61.7 (9.8) 

Female, % 53.6 53.6 51.7 55.6 52.2 56.1 52.6 55.3 53.8 51.6 

Race/ethnicity, %           

  White 42.3 51.5 36.6 39.0 30.1 43.4 54.5 21.3 43.7 63.8 

  Black 25.6 32.2 22.2 22.4 34.5 19.1 22.6 38.4 17.7 19.7 

  Hispanic 20.3 13.7 18.2 29.3 22.3 37.8 15.3 32.5 19.1 8.3 

  Chinese American 11.8 2.6 23.1 9.4 13.2 14.4 7.5 7.8 19.5 8.2 

Household per capita 

income, mean (SD), per 

$10,000  

51.8 (34.4) 51.6 (32.2) 49.3 (34.0) 54.7 (36.7) 43.5 (30.2) 48.2 (32.4) 64.4 (37.0) 39.6 (29.1) 49.5 (32.9) 67.4 (35.2) 

Education, mean (SD), y 13.4 (3.8) 13.6 (3.4) 13.2 (3.9) 13.5 (4.2) 12.6 (4.0) 13.2 (3.8) 14.6 (3.4) 12.2 (4.2) 13.5 (3.8) 14.7 (2.9) 

Risk Factors            

Smoking status, %           

  Former 36.9 39.5 34.5 36.8 35.6 34.1 41.3 34.5 36.2 40.3 

  Current 12.7 14.5 11.6 12.0 14.7 12.4 10.8 16.7 11.4 9.6 

Alcohol use, %
a 

          

  Moderate 30.9 29.3 30.8 32.5 24.3 29.6 39.4 24.5 32.0 36.6 

  Heavy 8.2 7.5 6.9 10.2 5.4 7.3 12.1 6.5 9.1 9.2 

Alternative Healthy 

Eating Index 2010, mean 

(SD)
b 

52.1 (11.7) 50.0 (11.8) 52.5 (11.2) 53.8 (11.9) 51.0 (11.5) 51.5 (11.7) 53.7 (12.0) 50.6 (11.6) 52.5 (11.6) 53.1 (12.0) 

Intentional physical 

activity, %
c 

          

Low 35.5 37.7 37.0 31.8 43.4 35.1 27.4 40.6 36.4 29.3 

Middle 31.2 30.9 32.4 30.3 30.1 31.8 31.8 28.5 33.5 31.9 

High 33.3 31.5 30.6 37.8 26.5 33.1 40.8 30.1 30.2 39.9 

Body mass index, %           

  Overweight (25-<30) 39.9 40.3 40.6 38.8 40.1 39.5 40.0 39.2 39.0 41.6 

  Obese (≥30) 29.5 35.9 26.3 26.3 31.9 30.1 25.2 34.8 28.1 25.3 
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 Total 

Sample 

Summary Healthy Food Environment Summary Physical Activity 

Environment 

Summary Social Environment 

  Low Middle High Low Middle High Low Middle High 

Family history type 2 

diabetes, % 

35.0 39.0 35.4 30.4 38.4 34.1 32.1 35.7 35.4 33.7 

Neighborhood 

Characteristics 

          

Socioeconomic index, 

mean (SD)
d
 

0.5 (1.3) -0.0 (0.8) 0.4 (0.9) 1.3 (1.6) -0.2 (0.8) 0.3 (0.9) 1.6 (1.4) -0.4 (0.9) 0.4 (1.4) 1.2 (1.4) 

Abbreviations: SD, standard deviation; y, years;  
a Alcohol use defined according to National Institute on Alcohol Abuse and Alcoholism definitions for men and women (see Table 2). 
b Some individuals are missing data for Alternative Healthy Eating Index 2010 (n=595; see Table 2). 
c Refers to moderate and vigorous intentional physical activity. Measured in MET-min/week and categorized into tertiles (see Table 2). 
d Higher values indicate higher socioeconomic status (see Table 2). 
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Table 2.4 Crude incidence rates of type 2 diabetes by tertiles of neighborhood food, 

physical activity, and social environment summary measures at baseline, Multi-Ethnic 

Study of Atherosclerosis, 2000-2012
a
 

Neighborhood Measure Incidence per 1000 person-years (95% CI) 

 Low Tertile, Worst Middle Tertile High Tertile, Best 

Healthy Food Environment    

GIS-based supermarkets/FV 

markets 

17.9 (15.7, 20.4) 15.8 (13.7, 18.1) 15.8 (13.7, 18.1) 

Survey-based 17.5 (15.3, 20.0) 19.8 (17.5, 22.5) 12.1 (10.3, 14.1) 

Summary 16.9 (14.8, 19.3) 18.2 (16.0, 20.8) 14.3 (12.3, 16.6) 

Physical Activity Environment    

GIS-based commercial 

recreational establishments 

20.3 (17.8, 23.3) 14.6 (12.8, 16.7) 15.4 (13.4, 17.8) 

Survey-based 20.8 (18.4, 23.5) 17.8 (15.6, 20.3) 10.6 (9.0, 12.7) 

Summary 20.5 (18.2, 23.2) 17.1 (15.0, 19.6) 11.8 (10.0, 13.8) 

Social Environment    

Survey-based social cohesion 18.5 (16.3, 21.1) 14.6 (12.7, 16.9) 16.3 (14.2, 18.8) 

Survey-based safety 18.7 (16.5, 21.3) 17.3 (15.2, 19.8) 13.4 (11.5, 15.6) 

Summary 19.7 (17.4, 22.3) 15.7 (13.6, 18.1) 14.0 (12.1, 16.2) 
Abbreviations: GIS, geographic information system 
a Incidence rates were calculated using Poisson regression according to tertiles of the neighborhood exposures at baseline. Overall 

incidence rate in the full sample was 16.5 per 1000 person-years (95% CI; 15.2, 17.8). 
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Figure 2.1 Adjusted hazard ratios for type 2 diabetes incidence corresponding to an 

interquartile range increase in exposure to neighborhood resources, Multi-Ethnic Study of 

Atherosclerosis, 2000-2012 

Abbreviation: GIS, geographic information system; Rec, recreational 



 

47 

 

a Model 1 adjusts for baseline age, gender, family history of diabetes, household per capita income, education, smoking status and 

alcohol consumption. Model 2 adjusts for all covariates in model 1, and adds neighborhood socioeconomic status. All exposures 

correspond to cumulative average exposures over time. 1 interquartile range (IQR) corresponds to the following changes for each 

exposure: GIS-based supermarkets/FV markets (IQR=2.2); Survey-based healthy food (IQR=0.6); Combined healthy food (IQR=2.1); 

GIS-based commercial recreational establishments (IQR=3.2); Survey-based physical activity (IQR=0.4); Combined physical activity 
(IQR=1.2); Social Cohesion (IQR=0.3); Safety (IQR=0.7); Combined social environment (IQR=2.0) 
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Appendix 

 

Text 2.A1: Further description of the neighborhood GIS, survey, and summary measures 

for healthy food, physical activity, and social environments 
 

GIS-based measures of access to food stores were created using data obtained 

from the National Establishment Time Series (NETS) database from Walls and 

Associates for the years 2000-2012. This data includes time-series data on establishments 

derived from Dun and Bradstreet (D&B) archival establishment data.  Addresses were 

geocoded using TeleAtlas EZ-Locate web-based geocoding software (TeleAtlas, 2011). 

We used Standard Industrial Classification (SIC) codes to identify supermarkets and 

grocery stores (#5411), and fruit and vegetable markets (#5431), which we classified as 

healthy food stores.
1
 Additional supermarket data was obtained from Nielsen/TDLinx to 

enhance the supermarket list.
2
 We identified supermarkets as grocery stores with at least 

$2 million in annual sales or at least 25 employees. Additionally, we included 

supermarkets that had a standard chain name based on a list derived from the 

Nielsen/TDLinx data as described in detail elsewhere.
3
 For physical activity resources, 

114 SIC codes were selected to represent establishments with indoor conditioning, dance, 

bowling, golf, team and racquet sports, and water activities derived from lists used in 

previous studies.
4,5

 Simple densities per square mile were created for 1-mile buffers 

around each address using the point density command in ArcGIS 9.3. 

For the survey scales, information on neighborhood level characteristics was 

ascertained via questionnaire asking participants to rate the area within approximately 1 

mile around their home. On the basis of a conceptual model
6
 and prior work,

7
 four 

neighborhood dimensions were assessed: walking environment (4 items, “It is pleasant to 

walk in my neighborhood”, “In my neighborhood it is easy to walk to places”, “I often 
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see other people walking in my neighborhood”, and “I often see other people exercise in 

my neighborhood”), availability of healthy foods (2 items, “A large selection of fresh 

fruit and vegetables is available in my neighborhood” and “A large selection of low fat 

foods is available in my neighborhood”), safety (2 items, “I feel safe walking in my 

neighborhood day or night” and “Violence is a problem in my neighborhood”), and social 

cohesion (4 items, “People around here are willing to help their neighbors”, “People in 

my neighborhood generally get along with each other”, “People in my neighborhood can 

be trusted”, and “People in my neighborhood share the same values”).  Responses for 

each item ranged from 1 (strongly agree) to 5 (strongly disagree).  Questions were 

reverse coded when needed to indicate a higher score being a more positive or favorable 

environment.  Scales were based on previous work and have acceptable internal 

consistency (Cronbach alpha 0.64-0.82).
8
 Scales based on a 1-mile buffer around the 

MESA participant’s home address were created by taking the crude mean of the 

responses for all respondents living within a 1 mile buffer, excluding themselves.  

Respondents had to have answered all questions within the domain to be included.  

To create the summary measures, we standardized the GIS- and survey-based 

measures by centering each measure at the sample mean and dividing by the standard 

deviation. We then summed the standardized measures corresponding to each domain 

(e.g. GIS-based supermarket/fruit and vegetable market availability and survey-based 

fruit and vegetable availability) to create a summary measure. 
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Table 2.A1 Distribution of number of respondents to the survey questionnaires used for 

creating each individual participant’s survey-based exposure measures 
 Proportion of index participants with a given number of respondents used to 

create survey-based exposures (%) 

 1-mile buffer Census tract buffer 

Number of 

respondents used 

to create survey 

measure
a
 

1 2 3 4 ≥5 Median 1 2 3 4 ≥5 Median 

Survey-based 

healthy food 

environment 

1.6 0.9 1.2 1.2 95.0 78 4.0 5.9 4.1 3.4 82.6 20 

Survey-based 

physical activity 

environment 

1.6 0.9 1.2 1.2 95.0 78 4.0 5.9 4.1 3.4 82.6 20 

Survey-based social 

cohesion 

1.4 1.0 1.0 1.4 95.2 76 3.6 5.8 4.1 3.4 83.1 20 

Survey-based safety 1.6 0.9 1.2 1.2 95.0 78 4.0 5.9 4.1 3.4 82.6 20 
a Note that each individual’s own response was excluded from their survey-based exposure measure in order to minimize self-

perception bias. Thus, the number of individuals used to create the survey response does not include the individual’s own responses to 
survey questions. 
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Text 2.A2: Individual diet, physical activity, and body mass index (BMI) measurement 
 

Diet was measured using a food frequency questionnaire administered at baseline 

and at exam 5. To derive an index of “healthy diet”, we used the Alternative Healthy 

Eating Index – 2010 (AHEI-2010), which has been used in a variety of epidemiologic 

work due to its strong relationship to major chronic diseases.
9,10

 The index ranges from 0 

to 110, with higher scores indicating better diet quality (high intake of fruits, vegetables, 

soy, protein, white meat, cereal fiber, polyunsaturated fat and vitamins, and lower intake 

of alcohol, saturated fat, and red meat). Typical physical activity was measured at exams 

1, 2, 3, and 5 using a standardized, semi-quantitative questionnaire adapted from the 

Cross-Cultural Activity Participation Study.
11

 Physical activity was quantified in 

metabolic equivalent task minutes per week, and included all moderate and vigorous 

intentional physical activity, including walking for exercise, dance, team sports (e.g. 

basketball, softball), dual sports (e.g. tennis), individual activities (e.g. golf, yoga), and 

conditioning activities (e.g. running, swimming, cycling). BMI was calculated at each 

exam using measured height (m) and weight (kg). As potential mediators, BMI, diet, and 

physical activity were added to regression models as time-varying covariates, matching 

each mediator value to the closest preceding exposure measure. The sensitivity of our 

results to the use of the AHEI-2010 dietary index was tested by running additional 

models controlling for specific dietary components linked to type 2 diabetes in our cohort 

and others: percent of calories consumed from trans fats, whole grain consumption 

(servings per day), and consumption of nuts and seeds (servings per day). These dietary 

components were added to models individually and then collectively into a single model. 
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Text 2.A3: Further description of neighborhood socioeconomic status index 

 

Neighborhood level scales for characteristics of socioeconomic status (SES) were 

obtained from the U.S. Census 2000 Summary File 1 and Summary File 3, American 

Community Survey (ACS) 2005-2009, and ACS 2007-2011 estimates at the census tract 

level. We conducted principal factor analysis with orthogonal rotation of 21 census 

variables which reflect aspects of race/ethnicity (percent Hispanic, percent non-Hispanic 

Asian, and percent non-Hispanic black), crowding (percent of households with crowing 

greater than 1 person per room), foreign born (percent or persons who are foreign born), 

education (percent of adults age 25 or older with at least a high school education and 

percent of adults age 25 or older with at least a Bachelor’s degree), occupation (percent 

of persons age 16 and older with executive, managerial, or professional occupation), 

income and wealth (median value of housing units, percent of housing units without a 

telephone, percent of housing units without a vehicle, median household income, percent 

of households with income of at least $50,000, percent of household with interest, 

dividend, or net rental income, and percent of household receiving public assistance), 

poverty (percent below poverty level),  employment (percent of those age 16 or older 

who are unemployed and percent of those age 16 and older who are not in the labor 

force), and housing (percent of occupied housing units, percent of housing units that are 

owner occupied, and percent of persons living in same house as previous census). 

Variables that represent a better SES environment were reverse coded. Five factors were 

kept which reflects 74% of the variance explained.  Weighted scales were created by 

multiplying the factor weights by the standardized variables, and increasing scores 

represents socioeconomic disadvantage. The first factor, which we used in all analyses, 
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represents education, occupation, housing value, and income, and was highly weighted 

on % bachelor degree, % managerial occupation, median home value, % HS education, 

% interest/dividend/rental income, median household income, and % household income 

>$50,000.  The scales are linked to MESA participants by census tract using Census 2000 

data for years 2000-2004, ACS 2005-2009 data for years 2005-2007, and ACS 2007-

2011 data for years 2008-2012. 
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Text 2.A4: Description of models using baseline and change since baseline neighborhood 

measures as the exposures of interest  

 

The parameterization of longitudinal neighborhood exposures as time-varying 

cumulative averages in the main models of the paper reflects both theory and biological 

plausibility regarding how neighborhood exposures are likely to influence the risk for 

type 2 diabetes, a slow, progressive onset chronic disease. Nonetheless, there is interest in 

evaluating if change in the neighborhood environment is associated with risk for diabetes. 

We ran additional Cox proportional hazards models parameterizing the neighborhood 

exposures as two separate regression coefficients: a baseline value, which estimates the 

association between the baseline level of exposure and the hazard for developing 

diabetes, and a change since baseline value, which estimates the association between the 

change in the level of exposure from baseline to the most recent follow-up exam and the 

hazard for developing diabetes. All models adjusted for the same covariates as the models 

in the main paper, and the results of these analyses are presented in Table 2.A7. For 

simplicity, all hazard ratios and 95% confidence intervals are estimated for a 1-unit 

change in the exposures. 
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Table 2.A2 Baseline values and mean 10-year changes for neighborhood health food, 

physical activity, and social environment measures 
Neighborhood Summary and 

Component Measures
 

Baseline values, 

median (IQR) 

Mean 10-year 

changes (95% CI) 

Healthy food environment 

summary score
 

-0.31 (2.14) 0.83 (0.83, 0.84) 

GIS-based density of 

favorable food stores
 

0.96 (2.23) -0.20 (-0.21, -0.19) 

Survey-based healthy food 

availability
 

3.49 (0.65) 0.48 (0.48, 0.48) 

Physical activity environment 

summary score
 

-0.48 (1.17) 0.54 (0.53, 0.54) 

GIS-based density of physical 

activity resources
 

1.91 (2.87) 2.01 (1.98, 2.03) 

Survey-based walking 

environment
 

3.86 (0.35) 0.09 (0.09, 0.09) 

Social environment summary 

score
 

-0.03 (2.09) 0.26 (0.25, 0.27) 

Survey-based social cohesion
 

3.54 (0.33) 0.07 (0.07, 0.08) 

Survey-based safety
 

3.68 (0.68) 0.01 (0.01, 0.01) 
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Table 2.A3 Hazard ratios associated with an IQR increase in cumulative average 

neighborhood exposures, comparing models with and without BMI, diet and physical 

activity to evaluate possible mediation 
Neighborhood Exposures Model 1: 

All individual-

level covariates
a 

Model 2:  

Model 1 + BMI
b 

Model 3: 

Model 2 + diet 

and physical 

activity
c 

 HR (95% CI) HR (95% CI) HR (95% CI) 

Healthy Food Environment    

GIS-based supermarkets/FV 

markets 

0.99 (0.94, 1.04) 1.00 (0.95, 1.05) 1.00 (0.95, 1.05) 

Survey-based 0.84 (0.76, 0.93) 0.87 (0.78, 0.96) 0.85 (0.77, 0.95) 

Summary 0.88 (0.79, 0.98) 0.91 (0.82, 1.02) 0.89 (0.79, 1.01) 

Physical Activity 

Environment 

   

GIS-based commercial rec 

establishments 

0.96 (0.92, 0.99) 0.97 (0.93, 1.01) 0.97 (0.92, 1.00) 

Survey-based 0.79 (0.71, 0.88) 0.81 (0.73, 0.91) 0.80 (0.70, 0.88) 

Summary 0.79 (0.69, 0.90) 0.82 (0.71, 0.93) 0.80 (0.68, 0.91) 

Social Environment    

Survey-based social cohesion 0.97 (0.77, 1.23) 0.96 (0.75, 1.22) 0.98 (0.75, 1.29) 

Survey-based safety 0.96 (0.90, 1.03) 0.96 (0.89, 1.02) 0.96 (0.89, 1.04) 

Summary 0.96 (0.86, 1.07) 0.96 (0.85, 1.09) 0.96 (0.85, 1.09) 
a Model 1  is the same as model 1 in the main paper, and controls for baseline age, gender, family history of diabetes, education, 

household income per capita, race/ethnicity, smoking status, and alcohol consumption.  
b Model 2 controls for all covariates in model 1, and adds time-varying BMI as a potential mediator.  
c Model 3 controls for all covariates in model 2, and adds diet (measured as the AHEI 2010 dietary index) and physical activity (total 

intentional physical activity measured in MET-mins/wk) as potential mediators. For additional details regarding the measurement of 
diet and physical activity, see Text 2.A2.Results when including specific dietary features (% of calories from tans fat, whole grain 

consumption [servings/day], and nuts/seed consumption [servings/day]) were nearly identical to the results presented in the table. 
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Figure 2.A1 Effect modification of adjusted hazard ratios for type 2 diabetes incidence 

for an IQR increase in cumulative neighborhood exposure by gender, baseline age, 

household income, and chronic stress status for summary a) healthy food, b) physical 

activity, and social environments 

 

a) 

b) 
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a P-values for interaction come from a model adjusting for baseline age, gender, family history of diabetes, household per capita 

income, education, smoking status, alcohol consumption, and neighborhood SES index, and including an interaction term between the 
neighborhood exposure and effect modifier of interest. P-values are from Wald Chi-square tests for departures from multiplicative 

joint effects. 
b Household income per capita is divided into tertiles. 
c Chronic stress corresponds to self-reported problems due to money, job status, health concerns, or relationships that have lasted for 

greater than 6 months. Respondents answering yes to any chronic problems in the domains specified were classified as “present”. 

