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𝑘̈𝑗𝑑
𝜔̈  Realization of random capacity  𝑘̃̈𝑗𝑑 in scenario 𝜔̈ ∈ Ω̈ at facility 𝑗 ∈ 𝐽  on day 𝑑 ∈ 𝐷  

𝑚 Maximum travel day difference allowed between a demand site and its weekday facility 

assignment, and the same demand site and its weekend facility assignment 

𝑀1 Sufficiently large integer such that if  𝑉𝑗𝑑
𝜔′ > 𝜃 for some facility 𝑗 ∈ 𝐽 on some day 

𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} in some scenario 𝜔′ ∈ Ω′, then  𝑉𝑗𝑑
𝜔′ ≤ 𝜃 +𝑀1 

𝑀2  A sufficiently large integer such that M2S1 will not choose an allocation that results in 

∑ 𝑝𝜔
′
𝑍𝜔

′

𝜔′∈Ω′ > 𝜏 

𝑀̅2  A sufficiently large integer such that M2S1 will not choose an allocation that results in 

∑ 𝑝𝜔
′
𝑍̅𝑗𝑑
𝜔′

𝜔′∈Ω′ > 𝜏 for any 𝑗 ∈ 𝐽, 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} 

𝑀̂2  A sufficiently large integer such that M2S1 will not choose an allocation that results in 

∑ 𝑝𝜔
′
𝑍̂𝑗
𝜔′

𝜔′∈Ω′ > 𝜏 for any 𝑗 ∈ 𝐽 
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𝑀3  A sufficiently large integer such that if 𝑐𝑘𝑗 + 𝜃 < ∑ ∑ ℎ𝑖,𝑑+𝑠−𝑡𝑖𝑗
𝜔′𝑐−1

𝑠=0  𝑖∈𝐼  for any 𝑐 ∈ 𝐶, 𝑗 ∈

𝐽, 𝜔′ ∈ Ω′, 𝑑 ∈ {𝑡∗ + 1, 𝑡∗ + 1 + 𝑐, 𝑡∗ + 1 + 2𝑐,… , ⌊
|𝐷|−𝑡∗−𝑐

𝑐
⌋ 𝑐 + 𝑡∗ + 1} then 𝑐𝑘𝑗 +

𝜃 +𝑀3 ≥ ∑ ∑ ℎ𝑖,𝑑+𝑠−𝑡𝑖𝑗
𝜔′𝑐−1

𝑠=0  𝑖∈𝐼 as long as 𝑡∗ + 𝑐 ≤ |𝐷| 

𝓃  Maximum number of different facilities a demand site can be allocated to during the 

week; 𝓃 ∈ {1,… , |𝑃|} 

𝑝𝜔 Probability of demand scenario 𝜔 ∈ Ω occurring, with ∑ 𝑝𝜔𝜔∈Ω = 1 

𝑝𝜔
′
 Probability of demand scenario 𝜔′ ∈ Ω′ occurring, with ∑ 𝑝𝜔

′

𝜔′∈Ω′ = 1 

𝑝̈𝜔̈ Probability of capacity scenario  𝜔̈ ∈ Ω̈ occurring, with ∑ 𝑝𝜔̈𝜔̈∈Ω̈ = 1 

𝔭𝔫𝔪  Transition probability from state 𝔫 to state 𝔪 

𝑡𝑖𝑗 Travel time (in days) between demand site 𝑖 ∈ 𝐼 and candidate facility 𝑗 ∈ 𝐽 

𝑡∗ = 𝑚𝑎𝑥𝑖∈𝐼,𝑗∈𝐽𝑡𝑖𝑗 Longest travel time between any demand site – candidate processing facility 

pair 

𝑡𝑚𝑎𝑥 Maximum allowed travel time between a demand site and its assigned facility  

𝒯 Interarrival time of G/G/1 queue 

𝑣𝑗    Initial backlog (at the beginning of day 𝑡∗ + 1) at facility 𝑗 ∈ 𝐽 if facility 𝑗 is located 

𝔳𝑖 Variance of demand at demand site 𝑖 ∈ 𝐼 (used in queueing formulation)    

𝑤 Weight given to the population in the fixed facility location costs 

𝑧 Daily base fixed location cost per facility 

𝛿 Parameter such that 1 − 𝛿 represents the confidence that 𝑉̈𝜏
′𝜔′[𝒾] is a lower bound for the 

optimal JCC objective function value 

𝜁 Total average daily demand generated from the demand sites 
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𝜍 The number of closest facilities a demand site can be allocated to; e.g., 𝜍 = 4 means that 

the only facilities a demand site 𝑖 ∈ 𝐼 can be allocated to are those that are one of the 

four closest located facilities to 𝑖 ∈ 𝐼 

𝜃 Maximum desired daily backlog level at an individual facility 

𝜉(𝜔) ∈ ℕ0
|𝐼|×|𝐷|

 Vector containing the demand realizations of scenario 𝜔 ∈ Ω; has elements 

ℎ𝑖𝑑
𝜔 , ∀𝑖 ∈ 𝐼, 𝑑 ∈ 𝐷 

𝜉′(𝜔′) ∈ ℕ0
|𝐼|×|𝐷|

 Vector containing the demand realizations of scenario 𝜔′ ∈ Ω′; has elements 

ℎ𝑖𝑑
𝜔′ , ∀𝑖 ∈ 𝐼, 𝑑 ∈ 𝐷; often abbreviated 𝜉′ 

𝜉′(𝜔′, 𝒾) Vector containing the demand realizations of scenario 𝜔′ ∈ Ω′ in replication 𝒾 ∈

{1, 2, … , ℐ} 

𝜉̈(𝜔̈) ∈ ℕ0
|𝐽|×|𝐷|

 Vector containing the capacity realizations of scenario 𝜔̈ ∈ Ω̈; has elements 

𝑘̈𝑗𝑑
𝜔̈ , ∀𝑗 ∈ 𝐽, 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  

𝜌𝑗 Population corresponding to the county in which candidate facility 𝑗 ∈ 𝐽 is located 

𝜏 Maximum acceptable probability of the backlog at any facility exceeding 𝜃 on any day 

𝜏′ Maximum acceptable probability of the backlog at any facility exceeding 𝜃 on any day; 

used in the sample approximation problem MIP-JCC in Section 5.5.1 when performing 

sample size calculations  

 

Decision Variables  

𝐾̂𝑗𝑑 Amount of additional unit capacity to purchase at facility 𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ +

1,… , |𝐷|} 

𝐾̂𝑗
𝑝
  Amount of additional unit capacity to purchase at facility 𝑗 ∈ 𝐽 for cycle day 𝑝 ∈ 𝑃 
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𝐾̅𝑗𝑑 Number of extra capacity increments purchased at facility 𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ +

1,… , |𝐷|}  

𝐸𝑖 = { 
1

0
           

If demand site 𝑖 ∈ 𝐼 is multi − sourced

Otherwise                                                      
   

𝐺𝑖𝑗𝜍̂ = { 
1

0
        

If facility 𝑗 ∈ 𝐽 is the 𝜍̂ closest located facility to demand site 𝑖 ∈ 𝐼

Otherwise                                                                                                        
   

𝑁𝑖𝑗 = { 
1

0
          

If demand site 𝑖 ∈ 𝐼  allocates any of its demand to facility 𝑗 ∈ 𝐽

Otherwise                                                                                                    
   

𝑞𝑖𝑗 = { 
1

0
         

If demands at 𝑖 ∈ 𝐼 are allocated to facility 𝑗 ∈ 𝐽 on a day such that they
would arrive on a weekend                                                                                   

         

Otherwise                                                                                                                              
   

ℚ = { 
1

0
          

If  the 𝑿, 𝒀, 𝑽, and 𝑾 values result in a violation of  the reformulated
 joint chance constraints (5.10) − (5.12)                                                     
Otherwise                                                                                                              

   

ℚ̅ =  { 
1

0
          

If  the 𝑿, 𝒀, 𝑽, and 𝑾 values result in a violation of the reformulated
individual chance constraints (5.80) − (5.82)                                         
Otherwise                                                                                                              

   

ℚ̂ =  { 
1

0
          

If  the 𝑿, 𝒀, 𝑽, and 𝑾 values result in a violation of the reformulated
hybrid chance constraints (5.83) − (5.85)                                                
Otherwise                                                                                                             

   

𝑟𝑖𝑗 = { 
1

0
         

If demands at 𝑖 ∈ 𝐼 are assigned to facility 𝑗 ∈ 𝐽 on a day such that               
they would arrive on a weekday                                                                                
Otherwise                                                                                                                          

   

𝑠𝑖𝑗 = {
1

0
            

If demand site 𝑖 ∈ 𝐼 is allocated to faciliy 𝑗 ∈ 𝐽 on any day of  the week     

Otherwise                                                                                                                        
     

𝑈𝜔
′
= { 

1

0
       

Otherwise                                                                                                                           
If for any 𝑐 ∈ 𝐶 the amount of arriving demand at any facility 𝑗 ∈ 𝐽 exceeds

its corresponding 𝑐𝑘𝑗 + 𝜃 value on any day in scenario 𝜔′ ∈ 𝛺′                      
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𝑉𝑗𝑑 Auxiliary decision variable representing the backlog level at facility 𝑗 ∈ 𝐽 at the 

beginning of day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} 

𝑉̃𝑗𝑑 Uncertain backlog level at facility 𝑗 ∈ 𝐽 on the beginning of day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} 

due to stochasticity in the demand 

𝑉𝑗𝑑
𝜔 Auxiliary decision variable representing the realized backlog level at facility 𝑗 ∈ 𝐽 at the 

beginning of day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} in demand scenario 𝜔 ∈ Ω 

𝑉𝑗𝑑
𝜔′ Auxiliary decision variable representing the realized backlog level at facility 𝑗 ∈ 𝐽 at the 

beginning of day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} in demand scenario 𝜔′ ∈ Ω′ 

𝑉𝑗𝑑
𝜔′𝜓

 Backlog level in scenario 𝜔′ ∈ Ω′ at facility 𝑗 ∈ 𝐽 at the beginning of day 𝑑 ∈ {𝑡∗ +

1,… , |𝐷| + 1} in infeasible solution 𝜓 ∈ Ψ̂ 

𝑉̅ 
𝜔′𝑗 Decision variable in RD-M1S2(𝜔′, 𝑗) whose optimal value is equal to the optimal 

objective function value of RD-M1S2(𝜔, 𝑗) 

𝑉̅ 
𝜔′ Decision variable in ARD-M1S2(𝜔′) whose optimal value is equal to the optimal 

objective function value of ARD-M1S2(𝜔′); 𝑉̅ 
𝜔′ = ∑ 𝑉̅ 

𝜔′𝑗
𝑗∈𝐽   

𝑉̃̈𝑗𝑑  Uncertain backlog level at facility 𝑗 ∈ 𝐽 on the beginning of day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}, 

due to stochasticity in the processing capacity 

𝑉̈𝑗𝑑
𝜔̈ Auxiliary decision variable representing the realized backlog level at facility 𝑗 ∈ 𝐽 at the 

beginning of day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} in capacity scenario 𝜔̈ ∈ Ω̈ 

𝑽𝜔
′𝑗  A 1 × (|𝐷| + 1 − 𝑡∗) vector whose (𝑑 − 𝑡∗)th

 element is 𝑉𝑗𝑑
𝜔′ 

𝑽  A |𝐽| × (|𝐷| + 1 − 𝑡∗) × |Ω′| array whose (𝑗, 𝑑 − 𝑡∗, 𝜔′)th
 element is 𝑉𝑗𝑑

𝜔′ 
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𝕍 Decision variable in RMP𝑛-M1S1 that represents the expected total number of items in 

backlog over the planning horizon 

𝕍̂ Decision variable in R-M2S1 and MIP-ICC_R-M2S1 that represents the expected total 

number of items in backlog over the planning horizon 

𝑊𝑗𝑑 Auxiliary decision variable representing the number of items that are processed at facility 

𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} 

𝑊𝑗𝑑
𝜔 Auxiliary decision variable representing the number of items that are processed at facility 

𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} in demand scenario 𝜔 ∈ Ω 

𝑊𝑗𝑑
𝜔′ Auxiliary decision variable representing the number of items that are processed at facility 

𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} in demand scenario 𝜔′ ∈ Ω′ 

𝑊̈𝑗𝑑
𝜔̈ Number of items that are processed at facility 𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} in 

capacity scenario 𝜔̈ ∈ Ω̈ 

𝑾𝜔′𝑗 A 1 × (|𝐷| − 𝑡∗) vector whose (𝑑 − 𝑡∗)th
 element is 𝑊𝑗𝑑

𝜔′ 

𝑾  A |𝐽| × (|𝐷| − 𝑡∗) × |Ω′| array whose (𝑗, 𝑑 − 𝑡∗, 𝜔′)th
 element is 𝑊𝑗𝑑

𝜔′ 

𝑋𝑗 = { 
1

0
           

If we locate at facility 𝑗 ∈ 𝐽

Otherwise                                
   

𝑿   A 1 × |𝐽| vector whose 𝑗th element is 𝑋𝑗  

𝑌𝑖𝑗 Fraction of demand from demand site 𝑖 ∈ 𝐼 that is allocated to facility 𝑗 ∈ 𝐽; if single 

sourcing is imposed, 𝑌𝑖𝑗 is binary 

𝑌𝑖𝑗
𝑝 = {

1
 
0
     

If we allocate demands from demand site 𝑖 ∈ 𝐼  to faciliy 𝑗 ∈ 𝐽 on cycle    
day 𝑝 ∈ 𝑃                                                                                                                       
Otherwise                                                                                                                     
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𝑌𝑖𝑗
𝜓
= {

1
 
0
       

If we allocate demands from demand site 𝑖 ∈ 𝐼  to faciliy 𝑗 ∈ 𝐽 in infeasible  
solution 𝜓                                                                                                                            
Otherwise                                                                                                                            

     

𝒀   A |𝐼| × |𝐽| matrix whose (𝑖, 𝑗)th
 entry is 𝑌𝑖𝑗 

𝑍𝜔
′
= { 

1

0
        

If the backlog at any facility exceeds 𝜃 on any day in scenario 𝜔′ ∈ 𝛺′ 

Otherwise                                                                                                                  
   

𝑍̂𝑗
𝜔′ = { 

1

0
        

If the backlog at facility 𝑗 ∈ 𝐽 exceeds 𝜃 on any day in scenario 𝜔′ ∈ 𝛺′ 

Otherwise                                                                                                                   
   

𝑍̅𝑗𝑑
𝜔′ = { 

1  
If the backlog at facility 𝑗 ∈ 𝐽 exceeds 𝜃 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}

 in scenario 𝜔′ ∈ 𝛺′                                                                                                    
0  Otherwise                                                                                                                   

    

𝒵𝑗𝑙 = { 
1

0
        

If the average amount of daily demand allocated to facility 𝑗 ∈ 𝐽 is at least 𝑙

Otherwise                                                                                                                           
   

𝒁 A 1 × |Ω′|  vector whose 𝜔′th element is 𝑍𝜔
′
  

𝒁̅𝑗𝑑 A 1 × |Ω′|  vector whose 𝜔′th element is 𝑍̅𝑗𝑑
𝜔′ 

𝒁̂𝑗 A 1 × |Ω′|  vector whose 𝜔′th element is 𝑍̂𝑗
𝜔′ 

𝛾𝑑
𝜔′𝑗

 Dual variables corresponding to a backlog balance constraint of (5.26) 

𝛾𝑑
𝜔′𝑗𝜓

 Component of Ψ𝜔′𝑗 corresponding to 𝛾𝑑
𝜔′𝑗

 

𝛾𝑑
𝜔′𝑗𝜙

 Component of Φ𝜔′𝑗 corresponding to 𝛾𝑑
𝜔′𝑗

 

𝜸 A |𝐽| × (|𝐷| − 𝑡∗) × |Ω′| array whose (𝑗, 𝑑 − 𝑡∗, 𝜔′)th
 element is 𝛾𝑑

𝜔′𝑗
 

𝜸𝜔
′
 A |𝐽| × (|𝐷| − 𝑡∗) matrix whose (𝑗, 𝑑 − 𝑡∗)th

 element is 𝛾𝑑
𝜔′𝑗

 

𝜸𝜔
′𝑗 A (|𝐷| − 𝑡∗) vector whose (𝑑 − 𝑡∗)th

 element is 𝛾𝑑
𝜔′𝑗

 

𝜸𝜔
′𝜓 A |𝐽| × (|𝐷| − 𝑡∗) matrix whose (𝑗, 𝑑 − 𝑡∗)th

 element is 𝛾𝑑
𝜔′𝑗𝜓

 

𝜸𝜔
′𝜙 A |𝐽| × (|𝐷| − 𝑡∗) matrix whose (𝑗, 𝑑 − 𝑡∗)th

 element is 𝛾𝑑
𝜔′𝑗𝜙
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𝜸𝜔
′𝑗𝜓 The (|𝐷| − 𝑡∗) vector component of Ψ𝜔′𝑗 corresponding to 𝜸 

𝜔′𝑗 whose (𝑑 − 𝑡∗)th
 

element is 𝛾𝑑
𝜔′𝑗𝜓

 

𝜸𝜔
′𝑗𝜙 The (|𝐷| − 𝑡∗) vector component of Φ𝜔′𝑗 corresponding to 𝜸 

𝜔′𝑗 whose (𝑑 − 𝑡∗)th
 

element is 𝛾𝑑
𝜔′𝑗𝜙

 

𝜇𝑑
𝜔′𝑗

 Dual variable corresponding to a desired maximum backlog constraint of (5.29) 

𝜇𝑑
𝜔′𝑗𝜓

 Component of Ψ𝜔′𝑗 corresponding to 𝜇𝑑
𝜔′𝑗

 

𝜇𝑑
𝜔′𝑗𝜙

 Component of Φ𝜔′𝑗 corresponding to 𝜇𝑑
𝜔′𝑗

 

𝝁 A |𝐽| × (|𝐷| + 1 − 𝑡∗) × |Ω′| array whose (𝑗, 𝑑 − 𝑡∗, 𝜔′)th
 element is 𝜇𝑑

𝜔′𝑗
 

𝝁𝜔
′
 A |𝐽| × (|𝐷| + 1 − 𝑡∗) vector whose (𝑗, 𝑑 − 𝑡∗)th

 element is 𝜇𝑑
𝜔′𝑗

 

𝝁𝜔
′𝑗 A (|𝐷| + 1 − 𝑡∗) vector whose (𝑑 − 𝑡∗)th

 element is 𝜇𝑑
𝜔′𝑗

 

𝝁𝜔
′𝜓 A |𝐽| × (|𝐷| + 1 − 𝑡∗) vector whose (𝑗, 𝑑 − 𝑡∗)th

 element is 𝜇𝑑
𝜔′𝑗𝜓

 

𝝁𝜔
′𝜙 A |𝐽| × (|𝐷| + 1 − 𝑡∗) vector whose (𝑗, 𝑑 − 𝑡∗)th

 element is 𝜇𝑑
𝜔′𝑗𝜙

 

𝝁𝜔
′𝑗𝜓 The (|𝐷| + 1 − 𝑡∗) vector component of Ψ𝜔′𝑗 corresponding to 𝝁 

𝜔′𝑗 whose (𝑑 − 𝑡∗)th
 

element is 𝜇𝑑
𝜔′𝑗𝜓

 

𝝁𝜔
′𝑗𝜙 The (|𝐷| + 1 − 𝑡∗) vector component of Φ𝜔′𝑗 corresponding to 𝝁 

𝜔′𝑗 whose (𝑑 − 𝑡∗)th
 

element is 𝜇𝑑
𝜔′𝑗𝜙

 

𝜂 
𝜔′𝑗  Dual variable corresponding to an initial backlog constraint of (5.28) 

𝜂𝜔
′𝑗𝜓 The component of Ψ𝜔′𝑗 corresponding to 𝜂𝜔

′𝑗 
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𝜂𝜔
′𝑗𝜙 A component of Φ𝜔′𝑗 corresponding to 𝜂𝜔

′𝑗 

𝜼 A |𝐽| × |Ω′| array whose (𝑗, 𝜔′)th
 element is 𝜂 

𝜔′𝑗 

𝜼𝜔
′
  A |𝐽| vector whose 𝑗th element is 𝜂 

𝜔′𝑗 

𝜼𝜔
′𝜓  A |𝐽| vector whose 𝑗th element is 𝜂 

𝜔′𝑗𝜓 

𝜼𝜔
′𝜙  A |𝐽| vector whose 𝑗th element is 𝜂 

𝜔′𝑗𝜙 

𝜋𝑑
𝜔′𝑗

 Dual variable corresponding to a capacity constraint of (5.27) 

𝜋𝑑
𝜔′𝑗𝜓

 Component of Ψ𝜔′𝑗 corresponding to 𝜋𝑑
𝜔′𝑗

 

𝜋𝑑
𝜔′𝑗𝜙

 Component of Φ𝜔′𝑗 corresponding to 𝜋𝑑
𝜔′𝑗

 

𝝅  A |𝐽| × (|𝐷| − 𝑡∗) × |Ω′| array whose (𝑗, 𝑑 − 𝑡∗, 𝜔′)th
 element is 𝜋𝑑

𝜔′𝑗
 

𝝅𝜔′  A |𝐽| × (|𝐷| − 𝑡∗) matrix whose (𝑗, 𝑑 − 𝑡∗)th
 element is 𝜋𝑑

𝜔′𝑗
 

𝝅𝜔
′𝑗  A (|𝐷| − 𝑡∗) vector whose (𝑑 − 𝑡∗)th

 element is 𝜋𝑑
𝜔′𝑗

 

𝝅𝜔
′𝑗𝜓 The (|𝐷| − 𝑡∗) vector component of Ψ𝜔′𝑗 corresponding to 𝝅 

𝜔′𝑗 whose (𝑑 − 𝑡∗)th
 

element is 𝜋𝑑
𝜔′𝑗𝜓

 

𝝅𝜔
′𝑗𝜙 The (|𝐷| − 𝑡∗) vector component of Φ𝜔′𝑗 corresponding to 𝝅 

𝜔′𝑗 whose (𝑑 − 𝑡∗)th
 

element is 𝜋𝑑
𝜔′𝑗𝜙

 

𝝅𝜔′𝜓  A |𝐽| × (|𝐷| − 𝑡∗) matrix whose (𝑗, 𝑑 − 𝑡∗)th
 element is 𝜋𝑑

𝜔′𝑗𝜓
 

𝝅𝜔′𝜙  A |𝐽| × (|𝐷| − 𝑡∗) matrix whose (𝑗, 𝑑 − 𝑡∗)th
 element is 𝜋𝑑

𝜔′𝑗𝜙
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Optimal Objective Function Values 

𝑉̅𝜔
′𝑗(𝑿, 𝒀, 𝒁) Optimal objective function value of M1S2(𝜔′, 𝑗) given 𝑿, 𝒀, and 𝒁 as input 

𝑉̅𝐷𝑢𝑎𝑙
𝜔′𝑗 (𝑿, 𝒀, 𝒁) Optimal objective function value of D-M1S2(𝜔′, 𝑗) and RD-M1S2(𝜔′, 𝑗) 

given 𝑿, 𝒀, and 𝒁 as input 

𝑉̅𝐴−𝐷𝑢𝑎𝑙
𝜔′ (𝑿, 𝒀, 𝒁)  Optimal objective function value of ARD-M1S2(𝜔′) given 𝑿, 𝒀, and 𝒁 as 

input 

𝑉̅𝑅𝑀𝑃
𝑛 (𝜸, 𝝅, 𝜼, 𝝁)  Optimal objective function value of RMP𝑛-M1S1 given 𝜸, 𝝅, 𝜼 and 𝝁 as input 

𝑉̅𝑆𝑒𝑝
𝜔′𝑗(𝑿, 𝒀, 𝒁) Optimal objective function value of the separation problem corresponding to 

D-M1S2(𝜔′, 𝑗) given 𝑿, 𝒀, and 𝒁 as input 

𝑉̅𝑆𝑒𝑝
𝜔′ (𝑿, 𝒀, 𝒁) = ∑ 𝑉̅𝑆𝑒𝑝

𝜔′𝑗(𝑿, 𝒀, 𝒁)𝑗∈𝐽   

𝑉̂ 
𝜔′𝑗(𝑿, 𝒀) Optimal objective function value of M2S2(𝜔′, 𝑗) given 𝑿 and 𝒀 as input 

𝑉̂𝐷𝑢𝑎𝑙
𝜔′𝑗 (𝑿, 𝒀) Optimal objective function value of D-M2S2(𝜔′, 𝑗) given 𝑿 and 𝒀 as input 

𝑉̈ Optimal objective function value of MIP-JCC 

𝑉̈𝜏
′𝜔′𝒾 Optimal objective function value of MIP-JCC with 𝜏′ for scenario 𝜔′ ∈ Ω′ of 

replication 𝒾 ∈ {1,2, … , ℐ}  

𝑉̈𝜏
′𝜔′[𝒾] Optimal objective function value of MIP-JCC with 𝜏′ for the 𝒾th 

order statistic 

in scenario 𝜔′ ∈ Ω′  

𝑍̂(𝑽) Optimal objective function value of M2S3 given 𝑽 as input 

𝑍̅̂(𝑽) Optimal objective function value of MIP-ICC_M2S3(𝑗, 𝑑) given 𝑽 as input 

𝑍̂̂(𝑽) Optimal objective function value of MIP-HCC_M2S3(𝑗) given 𝑽 as input 
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Other 

𝔼(⋅)  Expected value of ⋅ 

𝔼[𝑉𝑗]  Long-term expected number of items in backlog at facility 𝑗 ∈ 𝐽 

𝐻𝑗,𝑑 = ∑ ℎ𝑖,𝑡−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼  The total demand that arrives at facility 𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  

𝐻𝑗  Generic total amount of demand arriving at facility 𝑗 ∈ 𝐽 on any day of the planning 

horizon 

ℕ0
|𝐼|×|𝐷|

  Vector of dimension |𝐼| × |𝐷| which contains non-negative integer elements 

𝑛 Iteration counter 

ℙ(⋅)  Probability of event ⋅ occurring  

𝜅 Total daily capacity of located processing facilities 
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ABSTRACT 

 

In many real-world settings, the capacity of processing centers is flexible due to a variety 

of operational tools (such as overtime, outsourcing, and backlogging demand) available to 

managers that allow the facility to accept demands in excess of the capacity constraint for short 

periods of time. However, most capacitated facility location models in the literature today 

impose hard capacity constraints that don’t capture this short term flexibility. Thus, current 

capacitated facility location models do not account for the operational costs associated with 

accepting excess daily demand, which can lead to suboptimal facility location and demand 

allocation decisions. 

To address this discrepancy, we consider a processing distribution system in which 

demand generated on a daily basis by a set of demand sites is satisfied by a set of capacitated 

processing facilities. At each demand site, daily demands for the entirety of the planning horizon 

are sampled from a known demand distribution. Thus, the day to day demand fluctuations may 

result in some days for which the total demand arriving at a processing facility exceeds the 

processing capacity, even if the average daily demand arriving at the processing facility is less 

than the daily processing capacity. We allow each processing facility the ability to hold excess 

demand in backlog to be processed at a later date and assess a corresponding backlog penalty in 

the objective function for each day a unit of demand is backlogged. 

This dissertation primarily focuses on three methods of modelling the aforementioned 

processing distribution system. The first model is the Inventory Modulated Capacitated Location 

Problem (IMCLP), which utilizes disaggregated daily demand parameters to determine the 
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subset of processing facilities to establish, the allocation of demand sites to processing facilities, 

and the magnitude of backlog at each facility on each day that minimizes location, travel, and 

backlogging costs. Whereas the IMCLP assumes each demand site must be allocated to exactly 

one processing facility, the second model relaxes this assumption and allows demand sites to be 

allocated to different processing facilities on various days of the week. We show that such a 

cyclic allocation scheme can further reduce the system costs and improve service metrics as 

compared to the IMCLP. 

Finally, while the first two models incorporate daily fluctuations in demand over an 

extended time horizon, the problems remain deterministic in the sense that only one realization 

of demand is considered for each day of the planning horizon. As such, our final model presents 

a stochastic version of the IMCLP in which we assume a known demand distribution but assume 

the realization of daily demand is uncertain. In addition to assessing a penalty cost, we consider 

three types of chance constraints to restrict the amount of backlogged demand to a predetermined 

threshold. Using finite samples of random demand, we propose two multi-stage decomposition 

schemes and solve the mixed-integer programming reformulations with cutting-plane algorithms.  

In summary, this dissertation mitigates hard capacity constraints commonly found in 

facility location models by allowing incoming demand to exceed the processing capacity for 

short periods of time. In each of the modelling contexts presented, we show that the location and 

allocation decisions obtained from our models can result in significantly reduced costs and 

improved service metrics when compared to models that do not account for the likelihood that 

demands may exceed capacity on some days. 
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CHAPTER 1: Introduction 

 Facility location plays a critical role in an organization’s expenses and customer service 

as location decisions affect at least three key elements of a supply chain: fixed location costs, 

transportation costs, and the ability to provide service in a timely manner. Locating many 

facilities typically increases the organization’s location costs but reduces transportation costs, 

while locating fewer facilities may reduce the location costs but increase transportation costs and 

drastically degrade customer service. Even if the correct number of facilities are located, poorly 

located facilities can negatively affect customer service and result in increased location and 

transportation costs. As such, facility location decisions are applicable to a broad range of areas 

including locating warehouses, processing plants, schools, airline hubs, hospitals, ambulances, 

military bases, disaster relief shelters and hazardous waste disposal sites. Location models have 

also been used in less traditional settings, such as database location in computer networks [Fisher 

and Hochbaum, 1980], the analysis of archeological sites [Bell and Church, 1985], vehicle 

routing [Bramel and Simchi-Levi, 1995], medical diagnosis [Reggia et al., 1983], and the 

alignment of candidates along a political spectrum [Ginsberg et al., 1987].   

In general, facility location problems involve a set of spatially distributed customers, the 

location of which are known; and a set of facilities to serve customer demands.  Possible 

questions facility location models can help answer are:  

(1) How many facilities should be located?  

(2) Where should the facilities be located?  

(3) How large should each facility be?  
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(4) How should the customer demand be allocated to the located facilities?  

Furthermore, the answers to these questions depend on the decision maker’s objective. For 

example, the answers may differ depending on whether we wish to minimize cost, maximize 

customer service, or ensure all demand is met within a certain time frame. 

The modeling foundation of this dissertation is based on the capacitated fixed charge 

location problem (CFLP) [Balinski, 1965]. The CFLP models an environment in which demands 

generated by a set of spatially-dispersed demand sites are transported to facilities for processing. 

While the locations of the demand sites are known in advance, only the potential locations for 

the processing facilities are known before solving the model. The premise of the CFLP is to 

determine how many and which of the potential processing facilities should be located, as well as 

how to allocate the demand to the located processing facilities so that the sum of the location and 

allocation costs is minimized. Furthermore, the decisions must be made in a manner that ensures 

that on each day, the number of demands arriving at each facility does not exceed the daily 

processing capacity of the facility. 

 

1.1 The Necessity of Mitigating Hard Capacity Constraints 

 While capacitated location models are abundant in the literature, nearly all of the models 

utilize capacity constraints that are problematic for at least three key reasons. This dissertation 

identifies methods of addressing each of these issues and quantifies the benefit gained by 

utilizing improved models. 

 The first issue with the traditional capacity constraints is that they disregard the reality 

that the processing capacity of a facility is a complex function of many operational decisions and 

that facility managers often incorporate techniques to enable capacity flexibility. For example, 
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simply stating that an automobile manufacturing plant can assemble 1,000 vehicles per day does 

not capture the reality that the actual number of vehicles assembled depends on the number of 

each type of vehicle assembled and the sequence in which the vehicles are assembled. 

Additionally, a facility manager may utilize overtime, thus allowing the facility to process more 

than the specified daily capacity limit.  

 The second issue is that even in situations in which the processing capacity can be 

precisely determined, facility managers typically have operational tools that allow the facility to 

accept demands in excess of the stated capacity limit for short periods of time. For example, 

demands that exceed capacity may be stored as backlog and processed at a later date. Traditional 

capacity constraints do not allow for this. Instead, they employ hard capacity constraints on the 

number of items that can be processed each day and assume that the amount of demand that 

arrives at a facility for processing cannot exceed the capacity on any day (see Daskin et al. 

(2005) and Verter (2011) for reviews). 

 The third issue is that by using average daily demands – as is common in many 

operations research models in general, and location problems in particular – the traditional 

models fail to capture the likelihood that demand will exceed capacity on some days. For 

example, suppose A and B are two processing facilities, each with a capacity to process 100 units 

per day, and that the total amount of demand allocated to each facility follows a Poisson 

distribution with a mean of 95 units. Then, the daily probability of exceeding the capacity at 

either facility A or facility B individually is 0.282 and the probability that the demand will 

exceed the capacity for at least one facility on any given day is 0.485. As this simple example 

shows, the capacity will be exceeded on nearly half of the days, although the average demand 

allocated to each facility is less than the capacity.  
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 Additionally, considering demands at an aggregate level inherently fails to provide 

information regarding possible temporal and spatial correlations in demands. One method of 

including such information into the models is to allow the data to serve as a direct model input. 

Saveh-Shemshaki et al. (2012) provides a seminal paper in this area that explicitly incorporates 

historical data directly into an extension of the traditional capacitated location model. However, 

as we discuss in the following section, Saveh-Shemshaki et al. (2012) allows the allocation 

decisions to vary each day of the planning horizon and supposes all future demands at each 

demand site are known in advance, which incorporates unrealistic foreknowledge into the daily 

allocation decisions.  

 A common theme linking the four aforementioned issues is that, in most facility location 

settings, a cost is incurred when the stated capacity is exceeded; facilities may have a cost 

associated with allocating additional resources to process the extra demand or loss of goodwill 

due to decreased customer service levels. Since traditional capacitated models neither account 

for capacity flexibility nor allow incoming demands to exceed capacity, they inherently 

underestimate the total facility, transportation, and backlog costs. Furthermore, as shown in this 

dissertation, they often identify the wrong facilities or even the wrong number of facilities to 

locate.  

  

1.2 Research Contributions 

 To address these issues with current capacitated facility location models, we propose a 

new method of modeling capacity constraints. Our contributions to the facility location literature 

in terms of modeling, solution methodology, and managerial insights are as follows: 
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Modeling:  

1. Capacity Flexibility: We mitigate the hard capacity constraints used in traditional 

facility location models by incorporating capacity flexibility. While we identify a 

variety of methods that can be used to incorporate capacity flexibility, we focus our 

modeling efforts on allowing any demands in excess of the processing capacity that 

arrive at a facility on a particular day to be processed on a following day. Such 

demands incur a penalty cost to account for the delayed processing. (That is, we focus 

on capacity flexibility with regard to the amount of arriving demand rather than the 

processing capacity; in most of the models presented in this dissertation, processing 

capacity is fixed, although we outline extensions that allow the processing capacity to 

be determined endogenously in Chapter 6.) Consistent with the CFLP, our problem is 

to determine the subset of the candidate processing facilities to establish and the 

allocation of demand sites to facilities. However, in our new model, once the facility 

locations and demand allocations are known, the demand stream and the daily 

processing capacity determine the unprocessed backlog carried over from one day to 

the next.  

 

Blood testing facilities are one example of a processing system that may benefit from 

a modeling framework such as the one we suggest in this dissertation. Blood samples 

that are drawn from patients at a clinic (i.e., the demand site) often need to be sent to 

an off-site regional testing facility to be analyzed [Saveh-Shemshaki et al., 2012]. 

After the blood sample has been analyzed, the testing facility sends a report back to 

the clinic indicating the results. Thus, physical demand (e.g., blood samples) is 
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shipped to the testing facility, but intangible results (e.g., an electronic summary) are 

reported back to the clinic and patient. A traditional capacitated facility location 

model would use hard capacity constraints to require that all of the blood samples that 

arrive at the testing facility each day be tested on the day they arrive. However, in 

practice, any additional samples that cannot be tested on the day they arrive will be 

held in cold storage (i.e., backlogged) and tested the next day [Adcock et al., 2012; 

Wong et al., 2013]. In this dissertation, we incorporate the ability to backlog demand 

and, furthermore, assess a penalty cost for each blood sample that is not processed on 

the day it arrives at the testing facility. This cost may represent electricity or 

inventory costs associated with using cold storage, loss-of-goodwill with the clinic 

due to longer wait times, etc.  

 

While models that incorporate the option to backlog demand do exist within the 

current supply chain management literature, the approach we present in this 

dissertation differs from these contexts in two important ways: 1) The supply chain 

management literature assumes physical demand is shipped from processing facilities 

to a customer, whereas physical demands is shipped from a customer to a processing 

facility in the facility location context that we consider.  Thus, in our context, the 

amount of demand available for processing at each facility each day is a function of 

the allocation policy as well as the travel time from the customer to the facility. 2) 

The supply chain management literature incorporates foreknowledge about future 

demand that, while appropriate for particular supply chain management contexts, is 

problematic for the facility location context studied in this dissertation.  
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In addition to utilizing backlogs as a method of incorporating daily capacity 

flexibility into facility location models, we identify and formulate a number of other 

approaches that could be considered, including utilizing overtime, outsourcing, 

temporary workers, and extra shifts. We also formulate ways in which endogenous 

capacity can be incorporated. These extensions are introduced in Chapter 6.5 and 

their analyses are left as an area of future work. 

 

2. Cyclic Allocations: The first model we present assumes each demand site allocates all 

of its demand to a single processing facility for the entirety of the planning horizon. 

The second model relaxes this assumption and allows for demand to be allocated in a 

cyclic manner. That is, demands can be allocated to multiple processing facilities over 

a specific time frame (e.g., a week) but to a single facility each day.  This enables the 

model to develop a day-of-the-week allocation scheme that considers day-to-day 

variations in the daily processing capacity levels of a set of candidate processing 

facilities and/or systematic day-to-day demand variations. We demonstrate that 

allowing demands at a particular site to be allocated to multiple processing facilities 

in such a manner can be a cost effective operational tool.  

 

3. Daily Demand: Rather than utilizing aggregated demand parameters, we consider 

demands at a daily level, which allows us to explicitly incorporate the day-to-day 

variation in and possibly correlated nature of demands. We do this by using a daily 

demand dataset as a direct input into the strategic decision making model to serve as a 
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representation of the demand pattern. As such, our data-driven model is also a step 

toward incorporating the vast quantities of transactional data that are being generated 

on a daily basis into location models. Furthermore, variations of our data-driven 

model have the potential to reveal operating policies that take advantage of spatial 

and temporal correlations in demand that are not evident in current facility location 

models. 

 

Additionally, incorporating daily demands means that the time it takes to transport 

demands from a demand site to a processing facility must be considered in the 

capacity constraints since different amounts of demand are generated each day and 

arrive for processing at a later date. This allows us to capture the amount of 

unprocessed demand from each day that will be added to the amount of demand 

awaiting processing on the following day.  

 

4. Multiple Methods of Limiting Backlog: In addition to deterministic models, we 

present a stochastic model with uncertain demand. Rather than only assessing a 

backlog cost for each day an item spends backlogged, or only using chance 

constraints to bound the probability of having backlog exceed a predetermined 

threshold, we incorporate both methods into the model formulation. Furthermore, we 

consider three different types of chance constraints: (1) joint chance constraints that 

ensure the probability of any processing facility having a backlog level above the 

threshold on any day of the planning horizon is sufficiently small, (2) individual 

chance constraints to limit the amount of backlog at each facility each day, and (3) a 
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hybrid approach which accounts for the probability that each individual processing 

facility will exceed the stated maximum backlog level on any day of the planning 

horizon.   

 

Solution Methodology: 

 The methodological contributions of this work include solving a stochastic extension of 

the new capacitated facility location model formulation by exploiting the model structure. This 

allows us to utilize a three-stage decomposition approach in which the first stage problem is 

precisely the traditional uncapacitated fixed charge location problem (UFLP) [Balinski, 1965]. 

We also present a two-stage decomposition approach and introduce a set of first-stage 

strengthening constraints that can be used in either the two-stage or three-stage decomposition 

approach. The multi-stage decomposition schemes are then transformed into mixed-integer 

programming reformations and solved with cutting-plane algorithms.  

 

Managerial Insights: 

 By incorporating the ability to hold excess demand as backlog and process the demand at 

a later time, our capacitated location model better reflects actual managerial options than 

previous modeling formulations. We provide managerial insights into the effect of the cost 

associated with demands arriving at a facility that exceed the stated daily processing capacity as 

it pertains to location and allocation decisions, customer service levels, and overall costs. We 

also discuss the circumstances under which it is beneficial to utilize our data-driven, flexible 

capacity model as compared to a location model that employs average demands and hard 

capacity constraints. Insights are also given regarding the benefits of incorporating a flexible 
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cyclic allocation policy that can leverage systematic day-of-week patterns in demand or capacity 

levels that vary throughout the week.  

 

1.3 Outline 

The remainder of this dissertation is organized as follows. In Chapter 2, we review the 

literature on facility location models with a specific focus on capacitated models. It is here that 

we formally define the CFLP. We also identify current literature that considers capacity 

flexibility, allocation flexibility, and location models with daily demand parameters. In Chapter 3 

we develop the Inventory Modulated Capacitated Location Problem (IMCLP)
1
, which addresses 

the aforementioned issues with traditional location models. We discuss the benefits of the 

IMCLP in comparison to the CFLP, and present computational results from large problem 

instances. In Chapter 4, we extend the IMCLP by allowing for cyclic allocations, and show that 

such an extension can further decrease the overall cost of the system. While Chapters 3 and 4 

detail deterministic models, Chapter 5 incorporates demand uncertainty. Chance-constraints are 

used to ensure the number of demands that are unable to be processed on the day they arrive at a 

processing facility is less than a user-defined threshold. We also develop and compare the 

performance of multiple cutting-plane algorithms used to solve the resulting stochastic 

formulation. Finally, we present conclusions and directions of future research in Chapter 6.   

                                                 
1
 The word “inventory” in the Inventory Modulated Capacitated Location Problem is synonymous with the term 

“backlog” that is used throughout this dissertation. Since publishing Maass et al. (2016) in which we introduced the 

IMCLP using the term “inventory,” we have realized that using the term “backlog” in place of “inventory” promotes 

a clearer description of our model. Although we use the term “backlog” throughout this dissertation, we continue to 

refer to the model described in Maass et al. (2016) as the IMCLP. 
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CHAPTER 2: Literature Review 

 

2.1 Taxonomy of Location Models 

 While there are numerous ways to categorize the broad spectrum of location models, 

Figure 1 displays a categorization, similar to that in Daskin (2008), based on the space in which 

the problems are modeled. Analytic models assume demand is distributed over a service area and 

facilities can be located anywhere within the service area. Continuous models assume that 

demand occurs only at discrete sites but facilities can be located anywhere within the service 

area. Network models assume that demands arise and facilities can be located only on a 

predetermined network consisting of nodes and arcs. In most network models, demands occur at 

the nodes, and facilities can be located anywhere within the network. Discrete models assume 

that demands arise on a set of nodes, and facilities are restricted to a finite set of candidate 

locations.  

 The subcategory of discrete location models can be further divided into three areas: 

Covering, Median, and Other. Covering models assume that customers are adequately served if 

they are within a certain distance or time of a facility location. As such, covering models are 

often applied to locating emergency services (such as ambulances and fire stations). The set 

covering, max covering, and p-center problems are examples of covering models. Median 

models minimize the demand-weighted average distance between a customer and a facility to 

which it is assigned, and are typically used in distribution planning contexts. The p-median and 

fixed charge problems are two types of median models. In both of these models, the facilities can 
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have infinite capacity (i.e., an uncapacitated model) or a finite capacity (i.e., a capacitated 

model). Finally, some models cannot be classified into either of these areas. For example, the p-

dispersion model locates a given number of facilities in a manner that maximizes the minimum 

distance between any pair of facilities. This model is useful in locating franchise outlets and 

nuclear weapon silos. Other examples are undesirable facility models in which we seek to 

maximize the distance between a facility and the nearest demand node. Such models are useful 

when locating hazardous waste dumps, landfills, and nuclear reactors. 

 

 
Figure 1: Taxonomy of Location Models 

 This dissertation focuses on models that extend the traditional capacitated fixed charge 

models. Specifically, we address the issue that nearly all capacitated facility location models 

Location Models 
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employ hard capacity constraints on the number of demands that can be assigned to a processing 

facility (see Daskin et al. (2005) and Verter (2011) for reviews) and thereby fall short in 

capturing the reality that the capacity is often flexible.  

   

2.2 The Evolution of Capacitated Location Models 

 The traditional UFLP [Balinski, 1965] trades off the increased cost of locating additional 

facilities with the decreased cost of transportation as the facilities get closer to the demand sites. 

To formulate the model we first define the following notation:  

Sets and Parameters 

𝐼 Set of demand sites  

𝐽 Set of candidate facility locations 

ℎ𝑖 Average demand generated per day at demand site 𝑖 ∈ 𝐼 

𝑡𝑖𝑗 Travel time between demand site 𝑖 ∈ 𝐼 and facility 𝑗 ∈ 𝐽 

𝑓𝑗 Daily fixed cost of locating at facility  𝑗 ∈ 𝐽 

𝑎 ≥ 0 Cost (in dollars) of transporting one item for one day  

Decision Variables  

𝑋𝑗 = { 
1

0
           

If we locate at facility 𝑗 ∈ 𝐽

Otherwise                                
   

𝑌𝑖𝑗 Fraction of demand from demand site 𝑖 ∈ 𝐼 that is allocated to facility 𝑗 ∈ 𝐽 

 With this notation the UFLP can be formulated as follows: 
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Formulation 

𝑀𝑖𝑛𝑿,𝒀    ∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ℎ𝑖𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼𝑗∈𝐽  (2.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2)

 

 𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ≥0 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.5) 

 The objective function (2.1) minimizes the sum of the fixed facility and transportation 

costs. Constraints (2.2) ensure that all of the demand from 𝑖 ∈ 𝐼 is allocated to a processing 

facility. Constraints (2.3) state that demands can only be assigned to located facilities. Finally, 

constraints (2.4) and (2.5) are standard binary and non-negativity constraints.  

