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Abstract 

 

Autoimmune diseases are the result of a severe immune response targeted against native 

tissues. Current strategies in the clinic to treat autoimmunity involve administering 

immunosuppressant medications which suppress broad components of the immune system. 

While effective for managing symptoms, reduced immune competency leads to harmful side 

effects such as increased risk for infection. Therefore, developing more targeted approaches to 

induce immune tolerance in the treatment of autoimmunity are highly desirable.  

One approach to induce antigen-specific tolerance has been to administer antigen coupled 

to poly(lactide-co-glycolide) (PLG) nanoparticles. These nanoparticles have been effective in 

treating models of autoimmunity, allergy, and transplant rejection, however the mechanism of 

action is poorly understood. Herein contains investigations of downstream cellular and molecular 

events following nanoparticle internalization by antigen-presenting cells (APCs). Increasing the 

amount of both administered nanoparticles and coupled antigen led to higher levels of antigen 

presentation on the APC surface. Co-stimulatory analysis of APCs with detectable MHC-

restricted antigen revealed a significant reduction of positive co-stimulatory molecules (CD86, 

CD80, and CD40) as nanoparticle concentration was increased. These trends in co-stimulatory 

expression were not observed in APCs administered increasing amounts of soluble antigen, 

suggesting the critical role of antigen coupling to nanoparticles.  

Cell signaling activity of APCs treated with either antigen-coupled nanoparticles (PLG-

OVA) or antigen-coupled splenocytes (SP-OVA) were compared to identify tolerance 

mechanisms resulting from different antigen delivery vehicles. Network analysis revealed NF-
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KB had an integral role within macrophages to connect signaling among several different 

transcription factors while NF-KB was less critical to integrate signaling across dendritic cell 

networks.  Macrophages treated PLG-OVA or SP-OVA before co-culture with activated T cells 

did not dramatically affect T cell response. Dendritic cells treated SP-OVA compared to PLG-

OVA were more effective to attenuate not only IL-2Rα expression but also other indicators of T 

cell activity. Inhibiting NF-KB signaling in macrophages treated with SP-OVA led to reduced T 

cell expression of IL-2Rα, suggesting a potential role for targeting NF-KB activity to improve 

tolerance induction. 

Nanoparticles encapsulating small interfering RNA (siRNA) were investigated to inhibit 

autoimmune signaling pathways. A feasibility study was conducted focusing on CCR2, a 

chemokine receptor correlated with worse prognoses in models of multiple sclerosis. An siRNA 

mixture targeting CCR2 expression (siCCR2) was complexed to polyethylenimine prior to PLG 

encapsulation. Complexed and encapsulated siCCR2 were evaluated by measuring CCR2 levels 

and cell migratory potential. Encapsulated siCCR2 were also examined by administering 1.0 mg 

in a mouse model of multiple sclerosis on Days 7, 9, and 11 following disease induction. Mean 

clinical scores were significantly reduced compared to administering either encapsulated non-

specific siRNA complexes or buffered solution. These findings suggest encapsulated siRNA 

complexes may have clinical applications for the treatment of multiple sclerosis and other 

autoimmune diseases.  

This work identified several mechanisms, including IL-10 production, T cell apoptosis, and 

reduced T cell proliferation affected by antigen-coupled nanoparticle treatment. Intracellular 

signaling activity of treated APCs revealed a central role of NF-KB to mediate macrophage 

signaling. Macrophages treated with SP-OVA and an NF-KB inhibitor prior to co-culture with 
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activated T cells resulted in attenuated T cell activity. More targeted approaches to inhibit 

molecules of interest were explored using PLG nanoparticles encapsulating siRNA. Initial 

studies focused on CCR2, whose expression during autoimmunity is correlated with worsening 

prognosis. Encapsulated CCR2-targeting siRNA had good feasibility for reducing both in vitro 

and in vivo inflammatory responses. 
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Chapter 1: Introduction 

1.1 Motivation 

Autoimmune diseases represent a severe worldwide health burden. There are currently 81 

identified autoimmune diseases, affecting approximately 4.5% of the world’s population. [1] 

Many autoimmune diseases are chronic in nature, leading to a reduced life expectancy as well as 

a diminished quality of life. [2] Typical therapeutic strategies for autoimmune diseases focus on 

systemic immune suppression. However, the harmful side effects of disrupting immune 

competency motivates the development of antigen-specific interventions. These approaches 

would specifically target autoimmune pathways for inactivation while preserving the remainder 

of the immune system to prevent opportunistic infections. 

Antigen-specific approaches to desensitize the immune system have been used for nearly a 

century, primarily to treat allergies by administering a gradually increasing dose of allergen over 

an extended period of time. This type of approach has shown promise to also treat models of 

autoimmune disease through the administration of escalating doses of autoantigen. [3] However, 

the difficulty with controlling dose escalation, length of treatment window, and risk for 

anaphylaxis has limited widespread adoption of these hyposensitization therapies. Interestingly, 

instead of soluble administration of autoantigen, attaching the autoantigen to nanoparticles prior 

to administration has led to rapid and long-lived antigen-specific tolerance. [4] The use of 

nanoparticles to treat autoimmune diseases holds potential for clinical translation, but a better 

understanding of the cellular and molecular mechanisms would help ensure safety and efficacy.  
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Nanoparticles are not the exclusive antigen delivery vehicle to induce antigen-specific 

tolerance. In fact, attaching autoantigen to donor cells has been previously demonstrated to also 

induce antigen-specific tolerance. [5] The use of cell-based vehicles is a logical  platform, as the 

immune system routinely removes apoptotic cells from circulation without triggering an immune 

response. Interestingly, the chemical treatment used to attach autoantigens to donor cells results 

in apoptosis, [6] thus it is highly probable that administering antigen attached to donor cells 

triggers endogenous signaling pathways that overlap with apoptotic cell clearance. A comparison 

of the signaling pathways used by antigen-coupled nanoparticles and antigen-coupled cells 

would therefore provide interesting insights to identify additional signaling molecules whose 

activity could be modulated to enhance the tolerance induction efficiency of nanoparticle-based 

antigen-specific therapy. Antigen-coupled nanoparticles offer several advantages in the 

therapeutic setting compared to antigen-coupled cells, which include ease of manufacturing and 

storage. 

Concern over an anaphylactic reaction will undoubtedly overshadow any antigen-specific 

approaches that reintroduce antigen into a sensitized patient. Studies of the cellular and 

molecular mechanisms contributing to autoimmunity have identified several pathways that may 

be targeted directly to reduce the occurrence of autoimmunity. [7] The use of siRNA molecules 

represent an effective approach to target these signaling pathways and suppress an unwanted 

immune response. The research that follows seeks to better understand how existing antigen-

specific therapies work, with the goal of improving the safety and efficacy of these therapies to 

facilitate their clinical translation which will help to reduce the worldwide clinical burden of 

autoimmune diseases. 
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1.2 Outline 

This dissertation focuses on engineering strategies that leverage polymer nanoparticles to 

modulate the immune response towards tolerance. The following chapters provide background 

information, experimental methodology, results, conclusions, and future directions of the 

different strategies explored in this work. Chapters 2 and 3 contain relevant background 

information with regard to the immune system and biomaterials, respectively. Chapters 4 through 

6 describe the completed experimental work. Chapter 7 discusses the conclusions and potential 

future directions revealed by the investigations herein. 

Chapter 2 presents an overview of the immune system with particular focus on the steps to 

activate an immune response. Different hypotheses are explored with regard to the initiation of 

autoimmunity, followed by an evaluation of various antigen-specific treatments previously 

explored in research. Chapter 3 introduces biomaterials, particularly emphasizing a synthetic 

polymer, poly(lactic-co-glycolic acid), already used in several FDA approved drugs and medical 

devices. This chapter focuses on uses of this material at the nanoscale to deliver therapeutic 

molecules to effect disease prognosis. 

Chapter 4 closely examines tolerance mechanisms triggered by treatment with antigen-

conjugated nanoparticles. This investigation particularly emphasized the variables of 

nanoparticle dose and conjugation levels of antigen. Nanoparticle efficacy for tolerance 

induction was first demonstrated in vivo with a mouse model of multiple sclerosis administered 

different doses of nanoparticles with different levels of antigen conjugation. Several in vitro 

studies then examined cell signaling activities following nanoparticle internalization by antigen-

presenting cells and the efficiency of antigen processing and presentation. T cells which mediate 

autoimmunity in this disease model were isolated and co-cultured with innate immune cells 
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administered nanoparticles to identify the specific antigen-specific tolerance mechanisms at 

work. 

Chapter 5 focuses on the role of the antigen delivery vehicle for tolerance induction. 

Nanoparticle-mediated and cell-mediated delivery of antigen is compared with regard to 

activating effector T cell responses. Cell signaling pathways were inferred and constructed based 

on the signaling activities of innate immune cells following internalization and presentation of 

antigen. A small molecule inhibitor was used to reduce the activity of an important signaling 

molecule to validate the network and attempt to replicate tolerance mechanisms triggered by 

cell-mediated antigen delivery with nanoparticle-mediated antigen delivery. 

Chapter 6 explores loading a bioactive molecule, siRNA, into the nanoparticle formulation 

to disrupt key chemokine signaling that regulates inflammatory cell migration. Several in vitro 

studies examine the intracellular nanoparticle localization, chemokine signaling, and cell 

migration. These nanoparticles are then used in vivo to test for ameliorated disease symptoms in 

a mouse model of multiple sclerosis. 

Chapter 7 draws conclusions from the research studies conducted in this work and provides 

guidance in possible future lines of investigation based on the findings reported herein. 
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Chapter 2: The Immune System: Autoimmunity and Tolerance 

2.1 The Human Immune System 

A healthy human immune system functions to protect the body from harmful infection by 

pathogens. Cells comprising the immune system are found throughout the body, allowing for a 

quick response to pathogenic invasions that may occur at any time or place. Immune cells 

circulate throughout the body using both blood vessels of the cardiovascular system as well as 

lymphatic vessels of the lymphatic system. [8] Blood and lymphatic vessels connect through the 

spleen and lymph nodes, respectively, which serve as important locations for coordinating 

immune cell activity and the immune response. [9] 

2.1.1 Innate and Adaptive Immunity 

The immune system is quite complex, but is often organized into two major components: 

innate and adaptive immunity. When a pathogen breaches the body’s surface barriers, it is 

typically met first by components of  innate immunity. Innate immunity responds immediately 

with non-specific mechanisms to attempt to resolve the invasion. [10] The cell-mediated 

mechanisms of the innate response consist primarily of phagocytosis, the internalization of 

extracellular material that binds receptor molecules located on the phagocytic cell’s surface. [11] 

Innate immunity also consists of a humoral-mediated mechanism that includes complement 

proteins and antibodies which opsonize or decorate the surface of pathogens to increase their 

likelihood of phagocytosis. [12] 
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A small number of cell types are capable of phagocytosis, including macrophages, 

dendritic cells, monocytes, and neutrophils. Phagocytosis internalizes extracellular material into 

the cell via membrane-bound cellular compartments called endosomes, or more specifically, 

phagosomes, the endosomes resulting specifically from phagocytosis. [11] As phagosomes are 

shuttled further inside the cell along the endocytic pathway, the compartmental pH decreases as 

enzymes are introduced and become activated to break down contents of the phagosome. [13] At 

the end of the pathway, phagosomes fuse with lysosomes that contain a variety of different 

hydrolytic enzymes to thoroughly degrade remaining materials within the phagosome.  

The degradation process generates small molecular fragments, or antigens that are loaded 

onto major histocompatibility complex (MHC) molecules for antigen presentation at the cell 

surface. There are two classes of MHC molecules, including class I (MHC-I) and class II (MHC-

II) molecules. MHC-I are expressed by most cell types in the body and typically associate with 

antigens from proteins synthesized by the cell. In contrast, MHC-II expression is primarily 

limited to phagocytic cells, such as macrophages and dendritic cells, also referred to as antigen-

presenting cells (APCs). [14] MHC-II typically associate with antigens from proteins 

internalized from the extracellular space. Surface availability of MHC-restricted antigen is 

critical for signaling to T cells to induce adaptive immune responses. 

Adaptive immunity is comprised of T cell and B cell responses that are highly efficient for 

pathogen elimination due to their antigen-specificity. Different T cell subsets preferentially 

interact with either MHC-I or MHC-II depending on surface expression of CD8 or CD4, 

respectively. [15] CD4+ T cells are typically associated with providing helper functions while 

CD8+ T cells predominantly possess a cytotoxic-suppressor phenotype. [16] CD4+ T cells help 

activate B cells to produce antibodies which tag pathogens using antigen specificity to facilitate 
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their elimination. CD8+ T cells induce cell death when cells present the specific MHC-restricted 

antigen.  

There are two main signals provided by APCs necessary for effective CD4+ and CD8+ T 

cell activation. The first signal consists of MHC-restricted antigen. [17] Not all T cells can detect 

the MHC-restricted antigen on the APC surface. Initially, only a small number of T cells in the 

body express the specific T cell receptor necessary to detect a particular MHC-restricted antigen.  

However, upon binding its cognate antigen through the T cell receptor, T cells can rapidly 

proliferate to create a substantial population to detect and respond to the specific antigen. 

Alternatively, T cells may also enter a state of inactivity, or anergy, when their T cell receptors 

are engaged. [18] The T cell fate depends heavily on the presence or absence of a second signal 

from APCs, co-stimulatory molecules. 

Interactions between co-stimulatory molecules on the APC surface and receptors on the T 

cell surface are critical for an effective immune response. [19] Among the most well-known 

interactions are those between CD80 and CD86 on the APC surface with CD28 on the T cell 

surface. In addition, CD40 interactions with T cells can help mature APCs to elicit stronger 

effector T cell responses. Without these co-stimulatory molecules, engagement of the T cell 

receptor complex can result in deletion or anergy of the T cell. APCs may also express negative 

co-stimulatory molecules, such as PD-L1, which play a major role in immune tolerance. [20] 

Both macrophages and dendritic cells are capable of activating T cells, although each cell 

type makes contributions to different aspects of the activation process. Dendritic cells have a 

higher surface density of MHC-II compared to macrophages, and thus provide more of the cell-

cell input signals necessary to activate CD4+ T cells. [21] Macrophages can adopt different 

phenotypes depending on whether they received classical activation or alternative activation 
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signals. The phenotype influences the signaling mediators that macrophages produce, which can 

either be pro-inflammatory and facilitate T cell activation or anti-inflammatory and suppress T 

cell activation. [22] 

2.1.2 Intercellular and Intracellular Immune Signaling 

Many of the immune processes mentioned above are directed and regulated by receptor-

mediated signaling. Extracellular cues are first detected by cell surface receptors, which trigger a 

cascade of intracellular signaling activity that results in changes to cell behavior which may 

include increased production of signaling molecules to engage additional cells in a coordinated 

response. For example, the immune response is first initiated upon detection of extracellular 

molecules known as pathogen-associated molecular patterns (PAMPs), structures typically found 

only in bacteria or viruses. Most phagocytic cell types possess toll-like receptors (TLRs) which 

bind PAMPs, an event that triggers the propagation of signal transduction pathways leading to 

upregulated surface expression of co-stimulatory molecules, trafficking to the spleen or lymph 

nodes, and secretion of chemical mediators to promote inflammation. [23] 

Cytokines are important intercellular chemical mediators, synthesized and secreted by cells 

to influence the behavior of their surrounding cells. Many cell types ranging from macrophages 

to T cells are capable of producing cytokines. While these cells may produce related cytokines to 

amplify a particular immune response, one cell type’s cytokines may also work to inhibit the 

actions of other cytokines already present in the environment. [24] Cytokines can include 

interleukins (IL), such as IL-2 and IL-4, which promote proliferation and differentiation of T 

cells, respectively. Another class of cytokines is the interferons (IFN), such as IFN-γ, which 

activates macrophages, and along with IL-1 and IL-12, work to promote inflammation. One other 
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important cytokine group is the chemokines, such as CCL2, which drives inflammation by 

inducing cell chemotaxis.  

Transcription factors (TFs) play an important role in the intracellular signaling that 

converts extracellular cues into the appropriate cell behavioral changes. TFs bind to gene 

promoter regions in the cell nucleus and recruit cellular machinery needed to initiate gene 

expression. TFs can be categorized by the specific DNA sequence that they bind to, and over 

1,000 different TFs have been identified in humans. [25] TFs can also be characterized by 

signaling pathways they are involved with. Several TFs have been identified in TLR signaling 

pathways, including NF-KB and AP-1. The STAT family has also been identified in the IFN 

signaling response. 

RNA interference represents a sequence-specific approach for controlling gene expression. 

Several molecules are capable of mediating RNA interference, one of which is short interfering 

RNA (siRNA). Molecules of siRNA are first formed when Dicer enzyme cleaves long double-

stranded RNA or small hairpin RNAs into siRNA, which are approximately 21 to 24 base pairs 

in length. [26] When siRNA is in the cytosol, it can associate with RNA-induced silencing 

complex (RISC) and possibly other factors which then scan mRNA transcripts for sequence 

complementarity. When complementary mRNA sequence is detected, the RISC complex 

degrades the mRNA to prevent its further translation into protein and thereby inhibit gene 

expression. The use of siRNA to downregulate transcription factor activity has been 

demonstrated to attenuate cancer growth. [27] 

2.2 Autoimmune Diseases 

The immune system contains regulatory mechanisms to ensure its response is directed only 

toward pathogens, but at times, the immune system can still mistakenly attack the body’s own 
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molecules. This undesirable response often leads to an autoimmune disease. There are over 80 

identified autoimmune diseases which affect an estimated 23.5 million Americans. [28] Diseases 

manifest with markedly different symptoms, ranging from impaired motor function in multiple 

sclerosis to hypoglycemia in Type 1 diabetes, but all share the common underlying physiology of 

an immune response directed against molecules normally found in the body.  

2.2.1 Central and Peripheral Tolerance 

To limit the occurrence of autoimmunity, central tolerance is used by the immune system to 

remove self-reactive T cells from circulation. These self-preservation processes occur in the 

thymus once T cell precursors undergo genetic recombination to form their T cell receptor. [29] 

Many variations of the T cell receptor may result from recombination, producing cell populations 

with a variety of different receptors able to bind a wide range of antigens. Inevitably, 

recombination also produces self-reactive T cells able to cause autoimmunity, and so subsequent 

T cell maturation includes a two-step selection process. First, positive selection identifies T cells 

able to bind MHC molecules. Those that fail positive selection do not survive, ensuring that T 

cells respond only to antigen that is MHC-restricted. Next, negative selection is used to remove 

self-reactive T cells. Within the thymus, T cells are introduced to MHC molecules loaded with 

several different self antigens. T cells that bind any of these antigens with high affinity will 

undergo apoptosis. [29] While positive and negative selection reduce the likelihood of 

developing autoimmunity, they do not eliminate all self-reactive T cells from entering 

circulation, requiring additional tolerance mechanisms to suppress their activity in the periphery. 

