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ABSTRACT

Scheduling Under Uncertainty: Applications to Aviation, Healthcare and Aerospace

by

Jeremy Castaing

Chair: Amy E.M. Cohn

When scheduling a project or a mission, it is often challenging to know in advance

the exact duration of each task or which resource will be available. Processing times and

resource availability are often subject to variability and may only be known at the last

minute. Ignoring this uncertainty when planning a project can lead to adverse outcomes

such as additional costs, missed deadlines or failed tasks. Conversely, modeling uncertainty

in the scheduling decision process has potential to create more robust schedules that will

mitigate these negative outcomes. However, the complexity of deterministic scheduling

problems is further increased in their stochastic counterpart and many challenges arise

when attempting to model and solve scheduling problems subject to uncertainty.

In this dissertation we specifically study four scheduling problems arising from the

transportation and the healthcare industries. In each of these four examples, we consider

the limitations of deterministic approaches and the impact of uncertainty on the solution’s

structures and costs. Two problems come from the airline industry. We first create a model

to generate flights gate assignments so as to reduce the probability of conflict between

planes and mitigate delays. Then we develop a simulation tool to analyze delay recovery

strategies under uncertainty. A third project deals with scheduling patient appointment

times for chemotherapy infusion under uncertainty of their treatment time. The last area of

ix



application that we consider is satellite mission scheduling. We develop several models to

solve the download planning problem for a single satellite while considering uncertainty in

the availability of multiple receiving ground stations distributed across Earth.
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CHAPTER 1

Introduction

When scheduling a project or a mission, it is challenging to know in advance the exact
duration of each task or which resource will be available. Processing times and resource
availability are often subject to variability and may only be known at the last minute. Ig-
noring this uncertainty when planning a project can lead to adverse outcomes such as ad-
ditional costs, missed deadlines or failed tasks. Conversely, modeling uncertainty in the
scheduling decision process has potential to create more robust schedules that will mitigate
these negative outcomes. However, the complexity of deterministic scheduling problems is
further increased in their stochastic counterpart and many challenges arise when attempting
to model and solve scheduling problems subject to uncertainty.

Scheduling is a fundamental domain of the operations research field, putting together
many different methods such as linear programming, evolutionary algorithms and simulation-
based optimization to solve a wide range of problems sharing some common elements
and features such as job processing time, deadlines, and precedence constraints between
tasks. In this dissertation we specifically study four scheduling problems arising from the
transportation and the healthcare industries. In each of these four examples, we consider
the limitations of deterministic approaches and the impact of uncertainty on the solutions
structures and costs.

Consider, for example, the problem of assigning patients appointment times for surgery.
A natural first step is to schedule each patient based on the average or expected length of
his procedure and allow that much time before the next patient appointment time. This
so-called average problem has the advantage of being simple to model and does not require
a lot of information besides an estimate of the surgery duration for each patient. However,
we know that surgeries tend to vary in length in unpredictable ways due to complications
or patient adverse reactions. By neglecting this uncertainty we ignore the risk of a proce-
dure running over its allocated time slot, causing delays and waiting times for subsequent
patients as well as, ultimately, overtime or idle time for the staff which in turn leads to extra
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costs or wasted resources. A procedure could also run under, which wastes resources and
delays patients who might have been scheduled at an earlier date. This simple example
illustrates the fact that solving the average problem can lead to overlook key dynamics that
impacts the constraints and objective of our problem. We discuss a way to take uncertainty
into account in a similar patient scheduling problem in Chapter 3.

We now consider the main differences between a deterministic problem and its stochas-
tic counterpart:

• The deterministic model ignores variability and is typically based on average values
or some pre-determined percentiles. This assumption potentially leads to several
issues when actually carrying out the plan.

– The resulting objective value might be very different from what we antici-
pated. In some cases, the variability might smooth itself out and no signifi-
cant changes happen to the final objective (often the case with linear systems,
sales under uncertain demand [Petkov and Maranas, 1997], bin-packing type of
problems [Coffman et al., 1980]). However uncertainty might start compound-
ing in some dynamic systems leading to important changes of the objective
(wait times in queuing system [Burke, 1956], delays in transportation networks
[Fleurquin et al., 2013]).

– Or the solution might become infeasible. In linear programming, sensitivity
analysis shows that a small change of a parameter’s value might cause the solu-
tion to violate a constraint [Bertsimas and Tsitsiklis, 1997]. This is especially
true for equality type constraints or binding constraints of an optimal solution.
In the event of a violation occurring, the decision maker needs to modify the
original plan to satisfy the constraint, which is known as recourse in the litera-
ture [Birge and Louveaux, 2011a].

• The stochastic version of the problem incorporates uncertainty. By considering dif-
ferent possible realizations for each uncertain parameter we can often decompose the
scheduling problem into a planning and a recourse phase, where recourse is defined
as actions taken once the uncertainty is realized. We discuss the concept of recourse
more in depth in chapters 3 and 4. Each phase typically has its own objective or costs
and the model aims to minimize a linear combination of the planning and recourse
costs. The costs associated with the recourse phase are usually high, representing the
fact that dynamically changing your plan on the fly is typically expensive (e.g., staff
overtime, accommodating passengers and hotel fees after a flight cancellation...).
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This dissertation contains four main chapters, each focusing on a real-world schedul-
ing problem with significant sources of uncertainty. The examples considered come from
applications of scheduling to aviation, healthcare or aerospace.

Chapter 2 considers the problem of assigning flights to gates in order to reduce the im-
pact of gate blockage. A gate blockage happens when a flight arrives at its scheduled gate
but has to wait because the preceding aircraft is still occupying that gate. These conflicts
occur as a result of variability in the system: flights leaving/arriving early or late from/to
their destination gate. A template for gate assignments is typically first created solely based
on scheduled times and follows the first in first out paradigm, ignoring uncertainty in de-
parture and arrival times. The assignment can then be slightly adjusted to accommodate
additional constraints: international flights have to go to specific gates or terminals, flights
part of connection banks would go to adjacent or close gates etc. However, we recognize
that the system variability is, to some extent, predictable and that incorporating that knowl-
edge in the gate assignment model could lead to more robust schedules. Our approach is to
study the difference between scheduled and actual operations in a large aviation database,
compute an estimate of the probability of a gate blockage happening between each given
pair of flights and solve a deterministic network flow model based on these parameters to
generate a gate assignment. This project is a good example of a case where current airline
operations suffer from variability in the system and how better modeling uncertainty can
help reducing delays.

One of the shortcomings of the approach developed in Chapter 2 is that we are not
considering recourse when things go wrong: what to do when a blockage occurs? In
Chapter 3 we explore the concept of recourse in a healthcare related project, we assign
patient appointment times at an outpatient chemotherapy infusion center, under uncertainty
of treatment times. In addition to appointment times, we also consider resources such as
nurses and infusion chair, as well as recourse in the case perturbations occur in the sys-
tem: waiting, idle time and chair assignment are all dynamically adjusted depending on the
actual realization of treatment times. This naturally leads to a two-stage model approach
where appointment times are set in the first stage and chair assignment as well as delays
are evaluated in the second stage.

The previous model considered two stages (appointment times and then chair assign-
ments), however in some cases, this is not possible. Indeed, dynamic systems might require
sequential decisions to be made in more than two stages. These multi-stage problems are
often much harder to solve. In Chapter 4 we study an example coming from the aerospace
industry: planning operations for a satellite mission. We specifically look at scheduling
downloads of a satellite that collects data while orbiting Earth. This satellite has limited

3



space available in its memory and therefore needs to regularly transmit its stored data to
stations on the ground. We aim to enhance a deterministic model by adding uncertainty in
resource availability, modeling the fact that ground stations might not be unable to receive
data at a certain time, because of a technical failure or a conflict with another satellite’s
communication. We model this uncertainty using binary random variables which represent
the availability of each ground station. We study different modeling techniques to create
download policies and see how they impact the ability to solve the problem and what the
corresponding solutions represent in the context of this satellite mission planning.

In Chapter 5, we study another problem from the airline industry that deals with re-
covery under uncertainty. In Chapter 2, we introduced the notion of gate blockage as one
example of sources of delays. However, there are many other causes of delays, including
bad weather, airports congestion, and mechanical problems. Airline companies put a great
deal of effort into developing strategies to cope with these delays, mitigating their propaga-
tion in the network and ultimately returning to a steady, normal state. This process, called
recovery, typically uses mechanisms such as flight cancellation and aircraft swap to combat
propagating delays based on the current state of the system. In this project, our goal is to
develop a simulation tool to model and compare different recovery strategies and show that
there is value in considering uncertainty in future operations when making these recovery
decisions.

Throughout this dissertation we are making a number of contributions. First, we model
and solve several real-world problems from the industry and propose methods to decrease
operating costs, increase customers/patients satisfaction or optimize outcomes across the
planning horizon. Second, we advance the literature on scheduling under uncertainty by
developing novel algorithms and methodologies.
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CHAPTER 2

Reducing airport gate blockage in passenger
aviation: Models and analysis

2.1 Introduction

Commercial flights are typically assigned to an arrival gate at their destination station (air-
port) well in advance of their actual departure. Although the gate is scheduled to be avail-
able when the flight arrives, this is not always the case in practice. Due to variability in
departure and flight times, the arriving flight might arrive early, the previous flight depart-
ing from the gate might depart late, or both.

When a flight arrives at its scheduled gate but has to wait because the preceding aircraft
is still occupying that gate, we refer to this as gate blockage. Gate blockage can have many
negative impacts, including passenger delays, missed connections, and increased fuel burn.
Our research is focused on incorporating the inherent stochasticity of the system into the
planning process to reduce the prevalence and impact of gate blockage.

We begin by conducting an analysis of historical data from a major U.S. carrier, exam-
ining the frequency and extent of gate blockage in practice. We demonstrate how different
gate assignments can lead to different degrees of gate blockage by incorporating informa-
tion about the variability in flight arrival and departure times. To leverage this, we develop
mixed integer programming (MIP)-based models to optimize the expected outcome of the
gate assignment under stochastic conditions. We then conduct empirical analyses using
real-world data to show both the computational tractability of our proposed approach and
the potential benefits to be achieved through incorporating uncertainty in the planning pro-
cess.

Our contributions are in advancing the literature on airline gate planning by assessing
the impact of stochasticity on gate blockage and in proposing MIP-based approaches to
reduce this impact. We conduct an historical analysis to highlight the frequency of gate
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blockage. We then present two optimization based approaches to reduce this blockage by
incorporating system stochasticity, using a unique network design in which gates, rather
than aircraft, flow through the system. The first approach assumes all aircraft are compat-
ible with all gates; this is the model that motivated our research and on which most of our
computational results are based. We also briefly discuss a second approach that consider
the general case where not all aircrafts are compatible with all gates. In both cases, we ap-
proximate objective coefficients to represent the probability and severity of gate blockages
as a function of gate turns. We provide computational experiments based on real-world
data from a major U.S. carrier to show the tractability and effectiveness of our proposed
approach.

The remainder of the paper is organized as follows: Section 2 describes our approach,
as well as a survey of existing literature on the gate assignment problem, robust schedul-
ing applied to passenger aviation, and other topics relevant to our study. In Section 3 we
present an historical analysis of the frequency and patterns of gate blockage. In Section
4 we present two models for solving the gate assignment problem so as to minimize the
potential for gate disruption. Section 5 describes the methods used to generate the objec-
tive coefficients of these two models and Section 6 is dedicated to various computational
experiments. Section 7 presents our conclusions and some ideas for future research.

2.2 Motivation, Problem Statement and Literature Review

2.2.1 Motivation

In the U.S., the majority of commercial flights depart from and arrive at physical gates at
the corresponding terminal. [This is in contrast to Europe, where flights frequently arrive at
hard stands on the tarmac, from which passengers are bussed to the terminal.] Because two
flights cannot occupy the same gate at the same time, a schedule is built to ensure available
gates for all flights throughout the day. This gate assignment defines a sequence of gate

turns for each gate.
A gate turn corresponds to an aircraft that leaves a gate (a departing flight) followed by

an aircraft subsequently arriving at the same gate. In between, a minimum gate buffer or
sit time (e.g., five minutes) must be allotted to allow the first aircraft to clear the area before
the second aircraft can reach the gate.

Note that gate turns represent an outbound flight followed by an inbound flight, whereas
an aircraft turn is an inbound flight followed by an outbound flight that use the same air-
craft. Figure 2.1 illustrates the assignment of three aircraft turns, i.e., three pairs of inbound
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and outbound flights ([Ik, Ok])1≤k≤3, to a single gate. This assignment corresponds to two
resulting gate turns.The gate is occupied when the timeline is bold.

Figure 2.1: Gate schedule with three aircraft turns and two gate turns

In this paper, we focus on assigning aircraft turns (which have been pre-determined in
an earlier stage of the planning process) to gates. Our primary objective is to minimize the
potential for gate blockage and associated disruptions. Note that other metrics may be of
concern as well when assigning flights to gates, such as distance for connecting passengers
or effective utilization of ground resources, and we briefly touch on these extensions in our
conclusions.

Flight departures are often delayed, for a number of reasons. These include mechanical
or weather related problems, ground delay programs, and delays in passenger boarding. In
addition, earlier delays in the system can propagate to delay downstream flights. Likewise,
there are many reasons why a flight may be early in arriving. There is always buffer built
into the system to accommodate variability in departure time, outbound taxi time, flight
time, and inbound taxi time. When this buffer is not needed, flights may arrive early.

Gate blockages can have many negative consequences. At a minimum, they inconve-
nience and frustrate the passengers on board the blocked aircraft. Blockages can also lead
to passenger delays (which can lead to missed connections) and propagation of crew and
aircraft delays. Furthermore, gate blockages lead to excess fuel burn (with both financial
and environmental impacts), increased crew costs, and disruption to the planned utiliza-
tion of ground resources. Finally, the presence of excess aircraft on the tarmac can lead to
increased congestion, which in turn can not only cause more ground delays, but has impli-
cations for passenger safety and aircraft damage as well.
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Example
Consider two outbound flights O1 and O2 as well as two inbound flights I1 and I2.

Suppose that scheduled departure times are 8:30 for O1 and 8:40 for O2 and that scheduled
arrival times are 8:50 for I1 and 9:00 for I2.

One possible gate assignment is to pair O1 and I1 in one gate and O2 and I2 in another
gate. This assignment is reasonable since it allow a 20 minute gate turn time for both
outbound-inbound pairs. Suppose, however, that based on historical data, we know that
inbound flight I1 often arrives late whereas inbound flight I2 frequently arrives early. We
further assume that outbound flights O1 and O2 leaves constistently on time. In that case,
a more robust gate assignment would be to pair O1 and I2 in one gate and O2 and I1 in
another gate.

2.2.2 Problem Statement

Given a set of aircraft turns (each defined by either an inbound flight followed by an out-
bound flight using the same aircraft, an outbound flight that is the day’s first use of a given
aircraft, or an inbound flight that is the day’s last use of a given aircraft) and a set of gates
for a single station, assign each aircraft turn to a gate, so as to maximize robustness, under
the constraint that a gate can handle at most one aircraft at any given time.

We consider four different objective functions representing four different measures of
robustness:

• Expected Number of Blockages (objective P ): The first objective we consider is to
minimize the expected number of gate blockages. To compute this, we have deter-
mined (based on historical averages) the probability of experiencing gate blockage
associated with each possible gate turns. The objective is to then minimize the sum
of these probabilities across all gate turns assigned in the optimal solution.

• Expected Total Time of Blockage (objective X): One limitation of the first objective
metric is that it ignores the duration of the blockages, weighting a short blockage no
differently than a long blockage. Therefore, in our second metric, we minimize the
expected total time of blockage.
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• Expected Connecting Passenger Blockage Minute (objective C): The third objective
is motivated by the fact that the impact of blockage time is not necessarily linear.
A twenty minute gate blockage imposed on a terminating passenger might have far
less impact than a ten minute gate blockage imposed on a passenger with a very tight
connection. As a first approximation to capture this, in our third measure of robust-
ness we focus specifically on the gate blockage imposed on connecting passengers.
Specifically, for each outbound/inbound flight pair forming a potential gate turn, we
take the expected length of blockage for the flight pair and weight this by the average
number of connecting passengers on the inbound flight.

• Worst Case Expected Blockage (objective W ): Finally, as our fourth measure of ro-
bustness, we minimize the worst case expected blockage – the longest expected
blockage that any of the assigned turns would experience. This effectively sets a
cap on the longest gate blockage, thereby recognizing the non-linear impact of gate
blockages and striving to keep all blockages at a low level.

2.2.3 Literature Review

Despite the potential benefit to be gained by making gate planning decisions more ro-
bust, there has been limited attention paid in the literature to this problem. In one example,
[Kim and Feron, 2011], robust gating and propagation of delays for a multi-station network
are considered. Another example, [Lim and Wang, 2005], takes a stochastic programming
approach, focusing on a single station with multiple distributions for incoming flight delays.
Perhaps closest to our research is the example of [Li, 2008], which minimizes the expected
number of gate blockages, given a formula to predict the distribution of gate blockage be-
tween a given outbound/inbound flight pair.

There has been a bit more research on other aspects of gating in passenger aviation.
For example, [Ding et al., 2005] considers gate planning from the perspective of minimiz-
ing passenger walking distance and connection times. [Cheng et al., 2012] compares the
performance of three meta- heuristic algorithms for solving the gate assignment problem,
focusing on resource utilization and passenger satisfaction, and [Genç et al., 2012] designs
another heuristic using stochastic optimization to solve the gate assignment problem. A
stochastic optimization approach to the problem has also been proposed by
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[Şeker and Noyan, 2012].

Other areas of robust planning in passenger aviation have been studied more exten-
sively, including flight scheduling [Burke et al., 2010], [Ahmadbeygi et al., 2010],
[Lapp et al., 2008] and [Teodorovic and Stojkovic, 1995]; scheduling and routing
[Lan et al., 2006]; fleet assignment [Rosenberger et al., 2004]; aircraft routing and mainte-
nance planning [Borndörfer et al., 2010], [Lapp and Cohn, 2012] and [Lapp, 2012] as well
as crew scheduling [Klabjan et al., 2001], [Schaefer et al., 2005] and [Yen and Birge, 2006].

Closely related to the issue of robust planning (which attempts to prevent disruptions
before they occur, or to mitigate the impact of disruptions) is the issue of recovery and pas-
senger re-accommodation (which addresses disruptions after they have occurred, to min-
imize their impact). There is extensive literature in this area as well. Examples include
[Thengvall et al., 2000], [Eggenberg et al., 2010] and [Yan and Yang, 1996], who consider
the recovery of aircraft schedules during periods of disruption; [Beatty et al., 1999] and
[AhmadBeygi et al., 2008], who look at the relationship between airline plans and the po-
tential for delay propagation; [Abdelghany et al., 2004] and [Lettovskỳ et al., 2000], who
consider crew recovery during irregular operations; [Barnhart et al., 2003] and
[Cohn and Lapp, 2010] consider passenger recovery; [Sriram and Haghani, 2003], who con-
sider maintenance schedule re-planning; and [Kohl et al., 2007] and [Filar et al., 2001],
who provide surveys of airline disruption management.

Finally, we conclude by suggesting a number of useful survey papers for the novice
reader unfamiliar with passenger airline planning and operations: [Barnhart et al., 2003],
[Cohn and Lapp, 2010], [Barnhart and Talluri, 1997], and [Gopalan and Talluri, 1998b].

2.3 Case Study for Historical Data Analysis

To demonstrate the importance of our proposed approach to incorporating stochasticity in
gate planning, we begin with a historical analysis of the frequency and patterns of gate
blockage today. In particular, we want to answer the following questions:

• How often does gate blockage occur?

• When gates are blocked, how long is the blockage?

• Does it vary by station?
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• Does it vary by time period?

The answers to these questions will serve as a motivation for the rest of the paper, where
we seek to reduce gate blockage by incorporating stochasticity in the planning process.

2.3.1 Methodology

Our analysis focuses on the domestic operations of a single, major U.S. carrier. We sum-
marize the data below, which has been loosely disguised per the request of the carrier. In
our analysis, we consider four time periods corresponding to four different flight schedules
(note that the length of these periods varies):

• Period 1 - January 2009 - 22 days,

• Period 2 - January 2010 - 31 days,

• Period 3 - December 2010 to February 2011 - 90 days,

• Period 4 - December 2011 to February 2012 - 91 days.

For each of these periods, we evaluate a panel of 15 of the largest airports in the car-
rier’s network. These stations are described in Table 2.1.

The carrier also provided us with information for each flight including scheduled and
actual departure from origin and arrival to destination, as well as the origin and destination
gates that were used.

