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ABSTRACT

System Design for Intelligent Web Services

by

Johann-Alexander Hauswald

Chairs: Jason Mars and Lingjia Tang

The devices and software systems we interact with on a daily basis are more intel-

ligent than ever. The computing required to deliver these experiences for end-users

is hosted in Warehouse Scale Computers (WSC) where intelligent web services are

employed to process user images, speech, and text. These intelligent web services are

emerging as one of the fastest growing class of web services. Given the expectation of

users moving forward is an experience that uses intelligent web services, the demand

for this type of processing is only going to increase. However, today’s cloud infras-

tructures, tuned for traditional workloads such as Web Search and social networks,

are not adequately equipped to sustain this increase in demand.

This dissertation shows that applications that use intelligent web service process-

ing on the path of a single query require orders of magnitude more computational

resources than traditional Web Search. Intelligent web services use large pretrained

machine learning models to process image, speech, and text based inputs and gener-

ate a prediction. As this dissertation investigates, we find that hosting intelligent web

services in today’s infrastructures exposes three critical problems: 1) current infras-

xi



tructures are computationally inadequate to host this new class of services, 2) system

designers are unaware of the bottlenecks exposed by these services and the implica-

tions on future designs, 3) the rapid algorithmic churn of these intelligent services

deprecates current designs at an even faster rate.

This dissertation investigates and addresses each of these problems. After building

a representative workload to show the computational resources required by an appli-

cation composed of three intelligent web services, this dissertation first argues that

hardware acceleration is required on the path of a query to sustain demand moving

forward. We show that GPU- and FPGA-accelerated servers can improve the query

latency on average by 10× and 16×. Leveraging the latency reduction, GPU- and

FPGA-accelerated servers reduce the Total Cost of Ownership (TCO) by 2.6× and

1.4×, respectively. Second, we focus on Deep Neural Networks (DNN), a state-of-the-

art algorithm for intelligent web services and design a DNN-as-a-Service infrastruc-

ture enabling application-agnostic acceleration and single-point of optimization. We

identify compute bottlenecks that inform the design of a Graphics Processing Unit

(GPU) based system; addressing the compute bottlenecks translates to a throughput

improvement of 133× across seven DNN based applications. GPU-enabled datacen-

ters show a TCO improvement over CPU-only designs by 4-20×. Finally, we design

a runtime system based on a GPU equipped server that improves current systems

accounting for recent advances in intelligent web service algorithms. Specifically,

we identify asynchronous processing key for accelerating dynamically configured in-

telligent services. We achieve on average 7.6× throughput improvements over an

optimized CPU baseline and 2.8× over the current GPU system.

By thoroughly addressing these problems, we produce designs for WSCs that are

equipped to handle the future demand for intelligent web services. The investigations

in this thesis address significant computational bottlenecks and lead to system designs

that are more efficient and cost-effective for this new class of web services.

xii



CHAPTER I

Introduction

As computing devices become evermore present in our lives, we rely on an expand-

ing set of features powered by Artificial Intelligence (AI) to support and accomplish

tasks on a daily basis. We can search the web using speech and natural, messy lan-

guage and receive personalized, intelligently curated results because the system is able

to understand our intent [1]. We can receive intelligent suggestions for responding

to email, interact with personal assistants to set reminders and make orders online,

intelligently sort pictures; these are just a few examples among a growing number of

applications [3,5,16,70], delivered across of range of devices [2, 14,22]. Such systems

are increasingly prevalent in today’s devices, and this growth is expected to further

increase with the rise in wearable devices where natural language is the primary

medium of interaction [6]. ABI Research predicts there will be 485 million annual

wearable device shipments by 2018 [99] showing the looming increase in demand for

this type of processing.

These capabilities are made possible by intelligent web services deployed in Ware-

house Scale Computers (WSC) that use large machine learning models to process im-

age, speech, and text based inputs. However, the processing required to support the

aforementioned use cases is orders of magnitude larger than traditional web service

applications currently deployed in the cloud. Cloud deployment of intelligent web

1
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Figure 1.1: Impact of Higher Computational Requirements for Intelligent Personal
Assistant (IPA) Queries on Datacenters (DCs)

services has emerged as a significant challenge system architects have been tasked

with solving. Figure 1.1 depicts the scaling that would be required of current cloud

infrastructures to sustain the demand of an intelligent web service, in this case an

intelligent personal assistant [28]. Building increasingly larger datacenters is not a

feasible solution to addressing the large demand for intelligent web service backed

applications.