  

c) 
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Table 2.A4 Hazard ratios associated with an IQR increase in cumulative average 

neighborhood exposures, using interval censored survival models
a
 

Neighborhood Exposures
b 

Model 1: 

All individual-level 

covariates
c 

Model 2:  

Model 1 + 

Neighborhood SES 

 HR (95% CI) HR (95% CI) 

Healthy Food Environment   

GIS-based supermarkets/FV markets 0.99 (0.94, 1.04) 1.04 (0.98,  1.10) 

Survey-based 0.65 (0.58, 0.72) 0.67 (0.59, 0.74) 

Summary 0.72 (0.63, 0.82) 0.78 (0.67, 0.89) 

Physical Activity Environment   

GIS-based commercial rec 

establishments 

0.92 (0.88, 0.97) 0.96 (0.91, 1.01) 

Survey-based 0.73 (0.66, 0.81) 0.77 (0.67, 0.87) 

Summary 0.80 (0.74, 0.87) 0.83 (0.74, 0.91) 

Social Environment   

Survey-based social cohesion 0.94 (0.84, 1.04) 0.94 (0.85, 1.04) 

Survey-based safety 0.93 (0.80, 1.06) 0.97 (0.84, 1.10) 

Summary 0.94 (0.84, 1.03) 0.96 (0.86, 1.05) 
a All analyses use accelerated failure time models with a Weibull distribution to account for interval censoring of diabetes events. 
Standard errors and confidence intervals were calculated using the delta method. 
b All exposure measures correspond to the most recent cumulative average exposure at the time of interval censoring, or at the end of 
follow-up for those remaining free of diabetes. 
c Model 1 controls for baseline age, gender, family history of diabetes, education, and race/ethnicity, and most recently reported 

household income per capita, smoking status, and alcohol consumption. 
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Table 2.A5 Sensitivity analyses for adjusted hazard ratios for type 2 diabetes incidence corresponding to an IQR increase in exposure 

to neighborhood resources
a
 

Neighborhood Exposure Alternative 

geographic scale
b 

Control for 

population 

density
c 

Control for study 

site 

Shared frailty 

models
d
 

1-year lagged 

exposure
e 

 HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Healthy food environment      

GIS-based supermarkets/FV 

markets 

1.00 (0.97, 1.04) 0.99 (0.87, 1.14) 0.96 (0.88, 1.06) 1.00 (0.95, 1.05) 0.99 (0.94, 1.04) 

Survey-based 0.83 (0.74, 0.94) 0.83 (0.75, 0.92) 0.85 (0.75, 0.97) 0.88 (0.79, 0.97)  

Summary 0.89 (0.79, 1.00) 0.74 (0.63, 0.88) 0.80 (0.67, 0.96) 0.92 (0.82, 1.02)  

Physical activity environment      

GIS-based commercial rec 

establishments 

0.96 (0.92, 1.00) 0.93 (0.89, 0.98) 0.95 (0.91, 1.00) 0.94 (0.90, 0.98) 0.95 (0.92, 0.99) 

Survey-based 0.81 (0.72, 0.92) 0.78 (0.70, 0.87) 0.80 (0.71, 0.90) 0.83 (0.75, 0.92)  

Summary 0.87 (0.79, 0.95) 0.74 (0.64, 0.86) 0.78 (0.67, 0.91) 0.85 (0.80, 0.92)  

Social environment      

Survey-based social cohesion 1.03 (0.92, 1.17) 0.96 (0.84, 1.10) 0.92 (0.80, 1.05) 
f 

 

Survey-based safety 1.02 (0.96, 1.09) 0.90 (0.78, 1.04) 0.85 (0.73, 0.99) 0.93 (0.81, 1.08)  

Summary 1.05 (0.92, 1.19) 0.93 (0.83, 1.05) 0.89 (0.78, 1.01) 0.94 (0.85, 1.05)  
a All models control for baseline age, gender, family history of diabetes, education, household income per capita, race/ethnicity, smoking status, and alcohol consumption. 
b For GIS-based measures, simple 3-mile buffers were used. For survey-based measures, including social cohesion and safety, and summary measures, census tracts were used. Alternative geographic 

scale measures were created in the same manner as those described in the methods section. 
c Population density, measured as persons per square mile within a 1-mile buffer of the participant’s address, was calculated based on block-level census population. Each block was weighted by the 

percent of the block area that falls within the participant buffer. The total population within that block was then multiplied by this weight and the weighted populations were summed together for the 

total population within the buffer. The total population was divided by total buffer area in square miles. For dates prior to January 2006, population counts originated from the 2000 Census (Census, 
2000). For dates on and after January 2006, population counts originated from the 2010 Census. 
d Shared frailty models are the random effects analogue of the Cox models presented in the main analyses. Rather than using robust standard errors to account for geographic clustering of the outcome, 

the shared frailty models use a random intercept for each census tract to account for geographic clustering of incident cases within census tracts. The advantage to including the random intercept for 

census tract is that it may help to control for residual confounding at the neighborhood level due to unmeasured or mismeasured factors (e.g. confounding not accounted for by covariates in our model, 

such as socioeconomic index).12 The disadvantage is that such models assume homogeneity of unobserved factors within census tracts, which may be incorrect, especially in larger census tracts. All 

shared frailty models assumed a lognormal frailty distribution.  
e 1-year lagged exposures were only available for GIS-based measures, since these exposures were collected annually. Survey-based measures were not collected annually, and hence comparable 

exposure measures could not be created.   
f Shared frailty models for social cohesion failed to converge (a recognized problem with such models13) 
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Table 2.A6 Hazard ratios associated with IQR increase in cumulative average neighborhood exposures, with additional adjustment for 

diabetes risk factors at baseline 
Neighborhood Exposures Model 1: 

All individual-

level covariates
a 

Model 2:  

Model 1 + 

baseline BMI 

Model 2: 

Model 1 + 

baseline 

hypertension
b 

Model 4: Model 1 

+ baseline high 

cholesterol
c 

Model 5: Model 1 

+ baseline BMI, 

hypertension, 

and high 

cholesterol 

 HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Healthy Food Environment      

GIS-based supermarkets/ FV 

markets 

0.99 (0.94, 1.04) 1.00 (0.95, 1.05) 0.99 (0.94, 1.04) 0.99 (0.95, 1.05) 1.00 (0.95, 1.05) 

Survey-based 0.84 (0.76, 0.93) 0.86 (0.78, 0.96) 0.85 (0.77, 0.94) 0.84 (0.76, 0.92) 0.86 (0.78, 0.95) 

Summary 0.88 (0.79, 0.98) 0.91 (0.81, 1.02) 0.89 (0.79, 0.99) 0.88 (0.79, 0.99) 0.91 (0.81, 1.02) 

Physical Activity 

Environment 

     

GIS-based commercial rec 

establishments 

0.96 (0.92, 0.99) 0.96 (0.92, 1.01) 0.96 (0.93, 1.00) 0.96 (0.92, 0.99) 0.96 (0.92, 1.01) 

Survey-based 0.79 (0.71, 0.88) 0.81 (0.72, 0.90) 0.81 (0.72, 0.90) 0.79 (0.72, 0.88) 0.82 (0.73, 0.91) 

Summary 0.79 (0.69, 0.90) 0.88 (0.81, 0.96) 0.88 (0.81, 0.95) 0.87 (0.80, 0.94) 0.89 (0.82, 0.96) 

Social Environment      

Survey-based social cohesion 0.97 (0.77, 1.23) 0.99 (0.88, 1.11) 0.98 (0.88, 1.09) 0.99 (0.88, 1.10) 0.98 (0.88, 1.10) 

Survey-based safety 0.96 (0.90, 1.03) 0.92 (0.79, 1.06) 0.91 (0.79, 1.05) 0.93 (0.81, 1.07) 0.92 (0.80, 1.06) 

Summary 0.96 (0.86, 1.07) 0.96 (0.86, 1.07) 0.95 (0.86, 1.06) 0.96 (0.86, 1.07) 0.96 (0.86, 1.07) 
a Model 1 controls for baseline age, gender, family history of diabetes, education, household income per capita, race/ethnicity, smoking status, and alcohol consumption. 
b Baseline hypertension was defined as systolic blood pressure ≥140, or diastolic blood pressure ≥90, or taking antihypertensive medications. 
c Baseline high cholesterol was defined as LDL cholesterol ≥ 160 or taking cholesterol-lowering medications.  
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Table 2.A7 Adjusted hazard ratios for type 2 diabetes incidence corresponding to 1-unit 

increases in baseline and change from baseline exposure measures 
 Model 1: All individual-level 

covariates
a 

Model 2: Model 1 + Neighborhood 

SES
 

Neighborhood 

Exposure 

Baseline 

exposure
 

Change from 

baseline exposure 

Baseline 

exposure
 

Change from 

baseline exposure 

 HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Health food 

environment 

    

GIS-based 

supermarkets/ FV 

markets 

0.99 (0.97, 1.02) 1.03 (0.95, 1.10) 1.01 (0.98, 1.03) 1.04 (0.96, 1.12) 

Survey-based 0.78 (0.67, 0.90) 0.94 (0.74, 1.19) 0.83 (0.69, 0.99) 0.96 (0.76, 1.22) 

Summary 0.94 (0.89, 1.00) 1.00 (0.88, 1.14) 0.97 (0.91, 1.03) 1.01 (0.89, 1.15) 

Physical activity 

environment 

    

GIS-based 

commercial rec 

establishments 

0.98 (0.97, 1.00) 1.01 (0.99, 1.03) 0.96 (0.94, 0.99) 1.02 (0.97, 1.06) 

Survey-based 0.55 (0.41, 0.73) 0.64 (0.41, 0.99) 0.54 (0.41, 0.73) 0.64 (0.41, 0.99) 

Summary 0.89 (0.84, 0.95) 0.92 (0.81, 1.04) 0.90 (0.82, 0.98) 0.92 (0.81, 1.05) 

Social environment     

Survey-based social 

cohesion 

0.96 (0.67, 1.37) 0.76 (0.46, 1.26) 0.99 (0.70, 1.41) 0.79 (0.48, 1.29) 

Survey-based safety 0.89 (0.72, 1.10) 0.79 (0.55, 1.14) 0.95 (0.76, 1.20) 0.80 (0.56, 1.14) 

Summary 0.98 (0.93, 1.04) 0.94 (0.86, 1.04) 0.99 (0.94, 1.05) 0.95 (0.87, 1.04) 
a Model 1 controls for baseline age, gender, family history of diabetes, education, household income per capita, race/ethnicity, 

smoking status, and alcohol consumption. Exposures are all parameterized for a 1-unit increase. 
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CHAPTER 3 :  

THE INTERACTION OF NEIGHBORHOOD ENVIRONMENTS AND GENETIC 

RISK FOR TYPE 2 DIABETES: THE MULTI-ETHNIC STUDY OF 

ATHEROSCLEROSIS (MESA) 

 

Introduction: 

 

Type 2 diabetes is an etiologically complex disease that affects an estimated 18.8 

million adults in the US.
1
 With temporal increases in prevalence and incidence over the 

last 20 years, type 2 diabetes is now the 7
th

 and 8
th

 leading cause of Years of Life Lost 

and Years Lived with Disability, respectively.
2
 Dramatic changes in obesity levels caused 

by shifts in diet and physical activity patterns are thought to underlie the rise of type 2 

diabetes.
3-5

 However, type 2 diabetes also has a substantial genetic component, and 

genome wide association studies (GWAS) have now identified over 70 loci that confer 

increased risk.
6
 Given the importance of both lifestyle and genetics in the development of 

diabetes, there is growing interest in understanding how these factors may interact to 

explain population patterns of diabetes.
7
 

Prior research exploring gene-environment interactions in type 2 diabetes has 

been focused largely on individual diet and physical activity. In early studies of 

biological candidate genes, the effects of several diabetes-associated variants were shown 

to be attenuated in individuals with higher physical activity levels and specific dietary 

patterns.
7-10

  More recently, genetic risk scores that combine diabetes-associated genetic 
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variants into a single measure have become available. Gene-environment interaction 

studies using these risk scores have shown that an individuals’ overall genetic risk can be 

modified by dietary patterns.
7
 For instance, in the Health Professionals’ Follow-up Study, 

researchers found that a Western dietary pattern led to increased risk of diabetes in 

individuals with higher, but not lower, genetic risk scores.
11

  

Notwithstanding the importance of individual behaviors in the development of 

type 2 diabetes, a substantial body of research has demonstrated that such behaviors are 

partially shaped by the larger social and economic contexts in which people live.
12-14

 

Factors like neighborhood disadvantage and the spatial patterning of health promoting 

resources and norms fundamentally support or constrain peoples’ abilities to engage in 

healthy behaviors.
15-17

 Despite this recognition and calls in the literature for broader 

conceptualizations of “environment”,
18,19

 empirical examinations of the interaction 

between genetic risk and these larger environmental features remain rare, and no such 

studies have focused on diabetes. To the extent that area-level factors both shape health 

behaviors and represent policy-relevant realms for intervention, studies investigating the 

interaction between genetic risk for type 2 diabetes and broader neighborhood 

environmental features are needed.
18

 Using longitudinal data from the Multi-Ethnic Study 

of Atherosclerosis (MESA), this study sought to examine if the neighborhood 

environment, characterized by the availability of healthy food and physical activity 

resources and neighborhood socioeconomic status (SES), modifies the effect of genetic 

predisposition for type 2 diabetes, summarized using a diabetes risk score. Our 

hypothesis was that genetic risk for type 2 diabetes would be most pernicious for persons 



 

66 

 

residing in neighborhood environments characterized by fewer healthy food and physical 

activity resources, and lower SES. 

Methods: 

 

Study population and analytic sample:  

 

MESA is a longitudinal cohort composed of 6814 non-institutionalized adults (45-

84 years at baseline) who self-identify as white, African American, Hispanic, or Chinese. 

Beginning in 2000, individuals free of clinical cardiovascular disease were recruited from 

6 locations (New York, New York; Baltimore, Maryland; Forsyth County, North 

Carolina; Chicago, Illinois; St. Paul, Minnesota; and Los Angeles, California). Baseline 

examinations took place from 2000 to 2002, and 4 follow-up exams have occurred an 

average of 1.6, 3.1, 4.8, and 9.5 years after baseline. Retention rates at exams 2 through 5 

were 92%, 89%, 87%, and 76%, respectively.  

For this analysis, we use data from participants consenting to both geocoding of 

their home address as part of the ancillary MESA Neighborhood Study (6191) and 

genotyping (6429). Combining these datasets yielded 5838 individuals. For our primary 

analyses, we included individuals with both prevalent and incident diabetes. We excluded 

individuals who were missing exposure, outcome, or covariate data (n=134), leaving 

5704 individuals available for analyses of prevalent and incident diabetes. In 

supplementary analyses using incident cases only, we excluded 649 individuals with 

prevalent diabetes at baseline. 

Measurement of type 2 diabetes: 

 

The primary outcome was type 2 diabetes identified at each exam according to the 

American Diabetes Association 2003 criteria
20

: fasting plasma glucose level ≥126 mg/dL 
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(7 mmol/L), or use of oral anti-hyperglycemic medications or insulin. Glucose levels 

were obtained from blood samples taken after a 12-hour fast as previously described.
21

 

Information on the use of oral medications and insulin was obtained by visual inspection 

of medications, or by self-report on the study questionnaire.  

Neighborhood exposure variables: 

 

Based on previous research demonstrating their associations with risk for type 2 

diabetes and various health behaviors, we identified three neighborhood exposures of 

interest:  the availability of stores selling healthy food, the availability of recreational 

establishments, and neighborhood SES.
22-24

 Neighborhood-level availability of healthy 

food and physical activity resources were measured using methods from prior 

studies.
17,25-28

 In brief, we constructed Geographic Information System (GIS)-based 

measures of access to food stores more likely to sell healthy foods(supermarkets and fruit 

and vegetable markets) and commercial recreational establishments (facilities for indoor 

conditioning, dance, bowling, golf, team and racquet sports, and water activities) using 

annual tax parcel information from the National Establishment Time Series (NETS) 

database for years 2000-2012 (See Text 3.A1 for details).
29

 Simple densities per square 

mile were created for 1-mile buffers around each participant’s residence using ArcGIS, 

version 9.3 (Esri, Redlands, California). Time-varying densities for each year were linked 

to participants based on home addresses to account for changes over time and/or 

participant relocation. One-mile densities were chosen as proxies for neighborhoods 

based on an area in which most individuals could reasonably walk  and federal 

government definitions of access to services.
30
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An extensive literature exists regarding the definition and measurement of 

neighborhood-level SES.
31-33

 Drawing from previous studies of the relationship between 

neighborhood disadvantage and health outcomes,
34,35

 we selected the following indicators 

of neighborhood socioeconomic position a priori to combine into a summary index: 

percent of adults age 25 and older with at least a high school education, percent of adults 

age 25 and older with at least a Bachelor’s degree, median household income, percent of 

residents living below the poverty level, and percent of households receiving public 

assistance income. Following recommended methods, we created the index by first 

transforming variables to remove skewness, z-scoring the variables, and then summing 

the z-scores.
36

 All indices were created at the census tract-level and scaled so that an 

increasing score indicates greater SES. The neighborhood SES index was linked to 

MESA participants by census tract using Census 2000 data for years 2000-2004, 

American Community Survey (ACS) 2005-2009 data for years 2005-2007, and ACS 

2007-2011 data for years 2008-2012. 

Genotyping: 

 

 Participants were genotyped on the Affymetrix Human SNP array 6.0 (Affymetrix 

Inc., Santa Clara, CA). Sample quality control (QC) was based on call rates and contrast 

QC statistics. Additional details regarding genotyping and quality control have been 

described elsewhere.
37

 Genotypes were imputed using IMPUTE v2.2.2
38

 and the 1000 

Genomes Phase I integrated variant set (all ancestries)
39

 for each ethnicity separately. All 

SNPs used in the analyses were taken from the 1000 genomes imputation data.  

Genetic risk score: 
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 Genome-wide association studies have identified multiple loci associated with the 

risk for developing type 2 diabetes. While most loci associated with increased diabetes 

risk were originally found in European-ancestry individuals, recent trans-ethnic meta-

analyses and replication studies using non-European-ancestry samples have revealed that 

many of these loci, or nearby loci in strong linkage disequilibrium, are reproducible 

across racial/ethnic groups.
6,40

 Drawing upon these meta-analyses and previous work 

demonstrating similar performance of genetic risk scores across racial/ethnic groups in 

several biracial cohorts,
41-43

 we selected 62 SNPs for inclusion in a genetic risk score. Of 

these 62 SNPs, 55 had an imputation quality of 0.8 or higher (see Table 3.A1 for details). 