Peripheral tolerance describes mechanisms for suppressing the activity of self-reactive T 

cells already in circulation. One mechanism is the stringent activation threshold for T cells. 

Circulating self-reactive T cells must still encounter both MHC-restricted antigen and co-
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stimulatory molecules on the surface of antigen-presenting cells in order to become activated. 

Without an infection, antigen-presenting cells are unlikely to encounter the PAMPs which trigger 

expression of co-stimulatory molecules. [30] Self-reactive T cells that receive only the antigen 

signal alone will adopt a non-responsive state of anergy. [31] Other mechanisms to suppress self-

reactive T cells include production of immunosuppressive cytokines, such as IL-10 and TGF-β. 

[32] These cytokines are typically secreted by regulatory T cells, which are T cells that possess 

receptors for self antigens. But instead of producing an autoimmune response when their cognate 

antigen is detected, activated regulatory T cells work to suppress the immune response. 

Certain tissues and organs maintain an environment biased towards immune tolerance. 

These regions of the body are often referred to as immune privileged sites, where foreign antigen 

can be introduced without provoking an immune response. Among these sites include the brain, 

eyes, and placenta. [33, 34] Tolerance is maintained through a combination of reduced entry for 

immune cells, low expression of MHC molecules, and continuous production of 

immunosuppressive cytokines.  

2.2.2 Possible Causes of Autoimmune Diseases 

While the causes of autoimmune diseases are not precisely known, several factors, 

including both genetic predisposition and environmental exposures have been implicated. 

Molecular mimicry describes one possible hypothesis that there exists a potential cross-reactivity 

between native and pathogenic antigens. [35] Certain pathogens are believed to possess antigens 

with a similar peptide sequence or structure to those found on human cells. When invaded by 

these pathogens, the immune system cannot distinguish the difference and will attack both 

sources of antigen, resulting in autoimmunity. In this case, a patient who develops an 

autoimmune disease due to molecular mimicry had both a genetic predisposition, with the 
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preexistence of a potentially cross-reactive antigen, as well as environmental exposure to the 

pathogen.  

Epitope spreading is another hypothesis to describe the initiation of autoimmunity. When 

activated T cells migrate to the infection site, they destroy infected cells and release cytokines to 

remodel the local environment. In the process, cells in the vicinity may also suffer damage, 

releasing their own peptides that become internalized by phagocytes. [36] Although phagocytes 

routinely display native antigens loaded onto MHC molecules at the cell surface, when 

pathogens are present, these phagocytes will also express co-stimulatory molecules which 

provide the necessary signals to activate self-reactive T cells.  

2.2.3 Current Treatments of Autoimmune Diseases 

Autoimmune diseases are chronic conditions that lack cures, and any prescribed treatments 

primarily serve to manage the disease symptoms. The mechanism of action used by these 

treatments is typically broad and non-specific, resulting in suppression of large components of 

the immune system. [37] For example, corticosteroids are a powerful immunosuppressant which 

are administered in situations that include autoimmunity, allergy, and organ transplants. 

However, these types of drugs compromise the patient’s immune system, often resulting in 

unfortunate side-effects, which can include increased susceptibility to opportunistic infections. 

[38] 

The development of antigen-specific therapeutic strategies would be a major improvement 

in the treatment of autoimmune diseases. This type of approach would focus action on self-

reactive T cells and the related immune components that directly contribute to autoimmunity. 

Although not all autoimmune diseases have a well-defined self antigen implicated for causing 

autoimmunity, multiple sclerosis is one disease where several myelin peptides have been 
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identified as the antigens. [39] Treatments currently prescribed to patients with multiple sclerosis 

include IFN-β and glatiramer acetate. IFN-β works non-specifically by inhibiting expression of 

MHC class II molecules, IL-12 production, and T cell proliferation. [40] On the other hand, 

glatiramer acetate is a polymer of four amino acids found in myelin. Delivered subcutaneously, 

this treatment is believed to activate regulatory T cells which help suppress the autoimmune 

response. [41] Studies comparing the two treatment courses have not found much difference in 

disease prognosis. [42] However, the targeted approach of glatiramer acetate may be more 

effective to reduce undesirable side-effects of broad immune suppression. 

The efficacy of novel therapeutic approaches to treat autoimmunity are often tested using a 

disease model, called experimental autoimmune encephalomyelitis (EAE). EAE is a mouse 

model of human multiple sclerosis. Disease is established in mice by inducing an immune 

response against myelin antigen. [43] The immune response leads to activation and proliferation 

of myelin-reactive CD4+ T cells which enter the central nervous system and promote 

inflammation. [44] Massive infiltration of inflammatory cells results in tissue injury and 

paralysis.  

Antigen-specific approaches to treat autoimmunity often incorporate the antigen targeted 

by self-reactive T cells into the therapeutic formulation. [45] There remain safety concerns 

surrounding the reintroduction of antigen to a patient with autoimmunity, as the immune system 

is already sensitized to the antigen which could potentially trigger anaphylaxis. However, one 

effective strategy has been to load the self antigen onto apoptotic cells using a chemical cross-

linker, such as ethyl carbodiimide. [46, 47] Administering the antigen-conjugated apoptotic cell 

intravenously results in upregulated anti-inflammatory cytokines, negative co-stimulatory 

molecules, and the activity of T regulatory cells. [48] Human clinical trials have shown good 
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safety indications with this approach, first collecting the patient’s own cells and loading with 

several myelin peptides before intravenously administering the modified cells back into the 

patient. [49] One major improvement being explored for this approach has been to use an off-

the-shelf product for antigen coupling, which would eliminate the expensive and complicated 

step of removing cells from the patients. [50] Strategies from biomaterial engineering, such as 

loading antigen onto synthetic particles instead of the patient’s cells may improve the ease of 

clinical translation for antigen-specific therapies to treat autoimmune diseases.  
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Chapter 3: Biomaterial Strategies for Immune Modulation 

3.1 Advances in Biomaterials and Drug Delivery 

A biomaterial describes any material used in the construction of medical devices. Natural 

materials, such as wood and metal, have functioned as biomaterials throughout history, often to 

replace appendages lost to disease or trauma. More recently, synthetic materials such as alloys, 

composites, and polymers have become the biomaterials of choice. [51] These advanced 

materials offer improved functionality, enabling the development of new applications, especially 

those occurring within the body.  

One application benefitting from advancements in biomaterials is drug delivery. [52] In 

drug delivery, biomaterials are infused with pharmaceutical products for controlled release inside 

the body. Initial drug delivery formulations were developed as once-a-day tablets, which could 

be taken orally and used to treat chronic conditions. [53] However, larger drug molecules, such 

as peptides or proteins were not suitable for oral delivery, and thus required a more advanced 

delivery system. [54] In the 1980s, drug manufacturers found an innovative solution by 

encapsulating peptide within injectable microparticles made of a biodegradable and 

biocompatible polymer. [55] This major achievement brought widespread attention to particle-

based drug delivery systems which continue to be an actively researched technology area within 

this field. 

Over the past several years, the field of drug delivery has increasingly focused on 

improving the targeting of therapeutic delivery. The primary goal is to deliver therapeutic 
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interventions to regions of the body that require treatment, while minimizing off target effects 

and toxicity. Developing particles on the nanoscale has been shown to provide a certain level of 

specificity for nanoparticle accumulation in particular regions and cell types of the body. [56] 

Continued advances in the research of nanoparticle-based therapeutics has resulted in many 

experimental therapies currently under clinical study. [57] 

3.2 Poly(lactic-co-glycolic acid) Nanoparticles 

Synthetic polymers, including poly(lactic acid), poly(glycolic acid), poly(ethylene glycol), 

and their copolymers, are commonly used in the design of nanoparticle therapeutics. [58] One 

copolymer which has been successfully used in several commercially available drugs is 

poly(lactide-co-glycolide), or PLG. When introduced with water, PLG undergoes hydrolytic 

degradation, causing the copolymer to break down into its constituent monomers that are 

naturally found in the body. [59] The good biodegradable and biocompatible properties of PLG 

were likely major factors leading the Food & Drug Administration to approve PLG products for 

medical use in humans. [59] As such, experimental medical devices or drugs that incorporate 

PLG into their design may be at an advantage when seeking future regulatory approval. 

3.2.1 Fabrication 

The classical approach to fabricating PLG nanoparticles is the emulsification solvent 

evaporation technique. The process begins by dissolving polymer in organic solvent and then 

creating an emulsion by the addition of water and a surfactant. Sonication or homogenization of 

this mixture generates droplets that give rise to nanoparticles when the solvent within each 

droplet traverses the aqueous phase and evaporates at the emulsion-air interface. [60] This 

fabrication technique is often specified as single emulsion, which can produce nanoparticles that 

encapsulate hydrophobic molecules dissolved in the initial polymer solution. A variation of this 
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technique, called double emulsion, is preferable to generate nanoparticles that encapsulate 

hydrophilic molecules. [61] In the double emulsion procedure, an initial emulsion is formed with 

polymer and an aqueous solution containing dissolved hydrophilic molecules. Following 

sonication or homogenization, water and a surfactant are added to create a secondary emulsion 

and the mixture is sonicated or homogenized once more to create the final droplets that give rise 

to nanoparticles.  

Other approaches to fabricate PLG nanoparticles include nanoprecipitation and spray-

drying. Nanoprecipitation, or interfacial deposition, involves dissolving polymer and drug in 

organic solvent which is then added dropwise to water. [62] The resulting nanoparticles are then 

collected after solvent evaporation. One improvement nanoprecipitation offers over emulsion 

methods is the ability to produce nanoparticles without the use of surfactants which can affect 

biological activities and contribute to toxicity. However, nanoprecipitation is limited primarily to 

entrapping hydrophobic molecules. Spray drying is another fabrication technique, using hot gas 

to rapidly dry a liquid to form solid nanoparticles. While this approach can result in good 

encapsulation efficiencies of hydrophilic molecules, it has been reported to suffer from burst 

release, or a quick initial release of the entrapped payload, compared to a sustained release of 

hydrophilic molecules provided by nanoparticles made by emulsification solvent evaporation 

techniques. [63] 

3.2.2 Degradation 

The copolymer composition can be adjusted in several ways to influence the PLG 

degradation rate and accommodate various biomedical applications. In general, increasing the 

glycolic acid content and decreasing molecular weight have been reported to accelerate PLG 

degradation and thereby drug release. However, glycolic acid content higher than a 50:50 ratio 
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with lactic acid is typically not used due to the reduced solubility during synthesis and uneven 

molecular weight distributions that result. [64] One study of tetanus toxoid release from 

microspheres compared PLG containing a 50:50 monomer ratio alongside PLA containing a 

100:0 ratio of lactic acid to glycolic acid. [65] At 3,000 Daltons, PLG 50:50 had released about 

69% of the encapsulated payload after 30 days while PLA had only released about 28% in the 

same time frame. Increasing molecular weight to 100,000 Daltons, the PLG 50:50 released about 

32% of the encapsulated payload after 30 days while PLA had released about 16% in the same 

time frame. These trends show the potential large contributions of molecular weight and 

monomer ratio for determining degradation rate.  

Other factors reported to affect PLG degradation include environmental acidity and end 

group modification. [66] Studies have correlated lower pH environments with faster PLG 

degradation compared to neutral pH environments. After 16 weeks, PLG macroporous foams 

placed in acidic pH 5.0 began degrading at a faster rate than foams placed at either physiological 

pH 7.4 or intermediate pH 6.4. After 30 weeks, the foams at pH 6.5 and 7.4 had lost 30% of their 

initial mass, whereas foams at pH 5.0 had lost 90% of their initial mass. [67] Environmental pH 

governs the morphological changes to PLG, which may help to explain differences in the 

degradation rate. Degradation results in acidification of the PLG microsphere core, causing 

surface erosion and channel formation at physiological environments. [68] In contrast, an acidic 

environment has a pH balance with the PLG core, preserving the smooth microsphere structure 

during degradation, although it is hypothesized that monomer accumulation within microspheres 

resulting from insolubility at low pH leads to microsphere brittleness and fracturing. Neutralizing 

or capping the carboxylic acid chain ends of PLG with esters helps to extend their half-life. 
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When left free, polymer end chains induce autocatalysis of PLG hydrolysis to accelerate 

degradation.  

3.2.3 Toxicity 

PLG nanoparticles have good biodegradable and biocompatible properties, and 

investigations of their toxicity have largely concluded their safety for internal human use. 

Grabowski et al. [69] examined PLG nanoparticles measuring between 200 to 300 nm, fabricated 

with different surfactants to achieve either neutral, positively, or negatively charged 

nanoparticles. The cytotoxicity of A549 human lung epithelial cells was measured through 

mitochondrial activity and membrane integrity, which revealed good viability in response to 

PLG nanoparticles, especially compared to treatment with inorganic nanoparticles composed of 

titanium dioxide. In a separate study, Tulinska et al. [70] administered PLG nanoparticles to 

human peripheral blood cells and measured for changes in immune cell behavior indicative of 

allergy or toxicity. The studies showed PLG nanoparticles attenuated immune activity, as T cell 

proliferation was reduced following CD3 stimulation and lytic activity of natural killer cells 

decreased in the presence of tumor cells. While the reduced immune activity following 

nanoparticle treatment was concluded to be nanoparticle toxicity, the high cell viabilities would 

suggest rather that interactions between the immune system and PLG nanoparticles are favorable 

for applications in immune modulation. 

3.3 Nanoparticles and Immune Modulation 

The sub-micron size of nanoparticles enables deep tissue penetration and high rates of 

intracellular uptake. Further tuning of size can direct nanoparticles to accumulate in particular 

tissues and cells to either enhance or inhibit the immune response. [56] Additional control over 

interactions with the immune system can be achieved by loading nanoparticles with bioactive 
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molecules, such as adjuvants to stimulate an immune response or corticosteroids to suppress an 

immune response. [71] Controlling the immune response following nanoparticle administration 

is important to ensure their successful therapeutic function.   

3.3.1 Nanoparticle Localization 

Controlling the size of nanoparticles during the fabrication process can predictably 

influence their internal distribution following in vivo administration. One approach to adjust the 

size of nanoparticles made from emulsification solvent evaporation is to vary surfactant 

concentration. Increasing the concentration of poly(vinyl alcohol) from 0.5% (w/v) to 5.0% 

(w/v) helped stabilize smaller emulsion droplets, decreasing the mean particle size from 522 nm 

to 380 nm. [72] Similarly, the average volume of spheroids decreased from 1,000 μm3 to 160 

μm3 as surfactant concentration increased from 1% (w/v) to 4% (w/v). [73] The higher surfactant 

concentration was reported to increase aqueous phase viscosity, producing greater shear forces to 

break down droplets into smaller structures.  

Nanoparticle size plays a major role in their localization within the body. Size-dependent 

nanoparticle accumulation in tissues was determined by HPLC quantification 4 h following 

intravenous administration of polystyrene nanoparticles of varying sizes. [74] As size increased, 

the percent of total nanoparticle retention also increased, most dramatically in the liver, lungs, 

and spleen, compared to the blood, brain, and heart. Nanoparticles smaller than 100 nm more 

easily permeated the vasculature into the renal system and also into peripheral tissues such as the 

skin, muscle, and fat. In a separate study, tissues were analyzed using gel permeation 

chromatography following intravenous administration of 200 and 500 nm PLG nanoparticles. 

[75] Nanoparticle accumulation occurred primarily in the liver, spleen, and lungs, relative to the 

blood, brain, heart, kidneys, and stomach.  
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Route of administration may also play an important role to influence nanoparticle 

localization and disease outcome. Subcutaneous injection of PLG nanoparticles with an average 

size of approximately 200 nm were strongly detected in the brain, heart, kidneys, and lungs, and 

to a lesser extent, the liver, spleen, and lymph nodes. [76] This study was conducted in the 

context of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple 

sclerosis. Consistent abrogation of EAE disease was seen only when both disease-relevant 

myelin antigen and IL-10 were co-delivered in the PLG nanoparticles. Researchers have also 

attempted to establish EAE using dendritic cells pulsed with myelin antigen co-administered 

with pertussis toxin. [77] After three subcutaneous injections of dendritic cells and pertussis 

toxin over a period of 4 weeks, mice displayed mild EAE symptoms. However, mice receiving 

the same dosing regimen through intravenous or intraperitoneal injections did not develop 

symptoms. These studies suggest the reduced efficacy of establishing tolerance via the 

subcutaneous route, especially compared to intravenous or intraperitoneal administration. 

3.3.2 Post-Internalization Cell Response 

The tissues in which intravenously administered nanoparticles accumulate contain an 

abundance of immune cells, such as macrophages and dendritic cells. These cells are quick to 

internalize nanoparticles and reshape the local immune environment. Macrophages efficiently 

internalized PLG nanoparticles with approximate diameter of 389 nm compared to 

microparticles with approximate dimeter of 6.5 μm. [78] The secretion of IL-1β and TNF-α were 

significantly lower in nanoparticle-treated compared to microparticle-treated macrophages, and 

nuclear translocation of NF-KB was also significantly reduced. Dendritic cells were able to 

internalize PLG nanoparticles with average diameter of 280 nm resulting in little effect on the 
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expression of CD40, CD86, or MHC-II molecules. [79] These observations of cell behavior 

following internalization suggest the nanoparticle vehicle is relatively inert. 

Incorporating bioactive molecules into the nanoparticles can further modulate the immune 

response. While molecules activating the immune system are not explored in the work that 

follows, a class of molecules called, toll-like receptor agonists have previously been loaded into 

PLG nanoparticles to stimulate immune responses in applications such as vaccines. [80] But 

rather, we focus here on immune suppressing molecules, such as IL-10 and rapamycin. It was 

previously mentioned that IL-10 encapsulation with antigen delivery resulted in better abrogation 

of EAE. [76] It has also been demonstrated that the presence of rapamycin further suppresses the 

immune response and abrogates EAE clinical score. [79, 81] Oligonucleotides, such as siRNA, 

have also shown therapeutic potential when encapsulated and delivered within nanoparticles for 

immune suppression. [82] These aforementioned studies reporting immune suppression or 

tolerance induction mediated by PLG nanoparticles are of great interest for further investigation 

with regards to immune mechanisms and nanoparticle formulations to provide better targeting 

and specificity over current approaches to treat autoimmune diseases.  