We do not have access, however, to explicit gate blockage because it is not readily
available in the carrier database. Thus, to conduct our analysis, we have to reverse-engineer
the available data to estimate gate blockages.

To do so, we first note that an upper bound on the gate blockage associated with a
given inbound flight can be found by substracting the time that the flight landed (wheels

on) from the time that it reached the gate. Some of this time, however, will be necessary
taxi time (i.e., the time that it takes to physically travel from the runway to the gate) and
some of it may be delays in taxi that are caused by something other than a blocked gate
(e.g., congestion on the tarmac). We have therefore chosen to approximate gate blockage
in the following way:
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Station Average Number Average Flights per
of Flights per Day Gate per Day

1 200-210 8.9
2 180-190 6.1
3 160-170 5.6
4 140-150 7.4
5 130-140 8.0
6 110-120 5.3
7 100-110 8.0
8 90-100 6.5
9 80-90 7.4

10 60-70 6.8
11 50-60 7.0
12 40-50 6.7
13 30-40 3.1
14 10-20 3.9
15 10-20 1.6

Table 2.1: Main characteristics of the airports in our panel

First, for each station during each time period, we calculate a nominal taxi time that
we define as the median of all taxi times. We choose the median as a way of disregarding
longer taxi times that are caused by external factors such as airport congestion, disruptive
weather conditions, and in fact the presence of gate blockages themselves. At first glance,
it seems that we should use the smallest observed taxi time as nominal taxi time. However,
we have chosen median instead of using a lower percentile in recognition of the fact that
(a) different flights are going to different gates, which will introduce some variability into
the nominal taxi time and (b) flights are also coming in from different runways and under
different airport configurations.

Figure 2.2 presents the distribution of taxi times for over 10000 flights arriving at a
single station. As expected, most of the flights have a taxi time of between 2 and 4 minutes
— 3 minutes being the median — and the distribution has a tail containing a few flights
with much longer taxi times, due to the reasons mentioned above.

Next, for each flight on each day in the time period, we take the wheels on time and add
to this the nominal taxi time. This is our estimated gate arrival time.

We then consider the flight departing from the same gate prior to the arrival and add to
its actual departure time the minimum gate buffer time to determine when the gate became
available.

If the estimated gate arrival time is earlier than the gate available time, then we record

12



Figure 2.2: Distribution of taxi time at one station

the difference as a gate blockage.
Note that we do not consider the actual arrival time of the flight to the gate — i.e., if the

arrival time of the flight to the gate is later than the gate available time, we do not count that
interval in the blockage. This is because we assume that other factors must have caused
this delay.

Figure 2.3 presents two possible outcomes of a gate turn, the first one without gate
blockage and the second one with gate blockage.

2.3.2 Analysis

We study the frequency and the duration of all gate blockages (both those caused by late
outbound departures and those caused by early inbound arrivals) for the four periods and
fifteen airports previously described. We begin with Table 2.2, a detailed summary of the
results obtained for period 3 which is the period we used to run our computational tests (see
Section 2.6). The three last lines are the total across all stations for each column as well as
the percentage of flights and the percentage of blocked flights in each bucket.
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Figure 2.3: Two possible outcomes of a gate turn

The fields in Table 2.2 have been computed as described below:

• The frequency of gate blockage: Total number of gate blockages / Total number of
arriving flights.

• The conditional average length of a gate blockage: Total sum of gate blockage min-
utes / Total number of gate blockages.

• The total number of flights whose blockage length is in the intervals (in minutes):
[1, 5], [6, 10], [11, 15], [16, 20], and greater than 20 minutes.

We observe that although gate blockages are fairly rare on a percentage basis (averaging
about 5% of all flights), in absolute terms this is a significant number, when you take into
account the fact that there are roughly 25,000 domestic flights across the U.S. each day.

Note also that, although most gate blockages are of duration between one and fifteen
minutes, a significant number are of longer duration (about 20%). Furthermore, note that
for connecting passengers a delay in arrival caused by a gate blockage of even fifteen or
twenty minutes may be sufficient to cause a missed connection.

Finally, we note a limitation in our analysis: In the case of extreme weather (e.g., thun-
derstorms impacting the airport), we may show a lengthy departure delay on an outbound
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Station Frequency of Conditional Average [1;5] [8;10] [11;15] [16;20] >20
Blockages Length of Blockage

1 7.29% 10.10 370 399 276 135 160
2 4.17% 8.66 224 215 142 59 51
3 4.19% 8.05 222 203 120 54 34
4 6.84% 9.43 272 278 170 95 96
5 5.70% 11.04 189 199 119 74 112
6 5.36% 9.31 169 180 113 57 48
7 6.48% 9.37 200 184 96 62 63
8 2.89% 6.85 107 82 38 18 9
9 3.01% 7.69 99 82 38 18 9

10 4.43% 8.73 97 70 47 37 19
11 3.11% 7.27 60 54 27 8 8
12 4.83% 9.68 51 50 39 16 19
13 3.45% 8.79 41 28 16 11 11
14 6.63% 17.71 15 8 21 19 30
15 2.57% 12.29 9 8 3 6 8

Total Period 5.10% 9.39 2125 2040 1262 662 681
Percentage of 1.60% 1.54% 0.95% 0.50% 0.51%

Flights
Percentage of 31.39% 30.13% 18.64% 9.78% 10.06%

Blocked Flights

Table 2.2: Detailed results for period 3

flight that we compute to cause a lengthy gate blockage for the corresponding inbound
flight. If ground operations are halted, however, then that inbound flight would have been
delayed from reaching the gate even if the gate were unoccupied. In those extreme cases,
our analysis may over-estimate the gate blockage.

Table 2.3 summarizes across all stations within a given time period. Observe that the
results do not vary much from one time period to another.

Period Frequency of Conditional Average [1;5] [8;10] [11;15] [16;20] >20
Blockages Length of Blockage

Period 1 3.69% 7.69 450 363 193 95 63
Period 2 4.00% 8.28 772 686 357 196 148
Period 3 5.10% 9.39 2125 2040 1262 662 681
Period 4 4.83% 8.86 2192 1960 1196 601 586

All Periods 4.71% 8.92 5539 5049 3008 1554 1478
Percentage of 1.57% 1.43% 0.85% 0.44% 0.42%

Flights
Percentage of 33.31% 30.36% 18.09% 9.35% 8.89%

Blocked Flights

Table 2.3: Results for all the periods

In Figure 2.4, we show the breakdown by length of all gate blockages, across all fifteen
stations for all four time periods. We break down blockages by five minute intervals. The
y-axis shows the percent of flights falling into each bucket, relative to the total number of
flights flown; each column specifies the absolute number of gate blockages as well as the
percent of gate blockages that fall into that bucket. Note that roughly one third of the gate
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blockages are more than ten minutes in duration and almost 10% are of more than twenty
minutes, corresponding to almost 1500 flights.
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Figure 2.4: Distribution of blockage length over 15 airports and 4 periods of time

In Figure 2.5, we break down the flights by time period. Observe that the percent of
overall flights delayed appears to go up slightly between the first two periods and the sec-
ond two periods; the distribution of gate blockages across their respective lengths remains
roughly comparable across all time periods, as shown in Table 2.4.

17



Figure 2.5: Distribution of blockage length over 15 airports for each period of time

Blockage length (min) [1,5] [6,10] [11,15] [16,20] >20
Average percentage of blockage 33 31 18 9 9

in that interval (%)

Table 2.4: Average distribution of blockage times

Figures 2.6 and 2.7 display the evolution over time of the probability and expected
length of blockage for each station and over the four periods. On Figure 2.5, each bar is
the percentage of flights blocked for each of the of fifteen airports during each of the four
considered periods of time. On Figure 2.7 each bar is the average length of a blockage, con-
ditioned on blockage occuring. Unlike the distribution of blockage length, the proportions
of flights blocked in each airport have significant fluctuations over time (Figure 2.6); for
instance, the percentage of flights blocked in station 12 is two times larger during Period 1

than the other periods.
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Figure 2.6: Percentage of flights blocked in each station
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Figure 2.7: Conditional expected length of blockage

Finally, we look for possible correlations between airport characteristics (number of
flights, gates, etc.) and the occurrence of gate blockage. For example, when there are more
flights per gate, gate turns are tighter, and this suggests a higher likelihood of gate blockage.
Figures 2.8 and 2.9 present the probability of gate blockages at each station versus the daily
ratio of flights per gate, in Periods 3 and 4 which represent the most flights.
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Figure 2.8: Percentage of flights blocked in each station as a function of the daily number
of flights per gate in Period 3

Figure 2.9: Percentage of flights blocked in each station as a function of the daily number
of flights per gate in Period 4

We observe that stations at the tails with the lowest flight to gate ratio have the low-
est probability of blockage, and similarly the highest ratios have the highest probabilities,
which is not surprising. We do not observe a strong correlation in general, however, sug-
gesting that many other factors beyond the amount of buffer in the gate turn impact potential
for gate blockage.

This case study allows us to assess the frequency and the duration of gate blockages
in a panel of US airports, over different time periods. The key results of this analysis are
that (1) gate blockages affect roughly 5% of flights, (2) their duration is smaller than 10
minutes for 60% of them but around 9% of the blockages last more than 20 minutes, (3) the
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frequency and the length of gate blockages are highly variable depending on the stations,
however they are similar from one period of time to another.

These observations show that gate blockages have a significant impact on daily air-
line operations, and motivate us to take into account gate blockages when building a gate
assignment, which is the objective of the next sections.

2.4 Robust Gate Assignment

Motivated by the analysis presented in the previous section, we have developed a math-
ematical programming-based approach to the gate assignment problem, with the goal of
improving solution robustness by incorporating variability in departure and arrival times.
We first consider the case where all aircraft types (and thus all flights) are compatible with
all gates; we refer to this as the homogeneous case. Then we generalize to the heteroge-

neous case, where certain gates are incompatible with certain aircraft types and thus the
corresponding flights.

2.4.1 Robust Homogeneous Gate Assignment

To model the Robust Homogeneous Gate Assignment Problem (RHoGA), we consider a
network flow-based formulation, as is commonly used in airline planning. The key dif-
ference in our approach, however, is the perspective: rather than flowing aircraft through

gates or stations, as is commonly seen, we flow gates through aircraft turns. Figures
2.10 through 2.13 represent a portion of a sample network.

Figure 2.10 depicts the nodes in this network. There is one node (Sg) for each gate g
representing that gate at the start of the day with a supply dg = 1 and one node (Eg) for
each gate g with a demand dg = −1 representing that gate at the end of the day. In addi-
tion, there is one pair of nodes for each aircraft turn a without any supply (da = 0). Note
that some turns consist of both an inbound and an outbound flight, while some represent
just an outbound flight (where the aircraft would have overnighted at the station the pre-
ceding night) and some represent just an inbound flight (where the aircraft is intend to stay
overnight at the station). We create an arc with lower and upper bounds of 1 between the
inbound and outbound parts of the nodes, which ensures that each aircraft turn is assigned
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to exactly one gate.

Figure 2.10: Nodes of the network

Figures 2.11, 2.12, and 2.13 depict the arcs in this network. Figure 2.11 shows arcs
that originate from the gate start nodes. Generally, there is one arc from each gate to each
aircraft turn; flow over this arc corresponds to assigning that turn as the gate’s first activity
of the day. If a specific flight is pre-determined to be the first flight of the day out of a given
gate (for example, when using the model in an operational context, where last night’s gate
occupants are known), then there would only be one corresponding arc in the network to
represent this — for example, in Figure 2.10, the arc from S2 to O3 and from S3 to O5.
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Figure 2.11: Arcs leaving the gate start nodes

Figure 2.12 depicts arcs between aircraft turn nodes. Generally, there is an arc from
aircraft turn T1 to aircraft turn T2 so long as the departure time O1 plus the minimum buffer
time of the gate is earlier than the arrival time I2. [Note that this can be relaxed in planning
mode to help determine minimum buffer gate time – for example, if an outbound flight
often leaves early and an inbound flight often arrives late, pairing their respective turns
may be desirable, even if they are closer together in time than the system minimum.] If an
aircraft turn is an outbound flight only, then it cannot have inbound arcs from other aircraft
turns, as it is presumed to be the first flight of the day from a gate. Similarly, if an aircraft
turn is an inbound flight only, then it cannot have outbound arcs to other aircraft turn nodes,
as it is presumed that the aircraft will remain on the ground overnight.

24



Figure 2.12: Arcs between aircraft turns

Finally, Figure 2.13 depicts arcs into the gate end nodes. There is generally one arc from
each aircraft turn node to each gate end node; flow on this arc represents that aircraft turn
being the last activity of the day at that gate. If a flight has been pre-assigned to a specific
gate to overnight, then that would be the only arc into the gate end node, as illustrated by
the arc from I7 to E3.
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Figure 2.13: Arcs arriving to gate end nodes

[Note that, in theory, we could also include arcs from Sg to Eg, representing the case in
which gate g is unused throughout the day. In practice, such an occurrence rarely happens.]

Clearly, a path through this network, starting from gate Sg and ending at Eg, is a valid
sequence of activities to be assigned to gate g.

The resulting model is a pure min-cost flow problem and therefore has the following
structure:

min
x

∑
(a,b)∈A

cabxab (1.1 : Objective)

subject to
∑

b:(a,b)∈A
xab −

∑
b:(b,a)∈A

xba = da ∀a ∈ N (1.2 : Flow balance)

xab ≥ lab ∀(a, b) ∈ A (1.3 : Lower bound)

xab ≤ uab ∀(a, b) ∈ A (1.4 : Upper bound)

where N and A are the sets of nodes and arcs of the network described above.
The variable xab represents the flow along arc (a, b). Having a flow of 1 along an arc

means that the two adjacents nodes belong to the same gate schedule.
The supply and demand da are set according to the description above (1 for the start of

the day nodes, -1 for the end of the day nodes and 0 for all the aircraft turns nodes).
The bounds lab and uab are set to 0 and 1 on any arc with the exception of the arcs
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resulting from the splitting of the aircraft turns nodes whose lower and upper bounds are
both 1 in order to ensure that each aircraft turns is assigned to exactly one gate.

The cost per unit of flow along arc (a, b) is set according to the estimated probabilities
of blockage and the associated metrics (see Section 5).

Finally notice that we do not require a binary constraint on each variable xab since the
arc incidence matrix is totally uni-modular and therefore we will get an integral optimal
solution.

The model above can be applied to the first three objective functions that we have
outlined.

For the fourth (objective (W )), we must modify the problem slightly. Specifically, we
define a new variable z ∈ R, which represents the maximum expected blockage. We then
add one constraint for every aircraft turn arc xab of the form:

z ≥ cabxab

Because we are minimizing z, the constraints effectively impose that
z = max

(a,b)∈A
cabxab. Note that in this case we have now violated the total uni-modularity

of the matrix and therefore we also have to impose integrality requirements on the flow
variables.

2.4.2 Robust Heterogeneous Gate Assignment

In the previous subsection, we assumed that all flights (or, more precisely, all aircraft turns)
could be assigned to all gates. In practice this is often not the case. For example, cer-
tain gates are not equipped to handle either very large or very small aircraft. Therefore,
we generalize RHoGA to take this into account, defining the Robust Heterogeneous Gate

Assignment (RHeGA) Problem.
Specifically, given a set of gates, a set of aircraft turns (as defined in the previous sub-

section), and the added component of a compatibility matrix, which defines for each gate
and aircraft turn pairing whether the associated assignment is feasible, the objective is to
assign each aircraft turn to a compatible gate, so as to maximize robustness.

We use a similar network structure, where gates rather than aircraft flow through the
network, as in RHoGA. However, we can no longer model the problem as a pure minimum
cost flow problem, because the gates are no longer fully interchangeable, i.e., they cannot
be treated as commodities, because not all flights can be assigned to all gates.

Instead, we create one copy of the network for each gate, similar to the network from
RHoGA (but without splitting the aircraft turn nodes). We remove from this network,
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however, all nodes corresponding to aircraft turns that are not compatible with the gate and
all associated arcs going into or coming out of those nodes. Each gate-specific sub-network
now again captures feasible paths (i.e., sequences of activity).

We then still need to ensure that all aircraft turns get assigned to exactly one gate. To
do so, we add one constraint for each aircraft turn ensuring that the flow into the node
representing that aircraft turn, across all arcs in the sub-networks for all gates, must equal
one. Observe that we have, in the process, violated the pure minimum-cost flow structure.
Therefore, we must now add integrality requirements — the flow on all arcs must be non-
fractional to ensure feasible paths, i.e., gate-specific sequences of tasks.

The resulting RHeGA model is a network flow problem with side constraints, which
can easily be viewed as a multi-commodity flow problem.

min
x

∑
g∈G

∑
(a,b)∈A

cabx
g
ab (1.1 : Objective)

subject to
∑

b:(a,b)∈A
xgab −

∑
b:(b,a)∈A

xgba = da ∀a ∈ N ∀g ∈ G (1.2 : Flow balance)

xgab ≥ lab ∀(a, b) ∈ A ∀g ∈ G (1.3 : Lower bound)

xgab ≤ uab ∀(a, b) ∈ A ∀g ∈ G (1.4 : Upper bound)∑
g∈G

xgab = 1 ∀(a, b) ∈ A (1.5 : Side constraint)

xgab binary ∀(a, b) ∈ A ∀g ∈ G (1.6 : Integrality)

2.5 Computing Coefficients

The two models presented in Section 2.4 require objective coefficients that capture the
probability that a gate blockage occurs between two given aircraft turns.

As is the case with virtually all airline planning problems, identifying the appropriate
data to populate our models is a non-trivial challenge. Historical data can be used but
there may not be adequate data about past events to predict future occurrences. This is
particularly true when making decisions about a future schedule for new flights that have
not been included in prior schedules. Furthermore, historical data may not accurately reflect
the future, with potential system changes having significant impact. Nonetheless, with
these caveats in mind, approximations of objective parameters must be made. We do so
by using historical data to predict how alternate schedules might have performed. We note
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that an important area of future research is to work towards improving these parameter
estimates.

To predict the probability of aircraft turn T1 imposing gate blockage on aircraft turn T2

(for objective P ), and the expected amount of this blockage (for objective X), we rely on
historical data. Specifically, we consider all days during which both flights operated from
a common scheduling period. We consider only day-specific flight pairs so that the corre-
lation of weather impacts will be incorporated (for example, if T1 is delayed in departing
due to local inclement weather, it is more likely that T2 will be delayed in arriving as well,
and this should be recognized in our approximation).

Consider two possibilities. First suppose that T1 and T2 did in fact share a common
gate on day d during our historical period. Was there gate blockage on this day and, if so,
for how long? We know from the carrier-provided data what time T1 pushed back from
the gate (d1) and therefore by adding the minimum buffer gate time b when the gate was
available (d1 + b). We also know when T2 landed (l2), and we know when T2 arrived at the
gate (a2). What we do not know, however, is how much of the window from l2 to a2 was
taxi time and how much (if any) was gate blockage. To try to deconstruct this, we consider
the default nominal taxi time T̃ defined in Section 2.3, such that l2 + T̃ is the estimated

time of arrival at gate for aircraft turn T2. Therefore, we assume that the remaining time
T blockage

2,1 = (d1 + b − l2 − T̃ ) was gate blockage if positive and that there wasn’t any gate
blockage otherwise.

Second, suppose that aircraft turns T1 and T2 did not share the same gate on day d.
We still need to know what would have happened if they had shared a gate since in our
model we consider all possible assignments. Since we consider a nominal taxi time our
approximation of the arrival time at the gate for an inbound flight does not depend on
its gate, therefore we can apply the exact same reasoning as in the first case to obtain an
approximation of an eventual gate blockage that could have happened if the two flights had
shared the same gate.

Once we know how to compute an estimation of the gate blockage length between any
pair of aircraft turns, we just need to loop through the flight data provided by the carrier,
compute the estimated gate blockage length for each day on which those two aircraft turns
occurred (even if they were not assigned to the same gate) and calculate the cost coefficient
relative to this pair for each one of the four objectives described in Section 2.2.

29



2.6 Computational Experiments

The purpose of our computational experiments is two-fold. First, we want to assess the
tractability of our approaches, to assess if they are viable for use in practice, in planning
as well as in operational contexts. Second, we want to analyze the potential benefit to be
gained by using optimization-based techniques to build gating schedules.

In Section 2.6.1 we focus on the homogeneous problem, where all aircraft types (and
thus all flight turns) are compatible with all gates. Section 2.6.2 addresses the heteroge-
neous problem, where certain flight turns are incompatible with certain gates.

2.6.1 Homogeneous Experiments

For our homogeneous experiments, we focused on the aircraft turn data from one specific
date, as provided by the carrier. We considered five stations (2, 3, 4, 5 and 6), which were
among the largest in the network.

