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ABSTRACT 

  

 Three essays are presented concerned with device dispatching within the framework 

provided by trip-based material handling systems, which represent a wide range of systems such 

as lift trucks and unit load automated guided vehicles in industrial applications and patient 

movement systems in healthcare applications.  The move requests (MRs) arrive according to a 

Poisson process, and each MR is served, one at a time, by one of the devices, according to the 

dispatching rule.  In the first essay, a new analytic model is developed to estimate empty device 

travel with multiple devices operating under the modified first-come-first-served (Mod-FCFS) 

dispatching rule.  The analytic technique used in the first essay is extended in the second essay to 

develop a new analytic model to estimate empty device travel with multiple devices operating 

under the shortest-travel-time-first (STTF) rule, which is a simple, well-known, and efficient rule 

but difficult to model analytically.  To our knowledge, the analytic model in the second essay is 

the first model to explicitly estimate empty device travel under STTF.  Using simulation, we show 

that both models perform well in estimating empty device travel and the expected device 

utilization.  We also investigate the MR wait times under STTF, and propose a new rule, namely 

B-STTF, to avoid excessive wait times which are known to occur under STTF.  The results show 

that B-STTF is as efficient as STTF while successfully avoiding excessive MR wait times.   

In the third essay, we model intra-facility patient movement systems as a trip-based 

material handling system, where a “device” represents a patient mover (PM), and each “MR” 
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represents a patient.  Using simulation, we study the performance of the patient movement system 

as a function of the dispatching rule and the number/location of the equipment marshalling areas 

(that is, wheelchairs, gurneys, and closets).  System performance is measured in terms of efficiency 

(i.e., reducing empty travel for the PMs and the expected MR wait times) and effectiveness (i.e., 

avoiding excessive wait times for the MRs).  We observe that the FCFS dispatching rule is less 

efficient but it avoids excessive patient wait times since the MRs are served according to their 

order of arrival.  In contrast, the STTF rule is efficient but some patients experience excessive wait 

times, which is detrimental.  We thus present a new rule that strikes a balance between efficiency 

and effectiveness.  We also analyze the impact of the number and location of the equipment 

marshalling areas. We observe that carefully planning the number and location of the marshalling 

areas based on usage by the PMs can improve the performance of the system as much as, if not 

more than, a more efficient dispatching rule.   
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CHAPTER 1  

Overview 

  

Material handling systems (MHSs) are responsible for delivering the right materials at the 

right place and at the right time. Although material handling in manufacturing is considered a non-

value adding function, a well-designed MHS often reduces operating costs and improves 

productivity.  A poorly designed MHS may disrupt workflows, increase work-in-progress 

inventories, and may even impact the safety and quality of the product made or service delivered.  

Many facilities including manufacturing plants, warehouses, distribution centers, and service 

facilities rely heavily on the performance of the MHS.  As a result, material handling plays a 

significant role in many industries.  A study by Research and Market, for example, estimated the 

2015 North America MHS market to be over $21 billion (2016).   

Although there are many types of MHSs, they can be categorized mainly into two types of 

systems; namely, trip-based MHSs or conveyor-based systems (Figure 1.1).    

 

Figure 1.1: Types of MHSs 

MHS 

Trip-Based 
Conveyor-

Based 

One load capacity 
Milk Run (multi-load 

and multi-stop) 
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The dissertation consists of three essays.  The first two essays are concerned with device-

dispatching in single-load, trip-based MHSs, where one or more devices are dispatched by a 

centralized dispatching system to serve the move requests (MRs) one at a time. The MRs arrive 

one-at-a-time, according to a Poisson process, with a known origin and destination for each MR.  

Once assigned to a MR, the device travels empty from its current location to pick up the MR, and 

then travels full/loaded to the destination of the MR.  Upon delivering the load (i.e., upon serving 

the MR), the device is assigned to the next MR, or it becomes idle if there are no MRs in the 

system.  For a given layout and flow data, the efficiency of the MHS depends largely on the 

dispatching rule, which determines which MR to assign to an empty device, and vice versa.  In 

most cases, a computer-based technology/system is employed to manage and dispatch the devices.   

Trip-based MHSs of the above type can be used to model many handling systems in various 

applications.  In industrial applications such as manufacturing and warehousing, devices such as 

lift trucks, unit-load automated guided vehicles (AGVs), and bridge cranes, to name a few, can be 

modeled as trip-based MHSs.  In transportation applications such as taxicabs and Uber, the system 

can again be modeled as a trip-based MHS, with vehicle dispatching being one of the primary 

concerns, although moving passengers is technically not considered “material handling.”   

 Designing a successful trip-based handling system depends on a number of factors, 

including the location of the stations, device routing and MR flow data.  Given these factors, one 

is often concerned with determining the number and utilization of the devices.  However, 

depending on the dispatching rule, analytic estimation of the empty trips (and device utilization) 

can range from straightforward to very difficult, and, simulation models are often used to estimate 

the performance of the system. 
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In the first essay, an iterative algorithm is used to develop a new analytic model to estimate 

empty device travel in a multi-device system operating under the modified first-come-first-served 

(Mod-FCFS) dispatching rule.  In the second essay, the analytic technique from the first essay is 

extended to develop a new analytic model to estimate empty device travel in a multi-device system 

operating under the shortest-travel-time-first (STTF) dispatching rule, which is a well-known and 

efficient rule but difficult to model analytically.  To our knowledge, the analytic model in the 

second essay is the first model to explicitly estimate the empty device trips under the STTF rule.  

Furthermore, the MR wait times under STTF is investigated, and a bound is imposed in order to 

avoid excessive MR wait times. 

Generally speaking, in a healthcare setting, patient conveyance can be categorized into 

inter-facility patient transport and intra-facility patient movement. Inter-facility transports are 

typically performed by ambulance (and sometimes helicopter), where multiple patients can be 

transported at a time.  Intra-facility patient movements are often performed by PMs, where the 

patients are moved one at a time, on either a wheelchair or a gurney. In a large hospital, patient 

movement is a non-trivial, time-sensitive operation that often takes place in a multi-floor facility, 

involving retrieving and/or depositing the wheelchair and/or gurney, while serving multi-priority 

patients.  For example, the University of Michigan Health System (UMHS), recently renamed 

Michigan Medicine, is a group of interconnected, multi-floor buildings, with over 300,000 patient 

moves per year.   

Trip-based MHSs can also be used for modeling patient movement or patient transport, 

where ambulances or patient movers (PMs) transport patients from one point to another.  The third 

essay in fact is concerned with dispatching PMs for intra-facility patient movement in a hospital 

setting.  Such systems have an additional requirement in that the PM must first acquire the proper 
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equipment (wheelchair or gurney) before moving a patient.  The purpose of the study is to develop 

insights and recommend improvements for the patient movement system by investigating 

alternative PM dispatching rules.  Since equipment is a key factor, we also investigate the impact 

of the equipment marshalling areas on the performance of the patient movement system.   
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CHAPTER 2 

Throughput Analysis of Multi-Device Trip-Based Material Handling Systems 

Operating under the Modified-FCFS Dispatching Rule                               

 

2.1 Introduction 

In many manufacturing and transportation applications, the material handling system plays 

a significant role.  While in many cases material handling itself is a non-value-adding function, a 

poorly-designed material handling system often results in missed deliveries, poor customer 

service, large work-in-process, and reduced productivity.  It may also adversely affect quality and 

safety. 

The material handling system we focus on in this study is a trip-based material handling 

system, which consists of one or more material handling devices, operating independently to serve 

move requests (MRs) (Srinivasan et al., 1994).  A MR is a physical entity that has a known origin 

(or pick-up station) and a known destination (or deposit station).  It may be a unit load in a 

manufacturing system or a pallet in a warehouse.  Each MR arrives one at a time and waits at its 

pick-up station.  In order to serve a MR, a device travels empty from its current location to the 

appropriate pick-up station, picks up the load and travels full (or loaded) to the appropriate deposit 

station, where the load is deposited, and the device becomes empty again, ready to serve the next 

MR.  (As the above description suggests, we will use the terms MR and “load” interchangeably.)  
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The devices are assumed to be homogeneous, and each device serves only one MR at a time.  In 

manufacturing, a wide range of material handling systems can be modeled as a trip-based handling 

system including lift trucks, bridge cranes, unit load automated guided vehicles (AGVs), and 

manual systems (where operators move one load at a time using dollies or similar equipment).  

Transportation services that can be modeled as a trip-based handling system include taxi service 

in a city and patient transportation in a hospital.   

The successful design/operation of a trip-based handling system depends on a number of 

factors including the location of the pick-up and deposit stations, the travel path of the devices and 

device routing, the MR flow data, and the device dispatching rule, which is concerned with 

assigning a MR to a device and vice versa. At a basic level, for a given MR flow matrix, coupled 

with a given layout and device travel times, one is often concerned with determining the number 

and expected utilization of the devices.  One may also focus on the expected waiting times of the 

MRs, assuming that a sufficient number of devices is provided.   

Since the MRs must be served on a timely basis (that is, the devices are required to perform 

loaded trips), empty device travel may be significant, depending on the data, the layout, and the 

dispatching rule (see [Egbelu and Tanchoco, 1984], and [Koo and Jang, 2002], among others).  As 

shown by these studies, an efficient dispatching rule can lower empty device travel, which often 

reduces the number of devices required and/or the expected MR waiting times.  

Assuming the MRs arrive randomly and independently, the analytic estimation of the 

number of empty trips, and thus the number of devices required, can be straightforward or very 

challenging, depending on the dispatching rule.  In fact, for most dispatching rules, the problem 

is, generally speaking, not tractable and, therefore, either analytic approximations (or bounds) are 

developed or simulation models are used to estimate the number of devices required.   
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The purpose of this study is to develop an analytic model to estimate empty device travel 

for the Mod-FCFS dispatching rule proposed earlier by Srinivasan et al. (1994).  Since it is an 

approximate model, we will use simulation to conduct a more detailed analysis of the system and 

to obtain other results such as the expected MR waiting times.  Our intent is to develop an analytic 

model that can be used to rapidly evaluate a number of alternative handling systems and to conduct 

“what if” analyses based on varying the flow data and/or the layout.  We also shed light on device 

versus station initiated dispatching, which has not been treated fully/correctly in the literature.      

The remainder of the chapter is organized as follows. In Section 2.2, pertinent dispatching 

rules and analytic models in the literature are reviewed, while in Section 2.3, the problem setting 

and the assumptions are described. The analytic model is presented in Section 2.4.  In Section 2.5, 

the MOD FCFS dispatching rule and the analytic model are evaluated using simulation under 

different layouts and flow matrices. Lastly, the results are summarized in Section 2.6, where 

possible future research directions are also discussed. 

 

2.2 Literature Review 

The literature review is limited largely to those papers concerned with device dispatching 

and analytic modeling in trip-based material handling systems.  An early paper that compares 

alternative dispatching rules is presented by Egbelu and Tanchoco (1984), who identify two types 

of dispatching decisions. When a device delivers a load and becomes empty, deciding which 

(unassigned) MR the device should serve next is defined as “device-initiated dispatching” (DID) 

since the decision is invoked whenever a device delivers a load and there’s at least one unassigned 

MR in the system.  If there are no unassigned MRs in the system, the device becomes idle at its 

last point of delivery.  (There are a few papers concerned with where to “park” idle devices; 
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however, such are beyond the scope of our study.  The interested reader may refer to [Egbelu 

1993], among others, for further information.)   

On the other hand, when a MR arrives, if there is at least one idle device, deciding which 

(idle) device to assign to the MR is defined as “station-initiated dispatching” (SID) since the 

decision is invoked whenever a MR arrives and finds one or more idle devices.  If the MR finds 

all the devices busy, it will eventually be served when an (empty) device is assigned to it.  That is, 

if a MR is not served under SID, it will be served under DID. A fully-defined dispatching policy 

needs to specify the rule used for both DID and SID.  As we shall see later, understanding how 

often each decision, DID versus SID, is invoked is important in terms of assessing the significance 

and impact of each rule.   

In (Egbelu and Tanchoco, 1984), multiple rules are compared by a simulation model for 

both DID and SID, where random MR, oldest MR, closest MR, and maximum outgoing queue 

size are considered for the former, while random device, closest idle device, and longest idle device 

are considered for the latter.  Note that, first-come-first-served (FCFS) dispatching would 

generally mean that the oldest MR rule is used for DID, and the longest idle device rule is used for 

SID.  Likewise, shortest-travel-time-first (STTF) dispatching would generally mean that the 

closest MR rule is used for DID, and the closest idle device rule is used for SID.   

Although the study was presented for an automated storage/retrieval system (AS/RS), 

Chow (1986a) was among the first to present a general analytic model for a single device operating 

under the FCFS rule.  The paper introduces the “𝑘𝑖𝑗 triplet” concept, where the service time is 

modeled as the sum of two components; the first one is the empty device travel time from its 

current location (station 𝑘) to pick up a load at station 𝑖, and the second component is loaded device 

travel from station 𝑖 to station 𝑗. The author shows that modeling the FCFS rule is straightforward 
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since the next MR to be served is independent of the current location of the device.  In a subsequent 

paper, Chow (1986b) evaluates alternative dispatching rules for an AS/RS via simulation.  (Chow’s 

method was also used by Johnson and Brandeau [1994] to develop an analytic model for a single-

device AGV system.)     

For DID, Srinivasan et al. (1994) present an analytic model for a modified version of the 

FCFS rule (i.e., Mod-FCFS), where, upon delivering a load, the empty device first checks its 

current location for an unassigned MR.  If no such MR is found, the device serves the oldest 

unassigned MR in the system.  Since the analytic model is based on a single device, no rule is 

required for SID; when a MR arrives, there can be at most one idle device.  However, for the multi-

device simulation model, the authors use the longest idle device rule for SID.  Arguing that in most 

cases SID would be invoked more often, Koo and Jang (2002), on the other hand, study the longest 

idle device and the closest idle device rules for SID, while using a simple rule (FCFS) for DID.    

Bozer and Yen (1996) propose two dispatching rules; the modified-STTF rule (Mod-STTF) 

and the bidding-based dynamic dispatching (B2D2) rule, which aim to outperform the STTF rule.  

Under the Mod-STTF rule, a device may be reassigned to another load while it is performing an 

empty trip.  Under the B2D2 rule, a device may be assigned to multiple MRs, although they are 

still served one at a time.  When a MR arrives, all the devices in the system place a “bid.”  The bid 

placed by a device is based on the remaining distance it must travel to serve all the MRs that have 

been assigned to it, plus the empty travel distance to the new MR.  The new MR is assigned to the 

device with the lowest bid.  The B2D2 rule is novel in that it does not wait for a device to become 

empty to make a decision.  Both of the above rules outperform the STTF rule.  However, both 

rules, to the best of our knowledge, are analytically intractable and they lack the simplicity and 

practical appeal of the STTF rule.   
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The above rules are all considered “centralized” in that a computer must keep track of the 

location of all the MRs and the devices.  As an alternative, a decentralized rule, namely, the First-

Encountered-First-Served (FEFS) rule was analyzed by Bartholdi and Platzman (1989) for a 

closed-loop AGV system, where the stations are arranged around a unidirectional loop.  Under 

FEFS, once a device becomes empty, it continues to travel around the loop, searching for a MR.  

(Such systems are similar to polling systems.)  Once the device moves a load, it resumes searching 

for a load from its current location.  The authors show that the FEFS rule is an effective rule in a 

closed-loop system.   

Bozer and Srinivasan (1991) further analyze the FEFS rule and define “mandatory” empty 

trips based on the net flow concept (which is explained in section 2.3).  Nazzal and McGinnis 

(2008) propose an alternate method to model the FEFS rule and incorporate device blocking by 

extending a Markov chain model and computing the appropriate transition probabilities.   

While the above papers focus primarily on dispatching, some papers focus on determining 

the minimum number of devices required.  Egbelu (1987) presents four alternative simple formulas 

to determine the number of devices required.  Empty trips are included but not as a function of the 

dispatching rule used.  Mahadevan and Narendran (1990, 1993) present an analytic model for a 

flexible manufacturing system (FMS).  The model incorporates the job routing flexibility of an 

FMS, and the probabilities of possible job sequences are used to compute the minimum number 

of devices.   

Using the net flow concept, Maxwell and Muckstadt (1982) present an analytical lower 

bound for the number of empty trips required, regardless of the dispatching rule used.  (The lower 

bound is explained briefly later in the chapter.)  Subsequently, Malmborg (1991) tightened the 

bounds by taking the dispatching rules into consideration.  The rules studied were random, closest 
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and furthest load for DID, and random, closest and furthest device for SID.  The rule with the least 

(most) estimated empty travel time was considered the lower (upper) bound.        

Lastly, some studies model the material handling system as a queueing network in order to 

find the average waiting time of the MRs.  Chow (1986a) approximates a single-device AS/RS as 

an M/G/1/FCFS queue.  The service time distribution is obtained from the flow matrix. Tanchoco 

et al. (1987) and Wysk et al. (1987) present a model based on CAN-Q (Computerized Analysis of 

Network of Queues, see Solberg [1980]) to determine the number of devices needed.  However, 

Can-Q’s structure prevents the explicit consideration of the DID or SID rules.  Curry et al. (2003) 

estimate the average waiting time for the MRs by approximating the handling system as a queueing 

model, using oldest MR (FCFS) for DID, and closest idle device for SID.  

In conclusion, while numerous studies focus on device dispatching, very few develop an 

analytic model to explicitly estimate the empty trips, and those that do, assume either a single 

device and/or a simple rule such as FCFS.  To our knowledge, our model is the first one to consider 

multiple devices while explicitly modeling empty device travel under a rule more efficient than 

FCFS.  Furthermore, some studies argue that DID plays a bigger role than SID, or vice versa. We 

analyze the frequency of DID versus SID, and our model does not emphasize one over the other. 

 

2.3 Problem Setting and Assumptions 

The system is composed of a set of stations, where each station has a pick-up point and a 

deposit point.  Each MR is defined by its origin station (pick-up point) and destination station 

(deposit point).  When a MR arrives, it joins the queue at its origin station; it also joins a global 

queue, which maintains the order of arrival of all the MRs across the system.  The MRs arrive one 

at a time according to an independent Poisson process with a known rate.  Once a device is 

dispatched to pick up a MR, the MR is removed from the global queue.  Subsequently, when the 
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MR is picked up by the device, it is delivered to the deposit point of its destination station.  Possible 

congestion or blocking are not modeled explicitly but the travel time between stations is assumed 

to be exponentially distributed.  For simplicity, the devices travel at the same speed whether empty 

or loaded.   

We assume that the queue at each pick-up point and the global queue all have unlimited 

capacity.  Once a load is delivered, service of the MR is completed and the load exits the system 

immediately.  For simplicity, we assume that the travel distance between the pick-up and deposit 

points of the same station is negligible. The load pick-up/deposit times are also negligible 

(although extending the model for non-negligible pick-up/deposit times would be straightforward).   

As explained in section 2.2, adopting the Mod-FCFS rule for DID, Srinivasan et al. (1994) 

present an analytic model for the case with a single device.  To model a system with 𝑘 devices, the 

authors propose to use the single-device model with a device that travels 𝑘 times faster.  Since the 

model is based on a single device, selecting an idle device when SID occurs is not a concern.  Our 

model, on the other hand, is based explicitly on multiple devices. As such, for DID, we use the 

same rule as Srinivasan et al. (1994) (see section 2.2), and for SID we assume that when a MR 

arrives, it first checks the origin station for an idle device.  If no idle device is found at the origin 

station, it checks the system for other idle devices.  If one or more are found, the longest idle device 

is assigned to the MR.  If none are found, the MR will be served through DID.   

Note that our implementation of Mod-FCFS is logical and consistent because whether it’s 

DID or SID, the system first checks for an opportunity to assign an empty device to a “local MR” 

(DID), or assign a MR to a “local (idle) device” (SID).  For brevity, we will refer to this rule as 

“L/OF-L/OF,” where the first position (DID) stands for “local (load); if not, oldest (load) first,” 

and the second position (SID) stands for “local (idle device); if not, oldest (idle device) first,” 
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where obviously the “oldest (idle device)” corresponds to the longest idle device.  The list of the 

dispatching rules is shown in Table 2.1. 

Table 2.1: DID and SID of Dispatching Rules 

Rule DID SID 

FCFS Oldest First (OF) Oldest First (OF) 

Srinivasan et al. (1994) Local; if not, Oldest First (L/OF) Oldest First (OF) 

Mod-FCFS Local; if not, Oldest First (L/OF) Local; if not, Oldest First (L/OF) 

STTF Closest First (CF) Closest First (CF) 

 

2.4 The L/OF-L/OF (Mod-FCFS) Rule and the Analytic Model 

In this section, we present a multi-device analytic model for the L/OF-L/OF rule.  Since 

the loaded trips are given as data, our goal is to compute the empty trips, and ultimately the 

expected device utilization.  We also investigate DID versus SID since, contrary to claims made 

in the literature, they both play a key role in estimating the performance of the system and the 

resulting empty trips.     

The number of devices in the system is denoted by 𝐷, and the number of stations by 𝑆.  The 

number of empty and loaded trips per hour are denoted as 𝑒𝑖𝑗 and 𝑓𝑖𝑗, where 𝑒𝑖𝑗 represents the 

number of trips an empty device makes per hour from station 𝑖 to station 𝑗 to pick up a load at 

station 𝑗, and 𝑓𝑖𝑗 represents the number of trips a loaded device makes per hour from station 𝑖 to 

station 𝑗 (𝑖 ≠ 𝑗) to deliver a load at station 𝑗. 

Assuming that a sufficient number of devices is provided, let 𝛼𝑓 (< 1) and 𝛼𝑒 (< 1) 

denote the proportion of time a device is traveling loaded and empty, respectively.  (Recall that 

the devices are assumed to be homogeneous.)    Letting 𝑡𝑖𝑗  denote the (loaded or empty) travel 

time in minutes from station 𝑖 to station 𝑗, the expected device utilization (𝜌 < 1) is computed as 

follows:  
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𝜌 = 𝛼𝑓 + 𝛼𝑒 =
∑ ∑ (𝑡𝑖𝑗𝑓𝑖𝑗)𝑗∈𝑆𝑖∈𝑆

60𝐷
+
∑ ∑ (𝑡𝑖𝑗𝑒𝑖𝑗)𝑗∈𝑆𝑖∈𝑆

60𝐷
                                 (2.1) 

Computing the first term is straightforward since the 𝑓𝑖𝑗 values are given as data.  (It is also 

straightforward to include possible load pick-up/deposit times by adjusting the 𝑡𝑖𝑗 values in the 

first term.)  However, in order to compute the second term, the 𝑒𝑖𝑗 values are needed.  Before we 

present the analytic model to estimate the empty trips (section 2.4.3), we first address three related 

issues in the following sections.   

2.4.1 Net Flow  

The net flow (NF) of station 𝑖 is based on the rate at which loads are delivered at station 𝑖 

versus picked up from station 𝑖.  As defined in (Bozer and Srinivasan, 1996), if Λ𝑖 denotes the rate 

at which loads are delivered at station 𝑖, and 𝜆𝑖 denotes the rate at which loads are picked up from 

station 𝑖, then:  

𝑁𝐹𝑖 = Λ𝑖 − 𝜆𝑖 =∑ 𝑓𝑘𝑖
𝑘∈𝑆

−∑ 𝑓𝑖𝑘
𝑘∈𝑆

                                             (2.2) 

Furthermore, if we let Λ𝑇 =  ∑ Λ𝑖𝑖∈𝑆  and 𝜆𝑇 = ∑ 𝜆𝑖𝑖∈𝑆 , then Λ𝑇 = 𝜆𝑇 and ∑ 𝑁𝐹𝑖 = 0𝑖∈𝑆  since flow 

is conserved globally.  However, individual stations may have positive or negative NF values 

depending on the data.  As explained in (Maxwell and Muckstadt, 1982), stations with positive NF 

values “generate” empty devices, while stations with negative NF values “consume” empty 

devices.  Stations with a zero NF value are “balanced” stations but a device that delivers a load to 

such a station may still depart empty.    

As with other dispatching rules, the performance of L/OF-L/OF depends largely on the 

flow data and the layout of the stations. If the flow is highly unbalanced (that is, most or all of the 

stations have very negative or very positive NF values), it is less likely that, upon delivering a load 

(upon arriving), a device (a MR) will find a local MR (a local idle device).  The more often a local 
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load (or local idle device) is not found, the more the performance of L/OF-L/OF will approach that 

of OF-OF (that is, FCFS or “oldest first” for both DID and SID).  If the flow is balanced (that is, 

most or all of the stations have zero or near-zero NF values), the device (the MR) is more likely to 

find a local load (a local idle device), and as a result, the L/OF-L/OF rule should perform better 

than the OF-OF rule.     

We demonstrate the impact of NF through a simple, 4-station example with 3 devices.  The 

system is simulated with unbalanced and balanced flow data, although the total workload is fixed 

at 28 loads/hr (see Appendix 2.A). Taking the closest-first (CF) rule as the baseline for each case, 

the 𝜌 values and the percent increase in them for both cases are shown in Table 2.2.  As expected, 

𝜌 increases considerably when the flow is unbalanced, and the performance of L/OF-L/OF 

improves when the flow is balanced.   Past results have established that FCFS gives high 𝜌 due to 

unnecessary empty travels while STTF is an efficient rule.  And under light traffic, our empirical 

results suggest that all the rules listed in Table 2.2 show comparable performance.  This is primarily 

because, under light traffic, there are very few (typically no more than one or two) MRs present 

when the device becomes empty.  Consequently, a device is almost always dispatched to serve the 

same MR regardless of the dispatching rule in effect (Srinivasan et al. 1994). 

Table 2.2: Expected Device Utilization in a 4-station Example 

 OF-OF (FCFS) L/OF-L/OF (Mod-FCFS) CF-CF (STTF) 

Unbalanced flow 0.894 (23%) 0.847 (17%) 0.727 

Balanced flow 0.855 (33%) 0.711 (11%) 0.643 

 

2.4.2 DID versus SID 

As shown in section 2.4.3, DID and SID impacts the empty trips and the analytic model. 

Furthermore, there have been conflicting views in the literature on the significance of DID versus 

SID and how often the two are invoked.  For example, Srinivasan et al. (1994) argue that SID 
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“generally has little or no impact on the throughput capacity of the system since it is usually 

invoked very seldom” when the “minimum or near-minimum required number of devices are used” 

because “the probability of finding two or more idle devices in the system diminishes quite 

rapidly.”   While we partly agree with the above statement, it is somewhat ambiguous since the 

near/minimum number of devices may correspond to a range of 𝜌 values (such as 𝜌 ≅ 0.98 or 𝜌 ≅

0.90), and it is not clear how seldom SID would be invoked for more realistic 𝜌 values such as 

𝜌 ≅ 0.80. Also, the number of devices would impact the validity of the above statement.     

On the contrary, it is argued by Koo and Jang (2002) that SID would be invoked more 

frequently since the probability of invoking DID, that is, the probability of finding all 𝑘 devices 

busy, which is claimed to be equal to 𝜌𝑘, decreases rapidly with the number of devices.  

Unfortunately, this argument is not valid since 𝜌𝑘 does not correspond to the above probability.  

In general, if the MR finds one server busy, it increases the probability of finding another server 

busy (see [Nelson 1995, p. 322] for an elegant proof for the 𝑀 𝐺 𝑘⁄⁄  queue.)   In fact, the 

probability of invoking DID is provided by the well-known Erlang C formula for the 𝑀 𝑀 𝑘⁄⁄  

queue (Nelson 1995, 372), which is repeated below for 𝐷 devices:   

𝐸𝐶 = 

(𝜌𝐷)𝐷

𝐷!
(𝐷)𝐷

𝐷! + (1 − 𝜌)∑
(𝜌𝐷)ℓ

ℓ!
𝐷−1
ℓ=0

                                                    (2.3) 

For example, for 𝜌 = 0.90 and 𝐷 = 10, the probability of DID and SID is about 0.67 and 0.33, 

respectively. As suggested in (Srinivasan et al. 1994), DID is more dominant but both probabilities 

are non-negligible, and one cannot say that SID would be invoked “very seldom.” And certainly 

one cannot say that SID would be invoked more frequently (even though 𝐷 = 10).   
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Table 2.3: DID vs SID, Layout 3, 7 Devices, Flow 1  

 

 

For our case, however, the Erlang C formula represents an approximation since the device 

service times (i.e., empty + loaded travel) are non-exponential, and furthermore, the sequence of 

service affects the service times.  (Empty travel distances depend on the sequence in which the 

MRs are served.) Hence, to assess the performance of the Erlang C formula as an estimate for DID 

versus SID, a simulation experiment was conducted with one of the layouts used in our study 

(Layout 3, Appendix 2.B).  (The details of the simulation are provided in section 2.5.)  The results 

are shown in Table 2.3, where 𝑊𝑞 is the overall wait time (in secs) averaged across all the MRs. 