The following chapters discuss research studies that examined and engineered the 

mechanisms of action used by antigen-coupled nanoparticles for immune tolerance. Antigen-

coupled PLG nanoparticles have been effective for reducing the occurrence of EAE symptoms 

which are mediated by CD4+ T cells. Thus, assays were conducted to determine the impact of 

nanoparticle treatment on the CD4+ T cell response. Dynamic measurement of intracellular 

signaling activity following APC internalization of antigen-coupled PLG nanoparticles were 

compared to intracellular signaling activity following APC internalization of antigen-coupled 

cells. Similarities in intracellular signaling activity suggested a common mechanism between 
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nanoparticle processing and cell clearance. Differences in intracellular signaling activity would 

suggest possible signaling molecules to inhibit during nanoparticle treatment to better mimic cell 

clearance responses which suppress immune activity. The feasibility of encapsulating inhibitory 

molecules within PLG nanoparticles was explored using CCR2-targeting siRNA. These loaded 

nanoparticles were administered in vitro and in vivo to evaluate their inhibitory effects on 

inflammation and autoimmunity. 
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Chapter 4: Peptide-Conjugated Nanoparticles Reduce Positive Co-Stimulatory Expression and T 

Cell Activity to Induce Tolerance 

4.1 Abstract 

Targeted approaches to treat autoimmune diseases would improve upon current therapies 

that broadly suppress the immune system and lead to detrimental side-effects. Antigen-specific 

tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-

relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and 

amount of conjugated antigen both resulted in more durable immune tolerance. To identify active 

tolerance mechanisms, we investigated downstream cellular and molecular events following 

nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles 

indicated suppression of inflammatory signaling pathways. Direct and functional measurement 

of surface MHC-restricted antigen showed positive correlation with both increasing particle dose 

from 1 to 100 μg/mL and increasing peptide conjugation by two-fold. Co-stimulatory analysis of 

cells expressing MHC-restricted antigen revealed most significant decreases in positive co-

stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with 

higher peptide conjugation while expression of a negative co-stimulatory molecule (PD-L1) 

remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP139-

151) were co-cultured with antigen-presenting cells administered PLP139-151-conjugated 

nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a 



25 
 

stronger anti-inflammatory response. These findings indicate several potential mechanisms used 

by peptide-conjugated nanoparticles to induce antigen-specific tolerance. 

4.2 Introduction 

Aberrant T cell recognition of host antigen can trigger an immune response resulting in 

autoimmune diseases, such as multiple sclerosis. Patients with multiple sclerosis are often 

administered immunomodulatory and immunosuppressive drugs, such as interferon beta and 

cyclophosphamide. These therapies act broadly on the entire immune system with the 

unfortunate side effect of high infection rates. [83, 84] However, targeted therapeutic approaches 

that are antigen-specific would focus action on immune cells involved in disease and preserve 

the remainder of the immune system to maintain immune competency. Multiple sclerosis is 

modeled in mice using experimental autoimmune encephalomyelitis (EAE), wherein 

autoreactive CD4+ T cells recognize and respond to myelin epitopes. [43, 85] Following 

activation and proliferation, these T cells migrate to the central nervous system (CNS) and 

initiate inflammation, causing large influxes of immune cells that demyelinate axons, resulting in 

the observable loss of sensorimotor functions. Strategies to attenuate disease and establish 

durable immune tolerance focus on suppression of the activated autoreactive T cells.[86]  

Induction of an antigen-specific immune response is relatively complex, involving the 

interaction of multiple cell types. T cells first become activated based on signals received from 

antigen-presenting cells (APCs). [87] Consisting primarily of macrophages (MΦs) and dendritic 

cells (DCs), APCs internalize and digest proteins from the extracellular space, [80] generating 

peptides, or antigens that are preferentially loaded onto class II molecules of major 

histocompatibility complex (MHC) molecules for surface display. Antigen loaded onto MHC-II 

molecules is recognized only by CD4+ T cells that express the specific receptor. [18] The 
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number of T cells able to recognize a particular antigen is initially low. To shift the immune 

response, T cells specific for the particular antigen receive activation signals from co-stimulatory 

ligands which include CD80 and CD86 expressed by APCs. [19] CD40 interactions with T cells 

can also mature APCs to elicit stronger effector T cell responses. [88]  Engagement of only the T 

cell receptor complex without co-stimulation results in a state of T cell unresponsiveness. APCs 

may also express negative co-stimulatory molecules, such as PD-L1, or anti-inflammatory 

cytokines, such as IL-10 which have been shown to be critical for immune tolerance. [20, 48] 

Antigen-conjugated polymeric nanoparticles, such as those made with the biodegradable 

and biocompatible material, poly(lactide-co-glycolide) (PLG), have demonstrated the ability to 

induce immune tolerance in models of autoimmunity, allergic responses, and cell transplantation. 

[50, 81, 89] Intravenously delivered fluorescent PLG nanoparticles co-localized with MARCO-

positive and SIGN-R1-positive cells in the liver and spleen, suggesting selective uptake by 

APCs. Autoreactive T cells were reported to undergo apoptosis, anergy, and suppression by 

regulatory T cells [50] and the importance of IL-10 and PD-L1 for immune tolerance was 

established by several studies. [48, 90, 91] However, the fate of delivered antigen, the efficiency 

of antigen processing and T cell signaling, and the impact of antigen conjugation levels and 

nanoparticle dose remain key factors to be investigated. 

In this chapter, we investigate cellular and molecular tolerance mechanisms resulting from 

antigen-conjugated nanoparticle treatment. Initially, in vivo studies were performed to correlate 

amounts of antigen conjugation and nanoparticle dose with the severity of EAE disease course. 

Subsequently, several in vitro assays were used to investigate key steps including cell signaling 

upon internalization, MHC-restricted antigen presentation, and co-stimulatory expression. 

Tolerance induction was then evaluated by co-culturing nanoparticle-treated antigen-presenting 
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cells with autoreactive T cells. These studies provide mechanistic insights to assist in the 

development of nanoparticle-based therapeutics. 

4.3 Materials and Methods 

4.3.1 PLG nanoparticle synthesis and characterization 

PLG nanoparticles were prepared using a single emulsion-solvent evaporation method as 

previously described. [92] Briefly, PLG purchased from Lactel Absorbable Polymers 

(Birmingham, AL) was dissolved at 20% (w/v) in dichloromethane. Poly(ethylene-alt-maleic 

acid) (PEMA) was purchased from Polysciences, Inc. (Warrington, PA) and reconstituted in 

water at 1% (w/v). Sonicating a mixture of the PLG and PEMA produced nanoparticles, which 

following solvent evaporation, were washed three times and finally lyophilized in a solution of 

4% w/v sucrose and 3% w/v D-mannitol. Nanoparticle size and ζ-potential were measured using 

a Zetasizer Nano ZSP from Malvern Instruments Ltd (Worcestershire, UK). 

4.3.2 Conjugation of antigen or fluorophore onto PLG nanoparticles 

PLP139-151 and Ea52-68 were purchased from Genscript (Piscataway, NJ) and OVA323-339 was 

purchased from Celtek Peptides (Franklin, TN). FITC-cadaverine was purchased from Thermo 

Fisher Scientific (Waltham, MA). Lyophilized PLG nanoparticles were washed three times using 

phosphate-buffered solution (PBS) at pH 7.4. Approximately 4 mg of PLG nanoparticles was 

recovered and activated using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), 

purchased from Sigma-Aldrich (St. Louis, MO), at 16 mg/mL. Peptide or fluorophore was 

immediately added at the appropriate concentration to achieve desired higher or lower 

conjugation levels. The coupling reaction proceeded for 1 h under constant agitation. Uncoupled 

peptide was removed with three PBS washes. Total peptide conjugation was measured using the 

Micro BCA Protein Assay Kit manufactured by Pierce Biotechnology (Rockford, IL). 
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4.3.3 Mice 

Female 6 to 8 week old SJL/J mice were purchased from the Jackson Laboratory (Bar 

Harbor, ME) and Envigo (Indianapolis, IN). Female 6 to 8 week old C57BL/6 mice were 

purchased from Charles River Laboratories (Wilminton, MA). OT-II mice, transgenic for a TCR 

specific to OVA323-339, were purchased from the Jackson Laboratory and subsequently bred in-

house. All experiments involving mice were approved by the University of Michigan Committee 

on the Use and Care of Animals. 

4.3.4 EAE initiation and nanoparticle tolerance induction 

EAE disease was initiated as described previously.[85] Briefly, SJL/J mice were injected 

subcutaneously with an emulsion of PLP139-151 in complete Freund’s adjuvant. To induce 

tolerance, a single dose of either PLG-PLP-Hi or PLG-PLP-Lo was administered intravenously 7 

d after disease initiation. The control group was administered a single dose of PLG-OVA-Hi. 

Behavioral testing of mice was performed daily to determine clinical score, based on a 0-5 scale 

as follows: 0, healthy; 1, limp tail; 2, limp tail and impaired righting reflex; 3, hind-limp 

weakness; 4, hind-limb paralysis; and 5, moribund. 

4.3.5 Harvesting and culturing of APCs 

To obtain a primary population of APCs, bone marrow was harvested from the femurs and 

tibias of mice and differentiated in vitro. Cells were cultured in RPMI 1640 supplemented with 

10% FBS, 4mM L-glutamine, and 1% penicillin/streptomycin, all purchased from Life 

Technologies (Carlsbad, CA). Culturing media was further supplemented with either 20% L929 

conditioned media to obtain macrophages, or with 50 μM of 2-mercaptoethanol (Sigma-Aldrich, 

St. Louis, MO) and 20 ng/mL of GM-CSF purchased from PeproTech (Rocky Hill, NJ) to obtain 

dendritic cells. Media was replaced at 3 days and 6 days after initial culture. On Day 8, 
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macrophages were removed using Versene treatment and dendritic cells were obtained from 

suspension. APCs were seeded between 2.0 x 105 to 2.5 x 105 cells/mL in either 24-well 

untreated flat bottom cell culture plates or 96-well treated round bottom cell culture plates. APCs 

were activated with lipopolysaccharide (LPS) at 100 ng/mL to improve cell viability. 

4.3.6 Internalization assays 

Quenching of extracellular FITC was validated using APCs from C57BL/6 mice that 

were pre-treated for 30 minutes with 20 μg/mL of cytochalasin D, purchased from Life 

Technologies (Carlsbad, CA). PLG-FITC was administered to APCs at 1, 10, or 100 μg/mL. At 

several time intervals, APCs were collected. Following PBS wash, trypan blue was added at 1.2 

mg/mL to quench extracellular FITC molecules. Fluorescence was measured using a CyAn ADP 

Analyzer manufactured by Beckman Coulter (Brea, CA), and data was analyzed using FlowJo 

v10. Cellular events were gated using forward scatter and side scatter. FMO controls were then 

used to identify cells with positive signal.  

4.3.7 Cell signaling analysis of transcription factor activity 

The reporter library consisted of lentiviral constructs, each with a consensus binding 

sequence for a specific transcription factor driving expression of the firefly luciferase reporter. 

The process of identifying consensus binding sequences and determining reporter specificity has 

been described previously.[93] APCs were batch transduced with a single lentiviral reporter and 

seeded in black 96-well plates for a minimum of 48 hours. Cultures were replaced with fresh 

media containing LPS to improve cell viability, and D-luciferin purchased from Perkin Elmer 

(Waltham, MA). Cells were treated with either soluble antigen or peptide-conjugated 

nanoparticles and bioluminescence measurements were acquired at 2.5, 5, 8, 19, 24, and 28 h 
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post-treatment. A minimum of four technical repeats was used per treatment group for each 

lentiviral reporter, and experiments were repeated two to three times. 

4.3.8 Measuring antigen presentation and co-stimulation 

APCs from C57BL/6 mice were cultured in 24-well flat bottom plates were administered 

PLG-Eα-Hi or PLG-Eα-Lo at 1, 10, or 100 μg/mL. After 24h, APCs were collected and Fc 

receptors blocked with TruStain fcX, purchased from BioLegend (San Diego, CA). To detect 

antigen presentation, APCs were stained with αI-Ab-Ea52-68-FITC (clone eBioY-Ae) purchased 

from eBioscience (San Diego, CA). Simultaneously, co-stimulatory expression was measured by 

staining with αPD-L1-Brilliant Violet 421 (clone 10F.9G2), αCD80-phycoerythrin (PE) (clone 

16-10A1), αCD86-PE/Cy5 (clone GL-1), and αCD40-PE/Cy7, all purchased from BioLegend 

(San Diego, CA). Cell identity was confirmed through staining with αF4/80-APC-eFluor 780 

(clone BM8) or αCD11c-APC-eFluor 780, both purchased from eBioscience (San Diego, CA). 

Viability was confirmed using Annexin V-Pacific Blue, purchased from BioLegend (San Diego, 

CA). Fluorescence signal was measured and analyzed similarly to the internalization assays.  

4.3.9 T cell co-cultures with nanoparticle-treated APCs  

T cells were obtained from murine spleen and lymph nodes (axillary, inguinal, brachial) 

using MACS LS columns. Naïve T cells were purified from OT-II mice using the Naïve CD4+ T 

Cell Isolation Kit and autoreactive T cells were purified from SJL/J mice 7 days following EAE 

disease initiation using the CD4+ T Cell Isolation Kit, both manufactured by Miltenyi Biotec 

(San Diego, CA).  

Purified T cells were stained for 10 min at 37°C with 2.5 μM carboxyfluorescein 

succinimidyl ester (CFSE) purchased from Life Technologies (Carlsbad, CA). The staining was 
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immediately quenched with APC culturing media, supplemented with 1x non-essential amino 

acids, 1 mM sodium pyruvate, and 50 μM 2-mercaptoethanol.  

Before the addition of T cells, APCs were activated with 100ng/mL of LPS for improved 

viability and seeded in 96-well round bottom plates. Following 24h of either soluble peptide or 

nanoparticle treatment, culture media was replaced with fresh media containing CFSE-stained T 

cells at a 2:1 ratio of T cells to APCs. After 3 to 5 days, T cells were collected to measure CFSE 

fluorescence signal. 

Naïve T cells from OT-II mice were used for functional detection of antigen presentation 

following nanoparticle internalization. These T cells were co-cultured 3 days with APCs isolated 

from healthy C57BL/6 mice. Autoreactive T cells from EAE-immunized SJL/J mice were used 

to examine for tolerance induction. These T cells were co-cultured 5 days with APCs isolated 

from healthy SJL/J mice. Apoptosis was detected using Annexin V staining. Cytokine 

concentrations in the culture media were analyzed using ELISA kits from R&D Systems 

(Minneapolis, MN). 

4.3.10 Statistical analyses 

Comparisons between EAE disease courses of different treatment groups were analyzed by 

a Mann-Whitney test. Determination of transcription factors whose activities were significantly 

different due to nanoparticle-mediated rather than soluble antigen delivery was assessed for each 

measured time point by fitting normalized transcription factor activities to an empirical 

hierarchical Bayesian linear model using limma [94] independently for each biological repeat. 

Significant differences in co-stimulatory expression, T cell proliferation and apoptosis, and 

cytokine levels were identified using either a 1-way or 2-way ANOVA followed by the Tukey 

test for multiple comparisons.  
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4.4 Results 

4.4.1 Peptide-conjugated PLG nanoparticles induce antigen-specific immune tolerance 

PLG nanoparticles were manufactured using an emulsion process and subsequently 

evaluated for size and charge. The average diameter was 538 ± 21 nm and average ζ-potential 

was −43 ± 8 mV. Following peptide conjugation, nanoparticles showed an increase in size 

relative to unmodified nanoparticles, suggesting the development of some nanoparticle 

aggregates. No major impacts on zeta potential was observed. Peptides of myelin proteolipid 

protein (PLP139-151), ovalbumin (OVA323-339), and I-Eα (Eα52-68) were chemically conjugated at 

multiple concentrations to yield two types of nanoparticles for each antigen, one with higher and 

one with lower levels of peptide as summarized in Table 4.1. The EAE disease model and in 

vitro studies of cells isolated from this model employed nanoparticles conjugated with PLP139-151 

and OVA323-339. Nanoparticles conjugated with Eα52-68 and OVA323-339 were used for in vitro 

mechanistic studies to examine antigen processing and presentation.  

Intravenous administration of a single 1.25 mg dose of PLG nanoparticles with higher 

conjugation of disease-relevant PLP139-151 (PLG-PLP-Hi) significantly reduced clinical score 

during the course of relapse-remitting EAE compared to PLG nanoparticles conjugated with 

disease-irrelevant OVA323-339 (PLG-OVA-Hi) which resulted in severe acute disease. (Fig 4.1a) 

Administering a single 2.0 mg dose of PLG nanoparticles with lower conjugation levels of 

PLP139-151 (PLG-PLP-Lo) had strong knock-down of clinical scores early, but resulted in 

moderate clinical scores later in the disease course. (Fig 4.1b) Interestingly, administering a 

single 2.0 mg dose of PLG-PLP-Hi led to durable immune tolerance throughout the disease 

course, suggesting the importance of both total peptide and total administered dose of 

nanoparticles for induction of immune tolerance. 
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Table 4.1 Amount of peptide conjugated to PLG nanoparticles. 

 Peptide Conjugation 

[μg/mg of PLG] 

PLG-OVA323-339-Hi 14.4 ± 1.7 

PLG-OVA323-339-Lo 7.6 ± 0.5 

PLG-PLP139-151-Hi 9.8 ± 2.5 

PLG-PLP139-151-Lo 4.1 ± 0.7 

PLG-Eα52-68-Hi 17.8 ± 2.0 

PLG-Eα52-68-Lo 9.8 ± 0.8 
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Figure 4.1 Peptide-conjugated nanoparticles induce antigen-specific tolerance to prevent 

EAE. Daily assessment of disease symptoms using mean clinical score following immunization 

against PLP139-151 to induce EAE disease. (a) SJL/J mice intravenously administered 1.25 mg of 

peptide-conjugated PLG nanoparticles. Mice treated with PLG-PLP-Hi had significant reduction 

of clinical scores compared to mice treated with PLG-OVA-Hi. (b) SJL/J mice intravenously 

administered 2.0 mg of peptide-conjugated PLG nanoparticles. Mice treated with either PLG-

PLP-Hi or PLG-PLP-Lo both had significantly lower scores compared to mice treated with PLG-

OVA-Hi. Additionally, scores of mice treated with PLG-PLP-Hi were significantly lower than 

those of mice treated with PLG-PLP-Lo (**p < 0.01, ***p < 0.001, ****p < 0.0001, Mann-

Whitney test). Each group had 5-6 mice and was representative of three separate experiments. 

Arrow indicates administration of peptide-conjugated PLG nanoparticles at day 7. 
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4.4.2 Cell signaling response following nanoparticle internalization  

Nanoparticle internalization, a pre-requisite for antigen processing and presentation, was 

examined by administering PLG nanoparticles conjugated with fluorescein (PLG-FITC) to APCs 

for 24 h. Both MΦs and DCs exhibited high levels of fluorescence following quenching of 

extracellular fluorophores, indicating large amounts of nanoparticle internalization. (Figs 4.2a, 

b) To further confirm nanoparticle internalization, MΦs and DCs were treated with cytochalasin 

D to restrict cell internalization. Following treatment with PLG-FITC and quenching, these cells 

had low fluorescence signal, similar to that of untreated cells.  