Using historical data to generate objective coefficients (as described in Section 5), we
created four different schedules for each station, optimized under four different objective
functions. Specifically, we created:

• (optP ): the schedule that minimizes the sum of the probabilities of a gate blockage
(i.e., the expected number of gate blockages),

• (optX): the schedule that minimizes the sum of the expected blockage minutes,

• (optC): the schedule that minimizes the sum of the expected connecting passenger
blockage minutes,

• (optW ): the schedule that minimizes the maximum expected blockage length.

In addition to these four schedules, we also constructed (FIFO), a schedule that assigns
flights to gates in a first-in-first-out order.

Figure 2.14 provides the results. Each row corresponds to a different schedule. Each
column corresponds to a different objective function. For example, for station 2, the sched-
ule that minimizes the sum of the expected blockage minutes (schedule optX) has an ob-
jective of 2.071 under the objective W : maximum expected blockage.

For each column, it is of course true that the best value corresponds to the schedule
which was optimized relative to that objective. It is interesting to note, however, that the
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Figure 2.14: Results of the homogeneous model

optimal schedule for the metric X: sum of the expected block time for each turn, performs
very well under the other costs – in fact, in almost every case, for any given metric, the
optX schedule is second only to the schedule optimized relative to that objective function.
Our intuition to support this observation is that theX metric is a good trade-off between the
three others objectives. The FIFO schedule is significantly worse than all other schedules
for all metrics in almost all cases.

2.6.2 Heterogeneous Range Experiments

We have noted that the homogeneous model is a pure minimum cost flow formulation,
which naturally has integrality properties, while the heterogeneous model has side con-
straints that can induce the need for branching.

To assess the pure impact of the formulation itself on computational performance, we
consider the situation of no compatibility restrictions on the aircraft type (all flights can
use all gates), and find the optimized schedule under the objective (X), on a specific date
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for station 5 using the two models. As expected since we do not have any gate restriction,
we find the same optimal objective: 28.772 minutes. The run time for the homogenous
model is 1 second and the run time for the heterogeneous model is 60 seconds. It is inter-
esting to note that the difference in structure of the two models results on a much longer
computational time for the heterogeneous model. All runs were conducted on a Intel Xeon
E31230 computer clocked at 3.20GHz and 8GB DDR3 RAM clocked at 1333MHZ solved
with CPLEX version 12.1.

We then seek to understand how the level of incompatibility between gates and aircraft
types impacts performance (both for the run time and the optimal objective). To do so,
we design the following heterogeneous range experiment: We consider 3 different aircraft
types: types S,M andL corresponding to small, medium and large aircraft and representing
20%, 4% and 76% of the aircraft turns. We assume that aircraft of type M can go to any
gate, but that aircraft types S and L can be constrained. Under that assumption there are
three possibilities for a gate:

• ([S,M ]): it is compatible with only types S and M ,

• ([M,L]): it is compatible with only types M and L,

• ([S,M,L]): it is compatible with all three aircraft types.

We consider station 2; this airport has 19 gates. The different possible gate constraints
are represented in Figure 15. An entry at coordinates (x, y) is equivalent to a scenario in
which x gates are ([S,M ]), y gates are ([M,L]) and the remaining 19 − x − y gates are
([S,M,L]).

For each of these scenarios we run the heterogeneous model on metric X: sum of the
expected gate blockage lengths. Note that for some of these points (typically when all
gate are restricted for one aircraft type) the problem will be infeasible which corresponds
to a infinite cost. However, for the point (0, 0), which represents the situation with no
gate constraints at all, we will find the same optimal objective as the one obtained in the
homogeneous model. The main purpose of this experiment is to study how the objective
increases when we add gate constraints and also to study the impact on computational per-
formance as a function of how constrained the model is.

To do so, we ran the heterogeneous code for each point of Figure 2.15. We represent
their optimal objective values in Figure 2.16 and the computational time in Figure 2.17. To
compare qualitatively the different values, we use gray markers: lightest circles correspond
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Figure 2.15: Different scenarios considered in the heterogeneous range experiment

to the lowest values and the darkest circles to the highest values. Star-shaped markers are
used when the problem is infeasible.

33



Figure 2.16: Objectives of the heterogeneous range experiment

The computational times (in seconds) are distributed as shown in Table 2.5:

Min 25% Percentile Median 75% Percentile Max Mean
8 17 31 54.5 237 45

Table 2.5: Distribution of the computational times of the heterogeneous range experiment

The fact that the objective does not visibly change when moving in the vertical direc-
tion implies that constraining aircraft type S does not significantly impact the total cost.
However constraining aircraft type L has a high price, even when aircraft type S is not
constrained. This results from the fact that there are roughly four times more aircraft of
type L than aircraft of type S.

In Figure 2.16, we can see that constraining the problem typically reduces the computa-
tional time and that the lowest run times are obtained when the problem is almost infeasible
in the sense that adding one gate constraint would make the problem infeasible. However
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Figure 2.17: Computational times of the heterogeneous range experiment

we notice a zone of higher computational times when aircraft type S is very constrained.
Furthermore, the time to prove infeasibility was very short, typically on the order of one
second. As a whole, there does not seem to be any significant correlation between level of
constraints and run time, with all problems solving quickly.

2.7 Future Research and Conclusions

2.7.1 Model Extensions and Future Research

We present here some ideas for future projects to extend our research.

• Objective based on missed connections:

In our (C) metric: expected connecting passenger blockage minutes, we use the
blockage time associated with connecting passengers as a surrogate for missed con-
nections. This metric has two key limitations:
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1. It does not recognize the daily variability in passenger itineraries on any given
flight.

2. It treats the impact of blockages in a linear fashion. In fact, the impact is really
binary: either the blockage is long enough to induce a missed connection or
not.

Ideally it would be better to estimate (and do so more accurately) the expected num-
ber of passengers missing their connections due to gate blockage. To do so, we
recommend using a stochastic distribution for the connection time depending on in-
fluencing factors, such as the origin and destination of the flight and the hour of the
day. The expected number of missed connections, given a delay of d minutes, would
be the number of connecting passengers multiplied by the cumulative distribution
function of the connection time evaluated in d (i.e., the probability that a connection
time is less than d minutes).

• Adjacency issues

An important constraint faced by airlines when building a gate assignment is the
adjacency constraint which means that, in certain cases, two given aircraft type can-
not be simultaneously at two adjacent gates: the orientation of adjacent gates may
make it impossible to fit two wide-bodied aircraft next to each other simultaneously,
for instance. In order to take those adjacency issues into account in our model, we
would need to add a constraint for each pair of adjacent gates and associated pairs of
incompatible (in time and fleet type) aircraft turns to ensure that at most one of the
two assignments is made. However this potentially represents a very large number of
constraints and so alternative modeling and/or solution techniques might need to be
developed.

• Analysis of delay propagation in a multi-station network

Propagation of delays throughout the day is one of the consequences of gate block-
age: a flight delayed due to gate blockage reaches its gate late and is consequently
likely to leave the gate late, which increases the risk of generating a new gate block-
age at the current station (as well as many other negative system impacts). Interest-
ingly, this departure delay also reduces the chance that the flight will be blocked at its
next destination. As such, a more effective gating approach would take into consid-
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eration the down stream effects caused by gate blockage-caused delay propagation.

• Improved Estimation of Objective Coefficients

We conducted our analyses by using historical data to estimate delay probabilities,
and then using the probabilities to optimize gating assignments for the same time
period. In reality, of course, we could not have the known data for the same time
period that we are trying to plan. Therefore, a valuable area of research (not only for
the purpose of the robust gating assignment problem but for a wide range of airline
planning problems as well) is to better develop probability distributions for future
flights.

2.7.2 Conclusion

A study of the current situation on a large sample of U.S. airports for a major domestic
carrier shows that gate blockage occurs during 5% of commercial flights, with 2% of all
flights being delayed by at least 10 minutes. Consequences of gate blockage such as missed
connections and increased costs for airlines make it important to address this problem when
building a gate assignment.

We propose network-based models for both the homogeneous and heterogeneous ver-
sions of the problem, show that these models are computationally tractable, and demon-
strate that, for several different metrics of robustness, they significantly improve perfor-
mance over a first-in-first-out assignment paradigm.

Not surprisingly, the heterogeneous model is slightly more computationally intensive
than the homogeneous model due to the pure minimum-cost-flow structure of the homo-
geneous model. Nonetheless, for realistic instances the heterogeneous model solves quite
quickly in practice, with run times on the order of a few minutes at most.

Our computational experiments show that these models give better results regarding the
four tested objectives related to gate blockage than a standard first-in-first-out algorithm.
Even if other criteria are taken into account by airlines when building their schedules,
our research gives a useful tool which can be used to compare several possible schedules
according to gate blockage metrics and will allow airlines to select more robust choices for
their gate assignment.
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CHAPTER 3

A Stochastic Programming Approach to Reduce
Patient Wait Times and Overtime in an

Outpatient Infusion Center

3.1 Introduction

The University of Michigan Comprehensive Cancer Center (UMCCC) receives over 50,000
patients a year for infusion treatments. Visits have been increasing at a rate of nearly
5% per year and accommodating all patients with a fixed capacity is increasingly chal-
lenging. This increase in demand presents a challenge faced by many cancer centers
[Erikson et al., 2007]. Consequences include long patient wait times and staff overtime.
A key contributor to this is the high variability in infusion duration. Our objective is to take
this uncertainty into account when setting patient appointment times to improve the quality
of the appointment schedules.

3.1.1 Background and Motivation

Chemotherapy is used either before definitive local therapy (neoadjuvant), after definitive
local therapy or to treat metastatic or recurrent cancer. Some patients receive chemotherapy
a few times a week while others may be treated less frequently. The unique nature of cancer
to each patient requires individualized treatment plans which are developed by the patient
and his or her provider [Society, ].

Chemotherapy is administered using a variety of delivery methods. These methods in-
clude oral, intravenous, biliary tube, intraperitoneal, intrathecal, and intravesical. Chemother-
apy is most commonly administered intravenously, in one of two ways. The first is the drip
bag method. In this method, the drugs are slowly dripped at a certain rate through an IV
bag that is connected to the patient. The second is done by syringe. The drug is pushed
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through the syringe and into the patients veins. In either method, all patients first un-
dergo a preparation phase with a nurse, which includes seating the patient in an available
infusion chair, making sure the patient has IV access, and administering pre-medications
[Itano and Taoka, 2005].

For some patients, infusion is part of a full day process that can include appointments
in: (1) phlebotomy to have blood drawn, (2) clinic to see their provider, who uses the blood
results to determine if the patient is healthy enough to undergo treatment that day (the
blood work may also be used to decide what the treatment should be — e.g., dosage), and
(3) infusion to receive their chemotherapy treatment. Other patients may only have (1) or
(2) before their infusion, or may bypass both of these altogether. Depending on the visit,
any one patient may be at the cancer center ranging anywhere from an hour to the entire
day.

About 7% of patients seen on an average day are in the middle of their treatment regi-
men. These patients come directly to the infusion center in many cases. New patients still
require an appointment at the clinic and typically some buffer between appointments with
other parts of the cancer center is provided to guarantee with high probability that they will
be on time when arriving at the infusion area. The typical infusion process that we consider
in this paper has 5 main steps:

1. Arrival: patient arrives at his/her infusion appointment time,

2. Waiting time: patient waits until an infusion chair and a nurse are available,

3. Preparation time: nurse brings the patient to his/her infusion chair and prepares the
patient to receive the treatment,

4. Treatment time: chemotherapy drugs are administered via infusion,

5. Discharge: at the end of treatment, the patient is discharged.

In most outpatient infusion centers each nurse is responsible for a pod of three to four
chairs; the nurse moves from patient to patient, preparing them to receive the chemotherapy
drug, monitoring their infusion process and finally discharging them. Depending on the
appointment arrival schedule, and the duration of the infusion, the nurse may be attending
to three or four patients at one time. Thus, a large portion of the workload is conducted in
parallel. If several patients are waiting, the nurse usually takes care of the patient with the
earliest appointment time first. Therefore, in our model we assume a first come first serve
policy.
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One of the main challenges in scheduling appointment times for chemotherapy patients
is the uncertainty in treatment times. In order to measure this variability, we analyzed data
from the UMCCC collected electronically from August 1, 2014 to November 30, 2014,
which represents over 10,000 visits. For each visit, we compared the scheduled appoint-
ment length to the actual appointment length. Our results show large variability for all
types of appointments we studied, appointments ranging from short (30 minutes) to long
(8 hours or more). This represents 18 groups of patients having the same scheduled ap-
pointment time, but not necessarily the same treatment protocol. Most groups have at least
400 realizations in our database, the least represented group has 70 samples. We typically
observe a wide spread of the actual treatment length, centered around their mean, which
is always close to the scheduled appointment length. For all of our computational experi-
ments, we use the distributions obtained from this data set. We present the distribution of
actual appointment lengths for patients who have been scheduled for 150 minutes in Figure
3.1 as an example.

Figure 3.1: 150 Minute Scheduled Appointments

Typical causes of deviation in the actual length of appointments include:

• Early termination of infusion for patients who are not tolerating their treatment

• Complications due to patient adverse reactions

• Last minute change of administered drug which results in a treatment length (shorter
or longer) that was not anticipated in the schedule
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3.1.2 Appointment Scheduling Process

Patients are scheduled for an appointment dynamically, meaning that when a scheduler
has to set a visit date and an appointment time for a patient, the schedule is only partially
filled, and more patients may be scheduled at a later time. This sequential decision process
is referred to in the literature as an online scheduling problem — see chapter 3.5 in the
scheduling textbook by Pinedo [Pinedo, 2012] for an introduction to online scheduling or
[Erdogan and Denton, 2013] and [Erdogan et al., 2015] for two papers describing online
scheduling and applications to patient appointments scheduling.

In this paper, we focus on fine-tuning an initial appointment schedule in a second
scheduling phase. We assume that an initial schedule has already been constructed and,
shortly before the schedule is to be implemented (e.g., a day or two), this schedule is re-
fined by making small changes to those initial appointment times to create a more robust
schedule. This second phase scheduling process is not currently implemented at UMCCC

but, based on our discussion with collaborators, making changes to patient arrival times is
feasible (small timing changes are already frequently made for other purposes) and, as we
show, could yield significant improvements to overall service quality.

When refining appointment times it is important to consider that patients have already
been notified of their appointment time. Therefore a large deviation from the initial sched-
ule (e.g., an appointment moved from morning to afternoon) might have undesirable im-
pacts on a patient’s personal schedule for that day. However, we will demonstrate that
minor timing changes in the initial schedule are often enough to significantly improve the
quality of the schedule. To guarantee that changes are relatively small, we assume there
is no change to the original sequence of appointment times. This means that we create
a new schedule with refined appointment times, that conserve the initial service order of
patients. We plan to relax this assumption and consider fixed bounds on the appointment
times changes in our future research.

3.1.3 Literature Review

Comprehensive overviews of the typical process flow at a cancer center can be found
in [Singprasong and Eldabi, 2013] and [Dohse, 2007]. In [Woodall et al., 2013], a dis-
crete event tool is used to predict patient wait times at each step of their visit to a can-
cer center; the authors then present recommendations on nurse staffing based on results
obtained through an optimization model. In [Santibáñez et al., 2012], flow mapping and
various operations research techniques, such as a discrete-event simulation model and an
optimization-based scheduling tool, are used to significantly reduce the size of the patient
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wait list. In order to simplify the scheduling process a common approach is to schedule
the phlebotomy and clinic visit one day and the infusion on the following day. Pros and
cons of this “next-day” model are discussed in [Dobish, 2003]; one major drawback of
this approach is that patients have to visit the cancer center twice for each infusion. While
this might be acceptable in some cases, this is not the norm in practice, which motivates
our approach to improve service quality by simply optimizing appointment times, without
changing the process.

Chemotherapy drugs are expensive and a common practice is to only start mixing a dose
once the patient is ready in the infusion chair so as to avoid drug waste in case of patient
deferral. This potentially results in additional patient wait times and contributes to the un-
certainty in total treatment times that we observed in our historical data analysis; this chal-
lenge is discussed in various studies such as [Mazier et al., 2010], [Masselink et al., 2012]
and [Aboumater et al., 2008].

There is a significant body of literature on appointment scheduling in healthcare sys-
tems. See [Gupta and Denton, 2008] for an extensive survey of applications of simulation,
queuing, and optimization methods to appointment scheduling. Most appointment schedul-
ing models in healthcare focus on one of the two following stages: the day of visit or the
time of the appointment.

Chemotherapy treatment plans typically consist of several visits. In [Turkcan et al., 2012],
the problem of scheduling patient visit days to balance the workload is considered. On top
of patient wait time and staff overtime, the authors also aim to reduce treatment delays and
to maximize staff utilization. In [Sevinc et al., 2013], a two-stage model is developed to op-
timize days of appointment then the assignment of patient to an infusion chair. This second
phase specifically involves a heuristic based on the knapsack problem, which is similar to
the First Chair Available greedy approach we propose in our work. In [Ahmed et al., 2011]
a scheduling template is created to improve and simplify the scheduling process, evaluation
through simulation showed a potential to increase patient throughput by over 20%.

Numerous articles deal with appointment time scheduling, generally minimizing a trade-
off between patient wait times and total length of operations (or staff overtime or idle
time). However only a few articles specifically consider a chemotherapy environment.
[Sadki et al., 2011] considers clinic appointment times and bed or infusion chair availabil-
ity. The authors propose a Lagrangian relaxation-based heuristic to minimize a weighted
sum of expected patient wait time and makespan, which is exactly the objective we con-
sider in our work. Simulation is used in [Cayirli et al., 2006] to evaluate various scheduling
policies when setting patient appointment times in the context of ambulatory care visits. In
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this paper, patients are divided into different groups, which allows schedulers to have more
information and better predict the expected length of the visit which is similar to our clas-
sification of patients into types, each having a specific treatment times distribution.

Variability in treatment times further complicates the scheduling process. Very few
studies consider uncertainty in infusion times in a chemotherapy context. In addition
to [Turkcan et al., 2012], already cited above, variability is also considered in a thesis
[Tanaka, 2012] where heuristics based on the bin-packing problem are proposed. Schedul-
ing under uncertainty is more frequently applied in the context of surgery and operating
room scheduling [Denton et al., 2007], [Denton et al., 2010] and [Min and Yih, 2010].

This paper differs from the existing literature in the following ways:

• Our framework not only consider location availability (infusion chair) but also an
external resource (nurse) when scheduling patients to infusion,

• We refine an existing appointment schedule instead of creating one from scratch,

• We propose a novel heuristic algorithm to solve appointment scheduling type of prob-
lems under uncertainty.

3.1.4 Contributions and Outline of the Paper

We formulate the schedule refinement problem as a two-stage stochastic integer program.
The objective is to minimize a weighted combination of expected patient wait times and
expected staff overtime across a large set of scenarios obtained by sampling from patient
treatment length distributions. Given the computational complexity required to solve the
resulting large-scale mixed integer program exactly, we propose a fast heuristic algorithm,
which we evaluate using lower bounds on the optimal solution.

The main contributions of our work are:

1. Studying important dynamics of the process flow at an infusion cancer center to for-
mulate a new Schedule Refinement Optimization Problem (SROP) under uncertainty
of preparation times and treatment times,

2. Developing an efficient heuristic to quickly obtain good approximations of this chal-
lenging problem, and designing methods to compute lower bounds on the optimal
objective value to evaluate the quality of the heuristic solutions.

3. Using a parametric approach to generate different Pareto efficient solution schedules
to add flexibility and fit the preferences of any cancer center regarding the trade-off
between patients waiting times and staff idle time.
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4. Drawing managerial insights based on the results from our model. We show that
allowing more time between successive appointments in the middle of the day rather
than appointments in the morning or late afternoon allows us to significantly reduce
expected patient wait time at a very low cost in staff overtime.

The remainder of the chapter is organized as follows: In Section 3.2, we motivate and
describe the stochastic programming formulation of SROP and show that computing exact
solutions requires a prohibitive amount of time.In Section 3.3, we develop a heuristic al-
gorithm to quickly generate solutions which are evaluated through computation of bounds
on the optimal objective value. In Section 3.4, we present a case study of an application
of our approach at UMCCC, and propose recommendations to better schedule patient ap-
pointment times. In Section 3.5, we conclude with extensions and ideas for possible future
research.

3.2 The Schedule Refinement Optimization Problem

In this section, we formulate SROP. We first describe the problem (inputs, decisions, con-
straints, and objective), then we present a stochastic programming formulation of the prob-
lem before analyzing its tractability.

3.2.1 Problem Description

SROP can be modeled as a two-stage stochastic integer program with continuous first stage
variables for patient appointment times and binary and continuous second stage variables
representing what happens in each scenario, given the appointment times decided in the
first stage (which chair each patient goes to, waiting times, times of discharge and total
length of operations).