1.1 Complex Intelligent Web Service Pipelines

Siri [7], Allo [15], and Cortana [23] represent a class of emerging intelligent web

service pipelines known as Intelligent Personal Assistants (IPAs). An IPA is an ap-

plication that uses inputs such as the user’s voice, vision (images), and contextual

information to provide assistance by answering questions in natural language, making

recommendations, and performing actions.

IPAs differ from many of the web service workloads currently present in modern

WSCs. In contrast to the queries of traditional browsercentric services, IPA queries

stream through software components that leverage recent advances in speech recog-

nition, natural language processing, and computer vision to provide users a speech-

driven and/or image-driven contextually-based question-and-answer system [61]. Due

2



to the computational intensity of these components and the large data-driven mod-

els they use, service providers house the required computation in massive datacenter

platforms in lieu of performing the computation on the mobile devices themselves.

This offloading approach is used by both Siri and Google Now as they send com-

pressed recordings of voice command/queries to datacenters for speech recognition

and semantic extraction [105]. However, datacenters have been designed and tuned

for traditional web services such as Web Search and questions arise as to whether

the current design employed by modern datacenters, composed of general-purpose

servers, is suitable for emerging IPA workloads.

1.2 Advances in State-of-the-art Machine Learning

Significant machine learning problems must be solved across various query types

to support the range of use cases that can benefit from intelligent web services, includ-

ing classifying images, recognizing faces, decoding speech, and analyzing text. These

are challenging machine learning problems that require powerful algorithms to pro-

vide a satisfactory experience for users. One such machine learning algorithm, Deep

Neural Network (DNN), has recently gained popularity in solving this wide range of

challenges. Using a DNN model trained on a large corpus of data has been shown in

the last few years to significantly outperform traditional machine learning techniques

in a number of domains [65]. Numerous internet service companies (Apple, Google,

Microsoft, Facebook) have been reported to use DNN as their core machine learning

algorithm for a wide range of applications [12,17,21,31].

Considering the amount of computation dedicated to DNN inference at the query

level, there is opportunity to accelerate a centralized DNN service. However, DNNs

require large pretrained machine learning models and significant acceleration is re-

quired to provide them as a user-facing low-latency web service, as prior work has

also noted [41,42,83]. Additionally, the churn of new DNN architectures and models

3
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make it difficult for system designers to pace the progress and design systems account-

ing for the progress in the field of intelligent web services. Consequently, questions

emerge as to the design of systems for state-of-the-art algorithms backing intelligent

web services and how to pace the rapid progress in this space.

1.3 Three Challenges

When considering the future of intelligent web services hosted in WSC, there are

a number of challenges that emerge.

1.3.1 Scalability Gap

To gain insights on the required resource scaling for IPA queries in modern dat-

acenters, we juxtapose the computational demand of an intelligent personal assis-

tant [28] query with that of a Web Search query. Figure 1.2 (left) presents the

average latency of both Web Search using open-source Apache Nutch [4,55] and Sir-

ius [28] queries. As shown in the figure, the average Nutch-based Web Search query

4
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latency is 91ms on a Haswell based server. In contrast, the latency of a Sirius query

is significantly longer, averaging around 15s.

Based on this significant difference in the computational demand, we perform a

back-of-the-envelope calculation of how the compute resources (machines) in current

datacenters must scale to match the throughput in queries for IPAs and Web Search.

Figure 1.2 (right) presents the number of machines needed to support IPA queries as

the number of these queries increases. Current datacenter infrastructures will need

to scale their compute resources to 165× their current size when the number of IPA

queries scale to match the number of Web Search queries. This throughput difference

is referred to as the scalability gap.

1.3.2 Intelligence Bottlenecks

To gain insights on how state-of-the-art Deep Neural Networks (DNNs) behave

on today’s systems, we perform a real-system analysis on a set of DNN based in-

telligent web services and their performance on a state-of-the-art server grade GPU.
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Figure 1.4: Conventional DNN Processing

We focus on the GPU as prior work has shown that DNNs are amenable to GPU

acceleration [45]. Figure 1.3 presents the throughput improvement achieved on the

GPU over a Xeon CPU core. As shown in the figure, the throughput improvement

across image, speech, and natural language processing applications varies greatly.