Testing three dispatching rules, we observe that the Erlang C formula provides a reasonably 

accurate estimate for the probability of DID versus SID over a wide range of 𝜌 values. We also 

observe that for 𝜌 ≅ 0.98, DID is invoked over 90% of the time.  However, such a large value is 

unlikely to be suitable in practice since the expected waiting time is excessive relative to the travel 

times.  (Ultimately, the cost of the devices must be weighed against the expected waiting times 

and customer expectations.)  For more realistic 𝜌 values that fall between approximately 0.70 and 

0.90, the percent breakdown between DID-SID in Table 2.3 ranges from about 30%-70% to 70%-

30%, which clearly indicates that in most systems, both DID and SID would be invoked with 

SIM EC r
k SIM EC r

k SIM EC r
k

r 0.794 ± 0.008 0.890 ± 0.007 0.977 ± 0.012

Pr (DID) 0.482 ± 0.014 0.473 0.199 0.684 ± 0.017 0.694 0.442 0.932 ± 0.033 0.932 0.850

Pr (SID) 0.518 ± 0.014 0.527 0.801 0.316 ± 0.017 0.306 0.558 0.068 ± 0.033 0.068 0.150

Wq 27.99 ± 1.68 66.38 ± 3.61 832.3 ± 393.4

r 0.685 ± 0.008 0.793 ± 0.007 0.848 ± 0.008

Pr (DID) 0.301 ± 0.010 0.277 0.071 0.472 ± 0.014 0.471 0.197 0.591 ± 0.020 0.592 0.315

Pr (SID) 0.699 ± 0.010 0.723 0.929 0.528 ± 0.014 0.529 0.803 0.409 ± 0.020 0.408 0.685

Wq 12.69 ± 0.46 29.67 ± 1.79 66.75 ± 5.28

OF-OF

Case  

1

Case 

2

L/OF-L/OFCF-CF
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moderate frequency, and one does not strongly dominate the other.  (As anticipated, using 𝜌𝑘 to 

estimate the probability of DID leads to significant errors as shown in Table 2.3.)   

2.4.3 Analytic Model to Estimate Empty Device Travel under L/OF-L/OF  

Each empty trip occurs either as a result of DID (i.e., upon delivering a load, the device 

remains busy and is immediately assigned to a MR) or SID (i.e., a MR arrives and finds one or 

more idle devices). Thus, each empty trip, 𝑒𝑖𝑗, occurs either from a busy (B) state or idle (I) state:   

𝑒𝑖𝑗 = 𝑒𝑖𝑗
𝐵 + 𝑒𝑖𝑗

𝐼                                                                      (2.4)  

Breaking down 𝑒𝑖𝑗 into two components as shown above is a key step in developing an analytic 

model to estimate the empty trips in the system.   

Since flow is conserved, the number of empty trips per hour into station 𝑖 must equal the 

number of loaded trips per hour out of station 𝑖.  Likewise, the number of empty trips per hour out 

of station 𝑖 must equal the number of loaded trips per hour into station 𝑖. In other words, for every 

loaded trip, there is a preceding empty trip. Note that, if a device that has just delivered a load at 

station 𝑖 finds a load waiting there (i.e., a “local load”), it will perform an empty trip, 𝑒𝑖𝑖, from the 

deposit point of 𝑖 to the pick-up point of 𝑖, which we assumed to be negligible in travel time.   

Assuming that device arrivals occur at random points in time, we have:    

𝑒𝑖
𝐵 = Λ𝑖(𝐸𝐶)              number of DID-based empty trips per hour out of station 𝑖       (2.5a) 

𝑒𝑖
𝐼 = Λ𝑖(1 − 𝐸𝐶)      number of SID-based empty trips per hour out of station 𝑖        (2.5b) 

𝑒 𝑖
𝐵 = 𝜆𝑖(𝐸𝐶)              number of DID-based empty trips per hour into station 𝑖           (2.5c) 

𝑒 𝑖
𝐼 = 𝜆𝑖(1 − 𝐸𝐶)      number of SID-based empty trips per hour into station 𝑖           (2.5d) 

Node-to-node empty trips under DID and SID, denoted by 𝑒𝑖𝑗
𝐵  and 𝑒𝑖𝑗

𝐼 , respectively, are computed 

separately and are described next, where 𝑚 (𝑀) denotes the number of MRs in the global queue 

(in the system).   
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2.4.3.1 Device Initiated Empty Trips 

DID occurs when a device delivers a load and finds 𝑚 ≥ 1. In order to estimate 𝑒𝑖𝑗
𝐵 , we 

consider two possible cases:  𝑒𝑖𝑖
𝐵 and 𝑒𝑖𝑗

𝐵  (𝑖 ≠ 𝑗), where the first case represents the instance where 

the device finds a local load.  Let 𝑞𝑖 be the probability that the device finds a local load at 𝑖, given 

that 𝑚 ≥ 1.  Note that 𝑞𝑖 is a departure instance probability since it occurs when the device has 

just delivered a load.  However, for systems with only negative and positive unit jumps, the 

equilibrium state distribution observed by departures is the same as that observed by arrivals (see, 

for example, [Cooper 1981, 186]).  Since the MRs arrive according to a Poisson process, and such 

arrivals observe time averages (Cooper 1981, p. 77; Wolff 1982), the equilibrium state distribution 

observed by departures is the same as that observed by time-averaging.   

Let ℙ𝑀 (𝑝𝑚) denote the probability that there are 𝑀 (𝑚) MRs in the system (the global 

queue).  Determining the equilibrium, time-average probabilities for the number of MRs in our 

system/queue is far from straightforward and it may not be analytically tractable.  Therefore, as an 

approximation, we use the results from the 𝑀 𝑀 𝑐⁄⁄  queue (where 𝑐 = 𝐷) to estimate ℙ𝑀 and 𝑝𝑚. 

That is, given 𝜌 and 𝐷, we have (Kleinrock 1975, p. 102):    

ℙ𝑀 =

{
 
 

 
 ℙ0

(𝜌𝐷)𝑀

𝑀!
, for 1 ≤ 𝑀 ≤ 𝐷

ℙ0
𝜌𝑀𝐷𝐷

𝐷!
,          for 𝑀 ≥ 𝐷

                                          (2.6)  

where, 

ℙ0 = [∑
(𝜌𝐷)ℓ

ℓ!

𝐷−1

ℓ=0

+ (
(𝜌𝐷)𝐷

𝐷
)(

1

1 − 𝜌
)]

−1

                                    (2.7) 

Given that 𝑚 ≥ 1, we renormalize the above steady-state probabilities to obtain:  
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𝑝𝑚
′ =

ℙ𝑚+𝐷−1

1 − ∑ ℙℓ
𝐷−1
ℓ=0

,                                                        (2.8) 

where 1 − ∑ ℙℓ
𝐷−1
ℓ=0  is the probability that the global queue content is non-zero. 

Assuming independence of the global queue contents, and assuming that a MR, selected 

randomly from the global queue, is at station 𝑖 with probability 𝜆𝑖 𝜆𝑇⁄ , given a global queue with 

exactly 𝑚 MRs (𝑚 ≥ 1), the probability that none of them are at station 𝑖 is equal to (1 −
𝜆𝑖

𝜆𝑇
)
𝑚

, 

and the probability that at least one of them is at station 𝑖 is equal to 1 − (1 −
𝜆𝑖

𝜆𝑇
)
𝑚

.  Hence,  

𝑞𝑖 = ∑(𝑝𝑚
′ )

𝐿

𝑚=1

[1 − (1 −
𝜆𝑖
𝜆𝑇
)
𝑚

],                                           (2.9) 

where we treat 𝐿 as a sufficiently large number, and  

𝑒𝑖𝑖
𝐵 = (𝑞𝑖)(𝑒𝑖

𝐵)        for 𝑖 ∈ 𝑆                                                     (2.10) 

With 𝑚 ≥ 1, if the device does not find a local load at station 𝑖, it serves the oldest MR in 

the system, say, at station 𝑗, which leads to the second case, i.e., 𝑒𝑖𝑗
𝐵  (𝑖 ≠ 𝑗).  Given that there is no 

local load at station 𝑖, we have:   

𝑒𝑖𝑗
𝐵 = (1 − 𝑞𝑖)(𝑒𝑖

𝐵) (
𝜆𝑗

𝜆𝑇 − 𝜆𝑖
)       for 𝑖, 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗                            (2.11) 

2.4.3.2 Station Initiated Empty Trips 

SID occurs when a MR arrives at 𝑗 and finds one or more idle devices, i.e., 𝑀 ≤ (𝐷 − 1).  

The approach we use to estimate 𝑒𝑖𝑗
𝐼  is similar to DID except that we view the system from the 

MR’s perspective.  We consider two possible cases as before:  𝑒𝑗𝑗
𝐼  and 𝑒𝑖𝑗

𝐼  (𝑖 ≠ 𝑗), where the first 

case represents the instance where the MR arriving at station 𝑗 finds a local idle device at 𝑗. Let 𝑟𝑗 

be the probability that the MR finds a local idle device at 𝑗, given that 𝑀 ≤ (𝐷 − 1).   
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Let 𝜋𝑑 denote the probability that the MR arriving at station 𝑗 finds 𝑑 devices idle (𝑑 ≤ 𝐷).  

(Recall that this probability is the same obtained from time-averaging).  Again, using the 𝑀 𝑀 𝑐⁄⁄  

queue as an approximation, given 𝜌 and 𝐷, we have  

𝜋𝑑 = ℙ𝐷−𝑑,        for 1 ≤ 𝑑 ≤ 𝐷  

Given that 𝑀 ≤ (𝐷 − 1), we renormalize the above steady-state probabilities to obtain:   

𝜋𝑑
′ =

𝜋𝑑
∑ ℙ𝑀
𝐷−1
𝑀=0

                                                                    (2.12) 

where ∑ ℙ𝑀
𝐷−1
𝑀=0  is the probability that there is at least one idle device in the system. 

The probability that an idle device is at station 𝑗 is equal to Λ𝑗 Λ𝑇⁄ .  Therefore, given 𝑑 idle 

devices, the probability that at least one of them is at station 𝑗 is given by 1 − (1 −
Λ𝑗

Λ𝑇
)
𝑑

.  Hence,  

𝑟𝑗 =∑(𝜋𝑑
′ )

𝐷

𝑑=1

[1 − (1 −
Λ𝑗

Λ𝑇
)
𝑑

],                                                 (2.13) 

and    

𝑒𝑗𝑗
𝐼 = (𝑟𝑗)(𝑒 𝑗

𝐼 )        for 𝑗 ∈ 𝑆                                                   (2.14) 

Consider next the second case, i.e., 𝑒𝑖𝑗
𝐼  (𝑖 ≠ 𝑗). When SID occurs but there is no local idle 

device at 𝑗, the MR is assigned to the longest idle device, which is at station 𝑖 with probability 

Λ𝑖 (Λ𝑇 − Λ𝑗)⁄ .  That is, 

𝑒𝑖𝑗
𝐼 = (1 − 𝑟𝑗)(𝑒𝑗

𝐼 ) (
Λ𝑖

Λ𝑇 − Λ𝑗
)       for 𝑖, 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗                                   (2.15) 

 

  



22 
 

2.4.3.3 Empty Trips Rescaled 

Conservation of flow dictates that we have:  

∑ 𝑒𝑖𝑗
𝐵

𝑗∈𝑆 = 𝑒𝑖
𝐵    for each 𝑖                                            (2.16a) 

∑ 𝑒𝑖𝑗
𝐵

𝑖∈𝑆 = 𝑒𝑗 
𝐵    for each 𝑗                                             (2.16b) 

∑ 𝑒𝑖𝑗
𝐼

𝑗∈𝑆 = 𝑒𝑖
𝐼    for each 𝑖                                             (2.16c) 

∑ 𝑒𝑖𝑗
𝐼

𝑖∈𝑆 = 𝑒𝑗
𝐼     for each 𝑗                                             (2.16d) 

Since 𝑒𝑖𝑗
𝐵  and 𝑒𝑖𝑗

𝐼  are estimated values, they do not necessarily satisfy equation (2.16). More 

specifically, because of how they were derived, the 𝑒𝑖𝑗
𝐵  values satisfy (2.16a) (i.e., the sum of row 

𝑖 equals 𝑒𝑖
𝐵 ) but they may not satisfy (2.16b) (i.e., the sum of column 𝑗 may not equal 𝑒𝑗 

𝐵 ).  Hence, 

we let  

𝛿𝑗 = 
𝑒𝑗
𝐵

∑ 𝑒𝑘𝑗
𝐵

𝑘∈𝑆

                  for each 𝑗 ∈ 𝑆                                  (2.17) 

and rescale the 𝑒𝑖𝑗
𝐵  values in column 𝑗 as follows:   

𝑒𝑖𝑗
𝐵 ← (𝛿𝑗)(𝑒𝑖𝑗

𝐵)                   for each 𝑗 ∈ 𝑆                                   (2.18) 

As a result of rescaling, the relative values of the 𝑒𝑖𝑗
𝐵’s in column 𝑗 remain the same but 

their absolute values are adjusted so that equation (2.16b) is satisfied.   However, when each 

column is rescaled, and we reconsider the rows, equation (2.16a) may no longer be satisfied for 

each row.  Therefore, we let 

𝛿𝑖 = 
𝑒𝑖
𝐵

∑ 𝑒𝑖𝑘
𝐵

𝑘∈𝑆

                  for each 𝑖 ∈ 𝑆                                  (2.19) 

and rescale the 𝑒𝑖𝑗
𝐵  values in row 𝑖 as follows:  

𝑒𝑖𝑗
𝐵 ← ( 𝛿𝑖)(𝑒𝑖𝑗

𝐵)             for each 𝑖 ∈ 𝑆                                  (2.20) 
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As a result of rescaling each row, equation (2.16a) is again satisfied for each row, but 

equation (2.16b) may not be satisfied for each column.  Hence, we again rescale the columns, and 

we continue in this manner, alternating between rescaling the columns and the rows until both 

equations (2.16a) and (2.16b) are satisfied.  (The 𝛿𝑖 and 𝛿𝑗 values decrease in each iteration and 

eventually approach one.)   

The above procedure is repeated for the 𝑒𝑖𝑗
𝐼  values until equations (2.16c) and (2.16d) are 

satisfied.  The only difference is that, initially, equation (2.16d) is satisfied for each column, and 

we start the iterative process by rescaling each row.    

Finally, since we now have the estimated values for both 𝑒𝑖𝑗
𝐵  and 𝑒𝑖𝑗

𝐼 , we can use equations 

(2.1) and (2.4) to compute the values of 𝛼𝑒 and 𝜌.   

2.4.4 Iterative Algorithm to Compute 𝝆 

In section 2.4.3, 𝐸𝐶 is used to estimate the values of 𝑒𝑖𝑗
𝐵  and 𝑒𝑖𝑗

𝐼 .  However, 𝐸𝐶 is based on 

a given 𝜌.  We, therefore, employ the following iterative scheme to estimate the values of 𝑒𝑖𝑗 and 

𝜌 for a user-specified number of devices (𝐷):   

1) Set 𝑛 = 1.     

2) Compute a lower bound on 𝜌, and set 𝜌(𝑛) equal to the lower bound.  If  𝜌(𝑛) ≥ 1, stop; 

more devices are needed.      

3) Using 𝜌(𝑛), compute 𝐸𝐶
(𝑛)

 from equation (2.3), and estimate the values of 𝑒𝑖𝑗
𝐵(𝑛)

 and 𝑒𝑖𝑗
𝐼(𝑛)

 

using the results in section 2.4.3.   

4) Set 𝑒𝑖𝑗
(𝑛) = 𝑒𝑖𝑗

𝐵(𝑛)
+ 𝑒𝑖𝑗

𝐼(𝑛)
.  Compute the new value of the expected device utilization, 𝜌̂(𝑛), 

using equation (2.1).  If 𝜌̂(𝑛) > 1, set 𝜌̂(𝑛) = 1.   

5) Set 𝜌(𝑛+1) = 𝜌(𝑛) + Δ (𝜌̂(𝑛) − 𝜌(𝑛)), where Δ is a sufficiently small step size. 
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6) If 𝜌(𝑛+1) is approaching 1, say, 𝜌(𝑛+1) > 0.999, stop; the system may or may not be 

stable. More devices are needed to obtain a realistic 𝜌 value.   

7) Set 𝔼𝑖𝑗
(𝑛)

= |𝑒𝑖𝑗
(𝑛)
− 𝑒𝑖𝑗

(𝑛−1)
| and let 𝜀 be a sufficiently small number.  If  𝔼𝑖𝑗

(𝑛)
≤ 𝜀  ∀ 𝑖, 𝑗, stop; 

the algorithm has converged; the expected device utilization is equal to 𝜌(𝑛).  Otherwise, 

let 𝑛 ← 𝑛 + 1 and go to step 3.    

The lower bound in step 2 is straightforward to compute, using the method presented by 

Maxwell and Muckstadt (1982).  First, using equation (2.2), the net flow is computed for each 

station.  Then, treating the stations with positive and negative net flows as supply and demand 

nodes, respectively, a transportation problem is solved to obtain the minimum possible 𝑒𝑖𝑗 values, 

which yields a lower bound on 𝜌.  We abbreviate the lower bound as the M-M LB.  The above 

iterative procedure is depicted in Figure 2.1.   

 

Figure 2.1: Iterative Procedure to Compute the Expected Device Utilization  
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2.5 Model Evaluation and Simulation Results 

We next present simulation results to assess the performance of the above analytic model 

and to compare the performance of the L/OF-L/OF against to two other well-known dispatching 

rules; namely, OF-OF and CF-CF. We also compare L/OF-L/OF with L/OF-OF, the rule proposed 

by Srinivasan, et al. (1994) (refer to Table 2.1 for the list of dispatching rules).  Our simulation 

model is based on the Tecnomatix Plant Simulation package (2014) by Siemens.     

Three layouts, labeled LO1, LO2 and LO3, equipped with 3 or 7 devices, are used for the 

simulation experiment.  Layout LO3 is taken from Srinivasan et al. (1994).  In order to evaluate 

the analytic model across a range of device utilizations, the flow data are kept constant, but the 

device travel speed is adjusted in order to raise/lower the utilization.  Since the flow data may 

impact the performance of the dispatching rules, the experiment is conducted with two sets of flow 

data:  Flow 1 (nearly-balanced flows that yield small NF values for each station), and Flow 2 

(unbalanced flows that yield a range of NF values for the stations).  The complete data sets are 

shown in Appendix 2.B.   

The simulation results are based on 10 replications, with 20,000 loaded trips per device per 

replication, following a warm-up period of 1,000 loaded trips.  However, the simulation is 

terminated sooner if the system becomes “overloaded” (OL), that is, if the number of MRs in the 

global queue exceeds a pre-determined limit of (300 × the number of stations).  While we cannot 

conclude that such systems are unstable, an excessive number of MRs in the global queue would 

not be acceptable in most applications.  Last, the device travel speed selected for each scenario is 

such that L/OF-L/OF yields a target 𝜌 value of approximately 0.90, 0.80, and 0.60, which 

corresponds to high, medium, and low device utilization, respectively.  Once the device speed is 

selected, the same flow data are simulated with the other rules.     
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2.5.1 Performance of the L/OF-L/OF Rule 

The simulation results comparing the performance of the rules are presented in Tables 2.4a 

and 2.4b for flow sets 1 and 2, respectively (refer to Table 2.1 for the rules).  The estimated lower 

bound (M-M LB) is also included in the comparison.  Since the 𝛼𝑓 values do not change, the rules 

are compared on the basis of empty device travel (𝛼𝑒) and the expected MR wait time (𝑊𝑞). 

 In general, L/OF-L/OF performs better than both OF-OF and L/OF-OF, that is, the rule 

has lower 𝑊𝑞,  𝛼𝑒 and 𝜌 values.  Also, as expected, the performance gap between L/OF-L/OF and 

OF-OF increases when the flow is more balanced.  However, the above gap is also impacted by 

the number of devices and their utilization.  A larger number of devices improves the effectiveness 

of SID (since a MR is more likely to find an idle device that is local), and lower device utilization 

increases the proportion of SID.  On the other hand, if there are a fewer number of devices, and 

the proportion of SID is large (due to low device utilization), L/OF-L/OF yields results comparable 

to OF-OF.  Similarly, the performance gap between L/OF-L/OF and L/OF-OF is impacted by the 

number of devices and their utilization.  The L/OF-L/OF and L/OF-OF results are more 

comparable when the proportion of DID is larger (higher utilization, and/or lower number of 

devices), and the performance gap increases as the proportion of SID increases (lower utilization 

and/or more devices).   

Compared to CF-CF, L/OF-L/OF performs relatively well if the device utilization is high.  

This is because a device is more likely to find a local load (provided the flow is not highly 

unbalanced).  Additionally, if there are fewer devices in the system, the MR is less likely to find a 

local idle device.  Therefore, the performance gap between CF-CF and L/OF-L/OF is larger in 

systems with lower utilization and/or fewer devices.  Overall, the results indicate that L/OF-L/OF 
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is a reasonably efficient rule with a performance that stands between OF-OF and CF-CF.  Figure 

2.2a and 2.2b illustrate the 𝛼𝑒 comparison at 𝜌 = 0.80. 

 

Figure 2.2a: Simulated 𝛼𝑒 Values for Alternative Dispatching Rules at 3 Devices, 𝜌 = 0.80 

 

 

 

Figure 2.2b: Simulated 𝛼𝑒 Values for Alternative Dispatching Rules at 7 Devices, 𝜌 = 0.80 
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Table 2.4a: Simulation Comparison of the Rules with 3 Devices  

 

Target ρ = 0.90 0.80 0.60 0.90 0.80 0.60

OF-OF OL 0.514 ± 0.007 0.373 ± 0.005 OL 0.526 ± 0.006 0.398 ± 0.005

L/OF-OF    0.466 ± 0.006 0.444 ± 0.005 0.355 ± 0.005 0.477 ± 0.002 0.462 ± 0.003 0.385 ± 0.005

L/OF-L/OF 0.460 ± 0.003 0.432 ± 0.004 0.336 ± 0.005 0.460 ± 0.004 0.426 ± 0.005 0.319 ± 0.004

CF-CF 0.405 ± 0.004 0.375 ± 0.004 0.282 ± 0.003 0.382 ± 0.004 0.329 ± 0.003 0.215 ± 0.005

M-M LB 0.094 0.078 0.057 0.093 0.080 0.060

αf L/OF-L/OF 0.442 ± 0.006 0.369 ± 0.007 0.267 ± 0.005 0.441 ± 0.004 0.376 ± 0.004 0.285 ± 0.003

OF-OF OL 0.881 ± 0.010 0.640 ± 0.007 OL 0.902 ± 0.008 0.683 ± 0.006

L/OF-OF    0.906 ± 0.007 0.812 ± 0.005 0.623 ± 0.006 0.918 ± 0.004 0.838 ± 0.005 0.670 ± 0.007

L/OF-L/OF 0.901 ± 0.005 0.801 ± 0.005 0.603 ± 0.006 0.901 ± 0.004 0.803 ± 0.005 0.604 ± 0.006

CF-CF 0.847 ± 0.006 0.743 ± 0.007 0.550 ± 0.004 0.823 ± 0.006 0.705 ± 0.006 0.500 ± 0.007

OF-OF OL 249.7 ± 15.2 31.1 ± 1.5 OL 288.1 ± 16.8 25.1 ± 0.6

L/OF-OF    161.3 ± 3.1 78.7 ± 1.9 22.4 ± 0.6 147.6 ± 2.7 71.6 ± 1.0 17.0 ± 0.4

L/OF-L/OF 158.1 ± 3.6 77.2 ± 1.2 21.3 ± 0.5 140.7 ± 3.0 64.0 ± 1.3 12.8 ± 0.4

CF-CF 92.6 ± 2.3 48.4 ± 1.6 14.8 ± 0.3 72.6 ± 1.5 31.7 ± 0.7 5.5 ± 0.2

OF-OF 0.526 ± 0.007 0.449 ± 0.010 0.327 ± 0.004 OL 0.454 ± 0.005 0.341 ± 0.004

L/OF-OF    0.430 ± 0.005 0.405 ± 0.004 0.318 ± 0.005 0.440 ± 0.005 0.417 ± 0.003 0.336 ± 0.003

L/OF-L/OF 0.427 ± 0.004 0.399 ± 0.004 0.307 ± 0.006 0.429 ± 0.005 0.395 ± 0.004 0.295 ± 0.004

CF-CF 0.376 ± 0.005 0.349 ± 0.004 0.266 ± 0.004 0.363 ± 0.005 0.317 ± 0.004 0.216 ± 0.004

M-M LB 0.038 0.032 0.024 0.038 0.033 0.025

αf L/OF-L/OF 0.470 ± 0.008 0.399 ± 0.005 0.292 ± 0.003 0.472 ± 0.005 0.405 ± 0.004 0.304 ± 0.005

OF-OF 0.995 ± 0.012 0.849 ± 0.013 0.619 ± 0.008 OL 0.860 ± 0.008 0.645 ± 0.006

L/OF-OF    0.900 ± 0.008 0.805 ± 0.009 0.609 ± 0.006 0.912 ± 0.006 0.823 ± 0.007 0.639 ± 0.006

L/OF-L/OF 0.897 ± 0.009 0.798 ± 0.007 0.598 ± 0.007 0.902 ± 0.007 0.800 ± 0.007 0.599 ± 0.008

CF-CF 0.847 ± 0.008 0.748 ± 0.007 0.558 ± 0.006 0.835 ± 0.008 0.723 ± 0.008 0.519 ± 0.007

OF-OF 3638 ± 1497 95.2 ± 7.4 14.7 ± 0.4 OL 90.9 ± 4.6 9.4 ± 0.2

L/OF-OF    95.4 ± 3.1 46.5 ± 1.3 11.9 ± 0.4 89.3 ± 1.8 39.1 ± 0.7 7.6 ± 0.2

L/OF-L/OF 93.7 ± 3.7 45.4 ± 1.4 11.7 ± 0.4 86.9 ± 1.6 36.6 ± 0.9 6.4 ± 0.3

CF-CF 54.9 ± 1.4 29.0 ± 0.6 8.6 ± 0.2 45.4 ± 1.1 19.6 ± 0.3 3.3 ± 0.1

OF-OF 0.617 ± 0.006 0.526 ± 0.009 0.384 ± 0.007 0.617 ± 0.005 0.529 ± 0.006 0.396 ± 0.003

L/OF-OF    0.522 ± 0.003 0.483 ± 0.004 0.376 ± 0.005 0.531 ± 0.003 0.494 ± 0.005 0.391 ± 0.003

L/OF-L/OF 0.521 ± 0.004 0.477 ± 0.009 0.365 ± 0.006 0.522 ± 0.004 0.475 ± 0.005 0.354 ± 0.004

CF-CF 0.450 ± 0.006 0.411 ± 0.008 0.311 ± 0.007 0.429 ± 0.004 0.366 ± 0.008 0.240 ± 0.004

M-M LB 0.027 0.023 0.017 0.027 0.023 0.017

αf L/OF-L/OF 0.380 ± 0.007 0.323 ± 0.006 0.237 ± 0.005 0.380 ± 0.004 0.326 ± 0.003 0.245 ± 0.003

OF-OF 0.996 ± 0.012 0.849 ± 0.013 0.621 ± 0.010 0.997 ± 0.008 0.856 ± 0.008 0.640 ± 0.006

L/OF-OF    0.903 ± 0.007 0.805 ± 0.006 0.612 ± 0.006 0.912 ± 0.005 0.821 ± 0.007 0.636 ± 0.005

L/OF-L/OF 0.901 ± 0.010 0.799 ± 0.013 0.602 ± 0.009 0.902 ± 0.006 0.801 ± 0.008 0.599 ± 0.006

CF-CF 0.831 ± 0.011 0.734 ± 0.013 0.548 ± 0.011 0.808 ± 0.007 0.693 ± 0.011 0.485 ± 0.006

OF-OF 5388 ± 4107 84.0 ± 7.7 12.7 ± 0.4 5972 ± 3469 72.6 ± 3.6 7.8 ± 0.2

L/OF-OF    84.1 ± 2.4 40.6 ± 1.1 10.7 ± 0.2 77.1 ± 1.8 33.5 ± 0.6 6.4 ± 0.2

L/OF-L/OF 83.2 ± 3.0 39.9 ± 1.0 10.5 ± 0.4 74.9 ± 1.2 31.5 ± 1.0 5.4 ± 0.1

CF-CF 40.3 ± 1.2 22.2 ± 0.6 6.9 ± 0.2 30.8 ± 0.6 13.5 ± 0.4 2.1 ± 0.1

DI-SI O = Oldest L = Local C = Closest F = First

LO2

αe

ρ

Wq

LO3

αe

ρ

Wq

Flow 1 Flow 2

LO1

αe

ρ

Wq
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Table 2.4b: Simulation Comparison of the Rules with 7 Devices  

 

Target ρ = 0.90 0.80 0.60 0.90 0.80 0.60

OF-OF OL 0.526 ± 0.006 0.398 ± 0.005 OL 0.507 ± 0.006 0.382 ± 0.004

L/OF-OF    0.477 ± 0.002 0.462 ± 0.003 0.385 ± 0.005 0.494 ± 0.003 0.466 ± 0.004 0.375 ± 0.003

L/OF-L/OF 0.460 ± 0.004 0.426 ± 0.005 0.319 ± 0.004 0.482 ± 0.004 0.443 ± 0.004 0.333 ± 0.004

CF-CF 0.382 ± 0.004 0.329 ± 0.003 0.215 ± 0.005 0.386 ± 0.004 0.336 ± 0.005 0.226 ± 0.004

M-M LB 0.093 0.080 0.060 0.178 0.154 0.116

αf L/OF-L/OF 0.441 ± 0.004 0.376 ± 0.004 0.285 ± 0.003 0.420 ± 0.005 0.363 ± 0.003 0.273 ± 0.002