We calculated an unweighted genetic risk score for diabetes as the sum of the number of 

risk alleles (0, 1, or 2) at each locus for each individual. We chose not to calculate a 

weighted risk score due to the paucity of GWAS studies with reliable effect sizes in 

Hispanic and African American individuals. Because of concern about the heterogeneity 

of the genetic risk score-diabetes association across racial/ethnic group, we constructed a 

second genetic risk score that was restricted to those SNPs with consistent direction of 

effects in all racial/ethnic groups as reported in a recent trans-ethnic meta-analysis and a 

meta-analysis of African American individuals (hereafter referred to as the “restricted 

genetic risk score”).
6,44

 After excluding SNPs with imputation quality less than 0.8, 16 

SNPs were included in the restricted genetic risk score. Of these 16 SNPs, 13 were part of 

the original list of 55, and 3 additional SNPs were included based upon the trans-ethnic 

meta-analysis results.
6
 Neither of the genetic risk scores showed significant heterogeneity 

in their association with diabetes across racial/ethnic groups (p values for raceXgenetic 

risk score interaction, 0.35 and 0.78 for the full and restricted genetic risk scores, 
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respectively; Table 3.A2), though the full genetic risk score had a slightly weaker 

association with diabetes in African Americans compared with other racial/ethnic groups.  

Measurement of covariates: 

 

Information on covariates was obtained via administered questionnaire at baseline 

and follow-up exams. Covariates measured at baseline included sex, race/ethnicity, 

education, and family history of diabetes. Time-varying information available at baseline 

and follow-up included age, annual household income, alcohol use (no, moderate, or 

heavy use according to established guidelines
45

) and smoking status (current, former, or 

never). Because allele frequencies, and hence disease risk marked by those alleles, can 

vary across populations of different ancestry, we included 5 eigenvector variables to 

control for population stratification that is not captured by self-reported race/ethnicity. 

The eigenvectors were created using principal components analysis (PCA) of the pooled 

MESA cohort following recommended methods to control for population 

stratification.
46,47

 Ethnic-specific PCAs were also performed and the first 5 eigenvectors 

used in supplementary, race-specific analyses.   

Statistical analysis: 

 

 We began by assessing the distribution of sociodemographic and diabetes risk 

characteristics across categories of both the genetic risk score and neighborhood 

environments. For descriptive purposes, categories of neighborhood healthy food stores 

and recreational establishments were defined based upon theoretical differences between 

resource availability, while neighborhood SES and genetic risk score were categorized as 

tertiles and quartiles, respectively.  
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We used parametric, interval censored survival analyses with age as the time scale 

to model the association between neighborhood environments, genetic risk score, and 

their interaction with type 2 diabetes. To maximize statistical power and adequately 

capture the effect of genetic risk on diabetes, which likely operates by causing individuals 

to develop disease at a younger age, we included both prevalent and incident diabetes 

cases in our analyses. Prevalent cases were treated as left censored, with age at baseline 

serving as the upper interval boundary, while incident cases were censored within the 

interval defined by age at the last diabetes-free exam and age at the exam where diabetes 

was first reported. Individuals remaining diabetes-free were considered right censored at 

their age of last follow-up corresponding to either study drop out or administrative 

censoring at exam 5. We used age as the time scale, as is appropriate when the start of 

study follow-up is at an arbitrary time point given the exposures of interest.
48-50

 We 

selected a Weibull distribution for the hazard based on graphical evidence (plot of log(-

log(Survival))) and model fit (AIC values).
51

 More flexible specifications of age did not 

improve model fit.  

 Because cumulative neighborhood exposures are hypothesized to be most relevant 

for disease risk,
15

 we parameterized our exposures as cumulative averages, defined as the 

average across all years between baseline and each follow-up exam. For prevalent cases, 

this corresponded to neighborhood exposure values at baseline, while for incident cases 

and those remaining diabetes free, it corresponded to the cumulative average at the most 

recent exam. To control for possible confounding of both neighborhood and genetic risk 

score associations, all models adjusted for sex, self-reported race/ethnicity, annual 

household income, education, alcohol use, cigarette smoking, and the first 5 eigenvectors 
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from the pooled sample. In models with healthy food stores and recreational 

establishments as the exposures of interest, we also controlled for neighborhood SES. 

Models with neighborhood SES as the main exposure did not control for healthy food 

stores and recreational establishments which are hypothesized to be mediators of the 

association between neighborhood SES and diabetes. All estimates of association were 

reported as hazard ratios (HRs) with corresponding 95% confidence intervals (CIs). 

We assessed gene-environment interaction in two ways. First, we used continuous 

measures of both neighborhood exposures and the genetic risk score to estimate HRs for 

diabetes associated with a 1-unit increase in neighborhood exposure and a 10-allele 

increase in genetic risk score. We added interaction terms to this model to assess effect 

modification on the multiplicative scale, and computed p-values using Wald tests. 

Continuous measures were mean-centered to facilitate interpretation. To illustrate 

modification of the genetic risk by neighborhood environment, we estimated the HR 

associated with a 10-allele increase in genetic risk score at the 10
th

 and 90
th

 percentiles of 

the neighborhood exposure distribution.  

Second, because living in a neighborhood environment with no healthy food 

stores or recreational establishments may be qualitatively different than living in a 

neighborhood with at least 1 of these resources, we dichotomized the healthy food store 

and recreational establishment measures into cumulative average < 1 versus ≥ 1. Since no 

similar theoretical thresholds exist for neighborhood SES or genetic risk score, we 

dichotomized these exposures at their medians. To assess interaction, we determined 

whether the joint associations of both neighborhood exposure and genetic risk score were 

greater than, equal to, or less than the expected joint effects
52,53

 on the additive scale 
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(HR10+HR01-1=HR11), and multiplicative scale (HR10*HR01=HR11). 
48,49,54

 In line with 

recent recommendations, we also computed the relative excess risk due to interaction 

(RERI) as a measure of additive interaction.
53,55

 Additive interaction is of particular 

interest due to its direct public health relevance and its ability to detect the types of 

synergistic effects that underlie the concept of gene-environment interaction.
55

 In all 

models, standard errors were computed using the delta method
56

, and no violations of the 

proportional hazards assumption were found. 

 We performed several sensitivity analyses. Because population density and 

regional norms may affect health behaviors independent of neighborhood resources,
25,57

 

we ran additional models controlling for population density and study site. For 

individuals with prevalent diabetes at baseline, it is possible that they changed 

environments over time such that their exposure measure is misclassified. To assess this 

possibility and its potential effects on our results, we re-ran the main analyses excluding 

those with prevalent diabetes. Due to concerns about heterogeneity of the genetic risk 

score-diabetes association in different racial/ethnic groups, we performed three additional 

analyses: first, we repeated the main analyses using the restricted genetic risk score with 

only those SNPs showing consistent directions of effect in all racial/ethnic groups; 

second, we ran race/ethnicity-specific models controlling for the first 5 ethnic-specific 

eigenvectors to assess if the direction of the gene-environment interaction was similar 

across racial/ethnic groups; and third, we added interactions between genetic risk score 

and self-reported race/ethnicity to the main models. Finally, because gene by 

neighborhood environment interaction may be a proxy for gene by individual SES 
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interaction, we ran additional models controlling for the interaction of genetic risk score 

with both individual income and education. 

Results: 

 

The baseline characteristics of the cohort overall and by quartile of genetic risk 

score are shown in Table 1. Of 5704 individuals included at baseline, 649 had prevalent 

type 2 diabetes, and another 622 developed type 2 diabetes during follow-up (median 

follow-up of 9.0 years). The overall sample was 40.6% white, 24.6% African American, 

22.5% Hispanic, and 12.3% Chinese. White participants were more likely to be in the 

lowest quartile of genetic risk score, while Hispanic and Chinese participants were more 

likely to be in the top quartile. Relative to individuals in the lower three quartiles, 

individuals in the top quartile of genetic risk had lower annual household income, were 

more likely to have prevalent diabetes or develop incident diabetes over follow-up, and 

were more likely to have a family history of diabetes. There was no marked variation in 

body mass index (BMI), smoking and alcohol use, or neighborhood exposures across 

quartiles of genetic risk.  

 Table 2 shows the characteristics of participants by categories of the 

neighborhood exposures at baseline. In general, residents of neighborhoods with < 1 

healthy food store or recreational establishment were more likely to be white and African 

American than Hispanic or Chinese. Healthy food store and recreational establishment 

availability was not highly patterned by individual income, education, or genetic risk 

score, but residents of neighborhoods in the highest category of resource density had a 

lower prevalence of obesity and family history of diabetes relative to those in the lowest 

category. For neighborhood SES, relative to those in the lowest tertile, residents of higher 
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SES neighborhoods were more likely to be white, had higher individual income and 

education, and lower levels of obesity and cigarette smoking. Prevalent and incident 

diabetes was less common in the highest categories of neighborhood recreational 

establishments and SES than in the lowest categories, but no consistent pattern was 

observed across healthy food store categories.  

 In models adjusted for gender, race, income, education, alcohol use, cigarette 

smoking, neighborhood SES, the density of healthy food stores, and the first 5 

eigenvectors for population stratification, a 10-allele increase in genetic risk score was 

associated with a 25% higher risk of diabetes (HR, 1.25; 95% CI, 1.16,1.35; Table 3, 

Model 1). This elevated risk was consistent across models with different neighborhood 

exposures. Neighborhood exposures were also associated with diabetes risk, such that 1-

unit increases in healthy food store density, recreational establishment density, and 

neighborhood SES were associated with 3%, 3%, and 6% lower risk for diabetes, 

respectively (HR, 0.97; 95% CI, 0.95, 0.99; HR, 0.97; 95% CI 0.96, 0.98; and HR, 0.94; 

95% CI 0.92, 0.95, respectively).  

In models adding an interaction term between neighborhood exposures and 

genetic risk score, an interaction was observed for healthy food stores such that the 

association between increasing genetic risk and diabetes was weakened at higher levels of 

healthy food store density (p=0.05; Table 3, Model 2). The association of genetic risk 

score with diabetes decreased slightly at higher levels of recreational density and at lower 

neighborhood SES levels, but these differences were not statistically significant 

(interaction p=0.28 and 0.33 respectively). Models estimating the association for a 10-

allele increase in genetic risk score at the 10
th

 and 90
th

 percentiles of neighborhood 
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exposure are presented in Figure 1. For healthy food store availability, a 10-allele 

increase in genetic risk was associated with a 32% higher risk of diabetes at the 10
th

 

percentile of availability (HR, 1.32; 95% CI, 1.20, 1.45), but only an 11% higher risk of 

diabetes at the 90
th

 percentile of availability (HR, 1.11; 95% CI, 0.96, 1.27).  

 Table 4 shows the observed independent and joint associations of dichotomous 

neighborhood and genetic risk score exposures, and compares them to the expected joint 

associations if the exposures were perfectly additive or multiplicative. For individuals 

with a genetic risk score above the median and living in neighborhoods with < 1 healthy 

food store on average, the joint HR for diabetes relative to those with genetic risk below 

the median and living in a neighborhood with 1 or more healthy food stores was 1.92 

(95% CI, 1.60, 2.25). This was higher than expected if genetic risk and neighborhood 

environment acted independently in either an additive or multiplicative manner (p-values 

for additive and multiplicative interaction, <0.01 and 0.23, respectively). Similar and 

stronger results were observed for recreational establishments: the observed HR for those 

jointly exposed to low resource availability and above-median genetic risk was 2.42 

(95% CI 1.99, 2.84), again greater than that expected under additive or multiplicative 

joint effects (p-values for additive and multiplicative interaction, <0.0001 and 0.12, 

respectively). The joint association of below-median neighborhood SES and genetic risks 

score revealed an HR of 1.75 (95% CI, 1.43, 2.06), which was quite similar to the 

expected additive joint effect (p-values for additive and multiplicative interaction, 0.61 

and 0.24, respectively).  

 Sensitivity analyses controlling for population density and study site did not 

change the interaction results (Table 3.A3). Models restricted to incident cases only 



 

77 

 

showed associations that were smaller in magnitude for the genetic risk score, consistent 

with the hypothesis that genetic risk likely functions by causing individuals to develop 

disease at an earlier age (Table 3.A4). However, the interaction results were consistent in 

direction for healthy food stores and neighborhood SES compared to models including 

prevalent cases, though the estimates were predictably less precise given the reduced 

number of cases. Analyses using the restricted genetic risk score including only SNPs 

with directionally consistent effects in all racial/ethnic groups also showed similar 

interaction results for healthy food stores and neighborhood SES (Table 3.A5). In 

race/ethnicity-specific models controlling for ethnic-specific eigenvectors and using 

continuous measures of genetic risk score and neighborhood environment, the interaction 

results were consistent in direction across all racial/ethnic groups for healthy food store 

and recreational establishment availability (i.e. increasing resource availability associated 

with decrease in the genetic risk), but not for neighborhood SES (Table 3.A6). Adding 

genetic risk score by race/ethnicity interactions to the main models did not alter our 

results (data not shown). Finally, models controlling for genetic risk score interactions 

with individual income and education produced nearly identical results to those shown in 

Table 3 (data not shown). 

Discussion: 

 

In this longitudinal cohort, we found suggestive evidence that genetic 

predisposition for type 2 diabetes is modified by the availability of healthy food stores 

and recreational establishments. Specifically, our analyses suggest that increased 

neighborhood access to healthy food and recreational establishments may dampen the 

effects of genetic risk for diabetes, as the association between higher genetic risk and 
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type 2 diabetes was weaker in environments with greater healthy food resources and 

recreational establishments. This was especially evident in models with dichotomous 

exposures, where the joint associations of higher genetic risk and having <1 healthy food 

store or recreational facility were significantly greater than expected on the additive 

scale, suggesting a type of synergy between genetic risk and neighborhood environment. 

Models using continuous exposures demonstrated significant modification of genetic risk 

by healthy food availability, but results were weaker for recreational establishments. 

Increasing neighborhood SES slightly increased the association of genetic risk with 

diabetes, though the interaction between neighborhood SES and genetic risk was not-

significant in any of the models. All results were robust to control for multiple individual 

and neighborhood-level confounders, and the direction of interaction for healthy food 

stores and recreational establishments was consistent across racial/ethnic groups. 

Type 2 diabetes likely results from a complex interplay of genetic susceptibility, 

behavior, and environmental exposures.
5,58

 Previous studies of gene-environment 

interaction in diabetes have focused almost exclusively on specific individual 

behaviors.
58

 To our knowledge, this is the first study to expand the notion of 

“environment” to include physical and socioeconomic characteristics of neighborhoods 

and to evaluate their interaction with individual genetic risk for diabetes. Our finding that 

neighborhoods with more healthy food stores, and to a lesser extent recreational 

establishments, dampen the effects of the risk alleles is consistent with studies that have 

shown that diabetes risk alleles have a stronger association in individuals with low levels 

of physical activity and in those with dietary patterns characterized by high intake of 

processed and red meats, high fat dairy, and refined grains.
7,11,59

 They are furthermore 



 

79 

 

consistent with a previous study which showed that the risk of metabolic syndrome 

associated with a single risk allele was lower for individuals residing in neighborhoods 

with greater numbers of recreational facilities.
60

 These results also add to a growing 

literature on gene-by-neighborhood environment interaction that has shown 

neighborhood modification of genetic effects on phenotypes ranging from older adult 

cognition to adolescent antisocial behavior.
35,61,62

 

Neighborhood physical and social environments may modify the genetic risk of 

type 2 diabetes through several mechanisms. Previous work in the MESA has 

demonstrated that the availability of supermarkets/fruit and vegetable markets and 

recreational establishments is related to higher diet quality and intentional physical 

activity levels, providing plausible behavioral pathways to explain the interaction.
17,63

 

Our environmental measures may also serve as proxies for historical or current 

neighborhood conditions or social norms that shape individual health behaviors and 

social relationships related to diabetes.
18

 Recent work demonstrating that cohort of birth 

may modify genetic risk for obesity suggests that exposure to broadly obesogenic 

environments over the lifecourse may be most important for gene-environment 

interaction.
64

 We are unable to evaluate if our neighborhood exposures capture such 

dynamics, though there is research to suggest that neighborhood conditions can be 

surprisingly stable within and across generations, particularly among those living in the 

most disadvantaged environments.
65-67

    

Models dichotomizing neighborhood and genetic risk exposures showed that 

living in a neighborhood with less than 1 healthy food store or recreational establishment 

resulted in substantial increases in diabetes risk that were greater than what would be 
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expected if the genetic risk or environment variables acted independently.
55,68

 Under 

specific conditions (no unmeasured confounding, monotonic associations for both 

exposures), this interaction is indicative of synergism,
51,66,67

 and suggests that the effect 

of genetic risk for diabetes may be stronger, or may only become manifest, in 

neighborhood environments with few health-promoting resources. While we cannot 

empirically evaluate the assumptions required for such synergism, additional studies 

showing similar results may strengthen our confidence in the associations observed. 

 Our study has several strengths. In line with recent calls to expand the notion of 

environment to include “multilevel, multidimensional, longitudinal” measurements of 

context,
18,69

 we utilized neighborhood-level exposures that help shape and constrain 

health behaviors that have been the subjects of most prior gene-environment research. 

Doing so not only places individual risk behaviors like diet and physical activity in 

context, but helps focus attention on modifiable environmental features to which entire 

populations are exposed. We also utilized longitudinal data to create cumulative average 

neighborhood exposure measures and to update covariate values to control for 

confounding.  

 Our results should also be viewed in light of several limitations. First, though 

novel and an improvement over studies focusing only on behaviors without attention to 

context, our environmental measures are limited, simplistic measures of neighborhood 

healthy food, physical activity, and socioeconomic environments. Simple counts of 

healthy food stores and recreational facilities based on tax parcel data ignore important 

determinants of resource use including quality and affordability, 
70-72

 and other relevant 

features of the environment like aesthetic quality and walkability.
73,74

 Using such 
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measures however, allows other studies to attempt to replicate our results. Second, our 

genetic risk scores, though based on recent meta-analyses, do not necessarily include the 

strongest SNPs or causal variants in each racial/ethnic group, which may have decreased 

the strength of our associations and caused slight differences across racial/ethnic groups. 

Third, the strong correlation between race and neighborhood SES due to racial and 

socioeconomic segregation made gene-environment associations involving neighborhood 

SES difficult to interpret, as comparisons of the genetic risk score associations across the 

distribution of neighborhood SES may inherently involve comparisons across 

racial/ethnic groups.
75

 While our genetic risk scores did not show significant 

heterogeneity by race/ethnicity, and we made several attempts to minimize potential 

biases induced by the co-segregation of race/ethnicity and neighborhood resources, 

additional replication studies with samples large enough to evaluate within-race 

interactions are needed to increase our confidence in the associations observed.
18

 Fourth, 

as in all observational studies of residential contexts and health outcomes, it is possible 

that individuals at higher risk for diabetes by virtue of genetics or health behaviors 

selected or were sorted (via social stratification) into neighborhoods with fewer 

resources.
76

 We attempted to account for this by controlling for known, measured 

predictors of neighborhood selection, but unobserved confounding remains a possibility. 