Large networks (ASR) achieve large improvement from computing large matrix mul-

tiplications on the GPU. On the other hand, Natural Language Processing (NLP)

applications (POS, CHK, NER) have small networks and thus the size of the matrix

multiplications in the neural network forward pass is relatively small. This limits the

resulting improvement achieved by the GPU. These bottlenecks suggests there are

significant challenges in designing a high throughput, low latency system for DNN

based intelligent web services.

1.3.3 Intelligent Web Service Churn

The intelligent web service churn is the rapid pace at which new techniques and

algorithms are being developed that continuously increase the accuracy of intelligent

services. In surveying the landscape of deep learning based intelligent web services, we

first illustrate the fundamental difference between conventional (static) DNN based

applications and recent state-of-the-art Natural Language Processing (NLP) appli-

cations. Figure 1.4 shows a conventional image processing pipeline made up of a

fixed size input (an image) and a preconfigured neural network architecture where

the constituent layers are statically defined (size and number of parameters). At in-
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ference, the neural network is executed once to provide the classification of the image.

Figure 1.5 illustrates the neural network topology of a tree-structured LSTM [110].

Conversely to the image processing pipeline, the topology of this network is dynami-

cally defined meaning the number of neural network invocations (blue boxes) is only

known at inference time (as opposed to being statically defined). This illustrates a

fundamental difference between the static and dynamic applications. Current state-

of-the-art systems are designed for the traditional type of processing and may not be

able to handle this dynamism.

1.4 Summary of Contributions

This dissertation investigates the design and deployment of large scale intelligent

web services addressing each of the challenges set forth and posits that, to sustain

demand moving forward, accelerator based WSCs are critical. Through this investiga-

tion, we design tools allowing us to investigate a set of hitherto unexplored workloads.

We show that by understanding the underlying computational characteristics of the

algorithms and optimizing their computational footprints, significant performance

improvements and Total Cost of Ownership (TCO) reductions are to be had. We

design new techniques and propose novel insights into designing scalable systems for

intelligent web services. With these intelligent web services in hand, this dissertation
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performs an in-depth investigation of the viability of various acceleration strategies,

and provides insights on future server designs.

1.4.1 Sirius: an End-to-end Personal Assistant

In Chapter III, we construct Sirius, an open end-to-end intelligent personal assis-

tant system with both speech and image front-ends (Section 3.3). We then charac-

terize Sirius on commodity hardware and investigate the sources of the scalability gap

for this workload and confirm there is a limited speedup potential for this workload

on general-purpose processors and acceleration is indeed needed to address the scal-

ability gap (Section 3.4). We extract 7 computational bottlenecks comprising 92% of

the cycles consumed by Sirius’ queries to compose a C/C++ benchmark suite (Sirius

Suite) for acceleration (Section 3.5). We then port these workloads and conduct a

thorough performance evaluation on a spectrum of accelerator platforms proposing

future server designs based on these accelerators (Section 3.6).

1.4.2 DjiNN and Tonic: DNN as a Service

In Chapter IV, we present the design and implementation of DjiNN, a DNN service

infrastructure that supports a spectrum of applications and neural network architec-

tures (Section 4.2). After introducing 7 end-to-end applications that use the DNN

service, we identify performance bottlenecks in the DNN service (Section 4.3) and

evaluate strategies to mitigate them, achieving high throughput and GPU scalability

without diminishing query latency beyond a certain threshold on a GPU accelera-

tor platform (Section 4.4). We evaluate various configurations including the number

of GPUs, PCIe and network configurations, as well as disaggregated and integrated

server design options. We identify cost-efficient server designs and system architec-

tures that achieve maximal throughput and maximal throughput per dollar while

satisfying the latency constraints based on the above investigations (Section 4.5).
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1.4.3 Fine-Grained Cross-Input Batching for NLP

In Chapter V, we identify a set of recently published state-of-the-art DNN based

NLP applications (Section 5.1) and perform an in-depth characterization of these

applications showing key computational differences compared to previously studied

DNN based applications (Section 5.2). We show how current GPU based systems

for DNN applications would lead to suboptimal performance, present evidence as to

why current systems are unsuitable for NLP, and develop a new taxonomy to show

the differences across the landscape of DNN based applications (Section 5.3). We

outline the design and implementation of a novel system using fine-grained cross-input

batching focused on providing high throughput for NLP applications (Section 5.4) and

show significant throughput gains over state-of-the-art systems (Section 5.5).
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CHAPTER II

Background and Related Work

This chapter presents background on Deep Neural Networks (DNN) as well as

recent related work that explores acceleration for intelligent applications at scale.