OF-OF OL 0.902 ± 0.008 0.683 ± 0.006 OL 0.871 ± 0.007 0.655 ± 0.006

L/OF-OF    0.918 ± 0.004 0.838 ± 0.005 0.670 ± 0.007 0.914 ± 0.005 0.830 ± 0.006 0.648 ± 0.005

L/OF-L/OF 0.901 ± 0.004 0.803 ± 0.005 0.604 ± 0.006 0.902 ± 0.006 0.806 ± 0.006 0.607 ± 0.005

CF-CF 0.823 ± 0.006 0.705 ± 0.006 0.500 ± 0.007 0.805 ± 0.006 0.699 ± 0.008 0.500 ± 0.007

OF-OF OL 288.1 ± 16.8 25.1 ± 0.6 OL 180.7 ± 10.3 18.9 ± 0.4

L/OF-OF    147.6 ± 2.7 71.6 ± 1.0 17.0 ± 0.4 176.2 ± 4.1 77.1 ± 1.8 15.0 ± 0.5

L/OF-L/OF 140.7 ± 3.0 64.0 ± 1.3 12.8 ± 0.4 170.3 ± 6.3 70.5 ± 2.1 12.3 ± 0.4

CF-CF 72.6 ± 1.5 31.7 ± 0.7 5.5 ± 0.2 63.2 ± 1.2 29.5 ± 0.8 4.8 ± 0.2

OF-OF OL 0.454 ± 0.005 0.341 ± 0.004 0.532 ± 0.006 0.464 ± 0.004 0.348 ± 0.004

L/OF-OF    0.440 ± 0.005 0.417 ± 0.003 0.336 ± 0.003 0.463 ± 0.003 0.434 ± 0.003 0.342 ± 0.005

L/OF-L/OF 0.429 ± 0.005 0.395 ± 0.004 0.295 ± 0.004 0.454 ± 0.004 0.415 ± 0.005 0.311 ± 0.003

CF-CF 0.363 ± 0.005 0.317 ± 0.004 0.216 ± 0.004 0.383 ± 0.005 0.334 ± 0.004 0.225 ± 0.003

M-M LB 0.038 0.033 0.025 0.137 0.119 0.089

αf L/OF-L/OF 0.472 ± 0.005 0.405 ± 0.004 0.304 ± 0.005 0.443 ± 0.006 0.386 ± 0.005 0.290 ± 0.005

OF-OF OL 0.860 ± 0.008 0.645 ± 0.006 0.976 ± 0.012 0.849 ± 0.009 0.637 ± 0.007

L/OF-OF    0.912 ± 0.006 0.823 ± 0.007 0.639 ± 0.006 0.906 ± 0.007 0.820 ± 0.007 0.632 ± 0.007

L/OF-L/OF 0.902 ± 0.007 0.800 ± 0.007 0.599 ± 0.008 0.897 ± 0.008 0.801 ± 0.009 0.600 ± 0.008

CF-CF 0.835 ± 0.008 0.723 ± 0.008 0.519 ± 0.007 0.826 ± 0.007 0.719 ± 0.007 0.514 ± 0.006

OF-OF OL 90.9 ± 4.6 9.4 ± 0.2 836.3 ± 202.7 73.2 ± 3.2 8.1 ± 0.4

L/OF-OF    89.3 ± 1.8 39.1 ± 0.7 7.6 ± 0.2 85.5 ± 2.7 37.7 ± 1.1 6.8 ± 0.1

L/OF-L/OF 86.9 ± 1.6 36.6 ± 0.9 6.4 ± 0.3 83.6 ± 1.7 35.5 ± 1.2 5.9 ± 0.2

CF-CF 45.4 ± 1.1 19.6 ± 0.3 3.3 ± 0.1 40.6 ± 0.9 17.7 ± 0.4 2.8 ± 0.1

OF-OF 0.617 ± 0.005 0.529 ± 0.006 0.396 ± 0.003 0.626 ± 0.008 0.536 ± 0.006 0.402 ± 0.004

L/OF-OF    0.531 ± 0.003 0.494 ± 0.005 0.391 ± 0.003 0.550 ± 0.004 0.506 ± 0.005 0.398 ± 0.005

L/OF-L/OF 0.522 ± 0.004 0.475 ± 0.005 0.354 ± 0.004 0.541 ± 0.005 0.487 ± 0.005 0.366 ± 0.003

CF-CF 0.429 ± 0.004 0.366 ± 0.008 0.240 ± 0.004 0.445 ± 0.004 0.378 ± 0.002 0.254 ± 0.002

M-M LB 0.027 0.023 0.017 0.119 0.102 0.077

αf L/OF-L/OF 0.380 ± 0.004 0.326 ± 0.003 0.245 ± 0.003 0.359 ± 0.003 0.308 ± 0.004 0.231 ± 0.003

OF-OF 0.997 ± 0.008 0.856 ± 0.008 0.640 ± 0.006 0.985 ± 0.011 0.845 ± 0.008 0.633 ± 0.006

L/OF-OF    0.912 ± 0.005 0.821 ± 0.007 0.636 ± 0.005 0.910 ± 0.006 0.815 ± 0.007 0.629 ± 0.006

L/OF-L/OF 0.902 ± 0.006 0.801 ± 0.008 0.599 ± 0.006 0.901 ± 0.007 0.795 ± 0.008 0.597 ± 0.006

CF-CF 0.808 ± 0.007 0.693 ± 0.011 0.485 ± 0.006 0.804 ± 0.007 0.686 ± 0.005 0.485 ± 0.004

OF-OF 5972 ± 3469 72.6 ± 3.6 7.8 ± 0.2 1295 ± 432 66.7 ± 3.0 7.2 ± 0.2

L/OF-OF    77.1 ± 1.8 33.5 ± 0.6 6.4 ± 0.2 79.3 ± 2.4 32.7 ± 0.9 6.0 ± 0.2

L/OF-L/OF 74.9 ± 1.2 31.5 ± 1.0 5.4 ± 0.1 76.5 ± 1.8 30.8 ± 1.0 5.1 ± 0.1

CF-CF 30.8 ± 0.6 13.5 ± 0.4 2.1 ± 0.1 30.1 ± 0.6 12.9 ± 0.4 2.0 ± 0.1

DI-SI O = Oldest L = Local C = Closest F = First

LO2

αe

ρ

Wq

LO3

αe

ρ

Wq

Flow 1 Flow 2

LO1

αe

ρ

Wq
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2.5.2 L/OF-L/OF Analytic Model Evaluation 

The same target 𝜌 values of 0.90, 0.80 and 0.60 are used in assessing the performance of 

the L/OF-L/OF analytic model, where the analytic estimates of 𝛼𝑒 and 𝜌 are compared with the 

simulation results.  (The analytic 𝛼𝑓 values are straightforward to obtain.)   The percentage errors 

are reported relative to the simulation results.   

Since the accuracy of the analytic model depends largely on how well it estimates  𝑒𝑖𝑗
𝐵  and 

𝑒𝑖𝑗
𝐼 , we will compare their values with the empty trips obtained from simulation.  However, since 

some of the 𝑒𝑖𝑗
𝐵/𝐼

 values can be very small, reporting the difference as a percentage error would 

give misleading results.  Likewise, comparing their absolute differences may also be misleading 

since some of 𝑒𝑖𝑗
𝐵/𝐼

 values are large. Furthermore, due to conservation of flow, and the rescaling 

we perform in section 2.4.3.3, the analytic model has no errors in determining the sum of the empty 

trips out of each row.  Rather, errors may occur in how the empty trips in a given row are allocated 

across the stations.   

Hence, we compare the analytic and simulation results by computing the absolute error in 

how the empty trips are allocated within each row on a percentage basis.  To do so, for a given 

row 𝑖, we first compute the percentage allocation of the empty trips across each station 𝑗; that is, 

we compute (𝑒𝑖𝑗 𝑒𝑖⁄ )(100), and we compare it, using absolute values, to the percentage allocation 

obtained from simulation.  Once all the allocation errors are computed, we report the median and 

the maximum error. A simple 3-station example is shown in Figure 2.3, where “PP” stands for 

percentage point.  Note that 18.75% (25%) of the empty trips out of station 1 go to station 2 

according to the analytic (simulation) model, which yields an absolute error of 6.25 PPs.  To assess 

the analytic model, the PP allocation error is computed for all the empty trips, i.e., 𝑒𝑖𝑗
𝐵 , 𝑒𝑖𝑗

𝐼 , and 𝑒𝑖𝑗.  
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Figure 2.3: A 3-Station Example to Show How the Allocation Error is Computed  

 

Table 2.5a: Analytic Model Evaluation with 3 Devices 

 

Target

ρ ANA 95% CI SIM Error % Med Max ANA 95% CI SIM Error % Med Max

αe 0.427 (0.457, 0.463) 7.120 e ij
B 0.90 10.78 αe 0.465 (0.477, 0.489) 3.603 e ij

B 0.48 9.12

αf 0.442 (0.436, 0.448) - e ij
I 0.24 1.15 αf 0.424 (0.418, 0.432) - e ij

I 0.16 1.72

ρ 0.869 (0.896, 0.906) 3.566 e ij 0.59 7.28 ρ 0.890 (0.899, 0.917) 2.020 e ij 0.34 5.95

αe 0.417 (0.428, 0.436) 3.597 e ij
B 0.60 6.87 αe 0.438 (0.439, 0.455) 2.087 e ij

B 0.36 5.74

αf 0.369 (0.362, 0.376) - e ij
I 0.13 0.65 αf 0.360 (0.356, 0.366) - e ij

I 0.13 1.26

ρ 0.786 (0.796, 0.806) 1.871 e ij 0.36 4.27 ρ 0.798 (0.796, 0.820) 1.219 e ij 0.25 3.48

αe 0.335 (0.331, 0.341) 0.362 e ij
B 0.18 1.90 αe 0.340 (0.335, 0.347) 0.332 e ij

B 0.20 2.09

αf 0.267 (0.262, 0.272) - e ij
I 0.10 0.45 αf 0.261 (0.258, 0.266) - e ij

I 0.12 1.29

ρ 0.602 (0.597, 0.609) 0.179 e ij 0.09 0.74 ρ 0.601 (0.595, 0.611) 0.337 e ij 0.10 0.79

αe 0.400 (0.423, 0.431) 6.464 e ij
B 0.54 9.51 αe 0.433 (0.448, 0.458) 4.464 e ij

B 0.45 11.67

αf 0.470 (0.462, 0.478) - e ij
I 0.19 1.12 αf 0.442 (0.434, 0.450) - e ij

I 0.20 1.92

ρ 0.870 (0.888, 0.906) 2.997 e ij 0.37 6.79 ρ 0.874 (0.887, 0.903) 2.237 e ij 0.31 8.46

αe 0.386 (0.395, 0.403) 3.143 e ij
B 0.32 5.09 αe 0.408 (0.409, 0.425) 1.987 e ij

B 0.25 6.66

αf 0.400 (0.394, 0.404) - e ij
I 0.15 0.69 αf 0.381 (0.375, 0.387) - e ij

I 0.13 1.52

ρ 0.786 (0.791, 0.805) 1.491 e ij 0.19 3.19 ρ 0.790 (0.786, 0.810) 1.059 e ij 0.16 3.63

αe 0.305 (0.301, 0.313) 0.601 e ij
B 0.17 1.75 αe 0.319 (0.316, 0.326) 0.626 e ij

B 0.16 3.28

αf 0.291 (0.289, 0.295) - e ij
I 0.10 0.62 αf 0.280 (0.276, 0.284) - e ij

I 0.10 1.16

ρ 0.596 (0.591, 0.605) 0.367 e ij 0.10 0.74 ρ 0.599 (0.593, 0.609) 0.335 e ij 0.09 1.68

αe 0.493 (0.517, 0.525) 5.392 e ij
B 0.35 7.97 αe 0.518 (0.532, 0.544) 3.633 e ij

B 0.28 7.42

αf 0.380 (0.373, 0.387) - e ij
I 0.20 0.89 αf 0.360 (0.354, 0.366) - e ij

I 0.16 1.00

ρ 0.873 (0.891, 0.911) 3.068 e ij 0.24 5.61 ρ 0.878 (0.891, 0.905) 2.254 e ij 0.19 5.02

αe 0.466 (0.468, 0.486) 2.268 e ij
B 0.19 4.25 αe 0.485 (0.484, 0.498) 1.312 e ij

B 0.14 4.16

αf 0.323 (0.317, 0.329) - e ij
I 0.14 0.93 αf 0.308 (0.304, 0.314) - e ij

I 0.12 0.90

ρ 0.789 (0.786, 0.812) 1.264 e ij 0.13 2.70 ρ 0.793 (0.790, 0.810) 0.851 e ij 0.11 2.64

αe 0.364 (0.359, 0.371) 0.243 e ij
B 0.16 1.57 αe 0.373 (0.367, 0.379) 0.149 e ij

B 0.14 1.70

αf 0.237 (0.232, 0.242) - e ij
I 0.10 0.59 αf 0.224 (0.220, 0.228) - e ij

I 0.09 0.66

ρ 0.601 (0.593, 0.611) 0.109 e ij 0.08 0.54 ρ 0.597 (0.589, 0.605) 0.061 e ij 0.08 0.56

LO3

0.90

0.80

0.60

LO1

0.90

0.80

0.60

LO2

0.90

0.80

0.60

3 Devices Flow 1 Flow 2

Results  PP Allocation Error Results  PP Allocation Error



32 
 

 

Table 2.5b: Analytic Model Evaluation with 7 Devices 

 

Tables 2.5a and 2.5b show the results obtained from the analytic versus simulation model 

for flow sets 1 and 2, respectively.  The PP allocation error for 𝑒𝑖𝑗
𝐵 , 𝑒𝑖𝑗

𝐼 , and 𝑒𝑖𝑗 are also shown.  

Overall, the analytic model performs quite well at 𝜌 = 0.80 and 0.60, with small percentage errors 

for 𝛼𝑒 and small median values for the allocation error. For 𝜌 = 0.90, although the above errors 

increase slightly, the maximum error in 𝛼𝑒 is less than about 7%, and the median allocation error 

is consistently less than 1 PP.   

Target

ρ ANA 95% CI SIM Error % Med Max ANA 95% CI SIM Error % Med Max

αe 0.430 (0.456, 0.464) 6.606 e ij
B 0.93 10.61 αe 0.467 (0.478, 0.486) 3.161 e ij

B 0.53 9.31

αf 0.440 (0.437, 0.445) - e ij
I 0.18 1.66 αf 0.420 (0.415, 0.425) - e ij

I 0.10 0.89

ρ 0.870 (0.897, 0.905) 3.399 e ij 0.53 6.17 ρ 0.886 (0.896, 0.908) 1.743 e ij 0.32 5.05

αe 0.415 (0.421, 0.431) 2.681 e ij
B 0.51 6.07 αe 0.437 (0.439, 0.447) 1.367 e ij

B 0.38 6.89

αf 0.377 (0.372, 0.380) - e ij
I 0.10 0.85 αf 0.364 (0.360, 0.366) - e ij

I 0.21 2.47

ρ 0.791 (0.798, 0.808) 1.397 e ij 0.27 3.04 ρ 0.801 (0.800, 0.812) 0.687 e ij 0.38 8.49

αe 0.320 (0.315, 0.323) 0.188 e ij
B 0.10 0.59 αe 0.334 (0.329, 0.337) 0.202 e ij

B 0.15 1.51

αf 0.285 (0.282, 0.288) - e ij
I 0.09 0.61 αf 0.274 (0.271, 0.275) - e ij

I 0.08 3.38

ρ 0.605 (0.598, 0.610) 0.163 e ij 0.08 0.53 ρ 0.607 (0.602, 0.612) 0.141 e ij 0.07 2.35

αe 0.403 (0.424, 0.434) 6.143 e ij
B 0.57 9.37 αe 0.436 (0.450, 0.458) 4.040 e ij

B 0.46 11.41

αf 0.473 (0.467, 0.477) - e ij
I 0.12 1.16 αf 0.443 (0.437, 0.449) - e ij

I 0.11 1.09

ρ 0.876 (0.895, 0.909) 2.841 e ij 0.33 5.81 ρ 0.879 (0.889, 0.905) 2.050 e ij 0.29 6.65

αe 0.386 (0.391, 0.399) 2.223 e ij
B 0.29 4.53 αe 0.409 (0.410, 0.420) 1.461 e ij

B 0.26 5.21

αf 0.406 (0.401, 0.409) - e ij
I 0.07 0.44 αf 0.386 (0.381, 0.391) - e ij

I 0.06 0.56

ρ 0.791 (0.793, 0.807) 1.061 e ij 0.13 2.12 ρ 0.795 (0.792, 0.810) 0.766 e ij 0.11 2.44

αe 0.295 (0.291, 0.299) 0.043 e ij
B 0.15 1.14 αe 0.311 (0.308, 0.314) 0.176 e ij

B 0.13 2.74

αf 0.304 (0.299, 0.309) - e ij
I 0.06 0.46 αf 0.289 (0.285, 0.295) - e ij

I 0.07 1.58

ρ 0.599 (0.591, 0.607) 0.063 e ij 0.05 0.34 ρ 0.600 (0.592, 0.608) 0.059 e ij 0.06 0.93

αe 0.496 (0.518, 0.526) 4.879 e ij
B 0.34 7.94 αe 0.521 (0.536, 0.546) 3.684 e ij

B 0.29 8.60

αf 0.380 (0.376, 0.384) - e ij
I 0.11 0.87 αf 0.360 (0.356, 0.362) - e ij

I 0.08 1.01

ρ 0.877 (0.896, 0.908) 2.794 e ij 0.20 4.75 ρ 0.881 (0.894, 0.908) 2.174 e ij 0.17 5.07

αe 0.467 (0.470, 0.480) 1.747 e ij
B 0.18 4.15 αe 0.483 (0.482, 0.492) 0.996 e ij

B 0.14 4.11

αf 0.327 (0.323, 0.329) - e ij
I 0.07 0.45 αf 0.308 (0.304, 0.312) - e ij

I 0.07 0.68

ρ 0.793 (0.793, 0.809) 1.021 e ij 0.09 2.11 ρ 0.791 (0.787, 0.803) 0.567 e ij 0.07 1.79

αe 0.355 (0.350, 0.358) 0.218 e ij
B 0.12 0.95 αe 0.366 (0.363, 0.369) 0.062 e ij

B 0.11 1.19

αf 0.244 (0.242, 0.248) - e ij
I 0.06 0.34 αf 0.231 (0.228, 0.234) - e ij

I 0.05 0.89

ρ 0.599 (0.593, 0.605) 0.030 e ij 0.05 0.35 ρ 0.597 (0.591, 0.603) 0.038 e ij 0.05 0.62

LO3

0.90

0.80

0.60

LO1

0.90

0.80

0.60

LO2

0.90

0.80

0.60

7 Devices Flow 1 Flow 2

Results  PP Allocation Error Results  PP Allocation Error
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A closer look at Tables 2.5a and 2.5b indicate that the allocation error for DID (𝑒𝑖𝑗
𝐵) is 

higher than that of SID (𝑒𝑖𝑗
𝐼 ).   To further investigate this difference, Tables 2.6a and 2.6b present 

examples of the PP allocation error for LO1 at 𝜌 = 0.90, with 3 devices and 7 devices, 

respectively. However, instead of absolute errors, the positive (negative) values represent 

overestimation (underestimation) by the analytic model.  The diagonal values in Tables 2.6a and 

2.6b indicate that the model overestimates the probability of the device finding a local MR, and 

consequently it underestimates 𝛼𝑒.  Therefore, a larger proportion of DID (which occurs at large 

𝜌 values) implies a larger error in estimating 𝜌.    

Table 2.6a: PP Allocation Error for DID - LO1, 3 Devices, 𝜌 = 0.90, Flow Set 1 

 

 

 

Table 2.6b: PP Allocation Error for DID - LO1, 7 Devices, 𝜌 = 0.90, Flow Set 1 

 

 

1 2 3 4 5 6 7 8 9 10

1 7.008 -0.791 -0.828 -0.547 -0.674 -0.556 -0.888 -1.544 -0.363 -0.818

2 -1.026 7.172 -0.841 -0.561 -0.823 -0.619 -1.042 -1.171 -0.310 -0.779

3 -1.322 -0.898 9.927 -0.996 -0.707 -1.077 -1.281 -1.892 -0.584 -1.169

4 -1.510 -1.231 -1.107 10.779 -0.978 -0.857 -1.535 -1.906 -0.458 -1.196

5 -0.628 -0.613 -0.620 -0.280 5.952 -0.601 -1.020 -1.083 -0.353 -0.754

6 -1.613 -1.135 -1.455 -1.153 -0.839 10.234 -1.232 -1.466 -0.491 -0.852

7 -1.042 -0.638 -1.142 -0.696 -0.813 -0.456 6.723 -0.837 -0.322 -0.778

8 -1.213 -0.866 -1.140 -0.728 -0.667 -0.947 -0.904 7.443 -0.260 -0.720

9 -1.464 -1.128 -1.211 -0.901 -0.716 -0.907 -1.461 -0.994 9.508 -0.726

10 -0.944 -0.604 -1.000 -0.593 -0.552 -1.182 -0.755 -0.748 -0.419 6.797

1 2 3 4 5 6 7 8 9 10

1 7.150 -0.716 -0.820 -0.752 -0.719 -0.706 -0.979 -1.371 -0.421 -0.667

2 -0.990 7.346 -0.628 -0.761 -0.780 -0.814 -0.937 -1.229 -0.376 -0.832

3 -1.210 -1.035 9.715 -0.829 -0.885 -1.123 -1.367 -1.742 -0.547 -0.976

4 -1.342 -1.010 -1.280 10.640 -0.910 -1.056 -1.495 -1.923 -0.477 -1.147

5 -0.623 -0.563 -0.532 -0.481 5.859 -0.721 -0.822 -1.150 -0.210 -0.759

6 -1.606 -1.160 -1.514 -1.020 -0.842 10.299 -1.148 -1.594 -0.428 -0.986

7 -1.188 -0.876 -0.964 -0.670 -0.689 -0.770 7.254 -1.108 -0.195 -0.794

8 -1.313 -0.748 -1.142 -0.692 -0.688 -0.868 -1.000 7.694 -0.321 -0.923

9 -1.212 -0.947 -1.418 -1.125 -0.589 -0.980 -1.223 -0.876 9.368 -0.996

10 -1.093 -0.811 -0.909 -0.555 -0.529 -0.821 -0.736 -0.865 -0.290 6.610
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We believe the above probability is overestimated because we used the 𝑀/𝑀/𝑐 model to 

estimate the probability distribution of the number of MRs in the global queue.  Since the 𝑀/𝑀/𝑐 

model is based on FCFS, it is less efficient than L/OF-L/OF, resulting in more MRs in the global 

queue for the same 𝜌 value.  (A simple numeric example is shown in Table 2.7.)   Since the 𝑀/𝑀/𝑐 

model overestimates the number of MRs in the global queue, the analytic model slightly 

overestimates the probability that a device finds a local MR.  The above difference in the average 

queue length decreases, and consequently the analytic model performs better, if 𝜌 is smaller or the 

flow is unbalanced (rendering L/OF-L/OF less effective).   

Table 2.7: Average Number of MRs in the Global Queue at 𝜌 = 0.94 

 

 

 

 

2.5.3 System Stability 

Let 𝑆+ and 𝑆− denote the set of stations with positive and negative NFs, respectively.  In 

deriving the M-M LB, Maxwell and Muckstadt (1982) argue that empty trips occur only from 

station 𝑖 to station 𝑗, where 𝑖 ∈ 𝑆+ and 𝑗 ∈ 𝑆−.  For example, if Λ𝑖 = 5 and 𝜆𝑖 = 2, then 𝑁𝐹𝑖 =

+3, meaning three empty trips/hr will originate at 𝑖.  Behind their argument is the assumption that, 

in the best case, two loaded devices/hr arriving at station 𝑖 will both find a local load and leave 

station 𝑖 loaded, while the remaining inbound loaded devices (3/hour) will have to leave station 𝑖 

empty.  Likewise, if Λ𝑗 = 1 and 𝜆𝑗 = 3, then 𝑁𝐹𝑗 = −2, meaning, in the best case, one inbound 

loaded device/hr will find a local load and leave station 𝑗 loaded, while two additional empty 

devices/hr must be dispatched to station 𝑗 to pick-up the remaining loads.  (As explained in section 

4.4, solving a transportation problem yields the 𝑒𝑖𝑗 values.)   

ρ = 0.94 Flow 1 Flow 2 

FCFS 13.3 12.9 

Mod-FCFS 4.78 7.75 
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Using a logic similar to M-M LB, but allocating the empty devices proportionally (instead of 

solving a transportation problem), we arrive at a different result.  For example, numbering the 

stations 1 through 5, if 𝑆+ = {+3,+5} and 𝑆− = {−2,−2,−4}, then under L/OF-L/OF (which 

serves the oldest MR in the system whenever a local load is not found), the 3 empty devices/hr 

generated at station 1 will be allocated as follows:  𝑒13 = (2 8⁄ )(3), 𝑒14 = (2 8⁄ )(3) and 𝑒15 =

(4 8⁄ )(3). The same allocation applies to station 2 but with 5 empty devices/hr.  Generalizing the 

above allocation, we obtain: 

 𝑒𝑖𝑗 = (𝑁𝐹𝑖) (
𝑁𝐹𝑗

∑ 𝑁𝐹𝑗𝑗∈𝑆−
)   for 𝑖 ∈ 𝑆+ and 𝑗 ∈ 𝑆−                                  (2.21) 

Interestingly, equation (2.21) is the same expression obtained by Bozer and Srinivasan (1991) for 

“mandatory empty trips” under FEFS. Hence, we name it the Bozer-Srinivasan Index (BSI).   

We hypothesize that 𝛼𝑒 obtained from the 𝑒𝑖𝑗 values in equation (2.21) serves as a stability 

condition for L/OF-L/OF.  As 𝜌 → 1, the proportion of DID → 1, and the system begins to mimic 

the best case explained above, i.e., incoming loaded devices find a local load, with the remainder 

traveling empty to stations in set 𝑆− as explained above. We cannot prove our hypothesis but we 

provide empirical evidence, although doing so is challenging since, without an exact analytic 

result, one cannot draw firm conclusions by computing an approximate 𝜌 value or examining the 

global queue.  Therefore, the results, although convincing, are subject to further investigation.      

The experiment for the stability test is as follows; we first set the device travel speed such 

that the utilization is very high, but the system is still stable (case C1).  More cases are created by 

gradually decreasing the device travel speed, thus increasing their utilization (up to case C7).  The 

M-M LB, BSI, analytic, and simulation results are compared in each case.  The experiment was 

conducted for LO1 and LO3, equipped with 7 devices, and with flow set 1 and 2.   
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Table 2.8a: Stability Test for LO1 

 

 

  

M-M LB BSI ANA SIM M-M LB BSI ANA SIM

αe 0.143 0.177 0.304 0.325 0.206 0.366 0.467 0.487

αf 0.674 0.674 0.674 0.674 0.485 0.485 0.485 0.485

ρ 0.817 0.851 0.977 0.999 0.690 0.851 0.952 0.972

αe 0.148 0.184 0.283 0.299 0.212 0.376 0.463 0.482

αf 0.700 0.700 0.700 0.700 0.499 0.499 0.499 0.499

ρ 0.848 0.884 0.983 0.999 0.710 0.875 0.962 0.981

αe 0.154 0.191 0.260 0.271 0.224 0.399 0.451 0.464

αf 0.728 0.728 0.728 0.729 0.529 0.529 0.529 0.530

ρ 0.882 0.919 0.988 1.000 0.753 0.928 0.980 0.993

αe 0.161 0.199 0.234 0.242 0.231 0.412 0.443 0.452

αf 0.758 0.758 0.758 0.758 0.545 0.545 0.545 0.545

ρ 0.919 0.957 0.992 1.000 0.777 0.957 0.989 0.997

αe 0.168 0.208 0.205 0.208 0.239 0.425 0.433 0.437

αf 0.791 0.791 0.791 0.792 0.563 0.563 0.563 0.563

ρ 0.959 0.999 0.996 1.000 0.802 0.988 0.996 1.000

αe 0.171 0.213 UNS? OL 0.247 0.439 UNS? OL

αf 0.808 0.808 UNS? OL 0.582 0.582 UNS? OL

ρ 0.980 1.021 UNS? OL 0.829 1.021 UNS? OL

αe 0.175 0.218 UNS? OL 0.255 0.454 UNS? OL

αf 0.827 0.827 UNS? OL 0.602 0.602 UNS? OL

ρ 1.002 1.044 UNS? OL 0.857 1.056 UNS? OL

C3

Flow 1 Flow 2

C1

C2

C4

C5

C6

C7
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Table 2.8b: Stability Test for LO3 

 

 

Since we are testing for stability of each case, the simulation model will run for a total of 

one million loaded trips, with only one replication.  Recall that the simulation model will terminate 

sooner if the system becomes overloaded (OL), and the analytic model cannot determine the 

system’s stability (UNS?) when 𝜌 > 0.999 during the iterative algorithm in section 2.4.4. 

The results in Table 2.8a and 2.8b show that the iterative algorithm for the analytic model 

converges when the simulation model indicates that the system is not OL, and vice versa.  