Such unmeasured confounders would, however, not influence our interaction results 

unless they themselves also interact with the genetic risk score.
77

 Finally, we utilized a 

single sample of mid to late-life adults. To the extent that neighborhood environments or 

genetic predisposition have a greater influence on diabetes risk earlier in life, we may be 

missing a critical window to evaluate their interaction. Furthermore, many gene-
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environment interactions have a poor replication record, and thus replication of our 

findings in independent cohorts is needed.
58

  

 In summary, using a genetic risk score and three theoretically grounded measures 

of residential neighborhood environments, we found suggestive evidence that greater 

availability of healthy food stores and recreational establishments modifies genetic risk 

for type 2 diabetes such that genetic predisposition had a smaller effect in neighborhoods 

with more health-promoting resources. In light of recent calls for population-based 

chronic disease prevention,
78

 our results suggest that modifying neighborhood 

environments may represent a useful approach to diabetes prevention that helps offset 

genetic predisposition, though replication of our findings is needed. 
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Table 3.1 Baseline characteristics of MESA study participants overall and by quartile of 

genetic risk score, Multi-Ethnic Study of Atherosclerosis 
Sample Characteristics Overall Genetic Risk Score Quartiles

a
 

  Q1 Q2 Q3 Q4 

No. of participants 5704 1367 1431 1429 1477 

Age, mean (SD) 61.93 (10.13) 62.04 (10.27) 62.19 (10.28) 61.51 (10.01) 62.00 (9.97) 

Female, No. (%) 2962 (51.93) 699 (51.13) 749 (52.34) 757 (52.97) 757 (51.25) 

Race/ethnicity, No. (%)      

  White 2318 (40.64) 670 (49.01) 592 (41.37) 533 (37.30) 523 (35.41) 

  African American 1401 (24.56) 367 (26.85) 375 (26.77) 344 (24.55) 315 (22.48) 

  Hispanic 1284 (22.51) 234 (17.12) 294 (20.55) 342 (23.93) 414 (28.03) 

  Chinese 701 (12.29) 96 (7.02) 170 (11.88) 210 (14.70) 225 (15.23) 

Prevalent type 2 diabetes, 

No. (%) 

649 (11.38) 103 (7.53) 163 (11.39) 164 (11.48) 219 (14.83) 

Incident type 2 diabetes, 

No. (%)
b 

622 (12.30) 127 (10.05) 155 (12.22) 170 (13.44) 170 (13.51) 

Household income, mean 

(SD), per $10,000  

5.00 (3.42) 5.05 (3.33) 5.00 (3.43) 5.06 (3.42) 4.87 (3.51) 

Education, mean (SD), y 13.18 (4.01) 13.44 (3.60) 13.20 (3.86) 13.15 (4.16) 12.97 (4.34) 

Behavioral 

Characteristics and Risk 

Factors  

     

Body mass index, No. (%)
c 

     

  Normal (18-<25) 1686 (29.58) 371 (27.20) 415 (29.04) 443 (31.00) 457 (30.94) 

  Overweight (25-<30) 2148 (37.69) 512 (37.54) 549 (38.42) 519 (36.32) 568 (38.46) 

  Obese (≥30) 1865 (32.73) 481 (35.26) 465 (32.54) 467 (32.68) 452 (30.60) 

Smoking status, No. (%)      

  Former 2099 (36.80) 526 (48.28) 526 (36.76) 513 (35.90) 534 (36.15) 

  Current 720 (12.62) 181 (13.24) 173 (12.09) 183 (12.81) 183 (12.39) 

Alcohol use, No. (%)
d 

     

  Moderate 1824 (31.98) 467 (34.16) 454 (31.73) 436 (30.51) 467 (31.62) 

  Heavy 304 (5.33) 86 (6.29) 71 (4.96) 66 (4.62) 81 (5.48) 

Family history type 2 

diabetes, No. (%)
e 

2097 (37.69) 436 (32.71) 525 (37.66) 550 (39.68) 586 (40.39) 

Neighborhood 

Characteristics 

     

Healthy food stores, 

median (IQR)
f 

0.96 (1.91) 0.64 (1.59) 0.96 (1.91) 0.96 (2.23) 0.96 (2.23) 

Recreational 

establishments, median 

(IQR)
f 

1.91 (2.87) 1.91 (2.55) 1.91 (2.87) 1.91 (2.87) 2.23 (2.87) 

Neighborhood SES, mean 

(SD)
g
 

-0.79 (4.45) -0.57 (4.25) -0.77 (4.37) -0.90 (4.55) -0.89 (4.62) 

Abbreviations: SD, standard deviation; IQR, interquartile range; SES, socioeconomic status 
a Genetic risk score composed of 55 SNPs 
b Number of cases of incident diabetes that developed over time among those free of diabetes at baseline 
c n=5699 
d Alcohol use defined according to National Institute on Alcohol Abuse and Alcoholism definitions for men and women. Moderate 

drinking is defined as no more than 4 drinks on any single day and no more than 14 drinks per week for men, and no more than 3 
drinks on any single day and no more than 7 drinks per week for women. Heavy drinking is defined as consumption in excess of 

moderate. 
e n=5564 
f Number of supermarkets/fruit and vegetable markets or commercial recreational establishments per square mile within a 1-mile 

buffer of the participant’s residential address. 
g The neighborhood socioeconomic status index includes census tract information on percent with a Bachelor’s degree, percent with a 
high school degree, median household income, percent living in poverty, and percent receiving public assistance income. All variables 

recoded such that a higher value indicates higher socioeconomic status. 
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Table 3.2 Baseline characteristics of participants by categories of neighborhood exposures, Multi-Ethnic Study of Atherosclerosis 
Sample Characteristics Healthy Food Stores Recreational Establishments Neighborhood SES 

 <1 1-3 >3 <1 1-3 >3 Tertile 1 Tertile 2 Tertile 3 

No. of participants 3380 1236 1088 1606 2258 1840 1885 1939 1880 

Age, mean (SD) 61.55 (9.98) 62.69 

(10.46) 

62.28 

(10.17) 

61.52 (9.79) 61.81 

(1.028) 

62.45 

(10.23) 

61.82 (10.37) 61.64 

(10.16) 

62.36 (9.85) 

Female, No. (%) 1719 (50.86) 652 (52.75) 591 (54.32) 781 (48.63) 1204 (53.32) 977 (53.10) 1029 (54.59) 1007 (51.93) 926 (49.26) 

Race/ethnicity, No. (%)          

  White 1589 (47.01) 439 (35.52) 290 (26.65) 693 (43.15) 920 (40.74) 705 (38.32) 275 (14.59) 863 (44.51) 1180 (62.77) 

  African American 885 (26.18) 213 (17.23) 303 (27.85) 540 (33.62) 471 (20.86) 390 (21.20) 241 (12.79) 212 (10.93) 248 (13.19) 

  Hispanic 591 (17.49) 231 (18.69) 462 (42.46) 248 (15.44) 517 (22.90) 519 (28.21) 620 (32.89) 513 (26.46) 268 (14.26) 

  Chinese 315 (9.32) 353 (28.56) 33 (3.03) 125 (7.78) 350 (15.50) 226 (12.28) 749 (39.73) 351 (18.10) 184 (9.79) 

Prevalent type 2 diabetes, 

No. (%) 

375 (11.09) 139 (11.25) 135 (12.41) 185 (11.52) 264 (11.69) 200 (10.87) 275 (14.59) 233 (12.02) 141 (7.50) 

Incident type 2 diabetes, 

No. (%)
 

378 (12.58) 122 (11.12) 122 (12.80) 208 (14.64) 227 (11.38) 187 (11.40) 228 (14.16) 215 (12.60) 179 (10.29) 

Household per capita 

income, mean (SD), per 

$10,000  

5.22 (3.34) 4.97 (3.74) 4.34 (3.22) 5.32 (3.23) 4.70 (3.27) 5.08 (3.65) 3.39 (2.65) 4.68 (3.05) 6.91 (3.54) 

Education, mean (SD), y 13.51 (3.63) 12.97 (4.49) 12.40 (4.42) 13.36 (3.64) 12.93 (4.12) 13.34 (4.16) 11.33 (4.50) 13.17 (3.57) 15.06 (2.89) 

Genetic Risk Score, mean 

(SD) 

61.49 (4.47) 62.03 (4.48) 62.06 (4.46) 61.56 (4.52) 61.71 (4.51) 61.86 (4.40) 61.95 (4.35) 61.51 (4.54) 61.69 (4.52) 

Body mass index, No. (%)
a 

         

  Normal (18-<25) 925 (27.39) 463 (37.52) 298 (27.39) 393 (24.50) 694 (30.76) 599 (32.57) 507 (26.93) 514 (26.52) 665 (35.41) 

  Overweight (25-<30) 1244 (36.84) 480 (38.90) 424 (38.97) 606 (37.78) 830 (36.79) 712 (38.72) 686 (36.43) 715 (36.89) 747 (39.78) 

  Obese (≥30) 1208 (35.77) 291 (23.58) 366 (33.64) 605 (37.72) 732 (32.45) 528 (28.71) 690 (36.64) 709 (36.58) 466 (24.81) 

Smoking status, No. (%)          

  Former 1294 (38.28) 412 (33.33) 393 (36.12) 628 (39.10) 785 (34.77) 686 (37.28) 615 (32.63) 713 (36.77) 771 (41.01) 

  Current 435 (12.87) 126 (10.19) 159 (14.61) 193 (12.02) 304 (13.46) 223 (12.12) 295 (15.65) 260 (13.41) 165 (8.78) 

Alcohol use, No. (%)
 

         

  Moderate 1128 (33.37) 375 (30.34) 321 (29.50) 493 (30.70) 718 (31.80) 613 (33.32) 473 (25.09) 580 (29.91) 771 (41.01) 

  Heavy 174 (5.15) 74 (5.99) 56 (5.15) 75 (4.67) 111 (4.92) 118 (6.41) 62 (3.29) 104 (5.36) 138 (7.34) 

Family history type 2 

diabetes, No. (%)
b 

1349 (40.99) 382 (31.60) 366 (34.40) 657 (42.25) 862 (38.99) 578 (32.15) 694 (37.76) 788 (41.89) 615 (33.33) 

Abbreviations: SES, socioeconomic status; SD, standard deviation; No., number 
a n=5699 
b n=5564 
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Table 3.3 Associations of neighborhood exposure, genetic risk score, and neighborhood exposure by genetic risk score interaction 

with the risk for type 2 diabetes, Multi-Ethnic Study of Atherosclerosis, 2000-2012 
 Model 1; HR (95% CI)

a
  Model 2; HR (95% CI)

b
 

Neighborhood 

Domain 

Neighborhood 

Exposure
c 

Genetic Risk 

Score
d 

 Neighborhood 

Exposure
c 

Genetic Risk 

Score
d 

Interaction P-value for 

Interaction 

Healthy Food Stores 0.97 (0.95, 0.99) 1.25 (1.16, 1.35)  0.97 (0.95, 0.99) 1.26 (1.16, 1.35) 0.98 (0.96, 1.00) 0.05 

Recreational 

Establishments 

0.97 (0.96, 0.98) 1.25 (1.16, 1.35)  0.97 (0.96, 0.99) 1.24 (1.15, 1.34) 0.99 (0.98, 1.01) 0.28 

Neighborhood SES 0.94 (0.92, 0.95) 1.24 (1.15, 1.33)  0.94 (0.92, 0.95) 1.25 (1.16, 1.35) 1.01 (0.99, 1.03) 0.33 
Abbreviations: HR, hazard ratio; CI, confidence interval; SES, socioeconomic status 
a Model 1 controls for gender, race, income, education, alcohol use, cigarette smoking, neighborhood SES (except for models with neighborhood SES as the exposure), and the first 5 eigenvectors from 

the pooled sample to control for population stratification. All standard errors and confidence intervals were computed using the delta method. 
b Model 2 controls for all covariates in model 1, and adds an interaction between the genetic risk score and the neighborhood exposure.  
c Estimates are for a 1-unit increase in neighborhood exposure 
d Estimates are for a 10-allele increase in genetic risk score 
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Figure 3.1 Risk of type 2 diabetes associated with a 10-allele increase in the genetic risk 

score, estimated at the 10th and 90th percentiles of the neighborhood environment, Multi-

Ethnic Study of Atherosclerosis, 2000-2012
a 

 

Abbreviations: SES, socioeconomic status; CI, confidence interval 
a All models control for gender, race, income, education, alcohol use, cigarette smoking, neighborhood SES (except for models with 
neighborhood SES as the exposure), and the first 5 eigenvectors from the pooled sample to control for population stratification. All 

standard errors and confidence intervals were computed using the delta method.  
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Table 3.4 The independent and joint associations of neighborhood environment and 

genetic risk with the risk for developing type 2 diabetes, Multi-Ethnic Study of 

Atherosclerosis, 2000-2012
a
 

 HR (95% CI) 

 Genetic Risk Score  Expected Interaction If… 

 
Below Median Above Median 

 Additive Joint 

Effects
b 

Multiplicative 

Joint Effects
c 

Healthy Food Stores
d      

≥ 1 stores 1.00 (ref) 1.16 (0.96, 1.36)    

< 1 store 1.44 (1.18, 1.70) 1.92 (1.60, 2.25)  1.60 (1.20, 2.01) 1.67 (1.16, 2.19) 

Recreational 

establishments
e 

     

≥ 1 establishment 1.00 (ref) 1.19 (1.03, 1.34)    

< 1 establishment 1.66 (1.33, 1.99) 2.42 (1.99, 2.84)  1.85 (1.44, 2.25) 1.97 (1.43, 2.51) 

Neighborhood SES
f      

Above median 1.00 (ref) 1.37 (1.12, 1.61)    

Below median 1.47 (1.20, 1.74) 1.75 (1.43, 2.06)  1.83 (1.38, 2.29) 2.01 (1.36, 2.67) 
Abbreviations: SES, socioeconomic status; HR, hazard ratio; CI, confidence interval; RERI, relative excess risk due to interaction 
a Models control for gender, race, income, education, alcohol use, cigarette smoking, neighborhood SES (except for models with 

neighborhood SES as the exposure), and the first 5 eigenvectors from the pooled sample to control for population stratification. All 
confidence intervals were computed using the delta method. 
b Expected joint effect for additive interaction: HR01 + HR10 -1 = HR11 
c Expected joint effect for multiplicative interaction: HR01 * HR10 = HR11 
d RERI for healthy food stores = 1.92 – 1.16 – 1.44 + 1 = 0.32 (0.09, 0.55); p-values for additive and multiplicative interaction, <0.01 

and 0.23, respectively. 
e RERI for recreational establishments = 2.42 – 1.66 – 1.19 + 1 = 0.57 (0.32, 0.82); p-values for additive and multiplicative 
interaction, <0.0001 and 0.12, respectively. 
f RERI for neighborhood SES = 1.75 – 1.47 – 1.37 +1 = -0.09 (-0.40, 0.22); p-values for additive and multiplicative interaction, 0.61 

and 0.24, respectively. 
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Appendix 

 

Text 3.A1: Further description of the neighborhood GIS measures for healthy food store 

and recreational establishment availability 

 

GIS-based measures of access to food stores were created using data obtained 

from the National Establishment Time Series (NETS) database from Walls and 

Associates for the years 2000-2012. This data includes time-series data on establishments 

derived from Dun and Bradstreet (D&B) archival establishment data.  Addresses were 

geocoded using TeleAtlas EZ-Locate web-based geocoding software (TeleAtlas, 2011). 

We used Standard Industrial Classification (SIC) codes to identify supermarkets and 

grocery stores (#5411), and fruit and vegetable markets (#5431), which we classified as 

healthy food stores.
1
 Additional supermarket data was obtained from Nielsen/TDLinx to 

enhance the supermarket list.
2
 We identified supermarkets as grocery stores with at least 

$2 million in annual sales or at least 25 employees. Additionally, we included 

supermarkets that had a standard chain name based on a list derived from the 

Nielsen/TDLinx data as described in detail elsewhere.
3
 For physical activity resources, 

114 SIC codes were selected to represent establishments with indoor conditioning, dance, 

bowling, golf, team and racquet sports, and water activities derived from lists used in 

previous studies.
4,5

 Simple densities per square mile were created for 1-mile buffers 

around each address using the point density command in ArcGIS 9.3. 
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Table 3.A1 Characteristics of established diabetes risk alleles used in the analyses
a
 

SNP Chr Build 36 

Position 
(bp) 

Risk 

Allele 

Other 

Allele 

RAF White RAF 

African 
American 

RAF 

Hispanic 

RAF 

Chinese 

Nearest Gene 

rs10203174 2 43543534 C T 0.89 0.66 0.89 0.99 THADA 

rs10401969* 19 19268718 C T 0.07 0.17 0.08 0.09 CLIP2 

rs10758593 9 4282083 A G 0.44 0.50 0.48 0.44 GLIS3 

rs10811661 9 22124094 T C 0.83 0.93 0.87 0.60 CDKN2A/B 

rs10830963 11 92348358 G C 0.27 0.08 0.20 0.45 MTNR1B 

rs10842994 12 27856417 C T 0.80 0.94 0.84 0.79 KLHDC5 

rs10923931 1 120319482 T G 0.10 0.30 0.13 0.03 NOTCH2 

rs1111875* 10 94452862 C T 0.60 0.76 0.65 0.27 HHEX/IDE 

rs11634397 15 78219277 G A 0.64 0.43 0.57 0.09 ZFAND6 

rs11717195 3 124565088 T C 0.77 0.88 0.74 1.00 ADCY5 

rs12242953 10 70535348 G A 0.94 0.93 0.93 0.87 VPS26A 

rs12497268 3 64065403 G C 0.83 0.90 0.88 0.70 PSMD6 

rs12571751* 10 80612637 A G 0.55 0.53 0.51 0.57 ZMIZ1 

rs12899811 15 89345080 G A 0.31 0.62 0.61 0.97 PRC1 

rs12970134* 18 56035730 A A 0.26 0.15 0.18 0.17 MC4R 

rs13233731 7 130088229 G A 0.53 0.72 0.62 0.72 KLF14 

rs13389219 2 165237122 C T 0.61 0.30 0.68 0.90 GRB14 

rs1359790* 13 79615157 G A 0.72 0.88 0.68 0.72 SPRY2 

rs1496653 3 23429794 A G 0.82 0.64 0.84 0.80 UBE2E2 

rs1552224 11 72110746 A C 0.86 0.96 0.93 0.92 ARAP1(CENTD2) 

rs163184* 11 2803645 G T 0.49 0.20 0.42 0.46 KCNQ1 

rs16927668 9 8359533 T C 0.22 0.71 0.53 0.49 PTPRD 

rs17168486 7 14864807 T C 0.18 0.12 0.35 0.47 DGKB 

rs17301514 3 188096103 A G 0.12 0.06 0.05 0.04 ST64GAL1 

rs17791513 9 81095410 A G 0.95 0.96 0.88 0.95 TLE4 

rs17867832 7 126784073 T G 0.92 0.87 0.95 0.93 GCC1 

rs1801282 3 12368125 C G 0.88 0.98 0.91 0.96 PPARG 

rs2075423 1 212221342 G T 0.63 0.63 0.68 0.83 PROX1 

rs2261181 12 64498585 T C 0.12 0.21 0.10 0.11 HMGA2 

rs2334499 11 1653425 T C 0.40 0.16 0.44 0.82 DUSP8 

rs243088* 2 60422249 T A 0.47 0.52 0.58 0.68 BCL11A 

rs2796441* 9 83498768 G A 0.61 0.82 0.58 0.39 TLE1 

rs2943640 2 226801829 C A 0.66 0.90 0.81 0.94 IRS1 

rs3802177* 8 118254206 G A 0.70 0.90 0.76 0.54 SLC30A8 

rs4299828 6 38285645 A G 0.81 0.75 0.79 0.92 ZFAND3 

rs4402960 3 186994381 T G 0.34 0.52 0.28 0.25 IGF2BP2 

rs4458523 4 6340887 G T 0.60 0.57 0.68 0.92 WFS1 

rs4502156 15 60170447 T C 0.59 0.28 0.41 0.52 C2CD4A 

rs459193* 5 55842508 G A 0.75 0.59 0.72 0.50 ANKRD55 

rs4812829 20 42422681 A G 0.18 0.10 0.39 0.43 HNF4A 



 

97 

 

SNP Chr Build 36 

Position 

(bp) 

Risk 

Allele 

Other 

Allele 

RAF White RAF 

African 

American 

RAF 

Hispanic 

RAF 

Chinese 

Nearest Gene 

rs516946 8 41638405 C T 0.75 0.77 0.79 0.86 ANK1 

rs5215* 11 17365206 C T 0.36 0.11 0.33 0.36 KCNJ11 

rs6795735 3 64680405 C T 0.53 0.20 0.29 0.27 ADAMTS9 

rs6819243 4 1283245 T C 0.97 0.66 0.73 0.55 MAEA 

rs7177055 15 75619817 A G 0.71 0.36 0.60 0.33 HMG20A 

rs7202877* 16 73804746 T G 0.90 0.82 0.90 0.81 BCAR1 

rs7569522 2 161054693 A G 0.46 0.44 0.53 0.29 RBMS1 

rs7756992 6 20787688 G A 0.29 0.54 0.35 0.49 CDKAL1 

rs780094 2 27594741 C T 0.57 0.82 0.67 0.53 GCKR 

rs7845219 8 96006678 T C 0.50 0.65 0.44 0.26 TP53INP1 

rs7903146* 10 114748339 T C 0.70 0.70 0.74 0.98 TCF7L2 

rs7955901 12 69719560 C T 0.47 0.26 0.51 0.65 TSPAN8 

rs8182584 19 38601550 T G 0.40 0.41 0.41 0.65 PEPD 

rs849135 7 28162938 G A 0.49 0.73 0.64 0.99 JAZF1 

rs9936385 16 52376670 C T 0.41 0.49 0.32 0.14 FTO 

rs2028299** 15 88175261 C A 0.28 0.29 0.21 0.20 AP3S2 

rs7041847** 9 4277466 A G 0.53 0.87 0.60 0.48 GLIS3 

rs7593730** 2 160879700 C T 0.77 0.62 0.81 0.82 RBMS1 

Abbreviations: SNP, single nucleotide polymorphism; bp, base pair; RAF, risk allele frequency 
a All SNPs were taken from GWAS meta-analyses, please see citations 6-8 for more details. 