 It is worth noting that, given a set of located candidate facilities, an optimal solution is 

one in which all demand sites are assigned to the located facility that can be reached in the 

shortest amount of travel time. As such, the 𝑌𝑖𝑗 variables are naturally binary-valued in an 

optimal solution (or can be rounded to become binary if multiple 𝑡𝑖𝑗 parameters have equal 

values for some 𝑖 ∈ 𝐼).  

 However, the reality that facilities have capacities has led to the development of 

capacitated versions of the fixed charge location model. In a straightforward extension of the 

UFLP, the CFLP adds a single class of constraints composed of exogenous values that are 

considered for the maximum demand that can be supplied from each potential facility. The 

capacity constraints are of the form:  

 ∑ ℎ𝑖𝑌𝑖𝑗𝑖∈𝐼 ≤ 𝑘𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽  (2.6) 
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where 𝑘𝑗 represents the daily processing capacity of facility 𝑗 ∈ 𝐽 if a facility is located at 𝑗 ∈ 𝐽. 

We will henceforth refer to them as the traditional capacity constraints. Constraints (2.6) require 

that the total demand that is assigned to a facility be less than the capacity of that facility if we 

choose to locate at the candidate processing facility and 0 otherwise. The addition of these 

capacity constraints eliminates the closest assignment property that was present in the UFLP. As 

such, the 𝑌𝑖𝑗 variables will not automatically take binary-values. However, we can show that at 

most ∑ 𝑋𝑗𝑗∈𝐽 − 1 demand sites will be fractionally assigned [Daskin and Jones, 1993].  

 Both the UFLP and CFLP are known to be NP-hard [Cornuéjols et al., 1990]. As such, 

various solution algorithms have been developed for the CFLP including: branch-and-bound 

using linear programming relaxation [Akinc and Khumawala, 1977], Lagrangian relaxation 

[Nauss, 1978], and a partitioning formulation [Neebe and Rao, 1983]; Benders decomposition 

[Davis and Ray, 1969; Wentges, 1996]; branch-and-price [Klose and Görtz, 2007]; cross-

decomposition utilizing Benders decomposition and Lagrangian relaxation [Van Roy, 1986]; and 

dual-based methods [Guignard and Spielberg, 1979]. Additionally, large instances of the CFLP 

have been solved through a variety of heuristics [Jacobsen, 1983; Delmaire et al., 1999; Ahuja et 

al., 2004]. Extensive research has been devoted to developing Lagrangian based heuristics for the 

CFLP, many of which begin by relaxing the assignment constraints [Barceló and Casanova, 

1984; Pirkul, 1987; Sridharan, 1993; Holmberg et al., 1999; Rönnqvist et al., 1999]. 

Additionally, Klincewicz and Luss (1986) relax the capacity constraints while Beasley (1993) 

and Agar and Salhi (1998) relax both the assignment and capacity constraints. A review of 

solution techniques for the CFLP can be found in Magnanti and Wong (1990), Daskin (2013), 

and Verter (2011). Furthermore, despite the fact that hard capacity constraints are problematic, 
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they continue to appear in facility location models [Saveh-Shemshaki et al., 2012; Laporte et al., 

1994; Louveaux and Peeters, 1992; Louveaux, 1986].   

 In addition to models in which physical items arrive at a capacitated facility for 

processing, many facility location models consider the context in which physical items must be 

shipped from a warehouse to a demand site. (For example, many retail companies that sell items 

online have a warehouse stocked with merchandise that is shipped to the customer upon the 

placement of an online order.) The former instance assumes that the capacity restrictions are 

placed on the amount of demand that can arrive at a processing facility, whereas the latter 

assumes that the warehouse has a capacity on the number of items it can pre-stock or assemble to 

meet the needs of the demand sites. While the capacity constraints of the models in the latter 

category are problematic for the same reasons as those of the former, they are widely used in the 

current literature. For example, Balcik and Beamon (2008) use a stochastic maximal covering 

model with demand uncertainty to determine the location of distribution centers that store relief 

supplies prior to a disaster. Capacity constraints limit the amount of relief supplies that can be 

pre-positioned. Additionally, Melo et al. (2006) consider the relocation of capacity when 

designing a supply chain network. While capacity is flexible over the long-term in the model 

presented by Melo et al. (2006), hard capacity constraints are enforced on a day-to-day basis. 

 Hard capacity constraints also appear in numerous operations research problems beyond 

facility location models. For example, the vehicle routing problem and its variants employ hard 

capacity constraints on vehicle capacities [Laporte, 1992; Toth and Vigo, 2002; Golden et al., 

2008]. Additionally, the classic knapsack problem - which serves as a basis for many other 

operations research models including scheduling, cutting stock, and portfolio optimization 
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problems - utilizes hard capacity constraints on the total volume or weight of the selected items 

[Kellerer et al., 2010].  

   

2.3 Methods of Mitigating Hard Capacity Constraints 

Facility managers typically have many operational tools to extend capacity or to allow 

the facility to accept demands in excess of the capacity constraint for short periods of time. For 

example, a facility manager may utilize overtime or temporary workers to allow the facility to 

process more than the specified capacity limit. Additionally, many processing facilities use 

backlogging or outsourcing as a buffer against inadequate capacity.  

The majority of the current facility location literature that incorporates capacity flexibility 

focuses on either (1) long-term flexibility or (2) penalizing the objective function without 

incorporating the effect that one day’s unprocessed demand has on the following day. Literature 

that does incorporate backlogged demand focus on a supply chain management context with 

outgoing demands rather than incoming demands. In this chapter we will describe the differences 

between our models and the current literature.  

 

2.3.1 Long-Term Capacity Flexibility 

 A variety of authors have acknowledged the need for capacity flexibility. However, the 

current literature in this area focuses on incorporating long-term capacity flexibility, rather than 

daily operational flexibility as we do in this dissertation. Instead of setting capacity as an 

exogenous input, several researchers [Luss, 1982; Klincewicz et al., 1988; Verter and Dincer, 

1995] have modeled capacity as a decision variable, thereby incorporating capacity sizing 

decisions into the objective function. Aghezzaf (2005), Melo et al. (2006), Fleischmann et al. 
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(2006), Hugo and Pistikopoulos (2005), and Georgiadis and Athanasiou (2013) also consider 

capacity expansion decisions. While these formulations allow the capacity constraint to be 

flexible over a long-term planning horizon by updating the capacity level at specific time epochs, 

the resulting capacity levels remain inflexible in the short term. That is, between epochs, the 

capacity is still a hard capacity constraint. The model formulations we present relax the hard 

capacity constraints for both long and short term planning horizons by utilizing backlog as a 

buffer against inadequate capacity. 

 

2.3.2 Penalizing Excess Demand 

Many of the facility location models that recognize stochastic demands may result in 

demand levels that exceed the facility capacity penalize the objective function without 

incorporating the effect that one day’s unprocessed demand has on the following day. The 

following papers incorporate penalties through lost profit and outsourcing costs, however, none 

of them consider backlogged demand.  

Louveaux (1986) formulates a capacitated facility location problem with stochastic 

demand, production cost, and selling prices in which the goal is to maximize the expected profit 

by determining the optimal facility locations, facility capacities, and allocation of customers to 

facilities. While the model assumes that not all demand needs to be satisfied, the author does not 

incorporate this flexibility into the day-to-day operations of the facility. Instead, the model uses 

aggregated demand parameters to decide which proportion of demand at each demand site will 

be satisfied a priori. A penalty for demand that is not satisfied is assessed in the objective 

function by accounting for the profit that can be obtained by meeting demands. This method 

implicitly assumes that the unmet demand penalty only consists of lost profit and does not 
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consider any costs associated with loss of goodwill, holding backlog, etc.  Louveaux and Peeters 

(1992) solve Louveaux’s (1986) model using a dual-based heuristic while Laporte et al. (1994) 

develop an optimal L-shaped solution algorithm.   

 Albareda-Sambola et al. (2011) address the problem of assigning customers with 

Bernoulli distributed demand to facilities a priori. Each facility has a specified capacity on the 

number of customers it can serve at any given time. However, since it is uncertain whether a 

particular customer will place a service request (i.e., demand) during a time period, the model 

allows more customers to be assigned to a facility than the facility has capacity to serve at any 

one given time. If a facility cannot satisfy all of the service requests, it outsources some of the 

customers and incurs an associated cost. Thus, demands are always assumed to be satisfied in the 

period in which they occur, unlike the models we present in this dissertation. Additionally, 

Albareda-Sambola et al. (2011) does not consider daily demands or possible demand 

correlations.  

 Rather than determining the location decisions a priori, Hinojosa et al. (2014) present a 

two-stage model in which they consider location decisions after the uncertainty is realized. 

Instead, shipment distribution channels to capacitated facilities must be determined prior to 

realizing the demand. Once the demand (as represented by an aggregated parameter) is realized, 

a transportation and “location” plan is determined, where the location decisions correspond to the 

set-up or activation of resources necessary to process the shipment. Since distribution channels 

are determined a priori and facilities are capacitated, the system may have insufficient capacity 

to handle the realized demand. In this case, a penalty is incurred in the objective function. 

However, Hinojosa et al. (2014) assume any such demand is lost whereas we suppose it is 
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backlogged and, therefore, affects the amount of demand available for processing on the 

following day.   

 

2.3.3 Backlogged Demand 

Although the aforementioned facility location literature does not model unsatisfied 

demand as demand that is carried over into the following period, the multi-period variable-

demand supply chain management (MPVDSCM) literature does capture this phenomenon 

through backlogged demand (see, e.g., Varthanan et al. (2012), Fahimnia et al. (2012), Torabi 

and Moghaddam (2012),  Peidro et al. (2010)). However, there are two important distinctions 

between our work and the MPVDSCM literature. First, the product flow directions are reversed. 

In supply chain management, demand (or raw material components of demand) physically flow 

from the processing facility (or supplier/warehouse) to the customer, whereas in this dissertation, 

demand flow from the customer (e.g., clinics/hospitals) to the processing facility (e.g., blood 

testing lab). Thus, we account for demand that was generated on different days arriving at a 

processing facility on the same day due to different transportation times. For example, in our 

model, a processing facility may simultaneously have arriving demand that was generated one 

day ago at demand site A but two days ago at demand site B. Second, the MPVDSCM literature 

incorporates foreknowledge about the demand in each period and utilizes period-based 

production and distribution variables. This allows models in the MPVDSCM literature to build 

inventory in period t in anticipation of demand that needs to be satisfied in subsequent periods 

(e.g., period t+1).  While this is not problematic for models within the supply chain management 

context, short-term demand allocation decisions in the facility location context should not be 

made based on anticipating future demand patterns and future allocation decisions.  We refer to 
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such decisions as anticipatory decisions and discuss them further in the following section. 

Furthermore, our model circumvents anticipatory issues since our location and cyclic allocation 

decisions do not change over the time horizon.   

 

2.4 Daily Demands and Cyclic Allocations 

 Most capacitated facility location models consider deterministic demands at an aggregate 

level by using parameter estimation techniques [Baron et al., 2008]. In contrast to the prevailing 

method, we consider disaggregated demands at a daily level. To the best of our knowledge, 

Saveh-Shemshaki et al. (2012) is the only other work that explicitly incorporates demand data 

directly into an extension of the traditional capacitated facility location model. However, there 

are some stark differences between our model and the model in Saveh-Shemshaki et al. (2012) in 

terms of how the daily demands influence the allocation policy, which we describe below.  

While many location models enforce single-sourcing constraints, there exist extensions of 

the CFLP that allow demand to be allocated to multiple processing facilities. For example, it is 

common in the facility reliability literature to assign a percentage of demand at a site to multiple 

processing facilities as a means of mitigating demand fulfillment disruption if a subset of the 

processing facilities fail (due to power outages, stockouts, natural disasters, etc.) or to assign 

demands to a primary processing facility under normal working conditions but denote other 

processing facilities as “backup” facilities in the event of a disruption at the primary facility (see, 

e.g., Snyder et al. (2006)).   

In models that allow demand sites to be multi-sourced, the assignments are typically 

either static (the same for each day) [Akinc and Khumawala, 1977; Nauss, 1978; Daskin and 

Jones, 1993; Ozsen et al., 2009] or dynamic (evolving as time passes) [Saveh-Shemshaki et al., 
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2012; Scott, 1970; Wesolowsky and Truscott, 1975; Daskin et al., 1992;  Drezner, 1995; Torres-

Soto and Üster, 2011; Jena et al., 2013]. We consider two types of allocations in this dissertation. 

The first model we propose enforces single-sourcing constraints, while the allocation policy of 

the second model allows for multi-sourcing. However, the particular multi-sourcing framework 

we propose is different from other studies in that it is neither static nor dynamic. Instead, the 

allocations can vary from day-to-day in a cyclic manner. In that sense, the allocations can be 

considered cyclic. For example, if we let a week represent the cycle time frame, then a demand 

site may ship its demands to one facility every Sunday through Thursday and to another facility 

every Friday and Saturday. As we will show in Chapter 4, this assignment flexibility allows for 

additional cost savings when compared to a single allocation approach, while still providing the 

demand site manager with a consistent allocation policy that is easy to implement. 

As previously mentioned, Saveh-Shemshaki et al. (2012) explicitly incorporates 

historical data directly into an extension of the CFLP and allows demand sites to be allocated to 

a different processing facility each day of the planning horizon. However, they assume that 

managers at a demand site will know the exact quantities of demand generated at every other 

demand site for the entirety of the (future) planning horizon and that they can determine the daily 

allocation decisions using this complete foreknowledge. 

 For example, consider a time horizon of two weeks. Suppose a facility manager can 

decide to send demands that are generated at site A on Mondays to processing facility 𝑋1 or 𝑋2, 

and that regardless of where the demands are sent, they will arrive for processing on Friday of 

the same week. The daily allocation decisions employed by Saveh-Shemshaki et al. (2012) 

assume that the decision of where to send the demand generated at site A can be made based on 
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foreknowledge of future demands and allocation decisions, as illustrated in the following 

example: 

 

Week One: The decision of where to send Monday demands in the first week can account 

for the foreknowledge that on Wednesday of the first week demand site B will send a 

large amount of demand to facility 𝑋2 that will arrive on Friday of the first week. Thus, if 

both site A and B send their demands to 𝑋2, the incoming demand will exceed the 

processing capacity at 𝑋2 and some demand will not be processed on Friday of the first 

week. However, if site A sends its Monday’s demands to site 𝑋1 it can be guaranteed that 

all of the demand will be processed on Friday of the first week. Furthermore, assigning 

demands from both A and B to 𝑋2 is not feasible in Saveh-Shemshaki et al. (2012) due to 

the hard capacity constraints.  

 

Week Two: Suppose that in the second week, site B still sends its demands to facility 𝑋2  

on Wednesday and that the demand shipment will arrive for processing on Friday. Since 

there is complete foreknowledge, demand site A knows the exact number of items facility 

B will send to 𝑋2 on Wednesday and calculates that the total amount of demand that will 

arrive at facility 𝑋2 on Friday will not exceed the processing capacity of 𝑋2, even if A 

also sends its demands to facility 𝑋2 on Monday for arrival on Friday. Thus, A can send 

its demands to 𝑋2 in the second week. 

 

 Notice that in this example, demand site A chooses a different facility to which it will 

send its demand each week based on future information regarding other demand sites. Allowing 
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the allocation decisions to be made on a daily basis in this manner is problematic because, in 

reality, managers at a demand site will typically not know the exact daily allocation decisions 

(processing facility selected and quantities of demand shipped) of every other demand site for the 

entirety of the planning horizon. 

 In the second model that we develop in this dissertation, we also consider demands at a 

daily level and allow allocations to vary from day-to-day; however, we do not incorporate the 

same problematic assumption as does Saveh-Shemshaki et al. (2012) since we require that the 

demand allocation policy does not change from one time frame (e.g., a week) to another. For 

example, our model with a weekly cyclic allocation time frame results in a manager making the 

same allocation decision every Monday. That decision may be based on the historical demand 

patterns and on the availability of different processing facilities over the course of the week.  

Furthermore, the allocation decision for Monday may differ from the decision the manager 

would make every Tuesday or Saturday. This allows us to allocate demands in a manner that 

considers the effect of the day-of-the-week capacity variations and aggregate daily demand 

fluctuations without supposing demands are anticipatory in nature.  

As far as we are aware, no facility location model currently implements such a cyclic 

allocation approach. The most relevant cyclic allocation literature can be found in the application 

areas of emergency medical vehicle relocation and nurse staffing when considering time-

dependent parameters. For example, ambulances are typically repositioned to various base 

locations throughout the day to account for time-of-day dependent demands or travel times 

[Repede and Bernardo, 1994; Gendreau et al., 2001; Maxwell et al., 2010; Maleki et al., 2014]. 

Since the ambulances wait at their base location until they are dispatched to respond to an 

emergency, redeployment models can be used to aid managers in making such daily or hourly 
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plans to better respond to predictable demand fluctuations. Rajapopalan et al. (2008) develop a 

multi-period model to determine the minimum number of ambulances needed, as well as their 

base locations, in each time period. The model accounts for significant changes in demand 

patterns that occur among the time periods and ensures that coverage requirements are met. For 

example, such a model may determine that every day from 9:00 am – 5:00 pm a particular 

ambulance should be located in the city’s business center, but it should be located in a residential 

area from 5:00 pm – 12:00 am. Repositioning in this cyclic manner allows the ambulance to be 

near the business center during business hours (when the residential areas are likely sparsely 

populated) and near residential areas during evening hours (when the business center is sparsely 

populated).  

The redeployment model of Rajapopalan et al. (2008) however does not consider the 

frequency or number of repositioned ambulances; frequent repositioning may improve coverage 

at the cost of creating a positioning schedule that is more difficult for the deployment planners to 

manage. Schmid and Doerner (2010) penalize vehicle relocation in their multi-period model that 

seeks to determine optimal ambulance locations at various time periods such that the resulting 

coverage can be adequately maintained throughout the planning horizon. Rather than considering 

time varying demand, Schmid and Doerner (2010) incorporate time-dependent travel times.  

Their results indicate that neglecting time-dependent variations can lead to serious 

overestimation of the resulting coverage. 

 There also exists literature on nurse staffing that uses time-of-day or day-of-week 

demand data to develop shift based staffing levels. This is similar to the cyclic allocations 

proposed in this paper in the sense that the number of nurses assigned to work in an internal 

medicine, endoscopy, and intensive care unit may be 4, 4, and 7, respectively, each Monday 
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while 5, 4, and 6 nurses are assigned to work in the same units each Wednesday. Trivedi (1981) 

uses shift level demand data to determine the weekday and weekend staffing levels for full time 

unit nurses. Additionally, varying the input data and solving the single period newsvendor model 

developed in Davis et al. (2014) multiple times produces a policy based approach to determining 

staffing levels for different shifts. 

 

2.5 Chapter Summary 

 In this chapter, we presented an overview of facility location models and identified how 

the models in this dissertation fit into the larger taxonomy of location models. We also reviewed 

the evolution of capacitated facility location models and presented the current literature related to 

capacity flexibility.  
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CHAPTER 3: Inventory Modulated Capacitated Location Problem 

 

3.1 Motivation 

 As outlined in Chapter 1, the current literature on capacitated facility location models (1) 

disregards the reality that a facility’s capacity is a function of many operational decisions, (2) 

does not allow facilities to accept demands in excess of their capacity constraints, and (3) utilizes 

aggregated demand parameters. In this chapter, we present a model that addresses these three 

issues by incorporating daily demands and allowing demands that arrive at a processing facility 

in excess of the capacity to be backlogged and processed at a later date, while incurring a penalty 

for the delay in processing.
1
 

 

3.2 Model Formulation 

 In this chapter, we address issues with traditional capacity constraints by presenting a 

data-driven model in which all input parameters are deterministic and the hard capacity 

constraints are mitigated by utilizing a backlog of demands to be processed. We refer to this 

model as the IMCLP.  

 Although this model considers demands at a daily level, it requires the demand 

allocations to be fixed throughout the time horizon. Thus, both the IMCLP and the CFLP are 

static models in the sense that the location and demand allocation decisions are static and time-

independent decisions. The CFLP captures only the average demand at each demand site while 

                                                 
1
 A majority of the content of this chapter has been published in Maass, et al. (2016). 
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the IMCLP accounts for variations around the mean demand. Therefore, the IMCLP needs to 

model the day-to-day processing decisions and the implied backlog accumulation that result from 

the confluence of daily demands and processing at the facility.  

 In addition to the notation previously defined, we introduce the following inputs, sets, 

and decision variables: 

Inputs and Sets 

𝐷 Set of days 

ℎ𝑖𝑑 Demand that is generated at demand site 𝑖 ∈ 𝐼 on day 𝑑 ∈ 𝐷 

𝑡∗ = 𝑚𝑎𝑥𝑖∈𝐼,𝑗∈𝐽𝑡𝑖𝑗  

𝑣𝑗    Initial backlog (at the beginning of day 𝑡∗ + 1) at processing facility 𝑗 ∈ 𝐽 if 𝑗 is located 

𝑏𝑗 ≥ 0 Cost of holding one item in backlog for one day at facility 𝑗 ∈ 𝐽 

 Intuitively, 𝑡∗ is the longest travel time between any demand-facility pair. The days in 

{1, … , 𝑡∗} constitute the warm-up period, and we start collecting cost metrics on day 𝑡∗ + 1 to 

mitigate the model warm-up effect caused by demands not yet having arrived at a processing 

facility at the beginning of the model. Furthermore, we refer to |𝐷| − 𝑡∗ as the number of days in 

the planning horizon. To ensure that the CLFP and IMCLP consider the same time horizon, we 

change the CFLP objective function (2.1) to  

 𝑀𝑖𝑛      (|𝐷| − 𝑡∗)(∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ℎ𝑖𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼𝑗∈𝐽 ). (3.1) 

 Additionally, we enforce single-sourcing constraints on the CFLP so that the allocation 

decisions are consistent between the two models. From this point on, anytime we refer to the 

CFLP we are referring to (3.1), (2.2) - (2.4), (2.6) and 𝑌𝑖𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽.  

It is also worth mentioning that the demand parameters, ℎ𝑖𝑑, used in the IMCLP specify 

the particular demand that originates at demand site 𝑖 on day 𝑑. This is in contrast to the 
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parameters ℎ𝑖 in the CFLP, which represent the average daily demand generated at demand site 

𝑖.  Specifically, for each 𝑖 ∈ 𝐼, ℎ𝑖 =
∑ ℎ𝑖𝑑𝑑∈𝐷

|𝐷|
.  

Finally, for ease of notation, whenever 𝑏𝑗1 = 𝑏𝑗2  ∀𝑗1, 𝑗2 ∈ 𝐽, we drop the subscripts and 

let 𝑏 represent the generic unit backlog cost.  

Decision Variables 

𝑉𝑗𝑑 Auxiliary decision variable representing the backlog level at facility 𝑗 ∈ 𝐽 at the 

beginning of day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} 

𝑊𝑗𝑑 Auxiliary decision variable representing the number of items that are processed at facility 

𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} 

The model determines the optimal long term location and allocation decisions and uses 

the auxiliary daily processing and backlog variables to track metrics associated with the day to 

day performance of the system. Thus, the location and allocation variables are static in the sense 

that the decision maker will decide once where to build the processing facilities and how to 

allocate the demand to these facilities. She will then track the daily backlog and processing levels 

that are a result of her location and allocation decisions. As such, the IMCLP remains a static 

model and can be compared to the static location and allocation decisions of the CFLP.  

 Formulation 

 With this notation, we formulate the IMCLP as follows: 

𝑀𝑖𝑛𝑿,𝒀,𝑽,𝑾 (|𝐷| − 𝑡
∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ ℎ𝑖𝑑𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼𝑗∈𝐽

|𝐷|
𝑑=𝑡∗+1 + ∑ ∑ 𝑏𝑗𝑉𝑗𝑑𝑗∈𝐽

|𝐷|+1
𝑑=𝑡∗+2  (3.2) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2)

 

 𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3)  
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 𝑉𝑗,𝑑+1 − 𝑉𝑗𝑑 − ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 +𝑊𝑗𝑑 = 0 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (3.3) 

 𝑊𝑗𝑑 ≤ 𝑘𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (3.4) 

 𝑉𝑗,𝑡∗+1 = 𝑣𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽 (3.5) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

  𝑉𝑗𝑑 ≥ 0   ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}  (3.7) 

  𝑊𝑗𝑑 ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (3.8) 

 The IMCLP’s objective function (3.2) minimizes the costs associated with facility 

location, transportation, and backlog, while the CFLP only considers the costs associated with 

facility location and transportation. Recall that since we incorporated |𝐷| − 𝑡∗ into the CFLP 

objective function (3.1), the two models calculate costs over the same time horizon.  

 Constraints (3.3) are flow balance constraints that update the daily backlog variables. 

They state that the backlog at the beginning of day 𝑑 + 1 at processing facility 𝑗 ∈ 𝐽 is equal to 

the amount of demand that was left unprocessed at 𝑗 ∈ 𝐽 at the end of day 𝑑. This consists of the 

amount of demand available for processing at 𝑗 ∈ 𝐽 at the beginning of day 𝑑 (i.e., the amount in 

backlog at the beginning of day 𝑑 plus the amount that arrived on day 𝑑) minus the amount that 

was processed on day 𝑑. Note that we assume all shipments arrive at processing facilities at the 

beginning of the day, before any processing occurs.  

Constraints (3.4) are the capacity constraints. In contrast to the capacity constraints in 

traditional capacitated models, which state that the total demand arriving at a facility on each 

day must be less than the daily processing capacity at that facility, the capacity constraints of 

(3.4) state that, on each day, we cannot process more at a facility than there is capacity for 

processing at that facility. This form allows for facility-dependent capacity levels. Furthermore, 
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constraints (3.3) also ensure that we cannot process more at a facility on any given day than the 

sum of the amount that was left unprocessed from the previous day plus what arrives at the 

beginning of the day from all demand sites. Constraints (3.4) can also be extended to incorporate 

short-term capacity expansion decisions, such as the use of overtime (i.e., an individual working 

in excess of 40 hours per week). We discuss this briefly as an area of future research in Section 

6.5.1. 

Constraints (3.5) state that, for all 𝑗 ∈ 𝐽, if facility 𝑗 is located, it will have an initial 

backlog of 𝑣𝑗 . Otherwise, the initial backlog level at facility 𝑗 is zero. The purpose of providing 

the initial backlog levels 𝑣𝑗  is to initialize the flow balance equations. Constraints (2.4) and (3.6) 

- (3.8) are standard binary and non-negativity constraints. 

Imbedded in the IMCLP model is the assumption that demands are never processed on 

the day they originate (and, furthermore, that an incoming demand shipment never begins 

processing part way through the day). This assumption is necessary for the model to accurately 

calculate the amount of demand processed each day. For example, suppose that a processing 

facility 𝑗 ∈ 𝐽 has no demand available for processing at the beginning of day 𝑑 ∈ 𝐷. If the first 

shipment of demand that arrives for processing at that facility arrives ten minutes before closing, 

and the shipment contains 𝑘𝑗 items, then the IMCLP model would believe that all 𝑘𝑗 items can be 

processed on day 𝑑. However, we know that this is not acceptable. The demands arrive with only 

ten minutes of processing time left for the day, and therefore we would only be able to process a 

small fraction, if any, of the arriving demands.   

While the IMCLP limits the number of demands that can’t be processed on the day they 

arrive by assessing a penalty for backlogged demand, the formulation does not specify how long 

an item can be backlogged or the maximum number of demands that can be backlogged at any 
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given time. If desired, these types of restrictions can be added to the IMCLP formulation by 

adding constraints of the form:  

𝑉𝑗𝑑 ≤ 𝑑̅𝑗𝑘𝑗 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (3.9) 

where 𝑑̅𝑗 represents the maximum number of days an item at facility 𝑗 ∈ 𝐽 is allowed to be held 

in backlog. More generally, constraints (3.9) limit the amount of demand that can be held as 

backlog, and as such 𝑑̅𝑗 can take any non-negative value. We note that if 𝑑̅𝑗 = 0 then the IMCLP 

is restricted to process all items on the day they arrive and becomes a model with hard capacity 

constraints.  

 Throughout the remainder of this dissertation, we do not consider constraints (3.9) as part 

of the IMCLP as the penalty cost associated with holding items in backlog, 𝑏, was chosen to 

ensure that the backlog level did not grow over time. For example, the results for the problem 

instances used in this chapter never have more demand held in backlog than approximately 20% 

of the daily capacity. This indicates that if the demands were not processed on the first day they 

joined the processing queue, then they would be processed the following day. We leave 

analyzing the effect of incorporating constraints (3.9) for varying values of 𝑏 as an area of future 

work.  

 

3.3 Model Properties 

 In this section, we discuss some of the properties of the IMCLP. In particular, we prove 

that the IMCLP is NP-Hard and discuss the location, allocation, and cost differences that can 

arise between the IMCLP and CFLP solutions. We also show that when the allocation variables, 

𝑌𝑖𝑗, are allowed to take on continuous values between zero and one, inclusive, the maximum 

number of demand sites that may be multi-sourced is different from the maximum for the CFLP.  
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3.3.1 NP-Hardness 

The IMCLP is NP-hard as we can reduce it to the NP-hard UFLP when the parameters 

𝑏𝑗 = 0  ∀𝑗 ∈ 𝐽 and ℎ𝑖𝑑 = ℎ𝑖 ∀𝑖 ∈ 𝐼, 𝑑 ∈ {𝑡
∗ + 1,… , |𝐷|} [Garey and Johnson, 1979].  

 

Theorem: The IMCLP is NP-hard since it reduces to the UFLP when 𝑏 = 0 ∀𝑗 ∈ 𝐽 and ℎ𝑖𝑑 = ℎ𝑖 

∀𝑖 ∈ 𝐼, 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}. 

Proof:  When 𝑏 = 0 ∀𝑗 ∈ 𝐽 and ℎ𝑖𝑑 = ℎ𝑖 ∀𝑖 ∈ 𝐼, 𝑑 ∈ {𝑡
∗ + 1,… , |𝐷|}, the IMCLP can be written 

as a UFLP with additional constraints associated with the processing (𝑊𝑗𝑑, ∀𝑗 ∈ 𝐽, 𝑑 ∈ {𝑡
∗ +

1,… , |𝐷|}) and backlog (𝑉𝑗𝑑 , ∀𝑗 ∈ 𝐽, 𝑑 ∈ {𝑡
∗ + 1,… , |𝐷| + 1) variables, i.e. (3.4), (3.5), (3.7), 

(3.8), and (3.11): 

 

𝑀𝑖𝑛𝑿,𝒀,𝑽,𝑾      (|𝐷| − 𝑡
∗)(∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ℎ𝑖𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼𝑗∈𝐽 )  (3.10) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2)

 

 𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 𝑉𝑗,𝑑+1 − 𝑉𝑗𝑑 − ∑ ℎ𝑖𝑌𝑖𝑗𝑖∈𝐼 +𝑊𝑗𝑑 = 0 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… |𝐷|} (3.11) 

 𝑊𝑗𝑑 ≤ 𝑘𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (3.4) 

 𝑉𝑗,𝑡∗+1 = 𝑣𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽 (3.5) 

 𝑉𝑗𝑑 ≥ 0   ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}  (3.7) 

 𝑊𝑗𝑑 ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (3.8) 
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Note that the objective function (3.10) is the same as the objective function of the corresponding 

UFLP model. Let 𝑧∗ and 𝑧∗∗ be the optimal objective values of the IMCLP and UFLP 

respectively. It follows that 𝑧∗ ≥ 𝑧∗∗.  

 Now, note that if we find an optimal solution (𝑿∗, 𝒀∗) with an objective function value of 

𝑧∗∗ to the UFLP ((2.2) - (2.4), (3.6), and (3.10)) and can construct an expanded feasible solution 

(𝑿∗, 𝒀∗,𝑾∗, 𝑽∗) to the IMCLP (which has a corresponding objective function value of 𝑧∗∗), then 

we also have 𝑧∗∗ ≥ 𝑧∗. Given the above result, this leads to 𝑧∗ = 𝑧∗∗. Thus, (𝑿∗, 𝒀∗,𝑾∗, 𝑽∗) is an 

optimal solution to the IMCLP. 

 Indeed, for any optimal solution (𝑿∗, 𝒀∗) to the UFLP, we are able to construct such an 

expanded solution (𝑿∗, 𝒀∗,𝑾∗, 𝑽∗) to the IMCLP by setting 𝑾∗ = 𝟎 (which satisfies (3.4) for 

any value of 𝑿∗ ≥ 𝟎) and then setting the value of 𝑽∗ according to (3.5) and (3.11) with 𝑾∗ = 𝟎. 

Therefore, optimizing the specially designed instance of the IMCLP is equivalent to optimizing 

the UFLP, and because the UFLP is NP-hard in general, the IMCLP is also NP-hard.   □ 

 

3.3.2 Benefits of the IMCLP 

 The following example illustrates the benefits of using the IMCLP formulation rather 

than the CFLP formulation, which employs hard capacity constraints and average demand values 

rather than daily realizations of demand. In particular, the example demonstrates that the IMCLP 

may not locate facilities at the same locations that the CFLP chooses. In fact, the two models 

may choose to locate a different number of facilities in the optimal solution. It follows that the 

optimal allocation decisions are different as well. 

 Suppose there are three demand sites, denoted by A, B, and C, and each of these sites is 

also a candidate facility location. Suppose further that the daily fixed cost of locating a facility is 
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$100 and each located facility can process 100 items per day. Demand sites A, B, and C have a 

daily average demand of 50, 45, and 40 units, respectively, which will be used as the average 

demand parameters in the CFLP and will be used to generate the daily demands in the IMCLP. 

The corresponding daily demand data and travel times are given in Table 1 and Table 2 below. 

The weight on the transportation cost is 𝑎 = 1, the weight on the backlog cost is 𝑏 = 2, and the 

initial backlog levels are set at 0. We consider the problem for a time horizon of ten days and 

note that the warm-up period consists of days 𝑑 ∈ {1,2,3} since 𝑡∗ = 3. (Shading within the 

tables in this chapter indicates the warm up period.) 

Table 1: Example demand 
Demand 

Site 

 Daily Demand Generated Avg. Daily Demand 

Day  1 2 3 4 5 6  7 8 9 10 11 12 13  

A   40 60 40 60 40 60 40 60 40 60 40 60 40 50 

B   50 40 50 40 50 40 50 40 50 40 50 40 50 45 

C   80 0 80 0 80 0 80 0 80 0 80 0 80 40 

          Total Avg. Daily Demand:           135 

 

Table 2: Example travel time (in days) 

Demand Site 
Candidate Facility 

A B C 

A 1 2 3 

B 2 1 2 

C 3 2 1 

 

 Using the data of Table 1 and Table 2 the optimal CFLP solution is to locate facilities at 

sites A and B, and to assign demands originating at A to facility A while assigning demands 

originating at B and C to facility B. However, the optimal IMCLP solution is to locate facilities 

at sites A and C, and to assign demands originating at A and B to facility A while assigning 

demands originating at C to facility C. The location and allocation decisions for these two 

solutions are depicted in Figure 2. 
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Figure 2: Optimal CFLP and IMCLP solutions for the example 

 If the CFLP is used to determine the optimal location and allocation decisions for a 

processing facility location problem where, in reality, a processing facility is able to hold excess 

demand in backlog and process it the following day, the total cost calculated by the CFLP will 

not reflect the actual cost of the system. This is because, in reality, the processing facility incurs 

penalty costs associated with holding excess demand in backlog and processing it the following 

day; the CFLP does not consider such costs. However, the IMCLP does. Thus, we compare the 

optimal IMCLP cost to the cost of using the optimal CFLP locations and allocations when the 

daily demand is realized and excess demand can be held in backlog to be processed the following 

day.  We do this by fixing the optimal CFLP locations and allocations in the IMCLP model.  

 Both the optimal CFLP and IMCLP solutions choose to locate two facilities. As a result, 

the facility location cost term in the objective function for either solution is $2,000 ($200/day 

over a ten day planning horizon). Now consider the cost difference as given by the transportation 

and backlog terms for the optimal IMCLP solution and the IMCLP solution under the CFLP 

location and allocation decisions.  

 In the optimal IMCLP solution, demands that originate at A arrive for processing at 

facility A the following day (i.e., Table 2 lists the travel time as one day) and demands that 

originate at B arrive at facility A in two days. Facility C only processes its own demands, and 

these demands are available for processing the day after they originate. In the optimal CFLP 

solution, demands from A still arrive for processing at facility A the following day. However, 
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demands that originate at B and C arrive for processing at facility B in one and two days, 

respectively. The total amount of demand arriving each day at each facility under the two 

solutions is presented in Tables 3 and 4.  

 Tables 3 and 4 make it evident that there are some days (i.e., days 3, 5, 7, 9, 11, and 13) 

on which the amount of demand arriving at a facility exceeds the daily processing capacity of 

100 items per facility. These excess demands will be reported as the backlog present on the 

following mornings (i.e., the morning of days 6, 8, 10, 12, and 14). We remind the reader that 

since days 1-3 fall within the warm-up period, we begin assessing the facility’s operations on day 

four and therefore do not include the excess demand that arrives on day 3.  Furthermore, due to 

the definition of the backlog variables representing the amount of backlog at the beginning of the 

day, the IMCLP captures the backlogging costs through day |𝐷| + 1. Thus, although the last day 

of the model’s time horizon is |𝐷| = 13, we report the final backlog level as the about of 

backlog at the beginning of day |𝐷| + 1 = 14 and note that this is the same amount of backlog 

that is present at the end of day 13. 

 Thus, the optimal solution to the IMCLP results in ten units of backlog at facility A at the 

beginning of days 6, 8, 10, 12, and 14, which results in a total backlog cost of $100 over the ten 

day planning horizon. However, when the CFLP locations and allocations are fixed in the 

IMCLP model, facility B has 20 units of backlog at the beginning of days 6, 8, 10, 12, and 14. 

This results in a total backlog cost of $200 over the ten day planning horizon and is double the 

backlog cost of the optimal IMCLP solution.  

 On the other hand, the optimal IMCLP solution has a total transportation cost of $1,800, 

which is greater than the transportation cost of $1,750 given by the CFLP solution in the IMCLP 

model. In the optimal IMCLP solution, the cost savings from decreasing the backlogging costs 
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outweigh the increased transportation costs from locating at facility C instead of B. This results 

in an optimal solution that is different from, and has a lower total cost than, the optimal CFLP 

solution once daily demands and backlogging costs are realized. Table 5 summarizes these costs. 

Table 3: Daily demand received: optimal IMCLP solution 
Processing 

Facility 

Day 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

A  0 40 110 80 110 80 110 80 110 80 110 80 110 

B  0 0 0 0 0 0 0 0 0 0 0 0 0 

C  0 80 0 80 0 80 0 80 0 80 0 80 0 

Table 4: Daily demand received: optimal CFLP assignments in IMCLP model 
Processing 

Facility 

Day 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

A  0 40 60 40 60 40 60 40 60 40 60 40 60 

B  0 50 120 50 120 50 120 50 120 50 120 50 120 

C  0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 5: Cost comparison 
 

IMCLP 
IMCLP with CFLP 

Locations and Allocations 

Fixed Cost $2,000 $2,000 

Transportation Cost $1,800 $1,750 

Backlog Cost $100 $200 

Total Cost $3,900 $3,950 

 

 While the total cost difference between the IMCLP and the IMCLP with CFLP locations 

and allocations is a mere $50 for the above example, the cost savings from using the IMCLP 

model largely depends on the value of b . Figure 3 displays the effect of fixing the CFLP 

location and allocation decisions in the IMCLP as the value of b  increases while a  remains 

constant. Recall that the IMCLP objective function consists of the facility location, 

transportation, and backlogging costs, while the CFLP objective function only considers the first 

two costs. As a result, increasing b  (i.e., the weight on backlog) may affect the optimal IMCLP 

solution but will not affect the optimal CFLP solution. Thus, we always evaluate the same CFLP 

solution in the IMCLP, regardless of the value of b . Figure 3 shows that as the value of b  

increases, the percent increase in cost from using the CFLP solution instead of the optimal 
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IMCLP solution increases. Hence, as b increases, it becomes more costly to approximate the 

optimal IMCLP solution with the CFLP solution. As a result, using the IMCLP solution will 

result in a lower cost than the CFLP solution when the daily demands are realized. Additionally, 

when 11b  , it becomes more costly to hold items in backlog than to locate all of the facilities 

and let each facility process its own demand. As such, the optimal IMCLP solution changes at 

11b  . This solution has no backlog and, therefore, remains optimal for all values of 11b  . 

Therefore, using the CFLP solution instead of the IMCLP solution results in an arbitrarily more 

costly solution as the value of b increases.  

 
Figure 3: Effect of using the CFLP solution in the IMCLP; 𝑎 = 1 

Data-Driven CFLP:  

 It is worth noting that if the cost of backlog is set sufficiently high, the IMCLP model 

will essentially become a data-driven CFLP model (see Appendix A for formulation) in which 

daily demands can be used to determine the optimal model decisions, but the capacity constraints 

on the amount of arriving demand remain enforced. That is, no backlog is allowed when 𝑏 is 

sufficiently large; the capacity constraints effectively become ∑ ℎ𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 ≤ 𝑘𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽;  𝑑 ∈

{𝑡∗ + 1,… , |𝐷|}. As a result, the data-driven CFLP must locate all three facilities in the small 
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example, and, to minimize cost, demands must be processed at the site at which they originate.  

This results in a total cost of $4,350 over the 10-day time horizon as shown in Table 6.  

Table 6: Cost of optimal data-driven CFLP solution 
 Data-Driven CFLP 

Fixed Cost $3,000 

Transportation Cost $1,350 

Backlog Cost $0 

Total Cost $4,350 

 

IMCLP Model Property: The optimal objective function value of the data-driven CFLP is an 

upper bound on the optimal IMCLP objective function value. 

 

 The increase in fixed facility cost results in the data-driven CFLP model being much 

more costly to implement than either the IMCLP or the IMCLP with CFLP locations and 

allocations when 𝑏 = 2. In fact, since the data-driven CFLP is a more restrictive version of the 

IMCLP, it follows that the optimal cost of the data-driven CFLP will always serve as an upper 

bound on the optimal IMCLP cost. For this example, the $4,350 data-driven CFLP is 11.5% 

more costly than the optimal $3,900 IMCLP solution when 𝑏 = 2. (We note that the optimal 

data-driven CFLP solution is precisely the IMCLP solution obtained when 𝑏 = 11, and is 

indicated by a dashed line in Figure 3). Table 7 displays the amount of demand received at each 

facility in this situation; we note that there is no day in which over 100 demands arrive for 

processing.  
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Table 7: Daily demand received: optimal data-driven CFLP 
Processing 

Facility 

Day 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

A  0 40 60 40 60 40 60 40 60 40 60 40 60 

B  0 50 40 50 40 50 40 50 40 50 40 50 40 

C  0 80 0 80 0 80 0 80 0 80 0 80 0 

  

 

3.3.3 Theoretical Maximum Number of Multi-Soured Demand Nodes 

It is commonplace in logistics literature to design networks in which each demand site is 

served by exactly one processing facility due to the operational complexity involved in allowing 

the demand to be sourced by multiple processing facilities. However, one advantage of allowing 

demands sites to be multi-sourced is a reduction in overall logistics costs. Ozsen et al. (2009) 

present such cost reductions for a two-echelon capacitated facility location model that 

incorporates safety stock decisions (an environment that differs from the IMCLP). Their results 

show that the number of located facilities, multi-sourced demand sites, and the number of 

facilities that serve each demand site increases as the transportation weight increases. Thus, the 

cost reduction from allowing multi-sourcing increases as the transportation weight increases. 

Additionally, while we do not consider disruptions in the network transportation structure 

in this model, risk diversification by multi-sourcing demand sites is favored in situations in 

which the network is threatened by disruptions. Mak and Shen (2012) show that supply chain 

networks that allow dynamic sourcing can be very robust against both disruptions and demand 

uncertainty. Their results indicate that single sourcing becomes less favorable as the decision 

maker becomes more risk adverse. 

The remainder of this section investigates the theoretical implications of allowing multi-

sourcing within the IMCLP. We do this by relaxing the assumption that the allocation variables 

are binary and instead assume that they may take on continuous values between zero and one 
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(i.e., 𝑌𝑖𝑗 ≥ 0).  In Section 3.4.1 we compare the theoretical implications to empirical results 

generated from large data instances. 

 It is well known that when the assignment variables are relaxed to take on continuous 

values, the number of multi-sourced demand sites in the CFLP is at most the number of 

processing facilities that are located minus one [Bertsekas, 2003]. Daskin and Jones (1993) note 

that the number of demand sites is often significantly greater than the number of located 

processing facilities, and therefore, relatively few demand sites will be multi-sourced. Here we 

present a simple example to show that these results do not translate to the corresponding relaxed 

version of the IMCLP. Indeed, there exist situations in which the optimal solution to the relaxed 

version of the IMCLP requires all of the demand sites to be multi-sourced. The situation below is 

one such example.  

 

IMCLP Model Property: The optimal solution to the IMCLP with relaxed allocation 

variables (i.e., 𝑌𝑖𝑗 ≥ 0) may require all of the demand sites to be multi-sourced. Therefore, 

the number of multi-sourced demand sites may greatly exceed the number of located 

processing facilities in the optimal solution. 

  

 Suppose we have ten demand sites labeled A through J and that demand sites A, B, C, D, 

and E are also candidate processing facilities. Each demand site generates 25 units of demand on 

two consecutive days, but does not generate any demand on the remaining eight days of a ten-

day demand cycle, as described in Table 8. Let us also suppose that there is a uniform travel time 

so that it takes one day to transport demand from each demand site to any processing facility. 

Additionally, assume that the daily fixed cost of each located facility is $100 and each located 
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facility can process at most ten units per day. Let the transportation weight be set at 𝑎 = 1 and 

the backlog weight be set to 𝑏 = 10. 