Furthermore, both BSI and the analytic model seem to correctly predict when the system is OL.  

(Of course, an OL system may be stable but it is virtually impossible to verify that through 

M-M LB BSI ANA SIM M-M LB BSI ANA SIM

αe 0.052 0.096 0.246 0.254 0.179 0.314 0.448 0.460

αf 0.746 0.746 0.746 0.746 0.539 0.539 0.539 0.540

ρ 0.799 0.842 0.992 1.000 0.718 0.853 0.987 1.000

αe 0.054 0.100 0.217 0.224 0.184 0.323 0.435 0.444

αf 0.776 0.776 0.776 0.776 0.555 0.555 0.555 0.556

ρ 0.830 0.876 0.993 1.000 0.739 0.878 0.990 1.000

αe 0.057 0.104 0.187 0.192 0.189 0.332 0.421 0.428

αf 0.808 0.808 0.808 0.808 0.571 0.571 0.571 0.572

ρ 0.865 0.913 0.995 1.000 0.761 0.904 0.993 1.000

αe 0.059 0.109 0.153 0.156 0.195 0.342 0.406 0.411

αf 0.843 0.843 0.843 0.844 0.588 0.588 0.588 0.589

ρ 0.903 0.952 0.997 1.000 0.784 0.931 0.995 1.000

αe 0.062 0.114 0.116 0.118 0.201 0.353 0.390 0.393

αf 0.882 0.882 0.882 0.882 0.607 0.607 0.607 0.607

ρ 0.944 0.996 0.998 1.000 0.808 0.960 0.997 1.000

αe 0.065 0.119 UNS? OL 0.215 0.377 UNS? OL

αf 0.924 0.924 UNS? OL 0.647 0.647 UNS? OL

ρ 0.989 1.043 UNS? OL 0.862 1.024 UNS? OL

αe 0.068 0.125 UNS? OL 0.222 0.390 UNS? OL

αf 0.970 0.970 UNS? OL 0.670 0.670 UNS? OL

ρ 1.038 1.095 UNS? OL 0.892 1.059 UNS? OL

C3

Flow 1 Flow 2

C1

C2

C4

C5

C6

C7



38 
 

simulation.)  Hence, our empirical results suggest that BSI may serve as an approximate stability 

indicator for L/OF-L/OF, and the iterative algorithm correctly returns a result of “UNS?” when 

BSI is close to one or larger.      

 

 

2.6 Summary and Conclusions 

The L/OF-L/OF (Mod-FCFS) rule, proposed by Srinivasan et al. (1994), is a simple 

dispatching rule that is reasonably efficient and in most cases performs better than OF-OF (FCFS).  

We present a new analytic model for the L/OF-L/OF rule to evaluate trip-based handling systems 

with multiple devices. Using an iterative algorithm, we estimate the station-to-station empty trips 

under DID and SID, which then yields the estimated expected device utilization. 

Overall, the analytic model performs well over a range of 𝜌 values; the empty trips for both 

DID (𝑒𝑖𝑗
𝐵) and SID (𝑒𝑖𝑗

𝐼 ) are estimated with reasonable accuracy. Although the empty device 

allocation errors for 𝑒𝑖𝑗
𝐵  is larger than those of 𝑒𝑖𝑗

𝐼 , the median allocation error is consistently less 

than one percentage point.  Furthermore, the analytic model, combined with the BSI, is a good tool 

to predict the “stability” of the system, and it is consistent with the results obtained from 

simulation.  In the process of developing the analytic model, we also resolved conflicting views in 

the literature concerning the significance/dominance of DID versus SID in trip-based handling 

systems.  Using the Erlang-C equation as an approximation, we showed that for most 𝜌 values, 

both DID and SID play a role in the performance of the system.    

For future research, an analytic model to estimate the expected MR waiting times would 

be desirable.  Although Kingman’s formula (1961) can be used, the results are generally inaccurate 

for efficient dispatching rules that reduce empty travel.  It would also be desirable to extend the 

analytic model to systems with multiple MR priorities or systems where each device carries two 
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or more loads at-a-time.  New performance measures may be needed to evaluate such systems.  

Finally, the iterative algorithms to rescale the empty trips (section 4.3.3) and to compute 𝜌 (section 

4.4) always converged (except when the latter was terminated when 𝜌 > 0.999); however, it 

would be desirable to identify the conditions under which the two algorithms are guaranteed to 

converge.   

 

2.7 Appendices 

Appendix 2.A: 4-Station Problem 

The following Figure and Tables show the layout, the flow data (MRs/hour), and the travel 

times (in mins) for the 4-station example problem.  

 

Figure 2.A1: Layout of 4 Station Example 

 

 

 

 

  

1 2 3 4 NF 1 2 3 4 NF 1 2 3 4

1 12 -10 1 7 0 1 0 100 400 420

2 2 10 2 7 0 2 100 0 420 400

3 14 3 7 0 3 400 420 0 100

4 14 -14 4 7 0 4 420 400 100 0

Table 2.A3: Travel TimesTable 2.A1: Unbalanced Flow Table 2.A2: Balanced Flow
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Appendix 2.B: Input Data for Model Evaluation 

Figure 2.B1 illustrates the layout configuration for LO1.  Flow 1, flow 2 (in MRs/hour) 

and travel distance matrices (in units) for LO1 are shown in Table 2.B1, Table 2.B2 and Table 

2.B3, respectively.  The flow and travel distance data for LO2 (see Figure 2.B2) are shown in 

Table 2.B4, Table 2.B5 and Table 2.B6.  And the flow and travel distance data for LO3 (see Figure 

2.B3) are shown in Table 2.B7, Table 2.B8 and Table 2.B9.   Note that LO1 and LO3 have 

unidirectional paths, and LO2 has bidirectional paths.  Lastly, Table 2.B10 shows the device travel 

speed (in units/min) of each experiment.   

 
Figure 2.B1: Illustration of LO1 (Unidirectional paths) 
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Table 2.B2: Flow 2 for LO1 

 1 2 3 4 5 6 7 8 9 10 Out NF 

1   4 2 3 1 3   6 19 -15 

2   5 7       12 -7 

3     1     1 2 10 

4  1     1   1 3 8 

5       1   2 3 5 

6 4 1 2 2 3      12 -7 

7   1   1  6  3 11 -5 

8  1   1  1  1 2 6 5 

9  2    2  4   8 -7 

10      1  1   2 13 

In 4 5 12 11 8 5 6 11 1 15 78  

 

 

 

 

 

  

Table 2.B1: Flow 1 for LO1 

 1 2 3 4 5 6 7 8 9 10 Out NF 

1   3 1 4  2    10 1 

2 1  2 1   1 1   6 2 

3 2 3  2 3      10 -3 

4 3 1   1  2   1 8 -3 

5        2 1 2 5 4 

6 2 1 2 1   3    9 -3 

7     1 1  4  2 8 2 

8 1 2    2 2  2 4 13 -2 

9      1  3   4 -1 

10 2 1    2  1   6 3 

In 11 8 7 5 9 6 10 11 3 9 79  
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Table 2.B3: Travel Distance Matrix for LO1 

 1 2 3 4 5 6 7 8 9 10 

1 0 11 5 7 4 18 7 19 16 12 

2 3 0 8 10 7 21 10 22 19 15 

3 9 6 0 2 13 27 16 28 25 21 

4 7 4 12 0 11 25 14 26 23 19 

5 22 19 27 29 0 14 3 15 12 8 

6 8 5 13 15 12 0 15 27 24 20 

7 19 16 24 26 23 11 0 12 9 5 

8 23 20 28 30 27 15 4 0 13 9 

9 10 7 15 17 14 2 7 3 0 12 

10 14 11 19 21 18 6 11 7 4 0 

 

 

 

 
 Figure 2.B2: Illustration of LO2 (Bidirectional paths) 
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Table 2.B4: Flow 1 for LO2 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Out NF 

1  1  3   1     1 1   7 2 

2   1  2 1  2  1  2    9 2 

3 2 2    3 1 2   1   1  12 -3 

4  2     1 2     1  2 8 2 

5 2   1  2  1 3   1    10 2 

6 2 1 1  3     2  1   2 12 0 

7  2  2 2    3  1    1 11 0 

8 3 1 2  1       2 1   10 0 

9   2  1  2      1   6 3 

10  2  2  1     2   1  8 -3 

11     3    3      1 7 -1 

12   2   2 1    2  1 2  10 0 

13   1    2 1  1     3 8 -3 

14    2  3    1     2 8 -3 

15       3 2    3  1  9 2 

In 9 11 9 10 12 12 11 10 9 5 6 10 5 5 11 135  

 

 

 

Table 2.B5: Flow 2 for LO2 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Out NF 

1  3 2 2  3 2 1  1   1   15 -9 

2   3  2 1  2    1    9 -4 

3 2     1 2 2   2 2    11 0 

4 1       3    1    5 4 

5   3 1   2 3 1  1 2  1  14 -10 

6             2   2 12 

7      2     1     3 8 

8 1           2 2  1 6 15 

9   1   2 3   2 2 1  1  12 -11 

10    1 2 1 2 3   2 2 1 3 1 18 -14 

11      2  2    2 1 1  8 0 

12    2    1     1  2 6 13 

13 2 1 2 2    2    1  1 2 13 0 

14            3 2  1 6 3 

15  1  1  2  2  1  2 3 2  14 -7 

In 6 5 11 9 4 14 11 21 1 4 8 19 13 9 7 142  
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Table 2.B6: Travel Distance Matrix for LO2 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 6 5 8 10 9 13 11 16 13 15 13 14 18 18 

2 6 0 5 4 10 9 13 7 16 11 15 9 10 14 14 

3 5 5 0 9 5 4 8 6 11 8 10 8 11 13 15 

4 8 4 9 0 12 11 15 3 18 9 13 7 6 12 10 

5 10 10 5 12 0 3 3 9 6 7 7 11 14 12 16 

6 9 9 4 11 3 0 6 8 9 4 6 8 13 9 13 

7 13 13 8 15 3 6 0 12 5 8 4 12 17 13 17 

8 11 7 6 3 9 8 12 0 15 6 10 4 5 9 9 

9 16 16 11 18 6 9 5 15 0 9 5 13 18 14 18 

10 13 11 8 9 7 4 8 6 9 0 4 4 9 5 9 

11 15 15 10 13 7 6 4 10 5 4 0 8 13 9 13 

12 13 9 8 7 11 8 12 4 13 4 8 0 5 5 7 

13 14 10 11 6 14 13 17 5 18 9 13 5 0 6 4 

14 18 14 13 12 12 9 13 9 14 5 9 5 6 0 4 

15 18 14 15 10 16 13 17 9 18 9 13 7 4 4 0 

 

 

 

Figure 2.B3: Illustration of LO3 (Unidirectional paths) 
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Table 2.B7: Flow 1 for LO3 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Out NF 

1   1  1 2 3  1             8 0 

2 1         1 1 3  2   2     10 0 

3  1  1 1 2    3  1       2   11 0 

4      1       3   2  3  4 13 0 

5    2  2 2   2     1       9 0 

6  2   1    3      2  1     9 1 

7  1 3 2     2             8 -1 

8   2   1   1      2  1  1   8 0 

9 2    1  2          2  3   10 0 

10   1      2  2    2     1 8 0 

11    2 2 1    1  2          8 -3 

12    2    3  1          2 8 3 

13   1 2    1        1    2 7 -1 

14 2    1    1   2          6 -2 

15  3            2        5 2 

16    1    3              4 1 

17 1 2                    3 3 

18   1     1     3   2      7 -1 

19 2 1   2 1     2 1          9 -3 

20   2 1        2      3    8 1 

In 8 10 11 13 9 10 7 8 10 8 5 11 6 4 7 5 6 6 6 9 159   

 

 

Table 2.B8: Flow 2 for LO3 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Out NF 

1   1    2  3  4    3  2     15 -9 

2          1 2 3  2   1     9 -3 

3                      0 10 

4                  2  1 3 8 

5   1 2  2 3 1    1          10 -10 

6       1  2      4  1  3   11 -5 

7   3            3  2  1   9 0 

8 1      1        1  1  1   5 9 

9 1 1  2       2      3  2   11 -3 

10   1 2  2  2 1  1      1   1 11 0 

11    2   2  1 2  3          10 0 

12   2 3      3         1 3 12 -5 

13        3            2 5 3 

14                      0 7 

15 2 2            3   2  3   12 0 

16      2  1 1 2   3  1       10 -10 

17  2      3      2     2   9 4 

18   1     2     3       1 7 -2 

19 2 1         1           4 9 

20   1     2  3   2     3    11 -3 

In 6 6 10 11 0 6 9 14 8 11 10 7 8 7 12 0 13 5 13 8 164   
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Table 2.B9: Travel Distance Matrix for LO3 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 46 52 60 28 42 36 61 20 55 28 38 91 54 26 87 35 91 40 74 

2 14 0 46 54 42 36 50 55 34 49 22 32 85 8 20 81 9 85 14 68 

3 48 34 0 38 26 20 34 39 28 33 36 16 69 42 34 65 43 69 28 52 

4 90 76 42 0 68 62 76 41 70 35 78 58 31 84 76 27 85 31 70 14 

5 72 58 24 32 0 24 8 33 32 27 40 40 63 66 38 59 47 63 52 46 

6 48 34 40 48 36 0 44 49 8 43 16 26 79 42 14 75 23 79 28 62 

7 64 50 16 24 22 16 0 25 24 19 32 32 55 58 30 51 39 55 44 38 

8 69 55 21 29 27 21 35 0 29 24 37 37 60 63 35 56 44 60 49 43 

9 40 26 32 40 28 22 36 41 0 35 8 18 71 34 6 67 15 71 20 54 

10 75 61 27 25 33 27 41 6 35 0 43 43 56 69 41 52 50 56 55 39 

11 62 48 24 32 20 14 28 33 22 27 0 10 63 56 28 59 37 63 42 46 

12 62 48 14 22 40 34 48 23 42 17 50 0 53 56 48 49 57 53 42 36 

13 79 65 31 9 37 31 45 10 39 4 47 47 0 73 45 36 54 40 59 23 

14 6 32 38 46 34 28 42 47 26 41 14 24 77 0 12 73 21 77 26 60 

15 34 20 66 74 62 56 70 75 54 69 42 52 105 28 0 101 9 105 14 88 

16 83 69 35 13 41 35 49 14 43 8 51 51 4 77 49 0 58 44 63 27 

17 35 21 67 75 63 57 71 76 55 70 43 53 106 29 41 102 0 106 15 89 

18 89 75 41 19 47 41 55 20 49 14 57 57 10 83 55 6 64 0 69 13 

19 20 6 52 60 48 42 56 61 40 55 28 38 91 14 26 87 15 91 0 74 

20 76 62 28 26 54 48 62 27 56 21 64 44 17 70 62 13 71 17 56 0 

 

 

 

Table 2.B10: Device Travel Speed of each Experiment, in Distance Units/Minute 

  3 Devices 7 Devices 

  Target ρ 0.90 0.80 0.60 0.90 0.80 0.60 

Flow 1 

LO1 9.60 11.50 15.90 4.13 4.83 6.38 

LO2 12.67 14.90 20.45 5.40 6.30 8.40 

LO3 59.50 70.00 95.50 25.50 29.70 39.70 

Flow 2 

LO1 9.60 11.30 15.60 4.16 4.80 6.38 

LO2 13.20 15.30 20.80 5.64 6.48 8.64 

LO3 63.00 73.50 101.00 27.00 31.50 42.00 
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CHAPTER 3 

Analysis of the Shortest-Travel-Time-First  

Dispatching Rule with Multiple Devices  

 

3.1 Introduction 

Designed for delivering the right material, at the right place, and at the right time, material handling 

systems play a significant role in manufacturing and service operations. Although material 

handling is considered a non-value adding function in manufacturing, a well-designed material 

handling system often increases productivity and on-time deliveries while reducing operating costs 

and work-in-process inventories.  

The material handling system we address is a trip-based material handling system, where 

one or multiple devices serve move requests (MRs) one at-a-time (Srinivasan et al., 1994).  A MR 

is a unit load, which is transported by a device from its origin (pick-up station) to its destination 

(deposit station).  The devices are homogeneous and operate independently.  The MRs arrive one 

at-a-time and wait at their origin. Once a device is assigned to a MR, it performs an empty trip 

from its current location to the pick-up station of the MR.  After picking up the MR, the device 

performs a loaded trip and delivers the load at the appropriate deposit station, where it becomes 

available to serve the next MR.  (The terms MR and “load” are used interchangeably.) A wide 
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range of systems such as overhead cranes, lift trucks, and unit load automated guided vehicles 

(AGVs) can be modeled as trip-based handling systems.   

Several elements play a role in the design of a material handling system, including the 

location of the pick-up/deposit stations (i.e., the layout), the flow network and the routing of the 

devices, the MR flow data, and the dispatching rule, which assigns each MR to a device, and vice 

versa.  Given these elements, one is frequently concerned with determining the number of devices 

required and their expected utilization as well as the expected MR waiting times.   

The loaded travel times are impacted by the layout and the flow network, which are 

assumed to be given in our study.  The empty travel times, which are unproductive, are also 

impacted by the layout/flow network but they depend on the dispatching rule as well.  Among 

numerous rules presented in the literature, the shortest-travel-time-first (STTF) rule is a simple, 

yet efficient dispatching rule, which seeks to reduce empty device travel by assigning an available 

device to the closest MR, and vice versa.  It is used as a benchmark in the literature, and often 

found in commercial applications as well. Material handling vendors such as Savant Automation 

(2016) and Frog AGV Systems (2016), and fleet management providers such as Telogis (2016), 

employ the STTF rule.  It is also frequently used for online taxi dispatching (Jung et al., 2013).   

Although it is a common rule, an analytic model to estimate empty device travel under 

STTF is not available in the literature. The primary challenge is that the dispatching decision 

depends on the (changing) location of a device relative to the MRs in the system. Furthermore, for 

a single-device system, Larson and Odoni (2007, p. 516) state that successive service times (empty 

plus loaded travel) are not independent because after serving a MR with a long service time, the 

device is more likely to find multiple MRs with shorter empty travel times.  Thus, the STTF rule 
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is unlikely to be analytically tractable.  In fact, according to Larson and Odoni (2007), systems 

using STTF are often modeled via simulation.    

It has also been remarked in some studies that, under STTF, depending on the flow and the 

layout, some MRs may experience excessive wait times (see [Bozer and Yen, 1996], and [de 

Koster et al., 2004], among others).  This is primarily because, with STTF, a MR is likely to 

experience multiple “slips” (Larson, 1987).  (A “slip” occurs each time MR𝑦 is served before MR𝑥, 

although MR𝑥 arrived before MR𝑦. By definition, there are no slips in a global queue with FCFS.) 

 In this chapter we extend the analytical technique presented in Chapter 2 to develop an 

analytic model to estimate the empty device trips, and ultimately, the expected device utilization 

under the STTF rule.  To the best of our knowledge, our model is the first single- or multi-device 

analytic model for the STTF rule, while accounting for both DID and SID.  Since the model is an 

approximate one, we do not propose it as a substitute for simulation.  Rather, it can be used to 

rapidly evaluate alternative handling systems and determine the number of devices required, while 

performing “what if” analyses for the layout or the flow data.  Simulation can be used to perform 

a detailed analysis of the system, including the expected MR waiting times and possible 

congestion/blocking.  Additionally, we perform simulation analysis to investigate the MR wait 

times under STTF, and we propose a bound to limit excessive MR wait times. 

 In the next section, the analytic model for the STTF rule is presented.  In section 3.3, the 

analytic model is evaluated using simulation.  In section 3.4, the MR wait times under STTF is 

investigated.  Lastly, the summary results and possible future research directions are discussed in 

section 3.5. 
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3.2 Analytic Model to Estimate Device Empty Travel under STTF 

In this section, we present a multi-device analytic model for the STTF rule.  The objective 

of the model is to estimate the empty trips and the expected device utilization, given the layout 

and data for loaded trips.  Given that a sufficient number of devices is provided, that is, the system 

is stable, the expected device utilization can be computed as shown earlier in section 2.4. 

Under the STTF rule, DID assigns the closest MR to the device, and SID assigns the closest 

idle device to the MR (see Table 2.1).  Hence, the empty trips that occur as a result of DID and 

SID, denoted by 𝑒𝑖𝑗
𝐵  and 𝑒𝑖𝑗

𝐼 , respectively, are derived separately, that is,  

𝑒𝑖𝑗 = 𝑒𝑖𝑗
𝐵 + 𝑒𝑖𝑗

𝐼  ,                                                                    (3.1)  

and the probability of invoking DID and SID are estimated using the Erlang C equation (as shown 

in section 2.4.2).  

3.2.1 Device-Initiated Empty Trips 

 Let 𝑚 (𝑀) denote the number of MRs in the global queue (in the system).  DID occurs 

when a device delivers a load at station 𝑖 and finds 𝑚 ≥ 1.  In order to estimate 𝑒𝑖𝑗
𝐵 , we need to 

compute the probability that the empty device, currently at station 𝑖, is dispatched to station 𝑗.  

In order to locate a MR, the dispatch system (DS) searches the stations in order of 

proximity, i.e., from closest to farthest station.  Given that the device is currently at station 𝑖, the 

sequence of stations is sorted as Ω(1), Ω(2), . . , Ω(𝑆), where Ω(1) is the station closest to station 𝑖, 

and Ω(𝑆) is the station farthest from station 𝑖.  By definition, the DS first checks station Ω(1) for a 

MR, and if one is found, the search ends and the MR is assigned to the device.  If none is found, 

then the DS searches the next closest station (Ω(2)), and so on, until a MR is located.  (Recall that 

𝑚 ≥ 1.)     
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Let 𝑞(𝑗) be the probability that the device is assigned to a MR at station 𝑗. (The parenthesis 

denotes that the stations are sorted based on proximity.)  Let ℙ𝑀 (𝑝𝑚) denote the probability that 

there are 𝑀 (𝑚) MRs in the system (the global queue).   Since determining the time-average 

probabilities for the number of MRs in the system is difficult, and is possibly analytically 

intractable, we estimate ℙ𝑀 and 𝑝𝑚 by using the results for 𝑀/𝑀/𝑐 queue (where 𝑐 = 𝐷). Given 

𝜌 and 𝐷, we have (Kleinrock, 1975, p.102): 

ℙ𝑀 =

{
 

 ℙ0
(𝜌𝐷)𝑀

𝑀!
, for 1 ≤ 𝑀 ≤ 𝐷

ℙ0
𝜌𝑀𝐷𝐷

𝐷!
,          for 𝑀 ≥ 𝐷

                                             (3.2) 

where 

ℙ0 = [∑
(𝜌𝐷)ℓ

ℓ!

𝐷−1

ℓ=0

+
(𝜌𝐷)𝐷

𝐷

1

1 − 𝜌
]

−1

                                                (3.3) 

Given that 𝑚 ≥ 1, we re-normalize the above steady-state probabilities to obtain: 

𝑝𝑚
′ = 

𝑝𝑚

1 − ∑ 𝑃ℓ
𝐷−1
ℓ=0

                                                                    (3.4) 

where 1 − ∑ 𝑃ℓ
𝐷−1
ℓ=0  is the probability that there is at least one MR in the global queue. 

   As stated earlier, the DS first checks station Ω(1).  Assuming independence among the 

contents of the global queue, the probability that a randomly selected MR is located at Ω(1) is 

𝜆(1) 𝜆𝑇⁄ , where 𝜆(1) denotes the total flow out of station Ω(1).  Hence, given a global queue with 

exactly 𝑚 MRs (𝑚 ≥ 1), the probability that none of them are located at station Ω(1) is equal to 

(1 −
𝜆(1)

𝜆𝑇
)
𝑚

.  Therefore, the probability that the DS finds a MR at station Ω(1) is given by:   

𝑞(1) = ∑(𝑝𝑚
′ )

𝐿

𝑚=1

[1 − (1 −
𝜆(1)

𝜆𝑇
)

𝑚

]                                                  (3.5) 
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where 𝐿 is a sufficiently large number.   

If the DS does not find a MR at station Ω(1), it checks station Ω(2).  Given 𝑚 MRs in the 

global queue, the probability that the DS does not find a MR at station Ω(1) is equal to (1 −
𝜆(1)

𝜆𝑇
)
𝑚

.  

Therefore, the probability that the DS finds a MR at station Ω(2) is given by:  

𝑞(2) = ∑(𝑝𝑚
′ )

𝐿

𝑚=1

[(1 − (1 −
𝜆(2)

𝜆𝑇 − 𝜆(1)
)

𝑚

) (1 −
𝜆(1)

𝜆𝑇
)

𝑚

]                             (3.6) 

The probability that the DS fails to find a MR at station Ω(2) (after failing to find a MR at 

station Ω(1)), given 𝑚 MRs in the global queue, is equal to (1 −
𝜆(2)

𝜆𝑇−𝜆(1)
)
𝑚

(1 −
𝜆(1)

𝜆𝑇
)
𝑚

.  Therefore, 

the probability that the DS finds a MR at station Ω(3) is given by: 

𝑞(3) = ∑(𝑝𝑚
′ )

𝐿

𝑚=1

[(1 − (1 −
𝜆(3)

𝜆𝑇 − (𝜆(1) + 𝜆(2))
)

𝑚

) (1 −
𝜆(2)

𝜆𝑇 − 𝜆(1)
)

𝑚

(1 −
𝜆(1)

𝜆𝑇
)

𝑚

]     (3.7) 

The above search can be described by defining “events” as follows.  Let event 𝐴 denote 

the case where there is at least one MR at station Ω(1), event 𝐵 the case where there is at least one 

MR at station Ω(2), and event 𝐶 the case where there is least one MR at station Ω(3), and so on.  

The probability that a device is dispatched to a station (𝑖) is given by: 

𝑞(1) = 𝑃(𝐴) 

𝑞(2) = 𝑃(𝐵 𝐴′⁄ )𝑃(𝐴′)                                                           (3.8) 

𝑞(3) = 𝑃(𝐶 𝐵′ 𝐴′⁄⁄ ) 𝑃(𝐵′ 𝐴′⁄ )𝑃(𝐴′) 

Given the above probabilities, it is straightforward to convert 𝑞(𝑗) to 𝑞𝑖𝑗, i.e., the probability 

that the device at station 𝑖 is assigned to a MR at station 𝑗.  Hence, we obtain:  

𝑒𝑖𝑗
𝐵 = (𝑞𝑖𝑗)(𝑒𝑖  

𝐵 )            for 𝑖, 𝑗 ∈ 𝑆                              (3.9)  
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where 𝑒𝑖  
𝐵 , the number of DID-based empty trips per hour out of station 𝑖, is estimated as shown 

earlier in sections 2.4.2 and 2.4.3.   

3.2.2 Station-Initiated Empty Trips  

 The approach to estimate 𝑒𝑖𝑗
𝐼  is similar to that of 𝑒𝑖𝑗

𝐵 , except that the dispatching decision is 

viewed from the MR’s perspective.  Recall that SID occurs when a MR arrives at station 𝑗 and 

finds one or more devices idle, i.e., 𝑀 ≤ (𝐷 − 1).  By definition, the DS assigns the closest idle 

device to the MR at station 𝑗. To do so, the DS searches for an idle device, starting with the station 

closest to station 𝑗.  Let 𝑟(𝑖) be probability that the DS locates an idle device at station 𝑖, given that 

𝑀 ≤ (𝐷 − 1).  (The parenthesis denotes that the stations are sorted based on proximity.)  Note that 

𝑟(𝑖) is an arrival instance probability but the arriving MRs observe the same equilibrium state 

distribution as time-averaging (Wolff, 1982). 

Let 𝜋𝑑 denote the probability that there are 𝑑 idle devices when a MR arrives at station 𝑗 

(𝑑 ≤ 𝐷).  Again, using the 𝑀 𝑀 𝑐⁄⁄  queue as an approximation, we have:  

𝜋𝑑 = ℙ𝐷−𝑑,        for 1 ≤ 𝑑 ≤ 𝐷  

Given that 𝑀 ≤ (𝐷 − 1), the above steady-state probabilities are normalized as follows:  

𝜋𝑑
′ =

𝜋𝑑
∑ 𝑃𝑀
𝐷−1
𝑀=0

                                                                      (3.10) 

where ∑ 𝑃𝑀
𝐷−1
𝑀=0  is the probability that there is at least one idle device in the system.   

 Given that a MR just arrived at station 𝑗, let Ω(1), . . , Ω(𝑆) denote the set of stations sorted 

by proximity.  The probability that an idle device is located at station Ω(1) is Λ(1) Λ𝑇⁄ , where Λ(1) 

denotes the total flow into station Ω(1).  Therefore, given 𝑑 idle devices, the probability that at 

least one of them is at station Ω(1) is 1 − (1 −
Λ(1)

Λ𝑇
)
𝑑

.  Hence, 
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𝑟(1) =∑(𝜋𝑑
′ )

𝐷

𝑑=1

[1 − (1 −
Λ(1)

Λ𝑇
)
𝑑

 ]                                                   (3.11) 

We can see that the above equation is the same as equation (3.5), but with a change in the 

variables.  Similarly, 𝑟(2) is computed by making the same changes to equation (3.6): 

𝑟(2) = ∑(𝜋𝑑
′ )

𝐷

𝑑=1

[(1 − (1 −
Λ(2)

Λ𝑇 − Λ(1)
)

𝑑

) (1 −
Λ(1)

Λ𝑇
)

𝑑

]                             (3.12) 

and 𝑟(3) is computed by making the same changes to equation (3.7).  The sequence of events shown 

in equation (3.8) are applied to determine 𝑟(𝑖) for each 𝑖 ∈ 𝑆. As before, the 𝑟(𝑖) values are 

converted to 𝑟𝑖𝑗, i.e., the probability that the idle device at station 𝑖 is assigned to the MR at station 

𝑗, and we obtain: 

𝑒𝑖𝑗
𝐼 = (𝑟𝑖𝑗)(𝑒 𝑗

𝐼 )        for 𝑖, 𝑗 ∈ 𝑆                                                  (3.13) 

where 𝑒𝑖  
𝐼 , the number of SID-based empty trips per hour out of station 𝑖, is estimated as shown 

earlier in sections 2.4.2 and 2.4.3.   