We use the sample average approximation framework to model uncertainty, thus, we
sample a finite number of scenarios for chemotherapy infusion times. Each scenario con-
sists of a realization of a treatment time for each patient to be scheduled. Those realizations
are drawn independently from the distributions of treatment time of each patient type, as de-
scribed in Section 3.1.2. Extensive studies of this approach can be found in the engineering
literature: [Wang and Ahmed, 2008] provides a general overview of the method applied to
stochastic linear programs while [Kleywegt et al., 2002] and [Ahmed et al., 2002] specifi-
cally study applications to integer programming. In [Mancilla and Storer, 2012] the sample
average approximation method is used in the context of appointment scheduling.
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In our problem, scenarios are defined as a realization of preparation time and treat-
ment time for each patient. We construct each scenario using the following process: first,
we sample from the appointment length distributions to obtain the total time each patient
spends in the infusion chair (preparation time with the nurse plus infusion length or treat-
ment time) — note that this does not include wait times, since wait time is an output of our
model, not an input. In order to obtain separate values for the preparation and treatment
times we use the following procedure:

1. Preparation by the nurse: Time during which a nurse brings a patient to an available
infusion chair and prepares the patient to receive his/her drug. Based on expert opin-
ion and our observations at the UMCCC, we assume that preparation time follows a
uniform distribution between 0 and 30 minutes for all patients. Even though a prepa-
ration time of 0 minute seems unrealistic, this range is used to model the variability
in preparation time: some patients might come in almost ready to receive their infu-
sion while others require extensive care during the initial set-up. The only exception
is the extremely rare event when the actual total length of the patient visit is less than
or equal to 30 minutes for which we then assume that the preparation time follows a
uniform distribution between 0 and the visit length. For instance, consider the case
of a patient who spent a total of 25 minutes in a infusion chair. The preparation
time by the nurse must have been less than 25 minutes, so we then assume that this
preparation time followed a uniform distribution between 0 and 25 minutes.

2. Treatment: Time during which the patient receives his/her drug before being dis-
charged. We define treatment time as the remaining time: total visit length minus
preparation time.

The inputs to our model are: (1) A sequence of patients to be scheduled. Recall that
we assume that this sequence has to be preserved (Section 3.1.2), (2) a set of infusion
chairs supervised by one nurse and, (3) a list of scenarios, each containing a realization of
preparation and treatment times for each patient.

The main decision variables are the appointment times for patients. These appointment
times are first stage decisions since they have to be decided before realization of the uncer-
tainty. We assign patients to chair in the second stage. In reality, the assignment decision
is dynamic and patients are assigned to a chair one by one, after realization of treatment
duration of the previous patients. In our model, the decision is made in each scenario after
realization of all treatment times for the day, which is not possible in reality. However
this approach is valid since the optimal chair assignment for a given only depends on the
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treatment time of the patients before him, as described by the first chair available routine
(see proof in the Appendix).

3.2.2 Notation and Stochastic Optimization Formulation

We now formally define all variables and parameters of the model:
Sets:
P : sequence of patients for one day for the set of infusion chairs considered. Patient

p+ 1 has to be seen after patient p.
C: set of chairs
Ω: set of scenarios considered
Parameters:
sωp : preparation time of patient p in scenario ω
tωp : infusion length of patient p in scenario ω
m: number of scenarios
λ ∈ [0, 1]: trade-off parameter in the objective function. λ is the weight assigned to

patient wait time, while 1− λ is the weight associated with the total length of operations.
M : large number
Decision Variables:

• First stage:

ap: Appointment time of patient p

• Second stage:

xωpc: 1 if patient p is treated in chair c in scenario ω; 0 otherwise

wω
p : Waiting time of patient p in scenario ω at waiting area

dωp : Discharge time of patient p in scenario ω

Lω: Length of operations in scenario ω

Figure 3.2 illustrates the different time stamps of the visit of a given patient p under a
given scenario ω. When this patient p arrives in the waiting room — at his/her appointment
time ap — he/she has to wait for the nurse and an available infusion chair for a waiting
duration of wω

p , then the patient goes to a chair and is prepared by the nurse for a duration
of sωp , then the infusion begins and takes time tωp . When it is completed, the patient is dis-
charged at time dωp .
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Figure 3.2: Patient Time Line

Formulation:

(SROP )

min
1

m

(
λ
∑
p∈P

∑
ω∈Ω

wω
p + (1− λ)

∑
ω∈Ω

Lω

)
(3.1)

Subject to:

∑
c∈C

xωpc = 1 ∀p ∈ P, ω ∈ Ω (2)

ap + wω
p + sωp + tωp = dωp ∀p ∈ P, ω ∈ Ω (3)

apj + wω
pj +M(2− xωpjc − x

ω
pic) ≥ d

ω
pi ∀c ∈ C, pj > pi ∈ P, ω ∈ Ω (4)

ap+1 + wω
p+1 ≥ ap + wω

p + sωp ∀p ∈ P − {n}, ω ∈ Ω (5)

Lω ≥ dωp ∀p ∈ P, ω ∈ Ω (6)

xωpc ∈ {0, 1} ∀c ∈ C, p ∈ P, ω ∈ Ω (7)

ap ≥ 0 ∀p ∈ P (8)

wω
p , d

ω
p ≥ 0 ∀p ∈ P, ω ∈ Ω (9)

The objective function (1) is to minimize a linear combination of the total expected
waiting time and the expected total length of operations. Since scenarios are obtained via
uniform sampling on the distributions, they all happen with the same probability 1/m and
expected values reduce to the average.

Constraint (2) represents the assignment of each patient to exactly one infusion chair in
each scenario. (3) defines the value of the discharge time of patient p in scenario ω. Dis-
charge time dωp is equal to the arrival time ap plus the waiting time wω

p plus the preparation
length sωp plus the infusion length tωp . Constraint (4) is the “available chair constraint” — A
patient can sit in a chair only if every previously sequenced patients assigned to this chair

has been discharged. Consider a scenario ω and a patient pj sequenced later than a patient
pi (not necessarily right after):
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• If the two patients are not assigned to the same chair then 2−xωpjc−x
ω
pic
≥ 1 and the

constraint is relaxed as long as the constant M is chosen suitably large.

• If the two patients are assigned to the same chair c in this scenario (xωpic = xωpjc)
then the constraint reduces to apj +wω

pj
≥ dωpi which means that patient pj cannot sit

before patient pi is discharged.

Constraint (5) is the “available nurse constraint” — A patient can sit in a chair if the
nurse has finished preparing the previous patient in the sequence, not necessarily assigned

to the same chair. Recall that we assume that one nurse only is working on this pod of |C|
chairs. Consider a patient p, the end of his/her preparation time is defined as ap +wω

p + sωp

(appointment time plus wait time plus preparation length). Only then can the nurse prepare
the following patient, indexed as patient p + 1. Finally, constraint (6) defines the value of
the total length of operations in each scenario. Since it has to be minimized, Lω will be
set to the maximum discharge time in scenario ω which corresponds to the discharge of the
last patient.

3.2.3 Run Time and Computational Performance

In this section, we assess the tractability of (SROP ). We measure the sensitivity of com-
putation time to the number of scenarios m. Even though computation time also depends
on other parameters such as the number of patients, the number of chairs and the trade-off
weight λ, the dependency on m is the most important since the Sample Average Approx-
imation requires us to consider a large number of scenarios to obtain accurate approxima-
tions of the solution to the full problem containing all possible scenarios.

We solved instances with 12 patients and 3 chairs, a trade-off parameter λ = 0.3 (we
postpone the discussion of the choice of this value to Section 4) and an suitably large value
of M = 10000.

For each choice of m we solve 10 instances, each of which is based on the random
generation of m scenarios by sampling from the historical data presented in Section 3.1.3.
The optimality gap termination criterion is set to the default value of 10−6 (larger values of
the optimality gap are discussed later). We report the median computational time in Table
3.1, under the ”original model” column. We were unable to solve instances with m > 10

scenarios in less than an hour. All computational experiments were run using an Intel Xeon
E3-1230 quad-core running at 3.20 GHz with hyper-threading and 32 GB of RAM. We
used IBM ILOG Optimization Studio (CPLEX) 12.6 C++ API software package.

The large value of M parameter in constraint (4) causes linear relaxations of the prob-
lem to be very weak. Imagine that one or both of the variables xωp1c and xωp2c are fractional

48



when solving a relaxation of the problem, then the constraint is loose and the waiting time
wω

p2
is not constrained so the actual patient wait time is drastically under-estimated in those

relaxations. In order to improve the run time of the model, we studied three areas of im-
provement:

1. We arbitrarily set the chair assignment of the first 3 patients (when 3 chairs are con-
sidered) to break some symmetry of the problem and reduce the number of binary
variables: patient 1 to chair 1, patient 2 to chair 2 and patient 3 to chair 3, in all
scenarios.

2. We add a set of constraints giving lower bounds on the length of operations in each
scenario to tighten the formulation. In scenario ω, patient p occupies an infusion
chair for a time equal to sωp + tωp (preparation plus treatment time). Since only 3
chairs are available, the total completion time cannot be less than 1

3

∑
p∈P

sωp + tωp . We

add the following constraints:

Lω ≥ 1

3

∑
p∈P

sωp + tωp ∀ω ∈ Ω

3. Finally, we address the issue of weak relaxations due to the big-M parameters. In
order to mitigate this problem, one can set M to the smallest possible value that
still guarantees the inequality to be valid. Analysis of constraint (3) shows that it is
sufficient to have M = tωpi for each patient i and scenario ω.

Table 3.1 contains run times obtained using this improved model. We also notice that a
significant part of the computational effort is spent on final branching steps, only yielding
minor improvement on the objective value. Closing the duality gap to find the true opti-
mal solution might not be worth the additional computational time in the context of patient
scheduling, so we also present computational times obtained when stopping the optimiza-
tion as soon as an optimality gap of 1% is reached. As expected, the improved formulation
outperforms the original model, and run times are even lower when we only look for an
approximate solution. However, it appears that run times still increase exponentially with
the number of scenarios considered, and even after improvement of the model, solving an
instance with as few as 10 scenarios already requires a significant computational effort.
Given those preliminary results, it is clear that a direct approach to solving this model is
not viable for a large number of scenarios. We thus propose to use the special structure of
this scheduling problem to design a heuristic approach.
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Table 3.1: Comparison of Run Times (in seconds)

Number of Original Improved Model Improved Model

Scenarios Model (10−6 Opt. Gap) (10−2 Opt. Gap)

1 0.2 0.3 0.2

2 0.7 0.5 0.5

3 2.5 1.6 1.2

4 12.3 3.4 3.0

5 35.4 7.1 6.5

6 73.6 26.3 15.3

7 157.0 76.5 40.2

8 685 153.3 113.2

9 >3600 549.2 457.6

10 >3600 >3600 >3600

3.3 A Fast Heuristic

Our heuristic approach is motivated by the following two facts: First, suppose that the
appointment times ap are known (first stage decisions). Then the model can be solved
independently for each scenario since we don’t have any first stage decision variables link-
ing the scenarios together. Within a scenario, the problem reduces to assigning patients to
chairs to minimize wait time and length of operations, with knowledge of their arrival time.
This is an easy problem that can be solved to optimality in linear time by the First Chair

Available greedy sub-routine presented in Algorithm 1. We call this problem FCA(A)

since it depends on a set of appointment times A = {ap : p ∈ P}.
Second, suppose that the assignment of patients to chairs xωpc is known for each scenario.

Then by substituting those values in place of the binary variables we reduce (SROP ) to a
pure linear programming model containing only continuous decision variables, and there-
fore solvable in polynomial time. We call this reduced problem LP (X) since it depends
on a chair assignment X = {xωpc : p ∈ P, c ∈ C, ω ∈ Ω}.

The key idea of our heuristic is to start with all patients scheduled at time 0 (ap =

0 ∀p ∈ P ), then solve FCA(A) to obtain a chair assignment X . At this point, we alternate
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between solving FCA(A) and LP (X) to obtain progressively better solutions; note that
this can be done quickly since both sub-problems are easy. Since this heuristic alternates
between solving sub-problems, each of which only contains a subset of the original decision
variables, we call it the Fix-Unfix algorithm.

The heuristic is illustrated in Figure 3.3 and proceeds as follows:

• Initialization: Start by setting the appointment times A0 to 0 for all patients, i.e.,
they all arrive at the beginning of the day, and construct the first available chair
assignment X0 by solving sub-problem FCA(A0). Note that we now use subscripts
within the Ai and Xi notations (previously referred to as A and X) to denote the
current iteration number.

• Iteration:

An iteration i starts at a state (Ai, Xi).

1. Solve the linear program LP (Xi) to get new appointment times Ai+1, which
are optimal with respect to chair assignment Xi.

2. Use those appointment times to create the next first available chair assignment
Xi+1 by solving sub-problem FCA(Ai+1).

• Termination criterion: When we obtain a chair assignment, Xk, that we already
visited in a prior iteration, we terminate and return the current pair (Ak, Xk). Note
that the algorithm always terminates since there only exists a finite number of chair
assignments.

Note also that the current objective value (combination of expected wait times and
expected length of operations) can only decrease or stay the same during an iteration. Con-
sider an iteration i. In step 1, we optimize the appointment time so the objective value of
the pair (Ai+1, Xi) is lower or equal than the one of the pair (Ai, Xi). In step 2, we create
the first available chair assignment Xi+1 which is optimal with respect to the appointment
times Ai+1 so the pair (Ai+1, Xi+1) has a lower (or equal) objective value than the pair
(Ai+1, Xi). By transitivity, pair (Ai+1, Xi+1) is at least as good as pair (Ai, Xi).
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Figure 3.3: Representation of the algorithm

We now present the First Chair Available sub-routine that is used to solve problem
FCA(A). Given a set of appointment times A, we want to optimally assign patients to
chairs in each scenario and output an optimal chair assignment X with respect to the ap-
pointment times A. The First Chair Available sub-routine sets the value of the decision
variables X = {xωpc : p ∈ P, c ∈ C, ω ∈ Ω}. Recall that xωpc = 1 if patient p is assigned
to chair c in scenario ω, and 0 otherwise. Since chairs are identical, there is no reason to
delay a patient’s treatment when a chair becomes available so it is optimal to assign patients
in order of their arrival to the first available chair in each scenario. For now, we state this
result in Proposition 1 below and we provide a formal proof in the Appendix.

Proposition 1. The First Chair Available algorithm provides an optimal chair assignment

with respect to the objective considered in SROP, for a given set of patient appointment

times.

This subroutine is presented in Algorithm 1.

3.3.1 Computational Performance of the Fix-Unfix Algorithm

We repeat the experiments from Section 3.2.3 to evaluate the computation time required to
approximately solve an instance of SROP using the Fix-Unfix heuristic. For each value of
the number of scenarios m, we applied the heuristic algorithm to 10 randomly generated
instances (with 12 patients, 3 chairs and λ = 0.3) and we report the median run time in
Figure 3.4. Because the algorithm is much faster than solving directly the Mixed-Integer
Programming model, we are able to go much further than instances with 10 scenarios. The
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FCA(A) : Data: Appointment times A = {ap : p ∈ P}
Result: Chair assignment X = {xωpc : p ∈ P, c ∈ C, ω ∈ Ω}
for scenario ω ∈ Ω do

Initialize available time of chairs to 0: Tavail(c) = 0 ∀c ∈ C ;
for patient p ∈ P (in order of arrival) do

Find a chair c0 ∈ C with smallest available time Tavail(c0):
c0 = argmin{Tavail(c) : c ∈ C} ;

Set xωpc0 = 1 and xωpc = 0 ∀c 6= c0 ;
Update available time of chair c0: Tavail(c0) = Tavail(c0) + sωp + tωp ;

end
end
return Chair assignment X;

Algorithm 1: First Chair Assignment Algorithm

dependency of run times on the number of scenarios is roughly linear, and solving large
instances of the problem can be done in only a few seconds. The number of iterations in
each run of the algorithm appeared to be independent of the number of scenarios and was
always between 4 and 7. Note that the run times are substantially faster than solving the
extensive form of the stochastic program (3.1). Our heuristic approach, applied to instances
containing 1000 scenarios, ran in just a few seconds.

Figure 3.4: Run Times with Heuristic

3.3.2 Computation of Lower Bounds on the Optimal Solution

The Fix-Unfix algorithm has two main features: (1) the objective value can only decrease
throughout the iterations and (2) it is guaranteed to terminate. However it does not have a
guarantee of global optimality (see the Appendix for a counter-example). Therefore, in this
section, we describe a way to obtain lower bounds on the optimal objective value of SROP,
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which can then be used to evaluate the quality of the solutions returned by the Fix-Unfix

heuristic.
The SROP problem can be written as:

min
{ 1

m

∑
ω∈Ω

fω(a) | s.t. a ∈ A
}

(7)

where a is the vector of appointment times, fω(a) is the weighted combination of wait
times and total length of operation obtained in scenario ω when using schedule a, and A is
the set of valid schedules respecting the sequence of patients, that is:

A = {a ∈ Rn, ap+1 ≥ ap}

To obtain lower bounds on (7), we first consider the case where the variable a (patient
appointment times) can take different values in different scenarios. In other words, we
relax the non-anticipativity constraints. Obviously, the resulting solutions are not practical
since, in reality, there is no way to know in advance the realization of preparation and
treatment times (i.e., the scenario ω). However, allowing variable a to vary by ω effectively
partitions the problem into independent sub-problems containing only one scenario which
can be solved much faster than the entire formulation. This approach yields the well-known
wait-and-see lower bound, see chapter 4 of [Birge and Louveaux, 2011b]. This bound is
valid since we are solving a relaxation of the original problem.

Clearly, this will not yield a strong lower bound in this case. It is straightforward to
see that the waiting time part of the objective will always be 0: in each scenario, since we
know how long each treatment is, we can schedule such that patients never have to wait.
The total length of operations is also minimized since there is no idle time in each scenario.

Treating each scenario independently yields a weak lower bound, but motivates an in-
termediate approach which we call partial relaxation of the non-anticipativity constraints.
It consists of partitioning the problem into groups of scenarios and allowing the first stage
decision variables a to take a different value for each group.

We choose a group size m′ and we randomly create a partition of the set of scenarios
Ω in groups G1, . . . , Gk each of size m′ where k = m/m′. In the case where m/m′ is not
integer, we simply create some groups with size m′ − 1 such that the groups form a valid
partition of Ω:

G1 ∪ . . . ∪Gk = Ω and Gi ∩Gj = ∅ ∀i 6= j
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We define the new lower bound as the sum of optimal objective values of the sub-problems
defined by the groups Gi, as follows:

1

m

∑
1≤i≤k

min
∑
ω∈Gi

fω(aGi
) s.t. aGi

∈ A

Computing this bound necessitates solving k instances of SROP, each with approxi-
mately m/k scenarios, which is faster than solving the original instance of SROP which
contains m scenarios. There is a trade-off between the quality of the bound and the com-
putational effort needed to compute it: if k is close to m we can expect a tight bound on
the objective but the computational time to obtain it will be similar to the time needed to
solve the original problem. On the contrary, low values of k leads to weaker bounds, but
are easier to compute.

3.3.3 Comparison of Heuristic Objective to Lower Bounds Values

Comparison of Lower Bound Strength: We now compare the lower bounds obtained for
different values of the group size, for an instance with 12 patients, 3 chairs and for a trade-
off parameter λ = 0.3 and 100 scenarios. We also compute the lower bound obtained
when solving the continuous relaxation of the SROP formulation obtained by relaxing the
integrality of the chair assignment variables. Table 3.2 contains the objective value of the
feasible solution returned by the Fix-Unfix algorithm, and for each bounding method, the
value of the lower bound, the computational time and the heuristic-to-bound gap, defined
as: heuristic objective − bound

heuristic objective , which is an upper bound on the performance ratio of the heuristic.
As expected, the continuous relaxation of the objective provides a weak lower bound

(see Section 3.3.2). The bounds based on the relaxation of the non-anticipativity constraints
lead to tighter values of the heuristic-to-bound gap, at the expense of a higher computational
effort as the group size increases. With a group size of 6, we reach a heuristic-to-bound
gap of roughly 3%.
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Table 3.2: Comparison of lower bounds on one instance of SROP with 100 scenarios

Objective Value Run Heuristic-to-
or Bound Time (s) Bound Gap

Heuristic 529.4 1.0 N/A

SROP Relaxation 404.6 1.2 23.6%

Partial Scenario
Decomposition

Group Size: 1 463.0 31 12.5%
Group Size: 2 489.1 28 7.6%
Group Size: 3 499.0 53 5.8%
Group Size: 4 505.7 97.2 4.5%
Group Size: 5 510.7 250.6 3.5%
Group Size: 6 514.3 1051 2.9%

Sensitivity of lower bounds: Since we are ultimately interested in solving SROP for
different values of the trade-off parameter λ, we now study the sensitivity of these bounds
with parameter λ. We use the partial relaxation approach with group size 6 to evaluate the
performance ratio of the heuristic for different values of the trade-off parameter λ. Results
are presented in Table 3.3.