Table 8: Multi-sourced example: daily demand generated 
Demand 

Site 

Day 

1 2 3 4 5 6 7 8 9 10 … 92 93 94 95 96 97 98 99 100 101 

A 25 0 0 0 0 0 0 0 0 25 … 0 0 0 0 0 0 0 0 25 25 

B 25 25 0 0 0 0 0 0 0 0 … 25 0 0 0 0 0 0 0 0 25 

C 0 25 25 0 0 0 0 0 0 0 … 25 25 0 0 0 0 0 0 0 0 

D 0 0 25 25 0 0 0 0 0 0 … 0 25 25 0 0 0 0 0 0 0 

E 0 0 0 25 25 0 0 0 0 0 … 0 0 25 25 0 0 0 0 0 0 

F 0 0 0 0 25 25 0 0 0 0 … 0 0 0 25 25 0 0 0 0 0 

G 0 0 0 0 0 25 25 0 0 0 … 0 0 0 0 25 25 0 0 0 0 

H 0 0 0 0 0 0 25 25 0 0 … 0 0 0 0 0 25 25 0 0 0 

I 0 0 0 0 0 0 0 25 25 0 … 0 0 0 0 0 0 25 25 0 0 

J 0 0 0 0 0 0 0 0 25 25 … 0 0 0 0 0 0 0 25 25 0 

 

 The optimal solution to the IMCLP in which the assignment variables are relaxed locates 

all five processing facilities, instructs each of the ten demand sites to allocate 20% of their 

demand to each of the five located processing facilities (Table 9), and has ten units of demand 

arriving at each processing facility each day (Table 16). Since each facility can process ten items 

of demand per day, no items are backlogged. Thus, the total cost over the time horizon is 

$55,000 and consists of $50,000 in facility location costs and $5,000 in transportation costs.  

Table 9: Multi-sourced example 2 solution: demand allocation 

Demand Site 
Candidate Processing Location 

A B C D E 

A 0.2 0.2 0.2 0.2 0.2 

B 0.2 0.2 0.2 0.2 0.2 

C 0.2 0.2 0.2 0.2 0.2 

D 0.2 0.2 0.2 0.2 0.2 

E 0.2 0.2 0.2 0.2 0.2 

F 0.2 0.2 0.2 0.2 0.2 

G 0.2 0.2 0.2 0.2 0.2 

H 0.2 0.2 0.2 0.2 0.2 

I 0.2 0.2 0.2 0.2 0.2 

J 0.2 0.2 0.2 0.2 0.2 
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Table 10: Multi-sourced example 2 solution: total demand arriving at processing facility 

Processing 

Facility 

Day 

  1 2 3 4 5 6 … 101 

A   0 10 10 10 10 10 … 10 

B   0 10 10 10 10 10 … 10 

C   0 10 10 10 10 10 … 10 

D   0 10 10 10 10 10 … 10 

E   0 10 10 10 10 10 … 10 

 Note that since ten demand sites are multi-sourced and five facilities are located, this 

example shows that the number of multi-sourced sites exceeds the number of facilities located 

minus one. Furthermore, we identify that there are no alternative optimal solutions in which 

fewer demand sites are multi-sourced by adding the following constraints to formulation (2.2) - 

(2.4) and (3.2) - (3.8), resolving the model, and observing an optimal cost that is higher than 

$55,000.
1
 We let 𝑁𝑖𝑗 be a binary variable that takes the value of one if demand site 𝑖 allocates 

any of its demand to facility 𝑗 (and zero otherwise), 𝐸𝑖 be a binary variable that takes the value of 

one if demand site 𝑖 is multi-sourced (and zero otherwise) and add the constraints:  

 𝑁𝑖𝑗 ≥ 𝑌𝑖𝑗  ∀𝑖 ∈ 𝐼;  𝑗 ∈ 𝐽  (3.12) 

 ∑ 𝑁𝑖𝑗𝑗∈𝐽 ≤ 1 + (|𝐽| − 1)𝐸𝑖  ∀𝑖 ∈ 𝐼 (3.13) 

 ∑ 𝐸𝑖𝑖∈𝐼 ≤ |𝐼| − 1  ∀𝑖 ∈ 𝐼 (3.14) 

 Constraints (3.12) ensure that the variable 𝑁𝑖𝑗 is one if demand site 𝑖 allocates any of its 

demand to facility 𝑗). Then, the left hand side of constraint (3.13) counts the number of facilities 

to which demand site 𝑖 allocates its demands. If it allocates demands to more than one facility, 

demand site 𝑖 is multi-sourced and variable 𝐸𝑖 must take on a value of one. Finally, constraints 

(3.14) ensure that at least one demand site is not multi-sourced. We note that the right hand side 

of constraint (3.14) represents the maximum number of multi-sourced demand sites that are 

allowed, and can be changed to any non-negative value the user desires. For example, if we want 

                                                 
1
 For the example data, the optimal cost of the solution to the IMCLP model in which we ensure at least one demand 

site is not multi-sourced is $83,150. 
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to ensure that the number of multi-sourced sites does not exceed the number of located 

processing facilities minus one, the right hand side of constraint (3.14) can be replaced by 

∑ 𝑋𝑗𝑗∈𝐽 − 1.
1
 Adding constraints (3.12) - (3.14) to formulation (2.2) - (2.4) and (3.2) - (3.8) 

results in a larger objective function value for this problem instance, thereby showing that there 

is no alternate optimum in which fewer demand nodes are multi-sourced. 

 

3.4 Computational Results 

 We now provide computational results for the IMCLP. In particular, we test the 

sensitivity of the IMCLP solution time as the size of the problem instance increases and compare 

the optimal IMCLP solution to that of the CFLP. The models are coded in AMPL and the MIP 

problems are solved using CPLEX 12.2.0 on an Intel 3.20 GHz Xeon CPU with 8 GB of 

memory.  

 Model data are generated based on 2010 U.S. census population data from the 500 largest 

U.S. counties.  In the discussion that follows, we refer to counties as nodes and refer to a node in 

terms of its population rank. (i.e., The largest county, Los Angeles, CA, has rank 1 while the 

500
th

 largest county, Boone, KY, has rank 500.) Multiple problem instances are created by 

varying the number of demand-generating sites and candidate processing facilities. The data 

instances use the largest (with respect to the population) nodes as demand-generating sites and 

possible candidate facility locations. For example, an instance with 100 candidate locations 

includes the 100 largest nodes while a data instance with 150 candidate locations includes the 

same nodes as the 100 candidate location dataset plus the next 50 largest nodes. From these data 

instances we generate the necessary model parameters as follows.  

                                                 
1
 For the example data, the optimal cost of the solution to the IMCLP model in which we restrict the number of 

multi-sourced demand nodes to be no greater than the number of located processing facilities minus 1 is $108,950 
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 Unless otherwise noted, for each demand site 𝑖 ∈ 𝐼, discrete, random daily demands are 

generated for a 100 day time horizon (plus the warm-up days required for initialization) from a 

Poisson distribution with a mean of 1/10,000 of the county population, 𝜌𝑖. To remain consistent, 

the average daily demand at site 𝑖 ∈ 𝐼 is set to 
1

10,000
𝜌𝑖 in the CFLP instances. The second and 

third columns in Table 11 display the population and corresponding average daily demand 

parameter used to generate the daily Poisson distributed demands for the five largest demand 

sites, respectively. Demands were generated at this rate seven days a week at all the demand 

sites, and the resulting sample statistics are presented in columns four and six of Table 11. 

Additionally, Table 12 provides further information regarding the population range of the 500 

largest counties. 

Table 11: Demand statistics for 5 largest demand sites 

Demand Site 
Population 

(𝜌𝑖) 

Theoretical 

Average Daily 

Demand

(
1

10,000
𝜌𝑖) 

Sample 

Average 

Daily Demand 

Theoretical 

Standard 

Deviation of 

Demand 

Sample 

Standard 

Deviation of 

Demand 

Los Angeles, CA 9,818,605 982 984.8 31.3 29.3 

Cook, IL 5,194,675 519 519.6 22.8 22.4 

Harris, TX 4,092,459 409 410.1 20.2 20.4 

Maricopa, AZ 3,817,117 382 380.8 19.5 19.1 

San Diego, CA 3,095,313 310 309.0 17.6 16.0 

Table 12: Population Range of 500 Largest US Counties  
Node Rank Max. 𝜌𝑖 Min. 𝜌𝑖 Avg. 𝜌𝑖 St Dev 𝜌𝑖 

1-50 9,818,605 916,924 1,833,113  1,442,311 

51-100 916,829 618,754 754,214 91,285 

101-150 603,403 434,972 511,279 48,884 

151-200 432,552 316,236 373,976 36,902 

201-250 315,335 255,793 284,748 16,693 

251-300 255,755 203,206 229,034 16,506 

301-350 203,065 174,528 189,518 9,097 

351-400 174,214 154,358 163,353 5,515 

401-450 153,990 136,484 144,544 5,696 

451-500 136,146 118,811 127,719 5,082 

 

Distances between nodes are calculated based on the Great Circle Distance (e.g., 

Weisstein (2016)). We use this distance to calculate the travel time between nodes under the 
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assumption that it takes one day to process the outgoing order at the demand-generating site and 

one day to transport an item 100 miles. The travel times are integer valued. Thus, if the Great 

Circle Distance between two nodes is 402 miles, the travel time between the nodes is six days 

(⌈402/100⌉ = 5 days for traveling plus one day for processing). Under this assumption, 

demands are never processed on the day they originate, in accordance with the discussion in 

Section 3.2. For example, suppose a processing facility is located at node A and also that the 

demand generated at node A is assigned to be processed at node A. All of the demands that 

originate at node A on day 𝑑 will arrive to be processed at node A on day 𝑑 + 1. Such a scenario 

resembles that of a postal service policy in which mail carriers collect mail from various houses 

and businesses during the day and bring the collected mail to the post office at the end of the 

business day. If we assume that there is no night shift at the post office, the mail must wait until 

the next business day to be processed. Thus, the effective travel time plus processing time is one 

day.   

The daily facility location costs are calculated by specifying a daily base cost plus an 

additional cost calculated from the associated demand (population) generated at that location. 

Specifically, we use the formula 

𝑧 + 𝑤𝜌𝑗 

to generate the daily facility location cost for each facility 𝑗 ∈ 𝐽, where 𝑧 denotes the daily base 

fixed cost and 𝑤 is the population weight. For the instances that follow, we let the daily base 

fixed cost be 𝑧 = $10,000 and the weight be 𝑤 = $0.0001. For example, Los Angeles, CA, 

which has a population of 9,818,605, has a daily fixed cost of $10,000 + $0.0001 ∗

9,818,605 = $10,982 while Du Page, IL, which has a population of 916,924, has a daily fixed 

cost of $10,000 + $0.0001 ∗ 916,924 = $10,092. We note that the population weight 𝑤 greatly 
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affects which facilities are located; larger values of 𝑤 result in greater disparities between the 

cost of locating a facility in the most populous county (i.e., Node 1- Los Angeles, CA) and in a 

less populous county (e.g., Node 50, Du Page, IL). We direct the interested reader to Appendix B 

for an analysis of the effect of the population weight on the optimal solution. 

 We assume that each facility, regardless of its location, has a uniform capacity of one 

fifth of the total average daily demand, rounded up to the nearest hundred. Thus, the capacity of 

each processing facility depends on which (and how many) demand nodes are considered. For 

example, since the 50 largest demand sites generate a daily average of 9,166 units of demand and 

1,833.2 is one fifth of 9,166, each candidate processing facility has a daily processing capacity of 

1,900 units. Furthermore, the capacity of each processing facility in an instance with 50 demand 

nodes is less than the capacity of each processing facility in, for example, a 100 demand node 

instance since the latter instance generates more total average demand each day. The specific 

capacity levels of the problem instances used in this chapter are reported in Table 13. 

Table 13: Daily processing capacity per candidate facility 

# Demand 

Nodes 

Total Average 

Daily Demand 

1/5 Total Average 

Daily Demand 

Daily Capacity 

per Candidate 

Facility 

Daily Capacity % of 

Total Average Daily 

Demand 

50 9,166 1833.2 1900 20.7% 

100 12,936 2587.2 2600 20.1% 

150 15,491 3098.2 3100 20.0% 

200 17,360 3472.0 3500 20.2% 

250 18,787 3757.4 3800 20.2% 

300 19,929 3985.8 4000 20.0% 

350 20,878 4175.6 4200 20.1% 

400 21,696 4339.2 4400 20.3% 

450 22,421 4484.2 4500 20.0% 

500 23,054 4610.8 4700 20.4% 

 

 If there is sufficient capacity in the system for the CFLP to accommodate all demands, 

then, in expectation, there will be sufficient capacity in the system for the IMCLP model to 

accommodate all demands. This is because the processing capacities are the same in the two 
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models and the daily demands in the IMCLP model are realizations of a random distribution with 

constant mean equal to the mean used in the CFLP. If the underlying demand process is time 

dependent (i.e., the mean demand at a location changes with time), then a different model must 

be applied [Drezner and Wesolowsky, 1991]. 

 Conversion factors 𝑎 and 𝑏 are chosen to limit the number of items held in backlog from 

day to day to a reasonable value and will be specified in each problem instance individually. We 

consider 𝑎 and 𝑏 values to be reasonable if the backlog does not grow without bound at any  

processing facility when five facilities are located.  

 Unless otherwise noted, the following results are generated using instances constructed 

using the aforementioned method.  

 

3.4.1 Empirical Number of Multi-Sourced Demand Nodes 

 To compare the theoretical results regarding the number of multi-sourced demand sites 

discussed in Section 3.3.3 with empirical results, we investigate the percent of demand sites that 

are multi-sourced for numerous problem instances. Each problem instance uses a time horizon of 

100 days and the 50 most populous counties as candidate facility locations. The number of 

demand sites varies in increments of 50 to 500. The results in Table 14 indicate that although in 

theory all of the demand sites could be multi-sourced, no more than 8% of the demand sites were 

multi-sourced in the optimal solution of the data instances we considered. Moreover, all but one 

of the optimal solutions had at most 3% of the demand sites multi-sourced. Nevertheless, the 

instances with 300, 400, and 450 demand sites again confirm that the number of multi-sourced 

sites can exceed the number of facilities located minus one in the optimal solution.
1
 

                                                 
1
 Since there may be multiple alternative optima, we note that the number of multi-sourced demand nodes reported 

in Table 14 for each problem instance is the minimum number of multi-sourced demand nodes across all 
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Table 14: Number of multi-sourced demand sites; 𝑎 = 1, 𝑏 = 3 

# Demand 

Nodes 

# Candidate 

Nodes 

# of  

Multi-Sourced 

Demand Nodes 

% of Demand 

Nodes that are 

Multi-Sourced 

# Open 

Facilities 

Rank of Open 

Facilities 

50 50 4 8.00% 5 2,3,6,7,13 

100 50 3 3.00% 6 11,16,20,25,30,33 

150 50 4 2.67% 6 11,16,25,33,35,43 

200 50 5 2.50% 6 9,11,25,26,30,33 

250 50 3 1.20% 6 10,11,15,16,25,35 

300 50 6 2.00% 6 9,11,15,20,25,35 

350 50 4 1.14% 6 2,9,11,20,25,48 

400 50 9 2.25% 6 2,9,11,20,25,48 

450 50 8 1.78% 6 2,9,11,20,25,48 

500 50 5 1.00% 6 2,9,11,20,25,48 

 

Using the 50 demand, 50 candidate facility locations instance as a base case, we increase 

the backlog weight, 𝑏. Our results indicate that the number of multi-sourced demand sites does 

not increase until 𝑏 > 100. However, as 𝑏 increases past 100, the number of multi-sourced 

demand sites significantly increases. The number of located processing facilities remains 

constant at five located facilities.  However, in general, the backlog weight can change the 

number of located facilities; typically, an additional facility will be located to accommodate 

excess backlog if the backlog weight is sufficiently high. The results are presented in Figure 4.  

 
Figure 4: Effect of increasing backlog weight, 50 demand & candidate nodes, 100 days, 𝑎 = 1 

                                                                                                                                                             
corresponding optimal solutions. This was verified by observing a higher optimal cost when we imposed a constraint 

that restricted the number of multi-sourced demand nodes to be less than the number reported in the fifth column of 

Table 14. 
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3.4.2 Comparison to CFLP 

 Next, we compare the effect of incorporating capacity into facility location models via 

the CFLP and the IMCLP. We find that the CFLP and IMCLP generally do not have the same 

optimal solutions in terms of the location and allocation decisions. In fact, the two models can 

choose to not only locate different processing facilities, but also locate a different number of 

processing facilities.  In the following paragraph we present one such example in which the 

CFLP locates fewer facilities than the IMCLP. While the demand data used in the CFLP and 

IMCLP are generated from the same daily demand mean, the IMCLP differs from the CFLP in 

that if the total demand that arrives at a processing facility exceeds the processing capacity, a 

penalty cost is incurred because the unprocessed demand must wait in backlog to be processed at 

a later date. If this cost is sufficiently high, the IMCLP model will choose to locate an additional 

facility to mitigate the effect of the backlog penalty costs. 

 For the results in this section, random daily demands for the IMCLP were generated from 

a Poisson distribution with a mean of 1/5,000 of the node population. Since the CFLP requires as 

input a generic daily demand value, we set the average daily demand for the CFLP to be 1/5,000 

of the demand node population to be consistent with the manner in which the IMCLP data were 

generated. The facility capacities, fixed location costs, and travel times between sites were 

generated in the manner described earlier in Section 3.4 except that a weight of 𝑤 = 0.01 was 

used for the fixed location costs. In this case, the daily facility location costs of the candidate 

processing facilities range from $108,186 (Node 1: Los Angeles, CA) to $19,169 (Node 50: Du 

Page, IL). 

 We ran the IMCLP and CFLP models for the 50 demand, 50 candidate node problem 

instance with a 100 day time horizon. The conversion factors of 𝑎 = 1 and 𝑏 = 100 were used. 
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CFLP Model 

DuPage, IL 

Westchester, NY 

Travis, TX 

Pima, AZ 

Fresno, CA 

The traditional CFLP model located processing facilities in Fresno, CA; Pima, AZ; Travis, TX; 

DuPage, IL; and Westchester, NY while the IMCLP located an additional facility in Orange, FL. 

Note that the CFLP located five facilities while the IMCLP located six. The optimal location and 

allocation assignments of the two models can be seen in Figure 5 and Figure 6. The large boxes 

denote located facilities and the lines connect each demand site to its assigned processing 

facility. In both the CFLP and IMCLP solutions the demand sites were not necessarily assigned 

to the nearest located facility. For example, in the optimal CFLP solution, Fulton, GA is closer to 

DuPage, IL (589 miles, seven days) but was assigned to Travis, TX (818 miles, ten days) and in 

the IMCLP solution, Salt Lake, UT was assigned to Travis, TX (1068 miles, 12 days) although it 

is much closer to Fresno, CA (502 miles, seven days). These two demand sites are identified in 

Figure 5 and Figure 6 by a dotted circle. 

 

Figure 5: Optimal CFLP Solution; 50 demand & candidate nodes, 𝑎 = 1; 
 mean daily demand=1/5000 node population, 𝑤 = 0.01 
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DuPage, IL 

Westchester, NY 

Travis, TX 

Pima, AZ 

Fresno, CA 

Orange, FL 

IMCLP Model 
 

Figure 6: Optimal IMCLP solution; 50 demand & candidate nodes, 𝑎 = 1, 𝑏 = 100; 

 mean daily demand=1/5000 node population, 𝑤 = 0.01 

 As we will discuss in Section 3.4.3, preliminary results show that the CFLP solves much 

faster than the IMCLP. Therefore, as we did with a small example in Section 3.3., we again 

investigate the effect on the optimal objective function value of the IMCLP if demand allocations 

are given by the solution to the capacitated facility location problem as the relative cost of 

backlog to transportation cost varies. For this analysis we fix the transportation weight at 𝑎 = 1 

and vary the backlog weight, 𝑏. The results indicate that the solution obtained by using the CFLP 

allocations can provide very poor approximations to the optimal solution of the IMCLP, 

particularly as it becomes more costly to hold items in backlog. This is to be expected since the 

CFLP does not incorporate backlog in the objective function. For example, when 𝑎 = 𝑏 = 1 the 

optimal locations determined by the IMCLP and CFLP are the same. However, if a company 

experiences unit daily backlog carrying costs that are 100 times as much as the unit 

transportation costs, the company would see an undesirable total cost increase of 9% if the 

location and allocation decisions are determined via the CFLP rather than by the IMCLP. A 

major contributor to the cost difference between the two models is that the optimal IMCLP 
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solution locates six facilities whereas the corresponding CFLP solution only locates five 

facilities. This is in part due to the fact that the backlogging costs that would be accumulated if 

only five facilities were located can be mitigated by locating an additional processing facility. 

We also note that the optimal CFLP solution clearly does not change as the backlog weight, 𝑏, 

varies since backlog is not accounted for in the CFLP.   

 

3.4.3 Effect of Problem Size 

In this section we investigate the effect of problem size on solution times by increasing 

the number of demand and candidate nodes simultaneously, increasing the number of demand 

nodes only, and increasing the time horizon while keeping the number of demand and candidate 

nodes constant. We present the solution time in seconds or, if a provably optimal solution could 

not be found within one hour, we present the percent optimality gap as obtained by CPLEX 

12.2.0. 

Increasing the Number of Nodes  

We increase the number of demand and candidate nodes simultaneously and report the 

solution times and processing facilities located for the CFLP, IMCLP, and IMCLP with the 

assignment variables relaxed from binary (i.e., Relaxed IMCLP). The solution time or optimality 

gap after one hour for data instances ranging from 50 to 500 demand and candidate nodes are 

presented in Table 15. We report a 100% optimality gap for problem instances in which no 

feasible solution is found within one hour. We find that the CFLP solves much quicker than both 

the IMCLP and Relaxed IMCLP problems. This is expected due to the additional constraints and 

variables in the IMCLP that track the daily activity of the processing facilities.  
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Table 15: Solution times (in seconds) or % optimality gap (indicated by shading) within 1 hour 

using a generic solver; 𝑎 = 1, 𝑏 = 3  
# Demand & Candidate Nodes CFLP IMCLP Relaxed IMCLP 

50 0.52 6.35 8.11 

100 192.74 1544.11 496.49 

150 0.58% 3.70% 1.55% 

200 0.93% 3.75% 2.26% 

250 1.69% 3.54 % 2.99% 

300 2.53% 5.66% 4.77% 

350 2.02% 5.69% 3.13% 

400 2.65% 51.26% 3.29% 

450 5.14% 92.10% 100% 

500 2.99% 100% 100% 

  

 Preliminary results indicate that the IMCLP model tends to locate processing facilities at 

nodes corresponding to larger populations (and therefore at the nodes that generate the largest 

demand). Thus, we reduce the set of candidate processing facilities by eliminating the candidate 

nodes with the lowest population to obtain an approximate solution. 

 We begin by using the 100 demand, 100 candidate node instance with 100 days of daily 

demand data, 𝑎 = 1, and 𝑏 = 3 to illustrate the results. We consider various candidate node sets, 

including the set in which all 100 of the demand nodes also serve as candidate nodes and the set 

with only the nodes corresponding to the ten largest populations. The tradeoff in solution time 

and cost is displayed in Figure 7. The cost increase is compared to the optimal cost when all 100 

nodes are in the candidate node set. As expected, as the number of candidate nodes decreases, 

the solution time also decreases while the cost increases. We find that a similar result holds for 

the CFLP. 
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Figure 7: Effect of changing number of candidate nodes; 100 demand & candidate nodes, 100 

days, 𝑎 = 1, 𝑏 = 3 

 For example, the optimal solution using all 100 nodes as candidate nodes locates 

processing facilities at the 11
th

, 16
th

, 20
th

, 25
th

, 30
th

, and 60
th

 largest nodes (i.e., Riverside, CA; 

Tarrant, TX; New York, NY; Sacramento, CA; Hillsborough, FL; and Macomb, MI, 

respectively) and takes 1544.11 seconds to solve.  However, if we restrict the set of candidate 

nodes to include only the 30 nodes with the largest population, the solution time is reduced to 

45.29 seconds (a 97% reduction) and the cost of the solution obtained is only 0.0134% more than 

the optimal solution. The 30 candidate node problem locates all but one of the same processing 

facilities as does the problem with 100 candidate nodes; the 60
th

 largest county (i.e., Macomb, 

MI) located in the 100 candidate node problem is replaced by the 15
th

 largest county (i.e., 

Wayne, MI) in the 30 candidate node problem.  

 Since reducing the size of the candidate node set was beneficial in terms of the solution 

time with only a minimal increase in cost for the 100 demand node problem instance, we next 

vary the number of demand nodes from 50 to 500 in intervals of 50. The transportation and 

backlog weights are the same as those listed in Table 15. In Figure 8 we display the IMCLP 

optimality gap after one hour of run time when all of the demand nodes are candidate nodes, as 

well as when only the 50 and 100 largest demand nodes are candidate nodes. The IMCLP data 
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referenced in Table 15 is used for the “All Nodes” case. It is clear that reducing the size of the 

candidate node set to include only the 50 or 100 largest nodes significantly improves the solution 

progress within one hour.  

 

Figure 8: IMCLP solution progress as size of candidate node set varies; 100 days; 𝑎 = 1, 𝑏 = 3 

 Additionally, Figure 8 suggests that restricting the size of the candidate set to the 50 

largest nodes usually does not provide a significant reduction in the solution progress when 

compared to that of the largest 100 node candidate node set. An exception to this is the 500 

demand node instance, which solves to optimality when only the 50 largest nodes are in the 

candidate node set but has a 20.8% optimality gap after one hour when the 100 largest nodes are 

in the candidate node set. 

 When the same number of demand and candidate node instances are run for the CFLP we 

find that the resulting optimality gaps after one hour are reduced (see Figure 9). Of particular 

note are the instances consisting of 350-500 demand nodes when all of the demand nodes are 

candidate nodes as well. In the problem instance with 500 candidate nodes, the CFLP reported an 

optimality gap of 6.21% within one hour while the IMCLP does not find a feasible solution in 
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the same time frame. We note that the scale of the y-axis in Figure 9 is different than that of 

Figure 8. 

 

Figure 9: CFLP solution progress as size of candidate node set varies; 𝑎 = 1 

 

Increasing the Number of Days in the Planning Horizon 

Since Table 15 indicates that the 50 demand, 50 candidate node instance produced an 

optimal solution relatively quickly for 100 days of daily demand data, we investigate the 

sensitivity of the optimal location solutions with respect to the planning time horizon. The time 

horizon varies from 10 to 4,000 days and the transportation and backlog weights are the same as 

those listed in Table 15. The daily demands in each problem instance are independent of the 

demands in the other problem instances. For example, the daily demands for the ten days in the 

ten day time horizon instance are different than the first ten days in the 4,000 day time horizon 

instance. Additionally, we report whether the optimal facilities that are located change as the 

number of days increase. Figure 10 displays the solution time for the problem. All problem 

instances were solved to optimality within one hour. 
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Figure 10: Effect of increasing time horizon, 50 demand & candidate nodes, 𝑎 = 1, 𝑏 = 3 

 We find that the optimal processing locations are relatively insensitive to the length of the 

time horizon. The optimal locations remain constant for time horizons of 100 to 3,500 days. For 

various problem instances with a time horizon of less than 100 days and the problem instance 

with 4,000 days a slight change in the optimal facility locations occurs. In particular, for these 

problem instances, it is optimal to locate a processing facility in Riverside County rather than in 

Orange County. However, we note that these two counties are neighboring counties in California 

and, as such, the increase in cost of locating the processing facility in Orange County rather than 

in Riverside County is only 0.0001237% in the 4,000 day instance. We also note that the solution 

to the IMCLP instances that locate a facility in Riverside County is precisely the optimal solution 

to the corresponding CFLP problem in terms of the processing facilities located. 

 

3.5 Chapter Summary 

 We have argued that the hard capacity constraints that are often employed in location 

modeling are unrealistic since facility managers have numerous operational tools that allow a 

facility to accept items in excess of the stated processing capacity level. As such, we have 
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developed a new approach to modeling capacity constraints in a facility location and allocation 

model that permits storing excess demand as backlog to be processed at a later date.  

 We reported the difference in facility locations, demand allocations, and total cost 

between the CFLP and our approach. In particular, we have shown that the CFLP and IMCLP 

often do not locate the same facilities (and in some instances they locate a different number of 

facilities), and therefore also do not allocate demands to the same processing facilities. Since the 

CFLP does not incorporate the cost of backlogged demand, the CFLP underestimates the total 

cost, but also results in solutions with a higher total cost (as compared to the IMCLP) when the 

demand is realized and backlogging is allowed in practice. Such an underestimate could have 

significant implications on budget predictions.  

 Additionally, we compared the effect of increasing the problem size by increasing the 

number of demand and candidate nodes, only the number of demand nodes, and the time 

horizon. Computational results indicated that increasing the number of demand and candidate 

nodes simultaneously adds a significant burden on the IMCLP solution time. However, for the 

instances considered, we found that by limiting the candidate nodes to include only a subset of 

the largest populated demand nodes, we significantly reduced the solution time and still obtained 

a solution that is near optimal to the original problem. We also found that the optimal locations 

to the IMCLP are relatively insensitive to the length of the time horizon for the problem 

instances considered. Detailed analysis regarding the effect of a wider variety of model 

parameters on these conclusions is left as an area of future research.  

 A key benefit of the IMCLP model is that it incorporates a penalty cost associated with 

the reality that on some days the total amount of demand arriving at a processing facility may 

exceed the daily processing capacity. The IMCLP formulation inherently assumes that demands 
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do not expire; demands can be postponed indefinitely as long as the penalty cost is paid. 

However, we realize that in many situations this is not realistic and therefore we presented 

additional constraints that can be added to the IMCLP to ensure demands are processed within a 

specified amount of time. 

 Furthermore, the IMCLP can use a dataset as a direct input into the model rather than 

specifying deterministic demands at an aggregate level by using parameter estimation 

techniques. This allowed us to explicitly incorporate the variation in and the possibly correlated 

nature of demands. As a result, variations of this model have the potential to reveal operating 

policies that take advantage of spatial and temporal correlations in demand that are not evident in 

current facility location models. An example of such a variation is an allocation policy that varies 

by day of the week to take advantage of regular daily fluctuations in demand and/or variations in 

capacity that result from operating the processing facility for different hours each day of the 

week. Demand site 𝑖 ∈ 𝐼 may allocate its demands to facility  𝑗1 ∈ 𝐽 on weekends and to facility 

𝑗2 ∈ 𝐽 on weekdays, for example. Such extensions are presented in the next chapter.  
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CHAPTER 4: A Cyclic Allocation Model for the IMCLP 

 

4.1 Motivation 

Processing facilities can have many different operational policies, even within a single 

organization. For example, a portion of the facilities may operate at full capacity 24 hours per 

day, seven days a week, others may reduce their processing capacity on weekends, and some 

may only be open on weekdays. In this chapter we show that allowing demands at a particular 

demand-generating site to be allocated to multiple processing facilities in a cyclic manner that 

accounts for capacity levels that vary by day-of-the-week can be a cost effective operational tool. 

Furthermore, such an allocation method affords the model flexibility to utilize an allocation 

policy that captures systematic day-of-the-week demand patterns, even when all processing 

centers are operational at identical times.
1
  

Thus, we expand the IMCLP to include a cyclic demand allocation approach. While the 

IMCLP restricts each demand site to allocate its demand to a single processing facility for the 

entire demand horizon, we now relax that assumption and allow demands to be allocated to 

multiple processing facilities over a specific time frame (e.g., a week), but to a single facility 

each day. As an example of such a system, blood is often drawn at local clinics and sent for 

testing at more regional centers [Saveh-Shemshaki, 2012]. If some testing centers operate five 

days per week and others operate seven days per week, a day-of-the-week assignment policy can 

reduce costs and improve the time-to-processing relative to a single assignment policy. For 

                                                 
1
 A majority of the content of this chapter has been published in Maass and Daskin (2017). 
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example, a clinic may send its blood samples to arrive at one testing facility (that is closed on 

weekends) on Mondays through Fridays and to another testing facility (that is open on 

weekends) on Saturdays and Sundays. This allows for a more efficient use of the processing 

system by mitigating the amount of unprocessed blood samples that are held in cold storage over 

the weekend. 

 

4.2 Model Formulation 

The following model formulation generates cyclic day-of-the-week assignments, which 

account for the deterministic day-to-day variation in processing capacity levels as well as 

deterministic cyclic patters and correlations among the demand sites.  

Let the set 𝑃 ≔ {0, 1, … , 6} represent the days of the week, where element 𝑝 = 0 

represents Saturday, 𝑝 = 1 represents Sunday, etc. In addition to the notation used in the 

IMCLP, we also make the following additions. Assume, without loss of generality, that the first 

day in 𝐷 is a Sunday to match element 𝑝 = 1 in set 𝑃. Additionally, for each 𝑝 ∈ 𝑃, we can also 

generate the set 𝐷𝑝 ≔ {𝑑 ∈ 𝐷: 𝑑 𝑚𝑜𝑑 |𝑃| = 𝑝, 𝑑 > 𝑡∗}, which contains the days in the planning 

horizon that correspond to the day of the week indicated by 𝑝. For example, if 𝐷 = {1, 2, … , 42} 

and 𝑡∗ = 1, then 𝐷2 = {2, 9, 16, 23, 30, 37} would represent the set of Mondays in 𝐷.  However, 

if 𝑡∗ = 2, then we would not include day 2 in the set 𝐷2 = {9, 16, 23, 30, 37}. 

Note that we assume that the demand rate may vary by day-of-the week, but that it does 

not change from week to week. That is, while the realizations of the daily demand for a 

particular demand site will fluctuate throughout the planning horizon since they are samples 

from a distribution, the realizations are taken from the same distribution each Sunday. However, 

a demand site might have a different demand distribution for Mondays than Sundays. 



 

64 

 

In addition to the notation used to formulate the IMCLP, we introduce the following for 

the cyclic allocation model:  

 Sets and Parameters 

𝑃 ≔ {0,1, … ,6} Set of cycle days (e.g., days of the week) 

𝐷𝑝 ≔ {𝑑 ∈ 𝐷: 𝑑 𝑚𝑜𝑑 |𝑃| = 𝑝, 𝑑 > 𝑡∗} Set of days in 𝐷 corresponding to cycle day 𝑝 ∈ 𝑃 after 

the warm-up period 

𝑘𝑗
𝑝
 Capacity of facility 𝑗 ∈ 𝐽 in items processed per day on cycle day 𝑝 ∈ 𝑃 

Decision Variables 

𝑌𝑖𝑗
𝑝 = {

1
 
0
    

If we ship demands from demand site 𝑖 ∈ 𝐼  to faciliy 𝑗 ∈ 𝐽  on cycle    
day 𝑝 ∈ 𝑃                                                                                                                 
Otherwise                                                                                                                   

       

 With this notation, we formulate the cyclic allocation model as follows: 

Formulation 

𝑀𝑖𝑛𝑿,𝒀,𝑽,𝑾  (|𝐷| − 𝑡
∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ ∑ ℎ𝑖𝑑𝑡𝑖𝑗𝑌𝑖𝑗

𝑝
𝑖∈𝐼𝑗∈𝐽𝑑∈𝐷𝑝𝑝∈𝑃 + 𝑏∑ ∑ 𝑉𝑗𝑑𝑗∈𝐽

|𝐷|+1
𝑑=𝑡∗+2  (4.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          

 ∑ 𝑌𝑖𝑗
𝑝

𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼;  𝑝 ∈ 𝑃  (4.2)

 

 𝑌𝑖𝑗
𝑝 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽; 𝑝 ∈ 𝑃  (4.3) 

 𝑉𝑗,𝑑+1 = 𝑉𝑗𝑑 + ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗
(𝑑−𝑡𝑖𝑗) 𝑚𝑜𝑑 |𝑃|

𝑖∈𝐼 −𝑊𝑗𝑑 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (4.4) 

 𝑊𝑗𝑑 ≤ 𝑘𝑗
𝑝𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑝 ∈ 𝑃; 𝑑 ∈ 𝐷𝑝  (4.5) 

 𝑉𝑗,𝑡∗+1 = 𝑣𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽 (3.5) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗
𝑝 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽; 𝑝 ∈  𝑃  (4.6) 

 𝑉𝑗𝑑 ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}  (3.7) 
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 𝑊𝑗𝑑 ≥ 0 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (3.8) 

As in the IMCLP, objective function (4.1) minimizes the facility location, transportation, 

and backlogging costs by determining the optimal facility locations and demand allocations, as 

well as the resulting auxiliary processing and backlog variables. This must be done in a manner 

such that each demand site 𝑖 ∈ 𝐼 is assigned to exactly one processing facility 𝑗 ∈ 𝐽 on each cycle 

day 𝑝 ∈ 𝑃 (constraints (4.2) and (4.6)). Furthermore, constraints (4.3) state that demands can 

only be assigned to located facilities.  

Constraints (4.2) - (4.5), (4.6) are the cyclic allocation constraints that correspond to 

constraints (2.2), (2.3), (3.3), (3.4), and (3.6), respectively, in the IMCLP. The major difference 

between this model and the IMCLP is that this model recognizes that demand sites and 

processing facilities may not operate in the same manner every day of the week. The cyclic 

formulation facilitates this by allowing the processing facilities to have different processing 

capacities throughout the week (i.e., we use capacity parameters 𝑘𝑗
𝑝
 whereas the IMCLP uses a 

constant capacity 𝑘𝑗 every day of the week) and by allowing demand sites to be allocated in a 

manner that accounts for the capacity variation and systematic day-to-day variation in the 

demands (i.e., we use allocation decision variables 𝑌𝑖𝑗
𝑝
 rather than the 𝑌𝑖𝑗 variables of the 

IMCLP). Such day-of-the-week allocation variables necessitate the inclusion of the sets 𝑃 and 

𝐷𝑝, both of which are not present in the IMCLP formulation. 

While the daily variation in the processing capacity levels are model inputs, and therefore 

known a priori, we can model capacity as a decision variable with an associated cost based on 

the amount of capacity employed. Since the capacity level of a processing facility may dictate 

the respective staffing needs, such an extension considers both strategic and tactical decisions. 
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We discuss possible formulations of incorporating endogenous capacity flexibility in Section 

6.5.1 and leave the analysis of such models as an area of future research. 

 

4.3 Model Properties  

   We present a small example to illustrate that, from a cost minimization perspective, 

incorporating a day-of-the-week assignment policy can perform arbitrarily better than using the 

IMCLP model as the cost of backlogging varies.  

Consider a system of five clinics that each draw an average of ten blood samples per hour 

that they are open. Some clinics are open nine hours each day, while others are open 8, 10, or 12 

hours depending on the day of the week. Others are not open on weekends. Each clinic also 

serves as a candidate blood testing facility. It takes two days for demands to be shipped from one 

site to another for processing and one day for demands to be ready for processing at their own 

processing facility. We assume each located processing facility can process up to 100 demands 

per day and costs $200 to operate each day. Note that in this example, the processing capacity of 

each facility does not vary from day to day; a facility will process blood samples seven days a 

week if we choose to locate at that facility, but may only draw blood in the clinic on some of the 

days. Poisson distributed demands are generated for a time horizon of 100 days with the daily 

distribution mean rate listed in Table 16. The per unit per day transportation cost is fixed at 

𝑎 = 2 and we vary the per unit per day backlogging cost, 𝑏. 
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Table 16: Example mean demand rate pattern 
 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

Site 1 80 80 100 100 100 120 120 

Site 2 0 90 90 90 90 90 0 

Site 3 90 10 10 10 10 10 90 

Site 4 90 90 90 90 90 90 90 

Site 5 90 90 90 90 90 90 90 

 For this example, we compare the optimal IMCLP solution to the optimal cyclic 

allocation model solution. The computational results indicate that for values of 𝑏 ≥ 30, the 

IMCLP locates all five processing facilities and assigns demands to be processed at the site at 

which they originate. While the cyclic allocation model also locates all five facilities, it is able to 

reduce the total amount of backlog in the system to approximately 10% of the total backlog 

accumulated in the IMCLP due to its flexible allocation policy. (As an example, the optimal 

cyclic assignments for the case when 𝑏 = 60 are given in Table 17.) The difference in the total 

backlog cost (accumulated over the time horizon) is shown in Figure 11 and the resulting cost 

difference between the IMCLP and cyclic allocation model is displayed in Figure 12; clearly, 

using the IMCLP can become arbitrarily more costly than the cyclic allocation model as 𝑏 

increases.  

Table 17: Optimal cyclic assignments when 60b  — example instance 
 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

Site 1 Site 1 Site 1 Site 1 Site 1 Site 2 Site 1 Site 2 

Site 2 Site 3 Site 3 Site 2 Site 3 Site 2 Site 3 Site 1 

Site 3 Site 3 Site 5 Site 3 Site 1 Site 3 Site 2 Site 3 

Site 4 Site 4 Site 4 Site 4 Site 4 Site 4 Site 4 Site 4 

Site 5 Site 5 Site 5 Site 5 Site 5 Site 5 Site 5 Site 5 
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Figure 11: Total backlog—example instance 

 
Figure 12: Total cost—example instance 

 

4.4 Additional Constraints 

 Although we have shown that the cyclic allocation method has the potential for 

significant cost savings as compared to the IMCLP, the optimal solution that results from solving 

(2.4), (3.5), (3.7), (3.8) and (4.1) - (4.6) may provide an undesirable allocation decision from a 

managerial perspective. For example, an optimal solution may assign demands from a demand 

site to a different processing facility each day of the week. (In fact, in the simple 5-node example 

of Table 17, Site 3 ships to four of the five located facilities during the week.) This would likely 
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require the manager at the demand site to oversee seven individual contracts between the demand 

site and the processing facilities. It may be better for the manager’s time to be spent overseeing 

only one or two contracts, even if it is more costly to do so. In this section, we describe 

additional constraints that may be useful for controlling the allocation policy. 

 

4.4.1 Restricting the Number of Different Allocations 

In many cases it is undesirable to allocate demands to a different processing facility each 

day of the week. Instead, we may wish to ensure that an individual demand site does not allocate 

its items to more than 𝓃 different processing facilities. For any 𝓃 ∈ {1,… , |𝑃|},  we do this by 

defining 𝑠𝑖𝑗 as a binary variable that takes the value one if demand site 𝑖 ∈ 𝐼 is allocated to 

facility 𝑗 ∈ 𝐽 on any day of the week and by adding the constraints 

 𝑌𝑖𝑗
𝑝 ≤ 𝑠𝑖𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽; 𝑝 ∈ 𝑃 (4.7) 

 ∑ 𝑠𝑖𝑗𝑗∈𝐽 ≤ 𝓃 ∀𝑖 ∈ 𝐼. (4.8) 

While these constraints restrict the number of unique allocations per demand site, they still allow 

a demand site’s allocation to change every day by alternating between processing facilities. For 

example, if 𝓃 = 2, then the demand site may allocate its demand to one processing facility on 

Sundays, Tuesdays, Thursdays, and Saturdays but allocate its demand to another processing 

facility on Mondays, Wednesdays, and Fridays.  

IMCLP with Cyclic Allocations Model Property: Restricting 𝓃 to take the value of one 

reduces the cyclic allocation model to the IMCLP. Since the IMCLP is NP-Hard, the cyclic 

allocation model with constraints (4.7) and (4.8) is also NP-Hard. 
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4.4.2 Weekday and Weekend Allocations 

 While the deterministic processing capacity of a facility may vary every day of the week, 

it is very common for some processing facilities to be closed on weekends while others are open 

seven days a week. For processing facilities that are only open Monday through Friday (i.e., 

weekdays), any demand that arrives at the facility on the weekend will be held in backlog and 

will be available for processing on Monday. Let ℓ1 denote a facility that is only open on 

weekdays and let ℓ2 represent a facility that is open seven days of the week. It is reasonable to 

assume that a manager at a demand site may wish to follow an allocation policy in which 

demands are shipped to arrive at facility ℓ1 during the week and at facility ℓ2 during the 

weekend so that the items do not have to wait in backlog at facility ℓ1 due to the weekend 

closure. Since travel times are deterministic, we can ensure that such an allocation policy is 

adhered to in the following manner.   

 First, we define the sets 𝑄𝑖𝑗 and 𝑅𝑖𝑗 to represent the set of cycle days for which demand 

shipped from demand site 𝑖 ∈ 𝐼 would arrive at processing facility 𝑗 ∈ 𝐽 on the weekend or 

during the weekday, respectively. Since the weekend encompasses two days (i.e., Saturday and 

Sunday), the set  𝑄𝑖𝑗 contains two elements:  

   𝑄𝑖𝑗 ≔ {(|𝑃| − (𝑡𝑖𝑗𝑚𝑜𝑑|𝑃|))𝑚𝑜𝑑|𝑃|, (|𝑃| − (𝑡𝑖𝑗𝑚𝑜𝑑|𝑃|) + 1)𝑚𝑜𝑑|𝑃|}     

The remaining days correspond to Monday through Friday and are included in set 𝑅𝑖𝑗: 

  𝑅𝑖𝑗 ≔ {𝑝 ∈ 𝑃\𝑄𝑖𝑗}      

The following examples illustrate how the 𝑄𝑖𝑗 and 𝑅𝑖𝑗 sets change relative to the length of the 

travel time between a demand site 𝑖 ∈ 𝐼 and a processing facility 𝑗 ∈ 𝐽. 

 If 𝒕𝒊𝒋 = 𝟏, then demand sent from 𝑖 ∈ 𝐼 on cycle days 6 (Fri.) and 0 (Sat.) will arrive at 

processing facility 𝑗 on cycle days 0 (Sat.) and 1 (Sun.). We have 
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𝑄𝑖𝑗 ≔ {(7 − (1 𝑚𝑜𝑑 7))𝑚𝑜𝑑 7, (7 − (1 𝑚𝑜𝑑 7) + 1)𝑚𝑜𝑑 7} = {6, 0} 

as desired. It follows that 𝑅𝑖𝑗 ≔ {1,2,3,4,5}.   