3.2.3 Rescaling the Empty Trips 

Due to how 𝑒𝑖𝑗
𝐵  and 𝑒𝑖𝑗

𝐼  are derived, the estimated values may need to be rescaled in order 

to satisfy conservation of flow.  We utilize the same empty trip rescaling algorithm shown in 

section 2.4.3.3.  Once the algorithm converges, it yields the estimated values of both 𝑒𝑖𝑗
𝐵  and 𝑒𝑖𝑗

𝐼 , 

which are used in equations (2.1) and (3.1) to compute the values of 𝛼𝑒 and 𝜌.   

3.2.4 Iterative Algorithm to Compute 𝝆 

In the previous sections, a given 𝜌 value is used to estimate 𝑒𝑖𝑗
𝐵  and 𝑒𝑖𝑗

𝐼 , which can then be used 

to estimate a 𝜌 value.  Hence, our analytic model cannot be solved in closed form, and we employ 
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the same iterative scheme shown in section 2.4.4 to estimate the values of 𝑒𝑖𝑗 and 𝜌.  The iterative 

procedure proceeds as follows (also depicted in Figure 3.1):  

1) Set 𝑛 = 1.     

2) Set the initial 𝜌(𝑛) equal to the lower bound (computed by solving a transportation problem 

presented in [Maxwell and Muckstadt, 1982]).  If  𝜌(𝑛) ≥ 1, stop; the system is unstable, 

and more devices are needed.      

3) Using 𝜌(𝑛), estimate the values of  𝑒𝑖𝑗
𝐵(𝑛)

 and 𝑒𝑖𝑗
𝐼(𝑛)

.   

4) Using 𝑒𝑖𝑗
𝐵(𝑛)

 and 𝑒𝑖𝑗
𝐼(𝑛)

, compute the new expected device utilization, 𝜌̂(𝑛).  If 𝜌̂(𝑛) > 1, set 

𝜌̂(𝑛) = 1.   

5) Set the next iteration, 𝜌(𝑛+1) = 𝜌(𝑛) + Δ (𝜌̂(𝑛) − 𝜌(𝑛)), where Δ is a sufficiently small step 

size. 

6) If 𝜌(𝑛+1) is approaching 1, i.e., 𝜌(𝑛+1) > 0.999, stop; the system may or may not be stable, 

and more devices are needed to obtain a realistic 𝜌 value.   

7) Set 𝔼𝑖𝑗
(𝑛)

= |𝑒𝑖𝑗
(𝑛)
− 𝑒𝑖𝑗

(𝑛−1)
|, and let 𝜀 be a sufficiently small value.  If  𝔼𝑖𝑗

(𝑛)
≤ 𝜀  ∀ 𝑖, 𝑗, stop. 

The algorithm has converged, and the expected device utilization equals 𝜌(𝑛).  Otherwise, 

let 𝑛 ← 𝑛 + 1 and go to step 3.    
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Figure 3.1: Iterative Procedure to Compute the Expected Device Utilization 

 

 

3.3 Simulation Results and Model Evaluation 

3.3.1 STTF Analytic Model Evaluation 

 In this section, test problems and simulation are used to evaluate the performance of the 

STTF analytic model. The experiment is based on the same three layouts and two flow sets used 

in Chapter 2.  (The three layouts and the data sets are shown in Appendix 2.B.)  The device speed 

is adjusted in each case to generate target 𝜌 values of approximately 0.9 (high), 0.8 (medium) and 

0.6 (low).  (See Table 3.1 for the device speed used for each case.) As in Chapter 2, the simulation 

results are based on 10 replications, with 20,000 loaded trips per device per replication, and a 

warm-up period of 1,000 loaded trips.  The Tecnomatix Plant Simulation package (2014) is used 

for the simulation model.       

  In order to evaluate the analytic model, the analytic estimates of 𝛼𝑒 and 𝜌 are compared 

with the simulation results, and the difference is reported as a percentage error.  The estimated 
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empty trips, 𝑒𝑖𝑗
𝐵 , 𝑒𝑖𝑗

𝐼 , and 𝑒𝑖𝑗, are also compared with the empty trips obtained from simulation 

using the percentage point (PP) allocation error explained in section 2.5.2.     

Table 3.1: Device Travel Speed for each Case, in Distance Units/Minute 

  3 Devices 7 Devices 

  Target ρ 0.90 0.80 0.60 0.90 0.80 0.60 

Flow 1 

LO1 8.6 10.4 14.4 3.64 4.25 5.53 

LO2 11.5 13.8 19 4.85 5.65 7.45 

LO3 52 63 87 22 26 33.5 

Flow 2 

LO1 8.5 10.2 14.1 3.54 4.16 5.45 

LO2 11.8 14 19.3 4.95 5.8 7.5 

LO3 55 66 92 23.4 27.3 35.5 

 

Tables 3.2a and 3.2b show the results obtained with flow sets 1 and 2, respectively.   

Overall, the analytic model performs well.  The median PP allocation error is consistently less than 

1.5 PP.  At  𝜌 = 0.80 and 0.60, the percentage errors for 𝛼𝑒 and 𝜌, and the median values for the 

PP allocation error are small.  At 𝜌 = 0.90, the errors increase slightly, with a maximum error of 

about 12% in 𝛼𝑒 and about 5% in 𝜌.     

The results also indicate that, at medium and high utilization levels, the PP allocation errors 

for DID (𝑒𝑖𝑗
𝐵) are higher than those of SID (𝑒𝑖𝑗

𝐼 ).   Table 3.3a presents the allocation error for 𝑒𝑖𝑗
𝐵  

at 𝜌 =  0.90, where the positive (negative) values represent overestimation (underestimation) by 

the analytic model.  We observe that the model overestimates the probability that the device finds 

a MR at the first station in the sequence (i.e., the diagonal values), and consequently it 

underestimates 𝛼𝑒.  Therefore, systems with medium or high levels of utilization, which have a 

larger proportion in DID, underestimate 𝛼𝑒.   
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Table 3.2a: Analytic Model Evaluation with 3 Devices 

 

  

Target

ρ ANA 95% CI SIM Error % Med Max ANA 95% CI SIM Error % Med Max

αe 0.360 (0.404, 0.412) 11.676 e ij
B 1.37 14.38 αe 0.380 (0.410, 0.420) 8.461 e ij

B 1.19 14.19

αf 0.494 (0.488, 0.498) - e ij
I 0.48 2.85 αf 0.479 (0.472, 0.490) - e ij

I 0.39 2.45

ρ 0.854 (0.896, 0.906) 5.203 e ij 0.82 9.41 ρ 0.859 (0.886, 0.904) 4.087 e ij 0.76 9.00

αe 0.363 (0.390, 0.398) 7.686 e ij
B 1.11 9.59 αe 0.373 (0.395, 0.401) 6.308 e ij

B 0.96 10.38

αf 0.408 (0.403, 0.413) - e ij
I 0.38 1.65 αf 0.399 (0.394, 0.406) - e ij

I 0.26 1.24

ρ 0.771 (0.796, 0.806) 3.720 e ij 0.72 5.68 ρ 0.772 (0.790, 0.806) 3.218 e ij 0.56 5.68

αe 0.302 (0.308, 0.314) 2.846 e ij
B 0.65 3.12 αe 0.305 (0.310, 0.316) 2.485 e ij

B 0.38 3.57

αf 0.295 (0.290, 0.300) - e ij
I 0.22 1.12 αf 0.289 (0.283, 0.295) - e ij

I 0.20 1.44

ρ 0.597 (0.601, 0.611) 1.526 e ij 0.31 1.70 ρ 0.594 (0.594, 0.610) 1.369 e ij 0.25 1.23

αe 0.338 (0.373, 0.383) 10.810 e ij
B 0.89 13.44 αe 0.371 (0.406, 0.414) 9.329 e ij

B 0.97 16.80

αf 0.518 (0.510, 0.526) - e ij
I 0.32 1.46 αf 0.494 (0.487, 0.503) - e ij

I 0.24 3.50

ρ 0.856 (0.888, 0.906) 4.536 e ij 0.57 9.26 ρ 0.866 (0.896, 0.912) 4.255 e ij 0.72 12.45

αe 0.339 (0.361, 0.369) 7.214 e ij
B 0.80 7.41 αe 0.363 (0.384, 0.394) 6.566 e ij

B 0.83 10.43

αf 0.432 (0.426, 0.438) - e ij
I 0.19 1.12 αf 0.417 (0.407, 0.427) - e ij

I 0.21 2.39

ρ 0.770 (0.790, 0.804) 3.292 e ij 0.45 4.20 ρ 0.780 (0.792, 0.818) 3.181 e ij 0.52 6.46

αe 0.279 (0.283, 0.289) 2.552 e ij
B 0.42 2.75 αe 0.292 (0.293, 0.305) 2.075 e ij

B 0.47 3.75

αf 0.314 (0.311, 0.317) - e ij
I 0.15 1.04 αf 0.302 (0.297, 0.307) - e ij

I 0.13 1.76

ρ 0.592 (0.594, 0.606) 1.261 e ij 0.20 1.49 ρ 0.595 (0.590, 0.610) 0.976 e ij 0.22 2.32

αe 0.415 (0.460, 0.468) 10.428 e ij
B 0.72 12.15 αe 0.442 (0.482, 0.492) 9.239 e ij

B 0.69 14.78

αf 0.435 (0.425, 0.445) - e ij
I 0.29 1.84 αf 0.412 (0.407, 0.415) - e ij

I 0.22 1.89

ρ 0.850 (0.887, 0.911) 5.373 e ij 0.45 7.67 ρ 0.854 (0.893, 0.903) 4.895 e ij 0.41 9.68

αe 0.408 (0.431, 0.445) 7.010 e ij
B 0.59 6.94 αe 0.427 (0.451, 0.459) 6.288 e ij

B 0.58 8.13

αf 0.359 (0.352, 0.368) - e ij
I 0.20 1.67 αf 0.343 (0.338, 0.348) - e ij

I 0.15 1.08

ρ 0.767 (0.785, 0.811) 3.905 e ij 0.36 3.72 ρ 0.770 (0.792, 0.806) 3.570 e ij 0.34 4.41

αe 0.332 (0.336, 0.348) 2.761 e ij
B 0.36 2.19 αe 0.341 (0.342, 0.356) 2.138 e ij

B 0.27 3.17

αf 0.260 (0.254, 0.266) - e ij
I 0.16 1.25 αf 0.246 (0.243, 0.249) - e ij

I 0.14 1.27

ρ 0.592 (0.591, 0.613) 1.543 e ij 0.20 1.47 ρ 0.588 (0.586, 0.604) 1.146 e ij 0.15 1.44

3 Devices Flow 1 Flow 2

Results PP Allocation Error Results PP Allocation Error

LO3

0.90

0.80

0.60

LO1

0.90

0.80

0.60

LO2

0.90

0.80

0.60
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Table 3.2b: Analytic Model Evaluation with 7 Devices 

 

  

We believe the overestimation of the diagonal values of 𝑒𝑖𝑗
𝐵  stems from the use of the 

𝑀/𝑀/𝑐 model to estimate the probability distribution of the number of MRs in the global queue.  

The 𝑀/𝑀/𝑐 model assumes that the MRs are served on FCFS basis.  However, STTF is more 

efficient than FCFS, resulting in a lower number of MRs in the global queue for the same 𝜌 value. 

(Table 3.4 presents an example of the probability distribution of the number of MRs in the global 

Target

ρ ANA 95% CI SIM Error % Med Max ANA 95% CI SIM Error % Med Max

αe 0.354 (0.395, 0.407) 11.779 e ij
B 1.20 12.51 αe 0.375 (0.411, 0.415) 9.141 e ij

B 0.94 13.00

αf 0.500 (0.496, 0.504) - e ij
I 0.83 4.86 αf 0.493 (0.488, 0.496) - e ij

I 0.64 3.55

ρ 0.853 (0.895, 0.907) 5.270 e ij 0.83 7.83 ρ 0.868 (0.899, 0.909) 4.020 e ij 0.64 7.49

αe 0.343 (0.370, 0.380) 8.461 e ij
B 0.83 7.26 αe 0.359 (0.382, 0.390) 7.085 e ij

B 0.70 8.83

αf 0.428 (0.423, 0.433) - e ij
I 0.64 3.26 αf 0.420 (0.415, 0.423) - e ij

I 0.64 3.06

ρ 0.771 (0.793, 0.813) 3.925 e ij 0.62 4.72 ρ 0.778 (0.799, 0.811) 3.323 e ij 0.59 4.79

αe 0.244 (0.264, 0.278) 9.943 e ij
B 0.22 1.92 αe 0.261 (0.283, 0.289) 8.768 e ij

B 0.17 1.81

αf 0.329 (0.327, 0.331) - e ij
I 0.76 4.08 αf 0.320 (0.316, 0.324) - e ij

I 0.74 4.04

ρ 0.573 (0.592, 0.608) 4.515 e ij 0.76 4.25 ρ 0.581 (0.600, 0.612) 4.086 e ij 0.70 3.84

αe 0.334 (0.371, 0.379) 10.754 e ij
B 0.86 12.79 αe 0.368 (0.405, 0.409) 9.552 e ij

B 0.90 16.79

αf 0.527 (0.522, 0.532) - e ij
I 0.60 2.53 αf 0.505 (0.498, 0.512) - e ij

I 0.48 4.42

ρ 0.861 (0.896, 0.906) 4.457 e ij 0.52 7.70 ρ 0.873 (0.905, 0.919) 4.248 e ij 0.62 11.43

αe 0.327 (0.349, 0.357) 7.436 e ij
B 0.62 6.56 αe 0.351 (0.371, 0.377) 6.300 e ij

B 0.69 8.42

αf 0.452 (0.446, 0.458) - e ij
I 0.45 1.95 αf 0.431 (0.428, 0.434) - e ij

I 0.32 3.70

ρ 0.779 (0.796, 0.814) 3.233 e ij 0.48 3.49 ρ 0.782 (0.799, 0.811) 2.897 e ij 0.48 5.05

αe 0.239 (0.253, 0.261) 6.845 e ij
B 0.18 1.27 αe 0.262 (0.270, 0.280) 4.704 e ij

B 0.27 2.15

αf 0.343 (0.339, 0.345) - e ij
I 0.51 2.65 αf 0.333 (0.329, 0.337) - e ij

I 0.33 3.46

ρ 0.582 (0.593, 0.605) 2.862 e ij 0.50 2.65 ρ 0.595 (0.599, 0.617) 2.100 e ij 0.34 3.40

αe 0.411 (0.457, 0.461) 10.344 e ij
B 0.63 11.08 αe 0.436 (0.478, 0.484) 9.228 e ij

B 0.60 13.10

αf 0.441 (0.436, 0.446) - e ij
I 0.48 3.28 αf 0.415 (0.410, 0.418) - e ij

I 0.43 3.50

ρ 0.852 (0.893, 0.905) 5.241 e ij 0.41 5.89 ρ 0.851 (0.890, 0.900) 4.876 e ij 0.38 6.98

αe 0.391 (0.415, 0.427) 7.201 e ij
B 0.45 5.05 αe 0.411 (0.437, 0.445) 6.846 e ij

B 0.40 6.61

αf 0.373 (0.368, 0.376) - e ij
I 0.37 2.22 αf 0.356 (0.353, 0.359) - e ij

I 0.34 3.18

ρ 0.764 (0.786, 0.802) 3.731 e ij 0.38 3.08 ρ 0.767 (0.792, 0.802) 3.815 e ij 0.35 3.85

αe 0.288 (0.306, 0.316) 7.372 e ij
B 0.16 1.50 αe 0.299 (0.319, 0.329) 7.658 e ij

B 0.15 2.37

αf 0.290 (0.287, 0.291) - e ij
I 0.42 2.81 αf 0.274 (0.270, 0.276) - e ij

I 0.41 4.99

ρ 0.578 (0.594, 0.606) 3.719 e ij 0.41 3.06 ρ 0.572 (0.589, 0.605) 4.131 e ij 0.43 4.87

7 Devices Flow 1 Flow 2

Results PP Allocation Error Results PP Allocation Error

LO3

0.90

0.80

0.60

LO1

0.90

0.80

0.60

LO2

0.90

0.80

0.60
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queue.)  Since the 𝑀/𝑀/𝑐 model overestimates the number of MRs in the global queue, the 

analytic model overestimates the diagonal 𝑒𝑖𝑗
𝐵  values.      

Table 3.3a: PP Allocation Error for DID in LO1 (7 devices,  𝜌 =  0.90, and Flow 1) 

 

 

Table 3.3b: PP Allocation Error for SID in LO1 (7 devices,  𝜌 =  0.60, and Flow 1) 

 

On the other hand, the PP allocation error for SID is slightly higher than that of DID in 

systems with a large number of devices and low utilization (𝜌 = 0.60).   We investigate this error 

by examining the PP allocation error in 𝑒𝑖𝑗
𝐼  for 𝜌 =  0.60 (see Table 3.3b).  The model 

overestimates the probability that the MR finds an idle device at the first station (i.e., the diagonal 

values), which results in underestimating 𝛼𝑒.   

1 2 3 4 5 6 7 8 9 10

1 8.764 -0.414 -0.210 -2.382 -1.383 -0.637 -1.631 -0.768 -0.468 -0.870

2 1.069 8.572 -1.438 -2.331 -1.831 -0.528 -1.457 -0.760 -0.412 -0.883

3 -1.221 -0.439 7.546 0.720 -0.863 -0.933 -1.617 -1.315 -0.675 -1.203

4 -0.937 0.902 -0.569 8.312 -1.433 -1.073 -1.913 -1.421 -0.658 -1.210

5 -1.115 -0.528 -0.805 -0.110 8.758 -1.854 0.610 -2.489 -0.929 -1.537

6 -3.428 -1.665 -1.467 -0.846 -1.595 10.890 -0.677 -0.661 -0.116 -0.435

7 -1.700 -1.192 -0.464 -0.006 -0.723 -1.556 8.890 -3.512 -0.001 0.264

8 -2.415 -1.811 -1.110 -0.368 -0.743 -1.950 -1.688 12.513 -0.872 -1.556

9 -2.198 -2.032 -1.213 -0.239 -0.885 4.272 -1.883 -2.822 7.531 -0.530

10 -2.005 -1.639 -0.782 -0.126 -0.693 0.199 -1.180 -3.090 1.891 7.426

1 2 3 4 5 6 7 8 9 10

1 2.239 0.012 1.447 0.753 0.036 -0.731 -0.599 -1.828 -0.536 -0.795

2 1.860 1.503 0.911 0.759 -0.004 -0.751 -1.038 -1.921 -0.498 -0.821

3 -0.406 0.250 2.840 1.787 -0.467 -0.863 -0.938 -1.317 -0.357 -0.530

4 0.487 1.595 0.071 2.793 -0.257 -0.572 -1.128 -1.819 -0.379 -0.791

5 -1.406 -0.989 -1.443 -1.154 2.301 -0.047 1.353 0.436 0.272 0.677

6 0.545 1.191 0.249 0.174 -0.316 1.330 -0.831 -1.427 -0.390 -0.525

7 -1.401 -0.919 -1.480 -1.206 -0.284 0.564 1.514 1.183 0.723 1.306

8 -1.002 -0.646 -1.086 -0.881 -0.614 -0.645 0.816 4.079 -0.082 0.060

9 -0.196 0.280 -0.427 -0.417 -0.150 1.817 -1.516 -0.123 0.563 0.168

10 -0.697 -0.524 -0.893 -0.975 -0.277 1.317 -0.298 0.524 0.871 0.951
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We believe the above slight overestimation in the diagonal values of 𝑒𝑖𝑗
𝐼  is caused by the 

Erlang C formula to estimate the proportion of DID versus SID.  Table 3.5 shows that the Erlang 

C formula overestimates the proportion of SID at low 𝜌 values and a large number of devices. This 

results in overestimating the number of idle devices, which causes the model to overestimate the 

diagonal 𝑒𝑖𝑗
𝐼  values. 

Table 3.4: Probability Distribution of the Number of MRs in the Global Queue 

  𝑝𝑚 (for LO1, 7 Devices, Flow 1, and 𝜌 = 0.90) 

𝑚 𝑀/𝑀/𝑐  FCFS (SIM) STTF (SIM) 

0 0.352 0.353 0.385 

1 0.072 0.068 0.099 

2 0.065 0.061 0.095 

3 0.058 0.055 0.085 

4 0.052 0.049 0.074 

5 0.047 0.044 0.062 

6 0.043 0.040 0.050 

7 0.038 0.035 0.040 

8 0.034 0.031 0.030 

9 0.031 0.028 0.023 

10 0.028 0.025 0.017 

… … … … 

E(𝒎) 6.480 6.120  2.872 

 

 

Table 3.5: DID vs SID for Layout 3 and Flow 1 under STTF 

 

  

SIM EC SIM EC SIM EC

r 0.901 ±  0.005 0.801 ±  0.005 0.606 ±  0.005

Pr (DID) 0.810 ±  0.010 0.819 0.645 ±  0.008 0.649 0.369 ±  0.011 0.362

Pr (SID) 0.190 ±  0.010 0.181 0.355 ±  0.008 0.351 0.631 ±  0.011 0.638

r 0.899 ± 0.006 0.794 ± 0.008 0.600 ± 0.006

Pr (DID) 0.708 ± 0.010 0.718 0.482 ± 0.014 0.473 0.193 ± 0.007 0.165

Pr (SID) 0.292 ± 0.010 0.282 0.518 ± 0.014 0.527 0.807 ± 0.007 0.835

r  = 0.90 r  = 0.80 r  = 0.60

3 devices

7 devices
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3.3.2 Stability Tests 

 Next we evaluate how well the analytic model performs in determining whether or not a 

system is stable.  The experiment for the stability test is the same as in section 2.5.3. We first set 

the device speed such that the utilization is high but the system is clearly stable (case C1), and then 

generate more cases by decreasing the device speed (up to case C6).  The M-M LB, analytic, and 

simulation results are shown for each case.  The experiment is conducted for LO1 and LO3, with 

7 devices and flow sets 1 and 2.  The simulation model is run for only one replication with one 

million loaded trips, but it is terminated sooner if the system is overloaded. 

The results in Tables 3.6a and 3.6b show that in most cases, the analytic model converges 

when the simulation result suggests that the system is stable (i.e., it is not overloaded).  Likewise, 

when the simulation model suggests that the system is overloaded, the iterative algorithm is forced 

to stop since 𝜌 > 0.999 (UNS?).  Although there is one case where the iterative algorithm 

converges whereas the simulation indicates that the system is overloaded, the 𝜌 value that the 

algorithm converges to is very high, indicating that the system may be borderline unstable.  

Overall, our empirical results indicate that the analytic model yields results that are similar to the 

simulation model in terms of determining the stability of the system.     
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Table 3.6a: Stability Test for LO1 

 

Table 3.6b: Stability Test for LO3 

 

M-M LB ANA SIM M-M LB ANA SIM

αe 0.15126 0.24793 0.28258 0.27425 0.32578 0.34638

αf 0.71335 0.71335 0.71451 0.64638 0.64638 0.64692

ϱ 0.86461 0.96128 0.99709 0.92063 0.97216 0.99331

αe 0.15429 0.23744 0.26914 0.27942 0.31913 0.33665

αf 0.72762 0.72762 0.72878 0.65858 0.65858 0.65916

ϱ 0.88190 0.96506 0.99792 0.93801 0.97771 0.99581

αe 0.15743 0.22625 0.25695 0.28480 0.31182 0.32637

αf 0.74247 0.74247 0.74229 0.67125 0.67125 0.67164

ϱ 0.89990 0.96871 0.99924 0.95604 0.98306 0.99801

αe 0.16071 0.21431 0.24168 0.29038 0.30370 0.31566

αf 0.75794 0.75794 0.75822 0.68441 0.68441 0.68427

ϱ 0.91865 0.97225 0.99991 0.97479 0.98811 0.99992

αe 0.16770 0.18804 0.21057 0.29619 UNS? OL

αf 0.79089 0.79089 0.78943 0.69810 UNS? OL

ϱ 0.95859 0.97893 1.00000 0.99429 UNS? OL

αe 0.17532 UNS? OL 0.30224 UNS? OL

αf 0.82684 UNS? OL 0.71234 UNS? OL

ϱ 1.00216 UNS? OL 1.01458 UNS? OL

C5

C6

Flow 1 Flow 2

C1

C2

C3

C4

M-M LB ANA SIM M-M LB ANA SIM

αe 0.05238 0.23142 0.25380 0.55483 0.55483 0.55663

αf 0.74615 0.74615 0.74600 0.18395 0.39264 0.43581

ϱ 0.79853 0.97758 0.99980 0.73878 0.94747 0.99244

αe 0.05448 0.20584 0.22356 0.57115 0.57115 0.57225

αf 0.77600 0.77600 0.77639 0.18936 0.38280 0.42300

ϱ 0.83048 0.98184 0.99995 0.76050 0.95395 0.99525

αe 0.05675 0.17753 0.19258 0.62642 0.62642 0.62131

αf 0.80833 0.80833 0.80741 0.20768 0.34453 0.37868

ϱ 0.86508 0.98586 0.99999 0.83410 0.97095 1.00000

αe 0.05921 0.14616 0.15785 0.66962 0.66962 0.66837

αf 0.84348 0.84348 0.84215 0.22200 0.31150 0.33163

ϱ 0.90269 0.98964 1.00000 0.89163 0.98112 1.00000

αe 0.06190 0.11133 0.11948 0.71922 0.71922 OL

αf 0.88182 0.88182 0.88052 0.23845 0.27091 OL

ϱ 0.94372 0.99315 1.00000 0.95767 0.99013 OL

αe 0.06810 UNS? OL 0.80913 UNS? OL

αf 0.97000 UNS? OL 0.26825 UNS? OL

ϱ 1.03810 UNS? OL 1.07738 UNS? OL

C4

C5

C6

Flow 1 Flow 2

C1

C2

C3
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3.4 The MR Wait Times under STTF 

The STTF is an efficient rule that reduces 𝛼𝑒 and 𝜌, which also decreases the average MR 

wait time.  However, as mentioned previously, under STTF, some MRs are penalized and may 

experience excessive wait times.  To address this concern, de Koster et al. (2004) proposed using 

STTF with a threshold such that a MR that has been waiting longer than the threshold, is given a 

higher priority. The authors propose to set the threshold equal to 𝑘 times the expected MR wait 

time.  Although the authors demonstrate that this method decreases the maximum MR wait time, 

an initial simulation run is required in order to determine the expected MR wait time, and further 

experimentation is needed to determine the appropriate 𝑘 value.  (The authors suggest 𝑘 = 4 or 

𝑘 = 5).   

Also, it is not clear which MR is served if there are two or more MRs above the threshold.  

If the oldest MR is served (i.e., FCFS), it may further burden the system, especially if it is a busy 

system with high device utilization and multiple MRs in the global queue with long wait times.  

3.4.1 Bounded STTF 

 Instead of setting a threshold which is a multiple of the expected MR wait time, we propose 

to use the number of MRs served as the threshold.  Since we can estimate the expected service 

time per MR using the analytic model we developed for STTF, no simulation results are needed to 

set the value of the threshold.  (Note that there are no analytic models to estimate the expected MR 

wait times under STTF.)  The proposed rule, namely, the bounded-STTF rule is denoted by B-

STTF.   The bound, denoted by 𝛽, acts as the threshold; that is, if 𝛽 MRs have been served since 

MR 𝑥 joined the global queue, then MR 𝑥 is the next MR to be served.  If there are two or more 

MRs that reach the limit, the closest of those MRs is the next MR to be served. 
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Since the threshold is based on the number of MRs served, the maximum wait time a MR 

would experience under B-STTF can be approximated by (𝛽)(𝑆𝑇)/𝐷, where 𝑆𝑇 is the expected 

service time.  For example, in a 2-device system with 𝑆𝑇 = 100 seconds, if we set 𝛽 = 10, then 

we would expect that, on average, the limit is reached when a MR has been waiting for more than 

500 seconds.  Since the expected service time can be computed with the analytic model presented 

in this chapter, and the user can compute the desired 𝛽 value, we believe our approach is more 

practical and requires minimal experimentation.     

3.4.2 Performance of the B-STTF Rule 

 We evaluate the performance of the B-STTF rule through simulation experiments. It is 

important to note that STTF may not always lead to excessive MR wait times, as it largely depends 

on the layout and the flow data.  In our case, flow set 2 in LO2 and LO3 indicated excessive MR 

wait times since the maximum MR wait time under STTF was significantly larger than the 

maximum MR wait time under FCFS (for the same 𝜌 value).  Hence, we used LO2 and flow set 2 

with 3 devices, and LO3 and flow set 2 with 7 devices to test the B-STTF rule.   