• When λ is 0, it is clearly optimal to schedule all patients at time 0, which achieves
the minimal length of operations in each scenario. The optimal objective value is
simply the average of those minimal length of operations over all scenarios. In this
case the heuristic is optimal since it schedules all patients at time 0 in its initialization
step and terminates immediately. The lower bound approach also finds the optimal
objective value since it schedules all patients at time 0 for all groups of scenario,
therefore reaching the same objective value. This explains the value of 0% for the
heuristic-to-bound gap.

• When λ is 1, the problem is to minimize patient wait time, ignoring the total length
of operations. Since it is always possible to have 0 wait time by scheduling patient
far apart from one another, the optimal objective value is 0. In this case the heuristic
again finds the optimal solution and the bound is tight.

• For other values of λ the partial relaxation approach with group size 6 allows us to
obtain good performance ratios for the Fix-Unfix heuristic, typically less than 5% for
most values of λ, the worst case being 11.2% for λ = 0.9. Although the relative
heuristic-to-bound gap increases with λ it is not representative of the absolute per-
formance of the heuristic since 1 minute of extra wait time represents a much higher

56



percentage when λ is 0.9 than when it is 0.1. Also note that a 10% heuristic-to-bound
gap may not mean that the heuristic solution is far from optimal. The heuristic-to-
bound gap is a worst-case scenario, and that the true difference between the heuristic
and optimal objective values may be smaller (and in fact could even be zero).

Table 3.3: Optimality Gap for different values of the trade-off parameter λ

Parameter λ 0 0.1 0.2 0.3 0.4 0.5

Heuristic-to-Bound Gap 0% 1.9% 2.2% 2.9% 3.8% 4.1

Objective Value From Heuristic 649 623 574 517 455 388

Parameter λ 0.6 0.7 0.8 0.9 1

Heuristic-to-Bound Gap 4.7% 5.3% 6.9% 11.2% 0%

Objective Value From Heuristic 317 242 165 87 0

Performance under a general distribution class: Finally, we study the performance of
the heuristic for a random set of test instances under the normal distribution for patient
treatment times, as an alternative to the distributions based on real patient visits that we
have been using so far. We chose the normal distribution because it is commonly used in
practice and because it provides a reasonable fit to empirical data (See Figure 3.1). We ran
the following experiment: In each trial, we solved an instance of SROP with the Fix-Unfix

heuristic and computed a bound using the partial decomposition approach with a group size
of 6, with a trade-off parameter λ equal to 0.3. To create an instance, we first generated
a mean and a standard deviation for the infusion length of each patient, assumed to fol-
low a normal distribution with those parameters. The means are sampled form a uniform
distribution between 0 and 600 minutes, while the standard deviations are sampled form a
uniform distribution between 0 and 100 minutes. For this experiment, standard deviations
are generated independently from the mean of their distribution. This represents the fact
short or long treatment protocols might be equally likely to have low or high variability.
We then created 100 scenarios by sampling as we did in previous experiments, making sure
that, if a negative value is sampled, we set it to 0. Note that we assumed that the prepa-
ration time still follows a uniform distribution between 0 and 30 minutes. We recorded
the heuristic-to-bound gap obtained in 100 trials. To speed up the process of computing
the bounds, we only solve the mixed-integer sub-problems to a 1% optimality gap and re-
turned the best current lower bound. Over these 100 trials, the minimum heuristic-to-bound
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gap was 2.2%, the maximum was 5.4% and the average was 3.4%. This suggests that the
heuristic performs well for a broad range of test instances.

3.4 Case Study: Application of SROP

The goal of this section is to compare the characteristics and the quality of the schedules
obtained with the Fix-Unfix algorithm to other traditional scheduling approaches used at
outpatient infusion centers, such as UMCCC.

3.4.1 Study of Sample Size

When solving exactly a Sample Average Approximation version of a stochastic optimiza-
tion problem, the theory indicates that the optimal objective value converges exponentially
fast to the optimal objective value of the full problem as the number of scenarios increases
[Wang and Ahmed, 2008],[Kleywegt et al., 2002]. However, we are only computing an ap-
proximation to the sample problem, not an optimal solution, and we do not seek to develop
definitive theory on convergence relative to our heuristic, but rather to anecdotally explore
the impact of number of scenarios on solution quality for our test problem instance. We
therefore explore the impact of the number of scenarios on the objective value of the so-
lution for a given sequence of patients. We performed the following experiment: For each
value of m (the number of scenarios included in the approximation), we generated and
solved 100 instances (again with 12 patients, 3 chairs and λ = 0.3) using the Fix-Unfix

algorithm. For each of these solutions, i.e., sets of appointment times, we then evaluated
them via a much larger simulation, i.e., considering 10,000 scenarios.

(a) Average of Simulated Objectives (b) Standard Deviation of Simulated Objectives

Figure 3.5: Average and Standard Deviation of Simulated Objectives of Solutions from
Heuristic
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We report the average and standard deviation of the 100 simulated objectives on Figure
3.5a and 3.5b, using a logarithmic scale on the x-axis for clarity. From the figures, we
observed that both the average and standard deviation decreased roughly exponentially up
to a certain point, then reached a plateau after 100 scenarios. This suggests that considering
100 scenarios is sufficient to achieve accurate solutions. Therefore, for the remainder of
this section, we use 100 scenarios.

3.4.2 Evaluating the Benefits of Schedule Refinement

We begin by selecting a value of the trade-off parameter λ. Rather than using a single
arbitrary value of λ, we generate refined schedules with different values of λ. Recall that
values of λ close to 1 put more emphasis on patient wait times while values of λ close to 0
favor total length of operations. For each candidate value of λ, we solved SROP with 100
scenarios.

Figure 3.6 illustrates the performance of the schedules obtained with λ varying from
0.05 to 0.75 by increments of 0.05. As expected, we observe a natural trade-off between
total length of operations and total wait time. Intuitively, schedules achieving low patient
wait times have more built-in buffer between successive patients which might cause un-
used resources and ultimately a higher total length of operations. On the contrary, reaching
a lower total length of operations necessitates scheduling shorter times between appoint-
ments in order to maximize resource utilization, which leads to longer wait times.

Now, we compare refined schedules to the initial schedule obtained when schedul-
ing patients according to their scheduled appointment length found in the data set pre-
sented in Section 3.1.1. We observe, still on Figure 3.6, that a few optimized schedules
(λ = 0.25, 0.30, 0.53, 0.40), strictly dominate the initial schedule with respect to the two
considered metrics. In particular, using the Fix-Unfix algorithm on this instance would re-
duce the total expected patient wait time by more than an hour without increasing the total
length of operations, or reduce the expected duration of operations by more than 30 min-
utes for a similar level of waiting times. Another benefit of our approach compared to the
existing approach is that generating a candidate set of schedules allows more flexibility in
allowing the infusion center to enforce their preferences when picking one schedule for the
day.

For comparison purposes, we also include in Figure 3.6 the schedules obtained when
using a simple scheduling rule that has been previously proposed and referred to as “job
hedging” [Gul et al., 2011]. The heuristic computes the mean of appointment duration,
then schedules the duration of the appointment for a time equal to the mean adjusted by a
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Figure 3.6: Comparison of initial schedule and schedules from optimization in a Length of
Operations / Wait Time chart

scale factor. A scale factor of 0 corresponds to scheduling according to the mean, while
scale factor of 10% (respectively -10%) corresponds to scheduling 10% over (respectively
10% under) the mean. We observe that the optimization-based schedules from the Fix-

Unfix algorithm also dominate the schedules obtained with this simpler scheduling rule.

Analysis of a Specific Schedule: We now study in depth a schedule obtained when us-
ing the Fix-Unfix algorithm with a specific value of the trade-off parameter λ. Looking at
Figure 3.6 we pick λ = 0.3 because this is one of the schedules that dominates the initial
schedule. We compare the performance of this schedule to the initial schedule.

First, we observe in Table 3.4 that in the refined schedule, no patient is scheduled more
than one hour apart from his/her original appointment time. The largest change in ap-
pointment time is 51 minutes in this case. Moreover, half of the patients have only minor
changes, lower than 10 minutes.

Second, we compare the expected total length of operations and the expected wait time
per patient as well as its standard deviation for each patient across the scenarios considered.
The expected total length of operations is 736 minutes with the initial schedule and 711
minutes for the refined schedule. This means that using the refined schedule would lead in
average to a reduction of the total length of operations of 25 minutes, which could decrease
staff overtime or allow for adding in an additional patient to the day’s schedule.

The total expected wait time is 134 minutes for the initial schedule and 102 minutes
with the refined schedule. Table 3.5 contains the average and the standard deviation of wait
time for each patient in both schedules. We note that the refined schedule decreases wait
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Table 3.4: Appointment times in initial and refined schedules

Patient 1 2 3 4 5 6 7 8 9 10 11 12

Initial Scheduled
180 30 150 300 180 60 90 420 60 150 90 90

Appointment Length (min)

Appointment Times
0 15 30 45 180 195 255 345 360 375 420 510

in Initial Schedule (min)
Appointment Times

0 14 25 52 143 203 264 294 363 400 445 536
in Refined Schedule (min)
Change in Appointment

0 -1 -5 7 -37 8 9 -51 3 25 25 26
Time (min)

times of patients with long wait times in the initial schedule (patients 4,6,7,9,10,11 and 12).
However patients with the lowest wait times in the initial schedule tend to wait more in the
refined schedule (patients 2,3,5 and 8). As a result, wait times in the refined schedule are
(1) lower overall, and (2) better distributed between patients. We observe a similar trend
for the standard deviations: reduction (resp. increase) of the variability for patients with a
large (resp. low) standard deviation in the initial schedule. In the context of waiting time,
a moderate variability for all patients is arguably better than no variability for half of the
patients and a high variability for the other half.

For this value of the trade-off parameter λ, the refined schedule not only outperforms
the initial schedule for the two metrics that are considered in the optimization model (ex-
pected total length of operations and expected total wait time), but also has some additional
desirable features, such as wait times being more fairly distributed across patients and more
consistency in term of variability of the wait for each patient.
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Table 3.5: Patient wait times in initial and refined schedules

Patient 1 2 3 4 5 6 7 8 9 10 11 12

Initial Scheduled
180 30 150 300 180 60 90 420 60 150 90 90

Appointment Length (min)

Expected Wait Time in
0 3.8 3.2 9.6 2.2 17.2 14.7 3.0 11.8 22.3 26.7 19.4

Initial Schedule (min)
Expected Wait Time in

0 4.4 5.8 5.1 11.3 10.8 9.2 16.4 6.9 8.1 13.8 10.4
Refined Schedule (min)

Standard Deviation
0 5.0 5.3 14.9 8.9 25.6 24.7 11.2 19.6 27.7 38.9 32.9of Wait Time in

Initial Schedule (min)
Standard Deviation

0 5.4 6.9 13.3 19.1 22.8 19.7 24.5 18.3 20.1 30.4 24.4of Wait Time in
Refined Schedule (min)

3.5 Conclusions and Future Research

Scheduling patient appointment times for chemotherapy infusion is a challenging task,
largely due to the uncertainty in treatment times. In this paper, we formulated a two-stage
stochastic integer program to refine appointment times of a pre-existing schedule, with the
goal of simultaneously improving two important performance measures: expected patient
wait times and expected total length of operations.

Solving exactly this large-scale mixed-integer model for realistic instances requires a
prohibitive computational time, motivating us to design a heuristic algorithm exploiting the
structure of the problem. This Fix-Unfix algorithm alternates between optimizing the first
stage decisions and the second stage decision variables, which can be done very quickly.
We then described several ways to compute lower bounds on the objective of the original
problem. Comparing the objective value of solutions from the Fix-Unfix algorithm leads to
a performance ratio of the heuristic of about 3%. The schedules obtained with the heuristic
significantly outperformed the initial baseline schedule as well as schedules created with a
simpler scheduling rule. Under our assumptions, and for the considered data set, using the
Fix-Unfix algorithm could allow a reduction of the total daily expected patient wait time
by more than an hour for the same total length of operations. We have shown that with
limited changes to the schedule, that in turn can have minimal impact on patients prior to
their appointment, it is possible to improve both the patient experience (via reduced wait

62



times) and the clinic performance (via reduced nurse overtime).
Implementing the Fix-Unfix heuristic would allow infusion centers to quickly generate

different feasible appointment times schedules corresponding to different trade-offs be-
tween patient wait times and total length of operations, making it possible to then pick a
schedule according to their preferences. We also observed that in the schedules created by
our heuristic, the mean and variance of waiting times are more fairly distributed among
patients.

We now discuss the limitations of our work and propose three areas of future research:
Patient sequencing: Our approach is to refine a pre-existing schedule and we assume

that the sequence of patients is fixed and cannot be changed. This assumption is not only
useful in making sure that the refined schedule stays close to the initial schedule but also
simplifies the problem. We showed that SROP can be solved approximately very quickly
and yields significant improvement over the initial schedule. However, our approach does
not consider the patient sequencing optimization problem. Finding optimal sequences
could yield some benefits such as: (1) it is possible that some changes in the sequence
will not cause too large perturbations in the refined appointment times but still lead to a
better schedule and (2) gaining insight as to what makes a good patient sequence could
help in designing scheduling templates that the schedulers could use when building the
initial schedule (e.g., longest treatment time first, shortest variance first etc...).

Additional assumptions: As described in Section 3.1.2, getting chemotherapy infusion
can be a complicated process, involving other resources than a nurse and an infusion chair:
a previous visit with a clinician or at phlebotomy might be required, then a pharmacist has
to prepare and deliver the drug to be administered, and finally a nurse has to discharge the
patient upon completion of the treatment. Our approach is based on a simplified model
which does not take these steps in consideration and might underestimate delays and over-
look some interactions between various areas of the cancer center. Creating a more realistic
model is certainly possible, even though computation times might increase as a result.

Efficient scheduling rules: Although we demonstrated that an optimization-based ap-
proach could significantly reduce patient wait time and staff overtime, it is not easy to
implement in a hospital setting. Thus, there is value in designing simple scheduling rules
and guidelines that, although having less impact, are easier to implement. The experiment
presented on Section 3.3 — schedules based on scaling the mean with the same constant
factor throughout the day — does not yield much improvement over the base case sched-
ule. This suggests that allowing variable appointment lengths throughout the day might
be a crucial component of a schedule robustness. For instance, even if all patients within
a day had the same distribution, the scheduled appointment time should vary throughout
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the day. A study of a one dimensional version of the problem with only one infusion chair
shows that optimal schedules allocate more time to patients in the middle of the day (see
Appendix for more details). Specifically, extra time in the middle of the day reduces the
propagation of delays that might occur in the morning, while shorter appointment times late
in the day can reduce the likelihood of expensive overtime. Engineering similar scheduling
guidelines for the multi-dimensional case with several infusion chairs has the potential to
improve significantly the base-case schedule without adding the complexity of more elab-
orate optimization-based algorithms.

3.6 Appendix

3.6.1 Proof of Proposition 1:

Consider a fixed set of appointment times A = {ap, p ∈ P}. We use an exchange argument
to transform an optimal schedule into the First Chair Available schedule without changing
its objective value. Since the exchange argument only involves two chairs, we consider an
example with two infusion chairs for simplicity but the proof can be easily generalized to
any number of chairs, doing exchanges on two chairs at a time.

If X is a chair assignment we refer to the chair patient p has been assigned to by
cX(p) ∈ {1, 2}. Suppose that there exists an optimal chair assignment Xopt that is different
than the First Chair Available assignment XFCA (otherwise, XFCA is optimal). Let i be the
index of the first patient that has a different assignment in Xopt than in XFCA. Without loss
of generality we assume that cXopt(i) = 1 and cXFCA

(i) = 2. Similarly, let k be the index
of the first patient sequenced after patient i that is assigned to chair 2 in Xopt — that is,
cXopt(k) = 2. A schematic representation of the situation is presented on Figure 3.7, where
Xnew denotes the assignment after the exchange.

Xnew is obtained by swapping chairs 1 and 2 after patient i in Xopt. Xnew is formally
defined as:

cXnew(p) =


cXopt(p), if p < i (case 1)

2, if p ≥ i and cXopt(p) = 1 (case 2)

1, if p ≥ k and cXopt(p) = 2 (case 3)

Now we show that the objective of chair assignment Xnew is at least as good the objec-
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tive of Xopt. To do so we argue that the start time of the infusion of each patient is earlier
(or the same) in Xnew than in Xopt:

• Patients sequenced before patient i have not been moved so their start time is the
same.

• Patient i and the following patients assigned to Chair 1 in Xopt have been moved to
Chair 2. Since, by assumption, Chair 2 is the first available chair for patient i, he/she
can start earlier (or at the same time) in Xnew than in Xold.

• Patient k and the following patients assigned to Chair 2 in Xopt have been moved to
Chair 1. Because patients are treated in order of a predefined sequence, and patient
k is sequenced after patient i, he or she always starts after patient i. In Xnew, patient
k occupies the spot formerly occupied by patient i and therefore can start as early
as patient i starts in Xopt, which allows him/her to start earlier (or at the same time)
than in Xopt.

Therefore, in the new assignment, each patient begins the infusion no later than in the
optimal assignment we started with, and the objective value of the new assignment cannot
be higher than the optimal objective. Consequently, the new assignment is also optimal and
is identical to the first chair available assignment (at least) up to patient i (included). This
process can be iterated to achieve the first chair available assignment.

Figure 3.7: Assignments before and after the exchange

3.6.2 Example where the heuristic is not optimal

The following instance depicts an example where the Fix-Unfix heuristic presented in Sec-
tion 3.3.3 is not optimal. For simplicity, we consider 4 patients, 2 chairs, no preparation
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time by the nurse and two scenarios only. The intuition behind our example is to engineer
values of treatment times in each scenarios so that the heuristic generates a set of appoint-
ment times and the associated chair assignment that are not optimal but cannot be improved
by only changing one set of variable. In such a case, the Fix-Unfix algorithm will fail to
find an optimal solution. Table 3.6 contains the treatment times for each patient in each
scenario, counted in arbitrary units.

Table 3.6: Distribution of treatment times

Scenario 1 Scenario 2

Patient 1 6 10

Patient 2 12 8

Patient 3 5 6

Patient 4 4 4

We then solve this instance using the Fix-Unfix algorithm and the mixed-integer pro-
gramming formulation SROP and compare the results obtained with different values of the
trade-off parameter λ. When λ is between 0 and 0.5 and between 0.67 and 1, the heuris-
tic approach returns an optimal solution. However, when λ is between 0.51 and 0.66, the
schedules obtained with the heuristic are not optimal. For example, consider the two sched-
ules obtained when λ equals 0.6 (see Figures 3.8a and 3.8b):

• In the heuristic schedule, Patients 3 arrives at time 6 but only starts his treatment at
time 8 in scenario 2. The expected total wait time is 1, while the expected total length
of operations is 15. The weighted objective is: 0.6 ∗ 1 + (1− 0.6) ∗ 15 = 6.6.

• In the optimal schedule, there is no waiting time and the expected total length of
operations is 16. Therefore the total weighted objective is (1− 0.6) ∗ 16 = 6.4.

We now describe how the heuristic creates the schedule and give an explanation as to
why it cannot find an optimal solution. Recall that in the initialization of the heuristic all ap-
pointment times are set to 0. Then patients are assigned to chairs in order of their sequence.
Then appointment times are optimized with respect to the current chair assignment. At this
point, the heuristic obtains the schedule from Figure 3.8a. The next step of the heuristic is
to fix the appointment times and try to come up with a better chair assignment. The optimal
chair assignment is only one switch away: patient 4 would have to be moved to chair 2 in
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(a) Schedule returned by the Fix-Unfix algorithm (b) Optimal Schedule

Figure 3.8: An instance where the heuristic is not optimal

scenario 1. However, doing this without changing the objective would add 1 unit of wait
time for patient 4. Since the greedy approach does not allow this, the algorithm terminates.