 If 𝒕𝒊𝒋 = 𝟑, then demand sent on cycle days 4 (Wed.) and 5 (Thurs.) will arrive on the 

weekend: 

𝑄𝑖𝑗 ≔ {(7 − (3 𝑚𝑜𝑑 7))𝑚𝑜𝑑 7, (7 − (3 𝑚𝑜𝑑 7) + 1)𝑚𝑜𝑑 7} = {4, 5} 

𝑅𝑖𝑗 ≔ {0,1,2,3,6} 

 If 𝒕𝒊𝒋 = 𝟏𝟒, then demand sent on cycle days 0 (Sat.) and 1 (Sun.) will arrive on the 

weekend: 

𝑄𝑖𝑗 ≔ {(7 − (14 𝑚𝑜𝑑 7))𝑚𝑜𝑑 7, (7 − (14 𝑚𝑜𝑑 7) + 1)𝑚𝑜𝑑 7} = {0, 1}  

𝑅𝑖𝑗 ≔ {2,3,4,5,6} 

 Once the sets 𝑄[𝑖, 𝑗] and 𝑅[𝑖, 𝑗] are constructed, we can introduce binary variables 

𝑟𝑖𝑗 = { 
1

0
     

If demands at 𝑖 ∈ 𝐼 are assigned to facility 𝑗 ∈ 𝐽 on a day such that 
they would arrive on a weekday                                                                
Otherwise                                                                                                         

   

and 

𝑞𝑖𝑗 = { 
1

0
     

If demands at 𝑖 ∈ 𝐼 are assigned to facility 𝑗 ∈ 𝐽 on a day such that 
they would arrive on a weekend                                                                
Otherwise                                                                                                          

   

 

Then, the following two constraints can be implemented to enforce the weekday/weekend 

allocation policy: 

 ∑ 𝑌𝑖𝑗
𝑝 

𝑝∈𝑅𝑖𝑗
= 5𝑟𝑖𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽 (4.9) 

 ∑ 𝑌𝑖𝑗
𝑝 

𝑝∈𝑄𝑖𝑗
≤ 2𝑞𝑖𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽 (4.10) 
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 Together with constraints (4.2), constraint (4.9) ensures that demands at 𝑖 ∈ 𝐼 are shipped 

to arrive at the same processing facility 𝑗 ∈ 𝐽 on all five weekdays (i.e., Monday – Friday) and 

constraints (4.10) allow the demands to arrive at another facility on the weekends. Note that the 

inequality constraints of (4.10) do not require that the demand sites ship to multiple processing 

facilities; the demand site can always ship its demand to a single processing facility, even if the 

processing facility is closed on the weekend. Additionally, simply adding constraints (4.9) and 

(4.10) to the model of (2.4), (3.5), (3.7), (3.8) and (4.1) - (4.6) allows a demand site to be 

allocated to three processing facilities; it may be assigned to arrive at facility ℓ1 on weekdays, 

facility ℓ2 on Saturdays, and facility ℓ3 on Sundays. If we want to ensure that a demand site does 

not allocate to a different facility on Saturdays than it does on Sundays, we would let 𝑛 = 2 and 

include constraints (4.7) and (4.8). Alternatively, we could let 𝑛 > 2 and add constraints 

 ∑ 𝑞𝑖𝑗𝑗∈𝐽 = 1  ∀𝑖 ∈ 𝐼 (4.11) 

to constraint set (4.9) and (4.10) or simply change constraint (4.10) to an equality constraint.  

 

4.4.3 Restricting the Maximum Allowed Travel Time 

 The optimal cyclic IMCLP solution may assign a demand site 𝑖 ∈ 𝐼 to a processing 

facility 𝑗1 ∈ 𝐽 that is relatively close during the week, but assign 𝑖 to another processing facility 

𝑗2 ∈ 𝐽 that is very far away on weekends. To address this, we present the following three 

additional types of constraints that can be added to formulation (2.4), (3.5), (3.7), (3.8) and (4.1) 

- (4.10).  
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Maximal Travel Time Constraints 

To ensure that no demand site is assigned to a processing facility that is unreasonably far 

away, we can define 𝑡𝑚𝑎𝑥 > 0 as the maximum allowed travel time between demand sites and 

processing facilities, and add maximal travel time constraints of the form:  

 ∑ 𝑡𝑖𝑗𝑌𝑖𝑗
𝑝 ≤ 𝑡𝑚𝑎𝑥𝑗∈𝐽  ∀𝑖 ∈ 𝐼; 𝑝 ∈ 𝑃 (4.12) 

to the model. 

Alternatively, we could utilize coverage constraints [Farahani et al., 2012] by introducing 

the parameter 𝑐𝑖𝑗 to represent whether the travel time between a demand site and a processing 

facility is less than or equal to the maximal travel time allowed; the value of 𝑐𝑖𝑗 is set to one if 

𝑡𝑖𝑗 ≤ 𝑡𝑚𝑎𝑥 and 0 otherwise. Then, the following constraints state that on each cycle day, each 

demand site must be allocated to a processing facility that reachable within 𝑡𝑚𝑎𝑥 or fewer days: 

∑ 𝑐𝑖𝑗𝑌𝑖𝑗
𝑝

𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼; 𝑝 ∈ 𝑃 (4.13) 

 

Restricting the Time Difference between Weekday and Weekend Allocations 

Another method of restricting the travel time is to add constraints that impose a limit, 𝑚, 

on the difference in travel time between a demand site and its weekday assignment, and the same 

demand site and its weekend assignment. Such constraints are of the form:  

 𝑡𝑖𝑗1𝑌𝑖𝑗1
𝑝1  − 𝑡𝑖𝑗2𝑌𝑖𝑗2

𝑝2 ≤ 𝑚 + 𝑡∗(1 − 𝑌𝑖𝑗2
𝑝2) ∀𝑖 ∈ 𝐼; 𝑗1, 𝑗2 ∈ 𝐽; 𝑝1 ∈ 𝑄[𝑖, 𝑗1]; 𝑝2 ∈ 𝑅[𝑖, 𝑗2]. (4.14) 

For example, when 𝑚 = 0, demands at site 𝑖 ∈ 𝐼 must take exactly the same number of days to 

travel from 𝑖 to their weekend (i.e., Saturday, Sunday, or both) processing facility 𝑗1 ∈ 𝐽 as it 

does to travel from 𝑖 to their weekday processing facility 𝑗2 ∈ 𝐽. 
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Closest Assignment Constraints 

We consider closest assignment constraints as another method of reducing the difference 

in travel time between weekday and weekend assignments. Rather than restricting a demand site 

to be assigned to the closest located facility, we allow the demand site to be assigned to one (or 

two, in the case of weekday/weekend assignments with 𝓃 = 2) of the 𝜍 closest located facilities. 

This is achieved by defining 𝐺𝑖𝑗𝜍̂ as a binary variable that takes the value of one if facility 𝑗 ∈ 𝐽 

is the 𝜍̂ closest located facility to demand site 𝑖 and adding the following constraints:  

 ∑ 𝜍̂𝐺𝑖𝑗𝜍̂
|𝐽|
𝜍̂=1 + 1 ≤ ∑ 𝜍̂𝐺𝑖𝑙𝜍̂

|𝐽|
𝜍̂=1 + |𝐽|(1 − 𝑋𝑙)  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽; 𝑙 ∈ {𝑗̅ ∈ 𝐽|𝑡𝑖𝑗 < 𝑡𝑖𝑗̅} (4.15) 

 ∑ ∑ 𝐺𝑖𝑙𝜍̂𝑙∈𝐽:𝑡𝑖𝑙<𝑡𝑖𝑗
|𝐽|
𝜍̂=1 + 1 ≤ ∑ 𝜍̂𝐺𝑖𝑗𝜍̂

|𝐽|
𝜍̂=1 + |𝐽|(1 − 𝑋𝑗)  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽 (4.16) 

 ∑ 𝐺𝑖𝑗𝜍̂
|𝐽|
𝜍̂=1 ≤ 𝑋𝑗  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (4.17) 

 ∑ 𝐺𝑖𝑗𝜍̂
𝜍
𝜍̂=1 ≥ 𝑌𝑖𝑗

𝑝
  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃  (4.18) 

Constraints (4.15) establish that if two facilities 𝑗 ∈ 𝐽 and 𝑙 ∈ 𝐽 are located, and the 

transportation time between facility 𝑗 and demand site 𝑖 ∈ 𝐼 is less than that between facility 𝑙 

and 𝑖, then 𝑗 will be assigned a lower rank in relation to demand site 𝑖 than 𝑙. Constraints (4.16) 

ensure that if there are ∑ ∑ 𝐺𝑖𝑙𝜍̂𝑙∈𝐽:𝑡𝑖𝑙<𝑡𝑖𝑗

|𝐽|
𝜍̂=1  located processing facilities that are strictly closer to 

demand site 𝑖 than processing facility 𝑗, then facility 𝑗 receives a rank larger than  

∑ ∑ 𝐺𝑖𝑙𝜍̂𝑙∈𝐽:𝑡𝑖𝑙<𝑡𝑖𝑗

|𝐽|
𝜍̂=1  if 𝑗 is located.  

Constraints (4.17) state that facility 𝑗 can be assigned at most one rank for each demand 

site 𝑖. If candidate facility 𝑗 is not located, then facility 𝑗 should not receive a rank for any 

demand site. We note that constraints (4.17) do not state that a rank can be given to at most one 

processing facility. This enables us to adequately address equidistant facilities. That is, if it takes 

demands at 𝑖 ∈ 𝐼 two days to arrive at either processing facility 𝑗1 ∈ 𝐽 or 𝑗2 ∈ 𝐽, and no 
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processing facility is closer to 𝑖 ∈ 𝐼 than 𝑗1 or 𝑗2, both 𝑗1 and 𝑗2 will be ranked as the closest 

processing facility to demand site 𝑖 (i.e., 𝐺𝑖𝑗11 = 𝐺𝑖𝑗21 = 1). If processing facility 𝑗3 is the next 

closest facility to 𝑖, then it will be counted as the third closest facility to 𝑖 (i.e., 𝐺𝑖𝑗33 = 1). 

Finally, constraints (4.18) ensure that demand site 𝑖 can only be assigned to one of its 𝜍 closest 

located facilities. 

These constraints can be used with the basic cyclic allocation model given by (2.4), (3.5), 

(3.7), (3.8) and (4.1) - (4.6) or in conjunction with any of the additional constraint sets listed in 

this section. 

 

4.5 Computational Results 

 In this section, we discuss computational results for the cyclic allocation model. Our 

intent is to provide insights into the effect of imposing the various types of constraints introduced 

in the previous section rather than providing a discussion on the size of instances that can be 

solved using this formulation.  

 As in Section 3.4, discrete, random daily demands are generated for a 100 day time 

horizon from a Poisson distribution with a mean of 1/10,000 of the county population. However, 

for the instances that follow, we assumed that the five most populous counties (Los Angeles, CA, 

Cook, IL, Harris, TX, Maricopa, AZ, and San Diego, CA) have candidate processing facilities 

that, if selected, are open seven days a week over the course of a 365 day time horizon. The 45 

next most populous counties have candidate processing facilities that would only be open on 

weekdays. Thus, the 50 most populous U.S. counties are used in the data instances in this 

section.  (Note that while the data set represents only 1.6 percent of the 3,109 counties in the 

contiguous U.S., it encompasses nearly 30% of the population of these 3,109 counties.) 
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Additionally, on the days a processing center is open, its capacity is (approximately) 1/5 of the 

total average daily demand in the system; clearly, on days a processing center is closed, its 

capacity is zero. All backlog levels were initialized to 𝑣𝑗 = 0 and integer-valued travel times 

between nodes were calculated via the Great Circle Distance in the manner described in Section 

3.4, which incorporates the assumption that demands are never processed on the day they 

originate.  

Since the daily facility location costs are a function of the number of days per week that 

the processing facility is open, we redefine 𝑓𝑗 for the cyclic-allocation model as the average daily 

fixed location cost of facility 𝑗 ∈ 𝐽. Specifically, the average daily facility location cost for 

facility 𝑗 ∈ 𝐽 which is closed 𝑐 days per week is given by  

  𝑓𝑗 = 𝑧 + 𝑤𝜌𝑗 −
𝑐

7
(0.2𝑧 + 0.9𝑤𝜌𝑗) (4.19) 

As in Section 3.4, 𝑧 represents the daily base fixed cost, 𝜌𝑗 denotes the population of candidate 

facility 𝑗, and 𝑤 is the population weight. Formula (4.19) states that a facility incurs only 80% of 

the daily base fixed cost and 10% of the weighted population based cost per day it is closed as 

compared to a day when it is open. In the computations that follow, we assumed a daily base 

fixed cost of 𝑧 = $10,000 and a weight of 𝑤 = $0.0001. For example, the county of San Diego, 

CA has a population of 3,095,313 people, which makes it the 5
th

 most populous county in the 

U.S. Thus, if we choose to locate a facility in San Diego, CA, it will be open seven days per 

week and will incur a facility location cost of  𝑧 + 𝑤𝜌𝑗 each day of the week. Thus, its average 

daily facility location cost will be $10,000 + $0.0001 ∗ 3,095,313 −
0

7
(0.2 ∗ $10,000 + 0.9 ∗

$0.0001 ∗ 3,095,313) = $10,310. Orange, CA, on the other hand, has a population of 

3,010,232 people and is the 6
th

 most populous county in the U.S. This means that a facility 

located in Orange, CA would not be open on the weekend and will incur 𝑧 + 𝑤𝜌𝑗 in facility 
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location costs each weekday and 0.8𝑧 + 0.1𝑤𝜌𝑗 in facility location costs on each day of the 

weekend. Thus, it’s average daily facility location cost would be $10,000 + $0.0001 ∗

3,010,232 −
2

7
(0.2 ∗ $10,000 + 0.9 ∗ $0.0001 ∗ 3,010,232) = $9,652. The average daily 

facility location costs for the 50 largest nodes are represented in Figure 13. 

 

Figure 13: Average daily facility location costs for the cyclic allocation model, 𝑧 = 10,000, 

𝑤 = 0.0001 

 Unless otherwise mentioned, costs 𝑎 = 2 and 𝑏 = 20 are used throughout this section 

and were chosen based on their ability to ensure that the number of items held in backlog from 

day to day does not grow without bound when six facilities are located. (Since we recognize it is 

often difficult to determine the backlogging cost, we discuss the implications of varying 𝑏 in 

Section 4.5.3.) 

 

4.5.1 Restricting the Number of Different Allocations 

Table 18 presents five different cases that we studied to investigate how changing the 

maximum allowed number of unique allocations per demand site (i.e., 𝓃) affects the optimal 
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solution and the effect of imposing the weekend/weekday allocation assignments given by 

constraints (4.9) and (4.10). 

Table 18: Effect of varying the value of 𝓃 

Case Description Example 

1 
 A demand site 𝑖 ∈ 𝐼 can be allocated to only 1 

processing facility 

 Demand from 𝑖 ∈ 𝐼 is allocated to arrive at 

facility 𝑗 ∈ 𝐽 every day of the week 

2 

 A demand site can be allocated to at most 2 

processing facilities 

 Demands from 𝑖 ∈ 𝐼 must be allocated to 

arrive at one facility Monday-Friday, but can 

be allocated to arrive at another facility on 

both Saturday and Sunday if desired 

The above example as well as: 

 Demand from 𝑖 ∈ 𝐼 is allocated to arrive at 

facility 𝑗1 ∈ 𝐽 on Monday-Friday and at facility 

𝑗2 ∈ 𝐽 on Saturday and Sunday 

3 

 A demand site can be allocated to at most 2 

processing facilities 

 Demands from 𝑖 ∈ 𝐼 must be allocated to 

arrive at one facility Monday-Friday, but can 

be allocated to arrive at another facility on 

Saturday, Sunday, or both Saturday and 

Sunday, if desired 

The above examples as well as: 

 Demand from 𝑖 ∈ 𝐼 is allocated to arrive at 

facility 𝑗1 ∈ 𝐽 on Monday-Saturday and at 

facility 𝑗2 ∈ 𝐽 on Sunday 

 Demand from 𝑖 ∈ 𝐼 is allocated to arrive at 

facility 𝑗1 ∈ 𝐽 on Sunday-Friday and at facility 

𝑗2 ∈ 𝐽 on Saturday 

4 

 A demand site can be allocated to at most 2 

processing facilities 

 Demands from 𝑖 ∈ 𝐼 must be allocated to 

arrive at only one facility per day and can be 

assigned to arrive any day of the week 

The above examples as well as: 

 Demand from 𝑖 ∈ 𝐼 is allocated to arrive at 

facility 𝑗1 ∈ 𝐽 on Sunday, Monday, Tuesday, 

and Friday and at facility 𝑗2 ∈ 𝐽 on Wednesday, 

Thursday, and Saturday 

5 

 There is no restriction on the number of 

processing facilities to which a demand site 

can be allocated 

 Demands from 𝑖 ∈ 𝐼 must be assigned to arrive 

at only one facility per day and can be 

assigned to arrive any day of the week 

The above examples as well as: 

 Demand from 𝑖 ∈ 𝐼 is allocated to arrive at 

facility 𝑗1 ∈ 𝐽 on Sunday, 𝑗2 ∈ 𝐽 on Monday, 

𝑗3 ∈ 𝐽 on Tuesday, 𝑗4 ∈ 𝐽 on Thursday, and 

𝑗5 ∈ 𝐽 on Wednesday, Friday, and Saturday 

 Table 19 describes the details of each case as well as the results. The fourth column 

indicates whether constraint (4.10) is implemented as an inequality constraint or if it is changed 

to an equality constraint. Intuitively, constraints (4.9) and (4.10), as they are written, allow a 

demand site to assign demands to arrive at an additional facility on one, both, or neither of the 

weekend days. However, the equality form of (4.10) states that if a demand site assigns demands 

to arrive at an additional facility on the weekend, then the assignment must be made for both 

Saturday and Sunday. 
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Table 19: Effect of varying the value of 𝓃: computational results; 𝑎 = 2, 𝑏 = 20 

Case 𝓃 

Include 

Constraints 

(4.9) and 

(4.10) 

Constraint (4.10): 

Equality or 

Inequality 

Number of Demand Sites that 

Allocate Demand to 𝑥 Different 

Facilities 
Total Cost 

% Dec. in 

Cost from 

𝓃 = 1 
𝑥 =1 𝑥 =2 𝑥 =3 

1 1 No --- 50 --- --- $14,874,422 --- 

2 2 Yes Equality 40 10 --- $14,347,714 3.54% 

3 2 Yes Inequality 27 23 --- $14,109,516 5.14% 

4 2 No --- 23 27 --- $12,750,734 14.28% 

5 7 No --- 26 20 4 $12,748,806 14.29% 

 

 Although the optimal solution locates six facilities regardless of the value of 𝓃 in this 

problem instance, the locations of the six facilities vary slightly as 𝓃 changes. In each of the 

instances, the optimal solution is to locate two facilities that are closed on weekends and four 

that are open seven days a week. Four facilities that are open for the entire week and one facility 

that is closed on weekends are the same regardless of the case: Los Angeles, CA; Cook, IL; 

Harris, TX; San Diego, CA; and Kings, NY. This represents locating facilities in the 1𝑠𝑡, 2𝑛𝑑, 

3𝑟𝑑, 5𝑡ℎ, and 7𝑡ℎ most populous counties, respectively. The remaining facility is either 

Philadelphia, PA (Case 1); Palm Beach, FL (Cases 2 and 4); Hillsborough, FL (Case 3); or 

Broward, FL (Case 5). These are, respectively, the 21𝑠𝑡 , 28𝑡ℎ, 30𝑡ℎ, and 18𝑡ℎ most populous 

counties.  

 Recall that the optimal solution to the problem with 𝓃 = 1 is precisely the optimal 

solution to the corresponding IMCLP. The results show that a large cost improvement can be 

achieved by simply allowing each demand site to allocate its demand to two processing facilities, 

rather than one (Case 4 as opposed to Case 1). However, a large portion of this cost savings 

comes from allowing the allocations to take place any day of the week, rather than enforcing a 

weekend/weekday policy (Case 4 as opposed to Cases 2 and 3). Furthermore, allowing each 

demand site to allocate to three or more facilities provides only a marginal cost reduction 

(comparing Case 5 to Case 4).  
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4.5.2 Restricting the Maximum Allowed Travel Time 

The optimal solution to (2.4), (3.5), (3.7), (3.8) and (4.1) - (4.10) may be such that some 

of the allocations assign a demand site 𝑖 ∈ 𝐼 to a facility 𝑗4 ∈ 𝐽 that is relatively close during the 

week, but assign 𝑖 to another facility 𝑗5 ∈ 𝐽 that is very far away on weekends. Thus, we utilize 

the constraints discussed in Section 4.4.3, to restrict the maximum allowed travel time. All of the 

results presented to address this situation correspond to Case 3 of the cyclic allocation model 

described in Table 18 and Table 19 (i.e., a weekday/weekend allocation policy given by (2.4), 

(3.5), (3.7), (3.8) and (4.1) - (4.10) for 𝑛 = 2 when (4.10) is implemented as an inequality 

constraint). 

 

Maximum Travel Time Constraints 

When there is no restriction on the maximum travel days (i.e., 𝑡𝑚𝑎𝑥 ≥ 𝑡∗), the optimal 

allocation scheme is such that all demand sites are allocated to a processing facility that can be 

reached within 22 days; no demand-facility allocation pair requires 𝑡∗ = 29 days of travel time 

in the optimal solution. Further restricting the travel time to 11 days (a 50% reduction in 

maximum travel days) results in only a 1.3% increase in cost and a 14% decrease in the demand-

weighted average travel time. As a result, the solution that results from restricting the maximum 

travel time allowed to 11 days may be an attractive solution to facility managers who are 

concerned with the amount of time demands are in transit. However, any further restrictions in 

travel time come at a significant cost; restricting the maximum travel time to ten days results in a 

6.3% increase in cost when compared to a maximum travel time of 11 days. The percent cost 
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increase due to restricting the maximum travel time can be seen graphically in Figure 14 and the 

details are given in Table 20. 

 
Figure 14: Cost effect of restricting travel time; max {7,...,29}t  days; 𝑎 = 2, 𝑏 = 20  

Table 20: Effect of restricting travel time; 𝑎 = 2, 𝑏 = 20 

𝑡𝑚𝑎𝑥 

# of Demand 

Sites 

Allocated to a 

Facility 𝑡𝑚𝑎𝑥 

Days Away 

% Increase 

in Cost over 

Unrestricted 

Instance 

# of 

Facilities 

Located 

Cost Breakdown ($) 

Total Cost 

($) Location Transportation Backlog 

1 50 293.71% 50 48,176,400 1,836,932 5,537,400 55,550,732 

2 24 143.61% 28 27,193,300 2,499,820 4,678,560 34,371,680 

3 16 82.96% 18 17,583,400 3,222,198 5,009,860 25,815,458 

4 20 48.34% 13 12,801,800 4,161,860 3,966,660 20,930,320 

5 9 25.38% 10 9,948,800 4,611,892 3,129,980 17,690,672 

6 7 13.63% 8 8,052,000 5,182,334 2,797,640 16,031,974 

7 3 10.16% 8 8,048,600 4,999,604 2,494,720 15,542,924 

8 2 9.59% 8 8,043,200 5,221,784 2,198,140 15,463,124 

9 7 8.52% 8 8,048,600 5,474,212 1,789,000 15,311,812 

10 1 7.70% 8 8,048,600 5,520,664 1,627,140 15,196,404 

11 5 1.31% 7 7,087,000 6,084,212 1,122,700 14,293,912 

12 2 0.79% 7 7,087,000 5,992,454 1,141,260 14,220,714 

13 1 0.61% 7 7,087,000 6,017,134 1,091,000 14,195,134 

14 3 0.60% 6 6,128,000 6,544,686 1,521,580 14,194,266 

15 1 0.55% 7 7,087,600 6,027,608 1,071,860 14,187,068 

16 2 0.12% 7 7,087,600 5,980,494 1,057,800 14,125,894 

17-19 0 0.12% 7 7,087,600 5,980,494 1,057,800 14,125,894 

20 2 0.11% 6 6,128,000 6,685,510 1,311,540 14,125,050 

21 0 0.11% 6 6,128,000 6,685,510 1,311,540 14,125,050 

22 1 0.00% 6 6,135,500 6,562,816 1,411,200 14,109,516 

23-29 0 0.00% 6 6,135,500 6,562,816 1,411,200 14,109,516 
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In general, as the value of maxt  decreases, the number of facilities located, location costs, 

and backlogging costs increase while the transportation costs decrease. We note that the table 

indicates that certain values of maxt  (e.g., max {13,14,15}t  ) do not follow this general pattern. 

This is likely due to the particular demand instance used.  

Additionally, we remind the reader that all demands must undergo one day of processing, 

which is included in the transportation cost, regardless of whether or not the demands are 

processed at the same location in which they originate. Thus, the transportation cost of 

$1,836,932 when 𝑡𝑚𝑎𝑥 = 1 is precisely 𝑎 = 2 times the total number of demands generated 

during the planning horizon (918,466). Figure 15 displays the effect of restricting the travel time 

on the three cost components that comprise the objective function, as well as the optimal 

objective function value. 

 
Figure 15: Cost effect of restricting travel time; 𝑎 = 2, 𝑏 = 20 

Since the solution to the 𝑡𝑚𝑎𝑥 = 11 constraint addition to Case 3 serves as a base case for 

many of the following analyses due to the reasons outlined at the beginning of this section, we 

display the corresponding optimal locations and arriving allocations in Figures 16-18. The 

optimal solution locates facilities at Los, Angeles, CA; San Diego, CA; Harris, TX; Orange, FL; 
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Cook, IL; Philadelphia, PA; and Queens, NY. The five most populous counties in the U.S. are 

identified by a circle; a processing facility located in one of these counties will be open every 

day of the week. 

 
Figure 16: Optimal locations and allocations arriving on weekdays for Case 3; 𝑎 = 2, 𝑏 = 20, 

max 11t   

 
Figure 17: Optimal locations and allocations arriving on Saturdays for Case 3; 𝑎 = 2, 𝑏 = 20, 

max 11t   
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Figure 18: Optimal locations and allocations arriving on Sundays for Case 3; 𝑎 = 2, 𝑏 = 20, 

max 11t   

 

We note that the figures display where demand that is arriving at a processing facility on 

a particular day (i.e., weekday, Saturday, or Sunday) came from, rather than where the demand is 

being shipped on a particular day. For example, a connection from the Salt Lake, UT demand 

site to the San Diego, CA processing facility on Sunday’s map (i.e., Figure 18) indicates that Salt 

Lake’s demands arrive at the San Diego facility on Sundays. Since it takes eight days for the 

demand generated at Salt Lake to be ready for processing at San Diego, the demands must have 

been shipped from Salt Lake on a Saturday.  

On some days, no processing facility receives demands from a particular demand-

generating site. These demand sites are identified by triangles (if they are not also processing 

facilities) or stars (if they are processing facilities) in Figure 17 and Figure 18. For example, 

none of the processing facilities receive demands from Salt Lake, UT on Saturday; all of Salt 

Lake’s demand arrives at processing facilities on either a weekday or on Sunday. This is 

indicated by a triangle. Additionally, none of the processing facilities receive demands from the 
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demand sites located in Philadelphia, PA and Queens, NY, which are both also processing 

facilities themselves. This is indicated by a star.   

Many of the demand sites along the Atlantic coast do not allocate demands to arrive at 

processing facilities on Saturdays.  This is because there is no nearby processing facility that is 

open on the weekends so it is cheaper to let the demands spend more time in transit and arrive at 

a facility on Sunday. This way, the demands can either be processed on Sunday (if the facility is 

open on weekends) or only have to incur one day (Sunday) of backlog cost rather than two 

(Saturday and Sunday). Demand sites and processing facilities whose demand does arrive at a 

processing facility on the day under consideration are denoted by a small square and a large 

square, respectively.  

An example of the optimal cyclic allocations is depicted in Table 21 for the Salt Lake, 

UT demand site. Notice that demands leave the Salt Lake, UT demand site each day of the week, 

but only arrive at processing facilities on Sunday through Friday due to the extended travel time 

between Salt Lake, UT and San Diego, CA. This explains the triangle over Salt Lake, UT in 

Figure 17. 

Table 21: Cyclic allocations for Salt Lake, UT 

Day of Week Demand 

Leaves Salt Lake, UT 

Processing Facility to 

which Demand is 

Allocated 

Travel Time Between  

Salt Lake, UT and 

Processing Facility 

Day of Week Demand 

Arrives at Processing 

Facility 

Sunday Los Angeles, CA 7 Days Sunday 

Monday Los Angeles, CA 7 Days Monday 

Tuesday Los Angeles, CA 7 Days Tuesday 

Wednesday Los Angeles, CA 7 Days Wednesday 

Thursday Los Angeles, CA 7 Days Thursday 

Friday Los Angeles, CA 7 Days Friday 

Saturday San Diego, CA 8 Days Sunday 
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Restricting the Time Difference between Weekday and Weekend Allocations 

 While we can impose constraints (4.14) for any nonnegative integer value of 𝑚, the case 

of 𝑚 = 2 is of particular interest since items that arrive at a facility that is closed on the 

weekends must wait in backlog for two days before they can be processed. This allows us to use 

the two days as (less-expensive) transportation days. Table 22 shows how varying the value of 𝑚 

affects the total cost, cost breakdown, and number of facilities located for the 𝑡𝑚𝑎𝑥 = 11 

restriction of Case 3. For all values of 𝑚, the model locates facilities in Cook, IL; Harris, TX; 

Los Angeles, CA; and San Diego, CA, which are among the five most populous counties and 

therefore are open seven days per week. In addition, all solutions locate a facility that is only 

open on weekdays in Philadelphia, PA. When 𝑚 = 0, an additional weekday facility is located in 

Kings, NY; however, it is replaced with a facility in Queens, NY when 𝑚 ≥ 1. Finally, a seventh 

facility is located in Orange, FL when 𝑚 ≥ 7. The results show that allowing a slight increase in 

the travel time between weekday and weekend allocations results in a cost decrease that is nearly 

half the cost decrease that would be possible if the difference were unrestricted. 

Table 22: Effect of restricting the time difference; 𝑎 = 2, 𝑏 = 20 

𝑚 
Total Cost 

($) 

% Increase in 

Cost over 

Unrestricted 

Instance 

# of 

Facilities 

Located 

Cost Breakdown ($) 

Location Transportation Backlog 

0 14,773,536 3.35% 6 6,137,700 6,741,736 1,894,100 

1-6 14,554,808 1.83% 6 6,135,600 6,771,708 1,647,500 

7 14,373,362 0.56% 7 7,087,000 6,103,982 1,182,380 

≥8 14,293,912 0.00% 7 7,087,000 6,084,212 1,122,700 
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Closest Assignment Constraints 

In Table 23 we investigate the effect of allowing a demand site to be allocated to the 

closest 𝜍 facilities with respect to the difference in travel time between weekday and weekend 

assignments for the 𝑡𝑚𝑎𝑥 = 11 addition to Case 3.  The optimal solution in each instance had at 

least one assignment in which the travel time from a demand site to a processing facility was 

𝑡𝑚𝑎𝑥 = 11 and, except for the instance with 𝜍 = 1, had a weekend assignment with an eight day 

longer travel time than the weekday assignment. All of the instances located seven facilities (but 

not necessarily the same facilities).  Allowing demands to be assigned to the second closest 

facility results in a significant cost savings compared to the case in which all demands must be 

assigned to the closest located facility. 

Table 23: Effect of imposing closest assignment constraints; 𝑎 = 2, 𝑏 = 20 

𝜍 
Total Cost 

 ($) 

% Increase in Cost over 

Unrestricted Instance 

Cost Breakdown ($) Facilities Located  

(Node #) Location Transportation Backlog 

1 15,950,538 11.59% 7,094,900 6,222,878 2,632,760 1, 2, 3, 5, 7, 14, 21 

2 14,675,446 2.67% 7,082,200 5,723,666 1,869,580 1, 2, 3, 5, 21, 23, 30 

{3,4} 14,343,048 0.34% 7,087,000 5,992,148 1,263,900 1, 2, 3, 5, 10, 21, 35 

≥5 14,293,912 0.00% 7,087,000 6,084,212 1,122,700 1, 2, 3, 5, 10, 21, 35 

 

 

4.5.3 Allocation Composition 

 To understand how many demand sites take advantage of the ability to allocate their 

demand to more than one processing facility, we graph the number of demand sites that adhere to 

each allocation method possible in Case 3 as described in Table 18, with the added 𝑡𝑚𝑎𝑥 = 11 

restriction. In particular, Figure 19 and Figure 20 display the number of demand sites that  

 1) only allocate demand to one processing facility;  



 

88 

 

 2) allocate demand to two processing facilities, with demand arriving at a different facility 

on Saturday than Sunday; and  

 3) allocate demand to two processing facilities, with demand arriving at the same facility on 

Saturday and Sunday  

as the cost of holding items in backlog varies. 

 Demand sites that allocate according to the second or third method utilize the flexibility 

provided by cyclic allocations. Thus, we quantify the diversity of demand allocations by giving 

each instance an allocation score that accounts for the number of demand sites that are assigned 

to each of the three possible allocation methods. Demand sites contribute a value of 1, 2, or 3, 

depending on whether they allocate demand according to the first, second, or third method, 

respectively. For example, an allocation score of 67 is given to the optimal solution when 𝑏 = 10 

since it assigns 36 demand sites to only one processing facility, 11 to two processing facilities 

with demand arriving at a different facility on Saturday than Sunday, and 3 to two processing 

facilities with demand arriving at the same facility on Saturday and Sunday (i.e., 36 ∗ 1 + 11 ∗

2 + 3 ∗ 3 = 67). Since there are 50 demand sites, the lowest possible allocation score is 50 and 

corresponds to a solution that is no different from what would be obtained using the original 

IMCLP model (i.e., all demand sites are assigned to only one processing facility). The highest 

possible allocation score is 150, though the highest realized score in Figure 19 is only 72. 
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Figure 19: Types of allocations in the optimal solution as the backlog cost varies; 𝑎 = 2 

 
Figure 20: Types of allocations in the optimal solution as the backlog cost varies; 𝑎 = 2 

   The allocation score generally increases as the backlog cost increases when six facilities 

are located. However, the allocation score remains relatively constant for 𝑏 values that locate 

seven facilities in the optimal solution. Furthermore, the optimal solution to the 𝑏 ≥ 15 instances 

displayed in Figures 19 and 20 assigns approximately 30 demand sites to only one processing 

facility and 20 demand sites to two processing facilities, with demand arriving at a different 

processing facility on Saturday than Sunday; in this case, the allocation for six days (weekdays 

and one weekend day) is the same. 
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 We further quantify the difference between the optimal cyclic solution and the optimal 

IMCLP solution by comparing their costs in Figure 21. The figure shows that the flexibility 

allowed by cyclic allocations results in increased cost savings as the cost of holding backlogged 

items increases. In particular, the cyclic allocations result in a 3.9% decrease in cost in our base 

case instance (i.e., 𝑏 = 20) when compared to the corresponding optimal IMCLP solution. If the 

backlog cost were doubled (i.e., 𝑏 = 40) we would see a 7.85% decrease in cost.  At a backlog 

cost of 𝑏 = 100, an 11.27% decrease in cost is achieved. 

 
Figure 21: % decrease in cost obtained by using the cyclic allocation model as compared to the 

IMCLP model; 𝑎 = 2  

 

4.5.4 Solution Robustness 

 In facility location modeling it is extremely important to correctly identify which 

processing facilities to locate, since it is often very difficult and costly to change the locations 

once they are established. While it is also important to correctly identify the allocations, these 

can be adapted more easily than the locations. This motivates our desire to determine how robust 

the optimal solution is to the particular demand instance used.  

 To test the solution robustness, we consider ten demand instances. In each of these 

instances, Case 3 with the added 𝑡𝑚𝑎𝑥 = 11 restriction is used. We first solve Instance 1 to 
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optimality and then compare the solution to those of the remaining instances under the following 

three conditions:  

(1) forcing the Instance 1 allocations and locations into the remaining instances,  

(2) forcing only the Instance 1 locations into the remaining instances, and  

(3) solving the remaining instances to optimality without considering the Instance 1 

solution.  

 The results indicated that each of the ten instances (under condition (3)) identified the 

same seven processing facilities to locate in the optimal solution. Although the optimal 

allocations differed slightly among the instances, these variations always resulted in less than a 

0.1% increase in total cost when the Instance 1 optimal locations and allocations were imposed 

on the other instances (i.e., scenario (1)); the average increase in cost was 0.028%. This is 

particularly noteworthy since the transportation and backlogging costs are intimately linked to 

the allocation decisions and account for roughly 50% of the total cost. The details are displayed 

in Table 24. 

Table 24: % Increase in Cost from using the Optimal Locations and Allocations of Instance 1 

instead of the Optimal Solution for the Particular Instance; 𝑎 = 2, 𝑏 = 20 

  

Instance Total Location Transportation Backlog 

1 0.000% 0.000% 0.000% 0.000% 

2 0.001% 0.000% -0.025% 0.198% 

3 0.060% 0.000% -0.147% 1.564% 

4 0.022% 0.000% -0.646% 4.021% 

5 0.055% 0.000% -0.569% 4.008% 

6 0.029% 0.000% -0.543% 3.449% 

7 0.008% 0.000% -0.637% 3.721% 

8 0.000% 0.000% 0.000% 0.000% 

9 0.054% 0.000%   -0.636% 4.451% 

10 0.052% 0.000% -0.210% 1.870% 

Average 0.028% 0.000% -0.341% 2.328% 
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4.6 Chapter Summary 

 We introduced a variant of the IMCLP that allows for a cyclic allocation approach to 

assigning demand sites to processing facilities. This enables the model to develop a day-of-the-

week allocation policy that considers deterministic fluctuations in the daily processing capacity 

levels of the facilities or stochastic fluctuations in the average demand by day-of-the-week. For 

example, our model is able to adjust the allocation policy to account for some facilities being 

closed on weekends. In the spirit of the IMCLP model developed in Chapter 3, the model 

presented in this chapter also allows disaggregated daily demand parameters to serve as inputs 

directly into the model and mitigates the hard capacity constraints that are typically found in 

capacitated facility location models by allowing unprocessed demand to be held in backlog and 

processed at a later date. Through computational studies, we showed that incorporating this 

cyclic allocation approach into the model can result in a significant cost savings as compared to 

models that do not incorporate this approach, such as the IMCLP. Furthermore, we note that the 

model can readily be restructured to deal with other cycles, such as annual cycles with demand 

assignments that either change seasonally or monthly in response to time-varying demand 

patterns. 

 We also presented multiple constraints that can be added to the model formulation to 

achieve various operational goals. These include (1) restricting the number of processing 

facilities to which a demand site can be assigned, (2) introducing a weekday/weekend allocation 

policy, and (3) bounding the difference between the travel time of a weekday assignment and a 

weekend assignment. Our results suggest that a significant cost reduction can be achieved by 

implementing the cyclic allocation model as compared to capacitated facility location models 
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that require a static allocation policy. Much of this benefit can be achieved even when additional 

constraints of the form outlined above are imposed. 
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CHAPTER 5: Chance Constrained IMCLP with Uncertain Demand 

 

5.1 Motivation 

In reality, a facility manager faces many sources of operational uncertainty, including 

uncertainty related to demand, machine processing capacity, personnel availability, 

purchasing/selling prices, and shipment travel times. The many sources of uncertainty make it 

impossible to model all of the uncertainty simultaneously due to the resulting model 

intractability, computational limitations, or data requirements. Thus, in this chapter, we focus 

solely on stochasticity that arises in demand.  

We note that while the deterministic IMCLP incorporates daily fluctuations in demand 

over an extended time horizon, it is not explicitly formulated as a stochastic optimization 

problem. Thus, in this chapter, we introduce a stochastic variant of the IMCLP with uncertain 

demand. In addition to assessing a penalty cost associated with each day an item spends in 

backlog (as is done in the IMCLP and cyclic allocation model), we use three different types of 

chance constraints to restrict the number of demands that are backlogged to a predetermined 

threshold. The first approach incorporates joint chance constraints that ensure the probability of 

any processing facility having a backlog level above the threshold on any day of the planning 

horizon is sufficiently small. We also model individual chance constraints on the amount of 

backlog at each facility each day, as well as a hybrid approach which accounts for the probability 

that each individual processing facility will exceed the stated maximum backlog level on any day 

of the planning horizon. We then present mixed-integer programming reformulations of the 
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chance constraints that incorporate a finite number of scenarios from a given known demand 

distribution. (We refer the interested reader to Birge and Louveaux (2011) for an introduction to 

chance constraints.) 

The resulting models are solved using two different decomposition schemes and their 

performance is compared to that of a generic solver. The first decomposes the problem into two 

stages: the long-term (i.e., location and allocation) decisions are determined in the first stage 

while the daily (i.e., processing and backlog) decisions are determined in the second stage. 

Benders decomposition is used to solve the resulting formulation. The second decomposition 

scheme capitalizes on the problem structure by utilizing a three-stage approach. In particular, 

given a feasible first-stage location and allocation solution, we can readily determine the optimal 

second-stage processing and backlog decisions as well as the third-stage auxiliary variables that 

verify whether the chance constraints are satisfied by inspection. If the chance constraints are 

violated, a corresponding cut is added to the first-stage problem.  

 

5.2 Joint Chance Constrained Formulation 

As mentioned, we will incorporate three types of chance constraints into the stochastic 

IMCLP: joint chance constraints, individual chance constraints, and a hybrid approach. The 

majority of this chapter will focus on the joint chance constrained model, which we formulate in 

this section. The individual chance constraints and the hybrid approach will be introduced in 

Section 5.4. 

In each of the formulations, we incorporate demand stochasticity into the IMCLP using a 

scenario based approach in which a scenario corresponds to a realization of the daily demand for 

every day within the time horizon. For example, if the time horizon is one year, the demand 
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generated on each day of the year at each demand site is collectively referred to as a scenario. 

We let Ω represent the set of all possible demand scenarios, and 𝑝𝜔 represent the probability of a 

particular scenario 𝜔 ∈ Ω. It is assumed that ∑ 𝑝𝜔𝜔∈Ω = 1. Additionally, the parameter ℎ̃𝑖𝑑 

corresponds to the random daily demand generated at demand point 𝑖 ∈ 𝐼 on day 𝑑 ∈ 𝐷. While 

ℎ̃𝑖𝑑 is a random parameter, ℎ𝑖𝑑
𝜔  represents a realization of the random demand ℎ̃𝑖𝑑 in scenario 

𝜔 ∈ Ω generated at 𝑖 ∈ 𝐼 on day 𝑑 ∈ 𝐷 and 𝜉(𝜔) ∈ ℕ0
|𝐼|×|𝐷|

 is a vector containing the demand 

realizations ℎ𝑖𝑑
𝜔 , ∀𝑖 ∈ 𝐼, 𝑑 ∈ 𝐷 corresponding to scenario 𝜔 ∈ Ω.   

Since we assume that the facility location and assignment decisions must remain constant 

throughout the planning horizon, variables 𝑋𝑗 and 𝑌𝑖𝑗, which represent these decisions, are 

scenario independent in the stochastic IMCLP. For fixed location and allocation decisions, the 

processing and backlog variables become apparent once the scenario is observed. Thus, we let 

𝑊𝑗𝑑
𝜔 and 𝑉𝑗𝑑

𝜔 be the corresponding scenario dependent variables (or equivalently, recourse 

variables). In summary, the decision variables for the IMCLP model with stochastic demand are:  

Decision Variables 

𝑋𝑗 = { 
1

0
          

If we locate at facility  𝑗 ∈ 𝐽

Otherwise                                
   

𝑌𝑖𝑗 = { 
1

0
          

If we assign demand site 𝑖 ∈ 𝐼  to facility 𝑗 ∈ 𝐽

Otherwise                                                                    
   

𝑉𝑗𝑑
𝜔 Backlog at site 𝑗 ∈ 𝐽 at the beginning of day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} in scenario 𝜔 ∈ Ω 

𝑊𝑗𝑑
𝜔 Number of items processed at site 𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} in scenario 𝜔 ∈ Ω 

The specific aim of incorporating the joint chance constraint into the stochastic IMCLP is 

to minimize the total facility, expected transportation, and expected backlogging costs, while 
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ensuring the probability that the backlog at any facility never exceeds a predetermined level of 𝜃 

is bounded from below by a given reliability level 1 − 𝜏. The joint chance constraint is 

 ℙ(𝑉̃𝑗𝑑 ≤  𝜃;  ∀𝑗 ∈ 𝐽, 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}) ≥ 1 − 𝜏 (5.1) 

where ℙ(⋅) denotes the probability of event ⋅ occurring and 𝑉̃𝑗𝑑 represents the stochastic 

counterpart of the random outcome 𝑉𝑗𝑑
𝜔, ∀𝜔 ∈ Ω.   

 

 

5.2.1 Single Stage Formulation with Probabilistic Constraint 

 With this additional notation, the joint chance constrained IMCLP with stochastic 

demands is formulated as follows:  

[JCC]:   

𝑀𝑖𝑛𝑿,𝒀,𝑽,𝑾   (|𝐷| − 𝑡
∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ 𝔼𝜉[ℎ̃𝑖𝑑]𝑡𝑖𝑗𝑌𝑖𝑗𝑗∈𝐽

|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼   

 +𝑏 𝔼𝜉[∑ ∑ 𝑉̃𝑗𝑑𝑗∈𝐽
|𝐷|+1
𝑑=𝑡∗+2 ] (5.2) 

Subject to  

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2)

 

 𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 ℙ(𝑉̃𝑗𝑑 ≤  𝜃;  ∀𝑗 ∈ 𝐽, 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}) ≥ 1 − 𝜏 (5.1)  

 𝑉𝑗,𝑑+1
𝜔 − 𝑉𝑗𝑑

𝜔 +𝑊𝑗𝑑
𝜔 = ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔 𝑌𝑖𝑗𝑖∈𝐼  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}; 𝜔 ∈ Ω (5.3) 

 𝑊𝑗𝑑
𝜔 ≤ 𝑘𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}; 𝜔 ∈ Ω (5.4) 

 𝑉𝑗,𝑡∗+1
𝜔 = 𝑣𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝜔 ∈ Ω (5.5) 

 𝑉𝑗𝑑
𝜔 ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}; 𝜔 ∈ Ω (5.6) 

 𝑊𝑗𝑑
𝜔 ≥ 0 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}; 𝜔 ∈ Ω (5.7) 
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 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

Where  

 𝔼𝜉[ℎ̃𝑖𝑑] = ∑ 𝑝𝜔ℎ𝑖𝑑
𝜔

𝜔∈Ω   (5.8) 

and 

  𝔼𝜉[∑ ∑ 𝑉̃𝑗𝑑𝑗∈𝐽
|𝐷|+1
𝑑=𝑡∗+2 ] = ∑ 𝑝𝜔 ∑ ∑ 𝑉𝑗𝑑

𝜔
𝑗∈𝐽

|𝐷|+1
𝑑=𝑡∗+2𝜔∈Ω . (5.9) 

 The objective function (5.2) minimizes the facility location costs, as well as the expected 

transportation and backlogging costs over the entire time horizon (i.e., days 𝑡∗ + 1 to |𝐷|). We 

note that the expected backlog at the beginning of day |𝐷| + 1 is precisely the amount of backlog 

at the end of day |𝐷|, and as such, including this term in the objective function allows the model 

to capture the backlog level at the end of the planning horizon.  