 Since STTF is more efficient that FCFS, comparing their performances directly can be 

misleading, as the 𝜌 value under FCFS is often much higher (or the system is unstable).  Therefore, 

we included in the comparison a case where the device speed is increased such that the 𝜌 value 

under FCFS is the same as the 𝜌 value under STTF.  Instead of reporting only the average and the 

maximum MR wait time, we also include the average wait time of the MRs that are in the top 

0.5%, 1% and 5% of the MR wait times.  Although the user would select the appropriate 𝛽 value, 

for demonstration purposes we used 𝛽 = 14 and 𝛽 = 28 for both layouts.  We also report the 

percentage of MRs that reach the limit, and the average and maximum number of “slips” 

(Larson, 1987).  Using Kingman’s formula (1961), it is straightforward to analytically estimate the 
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average MR wait time (𝑊𝑞)  under FCFS.  Using Kingman’s formula and the results shown in this 

chapter for STTF, we can also analytically estimate 𝑊𝑞 under STTF (although it may not be an 

accurate estimate since, under STTF, the sequence of service impacts the empty travel portion of 

the service times).     

The results, presented in Table 3.7a and 3.7b, show that, in general, imposing the threshold 

has no significant impact on the 𝜌 values, while the maximum wait time and the average wait time 

of the top 0.5% decrease dramatically, indicating that B-STTF works quite well.  Also, there is a 

small decrease in the average wait time of the top 1%, and little to no significant decrease in the 

average wait time of the top 5%, indicating that excessive wait times occur mostly at the upper 1% 

tail and higher.     

In busy systems (i.e., high 𝜌 value), 𝑊𝑞 slightly increases when the limit is set at a smaller 

value.  This is because the MRs in a busy system are more likely to experience excessive wait 

times, resulting in a larger number of MRs reaching the limit.  Thus, in a busy system, B-STTF is 

very effective; it reduces the maximum wait time as well as the average wait time for the top 0.5% 

and 1% (and to a lesser extent, the top 5%).  If the 𝛽 value is set too low, more MRs are likely to 

reach the threshold.  Since the closest of such MRs is served, the B-STTF rule is likely to perform 

similarly to the regular, unbounded STTF rule as the 𝛽 value decreases.     
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Table 3.7a: B-STTF for LO2, Flow Set 2 and 3 Devices 

 

  

FCFS FCFS (inc. speed) B-STTF (14 β) B-STTF (28 β) STTF

Wq UNS 166.14 ± 38.72 94.39 ± 7.82 84.84 ± 5.96 82.86 ± 5.00
Wq of top 5% UNS 762.0 ± 278.7 497.8 ± 51.5 510.3 ± 41.9 527.6 ± 48.2
Wq of top 1% UNS 1,024.9 ± 413.0 682.9 ± 65.3 739.24 ± 72.7 930.6 ± 146.2

Wq of top 0.5% UNS 1,116.3 ± 480.8 761.9 ± 151.0 804.5 ± 166.4 1,132.7 ± 214.7
Max Wait Time UNS 1,417.0 ± 532.6 1,062.7 ± 240.9 1,075.4 ± 269.1 2,702.5 ± 1,584.4

Avg Slip UNS - 1.82 ± 0.14 1.98 ± 0.14 2.06 ± 0.16

Max Slip UNS - 16.70 ± 1.09 29.00 ± 1.34 112.70 ± 62.89

Service Time UNS 68.61 ± 0.30 69.05 ± 0.45 68.96 ± 0.43 68.81 ± 0.43
αe UNS 0.491 ± 0.008 0.412 ± 0.003 0.411 ± 0.006 0.410 ± 0.003

ρ UNS 0.901 ± 0.011 0.907 ± 0.008 0.906 ± 0.009 0.904 ± 0.006

DID (%) UNS 81.78 ± 2.15 82.39 ± 1.53 82.13 ± 1.30 81.89 ± 1.12

SID (%) UNS 18.22 ± 2.15 17.61 ± 1.53 17.87 ± 1.30 18.11 ± 1.12
Limit Reached (%) UNS - 5.377 ± 1.156 0.952 ± 0.261 -

Wq UNS 164.24 - - 116.15

Service Time UNS 68.50 - - 65.80
αe UNS 0.491 - - 0.371
ρ UNS 0.901 - - 0.865

Wq 195.53 ± 442.28 57.15 ± 6.95 40.65 ± 1.97 39.56 ± 2.56 39.37 ± 2.15
Wq of top 5% 848.3 ± 220.4 312.9 ± 42.4 265.7 ± 10.8 263.8 ± 13.4 265.4 ± 14.1
Wq of top 1% 1,162.2 ± 419.6 454.42 ± 85.7 390.5 ± 21.7 432.6 ± 24.3 442.1 ± 28.5

Wq of top 0.5% 1,259.9 ± 463.3 510.6 ± 110.2 432.9± 29.9 507.2 ± 32.8 525.3± 39.7

Max Wait Time 1,534.9 ± 3,471.9 680.0 ± 149.7 634.4 ± 157.4 801.0 ± 163.1 1,335.1 ± 505.9

Avg Slip - - 1.11 ± 0.06 1.15 ± 0.09 1.16 ± 0.07

Max Slip - - 15.70 ± 2.15 28.80 ± 0.95 59.30 ± 17.65

Service Time 69.65 ± 0.65 60.93 ± 0.61 61.33 ± 0.32 61.29 ± 0.29 61.30 ± 0.54
αe 0.498 ± 0.010 0.436 ± 0.007 0.389 ± 0.004 0.388 ± 0.004 0.389 ± 0.005

ρ 0.915 ± 0.016 0.801 ± 0.012 0.806 ± 0.010 0.805 ± 0.009 0.805 ± 0.012

DID (%) 84.30 ± 2.97 64.67 ± 1.89 65.15 ± 1.56 65.08 ± 1.83 64.97 ± 1.57

SID (%) 15.70 ± 2.97 35.33 ± 1.89 34.85 ± 1.56 34.92 ± 1.83 35.03 ± 1.57
Limit Reached (%) - - 1.166 ± 0.170 0.111 ± 0.046 -

Wq 206.03 58.67 - - 51.54

ST 69.72 60.89 - - 59.30
αe 0.500 0.437 - - 0.363
ρ 0.917 0.801 - - 0.780

Wq 19.21 ± 1.36 12.55 ± 0.74 10.75 ± 0.63 10.56 ± 0.72 10.53 ± 0.73
Wq of top 5% 136.5 ± 11.3 94.5 ± 5.0 98.6 ± 5.2 97.0 ± 5.6 96.6 ± 4.9
Wq of top 1% 203.9 ± 20.7 144.0 ± 12.3 167.8 ± 12.5 164.1 ± 15.4 163.1 ± 12.3

Wq of top 0.5% 231.2 ± 29.7 165.6 ± 20.2 199.0 ± 16.4 194.5 ± 23.5 193.3 ± 19.4

Max Wait Time 370.5 ± 121.5 278.3 ± 101.3 379.4 ± 71.4 426.6 ± 191.1 430.4 ± 204.7

Avg Slip - - 0.54 ± 0.04 0.53 ± 0.04 0.53 ± 0.04

Max Slip - - 14.70 ± 1.53 21.40 ± 8.68 21.50 ± 8.94

Service Time 50.60 ± 0.27 45.68 ± 0.38 45.77 ± 0.45 45.69 ± 0.44 45.69 ± 0.44
αe 0.362 ± 0.005 0.327 ± 0.006 0.299 ± 0.006 0.299 ± 0.005 0.299 ± 0.005

ρ 0.665 ± 0.008 0.600 ± 0.009 0.601 ± 0.009 0.600 ± 0.009 0.600 ± 0.009

DID (%) 44.06 ± 1.31 35.21 ± 1.01 36.02 ± 1.40 35.78 ± 1.36 35.76 ± 1.38

SID (%) 55.94 ± 1.31 64.79 ± 1.01 63.98 ± 1.40 64.22 ± 1.36 64.24 ± 1.38
Limit Reached (%) - - 0.061 ± 0.041 0.001 ± 0.007 -

Wq 20.65 12.98 - - 12.76

Service Time 50.58 45.68 - - 45.22
αe 0.363 0.328 - - 0.292
ρ 0.665 0.601 - - 0.595

ANA

90

80

60

SIM

ANA

SIM

ANA

SIM
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Table 3.7b: B-STTF for LO3, Flow Set 2 and 7 Devices 

 

FCFS FCFS (inc. speed) B-STTF (14 β) B-STTF (28 β) STTF

Wq UNS 129.26 ± 29.69 68.55 ± 4.16 62.03 ± 3.16 60.97 ± 2.97
Wq of top 5% UNS 661.5 ± 226.4 394.0 ± 32.0 399.2 ± 28.9 404.0 ± 33.8
Wq of top 1% UNS 936.6 ± 417.0 527.6 ± 67.7 596.8 ± 58.2 685.1 ± 69.2

Wq of top 0.5% UNS 1,045.1 ± 426.5 577.9 ± 88.0 654.7 ± 92.5 823.9 ± 100.3

Max Wait Time UNS 1,512.6 ± 550.9 883.7 ± 190.8 967.7 ± 216.6 2,235.4 ± 642.3

Avg Slip UNS - 1.85 ± 0.11 1.99 ± 0.12 2.04 ± 0.14

Max Slip UNS - 17.50 ± 2.44 29.30 ± 1.09 107.80 ± 42.13

Service Time UNS 138.00 ± 0.74 138.26 ± 0.97 137.80 ± 1.12 137.58 ± 0.92
αe UNS 0.570 ± 0.007 0.485 ± 0.004 0.482 ± 0.003 0.480 ± 0.003

ρ UNS 0.898 ± 0.010 0.900 ± 0.007 0.897 ± 0.005 0.895 ± 0.006

DID (%) UNS 71.41 ± 2.95 71.27 ± 1.79 70.33 ± 1.23 70.15 ± 1.36

SID (%) UNS 28.59 ± 2.95 28.73 ± 1.79 29.67 ± 1.23 29.85 ± 1.36
Limit Reached (%) UNS - 4.457 ± 0.506 0.715 ± 0.101 -

Wq UNS 130.55 - - 77.54

Service Time UNS 138.07 - - 130.82
αe UNS 0.571 - - 0.436
ρ UNS 0.899 - - 0.851

Wq 856.32 ± 386.14 40.55 ± 5.09 29.75 ± 2.19 28.43 ± 1.78 28.55 ± 1.71
Wq of top 5% 3,480.3 ± 1,403.4 269.9 ± 62.3 232.5 ± 22.5 230.6 ± 18.4 228.9 ± 10.6
Wq of top 1% 4,072.5 ± 1,549.0 386.5 ± 109.0 345.9 ± 31.6 384.2 ± 35.3 387.2 ± 21.3

Wq of top 0.5% 4,241.3 ± 1,574.3 428.5 ± 128.3 383.4 ± 40.2 450.0 ± 43.7 462.1 ± 36.0

Max Wait Time 4,614.1 ± 1,794.8 680.3 ± 274.4 612.9 ± 120.1 787.4 ± 128.8 1325.4 ± 572.8

Avg Slip - - 1.28 ± 0.10 1.32 ± 0.11 1.33 ± 0.10

Max Slip - - 16.70 ± 1.86 29.20 ± 1.43 64.80 ± 40.62

Service Time 149.71 ± 0.51 123.08 ± 0.87 122.76 ± 0.47 122.40 ± 0.55 122.47 ± 0.59
αe 0.619 ± 0.008 0.509 ± 0.008 0.443 ± 0.004 0.441 ± 0.005 0.441 ± 0.004

ρ 0.974 ± 0.011 0.801 ± 0.011 0.799 ± 0.007 0.797 ± 0.008 0.797 ± 0.006

DID (%) 92.39 ± 3.46 48.80 ± 2.46 49.24 ± 1.69 48.76 ± 1.72 48.91 ± 1.54

SID (%) 7.61 ± 3.46 51.20 ± 2.45 50.76 ± 1.69 51.24 ± 1.72 51.09 ± 1.54
Limit Reached (%) - - 1.199 ± 0.237 0.121 ± 0.049 -

Wq 710.94 42.08 - - 31.74

ST 149.70 123.10 - - 117.80
αe 0.619 0.509 - - 0.411
ρ 0.974 0.801 - - 0.767

Wq 23.44 ± 2.94 6.00 ± 0.61 6.24 ± 0.62 6.13 ± 0.57 6.09 ± 0.72
Wq of top 5% 184.5 ± 22.5 67.5 ± 7.7 83.7 ± 8.8 83.2 ± 9.5 82.8 ± 11.5
Wq of top 1% 276.9 ± 42.8 115.9 ± 20.8 159.4 ± 18.1 160.2 ± 19.9 159.8 ± 22.3

Wq of top 0.5% 312.9 ± 57.0 136.2 ± 31.1 193.5 ± 20.9 196.7 ± 26.9 195.9 ± 28.7

Max Wait Time 521.7 ± 137.5 264.4 ± 95.1 409.4 ± 78.8 512.0 ± 130.9 559.1 ± 221.6

Avg Slip - - 0.72 ± 0.08 0.72 ± 0.07 0.72 ± 0.09

Max Slip - - 15.40 ± 1.17 27.00 ± 3.84 33.10 ± 10.63

Service Time 115.04 ± 0.80 92.12 ± 0.66 91.87 ± 0.49 91.69 ± 0.79 91.58 ± 0.70
αe 0.475 ± 0.007 0.381 ± 0.006 0.325 ± 0.005 0.323 ± 0.007 0.323 ± 0.008

ρ 0.749 ± 0.010 0.599 ± 0.008 0.598 ± 0.009 0.597 ± 0.010 0.596 ± 0.010

DID (%) 38.44 ± 2.04 16.43 ± 1.21 19.05 ± 1.10 18.84 ± 1.27 18.84 ± 1.39

SID (%) 61.56 ± 2.04 83.57 ± 1.21 80.95 ± 1.09 81.16 ± 1.27 81.16 ± 1.39
Limit Reached (%) - - 0.085 ± 0.033 0.004 ± 0.006 -

Wq 25.53 6.55 - - 5.34

Service Time 115.12 92.11 - - 87.94
αe 0.476 0.381 - - 0.299
ρ 0.749 0.599 - - 0.572
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On the other hand, in systems with low 𝜌 values, the majority of the MRs are served on the 

basis of SID, and the MRs rarely experience excessive wait times.  As a result, the limit is reached 

very seldom, and the rule has only a small impact on the maximum wait time and the average of 

the top 0.5%, 1% and 5% of the MR wait times. In systems with medium 𝜌 values, B-STTF is still 

effective, albeit less than it is in busy systems.  Last, if the 𝛽 value is set too large, the limit is 

almost never reached, and the rule will have only a minimal effect, regardless of the device 

utilization. 

 

3.5 Summary and Conclusions 

We extended the technique in Chapter 2 to develop an analytic model for multi-device 

STTF systems.  The model estimates the station-to-station empty trips under DID and SID, which 

are consequently used to estimate the expected device utilization.  To our knowledge, the model 

presented in this Chapter is the first analytic model that explicitly approximates empty device 

travel under the STTF rule with multiple devices. 

The analytic model performs well in estimating the empty trips, with a median allocation 

error consistently less than 1.5 percentage points.  Although the errors in high-utilization cases are 

higher than those of medium- and low-utilization cases, the maximum error in 𝛼𝑒 is less than about 

12%, and the error in 𝜌 is less than about 5%.  Additionally, we empirically show that the analytic 

model performs as well as a simulation model in determining whether or not a system is stable.   

We also presented the bounded-STTF rule in order to avoid excessive MR wait times. The 

user may determine the bound (the 𝛽 value) based on the expected service time estimates obtained 

from the analytic model.  Although the appropriate 𝛽 value must be determined by the user, using 

𝛽 = 14 and 𝛽 = 28 as an example, we showed that B-STTF is an effective rule.  The bound not 
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only reduces the maximum MR wait time, but it also decreases the average wait time for the top 

0.5% and top 1% of the MRs.  In cases where the STTF rule does not indicate excessive MR wait 

times, B-STTF is less effective as one would expect but it does not harm the overall performance 

of the system. 

 Multiple directions can be considered for future research.  First, it would be desirable to 

estimate the expected wait time analytically.  Kingman’s formula (1961) overestimates the 

expected wait time for efficient dispatching rules.   Second, one can investigate alternative bounds 

for the bounded STTF rule based on the remaining queue space at the MR origin station.  (Egbelu 

and Tanchoco [1984] previously explored the minimum remaining outgoing queue space rule, 

using simulation but it was used as a dispatching rule instead of a bound).  Third, the STTF rule 

can be extended to consider multiple MR priorities.  And lastly, instead of random MR arrivals, 

there may be cases where there is a time window specified for the arrival of each MR.  In such 

cases, it would be desirable to develop a look-ahead dispatching rule and an analytic model to 

evaluate its performance. 
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CHAPTER 4 

Analysis of Patient Mover Dispatching and Equipment Marshalling Areas:  

A Simulation Study at the University of Michigan Hospital 

 

4.1 Introduction 

Patient movement is an essential function in hospitals. For a variety of reasons, inpatients or 

outpatients are moved in a hospital from one point to another, such as moving a patient from the 

ER to a short-stay bed, or moving a patient from their room to a clinic/department (and back at a 

later time), and so on.  (We use the terms clinic and department interchangeably.)  Delays in 

moving patients not only impact the physicians and the staff but they also disrupt the workflow 

and schedule in the clinics, and they may ultimately impact the quality of care.  Even a seemingly 

innocuous delay in moving a patient being discharged, for example, can delay bed availability, 

inconvenience the patient and their family, and create congestion in the lobby.   (Special cases, 

such as moving critically ill patients and infection control are beyond the scope of our study.)   

While moving patients may not be a time-consuming or resource-intensive task in a small- 

to medium-sized hospital, it is a major function in large hospitals, which typically have many 

departments and 500 to 1,000 beds or more (Table 4.1, [Becker’s Hospital Review, 2016]). Also, 

most large hospitals are multi-floor facilities since they are often located in or near urban areas 

with limited land. As a result, the distance/time for many moves can be significant, involving both 
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horizontal and vertical (elevator) travel. The number of moves is significant as well. In 2014, 

nearly 35 million patients were admitted to registered hospitals in the U.S. (AHA, 2016). Per 

Mongrain (2016), “if each of these patients was (moved) only to their room on admission, to and 

from one test, and then from their room to the exit, there would be 140 million (patient 

moves/year).” The University of Michigan Health System (UMHS), for example, which was 

recently renamed Michigan Medicine, is a group of interconnected, multi-floor buildings in the 

medical campus, with over 600,000 square meters of indoor space, and over 300,000 patient 

moves/year.  

Table 4.1: Examples of Large Hospitals with Approximately 500 to 1,000 beds 

FACILITY No. of beds 

Stanford Health Care, Stanford Hospital, Palo Alto, CA 613 

Texas Children's Hospital in Houston, TX 650 

Rush University Medical Center in Chicago, IL 664 

The Mayo Clinic Hospital, Methodist Campus, Rochester, MN 794 

Baylor St. Luke's Medical Center, Houston, TX 850 

Northwestern Memorial Hospital, Chicago, IL 894 

Duke University Hospital, Durham, NC 938 

Thomas Jefferson University Hospitals, Philadelphia, PA 951 

University of Michigan Medical Center, Ann Arbor, MI 1,059 

Beaumont Hospital, Royal Oak, MI 1,070 

Virginia Commonwealth University Medical Center, Richmond, VA 1,125 

University of Alabama Hospital, Birmingham, AL 1,157 

The Mayo Clinic Hospital, Saint Mary’s Campus, Rochester, MN 1,265 

The Cleveland Clinic, Main campus, Cleveland, OH 1,400 

 

Proper equipment (EQ) and sanitation are important factors.  Each patient is moved by a 

patient mover (PM), one at a time, either in a wheelchair (WH) or on a gurney (GR), which are 

staged in equipment marshalling areas (EQMAs) located throughout the hospital. (Certain patients 

may need additional, specialized equipment. Such equipment are not managed by the PMs and 

they are beyond the scope of our study.)  The equipment required for each move is communicated 

to the PM.  Also, as explained later, certain moves requests (MRs) may have higher priority. The 
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EQ requirements and the priority of the MRs impact the dispatching decisions and ultimately the 

performance of the system.   

Given the volume of the patient moves, large hospitals (such as UMHS) employ full-time 

PMs and they use various methods (localized or computer-based/centralized technologies) to 

dispatch and manage the PMs (Schittekat and Nordlander, 2012). The purpose of this study is to 

analyze the performance of centralized patient movement systems, and to identify possible 

improvements by examining alternative PM dispatching rules and measuring their impact on the 

efficiency of the PMs as well as the MR wait times.  Since proper EQ is a key factor, we also 

investigate the impact of the EQMAs.  

After our literature review, in section 4.3 we describe the problem setting and the assumptions 

for the study.  In section 4.4, we present the patient movement process, including EQ 

considerations.  In sections 4.5 and 4.6, we use simulation to analyze alternative dispatching rules 

and propose a new rule, assuming equal-priority and non-equal-priority moves, respectively.  In 

section 4.7, we investigate the impact of the EQMAs and suggest changes to improve the 

performance of the system.  In section 4.8 we summarize our conclusions and present possible 

directions for future research.  The UMHS hospital is used as a real-world application to 

demonstrate the concepts and the results. However, our analysis and insights apply to virtually any 

large hospital that uses dedicated PMs and centralized dispatching.     

 

4.2 Literature Review 

There are two types of patient conveyance in healthcare; inter-facility patient transport, and 

intra-facility patient movement. Inter-facility transport is performed usually by ambulance, and 

multiple patients may be transported at one time.  (In some cases fixed-wing aircraft or helicopters 
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are used.)  Intra-facility moves, on the other hand, are typically performed by PMs, and only one 

patient is moved at a time, using WHs or GRs. The literature review focuses on studies concerned 

with intra-facility patient moves.  However, as two related topics, we also include in our review 

inter-facility patient transport as well as material handling dispatching in manufacturing settings.   

An early paper by Schall (1988) suggests that a centralized patient movement system with 

dedicated staff (PMs) can reduce the overall number of staff in a hospital and increase productivity, 

while maintaining the quality of service.  Chen at al. (2005) describe the challenges associated 

with, and the steps needed to develop, a successful centralized PM dispatching system. The authors 

stress that effective communications between the clinics, the dispatch system (DS), and the PMs 

must be established properly, and they recommend using an automated DS.  (In centralized 

systems, the DS is usually computer-based, and it keeps track of all the MRs and PMs in the 

system.)   

As part of a case study, Dershin and Schaik (1993) propose a scheduling and staffing model 

for the PMs to accommodate fluctuations in demand during the day. The authors develop staggered 

schedules where the PMs start and end their work shifts at different times in order to match the 

staff size to the demand level. They also compare a one-way and two-way communication system 

(between the DS and the PMs). In another case study, conducted at the Vancouver General 

Hospital, Odegaard et al. (2007a, 2007b) focus on determining the optimal number of PMs based 

on a staggered schedule. They also investigate the impact of centralized versus decentralized 

dispatching of the PMs.  Turan et al. (2011), on the other hand, model the PM routing and 

scheduling problem as a static dial-a-ride problem (DARP), where the MR arrivals are known in 

advance.  They report a tractable model for medium-sized hospitals.    
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Fiegl and Pontow (2009) study patient moving in a hospital in Austria. They develop an 

online scheduling algorithm, assuming the MR arrivals are known in advance. The average 

weighted flow time is used as the objective function, where the flow time of a MR is defined as 

the elapsed time from its arrival to its completion, and the weight reflects the importance of the 

MR.  Schittekat and Nordlander (2012) also propose a scheduling algorithm to assign the MRs to 

the PMs, with an objective to minimize the MR wait time and the PM idle time.  However, the 

details and performance of the algorithm are not presented.   

The DARP was also applied to inter-facility patient transport problems.  Beaudy et al. (2010) 

model the system as a dynamic DARP, where the MRs arrive any time during the day, and each 

MR has a desired pick-up and drop-off time. Multiple MRs may be assigned to a device (i.e., an 

ambulance) at one time, and the device may transport multiple patients simultaneously. The 

authors develop a two-phase heuristic to solve the problem, with an objective of minimizing the 

operating costs.  In the first phase, new MRs, as they arrive, are assigned to an ambulance, adding 

each MR to the ambulance’s list of assignments.  In the second phase, a tabu search (Glover, 1989) 

is used to sequence the pick-up and drop-off points on the list of each ambulance and determine 

their routes. The heuristic method was applied in a hospital complex in Germany with 100 

buildings and a fleet of 11 ambulances operating over a road network of 15 km.  Hanne et al. 

(2009) also model the ambulance-based patient transport problem as a dynamic DARP.  The 

authors present Opti-TRANS, a transportation planning system, designed to support all phases of 

patient transport, including MR arrival and ambulance routing/scheduling.      

Kergosien et al. (2011) study the transport of patients via ambulance within a hospital 

network in France. They define three types of transport (classic, contagious and medical 

monitoring) in three types of vehicles. Since certain types of transport can only be performed in a 
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certain type of vehicle, the ambulance crews switch vehicles as needed. The authors use tabu 

search to solve the scheduling problem with an objective to minimize the total transportation cost.   

Device dispatching has also been studied in material handling systems; mostly for Automated 

Guided Vehicles (AGVs) used in manufacturing.  Egbelu and Tanchoco (1984) describe two types 

of dispatching decisions.  When a device delivers a load and becomes empty, selecting the next 

MR to serve is defined as “device-initiated dispatching” (DID).  If there are no MRs in the system, 

the device becomes idle at its last point of delivery.  Conversely, when a MR arrives, if it finds 

one or more devices idle, selecting an idle device for the MR is defined as “station-initiated 

dispatching” (SID).  If all the devices are busy, the MR is served later when an empty device is 

assigned to it under DID. A fully-defined dispatching rule must identify the rule used for both DID 

and SID (see section 2.2).   

 Using simulation, Egbelu and Tanchoco (1984) compare the performance of various 

dispatching rules.  For DID, they consider the random MR rule, the oldest MR rule (FCFS), the 

closest MR rule, and the maximum-outgoing-queue-size rule.  For SID, they consider the random 

idle device rule, the closest idle device rule, and the longest-idle device rule (FCFS).   

 Srinivasan et al. (1994) define “trip-based material handling systems,” which consist of 

one or more devices, operating independently to serve the MRs one at a time.  Such systems cover 

AGV systems and others such as lift trucks and cranes.  The authors present an analytic model for 

a single device operating under the Mod-FCFS rule.  Under Mod-FCFS, after delivering a load, 

the device first checks the current station for a MR.  If no MRs are found at its current location, 

the device serves the oldest MR in the system.  Using simulation, the authors show that, depending 

on the flow data, Mod-FCFS performs better than FCFS but not as good as the shortest-travel-

time-first (STTF) rule.   
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The STTF rule, which employs the closest MR rule for DID, and the closest idle device rule 

for SID, is a well-known rule used in industrial applications. Material handling system providers 

such as Savant Automation (2016) and Frog AGV System (2016) use STTF. It is also the most 

prevalent rule for online taxi dispatching (Jung, 2013). As a result, some studies seek to develop 

dispatching rules that outperform STTF.  For example, Bozer and Yen (1996) propose two 

alternative rules; namely, the Mod-STTF rule and bidding-based dynamic dispatching.  Under the 

former, a device can be reassigned to another MR during its empty trip.  Under the latter, when a 

MR arrives, each device places a bid based on its current list of MR assignments, and the new MR 

is either assigned to the device with the lowest bid or it is again offered for bidding at a later time. 

Hwang and Kim (1998) also propose a bidding-based dispatching rule, where the empty travel 

time of the device to the MR, and the queue length at the origin and destination of the MR, are 

included in the bid. Although the above bidding-based rules generally outperform STTF, they are 

considerably more complicated and they lack the simplicity of STTF.   

Using simulation and three real-world settings, de Koster et al. (2004) compare multiple 

dispatching rules, including STTF, STTF with a time threshold, and Mod-FCFS.  The STTF rule 

with a time threshold is intended to address a weakness of the ordinary STTF rule, where some of 

the MRs, depending on the flow and the layout, may experience long wait timesalso known as 

“orphaning;” see, for example, Bozer and Yen (1996).  To avoid long waits, a MR is given a higher 

priority when its wait time exceeds a user-specified threshold. The authors show that a well-picked 

threshold reduces the maximum wait time, with minimal impact on the overall performance of 

STTF as measured by the expected wait time for all the MRs. They also show that using pre-arrival 

information for the MRs leads to significant improvements.   
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In short, a relatively small number of studies address the intra-facility patient movement 

problem in hospitals.  A majority of these studies either focus on the number of the PMs and their 

(staggered) schedules, or they model the problem as a DARP with known MR arrivals. Although 

there are numerous studies concerned with device dispatching in material handling systems, the 

MRs in such systems have no EQ switching requirements and no EQMAs.  Also, most of these 

studies assume the MRs have equal priority (except those that may dispatch devices based on the 

due dates of the MRs).   The intra-building PM dispatching problem we focus on is unique in that 

it explicitly considers EQ switching, and it takes place in a multi-floor facility with elevators, 

which is very common.  We also explicitly consider MRs with higher priority and we investigate 

the impact of the EQMAs.   