The internalization kinetics were measured following treatment with a range of PLG-FITC 

doses. At a low dose of PLG-FITC (1 μg/mL), the percentage of APCs with nanoparticle 

internalization increased at a steady rate over 24h. Higher doses of PLG-FITC, at 10 and 100 

μg/mL, caused the percentage of APCs with nanoparticle internalization to increase 

exponentially within a few hours of treatment and level off by 24h. (Figs 4.2c, d) MΦs showed a 

moderate advantage over DCs in their internalization of PLG nanoparticles independent of dose 

administered. 

The quantity of nanoparticles internalized per cell was evaluated using mean fluorescent 

intensity (MFI). After 24h of PLG-FITC treatment at 1, 10, or 100 μg/mL, the MFI of MΦs was 

34.1 ± 2.3, 112.5 ± 13.1, or 301.7 ± 27.8, respectively. The MFI of DCs under the same dosing 

regimen yielded MFI values of 37.0 ± 3.8, 141.9 ± 36.9, or 268.3 ± 9.3. (Figs 4.2e, f) Overall, 

these studies indicated a strong correlation between the nanoparticle dose and the quantity of 

internalized nanoparticles. Taken together, these results indicate that MΦs and DCs had similar 

phagocytic capacity for internalizing PLG nanoparticles. 
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Figure 4.2 Macrophages and dendritic cells rapidly internalize PLG nanoparticles. Antigen-

presenting cells administered PLG nanoparticles surface-conjugated with fluorescein (FITC). 

Extracellular fluorescence was quenched using trypan blue before flow cytometry analysis. (a, b) 

High fluorescence intensity was observed in cells 24 h after PLG-FITC treatment. Cells 

administered PLG-FITC in the presence of cytochalasin D had low fluorescence intensity, 

equivalent to the intensity of cells not administered PLG-FITC. (c, d) The percentage of cells 

with detectable nanoparticle internalization and (e, f) the mean fluorescence intensity after 2 and 

24h of treatment with 1, 10, or 100 μg/mL of PLG-FITC. Macrophages in a, c, e and dendritic 

cells in b, d, f. Data show averages of three measurements ± standard error of mean (SEM). 
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Dynamic activity profiles of immune-related transcription factor activity were used to 

identify signaling pathways activated for delivery of OVA323-339 antigen by nanoparticles relative 

to soluble peptide. The activity of 14 transcription factors was analyzed using a TRanscriptional 

Activity CEll aRray (TRACER).   Several members of the signal transducer and activator of 

transcription (STAT) family were examined, which showed PLG-OVA treatment significantly 

decreased STAT-1 activity in DCs and significantly increased STAT-3 activity relative to 

soluble OVA323-339 treatment in both cell types. (Fig 4.3a-d)The decrease in STAT-1 activity 

correlates with less signaling through the IFN-γ receptor, while the increase in STAT-3 activity 

indicates higher IL-10 receptor activity. Further transcription factor analysis included AP-1, NF-

KB, and RUNX1, all of which had increased activity in both cell types in response to PLG-OVA 

compared to soluble OVA323-339 treatment. (Fig 4.3e-j) The activity changes in these factors 

suggest increased cell differentiation and activation.  
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Figure 4.3 Cell signaling activity following soluble or nanoparticle-mediated antigen 

delivery. Dynamic activity of several transcription factors in the hours following APC treatment 

with either nanoparticle-conjugated (PLG-OVA-Lo or PLG-OVA-Hi) or soluble OVA323-339. (a, 

b) STAT-1 activity did not change in MΦs, but significantly decreased in DCs at later time 

points following treatment with nanoparticle-conjugated OVA323-339. (c, d) STAT-3 significantly 

increased in both MΦs and DCs administered nanoparticle-conjugated OVA323-339. (e-j) AP-1, 

NF-KB, and RUNX1 were all significantly increased following treatment with nanoparticle-

conjugated compared to soluble treatment of OVA323-339. Macrophages in a, c, e, g and dendritic 

cells in b, d, f, h. Data show averages of four measurements ± standard error of mean (SEM). 
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4.4.3 Peptide-conjugated nanoparticles deliver functional antigen to APCs  

Functional availability of surface MHC-restricted antigen for T cell signaling was 

measured by co-culturing nanoparticle-treated APCs with naïve CD4+ T cells specific for 

OVA323-339. Activated MΦs and DCs were administered 100 μg/mL of blank or antigen-

conjugated nanoparticles, or an equivalent dose of soluble OVA323-339. The percentage of T cells 

undergoing proliferation was negligible in all conditions involving co-culture with MΦs. (Fig 

4.4a) T cells co-cultured with untreated DCs or DCs administered PLG nanoparticles also had 

negligible proliferation. (Fig 4.4b) However, administering soluble OVA323-339 resulted in 89.2% 

of T cells dividing, while administering PLG-OVA-Lo or PLG-OVA-Hi resulted in 94.9% or 

94.5% of T cells dividing, respectively. These results demonstrated the efficacy of antigen 

delivery from PLG nanoparticles to trigger a T cell response, as well as the greater potency of 

DCs compared to MΦs for signaling to T cells. 
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Figure 4.4 T cell signaling potential of macrophages and dendritic cells. T cell proliferation 

following 3d of co-culturing naïve T cells, isolated from OT-II transgenic mice, with (a) 

macrophages or (b) dendritic cells pre-treated 24h with either soluble OVA323-339, blank 

nanoparticles, or nanoparticles conjugated with high or low levels of OVA323-339. Data is 

representative of three separate experiments.  
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We subsequently used a peptide of I-Eα (Eα52-68) to examine the APC surface for MHC-

restricted antigen. Similar to both OVA323-339 and PLP139-151, Eα52-68 forms complexes with MHC 

class II molecules for presentation on the APC surface to CD4+ T cells. The advantage of Eα52-68 

is the availability of a monoclonal antibody (Y-Ae) that only binds Eα52-68 when complexed to 

MHC, allowing identification of cell subpopulations participating in antigen presentation.[95] 

Detection of surface MHC-restricted antigen was dose-dependent with the administered amount 

of either free peptide or peptide-conjugated nanoparticle. After soluble Eα52-68 was administered 

at 0.1, 1, or 10 μg/mL for 24 h, the MΦ percentages with detectable MHC-restricted antigen 

were 0.9 ± 0.1%, 1.4 ± 0.1%, and 1.1 ± 0.1%, and the corresponding DC percentages were 0.6 ± 

0.1%, 2.7 ± 0.1%, and 15.1 ± 0.1%. (Figs 4.5a, b) These results reflect a positive correlation 

between amount of antigen administered and antigen presentation levels. When PLG-Eα-Lo was 

administered at 1, 10 or 100 μg/mL, the MΦ percentages with detectable MHC-restricted antigen 

were 1.3 ± 0.1%, 1.8 ± 0.1, and 3.8 ± 0.3% and the corresponding DC percentages were 0.4 ± 

0.1%, 1.8 ± 0.2%, and 19.4 ± 1.0%. (Figs 4.5c, d) Administering PLG-Eα-Hi at the same doses 

as PLG-Eα-Lo, MΦ percentages with detectable MHC-restricted antigen were 1.3 ± 0.1%, 2.0 ± 

0.1%, and 7.1 ± 0.4%. (Fig 4.5e) Similarly, DC percentages were 0.8 ± 0.1%, 3.2 ± 0.1%, and 

24.9 ± 1.4%. (Fig 4.5f) Both nanoparticle dose and levels of antigen conjugation to nanoparticles 

correlated with the percentage of cells with detectable MHC-restricted antigen. Although similar 

amounts of PLG-FITC was internalized among the APCs as seen in Figure 4.2, DCs were more 

efficient than MΦs for antigen processing and presentation. Moreover, comparing similar total 

quantities of antigen delivery, nanoparticle-mediated antigen delivery resulted in higher cell 

percentages of antigen presentation relative to soluble antigen delivery. 
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Figure 4.5. Dose-dependent correlation between antigen delivered and cell surface antigen 

presentation. Percentage of cells with detectable Eα52-68 loaded on major histocompatibility 

complex (MHC) class II molecules after 24h of treatment with (a, b) 0.1, 1, or 10 μg/mL of 

soluble Eα52-68, (c, d) 1, 10, or 100 μg/mL of PLG-Eα-Lo, or (e, f) 1, 10, or 100 μg/mL of PLG-

Eα-Hi. Macrophages in a, c, e and dendritic cells in b, d, f. Data show averages of three 

measurements ± standard error of mean (SEM). 
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4.4.4 Reduced APC expression of positive co-stimulatory molecules 

APC expression of CD86, CD80, CD40, and PD-L1, co-stimulatory molecules influencing 

the T cell response, were evaluated alongside antigen presentation. The ability to identify APC 

subpopulations expressing MHC-restricted Eα52-68 enabled focusing analysis on cells exhibiting 

antigen presentation and thereby capable of signaling to T cells. Soluble Eα52-68 administered at 

increasing doses to MΦs resulted in no significant changes to co-stimulatory expression. 

However, DCs exhibited a modest, but significant increase in the percentage of CD86-positive 

cells when the dose of soluble Eα52-68 increased from 0.1 to 10 μg/mL. (Figs 4.6a-b)  

Treatment with peptide-conjugated nanoparticles had a more noticeable effect on APC co-

stimulatory expression. PLG-Eα-Lo administered at 100 μg/mL to MΦs significantly reduced 

CD86 and CD80 expression compared to their levels at either 1 or 10 μg/mL. (Fig 4.6c) 

However, PLG-Eα-Lo treatment did not significantly affect co-stimulatory expression in DCs. 

(Fig 4.6d) Interestingly, PLG-Eα-Hi elicited more significant reduction of co-stimulatory 

molecules at lower doses than PLG-Eα-Lo. Among MΦs, PLG-Eα-Hi reduced CD86 and CD80 

expression at 10 μg/mL compared to their levels at 1 μg/mL, and again at 100 μg/mL compared 

to their levels at both 1 and 10 μg/mL. (Fig 4.6e) Among DCs, administering PLG-Eα-Hi 

significantly reduced CD86 at 10 and 100 μg/mL compared to their levels at 1 μg/mL, although a 

significant increase in CD86 occurred between 10 μg/mL and 100 μg/mL. (Fig 4.6f) 

Additionally, PLG-Eα-Hi resulted in significant reduction of CD80 between 10 and 100 μg/mL 

compared to its levels at 1 μg/mL. Further, PLG-Eα-Hi reduced CD40 levels at 100 μg/mL 

compared to its levels at 1 and 10 μg/mL. Expression of the negative co-stimulatory molecule 

PD-L1 was unchanged in all treatment conditions. Nanoparticle doses exceeding 100 μg/mL 

resulted in reduced APC viability and thus were not studied further.   
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Figure 4.6 Effects of peptide-conjugated nanoparticles on expression of cell surface 

molecules. (a, b) Increasing the dose of soluble Eα52-68 from 0.1 to 10 μg/mL had no detectable 

changes in MΦs, but a significant increase of CD86 was detected in DCs. (c, d) Higher doses of 

PLG-Eα-Lo significantly lower percentages of cells expressing CD86 and CD80 in MΦs 

compared to lower doses, but there were no significant differences in DCs. (e) Higher doses of 

PLG-Eα-Hi also led to significantly lower percentages of MΦs expressing CD86 and CD80 
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compared to lower doses. (f) Among DCs, higher doses of PLG-Eα-Hi resulted in significantly 

lower cell percentages expressing CD86, CD80, and CD40. No significant changes to PD-L1 

were detected following a dose increase of any treatment condition tested. (*p < 0.05, **p < 

0.01, ***p < 0.001, ****p < 0.0001, 2-way ANOVA followed by the Tukey test for multiple 

comparisons). Macrophages in a, c, e and dendritic cells in b, d, f. Data show averages of three 

measurements ± standard error of mean (SEM).  

 

  



46 
 

Collectively, these observations indicate that nanoparticle-mediated antigen delivery, 

particularly at the greater antigen loading (PLG-Eα-Hi), reduced expression levels of positive co-

stimulatory molecules involved in activating T cell effector responses. When Eα52-68 was 

administered directly to APCs, the subpopulations expressing MHC-restricted antigen showed no 

changes in co-stimulatory expression, even as the peptide dose was increased. However, the 

percentage of cells expressing positive co-stimulatory expression decreased with higher doses of 

peptide-conjugated nanoparticles, suggesting a critical role for nanoparticle-mediated peptide 

delivery to reduce APC co-stimulation. Notably, the trends in co-stimulatory expression 

following antigen-conjugated PLG nanoparticle administration were observed only on the cell 

subpopulations expressing antigen identified through the use of Eα52-68 and the corresponding Y-

Ae antibody.  

4.4.5 Proliferation, apoptosis, and cytokine levels in co-cultures with T cells  

T cell activity was examined following isolation from mice immunized against PLP139-151 

and subsequent co-culture with nanoparticle-treated APCs. T cells co-cultured with MΦs 

administered 100 μg/mL of either PLG-PLP-Lo or PLG-PLP-Hi had reduced levels of 

proliferation compared to untreated MΦs. No significant changes in proliferation were measured 

in T cells co-cultured with MΦs administered soluble PLP139-151 or unmodified PLG compared to 

untreated MΦs. (Fig 4.7a) T cells co-cultured with DCs administered either PLP139-151, 

unmodified PLG, PLG-PLP-Lo, or PLG-PLP-Hi had similar levels of proliferation as T cells co-

cultured with untreated DCs. (Fig 4.7b) Levels of interleukin-10 (IL-10), an anti-inflammatory 

cytokine, were undetectable among T cells co-cultured with MΦs regardless of the treatment. 

(Fig 4.7c) However, levels of IL-10 significantly increased among T cells co-cultured with DCs 

treated with PLG or PLG-OVA-Hi compared to treatment with PLP139-151. The IL-10 levels were 
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more significantly increased among T cells co-cultured with DCs administered PLG conjugated 

with disease-relevant antigen (PLG-PLP-Hi and PLG-PLP-Lo) compared to T cells co-cultured 

with DCs administered PLP139-151. (Fig 4.7d). 

T cell fate following co-culture with DCs was further evaluated for apoptosis. The 

percentage of T cells undergoing apoptosis did not significantly change when co-cultured with 

DCs administered increasing doses of PLG-PLP-Lo (Fig 4.8a). However, treatment with 

increasing doses of PLG-PLP-Hi resulted in a significant increase in T cell apoptosis at 100 

μg/mL compared to 1 μg/mL of PLG-PLP-Hi. (Fig 4.8b). Results of the T cell co-culture studies 

suggest different tolerance mechanisms, which include proliferation, apoptosis, and cytokine 

production, used by MΦs and DCs to attenuate the activity of T cells contributing to EAE 

disease course. 
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Figure 4.7 Changes in T cell proliferation and anti-inflammatory cytokine expression. (a) T 

cells isolated from mice immunized against PLP139-151 had significantly reduced proliferation 

following 5 d of co-culture with MΦs administered 100 μg/mL of either PLG-PLP-Hi or PLG-

PLP-Lo compared to MΦs administered no treatment. (b) T cell proliferation was not 

significantly changed in co-culture with DCs administered either soluble antigen or nanoparticle 

treatment. (c) IL-10 was largely undetectable in T cell co-cultures with MΦs. (d) T cells co-

cultured with DCs treated with nanoparticles had significant increases of IL-10 compared to DCs 

administered soluble PLP139-151. The increase of IL-10 was more significant when DCs were 

treated with nanoparticles conjugated with PLP139-151, the T cell-specific antigen. (*p < 0.05, 

***p < 0.001, ****p < 0.0001, 1-way ANOVA followed by the Tukey test for multiple 

comparisons) Data show averages of two to three measurements ± standard error of mean 

(SEM). 
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Figure 4.8 Effects of nanoparticle dose and antigen conjugation levels on T cell apoptosis. T 

cells isolated from mice immunized against PLP139-151 and co-cultured 5 d with DCs 

administered (a) PLG-PLP-Lo or (b) PLG-PLP-Hi. Increasing the nanoparticle dose of PLG-

PLP-Lo had no significant difference in the percentage of T cells with positive Annexin V 

staining, indicating apoptosis. However, increasing the nanoparticle dose of PLG-PLP-Hi from 1 

to 100 μg/mL resulted in significant increase of the percentage of T cells with positive Annexin 

V staining. Data show averages of two to three measurements ± standard error of mean (SEM). 

(*p < 0.05, 1-way ANOVA followed by the Tukey test for multiple comparisons).  
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4.5 Discussion 

Peptide-conjugated nanoparticles have been used by several groups to prevent or treat EAE 

via a targeted, antigen-specific approach.[76, 81, 92] Consistent with these reports, herein, we 

found nanoparticles conjugated with disease-relevant peptide (PLP139-151) significantly improved 

EAE prognosis compared to nanoparticles conjugated with disease-irrelevant peptide (OVA323-

339). Our low nanoparticle dose (1.25 mg) did not provide the complete knock-down of EAE 

disease score as was seen with the high nanoparticle dose (2.0 mg). We further explored the 

impact of antigen conjugation levels, observing EAE relapse in later stages of the disease course 

following treatment with PLG-PLP-Lo. This relapse was abrogated by treatment with PLG-PLP-

Hi, which contained approximately twice the amount of PLP139-151. EAE relapses have been 

reported to result from epitope spreading, when the immune system recognizes an increasing set 

of myelin epitopes. [96, 97] Previous comparisons of CNS cell populations following treatment 

with PLG-PLP for EAE showed a reduction of total lymphocytes, total APCs, MΦs, and DCs 

relative to treatment with PLG-OVA.[92] It is likely the tolerance induction by PLG-PLP-Hi was 

more effective to curtail the immune response during early stages of EAE compared to PLG-

PLP-Lo, which prevented the generation of epitope spreading and the subsequent relapse. 

Many differences in transcription factor activity were detected between APCs administered 

soluble antigen and APCs administered antigen-conjugated nanoparticles. We examined several 

members of the STAT protein family, which play major roles in immune regulation. [98] STAT-

1 activation is well-known for mediating interferon signaling to promote inflammation, while 

STAT3 has been reported to negatively regulate interferon responses. [99] We observed a 

decrease in STAT-1 activity along with an increase of STAT-3 activity, suggesting cell 

internalization of antigen conjugated to nanoparticles suppressed interferon-related cell 
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signaling. We also examined the activity of RUNX1 which synergizes with C/EBPβ and PU.1 to 

drive expression of microRNA-142 which regulates immunity. [100] However, when innate 

immune receptors such as TLR4 are triggered, AP-1 and NF-KB activity increases and 

negatively regulate microRNA-142 expression. We hypothesize that the higher intensity of 

RUNX1 detected would suggest a compensatory response of APCs to the AP-1 and NF-KB 

activity resulting from nanoparticle treatment. However, the complex interplay of intracellular 

immune signaling pathways will require further investigation to identify those pathways driving 

the phenotypic response. 