* SNPs included in the restricted genetic risk score (corresponding to SNPs with consistent direction of effects in all racial/ethnic 
groups) and in the full genetic risk score 

** SNPs included in the restricted genetic risk score only, and not the full genetic risk score 
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Table 3.A2 Genetic risk score performance across racial/ethnic groups
a
 

Genetic risk score Association 

with diabetes; 

HR (95% CI) 

P-value for genetic risk 

score*race/ethnicity 

interaction in model 

pooling across 

race/ethnicity
 

Full genetic risk score (55 SNPs)   

White 1.05 (1.02, 1.07)  

African American 1.02 (1.00, 1.04)  

Hispanic 1.04 (1.02, 1.07)  

Chinese 1.05 (1.00, 1.09)  

Overall/Pooled 1.04 (1.02, 1.05) 0.35 

Restricted genetic risk score (16 SNPs)   

White 1.04 (1.00, 1.09)  

African American 1.05 (1.01, 1.10)  

Hispanic 1.02 (0.98, 1.06)  

Chinese 1.03 (0.97, 1.09)  

Overall/Pooled 1.04 (1.01, 1.06) 0.78 
Abbreviations: HR, hazard ratio; CI, confidence interval; SNP, single nucleotide polymorphism 
a Estimates of association are from a parametric, interval censored survival model with a Weibull distribution, as described in the 

methods section of the paper. Race-specific models control for sex, and first 5 ethnic-specific eigenvectors. Estimates of association 
are for a 1-unit change in the genetic risk scores. Standard errors and confidence intervals were computed using the delta method. P-

values correspond to a Type 3 Wald χ2 test with 3 degrees of freedom. Analyses pooling across race/ethnic groups control for sex, and 

first 5 eigenvectors from the pooled sample. 
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Table 3.A3 Additional controls for possible neighborhood-level confounders
a
 

 Control for population density; HR (95% CI) Control for MESA site; HR (95% CI) 

Neighborhood 

Domain 

Neighborhood 

Exposure
b
 

Genetic Risk 

Score
c 

Interaction P value for 

interaction 

Neighborhood 

Exposure
b 

Genetic Risk 

Score
c 

Interaction P value for 

interaction 

Healthy Food 

Stores 

0.99 (0.94, 

1.04) 

1.26 (1.16, 

1.35) 

0.98 (0.96, 

1.00) 

0.05 1.00 (0.97, 

1.04) 

1.26 (1.16, 

1.35) 

0.98 (0.96, 

1.00) 

0.05 

Recreational 

Establishments 

0.97 (0.96, 

0.99) 

1.24 (1.15, 

1.34) 

0.99 (0.98, 

1.01) 

0.28 0.98 (0.97, 

1.00) 

1.25 (1.15, 

1.34) 

0.99 (0.98, 

1.01) 

0.26 

Neighborhood 

SES 

0.93 (0.91, 

0.95) 

1.26 (1.16, 

1.36) 

1.01 (0.99, 

1.03) 

0.29 0.93 (0.91, 

0.96) 

1.26 (1.16, 

1.36) 

1.01 (0.99, 

1.03) 

0.28 

Abbreviations: HR, hazard ratio; CI, confidence interval; SES, socioeconomic status 
a Models control for gender, race, income, education, alcohol use, cigarette smoking, neighborhood SES index (except for models with neighborhood SES index as the exposure), and the first 5 
eigenvectors from the pooled sample to control for population stratification. All confidence intervals were computed using the delta method. Population density, measured as persons per square mile 

within a 1-mile buffer of the participant’s address, was calculated based on block-level census population. Each block was weighted by the percent of the block area that falls within the participant 

buffer. The total population within that block was then multiplied by this weight and the weighted populations were summed together for the total population within the buffer. The total population was 
divided by total buffer area in square miles. For dates prior to January 2006, population counts originated from the 2000 Census (Census, 2000). For dates on and after January 2006, population counts 

originated from the 2010 Census. 
b Estimates are for a 1-unit increase in neighborhood exposure 

c Estimates are for a 10-allele increase in genetic risk score 
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Table 3.A4 Interval censored regression models using incident cases only 
 Model 1; HR (95% CI)

a
  Model 2; HR (95% CI)

b
 

Neighborhood 

Domain 

Neighborhood 

Exposure
c 

Genetic Risk 

Score
d 

 Neighborhood 

Exposure
c 

Genetic Risk 

Score
d 

Interaction P value for 

interaction 

Healthy Food Stores 0.97 (0.94, 1.00) 1.11 (0.99, 1.24)  0.97 (0.95, 1.00) 1.12 (1.00, 1.24) 0.98 (0.95, 1.02) 0.30 

Recreational 

Establishments 

0.97 (0.96, 0.99) 1.12 (1.00, 1.24)  0.97 (0.96, 0.99) 1.12 (0.99, 1.24) 1.00 (0.98, 1.02) 0.70 

Neighborhood SES 0.94 (0.92, 0.96) 1.10 (0.98, 1.22)  0.94 (0.91, 0.96) 1.11 (0.99, 1.23) 1.01 (0.98, 1.04) 0.39 
Abbreviations: HR, hazard ratio; CI, confidence interval; SES, socioeconomic status 
a Model 1 controls for gender, race, income, education, alcohol use, cigarette smoking, neighborhood SES index (except for models with neighborhood SES index as the exposure), and the first 5 

eigenvectors from the pooled sample to control for population stratification. All standard errors and confidence intervals were computed using the delta method. 
b Model 2 controls for all covariates in model 1, and adds an interaction between the genetic risk score and the neighborhood exposure.  
c Estimates are for a 1-unit increase in neighborhood exposure 

d Estimates are for a 10-allele increase in genetic risk score 
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Table 3.A5 Associations using restricted genetic risk score, including only SNPs with consistent direction of effect in all racial/ethnic 

groups 
 Model 1; HR (95% CI)

a
  Model 2; HR (95% CI)

b
 

Neighborhood 

Domain 

Neighborhood 

Exposure
c 

Restricted 

Genetic Risk 

Score
d 

 Neighborhood 

Exposure
c 

Restricted 

Genetic Risk 

Score
d 

Interaction P value for 

interaction 

Healthy Food Stores 0.97 (0.95, 0.99) 1.13 (1.05, 1.21)  0.97 (0.95, 0.99) 1.13 (1.05, 1.21) 0.98 (0.96, 1.00) 0.13 

Recreational 

Establishments 

0.94 (0.91, 0.97) 1.12 (1.04, 1.20)  0.94 (0.91, 0.97) 1.12 (1.04, 1.20) 1.00 (0.96, 1.04) 0.89 

Neighborhood SES 0.94 (0.92, 0.95) 1.12 (1.04, 1.20)  0.94 (0.92, 0.95) 1.13 (1.04, 1.21) 1.01 (0.99, 1.02) 0.38 
Abbreviations: SNP, single nucleotide polymorphisms; HR, hazard ratio; CI, confidence interval; SES, socioeconomic status 
a Model 1 controls for gender, race, income, education, alcohol use, cigarette smoking, neighborhood SES index (except for models with neighborhood SES index as the exposure), and the first 5 

eigenvectors from the pooled sample to control for population stratification. All standard errors and confidence intervals were computed using the delta method. 
b Model 2 controls for all covariates in model 1, and adds an interaction between the genetic risk score and the neighborhood exposure.  
c Estimates are for a 1-unit increase in neighborhood exposure 

d Estimates are for a 4-allele increase in genetic risk score 
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Table 3.A6 Race-specific associations of neighborhood exposures, genetic risk score, 

and neighborhood exposures by genetic risk score interactions with type 2 diabetes
a
 

 HR (95% CI) 

Neighborhood 

Domain 

Neighborhood 

Exposure
b 

Genetic Risk 

Score
c 

Interaction 

Healthy Food Stores    

White 0.99 (0.94, 1.04) 1.33 (1.12, 1.54) 0.98 (0.92, 1.03) 

African American 0.98 (0.96, 1.01) 1.11 (0.95, 1.26) 0.99 (0.95, 1.03) 

Hispanic 0.94 (0.90, 0.97) 1.31 (1.12, 1.50) 0.97 (0.94, 1.01) 

Chinese 0.84 (0.66, 1.02) 1.35 (0.88, 1.81) 0.97 (0.68, 1.26) 

Recreational 

Establishments 

   

White 0.98 (0.96, 1.00) 1.36 (1.15, 1.56) 0.99 (0.97, 1.02) 

African American 0.97 (0.95, 1.00) 1.09 (0.93, 1.25) 0.99 (0.96, 1.02) 

Hispanic 0.97 (0.94, 0.99) 1.25 (1.08, 1.42) 0.98 (0.96, 1.01) 

Chinese 0.91 (0.82, 1.01) 1.31 (0.85, 1.78) 0.98 (0.84, 1.12) 

Neighborhood SES    

White 0.95 (0.91, 0.98) 1.39 (1.16, 1.62) 0.98 (0.94, 1.03) 

African American 0.96 (0.93, 0.99) 1.15 (0.97, 1.32) 1.02 (0.99, 1.06) 

Hispanic 0.91 (0.88, 0.94) 1.36 (1.08, 1.63) 1.02 (0.98, 1.06) 

Chinese 0.91 (0.86, 0.95) 1.40 (1.06, 1.74) 1.00 (0.94, 1.06) 
Abbreviations: HR, hazard ratio; CI, confidence interval 
a Models control for gender, income, education, alcohol use, cigarette smoking, neighborhood SES index (except for models with 

neighborhood SES index as the exposure), and the first 5 ethnic-specific eigenvectors. All standard errors and confidence intervals 
were computed using the delta method. 
b Estimates are for a 1-unit increase in neighborhood exposure 
c Estimates are for a 4-allele increase in genetic risk score 
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CHAPTER 4 :  

INCLUSION OF INDIVIDUAL AND AREA-LEVEL SOCIOECONOMIC 

STATUS IN RISK PREDICTION MODELLING: AN APPLICATION TO TYPE 2 

DIABETES IN THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA) 

 

Introduction: 

 

Diabetes is an important cause of death and disability worldwide.
1
 In the United 

States, an estimated 18.8 million adults have diagnosed diabetes mellitus,
2
 and if current 

trends persist, as many as 1 in 3 Americans could have diabetes by 2050.
3
 The continued 

increase in prevalence and incidence has led to calls for cost-effective prevention 

strategies, including identifying individuals at high risk for developing disease.
4,5

  

In light of evidence that nearly two-thirds of diabetes cases in high risk 

individuals can be prevented through behavioral and pharmacologic interventions, risk 

prediction models are increasingly recommended for use in clinical practice and public 

health planning.
4-6

  These models, which use available clinical information, are seen as 

complements to traditional approaches for identifying high-risk individuals, such as 

hemoglobin A1C tests, and could help identify high-risk individuals before lab tests can 

identify prediabetes.
6
  

With the growth of risk prediction as a tool to guide preventive and therapeutic 

interventions in the US and abroad,
5
 much research has focused upon improving 

prediction models. For type 2 diabetes, this has often taken the form of including novel 
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biological information, especially genetic risk.
7-11

 Virtually no research, however, has 

explored the use of social and environmental information – including individual and area-

level socioeconomic status (SES) – in diabetes risk prediction models. This is surprising 

given the pronounced disparities in type 2 diabetes by SES,
12

 and the increasing 

recognition of the importance of social and area-level factors in the development of 

diabetes.
13,14

 Studies of cardiovascular risk models have shown that ignoring SES can 

result in underestimation of risk for low-SES individuals, yet no similar studies exist for 

type 2 diabetes.
15,16

 Given the growth of electronic health records (EHRs) and the ability 

to link “non-medical” environmental data to medical records,
17

 empirical assessments of 

the utility of including multi-level social information in risk assessment are warranted.  

Using a large, multi-ethnic, prospective cohort, we used several approaches to 

evaluate the utility of adding individual and area-level SES information to diabetes risk 

prediction models. Specifically, we investigated (1) whether adding individual and area-

level SES to models based on traditional risk factors aids in the discrimination of people 

who developed diabetes from those who remained diabetes-free; (2) if diabetes risk 

prediction models based upon traditional risk factors underestimate risk in low-SES 

individuals or those living in low-SES environments, and whether the addition of SES 

information improves prediction accuracy (i.e. model calibration) across the SES 

distribution; and (3)whether adding social information to risk prediction models results in 

risk reclassification.  

Methods: 

 

Study population and analytic sample: 
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The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study 

of non-institutionalized adults 45-84 years old who self-identified as white, black, 

Hispanic, or Chinese. Participants were free of clinical cardiovascular disease at baseline 

and were recruited from 6 US locations (New York, New York; Baltimore, Maryland; 

Forsyth County, North Carolina; Chicago, Illinois; St. Paul, Minnesota; and Los Angeles, 

California). The first examination took place between 2000 and 2002, and 4 follow-up 

exams were completed an average of 1.6, 3.1, 4.8, and 9.5 years after baseline. Written 

informed consent was obtained from participants, and the study was approved by the 

institutional review boards at each site.  

A total of 6814 adults were enrolled at baseline. For this analysis, we excluded 

individuals with type 2 diabetes at baseline (n=736). We also excluded individuals who 

did not agree to have their residential address geocoded and linked to area-level data 

(n=623), who were missing data on diabetes risk factors (n=404), or for whom no follow-

up information was available regarding diabetes status (n=29). Our total analytic sample 

thus consisted of 5021 adults.  

Follow-up and measurement of type 2 diabetes 

 

 Incident type 2 diabetes was determined at each follow-up exam according to the 

American Diabetes Association’s 2003 criteria
18

: fasting plasma glucose level ≥126 

mg/dL (7 mmol/L) or use of oral anti-hyperglycemic medications or insulin. Information 

on the use of oral medication and insulin was obtained at each exam via self-report and 

visual inspection of medication bottles.  

Traditional diabetes risk factors 
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Traditional diabetes risk factors of interest were identified based upon established 

diabetes risk prediction models.
5,7,19

 Non-laboratory risk factors measured at baseline 

included age, sex, family history of type 2 diabetes, systolic blood pressure (mmHg), 

receiving treatment for hypertension (yes/no), waist circumference (cm), waist:hip ratio, 

body mass index (BMI, kg/m
2
), height (m), and smoking status (yes/no). Self-identified 

race/ethnicity, utilized in many diabetes risk scores, was also available at baseline. For 

laboratory-based risk factors, we utilized 12-hour fasting blood samples to measure 

plasma glucose levels (mg/dL), triglycerides (mmol/L), and HDL cholesterol (mmol/L).  

Socioeconomic status  

 

An extensive literature exists regarding the measurement of SES at different 

points during the lifecourse.
20,21

 Since we were interested in exploring variables that 

could be feasibly incorporated into medical records or public health databases, we elected 

to focus on simple SES measures, and to combine measures only in ways that could be 

reasonably replicated with other data. At the individual level, we measured SES using 

highest level of attained education in years, annual household income, and annual 

household income per individual supported by the income in the household (hereafter, 

called household income per capita), all of which were assessed via questionnaire at 

baseline. Because individual-level SES variables are not always available and area-level 

features may influence chronic disease development independent of individual-level 

factors, 
22

 we also evaluated several area-level SES variables. Area-level variables were 

defined at the census tract-level and included median household income, percentage of 

adults ages 25 and older with a bachelor’s degree or higher, and percentage of people 

living below the federally defined poverty threshold. In the MESA sample and in other 
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studies, these variables have been shown to be related to other area-level exposures that 

may be relevant to the development of type 2 diabetes, such as the availability of healthy 

food and physical activity resources,
23-25

 perceived safety,
26,27

 and levels of air 

pollution.
28,29

 All area-level predictors were taken from the U.S. Census 2000 and linked 

to geocoded participant residential addresses.  

 Since single measures of SES may fail to capture the intersections between 

different domains of social standing and risk, we created SES indices at both the 

individual- and area-levels, as well as an overall SES index combining individual and 

area measures. Following recommended methods, indices were created by first 

transforming variables to remove skewness, z-scoring the variables, and then summing 

the z-scores to create a composite index.
30

 We selected variables a priori to include in 

SES indices based upon prior work in our cohort and others demonstrating clusters of 

variables that are associated with increased risk for developing diabetes and 

cardiovascular disease.
19,31,32

  At the individual-level, we included education and annual 

household income. At the area-level, we included percent of adults with a high school 

education, percent  of adults with a bachelor’s degree, median household income (log 

transformed), median home value (log transformed), percent of adults in a managerial 

occupation, and percent of households with income from interest, dividends, or rental 

properties, all measured at the census tract-level. For the combined SES index, we 

summed the standardized individual and area SES indices. All indices were created so 

that an increasing score indicates greater SES.  

Statistical analysis 
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We began our analysis by evaluating the sociodemographic characteristics and 

distribution of diabetes risk factors in our sample overall and by incident diabetes status. 

Sample means and standard deviations were used to summarize normally distributed 

continuous variables, while sample medians and interquartile ranges were used for 

skewed variables. 

We developed two separate prediction models to estimate 10-year incident 

diabetes risk in MESA, one employing only non-laboratory variables that would be 

available during a routine medical visit (hereafter, the “Clinical Model”), and one using 

laboratory variables from a fasting blood sample (hereafter, the “Laboratory Model”). 