 Although the backlog levels will be determined to meet the desired service levels 

specified in the joint chance constraint (5.1) our objective function also explicitly captures the 

backlogging costs. This allows the model to differentiate between solutions that contain different 

amounts of backlog. For example, our formulation would give preference to a solution in which 

no items are held in backlog over a solution that meets the service level requirements but holds 𝜃 

items in backlog at each facility every day, given that the two solutions have the same location 

and allocation cost. 

 As before, constraints (2.2) and (3.6) enforce single sourcing constraints on the demand 

sites while constraints (2.3) ensure demand sites are only assigned to located facilities. 

Constraint (5.1) is the joint chance constraint that ensures the probability that the backlog at any 

facility never exceeds a predetermined level of 𝜃 is bounded from below by a given reliability 

level 1 − 𝜏. Constraints (5.3) are flow balance constraints to update the amount of demand held 
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in backlog from day to day. They also serve, along with constraints (5.4), as capacity constraints. 

Specifically, constraints (5.3) ensure the amount of demand processed each day does not exceed 

the amount available for processing while constraints (5.4) limit the maximum amount of 

demand processed each day to the daily processing capacities of the facilities. Constraints (5.5) 

state that a located facility 𝑗 ∈ 𝐽 will have an initial backlog of 𝑣𝑗  and a facility that is not located 

will have an initial backlog level of zero. Constraints (2.4), (3.6), (5.6), and (5.7) are standard 

non-negativity and binary constraints. 

 

 

5.2.2 MIP Reformulation 

Since formulation JCC is nonlinear due to the joint chance constraint (5.1), we present a 

mixed integer linear reformulation that approximates JCC by using a finite subset Ω′ ⊆ Ω of all 

possible demand scenarios.  Furthermore, we let 𝜔′ ∈ Ω′ deonote elements of Ω′ and define ℎ𝑖𝑑
𝜔′,  

𝑉𝑗𝑑
𝜔′, 𝑊𝑗𝑑

𝜔′, 𝜉(𝜔′), and 𝑝𝜔
′
accordingly (with ∑ 𝑝𝜔

′ 
𝜔′∈Ω′ = 1 and 𝜉(𝜔′) often referred to as 𝜉′ for 

readability. With this notation, we introduce decision variables  

𝑍𝜔
′
= { 

1

0
        

If the backlog at any facility exceeds θ on any day in scenario ω′ ∈ Ω′

Otherwise                                                                                                                
   

and replace (5.1) with 

 𝑉𝑗𝑑
𝜔′ −𝑀1𝑍

𝜔′ ≤ 𝜃 ∀ 𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}; 𝜔′ ∈ Ω′ (5.10) 

 ∑ 𝑝𝜔′𝑍𝜔
′

𝜔′∈Ω′ ≤ 𝜏  (5.11) 

 𝑍𝜔
′
∈ {0,1} ∀𝜔′ ∈ Ω′ (5.12) 

 Constraints (5.10) define the binary service level variables where 𝑀1 is a sufficiently large 

number such that the constraint is satisfied by letting 𝑍𝜔
′
= 1 when 𝑉𝑗𝑑

𝜔′ > 𝜃 for some facility 𝑗 
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on some day 𝑑 in some scenario 𝜔′ ∈ Ω′. Constraint (5.11) guarantees that the probability of 

violating the joint chance constraint is no more than 𝜏. Note that we can write constraint (5.11) as 

 ∑ 𝑍𝜔
′

𝜔′∈Ω′ ≤ ⌊𝜏|Ω′|⌋ (5.13) 

if each scenario 𝜔′ ∈ Ω′ occurs with equal probability. Finally, constraints (5.12) are standard 

binary constraints. This results in the following mixed integer linear reformulation of JCC:  

[MIP-JCC]:   

𝑉̈ = 𝑀𝑖𝑛𝑿,𝒀,𝑽,𝑾,𝒁  (|𝐷| − 𝑡
∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ 𝔼𝜉′[ℎ̃𝑖𝑑]𝑡𝑖𝑗𝑌𝑖𝑗𝑗∈𝐽

|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼   

 +𝑏 𝔼𝜉′[∑ ∑ 𝑉̃𝑗𝑑𝑗∈𝐽
|𝐷|+1
𝑑=𝑡∗+2 ] (5.14) 

Subject to  

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2)

 

 𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 𝑉𝑗𝑑
𝜔′ −𝑀1𝑍

𝜔′ ≤ 𝜃 ∀𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}; 𝜔′ ∈ Ω′  (5.10) 

 ∑ 𝑝𝜔′𝑍𝜔
′

𝜔′∈Ω′ ≤ 𝜏  (5.11) 

 𝑉𝑗,𝑑+1
𝜔′ − 𝑉𝑗𝑑

𝜔′ +𝑊𝑗𝑑
𝜔′ = ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝑖∈𝐼  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}; 𝜔′ ∈ Ω′ (5.15) 

 𝑊𝑗𝑑
𝜔′ ≤ 𝑘𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}; 𝜔′ ∈ Ω′ (5.16) 

 𝑉𝑗,𝑡∗+1
𝜔′ = 𝑣𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝜔′ ∈ Ω′ (5.17) 

 𝑉𝑗𝑑
𝜔′ ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}; 𝜔′ ∈ Ω′ (5.18) 

 𝑊𝑗𝑑
𝜔′ ≥ 0 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}; 𝜔′ ∈ Ω′ (5.19) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6)  

 𝑍𝜔
′
∈ {0,1} ∀𝜔′ ∈ Ω′ (5.12) 
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Where  

 𝔼𝜉′[ℎ̃𝑖𝑑] = ∑ 𝑝𝜔
′
ℎ𝑖𝑑
𝜔′

𝜔′ ∈Ω′   (5.20) 

and 

  𝔼𝜉′[∑ ∑ 𝑉̃𝑗𝑑𝑗∈𝐽
|𝐷|+1
𝑑=𝑡∗+2 ] = ∑ 𝑝𝜔

′
∑ ∑ 𝑉𝑗𝑑

𝜔′
𝑗∈𝐽

|𝐷|+1
𝑑=𝑡∗+2𝜔′∈Ω′ . (5.21) 

 

5.3 Solution Methods 

 As is evidenced in Section 5.5.2, solving problem instances with even a small number of 

scenarios takes an exorbitant amount of time without employing any specialized solution 

techniques. Therefore, in this section, we propose two-stage and three-stage decomposition 

schemes to solve the mixed-integer programming reformulation of the joint chance-constrained 

program with cutting-plane algorithms. As a means of identifying the decomposed problems, we 

will use a labeling scheme of the form M#S# to identify the method and the problem stage. For 

example, M1S2 refers to the second stage problem of the first decomposition scheme, whereas 

M2S3 refers to the third stage problem of the second decomposition scheme.  

 

5.3.1 Two-Stage Benders Decomposition Approach 

 The Benders decomposition [Benders, 1962] approach is one of the most effective 

techniques for solving large-scale linear programming and mixed-integer programming models 

that exhibit decomposable structures. The approach specifies two sets of variables, initial 

decision variables and continuous recourse variables. At each iteration, the algorithm solves a 

relaxed master problem at the first stage and passes a fixed first-stage optimal decision to the 

second stage where recourse decisions are optimal for individual scenarios. Duality theorems are 

then used to derive feasibility and optimality cuts, which affect the first-stage solution in 
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subsequent iterations. The algorithm terminates when all optimality conditions are satisfied and 

no additional cuts are generated. We refer the interested reader to Birge and Louveaux (2011) for 

a more detailed description of the decomposition technique.  

 Since Benders first introduced his decomposition scheme in 1962 in the context of 

solving a general linear program, significant research has emerged that addresses algorithmic 

improvements and modifications to accelerate the convergence of Benders decomposition 

method as applied to facility location problems. Balinski and Wolfe (1963), Davis and Ray 

(1969), and Geoffrion and Graves (1974) are among the earliest papers that apply Benders 

decomposition to a facility location problem. Magnanti and Wong (1981) address the choice of 

effective optimality cuts and have shown that the use of stronger cuts can reduce the number of 

iterations, thereby improving the convergence of the algorithm. Wentges (1996) proposes a 

procedure specifically for strengthening Benders cuts in the context of the capacitated facility 

location problem. A review by Magnanti and Wong (1990) presents an overview of 

decomposition methods for facility location problems. The review specifically addresses 

methods of accelerating Benders decomposition and model selection criterion for facility 

location problems.  

In this section we develop a two-stage cutting plane algorithm based on the Benders 

decomposition scheme to solve MIP-JCC. We place the long term decisions (i.e., location, 

allocation) in the first stage and the daily decisions (i.e., processing, backlog) in the second stage. 

For simplicity, we will denote ordered sets of variables using bold face type in the following 

manner:
1
 

                                                 
1
 We note that additional similar sets are created for variables introduced later in the chapter. For readability, we 

adopt the convention that boldface type indicates such vectors and matrices, but we do not define every set in the 

text. Instead, a detailed description of each ordered set can be found in the LIST OF SYMBOLS beginning on page 

xvi. 
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𝑿:  a 1 × |𝐽| vector whose 𝑗th element is 𝑋𝑗  

𝒀:   a |𝐼| × |𝐽| matrix whose (𝑖, 𝑗)th
 entry is 𝑌𝑖𝑗 

𝑽𝝎
′𝒋:  a 1 × (|𝐷| + 1 − 𝑡∗) vector whose (𝑑 − 𝑡∗)th

 element is 𝑉𝑗𝑑
𝜔′ 

𝑽:  a |𝐽| × (|𝐷| + 1 − 𝑡∗) × |Ω′| matrix whose (𝑗, 𝑑 − 𝑡∗, 𝜔)th
 element is 𝑉𝑗𝑑

𝜔′ 

𝑾𝝎′𝒋:   a 1 × (|𝐷| − 𝑡∗) matrix whose (𝑑 − 𝑡∗)th
 element is 𝑊𝑗𝑑

𝜔′ 

𝑾:   a |𝐽| × (|𝐷| − 𝑡∗) × |Ω′| matrix whose (𝑗, 𝑑 − 𝑡∗, 𝜔′)th
 element is 𝑊𝑗𝑑

𝜔′ 

𝒁:  a 1 × |Ω|  vector whose 𝜔′th element is 𝑍𝜔
′
  

At the first stage we keep binary variables 𝑿, 𝒀, and 𝒁, and constraints (2.2), (2.3), and 

(5.11). Without loss of generality, we add the constraint 

 ∑ 𝑋𝑗𝑗∈𝐽 ≥ 1  (5.22) 

 to ensure at least one facility is located (this will become useful in the solution algorithms). 

Alternatively, we could add the more restrictive constraint 

 ∑ 𝑘𝑗𝑋𝑗𝑗∈𝐽 ≥
∑ ∑ 𝔼

𝜉′
[ℎ̃𝑖𝑑]

|𝐷|
𝑑=𝑡+1𝑖∈𝐼

|𝐷|−𝑡∗
 (5.23) 

in place of constraint (5.22) to ensure that the cumulative capacity of the located facilities is 

sufficient to handle the expected cumulative demand. We consider the relaxed master problem 

as:  

[M1S1]: 

𝑀𝑖𝑛𝑿,𝒀,𝒁 (|𝐷| − 𝑡
∗)∑ (𝑓𝑗𝑋𝑗 + 𝑎∑ ∑ 𝔼𝜉′[ℎ̃𝑖𝑑]

|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼 𝑡𝑖𝑗𝑌𝑖𝑗 + ∑ 𝑝𝜔

′
𝑉̅𝜔

′𝑗(𝑿, 𝒀, 𝒁)𝜔′∈Ω′ )𝑗∈𝐽  (5.24) 

Subject to  

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2) 

 𝑌𝑖𝑗 − 𝑋𝑗 ≤ 0 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 
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 ∑ 𝑋𝑗𝑗∈𝐽 ≥ 1  (5.22) 

 ∑ 𝑝𝜔
′
𝑍𝜔

′

𝜔′∈Ω′ ≤ 𝜏  (5.11)  

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 𝑍𝜔 ∈ {0,1} ∀𝜔 ∈ Ω (5.12) 

where for each scenario 𝜔′ ∈ Ω′ and facility 𝑗 ∈ 𝐽, we optimize the following subproblem: 

[M1S2(𝜔′, 𝑗)]: 

𝑉̅ 
𝜔′𝑗(𝑿, 𝒀, 𝒁) = 𝑀𝑖𝑛 𝑽𝝎′ 𝒋,𝑾𝜔′𝑗   ∑ 𝑉𝑗𝑑

𝜔′|𝐷|+1
𝑑=𝑡∗+2  (5.25) 

Subject to 

 𝑉𝑗,𝑑+1
𝜔′ − 𝑉𝑗𝑑

𝜔′ +𝑊𝑗𝑑
𝜔′ = ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝑖∈𝐼  ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (5.26) 

 𝑊𝑗𝑑
𝜔′ ≤ 𝑘𝑗𝑋𝑗  ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (5.27) 

 𝑉𝑗,𝑡∗+1
𝜔′ = 𝑣𝑗𝑋𝑗   (5.28) 

 𝑉𝑗𝑑
𝜔′ ≤ 𝜃 +𝑀1𝑍

𝜔 ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.29) 

 𝑉𝑗𝑑
𝜔′ ≥ 0   ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.30) 

 𝑊𝑗𝑑
𝜔′ ≥ 0   ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| (5.31) 

 We associate dual variables 𝛾𝑑
𝜔′𝑗
, 𝜋𝑑

𝜔′𝑗
, 𝜂 

𝜔′𝑗, and 𝜇𝑑
𝜔′𝑗

 with constraints (5.26), (5.27), 

(5.28), and (5.29), respectively. For each 𝜔′ ∈ Ω′ and 𝑗 ∈ 𝐽, the dual of M1S2(𝜔′, 𝑗) is:  

[D-M1S2(𝜔′, 𝑗)]:  

𝑉̅𝐷𝑢𝑎𝑙
𝜔′𝑗 (𝑿, 𝒀, 𝒁) = 𝑀𝑎𝑥

𝜸𝝎
′𝒋,𝝅𝝎

′𝒋,𝜂𝜔
′𝑗,𝝁𝝎

′𝒋 
  ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝛾𝑑
𝜔′𝑗

𝑖∈𝐼
|𝐷|
𝑑=𝑡∗+1 + ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗|𝐷|
𝑑=𝑡∗+1   

 +𝑣𝑗𝑋𝑗𝜂 
𝜔′𝑗 + ∑ (𝜃 +𝑀1𝑍

𝜔′)𝜇𝑑
𝜔′𝑗|𝐷|+1

𝑑=𝑡∗+1   (5.32) 
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Subject to 

 𝛾𝑑
𝜔′𝑗

+ 𝜋𝑑
𝜔′𝑗

≤ 0 ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (5.33) 

 𝜂 
𝜔′𝑗 − 𝛾𝑡∗+1

𝜔′𝑗
+ 𝜇𝑡∗+1

𝜔′𝑗
≤ 0  (5.34) 

 𝛾𝑑−1
𝜔′𝑗

− 𝛾𝑑
𝜔′𝑗

+ 𝜇𝑑
𝜔′𝑗

≤ 1  ∀𝑑 ∈ {𝑡∗ + 2,… , |𝐷|} (5.35) 

 𝛾|𝐷|
𝜔′𝑗

+ 𝜇|𝐷|+1
𝜔′𝑗

≤ 1   (5.36) 

 𝜋𝑑
𝜔′𝑗

≤ 0   ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| (5.37) 

 𝜇𝑑
𝜔′𝑗

≤ 0  ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.38) 

 Constraints (5.33) correspond to primal variables 𝑾𝜔′𝑗. Constraints (5.34) correspond to 

the primal initial backlog variables, 𝑉𝑗,𝑡∗+1
𝜔′ ,  constraints (5.35) correspond to primal variables 

𝑉𝑗𝑑
𝜔′ for 𝑑 ∈ {𝑡∗ + 2,… , |𝐷|}, and constraints (5.36) correspond to the primal backlog variables 

𝑉𝑗,|𝐷|+1
𝜔′ . Constraints (5.37) and (5.38) are sign constraints on the dual variables corresponding to 

primal constraints (5.27) and (5.29), respectively.  

 We denote the feasible region of D-M1S2(𝜔′, 𝑗) by  

℘𝜔′𝑗 ≔ {𝜸𝝎
′𝒋, 𝝅𝝎

′𝒋, 𝜂𝜔
′𝑗, 𝝁𝝎

′𝒋 ∶ Constraints (5.33) - (5.38) are satisfied}. 

Since setting all of the dual variables equal to zero provides a feasible solution to D-M1S2(𝜔′, 𝑗), 

the set ℘𝜔′𝑗 is nonempty. The set ℘𝜔𝑗 can be described by its extreme points Φ𝜔′𝑗 ≔

{(𝜸 
𝜔′𝑗, 𝝅𝜔

′𝑗, 𝜂𝜔
′𝑗, 𝝁𝜔

′𝑗)| (𝜸𝜔
′𝑗, 𝝅𝜔

′𝑗, 𝜂𝜔
′𝑗, 𝝁𝜔

′𝑗) is an extreme point of ℘𝜔′𝑗} and extreme rays 

Ψ𝜔′𝑗 ≔ {(𝜸𝜔
′𝑗, 𝝅𝜔

′𝑗, 𝜂𝜔
′𝑗, 𝝁𝜔

′𝑗)| (𝜸𝜔
′𝑗, 𝝅𝜔

′𝑗, 𝜂𝜔
′𝑗, 𝝁𝜔

′𝑗) is an extreme ray of ℘𝜔′𝑗}. Since D-

M1S2(𝜔′, 𝑗) is always feasible, it is either unbounded above or has an optimal solution. If it is 

unbounded above, there exists an extreme ray (𝜸𝜔
′𝑗𝜓, 𝝅𝜔

′𝑗𝜓, 𝜂𝜔
′𝑗𝜓, 𝝁𝜔

′𝑗𝜓) ∈ Ψ𝜔′𝑗, such that  
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 ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗𝛾𝑑

𝜔′𝑗𝜓
𝑖∈𝐼

|𝐷|
𝑑=𝑡∗+1 + ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗𝜓|𝐷|
𝑑=𝑡∗+1 + 𝑣𝑗𝑋𝑗𝜂 

𝜔′𝑗𝜓  

 +∑ (𝜃 +𝑀1𝑍
𝜔′)𝜇𝑑

𝜔′𝑗𝜓|𝐷|+1
𝑑=𝑡∗+1 > 0  (5.39) 

in which case 𝑉̅𝐷𝑢𝑎𝑙
𝜔′𝑗 (𝑿, 𝒀, 𝒁) = +∞. If D-M1S2(𝜔′, 𝑗) has a solution, then there exists an 

extreme point (𝜸𝜔
′𝑗𝜙, 𝝅𝜔

′𝑗𝜙, 𝜂𝜔
′𝑗𝜙, 𝝁𝜔

′𝑗𝜙) ∈ Φ𝜔′𝑗, such that  

 𝑉̅𝐷𝑢𝑎𝑙
𝜔′𝑗 (𝑿, 𝒀, 𝒁) = ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝛾𝑑
𝜔′𝑗𝜙

𝑖∈𝐼
|𝐷|
𝑑=𝑡∗+1 +∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗𝜙|𝐷|
𝑑=𝑡∗+1 + 𝑣𝑗𝑋𝑗𝜂 

𝜔′𝑗𝜙 

  +∑ (𝜃 +𝑀1𝑍
𝜔′)𝜇𝑑

𝜔′𝑗𝜙|𝐷|+1
𝑑=𝑡∗+1 .  (5.40) 

Thus, we can reformulate D-M1S2(𝜔′, 𝑗) in terms of the extreme points and extreme rays of 

℘𝜔′𝑗 as follows:  

[RD-M1S2(𝜔′, 𝑗)]: 

𝑉̅𝐷𝑢𝑎𝑙
𝜔′𝑗

(𝑿, 𝒀, 𝒁) = 𝑀𝑖𝑛
𝑉̅ 
𝜔′𝑗𝑉̅ 

𝜔′𝑗  (5.41) 

Subject to 

 ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗𝛾𝑑

𝜔′𝑗𝜓
𝑖∈𝐼

|𝐷|
𝑑=𝑡∗+1 + ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗𝜓|𝐷|
𝑑=𝑡∗+1 + 𝑣𝑗𝑋𝑗𝜂 

𝜔′𝑗𝜓  

  +∑ (𝜃 +𝑀1𝑍
𝜔′)𝜇𝑑

𝜔′𝑗𝜓|𝐷|+1
𝑑=𝑡∗+1 ≤ 0  ∀𝜓 ∈ Ψ𝜔′𝑗 (5.42) 

 ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗𝛾𝑑

𝜔′𝑗𝜙
𝑖∈𝐼

|𝐷|
𝑑=𝑡∗+1 + ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗𝜙|𝐷|
𝑑=𝑡∗+1 + 𝑣𝑗𝑋𝑗𝜂 

𝜔′𝑗𝜙  

  +∑ (𝜃 +𝑀1𝑍
𝜔′)𝜇𝑑

𝜔′𝑗𝜙|𝐷|+1
𝑑=𝑡∗+1 ≤ 𝑉̅ 

𝜔′𝑗  ∀𝜙 ∈ Φ𝜔′𝑗 (5.43) 

where constraints (5.42) and (5.43) are feasibility and optimality constraints, respectively. 

Furthermore, we can aggregate the optimality and feasibility cuts by candidate facility to obtain 

the aggregated reformulation of the D-M1S2(𝜔′, 𝑗) problems: 

[ARD-M1S2(𝜔′)]: 

𝑉̅𝐴−𝐷𝑢𝑎𝑙
𝜔′ (𝑿, 𝒀, 𝒁) =  𝑀𝑖𝑛

𝑉̅ 
𝜔′ 𝑉̅ 

𝜔′  (5.44) 
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Subject to 

 ∑ (∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗𝛾𝑑

𝜔′𝑗𝜓
𝑖∈𝐼

|𝐷|
𝑑=𝑡∗+1 + ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗𝜓|𝐷|
𝑑=𝑡∗+1 + 𝑣𝑗𝑋𝑗𝜂 

𝜔′𝑗𝜓
𝑗∈𝐽   

  +∑ (𝜃 +𝑀1𝑍
𝜔′)𝜇𝑑

𝜔′𝑗𝜓|𝐷|+1
𝑑=𝑡∗+1 ) ≤ 0  ∀𝜓 ∈ Ψ𝜔′ (5.45) 

 ∑ (∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗𝛾𝑑

𝜔′𝑗𝜙
𝑖∈𝐼

|𝐷|
𝑑=𝑡∗+1 + ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗𝜙|𝐷|
𝑑=𝑡∗+1 + 𝑣𝑗𝑋𝑗𝜂 

𝜔′𝑗𝜙
𝑗∈𝐽   

 +∑ (𝜃 +𝑀1𝑍
𝜔′)𝜇𝑑

𝜔′𝑗𝜙|𝐷|+1
𝑑=𝑡∗+1 ) ≤ 𝑉̅ 

𝜔′  ∀𝜙 ∈ Φ𝜔′ (5.46) 

where Φ𝜔′and Ψ𝜔′ represent the set of dual solutions {𝜸𝜔
′
, 𝝅𝜔

′
, 𝜼𝜔

′
, 𝝁𝜔

′
} that are extreme 

points or extreme rays, respectively, of the feasible region: 

 𝛾𝑑
𝜔′𝑗

+ 𝜋𝑑
𝜔′𝑗

≤ 0 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (5.47) 

 𝜂 
𝜔′𝑗 − 𝛾𝑡∗+1

𝜔′𝑗
+ 𝜇𝑡∗+1

𝜔′𝑗
≤ 0  ∀𝑗 ∈ 𝐽 (5.48) 

 𝛾𝑑−1
𝜔′𝑗

− 𝛾𝑑
𝜔′𝑗

+ 𝜇𝑑
𝜔′𝑗

≤ 1  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 2,… , |𝐷|} (5.49) 

 𝛾|𝐷|
𝜔′𝑗

+ 𝜇|𝐷|+1
𝜔′𝑗

≤ 1  ∀𝑗 ∈ 𝐽 (5.50) 

 𝜋𝑑
𝜔′𝑗

≤ 0   ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| (5.51) 

 𝜇𝑑
𝜔′𝑗

≤ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.52) 

Furthermore, we note that 𝑉̅ 
𝜔′ = ∑ 𝑉̅ 

𝜔′𝑗
𝑗∈𝐽 . 

 At iteration 𝑛, we can consider the relaxed problem RMP𝑛-M1S1 composed of only a 

subset of the extreme points and extreme rays by combining M1S1 and ARD-M1S2(𝜔′), 

∀𝜔′ ∈ Ω′: 
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[RMP𝑛-M1S1]: 

𝑉̅𝑅𝑀𝑃
𝑛 (𝜸, 𝝅, 𝜼, 𝝁) = 𝑀𝑖𝑛𝑿,𝒀,𝒁,𝕍  (|𝐷| − 𝑡

∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ ∑ 𝑝𝜔
′
ℎ𝑖𝑗
𝜔′

𝜔∈Ω 𝑡𝑖𝑗𝑌𝑖𝑗𝑗∈𝐽
|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼     

+𝑏 𝕍  (5.53) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2) 

 𝑌𝑖𝑗 − 𝑋𝑗 ≤ 0 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 ∑ 𝑋𝑗𝑗∈𝐽 ≥ 1  (5.22) 

 ∑ 𝑝𝜔
′
𝑍𝜔

′

𝜔′∈Ω′ ≤ 𝜏  (5.11) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 𝑍𝜔
′
∈ {0,1} ∀𝜔′ ∈ Ω′ (5.12) 

 Initialization Cuts 

 ∑ (∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗𝛾𝑑

𝜔′𝑗𝜓
𝑖∈𝐼

|𝐷|
𝑑=𝑡∗+1 + ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗𝜓|𝐷|
𝑑=𝑡∗+1 + 𝑣𝑗𝑋𝑗𝜂 

𝜔′𝑗𝜓
𝑗∈𝐽   

  +∑ (𝜃 +𝑀1𝑍
𝜔′)𝜇𝑑

𝜔′𝑗𝜓|𝐷|+1
𝑑=𝑡∗+1 ) ≤ 0 ∀𝜔′ ∈ Ω′, 𝜓 ∈ Ψ𝜔′ ⊆ Ψ𝜔′(5.54) 

 ∑ 𝑝𝜔
′
∑ (∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝛾𝑑
𝜔′𝑗𝜙

𝑖∈𝐼
|𝐷|
𝑑=𝑡∗+1 + ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗𝜙|𝐷|
𝑑=𝑡∗+1 + 𝑣𝑗𝑋𝑗𝜂 

𝜔′𝑗𝜙
𝑗∈𝐽𝜔′∈Ω′   

  +∑ (𝜃 +𝑀1𝑍
𝜔′)𝜇𝑑

𝜔′𝑗𝜙
)

|𝐷|+1
𝑑=𝑡∗+1 ≤ 𝕍  ∀𝜙 ∈ Φ ⊆ Φ (5.55) 

where Φ =∪𝜔′∈Ω′ Φ
𝜔′ and 𝕍 is a decision variable that represents the total amount of backlog 

over the planning horizon. The sets Ψ𝜔′ and Φ represent the subset of feasibility and optimality 

cuts generated, respectively. We outline the two-stage solution method in Algorithm 1. 
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Algorithm 1: Two-stage cutting plane algorithm based on the Benders decomposition scheme 

Step 0: Initialize 𝑛 = 1,Ψ𝜔′ = ∅ ,Φ = ∅. Set the upper bound (UB) and lower bound (LB) on 

the optimal objective function value (5.14) appropriately (e.g., set UB equal to infinity or the 

objective function value of a known feasible solution, set LB equal to 0) and add the 

corresponding initialization cuts to RMP𝑛-M1S1 (e.g., 0 ≤ 𝕍).  

Step 1: Solve RMP𝑛-M1S1 and obtain an optimal solution (𝑿𝑛, 𝒀𝑛, 𝒁𝑛, 𝕍𝑛). Set the LB equal to 

the current value of (5.53) (i.e., 𝑉̅𝑅𝑀𝑃
𝑛 (𝜸, 𝝅, 𝜼, 𝝁) with (𝑿, 𝒀, 𝒁, 𝕍) = (𝑿𝑛, 𝒀𝑛, 𝒁𝑛, 𝕍𝑛) as input). 

Step 2: [Feasibility Check] For each 𝜔′ ∈ Ω′ and 𝑗 ∈ 𝐽, use (𝑿𝑛, 𝒀𝑛, 𝒁𝑛) as input to solve the 

separation problem, which is essentially D-M1S2(𝜔′, 𝑗) except that the right hand side of all of 

the constraints is replaced by the value 0. Denote the optimal objective function of each 

problem by 𝑉̅𝑆𝑒𝑝
𝜔′𝑗(𝑿𝑛, 𝒀𝑛 , 𝒁𝑛). Normalize the solution

1
 and let ∑ 𝑉̅𝑆𝑒𝑝

𝜔′𝑗
𝑗∈𝐽 (𝑿𝑛, 𝒀𝑛, 𝒁𝑛) =

𝑉̅𝑆𝑒𝑝
𝜔′ (𝑿𝑛, 𝒀𝑛, 𝒁𝑛). 

a) If 𝑉̅𝑆𝑒𝑝
𝜔′ (𝑿𝑛, 𝒀𝑛, 𝒁𝑛) ≤ 0 for all 𝜔′ ∈ Ω′, proceed to Step 3.  

b) If ∃𝜔′ ∈ Ω′ such that  𝑉̅𝑆𝑒𝑝
𝜔′ (𝑿𝑛, 𝒀𝑛, 𝒁𝑛) > 0, then the optimal solution 

(𝜸𝜔
′𝜓, 𝝅𝜔

′𝜓, 𝜼𝜔
′𝜓, 𝝁𝜔

′𝜓) contains an extreme ray (𝜸𝜔
′𝑗𝜓, 𝝅𝜔

′𝑗𝜓, 𝜂𝜔
′𝑗𝜓, 𝝁𝜔

′𝑗𝜓), which 

makes D-M1S2(𝜔′, 𝑗) unbounded. For each such 𝜔′, add (𝜸𝜔
′𝜓, 𝝅𝜔

′𝜓, 𝜼𝜔
′𝜓, 𝝁𝜔

′𝜓) to 

Ψ𝜔′. Set 𝑛 = 𝑛 + 1 and return to Step 1. 

Step 3: [Optimality Check] For each 𝜔′ ∈ Ω′ and 𝑗 ∈ 𝐽, solve D-M1S2(𝜔′, 𝑗) with (𝑿, 𝒀, 𝒁) =

(𝑿𝑛, 𝒀𝑛, 𝒁𝑛). Denote the optimal solution by (𝜸𝜔
′𝑗𝜙, 𝝅𝜔

′𝑗𝜙, 𝜂𝜔
′𝑗𝜙, 𝝁𝜔

′𝑗𝜙).  

                                                 
1
 For example, by dividing each element of 𝜸𝜔

′𝜓, 𝝅𝜔
′𝜓, 𝜼𝜔

′𝜓, 𝝁𝜔
′𝜓) by the L2-norm of (𝜸𝜔

′𝜓, 𝝅𝜔
′𝜓, 𝜼𝜔

′𝜓, 𝝁𝜔
′𝜓). 
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a) If  

 𝕍𝑛 < ∑ 𝑝𝜔
′
∑ (∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗
𝑛𝛾𝑑

𝜔′𝑗𝜙 
𝑖∈𝐼

|𝐷|
𝑑=𝑡∗+1 + ∑ 𝑘𝑗𝑋𝑗

𝑛𝜋𝑑
𝜔′𝑗𝜙|𝐷|

𝑑=𝑡∗+1𝑗∈𝐽𝜔′∈Ω′  

 +𝑣𝑗𝑋𝑗
𝑛𝜂 

𝜔′𝑗𝜙 + ∑ (𝜃 +𝑀1𝑍
𝜔′𝑛)𝜇𝑑

𝜔′𝑗𝜙|𝐷|+1
𝑑=𝑡∗+1 ) (5.56) 

add (𝜸𝜔
′𝜙, 𝝅𝜔

′𝜙, 𝜼𝜔
′𝜙, 𝝁𝜔

′𝜙) to  Φ. Set 𝑈𝐵 ≔ min{𝑈𝐵, (|𝐷| − 𝑡∗)∑ 𝑓𝑗𝑋𝑗
𝑛

𝑗∈𝐽 +

𝑎∑ ∑ 𝔼𝜉′[ℎ𝑖𝑑̃]
|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼 ∑ 𝑡𝑖𝑗𝑌𝑖𝑗

𝑛
𝑗∈𝐽  + 𝑏 𝕍𝑛 }. Then, let 𝑛 = 𝑛 + 1 and return to Step 1. 

b) If the inequality (5.56) does not hold, then (𝑿𝑛, 𝒀𝑛, 𝒁𝑛, 𝕍 
𝑛) is the optimal solution to 

MIP-JCC. The algorithm terminates. 

 

5.3.2 Three-Stage Decomposition Approach 

The second decomposition solution approach removes the auxiliary 𝒁 variables that 

verify whether the joint chance constraint is satisfied from the first stage and places them in the 

third stage. Given a feasible first-stage location and allocation solution, we can readily determine 

the optimal second-stage processing and backlog decisions as well as the third-stage auxiliary 

variables that verify whether the joint chance constraint is satisfied by inspection. If the joint 

chance constraint is violated, we add a corresponding cut to the first-stage problem. The three 

stages are defined as follows: 

[M2S1]: 

𝑀𝑖𝑛𝑿,𝒀 (|𝐷| − 𝑡
∗) ∑ (𝑓𝑗𝑋𝑗 + 𝑎∑ ∑ ∑ 𝑝𝜔

′
ℎ𝑖𝑗
𝜔′

𝜔′∈Ω′ 𝑡𝑖𝑗𝑌𝑖𝑗
|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼𝑗∈𝐽   

  +𝑏 ∑ 𝑝𝜔
′
𝑉̂𝜔

′𝑗(𝑿, 𝒀)𝜔′∈Ω′ )  (5.57) 

Subject to 

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2) 

 𝑌𝑖𝑗 − 𝑋𝑗 ≤ 0 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 
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 ∑ 𝑋𝑗𝑗∈𝐽 ≥ 1  (5.22) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 For each scenario 𝜔′ ∈ Ω′ and facility 𝑗 ∈ 𝐽, the value of 𝑉̂𝜔
′𝑗(𝑿, 𝒀) in M2S1 is given 

by:  

[M2S2
 
(𝜔′, 𝑗)]: 

𝑉̂𝜔
′𝑗(𝑿, 𝒀) =  𝑀𝑖𝑛

𝑽𝜔
′𝒋,𝑾𝜔′𝑗   ∑ 𝑉𝑗𝑑

𝜔′|𝐷|+1
𝑑=𝑡∗+2 + 𝑍̂(𝑽) (5.58) 

Subject to 

 𝑉𝑗,𝑑+1
𝜔′ − 𝑉𝑗𝑑

𝜔′ +𝑊𝑗𝑑
𝜔′ = ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝑖∈𝐼  ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (5.26) 

 𝑊𝑗𝑑
𝜔′ ≤ 𝑘𝑗𝑋𝑗  ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (5.27) 

 𝑉𝑗,𝑡∗+1
𝜔′ = 𝑣𝑗𝑋𝑗   (5.28) 

𝑉𝑗𝑑
𝜔′ ≥ 0   ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.30) 

𝑊𝑗𝑑
𝜔′ ≥ 0   ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (5.31)  

Then, for a sufficiently large value of 𝑀2 so that M2S1 does not choose location and allocation 

decisions that cause the third-stage variable, ℚ, to take a positive value, we calculate 𝑍̂(𝑽) as: 

[M2S3]: 

𝑍̂(𝑽) = 𝑀𝑖𝑛 𝒁,ℚ  𝑀2ℚ (5.59) 

Subject to   

 𝑀1𝑍
𝜔′ ≥ 𝑉𝑗𝑑

𝜔′ − 𝜃 ∀𝜔′ ∈ Ω′;  𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.10) 

 ∑ 𝑝𝜔
′
𝑍𝜔

′

𝜔′∈Ω′ −ℚ ≤ 𝜏  (5.60) 

 ℚ ≥ 0  (5.61) 
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 𝑍𝜔
′
∈ {0,1}  ∀𝜔′ ∈ Ω′ (5.12) 

First, we note that, for any feasible (𝑿, 𝒀) solution to M2S1, constraint (5.22) ensures that 

a feasible solution can be constructed for M2S2(𝜔′, 𝑗). For example, if we do not process any 

demand at the processing facilities but instead hold all of the incoming demand in backlog (i.e., 

𝑾𝜔′𝑗 = 𝟎), then the initial backlog levels, 𝑉𝑗,𝑡∗+1
𝜔′ , are determined by constraints (5.28) and the 

iterative equation 𝑉𝑗,𝑑+1
𝜔′ = 𝑉𝑗𝑑

𝜔′ + ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗𝑖∈𝐼  ∀ 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}. The resulting 

processing and backlog values satisfy constraints (5.27), (5.30), and (5.31). 

Furthermore, given 𝑿 and 𝒀 values, the optimal backlog (𝑽𝜔
′𝑗) and daily processing 

variables (𝑾𝜔′𝑗) of M2S2(𝜔′, 𝑗) can easily be solved by inspection as described in Algorithm 2. 

To see this, note that given 𝑿, constraint (5.28) automatically determines the initial backlog 

levels 𝑉𝑗,𝑡∗+1
𝜔′ . The backlog levels for all remaining days can then be determined using the 

following recursive equation:  

𝑉𝑗𝑑
𝜔′ = max {∑ ℎ𝑖,(𝑑−1)−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝑖∈𝐼 − 𝑘𝑗𝑋𝑗 + 𝑉𝑗,𝑑−1
𝜔′ , 0}  (5.62) 

Thus, for 𝑑 ∈ {𝑡∗ + 2,… , |𝐷| + 1} the backlog variables can be expressed as follows: 

𝑉𝑗𝑑
𝜔′ = max {∑ ℎ𝑖,(𝑑−1)−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝑖∈𝐼 − 𝑘𝑗𝑋𝑗 +max{∑ ℎ𝑖,(𝑑−2)−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗𝑖∈𝐼 − 𝑘𝑗𝑋𝑗 +max {…  

 …+max {∑ ℎ𝑖,((𝑡∗+1)−𝑡𝑖𝑗)
𝜔′ 𝑌𝑖𝑗𝑖∈𝐼 − 𝑘𝑗𝑋𝑗 + 𝑉𝑗,𝑡∗+1

𝜔′ , 0} , 0}… ,0},0} , 0}. (5.63) 

 The number of items processed each day at a given facility is the minimum of the 

processing capacity of the facility and the number of available items available for processing. 

Thus, the number of items processed at facility 𝑗 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} in scenario 𝜔 is: 

𝑊𝑗𝑑
𝜔′ = min {𝑘𝑗𝑋𝑗 , 𝑉𝑗𝑑

𝜔′ + ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗𝑖∈𝐼 }. 
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Algorithm 2: Recursive algorithm for solving M2S2(𝜔′, 𝑗) 

Given 𝜔′ ∈ Ω′, 𝑗 ∈ 𝐽, and any feasible (𝑿, 𝒀) solution to M2S1: 

a. Set 𝑉𝑗,𝑡∗+1
𝜔′ = 𝑣𝑗𝑋𝑗

  

b. For 𝑑 ∈ {𝑡∗ + 2,… , |𝐷| + 1} let 𝑉𝑗𝑑
𝜔′ = max {∑ ℎ𝑖,((𝑑−1)−𝑡𝑖𝑗) 

𝜔′ 𝑌𝑖𝑗
 

𝑖∈𝐼 − 𝑘𝑗𝑋𝑗
 + V𝑗,𝑑−1

𝜔′ , 0} 

c. For 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} let 𝑊𝑗𝑑
𝜔′ = min {𝑘𝑗𝑋𝑗

 , 𝑉𝑗𝑑
𝜔′ + ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗
 

𝑖∈𝐼 } 

 

 Finally, once the values of the backlog variables are determined, problem M2S3 is also 

easily determined by inspection. We simply check whether 𝑉𝑗𝑑
𝜔′ ≤ 𝜃 for all 𝑗 ∈ 𝐽, 𝑑 ∈ {𝑡∗ +

1,… , |𝐷| + 1} for each 𝜔′ ∈ Ω′. If the inequality is violated, we set the corresponding 𝑍𝜔
′
= 1. 

If not, we let 𝑍𝜔
′
= 0. Then, we can check whether ∑ 𝑝𝜔

′
𝑍𝜔

′

𝜔′∈Ω′ ≤ 𝜏. If not, we let ℚ =

∑ 𝑝𝜔
′
𝑍𝜔

′

𝜔′∈Ω′ − 𝜏 and conclude that (𝑿, 𝒀, 𝑽,𝑾, 𝒁) is an infeasible solution to MIP-JCC. If 

∑ 𝑝𝜔
′
𝑍𝜔

′

𝜔′∈Ω′ ≤ 𝜏, then ℚ = 0 and (𝑿, 𝒀, 𝑽,𝑾, 𝒁) is a feasible solution to MIP-JCC.  

 Thus, given a feasible (𝑿, 𝒀) solution to M2S1, we can readily determine the 

corresponding values of 𝑽,𝑾, and 𝒁. However, we have not specified how to obtain the optimal 

(𝑿, 𝒀) values. To do so, we generate infeasibility and optimality cuts and add them to M2S1. We 

call the resulting formulation R-M2S1. Let Ψ̂ and Φ̂ represent the set of infeasibility and 

optimality cuts, respectively and denote 𝜓 as the index of set Ψ̂ (i.e., 𝜓 ∈ Ψ̂). Furthermore, 

denote the allocation and backlog variables corresponding to an infeasible solution 𝜓 by 𝑌𝑖𝑗
𝜓

 and 

𝑉𝑗𝑑
𝜔′𝜓

, respectively. The infeasibility cuts utilize the sets 𝐽𝜓 ≔ {𝑗 ∈ 𝐽: ∃𝜔′ ∈ Ω′; 𝑑 ∈

{𝑡∗ + 1,… , |𝐷| + 1} with 𝑉𝑗𝑑
𝜔′𝜓

> 𝜃} to represent located facilities that have violated the backlog 



 

114 

 

threshold of 𝜃 and 𝐼𝑗
𝜓
≔ {𝑖 ∈ 𝐼: 𝑌𝑖𝑗

𝜓
= 1} to represent demand sites allocated to processing 

facility 𝑗 ∈ 𝐽. The problem R-M2S1 is defined as follows: 

[R-M2S1]: 

𝑀𝑖𝑛 𝑿,𝒀,𝕍̂ (|𝐷| − 𝑡
∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ 𝔼𝜉′[ℎ̃𝑖𝑑]

|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼 ∑ 𝑡𝑖𝑗𝑌𝑖𝑗𝑗∈𝐽 + 𝑏𝕍̂ (5.64) 

Subject to 

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2) 

 𝑌𝑖𝑗 − 𝑋𝑗 ≤ 0 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 ∑ 𝑋𝑗𝑗∈𝐽 ≥ 1  (5.22) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 Initialization cuts 

 ∑ ∑ 𝑌𝑖𝑗𝑖∈𝐼
𝑗
𝜓𝑗∈𝐽𝜓 ≤ ∑ |𝑗∈𝐽𝜓 𝐼𝑗

𝜓
| − 1 ∀𝜓 ∈ Ψ̂ (5.65) 

 ∑ 𝑝𝜔
′
∗ (∑ ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝛾𝑑
𝜔′𝑗𝜙

𝑖∈𝐼
|𝐷|
𝑑=𝑡∗+1𝑗∈𝐽 + ∑ ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗𝜙|𝐷|
𝑑=𝑡∗+1𝑗∈𝐽𝜔′∈Ω′    

  +∑ 𝑣𝑗𝑋𝑗𝜂 
𝜔′𝑗𝜙

𝑗∈𝐽 ) ≤ 𝕍̂ ∀𝜙 ∈ Φ̂ (5.66) 

where 𝕍̂ is a decision variable that represents the expected total backlog over the planning 

horizon. Constraints (5.65) are feasibility cuts that ensure a future optimal solution has an 

allocation plan that is different from any previous solution that has been deemed infeasible and 

constraints (5.66) are optimality cuts. Some variants of (5.65) applied to binary first-stage 

decisions are discussed in Laporte and Louveaux (1993) and Deng and Shen (2015). We present 

a proof that constraints (5.65) are valid feasibility cuts in Section 5.3.3. 
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 Given this notation, we now present Algorithm 3, which checks whether a 

feasible (𝑿 , 𝒀 , 𝑽 ,𝑾 ) solution to the first and second stages satisfies the mixed integer linear 

joint chance constraint formulation (5.10) - (5.12) and generates a feasibility cut if it is not 

satisfied. We can perform this check without explicitly solving problem M2S3, and therefore, we 

do not need the variable ℚ.  

 

Algorithm 3: Third-stage solution and feasibility check 

Given a feasible solution (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) to the 𝑛𝑡ℎ iteration of R-M2S1 and M2S2(𝜔′, 𝑗), 

a. Initialize 𝑍𝜔
′𝑛 = 0, ∀𝜔′ ∈ Ω′ 

b. For each 𝜔′ ∈ Ω′, check whether 𝑉𝑗𝑑
𝜔′𝑛 ≤ 𝜃 ∀𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}. 

 If the inequality does not hold, set the corresponding 𝑍𝜔
′𝑛 = 1 

c. Check whether ∑ 𝑝𝜔
′
𝑍𝜔

′𝑛
𝜔′∈Ω′ ≤ 𝜏. 