Both MΦs and DCs internalized large amounts of nanoparticles, yet DCs showed much 

higher efficiency for antigen presentation. Additionally, when equivalent amounts of total 

antigen was delivered, higher levels of antigen presentation were detected on cells administered 

nanoparticles relative to soluble treatment. DCs have a reputation as the primary APCs for T cell 

signaling, due to DCs having a higher surface density of MHC-II molecules compared to MΦs. 

[21] Peptide-MHC complexes on the cell surface are crucial for signaling to T cells,[101] which 

may explain the high rates of naïve T cell proliferation observed in co-cultures with DCs not 

seen in co-cultures with MΦs. The studies with Eα52-68 revealed lower percentages of APCs with 

detectable MHC-restricted antigen presentation compared to PLG-Eα treatments that delivered 

similar amounts of antigen. Moreover, nearly every cell internalized nanoparticles, but only a 

portion had detectable levels of antigen presentation. Studies of class I presentation have also 

reported low efficiency for antigen presentation wherein a 100-fold increase in the quantity of 

antigen delivered resulted in a less than two-fold increase of antigen presentation.[102] The class 

I and class II presentation pathways differ primarily by whether antigen escapes the endosome 

into the cytosol, or remains within the endosome until reaching the lysosome. Interestingly, using 
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a reducible chemical bond to link antigen with polymer nanoparticles resulted in a significant 

increase in class I antigen presentation compared to using a non-reducible bond.[103] Therefore 

tuning the linker strength between the antigen and polymer may have implications to augment 

class II presentation from nanoparticles. 

Co-culturing autoreactive T cells with nanoparticle-treated APCs resulted in several 

indications of immune suppression. The onset of EAE occurs via autoreactive T cells producing 

large amounts of pro-inflammatory cytokines, including IFNγ.[104] However, EAE disease 

course can be tempered by the stimulated production or addition of IL-10.[76, 105] 

Administering either PLG-PLP-Hi or PLG-PLP-Lo to APCs likely resulted in reduced 

expression of co-stimulatory molecules as seen with administering PLG-Eα-Lo and PLG-Eα-Hi. 

When these APCs were co-cultured with autoreactive T cells, the presence of antigen without co-

stimulation caused T cells to enter a state of unresponsiveness.[106] We detected this state by an 

absence of T cell proliferation and increase in T cell apoptosis. The increases in IL-10 

concentration further suggest the activation of tolerance signaling pathways.  

Collectively, these results identify cell types and mechanisms contributing to antigen-

specific tolerance in animal models of R-EAE following nanoparticle treatment. We correlated 

the delivery of antigen-conjugated nanoparticles with surface levels of class II antigen 

presentation, expression of positive and negative co-stimulatory factors, and subsequent T cell 

proliferation or apoptosis. Furthermore, the assays used herein provide useful tools to evaluate 

the efficiency of nanoparticle designs for antigen delivery, APC phenotype shifting, and T cell 

activation, which may be useful to identify future formulations with greater potential to induce 

antigen-specific immune tolerance. 
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Chapter 5: The Role of NF-KB Signaling Due to Antigen-Coupled Nanoparticles or Cells 

Administered for Antigen-Specific T Cell Tolerance 

5.1 Abstract 

Reintroducing self-reactive antigen coupled to an antigen delivery vehicle has been shown 

to induce rapid and long-lived immune tolerance in models of autoimmune diseases. Several 

platforms have emerged as antigen delivery vehicles, including donor cells and synthetic 

nanoparticles. Both types of vehicles coupled with OVA323-339 antigen were administered to 

antigen-presenting cells prior to co-culture with OVA323-339-specific T cells. Macrophages were 

not sensitive to vehicle type, however, treating dendritic cells with antigen-coupled splenocytes 

(SP-OVA) reduced T cell proliferation and expression of IL-2Rα while enhancing T cell 

apoptosis and expression of L-selectin, indicators of tolerance. Inhibiting NF-KB signaling 

activity in macrophages led to major changes in the T cell response, but NF-KB disruption in 

dendritic cells had minimal effects. Signaling activity in antigen-presenting cells following 

antigen delivery was measured using TRanscriptional Activity CEll aRray (TRACER). Network 

analysis showed NF-KB played a critical role for maintaining network connectivity in 

macrophages. Moreover, the activity of transcription factors, PPAR and CEBP, were shown to 

be highly interconnected following treatment with SP-OVA which suggests their activity may 

provide more efficient induction of T cell tolerance.  
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5.2 Introduction 

Self-reactive T cells that respond to autoantigens are normally found in the healthy T cell 

repertoire. Stringent T cell activation barriers are typically sufficient to maintain tolerance, but 

autoimmunity may still occur in instances such as following an infection that introduces 

pathogenic antigen cross-reactive with autoantigens. [107, 108] Activated T cells can be 

characterized by rapid proliferation, high expression of CD25 (IL-2Rα chain), and low 

expression of CD62L (L-selectin). [109] Cytokine expression is also an important indicator of T 

cell response, as increased GM-CSF levels have been implicated in T cell-mediated autoimmune 

pathogenesis, while IL-10 secretion assists in suppressing autoimmune responses. [32, 110] 

Typical autoimmune treatments have focused on global immune suppression, however the 

harmful side effects from disrupting immune competency has provided strong motivation for 

developing antigen-specific interventions. These approaches involve reintroducing an 

autoantigen in such a way that skews the immune response against the autoantigen towards 

tolerance. [111] One of the earliest antigen-specific approaches developed was hyposensitization 

therapy to bring about allergen desensitization. [112] Low doses of allergen were subcutaneously 

injected directly into the patient, and over time, the dose was slowly increased. While effective, 

the extended treatment window and risk for anaphylaxis limited its clinical adoption. 

The use of delivery vehicles to reintroduce autoantigens has been effective to induce rapid 

and long-lived immune tolerance. One type of vehicle is a donor cell, such as splenocytes, onto 

which autoantigens have been attached via chemical coupling which has induced tolerance in 

models of autoimmunity, allergy, and transplant rejection. [113] Another form of antigen 

delivery vehicle is a synthetic nanoparticle. Nanoparticles represent a versatile platform that can 

be modified in size and shape to target specific tissues and cell types. Functional groups on the 
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nanoparticle surface also allow for autoantigen attachment via chemical coupling and these 

antigen-coupled nanoparticles have also induced tolerance in models of autoimmunity. [4] 

Both cell- and nanoparticle-mediated antigen delivery have demonstrated ability to induce 

tolerance, but direct comparisons of their mechanisms of action have yet to be explored. To 

effect tolerance induction, donor cells represent a more desirable delivery vehicle, as the immune 

system has many inherent homeostatic strategies to recognize cells and suppress an immune 

response. [114] The advantage of nanoparticles as a delivery vehicle is their ease of synthesis 

and storage. However, as a relatively inert platform, nanoparticles likely function primarily as an 

antigen depot, engaging tolerance mechanisms limited in scope to the antigen presentation 

process.  

The following investigation applies an in vitro model of T cell activation to examine the 

impact of different vehicles for delivering antigen and inducing tolerance. Antigen-coupled cells 

(SP-OVA) or nanoparticles (PLG-OVA) are administered to antigen-presenting cells (APCs), 

either macrophages or dendritic cells, prior to their co-culture with activated T cells. Following 

co-culture, the T cell response is analyzed and the co-culture environment is profiled for 

cytokine expression. Using TRanscriptional Activity CEll aRray (TRACER), we measure the 

activity of immune-related transcription factors in APCs following antigen treatment. The results 

are used to construct networks that infer interactions among the transcription factors measured. 

Comparing the network activity of cells following antigen delivery will reveal common or 

distinct signaling pathways activated by the different vehicles that contribute to tolerance 

induction. 
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5.3 Materials and Methods 

5.3.1 Mice 

Female 6 to 12 week old C57BL/6 mice were purchased from Charles River Laboratories 

(Wilminton, MA). OT-II mice, transgenic for a TCR specific to OVA323-339, were purchased 

from the Jackson Laboratory and subsequently bred in-house. All experiments involving mice 

were approved by the University of Michigan Committee on the Use and Care of Animals.  

5.3.2 Preparation of donor splenocytes 

Spleens from healthy C57BL/6 mice were harvested and passed through a 100 μm nylon 

membrane to generate a single cell suspension. After RBC lysis, cells were washed with 

phosphate buffer solution (PBS) and reconstituted at 3.2 x106 cells/mL. 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide and OVA323-339 were added at final concentrations of 30 

mg/mL and 1 mg/mL, respectively. Chemical reaction proceeded for 1 h at 4°C under constant 

agitation. Cells were then washed three times with PBS and filtered through a 70 μm nylon 

membrane. 

5.3.3 Preparation of nanoparticles 

PLG nanoparticles were prepared using a single emulsion-solvent evaporation method as 

previously described. [92] Briefly, PLG purchased from Lactel Absorbable Polymers 

(Birmingham, AL) was dissolved at 20% (w/v) in dichloromethane. Poly(ethylene-alt-maleic 

acid) (PEMA) was purchased from Polysciences, Inc. (Warrington, PA) and reconstituted in 

water at 1% (w/v). Sonicating a mixture of the PLG and PEMA produced nanoparticles, which 

following solvent evaporation, were washed three times and finally lyophilized in a solution of 

4% w/v sucrose and 3% w/v D-mannitol. Nanoparticle size and ζ-potential were measured using 

a Zetasizer Nano ZSP from Malvern Instruments Ltd (Worcestershire, UK). 
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Lyophilized PLG nanoparticles were washed three times using PBS. Approximately 4 mg 

of PLG nanoparticles was recovered and activated using 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC) at 16 mg/mL. OVA323-339 was immediately added at 1 mg/mL. The coupling 

reaction proceeded for 1 h under constant agitation. Uncoupled peptide was removed with three 

PBS washes.  

5.3.4 T cell co-cultures with pre-treated APCs 

A primary population of macrophages and dendritic cells was obtained as described 

previously. [90, 115] Briefly, bone marrow was harvested from femurs and tibias of C57BL/6 

mice and differentiated in vitro. Between 8 to 10 days following harvest, cells were seeded at 

approximately 2.5 x 105 cells/mL in 60 mm untreated dishes and activated with 

lipopolysaccharide (LPS) at 100 ng/mL. The next day, cells were treated with 10 μg/mL of free 

peptide, 100 μg/mL of peptide-conjugated nanoparticles, or a 5:1 ratio of peptide-conjugated 

splenocytes to cells for 24 h before co-culturing with naïve T cells. BAY 11-7085, a small 

molecule targeting NF-KB activity was purchased from Cayman Chemical (Ann Arbor, MI) and 

used at 50 μM. 

Naïve T cells were obtained from spleen and lymph nodes (axillary and inguinal) of OT-II 

mice using the Naïve CD4+ T Cell Isolation Kit, according to manufacturer specifications 

(Miltenyi Biotec, San Diego, CA). Purified T cells were stained with carboxyfluorescein 

succinimidyl ester (CFSE) purchased from Life Technologies (Carlsbad, CA) and mixed at a 2:1 

ratio with either macrophages or dendritic cells in RPMI 1640 supplemented with 10% FBS, 

4mM L-glutamine, 1x non-essential amino acids, 1 mM sodium pyruvate, and 50 μM 2-

mercaptoethanol. Cells were seeded at 6.0 x 105 cells/mL in 24-well plates pre-treated for 2 h 

with αCD3 (10 ng/mL) and αCD28 (2 ng/mL). 
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Cells were collected after 4 days of culture for flow analysis. Fc receptors were first 

blocked with TruStain fcX before staining with L-selectin-APC, IL-2Rα-PE, and CD4-APC-

eFluor 780 (eBioscience). Viability was measured using Annexin V-Pacific Blue. Except when 

indicated, all flow antibodies were purchased from BioLegend (San Diego, CA). Fluorescence 

signal was measured using a CyAn ADP Analyzer manufactured by Beckman Coulter (Brea, 

CA), and data was analyzed using FlowJo v10. Cellular events were gated using forward scatter 

and side scatter. FMO controls were then used to identify cells with positive signal. Cytokine 

concentrations in the culture media were analyzed using ELISA kits from R&D Systems 

(Minneapolis, MN). 

5.3.5 TRACER experiments 

Cells were aliquoted for separate batch infection with each lentiviral reporter. One μL of 

virus at approximately 1 x 109 IU/mL was administered per 25,000 cells. Cell and virus mixtures 

were seeded into black 96-well plates at 2.5 x 106 cells/mL and cultured for at least 48 h.  Fresh 

media was replaced containing 1 mM D-luciferin (Perkin Elmer) and 100 ng/mL 

lipopolysaccharide (Sigma). Bioluminescence measurements were acquired at 2.5, 5, 8, 18, 24, 

and 27 h post-seeding using an IVIS Lumina LTE camera system (Perkin Elmer, Waltham, MA, 

USA). A minimum of three technical repeats was performed for each reporter. 

5.3.6 Network analysis 

Network analysis of TRACER measurements was performed using NTRACER, as 

described previously. [93] Briefly, normalized activity measurements were mean centered and an 

initial net topology was inferred using several linear and non-linear techniques. The network 

architecture was optimized with CellNOptR and a total of 500 runs was performed. Edge 

significance was determined by comparing the number of edge occurrences in the 500 optimized 
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networks to 500 networks generated from permutation samples from the same data. Significance 

was determined by a p-value of 10-6. Features were selected from the top 10% of significant 

edges at each set of time points to ensure high-quality edge selection. Networks were visualized 

using the R package, iGraph. 

5.4 Results 

5.4.1 Antibody stimulation activates T cells in co-culture with treated APCs 

Macrophages administered different treatments were subsequently co-cultured with naïve T 

cells isolated from OT-II mice. In the absence of stimulating antibodies (αCD3 and αCD28), T 

cells had low expression levels of IL-2Rα, an activation marker, and high levels of L-selectin, an 

inactivation marker following co-culture with untreated macrophages. (Fig 1a, b) The presence 

of stimulating antibodies resulted in T cell activation, as measured by a significant increase of 

IL-2Rα, when either soluble OVA or BAY 11-7085 (a compound that prevents NFkB activation) 

was used to treat macrophages. L-selectin was significantly decreased among T cells co-cultured 

with macrophages treated with BAY 11-7085. T cell apoptosis, measured by Annexin V, did not 

change in response to stimulating antibodies or macrophage treatment with soluble OVA, but 

stimulating antibodies and macrophages treatment with BAY 11-7085 resulted in a significant 

increase of T cell apoptosis. (Fig 1c) Dilution of carboxyfluorescein succinimidyl ester (CFSE) 

to indicate T cell proliferation was low in the absence of stimulating antibodies. However, 

proliferation increased dramatically when stimulating antibodies were added, and proliferation 

was moderately higher when macrophages were treated with OVA compared to BAY 11-7085. 

(Fig 1d) 

Naïve T cells were also co-cultured with dendritic cells receiving various treatments. In the 

absence of stimulating antibodies, T cells had low IL-2Rα and high L-selectin expression 
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following co-culture with untreated dendritic cells. (Fig 1e, f) The presence of stimulating 

antibodies, regardless of dendritic cell treatment, resulted in a significant increase of IL-2Rα and 

a decrease of L-selectin, signifying T cell activation. A small significant increase of T cell 

apoptosis occurred in the presence of stimulating antibodies and dendritic cells treated with 

soluble OVA compared to the absence of stimulating antibodies or treating dendritic cells with 

BAY 11-7085. (Fig 1g) T cell proliferation increased dramatically when stimulating antibodies 

were present, with negligible differences between T cells co-cultured with dendritic cells 

receiving soluble OVA or BAY 11-7085 treatment. (Fig 1h) 

These studies confirmed the use of stimulating antibodies for mimicking T cell activation 

and also described the impact of treating APCs with BAY 11-7085 to inhibit NF-KB signaling 

activity. In co-culture with macrophages or dendritic cells, T cells had low IL-2Rα and high L-

selectin expression in the absence of antibody stimulation, which were reversed when 

stimulating antibodies were added. Interestingly, pre-treatment of macrophages but not dendritic 

cells with BAY 11-7085 had a significant impact on expression of L-selectin, apoptosis, and 

proliferation of T cells. This difference suggests a more critical role of NF-KB signaling in 

macrophages compared to dendritic cells for promoting T cell entry into lymph nodes, viability, 

and proliferation.  
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Figure 5.1 T cell response following antibody stimulation in co-culture with treated APCs. Co-

culture of T cells with (a-d) macrophages or (e-h) dendritic cells administered the indicated 

treatment combinations. T cell expression of IL-2Rα in a, e, T cell surface expression of L-

selectin in b, f, T cell apoptosis in c, g, and T cell proliferation in d, h. (*p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001, 1-way ANOVA followed by the Tukey test for multiple 

comparisons). Data show averages of three measurements ± standard error of mean (SEM) or 

representative population sample. 
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5.4.2 Cytokine profile from co-cultures of T cells and treated APCs 

The co-culture cytokine profile revealed a strong sensitivity of macrophage treatment with 

BAY 11-7085. Naïve T cells co-cultured with untreated macrophages in the absence of 

stimulating antibodies had undetectable levels of GM-CSF, IFN-γ, and IL-10. (Fig 2a-c) The 

presence of stimulating antibodies and macrophages treated with soluble OVA resulted in a 

small increase of IFN-γ, although GM-CSF and IL-10 expression levels were still unchanged. A 

notable increase of GM-CSF, IFN-γ, and IL-10 was measured in co-cultures of T cells and 

macrophages treated with BAY 11-7085 in the presence of stimulating antibodies. 