2.1 Deep Neural Networks

A neural network is a directed graph of neurons, where each neuron is a processing

element that applies a function to its input(s) to generate an output. The structure

of the network is defined by a set of connections between different groups of neurons

that perform the same function, known as the layers of the network. As illustrated

in Figure 2.1, a layer can be of type input, hidden, or output. A neural network can

have multiple hidden layers, where the number of such layers defines the depth of

the network. Common to all neural networks is a classifier layer that produces the

final output(s) of the network. This layer has as many outputs as there are classes to

predict by the network.

Deep Neural Network (DNN) A DNN is a neural network with many hidden

layers. Typically, each neuron is exhaustively connected to the neurons of the subse-

quent layer, in a configuration also known as a fully connected network. Each neuron

computes a weighted sum of its inputs to form an output that is sent to the next
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layer. The weights applied to the inputs are learned during training and stored in a

pretrained model describing the entire network. The structure of a DNN is depicted

in Figure 2.1, where the weights (w1, w2, w3) are applied to the neuron’s inputs to

produce the output; this process is analogous for all the network’s neurons.

Convolutional Neural Network (CNN) CNNs, a special case of DNNs, have a

similar structure to DNNs except they are specialized for image-related tasks. Two

important types of layers in CNNs include convolutional and pooling layers, used to

extract features from input images. In these layers, each neuron is mapped to a region

of the image to which the neuron applies a convolution or pooling operation. Because

of this segmentation into regions, the network is not fully connected. These are also
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(LSTM) Architecture

called sparsely connected networks. In convolutional layers, the learned weights are

kernels that are convolved with the image to extract features. Figure 2.2 shows the

kernel (red box) applied to the image generating a feature map. At each layer, there

are multiple learned kernels each producing a distinct feature map (shaded feature

maps in the figure). The pooling layers downsample each feature map to retain only

“interesting” features (green boxes). This convolution-and-downsample process is

repeated multiple times in a CNN to produce high quality features describing the

input image. These features are used in the fully connected classifier layer to predict

the content of the image.

Long-Short Term Memory (LSTM) Networks LSTMs [63] are another class of

neural network architectures, heavily based on Recurrent Neural Networks (RNNs).

Their primary characteristic, compared to DNNs and CNNs, is they retain state

and process their inputs as a sequence (as opposed to all at once like an image

for a CNN). These traits make them particularly well suited for Natural Language

Processing (NLP) applications where the input is a sequence of words that need to be

read sequentially to preserve the semantic structure of the input. Commonly, the first

layer in an RNN or LSTM is a word embeddings layer that translates each word in
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the input into a vector allowing mathematical operation on the input [91]. Figure 2.3

shows the computational pattern of an LSTM where the input (bottom red circles)

is processed in sequence where a state is retained (blue box) and used as a weighted

input to the next input.

2.2 Application Specific Acceleration

In addition to prior work focusing on datacenter efficiency [64, 78, 86–88, 93, 112,

113,119,121], recent work proposes a heterogeneous server design [68] for speech and

image recognition, where the Gaussian Mixture Model (GMM) scoring and image

matching algorithms were ported to hardware accelerators. However their work does

not address the acceleration of NLP algorithms or DNN-based speech recognition.

Custom accelerators for specific cloud applications have also been proposed, for ex-

ample for memcached [80] and database systems [73] showing the growing need for

specialized hardware in server applications. The Catapult project [97] at Microsoft

Research has ported key components of Bing’s page ranking to FPGAs. In this work,

we focus on accelerating the components that make up an intelligent personal assis-

tant focusing on their impact in the end-to-end system.

Prior work has also investigated acceleration of individual components of an in-

telligent personal assistant on various platforms. For speech recognition systems that

use a combination of Gaussian Mixture Models and Hidden Markov Models (HMM),

prior work characterizes and accelerates the workload in hardware [74,89]. In the past,

GPUs have been successful in accelerating speech recognition’s GMM [52] and more

recently Automatic Speech Recognition (ASR) was ported using a hybrid CPU-GPU

approach [71]. The Carnegie Mellon In Silicon Vox [81] project has implemented

an FPGA based GMM/HMM speech recognizer with a relatively small vocabulary.