 If the inequality does not hold, then (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛, 𝒁𝑛) is an infeasible solution to 

MIP-JCC. Cut off the solution (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛, 𝒁𝑛)  by adding the constraint 

 ∑ ∑ 𝑌𝑖𝑗𝑖∈𝐼𝑗
𝑛𝑗∈𝐽𝑛 ≤ ∑ |𝑗∈𝐽𝑛 𝐼𝑗

𝑛| − 1 (5.67) 

 to constraint set Ψ̂ . Here 𝐽𝑛 ≔ {𝑗 ∈ 𝐽: ∃𝜔′ ∈ Ω′; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} with 𝑉𝑗𝑑
𝜔′𝑛 >

𝜃} represents the located facilities that violate the backlog threshold of 𝜃 and 𝐼𝑗
𝑛 ≔ {𝑖 ∈

𝐼: 𝑌𝑖𝑗
𝑛 = 1} represents the set of demand sites that allocate demand to processing facility 

𝑗 ∈ 𝐽 as obtained from the solution of R-M2S1.  

 If the inequality holds, (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛, 𝒁𝑛) is a feasible solution to MIP-JCC. As such, 

it produces an upper bound on (5.14).  Set 
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 𝑈𝐵 = min (𝑈𝐵, (|𝐷| − 𝑡∗)∑ 𝑓𝑗𝑋𝑗
𝑛

𝑗∈𝐽 + 𝑎∑ ∑ 𝔼𝜉′[ℎ̃𝑖𝑑]
|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼 ∑ 𝑡𝑖𝑗𝑌𝑖𝑗

𝑛
𝑗∈𝐽   

 + 𝑏 ∑ 𝑝𝜔
′
(∑ ∑ 𝑉𝑗𝑑

𝜔′𝑛
𝑗∈𝐽

|𝐷|+1
𝑑=𝑡∗+2 )𝜔′∈Ω′ ).  

 

Once a feasible solution to MIP-JCC is found, we solve the dual of M2S2(𝜔′, 𝑗) for each 

𝜔′ ∈ Ω′ and each 𝑗 ∈ 𝐽 to check the solution’s optimality. The dual problem is defined as:  

[D-M2S2(𝜔′, 𝑗)]: 

𝑉̂𝐷𝑢𝑎𝑙
𝜔′𝑗 (𝑿, 𝒀) =  𝑀𝑎𝑥

𝜸𝜔
′𝑗,𝝅𝜔

′𝑗,𝜼𝜔
′𝑗 
  ∑ ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝛾𝑑
𝜔′𝑗

𝑖∈𝐼
|𝐷|
𝑑=𝑡∗+1𝑗∈𝐽 + ∑ ∑ 𝑘𝑗𝑋𝑗𝜋𝑑

𝜔′𝑗|𝐷|
𝑑=𝑡∗+1𝑗∈𝐽   

   +∑ 𝑣𝑗𝑋𝑗𝜂 
𝜔′𝑗

𝑗∈𝐽   (5.68) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 𝛾𝑑
𝜔′𝑗

+ 𝜋𝑑
𝜔′𝑗

≤ 0 ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (5.33) 

 𝜂 
𝜔′𝑗 − 𝛾𝑡∗+1

𝜔′𝑗
≤ 0   (5.69) 

 𝛾𝑑−1
𝜔′𝑗

− 𝛾𝑑
𝜔′𝑗

≤ 1  ∀𝑑 ∈ {𝑡∗ + 2,… , |𝐷|} (5.70) 

 𝛾|𝐷|
𝜔′𝑗

≤ 1   (5.71) 

 𝜋𝑑
𝜔′𝑗

≤ 0   ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (5.38) 

 The complete algorithm for solving the three-stage problem is presented in Algorithm 4.  

 

Algorithm 4: Three-stage cutting plane algorithm  

Step 0: Initialize 𝑛 = 1, Ψ̂ = ∅, Φ̂  = ∅, 𝑈𝐵 = ∞, and 𝐿𝐵 = −∞. Add an appropriate 

initialization cut (e.g., 𝕍̂ ≥ 0) to R-M2S1. 

Step 1: Solve R-M2S1 and let (𝑿𝑛, 𝒀𝑛, 𝕍̂𝑛) denote an optimal solution. Set the LB equal to the 

current value of (5.64). 
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Step 2: For each 𝜔′ ∈ Ω′ and 𝑗 ∈ 𝐽, use Algorithm 2 with (𝑿𝑛, 𝒀𝑛) as input to solve M2S2(𝜔′, 𝑗). 

Denote the aggregated optimal solution to M2S2(𝜔′, 𝑗) by (𝑽𝑛,𝑾𝑛). 

Step 3: [Feasibility Check] Using (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) as input, perform Algorithm 3 to determine 

if (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) is a feasible solution to MIP-JCC. If (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) is an infeasible 

solution to MIP-JCC, set 𝑛 = 𝑛 + 1 and return to Step 1. Otherwise, proceed to Step 4.  

Step 4: [Optimality Check] For each 𝜔′ ∈ Ω′ and 𝑗 ∈ 𝐽, solve D-M2S2(𝜔′, 𝑗) with (𝑿, 𝒀) =

(𝑿𝑛, 𝒀𝑛). Denote the aggregated optimal solutions by (𝜸𝜔
′𝜙, 𝝅𝜔

′𝜙, 𝜼𝜔
′𝜙, 𝝁𝜔

′𝜙).  

a) If  (𝕍̂𝑛 < ∑ 𝑝𝜔
′
(∑ ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗
𝑛𝛾𝑑

𝜔′𝑗𝜙 
𝑖∈𝐼

|𝐷|
𝑑=𝑡∗+1𝑗∈𝐽 +∑ ∑ 𝑘𝑗𝑋𝑗

𝑛𝜋𝑑
𝜔′𝑗𝜙|𝐷|

𝑑=𝑡∗+1𝑗∈𝐽𝜔′∈Ω′  

 +∑ 𝑣𝑗𝑋𝑗
𝑛𝜂 

𝜔′𝑗𝜙
𝑗∈𝐽 )  (5.72) 

add (𝜸𝜔
′𝜙, 𝝅𝜔

′𝜙, 𝜼𝜔
′𝜙, 𝝁𝜔

′𝜙) to  Φ̂. Let 𝑛 = 𝑛 + 1 and return to Step 1. 

b) If the inequality (5.72) does not hold, then (𝑿𝑛, 𝒀𝑛,𝑾𝒏, 𝑽𝒏, 𝒁𝑛) is the optimal solution to 

MIP-JCC. The algorithm terminates.  

 

 

5.3.3 Proof of the Validity of Feasibility Cuts (5.65) 

To show the validity of cut (5.65), we begin by recalling that 𝐽𝜓 ≔ {𝑗 ∈ 𝐽: ∃𝜔′ ∈ Ω′;  𝑑 ∈

{𝑡∗ + 1,… , |𝐷| + 1} with 𝑉𝑗𝑑
𝜔′ψ

> 𝜃} represents located facilities that have violated the backlog 

threshold of 𝜃, and 𝐼𝑗
𝜓
≔ {𝑖 ∈ 𝐼: 𝑌𝑖𝑗

𝜓
= 1} represents the demand sites allocated to processing 

facility 𝑗 ∈ 𝐽 for 𝜓 ∈ Ψ̂. Additionally, we define 𝒮𝜓 ≔ {(𝑖, 𝑗) ∈ 𝐼 × 𝐽: 𝑌𝑖𝑗
𝜓
= 1 and ∃𝜔 ∈ Ω; 𝑑 ∈

{𝑡∗ + 1,… , |𝐷| + 1} with 𝑉𝑗𝑑
𝜔′𝜓

> 𝜃}. 
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 Let ℱ ≔ {(𝑿, 𝒀): ∃𝑽,𝑾, 𝒁: (2.2) - (2.4), (3.6), (5.10) - (5.12), (5.15) - (5.19), and (5.22) 

are satisfied}. For any feasible (𝑿, 𝒀) solution to MIP-JCC, (𝑿, 𝒀) ∈ ℱ. Suppose another 

solution, (𝑿𝜓, 𝒀𝜓) satisfies constraints (2.2) - (2.4), (3.6), and (5.22) but (𝑿𝜓, 𝒀𝜓) ∉ ℱ. It 

follows that (𝑿, 𝒀) ≠ (𝑿𝜓, 𝒀𝜓).  

This further implies that the allocation decisions corresponding to the two solutions are 

different, i.e., 𝒀 ≠ 𝒀𝜓. To see this, note that if 𝑿 = 𝑿𝝍, then it must be that 𝒀 ≠ 𝒀𝜓 in order for 

(𝑿, 𝒀) ≠ (𝑿𝜓, 𝒀𝜓). If instead  𝑿 ≠ 𝑿𝝍, then ∃𝑗̂ ∈ 𝐽 such that 𝑋𝑗̂ ≠ 𝑋𝑗̂
𝜓

. Thus, either 𝑋𝑗̂ = 1 and 

𝑋𝑗̂
𝜓
= 0, or 𝑋𝑗̂ = 0 and 𝑋𝑗̂

𝜓
= 1. Suppose 𝑋𝑗̂ = 1 and 𝑋𝑗̂

𝜓
= 0. Then, for every 𝑖 ∈ 𝐼 such that 

𝑌𝑖𝑗̂ = 1 we must have 𝑌𝑖𝑗̂
𝜓
= 0 since facility 𝑗̂ is not located in solution (𝑿𝜓, 𝒀𝜓). Thus, 𝒀 ≠ 𝒀𝜓. 

An analogous reasoning holds for the case of 𝑋𝑗̂ = 0 and 𝑋𝑗̂
𝜓
= 1. 

Furthermore, the reason (𝑿𝜓, 𝒀𝜓) ∉ ℱ must be because too many scenario violations 

occur (i.e.,  ∑ 𝑝𝜔
′
𝑍𝜔

′𝜓
𝜔′∈Ω′ > 𝜏). Thus, ∃(𝑖′, 𝑗′) ∈ 𝐼 × 𝐽 where 𝑗′ is a facility that contributes to 

a scenario violation, such that 𝑌
𝑖′𝑗′
𝜓
= 1 and  𝑌𝑖′𝑗′ = 0. Therefore,  

 ∑ ∑ 𝑌𝑖𝑗𝑖∈𝐼
𝑗
𝜓𝑗∈𝐽𝜓 = ∑ 𝑌𝑖𝑗(𝑖,𝑗)∈𝒮𝜓   

  = 𝑌𝑖′𝑗′ + ∑ 𝑌𝑖𝑗(𝑖,𝑗)∈𝒮𝜓\(𝑖′,𝑗′)  

  = 0 + ∑ 𝑌𝑖𝑗(𝑖,𝑗)∈𝒮𝜓\(𝑖′,𝑗′)     

  ≤ |𝒮𝜓\(𝑖′, 𝑗′)|  

  ≤ ∑ |𝐼𝑗
𝜓
|𝑗∈𝐽𝜓 − 1.  

Therefore, the inequality (5.65) holds for any feasible (𝑿, 𝒀) solution to MIP-JCC. □ 
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5.3.4 Relaxed Joint Chance Constraint 

Both of the decomposition approaches presented have first-stage problems that may 

provide location and allocation decisions that will result in infeasibility at a later stage. Thus, we 

propose to strengthen the first stage by adding the constraint 

 ℙ(∑ ℎ̃𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 ≤ 𝑘𝑗 + 𝜃;  ∀𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡
∗ + 1,… , |𝐷|}) ≥ 1 − 𝜏, (5.73) 

which is a relaxation of the joint chance constraint (5.1) built with the first-stage decisions. It 

states that the probability of the total amount of demand arriving at any facility on any day 

exceeding the processing capacity of the facility plus the maximum backlog level 𝜃 is less than 

𝜏. Clearly, if at some facility 𝑗 ∈ 𝐽 on some day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}, ∑ ℎ̃𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 > 𝑘𝑗 + 𝜃 

then there will be more than 𝜃 items in backlog at the beginning of day 𝑑 + 1 since facility 𝑗 can 

process at most 𝑘𝑗 items per day and must hold the rest in backlog. As a result, the joint chance 

constraint (5.1) dominates the joint chance constraint (5.73).  

 The relaxed joint chance constraint (5.73) considers the amount of demand arriving at 

each facility on any given day, independent of the amount of demand that arrived in previous 

days or that will arrive in the future. For example, if 𝜃 = 20 and 𝑘𝑗 = 100, facility 𝑗 could have 

120 items of demand arrive every day and still not violate constraint (5.73). Yet, we know that 

20 items will be added to the backlog queue every day, since at most 100 items can be processed 

each day. This means that the amount of total backlog held at facility 𝑗 is a strictly increasing 

function and that there will be a day when we will exceed the maximum backlog level 𝜃. 

Therefore, if the time horizon is long enough, we have ℙ(𝑉̃𝑗𝑑 ≤  𝜃;  ∀𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ +

1,… , |𝐷| + 1}) = 0 although ℙ(∑ ℎ̃𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 ≤ 𝑘𝑗 + 𝜃;  ∀𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡
∗ + 1,… , |𝐷|}) = 1. 
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 We can further strengthen the formulation by expanding the relaxed joint chance 

constraint to couple demand arrivals for multiple days. Let 𝐶 represent the set identifying the 

number of consecutive days to couple, then we formulate the relaxed joint chance constraint as: 

 ℙ(
∑ ∑ ℎ̃𝑐−1

𝑠=0 𝑖,𝑑+𝑠−𝑡𝑖𝑗
𝑌𝑖𝑗𝑖∈𝐼 ≤ 𝑐𝑘𝑗 + 𝜃;                                        

                              ∀𝑗 ∈ 𝐽;  𝑐 ∈ 𝐶;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| − 𝑐 + 1}
) ≥ 1 − 𝜏   (5.74) 

 For example, 𝐶 = {1,2} indicates that we want to consider the amount of demand 

arriving at a facility on each day, as well as the amount of demand arriving within a two day 

span. Note that when 𝐶 = {1}, constraint (5.74) is precisely (5.73). It is worth noting however 

that when {1} ∉ 𝐶 it is possible for a scenario to generate a violation of ∑ ∑ ℎ̃𝑐−1
𝑠=0 𝑖,𝑑+𝑠−𝑡𝑖𝑗

𝑌𝑖𝑗𝑖∈𝐼 ≤

 𝑐𝑘𝑗 + 𝜃 in constraint (5.74) for some 𝑐 ∈ 𝐶, but not generate a violation of ∑ ℎ̃𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 ≤

 𝑘𝑗 + 𝜃 in constraint (5.73). To see this, suppose 𝜃 = 10  and 𝑘𝑗 = 100 for some 𝑗 ∈ 𝐽. If 

𝐶 = {2} and facility 𝑗 has a total of 110 arriving units of demand each day, then the one day 

constraint, ∑ ℎ̃𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 ≤ 𝑘𝑗 + 𝜃, is satisfied (since 110 ≤ 100 + 10). However, the arriving 

demand over any two days totals 220 units, which causes a violation of ∑ ∑ ℎ̃𝑐−1
𝑠=0 𝑖,𝑑+𝑠−𝑡𝑖𝑗

𝑌𝑖𝑗𝑖∈𝐼 ≤

 𝑐𝑘𝑗 + 𝜃 with 𝑐 = 2 (since 220 > 200 + 10).  

 On the other hand, if for some scenario,  ∑ ∑ ℎ̃𝑐−1
𝑠=0 𝑖,𝑑+𝑠−𝑡𝑖𝑗

𝑌𝑖𝑗𝑖∈𝐼 > 𝑐𝑘𝑗 + 𝜃 for some 

number of coupled days, 𝑐 ∈ 𝐶, at some facility 𝑗 ∈ 𝐽 on some day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| − 𝑐 + 1}, 

then there exists at least one facility 𝑗 and one day 𝑑 such that 𝑉𝑗𝑑
𝜔 > 𝜃 for the corresponding 𝜔 

in (5.1).  As a result, the joint chance constraint (5.1) also dominates the joint chance constraint 

(5.74).   

We can reformulate the joint chance constraint (5.74) by introducing the decision 

variable 𝑈𝜔
′
 which takes the value 0 if, for any 𝑐 ∈ 𝐶, the arriving demand at any facility 𝑗 ∈ 𝐽 
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exceeds its corresponding 𝑐𝑘𝑗 + 𝜃 on any day in scenario 𝜔′ ∈ Ω′.  Letting 𝑀3 represent a 

sufficiently large number, we can replace constraint (5.74) with: 

 𝑀3(1 − 𝑈
𝜔′) ≥ ∑ ∑ ℎ𝑖,𝑑+𝑠−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗
𝑐−1
𝑠=0𝑖∈𝐼 − 𝑐𝑘𝑗 − 𝜃  

  ∀ 𝜔′ ∈ Ω′;  𝑗 ∈ 𝐽;  𝑐 ∈ 𝐶;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| − 𝑐 + 1} (5.75)

 ∑ 𝑝𝜔
′
𝑈𝜔

′

𝜔′∈Ω′ ≥ 1 − 𝜏  (5.76) 

 𝑈𝜔
′
∈ {0,1} ∀𝜔′ ∈ Ω′ (5.77) 

This formulation, however, adds an excessive number of constraints. For example, using this 

method on a data set with a time horizon of |𝐷| − 𝑡∗ days, |𝐽| candidate facilities, and |Ω′| 

scenarios will add (|𝐷| − 𝑡∗ − 𝑐 + 1)|Ω′||𝐽| constraints of type (5.75) for each 𝑐 ∈ 𝐶. Thus, if 

𝐶 = {2}, a data instance with 50 candidate facilities and ten demand scenarios results in 182,000 

added constraints. If 𝐶 = {2,3}, this number increases to 363,500. However, we can reduce the 

number of constraints by shifting the coupling so that rather than checking if every 𝑐 days the 

arriving demand satisfies ∑ ∑ ℎ̃𝑐−1
𝑠=0 𝑖,𝑑+𝑠−𝑡𝑖𝑗

𝑌𝑖𝑗𝑖∈𝐼 ≤ 𝑐𝑘𝑗 + 𝜃 we instead check if non-overlapping 

couplings of 𝑐 days satisfy ∑ ∑ ℎ̃𝑐−1
𝑠=0 𝑖,𝑑+𝑠−𝑡𝑖𝑗

𝑌𝑖𝑗𝑖∈𝐼 ≤ 𝑐𝑘𝑗 + 𝜃. For example, if 𝐶 = {2}, instead 

of checking the amount of demand that arrives during days 1 and 2, 2 and 3, 3 and 4, 4 and 5, 5 

and 6, etc., we would only generate constraints to check the demand arriving on days 1 and 2, 3 

and 4, 5 and 6, etc. If 𝐶 = {2,3}, we would generate constraints to check the amount of demand 

arriving on days 1 and 2, 2 and 3, 3 and 4, etc., as well as on days 1-3, 4-6, 7-9, etc. Then, such 

non-overlapping couplings can be achieved by specifying a constraint of type (5.75) ∀𝑐 ∈ 𝐶 such 

that 𝑡∗ + 𝑐 ≤ |𝐷|;   𝑑 ∈ {𝑡∗ + 1, 𝑡∗ + 1 + 𝑐, 𝑡∗ + 1 + 2𝑐,… , ⌊
|𝐷|−𝑡∗−𝑐

𝑐
⌋ 𝑐 + 𝑡∗ + 1} instead of 

∀𝑐 ∈ 𝐶, 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| − 𝑐 + 1}. 
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5.4 Additional Chance Constraints 

 The chance constraints that we have considered thus far are joint chance constraints; they 

ensure that the probability that there will be more than 𝜃 item03s in backlog on any day at any 

facility is no greater than 𝜏. As such, the JCC approach does not distinguish between a scenario 

in which a single facility exceeds the desired backlog level 𝜃 by one unit on one day and a 

scenario in which multiple facilities have multiple days in which the backlog level greatly 

exceeds 𝜃. This can be addressed by using individual chance constraints rather than joint chance 

constraints. This ensures the probability that there will be more than 𝜃 items in backlog is less 

than or equal to 𝜏 at each facility on each day.  We can also formulate hybrid chance constraints 

that are less aggregate than the joint constraints but more integrated than the individual 

constraints; the hybrid chance constraints ensure that the probability that there will be more than 

𝜃 items in backlog on any day is less than or equal to 𝜏 at each facility.  

 The individual chance constraints are formulated as 

 ℙ(𝑉̃𝑗𝑑 ≤  𝜃 ) ≥ 1 − 𝜏   ∀𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.78) 

while the hybrid chance constraints are:  

 ℙ(𝑉̃𝑗𝑑 ≤  𝜃;   ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}) ≥ 1 − 𝜏        ∀𝑗 ∈ 𝐽. (5.79) 

These constraints can be linearized and approximated though a finite subset of scenarios by 

introducing   

𝑍̅𝑗𝑑
𝜔′ = { 

1
If the backlog at facility 𝑗 ∈ 𝐽 exceeds 𝜃 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} in
 scenario 𝜔′ ∈ 𝛺′                                                                                                  

0 otherwise                                                                                                                 
   

and  

𝑍̂𝑗
𝜔′ = { 

1 If the backlog at facility 𝑗 ∈ 𝐽 exceeds 𝜃 on any day in scenario 𝜔′ ∈ 𝛺′
0 otherwise                                                                                                                 
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We then replace the individual chance constraints (5.78) with  

 𝑉𝑗𝑑
𝜔′ −𝑀1𝑍̅𝑗𝑑

𝜔′ ≤ 𝜃 ∀𝜔′ ∈ Ω′;  𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.80) 

 ∑ 𝑝𝜔
′
𝑍̅𝑗𝑑
𝜔′

𝜔′∈Ω′ ≤ 𝜏 ∀𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.81) 

 𝑍̅𝑗𝑑
𝜔′ ∈ {0,1} ∀𝜔′ ∈ Ω′;  𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.82) 

and the hybrid chance constraints (5.79) with  

 𝑉𝑗𝑑
𝜔′ −𝑀1𝑍̂𝑗

𝜔′ ≤ 𝜃 ∀𝜔′ ∈ Ω′;  𝑗 ∈ 𝐽;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.83) 

 ∑ 𝑝𝜔
′
𝑍̂𝑗
𝜔′

𝜔′∈Ω′ ≤ 𝜏 ∀𝑗 ∈ 𝐽 (5.84) 

 𝑍̂𝑗
𝜔′ ∈ {0,1} ∀𝜔′ ∈ Ω′;  𝑗 ∈ 𝐽. (5.85) 

 We refer to the problem consisting of (2.2) - (2.4), (3.6), (5.15) - (5.19) and (5.80) - 

(5.82) as the Mixed Integer Linear Programming Reformulation of the individual chance 

constrained Program [MIP-ICC] and refer to (2.2) - (2.4), (3.6), (5.15) - (5.19) and (5.83) - (5.85) 

as the Mixed Integer Linear Programming Reformulation of the hybrid chance constrained 

Program [MIP-HCC]. 

Table 25: Comparison of the types of chance constraints 

 

Joint Chance Constraints 

P(more than 𝜃 items in backlog on any day at any facility)≤ 𝜏 

ℙ(𝑉̃𝑗𝑑 ≤  𝜃;   ∀𝑗 ∈ 𝐽,  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}) ≥ 1 − 𝜏 

 

Hybrid Chance Constraints 

P(more than 𝜃 items in backlog on any day)≤ 𝜏 at each facility  

ℙ(𝑉̃𝑗𝑑 ≤  𝜃;   ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}) ≥ 1 − 𝜏                 ∀𝑗 ∈ 𝐽 

 

Individual Chance Constraints 

P(more than 𝜃 items in backlog)≤ 𝜏 at each facility each day 

ℙ(𝑉̃𝑗𝑑 ≤  𝜃 ) ≥ 1 − 𝜏                      ∀𝑗 ∈ 𝐽,  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} 
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5.4.1 Two Stage Decomposition 

 Obtaining the two stage decomposition for the individual and hybrid chance constrained 

formulations requires only a few modifications to the two stage MIP-JCC approach. In 

particular, since the individual chance constraints assess the amount of backlog at each facility 

on each day, constraints (5.11) and (5.12) are replaced by (5.81) and (5.82) in M1S1, and 

constraints (5.29) are replaced by  

 𝑉𝑗𝑑
𝜔′ ≤ 𝜃 +𝑀1𝑍̅𝑗𝑑

𝜔′ ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.86) 

in M1S2(𝜔′, 𝑗) to obtain the two stage MIP-ICC decomposition. Similarly, constraints (5.84), 

(5.85), and 

 𝑉𝑗𝑑
𝜔′ ≤ 𝜃 +𝑀1𝑍̂𝑗

𝜔′ ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.87) 

take the place of constraints (5.11), (5.12), and (5.29) to obtain the two stage MIP-HCC 

decomposition. The remaining steps of the decompositions are straightforward, as they follow 

the method described in Section 5.3.1. 

 

5.4.2 Three Stage Decomposition 

 In this section we discuss the amendments that must be made to the Three Stage 

Decomposition Approach when using it to solve the Individual or hybrid chance constrained 

formulations. 

 

Individual Chance Constraints 

 The three stage MIP-ICC decomposition approach is similar to that of the MIP-JCC. In 

fact, the first and second stage problems are identical to M2S1 and M2S2. However, the 
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reformulated first stage problem for the individual chance constrained formulation, which 

incorporates the feasibility and optimality cuts, is slightly different from R-M2S1. As such, we 

define Ψ̂𝑗 as the set of infeasibility cuts generated for facility 𝑗 ∈ 𝐽 and 𝐼𝑗̅
𝜓
≔ {𝑖 ∈ 𝐼: 𝑌𝑖𝑗

𝜓
= 1} as 

the set of demand sites allocated to processing facility 𝑗 ∈ 𝐽  in infeasible solution 𝜓 ∈ Ψ̂𝑗. We 

refer to the reformulated M2S1 problem for MIP-ICC as MIP-ICC_R-M2S1: 

[MIP-ICC_R-M2S1]: 

𝑀𝑖𝑛 𝑿,𝒀,𝕍̂ (|𝐷| − 𝑡
∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ 𝔼𝜉′[ℎ̃𝑖𝑑]

|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼 ∑ 𝑡𝑖𝑗𝑌𝑖𝑗𝑗∈𝐽 + 𝑏𝕍̂ (5.88) 

Subject to 

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2) 

 𝑌𝑖𝑗 − 𝑋𝑗 ≤ 0 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 ∑ 𝑋𝑗𝑗∈𝐽 ≥ 1  (5.22) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 Initialization cuts 

 ∑ 𝑌𝑖𝑗 ≤ |𝐼𝑗̅
𝜓
| − 1

𝑖∈𝐼̅
𝑗
𝜓  ∀𝑗 ∈ 𝐽, 𝜓 ∈ Ψ̂𝑗 (5.89) 

 ∑ 𝑝𝜔
′
∗ (∑ ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗𝛾𝑗𝑑
𝜔′𝜙

𝑖∈𝐼
|𝐷|
𝑑=𝑡∗+1𝑗∈𝐽 + ∑ ∑ 𝑘𝑗𝑋𝑗𝜋𝑗𝑑

𝜔′𝜙|𝐷|
𝑑=𝑡∗+1𝑗∈𝐽𝜔′∈Ω′    

  +∑ 𝑣𝑗𝑋𝑗𝜂𝑗
𝜔′𝜙

𝑗∈𝐽 ) ≤ 𝕍̂ ∀𝜙 ∈ Φ̂ (5.66)  

 The feasibility cuts (5.89) ensure a future optimal solution allocates demand sites to each 

facility 𝑗 ∈ 𝐽 in a manner that is different from any previous allocations that have violated the 

corresponding individual chance constraint.  We present a proof that constraints (5.89) are valid 

feasibility cuts in Appendix C. As before, constraints (5.66) are optimality cuts.  
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 Additionally, the third stage problem of the Individual Chanced Constrained formulation 

is specified for each facility, 𝑗, and each day, 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}. Using the binary variable 

ℚ̅, which takes the value one if the location, allocation, processing, and backlog variables do not 

satisfy (5.80) - (5.82), it checks the feasibility of the first and second stage solution against the 

individual chance constraint: 

 

[MIP-ICC_M2S3(𝑗, 𝑑)]: 

 𝑍̅̂(𝑽) = 𝑀𝑖𝑛 𝒁̅𝑗𝑑
 
,ℚ̅  𝑀̅2ℚ̅ (5.90) 

Subject to   

 𝑀1 𝑍̅𝑗𝑑
𝜔′ ≥ 𝑉𝑗𝑑

𝜔′ − 𝜃 ∀𝜔′ ∈ Ω′ (5.91) 

 ∑ 𝑝𝜔
′
𝑍̅𝑗𝑑
𝜔′

𝜔′∈Ω′ − ℚ̅ ≤ 𝜏  (5.92) 

 ℚ̅ ≥ 0  (5.93) 

 𝑍̅𝑗𝑑
𝜔′ ∈ {0,1}  ∀𝜔′ ∈ Ω′ (5.94) 

 Similarly to the joint chance constrained algorithm, 𝑀̅2 is a sufficiently large integer such 

that M2S1 will not choose an allocation that results in ∑ 𝑝𝜔
′
𝑍̅𝑗𝑑
𝜔′

𝜔′∈Ω′ > 𝜏 for any 𝑗 ∈ 𝐽 , 

𝑑 ∈ {𝑡∗ + 1,… . , |𝐷| + 1}. This feasibility check is described in Algorithm 5, and is used in 

Algorithm 6, which details the three-stage cutting plane algorithm for the individual chance 

constrained model. 

 

Algorithm 5: Feasibility check for the MIP-ICC model 

For each 𝑗 ∈ 𝐽, and 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}, given a feasible solution (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) to the 

𝑛𝑡ℎ iteration of MIP-ICC_R-M2S1 and M2S2(𝜔′, 𝑗), 
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a. Initialize 𝑍̅𝑗𝑑
𝜔′𝑛 = 0, ∀𝜔′ ∈ Ω′ 

b. For each 𝜔′ ∈ Ω′ check whether 𝑉𝑗𝑑
𝜔′𝑛 ≤ 𝜃. 

 If the inequality does not hold, set the corresponding 𝑍̅𝑗𝑑
𝜔′𝑛 = 1 

c. Check whether ∑ 𝑝𝜔
′
𝑍̅𝑗𝑑
𝜔′𝑛

𝜔′∈Ω′ ≤ 𝜏. 

 If the inequality does not hold, then (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛, 𝒁𝑛) is an infeasible solution to 

MIP-ICC and the allocation to 𝑗 ∈ 𝐽 contributes to the infeasibility. Cut off the 

current allocation to 𝑗 from the solution space by adding the constraint 

  ∑ 𝑌𝑖𝑗 ≤ |𝐼𝑗̅
𝑛| − 1𝑖∈𝐼𝑗̅

𝑛   (5.95) 

 to constraint set Ψ̂𝑗  . Here 𝐼𝑗̅
𝑛 ≔ {𝑖 ∈ 𝐼: 𝑌𝑖𝑗

𝑛 = 1} represents the set of demand sites that 

allocate demand to processing facility 𝑗 ∈ 𝐽 as obtained from the solution of MIP-

ICC_R-M2S1. 

 

Algorithm 6: Three-stage cutting plane algorithm for the MIP-ICC model 

Step 0: Initialize 𝑛 = 1, Ψ̂𝑗 = ∅ ∀𝑗 ∈ 𝐽, Φ̂  = ∅, 𝑈𝐵 = ∞, and 𝐿𝐵 = −∞. Add an appropriate 

initialization cut (e.g., 𝕍̂ ≥ 0) to MIP-ICC_R-M2S1. 

Step 1: Solve MIP-ICC_R-M2S1 and let (𝑿𝑛, 𝒀𝑛, 𝕍̂𝑛) denote an optimal solution. Set the LB 

equal to the current value of (5.88). 

Step 2: For each 𝜔′ ∈ Ω′ and 𝑗 ∈ 𝐽, use Algorithm 2 with (𝑿𝑛, 𝒀𝑛) as input to solve M2S2(𝜔′, 𝑗). 

Denote the aggregated optimal solution to M2S2(𝜔′, 𝑗) by (𝑽𝑛,𝑾𝑛). 

Step 3: [Feasibility Check] Using (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) as input, perform Algorithm 5 to determine 

if (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) is a feasible solution to MIP-ICC. 
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If ∑ 𝑝𝜔
′
𝑍̅𝑗𝑑
𝜔′𝑛

𝜔′∈Ω′ > 𝜏 for any 𝑗 ∈ 𝐽, 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}, then (𝑿𝑛, 𝒀𝑛 , 𝑽𝑛,𝑾𝑛) is 

an infeasible solution to MIP-ICC, set 𝑛 = 𝑛 + 1 and return to Step 1. Otherwise, 

(𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛, 𝒁𝑛) is a feasible solution to MIP-ICC. As such, it produces an upper bound on 

(5.2). Set 

 𝑈𝐵 = min (𝑈𝐵, (|𝐷| − 𝑡∗)∑ 𝑓𝑗𝑋𝑗
𝑛

𝑗∈𝐽 + 𝑎∑ ∑ 𝔼𝜉′[ℎ̃𝑖𝑑]
|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼 ∑ 𝑡𝑖𝑗𝑌𝑖𝑗

𝑛
𝑗∈𝐽   

 + 𝑏 ∑ 𝑝𝜔′(∑ ∑ 𝑉𝑗𝑑
𝜔′𝑛

𝑗∈𝐽
|𝐷|+1
𝑑=𝑡∗+1 )𝜔′∈Ω′ ) 

Step 4: [Optimality Check] For each 𝜔′ ∈ Ω′ and 𝑗 ∈ 𝐽, solve D-M2S2(𝜔′, 𝑗) with (𝑿, 𝒀) =

(𝑿𝑛, 𝒀𝑛). Denote the aggregated optimal solutions by (𝜸𝜔
′𝜙, 𝝅𝜔

′𝜙, 𝜼𝜔
′𝜙, 𝝁𝜔

′𝜙).  

c) If 

 (𝕍̂𝑛 < ∑ 𝑝𝜔′ (∑ ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗
𝜔′ 𝑌𝑖𝑗

𝑛𝛾𝑑
𝜔′𝑗𝜙 

𝑖∈𝐼
|𝐷|
𝑑=𝑡∗+1𝑗∈𝐽 +∑ ∑ 𝑘𝑗𝑋𝑗

𝑛𝜋𝑑
𝜔′𝑗𝜙|𝐷|

𝑑=𝑡∗+1𝑗∈𝐽𝜔′∈Ω′  

 +∑ 𝑣𝑗𝑋𝑗
𝑛𝜂 

𝜔′𝑗𝜙
𝑗∈𝐽 )  (5.72) 

add (𝜸𝜔
′𝜙, 𝝅𝜔

′𝜙, 𝜼𝜔
′𝜙, 𝝁𝜔

′𝜙) to  Φ̂. Let 𝑛 = 𝑛 + 1 and return to Step 1. 

d) If the inequality (5.72) does not hold, then (𝑿𝑛, 𝒀𝑛,𝑾𝒏, 𝑽𝒏, 𝒁𝑛) is the optimal solution to 

MIP-ICC. The algorithm terminates. 

 

Hybrid Chance Constraints 

 As with the MIP-ICC, the first and second stage MIP-HCC problems are identical to 

M2S1 and M2S2 from the MIP-JCC. Furthermore, the structure of the feasibility and optimality 

cuts used in the reformulated M2S1 problem for MIP-HCC is identical to those of the MIP-ICC 

(the difference between the two models is in which particular cuts are generated). However, 

rather than using a single third stage problem (as in the joint chance constrained formulation) or 

a third stage problem for every processing facility and every day (as in the individual chance 
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constrained formulation), the third stage problem of the MIP-HCC formulation is specified only 

for each processing facility: 

[MIP-HCC_M2S3(𝑗)]: 

𝑍̂̂(𝑽) =  𝑀𝑖𝑛𝒁̂𝑗
 
,ℚ̂  𝑀̂2ℚ̂ (5.96) 

Subject to   

 𝑀1𝑍̂𝑗
𝜔′ ≥ 𝑉𝑗𝑑

𝜔′ − 𝜃 ∀𝜔′ ∈ Ω′;  𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1} (5.97) 

 ∑ 𝑝𝜔
′
𝑍̂𝑗
𝜔′

𝜔′∈Ω′ − ℚ̂ ≤ 𝜏  (5.98) 

 ℚ̂ ≥ 0  (5.99) 

 𝑍̂𝑗
𝜔′ ∈ {0,1}  ∀𝜔′ ∈ Ω′ (5.100) 

 As before, 𝑀̂2 is a sufficiently large integer such that M2S1 will not choose an allocation 

that results in ∑ 𝑝𝜔
′
𝑍̂𝑗
𝜔′

𝜔′∈Ω′ > 𝜏 for any 𝑗 ∈ 𝐽, and ℚ̂ is a binary variable that takes the value 

one in the event that a particular backlog solution 𝑽 does result in ∑ 𝑝𝜔
′
𝑍̂𝑗
𝜔′

𝜔′∈Ω′ > 𝜏. Thus, the 

MIP-HCC can be solved using a three stage decomposition approach that is identical to 

Algorithm 6 with a few minor changes due to references to MIP-ICC and the details of the 

Feasibility Check. Algorithm 7 provides the details for the feasibility chick while Algorithm 8 

provides the details for the MIP-HCC three stage decomposition. 

 

Algorithm 7: Feasibility check for the MIP-HCC model 

For each 𝑗 ∈ 𝐽 given a feasible solution (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) to the 𝑛𝑡ℎ iteration of MIP-ICC_R-

M2S1 and M2S2(𝜔′, 𝑗), 

a. Initialize 𝑍̂𝑗
𝜔′𝑛 = 0, ∀𝜔′ ∈ 𝛺′ 

b. For each 𝜔′ ∈ Ω′ check whether 𝑉𝑗𝑑
𝜔′𝑛 ≤ 𝜃, ∀𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}. 
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 If the inequality does not hold, set the corresponding 𝑍̂𝑗
𝜔′𝑛 = 1 

c. Check whether ∑ 𝑝𝜔
′
𝑍̂𝑗
𝜔′𝑛

𝜔′∈Ω′ ≤ 𝜏. 

 If the inequality does not hold, then (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛, 𝒁𝑛) is an infeasible solution to 

MIP-HCC and the allocation to 𝑗 ∈ 𝐽 contributes to the infeasibility. Cut off the 

current allocation to 𝑗 from the solution space by adding the constraint 

  ∑ 𝑌𝑖𝑗 ≤ |𝐼𝑗̅
𝑛| − 1𝑖∈𝐼𝑗̅

𝑛   (5.95) 

 to constraint set Ψ̂𝑗  . Here 𝐼𝑗̅
𝑛 ≔ {𝑖 ∈ 𝐼: 𝑌𝑖𝑗

𝑛 = 1} represents the set of demand sites that 

allocate demand to processing facility 𝑗 ∈ 𝐽 as obtained from the solution of MIP-

ICC_R-M2S1. 

 

 

Algorithm 8: Three-stage cutting plane algorithm for the MIP-HCC model 

Step 0: Initialize 𝑛 = 1, Ψ̂𝑗 = ∅ ∀𝑗 ∈ 𝐽, Φ̂  = ∅, 𝑈𝐵 = ∞, and 𝐿𝐵 = −∞. Add an appropriate 

initialization cut (e.g., 𝕍̂ ≥ 0) to MIP-ICC_R-M2S1. 

Step 1: Solve MIP-ICC_R-M2S1and let (𝑿𝑛, 𝒀𝑛, 𝕍̂𝑛) denote an optimal solution. Set the LB 

equal to the current value of (5.88). 

Step 2: For each 𝜔′ ∈ Ω′ and 𝑗 ∈ 𝐽, use Algorithm 2 with (𝑿𝑛, 𝒀𝑛) as input to solve M2S2(𝜔, 𝑗). 

Denote the aggregated optimal solution to M2S2(𝜔′, 𝑗) by (𝑽𝑛,𝑾𝑛). 

Step 3: [Feasibility Check] Using (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) as input, perform Algorithm 7 to determine 

if (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) is a feasible solution to MIP-HCC. 
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If ∑ 𝑝𝜔
′
𝑍̂𝑗
𝜔′𝑛

𝜔′∈Ω′ > 𝜏 for any ∈ 𝐽 (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛) is an infeasible solution to MIP-

HCC, set 𝑛 = 𝑛 + 1 and return to Step 1. Otherwise, (𝑿𝑛, 𝒀𝑛, 𝑽𝑛,𝑾𝑛, 𝒁𝑛) is a feasible solution 

to MIP-HCC. As such, it produces an upper bound on (5.2).  Set 

 𝑈𝐵 = min (𝑈𝐵, (|𝐷| − 𝑡∗)∑ 𝑓𝑗𝑋𝑗
𝑛

𝑗∈𝐽 + 𝑎∑ ∑ 𝔼𝜉′[ℎ̃𝑖𝑑]
|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼 ∑ 𝑡𝑖𝑗𝑌𝑖𝑗

𝑛
𝑗∈𝐽   

 + 𝑏 ∑ 𝑝𝜔
′
(∑ ∑ 𝑉𝑗𝑑

𝜔′𝑛
𝑗∈𝐽

|𝐷|+1
𝑑=𝑡∗+1 )𝜔′∈Ω′ ) 

Step 4: [Optimality Check] For each 𝜔′ ∈ Ω′ and 𝑗 ∈ 𝐽, solve D-M2S2(𝜔′, 𝑗) with (𝑿, 𝒀) =

(𝑿𝑛, 𝒀𝑛). Denote the aggregated optimal solutions by (𝜸𝜔
′𝜙, 𝝅𝜔

′𝜙, 𝜼𝜔
′𝜙, 𝝁𝜔

′𝜙).  

a) If 

 (𝕍̂𝑛 < ∑ 𝑝𝜔
′
(∑ ∑ ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

𝜔′ 𝑌𝑖𝑗
𝑛𝛾𝑑

𝜔′𝑗𝜙 
𝑖∈𝐼

|𝐷|
𝑑=𝑡∗+1𝑗∈𝐽 +∑ ∑ 𝑘𝑗𝑋𝑗

𝑛𝜋𝑑
𝜔′𝑗𝜙|𝐷|

𝑑=𝑡∗+1𝑗∈𝐽𝜔′∈Ω′  

 +∑ 𝑣𝑗𝑋𝑗
𝑛𝜂 

𝜔′𝑗𝜙
𝑗∈𝐽 )  (5.72) 

add (𝜸𝜔
′𝜙, 𝝅𝜔

′𝜙, 𝜼𝜔
′𝜙, 𝝁𝜔

′𝜙) to  Φ̂. Let 𝑛 = 𝑛 + 1 and return to Step 1. 

b) If the inequality (5.72) does not hold, then (𝑿𝑛, 𝒀𝑛,𝑾𝒏, 𝑽𝒏, 𝒁𝑛) is the optimal solution to 

MIP-HCC. The algorithm terminates. 

 

5.5 Computational Results  

 We present results relating to the optimal facility locations and computational efficiency 

of the solution algorithms in this chapter. While our focus is on results related to the joint chance 

constraints, we briefly describe the effect of imposing the individual or hybrid chance constraints 

rather than the joint chance constraints in Section 5.5.4. 

 The instances used in this chapter were generated in a manner similar to the one 

described in Section 3.4 with a few minor changes. Rather than using a weight of 𝑤 = $0.0001 

(as in 3.4), we use 𝑤 = $0.01 in the facility location cost calculations below. Additionally, a 

time horizon of 365 days is employed (rather than the 100 day time horizon previously used) and 
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the daily processing capacity of each candidate processing facility is one fifth of the total average 

daily demand, rounded up to the nearest integer. 

 Unless otherwise noted, the computational results presented in this chapter assume that 

the desired maximum backlog (i.e., 𝜃) is 5% of a processing facility’s processing capacity. Since 

discrete, daily demand is generated for a time horizon of 365 days for ten demand scenarios, 

these restrictions correspond to ensuring that over the course of a ten year time horizon, we allow 

the amount of backlog to exceed the maximum desired level in no more than one year. It is worth 

noting that due to the nature of the joint chance constraint (5.1), we do not distinguish between a 

scenario in which one processing facility exceeds the maximum backlog level by one unit on one 

day of the year and a scenario in which every processing facility exceeds the maximum backlog 

level on most days of the year; each of these scenarios generates one violation of the joint chance 

constraint. Furthermore, we assume the scenarios occur with equal probability. 

 

5.5.1 Determining the Appropriate Number of Scenarios 

Stochastic models that consist of an infinite or large number of scenarios are often 

computationally intractable and therefore are commonly approximated by only a subset of the 

possible scenarios. However, this process of reducing the number of scenarios considered 

(referred to as scenario reduction) requires tradeoffs.  On one hand, we would like the number of 

scenarios to be relatively modest so that the resulting model can be solved with reasonable 

computational effort. However, we also want to ensure that the resulting solution approximates 

the original problem with reasonable accuracy. In this section, we discuss our findings regarding 

the tradeoff between these two objectives for the joint chance constrained problem. That is, we 
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determine how many scenarios to consider so that the resulting MIP-JCC solution is both close 

to the true optimal JCC solution and solves within a reasonable amount of time. 

 To observe the effect of the scenario size on the objective function value, for each 

demand site 𝑖 ∈ 𝐼 and scenario size |Ω′| ∈ {10, 25, 50, 75, 100, 125, 150}, we created ℐ = 20 

independent and identically distributed (i.i.d.) instances of daily demand realizations from a 

Poisson distribution with mean 
1

10,000
𝜌𝑖 (see Section 3.4). That is, we solved 20 i.i.d. instances 

that each had ten scenarios, 20 i.i.d. instances that each had 25 scenarios, 20 i.i.d. instances that 

each had 50 scenarios, etc. Parameters 𝑎 = 5, 𝑏 = 10, 𝜃 = 91 and 𝜏 = 0.1 were used, and the 

problem instances contained 50 demand and candidate notes.  

For each value of the number of scenarios considered, Figure 22 plots the optimal 

objective function value for each instance (using a gray diamond) as well as two standard 

deviations from the mean objective function value for a particular sample number of scenarios 

(using a black line). We note that the vertical axis ranges from $101,235,000 to $101,285,000 

(rather than starting at zero). We also plot the percent difference between the upper and lower 

bounds on two standard deviations from the mean objective function value for each scenario size 

(Figure 23). Our results indicate that there is a 0.039% difference between the minimum and 

maximum objective function values (of the 20 instances considered) when only ten scenarios are 

used. This percentage decreases to 0.009% when 150 scenarios are used. Thus, there is relatively 

little variation in the optimal objective function value even when only ten scenarios are used. 