The primary purpose of fitting our own internal prediction models was to ensure that any 

improvements in model performance with the addition of SES predictors was not due to 

simply improving the fit of poorly modeled variables in an external prediction model. We 

began by fitting Cox proportional hazards models with all risk factors from the ARIC 

diabetes risk model,
33

 which has been shown to perform well in MESA and other 

validation studies.
19,34

 This included age, family history of diabetes, race/ethnicity, 

systolic blood pressure, height, waist circumference, fasting glucose, fasting triglycerides, 

HDL cholesterol.  For parsimony, we excluded variables that were not marginally 

associated with diabetes incidence (p≥0.1). We then added additional risk factors shown 

to be predictive in at least 3 other diabetes risk scores (BMI, waist:hip ratio, smoking 

status)
5,35

 and retained those that were marginally significant (p<0.1) in likelihood ratio 

tests. Akaike Information Criterion (AIC) values were used to decide between predictors 

that were highly correlated (e.g. BMI and waist circumference). Individuals were 

considered at risk until diagnosis of diabetes, last follow-up visit, or administrative 
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censoring at exam 5, and incident diabetes cases were assigned to the midpoint between 

their previous diabetes-free and current exam dates.  

For continuous predictors, we checked for linearity of the exposure-outcome 

relationship by fitting penalized b splines with 2 degrees of freedom and retained splines 

for continuous predictors with visual and statistical evidence of non-linearity. 
36

 We 

compared the sensitivity of our approach to other methods including adding square terms 

and fitting multivariable fractional polynomials.
37

 For all models, the proportional 

hazards assumption was investigated graphically using scaled Shoenfeld residuals and 

log-time since baseline, and found to be satisfied for all variables. The final Clinical 

Model included age (spline), race/ethnicity, family history of type 2 diabetes, systolic 

blood pressure, waist circumference, and hypertension treatment, and our Laboratory 

Model added fasting glucose and triglycerides (log transformed, spline).   

We added SES predictors individually in separate models to both Clinical and 

Laboratory models. We assessed the value of each addition by evaluating model 

discrimination, calibration, and risk reclassification in models with and without the SES 

predictors. Model discrimination refers to the ability of a model to differentiate who will 

and will not have an event: in this case, incident diabetes.
38

 We evaluated discrimination 

by assessing the statistical significance of the predictors using likelihood ratio tests of 

nested models, computing Harrell’s C statistics (the equivalent to area under the curve for 

survival models), and plotting receiver operating characteristic (ROC) curves.
39

  

For model calibration, we were particularly interested in whether the Clinical and 

Laboratory models underestimated risk for individuals of lower individual-SES or 

residing in low-SES neighborhoods. Following recommended methods, we calculated 
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observed risks using Kaplan Meier estimates and predicted risks using our Cox 

proportional hazards models.
37,40

 To evaluate differential calibration across the SES 

distribution, we then calculated mean differences (and 95% confidence intervals) 

between observed and predicted risks across tertiles (or natural groupings) of the SES 

predictors. We elected to use tertiles because they matched the natural categories for 

variables like education, but we also calculated mean differences across quintiles of the 

SES predictors to evaluate the sensitivity of our results to the number of categories. For 

brevity, we assessed calibration for the two individual and area-level SES variables that 

were most predictive of incident diabetes across the Clinical and Laboratory models.  

To place model discrimination in the context of potential preventive interventions, 

we also assessed risk reclassification comparing models with and without SES predictors. 

Given that no established risk threshold exists for instituting preventive pharmacotherapy 

or particular preventive interventions, we chose a priori 10-year risk categories of 0 to 

<10%, 10-20%, and >20%. These categories are similar to those used in risk prediction 

models for cardiovascular disease. Using these categories, we calculated the number of 

individuals classified in each category comparing models with and without the two most 

predictive individual- and area-level SES variables.  

 We performed several sensitivity analyses. Because individual- and area-level 

variables may be independently associated with type 2 diabetes,
41,42

 we evaluated models 

including both individual- and area-level SES variables together. Similarly, individual 

and area-level SES predictors may interact with each other or with traditional risk factors 

to influence diabetes risk. To evaluate this possibility, we tested interactions between 

each SES predictor with other SES predictors and with age, sex, and race to see if such 
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interactions improved model discrimination or calibration. To assess the sensitivity of our 

calibration results to the use of our internal prediction model, we also applied two 

established diabetes risk prediction models to our sample and assessed their calibration 

using the same methods described above. Based upon their performance in prior 

validation studies,
19,34

 we chose to utilize the original ARIC diabetes risk score
33

 and the 

Framingham Offspring Study diabetes risk score.
43

 We calculated the predicted 10-year 

risk of diabetes for both of these risk scores using the published model coefficients, and 

included the risk score as a covariate in a Cox proportional hazards model to account for 

censoring in our sample. To each of these models, we added the same SES variables as 

above, both independently and interacted with the risk score, and evaluated changes in 

calibration with the addition of the SES variables.  All analyses were conducted in R 

version 3.1.2 (R Foundation for Statistical Computing, Vienna, Austria), and STATA 12 

(Stata Corp, College Station, Texas). 

Results: 

 

Of 5022 individuals without diabetes at baseline, 615 developed diabetes over a 

median of 9.2 years of follow-up. Compared to individuals who did not develop diabetes, 

individuals who developed diabetes were more likely to be African-American and 

Hispanic, to have a parent or sibling with diabetes, and to be obese (Table 1). Individuals 

developing diabetes also had higher mean baseline values of traditional diabetes risk 

factors, including fasting plasma glucose, triglycerides, waist circumference, and systolic 

blood pressure, relative to those who did not develop diabetes. With respect to SES, those 

developing diabetes were less educated and had lower annual household incomes than 

those remaining diabetes-free. At the area-level, individuals with incident diabetes 
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resided in neighborhoods with lower levels of education, lower median household 

incomes, and a greater proportion of persons living below the poverty line. SES indices at 

the individual- and area-level were considerably lower (indicating lower SES) for 

individuals who developed diabetes.   

Table 2 displays the association of each SES predictor with diabetes, as well as 

model fit and model discrimination for multivariable Clinical and Laboratory prediction 

models. All SES variables were highly predictive of incident diabetes in univariable 

models (all p<0.01, data not shown), but the associations were attenuated considerably in 

the multivariable models. The strongest SES predictors in the Clinical model were the 

SES index at the individual level (HR for a standard deviation [SD] increase = 0.91; 95% 

CI [0.82, 1.00]) and percent of adults with a bachelor’s degree at the area-level (HR for a 

SD increase = 0.91, 95% CI [0.83, 1.01]). In the Laboratory model, the strongest 

individual-level SES predictor was categorical household income (HR comparing highest 

to lowest category = 0.74; 95% CI [0.57, 0.95]), though continuous household income, 

and household income per capita were also relatively predictive. At the area-level, the 

SES index was most predictive (HR per SD increase = 0.91, 95% CI [0.83, 1.01]). In 

both the Clinical and Laboratory models, the SES index combining individual and area-

level measures was predictive, but no more so than the individual SES measures. Hazard 

ratios for all model predictors are listed in Tables 4.A1 and 2, and Figure 4.A1.  

Despite the significance of several SES predictors in the multivariable models, 

none of them significantly altered the model’s discrimination (Table 2). The C statistic 

went unchanged with the addition of SES predictors, and the ROC plots were largely 

overlapping (Figure 4.A2).  
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The calibration of the Clinical and Laboratory models across tertiles of the most 

consistent SES predictors are shown in Figures 1 and 2, respectively. For the Clinical 

model excluding SES predictors, the observed risk was generally higher than the 

predicted risk for the lowest SES tertile, while the reverse was true for the highest SES 

tertile. For instance, those residing in neighborhoods with the lowest education level had 

observed risks that were on average 1.06% (95% CI [0.54, 1.57]) higher than the 

predicted risk, while those in neighborhoods with the highest education level had 

observed risks 1.20% lower than predicted (95% CI [1.61, 0.78]). With the addition of 

area-level education to the model, calibration across tertiles of area education improved, 

with the mean differences between observed and predicted risks narrowing for each 

group. Results for the Laboratory model were similar to that of the Clinical model, 

though the differences between observed and predicted risks were generally smaller. 

Using quintiles of SES variables to assess calibration rather than tertiles yielded similar 

results (data not shown). 

Most SES predictors reclassified 2-3% of individuals in a given risk category 

(Tables 4.A3-6). In all models, net risk reclassification worsened for low-risk (0-10%) 

individuals with the addition of SES predictors, and improved for middle- and high-risk 

individuals, typically by reclassifying those who did not develop diabetes to a lower risk 

category. 

Though descriptive analyses suggested possible synergies between individual and 

area-level SES measures (Table 4.A7), sensitivity analyses adding the variables to the 

same models did not produce better discrimination or calibration. Analyses adding 

interactions of SES predictors with each other and with age, sex, and race, also failed to 
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yield improvements in discrimination and calibration, and no interactions were 

consistently predictive across Clinical and Laboratory models (data not shown).  

Sensitivity analyses evaluating the calibration of two established risk scores 

across tertiles of select SES predictors varied according to the risk score used (Table 

4.A8). Both scores generally overestimated risk for high-SES groups, but only the 

Framingham score significantly underestimated risk for low-SES groups (by as much as 

2.60% in one case). The addition of SES predictors to the risk scores significantly 

improved calibration across tertiles of the SES variables for the Framingham score, but 

results were mixed for the ARIC score, with the calibration slightly worsening for low-

SES tertiles in several instances.  

Discussion: 

 

The inclusion of socioeconomic information in risk prediction is of increasing 

interest, with recent applications in cardiovascular event prediction
11,12,43

 and hospital 

readmission assessments.
44-46

 Given that individual and area-level socioeconomic 

characteristics are strong predictors of a many chronic conditions and operate through a 

variety of pathways which are difficult to measure, socioeconomic characteristics have 

been hypothesized to aid in risk prediction. In our study, we find limited support for the 

use of individual or area-level socioeconomic characteristics in type 2 diabetes risk 

prediction to improve model discrimination. While several socioeconomic characteristics 

were indeed predictive of incident type 2 diabetes independent of demographic, 

anthropometric, and laboratory predictors, no SES variable altered the overall ability of 

the models to discriminate between those who would and would not go on to develop 
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diabetes. Adding SES predictors also failed to reclassify most individuals across selected 

risk categories.  

With respect to model calibration, models without socioeconomic predictors 

generally underestimated risk for individuals of low-SES (or residing in low-SES 

neighborhoods), and overestimated risk for those of high-SES. Adding SES predictors, 

particularly area-level education, generally improved calibration across the SES 

distribution and eliminated significant differences between SES groups, though results 

varied in the established risk models. The magnitude of under- and overestimation varied 

according to the SES predictor and model, but generally never exceeded a couple of 

percentage points. Whether the differences between observed and predicted risks in the 

different SES groups are meaningful for clinical or public health applications is 

debatable, and depends upon the specific thresholds for potential interventions which are 

currently not well defined for type 2 diabetes.  

While we are unaware of other studies directly investigating the benefit of adding 

socioeconomic variables to type 2 diabetes prediction models, our results are largely 

consistent with similar studies from the cardiovascular event prediction literature. In 

several studies evaluating the utility of adding socioeconomic variables to the 

Framingham Risk Score, researchers found that SES predictors offer little improvement 

in model discrimination.
16,47

 However, the same studies also document systematic 

underestimation of risk in low-SES individuals that is eliminated when SES information 

is added to the prediction model. The failure to include SES in this case could lead to 

under-treatment of low-SES individuals with therapies known to be effective for 

preventing cardiovascular events, such as statins.
15
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Why risk prediction models might perform differentially for individuals in 

different socioeconomic strata is not known and may merit further investigation. It is 

notable that most risk prediction models in the US, including those for type 2 diabetes, 

are created using large longitudinal cohorts.
19

 To the extent that loss to follow up in these 

studies is higher in low-SES groups, and differential attrition by SES is not captured by 

variables in the risk prediction model, it is possible that prediction models based on these 

cohorts are better fit to higher SES individuals. Whether such differential attrition, which 

has been demonstrated in the literature,
48,49

 results in poor calibration of prediction 

models across the distribution of SES is unknown. Given the increasing use of risk 

prediction models to help guide clinical and public health decision-making, future 

research that compares models which ignore SES with models which explicitly account 

for differential attrition (e.g. via  survival models or inverse probability weighting) would 

help ensure that risk models perform well across the SES distribution.  

Our study has several strengths. We utilized a large, diverse cohort with excellent 

measured data over 10 years on both traditional diabetes risk factors and socioeconomic 

variables. By using SES data at the individual and area-level, we were able to compare a 

multitude of SES measures, which may be useful when considering the inclusion of 

social variables in electronic health records. Employing SES predictors at both the 

individual and area-level also allowed us to assess their possible interactions when 

predicting diabetes risk. Finally, we performed several sensitivity analyses to ensure that 

our modeling approach and results were robust to different specifications and 

assumptions. 
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Our study also has several limitations. First, we use a single cohort of middle-

aged and older adults. The absence of model improvement in our sample does not mean 

that SES predictors may not perform differently in other samples, such as those in less 

urban areas or composed of younger individuals. Second, we chose SES predictors a 

priori based upon evidence from the literature of their effects on chronic disease 

development.
21,50,51

 Other SES predictors not included in our models (e.g. occupation), or 

SES predictors defined at different levels of geographic resolution (e.g. census block 

groups or zip codes), may yield different results. Third, we did not attempt to build a 

prediction model using more data-driven approaches (e.g. ensemble methods) which can 

obviate the need to specify whether and/or how to include predictor variables.
52,53

 

Whether utilizing such methods would result in the selection of social variables over 

more traditional predictors is unknown, and should be evaluated in further research. 

Finally, it should be noted that placing individuals into risk categories based, in part, 

upon social characteristics is not without potential harms, including activating the 

implicit biases of clinicians and care providers.
54,55

 Ultimately, whether social variables 

like SES and race should be included in risk prediction models is not only a statistical 

question, but an ethical one that requires weighing the potential benefits and harms.  

In conclusion, diabetes risk prediction models without SES predictors tended to 

underestimate risk among low-SES individuals and overestimate risk for high-SES 

individuals. Adding SES predictors, particularly area education, to the models largely 

mitigated these differences, though the absolute difference in risk was small.  While no 

SES predictor aided in discriminating between those who did and did not develop 

diabetes, whether such predictors should be included in risk prediction models to aid in 
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calibration remains an open question. Further work exploring different sets of SES 

predictors in additional populations is merited and would help guide efforts to assure that 

risk prediction models do not exacerbate social disparities in disease outcomes due to 

systematic misestimation of risk. 
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Table 4.1 Baseline sociodemographic characteristics and diabetes risk factors, Multi-

Ethnic Study of Atherosclerosis, 2000 
Characteristics Overall Incident Cases Non-Cases 

Sample, No. of participants 5021 615 4406 

Age, mean (SD), y 61.31 (10.16) 60.61 (9.48) 61.41 (10.25) 

Female, No. (%) 2664 (53.06) 326 (53.01) 2338 (53.06) 

Race/Ethnicity, No. (%)    

White 2153 (42.88) 191 (31.06) 1962 (44.53) 

African-American 1217 (24.24) 180 (29.27) 1037 (23.54) 

Hispanic 1046 (20.83)   168 (27.32) 878 (19.93) 

Chinese-American 605 (12.05) 76 (12.36) 529 (12.01) 

Parent or sibling with diabetes, No. (%) 1756 (34.97) 302 (49.11) 1454 (33.00) 

Fasting plasma glucose, mean (SD), mg/dL 89.33 (10.40) 100.67 (12.75) 87.74 (8.96) 

HDL cholesterol, mean (SD), mg/dL 51.65 (14.84) 46.60 (11.96) 52.35 (15.07) 

Triglycerides, median (IQR), mg/dL 109.00 (80.00) 133.00 (94.00) 106.00 (78.00) 

Body mass index, mean (SD), kg/m
2
  27.98 (5.26) 31.09 (5.93) 27.53 (5.01) 

25-29.9, No. (%) 2011 (40.05) 222 (36.10) 1789(40.60) 

≥30, No. (%) 1473 (29.34) 314 (51.06) 1159 (26.31) 

Waist circumference, mean (SD), cm 97.04 (14.05) 104.99 (14.38) 95.93 (13.64) 

Systolic blood pressure, mean (SD), mmHg  124.63 (20.66) 129.74 (20.34) 123.91 (20.61) 

Hypertension, No. (%)
b
 2010 (40.03) 324 (52.68) 1686 (32.86) 

Taking anti-hypertensive medication, No. (%) 1616 (32.18) 272 (44.23) 1344 (30.50) 

Individual-Level Socioeconomic Status 

Variables 

   

Education, mean (SD), y 13.50 (3.83) 12.99 (3.99) 13.57 (3.81) 

High school or less, No. (%) 1602 (31.91) 226 (36.75) 1376 (31.23) 

Some college or associates/technical 

degree, No. (%) 

1438 (28.64) 190 (30.89) 1248 (28.33) 

Bachelor’s degree or higher, No. (%) 1981 (39.45) 199 (32.36) 1782 (40.44) 

Household income, mean (SD), per $10K 52.16 (34.46) 47.81 (32.24) 52.77 (34.72) 

<25,000, No. (%) 1380 (27.48) 183 (29.76) 1197 (27.17) 

25,000-75,000, No. (%) 2356 (46.92) 315 (51.22) 2041 (46.32) 

75,000+, No. (%) 1285 (25.59) 117 (19.02) 1168 (26.51) 

Household income per capita, mean (SD), per 

$10K
c
 

2.77 (2.12) 2.42 (1.83) 2.82 (2.15) 

Socioeconomic status index, mean (SD)
d
 0.00 (1.71) -0.30 (1.62) 0.04 (1.71) 

Area-Level Socioeconomic Status Variables    

Percent of adults 25+ with a bachelor’s 

degree, median (IQR) 

24.39 (30.88) 21.27 (24.09) 25.01 (32.02) 

Median household income, median (IQR), per 

$10K 

41.71 (24.35) 40.39 (22.29) 41.78 (24.86) 

Percent of persons living below the poverty 

line, median (IQR) 

12.14 (15.27) 13.62 (17.24) 12.14 (14.97) 

Socioeconomic status index, mean (SD)
d 

0.79 (5.66) -0.25 (5.56) 0.94 (5.66) 

Combined Individual and Area-Level 

Socioeconomic Status 

   

Combined socioeconomic status index, mean 

(SD)
d 

0.00 (1.72) -0.36 (1.64) 0.05 (1.73) 

Abbreviations: HDL, high-density lipoprotein; SD, standard deviation; IQR, inter-quartile range 
a Defined as waist circumference >88 cm for women and >102 cm for men. 
b Hypertension defined as blood pressure ≥140/90 mmHg, or treatment with anti-hypertensive medication 
c Defined as annual household income divided by the number of persons supported by that income 
d Higher values indicate higher socioeconomic status 
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Table 4.2 Association of individual and area-level socioeconomic status variables with incident type 2 diabetes in prediction models 

containing clinical and laboratory variables, Multi-Ethnic Study of Atherosclerosis, 2000-2012
a
 

Socioeconomic Status Predictors
b
 Multivariable Clinical Model

c
  Multivariable Lab Model

d
 

 HR (95% CI)
e 

P value C AIC  HR (95% CI)
e 

P value C AIC 

None   0.72 9941.5    0.83 9254.2 

Individual-level          

Education (continuous) 0.94 (0.86, 1.03) 0.17 0.72 9941.5  1.00 (0.91, 1.10) 0.99 0.83 9256.2 

Education (categorical)
 

         

High school or less 1.00 (Ref) 0.36
f 

0.72 9943.5  1.00 (Ref) 0.97
f 

0.83 9258.1 

Some college or associate’s/technical 

degree 

0.92 (0.75, 1.13) 0.42    0.98 (0.79, 1.21) 0.82   

Bachelor’s degree or higher 0.86 (0.70, 1.06) 0.16    0.97 (0.78, 1.22) 0.82   

Household income (continuous)
 