Image processing algorithms have been shown to map well to accelerators [51,60,100].

Key natural language processing techniques also show promising results when ported
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to hardware [85, 108]. Low-power accelerators for deep neural networks [41, 53] have

garnered the interest of researchers as DNNs can be parallelized easily but have better

accuracy compared to conventional machine learning techniques [59].

In investigating workload characterization and acceleration, this dissertation dif-

fers from prior work in that it takes a holistic approach in understanding the design of

an entire system and considers the entire suite of services when designing a system for

intelligent web services. As we will show, systems need to be considered and investi-

gated end-to-end because of the inherent complexity and computational requirements

of the service.

2.3 Accelerating DNNs

Deep learning techniques are outperforming state-of-the-art traditional machine

learning methods in speech and image tasks [75]. There is growing interest both in

implementing software for deep learning methods within open source libraries [34,58,

69] and in improving hardware designs for DNNs via CPU optimizations [117] and

ASICs [41,42,83,98,114]. In this work, we focus on leveraging commodity GPU accel-

erators to optimize the throughput of DNN and on relieving bandwidth bottlenecks in

the network and interconnect to sustain high throughput across DNN-based services.

The Catapult project [97] at Microsoft Research ported key components of Bing’s

page ranking to FPGAs, showing the ongoing need for specialized hardware for dat-

acenter applications. Microsoft also studied reducing the total amount of machines

needed in a datacenter to train an image classification network increasing the effi-

ciency of the datacenter [43]. DistBelief [84] investigated distributing deep learning

tasks across large systems efficiently, and Coates et al. [45] investigated designing a

large network of GPUs connected with high-speed interconnects specialized for deep

learning and show they are able to effectively distribute computation in a WSC. These

systems investigate training deep learning networks while this work focuses on the
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inference task of DNNs in online applications.
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CHAPTER III

Sirius: an End-to-End Voice and Vision Personal

Assistant

This chapter presents the design and study of Sirius, an end-to-end Intelligent

Personal Assistant (IPA) developed to study how future Warehouse Scale Computers

(WSC) should evolve for this new type of application. The insight made in this

chapter is that current datacenter infrastructure are improperly equipped to handle

the amount of compute required on the path of a single IPA query. In building a

representative, end-to-end system, this chapter shows that in order to sustain demand

moving forward, accelerator-equipped WSCs are critical. After presenting the end-to-

end design of the system, we decompose Sirius into its algorithmic components and

investigate the design space of accelerators and perform a Total Cost of Ownership

(TCO) analysis of the datacenter hosting the intelligent personal assistant workload.

As our findings show, two accelerator platforms emerge as viable candidates informing

future accelerator-based server designs.
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3.1 Designing an Intelligent Personal Assistant

We construct an end-to-end standalone IPA service, Sirius, that implements the

core functionalities of an IPA such as speech recognition, image matching, natural

language processing, and a question-and-answer system. Sirius takes as input user

dictated speech and/or image(s) captured by a camera. There are three pathways

of varying complexity through the Sirius back-end based on the nature of the input

query. In designing Sirius, we focus on the following design objectives:

1. Completeness - Sirius should provide a complete IPA service that takes the

input of human voice and images and provide a response to the user’s question

with natural language.

2. Representativeness - The computational techniques used by Sirius to provide

this response should be representative of state-of-the-art approaches used in

commercial domains.

3. Deployability - Sirius should be deployable and fully functional on real sys-

tems.

We have constructed Sirius by integrating three services built using well-established

open source projects that include techniques and algorithms representative of those

found in commercial systems. These open-source projects include CMU’s Sphinx [67],

representing the widely-used Gaussian Mixture Model based speech recognition, Kaldi [96]

and RWTH’s RASR [103], representing industry’s recent trend toward Deep Neural

Network based speech recognition, OpenEphyra [104] representing the-state-of-the-

art question-and-answer system based on IBM’s Watson [56], and SURF [35] imple-

mented using OpenCV [39] representing state-of-the-art image matching algorithms

widely used in various production applications.
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Figure 3.1: End-to-end Diagram of the Sirius Pipeline

3.2 Sirius Overview: Life of an IPA Query

Figure 3.1 presents a high-level diagram of the end-to-end Sirius query pipeline.