Furthermore, we note that the optimal first stage decisions (i.e., the location and allocation 

decisions) are the same in all of the instances depicted in Figures 22 and 23. The facilities 

located are in DuPage, IL; Fresno, CA; Palm Beach, FL; San Bernardino, CA; Travis, TX; and 

Westchester, NY. 
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Figure 22: Variability in optimal objective function value as number of scenarios changes; 20 

instances solved for each scenario size; Poisson distributed demand  

 
Figure 23: Percent difference between the lower and upper bounds on two standard deviations 

from the mean optimal objective function value; 20 instances solved for each scenario size; 

Poisson distributed demand 

 While the optimal location and allocation decisions are stable for all of the instances 

described in the previous paragraph, note that the demand at 𝑖 ∈ 𝐼 was generated from a Poisson 

distribution with a standard deviation equal to √
1

10,000
𝜌𝑖. To investigate whether the stability of 

the solution is an artifact of the low variability in demand, we also present results for demands 

that are generated from a Normal Distribution (truncated at zero) with a larger standard deviation 

of daily demand. While the mean of the Truncated Normal distribution for demand site 𝑖 ∈ 𝐼 is 
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1

10,000
𝜌𝑖 (the same as the mean for the demand generated from the Poisson distribution), we set 

the standard deviation of the Truncated Normal Distribution to twice that of the corresponding 

Poisson distribution, (i.e.,  2√
1

10,000
𝜌𝑖 in the Truncated Normal distribution). 

 As the results in Figures 24 and 25 show, the variation in the optimal objective function 

remains around 1.5% as the number of scenarios varies from 10 to 100 in the instances with the 

Truncated Normal demand distribution. Most optimal solutions locate processing facilities in 

DuPage, IL; Fresno CA; Orange, FL; San Bernardino, CA; Travis, TX; and Westchester NY. 

However, a small number of instances locate a facility in Milwaukee, WI instead of Du Page, IL 

or in Contra Costa, CA instead of Fresno, CA (regardless of the number of scenarios considered). 

Additionally, one instance of the 75 scenarios case locates seven facilities (Pima, AZ in addition 

to the six common facilities above).  

  

 

 
Figure 24: Variability in optimal objective function values as number of scenarios changes; 20 

instances solved for each scenario size; Truncated Normal demand distribution 
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Figure 25: Percent difference between the lower bound and upper bounds on two standard 

deviations from the mean optimal objective function value; 20 instances solved for each scenario 

size; Truncated Normal demand distribution 

 As expected, a comparison of the stability in the optimal location and allocation decisions 

for the Poisson distributed demand instances and lack thereof for the instances with Truncated 

Normal demand distribution suggests that the number of scenarios necessary for a stable solution 

depends on the variability of the demand distribution. As the demand variability increases, more 

scenarios are needed to have high confidence that the location and allocation decisions obtained 

from the stochastic IMCLP solved using a subset of all possible demand scenarios, Ω′ ⊆ Ω, is an 

optimal solution to the stochastic IMCLP with Ω. 

 

Objective Function Lower Bound 

While this analysis of the number of scenarios provides insight into the range of solutions 

obtained using a subset of |Ω′| scenarios in MIP-JCC, it is also important to assess the likelihood 

that such a solution generates a lower bound on the true JCC objective function value, as well as 

the likelihood that the approximated solution is a feasible solution to the JCC. For the 

discussions that follow, let 𝜏 refer to the acceptable exceedance probability in JCC and 𝜏′ the 
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According to Luedtke and Ahmed (2007), if an optimal solution to JCC with 𝜏 exists and 

the corresponding optimal objective function value is finite, then the probability that the optimal 

MIP-JCC objective function value obtained with a finite subset of |Ω′| demand scenarios and an 

acceptable exceedance probability of 𝜏′ is a lower bound on the optimal JCC objective function 

value with exceedance probability 𝜏 is at least:  

∑ (
|Ω′|
𝑖
) 𝜏𝑖(1 − 𝜏)|Ω

′| −𝑖

⌊𝜏′|Ω′| ⌋

𝑖=0

 

Thus, a lower bound on the probability that the optimal MIP-JCC objective function value 

obtained with 𝜏′ = 0.1 is a lower bound on the true JCC objective function value when 𝜏 ∈

{0.01,0.05,0.10} for a range of |Ω′| is given in Table 26. Furthermore, Luedtke and Ahmed 

(2007) prove that for 𝜏′ > 𝜏, the sample approximation yields a lower bound with probability 

approaching one exponentially fast as |Ω′| increases.  

Table 26: Lower bound on the probability that the optimal MIP-JCC objective function value 

obtained from a subset of |Ω′| demand scenarios with 𝜏′ = 0.1 is a lower bound on the optimal 

JCC objective function value with 𝜏 
Number of 

Scenarios |Ω′| 
Probability 

𝜏 = 0.01 𝜏 = 0.05 𝜏 = 0.10 

10 0.995733799757 0.913861644101 0.736098929100 

25 0.998049323110 0.872893504339 0.537094050051 

50 0.999989103168 0.962223827010 0.616123007724 

75 0.999999070316 0.966371998940 0.520808618577 

100 0.999999993744 0.988527589933 0.583155512266 

125 0.999999999460 0.989993866568 0.516016265788 

150 0.999999999996 0.996396855972 0.568184357974 

 

However, using the order statistics from ℐ replications of |Ω′| independent scenarios of 

𝜉(𝜔), 𝜔 ∈ Ω, provides a significantly more powerful lower bound on the optimal JCC objective 

function value. Let 𝜉′(𝜔′, 𝒾) denote the vector of demand realizations for scenario 𝜔′ ∈ Ω′ in 

replication 𝒾 ∈ {1,2, … . , ℐ}. For a given 𝜏′ and for each 𝒾, solve the associated sample 

approximation problem MIP-JCC with 𝜉′(𝜔′, 𝒾) ∀𝜔′ ∈ Ω′; denote the optimal objective function 
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value by 𝑉̈𝜏
′𝜔′𝒾. Then, rearrange the values {𝑉̈𝜏

′𝜔′𝒾}
𝒾=1

ℐ
to obtain the order statistics 𝑉̈𝜏

′𝜔′[𝒾] for 

𝒾 = 1,… , ℐ satisfying 𝑉̈𝜏
′𝜔′[1] ≤ ⋯ ≤ 𝑉̈𝜏

′𝜔′[ℐ]. Luedtke and Ahmed (2007) prove 𝑉̈𝜏
′𝜔′[1] is a 

lower bound for the optimal JCC objective function value with at least 1 − 𝛿 confidence if 

(1 − ∑ (|Ω′| 
𝑖
) 𝜏𝑖(1 − 𝜏)|Ω

′| −𝑖⌊𝜏′|Ω′| ⌋

𝑖=0 )
ℐ

≤ 𝛿. Thus, the minimum objective function value taken 

over the ℐ = 20 replications for each scenario size presented in Figures 22 and 24 is a lower 

bound on the corresponding optimal JCC objective function value with at least 1 −

(1 − ∑ (
|Ω′|
𝑖
) 𝜏𝑖(1 − 𝜏)|Ω

′|−𝑖⌊𝜏′|Ω′|⌋

𝑖=0 )
ℐ

 confidence. As is evident from Table 27 (which displays 

the value of 𝛿 = (1 − ∑ (
|Ω′|
𝑖
) 𝜏𝑖(1 − 𝜏)|Ω

′|−𝑖⌊𝜏′|Ω′|⌋

𝑖=0 )
ℐ

 rather than 1 − 𝛿), the confidence is 

close to one even for the |Ω′| = 10 scenario case.    

Table 27: The minimum MIP-JCC objective function value obtained from  ℐ = 20 repetitions of 

a subset of |Ω′| demand scenarios is a lower bound on the optimal objective function value of 

JCC (with associated acceptable exceedance probability of 𝜏) with confidence 1 − 𝛿 

Number of 

Scenarios |Ω′| 
𝛿 = (1 − ∑ (

|Ω′| 
𝑖
) 𝜏𝑖(1 − 𝜏)|Ω

′| −𝑖

⌊𝜏′|Ω′| ⌋

𝑖=0

)

ℐ

 

𝜏 = 0.01 𝜏 = 0.05 𝜏 = 0.10 

10 3.98864E-48 5.05745E-22 2.68425E-12 

25 6.36366E-55 1.21159E-18 2.04106E-07 

50 5.5719E-100 3.50235E-29 4.82883E-09 

75 2.3265E-121 3.41996E-30 4.07549E-07 

100 8.4192E-165 1.55989E-39 2.50889E-08 

125 4.4727E-186 1.01234E-40 4.97296E-07 

150 5.7608E-229 1.36029E-49 5.08121E-08 

 

Feasibility Assessment 

In addition to assessing whether the optimal MIP-JCC objective function value of a 

subset of |Ω′| demand scenarios is a lower bound on the true JCC objective function value, we 

also must consider whether a solution to the approximated problem is a feasible solution to JCC. 
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However, since theoretical estimates on the number of scenarios necessary to have high 

confidence that the sample approximation is a feasible solution to the true optimization problem 

are very large, the approximation problems quickly become impractical to solve. Thus, we use 

the optimal location and allocation decisions associated with the minimum MIP-JCC objective 

function value obtained from ℐ = 20 repetitions of |Ω′| scenarios to conduct an a posteriori 

check that counts the number of scenarios in which the chance constraints are satisfied for a 

problem with a much larger number of i.i.d. scenarios (Luedtke and Ahmed, 2007).  If the 

optimal location and allocation solutions from the smaller scenario size problem satisfy the joint 

chance constraints in the larger sample size problem, we can have high confidence that the 

location and allocation decisions are feasible to JCC as well. 

Recall that all of the Poisson distributed demand instances considered in Figure 22 have 

the same optimal location and allocation decisions, regardless of the scenario size.  As a result, 

we find that when the optimal location and allocation decisions obtained from the data instances 

with Poisson distributed demand presented in Figure 22 are imposed on a data instance of 1,000 

scenarios, the joint chance constraints are violated in only 18 scenarios. Since 0.018 < 𝜏 ∈

{0.05,0.1} (the values of 𝜏 used in Table 27) we can have high confidence that the location and 

allocation decisions are feasible to JCC with 𝜏 ∈ {0.05,0.1}. However, since the optimal location 

and allocation decisions vary for the Truncated Normal distributed demand instances represented 

in Figure 24, we assess the optimal location and allocation decisions associated with the 

minimum objective function value obtained over ℐ = 20 repetitions for each value of |Ω′| ∈

{10, 25, 50, 75, 100}.  We find that none of these solutions satisfy the chance constraints when 

imposed on a 1,000 scenario instance. This indicates a MIP-JCC sample size significantly larger 

than 100 scenarios is needed to simultaneously obtain a lower bound on the optimal JCC 
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objective function value and have high confidence in obtaining a feasible solution to JCC when 

demand follows a Truncated Normal distribution with mean 
1

10,000
𝜌𝑖 and standard deviation 

2√
1

10,000
𝜌𝑖.  

The remainder of the computational results presented in this chapter focuses on the 

Poisson distributed demand instances. Furthermore, since we found that the optimal location and 

allocation decisions are stable for all scenario sizes presented in Figure 22, we incorporate 

|Ω′| = 10 scenarios to save on computation time.   

 

5.5.2 Comparison of Solution Times 

In this section, we discuss the computational efficacy of the two-stage and three-stage 

MIP-JCC solution algorithms and compare their performance to directly solving the problems 

via CPLEX. For the remainder of the results presented in this chapter, the per item per day 

transportation and backlog cost parameters 𝑎 and 𝑏 are set to 15 and 30, respectively, |Ω′| = 10 

scenarios are used, demand is generated from a Poisson distribution with mean 
1

10,000
𝜌𝑖 at 

demand site 𝑖 ∈ 𝐼, and the chance constraint parameters are 𝜃 = 91 and 𝜏′ = 0.1. 

 As shown in Figure 26, the two-stage algorithm based on Benders decomposition scheme 

outperforms all other solution methods as it attains the optimum with 450 demand and candidate 

nodes within one hour of run time. On the other hand, CPLEX performs quite poorly as it is only 

able to solve instances with at most 150 demand and candidate nodes before running out of 

memory.  
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Figure 26: Comparison of solution methods; 𝑎 = 15, 𝑏 = 30; 𝜃 = 91, 𝜏′ = 0.1  

 Additionally, the unstrengthened three-stage decomposition algorithm takes hours to 

solve even a 50 demand and candidate node instance. However, strengthening the three-stage 

model with the relaxed joint chance constraints proposed in Section 5.3.4 greatly improves the 

solution progress. Simply adding the MIP formulation of joint chance constraint (5.73) (i.e., 

Three-Stage Strengthened with 𝐶 = {1}) allows us to solve instances with 150 demand and 

candidate nodes within one hour.  Furthermore, we find the three-stage decomposition algorithm 

with 𝐶 = {2} and non-overlapping couplings tends to be the most computationally efficient 

method of implementing the three-stage algorithm, although it still performs much more poorly 

than the two-stage decomposition approach. In fact, for 150 demand and candidate nodes, the 

Three-Stage Strengthened with 𝐶 = {2} Non-Overlap takes approximately eight times as long as 

the Two-Stage Benders approach to solve a 150 demand and candidate note instance, whereas 

the Three-Stage Strengthened with 𝐶 = {1} and CPLEX approaches take 16 times as long. 

Additionally, the strengthening constraints do not significantly affect the solution time of the 

two-stage decomposition approach in the instances we tested. 
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5.5.3 Optimal Facility Locations 

Regardless of the number of candidate nodes, the optimal facility locations tend to be 

located near counties with the largest population since they generate the most demand. To get a 

sense for how important it is to locate near the most populous counties, consider that the county 

of Los Angeles, CA singlehandedly generates over 10% of the total average demand in the 50 

demand node instance. Increasing the number of demand sites to 500 still leaves Los Angeles 

with 4.3% of the total average demand. In fact, in the 500 demand node case, the five most 

populous counties only account for 1% of the demand sites but generate 11.38% of the total 

average demand. The five most populous counties are displayed in Figure 27 and the optimal 

facility locations when there are 50 or 500 demand and candidate nodes are mapped in Figures 

28 and 29, respectively. The county rank is noted in parenthesis next to the node name. For 

example, (1) Los Angeles, CA signifies that the demand node located in Los Angeles, CA 

generates more demand than any other demand node.  

 
Figure 27: Five most populous counties 

(1) Los Angeles, CA 

(5) San Diego, CA 

(3) Harris, TX 

(4) Maricopa, AZ 

(2) Cook, IL 
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Figure 28: Optimal facility locations for the instance with 50 demand & candidate nodes; 

𝑎 = 15, 𝑏 = 30; 𝜃 = 91, 𝜏′ = 0.1 

 
Figure 29: Optimal facility locations for the instance with 500 demand & candidate nodes; 

𝑎 = 15, 𝑏 = 30; 𝜃 = 91, 𝜏′ = 0.1 

 Recall that the data sets are generated in such a way that as the number of demand and 

candidate nodes increases, the newly added candidate nodes have lower fixed facility location 

costs. Thus, as the size of the candidate node set increases, less costly facility location options 

(37) Contra Costa, CA 

(12) San Bernardino, CA 

(41) Pima, AZ 

(39) Travis, TX 

(28) Palm Beach, FL 

(43) Westchester, NY 

(29) Cuyahoga, OH 

(50) DuPage, IL 

(256) Thurston, WA 

(450) Napa, CA 

(62) Ventura, CA 

(291) Yavapai, AZ 

(223) Douglas, CO 

(473) Scott, MN 

(318) Racine,WI 

(481) Wood, OH 
(405) Tolland, CT 

(358) Monroe, PA 

(434) Alexandria, VA 

(303) Union, NC 

(429) Paulding, GA 

(240) Osceola, FL 

(436) Jackson, MS 
(320) Brazos, TX 

(496) Grayson, TX 

(374) Boone, MO 
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become available near the most populous counties. Establishing a processing facility in a less 

populous county near a county with a large population therefore results in options with lower 

fixed facility location costs and minimal additional transportation costs.  For data instances with 

300 or more demand nodes, allowing all of the demand sites to serve as candidate facilities 

results in about a 13% cost reduction in total costs when compared to limiting the candidate 

facility set to the 50 most populous counties. Table 28 displays the percent increase in cost 

caused by reducing the number of candidate facilities while Table 29 illustrates that the solution 

time typically decreases dramatically as fewer candidate facilities are considered. (The two-stage 

decomposition algorithm was used to solve the instances.) Furthermore, as the number of 

demand nodes increases, reducing the number of candidate nodes to half of the demand nodes 

typically provides increasing benefit with regard to solution time as well as decreasing harm to 

the total cost. For example, using 150 candidate nodes in the 300 demand node instance provides 

a 51.71% reduction in solution time and 4.90% increase in total cost when compared to allowing 

all 300 nodes be candidate nodes. However, when 250 candidate nodes are used to determine the 

solution to the 500 demand node instance, we see an 86.74% reduction in computational time 

and only a 1.8% increase in total cost. Furthermore, the shaded values in Tables 28 and 29 

correspond to instances in which only half of the demand sites are candidate facilities. 

Comparing these tradeoffs in a graphical manner, as we do in Figure 30 for the 500 demand node 

case, can help the user determine whether to reduce the number of candidate facilities. 
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Table 28: Percent total cost increases from the case in which all demand sites are candidate 

processing facilities; 𝑎 = 15, 𝑏 = 30; 𝜃 = 91, 𝜏′ = 0.1 
 Number Demand Sites 

Number 

Candidate 

Facilities 

50 100 150 200 250 300 350 400 450 500 

50 0% 3.25% 8.42% 9.81% 11.86% 12.86% 13.02% 13.47% 13.87% 14.36% 

100 - 0% 3.54% 5.50% 7.32% 8.58% 9.00% 9.28% 9.79% 10.18% 

150 - - 0% 1.69% 3.67% 4.90% 5.47% 5.62% 6.20% 6.46% 

200 - - - 0% 1.63% 2.77% 3.13% 3.41% 4.03% 4.36% 

250 - - - - 0% 1.22% 1.86% 2.23% 2.86% 1.80% 

300 - - - - - 0% 0.49% 0.95% 1.50% 1.80% 

350 - - - - - - 0% 0.41% 1.04% 1.30% 

400 - - - - - - - 0% 0.68% 1.08% 

450 - - - - - - - - 0% 0.34% 

500 - - - - - - - - - 0% 

Table 29: Percent decrease in solution time compared to the case in which all demand sites are 

candidate processing facilities; 𝑎 = 15, 𝑏 = 30; 𝜃 = 91, 𝜏′ = 0.1 
 Number Demand Sites 

Number 

Candidate 

Facilities 

50 100 150 200 250 300 350 400 450 500 

50 0% 29.92% 14.29% 54.20% 80.53% 83.27% 85.96% 89.20% 94.26% 97.91% 

100 - 0% 42.14% 14.50% 62.11% 67.68% 71.63% 78.79% 89.13% 95.94% 

150 - - 0% 43.51% 37.89% 51.71% 57.02% 67.80% 83.73% 94.07% 

200 - - - 0% 22.11% 30.42% 40.45% 56.06% 75.94% 91.59% 

250 - - - - 0% 12.55% 19.94% 38.64% 68.66% 86.74% 

300 - - - - - 0% 11.52% 30.30% 64.04% 86.65% 

350 - - - - - - 0% 18.37% 55.99% 71.56% 

400 - - - - - - - 0% 23.97% 68.79% 

450 - - - - - - - - 0% 58.24% 

500 - - - - - - - - - 0% 

 

  
Figure 30: Tradeoffs of reducing the candidate node set for the 500 demand node instance; the 

number of candidate nodes used is in parenthesis; 𝑎 = 15, 𝑏 = 30; 𝜃 = 91, 𝜏′ = 0.1 
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Additionally, since we incorporate less costly facility location options as the size of the 

candidate node set increases, the model also decides to locate more facilities as the number of 

candidate nodes increases. This further helps reduce transportation and backlogging costs by 

establishing facilities that are near more remote counties that would otherwise incur large 

transportation costs. However, since the processing capacity depends on the demand sites under 

consideration (i.e., for a given set of demand sites, each candidate facility has a capacity of 1/5 of 

the total average daily demand) and the processing capacities are the same for all candidate 

facilities, locating more facilities decreases the total processing utilization of the system, as 

shown in Table 30. For example, locating five facilities in the 50 demand and candidate node 

instance would result in a system-wide production capacity of 1,834∗5=9,170. Since an average 

of 9,166 demands are generated each day, the system would have a utilization of 

9,166/9,170=99.96%. However, the optimal solution is to locate eight facilities, which results in 

a system-wide capacity of 1,834∗8=14,672 and a utilization of 62.47% since the total average 

daily demand has not changed.  Similarly, locating five facilities in the 600 demand and 

candidate node instance would result in a system-wide capacity of 4,825∗5=24,125 

corresponding to a utilization of 99.99%. Yet, the optimal solution is to locate 20 facilities, 

which allows for a 96,500 processing capacity and a utilization of only 25%.  
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Table 30: More facilities are located as the number of demand and candidate nodes increase, 

which results in a decrease in capacity utilization; 𝑎 = 15, 𝑏 = 30 

# Demand and 

Candidate 

Nodes 

# Facilities 

Located 

𝜁 =Total 

Avg. Daily 

Demand 

Daily Capacity 

of each Located 

Facility 

𝜅 =Total Daily 

Capacity of Located 

Facilities 

Utilization: 
𝜁

𝜅
 

 

50 8 9,166 1,834 14,672 62.47% 

100 11 12,936 2,588 28,468 45.44% 

150 12 15,491 3,099 37,188 41.66% 

200 13 17,360 3,472 45,136 38.46% 

250 14 18,787 3,758 52,612 35.71% 

300 14 19,929 3,986 55,804 35.71% 

350 14 20,878 4,176 58,464 35.71% 

400 15 21,696 4,340 65,100 33.33% 

450 17 22,421 4,485 76,245 29.41% 

500 18 23,054 4,611 82,998 27.78% 

550 20 23,618 4,724 94,480 25.00% 

600 20 24,123 4,825 96,500 25.00% 

 

Figure 31 graphically displays the increase in the optimal number of facilities to establish 

as the size of the candidate node set increases as well as a power regression. The regression 

model suggests that the number of facilities located increases by approximately the 1/3 power 

(𝑅2 value of 0.94) as the number of demand and candidate nodes increase. Since each located 

facility can process 1/5 of the average amount of generated demand each day, in expectation, the 

system has sufficient capacity to process all of the demand when at least five facilities are 

located. Thus, we also plot the number of extra facilities that are located in the optimal solution 

(e.g., if eight facilities are located, we consider three of them extra since only five are needed to 

satisfy the demand) in Figure 32. In this case, a power regression suggests that the number of 

extra facilities located increases to the 0.58 power (𝑅2 value of 0.95) as the number of demand 

and candidate nodes increase. 

The results of the power regression models suggest that it may be possible to develop an 

analytic model to determine the optimal number of facilities to locate in the stochastic IMCLP. 

We direct the interested reader to Daskin (2010) for an example of an analytic model that 

determines the optimal number of facilities to locate under many simplifying assumptions (e.g., 
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demand occurs uniformly over a square region and all candidate facilities have the same location 

cost). While analytic models typically make many assumptions about the nature of the demand 

and candidate facility locations, they have the benefit of being very easy to solve. In fact, many 

can be solved using simple calculus techniques such as the ones that Daskin (2010) uses to show 

that the optimal number of facilities grows as the 2/3 power of the demand density and the unit 

transportation cost increases, but decreases with the 2/3 power of the location cost. We leave the 

development of analytic models for the stochastic IMCLP as an area of future research.  

  

 
  

 

 

 

5.5.4 Effect of Using Individual or Hybrid Chance Constraints 

The chance constrained results discussed thus far have focused on limiting the probability 

that any processing facility has a backlog level above the threshold on any day of the planning 

horizon; that is, they have focused on the joint chance constrained formulation. However, as we 

will see in this section, limiting the amount of items backlogged by utilizing individual or hybrid 

chance constraints affects the total cost as well as the frequency in which backlogged demand 
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Figure 32: The optimal solution has 

excess system-wide capacity due to 

locating extra facilities. 

𝑎 = 15, 𝑏 = 30, 𝜃 = 91, 𝜏′ = 0.1 

 

 

Figure 31: More facilities are located as 

the number of demand and candidate 

nodes increase.  

𝑎 = 15, 𝑏 = 30, 𝜃 = 91, 𝜏′ = 0.1 
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exceeds the desired threshold level. Rather than suggesting which type of chance constraint 

should be employed, we present illustrations of the effect of using each type of chance constraint 

and encourage modelers to incorporate the particular type of constraints that best represents their 

willingness to trade off decreased costs for increased backlog levels.  

Therefore, when comparing the different solutions the three types of chance constraints 

can provide, it is helpful to recall the differences in the way the chance constraints limit the 

amount of backlogged demand.  The joint chance constraints state that there can be a maximum 

of 𝜏′|Ω′| scenarios with a backlog level that exceeds 𝜃 on any day at any facility. (Note that this 

approach does not distinguish between a scenario in which a single facility exceeds the desired 

backlog level 𝜃 by one unit on one day and a scenario in which multiple facilities have multiple 

days in which the backlog level greatly exceeds 𝜃.) The hybrid chance constraints state that each 

facility can have a maximum of 𝜏′|Ω′| scenarios in which the backlog level at that facility 

exceeds 𝜃 on any day of the planning horizon, and the individual chance constraints state that for 

each facility-day combination, there can be a maximum of 𝜏′|Ω′| scenarios in which the backlog 

level exceeds 𝜃 at that particular facility on that particular day. 

We assess the effect of using the joint, hybrid, and individual constraints on the total cost 

for various exceedance tolerances (𝜏′). Results from an instance of Poisson distributed demand 

with 50 scenarios and an instance of Truncated Normal distributed demand with ten scenarios are 

shown in Figures 33 and 34, respectively. Both instances incorporate 50 demand and candidate 

node. (Note that these instances correspond to those used in Section 5.5.1). The maximum 

desired amount of backlog is set to 𝜃 = 91, which represents 5% of the daily processing capacity 

at each facility. For the Poisson distributed demand instances presented here, MIP-JCC and MIP-

HCC produce the same optimal solution regardless of the value of 𝜏′. However, the Truncated 
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Normal distributed demand instance does produce different optimal solutions to these problems 

for some values of 𝜏′.  

 

Figure 33: Comparison of the optimal cost of the MIP-JCC, MIP-HCC, and MIP-ICC chance 

constraints; Poisson distributed demand, 50 scenarios, 𝑎 = 5, 𝑏 = 10, 𝜃 = 91 

 

 

Figure 34: Comparison of the optimal cost of the MIP-JCC, MIP-HCC, and MIP-ICC chance 

constraints; Normally distributed demand, 10 scenarios, 𝑎 = 5, 𝑏 = 10, 𝜃 = 91 
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As expected, as the value of 𝜏′ increases, the chance constraints become more relaxed 

thereby reducing the optimal cost. When 𝜏 = 0, the chance constraints require that the amount of 

backlog never exceed 𝜃. On the other hand, 𝜏′ = 1 is equivalent to the stochastic formulation 

without the joint chance constraints (i.e., (2.2) - (2.4), (3.6), and (5.14) - (5.19)). We note that 

although the amount of backlog is not restricted by the chance constraints when 𝜏′ = 1, it is still 

limited by the penalty cost in the objective function.  

 Additionally, for a given value of 𝜏′, the optimal MIP-JCC solution is at least as costly as 

the MIP-HCC solution, which in turn is at least as costly as the MIP-ICC. However, it is 

important to remember that while the MIP-ICC may produce a lower cost solution than the MIP-

HCC or MIP-JCC, it also allows for backlog to exceed the desired maximum level 𝜃 more 

frequently. For example, Figure 35 shows the amount of backlogged demand at Fresno, CA in 

one of the Truncated Normal distributed demand scenarios when 𝜏′ = 0.2. In this single 

scenario, the MIP-ICC solution resulted in nine days in which the backlog level exceeded 

𝜃 = 91 at the Fresno, CA processing facility, while the hybrid and joint chance constrained 

solutions only had one day of exceedance. We note that while the MIP-HCC and MIP-JCC 

solutions do not produce the same optimal solution when 𝜏′ = 0.2 in the Truncated Normal 

distributed demand instance considered (as is evident in the different costs presented in Figure 

34), the MIP-HCC and MIP-JCC allocate the same demand sites to Fresno, CA in both solutions. 

This results in the solution to both of these formulations having same amount of backlogged 

demand at Fresno, CA for this demand instance. 
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Figure 35: Example scenario of backlogged demand at Fresno, CA; Normally distributed 

demand, 10 scenarios, 𝑎 = 5, 𝑏 = 10; 𝜃 = 91, 𝜏′ = 0.2 

 

5.5.5 Comparison to IMCLP Solution 

Although the deterministic IMCLP allows the model to capture fluctuations in daily 

demand, it only considers a single realization of demand at each demand-generating site on each 

day. The purpose of this section is to illustrate the benefit of incorporating multiple demand 

scenarios and chance constraints that limit the amount of backlogged demand (i.e., the stochastic 

IMCLP model) compared to a single demand scenario and no restrictions (other than an 

associated penalty cost) on the amount of backlogged demand (i.e., the deterministic IMCLP 

model). As the majority of the results presented in this chapter focus on the joint chance 

constrained model, we specifically investigate the effect of incorporating stochasticity into the 

IMCLP when joint chance constraints are imposed.  

 Recall that in Section 5.5.1 we found that the optimal solution to MIP-JCC located the 

same six facilities and kept the demand allocations the same regardless of the value of  |Ω′| ∈

{10, 25, 50, 75, 100, 125, 150} in the case of Poisson distributed demand with 50 demand and 

candidate nodes. To assess the value of considering multiple scenarios and imposing chance 
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constraints using the MIP-JCC verses a single scenario and no probabilistic limits on the amount 

of backlogged demand via the deterministic IMCLP, we use each of the 10 demand scenarios 

from one of the |Ω′| = 10 instances corresponding to replication 𝒾 = 1 in Figure 22 to solve a 

corresponding IMCLP problem. For example, we will solve one IMCLP instance that has the 

same demand as the first scenario of the 𝒾 = 1 MIP-JCC instance with |Ω′| = 10, one IMCLP 

instance that has the same demand as the second scenario of the 𝒾 = 1 MIP-JCC instance with 

|Ω′| = 10, etc. Then, one at a time, we force the optimal IMCLP location and allocation 

decisions into the 𝒾 = 1 MIP-JCC instance with |Ω′| = 10.  

 Through this process, we find that all ten IMCLP instances located the same six facilities 

as the optimal locations to the MIP-JCC instance. However, three of the 50 demand sites allocate 

their demand to different processing facilities in the IMCLP solutions than they do in the MIP-

JCC solution. Specifically, Orange CA sends its demands to Fresno, CA in the MIP-JCC but to 

San Bernardino, CA in the IMCLP solutions, and Riverside, CA sends its demands to San 

Bernardino, CA in the MIP-JCC but to Fresno, CA in the IMCLP solutions. More notably, Salt 

Lake, UT allocates its demands to Travis, TX in the MIP-JCC but to Fresno, CA in the IMCLP. 

A spatial representation of the location and allocations of the two solutions are presented in 

Figure 36. 
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Figure 36: Comparison of the optimal IMCLP and MIP-JCC location and allocation solutions; 

Poisson distributed demand; 𝑎 = 5, 𝑏 = 10; For MIP-JCC: 𝜃 = 91, 𝜏′ = 0.1 

 Although the allocation decisions differ only slightly between the optimal solutions to the 

IMCLP and MIP-JCC instances, they result in significantly different amounts of backlog. As the 

results of Table 31 show, nine of the ten IMCLP instances have optimal solutions in which the 

maximum amount of backlog held at any facility on any day of the planning horizon exceeds the 

desired maximum backlog amount 𝜃 = 91; since the joint chance constraints are not included in 

the IMCLP, the IMCLP therefore does not account for decision maker’s preference regarding the 

maximum backlog amount and allows allocations that result in higher backlog levels. This means 

that the optimal IMCLP solution is not a feasible solution to the MIP-JCC with 𝜃 = 91 and 

𝜏′ = 0.1 since the IMCLP solution would exceed 𝜃 = 91 in 90% of scenarios. 

Furthermore, Table 31 shows that the total amount of backlog (summed over all days, 

facilities, and scenarios) in the optimal MIP-JCC solution is 2,083, which is less than the total 

amount of backlog for each of the IMCLP instances that only incorporate a single scenario of 

demand. In fact, if we sum the total amount of backlogged demand over all ten of the single 

scenario IMCLP instances, we obtain 28,297 backlogged demands. This is over 13 times as 

many backlogged demands as compared to the optimal MIP-JCC solution.  

IMCLP MIP-JCC 
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Thus, it is not surprising that the average cost of the optimal IMCLP solutions is less than 

the optimal cost of the MIP-JCC solution since the IMCLP problems were not constrained by the 

chance constraints as was the MIP-JCC.  

Table 31: Optimal IMCLP and MIP-JCC cost and backlog comparison, 𝑎 = 5, 𝑏 = 10;  

For MIP-JCC: 𝜃 = 91, 𝜏′ = 0.1 
 Optimal OF Value Max Backlog Total Backlog 

IMCLP Instance 1 $100,014,845 98   2,100* 

IMCLP Instance 2 $100,029,145 111 2,998* 

IMCLP Instance 3 $100,057,020 114 3,405* 

IMCLP Instance 4 $100,086,375 123 2,725* 

IMCLP Instance 5 $100,062,480 141 3,503* 

IMCLP Instance 6 $100,056,630 86 2,697* 

IMCLP Instance 7 $100,075,920 136 4,141* 

IMCLP Instance 8 $ 99,984,675 128 2,718* 

IMCLP Instance 9 $ 99,997,490 238 4,010* 

IMCLP Instance 10 $100,047,325 132 3,421* 

          Average $100,041,191 131 3,172* 

    

MIP-JCC; 10 Scenarios 

𝜃 = 91, 𝜏′ = 0.1 
$101,250,878 61 2,083** 

*Over 1 scenario      **Over 10 scenarios 

 

 Furthermore, if we add a constraint to the IMCLP that limits the amount of items that can 

be backlogged at a facility each day to 𝜃 = 91, we find that the optimal IMCLP location and 

allocation decisions differ from one another. Specifically, individually solving the ten IMCLP 

instances resulted in five different location and allocation decisions. Instances two and four 

returned the same location and allocation decisions, as did instances five, seven, and nine. 

Instances three, eight, and ten also had the same optimal location and allocation decisions, and 

these decisions were identical to the optimal MIP-JCC decisions.  

 To assess how well the optimal solutions to the IMCLP instances compare to the MIP-

JCC solution in terms of the likelihood of the desired backlog level exceeding 𝜃 = 91, we force 

each of the five different optimal solutions obtained from the ten IMCLP instances into the MIP-

JCC instance with all ten scenarios and count the number of scenarios in which the IMLCP 

solution results in more than 𝜃 = 91 backlogged demands in the MIP-JCC. Table 32 specifies 
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the percent of scenarios that exceed the desired maximum backlog level 𝜃 = 91, as well as the 

maximum backlog level and the total amount of backlog across all ten scenarios. We note that 

although each of the IMCLP problem instances imposed a constraint to limit the amount of 

backlogged demand to 𝜃 = 91, the maximum backlog levels reported in Table 32 often exceed 

𝜃 = 91. This is because the IMCLP only considers a single demand scenario while the results 

presented in Table 32 consider how the solution to that particular IMCLP instance with one 

demand scenario performs across all ten scenarios. Lastly, we remind the reader that any 

solutions for which 𝜃 is exceeded in over 10% of the cases are infeasible solutions to the MIP-

JCC instance with |Ω′| = 10, 𝜃 = 91, 𝜏′ = 0.1. 

Table 32: Performance of optimal IMCLP instance location and allocation decisions in MIP-JCC 

when IMCLP solution enforces daily facility backlog limit of 𝜃 = 91; 𝑎 = 5, 𝑏 = 10 
 % of scenarios w/ backlog 

exceeding 𝜃 = 91 

Max Backlog** Total Backlog** 

Instance 1 80% 145 22,994 

Instances 2 and 4 80% 149 28,781 

Instances 3, 8 and 10 50% 122 21,233 

Instances 5, 7, and 9 (and MIP-JCC) 0% 61 2,083 

Instance 6 90% 238 31,718 

  **Over 10 Scenarios 

 

Similar to our results for when the IMCLP did not have restrictions on the amount of 

backlogged demand, Table 32 shows that the optimal MIP-JCC solution results in at least an 

order of magnitude fewer backlogged items than the solutions to seven of the IMCLP instances 

when they are forced into the MIP-JCC, even when a limit on the amount of backlogged demand 

is imposed on the IMCLP.  

To aid in the understanding of Table 32, we give a detailed example for the optimal 

solution to instances two and four in Table 33. It shows that the maximum backlog levels are 

restricted to be less than 𝜃 = 91 for scenarios two and four, as desired, but imposing the optimal 
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solution to IMCLP instances two and four on the eight remaining scenarios results in those 

scenarios having higher backlog levels.  

Table 33: Detailed performance of optimal location and allocation decisions for IMCLP 

instances two and four in MIP-JCC when IMCLP solution enforces daily facility backlog limit of 

𝜃 = 91; 𝑎 = 5, 𝑏 = 10 
 Max Backlog Total Backlog 

Scenario 1 95   2,189 

Scenario 2 83 2,251 

Scenario 3 101 2,639 

Scenario 4 82 2,779 

Scenario 5 120 3,361 

Scenario 6 114 2,971 

Scenario 7 122 3,609 

Scenario 8 143 2,578 

Scenario 9 149 3,935 

Scearnio10 103 2,469 

          Over All 10 Scenarios 149 28,781 

   

 The problem instances studied in this section focused on Poisson distributed demand, 

which we saw provided the same optimal location and allocation decisions regardless of whether 

10, 25, 50, 75, 100, 125, or 150 demand scenarios were considered  in Section 5.5.1. We can 

therefore expect to see an even greater benefit of using the stochastic IMCLP (as compared to the 

deterministic IMCLP) when demand distributions with greater variability are considered.  

 

5.6 Chapter Summary 

In this chapter, we illustrated how incorporating chance constraints into the IMCLP 

formulation can affect the optimal solution in terms of the optimal facility locations, demand 

allocations, amount of items held in backlog, and overall cost. Three different types of chance 

constraints were presented: joint, individual, and hybrid chance constraints. In addition to 

assessing a penalty cost for holding items in backlog, as the deterministic formulations do, the 

chance constrained versions also impose probabilistic limits on the amount of demand that can 

be backlogged.  
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Through computational experiments, we showed that the stochastic, chance constrained 

version of the IMCLP can produce different location and allocation solutions than the IMCLP, 

and that even small differences in their allocations can drastically impact the amount of items 

held in backlog. Furthermore, if the decision maker has a limit on the desired maximum amount 

if items backlogged at any given time, it is important that the decision maker utilize the 

stochastic model; imposing the limit on a single demand scenario (i.e., using the IMCLP) often 

resulted in infeasible solutions to the joint chance constrained stochastic IMCLP due to the 

demand uncertainty.  

 For each of the chance constrained formulations, we proposed two solution algorithms. 

The first was a two-stage formulation based on the Benders decomposition scheme. The second 

was a three-stage decomposition that capitalized on the fact that once the location and allocation 

decisions are determined, the corresponding processing and backlog variables can automatically 

be computed. We then checked whether the joint chance constraint was satisfied. Our 

computational results showed that the three-stage formulation performs poorly. However, 

strengthening the first stage by adding a relaxed joint chance constraint markedly improved its 

solution progress. Both solution algorithms outperformed CPLEX in all of our instances, 

although we found that the two-stage decomposition scheme performed the best.  
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CHAPTER 6: Extensions and Conclusions 

 

6.1 Introduction 

In this final chapter, we highlight extensions of the models discussed in this dissertation 

and present the dissertation conclusions and contributions. Two extensions explore methods of 

incorporating demand backlog into capacitated facility location models without explicitly 

accounting for daily demands. The first such extension uses a queueing approach to model 

demand arriving at a processing facility while the second approach assigns an incremental cost, 

which represents the expected cost of backlog, to each additional unit of average demand 

assigned to a processing facility.  

 Then, in Section 6.4 we show that the framework of this dissertation can also be applied 

to a context in which intangible demands arrive at the facilities and result in physical demands 

that must be shipped from the facilities to customers. Section 6.5 discusses additional methods 

for capturing the effects related to incoming demand that exceed a facility’s daily processing 

capacity. Finally, Section 6.6 summarizes the contributions of this dissertation. 

 

6.2 Queueing Model to Approximate Average Backlog 

 Rather than explicitly incorporating the daily fluctuations in backlog into the model, we 

can approximate the average backlog at a processing facility under specific location and 

allocation decisions using a queueing approach. This is based on the observation that each 

processing facility can be viewed as a queuing system in which demands arrive (in a batch of 
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uncertain size due to the stochastic demand process) at the processing facility at the beginning of 

the day and are processed throughout the day in a batch (of up to “capacity” items) with a 

deterministic service time of one day. If at the end of the day there are demand that were not 

processed, those demand will incur one unit of “wait time” as backlogged demand. Demand that 

are processed on the day they arrive do not incur any waiting time. 

 

6.2.1 Queueing Formulation 

 Define 𝐻𝑗,𝑑 = ∑ ℎ𝑖,𝑡−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼  as the total demand that arrives at processing facility 𝑗 ∈ 𝐽 

on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}. Since facility 𝑗 ∈ 𝐽 can process 𝑘𝑗 units of demand each day, the 

number of items in backlog at the beginning of day 𝑑 + 1, for 𝑑 ∈ {𝑡∗ + 1,… |𝐷|}, can be written 

as:  

 𝑉𝑗,𝑑+1 = max {𝑉𝑗,𝑑 + 𝐻𝑗,𝑑 − 𝑘𝑗 , 0}  

where we have assumed that the incoming demand at facility 𝑗 arrives at the beginning of the 

day. The preceding equation is called Lindley’s equation for waiting time in a D/G/1 queue 

[Lindley, 1952] with interarrival times identically equal to 𝑘𝑗 and service time 𝐻𝑗,𝑑 for customer 

𝑑. Thus, if the time horizon is sufficiently long, we can study the steady state backlog cost at 

processing facility 𝑗 ∈ 𝐽. Letting 𝔼[𝑉𝑗] denote the long-term expected number units in backlog 

per day at facility 𝑗 ∈ 𝐽, the expected value of the backlog term in objective function (5.2) 

becomes 

 𝑏 ∗ 𝔼𝜉[∑ ∑ 𝑉̃𝑗𝑑𝑗∈𝐽
|𝐷|+1
𝑑=𝑡∗+2 ] = 𝑏(|𝐷| − 𝑡∗) ∑ 𝔼[𝑉𝑗]𝑗∈𝐽    

 If the total demand arriving at facility 𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (i.e., 

∑ ℎ𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 ) is Poisson distributed, then the total backlog at 𝑗 on day 𝑑 will also be Poisson 

distributed, but with a probability mass at 0. In general, 𝔼[𝑉𝑗] does not have a closed form 
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solution, which necessitates the use of tight approximation formulas for 𝔼[𝑉𝑗]. Doing so will 

enable us to eliminate the processing and backlog variables from the model and will considerably 

reduce the problem size. 

 

6.2.2 Approximation Formulas for 𝔼[ ]jV  

 With a slight abuse of notation, let 𝐻𝑗 represent a generic total amount of demand 

arriving at facility 𝑗 ∈ 𝐽 on any day of the planning horizon. Then, if the demands at demand site 

𝑖 ∈ 𝐼 are i.i.d. with mean  ℎ𝑖 and variance 𝔳𝑖 we have  

𝔼[𝐻𝑗] = ∑ ℎ𝑖𝑌𝑖𝑗𝑖∈𝐼   

𝑣𝑎𝑟[𝐻𝑗] = ∑ 𝔳𝑖𝑌𝑖𝑗𝑖∈𝐼   

since 𝑌𝑖𝑗 = 𝑌𝑖𝑗
2. With this notation, we present three approximations for the average waiting time 

in a D/G/1 queue. 