 

4.3 Problem Setting and Assumptions 

In this section we describe the patient movement process and the problem setting. We use 

UMHS as the application facility. For simplicity, we consider only one building, i.e., the 

University Hospital building (UHB), which is a multi-floor facility with multiple departments, and 

patient pick-up and drop-off points in each department.  For practical reasons, we do not define 

each patient bed as a pick-up/drop-off point (since there are hundreds of beds).  Instead, we cluster 

the patient beds and the rooms into departments.   

As the need arises, a nurse or clerk enters the MR into the DS, specifying the patient’s origin 

(pick-up point), destination (drop-off point), and the EQ requirement (WH or GR).  The MR is 

automatically placed in a global queue, which maintains the order of arrival of all the MRs.  Ideally, 

the patient needs to be moved (and must be ready to be moved) as soon as the MR is placed in the 

global queue.  However, some of the requests are “appointment MRs,” which represent patients 
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who have predetermined appointments.  The PMs are responsible for dropping off such patients at 

their designated department before their appointment time.  Since appointment MRs are made well 

ahead of time, they do not join the global queue immediately.  Instead, each appointment MR is 

automatically entered into the global queue by the DS 𝑥 minutes before the patient’s appointment 

time.  (At UMHS, 𝑥 = 30 minutes.)  Once an appointment MR is entered into the global queue, it 

is treated in the same manner as other MRs.  Since look-ahead scheduling strategies are beyond 

the scope of our study, we assume that all the MRs, including appointment MRs, arrive randomly 

and one at a time according to an independent Poisson process, and they join the global queue.  

We also assume that the global queue has an unlimited capacity.   

Not all the MRs have equal priority.  However, to generalize our results, we present both the 

equal- and non-equal-priority cases.  In the case of UMHS, the priority assigned to an MR is based 

on the patient’s destination, which is consistent with a hospital setting.  For example, a patient who 

needs to be moved to the ICU has priority over a patient who needs to be moved back to his/her 

hospital bed after a clinical visit.     

To serve an MR, the PM must have the appropriate EQ on-hand before picking up the patient.  

If a WH (or GR) is needed, it is retrieved from one of the wheelchair (or GR) marshalling areas, 

abbreviated as WHMA (or GRMA).  Additionally, a GR needs to be first dressed with clean sheets, 

which are retrieved from a closet (CL). We assume that WHs/GRs (and clean sheets) are always 

available in the EQMAs (and CLs).  The replenishment of the EQMAs (which is performed by 

another team) is beyond the scope of our study. Upon retrieving a WH or GR (and visiting the CL 

in the latter case), the PM travels to the patient pick-up point.  The time taken for the PM to retrieve 

the EQ and travel to the patient pick-up point is defined as the “set-up time.”  Subsequently, the 
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patient is picked up, moved to his/her destination, and then dropped off, completing the service of 

the MR.  Once service is completed, the PM is available to serve another MR. 

If there are no MRs in the global queue, we assume the PM remains at the point of delivery 

until he/she is assigned to the next MR. There are studies in material handling concerned with 

“parking” idle devices in designated points; see Egbelu (1993), among others.  However, “parking” 

idle PMs would pose further complicationssuch as determining the number and locations of the 

parking point(s), how to allocate the idle PMs among multiple parking points, and what to do if a 

MR arrives while a PM is traveling towards a parking point.  Furthermore, two or more idle PMs 

congregating at the same point may cause unintended delays.  Our assumption above for idle PMs 

is consistent with UMHS, and ultimately, too many idle PMs imply that there is surplus capacity 

in the system.   

Provided the patient has been prepared and is ready for pick-up, at time of pick-up, the 

nurse/clerk is notified, the appropriate paperwork is completed, and the patient is transferred onto 

the EQ. (If the patient is not ready for some reason, the PM notifies the DS and waits; he/she is 

not permitted to leave and serve another MR.)  At the point of patient drop-off, the nurse/clerk is 

notified, the patient is transferred off the EQ, and the EQ is cleaned by PM (assuming the PM 

retains the EQ).  Since the time needed for the above steps may vary, the patient pick-up and drop-

off times are assumed to be exponentially distributed.  Furthermore, in some cases, including 

UMHS, a separate “lift team” is employed to transfer the patient onto/off of the EQ during pick-

up or drop-off.  We assume that, if needed, the lift team is ready when the PM arrives, and the lift 

time is included in the patient pick-up and drop-off time.  (The above process for moving patients 

is summarized in Figure 4.1.)   
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Figure 4.1:  Flowchart of the Patient Move Process 

(White box – PM, Grey box – DS, Dark Grey box – Nurse/Clerk) 

 

With some MRs, the patient may already be equipped (AEQ) when the MR is placed; i.e., 

the patient is already in a WH or on a GR.  In such cases, the PM does not retrieve any EQ to serve 

the MR but he/she needs to return to the EQMA any EQ he/she may have from the previous MR.  

In other cases, the EQ used for moving a patient must stay with the patient when he/she is dropped 

off.  Hence, as shown in Table 4.2, after dropping off a patient, the PM may either have no EQ, or 

have a WH or a GR, and the next MR may either require a WH or a GR, or the patient is AEQ.      
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Table 4.2: EQ Status of the PM and EQ Required by the Next MR 

EQ status of PM  EQ required by the next MR  

1. No EQ 

2. WH 

3. GR 

A. WH-AEQ 

B. GR-AEQ  

C. WH 

D. GR 

 

Each MR waits in the global queue until a PM is dispatched.  (The MR departs from the 

queue as soon as a PM is dispatched.)  However, if the wait time of a MR exceeds a predefined 

limit, action is taken in order to avoid excessive wait times and negative consequences for the 

patient or the hospital.  If a MR reaches the time limit, it is removed from the global queue, and 

the patient is moved by a staff member instead of a PM.  At UMHS, the limit is 45 minutes, and 

the patient is moved by the patient transport supervisor.   

The trips performed by the PMs may consist of both horizontal and vertical travel (on an 

elevator).  In order to account for possible congestion in the aisles, and the fact that human PMs 

are manually moving human patients, the horizontal travel times are assumed to be exponentially 

distributed.  The PM travel speed depends on the EQ being used, i.e., a PM with no EQ travels 

faster than one with a WH, and a PM with a WH travels faster than one with a GR.  For vertical 

travel, we assume that the elevators used by the PMs are dedicated elevators for staff use only.  

The elevators transport one PM at a time, and the vertical travel speed is assumed to be constant.  

Also, the wait time for the elevator is assumed to be exponentially distributed. (We did not 

explicitly simulate the elevators since at UMHS staff other than the PMs use the same elevators 

and there were no data available on elevator usage by other staff. Therefore, we simulated the wait 

time of a PM for an elevator instead of simulating the movements of the elevator itself.)   

The layout used for the study is based on the UHB; a 10-floor building (floors B2, B1, and 1 

through 9, with no floor 3) that houses 37 departments. There are two staff elevators; one at the 
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east side and one at the west side of the building.  Floor 9 is accessed only by the west elevator, 

since the east elevator does not reach the top floor. There are 5 WHMAs, 4 GRMAs and 11 CLs 

in the UHB. The MAs are located generally next to an elevator.  A WHMA is located next to the 

east elevator on floors 4, 5, and 8, and next to the west elevator on floor 9.  A GRMA is located 

next to the east elevator on floors 6 and 8, and next to the west elevator on floors 4 and 6. One 

additional WHMA is located in the lobby. The CLs are located on the east and west side of the 

building on floors 4 through 9.  (See Appendix 4.E.)     

The patient flow data were obtained from the UMHS database for the first quarter of 2015.  

Since crew sizing is out of the scope of our study, we do not explicitly model the fluctuation of 

MR arrivals during different time periods of the day, and instead we model the MR arrivals as a 

Poisson process with a constant rate.  The number of PMs in the system is also assumed to be 

constant (i.e., no staggered scheduling).  The data for the travel distance between the departments, 

the wait time at the elevators, the dwell time at an EQMA (or CL), and the patient pick-up/drop 

off times were obtained through observations at the UMHS.  The complete data sets are shown in 

Appendices 4.A through 4.D.   

The DS communicates with the PMs via devices such as tablets, house phones, or pagers, 

and keeps track of the status and location of each PM and MR. Although various technologies exist 

to implement such a DS, their details are beyond the scope of our study.  The interested reader 

may refer to MediNav (2016) and others that provide indoor navigation/wayfinding and location-

based tracking, reporting and analytics.    
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4.4 PM Set-Up Time 

The patient movement system can be modeled as a trip-based material handling system (Srinivasan 

et al., 1994), where the PM travels “empty” to pick up the patient, and then travels “full” to move 

the patient. The empty travel time corresponds to the set-up time (as described in the previous 

section).  Assuming that a sufficient number of PMs are provided, we let 𝛼𝑤𝑝 (< 1), 𝛼𝑝𝑑 (< 1), 

and 𝛼𝑠𝑢 (< 1) denote the proportion of time a PM is traveling with a patient, performing patient 

pick-up/drop off, and traveling empty to perform a set-up trip, respectively.  By definition, the 

expected utilization of a PM, 𝜌, is equal to 𝛼𝑤𝑝 +  𝛼𝑝𝑑 + 𝛼𝑠𝑢.   

The set-up trip depends on two factorsthe EQ status of the PM, and the EQ required by the 

next MR.  From Table 4.2, there are 12 possible cases (i.e., 1-A, 1-B, 1-C, etc.), and each case 

involves one or multiple legs (up to four). For example, case 2-C is a one-leg set-up trip, where 

the PM (located in department 𝑖) has a WH, and the MR (located in department 𝑗) requires a WH.  

Hence, the PM travels directly from the drop-off point in department 𝑖 to the pick-up point in 

department 𝑗.   (The PM wipes the WH between the trips.) Case 1-C, on the other hand, is a set-up 

trip with two legs. The PM has no EQ on hand but the next MR requires a WH.  Hence, the PM 

visits a WHMA to retrieve a WH, and then travels to the patient pick-up point, resulting in (𝑖 →

𝑊𝐻𝑀𝐴 → 𝑗) for the set-up trip.  An example of a set-up trip with three legs is case 3-C.  The PM 

has a GR but the next MR requires a WH.  Hence, the PM travels from department 𝑖 to a GRMA 

to deposit the GR, then travels to a WHMA to retrieve a WH before traveling to the patient pick-

up point, resulting in (𝑖 → 𝐺𝑅𝑀𝐴 → 𝑊𝐻𝑀𝐴 → 𝑗) for the set-up trip.  The only case with four legs 

is case 2-D, where the MR requires a GR but the PM has a WH on hand, which results in (𝑖 →

𝑊𝐻𝑀𝐴 → 𝐺𝑅𝑀𝐴 → 𝐶𝐿 → 𝑗).   
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Since there are multiple EQMAs, one must determine which MA the PM will visit.  For 

example, in the four-leg set-up trip, one must determine which WHMA, GRMA and CL the PM 

will visit. Instead of solving a traveling salesman problem to determine the optimum route from 𝑖 

to 𝑗, we assume that the PM travels to the nearest EQMA or CL from his/her current location (also 

known as the “nearest neighbor” policy). Moreover, if two locations are on different floors, we 

assume the PM selects the elevator that minimizes the horizontal travel time between the two 

locations.   

The main function of the DS is to assign a PM to a MR and vice versa. As described earlier, 

in manufacturing systems this is known as either DID or SID. In our case, it would not be 

appropriate to refer to the PMs as devices.  Therefore, we refer to DID as “busy state dispatching” 

(BSD) since the PM remains busy after dropping off the previous patient.  Likewise, we refer to 

SID as “idle state dispatching” (ISD) since one or more PM(s) are idle when a MR arrives.   

In the next two sections, using simulation, we study the performance of alternative 

dispatching rules with equal and non-equal MR priorities.  The simulation model is based on the 

Tecnomatix Plant Simulation package (2014).   

 

4.5 Dispatching Rule Comparison, Equal-Priority MRs 

Three dispatching rules are considered for the study; namely, FCFS, the University of 

Michigan Hospital Rule (UMHR), and shortest-set-up-first (SSUF).   Recall that under FCFS, the 

oldest MR in the global queue is assigned to the PM when BSD occurs, and the longest idle PM is 

assigned to the MR when ISD occurs.  Although FCFS is a simple, analytically tractable rule, it is 

generally less efficient, and is used only as a benchmark. UMHR is based on the dispatching rule 

currently used at the UMHS. Under UMHR, a numerical value is used to select a MR when BSD 
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occurs.  The value is based on the proximity of the PM to the MR.  More specifically, if the PM 

and the MR are in the same department, the proximity value is 16.  If the two are not in the same 

department but are on the same floor, the value is 12.  If the two are not on the same floor, but are 

in the same half of the building, the value is 10.  (Floors B2-2 comprise the bottom half, and floors 

4-9 comprise the top half.)  Finally, if the two are not in the same half of the building, the value is 

2.  Once the value is determined for each MR, the PM is assigned to the MR with the highest value.  

For ISD, UMHR assigns the longest idle PM to the MR (same as FCFS).  Under the third rule, i.e., 

SSUF, the MR with the shortest set-up time is assigned to the PM when BSD occurs, and the idle 

PM with the shortest set-up time is assigned to the MR when ISD occurs.  (Note that SSUF is 

essentially the STTF rule, where the total empty travel time is computed to determine the set-up 

time.) 

The simulation results are based on 10 replications, with 200,000 patient moves per 

replication, following a warm-up period of 1,000 patient moves.  The number of PMs is selected 

to obtain a reasonable expected utilization value (𝜌 ≅ 0.80).  Recall that, if a MR waits more than 

45 minutes, it is served by the supervisor instead of a PM.  In the simulation model, all such MRs 

are automatically removed from the global queue and from the system; the supervisor is not part 

of the model.   
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Table 4.3: Comparison of Dispatching Rules with Equal-Priority MRs 

 
 

The results to compare the three dispatching rules are presented in Table 4.3, where 𝑊𝑞 

denotes the expected MR wait time in the global queue, and 𝑆𝑈𝑇 denotes the average set-up time 

per MR served (in mins).  The sum of the two, i.e., 𝑊𝑞 + 𝑆𝑈𝑇, represents the average time a patient 

waits at his/her point of origin until the PM arrives. The number of occurrences of BSD and ISD 

are also reported as well as the number of MRs that are removed from the system since they reach 

the 45-minute limit.  The performance of each rule is measured in terms of its efficiency (as 

measured by 𝑊𝑞 and 𝑆𝑈𝑇) and effectiveness (as measured by the  number of MRs removed from 

the system).      

With 8 PMs, all three rules yield reasonable 𝜌 values (close to 0.80 or below). The SSUF rule 

performs best in terms of efficiency, and it yields the smallest average patient wait time at the 

origin.  However, it also has the largest number of MRs removed, since it has a tendency to delay 

serving MRs with remote origins and/or long set-up times.  (The STTF rule may delay serving 

some MRs; see, for example [de Koster et al., 2004] and [Bozer and Yen, 1996]).  In contrast, 

FCFS is the least efficient rule but it has the smallest number of MRs removed.  UMHR is more 

efficient than FCFS but less efficient than SSUF since the proximity value considers the locations 

FCFS UMHR SSUF SSUF

# PM 8 8 8 7

Wq 4.01 ± 0.35 2.67 ± 0.18 1.98 ± 0.10 4.36 ± 0.18

SUT 6.84 ± 0.02 6.42 ± 0.03 5.57 ± 0.02 5.51 ± 0.03

Wq + SUT 10.85 ± 0.36 9.09 ± 0.15 7.55 ± 0.10 9.87 ± 0.16

αwp 0.273 ± 0.002 0.273 ± 0.002 0.273 ± 0.002 0.275 ± 0.002

α pd 0.248 ± 0.002 0.248 ± 0.002 0.248 ± 0.002 0.309 ± 0.002

α su 0.302 ± 0.002 0.283 ± 0.001 0.245 ± 0.002 0.281 ± 0.002

ρ 0.823 ± 0.006 0.804 ± 0.005 0.766 ± 0.005 0.865 ± 0.005

 # BSD 98,493 ± 3,442 88,383 ± 2,438 75,354 ± 2233 121,748 ± 2263

# ISD 101,507 ± 3445 11,1617 ± 2,440 124,646 ± 2237 78,252 ± 2266

# MR removed 51.6 ± 33.8 83.0 ± 24.8 292.4 ± 59.0 1,936.6 ± 179.7



88 

 

of the PM and the MRs but it does not take into account the EQ requirements of the MRs, which 

may have a significant impact on the empty travel of the PM. Furthermore, when ISD occurs, 

UMHR selects the longest idle PM just like the FCFS rule.  (The 𝑊𝑞 values shown in Table 4.3 do 

not include the wait time of the MRs that were removed from the system.  Since the number of 

such MRs is generally very small, i.e., less than 300 out of 200,000, their impact on 𝑊𝑞 would be 

minimal.)     

Given a 𝜌 value of 0.766 under SSUF, one might consider using 7 PMs instead of 8 PMs.  

We observe in Table 4.3 that, with 7 PMs, both 𝜌 and 𝑊𝑞 increase somewhat (as expected), with 

virtually no impact on 𝑆𝑈𝑇.  However, there is a significant increase in the number of MRs 

removed, which suggests that 7 PMs would not be acceptable, although an expected wait time of 

4.36 minutes would be considered reasonable in most cases.   

SSUF performs well primarily because it includes proximity as well as EQ requirements.  For 

example, a PM with a WH is more likely to be assigned to a MR that requires a WH, provided the 

MR is not “too far” compared to the other MRs.  Given 8 PMs, Table 4.4 shows, for each rule, the 

proportion of times the PM switches EQ based on the 12 possible cases shown earlier in Table 4.2.  

We observe in Table 4.4 that indeed less EQ switching occurs under SSUF.     

Table 4.4: Proportion of EQ Switching for Each Dispatching Rule 

 

Given the impact of EQ switching, one might consider using dedicated PMs by EQ type; that is, 

WH-PMs would serve only those MRs that require a WH, and GR-PMs would serve only those 

MRs that require a GR. Such practices are common in manufacturing systems where a lift truck 

operator, for example, would only move palletized loads, and he/she would not switch devices to 

WH-AEQ GR-AEQ WH GR WH-AEQ GR-AEQ WH GR WH-AEQ GR-AEQ WH GR

No EQ 0.037 0.218 0.074 0.140 No EQ 0.041 0.245 0.064 0.119 No EQ 0.047 0.276 0.059 0.087

WH 0.012 0.074 0.025 0.047 WH 0.013 0.073 0.025 0.046 WH 0.012 0.067 0.055 0.024

GR 0.029 0.173 0.059 0.111 GR 0.024 0.146 0.069 0.133 GR 0.020 0.122 0.043 0.187

FCFS UMHR SSUF
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move another type of load. However, there are some drawbacks to dedicating the PMs by EQ type.  

A WH-PM may remain idle even if there are many GR-MRs waiting to be served (and vice versa), 

and crew sizing may be challenging since variations in MR demand and EQ requirements may be 

difficult to accommodate, resulting in unequal workloads.  From an administrative point of view, 

having an idle PM while one or more MRs are waiting because the “EQ type did not match” does 

not seem appropriate for a hospital setting.  Furthermore, we note that the SSUF rule explicitly 

considers the impact of EQ switching, and it avoids EQ switching if it increases the set-up time of 

the PM relative to other MRs in the global queue. 

 

4.6 Dispatching Rule Comparison, Unequal-Priority MRs 

We first compared the rules and showed their efficiency and effectiveness with equal-priority 

MRs (see previous section) because studying a system with unequal-priority MRs introduces, for 

BSD, the additional complexity of selecting a MR with a lower priority but shorter set-up time 

versus a MR of higher priority but longer set-up time.   

Although some systems may be set up with multiple levels of priority, we will follow the 

UMHS model and assume that the MRs have only two levels of priority (which does not eliminate 

but somewhat simplifies the above selection between two MRs of unequal-priority).   That is, we 

assume there are “priority MRs” (P-MRs) and “regular MRs” (R-MRs). The priority of a MR is 

determined by the patient’s destination as shown in Appendix 4.A.   

Using the same layout (i.e., the UHB), we compare the three dispatching rules from section 

4.5 and two additional rules.  The FCFS and SSUF rules remain unchanged.  For BSD, in addition 

to the proximity value described in the previous section, the UMHR includes a priority value, 

where a P-MR and a R-MR are assigned a value of 16 and 10, respectively.  Furthermore, for every 
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10 minutes (15 minutes) a P-MR (R-MR) waits in the global queue, its priority value is increased 

by 2 points.  When BSD occurs, the PM is assigned to the MR with the largest value as determined 

by the sum of the proximity value and priority value.  (ISD for the UMHR remains unchanged.)   

The two additional dispatching rules, namely, SSUF-2 and SSUF-3, are based on SSUF but 

the MR priority is part of the dispatching decision. When ISD occurs, by definition there is only 

one MR in the system, and the priority is irrelevant since there is at least one idle PM.  Hence, 

under both SSUF-2 and SSUF-3, the idle PM with the shortest set-up time is assigned to the MR. 

However, when BSD occurs, SSUF-2 and SSUF-3 consider both the priority and the set-up time 

of all the MRs.  The decision-making process for both rules are shown in Figures 4.2 and 4.3.   

 

 

Figure 4.2:  SSUF-2 Decision Making for BSD 

 

Figure 4.3:  SSUF-3 Decision Making for BSD 
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 The results of the comparison are shown in Table 4.5, where 𝑊𝑞, 𝑆𝑈𝑇, and 𝑊𝑞 + 𝑆𝑈𝑇 are 

shown for P-MRs and R-MRs.  We observe that the proportion of P-MRs and R-MRs are about 

equal.  With 8 PMs, all the dispatching rules yield a reasonable 𝜌 value, with SSUF being the most 

efficient, and FCFS being the least efficient.  We also observe that, in general, the P-MRs have 

larger 𝑆𝑈𝑇 values than the R-MRs (which is likely due to the flow data).  As a result, SSUF is 

more likely to serve a R-MR before a P-MR as evidenced by a lower 𝑊𝑞 for R-MRs, and a smaller 

number of R-MRs removed from the system.  Obviously, this is an undesirable result for SSUF.  

Under UMHR, on the other hand, a P-MR is more likely to be served before a R-MR, provided 

that the P-MR is not located “too far” from the PM.  (Since FCFS serves the MRs according to 

their order of arrival, regardless of priority, both types of MRs have equal 𝑊𝑞 values and the same 

number of MRs are removed from the system.)        

While SSUF-2 is relatively efficient, its major drawback is the large number of R-MRs 

removed, as the rule gives preference to the P-MRs at the expense of the R-MRs.  (Among the five 

rules, SSUF-2 has the lowest 𝑊𝑞 value for the P-MRs.)  In a sense, SSUF-2 demonstrates the 

negative consequences of neglecting some of the R-MRs in favor of the P-MRs.  In contrast, SSUF-

3 immediately serves any MR that has been waiting longer than 30 minutes, and as a result, the 

number of MRs removed is virtually zero.  As intended, inflating the set-up times of the R-MRs 

makes the rule more likely to serve P-MRs but not to the extent of sacrificing efficiency, which 

results in SSUF-3 being comparable to SSUF in efficiency.   
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Table 4.5: Comparison of Dispatching Rules with Unequal-Priority MRs 

 

 

The results indicate that SSUF-3 has the best performance; it is comparable in efficiency 

to SSUF while also being the most effective, i.e., it has the least number of MRs removed.  It 

outperforms UMHR in terms of both efficiency and effectiveness.  Furthermore, sensitivity tests 

performed on the 30-minute threshold we used for the SSUF-3 rule indicate that varying the 

threshold between 25 and 35 minutes has minimal impact on the performance of the rule.  Although 

SSUF-2 and SSUF are both efficient rules, due to the high number of MRs removed, we conclude 

that they are less desirable than SSUF-3.   

Since SSUF-3 is the best performing rule, we again consider reducing the number of PMs. 

We observe the same results as in section 4.5; i.e., reducing the number of PMs from 8 to 7 slightly 

increases the 𝜌 value but it significantly increases 𝑊𝑞 and the number of MRs removed.   

FCFS UMHR SSUF-2 SSUF-3 SSUF SSUF-3

# PM 8 8 8 8 8 7

 Wq 4.01 ± 0.35 2.61 ± 0.16 2.40 ± 0.16 2.16 ± 0.15 1.98 ± 0.10 6.55 ± 0.55

P-MR Wq 4.01 ± 0.37 2.36 ± 0.15 1.25 ± 0.06 1.92 ± 0.12 2.32 ± 0.13 5.69 ± 0.48

R-MR Wq 4.00 ± 0.34 2.88 ± 0.19 3.70 ± 0.27 2.44 ± 0.19 1.61 ± 0.08 7.53 ± 0.63

SUT 6.84 ± 0.02 6.45 ± 0.03 5.83 ± 0.02 5.57 ± 0.02 5.57 ± 0.02 5.60 ± 0.03

P-MR SUT 8.05 ± 0.03 7.75 ± 0.03 6.97 ± 0.03 6.73 ± 0.03 6.64 ± 0.03 6.82 ± 0.04

R-MR SUT 5.49 ± 0.03 4.98 ± 0.04 4.55 ± 0.03 4.27 ± 0.03 4.38 ± 0.03 4.24 ± 0.04

Wq + SUT 10.85 ± 0.36 9.05 ± 0.14 8.23 ± 0.16 7.73 ± 0.15 7.55 ± 0.10 12.16 ± 0.55

P-MR [Wq + SUT] 12.06 ± 0.39 10.11 ± 0.14 8.22 ± 0.08 8.64 ± 0.12 8.96 ± 0.12 12.51 ± 0.48

R-MR [Wq + SUT] 9.49 ± 0.35 7.87 ± 0.16 8.25 ± 0.26 6.70 ± 0.20 5.99 ± 0.08 11.77 ± 0.64

αwp  0.273 ± 0.002 0.273 ± 0.002 0.272 ± 0.002 0.273 ± 0.002 0.273 ± 0.002 0.312 ± 0.003

α pd 0.248 ± 0.002 0.248 ± 0.002 0.247 ± 0.002 0.248 ± 0.002 0.248 ± 0.002 0.283 ± 0.002

α su 0.302 ± 0.002 0.284 ± 0.001 0.256 ± 0.002 0.245 ± 0.002 0.245 ± 0.002 0.282 ± 0.002

ρ 0.823 ± 0.006 0.804 ± 0.005 0.776 ± 0.005 0.767 ± 0.006 0.766 ± 0.005 0.876 ± 0.006

 # BSD 98,493 ± 3,442 88,222 ± 2,519 80,310 ± 2,413 75,999 ± 2,576 75,354 ± 2,233 128,807 ± 3,023

# ISD 101,507 ± 3,445111,778 ± 2,520119,690 ± 2,417124,001 ± 2,577124,646 ± 2,237 71,193 ± 3,025

# P-MRs served 105,513 ± 620 105,654 ± 541 105,881 ± 474 105,518 ± 574 105,369 ± 588 105,519 ± 443

# R-MRs served 94,487 ± 618 94,346 ± 542 94,119 ± 472 94,482 ± 574 94,631 ± 589 94,481 ± 443

# MRs removed 51.6 ± 28.5 312.1 ± 62.7 693.6 ± 106.1 6.0 ± 6.6 292.4 ± 52.3 453.9 ± 118.0

# P-MRs removed 26.4 ± 22.4 25.2 ± 14.5 3.7 ± 3.9 2.7 ± 5.4 233.0 ± 49.1 231.6 ± 83.0

# R-MRs removed 25.2 ± 17.7 286.9 ± 60.9 689.9 ± 106.0 3.3 ± 3.7 59.4 ± 18.1 222.3 ± 83.8
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4.7 Impact of the Configuration of the EQMAs 

The set-up time for a MR is influenced not only by the dispatching rule but also the 

configuration of the EQMAs, i.e., the number and locations of the EQMAs, including the CLs. A 

carefully-designed EQMA configuration would help reduce the set-up time for the PMs and 

improve the performance of the system under virtually any dispatching rule. In this section, we 

propose a method to improve the EQMA configuration and we measure its impact on the 

performance of the system.  A key question to consider is whether or not a better EQMA 

configuration improves the performance of the system as much as a better dispatching rule 

improves it. And if so, how one might obtain a better EQMA configuration.    

4.7.1 High-Density EQMA Configuration 

In the high-density configuration, we maximize the number of EQMAs by placing one WHMA 

and one GRMA next to each elevator on each floor (while keeping one WHMA in the lobby), 

which results in 20 WHMAs and 19 GRMAs.  Eight additional CLs are added to the current 

configuration bringing the total CLs to 19. (The additional CLs are placed next to each elevator on 

floors B2 to 2.)  No other changes are made; that is, the same elevators are used, and the dispatching 

rule is the UMHR since we would like to show how much the performance of the system can be 

improved by a better EQMA configuration without changing the dispatching rule. 

The results shown in Table 4.6 indicate that UMHR used with the high-density EQMA 

configuration outperforms SSUF-3 (the best rule in section 4.6) used with the current EQMA 

configuration.  While this is a significant finding, a large number of EQMAs (and CLs) require 

more space and is likely to adversely impact EQ availability (and the availability of clean sheets) 

at each EQMA (and CL).  Even if more EQ and clean sheets are provided to avoid potential 

shortages, replenishment of the EQMAs and the CLs will be more time-consuming and labor-
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intensive since more locations are involved.  (If EQ availability and/or the replenishment process 

deteriorates due the larger number of EQMAs and CLs, any gains expected in the set-up time may 

diminish since the PMs would be forced to check multiple MAs and/or CLs to locate what they 

need.)   