Stimulating antibodies and treatment of dendritic cells both influenced the cytokine profile 

in the co-culture environment. In the absence of stimulating antibodies, T cells co-cultured with 

untreated dendritic cells had undetectable levels of GM-CSF, IFN-γ, and IL-10. (Fig 2d-f) 

Adding stimulating antibodies and treating dendritic cells with soluble OVA resulted in 

significant increases of the measured cytokine levels. A significant increase of these three 

cytokines was also seen, although to a lesser extent, in co-cultures of T cells and dendritic cells 

pre-treated with BAY 11-7085 compared to co-culturing without stimulating antibodies. 
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Figure 5.2 Cytokine profile of T cells following antibody stimulation in co-culture with treated 

APCs. Cytokine expression levels in co-cultures of T cells and (a-c) macrophages or (d-f) 

dendritic cells administered the indicated treatment combinations. GM-CSF in a, d, IFN-γ in b, 

e, and IL-10 in c, f. (*p < 0.05, **p < 0.01, ****p < 0.0001, 1-way ANOVA followed by the 

Tukey test for multiple comparisons). Data show averages of three measurements ± standard 

error of mean (SEM). 
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5.4.3 Role of antigen delivery vehicle on T cell response 

The impact of delivering antigen to macrophages from different vehicles was examined via 

co-culture with naïve T cells in the presence of stimulating antibodies. IL-2Rα expression on T 

cells did not change significantly when macrophages were treated with PLG-OVA compared to 

soluble OVA. (Fig 3a) However IL-2Rα levels were significantly higher on T cells co-cultured 

with macrophages treated with SP-OVA relative to PLG-OVA. Interestingly, macrophage 

treatment with both SP-OVA and BAY 11-7085 resulted in a significant decrease of IL-2Rα 

expression by T cells compared to treating macrophages with both BAY 11-7085 and either 

soluble OVA or PLG-OVA. L-selectin expression did not change significantly due to different 

delivery vehicles, although L-selectin expression on T cells was generally lower when 

macrophages were treated with BAY 11-7085. (Fig 3b) T cell apoptosis was also not 

significantly affected by the different delivery vehicles but was notably higher when 

macrophages were treated with BAY 11-7085. (Fig 3c) T cell proliferation was not markedly 

changed in response to the different antigen delivery vehicles, but both BAY 11-7085 and either 

PLG-OVA or SP-OVA treatment of macrophages resulted in a moderate decrease of T cell 

proliferation. (Fig 3d) 

T cell co-cultures were also used to examine the impact of different antigen delivery 

vehicles on dendritic cells. T cell expression of IL-2Rα was high when dendritic cells were 

treated with soluble OVA or PLG-OVA, but treating dendritic cells with SP-OVA resulted in a 

significant decrease of IL-2Rα expression. (Fig 3e) Additionally treating dendritic cells with 

BAY 11-7085 alongside the delivery vehicles resulted in similar trends to IL-2Rα expression. L-

selectin expression on T cells was similar between co-cultures with dendritic cells treated soluble 

OVA or PLG-OVA, but treating dendritic cells with SP-OVA resulted in a significant increase of 
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L-selectin. (Fig 3f) Interestingly, the addition of BAY 11-7085 reversed the trend of L-selectin 

expression leading to a significant decrease when dendritic cells were treated with SP-OVA 

compared to soluble OVA. T cell apoptosis increased significantly when dendritic cells were 

treated with PLG-OVA compared to soluble OVA. (Fig 3g) Apoptosis was further increased in T 

cells co-cultured with dendritic cells treated SP-OVA. These trends in apoptosis were largely 

similar when dendritic cells were additionally pre-treated with BAY 11-7085. T cell proliferation 

was moderately attenuated in co-culture with dendritic cells treated with SP-OVA compared to 

soluble OVA or PLG-OVA. (Fig 3h) This attenuation due to SP-OVA was eliminated when 

dendritic cells were additionally pre-treated with BAY 11-7085. 

Different vehicles for antigen delivery had negligible impact on T cells when applied via 

macrophages. In contrast, dendritic cells treated with SP-OVA compared to soluble OVA or 

PLG-OVA elicited T cell changes consistent with tolerance, such as lower levels of IL-2Rα 

expression and proliferation, and higher levels of L-selectin expression and apoptosis. When NF-

KB signaling was inhibited in dendritic cells, the changes to T cell response brought on by 

different antigen delivery vehicles were still maintained, indicating redundancies or alternate 

signaling pathways used by dendritic cells to effect T cells. Interestingly, disruption of NF-KB 

signaling in macrophages led to dramatic changes in T cell response including decreased L-

selectin expression, decreased proliferation, and increased apoptosis.  
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Figure 5.3 T cell sensitivity to APCs treated with different antigen delivery vehicles. Co-culture 

of T cells with (a-d) macrophages or (e-h) dendritic cells administered the indicated treatment 

combinations. T cell expression of IL-2Rα in a, e, T cell surface expression of L-selectin in b, f, 

T cell apoptosis in c, g, and T cell proliferation in d, h. (*p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001, 2-way ANOVA followed by the Sidak test for multiple comparisons). Data 

show averages of three measurements ± standard error of mean (SEM) or representative 

population sample. 
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5.4.4 Role of antigen delivery vehicle on co-culture cytokine profile 

The cytokine profile resulting from co-culture of T cells and macrophages showed 

negligible differences due to antigen delivery vehicle but a strong influence of NF-KB signaling 

activity. Expression of GM-CSF, IFN-γ, and IL-10 were detected at low concentrations in co-

cultures of T cells and macrophages treated either soluble OVA, PLG-OVA, or SP-OVA. (Fig 

4a-c) When macrophages were additionally treated with BAY 11-7085, expression levels of 

these three cytokines increased substantially. 

Co-cultures of T cells and dendritic cells produced cytokine profiles indicating the 

influence of both antigen delivery vehicle and NF-KB signaling. GM-CSF expression was 

unaffected by the vehicle delivering antigen to dendritic cells. (Fig 4d-f) However, lower GM-

CSF levels were measured when dendritic cells were treated with BAY 11-7085 in addition to 

either soluble OVA or SP-OVA. Treating dendritic cells with SP-OVA compared to soluble 

OVA or PLG-OVA resulted in a significant reduction of IFN-γ that was reversed in the context 

of BAY 11-7085 treatment. Expression of IL-10 was also unaffected by the antigen delivery 

vehicle. However, additional treatment of dendritic cells with BAY 11-7085 reduced overall IL-

10 expression, although SP-OVA treatment resulted in higher IL-10 levels compared to PLG-

OVA. 
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Figure 5.4 Cytokine expression in co-cultures of T cells and APCs treated with different antigen 

delivery vehicles. T cells co-cultured with (a-c) macrophages or (d-f) dendritic cells 

administered the indicated treatment combinations. GM-CSF in a, d, IFN-γ in b, e, and IL-10 in 

c, f. (*p < 0.05, **p < 0.01, ****p < 0.0001, 2-way ANOVA followed by the Sidak test for 

multiple comparisons). Data show averages of three measurements ± standard error of mean 

(SEM). 
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5.4.5 Comparison of dynamic TF activity between antigen delivery vehicles 

TRACER was used to examine differences in APC signaling activity resulting from antigen 

delivery by different vehicles. Macrophages had a total of 50% (7/14) of examined factors that 

were significantly different between PLG-OVA and SP-OVA treatment. (Fig 5a) Of these 

factors, five were similarly different between PLG-OVA and SP-OVA treatment in dendritic 

cells. (Fig 5b) These transcription factors may be part of a common mechanism of APCs in 

response to antigen-coupled splenocyte or nanoparticle treatment. There were an additional 4 

factors whose dynamic activity in dendritic cells was significantly different between PLG-OVA 

and SP-OVA treatment, which may be part of a cell-specific response. The majority of 

transcription factors in dendritic cells following SP-OVA treatment had reduced activity over 

time, which may suggest the induction of a homeostatic or regulatory cell phenotype. 

 

  



70 
 

 

Figure 5.5 Dynamic transcription factor activity of APCs following antigen treatment. TRACER 

measurements of (a) macrophages or (b) dendritic cells in the hours following treatment with 

PLG-OVA or SP-OVA. Significance tests compared the PLG-OVA and SP-OVA treatments 

within each cell type. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, normalized 

activities were fitted to an empirical hierarchical Bayesian linear model). Data show averages of 

two separate experiments. 
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5.4.6 Inference networks of TF activity between antigen delivery vehicles 

Signaling networks were constructed using inference methods to analyze the TRACER 

studies and identify potential interactions among the transcription factors examined. The 

networks resulting from macrophages and dendritic cells treated with PLG-OVA depicted the 

majority of transcription factors with few interaction partners and a few key transcription factors 

serving as bridges to link the entire network together. (Fig 6a, b) These linking factors included 

NF-KB and AP-1 in macrophages and RUNX1, IRF-1, and AP-1 in dendritic cells, which are 

likely important signaling molecules to determine cell activity and response to PLG-OVA 

treatment. Networks built from macrophages and dendritic cells treated with SP-OVA appeared 

more highly inter-connected compared to networks built from the PLG-OVA response. (Fig 6c, 

d) NF-KB, PPAR, and AP-1 in macrophages and CEBP, IRF-1, and AP-1 in dendritic cells were 

among the more highly inter-connected nodes. From these network diagrams, the critical role of 

NF-KB in macrophage signaling was apparent. Removing NF-KB from either macrophage 

network would sever interactions among many transcription factors, creating several disparate 

networks. In comparison, removing NF-KB from the networks of dendritic cells would not 

substantially affect the interactions between the remaining transcription factors. These networks 

help explain the major changes in T cell response when macrophages compared to dendritic cells 

were treated with BAY 11-7085 to inhibit NF-KB signaling. 
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Figure 5.6 Network analysis of TRACER studies. Inference networks of transcription factor 

interactions following (a, b) PLG-OVA or (c, d) SP-OVA treatment. Macrophages in a, c and 

dendritic cells in b, d.  
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5.5 Discussion 

We were interested to use stimulated naïve T cells as a surrogate for self-reactive T cells to 

detect differences in their responses to antigen delivery vehicles. T cell stimulation with 

αCD3/αCD28 has been widely used to expand naïve populations of T cells. [116] Raman 

spectroscopy has previously detected differences between T cells stimulated by αCD3/αCD28 

and alloantigen-activated T cells. [117] However, a comparison using biological indicators, such 

as IFN-γ production, revealed similar responses from T cells stimulated with either 

αCD3/αCD28 or an infectious agent. [118] Moreover, several other groups have stimulated T 

cell activation using αCD3/αCD28 for in vitro models of autoimmunity. [119, 120] We observed 

that unstimulated T cells had low levels of the activation marker, IL-2Rα, and its levels increased 

significantly following T cell stimulation. Thus, we believe our experimental setup is sufficient 

for modeling tolerance responses to different antigen delivery vehicles. 

NF-KB signaling in APCs can be triggered by ligand binding of Toll-like receptors (TLRs) 

on the cell surface resulting in an immune response. [121] Previous applications of the NF-KB 

inhibitor, BAY 11-7085, have shown reduced monocyte activation, as measured by lower levels 

of IL-1β and TNFα following co-culture with stimulated T cells or T cells isolated from 

rheumatoid arthritis. [122] When administered to dendritic cells, BAY 11-7085 attenuated 

maturation as measured by reduced expression of CD40, HLA-DR, CD83, and CD86 following 

exposure to haptens. [123] We found administering macrophages with antigen alongside BAY 

11-7085 resulted in increases of cytokine production, which may have differed from the reported 

monocyte behavior due to a cell-specific response. Administering antigen and BAY 11-7085 to 

dendritic cells did yield noticeable trends in T cell activity or cytokine production, possibly due 
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to the reduced impact of antigen presentation and co-stimulatory expression on T cells in the 

presence of αCD3/αCD28. 

The additional tolerance benefits from delivering antigen-coupled donor cells compared to 

antigen-coupled nanoparticles was evident in dendritic cells. Following SP-OVA treatment, 

dendritic cells brought about reduced T cell expression of IL-2Rα, increased T cell expression of 

L-selectin, increased T cell apoptosis, and reduced T cell proliferation. In addition, IFN-γ levels 

decreased while IL-10 levels remained high. These responses skewing towards tolerance are 

likely the result of triggering the same endogenous mechanisms used by dendritic cells to 

maintain peripheral tolerance to autoantigens found on apoptotic cells. [124] The mechanisms 

triggered by nanoparticle treatment, particularly in regard to inducing cytokine production are 

still unclear. [125] 

Although NF-KB inhibition was not sufficient to explain the additional tolerance effects 

induced by SP-OVA, network analysis of dendritic cells administered SP-OVA showed other 

transcription factors of interest. Specifically, CEBP was the most highly connected node, which 

suggests it is highly involved in implementing the tolerance effects resulting from SP-OVA 

treatment. Others have identified CEBP to be triggered in DCs following IL-10 and LPS 

treatment, leading to upregulation of chemokines, transduction molecules, and other transcription 

factors. [126] Further investigation of CEBP and its downstream effector molecules may 

generate additional targets for nanoparticle treatment to target in order to replicate the superior 

tolerance induction ability of donor cells. Antigen-coupled nanoparticles that can make 

additional use of endogenous tolerance pathways would provide a highly attractive platform to 

develop antigen-specific therapeutics for autoimmune diseases. 
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Chapter 6: Encapsulated CCR2-Targeting SiRNA Reduces Inflammatory Cell Migration and 

Disease Symptoms in Multiple Sclerosis Model 

6.1 Abstract 

The therapeutic potential of delivering small interfering RNA (siRNA) from nanoparticles 

to silence gene expression important for multiple sclerosis has yet to be explored. We 

encapsulated within biodegradable poly(lactide-co-glycolide) nanoparticles a mixture of siRNA 

complexed to polyethylenimine PLG(siCCR2-PEI) to target expression of the CCR2 chemokine 

receptor. Nanoparticles encapsulating fluorescent nucleic acids were observed to escape the 

endocytic internalization pathway, a necessary precursor for siRNA function. The activity of 

complexed and encapsulated siCCR2 was demonstrated by directly measuring CCR2 expression 

and evaluating cell migration toward CCL2. Induction of experimental autoimmune 

encephalomyelitis, a mouse model of multiple sclerosis was followed by 1.0 mg administrations 

of PLG(siCCR2-PEI) on Days 7, 9, and 11 post-induction, which significantly reduced mean 

clinical scores compared with administering either PLG encapsulating non-specific siRNA or 

buffered solution. These findings suggest PLG(siCCR2-PEI) may be useful for further 

development in the clinical treatment of multiple sclerosis and other autoimmune diseases. 

6.2 Introduction 

The therapeutic potential of RNA interference (RNAi) received tremendous interest and 

investment at the start of the 21st century. Some predicted RNAi would soon become a potent 

tool within the healthcare provider’s arsenal for treating a wide array of diseases. [127, 128] But 
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after many years of research and several clinical trials, a commercially available product has yet 

to emerge. Interestingly, several pharmaceutical companies have chosen instead to exit this 

research space. [129] While the difficulty of developing therapeutic RNAi may have initially 

been underestimated, advancements in nanoscale drug delivery systems offer potential solutions 

to overcome remaining challenges and enable RNAi to enter the clinic. 

Therapeutic RNAi strategies focus primarily on the use of small interfering RNA (siRNA). 

When introduced into the cell cytosol, these short, double-stranded RNA molecules associate 

with RNA-induced silencing complex (RISC) and possibly other factors to cleave and inhibit 

translation of mRNA molecules containing complementary sequence. [130] The activity of 

siRNA depends critically on its presence in the cytosol in order to associate with RISC and 

disrupt mRNA translation. A number of synthetic materials have been investigated as delivery 

vehicles to facilitate siRNA delivery to the cytosol. [131] 

Polymers are a versatile class of materials able to facilitate nucleic acid delivery into cells. 

Due to its negative charge, siRNA is often mixed with polycations, such as poly-L-lysine or 

polyethylenimine (PEI), resulting in self-assembly into more condensed structures, often called 

polyplexes. [132] The formation of polyplexes can improve the efficiency of siRNA 

encapsulation and subsequent release from poly(lactide-co-glycolide) (PLG) nanoparticles. [133] 

Several groups have previously used PLG nanoparticles to encapsulate siRNA for silencing 

TNFα expression and mitigating inflammation in both in vitro and in vivo models.[134, 135] 

These results demonstrate a possible role for siRNA to enhance or improve therapies currently 

used for autoimmune diseases. 

Multiple sclerosis is one of 81 identified autoimmune diseases and affects approximately 

58.3 per 100,000 people. [2] One of the most common treatments for multiple sclerosis is IFN-β, 
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which acts broadly and non-specifically to inhibit expression of MHC class II molecules, IL-12 

production, and T cell proliferation. [40] Unfortunately, patient complaints of flu-like symptoms 

or skin reactions have contributed to 5-year drop-out rates for IFN-β treatment that in certain 

studies are as high as 42%. [136] Alternative therapeutic interventions to incorporate siRNA 

which possesses a more specific mechanism of action may help to reduce the occurrence of side 

effects and improve patient compliance. 

Previous studies of immune components driving the pathogenesis of multiple sclerosis 

identified an important contribution of the CCL2/CCR2 chemokine signaling pathway. [137] 

Studies using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple 

sclerosis, found that mice with genetic deletion of CCR2 had reduced cell infiltration in their 

central nervous systems and did not develop EAE pathology. [138] Expressed primarily on 

monocytes, CCR2 activation leads to extravasation and transmigration. Administering 

encapsulated siRNA to inhibit CCR2 expression has resulted in reductions of monocyte 

accumulation that were therapeutically beneficial in mouse models of atherosclerosis, 

myocardial infarction, pancreatic islet allograft, and cancer. [139] 

Herein we conducted several in vitro and in vivo studies to investigate the activity of 

siRNA designed specifically to inhibit CCR2 expression (siCCR2). Intracellular nanoparticle 

localization was first examined to verify their escape from the endocytic pathway into the cytosol 

to enable proper function. Subsequently, CCR2 expression was analyzed using direct 

measurement and also a cell migration assay following treatment of immune cells with siCCR2-

PEI polyplexes as well as with polyplexes encapsulated within PLG nanoparticles. Finally, we 

tested the ability of nanoparticles encapsulating polyplexes to ameliorate EAE disease 

symptoms. 
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6.3 Materials and Methods 

6.3.1 Materials 

All siRNA was purchased from GE Dharmacon (Lafayette, CO) as mixtures containing 

four unique sequences. The siCCR2 mixture had the following sequences designed for specific 

silencing of mouse CCR2 expression: 5’CGAGUGAGCUCUACAUUCA3’, 

5’GGAGAGAAGUUCCGAAGGU3’, 5’CCAGGAAUCAUAUUUACUA3’, 

5’GUACUUGGCUAUUGUUCAU3’. The siCTRL mixture had the following sequences 

designed to each have at least 4 mismatches to all mouse, human, and rat genes: 

5’UAGCGACUAAACACAUCAA3’, 5’UAAGGCUAUGAAGAGAUAC3’, 

5’AUGUAUUGGCCUGUAUUAG3’, 5’AUGAACGUGAAUUGCUCAA3’. 

The following DNA oligonucleotide sequences were purchased from Integrated DNA 

Technologies (Coralville, IA): 5’/6-FAM/AGCTCAACATTCTGATAAGCTAC3’ and 

5’GAGTAGCTTATCAGAATGTTGAG3’. The PLP139-151 peptide was purchased from 

Genscript (Piscataway, NJ) and the MOG35-55 peptide was purchased from Celtek Peptides 

(Franklin, TN). Branched polyethylenimine (PEI), 25 kDa, and poly(vinyl alcohol), 30-70 kDa, 

were both purchased from Sigma-Aldrich (St. Louis, MO). Poly(lactide-co-glycolide) 50:50 

(PLG) with inherent viscosity of 0.2 dL/g was purchased from Lactel Absorbable Polymers 

(Birmingham, AL). 