3.6.3 Study of the single chair SROP

In an attempt to understand the structure of optimal solutions (which is more complicated
than scheduling everyone with the same scale factor), we propose to look instead at a sim-
pler version of the problem with only one chair, no nurse and homogeneous i.i.d. patients,
each having an appointment length following a uniform distribution between 0 and 100
minutes. To solve this problem we modify the linear programming formulation of SROP

by removing the chair assignment variables as well as the constraint that enforced waiting
time for the nurse. The reduced model is:

min
λ

m

∑
p∈P

∑
ω∈Ω

wω
p +

(1− λ)

m

∑
ω∈Ω

Lω (3.1)

Subject to:
ap + wω

p + sωp + tωp = dωp ∀p ∈ P, ω ∈ Ω (3.2)

ap2 + wω
p2
≥ dωp1 ∀p2 > p1 ∈ P, ω ∈ Ω (3.3)

Lω ≥ dωp ∀p ∈ P, ω ∈ Ω (3.4)

ap ≥ 0 ∀p ∈ P (3.5)

wω
p , d

ω
p ≥ 0 ∀p ∈ P, ω ∈ Ω (3.6)

• (3.1): Minimize a linear combination of the total expected waiting time and the
expected end of the day.
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• (3.2): Value of the discharge time of patient p in scenario ω.

• (3.3): Available chair constraint.

• (3.4): Definition on the length of operations in each scenario.

• (3.5− 3.6): Non-negativity restriction for variables.

This model is a pure linear program containing only continuous variables and therefore
can be solve very quickly. Note that it is very similar to the linear program LP (X) solved
in the appointment time optimization phase of the Fix-Unfix algorithm. We solve the model
for an instance with 10 patients and 10,000 scenarios for different values of the trade-off
parameter λ. We present the results in Figure 3.9.

Figure 3.9: Scheduled appointment length for different values of trade-off parameter λ for
the 1 chair problem

As expected, patients are always scheduled for their minimum possible appointment
length when λ = 0 since we wish to minimize the total length of operations in this case.
Similarly, patients are always scheduled for 100 minutes when λ = 1 since we minimize
patient wait times.

For the non trivial cases (0 < λ < 1), we observe that the scheduled length is not
constant across patients. Instead, schedules allow more time for patients in the middle
of the day. These bell-shape curves are characteristic of scheduling problems involving a
trade-off between makespan (or idle time) and waiting time. Intuitively, this trend can be
explained by several factors:

• Early in the day, we only have limited uncertainty and very little propagating de-
lays, so long wait times are unlikely and tighter appointments can be scheduled to
maximize resource utilization.
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• In the middle of the day, we may observe propagating delays from the morning infu-
sions and scheduling longer appointments is an effective ways to recover.

• Towards the end of the day, even though we have high uncertainty resulting from the
accumulating variability of all previous appointments, delays will not affect a lot of
patients, since only a few of them are to be scheduled. Therefore it is optimal to take
more risks and schedule tighter appointments, which will reduce the makespan.
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CHAPTER 4

Scheduling Downloads During a Small Satellite

Mission under Uncertainty

4.1 Introduction

4.1.1 The Satellite Downlink Scheduling Problem

Small satellites missions are a very efficient way of collecting data from space. Small
satellites range from 750 kilograms to less than 1 kilogram and can be added at low cost
to the launch of bigger satellites. That is why these missions have a shorter development
and benefit to scientists as well as to students who can be easily involved in these projects
[Baker and Worden, 2008].

We consider the problem of scheduling and managing the download of data from col-
lecting satellites to receiving ground stations. A typical mission consists of a satellite in
orbit around Earth collecting data and downloading them to several ground stations. The
satellite uses solar energy to generate power and consumes it to stay in orbit and to com-
municate with the ground stations. Since downloading data has an energy cost, scheduling
these transfers under resource constraints is a crucial part of the mission efficiency.

We address the dynamics of collecting, storing, using, and spilling both data and energy
in designing an optimal downlink schedule over the planning horizon. A satellite can only
communicate with a ground station when it is close enough, so as long as the orbit of
the satellite is known, the planning horizon can be divided in n intervals corresponding to
different download opportunities.

In each interval we have the opportunity to schedule a download and to choose how
much data to download, as long as the satellite has enough data and energy in its buffers at
that time to do so. During a download, the satellite transmits a scheduled amount of data
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to the ground station. Due to inefficiencies in the transmission, the ground station typically
only receive a fraction of the data sent from the satellite. The deterministic version of this
scheduling problem has been studied in the case of a single satellite [Spangelo et al., 2015]
and in the case of multiple satellites [Castaing, 2014].

4.1.2 Uncertainty in Ground Station Availability

One limitation of the deterministic models solving the download scheduling problem is that
they assume that all parameters are known with certainty, which, in the context of space
operations is not realistic, even for short-term missions. It might happen, for instance, that
a ground station involved in a scheduled downlink with the satellite is unavailable due to
a technical failure or because it is receiving a download from another satellite at the same
time. Those failures and conflicts may not be known before the start of the mission and
might compromise the scheduling decisions that have been made. In order to address this
issue we focus our analysis on uncertain availability of ground stations.

We consider independent Bernoulli random variables for each interval equal to 0 with
probability pi if the ground station is unavailable and 1 otherwise. The probabilities pi of
these random variables will be fixed and considered as parameters, which can be estimated
from analysis of historical data.

We introduce the set S = [0, . . . , 2n − 1] of scenarios each defined as a list of possible
availability for the ground stations across the planning horizon. The size of S is 2n since
there are two possible outcomes in each of the n intervals (ground station is available or
not). We can represent this as a matrix X ∈ Rn,|S| whose coefficient xis is 1 if ground
station i is available in scenario s and 0 otherwise. Each column ofX represents a scenario.

Our main decision is to schedule downlinks for each interval. We introduce two impor-
tant notions to handle the case where a downlink is scheduled but the ground station is not
available:

1. The ping capability: if the satellite is equipped with this capability, it can first send
a short message to the ground station, wait and listen to a reply from the ground
station and start transmitting data only if the ground station gave the instruction,
if the ground station is not available and does not reply back to the satellite ping,
the satellite does not transmit any data, saving energy for future downloads. If the
satellite is not equipped with the ping capability, all scheduled downlinks result in
the satellite sending data (and consuming energy) regardless of the availability of the
ground station to receive.
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2. The on-board scheduling capability: if equipped, this capability allows the satellite
to dynamically re-schedule the downlink plan after a failed downlink — we refer to
this as recourse. Otherwise, the schedule is computed once at the start of the planning
horizon in a ground station and then uploaded onto the satellite and is not modified
throughout the mission.

Most small satellites are not equipped with either of those capabilities. However, the
technology required to build these kinds of features on satellites is well known but has a
high impact on cost of production and weight which is a crucial parameter for small satel-
lites. Our goal is to decide whether or not the abilities to detect ground station unavailability
and dynamically schedule the downlink plan lead to a significant gain in the total download
and could justify the cost of developing more advanced small satellites.

4.2 Stochastic Optimization Approach

In order to evaluate the benefits of adding the ping and on-board scheduling capabilities, we
develop four stochastic optimization models (no capability, ping only, on-board scheduling
only, ping and on-board scheduling) and a deterministic model in which all ground stations
are available. The goals of this section are to present each formulation, describe the rela-
tionships between them and ultimately prove that there is no benefit in having only the ping
or the on-board scheduling capability. We postpone computational experiments to the next
section where we will discuss the increase in total expected download when the satellite is
equipped with both features.

4.2.1 Notation

Sets and Subsets

• I is the set of time intervals. We define one interval every time the satellite comes in
range with a ground station.

• S is the set of scenarios. Each scenario corresponds to a binary vector of availability
of the ground station of each interval. As an example, for three grounds stations we
would define three intervals and the scenario s = [0, 1, 1] would mean that the first
ground station is not available to receive data and that the second and third ground
stations are available.
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Parameters

• ηi is the efficiency (fraction of downloaded data successfully received by the ground
station) during interval i.

• φi is the data rate associated with downloading during interval i, measured in bits/second.

• αi is the energy cost associated with downloading data during interval i, measured in
joules/bit.

• emin, emax, dmin and dmax are the minimum and maximum allowable amounts of
energy and data to be stored in the buffer, measured in joules and bits, respectively.
The minimum amounts are typically set to 0 but in some situations it might make
sense to require that the satellite always keep a certain amount of energy on board to
process basic operations.

• estart and dstart are the amounts of energy and data stored in the buffers at the begin-
ning of the planning horizon, measured in joules and bits, respectively.

• δei and δdi are the amounts of energy and data that are acquired by the satellite during
interval i, measured in joules and bits, respectively. Energy is typically collected us-
ing solar panels and data can be gathered in multiple ways, using cameras or sensors.

• xis: is 1 if the ground station from interval i is available in scenario s, and 0 other-
wise.

Variables

• qi ≥ 0 (resp. qis ≥ 0) is the amount of data transmitted during interval i (resp. during
interval i in scenario s), measured in bits.

• eis ≥ 0 and dsi ≥ 0 are the amounts of energy and data available at the beginning of
interval i in scenario s, measured in joules and bits, respectively.

• heis ≥ 0 and hdis ≥ 0 are the amounts of excess energy and data spilled throughout
interval i, in scenario s in the case where the energy or data buffers are full, measured
in joules and bits, respectively.
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4.2.2 Deterministic model

In this first model, we consider the simplest case where ground stations are always avail-
able.

P0(η) = max
q,e,d

∑
i∈I
ηiqi (0.1)

subject to qi ≤ ∆tiφi ∀i ∈ I (0.2)

di+1 = di + δdi − qi − hdi ∀i ∈ I (0.3)

ei+1 = ei + δei − αiqi − hei ∀i ∈ I (0.4)

di, ≤ dmax ∀i ∈ I (0.5)

ei, ≤ emax ∀i ∈ I (0.6)

d1, = dstart (0.7)

e1, = estart (0.8)

q, d, e, hd, he ≥ 0 (0.9)

• (0.1): the objective is to maximize the total download received on the ground over
the planning horizon.

• (0.2): the amount of data downloaded is smaller than the download speed multiplied
by the length of the interval.

• (0.3) and (0.4): data and energy dynamics.

• (0.5) and (0.6): capacity of the storage for data and energy.

• (0.7) and (0.8): amount of data and energy available at the beginning of the mission.

• (0.9): non-negativity variable restrictions.

4.2.3 Basic satellite, no ping or on-board scheduling

Problem description: The satellite has no way to know if a ground station is available or
not. If a downlink has been scheduled, the satellite consumes energy associated with it even
if the ground station is not listening. We also assume that the data that was scheduled to
be transmitted is lost since the satellite will not try to download it at a later that. Note that
in this case, we do not consider recourse (ability to change the download plan during the
mission). Therefore, only one schedule is built for the mission and the download variable
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q only depends on interval i but not on scenario s.

Main Decision: qi is how much to download during interval i.

P1(η) = max
q,e,d

∑
i∈I

∑
s∈S

psηiqixis (1.1)

subject to qi ≤ ∆tiφi ∀i ∈ I (1.2)

di+1,s = di,s + δdi − qi − hdis ∀i ∈ I ∀s ∈ S (1.3)

ei+1,s = ei,s + δei − αiqi − heis ∀i ∈ I ∀s ∈ S (1.4)

di,s ≤ dmax ∀i ∈ I ∀s ∈ S (1.5)

ei,s ≤ emax ∀i ∈ I ∀s ∈ S (1.6)

d1,s = dstart ∀s ∈ S (1.7)

e1,s = estart ∀s ∈ S (1.8)

q, d, e, hd, he ≥ 0 (1.9)

Observations: This model is very similar to the deterministic model P0(eta). The ob-
jective function is now the expected total download received on the ground with respect to
the availability random variable xis. Note that in (3) and (4) (data and energy dynamics),
how much data or energy is collected and how much data is downloaded does not depend
on scenario s since energy and data are used regardless of the ground station availability.
Therefore the quantity of data and energy in the buffer and spilled will take the same values
across all scenarios:

(3) implies that di,s = di and hdi,s = hdi ∀i, s
(4) implies thatei,s = ei and hei,s = hei ∀i, s

So the model reduces to a deterministic model with adjusted efficiency:

η̃i = ηi
∑
s∈S

psxis = ηiE[xi] = piηi
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P1(η) = P0(η̃) = max
q,e,d

∑
i∈I
η̃iqi (1.10)

subject to qi ≤ ∆tiφi ∀i ∈ I (1.11)

di+1 = di + δdi − qi − hdi ∀i ∈ I (1.12)

ei+1 = ei + δei − αiqi − hei ∀i ∈ I (1.13)

di, ≤ dmax ∀i ∈ I (1.14)

ei, ≤ emax ∀i ∈ I (1.15)

d1, = dstart (1.16)

e1, = estart (1.16)

q, d, e, hd, he ≥ 0 (1.18)

4.2.4 Partially equipped satellite: ping capability only

Problem description: The satellite knows if a ground station is available or not before send-
ing data. If a downlink has been scheduled and the ground station is not available, the
satellites does not send data and avoid wasting its energy. We still do not consider recourse
so only one schedule is built for the mission and the download variable q still only depends
on interval i but not on scenario s.

Main Decision: qi is how much to download during interval i.

P2(η) = max
q,e,d

∑
i∈I

∑
s∈S

psηiqixis (2.1)

subject to qi ≤ ∆tiφi ∀i ∈ I (2.2)

di+1,s = di,s + δdi − qixis − hdis ∀i ∈ I ∀s ∈ S (2.3)

ei+1,s = ei,s + δei − αiqixis − heis ∀i ∈ I ∀s ∈ S (2.4)

di,s ≤ dmax ∀i ∈ I ∀s ∈ S (2.5)

ei,s ≤ emax ∀i ∈ I ∀s ∈ S (2.6)

d1,s = dstart ∀s ∈ S (2.7)

e1,s = estart ∀s ∈ S (2.8)

q, d, e, hd, he ≥ 0 (2.9)
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Figure 4.1: Sub-problems after the first download opportunity

Observations: The only difference with the stochastic model with no capability P1(η)

is the random variable xis in constraints (2.3) and (2.4): if the ground station of interval i
is not available in scenario s, then xis = 0 and the energy and data loss term is canceled out
which allows the satellite to save its energy and data for future opportunity. However re-
course is not allowed and the downlink plan is independent of the scenarios so the schedule
does not have the flexibility to take advantage of the energy saved in some scenarios.

The optimization problem can be simply viewed has:

P2(η) = max
q

∑
i≥1

∑
s∈S

psηiqixis

subject to: q feasible

Let q1 be the amount of data scheduled to be sent in interval 1, the problem can be
rewritten following Figure 4.1 as:

P2(η) = max
q

p1(η1q1 +
∑
i≥2

∑
s∈S

psηiqixis) + (1− p1)
∑
i≥2

∑
s∈S

psηiqixis

subject to: q feasible after using data and energy during download at interval 1
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Which is the same as:

P2(η, estart, dstart) = max
q
p1q1 +

∑
i≥2

∑
s∈S

psηiqixis

subject to: q feasible after using data and energy during download at interval 1

Which inductively proves that it is equivalent to solve a model where the satellite con-
sumes data and energy regardless of the availability of the ground station. In this case, the
ping capability is useless and this model is equivalent to the model with no capabilities,
that is P2(η) = P1(η) = P0(η̃). And this model is equivalent to a deterministic model.

4.2.5 Partially equipped satellite: on-board scheduling only

In this case, we consider recourse, which means that the schedule can be dynamically
changed after each interval. However, the satellite has no way to know if a ground station
is available and send data regardless. So at the end of an interval, the quantity of energy
and data on satellite is independent of the scenario and the on-board satellite scheduler
will make the same decisions regardless of the availability of the ground station during the
previous interval. Therefore the recourse capability is useless in this case and the model is
equivalent to the base case P1(η).

4.2.6 Fully equipped satellite: ping and on-board scheduling available

We now consider a satellite that only downloads when a ground station is available and can
dynamically reschedule the downlink plan after the realization of each interval.

A common feature of stochastic optimization models with recourse is the non-anticipativity
constraint [Ruszczyński, 1997]: since, in practice, the on-board scheduler doesn’t have in-
formation about what is going to happen in future intervals, we need to enforce that, if two
scenarios share the same path for the first N periods, their schedules are similar for the first
N + 1 periods. This can be done by adding non-anticipativity constraints to the model.
We create a matrix A whose coefficient as1,s2 is the first period such that the path followed
by scenarios s1 and s2 is different. Consider the scenario tree obtained for four periods in
Figure 4.2, in which each node is labeled (i, s) and the each arc is labeled 0 (if the ground
station is not available) or 1 (if the ground station is available). Note that according to that

78



Figure 4.2: Binary Scenario Tree

design, the index of a scenario s is exactly equivalent to the base 2 number formed by the
availability of the ground stations in that scenario, taken in reverse order — for example
scenario 11 corresponds to the availability 1 in period 1, 0 in period 2, 1 in period 3 and 1
in period 4 and 1 ∗ 21 + 1 ∗ 20 + 0 ∗ 22 + 1 ∗ 23 = 11. This makes it very easy to label every
node in the tree, even for a large number of periods.

The non-anticipativity constraints simply ensure that downloads in scenarios s1 and s2

share the same decision up to As1,s2:

qi,s1 = qi,s2 ∀(s1, s2) ∈ S2 ∀i ∈ [1, As1,s2 ]
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P4(η, estart, dstart) = max
q,e,d

∑
i∈I

∑
s∈S

psηiqisxis (4.1)

subject to qis ≤ ∆tiφi ∀i ∈ I ∀s ∈ S (4.2)

di+1,s = di + δdi − qisxis − hdis ∀i ∈ I ∀s ∈ S (4.3)

ei+1,s = ei + δei − αiqisxis − heis ∀i ∈ I ∀s ∈ S (4.4)

di,s ≤ dmax ∀i ∈ I ∀s ∈ S (4.5)

ei,s ≤ emax ∀i ∈ I ∀s ∈ S (4.6)

d1,s = dstart ∀s ∈ S (4.7)

e1,s = estart ∀s ∈ S (4.8)

qis1 = qis2 ∀(s1, s2) ∈ S2 ∀i ∈ [1, As1,s2 ] (4.9)

q, d, e, hd, he ≥ 0 (4.10)

Observations: The main difference of this model with the previous ones is that the de-
cision variable q now depends not only on interval i but also on scenario s which allows
recourse, in the limitation of the non-anticipativity constraint (4.9). This leads to an explo-
sion of the state space called curse of dimensionality [Pereira and Pinto, 1991] where the
number of variables and constraints grows exponentially with the length of the planning
horizon.

4.3 Computational experiments

In this section, we run two computational experiments to study the run time and the solution
quality achieved by a basic satellite (model P1) and a fully equipped satellite with ping and
on-board scheduling capabilities (model P4). We do not explicitly consider the cases where
the satellite has only the ping or only the on-board scheduling capability since we showed
in the previous section that they were equivalent to having no capability at all. Therefore
two models we are focusing on are:

• The case of a basic satellite that follows a plan computed using the deterministic
model presented in Section 4.2.3.

• The case of a fully equipped satellite that is able to dynamically schedule its down-
load depending on the successive realization of the ground stations availability. (Sec-
tion 4.2.6)
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Throughout these experiments we randomly generate data sets using the following pa-
rameters:

4.3.1 Parameters Value:

We use N(µ, σ)+ to denote the normal distribution with mean µ and standard deviation σ
truncated to positive values.

• The duration of interval i (minutes): ∆ti follows a truncated normal distribution
N(10, 4)+

• Data rate associated with downloading during interval i (bits/sec): φi follows a trun-
cated normal distribution N(5, 25)+

• Energy cost associated with downloading during interval i (Joules/bit): αi follows a
truncated normal distribution N(1.6, 0.8)+

• The energy collected during interval i (Joules): δei follows a truncated normal distri-
bution N(40, 20)+

• The data collected during interval i (bits): δdi follows a truncated normal distribution
N(25, 12.5)+

For simplicity, we assume that all ground stations have an efficiency η of 1, that the
satellite starts with a full buffer of energy and empty buffer of data at the beginning of the
horizon and that the capacities of these buffers are not limited.

4.3.2 Computational Complexity:

We begin by comparing the time necessary to solve the two models.
In the case of the basic satellite, time is not an issue: the run time of the model P1 was

linearly dependent with the number of interval and was taking less than a minute, even for
instances with 100 intervals. This is not surprising since we showed that P1 was equivalent
to a deterministic model P0 with adjusted efficiency, which has a number of variables and
constraints growing as n.

In the case of the fully equipped satellite, solving the stochastic optimization P4 was
more challenging. We solved a series of instances with increasing number of intervals
(identical to number of ground stations) and reported the run time on Figure 4.3. We
observe that the run time increases exponentially with the number of intervals in this case.
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Figure 4.3: Run time of the stochastic optimization model P4

This makes sense since the number of variables and constraints in P4 grows as O(2n).
Solving an instance with 16 ground stations took more than 30 minutes. This dependency
greatly limits the size of the problem that we can solve using this approach. We discuss
ways to mitigate this in the conclusion and future work section of this chapter.