Hence, although the high-density configuration yields a valuable benchmark, there is strong 

incentive to look for a configuration that improves the performance of the system by making 

minimal changes to the current EQMA configuration.  In the next section we show that such a 

configuration can indeed be obtained by identifying the most-visited EQMAs and CLs in the high-

density EQMA configuration, which leads us to a “usage-based EQMA configuration.”     

4.7.2 Usage-based EQMA Configuration 

From the high-density EQMA configuration, we select the 5 most-visited WHMAs, and the 5 

most-visited GRMAs.  Twelve CLs are selected, 11 of which are the same CLs in the current 

configuration, with an additional CL located on floor B1 at the west elevator (see Appendix 4.E).  

As expected, the results in Table 4.6 show that the high-density configuration yields the 

largest improvement in the efficiency of UMHR.  However, the usage-based configuration also 

improves the efficiency of UMHR, yielding comparable results to SSUF-3 under the current EQMA 

configuration.  Although both the high-density configuration and the usage-based configuration 

significantly reduce the number of MRs removed from the system under UMHR, SSUF-3 under 

the current EQMA configuration is still more effective.   

Lastly, we consider the “best case” scenario, where a better dispatching rule (SSUF-3) is 

combined with a usage-based EQMA configuration.  Since we expect the performance of the 

system to improve significantly, we reduce the number of PMs from 8 to 7.  By comparing the 

results of the best case scenario (shown in Table 4.6, rightmost column) with the current hospital 
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scenario (Table 4.6, leftmost column), we observe that the best case has a higher 𝑊𝑄 (due to one 

less PM) but a lower 𝑆𝑈𝑇 (because it is more efficient).  As a result, the best case has a slightly 

larger expected patient wait time at the origin (𝑊𝑞 + 𝑆𝑈𝑇), meaning it is less efficient than the 

current hospital scenario.  However, the best case has a smaller number of MRs removed, thus it 

is more effective.  Thus, the results indicate that using a better dispatching rule in conjunction with 

a better (usage-based) EQMA configuration can help reduce the number of PMs without a 

significant impact on the performance of the system.   

Table 4.6: Impact of EQMA Configuration on Dispatching Rules 

 

It is important to note that the simulation results in this study are based on 8 PMs.  This does 

not reflect the actual number of PMs at UMHS since our layout and flow data are limited to only 

one building in the UMHS complex and we do not stagger the start/end times of the PMs.  In 

EQM Layout Current High Density Usage-based Current Usage-based

# PM 8 8 8 8 7

 Wq 2.61 ± 0.16 1.72 ± 0.12 2.31 ± 0.14 2.16 ± 0.15 5.80 ± 0.50

P-MR Wq 2.36 ± 0.15 1.56 ± 0.11 2.09 ± 0.13 1.92 ± 0.12 4.94 ± 0.44

R-MR Wq 2.88 ± 0.19 1.91 ± 0.14 2.57 ± 0.16 2.44 ± 0.19 6.77 ± 0.57

SUT 6.45 ± 0.03 5.33 ± 0.02 6.10 ± 0.03 5.57 ± 0.02 5.36 ± 0.02

P-MR SUT 7.75 ± 0.03 6.10 ± 0.03 7.21 ± 0.03 6.73 ± 0.03 6.42 ± 0.03

R-MR SUT 4.98 ± 0.04 4.47 ± 0.03 4.86 ± 0.03 4.27 ± 0.03 4.17 ± 0.03

Wq + SUT 9.05 ± 0.14 7.06 ± 0.11 8.42 ± 0.12 7.73 ± 0.15 11.16 ± 0.50

P-MR [Wq + SUT] 10.11 ± 0.14 7.66 ± 0.10 9.30 ± 0.11 8.64 ± 0.12 11.36 ± 0.45

R-MR [Wq + SUT] 7.87 ± 0.16 6.38 ± 0.14 7.43 ± 0.15 6.70 ± 0.20 10.93 ± 0.56

αwp  0.273 ± 0.002 0.273 ± 0.002 0.273 ± 0.002 0.273 ± 0.002 0.312 ± 0.003

α pd 0.248 ± 0.002 0.248 ± 0.002 0.248 ± 0.002 0.248 ± 0.002 0.283 ± 0.002

α su 0.284 ± 0.001 0.235 ± 0.001 0.269 ± 0.002 0.245 ± 0.002 0.269 ± 0.002

ρ 0.804 ± 0.005 0.756 ± 0.005 0.789 ± 0.005 0.767 ± 0.006 0.865 ± 0.006

 # BSD 88,222 ± 2,519 69,494 ± 2,441 82,171 ± 2,309 75,999 ± 2,576 123204 ± 3138

# ISD 111,778 ± 2,520 130507 ± 2,446 117,839 ± 2,308 124,001 ± 2,577 76802 ± 3139

# P-MR served 105,654 ± 541 105,561 ± 569 105,662 ± 553 105,518 ± 574 105498 ± 634

# R-MR served 94,346 ± 542 94,439 ± 567 94,338 ± 551 94,482 ± 574 94509 ± 634

# MR removed 312.1 ± 62.7 116.6 ± 33.1 244.9 ± 34.6 6.0 ± 6.6 254.1 ± 68.6

# P-MR removed 25.2 ± 14.5 6.4 ± 6.8 21.2 ± 10.9 2.7 ± 5.4 127.4 ± 44.0

# R-MR removed 286.9 ± 60.9 110.2 ± 32.3 223.7 ± 32.8 3.3 ± 3.7 126.7 ± 52.7

UMHR STTF-3
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relation to the latter, our study can be interpreted as representing one time period with 8 PMs, 

where the time period may correspond to a low, medium, or high demand period for the hospital.  

Since the relative performance of the dispatching rules are unlikely to vary greatly with the number 

of PMs (provided that an adequate number of PMs is provided), the results of our study do not 

depend specifically on which time period is selected.  (Some of the results may change if too few 

or too many PMs are provided; however, in order to reduce cost, the hospital adjusts the number 

of PMs to match low/high demand periods.)  The UMHS data for the complete complex indicate 

that up to 24 PMs may be engaged during peak periods (i.e., early afternoon hours), and as few as 

3 PMs may be engaged during slow periods (i.e., early nighttime hours).   

 

4.8 Summary and Conclusions 

We study the intra-building patient movement problem as a trip-based handling system, 

where each move consists of a set-up trip that depends on the EQ requirements, followed by a “full 

trip” by which the PM moves the patient.  Depending on the EQ status of the PM, and the EQ 

required by the next MR, the set-up trip may involve one or multiple legs.  As a result, the 

performance of the system is influenced by how the PMs are dispatched as well as the number and 

locations of EQMAs and CLs. Using UMHS as the application setting, we conduct multiple 

simulation experiments to analyze the impact of various dispatching rules (including the one used 

at the hospital) and alternative EQMA configurations on the performance of the patient movement 

system, with equal and unequal MR priorities.   

The performance of each rule and EQMA configuration is measured based on its efficiency 

(patient wait times and PM set-up times) and effectiveness (number of MRs that are not served 

within a user-defined time limit). The FCFS rule is the least efficient rule, but due to its nature, it 
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avoids excessive patient wait times.  In contrast, SSUF is the most efficient rule, but some patients 

experience long wait times and they reach the time limit.  The rule used at the hospital (UMHR) 

stands between FCFS and SSUF both in terms of efficiency and effectiveness.  We also present 

and analyze a new dispatching rule; namely, SSUF-3, which is comparable to SSUF in terms of 

efficiency but at the same time avoids long patient wait times.   

In addition, we study the impact of the configuration of the EQMA.  We observe that 

improving the EQMA configuration through careful planning, based on the usage of the MAs, 

increases the performance of the system as much as, if not more than, a more efficient dispatching 

rule.  By using an improved EQMA configuration together with a more efficient dispatching rule, 

we show that the number of PMs may be reduced without a significant performance loss in the 

system.  Our results indicate that designing a patient movement system should put equal emphasis 

on the dispatching rule and the configuration of the EQMAs. 

For future research, it would be desirable to extend the study by treating the “appointment 

MRs” in a different manner.  Two possibilities may be considered.  In the first case, one can use 

the appointment information to develop a “look ahead” dispatching rule.  In the second case, the 

dispatching rule is not changed but one may search for the best 𝑥 value to use for appointment 

MRs.  (Recall in section 4.3 that each appointment MR is automatically entered into the global 

queue 𝑥 minutes before the appointment time and that at UMHS, 𝑥 = 30 minutes.)  Also, the 

performance measure for the system may be extended to include the tardiness or earliness of such 

MRs and the number of appointments missed.  Another direction for future research is to develop 

models to study the replenishment of the MAs (which is performed by a separate team at UMHS) 

and the availability of EQ (and clean sheets) at the MAs (and the CLs) as well as the number, 

location, and availability of the elevators.   
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4.9 Appendices 

Appendix 4.A: UMB Departments 

Table 4.A1 shows a list of departments at UHB, including the department floors and the 

department priority as a destination.  Note that there are no floor 3 at the UHB.   

Table 4.A1: Department Information 

 

 The horizontal travel distances (in m) from the department to east/west elevator (recall that 

floor 9 only has access to west elevator) are shown in Table 4.A2, and the horizontal travel 

distances between departments that are located on the same floor are shown in Table 4.A3.  Some 

departments have non-zero distances between its pick-up and drop off points.  Furthermore, PM 

horizontal travel speeds depends on the EQ.  That is, the PM travels at 0.8 m/s when there is no 

EQ on-hand, at 0.6 m/s with a WH, and at 0.5 m/s with a GR. 

 

Dep 

Number
Dep Name Floor

Destination 

Priority

Dep 

Number
Dep Name Floor

Destination 

Priority

1 MRI B2 P-MR 20 4-D Beds 4 R-MR

2 Oncology B2 P-MR 21 5-A Beds 5 R-MR

3 AMOU B1 P-MR 22 5-B Beds 5 R-MR

4 CT Rooms B1 P-MR 23 5-C Beds 5 R-MR

5 ER B1 P-MR 24 5-D Beds 5 R-MR

6 IR B1 P-MR 25 6-A Beds 6 R-MR

7 Pulmonary B1 P-MR 26 6-B Beds 6 R-MR

8 Ultrasound B1 P-MR 27 6-C Beds 6 R-MR

9 Burn Center 1 P-MR 28 6-D Beds 6 R-MR

10 Lobby 1 P-MR 29 7-A Beds 7 R-MR

11 OR 1 P-MR 30 7-B Beds 7 R-MR

12 PACU 1 P-MR 31 7-C Beds 7 R-MR

13 Short stay Beds 1 P-MR 32 Dialysis 7 P-MR

14 Apheresis 2 P-MR 33 8-A Beds 8 R-MR

15 MPU 2 P-MR 34 8-B Beds 8 R-MR

16 Oral Surgery 2 P-MR 35 8-C Beds 8 R-MR

17 4-A Beds 4 R-MR 36 8-D Beds 8 R-MR

18 4-B Beds 4 R-MR 37 9 Beds 9 R-MR

19 4-C Beds 4 R-MR
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Table 4.A2: Distance from Department to Elevator 

 

 

 

Table 4.A3: Horizontal Distance Between Departments on the Same Floor 

 

 

  

Dep 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

East 

Elevator
60 80 50 25 40 50 130 75 80 110 90 60 70 200 95 220 40 40 70

West 

Elevator
175 200 150 75 140 50 30 25 135 155 110 80 155 25 240 40 130 80 35

Dep 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

East 

Elevator
135 40 40 70 135 40 40 70 135 40 40 70 135 40 40 70 135 -

West 

Elevator
45 130 80 35 45 130 80 35 45 130 80 35 45 130 80 35 45 40

9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

1 0 140
2 140 0
3 0 75 45 100 170 125
4 75 0 65 30 105 70
5 45 65 0 90 170 115
6 100 30 90 0 80 30
7 170 105 170 80 0 55
8 125 70 115 30 55 0
9 0 100 160 130 45

10 100 0 180 150 90
11 160 180 0 30 160
12 130 150 30 0 130
13 45 90 160 130 0
14 0 220 40
15 220 0 240
16 40 240 0
17 20 55 100 160
18 55 20 45 105
19 100 45 20 60
20 160 105 60 20
21 20 55 100 160
22 55 20 45 105
23 100 45 20 60
24 160 105 60 20
25 20 55 100 160
26 55 20 45 105
27 100 45 20 60
28 160 105 60 20
29 20 55 100 160
30 55 20 45 105
31 100 45 20 60
32 160 105 60 0
33 20 55 100 160
34 55 20 45 105
35 100 45 20 60
36 160 105 60 20

9 37 35

2 4 5 6 7 8

6

7

8

B2 B1 1

B2

B1

1

2

4

5
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Appendix 4.B:  Dwell Times and Pick-up/Drop off Times 

Table 4.B1 shows the average dwell time, in secs, at EQMAs (and CLs) to retrieve/deposit EQ 

(and clean sheets).  The patient pick-up/drop off times, in secs, are shown in Table 4.B2.  Recall 

that the patient can be AEQ for the pick-up, and the EQ may need to stay with patient at drop off.  

The dwell times at the EQMAs (and CLs) and the patient pick-up/drop off times are assumed to 

be exponentially distributed. 

 

Table 4.B1: Dwell Times at EQMAs and CLs 

 

 

Table 4.B2: Patient Pick-Up and Drop Off Times for Each EQ Case 

 

 

Appendix 4.C: Elevator Times 

The east and west elevator is assumed to have constant vertical speed, both at 10 seconds/floor.  

The time taken for a PM to enter and exit an elevator are assumed to be exponentially distributed, 

with an average of 21 seconds and 10 seconds, respectively.  The time waiting for an elevator is 

also assumed to be exponentially distributed, where the average wait time at the east elevator is 

124 seconds, and the average wait time at the west elevator is 92 seconds. 

  

WHMA GRMA CL

Dwell Time 11 17 28

WH-AEQ GR-AEQ WH GR

52 154 156 240

WH (stays w/ patient) GR (stays w/ patient) WH (PM retains WH) GR (PM retains GR)

98 117 147 240

Patient Pick-Up Time

Patient Drop Off Time
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Appendix 4.D: Patient Flow Data 

The following tables show the patient flow (of the entire first quarter of 2015) for each EQ case. 

 

Table 4.D1: WH-AEQ Patient; WH Retained by PM at Drop-Off 

 

 

 

Table 4.D2: WH-AEQ Patient; WH Stays with Patient at Drop-Off 

 

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 out

1 42 54 12 18 6 24 6 12 6 36 12 18 12 258

2 36 12 6 18 6 6 48 132

3 12 12 6 6 12 6 54

4 132 6 30 12 6 6 6 12 6 12 12 12 6 12 24 36 24 24 12 18 408

5 12 30 30 18 6 72 24 6 6 24 42 12 282

6 24 6 12 6 48

7 12 36 6 12 12 48 60 36 138 36 42 6 444

8 150 18 18 12 24 30 48 12 12 12 24 24 6 30 420

9 12 66 6 12 6 102

10 0

11 0

12 6 6 12

13 0

14 78 36 6 96 48 12 6 42 6 6 336

15 6 6 12

16 12 6 36 36 6 24 36 36 6 30 96 36 30 390

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 78 6 6 18 6 6 120

33 0

34 0

35 0

36 0

9 37 0

in 0 0 0 0 0 0 0 0 0 486 0 0 36 0 0 0 192 144 108 24 162 198 144 6 66 186 150 0 102 144 324 0 210 210 84 12 30 3018

6 7 81 2 4 5

6

7

8

B2 B1

B2

B1

1

2

4

5

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 out

1 60 12 72

2 6 6 18 30

3 42 18 48 6 6 6 12 18 42 198

4 6 42 6 6 60

5 6 6

6 6 6 6 18

7 6 6

8 24 6 6 36

9 6 12 18

10 0

11 0

12 0

13 0

14 6 6 12

15 6 6

16 6 12 18

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 18 6 6 30

33 0

34 0

35 0

36 0

9 37 0

in 42 42 168 72 42 18 6 30 6 0 0 0 0 6 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 510

2

4

5

6

7

8

6 7 8

B2

B1

1

B2 B1 1 2 4 5
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Table 4.D3: WH Patient; WH Retained by PM at Drop-Off 

 

 

 

 

Table 4.D4: WH Patient; WH Stays with Patient at Drop-Off 

 

 

  

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 out

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 6 12 18 6 36 12 6 30 18 6 12 24 66 6 6 6 6 276

11 0

12 0

13 18 18

14 0

15 0

16 0

17 24 24

18 12 12

19 12 12

20 66 12 78

21 462 6 12 6 486

22 234 6 6 246

23 192 192

24 24 12 12 6 12 66

25 18 6 24

26 210 24 234

27 438 6 6 450

28 18 60 54 48 30 6 6 36 42 6 306

29 360 360

30 240 6 24 270

31 396 396

32 0

33 240 6 246

34 96 6 102

35 234 24 6 24 288

36 42 18 6 30 6 6 6 6 120

9 37 0

in 0 0 0 0 0 0 0 0 0 3318 0 0 0 0 0 0 18 36 12 18 30 72 72 12 24 84 84 18 48 42 42 0 114 60 90 6 6 4206

2

4

5

6

7

8

6 7 8

B2

B1

1

B2 B1 1 2 4 5

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 out

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 36 36 54 18 24 30 6 6 210

11 0

12 0

13 12 6 12 30

14 0

15 0

16 0

17 60 36 6 96 6 204

18 6 12 12 6 54 36 6 132

19 6 48 24 6 48 132

20 18 6 24

21 6 12 18 6 12 24 6 6 90

22 18 6 6 6 42 6 120 36 240

23 6 30 12 6 6 66 6 6 6 144

24 6 6

25 6 30 12 6 6 60

26 6 6 6 42 24 54 18 156

27 6 12 12 18 120 6 48 222

28 0

29 6 12 6 132 6 12 12 186

30 36 30 102 18 30 18 234

31 12 18 246 18 6 108 408

32 0

33 6 60 24 60 6 66 12 234

34 12 6 24 6 108 24 12 42 6 240

35 6 24 6 12 24 72

36 12 6 18

9 37 18 18 36

in 264 174 0 354 90 18 948 192 6 0 0 0 0 474 12 468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78 0 0 0 0 0 3078

2

4

5

6

7

8

6 7 8

B2

B1

1

B2 B1 1 2 4 5
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Table 4.D5: GR-AEQ Patient; GR Retained by PM at Drop-Off 

 

 

 

 

Table 4.D6: GR-AEQ Patient; GR Stays with Patient at Drop-Off 

 

 

 

 

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 out

1 218 42 6 16 40 99 30 2 14 98 64 2 51 58 34 75 61 22 3 13 948

2 8 11 8 8 10 5 18 21 38 2 29 18 101 32 309

3 5 2 2 13 14 11 3 3 2 3 5 63

4 10 338 106 74 38 130 238 158 14 62 205 162 13 136 138 133 186 182 157 14 10 2504

5 3 184 67 19 242 584 138 693 549 178 110 6 346 294 309 2 3724

6 2 21 16 8 6 45 14 2 5 37 32 2 29 67 34 30 38 21 3 412

7 2 2 2 3 2 6 17

8 10 59 370 310 1027 19 584 664 730 19 170 558 611 10 414 510 518 547 531 418 58 21 8158

9 8 2 2 29 2 2 2 47

10 0

11 2 2 4

12 8 2 10 2 29 3 10 2 6 13 3 88

13 0

14 3 5 2 2 5 2 3 2 2 26

15 2 2 2 18 10 14 5 6 2 2 3 66

16 2 2 2 2 8

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 53 2 14 27 3 11 5 3 13 6 10 6 6 2 161

33 0

34 0

35 0

36 0

9 37 0

in 0 0 0 0 0 0 0 0 0 82 0 0 82 0 0 0 1158 569 1138 75 1076 1694 1122 42 274 1657 1482 29 849 921 743 0 1304 1151 958 82 47 16535

2

4

5

6

7

8

6 7 8

B2

B1

1

B2 B1 1 2 4 5

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 out

1 51 5 5 5 2 2 2 5 2 79

2 2 3 2 3 6 2 6 24

3 54 141 48 269 3 2 3 34 2 556

4 2 112 2 19 13 8 2 2 2 2 2 3 2 2 5 2 180

5 2 2 2 2 2 10

6 2 43 2 2 18 2 5 5 2 3 3 6 93

7 2 3 2 7

8 6 3 314 21 50 3 5 3 2 5 6 5 3 3 2 10 3 16 8 3 471

9 2 19 21 51 2 11 2 5 27 2 142

10 0

11 2 2

12 3 3 3 8 3 6 11 2 18 3 3 63

13 2 3 5

14 3 2 5

15 2 5 2 9

16 2 2 4

17 2 6 21 29

18 2 6 2 51 61

19 35 35

20 3 2 5

21 3 2 19 5 2 3 2 14 50

22 3 3 2 106 114

23 2 6 2 35 3 115 2 165

24 3 6 2 2 13

25 45 45

26 2 2 5 2 168 179

27 2 3 2 122 2 131

28 2 6 3 2 2 3 16 34

29 2 3 3 106 114

30 2 2 3 2 2 3 192 206

31 2 2 107 111

32 2 2 38 13 10 80 26 3 3 2 13 46 35 2 14 99 107 40 165 114 2 90 194 90 43 192 37 1462

33 5 2 2 2 2 3 2 53 71

34 3 2 3 2 2 203 215

35 2 5 37 44

36 2 3 5

9 37 0

in 73 16 569 231 2 91 5 459 122 4 12 135 0 10 14 2 16 68 37 2 39 117 137 6 55 180 126 6 97 212 93 1473 59 207 46 18 0 4739

2

4

5

6

7

8

6 7 8

B2

B1

1

B2 B1 1 2 4 5
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Table 4.D7: GR Patient; GR Retained by PM at Drop-Off 

 

 

 

 

Table 4.D8: GR Patient; GR Stays with Patient at Drop-Off 

 

 

 

  

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 out

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 2 2

11 0

12 0

13 2 3 5

14 0

15 0

16 0

17 16 16

18 2 2

19 0

20 14 14

21 5 2 2 9

22 8 8

23 5 2 7

24 27 2 2 2 2 2 37

25 0

26 3 3

27 5 2 7

28 98 2 2 32 5 29 38 18 11 16 27 5 283

29 16 2 18

30 32 2 2 36

31 16 2 2 20

32 0

33 13 2 2 2 2 2 2 2 27

34 8 8

35 3 2 2 7

36 11 2 2 2 2 19

9 37 0

in 0 0 0 0 0 0 0 0 0 282 0 0 0 0 0 0 0 6 0 0 6 38 9 0 2 35 40 0 20 15 0 0 26 31 11 7 0 528

2

4

5

6

7

8

6 7 8

B2

B1

1

B2 B1 1 2 4 5

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 out

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 2 2

11 0

12 0

13 26 2 14 42

14 0

15 0

16 0

17 221 13 432 22 283 5 976

18 46 10 181 21 262 2 5 2 529

19 8 202 10 928 2 2 1152

20 19 40 2 18 79

21 37 8 186 2 5 542 3 3 2 788

22 102 13 366 51 542 3 22 1099

23 34 373 19 2 536 2 2 26 994

24 3 6 26 2 13 50

25 16 19 107 5 126 2 5 280

26 102 21 325 5 50 472 21 996

27 61 48 298 2 38 493 5 6 951

28 3 2 21 8 6 40

29 54 34 232 3 37 2 330 27 6 725

30 61 22 216 72 450 3 29 853

31 38 202 46 443 2 2 13 746

32 0

33 74 115 291 2 42 462 3 2 8 999

34 69 30 294 42 426 2 24 887

35 24 3 274 30 320 10 661

36 3 27 2 2 40 2 76

9 37 14 10 21 198 243

in 991 344 0 4129 14 506 6 6727 5 0 0 251 0 11 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 176 0 0 0 0 0 13168

2

4

5

6

7

8

6 7 8

B2

B1

1

B2 B1 1 2 4 5
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Appendix 4.E: UHB Layout 

The following figures illustrates the layout of each floor, including the main walkways, elevators, 

and the location of each department at the UHB.  The current EQMAs and usage-based EQMAs 

configuration are also shown.   

 
Figure 4.E1: Floor B2 Layout 

 

 

 
Figure 4.E2: Floor B1 Layout 
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Figure 4.E3: Floor 1 Layout 

 

 

 

 

 
Figure 4.E4: Floor 2 Layout 
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Figure 4.E5: Floor 4 Layout 

 

 

 
Figure 4.E6: Floor 5 Layout 

 

 
Figure 4.E7: Floor 6 Layout 

 

 
Figure 4.E8: Floor 7 Layout 
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Figure 4.E9: Floor 8 Layout 

 

 
Figure 4.E10: Floor 9 Layout 
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CHAPTER 5 

Overall Summary and Conclusions 

 

In trip-based MHSs, MRs arrive at the system, one at a time, according to a Poisson 

process, and are served, one at a time, by one of the devices.   Depending on the dispatching rule, 

the analytic evaluation of a trip-based MHS can be very difficult.  As a result, such systems are 

often analyzed through simulation models.  We present analytic models for a trip-based MHS in 

the first two essays of this dissertation.  In the third essay, we model an intra-building patient 

movement system as a trip-based MHS.   

In the first essay, we assess the performance of the Mod-FCFS rule against other well-

known dispatching rules.  Simulation results suggest that Mod-FCFS is a reasonably efficient rule 

that stands between FCFS and STTF.  A new analytic model is developed to estimate empty device 

travel and the expected device utilization for a multi-device system operating under Mod-FCFS.  

The analytic technique used in the first essay is extended in the second essay to develop a new 

analytic model to estimate empty device travel for a multi-device system operating under STTF.  

Both models are approximate models.  However, using simulation to test multiple systems, we 

show that both of the above analytic models perform well over a wide range of parameter values.  

We also show that both models can be used to assess the stability of a system.   

The STTF rule is a simple and efficient rule but as pointed out in the literature, depending 

on the layout and the flow data, STTF may lead to excessive MR wait times.  Using simulation, 
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we investigated the MR wait times under STTF, and we introduce a new rule, namely, bounded-

STTF (B-STTF), by imposing a bound that is based on the number of MRs that are served while 

another MR is waiting in the global queue.  If a MR reaches the above bound, it is selected as the 

next MR to be served.  If two or more MRs have reached the bound, the closest of those MRs is 

served.  The result from the STTF analytic model (i.e., the expected service time per MR under 

STTF) is used as a guideline to determine the appropriate value of the bound.  Using simulation, 

we show that B-STTF reduces not only the maximum MR wait time, but also the average wait 

time of the top 0.5% and 1% of the MRs, while achieving results comparable to STTF in terms of 

efficiency (i.e., the expected wait time across all the MRs and the utilization of the devices).   

The performance of a trip-based MHS also depends on the rules used for DID and SID. 

However, there are conflicting views in the literature on the significance and the frequency of 

occurrence of DID versus SID. We demonstrate that in most cases both DID and SID are invoked 

frequently, and one does not strongly dominate the other.  In fact, in a well-designed system with 

a reasonable 𝜌 value (𝜌 ≅ 0.80), DID and SID are invoked approximately in equal proportions. 

Since the expected MR wait time depends largely on the efficiency of the dispatching rule, 

estimating the expected wait time is often not straightforward for efficient rules.  In terms of future 

research, it would be desirable to extend the analytic models to estimate the expected MR waiting 

time.  The dispatching rule, and the analytic model, may also be extended to multi-load systems 

where a device can serve 2 or more loads at a time.  Systems with multi-priority MRs may also be 

of interest.     

The third essay is concerned with patient movement systems in large hospitals, which is 

modeled as a trip-based handling system, where the empty travel time corresponds to the set-up 

time by the PM.  The set-up time involves one or multiple trips (up to 4 legs), depending on the 
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EQ status of the PM, and the EQ required by the next MR.  To study the above system, we conduct 

a simulation experiment to analyze the impact of alternative dispatching rules and the number and 

locations of EQMAs, using UMHS hospital building as the application setting.  

The performance measure of the system is based on efficiency (expected MR wait times 

and PM utilization) and effectiveness (excessive MR wait times).  We observe that FCFS is a less 

efficient but effective rule.  In contrast, SSUF is more efficient but it is less effective since some 

of the MRs experience long wait times.  We therefore present and evaluate a new dispatching rule 

that is comparable in efficiency to SSUF while avoiding excessive MR wait times.  Furthermore, 

we observe that a carefully-planned EQMA configuration based on usage may improve the 

performance of the system as much as, if not more than, a more efficient dispatching rule, which 

suggests that the dispatching rule and the EQMA configuration both play an important role in the 

design and operation of a patient movement system.    

For future research, it would be desirable to extend the model to treat appointment MRs 

differently than we have.  (Appointment MRs have known arrival times since they are intended 

for patients with known appointment times.)  The performance measure may include tardiness or 

earliness of such MRs, and the number of appointments missed.  Furthermore, it would be 

worthwhile to develop models to study the replenishment of the EQMAs and/or the operation of 

the elevators to improve the overall performance of the patient movement system.   
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