0.95 (0.86, 1.04) 0.28 0.72 9942.2  0.91 (0.83, 1.01) 0.07 0.83 9252.3 

Household income (categorical)          

<25,000 1.00 (Ref) 0.18
f 

0.72 9941.9  1.00 (Ref) 0.02
f 

0.83 9250.3 

25,000-74,999 0.99 (0.81, 1.21) 0.91    1.01 (0.83, 1.23) 0.94   

≥75,000 0.81 (0.63, 1.06) 0.12    0.75 (0.58, 0.97) 0.03   

Household income per capita (continuous) 0.91 (0.82, 1.01) 0.07 0.72 9939.8  0.91 (0.82, 1.02) 0.09 0.83 9252.7 

Socioeconomic status index 0.91 (0.82, 1.00) 0.05 0.72 9939.5  0.95 (0.86, 1.05) 0.33 0.83 9255.1 

Area-level
g
          

Percent of adults 25+ with a bachelor’s 

degree 

0.91 (0.83, 1.01) 0.07 0.72 9939.9  0.92 (0.83, 1.02) 0.13 0.83 9253.5 

Median household income 0.97 (0.89, 1.07) 0.60 0.72 9943.2  0.92 (0.83, 1.02) 0.12 0.83 9253.1 

Percent of persons living below the poverty 

line 

1.02 (0.94, 1.12) 0.61 0.72 9943.2  1.07 (0.98, 1.16) 0.14 0.83 9254.0 

Socioeconomic status index 0.93 (0.84, 1.02) 0.12 0.72 9940.9  0.91 (0.83, 1.01) 0.07 0.83 9252.5 

Combined individual and area-level          

Overall socioeconomic status index 0.90 (0.81, 0.99) 0.06 0.72 9939.8  0.92 (0.83, 1.01) 0.09 0.83 9253.0 
Abbreviations: HR, hazard ratio; CI, confidence interval. 
a Number of incident diabetes cases = 615 
b Socioeconomic status predictors added individually to separate models 
c Cox proportional hazards models that include the following predictors: age (spline), race, family history of type 2 diabetes, systolic blood pressure, waist circumference, and anti-hypertensive 

medication use 
d Cox proportional hazards models that include all predictors from the clinical models, plus fasting plasma glucose, and log triglycerides (spline) 
e For continuous predictors, HRs are estimated per standard deviation (SD) change in the predictor. SDs correspond to 3.8 years for individual education, $34,460 for individual income, $20,120 for 

individual income per capita, 1.71 units for individual socioeconomic status index, 22% for percent of adults 25+ with a bachelor’s degree, $20,994 for median household income, 11% for percent of 
persons living below the poverty line, 5.66 units for area socioeconomic status index, and 1.72 units for overall socioeconomic status index.      
f P-value corresponds to a likelihood ratio test for all categories combined 
g Area-level variables measured at the census-tract level
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Figure 4.1 Calibration of clinical models with and without socioeconomic information by 

tertiles of individual household income per capita, individual socioeconomic status (SES) 

index, area-level education, and area SES index, Multi-Ethnic Study of Atherosclerosis, 

2000-2012 
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Figure 4.2 Calibration of laboratory models with and without socioeconomic information 

by tertiles of individual income category, individual household income per capita, area 

education, and area socioeconomic status (SES) index, Multi-Ethnic Study of 

Atherosclerosis, 2000-2012 
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Appendix 

 

Table 4.A1 All model coefficients from clinical models without and with the most predictive socioeconomic variables
a
 

Model Variable
 

Clinical Only Clinical + Individual 

Household Income per Capita 

Clinical + Individual SES 

Index 

Clinical + Area-Level 

Education 

Clinical + Area SES Index 

 HR (95 % CI) P-value HR (95 % CI) P-value HR (95 % CI) P-value HR (95 % CI) P-value HR (95 % CI) P-value 

Age           

Linear term 
b 

<0.01 
b
 <0.01 

b
 <0.01 

b
 <0.01 

b
 <0.01 

Non-linear term 
b
 <0.01 

b
 <0.001 

b
 <0.001 

b
 <0.001 

b
 <0.001 

Race/ethnicity           

White (ref) 1.00 <0.0001
c 

1.00 <0.0001
c 

1.00 <0.0001
c 

1.00 <0.0001
c 

1.00 <0.0001
c 

Chinese 2.33 (1.78, 3.05) <0.0001 2.15 (1.62, 2.96) <0.0001 2.18 (1.64, 2.89) <0.0001 2.27 (1.74, 2.98) <0.0001 2.30 (1.75, 3.01) <0.0001 

Black 1.34 (1.08, 1.66) <0.01 1.30 (1.05, 1.61) 0.02 1.30 (1.05, 1.62) 0.02 1.26 (1.02, 1.57) 0.04 1.26 (1.01, 1.58) 0.04 

Hispanic 1.62 (1.31, 2.01) <0.0001 1.51 (1.20, 1.89) <0.001 1.46 (1.14, 1.86) <0.001 1.51 (1.21, 1.89) <0.001 1.50 (1.19, 1.90) <0.001 

Family history of 

type 2 diabetes 

1.65 (1.40, 1.94) <0.0001 1.65 (1.40, 1.94) <0.0001 1.65 (1.40, 1.94) <0.0001 1.65 (1.40, 1.94) <0.0001 1.66 (1.41, 1.95) <0.0001 

Systolic blood 

pressure 

1.09 (1.05, 1.14) <0.0001 1.09 (1.05, 1.14) <0.0001 1.09 (1.05, 1.13) <0.0001 1.09 (1.05, 1.14) <0.0001 1.09 (1.05, 1.14) <0.0001 

Waist 

circumference 

1.43 (1.36, 1.51) <0.0001 1.43 (1.35, 1.50) <0.0001 1.43 (1.36, 1.50) <0.0001 1.43 (1.36, 1.50) <0.0001 1.43 (1.36, 1.51) <0.0001 

Hypertension 

treatment 

1.42 (1.19, 1.70) <0.0001 1.43 (1.20, 1.70) <0.0001 1.43 (1.20, 1.70) <0.0001 1.42 (1.19, 1.69) <0.0001 1.41 (1.19, 1.68) <0.001 

Individual SES 

variables 

          

Household 

income per capita 

  0.91 (0.82, 1.01) 0.07       

SES index     0.91 (0.82, 1.00) 0.05     

Area SES variables           

Percent with 

bachelor’s degree 

or higher 

      0.91 (0.83, 1.01) 0.07   

SES index         0.93 (0.84, 1.02) 0.12 
Abbreviations: HR, hazard ratio; CI, confidence interval; SES, socioeconomic status 
a Unit changes for estimates of continuous variables: systolic blood pressure, 10 mmHg; waist circumference, 10 cm; SES predictors, standard deviations ($20,120 for individual household income per capita, 1.71 units for 

individual socioeconomic status index, 22% for percent of adults 25+ with a bachelor’s degree, and 5.66 units for area socioeconomic status index).  
b Age modeled using penalized b spline with 2 degrees of freedom; For effect estimates across the range of values, see Figure 4.A1. 
c P-value from likelihood ratio test for all categories comparing nested models with and without race/ethnicity.
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Table 4.A2 All model coefficients from laboratory models without and with the most predictive socioeconomic variables
a
 

Model Variable Lab Model Lab + Individual Income 

Category 

Lab + Individual 

Household Income per 

Capita 

Lab + Area-Level 

Education 

Lab + Area-Level SES 

Index 

 HR (95 % CI) P-value HR (95 % CI) P-value HR (95 % CI) P-value HR (95 % CI) P-value HR (95 % CI) P-value 

Age           

Linear term 
b
 <0.0001 

b
 <0.0001 

b
 <0.0001 

b
 <0.0001 

b
 <0.0001 

Non-linear term 
b 

0.03 
b
 0.02 

b
 0.02 

b
 0.03 

b
 0.03 

Race/ethnicity           

White (ref) 1.00 0.04
c 

1.00 0.10
c 

1.00 0.11
c 

1.00 0.13
c 

1.00 0.15
c 

Chinese 1.29 (0.96, 1.72) 0.09 1.23 (0.92, 1.66) 0.17 1.20 (0.88, 1.63) 0.25 1.26 (0.95, 1.69) 0.11 1.27 (0.95, 1.69) 0.11 

Black 1.34 (1.07, 1.68) 0.01 1.30 (1.03, 1.64) 0.03 1.30 (1.03, 1.64) 0.03 1.28 (1.01, 1.61) 0.04 1.25 (0.99, 1.59) 0.06 

Hispanic 1.17 (0.93, 1.48) 0.19 1.10 (0.86, 1.40) 0.46 1.09 (0.85, 1.41) 0.48 1.10 (0.87, 1.41) 0.42 1.07 (0.84, 1.38) 0.57 

Family history of type 

2 diabetes 

1.49 (1.26, 1.76) <0.0001 1.49 (1.26, 1.77) <0.0001 1.49 (1.25, 1.76) <0.0001 1.49 (1.26, 1.77) <0.0001 1.50 (1.27, 1.77) <0.0001 

Systolic blood 

pressure 

1.05 (1.01, 1.10) 0.03 1.05 (1.01, 1.10) 0.03 1.05 (1.01, 1.10) 0.03 1.05 (1.00, 1.10) 0.03 1.05 (1.00, 1.10) 0.03 

Waist circumference 1.21 (1.13, 1.29) <0.0001 1.20 (1.12, 1.28) <0.0001 1.21 (1.13, 1.29) <0.0001 1.21 (1.14, 1.29) <0.0001 1.21 (1.14, 1.29) <0.0001 

Hypertension 

treatment 

1.25 (1.04, 1.51) 0.02 1.26 (1.04, 1.51) 0.02 1.26 (1.05, 1.51) 0.01 1.24 (1.03, 1.49) 0.02 1.24 (1.03, 1.48) 0.02 

Fasting glucose 2.58 (2.38, 2.80) <0.0001 2.60 (2.39, 2.82) <0.0001 2.58 (2.38, 2.80) <0.0001 2.58 (2.38, 2.79) <0.0001 2.59 (2.38, 2.80) <0.0001 

Log Triglycerides           

Linear term 
b
 <0.001 

b
 <0.001 

b
 <0.001 

b
 <0.001 

b
 <0.0001 

Non-linear term 
b 

<0.0001 
b 

<0.0001 
b 

<0.0001 
b 

<0.0001 
b 

<0.0001 

Individual SES 

variables 

          

Income category           

<25,000 (Ref)   1.00 .02
c 

      

25,000-74,999   1.01 (0.83, 1.23) 0.94       

≥75,000   0.75 (0.58, 0.97) 0.03       

Household income 

per capita 

    0.91 (0.82, 1.02) 0.09     

Area SES variables           

% bachelor’s 

degree or higher 

      0.92 (0.83, 1.02) 0.13   

SES Index         0.98 (0.97, 1.00) 0.07 
Abbreviations: HR, hazard ratio; CI, confidence interval; SES, socioeconomic status 
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a Unit changes for estimates of continuous variables: systolic blood pressure, 10 mmHg; waist circumference, 10 cm; fasting glucose, 10mg/dL; SES predictors, standard deviations ($20,120 for 

individual household income per capita, 22% for percent of adults 25+ with a bachelor’s degree, and 5.66 units for area socioeconomic status index).  
b Age and triglycerides modeled using penalized b splines with 2 degrees of freedom. For effect estimates for triglycerides across the range of values, see Figure 4.A1. 
c P-value from likelihood ratio test for all categories comparing nested models with and without the categorical variable. 
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Figure 4.A1 Graphical representation of non-linearity of age (left) and triglyceride (right) effects on risk for type 2 diabetes
a
 

 

a Age and triglyceride effects from fully-adjusted Cox proportional hazards models estimated using penalized b splines with 2 degrees of freedom. Red hashed lines represent 95% confidence intervals. 
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Figure 4.A2 Receiver operator characteristic curves showing area under the curve for incident type 2 diabetes in clinical (left) and 

laboratory (right) prediction models after 10 years of follow-up 
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Table 4.A3 10-year risk of type 2 diabetes and risk reclassification in clinical prediction models with and without individual-level 

household income per capita and socioeconomic status index 
10-year risk in clinical 

model without SES 

10-year risk in clinical model with individual household 

income per capita 

10-year risk in clinical model with individual SES index 

 0 to 

<10% 

10-20% >20% % 

Reclassified  

% Net 

Correctly 

Reclassified  

0 to 

<10% 

10-20% >20% % 

Reclassified  

% Net 

Correctly 

Reclassified  

0 to <10%           

No. of participants 2086 87 0 4.0 -3.4 2078 95 0 4.4 -3.8 

No. of events 84 7 0 7.7 7.7 85 6 0 6.7 6.7 

No. with no events 2002 80 0 3.9 -3.9 1993 89 0 4.3 -4.3 

Kaplan-Meier 10-year 

estimate (95% CI) 

4.55 

(3.68, 

5.62) 

10.66 

(5.18, 

21.23) 

NA   4.63 

(3.75, 

5.70) 

8.63 

(3.91, 

18.49) 

NA   

10-20%           

No. of participants 94 1792 59 7.9 1.6 96 1789 60 8.0 1.6 

No. of events 11 250 9 7.4 -0.7 10 252 8 6.7 -0.7 

No. with no events 83 1542 50 7.9 2.0 86 1537 52 8.2 2.0 

Kaplan-Meier 10-year 

estimate (95% CI) 

13.14 

(7.45, 

22.60) 

15.68 

(13.96, 

17.58) 

18.21 

(9.81, 

32.39) 

  11.02 

(6.05, 

19.61) 

15.87 

(14.14, 

17.78) 

14.96 

(7.70, 

27.94) 

  

>20%           

No. of participants 0 47 856 5.2 3.2 0 56 847 6.2 4.2 

No. of events 0 9 245 3.5 -3.5 0 9 245 3.5 -3.5 

No. with no events 0 38 611 5.9 5.9 0 47 602 7.2 7.2 

Kaplan-Meier 10-year 

estimate (95% CI) 

NA 19.36 

(10.57, 

33.91) 

31.78 

(28.55, 

35.28) 

  NA 16.73 

(9.06, 

29.74) 

32.05 

(28.81, 

35.57) 

  

Abbreviations: SES, socioeconomic status 
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Table 4.A4 10-year risk of type 2 diabetes and risk reclassification in clinical prediction models with and without area-level education 

and socioeconomic status index 
10-year risk in clinical 

model without SES 

10-year risk in clinical model with area-level education 10-year risk in clinical model with area-level SES index 

 0 to 

<10% 

10-20% >20% % 

Reclassified  

% Net 

Correctly 

Reclassified  

0 to 

<10% 

10-20% >20% % 

Reclassified  

% Net 

Correctly 

Reclassified  

0 to <10%           

No. of participants 2083 90 0 4.1 -3.6 2109 64 0 3.0 -2.5 

No. of events 85 6 0 6.6 6.6 86 5 0 5.5 5.5 

No. with no events 1998 84 0 4.0 -4.0 2023 59 0 2.8 -2.8 

Kaplan-Meier 10-year 

estimate (95% CI) 

4.62 

(3.74, 

5.69) 

8.38 

(3.84, 

17.78) 

NA   4.62 

(3.75, 

5.68) 

10.51 

(4.48, 

23.61) 

NA   

10-20%           

No. of participants 102 1788 55 8.1 2.1 74 1826 45 6.1 1.3 

No. of events 10 253 7 6.3 -1.1 9 254 7 5.9 -0.7 

No. with no events 92 1535 48 8.5 2.7 65 1572 38 6.1 1.6 

Kaplan-Meier 10-year 

estimate (95% CI) 

10.72 

(5.87, 

19.13) 

15.90 

(14.17, 

17.82) 

14.63 

(7.12, 

28.73) 

  13.47 

(7.18, 

24.49) 

15.60 

(13.91, 

17.49) 

20.69 

(10.23, 

39.23) 

  

>20%           

No. of participants 0 42 861 4.7 2.7 0 39 864 4.3 3.2 

No. of events 0 9 245 3.5 -3.5 0 5 249 2.0 -2.0 

No. with no events 0 33 616 5.1 5.1 0 34 615 5.2 5.2 

Kaplan-Meier 10-year 

estimate (95% CI) 

NA 21.94 

(12.05, 

37.98) 

31.54 

(28.33, 

35.01) 

  NA 13.15 

(5.68, 

28.81) 

31.92 

(28.71, 

35.39) 

  

Abbreviations: SES, socioeconomic status 
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Table 4.A5 10-year risk of type 2 diabetes and risk reclassification in laboratory prediction models with and without individual-level 

income category and household income per capita 
10-year risk in 

laboratory model 

without SES 

10-year risk in laboratory model with individual income 

category 

10-year risk in laboratory model with individual 

household income per capita 

 0 to 

<10% 

10-20% >20% % 

Reclassified  

% Net 

Correctly 

Reclassified  

0 to 

<10% 

10-20% >20% % 

Reclassified  

% Net 

Correctly 

Reclassified  

0 to <10%           

No. of participants 3054 77 0 2.5 -1.8 3077 54 0 1.7 -1.3 

No. of events 117 11 0 8.6 8.6 121 7 0 5.5 5.5 

No. with no events 2937 66 0 2.2 -2.2 2956 47 0 1.6 -1.6 

Kaplan-Meier 10-year 

estimate (95% CI) 

4.45 

(3.72, 

5.32) 

17.11 

(9.74, 

29.08) 

NA   4.56 

(3.82, 

5.43) 

15.56 

(7.66, 

30.16) 

NA   

10-20%           

No. of participants 65 829 43 11.5 3.0 45 864 28 7.8 2.7 

No. of events 6 92 9 14.0 2.8 2 99 6 7.5 3.7 

No. with no events 59 737 34 11.2 3.0 43 765 22 7.8 2.5 

Kaplan-Meier 10-year 

estimate (95% CI) 

3.91 

(4.60, 

21.06) 

12.77 

(10.56,

15.46)  

22.78 

(12.41, 

39.61) 

  4.80 

(1.22, 

17.92) 

13.13 

(10.89, 

15.79) 

25.63 

(12.16, 

49.16) 

  

>20%           

No. of participants 0 31 922 3.3 2.4 0 18 935 1.9 1.0 

No. of events 0 4 376 1.1 -1.1 0 4 376 1.1 -1.1 

No. with no events 0 27 546 4.7 4.7 0 14 559 2.4 2.4 

Kaplan-Meier 10-year 

estimate (95% CI) 

NA 16.04 

(6.31, 

37.45) 

45.13 

(41.72, 

48.69) 

  NA 27.35 

(11.14, 

57.88) 

44.47 

(41.09, 

48.00) 

  

Abbreviations: SES, socioeconomic status 
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Table 4.A6 10-year risk of type 2 diabetes and risk reclassification in laboratory prediction models with and without area-level 

education and socioeconomic status index 
10-year risk in 

laboratory model 

without SES 

10-year risk in laboratory model with area-level education 10-year risk in laboratory model with area-level SES 

index 

 0 to 

<10% 

10-20% >20% % 

Reclassified  

% Net 

Correctly 

Reclassified  

0 to 

<10% 

10-20% >20% % 

Reclassified  

% Net 

Correctly 

Reclassified  

0 to <10%           

No. of participants 3084 47 0 1.5 -1.1 3074 57 0 1.8 -1.3 

No. of events 121 7 0 5.5 5.5 120 8 0 6.3 6.3 

No. with no events 2963 40 0 1.3 -1.3 2954 49 0 1.6 -1.6 

Kaplan-Meier 10-year 

estimate (95% CI) 