6.3.2 Mice 

Female 6 to 12 week old C57BL/6 mice were purchased from Charles River Laboratories 

(Wilminton, MA). Female 6 to 12 week old SJL/J mice were purchased from Envigo 

(Indianapolis, IN). All experiments involving mice were approved by the University of Michigan 

Committee on the Use and Care of Animals. 
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6.3.3 Preparation of fluorescent nanoparticles 

PLG nanoparticles were synthesized using a single emulsion solvent evaporation technique 

as described previously. [92] Lyophilized nanoparticles were washed three times using 

phosphate-buffered solution (PBS) at pH 7.4. Approximately 4 mg of PLG nanoparticles was 

recovered and activated using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), 

purchased from Sigma-Aldrich (St. Louis, MO), at 16 mg/mL. Fluorescein cadaverine, 

purchased from Thermo Fisher Scientific (Waltham, MA) was immediately added to a final 

concentration of 4 μg/μL and the coupling reaction proceeded for 1 h under constant agitation. 

Uncoupled fluorophore was removed with three PBS washes. 

Complementary single-stranded DNA oligonucleotides containing a fluorophore molecule 

were combined at 40 μM in solution containing 5 mM NaCl, 1 mM Tris-HCl, 1 mM MgCl2, and 

0.1mM DTT. Sequences were heated at 95°C for 10 min before being cooled on ice for 10 min. 

The resulting double-stranded DNA was used within 24 h of annealing. PLG nanoparticles 

containing the annealed fluorescent DNA were formed in a similar process as the siRNA-

encapsulated nanoparticles described below. 

6.3.4 Fabrication of siRNA-encapsulated PLG nanoparticles 

Complexes of siRNA and PEI (siRNA-PEI) were first formed by mixing together at an N:P 

ratio of 8:1 and incubating at room temperature for 30 min. A 200 μL solution of the complexes, 

containing approximately 2 nmol of siRNA, was added to 0.5 mL of PLG dissolved in 

dichloromethane at 10% (w/v). A primary emulsion was formed by sonicating the solution with a 

Cole-Parmer CPX130 Ultrasonic Processor for 30 s. Subsequently, 2.5 mL of poly(vinyl alcohol) 

at 0.5% (w/v) was quickly added to the solution which was sonicated an additional 30 s to form 

the secondary emulsion. The emulsion was poured into 25 mL of poly(vinyl alcohol) at 0.5% 
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(w/v) and stirred overnight to evaporate the solvent. The resulting nanoparticles were washed 

three times and finally lyophilized in a solution of 4% (w/v) sucrose and 3% (w/v) D-mannitol.  

6.3.5 Nanoparticle characterization 

Nanoparticle size and ζ-potential were measured using a Zetasizer Nano ZSP from Malvern 

Instruments Ltd (Worcestershire, UK). To measure siRNA loading, nanoparticles were first 

dissolved for 30 min in dichloromethane. An equal volume of Tris-EDTA buffer was then added, 

vortexed for 1 min, and centrifuged at 12,000xg for 10 min. Nucleic acids in the aqueous phase 

were collected and quantified with the Quant-iT Picogreen dsDNA Assay Kit purchased from 

Thermo Fisher Scientific (Waltham, MA) using a standard curve built from siRNA-PEI. 

6.3.6 Intracellular localization of nanoparticles in vitro 

A primary population of macrophages was obtained as described previously. [90] Briefly, 

bone marrow was harvested from femurs and tibias of C57BL/6 mice and differentiated in vitro. 

Between 8 to 10 days following harvest, macrophages were collected and seeded at 

approximately 5.0 x 105 cells/mL in a Lab-Tek Chamber Slide System and activated with 

lipopolysaccharide (LPS) at 100 ng/mL. Fluorescent nanoparticles were reconstituted in water 

and added to chambers at 100 μg/mL. After 24 h of culture, cells were stained with LysoTracker 

Red DND-99 purchased from Thermo Fisher Scientific (Waltham, MA) according to the 

manufacturer’s instructions. Cells were fixed in 4% paraformaldehyde and cover slips were 

mounted on chamber slides with permount containing DAPI. Slides were imaged using either a 

Leica DM IRB fluorescent microscope or an Olympus FV 1200 confocal microscope. 

6.3.7 EAE initiation 

EAE disease was initiated as described previously. [85] Briefly, SJL/J and C57BL/6 mice 

were injected subcutaneously with emulsified PLP139-151 or MOG35-55, respectively, in complete 
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Freund’s adjuvant. C57BL/6 mice were also IP injected with 100 μL of pertussis toxin (2 ng/mL) 

purchased from Tocris Biosciences (Minneapolis, MN) on the same day and again 2 days later. 

For in vitro experiments, EAE-immunized mice were sacrificed 8 to 12 days after disease 

initiation, and blood within the heart was collected into Vacutainer tubes purchased from Becton, 

Dickinson and Company (Franklin Lakes, NJ). Red blood cells were lysed with ACK buffer 

manufactured by Life Technologies (Carlsbad, CA). 

For in vivo experiments, EAE-immunized mice were administered 1.0 mg of siRNA-

encapsulated PLG nanoparticles on days 7, 9, and 11 following disease initiation. Behavioral 

testing of mice was performed daily to determine clinical score, based on a 0-5 scale as follows: 

0, healthy; 1, limp tail; 2, limp tail and impaired righting reflex; 3, hind-limp weakness; 4, hind-

limb paralysis; and 5, moribund. 

6.3.8 Measuring function of siCCR2 in vitro 

To verify siRNA function, blood cells collected from EAE-immunized C57BL/6 mice were 

seeded into 24-well flat bottom plates at a density between 2.0 x 105 to 2.5 x 105 cells/mL using 

non-supplemented RPMI 1640 purchased from Life Technologies (Carlsbad, CA). Complexes of 

siCCR2 and PEI were added to cells at varying concentrations and analyzed 24 h later using flow 

cytometry. Cells were blocked in CD16/32, stained with αCCR2-Alexa Fluor 647 (clone 

SA203G11), and analyzed using a CyAn ADP Analyzer manufactured by Beckman Coulter 

(Brea, CA). Data was analyzed with FlowJo v10. Cellular events were gated using forward 

scatter and side scatter. FMO controls were used to identify cells with positive signal. 

CCR2 expression was investigated after treating cells with siRNA-encapsulated PLG 

nanoparticles. Blood cells were seeded as described above in 100 mm dishes. Nanoparticles were 

added at 100 μg/mL and CCR2 expression was measured 24 h later. Cell types were identified 
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using αLy6G-Brillian Violet 421 (clone 1A8), αLy6C-APC/Cy7 (clone HK1.4), and αCD45-

PerCP (clone 30-F11). 

6.3.9 Migration assays 

The migratory potential of treated cells was evaluated using Transwell cell culture inserts 

manufactured by Corning Incorporated (Oneonta, NY). Inserts were submerged in RPMI 1640 

containing 100 ng/mL of CCL2, a cytokine that binds CCR2 resulting in extravasation and 

transmigration, purchased from PeproTech (Rocky Hill, NJ). Blood cells collected from EAE-

immunized SJL/J mice or bone marrow-derived macrophages were seeded within inserts at 1.0 x 

106 cells/mL. After 24 h of treatment with either complexes or nanoparticles, migrated cells were 

dislodged from inserts using 5 mM EDTA and stained with calcein, AM, cell-permeant dye that 

was purchased from Thermo Fisher Scientific (Waltham, MA) according to the manufacturer’s 

instructions. Cell fluorescence was measured using a Synergy H1 Multi-Mode Reader 

manufactured by BioTek Instruments, Inc. (Winooski, VT) and correlated to known quantities of 

calcein-stained cells. 

6.4 Results 

6.4.1 Encapsulation of payload enables nanoparticle escape of endocytic pathway 

Nanoparticles containing surface-conjugated fluorophore (PLG-FITC) showed strong co-

localization with LysoTracker within bone marrow-derived macrophages following 24 h of 

nanoparticle treatment. (Fig 6.1a) The co-localization with LysoTracker, which stains acidic 

organelles such as lysosomes, suggested the retention of PLG-FITC within the endocytic 

pathway from cell internalization to lysosomal degradation. Interestingly, nanoparticles 

encapsulating short double-stranded DNA with an attached fluorophore [PLG(DNA-PEI)] were 

observed excluded from LysoTracker stains, suggesting escape of these nanoparticles from the 
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endocytic pathway and into the cytosol. (Fig 6.1b) The average diameter and zeta potential of 

PLG-FITC were 1146 nm and +29.9 mV, respectively, while the same measures for PLG(DNA-

PEI) were 480.3 nm and -16.4 mV. 

6.4.2 Bioactivity of complexed and encapsulated siCCR2 

Complex formation with PEI was verified using a fluorescent dye that emits signal when 

bound to double-stranded nucleic acids. Fluorescence intensity was linearly correlated with the 

concentration of double-stranded DNA both before and after complexation with PEI. (Fig 6.2) 

However, the fluorescent sensitivity of complexed DNA decreased dramatically, suggesting 

hindrance of fluorescent interaction between fluorescent dye and double-stranded nucleic acids 

due to the presence of PEI.  

Surface expression of CCR2 was measured on peripheral blood mononuclear cells 

(PBMCs) isolated from C57BL/6 mice 8 to 12 days following EAE induction. After 24 h of 

treatment with complexes of siCCR2 and PEI (siCCR2-PEI), a significant decrease of CCR2 

expression was observed among cells receiving 10 nM of siCCR2. (Fig 6.3a) This same dose of 

siCCR2-PEI was administered to PBMCs from SJL/J mice within a Transwell insert before 

placement inside a reservoir containing CCL2, the chemokine ligand for CCR2. The number of 

PBMCs migrating was similar to untreated PBMCs placed inside a reservoir without CCL2, both 

of which were significantly lower than the migration of PBMCs not receiving siCCR2-PEI and 

placed inside a CCL2-containing reservoir. (Fig 6.3b) These results indicate the ability of 

siCCR2-PEI treatment to inhibit CCL2-mediated cell migration. 
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Figure 6.1 Intracellular nanoparticle localization within bone marrow-derived 

macrophages. MΦs were cultured on chamber slides for 24 h with (a) 10 μg/mL of PLG-FITC 

(green) and imaged using a Leica DM IRB fluorescent microscope or (b) 50 μg/mL of 

PLG(DNA-PEI) (green) and imaged using an Olympus FV 1200 Confocal Microscope. White 

arrows indicate observations of green fluorescent signal excluded from red fluorescent signal. 

Cells were stained with lysotracker (red) and slides were mounted with coverslips using 

Permount Mounting Medium containing DAPI (blue). 
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Figure 6.2 Formation of siRNA-PEI polyplexes. The Quant-iT PicoGreen dsDNA Assay Kit 

was highly sensitive to annealed DNA oligonucleotides (dsDNA) as shown by a steep best-fit 

line with coefficient of determination equal to 0.986. Mixture of the dsDNA with PEI (dsDNA-

PEI) resulted in a dramatic reduction of sensitivity suggesting polyplex formation as shown by a 

less steep best-fit line with coefficient of determination equal to 0.997.  
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Figure 6.3 Direct measurement and functional detection of siCCR2-PEI activity in vitro. (a) 

PBMCs isolated from EAE-immunized mice were cultured with increasing concentrations of 

siCCR2-PEI for 24 h before CCR2 surface expression analysis using flow cytometry. The mean 

fluorescence intensity of CCR2 expression significantly decreased on PBMCs treated 10 nM of 

siCCR2-PEI. (b) The number of PBMCs migrating into a Transwell membrane significantly 

increased in the presence of 100 ng/mL CCL2. The additional migration in response to CCL2 

was no longer observed when PBMCs were treated with 10 nM of siCCR2-PEI. Data show 

averages of three measurements ± standard error of mean (SEM). (*p < 0.05, **p < 0.01, 1-way 

ANOVA followed by the Tukey test for multiple comparisons). 
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6.4.3 Bioactivity of encapsulated siCCR2-PEI 

The physicochemical properties of PLG nanoparticles were measured following 

encapsulation of siCCR2-PEI. The average diameter was 448.6 nm and the average zeta potential 

was -16.5 mV. Encapsulation efficiency was approximately 7.7%, resulting in total siCCR2 

loading of approximately 30.9 pmol per mg of PLG. Blank PLG nanoparticles synthesized in 

parallel without the encapsulation of siCCR2-PEI had average diameter of 381.9 nm and average 

zeta potential of -22.6 mV. 

Blank nanoparticles (PLG) or nanoparticles containing siRNA complexes [PLG(siCCR2-

PEI)] were both administered to PBMCs isolated from SJL/J mice 10 days after EAE induction. 

After 24 h of nanoparticle treatment, reduced surface expression of CCR2 was measured among 

PBMCs administered PLG(siCCR2-PEI) compared to PLG. (Fig 6.4) This reduction was 

observed in both Ly6G+ PBMCs and Ly6C+ PBMCs, cell identification markers which are 

typically associated with neutrophils and monocytes. 

To control for differences occurring simply due to siRNA treatment, PLG nanoparticles 

encapsulating complexes of control siRNA lacking any sequence complementarity within the 

mouse genome [PLG(siCTRL-PEI)] were administered to bone marrow-derived macrophages 

alongside PLG(siCCR2-PEI). Both formulations were able to reduce CCR2 expression (Fig 

6.5a) and migration toward CCL2 (Fig 6.5b), although the differences were more significant 

with PLG(siCCR2-PEI). 

 

 

 



88 
 

 

Figure 6.4 Direct measurement of encapsulated siCCR2-PEI activity in vitro. PBMCs 

isolated from EAE-immunized mice were administered either blank nanoparticles (PLG) or 

nanoparticles containing siCCR2 polyplexes [PLG(siCCR2-PEI)] for 24 h before CCR2 surface 

expression analysis by flow cytometry. (a) The mean fluorescence intensity of CCR2 expression 

among Ly6G+ PBMCs decreased from 356 to 90 between treating cells with PLG and 

PLG(siCCR2-PEI). (b) The mean fluorescence intensity of CCR2 expressing among Ly6C+ 

PBMCs decreased from 94 to 19 between treating cells with PLG and PLG(siCCR2-PEI). 
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Figure 6.5 Direct measurement and functional detection of encapsulated siCCR2-PEI 

activity in vitro. (a) Bone marrow-derived macrophages were administered nanoparticles 

encapsulating either control siRNA polyplexes [PLG(siCTRL-PEI)] or siCCR2 polyplexes 

[PLG(siCCR2-PEI)] for 24 h before CCR2 surface expression analysis by flow cytometry. The 

mean fluorescence intensity of CCR2 expression among macrophages significantly decreased in 

response to PLG(siCTRL-PEI) and to a greater extent in response to PLG(siCCR2-PEI) 

compared to macrophages receiving no treatment. (b) The number of macrophages migrating 

into Transwell membranes in the presence of 100 ng/mL of CCL2. Treating macrophages with 

PLG(siCCR2-PEI) for 24 h prior to Transwell culture resulted in a significant decrease of 

migration compared to macrophages receiving no treatment. To a lesser extent, treatment with 

PLG(siCTRL-PEI) also significantly reduced migration compared to macrophages receiving no 

treatment. Data show averages of three measurements ± standard error of mean (SEM). (**p < 

0.01, ***p < 0.001, 1-way ANOVA followed by the Tukey test for multiple comparisons). 
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6.4.4 Encapsulated siCCR2 abrogates EAE disease severity 

A 1.0 mg dose of nanoparticles encapsulating siRNA was intravenously administered every 

other day for a total of three injections following EAE induction in C57BL/6 mice. EAE disease 

course proceeded similarly in all treatment groups for several days following the final injection. 

(Fig 6.6) At around Day 16, mice receiving PLG(siCTRL-PEI) began to show accelerated 

disease progression compared to mice receiving either PBS or PLG(siCCR2-PEI) which had 

more similar prognoses. However, beyond Day 30, disease progression in the PLG(siCTRL-PEI) 

and PBS groups had become indistinguishable, while significantly lower clinical score was 

observed in the PLG(siCCR2-PEI) group. These observations suggest treatment with 

PLG(siCCR2-PEI) provided immunosuppressive effects during a critical stage of disease 

development resulting in a durable abrogation of EAE clinical score. 
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Figure 6.6 EAE disease course following multiple injections of nanoparticles encapsulating 

siRNA polyplexes. C57BL/6 mice received 1.0 mg injections of the appropriate nanoparticle 

treatment or phosphate buffer solution (PBS) on days 7, 9, and 11 following induction of EAE 

disease as indicated by the arrows. In the days following treatment, mice receiving 

PLG(siCTRL-PEI) had more rapid escalation of disease symptoms compared to the other 

treatment groups. In later stages of disease, the PBS-treated group also displayed severe EAE 

symptoms similar to mice receiving PLG(siCTRL-PEI), however, the condition of mice 

receiving PLG(siCCR2-PEI) stabilized with moderate disease symptoms. Data show averages of 

four to five mice with error bars omitted for clarity. (**p < 0.01, ****p < 0.0001, 1-way 

ANOVA followed by the Tukey test for multiple comparisons). 
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6.5 Discussion 

Delivering siRNA molecules to the cytosol is critical for their proper function, and the 

location of their intracellular accumulation following administration is strongly influenced by 

physicochemical properties of the nanoparticles. After PLG nanoparticles are internalized, they 

are transported along the endocytic pathway, which becomes increasingly acidic in transit to the 

lysosome, which has an approximate pH of 4.5-5.0. [13] The decrease of pH causes the zeta 

potential of PLG to increase, such that an initial -15 mV at physiological pH (7.0) can become 

+2.5 mV at acidic pH (4.0). [140] This transition of zeta potential from negative to positive may 

disrupt the compartmental membrane entrapping the nanoparticles, allowing the compartmental 

contents which include the PLG nanoparticles to escape into the cytosol. 

Despite the low encapsulation efficiency of siCCR2 molecules, we detected their activity 

both via direct measurement and indirect functional assays of CCR2 following nanoparticle 

treatment. Previous reports of delivering siRNA from PLGA nanoparticles found that treating 

cells with nanoparticles equivalent to 5 pmol of siRNA was sufficient for 80-90% knock-down 

of luciferase gene expression. [141] Our in vitro studies used nanoparticle concentrations of 100 

μg/mL, which based on a total siRNA loading of 30.9 pmol per mg of PLG, is on the same order 

as 5 pmol of siRNA. Thus, the amount of siCCR2 administered in vitro was in good agreement 

with the amount others have reported using to achieve detectable siRNA activity.  

The in vivo effects of encapsulated siCCR2 suggest a moderate therapeutic potential that 

may be further improved by adjusting their administration frequencies or dosage. The days on 

which nanoparticles were administered was determined based on previous dosing regimens. 