Upper Bound 

 Although Lindley’s equation represents the waiting time in a D/G/1 queue, we can 

approximate the waiting time with a (more general) G/G/1 queue. Kingman’s formula is one 

such approximation that is known to be an upper bound on the average waiting time (i.e., 

backlog) at facility 𝑗 ∈ 𝐽 that is very close to the exact solution when the utilization factor
1
 is 

close to 1, but does not exceed one in order to preserve stability (i.e., 𝔼[𝐻𝑗]/𝔼[𝑘𝑗] ≈ 1, 𝔼[𝐻𝑗]/

𝔼[𝑘𝑗] < 1 ) [Kingman, 1962a,b; Bhat, 2008]: 

                                                 
1
 The utilization factor, also known as the traffic intensity, represents the probability the server will be busy at any 

point in time. It is calculated by dividing the mean arrival rate by the mean service rate for single server queues. 
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𝔼[𝑉𝑗] ≤

1

𝔼[𝑘𝑗]
 (𝑣𝑎𝑟(𝑘𝑗) + 𝑣𝑎𝑟(𝐻𝑗))

2 (1 −
𝔼[𝐻𝑗]

𝔼[𝑘𝑗]
)

 (6.1) 

Since 𝑣𝑎𝑟(𝑘𝑗) = 0, 𝔼[𝑘𝑗] = 𝑘𝑗 , and the demands at demand site 𝑖 ∈ 𝐼 are i.i.d. with mean ℎ𝑖  

and variance 𝔳𝑖,  

𝔼[𝑉𝑗] ≤

1

𝔼[𝑘𝑗]
 (𝑣𝑎𝑟(𝑘𝑗) + 𝑣𝑎𝑟(𝐻𝑗))

2 (1 −
𝔼[𝐻𝑗]

𝔼[𝑘𝑗]
)

  

 =
𝑣𝑎𝑟(𝐻𝑗)

2(𝑘𝑗 − 𝔼[𝐻𝑗])
  

 =
∑ 𝔳𝑖𝑌𝑖𝑗𝑖∈𝐼

2(𝑘𝑗 − ∑ ℎ𝑖𝑌𝑖𝑗𝑖∈𝐼 )
  

Lower Bound  

One of the most well-known bounds for the G/G/1 queue is attributed to Marchal (1978): 

𝔼[𝑉𝑗] ≥

(
𝔼[𝐻𝑗]
𝔼[𝑘𝑗]

)

2

+ (
1

𝔼[𝑘𝑗]
)

2

𝑣𝑎𝑟(𝐻𝑗) − 2 (
𝔼[𝐻𝑗]
𝔼[𝑘𝑗]

)

2 (
1

𝔼[𝑘𝑗]
)(1 − (

𝔼[𝐻𝑗]
𝔼[𝑘𝑗]

))

 

Upon simplification, the inequality becomes  

𝔼[𝑉𝑗] ≥
(𝔼[𝐻𝑗])

2
+ 𝑣𝑎𝑟(𝐻𝑗) − 2𝑘𝑗𝔼[𝐻𝑗]

2(𝑘𝑗 − 𝔼[𝐻𝑗])
  

which, is unfortunately a weak lower bound since it takes negative values unless 1 <

1

𝑘𝑗
√𝑉𝑎𝑟(𝐻𝑗)  [Larson and Odoni, 2007]. However, 



 

163 

 

 

1

𝔼[𝑘𝑗]
 (𝑣𝑎𝑟(𝑘𝑗) + 𝑣𝑎𝑟(𝐻𝑗))

2 (1 −
𝔼[𝐻𝑗]

𝔼[𝑘𝑗]
)

− 

1 +
𝔼[𝐻𝑗]

𝔼[𝑘𝑗]

2
1

𝔼[𝑘𝑗]

 (6.2) 

is known to be a tight lower bound for the subclass of G/G/1 queues that have an interarrival 

time 𝒯 and arrival rate 𝜆 that satisfy the property  

  𝔼[𝒯 − 𝓉0|𝒯 > 𝓉0] ≤
1

𝜆
   for all 𝓉0 ≥ 0 (6.3) 

[Marshall, 1968]. (Notice that the first term of (6.2) is precisely the upper bound (6.1).) Since 

clearly requirement (6.3) is satisfied for the queue we are considering in which Lindley’s 

equation identifies interarrival times equal to 𝑘𝑗,   

𝔼[𝑉𝑗] ≥

1

𝔼[𝑘𝑗]
 (𝑣𝑎𝑟(𝑘𝑗) + 𝑣𝑎𝑟(𝐻𝑗))

2 (1 −
𝔼[𝐻𝑗]

𝔼[𝑘𝑗]
)

− 

1 +
𝔼[𝐻𝑗]

𝔼[𝑘𝑗]

2
1

𝔼[𝑘𝑗]

  

 =
𝑣𝑎𝑟(𝐻𝑗)

2(𝑘𝑗 − 𝔼[𝐻𝑗])
− 
𝑘𝑗 + 𝔼[𝐻𝑗]

2
  

 =
∑ 𝔳𝑖𝑌𝑖𝑗𝑖∈𝐼

2(𝑘𝑗 − ∑ ℎ𝑖𝑌𝑖𝑗𝑖∈𝐼 )
−
𝑘𝑗 + ∑ ℎ𝑖𝑌𝑖𝑗𝑖∈𝐼

2
  

Averaged Approximation 

By averaging the upper and lower bounds, we arrive at a third approximation:  

𝔼[𝑉𝑗] ~
∑ 𝔳𝑖𝑌𝑖𝑗𝑖∈𝐼

2(𝑘𝑗 − ∑ ℎ𝑖𝑌𝑖𝑗𝑖∈𝐼 )
−
𝑘𝑗 +∑ ℎ𝑖𝑌𝑖𝑗𝑖∈𝐼

4
  

 

6.2.3 Model Summary and Challenges 

 Instead of incorporating the daily backlog fluctuations directly into the model, the 

average backlog at a processing facility under specific location and allocation decisions can be 
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approximated using a queueing approach. We presented four approximations, but note that they 

are all nonlinear due to the allocation variables, 𝑌𝑖𝑗. Thus, although this method would allow us 

to eliminate the large number of processing and backlog variables from the model, replacing the 

current linear backlog term in the objective function with a nonlinear term will introduce 

different computational challenges. Additionally, these approximations assume that the demands 

are independent and identically distributed, which precludes the case in which demands are 

correlated.  

 

6.3 Incremental Backlog Cost Model 

 An additional approach to incorporating excess demand backlog into the facility location 

models is to consider the incremental cost associated with assigning an additional unit of average 

demand to processing facility 𝑗 ∈ 𝐽.  

 

6.3.1 Linear Programming Model Formulation 

 Let 𝒷𝑗𝑙 be a parameter representing the incremental backlog cost associated with 

assigning an average of 𝑙 demands to facility 𝑗 ∈ 𝐽  each day rather than 𝑙 − 1 demands, and 

assume that 𝒷𝑗𝑙 is an increasing function of 𝑙. In addition to the standard binary location (𝑋𝑗) and 

allocation (𝑌𝑖𝑗) decisions, we also include binary variables 𝒵𝑗𝑙 which take the value one if the 

average amount of demand allocated to facility 𝑗 ∈ 𝐽 each day is at least 𝑙 and will take the value 

0 otherwise. Thus, ∑ 𝒵𝑗𝑙
∞
𝑙=1 is the average amount of demand allocated to facility 𝑗 ∈ 𝐽. Using ℎ𝑖 

to represent the average amount of daily demand generated at demand site 𝑖 ∈ 𝐼, the model can 

be formulated as follows:  

𝑀𝑖𝑛𝑿,𝒀,𝓩         (|𝐷| − 𝑡
∗)(∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ℎ𝑖𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼𝑗∈𝐽 + ∑ ∑ 𝒷𝑗𝑙𝒵𝑗𝑙

𝑘𝑗−1

𝑙=1𝑗∈𝐽 ) (6.4) 
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Subject to 

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2)

 

 𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 𝒵𝑗𝑙 ≤ 𝑋𝑗 ∀𝑗 ∈ 𝐽; 𝑙 ∈ {1,… , 𝑘𝑗 − 1} (6.5) 

 ∑ 𝔼[ℎ𝑖]𝑌𝑖𝑗 ≤𝑖∈𝐼 ∑ 𝒵𝑗𝑙
𝑘𝑗−1

𝑙=1   ∀𝑗 ∈ 𝐽  (6.6) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 𝒵𝑗𝑙 ∈ {0,1}   ∀𝑗 ∈ 𝐽; 𝑙 ∈ {1,… , 𝑘𝑗 − 1}   (6.7) 

 As in previous models, the objective function (6.4) minimizes the total facility location, 

transportation, and expected backlogging costs over the planning horizon. Constraints (6.5) 

ensure that the average demand at facility 𝑗 ∈ 𝐽 is 0 if facility 𝑗 is not located, and constraints 

(6.6) ensure consistency between the 𝒵𝑗𝑙 variables and the total average demand assigned to 

facility 𝑗 ∈ 𝐽. Since 𝒷𝑗𝑙 is an increasing function in 𝑙, constraints requiring 𝒵𝑗𝑙 ≥ 𝒵𝑗,𝑙+1 are not 

required. Finally, constraints (2.4), (3.6), and (6.7) are standard binary constraints.  

 

6.3.2 Determining the Incremental Cost Values 

 One method of determining the incremental cost values, 𝒷𝑗𝑙, is by analyzing the discrete-

time Markov Chain of the backlogged demand at a single processing facility 𝑗 ∈ 𝐽 at the 

beginning of each day.  Letting the amount of backlog present at the beginning of the day at 

facility 𝑗 ∈ 𝐽 represent a state of the Markov Chain, the transition probability from state 𝔫 to state 

𝔪 is denoted 𝔭𝔫𝔪  and is given by: 
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 𝔭𝔫𝔪  = {       

𝑃(𝐻𝑗 + 𝔫 ≤ 𝑘𝑗)                                   𝔪 ≥ 𝔫 − 𝑘𝑗 , 𝔪 = 0                  

𝑃(𝐻𝑗 + 𝔫 = 𝑘𝑗 +𝔪)                          𝔪 ≥ 𝔫 − 𝑘𝑗 , 𝔪 > 0                 

0                                                              𝔪 < 𝔫 − 𝑘𝑗                                 

  

where 𝐻𝑗 once again represents a generic total demand arriving at facility 𝑗 ∈ 𝐽 on any day.  

 If we assume that the number of items that arrive at the facility each day follows a 

Poisson distribution with mean 𝔼[𝐻𝑗] then the transition probabilities are given by: 

  𝑝𝑛𝑚 =

{
 
 

 
 

       

∑
𝑒
−𝔼[𝐻𝑗] 𝔼[𝐻𝑗] 

𝑧 

𝑧!

𝑘𝑗−𝔫

𝑧=0                             𝔪 ≥ 𝔫 − 𝑘𝑗 , 𝔪 = 0                  

𝑒
−𝔼[𝐻𝑗] 𝔼[𝐻𝑗] 

(𝑘𝑗+𝔪−𝔫)

(𝑘𝑗+𝔪−𝔫)!
                             𝔪 ≥ 𝔫 − 𝑘𝑗 , 𝔪 > 0                  

0                                                             𝔪 < 𝔫 − 𝑘𝑗                                  

  

 Using these transition probabilities, we can determine the steady state probabilities for 

various values of the average total arriving demand, 𝔼[𝐻𝑗] , as well as the average backlog at the 

facility. Figure 37 displays the results for a facility that has a daily processing capacity of 100 

units. It clearly shows that as the average daily demand approaches the processing capacity, the 

average backlog of the facility increases. This is due to the fact that as the facility operates closer 

to capacity, the likelihood that the total arriving demand exceeds the processing capacity 

increases. The difference between the average backlog value when there are 𝔼[𝐻𝑗] = 𝑙 − 1 and 

𝔼[𝐻𝑗] = 𝑙 items of demand arriving at facility 𝑗 ∈ 𝐽 each day provides a value for the 

incremental backlog cost, 𝒷𝑗𝑙, for 𝑙 ∈ {1,… , 𝑘𝑗 − 1}. 
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Figure 37: Average backlog at a processing facility that results from the average amount of total 

daily demand arriving at the facility; Poisson distributed arriving demands; 100jk   

 

6.3.3 Model Summary and Challenges 

 The incremental backlog cost model presents another method of incorporating 

backlogging costs into a stochastic version of the capacitated facility location problem. While 

this approach allows us to incorporate the effect backlogged demand has on both the cost and the 

number of demands needing to be processed from one day to another without explicitly 

incorporating the backlog and processing variables, it is not without its challenges. One such 

challenge is in determining how large of a state space to consider. For many demand 

distributions, the state space is infinite, as there is a positive probability of having an arbitrarily 

large amount of demand arrive at a facility. However, a finite state space will likely provide a 

tight approximation for the desired 𝒷𝑗𝑙 values. Additionally, while we have only provided 

transition probabilities for the case when the amount of demand arriving at each facility follows 

a Poisson distribution, it is likely that the distribution of demand arising at the various demand 

sites is something other than i.i.d. Poisson distributions. Relaxing these assumptions on the 
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demand distributions pose additional analytical challenges as the decision regarding the 

allocation of demand sites (which may have spatially or temporally correlated demand as well as 

each having a different distribution of demand) directly impacts the distribution of the demand 

arriving at each processing facility.  

 

6.4 Outbound Shipment Model 

Thus far we have presented and discussed models that mitigate hard capacity constraints 

in the context of a system with physical demand (e.g., blood samples) that arrives at a processing 

facility (e.g., blood testing facility) and has intangible results (e.g., a report) that are reported to 

the customer. Incoming demands that exceed the daily processing capacity are physically held as 

backlog (at some cost) and are processed at a later date. However, with a slight change of 

notation we can modify the formulation to represent a system in which warehouses receive 

intangible demand orders and must ship physical goods to the demand sites. (Online retailers, 

including Amazon.com, are often examples of such a system.) The warehouse may have a policy 

that orders must be shipped within one day of the order being placed (i.e., the order needs to be 

en route to the demand site within one day; it does not have to arrive at the demand site within 

one day). If an item cannot be shipped within the specified timeframe, a penalty cost is incurred 

to account for expedited shipping or loss of goodwill. We refer to such an item as a “late item.” 

The goal is to determine where to build warehouses and how to assign warehouses to demand 

sites so that the total location, transportation, and penalty cost is minimized, while ensuring that a 

specified service level is achieved. 
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Stochastic IMCLP Outbound Shipment Formulation 

Letting 𝐽 represent the set of candidate warehouse locations and 𝐼 the set of demand sites, 

we can modify the original stochastic IMCLP notation to fit the outbound shipment context. 

While we present the model with the joint chance constraints, we note that substituting the 

hybrid or individual chance constraints for the joint chance constraint results in the 

corresponding outbound shipment formulation.  

Modified Parameters 

𝑘𝑗  Capacity of warehouse 𝑗 ∈ 𝐽 in items shipped per day 

𝑏 ≥ 0 Penalty cost (in dollars) of shipping one item one day late 

𝜃 At any given time, the maximum desired number of late items at an individual warehouse  

𝜏 Maximum acceptable probability of having more than 𝜃 late items at any facility on any 

day 

𝑣𝑗    Initial number of late items at warehouse 𝑗 ∈ 𝐽 if warehouse 𝑗 is located 

Decision Variables 

𝑋𝑗 = { 
1

0
          

If we locate at warehouse 𝑗 ∈ 𝐽

Otherwise                                        
   

𝑌𝑖𝑗 = { 
1

0
          

If we assign warehouse 𝑗 ∈ 𝐽 to fulfill demand from 𝑖 ∈ 𝐼                           

Otherwise                                                                                                                    
   

𝑉𝑗𝑑
𝜔 Number of late items at warehouse 𝑗 ∈ 𝐽 at the beginning of day 𝑑 ∈ 𝐷 ∪ (|𝐷| + 1) in 

scenario 𝜔 ∈ Ω 

𝑊𝑗𝑑
𝜔 Number of items that are shipped from warehouse 𝑗 ∈ 𝐽 on day 𝑑 ∈ 𝐷 in scenario 𝜔 ∈ Ω 

 



 

170 

 

The modified model becomes: 

 [M-JCC]: 

𝑀𝑖𝑛 𝑿,𝒀,𝑽,𝑾 |𝐷|∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ 𝔼𝜉[ℎ̃𝑖𝑑]𝑡𝑖𝑗𝑌𝑖𝑗𝑗∈𝐽
|𝐷|
𝑑=1𝑖∈𝐼 + 𝑏 𝔼𝜉[∑ ∑ 𝑉̃𝑗𝑑𝑗∈𝐽

|𝐷|+1
𝑑=2 ] (6.8) 

Subject to  

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2) 

 𝑌𝑖𝑗 − 𝑋𝑗 ≤ 0 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 ℙ(𝑉̃𝑗𝑑 ≤  𝜃;  ∀𝑗 ∈ 𝐽;  𝑑 ∈ 𝐷 ∪ (|𝐷| + 1)}) ≥ 1 − 𝜏 (6.9) 

 𝑉𝑗,𝑑+1
𝜔 − 𝑉𝑗𝑑

𝜔 +𝑊𝑗𝑑
𝜔 = ∑ ℎ𝑖𝑑

𝜔𝑌𝑖𝑗𝑖∈𝐼  ∀𝑗 ∈ 𝐽; 𝑑 ∈ 𝐷;𝜔 ∈ Ω (6.10) 

 𝑊𝑗𝑑
𝜔 ≤ 𝑘𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑑 ∈ 𝐷;𝜔 ∈ Ω (6.11) 

 𝑉𝑗,1
𝜔 = 𝑣𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝜔 ∈ Ω (6.12) 

 𝑉𝑗𝑑
𝜔 ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ 𝐷 ∪ (|𝐷| + 1);𝜔 ∈ Ω (6.13) 

 𝑊𝑗𝑑
𝜔 ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ 𝐷;𝜔 ∈ Ω (6.14) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 The major difference between the JCC formulation and the modified M-JCC is that the 

new formulation does not have incoming demand that is being shipped from the demand sites to 

the warehouses. Instead, the warehouses ship the demand to the demand sites. Thus, we do not 

need to include a warm-up period in formulation M-JCC. (Note that the time horizon is now |𝐷| 

rather than |𝐷| − 𝑡∗). Additionally, constraints (6.10) use the demand that is generated on day 𝑑 

to calculate the number of late items on day 𝑑 + 1, rather than using demand that was generated 

𝑑 − 𝑡𝑖𝑗 days ago. We use constraints (6.12) to initialize the number of late items at the beginning 

of the horizon. Additionally, the joint chance constraint represented by (6.9) now states that there 
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cannot be more than 𝜃 late items present at any warehouse on any day in more than 𝜏 ∗ 100% of 

the scenarios. If a scenario contains one year’s worth of data and the model contains ten 

scenarios, this is equivalent to saying that we must always have less than 𝜃 late items in at least 

⌊(1 − 𝜏) ∗ 10⌋ of the years.   

 

Cyclic Allocation Outbound Shipment Formulation 

 A similar outbound shipment perspective can be formulated for the IMCLP with cyclic 

allocations. In addition to the modified notation already discussed, we introduce the redefined 

sets, parameters, and decision variables: 

Modified Sets and Parameters 

𝐷𝑝 ≔ {𝑑 ∈ 𝐷: 𝑑 𝑚𝑜𝑑 |𝑃| = 𝑝} Set of days in 𝐷 corresponding to cycle day 𝑝 ∈ 𝑃  

𝑘𝑗
𝑝
  Capacity of warehouse 𝑗 ∈ 𝐽 on cycle day 𝑝 ∈ 𝑃 in terms of items shipped per day  

 Decision Variables 

𝑌𝑖𝑗
𝑝 = { 

1

0
          

If we assign warehouse 𝑗 ∈ 𝐽 to fulfill demand from 𝑖 ∈ 𝐼 on cycle day 𝑝 ∈ 𝑃 

Otherwise                                                                                                                               
   

 The outbound IMCLP cyclic allocation model can then be presented as: 

𝑀𝑖𝑛 𝑿,𝒀,𝑽,𝑾   |𝐷|∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ ∑ ℎ𝑖𝑑𝑡𝑖𝑗𝑌𝑖𝑗
𝑝

𝑖∈𝐼𝑗∈𝐽𝑑∈𝐷𝑝𝑝∈𝑃 + 𝑏∑ ∑ 𝑉𝑗𝑑𝑗∈𝐽
|𝐷|+1
𝑑=2  (6.15) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          

 ∑ 𝑌𝑖𝑗
𝑝

𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼;  𝑝 ∈ 𝑃  (4.2)

 

 𝑌𝑖𝑗
𝑝 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽; 𝑝 ∈ 𝑃  (4.3) 

 𝑉𝑗,𝑑+1 = 𝑉𝑗𝑑 + ∑ ℎ𝑖,𝑑𝑌𝑖𝑗
 𝑑 𝑚𝑜𝑑 |𝑃|

𝑖∈𝐼 −𝑊𝑗𝑑 ∀𝑗 ∈ 𝐽; 𝑑 ∈ 𝐷 (6.16) 

 𝑊𝑗𝑑 ≤ 𝑘𝑗
𝑝𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑝 ∈ 𝑃; 𝑑 ∈ 𝐷𝑝  (4.5) 

 𝑉𝑗,1 = 𝑣𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽 (6.17) 
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 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗
𝑝 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽; 𝑝 ∈  𝑃  (4.6) 

 𝑉𝑗𝑑 ≥ 0   ∀𝑗 ∈ 𝐽; 𝑑 ∈ 𝐷 ∪ (|𝐷| + 1) (6.18) 

 𝑊𝑗𝑑 ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ 𝐷  (6.19) 

 

6.5 Additional Methods of Incorporating Capacity Flexibility  

This dissertation has focused on incorporating short-term capacity flexibility into facility 

location models by allowing a processing facility to accept demands in excess of its processing 

capacity and store the excess demand in backlog until it can be processed. While this is one way 

of incorporating capacity flexibility, there are numerous other avenues that are used in practice. 

For example, a processing facility may utilize employee overtime, hire temporary workers, 

outsource excess demands, or add additional physical capacity (e.g., an additional processing 

machine or assembly line) to capture endogenous capacity flexibility. Additionally, exogenous 

capacity flexibility can be captured through stochastic programming. In this section we formulate 

extensions to the IMCLP that incorporate both endogenous and exogenous methods of capturing 

capacity flexibility. 

 

6.5.1 Endogenous Capacity Flexibility 

Rather than requiring all demand in excess of the processing capacity to be held in 

backlog, we can formulate an extension to the IMCLP which allows extra daily capacity to be 

purchased on a day-to-day basis. In this model, processing facility 𝑗 ∈ 𝐽 starts each day with the 

capacity to process 𝑘𝑗 items. However, if the arriving demand exceeds the processing capacity, 

the facility manager at 𝑗 ∈ 𝐽 has the option of purchasing extra capacity for that day at a unit cost 
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of 𝑏̂𝑗 rather than incurring a facility specific backlog penalty cost 𝑏𝑗. In this discussion, we 

assume that the extra capacity can be purchased after the daily amount of arriving demand is 

realized. However, a stochastic extension can also be formulated to address the situation in 

which a facility manager must decide one day in advance (before knowing the exact amount of 

incoming demand) how much extra capacity to purchase. We leave this extension as an area of 

future work.  

We let 𝐾̂𝑗𝑑 be a non-negative decision variable that represents the extra capacity to 

purchase at facility 𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} and 𝑘𝑗
𝑚𝑎𝑥 ≥ 0 be a parameter representing 

the maximum amount of additional capacity facility 𝑗 ∈ 𝐽 can purchase each day (𝑘𝑗
𝑚𝑎𝑥 may be 

unbounded from above). We formulate the model as follows: 

𝑀𝑖𝑛𝑿,𝒀,𝑽,𝑾,𝑲̂(|𝐷| − 𝑡
∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ ℎ𝑖𝑑𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼𝑗∈𝐽

|𝐷|
𝑑=𝑡∗+1 + ∑ ∑ 𝑏𝑗𝑉𝑗𝑑𝑗∈𝐽

|𝐷|+1
𝑑=𝑡∗+2   

 +∑ ∑ 𝑏̂𝑗𝐾̂𝑗𝑑𝑗∈𝐽
|𝐷|
𝑑=𝑡∗+1   (6.20) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2)

 

 𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 𝑉𝑗,𝑑+1 − 𝑉𝑗𝑑 − ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 +𝑊𝑗𝑑 = 0 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} (3.3) 

 𝐾̂𝑗𝑑 ≤ 𝑘𝑗
𝑚𝑎𝑥𝑋𝑗 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (6.21) 

 𝑊𝑗𝑑 ≤ 𝑘𝑗𝑋𝑗 + 𝐾̂𝑗𝑑 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (6.22) 

 𝑉𝑗,𝑡∗+1 = 𝑣𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽 (3.5) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 𝑉𝑗𝑑 ≥ 0 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}  (3.7)  
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  𝑊𝑗𝑑 ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (3.8) 

   𝐾̂𝑗𝑑 ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (6.23) 

Alternatively, extra daily capacity may only be available to purchase in increments of size 𝑘̅𝑗. 

Thus, some of the purchased extra capacity may be unused at the end of the day. To amend the 

above model to account for incremental daily capacity, let 𝐾̅𝑗𝑑 be a nonnegative integer decision 

variable indicating the number of increments purchased, replace 𝐾̂𝑗𝑑 with 𝑘̅𝑗𝐾̅𝑗𝑑 in (6.20) - 

(6.22), and replace constraint (6.23) with 

𝐾̅𝑗𝑑 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (6.24) 

 While the aforementioned models allow capacity to be added on a day-by-day basis, the 

facility manager may not have the ability to change the capacity each day of the planning 

horizon. Instead, the manager may prefer a cyclic method of adding capacity in which facility 

𝑗 ∈ 𝐽 has a base capacity to process 𝑘𝑗 items each day and the option to increase capacity by 𝐾̂𝑗
𝑝
 

(a decision variable) on cycle day 𝑝 ∈ 𝑃 at a cost of 𝑏̂𝑗 per unit of capacity increase. The cyclic 

method of adding capacity can be incorporated into the cyclic allocation model by adding the 

term ∑ ∑ 𝑏̂𝑗𝐾̂𝑗
𝑝

𝑗∈𝐽 |𝐷𝑝|𝑝∈𝑃  to objective function (4.1), adding 𝐾̂𝑗
𝑝
 to the right hand side of 

constraint (4.5), and adding constraints  

 𝐾̂𝑗
𝑝 ≤ 𝑘𝑗

𝑚𝑎𝑥𝑋𝑗 ∀𝑗 ∈ 𝐽; 𝑝 ∈ 𝑃  (6.25) 

and  

𝐾̂𝑗
𝑝
≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ∀𝑗 ∈ 𝐽; 𝑝 ∈ 𝑃.  (6.26) 
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6.5.2 Exogenous Capacity Fluctuations 

While facility managers may have many methods of affecting the amount of capacity 

available each day, there also exist exogenous capacity fluctuations that managers have very 

little (if any) control over. Examples of such exognous fluctuations include capacity degregations 

due to machine breakdowns and quality control issues. Workers who assemble products or pick 

customer orders in a warehouse also add an element of uncertainty because each employee 

completes tasks at a different rate.  

In this section we will present two extensions of the IMCLP that incorporate exogenous 

capacity fluctuations. The first is a stochastic version of the IMCLP in which the capacity is an 

uncertain model input. While this formulation will not incorporate uncertain demand as we do in 

Chapter 5, models that incorporate both uncertain demand and capacity can be developed by 

merging the two stochstic formulations. The second extension depicts employee training by 

modeling capacity that increases naturally over a period of time during the training period and 

eventually reaches some asymptotic behavior when the employees are fully trained. 

 

Stochastic Daily Capacity  

Let Ω̈ represent the finite set of all possible capacity scenarios, and 𝑝̈𝜔̈ represent the 

probability of a particular scenario 𝜔̈ ∈ Ω̈. The parameter 𝑘̃̈𝑗𝑑 corresponds to the random daily 

capacity available at processing facility 𝑗 ∈ 𝐽 on day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}. While 𝑘̃̈𝑗𝑑 is a random 

parameter, 𝑘̈𝑗𝑑
𝜔̈  represents a realization of the random capacity 𝑘̃̈𝑗𝑑 available at facility 𝑗 ∈ 𝐽 on 

day 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} in scenario 𝜔̈ ∈ Ω̈. We also let 𝜉̈(𝜔̈) ∈ ℕ0
|𝐽|×|𝐷|

 be a vector containing 

the capacity realizations 𝑘̈𝑗𝑑
𝜔̈ , ∀𝑗 ∈ 𝐽, 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|} corresponding to scenario 𝜔̈ ∈ Ω̈.   
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 The decision variables in the exogenous capacity fluctuation model include the scenario-

independent location (𝑋𝑗) and allocation (𝑌𝑖𝑗) decisions as well as scenario-dependent backlog 

(𝑉̈𝑗𝑑
𝜔̈) and processing (𝑊̈𝑗𝑑

𝜔̈) variables. Since the backlog (and processing) variables cannot be 

determined until after the daily capacity is realized, we let 𝑉̃̈𝑗𝑑 represent the stochastic 

counterpart of 𝑉̈𝑗𝑑
𝜔̈ . With this notation, we can formulate the exogenous capacity fluctuation 

model as:  

𝑀𝑖𝑛𝑿,𝒀,𝑽̈,𝑾̈(|𝐷| − 𝑡
∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ ℎ𝑖𝑑𝑡𝑖𝑗𝑌𝑖𝑗𝑗∈𝐽

|𝐷|
𝑑=𝑡∗+1𝑖∈𝐼 + 𝑏 𝔼𝜉̈[∑ ∑ 𝑉̃̈𝑗𝑑𝑗∈𝐽

|𝐷|+1
𝑑=𝑡∗+2 ] (6.101) 

Subject to  

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2)

 

 𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 𝑉̈𝑗,𝑑+1
𝜔̈ − 𝑉̈𝑗𝑑

𝜔̈ + 𝑊̈𝑗𝑑
𝜔̈ = ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗

 𝑌𝑖𝑗𝑖∈𝐼  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}; 𝜔̈ ∈ Ω̈ (6.27) 

 𝑊̈𝑗𝑑
𝜔̈ ≤ 𝑘̈𝑗𝑑

𝜔̈𝑋𝑗   ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}; 𝜔̈ ∈ Ω̈ (6.28) 

 𝑉̈𝑗,𝑡∗+1
𝜔̈ = 𝑣𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝜔̈ ∈ Ω̈ (6.29) 

 𝑉̈𝑗𝑑
𝜔̈ ≥ 0  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷| + 1}; 𝜔̈ ∈ Ω̈ (6.30) 

 𝑊̈𝑗𝑑
𝜔̈ ≥ 0 ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}; 𝜔̈ ∈ Ω̈ (6.31) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (3.6) 

 

Employee Learning  

Suppose that at the beginning of employee training, the daily processing facility capacity 

at  𝑗 ∈ 𝐽 is 𝑘𝑗 − 𝑘𝑗 , but that it increases naturally over a period of time at a rate of 𝑘𝑗
𝑟𝑎𝑡𝑒and then 
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remains at a constant level, 𝑘𝑗, when employees have been fully trained on the work processes. 

We can model such a situation as an exponential increase in capacity and can easily implement 

this into the IMCLP by changing constraint (3.4) from  

 𝑊𝑗𝑑 ≤ 𝑘𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (3.4) 

to 

 𝑊𝑗𝑑 ≤ (𝑘𝑗 − 𝑘𝑗𝑒
−𝑘𝑗

𝑟𝑎𝑡𝑒(𝑑−(𝑡∗−1)))𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}.  (6.32) 

 

6.6 Conclusions and Contributions 

 This dissertation argued that the hard capacity constraints that are often employed in 

location modeling are unrealistic since facility managers have numerous operational tools that 

allow a facility to accept items in excess of the stated processing capacity level. As such, we 

developed a new approach to modeling capacitated facility location models that takes into 

account the likelihood that the total amount of demand arriving at a processing facility may 

exceed the daily processing capacity on any day of the planning horizon. When such 

exceedances occur, our models permit backlogging excess demands and processing them at a 

later date. To ensure adequate service metrics are met, we assess a daily penalty cost for each 

unit of backlogged demand and, in models that consider stochastic demands, we also 

incorporated chance constraints to impose limits on the quantity of backlogged demand. 

 We reported the difference in facility locations, demand allocations, and total cost 

between the CFLP and our IMCLP approach. In particular, we have shown that the CFLP and 

IMCLP often do not locate the same facilities (and in some instances they locate a different 

number of facilities), and therefore also do not allocate demands to the same processing 

facilities. Since the CFLP does not incorporate the cost of backlog, the CFLP underestimates the 
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total cost. The cost benefit of using the IMCLP instead of the CFLP is particularly notable for 

application contexts in which it is highly desirable to process all of the demands on the day they 

arrive at a processing facility. Such an underestimate could have significant implications on 

budget predictions.  

 A key benefit of the IMCLP model is that it incorporates the penalty cost associated with 

the reality that on some days the total amount of demand arriving at a processing facility may 

exceed the daily processing capacity. The IMCLP formulation inherently assumes that demands 

do not expire; demands can be postponed indefinitely as long as the penalty cost is paid. We 

realize that in many situations this is not realistic and presented additional constraints that could 

be added to ensure demands are processed within a specified amount of time. 

 Our model formulations can use a dataset as a direct input into the model rather than 

specifying deterministic demands at an aggregate level by using parameter estimation 

techniques. This enabled us to develop a day-of-the-week allocation policy that considers day-to-

day variations in the daily processing capacity levels of a set of candidate processing facilities 

and/or systematic day-to-day demand variations. For example, our model is able to adjust the 

allocation policy to account for some facilities being closed on weekends or for days of the week 

that generate more demand than other days of the week. Through computational studies, we 

showed that incorporating this cyclic allocation approach into the model resulted in a significant 

cost savings as compared to models that do not incorporate this approach, such as the IMCLP.  

Furthermore, we noted that the model can readily be restructured to deal with other cycles, such 

as annual cycles with demand assignments that either change seasonally or monthly in response 

to time-varying demand patterns. 
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 We also presented multiple constraints that can be added to the model formulation to 

achieve various operational goals. These include (1) restricting the number of processing 

facilities to which a demand site can be assigned, (2) introducing a weekday/weekend allocation 

policy, and (3) restricting the maximum allowed travel time. Our results suggest that a significant 

cost benefit can be achieved by implementing the cyclic allocation model as compared to 

capacitated facility location models that require a static allocation policy.  Much of this benefit 

can be achieved even when additional constraints of the form outlined above are imposed. 

 While the IMCLP and IMCLP with cyclic allocations consider deterministic demands, 

our third modeling framework incorporated demand stochasticity into the IMCLP using a 

scenario based stochastic optimization approach in which a scenario corresponds to a realization 

of the daily demand for every day within the time horizon. In addition to assessing a penalty cost 

associated with each day an item spends in backlog (as is done in the IMCLP), we considered 

three different types of chance constraints to restrict the number of demands that are backlogged 

to a predetermined threshold. We first incorporated joint chance constraints that ensure the 

probability of any processing facility having a backlog level above the threshold on any day of 

the planning horizon is sufficiently small. We also modelled individual chance constraints on the 

amount of backlog at each facility each day, as well as a hybrid approach that accounts for the 

number of processing facilities that exceed the stated maximum backlog level on any day of the 

planning horizon. We then presented mixed-integer programming reformulations of the chance 

constraints that incorporate a finite number of scenarios from a given known demand 

distribution. 

Through computational experiments, we showed that the stochastic, chance constrained 

version of the IMCLP can produce different location and allocation solutions than the IMCLP, 
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and that even small differences in their allocations can drastically impact the amount of items 

held in backlog. Furthermore, if the decision maker has a limit on the desired maximum amount 

if items backlogged at any given time, it is important that the decision maker utilize the 

stochastic model; imposing the limit on a single demand scenario (i.e., using the IMCLP) often 

resulted in infeasible solutions to the joint chance constrained stochastic IMCLP due to the 

demand uncertainty.  

 The resulting models were solved using two different decomposition schemes and their 

performance is compared to that of a generic solver. The first approach decomposed the problem 

into two stages: the long-term (i.e., location and allocation) decisions were determined in the first 

stage while the daily (i.e., processing and backlog) decisions were determined in the second 

stage. Benders decomposition was used to solve the resulting formulation. The second 

decomposition scheme capitalized on the problem structure by utilizing a three-stage structure. 

In particular, given a feasible first-stage location and allocation solution, we readily determined 

the optimal second-stage processing and backlog decisions as well as the third-stage auxiliary 

variables that verify whether the joint chance constraint is satisfied by inspection. If the joint 

chance constraint was violated, a corresponding cut was added to the first-stage problem. 

 Computational results for the IMCLP, IMCLP with cyclic allocations, and the chance 

constrained IMCLP were presented for large-scale data sets generated from 2010 U.S. census 

population data by county. Using diverse data instances, we demonstrated the benefits gained 

from using a data-driven model with short term capacity flexibility. In each of these modelling 

contexts, we showed that the location and allocation decisions obtained from our models can 

result in significantly reduced costs and improved service metrics when compared to traditional 

models that do not account for the likelihood that demands may exceed capacity on some days.  
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 Finally, we presented a number of avenues for future research including a queueing 

approach, incremental backlog cost model, and an outbound shipment model. Furthermore, 

although the focus of this dissertation was the effect of incorporating the option to backlog 

excess demands, managers have additional operational tools that relax the traditional inflexible 

capacity constraints, including overtime, adding additional production shifts, and outsourcing. 

Degradations in capacity are also a reality. That is, the actual capacity on any day may be less 

than the nominal capacity due to machine breakdowns, labor slowdowns, or power outages. As 

such, we briefly discussed formulations for incorporating additional types of exogenous and 

endogenous capacity flexibility into a data-driven capacitated facility location model.  



 

182 

 

APPENDICES 



 

183 

 

APPENDIX A: The Data-Driven CFLP 

 

We formulate the data-driven CFLP as follows:  

𝑀𝑖𝑛 𝑿,𝒀    (|𝐷| − 𝑡
∗)∑ 𝑓𝑗𝑋𝑗𝑗∈𝐽 + 𝑎∑ ∑ ∑ ℎ𝑖𝑑𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼𝑗∈𝐽

|𝐷|
𝑑=𝑡∗+1  (A.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          

 ∑ 𝑌𝑖𝑗𝑗∈𝐽 = 1 ∀𝑖 ∈ 𝐼  (2.2)

 

 𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽  (2.3) 

 ∑ ℎ𝑖,𝑑−𝑡𝑖𝑗𝑌𝑖𝑗𝑖∈𝐼 ≤ 𝑘𝑗𝑋𝑗  ∀𝑗 ∈ 𝐽; 𝑑 ∈ {𝑡∗ + 1,… , |𝐷|}  (A.2) 

 𝑋𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽  (2.4) 

 𝑌𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽 (3.6) 

The objective function (A.1) minimizes the sum of the fixed facility and transportation costs over 

a time horizon of (|𝐷| − 𝑡∗) days. We note that the second term of the objective function 

includes the daily demands, ℎ𝑖𝑑, rather than the aggregated average demand, ℎ𝑖, used in the 

CFLP objective function (3.1). Constraints (2.2) and (2.3), respectively, ensure that each demand 

site 𝑖 ∈ 𝐼 is assigned to exactly one facility and that demands can only be assigned to located 

facilities. Constraints (A.2) are the data-driven capacity constraints that limit the amount of 

demand that arrives at a processing facility to be no more than the daily processing capacity of 

the facility. Thus, all demands are able to be processed on the day they arrive. Constraints (A.2) 

differ from the CFLP capacity constraints (2.6) in that constraints (A.2) are enforced on the 
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individual daily demands while constraints (2.6) are enforced on the average demands. 

Constraints (2.4) and (3.6) are standard binary and non-negativity constraints, as in the CFLP. 
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APPENDIX B: Effect of Population Weight 

As discussed in Section 3.4, the daily facility location costs are calculated by specifying a 

daily base cost plus an additional cost calculated form the associated demand (population) 

generated at that location. Specifically, we use the formula 

𝑧 + 𝑤𝜌𝑗 

to generate the daily facility location cost for each facility 𝑗 ∈ 𝐽, where 𝑧 denotes the daily base 

fixed cost, 𝜌𝑗 represents the population of the candidate processing facility 𝑗, and 𝑤 is the 

population weight. 

Table 34 describes the effect of the population weight on the daily facility location cost 

parameters, as well as the optimal IMCLP solution for the 50 demand, 50 candidate node 

instance, a daily base fixed cost of 𝑧 = $10,000, Poisson distributed daily demands with a mean 

equal to 1/10,000 of the county population, and unit transportation and backlogging costs of 

𝑎 = 1 and 𝑏 = 3, respectively. The first column indicates the weight attributed to the population. 

The second and third columns display the daily facility location cost of the least costly (Node 50: 

Du Page, IL) and most costly (Node 1: Los Angeles, CA) candidate processing facilities. Notice 

that as the population weight increases, the disparity between the minimum and maximum costs 

increases, as does the average daily facility location cost of the candidate facilities (column 4). 

The optimal solution for all five values of 𝑤 locates five processing facilities. The fifth column 

enumerates the ranks of the five facilities that are located (recall that that lower ranks have a 

higher facility location cost), the sixth column reports the average of the five ranks, and the last 

column displays the average daily facility location cost of the facilities that are located in the 
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optimal solution. As expected, when the population weight, 𝑤, increases, it becomes essential to 

locate at less expensive candidate processing facilities (i.e., higher ranked facilities). Maps of the 

optimal facility locations are presented in Figure 38. 

Table 34: Effect of population weight on location cost and optimal solution; Poisson distributed 

demand; a=1, b=3 
 Daily Facility Location Cost 

Parameters 

 Optimal Solution 

𝑤 
Min 

(Node 50) 

Max 

(Node 1) 
Avg. 

 

Ranks Located 

Avg. 

Rank 

Located 

Avg. Daily 

Cost of 

Located  

$0 $10,000 $10,000 $10,000  1, 2, 3, 7, 13 5.2 $10,000 

$0.0001 $10,092 $10,982 $10,183  2, 3, 6, 7, 13 6.2 $10,335 

$0.001 $10,917 $19,819 $11,833  12, 39, 43, 45, 50 37.8 $11,171 

$0.01 $19,169 $108,186 $28,331  39, 41, 43, 45, 50 43.6 $19,602 

$0.1 $101,692 $991,861 $193,311  41, 45, 47, 49, 50 46.4 $103,345 
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Figure 38: The optimal facility locations listed in Table 34 

 

1 

13 

3 

7 

2 

6 

13 

3 

7 

2 

45 

12 
39 

50 

43 

50 

43 

39 

45 

41 

45 

41 
47 

50 
49 

𝒘 = $𝟎 𝒘 = $𝟎. 𝟎𝟎𝟎𝟏 

𝒘 = $𝟎. 𝟎𝟎𝟏 𝒘 = $𝟎. 𝟎𝟏 

𝒘 = $𝟎. 𝟏 



 

188 

 

APPENDIX C: Proof of the Validity of Feasibility Cuts (5.89) 

 

Individual Chance Constraints 

To show the validity of cut (5.89) we begin by recalling 𝐼𝑗̅
𝜓
≔ {𝑖 ∈ 𝐼: 𝑌𝑖𝑗

𝜓
= 1} represents 

demand sites allocated to processing facility 𝑗 ∈ 𝐽 in infeasible solution 𝜓 ∈ Ψ̂𝑗. Let ℱ̅ ≔

{(𝑿, 𝒀): ∃𝑽,𝑾, 𝒁: (2.2) - (2.4), (3.6), (5.15) - (5.19), (5.22), and (5.80) - (5.82) are satisfied}. 

For any feasible (𝑿, 𝒀) solution to MIP-ICC, (𝑿, 𝒀) ∈ ℱ̅. Suppose another solution, (𝑿𝜓, 𝒀𝜓) 

satisfies constraints (2.2) - (2.4), (3.6), and (5.22) but (𝑿𝜓, 𝒀𝜓) ∉ ℱ̅. It follows that (𝑿, 𝒀) ≠

(𝑿𝜓, 𝒀𝜓).  

This further implies that the allocation decisions corresponding to the two solutions are 

different, i.e., 𝒀 ≠ 𝒀𝜓. To see this, note that if 𝑿 = 𝑿𝝍, then it must be that 𝒀 ≠ 𝒀𝜓 in order for 

(𝑿, 𝒀) ≠ (𝑿𝜓, 𝒀𝜓). If instead  𝑿 ≠ 𝑿𝝍, then ∃𝑗̂ ∈ 𝐽 such that 𝑋𝑗̂ ≠ 𝑋𝑗̂
𝜓

. Thus, either 𝑋𝑗̂ = 1 and 

𝑋𝑗̂
𝜓
= 0, or 𝑋𝑗̂ = 0 and 𝑋𝑗̂

𝜓
= 1. Suppose 𝑋𝑗̂ = 1 and 𝑋𝑗̂

𝜓
= 0. Then, for every 𝑖 ∈ 𝐼 such that 

𝑌𝑖𝑗̂ = 1 we must have 𝑌𝑖𝑗̂
𝜓
= 0 since facility 𝑗̂ is not located in solution (𝑿𝜓, 𝒀𝜓). Thus, 𝒀 ≠ 𝒀𝜓. 

An analogous reasoning holds for the case of 𝑋𝑗̂ = 0 and 𝑋𝑗̂
𝜓
= 1. 

Furthermore, the reason (𝑿𝜓, 𝒀𝜓) ∉ ℱ̅ must be because it violates the collective group of 

constraints (5.80) - (5.82). Since (𝑿, 𝒀) is a feasible solution to MIP-ICC, there must exist 𝑖′ ∈ 𝐼 

such that 𝑌
𝑖′𝑗̅

𝜓
= 1 and  𝑌𝑖′𝑗̅ = 0 for some 𝑗̅ ∈ 𝐽 and 𝑑̅ ∈ {𝑡∗ + 1,… , |𝐷| + 1} with 

∑ 𝑝𝜔
′
𝑍̅
𝑗̅𝑑̅

𝜔′𝜓
𝜔′∈Ω′ > 𝜏. Therefore,  
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 ∑ 𝑌𝑖𝑗̅𝑖∈𝐼̅𝑗̅
𝜓 = 𝑌𝑖′𝑗̅ + ∑ 𝑌𝑖𝑗̅𝑖∈𝐼̅𝑗̅

𝜓
\𝑖′

  

  = 0 + ∑ 𝑌𝑖𝑗̅𝑖∈𝐼𝑗̅
𝜓
\𝑖′

 

  ≤ |𝐼𝑗̅
𝜓
\𝑖′|  

  = |𝐼𝑗̅
𝜓
| − 1  

Therefore, the inequality (5.89) holds for any feasible (𝑿, 𝒀) solution to MIP-ICC. □ 

 

Hybrid Chance Constraints 

The proof that cut (5.89) is a valid feasibility cut for MIP-JCC is similar to the proof for the 

MIP-ICC with a few minor changes. Instead of using ℱ̅ as the proof for the MIP-ICC does, the 

MIP-HCC proof utilizes ℱ̂ ≔ {(𝑿, 𝒀): ∃𝑽,𝑾, 𝒁: (2.2) - (2.4), (3.6), (5.15) - (5.19), (5.22), and 

(5.83) - (5.85) are satisfied}. Additionally, the reason (𝑿𝜓, 𝒀𝜓) ∉ ℱ̂ must be because violates 

the collective group of constraints (5.83) - (5.85). Since (𝑿, 𝒀) is a feasible solution to MIP-

HCC, there must exist 𝑖′ ∈ 𝐼 such that 𝑌
𝑖′𝑗̅

𝜓
= 1 and  𝑌𝑖′𝑗̅ = 0 for some 𝑗̅ ∈ 𝐽 with 

∑ 𝑝𝜔
′
𝑍̂𝑗̅
𝜔′𝜓

𝜔′∈Ω′ > 𝜏. 
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