The life of a query begins with a user’s voice and/or image input through a mobile

device. Compressed versions of the voice recording and image(s) are sent to a server

housing Sirius. The user’s voice is then processed by an Automatic Speech Recogni-

tion (ASR) front-end that translates the user’s speech question into its text equivalent

using statistical models. The translated speech then goes through a Query Classifier

that decides if the speech is an action or a question. If it is an action, the command is

sent back to the mobile device for execution. Otherwise, the Sirius back-end receives

the question in plain text. Using Natural Language Processing (NLP) techniques, the

Question-Answering (QA) service extracts information from the input, searches its

database, and chooses the best answer to return to the user. If an image accompanies

the speech input, Sirius uses computer vision to match the input image to the closest

resembling image in its image database and return relevant information about the

matched image using the Image Matching (IMM) service. For example, a user can

ask “What time does this restaurant close?” using image(s) of the restaurant captured

from a mobile device. Sirius can then return an answer to the query based not only

on the speech, but also information from the image.

As shown in Figure 3.1, there are a number of pathways a single query can take
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Table 3.1: Query Taxonomy

Query Type Example Service Result
Voice Command (VC) “Set my alarm for 8am.” ASR Action on device

Voice Query (VQ) “Who was elected 44th president?” ASR & QA Answer from QA
Voice-Image Query (VIQ) “When does this restaurant close?” ASR, QA & IMM Answer from IMM and QA

based on the type of directive, whether it be question or action, and the type of

input, speech only or accompanied by images. In order to design the input set used

with Sirius, this work identifies a query taxonomy of three classes that covers these

pathways. Table 3.1 summarizes these query classes providing an example for each,

the Sirius services they exercise, the resulting behavior of Sirius.

3.3 Services and Algorithmic Components

As shown in Figure 3.2, Sirius is composed of three IPA services: Automatic

Speech Recognition (ASR), Question-Answering (QA), and Image Matching (IMM).

These services can be further decoupled into their individual algorithmic components.

In order to design Sirius to be representative of production grade systems, Sirius lever-

ages well-known open-source infrastructures that use the same algorithms as commer-

cial applications. Speech recognition in Google Voice, for example, has used speaker-

independent Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM)

and is adopting Deep Neural Networks (DNNs) [49,62]. The OpenEphyra framework

used for question-answering is an open-source release from CMU’s prior research col-

laboration with IBM on the Watson system [56]. OpenEphyra’s NLP techniques,

including conditional random fields (CRF), have been recognized as state-of-the-art

and are used at Google and in other industry question-answering systems [116]. The

image matching pipeline is based on the SURF algorithm, which is widely used in

industry [20, 27, 35]. SURF is implemented using the open-source computer vision

OpenCV library [39], which is employed in commercial products from companies like

Google, IBM, and Microsoft. The design of these services are described in the re-
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mainder of this section.

3.3.1 Automatic Speech Recognition (ASR)

The inputs to the ASR are feature vectors representing the speech segment, gener-

ated by fast pre-processing and feature extraction of the speech. The ASR component

relies on a combination of a Hidden Markov Model (HMM) and either a Gaussian

Mixture Model (GMM) or a Deep Neural Network (DNN). Sirius’ GMM-based ASR

uses CMU’s Sphinx [67], while the DNN-based ASR includes Kaldi [96] and RWTH’s

RASR [103].

As shown in Figure 3.3, the HMM builds a tree of states for the current speech

frame using input feature vectors. The GMM or DNN scores the probability of the

state transitions in the tree, and the Viterbi algorithm [57] then searches for the most
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likely path based on these scores. The path with the highest probability represents the

final translated text output. The GMM scores HMM state transitions by mapping

an input feature vector into a multi-dimensional coordinate system and iteratively

scores the features against the trained acoustic model.

On the other hand, the DNN based implementation scores the transition prob-

abilities using the output from a neural network. The depth of a DNN is defined

by the number of hidden layers where scoring amounts to one forward pass through

the network. In recent years, industry and academia have moved towards DNNs over

GMMs due to their higher accuracy [48,66].

3.3.2 Image Matching (IMM)

The image matching pipeline receives an input image, attempts to match it against

images in a pre-processed image database, and returns information about the matched

images. The database used in Sirius is the Mobile Visual Search [40] database, which

is a database of objects taken from a mobile device.