4.3.3 Comparison of Performance in Expected Total Download:

We now compare the objective values obtained using the two models P1 and P4. To do so,
we randomly generated 50 instances of the problem with 10 grounds stations for different
values of the ground station availability probability, solved using both models and reported
the average objective value (total expected download) across all instances. We also compare
the results obtained by the two models to two other scheduling paradigms:

• A greedy heuristic that simply consists in always downloading as much as possible
while making sure to not exceed the available amount of time and energy.

• A schedule created under perfect information which means that we optimally sched-
ule downloads for each scenario independently (i.e., knowing in advance which
ground stations will be available). This value is computed by relaxing the non-
anticipativity constraints (4.9) in model P4. This could never be achieved in practice
but this provides an upper bound on the objective of P4.

Results are presented on Figure 4.4. We first notice, as expected, that the expected
amount of data downloaded decreased when ground stations are less likely to be avail-
able. The maximum objectives are reached when all ground stations are always available
(availability probability is 1) and all objectives drop to 0 when ground stations are never
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Figure 4.4: Comparison of performance for different scheduling strategies

available (availability probability is 0). Then we notice that the objective obtained under
perfect information is always higher than the objective reached by the fully equipped satel-
lites which, in turn, dominates the performance of the basic satellite. This makes sense
since the optimization models used to compute these objectives are relaxations of each
other. Note that, when the availability probability is 1, these 3 objectives are equal. This is
explained by the fact that, in this case, ground stations are always available and the problem
reduces to the deterministic case for which all models are equivalent to P0. Finally we look
at the behavior of the greedy heuristic approach. Its objective is dominated by the fully
equipped satellite since the latter achieves the optimal value of the problem of dynamically
schedule downloads (case where recourse is allowed) and the greedy solution is feasible for
this problem. We observe a more interesting behavior when we compare the greedy heuris-
tic to the basic satellite (i.e., greedy approach when recourse is allowed versus optimal
solution without recourse). When ground stations are often available (probability greater
than 0.8) the basic satellites performs better. Intuitively this is reasonable since we know
that the basic satellite performs optimally when all ground stations are available. However,
for lower availability probabilities, we see that the greedy heuristic outperforms the basic
satellite. This is because the greedy approach has the ability to take different actions in
different scenarios while the basic satellite follows a single download plan. For instance,
if a few ground stations in a row are not available, a satellite that uses the greedy approach
will have saved energy and will download a lot more during the next opportunity and this
scenario is more likely to happen when the availability probability is low.
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4.4 Conclusion

In this project, we studied the problem of scheduling downloads during a small satellite
mission under uncertainty of availability of the receiving ground stations. We considered
the difference between satellites having or not two different options: (1) the ability to
check if a ground station is available or not before downloading data, which allows to not
waste energy if the ground station is not listening and (2) the ability to dynamically adapt
its scheduled plan during the mission when ground station failures occur. We showed that
having only one of these capabilities did not allow better performance, since the underlying
optimization models are all equivalent. However, if a satellite is fully equipped with both
options, we observed that higher total expected downloads can be achieved. This comes at
the cost of a much higher computational complexity. The methodologies developed in this
work can be applied to other satellite designs and used to estimate the trade-off between
complexity of satellites and expected profitability. The key limitation of the stochastic op-
timization approach used to solve the download scheduling problem in the case of a fully
equipped satellite is the computational complexity due to the explosion of the state space
when we increase the length of the planning horizon. We started developing techniques to
mitigate this issue and solve bigger size problems. Such techniques include reducing the
numbers of variables by transforming the scenario based model into a node based model
where we only define a variable for each node of the scenario tree (Figure 4.2) and decom-
posing the problem in smaller pieces by dynamically dividing the mission horizon in in-
dependent time periods in which download choices do not impact future decisions (rolling
horizon approach).
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CHAPTER 5

Recovery Under Uncertainty in Airline

Operations

5.1 Introduction

Airline companies operate at very high cost (crews, aircraft, fuel...) with tight margins and
maximizing the efficiency of their system is extremely important. Carriers typically invest
a lot of work to improve efficiency at several levels such as revenue management, long term
strategic planning and day to day operations. A key performance indicator is the amount
of delays in the system. Delays are caused by many different factors such as bad weather,
mechanical problems, gate blockage or variability in flight times. These delays have a
wide range of negative effects. From a customer perspective, delays globally decrease
satisfaction and might cause missed connections which means that passengers need to be
re-accommodated. From an operational standpoint, delays mean wasted time and resources
(aircraft or crews) that could be used for a different flight, additional congestion at airports
which increases the risk of accidents, extra fuel burnt for idling aircraft etc...

Because carriers design schedules to maximize efficiency, aircraft and crews are typi-
cally supposed to operate several flights each day (for domestic lines), with tight windows
in between. This causes delays to propagate throughout the system. A delayed flight means
that subsequent flights operated by this aircraft and crew have a high probability of being
delayed as well. It is not uncommon to see a single perturbation in the morning impact
flights over the entire network for the whole day.

In order to recover from perturbations, carriers use a variety of techniques which in-
clude cancellations, gate re-assignments, aircraft or crew swaps, diversions, or ground
delay programs. More details about these mechanisms can be found in a survey about
recovery strategies [Filar et al., 2001]. These decisions are typically made solely based on
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Figure 5.1: Motivating Example

the current state of the system, estimating how long flights will be delayed. However, it is
possible that other perturbations will occur later in the day, forcing schedulers to reevaluate
their plans.

Consider the example (see Figure 5.1) of a storm hitting the Chicago’s Midway airport
(MDW) in the morning. Departures of outbound flights and arrival of inbound flights will
be delayed for some time until operations go back to normal, say in the afternoon. Suppose
that a flight (f1) from MDW to the Detroit airport (DTW) is scheduled to leave at 9:00AM
and to land 90 minutes later. Also suppose that a large proportion of the passengers on
this flight have booked a connecting flight from DTW to JFK (f2), New York after a 30
minute lay-over in Detroit. Now, let’s say that the first leg MDW-DTW is delayed by an
hour. It is reasonable to assume that these passengers will miss their connection to New
York so the airline then decides to book them on a direct flight from MDW to JFK (f3) in
the afternoon later that day, which will cause its own scheduling challenges, especially if
that flight was already almost full. The passengers who missed their connection are now
scheduled to arrive to New York at 7PM. The MDW-DTW flight departs at 10:00 AM and
arrives an hour late. However, by then, the storm moved to Detroit and all flights there are
delayed by an hour. The passengers could have made their connection and arrive to New
York only an hour late instead of at night. This simple example shows that, when a good
forecasting of delays is available, it is possible to make better decisions and to reduce the
overall amount of delay in the system.

Airline recovery is a difficult problem that is a common theme in the aviation oper-
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ations research literature [Rosenberger et al., 2003], [Eggenberg et al., 2010]. Predicting
perturbations and future delays is also a challenging problem that has been less studied
[Tu et al., 2008], [Xu et al., 2008]. In this paper we lay fundamental ground work to facil-
itate researchers to implement and compare different recovery strategies. We also discuss
ways to account for uncertainty in the recovery decision making. Our main goal is to de-
velop a flexible simulation framework that will model daily flights for a specific carrier, to
introduce random perturbations in the system and to measure the impact of delays as well
as the effectiveness of a given recovery strategy. In addition, we also introduce the notion
of future uncertainty and describe approaches to take it into account in the recovery deci-
sion process. In section 2 we propose a methodology to generate complete data for a daily
flight schedule based on publicly available data from the Bureau of Transportation Statis-
tics. In section 3 we describe our simulation tool. In section 4, we discuss computational
experiments and results. In section 5, we discuss future research, approaches to estimate
correlation between delays and ideas to account for future perturbations when planning
recovery.

5.2 Generating a Schedule

Since our goal is to simulate recovery and delay propagation throughout an airline network,
we need to access data containing relevant information such as, original schedule, daily
itinerary for each aircraft and crew, scheduled flight time etc. Airline data is well known to
be highly proprietary and multi-dimensional (flights, crews, passengers, etc) and it is often
a challenge for researchers to get access to comprehensive real data sets that cover their
specific needs. One of the key contributions of this work is to enable the community to
develop and test new algorithms by designing a methodology to create realistic data sets.

We decided to limit our scope to one day and one carrier. Studying only one day makes
sense since fairly few domestic flights are scheduled at night which means that delays tend
to not propagate from one day onto the next. It is true, however, that in some rare cases
disruptions can impact the network for several days, for instance an aircraft might need to
undergo maintenance at a specific airport so canceling the last flight before a scheduled
maintenance might lead to changes in the next day schedule. In these instances, recovery
strategies are different than the ones used for day-to-day operations so are considered out
of scope for this project. Additionally, we choose to neglect interactions between different
airline companies and focus on a single carrier’s network. Most majors carriers operate
their own schedule and very rarely share aircraft or crews with other airlines in case of
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disruptions.
Instead of randomly creating a schedule from scratch we start from information publicly

available on the Bureau of Transportation Statistics (BTS) website [BTS, a] to obtain a
realistic schedule. Given a specific day and carrier, we can get the following historical
data:

• Tail Number

• Origin

• Destination

• Scheduled departure time

• Scheduled arrival time

These fields give us a good idea of what the schedule was for that day. However we
need additional information since our simulation model aims to not only consider flights
but also aircraft, crews and passengers. We are specifically interested in:

• The type and capacity of each aircraft

• The number of passengers on each flight

• The number of passengers in transit on each flight and their connecting flights

• The crew flying each flight

We developed and implemented a method to randomly generate values for these addi-
tional fields. This data generation algorithm has 3 steps: aircraft data, passenger data and
crew data.

5.2.1 Aircraft Data

In order to determine the capacity of each aircraft in our schedule (and in turn estimate how
many passengers were on the flight), we use tail numbers to find the type of each aircraft
(e.g., A320, 737...). An aircraft tail number is the equivalent of a car’s license plate: it is a
unique identifier of a specific aircraft. There are various websites that contain information
about how tail numbers are assigned to each aircraft but each carrier follows its own proce-
dure (which might change over time). This makes it difficult to write code to convert a tail
number to an aircraft type. Fortunately, the Federal Aviation Administration (FAA) has an
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online registry containing the aircraft type and tail numbers of all US commercial aircraft
[FAA, ] where we can directly look up specific tail numbers. To avoid checking all of them
manually, we plan to write a Python script to do it automatically.

Once we have the aircraft type, we can find the capacity of the aircraft. The FAA
website does not give the size of each aircraft, since the number of seats depends on the
operational decisions made by each carrier (e.g., seat configurations, size of first class...).
This information can be found on each individual carrier’s website, for example the Delta
fleet is detailed at [Del, ]

5.2.2 Passenger Data

5.2.2.1 Number of Passengers on Each Flight

Getting passenger data is necessary to estimate important performance metrics such as the
total number of passenger delay minutes or the number of passenger missed connections
throughout the day. This data is highly proprietary so we use the average load factor to
relate the amount of passengers per flight to the capacity of its aircraft. The passenger
load factor is a metric commonly used in the aviation world. It is typically defined as the
number of passenger-kilometers divided by the seat-kilometers available. Load factors of
major airlines are available on the BTS website at [BTS, b]. For instance, the average load
factor for domestic Delta flights in 2015 was 85%. Depending on how specific we want to
be, we could use a single average number for the entire network or specific load factors for
each market (origin - destination pair) to model the fact the some flights are typically more
full than others.

5.2.2.2 Connecting Passengers

The vast majority of passengers book itineraries that only have one or two flights. For
simplicity, we assume that this is the case for all passengers in our model. Therefore, we
can divide passengers from each flight f in 3 groups (see Figure 5.2):

• Group 1: Direct passengers who have only flight f in their itinerary

• Group 2: Passengers who had another flight before flight f and stop at flight f ’s
destination
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Figure 5.2: Passenger diagram for flight f

• Group 3: Passengers who started their itinerary with flight f and have another flight
after

Since we already generated the total number of passengers for each flight, we need to
distribute these passengers among the three groups we just described. We are going to this
sequentially for each flight. The main difficulty is that groups 2 and 3 of different flights
are not independent; suppose that 10 passengers have an itinerary containing flight f1 as a
first leg and flight f2 as a second leg. Then group 3 of flight f1 must contain at least 10
passengers and group 2 of flight f2 must contain at least 10 passengers. We propose an
algorithm that does this while making sure to not exceed the total number of passengers
that has been previously assigned to each flight. The key idea is to assume to that some
percentage of the passengers of each flight have a second leg (group 3), assign them to
group 2 of other flights for their second leg if possible (that group 2 might be already full
of passengers coming from a different first leg) and finally assign all remaining passengers
to be direct (group 1).

The first step is to assign a proportion x of passengers of each flight to be starting locally
and connecting to a future flight (group 3). Note that this allocation is a starting point and
might change during the algorithm, in the case where there is no available feasible flight
to connect to or that they already have too many incoming passengers. Also note that
parameter x is identical for all flights but could easily be randomized or depend on flights,
time of day, aircraft size etc.
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The second step is to go through the list of flights and sequentially create connections
while making sure to not exceed the capacity of group 2 of the second leg flight, which is
(1-x) times the number of passengers for that flight. Lets consider the case of a flight f : we
create a list of potential candidate next flights fi that satisfy the following conditions:

• fi origin is equal to the destination of f

• fi scheduled departure time is between 30 minutes and 90 minutes after the scheduled
departure time of flight f .

• fi is not going back to the origin of f

• the distance of the 2 legs is no more than 3 times the distance of a direct flight. (We
compute straight line distances between airports using latitudes and longitudes found
on [lat, ].)

We then randomly divide passengers from flight f who have a second flight in their
itinerary (group 3) between the n candidate flights fi, (1 ≤ i ≤ n) making sure that
we don’t exceed the remaining number of unassigned seats in group 2 of each flight fi
(passengers coming from a previous flight).

Once we did this for all flights, we go through the list of flights one more time and
count the number of passengers from group 2 and group 3 and assign the rest to group 1,
which means that they will have only one leg in their itinerary.

5.2.3 Crew Data

Similar to aircraft, crews can also contribute to delay propagation. If a flight operated
by a given crew arrives late then the departure of the next flight of the crew is likely to
be delayed as well. This is especially important when a crew does not stay on the same
aircraft throughout the day. Consider a crew flying a flight f1 on an aircraft A and then a
flight f2 on an aircraft B, while a different crew uses aircraft A to operate flight f3. If flight
f1 is late enough then flights f2 and f3 will both have a delayed departure. In this case both
crew and aircraft propagate the delays in two different flights.

To model this in our simulation tool, we need to access crew data, i.e., which crew
operated each flight. This information is not publicly available online so we developed our
own method to generate crew assignments. For simplicity, we only consider cockpit crews
and we assume that cabin crew stay with the same cockpit crew for a day. One simple way
to do create a crew assignment is to assign one separate crew to each tail number for the
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day. However this would lead to violate some basic Department of Transportation (DOT)
constraints (namely maximum flight and duty time per day) as well as overlooking the fact
that real schedules have crew swaps (i.e., crew switching tail number in the middle of the
day). To mitigate these two limitations, we follow a more advanced procedure in which we
consider one crew at a time, start that crew on a random flight at the beginning of the day
and then randomly decide if the crew stays on the same aircraft for the next flight or if we
have a swap and the crew changes aircraft. We add flights to the crew’s schedule until we
reach the maximum daily flight or duty time defined as the time between the crew’s first
departure and the crew’s last arrival for the day. We then pick a new crew and repeat until
all flights have been assigned to a crew.

Parameters:
CrewSwapProbability: [0, 1]

MaxFlightTime ≥ 0

MaxDutyTime ≥ 0

Crew Assignment Algorithm:

1. crewID=0

2. Pick a random tail number from the schedule and find the earliest possible departure
with that tail that does not have a crew yet. Assign flight to crewID, update total
flight and duty times for this crewID and remove the flight from the list.

3. Randomly decide if the crew will stay with this tail or not based on the CrewSwap-
Probability.

4. If (no swap): Find the next available flight with the current tail number and check
if it feasible to assign it to the current crew (i.e., does not violate the max flight and
duty times.

• If (feasible): assign flight to crewID, update total flight and duty times for this
crewID and remove the flight from the list.

• If (not feasible): try to assign the crew to a flight on a different tail number
using step 5.

5. If (swap or could not keep crew with the same tail number): Generate list of candi-
dates for crew swap (see below)
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• If (candidate list is not empty): randomly pick a candidate flight, assign it to
crewID, update total flight and duty times and remove the flight from the list.

• If (candidate list empty): no flights with a different tail number are available
for the crew, try to assign the crew to the next flight on their current tail number
following step 3.

6. If could not assign crewID to anything, start a new crew (crewID++). Otherwise
return to beginning of loop to assign the next flight to the crew.

7. Stop when the list of flights is empty.

For a given flight f , the list of candidates for crew swap contains all flights fi that
satisfies the following conditions:

• fi origin is equal to the destination of f

• fi scheduled departure time is between 30 minutes and 90 minutes after the scheduled
arrival time of flight f .

• fi and f have the same aircraft type

• Assigning flight fi to the crew does not violate the max flight and duty times.

5.3 Simulation Tool

Starting with basic information about a daily schedule obtained from BTS, we generated
a realization of a complete schedule. Now we wish to develop a simulation tool allowing
us to introduce delays and see how the system behaves under various recovery strategies.
We begin this section by defining delays, then we describe two different simulation sce-
narios: one without any recovery mechanism and one allowing aircraft swaps. Many other
scenarios, such as crew swaps and cancellations, could be implemented in the future.

5.3.1 Delays

We distinguish three different types of delay:

1. Primary Delay: delay that we introduce in the system as an exogenous perturbation.
Primary delays impact the earliest possible departure time of the flight and could be
caused by weather, a mechanical problem, a crew or gate agents being late for work,
etc.
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2. In-flight Delay: random perturbation of the flight time that we introduced to simulate
randomness in taxi and flight. We aggregate the variability in taxi in and out and
during flight and only generate one random delay for the flight, not three (one for taxi
out, one for in-flight, and one for taxi in). Note that this ”delay” could be negative,
meaning that the flight took less time than it was scheduled for.

3. Secondary Delay: delay resulting from propagation. This type of delays occurs when
the aircraft or crew operating a flight are not available at the scheduled departure time
because they are delayed from a previous flight.

Example:

Consider a flight with a scheduled departure at 9:00AM, estimated taxi in and out of 10
minutes each, an estimated flight duration of 90 minutes and a schedule arrival at 11:00AM.

• Case 1: We do not introduce primary or in-flight delay and the aircraft and crew
are on time. The flight leaves on time and we have taxi out = 10min, flight=90min,
taxi in=10min so the flight arrives at 10:50AM, i.e., 10 minutes early.

• Case 2: We introduce a 20 minute primary delay, no in-flight delay and the aircraft
and crew are on time. Then the flight leaves at 9:20AM and arrives at 12:10AM, i.e.,
10 minutes late.

• Case 3: We introduce a 20 minute primary delay, a 10 minute in-flight delay and
the aircraft and crew are on time. Then the flight leaves at 9:20AM and arrives at
12:20PM, i.e., 20 minutes late.

• Case 4: We introduce a 20 minute primary delay, a 10 minute in-flight delay and
assume that the aircraft is 30 minutes late, and the crew is 15 minutes late from a
previous flight. Then the flight earliest possible departure is 9:20AM because (pri-
mary delay=20min). At this time, the crew is ready but the aircraft is not ready
until 9:30AM so we have a secondary delay of 10 minutes and the flight leaves at
9:30AM. Then we have taxi out=10min, flight=100min, taxi in=10 so the flight ar-
rives at 11:30AM i.e., 30 minutes late. This final 30 minute delay is the result of 20
minutes of primary delay, 10 minutes of secondary delay and 10 minutes of in flight
delay (that is 40 minutes) and a 10 minute buffer in the schedule.
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5.3.2 No Recovery Strategy: Delay Propagation Model

The first scenario that we consider is a simple delay propagation model: we do not take any
action when perturbations occur. When a flight is delayed, it will leave as soon as possible
on its scheduled route and arrive late at its destination. Passengers will then potentially miss
their connecting flight if they have one. We do not model passenger re-accommodation in
this simulation tool, we simply report the number of missed connections as part of the list
of output metrics. We consider flights one after another, in order of scheduled departure,
generate delays and compute their actual departure and arrival time, we then accordingly
delay subsequent flights using this crew or aircraft. An important concept that we use in this
algorithm is the aircraft (resp. crew) turn time which is defined as the time that an aircraft
(resp. a crew) needs between an arrival and its next departure to complete operations such
as unboarding and boarding of passengers and luggages as well as potential refueling for
the aircraft and taking a break and going through various check lists and flight plans for the
crew. These turn times can typically take up to 30 minutes.