Specifically, it was reported that daily administration of 0.355 mg of blank PLG nanoparticles 

starting 7 days post EAE induction was effective to reduce disease severity during the acute 
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phase of relapse-remitting EAE. [142] Moreover, when nanoparticle administration was 

discontinued, the effect of the nanoparticles slowly faded such that EAE severity eventually 

became indistinguishable with the group not receiving nanoparticle treatment. Interestingly, we 

detected a persistent effect of nanoparticle treatment. One explanation for these differences may 

be due to our use of a chronic-progressive EAE model rather than the relapse-remitting EAE 

model. Morphological studies of the chronic-progressive model have shown simultaneous 

inflammation in the brain, spinal cord, and cerebellum while the relapse-remitting model may be 

characterized by waves of inflammation to the various organs of the central nervous system. 

[143]  

Therefore we hypothesize inflammation in the chronic-progressive model is focused in the 

initial days of disease which were more effectively curtailed by the short course of nanoparticle 

treatment which reduced the occurrence of irreversible neuronal damage which occurs over a 

longer period of time in the relapse-remitting model. This hypothesis could be further supported 

by studies investigating when in the disease course neuronal damage becomes irreparable. 

Using siRNA to stimulate the immune system may create additional therapeutic benefits for the 

specific case of treating multiple sclerosis. The standard treatment of multiple sclerosis currently 

involves repeated injections of IFN-β which results in skin reactions at the injection site that can 

be severe enough to cause termination of treatment. [144] Several cell types within the immune 

system express Toll-like receptors (TLRs), specifically TLR3 and TLR7, which recognize 

double-stranded and single-stranded RNA, respectively. Activation of these TLRs would initiate 

signaling cascades that increase production of IFN-β. [145] While the siRNA used in this study 

contained the 2’-O-methyl modification which reduces immune stimulation, sequence design can 

be optimized to potentially trigger TLR activation. [146, 147] Using siRNA to induce 
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endogenous production of IFN-β may provide therapeutic effects for treating multiple sclerosis 

without causing skin reactions resulting from exogenous IFN-β injection. 
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Chapter 7: Conclusions and Future Directions 

 The research investigations described in the preceding chapters examined the mechanism 

of action used by a nanoparticle-based approach to deliver antigen-specific therapy in the 

treatment of autoimmune diseases. A direct mechanistic comparison was made between antigen 

delivery using the nanoparticle-based approach and a cell-based approach also effective for 

inducing antigen-specific tolerance. Considering instances in which antigen-specific tolerance is 

not possible or desirable, RNA interference was incorporated within the nanoparticle design to 

suppress the activity of specific immune signaling pathways correlated with autoimmune 

pathology. Herein, we discuss the major research findings and their potential implications for the 

drug delivery research field and development of more targeted autoimmune therapies. 

7.1 Peptide-Conjugated Nanoparticles Reduce Positive Co-Stimulatory Expression and T Cell 

Activity to Induce Tolerance 

7.1.1 Conclusions 

Identifying cells with MHC-restricted antigen on the surface, and conducting analysis on 

this subpopulation of cells was a major novel component to this study. Previous mechanistic 

analyses of nanoparticle-mediated antigen delivery primarily examined co-stimulatory 

expression on entire populations of antigen-presenting cells (APCs). [148] Depending on the 

efficiency of antigen delivery and processing, such analysis may include a large number of cells 

unable to interact with T cells and affect the adaptive immune response. Our studies showed that 

nanoparticles with the highest amount of antigen coupling, administered at the highest dosage, 
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resulted in only about 25% of APCs with detectable levels of surface MHC-restricted antigen. 

The ability for APCs to signal T cells depends on engaging the T cell receptor using MHC-

restricted antigen. In the absence of this interaction, levels of co-stimulatory expression on the 

APC are likely to be inconsequential. Thus, future studies of exogenous antigen delivery may 

benefit from incorporating strategies to focus analysis on cells expressing detectable levels of 

MHC-restricted antigen. 

APCs had low efficiency of antigen presentation despite a high percentage of 

nanoparticle internalization. It may be useful to generate APC populations with 0%, 25%, 50% 

and 100% of cells expressing MHC-restricted antigen, and examine the response of T cells in co-

culture. Perhaps not all APCs within the population need to present antigen in order to impact T 

cell response. It would be interesting to determine if the marginal increase of T cell response 

reaches a plateau once a certain threshold percentage of APCs expressing MHC-restricted 

antigen is reached in co-culture with a 2:1 T cell to APC ratio. Previous studies administering a 

high dose of toxin to APCs reported a positive correlation between the number of APCs and the 

amount of T cell proliferation which did not reach a plateau even as the T cell to APC ratio 

decreased from 1000:1 to 1:1, [149] suggesting that availability of MHC-restricted antigen for 

engaging T cell receptors is typically the limiting factor. 

 To achieve higher percentages of APCs expressing MHC-restricted antigen, the linker 

strength connecting antigen and nanoparticle could be further modulated. Reducing the linker 

strength could liberate additional antigen to bind MHC class II molecules during endocytic 

transit following nanoparticle internalization.  In fact, one hypothesis for the low efficiency of 

antigen presentation despite the high efficiency of nanoparticle internalization is that antigen 

remains attached to the nanoparticle which prevents its loading onto MHC molecules. Rather the 
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antigen is retained in the endocytic pathway until reaching the lysosome for degradation. A 

reduced linker strength may be similar to the burst release phenomenon, which describes the 

release of a large percentage of encapsulated payload during the initial timeframe following 

nanoparticle reconstitution into solution. Studies of antigen-encapsulated nanoparticles with 

varying propensities for burst release found that nanoparticles with low burst release were more 

efficient for activating CD8+ T cells compared to nanoparticles with high burst release. [150] 

Assuming burst release is an adequate approximation for linker strength, these results would then 

conflict with the aforementioned hypothesis. However, there are considerable differences in the 

processes of antigen loading onto MHC class I molecules to signal CD8+ T cells compared to 

antigen loading onto MHC class II molecules to signal CD4+ T cells, and thus a similar study is 

needed using antigen containing MHC class II epitopes with CD4+ T cells. 

 The in vitro assays involving autoreactive T cells co-cultured with nanoparticle-treated 

APCs might generate a more clear readout if the T cells receive further purification prior to co-

culture. The percentage of T cells in lymphoid organs specific to one particular antigen is 

initially very low. A moderate increase occurs when an immune response is induced against the 

antigen, or instead obtaining T cells from mice with transgenic T cell receptors. However, even 

following successive rounds of antigen stimulation in vitro, the percentage of antigen-specific T 

cells from either source does not exceed 50%. [151] Further enrichment for antigen-specific T 

cells may improve the readout of the antigen-specific response by removing T cells lacking 

specificity to the antigen. Various techniques exist to purify antigen-specific cells, although the 

yield and purity vary dramatically. [152] Raman spectroscopy has demonstrated the ability to 

distinguish subtle differences among T cells activated by different stimuli. [117] In the years 
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ahead, Raman spectroscopy may become a critical tool similar to flow cytometry for cell 

analysis and sorting, but via a label-free approach. [153] 

7.1.2 Future Directions 

This investigation assembled a useful set of in vitro assays to probe the mechanisms that 

may be involved in the induction of antigen-specific tolerance in vivo. These assays could be 

further assembled into an initial screening approach to explore novel nanoparticle formulations. 

Nanoparticles can vary in size, shape, and charge due to the fabrication process, not to mention 

different materials, solvents, and surface coatings. Certain combinations of these 

physicochemical properties and compositions may offer improved tolerance induction compared 

to the combinations previously explored and currently used. Testing all of these combinations in 

vivo would be infeasible, however, some of the in vitro assays developed here may be useful for 

early discovery of promising combinations for further investigation. 

The number of peptide antigens with an antibody able to detect antigen loading on MHC 

molecules needs to be dramatically increased. Currently, the available antibodies to detect MHC-

restricted antigen presentation are limited to detecting model antigens that have minimal disease 

relevance. Measuring levels of antigen presentation for disease-relevant antigens would improve 

data quality, especially as nanoparticles are used in vivo. The availability of an antibody library 

to target various disease-relevant antigens when loaded onto MHC molecules would be a major 

benefit to mechanistic studies of antigen-specific autoimmune therapies.  

The ability to measure levels of MHC-restricted disease-relevant antigens would serve as 

biomarkers of nanoparticle therapeutic activity. Following nanoparticle administration, a tissue 

biopsy from the inflammatory site could be purified for APCs and subsequently analyzed for 

antigen presentation levels. Measuring the amount of antigen presentation and co-stimulatory 
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expression occurring in sites of inflammation, such as the central nervous system in multiple 

sclerosis, would be useful for fine-tuning nanoparticle dose and monitoring nanoparticle activity 

over time. Moreover, these antibodies may have future therapeutic applications as their 

attachment to disease-relevant antigen loaded onto MHC molecules may specifically disrupt the 

ability to activate self-reactive T cells. 

7.2 The Role of NF-KB Signaling Due to Antigen-Coupled Nanoparticles or Cells Administered 

for Antigen-Specific T Cell Tolerance 

7.2.1 Conclusions 

In the presence of αCD3/αCD28, T cells co-cultured with dendritic cells administered 

antigen-coupled donor cells (SP-OVA) had significant reductions of several activation indicators 

compared to administering antigen-coupled nanoparticle (PLG-OVA) or soluble antigen (OVA). 

SP-OVA also reduced levels of pro-inflammatory cytokine (IFNγ) while maintaining levels of 

anti-inflammatory cytokine (IL-10). Together, these measurements reveal a superior capability 

for SP-OVA to induce tolerance compared to PLG-OVA or OVA. 

A small molecule inhibitor (BAY 11-7085) of the transcription factor NF-KB was also 

administered in conjunction with antigen. If the improved tolerance effects of SP-OVA had 

occurred via increased NF-KB signaling, the presence of BAY 11-7085 would have in effect 

negated SP-OVA treatment resulting in T cell measurements more similar to other treatment 

groups. Conversely, if SP-OVA induced tolerance via decreased NF-KB signaling, the presence 

of BAY 11-7085 should have conferred the same advantages to OVA and PLG-OVA. However, 

there was minimal correlation detected when dendritic cells were administered BAY 11-7085 

alongside the different antigen delivery vehicles, suggesting a limited role of NF-KB in the 

mechanism of tolerance resulting from SP-OVA treatment of dendritic cells. Interestingly, the T 
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cell response changed dramatically following macrophage treatment with BAY 11-7085 

regardless of OVA, PLG-OVA, SP-OVA, suggesting an important role of NF-KB signaling in 

macrophages, which was confirmed by network analysis of TRanscriptional Activity CEll aRray 

(TRACER) studies. Network analysis of transcriptional activity in treated macrophages inferred 

NF-KB as a central hub within the signaling network. Due to its location within the network and 

based on the observed co-culture responses, we conclude NF-KB plays a critical role in 

macrophage signaling. This is a similar approach used by others to draw conclusions following 

network analysis of macrophage transcriptional regulation to focus on the importance of the 

central hubs. [154] 

The TRACER network analysis suggested that other signaling molecules, such as those 

from the CEBP (CCAAT-enhancer-binding protein) family may be more involved than NF-KB 

to affect the cell response following SP-OVA treatment of dendritic cells. One important caveat 

is that the TRACER studies only examined 14 transcription factors, and there are upwards of 

1,000 transcription factors in the human genome. [25] The 14 factors evaluated here were 

selected for their relevance to immune signaling pathways, but it is highly plausible that other 

signaling molecules not included in this study were triggered by SP-OVA and are important in 

the subsequent tolerance induction. Additional methods to provide higher analytical throughput 

may help to further elucidate the mechanism at work. These methods would include microarrays 

and CyTOF, both of which have been previously used to efficiently investigate transcriptional 

regulation. [155, 156] 

7.2.2 Future Directions 

The screening of additional small molecule inhibitors to target alternate signaling 

pathways may also help to elucidate additional unique tolerance mechanisms triggered by SP-
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OVA and not PLG-OVA. Studies of an autoimmune response enhanced by IL-18 treatment 

detected therapeutic benefits from administering an inhibitor of PI 3-kinase. [122] Other small 

molecule inhibitors investigated included a MAPK p38 inhibitor, ERK inhibitor, and JNK 

inhibitor, although they did not reverse the immune response triggered by IL-18. Applying these 

inhibitors in the same way that BAY 11-7085 was administered to APCs alongside antigen 

delivery may reveal the involvement of additional signaling molecules in the tolerance 

mechanism. 

TRACER analysis measured the activity and interactions of 14 transcription factors, 

however improvements to scale up TRACER are necessary to more completely profile the cell 

signaling response to different treatments. Currently, cells are seeded into wells, and each well 

receives only one specific reporter. The ability to add additional reporters to the same well would 

dramatically reduce the size and complexity of a TRACER experiment. This would be possible if 

reporters emit signal at different wavelengths that a detection instrument could discriminate, 

similar to the technique of multi-parameter flow cytometry.  

However, a more stringent limit for combining TRACER reporters is needed relative to 

flow cytometry. In flow cytometry, the measured signal is introduced to cells through the various 

fluorescently-coupled antibodies, and the maximum number of antibodies to apply to a cell is 

limited by the ability to discriminate the combined signals. In TRACER and other dynamic 

measurement techniques, measured signal is synthesized by the cell under analysis, and the 

maximum number of transcription factors to analyze in a cell is limited by toxicity issues from 

intracellular accumulation of reporter molecules. 

Additional experimental tools to dynamically detect transcription factor activity would 

improve TRACER analysis. These improvements would be to develop transgenic immune cells 
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with fluorescently-labeled transcription factors. There currently exist only a small number of 

transgenic mouse lines with fluorescently-labeled gene expression in hematopoietic cells, with a 

select few of these labeled genes being transcription factors. [157] Increasing the available 

number of transgenic fluorescently-labeled transcription factors would allow TRACER 

experiments to be run both in vitro and in vivo with greater ease. These transgenic mice would 

also reduce the expense and biosafety concerns of producing viral vectors, as well as the batch-

to-batch variability of stable genomic integration following viral transduction. Further 

improvements of this transgenic approach would modify fluorescent labeling of transcription 

factors to be conditional with nuclear translocation in order to focus fluorescent measurement on 

transcription factors actively mediating gene expression. 

7.3 Encapsulated CCR2-Targeting SiRNA Reduces Inflammatory Cell Migration and Disease 

Symptoms in Multiple Sclerosis Model 

7.3.1 Conclusions 

 A major question resulting from this work is whether substantive additional amounts of 

siRNA can be further encapsulated into PLG nanoparticles. The total loading achieved here was 

comparable with previous reports using a similar molecular weight (5 kDa) of PLG but in the 

absence of PEI. [133] This study further showed that increasing to a higher molecular weight of 

PLG (40 kDa) with PEI resulted in twice the total siRNA loading. Using poly(lactide) 

nanoparticles, others have shown increasing the N:P ratio from the 8:1 used here to 16:1 results 

in a marginal increase of siRNA loading. While the amount of siRNA delivered was sufficient to 

induce a detectable response both in vitro and in vivo, it would be useful to examine possible 

improvements in efficacy or duration of siRNA activity due to additional loading. However, 

increasing polymer molecular weight is anticipated to prolong degradation time and 
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incorporating additional cationic polymer may create harmful aggregations with serum proteins, 

both of which would contribute to increased toxicity. [158] It was routinely observed in vitro that 

nanoparticle concentrations above 100 μg/mL as well as siRNA-PEI concentrations above 50 nM 

resulted in large reductions of cell viability. 

Modifying the nanoparticle surface charge may reveal additional formulations to provide 

greater accumulation of siRNA in the cytosol. The accumulation of free siRNA in the cytosol is 

critical for its ability to function. Nanoparticle encapsulation assists with delivering siRNA to the 

intended tissues and cells, but siRNA must then exit the endocytic pathway, shed the 

nanoparticle, and disentangle from PEI to ensure proper siRNA activity. There is still much 

debate within the field regarding the intracellular mechanisms governing siRNA accumulation in 

the cytosol and the potential impacts of polymer-mediated buffering and changes to pH. [159] 

However, we can expect additional coatings or layers to the nanoparticle will improve their 

circulation time in the blood to increase targeting of inflammatory cells that contribute to 

autoimmunity. [160] In lieu of basic principles governing nanoparticle escape of the endocytic 

pathway and accumulation in the cytosol, empirical testing may be necessary to determine the 

most optimal formulation to address each therapeutic context. 

7.3.2 Future Directions 

Extending the work initiated here would involve combining siRNA delivery with antigen 

delivery to induce more durable, long-lasting antigen-specific immune tolerance. Based on the 

mechanistic studies examining intracellular and intercellular signaling, more effective tolerance 

induction may occur when antigen is delivered alongside siRNA molecules targeted against 

transcription factors, such as NF-KB and AP-1, or cytokines, such as IFN-γ and IL-2. One 

approach for co-delivery of antigen and siRNA would be to encapsulate siRNA molecules into 
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antigen-coupled nanoparticles to potentially further enhance their antigen-specific tolerance 

effects. But multi-functional nanoparticles may be difficult to generate with high loading of all 

payloads while maintaining good control over physicochemical properties. Therefore designing 

modular nanoparticles may be more feasible to develop further.  

Modular nanoparticles for induction of immune tolerance could be synthesized to contain 

either antigen or siRNA only. Separating the two payloads may improve the targeting of each to 

the different intracellular locations necessary for each molecule’s bioactivity. Antigen with class 

II epitopes must encounter MHC-II molecules in the endocytic pathway in order to be presented 

on the cell surface. In contrast, siRNA must enter the cytosol to associate with RISC in order to 

degrade mRNA transcripts. These final destinations are largely incompatible, as retention in the 

endocytic pathway to benefit antigen presentation would reduce siRNA accumulation in the 

cytosol, and vice versa. Thus separating these two payloads into different nanoparticles would 

allow physicochemical properties to be separately tuned to facilitate accumulation within the 

desired intracellular regions. 

Modular nanoparticles would also provide greater flexibility in clinical settings that may 

favor the use of either antigen or siRNA only for treatment. In certain cases of autoimmunity 

where the risk of anaphylaxis is high or epitope spreading has already occurred, the 

administration of antigen may not be desirable or effective. In these cases, delivery of 

nanoparticles carrying siRNA only would be a more effective therapeutic option. But if the 

autoantigen is well-characterized and serum autoantibody levels have been determined as low, 

then it may be advantageous to co-deliver nanoparticles carrying antigen and siRNA to induce 

robust immune tolerance. This approach of developing modular nanoparticles that can be mixed 

together and administered as a cocktail therapy represent tailored therapeutic approaches for 
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specific patient needs, in line with precision medicine which will help to advance cutting-edge 

healthcare in the 21st century.  
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