4.56 

(3.82, 

5.43) 

17.46 

(8.61, 

33.56) 

NA   4.54 

(3.80, 

5.41) 

16.53 

(8.50, 

30.75) 

NA   

10-20%           

No. of participants 44 861 32 8.1 1.3 48 854 35 8.9 1.6 

No. of events 3 101 3 5.6 0 3 100 4 6.5 0.9 

No. with no events 41 760 29 8.4 1.4 45 754 31 9.2 1.7 

Kaplan-Meier 10-year 

estimate (95% CI) 

6.93 

(2.29, 

19.96) 

13.38 

(11.13, 

16.06) 

12.54 

(4.16, 

34.45) 

  6.34 

(2.09, 

18.39) 

13.42 

(11.15, 

16.11) 

12.88 

(5.00, 

30.98) 

  

>20%           

No. of participants 0 23 930 2.4 1.6 0 25 928 2.6 1.8 

No. of events 0 4 376 -1.1 -1.1 0 4 376 1.1 -1.1 

No. with no events 0 19 554 3.3 3.3 0 21 552 3.7 3.7 

Kaplan-Meier 10-year 

estimate (95% CI) 

NA 21.39 

(8.56, 

47.67) 

44.74 

(41.35, 

48.29) 

  NA 21.08 

(8.39, 

47.26) 

44.80 

(41.40, 

48.34) 

  

Abbreviations: SES, socioeconomic status 
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Table 4.A7 Distribution of predicted risk from clinical and laboratory prediction models by tertiles of individual income per capita 

and area-level socioeconomic status index
a
 

 Low Tertile Individual SES Middle Tertile Individual SES High Tertile Individual SES Total, 

n 

Predicted 10-

year risk score 

for diabetes 

Low Tertile 

Area SES 

Middle 

Tertile Area 

SES 

High Tertile 

Area SES 

Low Tertile 

Area SES 

Middle 

Tertile Area 

SES 

High Tertile 

Area SES 

Low Tertile 

Area SES 

Middle 

Tertile Area 

SES 

High Tertile 

Area SES 

 

Total, n 865 516 268 478 500 455 329 653 957 5021 

Clinical Model           

0 to <10% 30.52 34.88 78.73 34.73 45.20 50.11 37.69 44.10 60.19 2173 

10-20% 45.09 47.67 37.69 41.84 34.80 35.82 36.78 38.59 31.14 1945 

>20% 24.39 17.44 17.16 23.43 20.00 14.07 25.53 17.30 8.67 903 

Laboratory 

Model 

          

0 to <10% 53.29 57.75 65.67 62.34 60.00 65.93 57.45 62.94 72.94 3131 

10-20% 21.73 23.03 16.79 16.11 18.80 17.36 23.40 15.77 15.67 937 

>20% 24.97 18.22 17.54 21.55 21.20 16.70 19.15 21.29 11.39 953 
Abbreviations: SES, socioeconomic status 
a Individual household income per capita used for individual SES, and census tract SES index used for area SES. Cell values are column percentages for Clinical and Laboratory models separately.  
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Table 4.A8 Calibration of established diabetes risk scores by tertiles of socioeconomic 

status variables 
Risk Prediction Model Observed – Predicted, Mean Difference  

(95% CI) 

 ARIC Risk Score Framingham Risk Score 

Individual income per capita   

Model variables only   

Lowest Tertile -0.29 (-1.19, 0.60) 1.63 (1.03, 2.22) 

Middle Tertile 1.40 (0.65, 2.15) 1.17 (0.58, 1.76) 

Highest Tertile -1.18 (-1.82, -0.54) -1.64 (-2.18, -1.17) 

Model variables + household income per 

capita 

  

Lowest Tertile -1.21 (-2.04, -0.38) -0.26 (-0.89, 0.36) 

Middle Tertile 1.05 (0.30, 1.79) 0.67 (0.07, 1.27) 

Highest Tertile -0.22 (-0.92, 0.48) 0.17 (-0.28, 0.62) 

Individual SES index   

Model variables only   

Lowest Tertile -0.48 (-1.38, 0.43) 1.71 (1.09, 2.32) 

Middle Tertile 1.10 (0.39, 1.82) 0.82 (0.26, 1.38) 

Highest Tertile -0.93 (-1.56, -0.30) -1.68 (-2.13, -1.22) 

Model variables + individual SES index   

Lowest Tertile -1.17 (-1.98, -0.36) -0.52 (-1.14, 0.10) 

Middle Tertile 0.90 (0.16, 1.63) 0.86 (0.30, 1.41) 

Highest Tertile -0.11 (-0.82, 0.61) 0.24 (-0.20, 0.69) 

Area education    

Model variables only   

Lowest Tertile 0.79 (-0.09, 1.68) 2.60 (2.01, 3.18) 

Middle Tertile 0.16 (-0.61, 0.92) 0.51 (-0.05, 1.06) 

Highest Tertile -1.35 (-1.97, -0.73) -2.32 (-2.81, -1.83) 

Model variables + area education    

Lowest Tertile -0.23 (-1.10, 0.64) 0.32 (-0.34, 0.98) 

Middle Tertile -0.13 (-0.88, 0.63) 0.02 (-0.56, 0.60) 

Highest Tertile -0.14 (-0.77, 0.48) 0.16 (-0.27, 0.59) 

Area SES index    

Model variables only   

Lowest Tertile 0.34 (-0.54, 1.22) 2.22 (1.64, 2.79) 

Middle Tertile 0.27 (-0.49, 1.03) 0.44 (-0.14, 1.02) 

Highest Tertile -1.07 (-1.69, -0.45) -1.96 (-2.43, -1.48) 

Model variables + area SES index    

Lowest Tertile -0.68 (-1.56, 0.20) -0.16 (-0.82, 0.51) 

Middle Tertile 0.25 (-0.51, 1.00) 0.46 (-0.13, 1.04) 

Highest Tertile -0.10 (-0.72, 0.52) 0.17 (-0.25, 0.58) 
Abbreviations: SES, socioeconomic status 
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CHAPTER 5 : 

DISCUSSION 

Summary and Implications of Main Findings  

 

Despite its demonstrated preventability, the prevalence and incidence of type 2 

diabetes continue to rise. As such, attention has begun to shift from exclusively 

individual-based prevention strategies to population health-based approaches. One 

potential avenue for a population-based approach is altering residential environments to 

support healthy behaviors and promote wellbeing. This dissertation provides evidence 

that such an approach may indeed be helpful for preventing diabetes, and highlights 

particular ways in which individual and environmental factors may interact to inhibit or 

promote the development of disease.  

In chapter 2, we found that long term exposure to neighborhood environments 

with more resources to support physical activity, and to a lesser extent healthy diets, was 

associated with lower risk for developing type 2 diabetes. These findings point to specific 

neighborhood characteristics that may partly explain the associations between more 

general neighborhood environments and diabetes observed in other studies that were 

unable to track specific neighborhood features, including the experimental MTO study.
1
 

Contrary to our hypothesis, levels of social cohesion and safety were largely not 

associated with diabetes incidence. This could be due to the true absence of a causal 

effect or inadequate measures of the neighborhood constructs (e.g. the use of survey-

based safety instead of crime data). In analyses exploring effect modification of the 
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neighborhood exposures by select individual attributes, we found that high income 

individuals were more likely to benefit from the presence of healthy food stores and 

recreational establishments. They were, however, less likely to benefit from higher levels 

of neighborhood safety, suggesting that an overall association may have been masked by 

subgroup heterogeneity. These results mirror what has already been suggested in the 

literature: that the simple presence of health promoting resources may not be equally 

beneficial to all residents, and that factors like affordability (for food and physical 

activity resources) may be especially pertinent to low-income individuals.
2,3

 

The results in chapter 2 represent an important contribution to the literature on 

neighborhood environments and diabetes. In contrast to prior work, we used longitudinal 

data on specific neighborhood exposures and incident diabetes, providing stronger causal 

evidence of the relationship between neighborhood exposures and diabetes risk. The 

results also provide evidence that is pertinent to policy questions regarding the health 

effects of neighborhood change on residents that continually live in the neighborhood. 

These questions are not easily answerable with experimental studies like the MTO, which 

focus on residential relocation as the “treatment” of interest. Evidence from the MTO 

study showing adverse behavioral and mental health effects on adolescent males also 

points towards the potential negative consequences of residential relocation as a 

mechanism for improving neighborhood environments.
4-6

 As such, research examining 

the dynamics of neighborhood change, health behaviors, and diabetes risk is important 

and policy relevant, and additional studies are warranted to increase confidence in the 

results observed. 
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Chapter 3 built upon work from chapter 2 by demonstrating that genetic 

susceptibility to type 2 diabetes was significantly modified by the availability of healthy 

food stores and recreational establishments. Specifically, greater availability of healthy 

food stores and, to a lesser extent, recreational establishments weakened the association 

between genetic risk and type 2 diabetes. Neighborhood SES did not modify the genetic 

risk for diabetes, though strong correlations between race/ethnicity and neighborhood 

SES made these analyses difficult to interpret and raised the issue of possible structural 

confounding.
7
 In analyses with dichotomized exposures, the effects of high genetic risk 

and decreased availability of healthy food and recreational establishments appeared to 

interact in a synergistic manner. Such results indicate that increased genetic risk for type 

2 diabetes may be more pernicious (or may only be evident) in environments with few 

resources to support healthy behaviors. 

While additional replication studies are needed, the preliminary results from 

chapter 3 may have implications for future research on genetic and neighborhood effects 

on diabetes, and for understanding disparities in diabetes burden. The fact that allelic 

penetrance may vary by neighborhood environments (or factors strongly correlated with 

these environments) raises important questions about the interpretation and stability of 

genetic risk estimates over space and time.
8
 In a similar manner, neighborhood effect 

estimates like those from chapter 2 may be more heterogeneous than expected depending 

upon the distribution of genetic risk among residents (a point that has been made in 

previous gene-by-neighborhood environment studies).
9,10

 Finally, regarding disparities in 

diabetes, there is an ongoing debate about whether disparities by race and SES are caused 

by genetic, behavioral, and/or environmental factors.
11,12

 . To the extent that 
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neighborhood resources like healthy food availability are segregated by race and/or 

poverty status,
13

 and genetic risk is not, the results from chapter 3 would suggest that 

disparities in type 2 diabetes observed by race and SES may arise primarily due to 

differences in environments and their related behaviors rather than genes.
14

 

 Given the findings that neighborhood features were associated with diabetes risk 

and modified genetic risk, chapter 4 evaluated the utility of including individual and area-

level socioeconomic information into public health and clinical decision making through 

diabetes risk prediction models. While area-level SES may not be a perfect proxy for the 

specific neighborhood characteristics that drive diabetes risk, measures of area-level SES 

are widely available and could feasibly be linked to electronic medical records. 

Surprisingly, the inclusion of individual and area-level SES did not help to discriminate 

between who would and would not go on to develop diabetes. This suggests that the 

traditional risk factors included in risk scores likely capture much of the effect of SES on 

diabetes risk. The inclusion of SES variables, however, did have implications for the 

accuracy of the risk predictions. Consistent with similar research on cardiovascular risk 

models,
15-17

 diabetes risk prediction models, which include only traditional, largely 

biological risk factors tended to have differential prediction accuracy by SES. We 

observed an underestimation of risk among individuals of low-SES and for those residing 

in low-SES neighborhoods but an overestimation of risk for high-SES individuals and 

those residing in high-SES neighborhoods. Adding individual and area-level SES 

measures to the prediction models, particularly individual household income and area-

level education, eliminated these inaccuracies. 
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While the magnitude of under/overestimation using only traditional risk factors 

was on average no more than 1 to 2 percent, the significance of this model 

“miscalibration” would depend upon where in the risk distribution an individual falls. An 

under- or overestimate near a treatment threshold, for instance, would be far more 

problematic than near the low or high ends of the risk distribution. Though no treatment 

thresholds currently exist for diabetes care as they do for cardiovascular disease 

interventions, studies which promote treatments based upon individual predicted risk are 

increasingly common.
18

 Ensuring that the risk models used to guide such decisions 

perform equally well across the spectrum of social advantage/disadvantage is thus 

important to prevent inadvertently widening disparities based upon inaccurate projected 

risks.
16

 

Collectively, the results of this dissertation support the legitimacy of a population-

based approach to diabetes prevention. They furthermore identify specific neighborhood 

features that could feasibly be altered to help prevent diabetes development and modify 

inherited risks for disease. Chapter 2 demonstrated that healthy food and physical activity 

resources likely shape health behaviors and diabetes risk, if only to a small degree in 

some cases. Yet even if environments have only small effects on behaviors, shifting the 

entire population towards slightly healthier behaviors may have a large influence on the 

population burden of diabetes. The results from chapter 3 illustrate the potential of such 

an approach: if the population can be thought of as having a distribution of genetic risk, 

then modifying neighborhood environments may effectively shift this distribution in a 

way that ultimately prevents many cases. And as research on neighborhood environments 

and diabetes risk moves forward, it remains important to apply these insights to public 
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health and clinical decision-making. Ensuring that prevention strategies account for and 

act on social and environmental causes of diabetes may not only help prevent 

inadvertently widening disparities, but may also represent a viable avenue for ultimately 

decreasing them.
14

  

Strengths and Limitations 

 

The work presented in this dissertation has several strengths. The use of 

longitudinal data with detailed information about specific neighborhood exposures, health 

behaviors, and disease outcomes is exceedingly rare in the literature on neighborhoods 

and health. Having numerous measures of specific neighborhood features allowed us to 

explore which characteristics of neighborhoods may independently, or jointly, influence 

diabetes risk. It also enabled the use of more theoretically appropriate cumulative 

measures of neighborhood environments that reflect the long term nature of the pertinent 

behavioral and disease processes. Linking neighborhood environment data to genetic risk 

was a novel approach to gene-environment interaction. Conceptualizing gene-

environment interaction in this manner provides a needed expansion beyond “gene-

behavior” interaction studies that fail to place individual behaviors in context.
10

 Finally, 

chapter 4 employed an innovative approach to incorporating individual and area-level 

social information into public health and clinical decision processes via risk prediction 

modeling.  

This work is not without limitations as well. First, the results are based on a single 

cohort of middle- to older-aged adults for whom we have relevant individual and 

neighborhood exposure data for only a small portion of their lifecourse. To the extent that 

individual and neighborhood exposures in childhood and young adulthood may affect 
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health behaviors and diabetes risk in ways not captured by data in later adulthood, we 

may be missing critical windows of exposure. With regard to gene-environment 

interaction in chapter 3, it is important to note that interaction results based upon single 

studies may be due to chance and need to be replicated. As in all studies of neighborhood 

effects on health, chapters 2 and 3 are susceptible to bias due to residential selection (i.e. 

endogeneity).
19

 If individuals with certain health behaviors which influence their risk for 

diabetes elect to live in neighborhoods that are equipped with resources to promote those 

very behaviors, then the associations observed may actually reflect individual preferences 

and behaviors rather than true neighborhood effects. Finally, this research is based 

entirely upon observational data with well-known limitations. The causal nature of the 

associations should therefore not be over interpreted. Instead, this work should be 

interpreted within the context of the broader literature on neighborhoods and health, both 

quantitative and qualitative, and be viewed as a small contribution to a much larger body 

of work. 

Future Directions 

 

The analyses presented in this dissertation highlight the complexity of the causal 

pathways linking individual and area-level attributes to diabetes risk. In general, they 

support the notion that modification of neighborhood environments may provide a 

complementary, population-based approach to preventing diabetes. Nonetheless, there are 

several directions for future research that would strengthen our confidence in the causal 

nature of the associations observed, and guide both policy efforts and clinical and public 

health decisions to support diabetes prevention.  
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To strengthen causal inference regarding neighborhood changes and health 

(including diabetes), the field would benefit from more well-designed, quasi-

experimental studies. Using exogenous changes in neighborhood resources can partly 

sidestep the most intractable forms of bias, including residential selection. For instance, 

supermarkets and recreational facilities are commonly opened and closed in communities 

throughout the US, but rarely are formal evaluations performed to assess their potential 

health effects on the surrounding community. The few quasi-experimental studies that do 

exist have shown mixed results, indicating that the addition of health promoting resources 

may not have straightforward effects on the health of residents.
20

 Similar evaluation 

problems have been discussed with respect to larger social policies regarding education, 

immigration, and work, and their potential health effects.
21

 As such, the public health 

community interested in the health effects of neighborhood changes and social policies 

should advocate for, plan and execute formal health evaluations of these processes. 

Aside from more quasi-experimental studies, the literature linking neighborhoods 

and health would also benefit from nesting neighborhoods within larger city, regional, 

and state policy environments. Numerous policies with suspected health implications are 

enacted at the local level. For instance, city and state policies related to urban design (e.g. 

complete streets
22

), public assistance (e.g. the use of SNAP benefits at farmers’ 

markets
23

), policing (e.g. “stop and frisk”
24

), and immigration enforcement (e.g. secure 

communities
25

) likely have health effects that modify, or are modified by, the physical 

and social neighborhood environments in which individuals live. There are few studies 

that examine these interactions. Efforts to link longitudinal neighborhood studies to larger 

social and health policies are thus needed to further contextualize “area” health effects on 
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residents, and to understand the conditions under which neighborhood changes are likely 

to lead to health improvements. 

In terms of using contextual information to guide diabetes prevention decisions, it 

remains unclear whether individual or area-level social information can improve the 

ability to predict who will develop disease. However, the notion that risk prediction 

models may perform differently across SES strata is troubling, especially given 

increasing efforts to use such models to guide prevention and treatment decisions. In light 

of the possibility that a miscalibrated risk model could inadvertently exacerbate 

disparities, future research testing the performance of risk prediction models across the 

spectrum of social advantage/disadvantage may be important. For instance, the newly 

developed ACC/AHA pooled cardiovascular risk prediction model designed to guide 

statin prescribing decisions could be checked to ensure that it is equally accurate in 

subgroups defined by their social standing.
26

 While the ultimate decision regarding 

whether or not to include social information in risk prediction should involve both ethical 

and statistical considerations, understanding the performance of existing models across 

social categories merits further research.    

Finally, as mentioned in the introduction, the physical and social characteristics of 

neighborhoods that are the subject of this dissertation are but simple, specific examples of 

a larger and more complex social structure through which residential environments shape 

the health of their residents. Factors like the availability of healthy food and physical 

activity resources are likely important for ensuring equitable opportunities for individuals 

to live healthy lives. They are also, however, more politically palatable ways to discuss 

the causes of health disparities, and should not obfuscate the broader social forces (e.g. 
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structural racism) that place marginalized peoples at higher risk. Indeed, it would be 

naïve to assume that the provisioning of such factors would, by itself, greatly affect the 

disproportionate burden of diabetes experienced by low-income communities and 

communities of color. In this regard, complementary research addressing the more 

fundamental causes of disparities, including the mechanisms that sort low-income 

individuals and racial/ethnic minorities into resource-poor communities, is needed.    

 Conclusion 

 

This dissertation suggests that altering neighborhood environments may represent 

a viable, population-based approach to the prevention of type 2 diabetes. While the 

pathways linking individual and neighborhood factors to type 2 diabetes are dynamic and 

interact in ways that may defy simple causal explanations, focusing exclusively on 

individual-based approaches to diabetes prevention while ignoring context is inadequate.  

Our hope is that by altering neighborhood environments and explicitly recognizing the 

importance of context in clinical and public health decision making, we may expand the 

scope of diabetes prevention and reduce disparities in the burden of diabetes on a 

population-wide scale.  
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