The simulation scheme follows the procedure below.

Initialization:
First, we randomly draw a realization of primary and in-flight delays (see section 2)

and we initialize all secondary delays to 0. Then we create 3 data structures:

• A sorted list F containing all flights based on their earliest possible departure time
defined as (scheduled departure + primary delay + secondary delay).

• A list of aircraft (tail numbers) with their ready time and their current location, each
aircraft ready time is initialized to 0 and their current location is set to the origin of
their first flight of the day.

• A list of crews with their ready time and their current location, initialized the same
way as the list of aircraft.

Propagation:
While F is not empty,

1. Consider first remaining flight in the queue F (earliest possible departure) say f0

2. Set current time t = earliest possible departure of f0

3. Check if aircraft and crew are ready (and in the right location) at that time
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• If (aircraft and crew are ready) calculate arrival time, update aircraft and crew
locations to be f0 destination, and their ready time to arrival time + min turn
time. Remove f0 from F and return to step 1.

• If (aircraft location is not the current origin): the aircraft assigned to flight f0

is still operating a previous flight and has not yet arrived at the origin airport.
In this case, we know that earliest departure of flight f0 will be pushed back by
at least the time needed for the aircraft to turn so we add the minimum aircraft
turn time to secondary delay. Return to step 1.

• If (crew location is not the current origin): similar to the previous case, the
crew is still operating a previous flight so we add the minimum crew turn time
to secondary delay. Return to step 1.

• If (aircraft is not ready): the aircraft is at the correct airport but is still turning,
we simply add the slack to secondary delay (aircraft ready time earliest possible
start time). Return to step 1.

• If (crew is not ready): the crew is at the correct airport but is still turning, we
simply add slack to secondary delay (crew ready time - earliest possible start
time). Return to step 1.

5.3.3 A Simple Recovery Strategy: Aircraft Swaps Model

We now introduce an elementary recovery strategy: the aircraft swap. When two air-
craft (say aircraft 1 and aircraft 2) are on the ground at the same time in a given sta-
tion of the network, it is possible to decide that aircraft 2 will be used to operate the
flight that was originally scheduled to aircraft 1 and vice versa. This is called an aircraft
swap [Jarrah et al., 1993],[Gopalan and Talluri, 1998a], [Aktürk et al., 2014] and it is used
in several situations. Sometime this mechanism is used to proactively change the schedule
before the day even starts to ensure that a specific aircraft ends at a given station in order to
undergo a scheduled maintenance [Lapp and Cohn, 2012]. Some other time, aircraft swaps
happen opportunistically during the day to reduce delays.

Consider the example given in Figure 5.3 where we consider 4 flights between 5 airports
A, B, C, D and E. In this example, aircraft 1 and 2 are swapped for flights B to E and B
to C. This would be useful in the maintenance situation if aircraft 2 had to finish the day
at airport E which has the necessary staff and equipment to provide maintenance. Such
a swap could also be useful in the case of delays. Suppose that aircraft 1 has a one hour
delay on its first leg (A to B). Aircraft 1 lands at airport B at 10:00 instead of 9:00 and its
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second leg (B to C) will be delayed as well since it takes time to turn the aircraft. However,
aircraft 2 will be ready earlier since it landed at 9:30 so it could operate the flight from B
to C while aircraft 1 will be used for the B to E flight. In this scenario, we would not have
any second leg delay if we swap aircraft.

(a) Original lines of flight (b) Swapped lines of flight

Figure 5.3: Example of swapped flights between two aircraft

Aircraft swaps can be advantageous but are limited by several factors. The main con-
straint is aircraft capacity, we need to make sure that both aircraft have enough capacity
to handle passengers in their second leg. Another factor to consider is cockpit and cabin
crews: are they staying with their respective scheduled flights or are they swapped as well
to stay with their aircraft? The first case might not be possible if the aircraft are different
and the crews are not trained to operate both aircraft types. The second case might lead to
scheduling issues because crews now potentially end up in different cities at the end of the
day. In the context of this project, we assume that crews always stay with their aircraft —
so not necessarily to their scheduled flights. Another significant concern is maintenance,
the aircraft have changed their lines of flight and so they will end up overnight at differ-
ent locations, which is a problem in case of scheduled maintenance, as well as incurring
different flight miles and numbers of take-offs and landings. Finally, swapping aircraft on
the fly is an operational challenge since it means that they have to be towed to a different
gate or that passengers need to be directed to a different gate. However the prospect of
reducing delays is, in some cases, deemed worth the cost and airline companies decide to
swap aircraft. One way to mitigate these limitations is to only allow aircraft swaps between
identical aircraft (i.e., same aircraft type), which we assume to be true in this paper.

We enhance the delay propagation model discussed in Section 5.3.2 by adding the op-
tion to swap aircraft when it can reduce delay. We follow the same forward procedure,
looking at one flight at a time. Consider a flight from A to B that is scheduled to arrive at
B at time t1. If this flight is delayed and the aircraft has a second leg from B to C sched-
uled to depart at time t2 later in the day, we look for a candidate aircraft to swap. In this
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simulation model we are interested in reducing the total number of delay minute so we
only consider as candidates flights scheduled to leave from B after time t2, otherwise the
combined delay for both flight would increase. We also make sure that candidates have
the same aircraft type (see compatibility issues describe in the previous paragraph). Since
we assume in this variation that crews stay with their aircraft when swaps happen, we then
check that swapping would not lead to a violation of their maximum flight and duty time
for the crews assuming no subsequent delays (e.g., we do not allow a swap for a three hour
flight if a crew only has two hours of flight remaining on their daily clock). If we find a
candidate aircraft that meets all of these conditions, we then choose the aircraft with the
earliest scheduled arrival at airport B and perform the swap.

5.4 Computational Experiments

In this section we run three different computational experiments to explore the effect of
primary delays and other factors on delay propagation. For of all of these computational
experiments we assume an average distance-based load factor of 85% (see section 5.2.2.1)
as an approximation of the average percentage of occupied seats on each flight and ran-
domly generate the number of passengers by multiplying the capacity of each aircraft by
a random number following a normal distribution with average 85% and standard devia-
tion 7.5% (truncated between 60% and 100%). We also set the amount of in-flight delay
to follow an arbitrary normal distribution with mean 0 and standard deviation 10: N(0,10)
so as to introducing minimal in-flight perturbation since we are focusing on the impact of
primary delays on the system.

5.4.1 Effect of Primary Delays

We first study the impact that primary delays have on the system using the Delay Propaga-
tion simulation model. we are interested in exploring the relationship between primary and
secondary delays. The primary delays will follow a normal distribution with mean 0 and a
variable standard deviation but negative values will be set to 0 since we want to consider
actual (positive) delays. This means that, on average, half of the flights will not have a
primary delay but could be ultimately delayed nonetheless because of secondary (propa-
gated) or in-flight delays. For each value of the primary delay’s standard deviation we run
the delay propagation model of our simulation tool for 50 trials and report average output
metrics across the system. We are specifically interested in primary and secondary delays,
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Figure 5.4: Time Based Output Metrics

departure and arrival delays as well as the percentage of flights we arrived 15 minutes or
more after their scheduled arrival, the percentage of connecting passengers who missed
their connection and the percentage of crews that had to fly pas their maximum flight or
duty times. The results are presented on Figures 5.4 and 5.5. As expected, all the metrics
increase as we introduce more primary delays in the system with the exception of the per-
centage of crews who flew past their maximum flight time. This is because the amount of
flight time for a crew is independent of primary delays which, by definition, happen on the
ground. Flight time is only impacted by in-flight delays which are kept very low in this
simulation.

It is interesting to observe that secondary delays occur which means that primary de-
lays propagate in the system. However there is less delay due to propagation than delay
introduced via primary delays. this shows that the system is able to absorb some of the
delays due to 2 mechanisms: (1) the schedule have built-in buffer in between flight (e.g.,
an aircraft has 45 minutes scheduled between two successive flights but only need 30 min-
utes to turn) and to a lesser extent (2) flights are sometimes faster than scheduled, which is
modeled in our simulation by a negative in-flight delay, and are able to make up in the air
some of their departure delays.

5.4.2 Effect of Complexity in the Schedule: Crew Swaps

Now, we use our simulation tool to study the relationship between complexity of the sched-
ule and delay propagation. We specifically look at how crews are assigned to flights of a
daily schedule can impact delay propagation. Consider the simplest case where a crew
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Figure 5.5: Percentage Based Output Metrics

stays with a single aircraft for their entire shift. If one of their flights is late, the delay
potentially propagate to the rest of this crew’s schedule for the day. Now, consider the case
of where the crew changes aircraft in the middle of the day. A delay in a flight before this
crew swap can potentially impact two sets of flights: the remaining flights on the crew’s
schedule but also the subsequent flights using the delayed aircraft. Intuitively, a schedule
with a lot of crew swaps is more vulnerable to delay propagation.

Recall from section 5.2.3 that we model crew swaps with a crew swap probability: after
assigning a crew to a flight we randomly decide if the crew will carry on the same aircraft or
change based on that probability. In this experiment, we change the value of this parameter
and run the simulation tool 50 times for each value using the Delay Propagation model. We
then report the average secondary (propagated) delay per flight and the percentage of flights
that have an arrival delay of more than 15 minutes. Results are presented on Figure 5.6.
It appears that schedules generated without crew swaps have a significantly lower amount
of propagated delays. We also note that, among the schedules that have crew swaps (crew
swap probability > 0), increasing the crew swap probability leads to slightly more delays.
We observe a plateau because, after a certain point, there is very little opportunity for ad-
ditional crew swaps in the schedule , so even if we increase the crew swap probability, the
resulting actual schedule will be very similar.
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(a) Average secondary delay (minutes) (b) Percent of flights delayed by more than 15 min

Figure 5.6: Effect of crew swap probability on delay propagation

5.4.3 Effect of Adding a Recovery Mechanism: Aircraft Swap

Finally, we explore the potential benefits of using aircraft swaps when facing delays. We
run the Aircraft Swap Simulation Model and compare its performance with the Delay Prop-
agation Model on the same input schedule after 20 trials. Table 5.1 contains the results ob-
tained with both simulation models. Out of 2598 flights, the Aircraft Swap Model created
112 swaps on average because it identified an opportunity to reduce delays. This resulted
in about one less minute of delay per flight. At the flight level this does not seem like much,
but if we consider the savings at the network level, this represents almost 2600 minutes of
delay saved for a single day. As a consequence, the percentage of flights delayed by more
than 15 minutes and the percentage of connecting passengers who missed their connection
is slightly lower when aircraft swaps are allowed. However, one drawback of introducing
aircraft swap is that we roughly have twice as many violation of the maximum duty time
per crew constraints. When creating a schedule, each crew has a scheduled total duty time
that fits that constraint, however, when dynamically making aircraft swaps during the day
we modify these crew schedules and potentially introduce violations. As explained in Sec-
tion 5.3.3, we attempt to reduce this issue when looking for candidate by only considering
crews that have enough time remaining on their clock to operate the rest of the swapped
line of flight assuming no future delays. The problem is that it is often the case that de-
lays occur which result in violation of both crews maximum duty time constraints. Better
predicting delays could help making more informed decisions when swapping aircraft and
crews and limit the number of violation caused by the swaps.
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Table 5.1: Comparison of Delay Propagation And Aircraft Swap models

Simulation model Number
of flights

Number
of swaps

Average
primary delay

Average
secondary delay

Delay Propagation 2598 0 11.84 3.78
Aircraft Swap 2598 112 11.84 2.74

Simulation Model Average
Arrival Delay

Arrival Delay
>= 15

Missed
Connections

Max
Duty Violated

Delay Propagation 15.6 40% 10.0% 1.77%
Aircraft Swap 14.6 38% 9.7% 3.89%

5.5 Incorporating Downstream Disruptions: Future Re-

search

The work described in this paper is the beginning of a larger project in which we would like
to account for possible future perturbations during the recovery decision making process.
As illustrated by the motivating example of Figure 5.1, knowledge of potential future delays
could influence how we respond to earlier delays. In order to capture and evaluate this
potential, we see two main avenues of future research. Firstly, better understanding the
correlation between delays at different points in time and different airports which would
ultimately lead to getting estimates of the probability of future disruptions in the network
based on the current state of the system. And secondly, developing recovery strategies that
use this additional information to be more effective.

5.5.1 Correlation Between Delays

So far, our simulation tool uses independent and identically distributed truncated normal
distributions to generate the primary delays that we introduce in the system. However,
looking at historical delays show that we can have a better idea of future perturbations by
looking at the current state of the system than by simply looking at averages.

We run a simple experiment to evaluate the potential relationship between delays at
two given airports. We specifically study delays at Detroit airport (DTW) given knowledge
of delays at Atlanta airport (ATL). For the purpose of this experiment, we look at buckets
of one hour and define a perturbation as an hour that has 20% or more of flights with a
departure delay of 15 minutes or more. We looked at year 2013 and reported the percentage
of days that had a perturbation for the corresponding time slot at DTW on Table 5.2. The
second line of the table shows the proportion of days with a perturbation at DTW for each
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Table 5.2: Percenatage of days with a perturbation at DTW by hour

Time 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18
Unconditional 14.5% 11.6% 31.6% 20.5% 41.6% 26.7% 34.9% 44.0% 38.8% 58.2% 46.2%
Conditional on ATL perturbation

t = 0 38.9% 44.4% 47.3% 47.1% 55.7% 50.8% 56.5% 62.3% 57.0% 68.2% 59.6%
t = -1 47.2% 63.0% 45.3% 52.9% 49.8% 62.7% 65.3% 56.4% 70.3% 60.5%
t = -2 63.9% 70.4% 51.4% 52.9% 59.8% 72.9% 59.7% 68.8% 63.2%
t = -3 66.7% 59.3% 52.7% 62.7% 66.7% 68.9% 73.4% 62.0%

hour across the year. For instance, 14.5% of the days had 20% or more outbound flights
delayed by more than 15 minutes from 7AM to 8AM compared to 58.2% of the time for
the 4-5PM bucket. We also note that the likelihood of having a perturbation increases
throughout the day. This is a typical observation when studying airlines performance: more
delays are expected in the afternoon than in the morning. The main reason is that each day
starts fresh, with typically all aircraft being available on time. Then, as the day progresses,
delays occur and start propagating until the end of the day.

We then do the same analysis for flights leaving Atlanta and report the conditional
probabilities of having a perturbation in DTW given that ATL had a perturbation at the
same time or 1, 2 or 3 hours before. Let’s look at the 10-11AM bucket: without any
additional information we can only say that the probability of having a perturbation at
DTW is 20.5%. However, if we know that ATL has a perturbation for that 10-11 bucket,
then the probability of having a perturbation in DTW jumps to 47.1%. Now, if we observe
a perturbation at ATL for the bucket 9-10 AM then we know that the probability of having
a perturbation in DTW one hour later is 45.3%.

Generating this kind of tables can give us insight on the amount of correlation between
delays at different airports and help better predicting future delays based on the current
state of the network.

5.5.2 Recovery Under Uncertainty

Once we are able to estimate the probability of having future delays based on the current
state of the system, we can use this information to make better recovery decisions. A
simple enhancement of the aircraft swap model would be to include the expected primary
delay of the candidate flight that we are considering swapping with. This will prevent
swapping with a flight that has a high risk of being delayed as well. This could also help
better estimating passenger missed connections (recall example form Figure 5.1) to prevent
making unnecessary swaps when the entire line of flight is delayed.

Another important feature will be to generate primary delays based on historical distri-
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bution instead of using iid. distributions. This will allow us to model complex interactions
in the network such as correlations in delays. For instance, bad weather in Chicago might
often be followed by bad weather in Detroit a few hours later which would cause similar
primary delays.

As part of future research, we would also like to develop other recovery mechanisms,
such as cancellation or ground delay program and compare key performance indicator met-
rics with the baseline Delay Propagation Model.
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CHAPTER 6

Conclusion

In this dissertation, we studied four scheduling problems found in the industry. In each of
these four problems, we analyzed how uncertainty in parameters impacts the quality and
reliability of the schedules and proposed one or several approaches to generate better solu-
tions.

In Chapter 2, we considered the problem of assigning flights to gates to reduce the
impact of gate blockage, which occur because of variability in the system: flights leav-
ing/arriving early or late from/to their destination gate. Analysis of historical data showed
that about 5% of US domestic flights experience a gate blockage. We develop a network
flow optimization model to create gate assignments with a lower expected amount and
duration of gate blockage. The schedules obtained from this approach were significantly
outperforming a schedule created using a first in first out paradigm. This project showed
how considering uncertainty when making scheduling decisions can help mitigating the
negative effects of variability during operations. Ideas for future research include enhanc-
ing our model with adjacency constraints and developing other techniques to estimate the
probability of gate blockage between two flights.

In Chapter 3, we explicitly considered recourse decisions in a patient scheduling set-
ting. We developed an optimization model to fine tune patient appointment times at a
chemotherapy infusion center as well as dynamically assign patient to an infusion chair
as uncertainty in treatment times is realized. This allows to account for delay propagation
throughout the day, which was ignored in Chapter 2. Our objective was to minimize a lin-
ear combination of expected patient wait time and expected total length of operations in a
two-stage optimization model containing one scheduling phase to set patient appointment
times and one recourse phase to assign resource to patients throughout the day. The next
step for this project would be to include patient sequencing to further improve the quality

105



of the appointment schedules.

Chapter 4 considered the problem of scheduling downloads during a small satellite
mission. The main difference with chapter 3 is that this problem is dynamic by nature
and involve a multi-stage decision tree, instead of a simpler two-stage approach. The mis-
sion planning horizon was discretized in time intervals, each representing an opportunity
to download to a ground station. When making decisions on how much data to download
in each interval, we do not know for sure whether the ground station is available to receive
data or not. We modeled and compared the performance of two different types of satel-
lite in term of the expected amount of data they could download during the mission. We
showed the value of being able to dynamically adjust the download schedule during the
mission, using the knowledge of the realization of uncertainty in previous intervals. One
of the main challenges of this approach is the computational complexity required to solve
the large scale optimization model. We could address this as part of future research by
developing equivalent formulations and approximation algorithms.

In Chapter 5, we studied the concept of recovery in the context of delay propagation
in an airline network. The difference between recovery and recourse is that the cost of
recourse is directly accounted for in the scheduling phase while recovery decisions are
dynamically made during the day. In this project, we designed a data generation scheme
and a simulation framework to compare different recovery strategies such as swapping air-
craft between two flights. We introduced primary delays in the system and compared the
amount of delays that is propagated throughout the day by aircraft and crews. This sim-
ulation framework is a good fit to design and implement other recovery strategies in the
future. We would also like to model the correlation of delays between different airport to
better represent the interactions that impact delay propagation.

These four projects all present examples of uncertainty in real-world scheduling prob-
lems. We showed that modeling this variability can improve the quality of the schedules
generated but usually increases the complexity of the problem. The stochastic counterpart
of a deterministic optimization model is typically much harder to solve. We described sev-
eral tractable approaches to solve these problems such as exploiting a network flow struc-
ture in Chapter 2 and the Fix-Unfix heuristic of Chapter 3. In the application to aerospace of
Chapter 4, we showed that the computational complexity of the model grew exponentially
with the length of the planning horizon. This curse of dimensionality is a very common
challenge in multi-stage stochastic optimization models. We plan to study a rolling horizon
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method to simplify the problem in future research.

Another challenge of introducing uncertainty into deterministic scheduling problems
lies in the definition of objective functions that could take many different forms. In the
gate assignment project, we used historical data to compute the probability of conflict be-
tween any two pairs of flights. We then directly used these values in the objective. We
took a wildly different approach in Chapter 3 and 4 by defining scenarios and optimizing
expected outcomes across all these scenarios. While this scenario-based approach allows
to model more of the granularity of the problem such as recourse decisions in each indi-
vidual scenario, it typically leads to large scale models that are much harder to solve. The
trade-off between designing a model that is close to reality but still solvable in a reasonable
time is at the center of the scheduling under uncertainty research topic.
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[Santibáñez et al., 2012] Santibáñez, P., Aristizabal, R., Puterman, M. L., Chow, V. S.,
Huang, W., Kollmannsberger, C., Nordin, T., Runzer, N., and Tyldesley, S. (2012). Op-
erations research methods improve chemotherapy patient appointment scheduling. Joint
Commission Journal on Quality and Patient Safety, 38(12):541–541.

[Schaefer et al., 2005] Schaefer, A. J., Johnson, E. L., Kleywegt, A. J., and Nemhauser,
G. L. (2005). Airline crew scheduling under uncertainty. Transportation Science,
39(3):340–348.
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