Figure 3.4 details the steps described in the following section in performing per-
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forming image matching on a single image. Image keypoints are first extracted from

the input image using the SURF algorithm [35]. Specifically, in Feature Extraction

(FE), the image is downsampled and convolved multiple times to find interesting

points at different scales. After thresholding the convolution responses, the local

maxima responses are stored as the image keypoints, which represent interesting re-

gions of the image. The keypoints are then passed to the Feature Descriptor (FD)

component where they are assigned an orientation vector, and similarly oriented key-

points are grouped into feature descriptors. This process reduces variability across

input images, increasing chances of finding the correct match. The descriptors from

the input image are matched to pre-clustered descriptors representing the database

images by using an approximate nearest neighbor (ANN) search. The database image

with the highest number of matches is returned.

3.3.3 Question-Answering (QA)

The text output from ASR is passed to OpenEphyra (OE) [104], which uses three

natural language processing techniques to extract textual information: word stem-

ming, regular expression matching, and part-of-speech tagging. Figure 3.5 shows a

diagram of the OE engine incorporating these components, generating Web Search

queries and filtering the returned results. The Porter Stemming [95] algorithm (stem-

mer) exposes the root of a word by matching and truncating common word endings.
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OE uses a suite of regular-expression patterns to match common query words (what,

where, etc) and filter any special characters in the input. The Conditional Random

Field (CRF) classifier [77] takes a sentence, the position of each word in the sentence,

and the label of the current and previous word as input to makes predictions on the

part-of-speech for each word of an input query. Each input query is parsed using

the aforementioned components to generate queries to the Web Search engine. Next,

filters using the same techniques are used to extract information from the returned

documents. The document with the highest overall score after score aggregation is

returned as the best answer.

3.4 Real System Analysis for Sirius

In this section, we present a real-system analysis of Sirius. The experiments in

this section are performed using an Intel Haswell server (details in Table 3.3).
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3.4.1 Sirius Query Deep Dive

To better understand the IPA query characteristics, we further investigate the

average latency and latency distributions of various query types for Sirius. Figure 3.6

presents the average latency across query types including traditional Web Search

(WS), Voice Command (VC), Voice Query (VQ) and Voice Image Query (VIQ). As

shown in the figure, the latency of all three Sirius query types are significantly higher

than that of Web Search queries. The shortest query type is VC, which only uses

the ASR service. Yet it still requires orders of magnitude more computation than

Web Search. The longest query type is VIQ, which uses all three services including

ASR, IMM, and QA. Among all three services, QA consistently consumes the most

compute cycles.

Figure 3.7 presents the latency distribution for each Sirius service. As shown in

the figure, QA has the highest variability in latency, ranging from 1.7s to 35s depend-

ing on the input query. Figure 3.8 further presents the breakdown of execution time

among QA’s hot components (described later in this section) across the complete
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Table 3.2: Voice Query Input Set

Q# Query

q1 “Where is Las Vegas?”
q2 “What is the capital of Italy?”
q3 “Who is the author of Harry Potter?”
... ...
q15 “What is the capital of Cuba?”
q16 “Who is the current president of the United States?”

VQ query input set (shown in Table 3.2). The reason for this high latency vari-

ability is not immediately clear from inspecting the query input set, especially when

considering the small difference between Q2 and Q15 in Table 3.2. However, after

further investigation, this work identifies that the high variance is primarily due to the

runtime variability of various document filters in the NLP component used to select

the most fitting answer for a given query. Figure 3.9 demonstrates the correlation

between latency and the number of hits in the document filters. The other services,

ASR and IMM, have very low query to query variability. Next, we investigate the

cycle breakdown of the algorithmic components that comprise each service.
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3.4.2 Cycle Breakdown of Sirius Services

To identify the computational bottlenecks of each service, we perform a top-down

profiling of the hot algorithmic components for each service, shown in Figure 3.2,

using Intel VTune [19]. Figure 3.10 presents the average cycle breakdown results.

Across services, a few hot components emerge as good candidates for acceleration.

For example, a high percentage of the execution for ASR is spent on scoring using

either GMM or DNN. For QA, on average 85% of the cycles are spent in three

components including stemming, regular expression pattern matching and CRF, and

for IMM, the majority of cycles are spent either performing feature extraction or

description using the SURF algorithm.

We then identify the architectural bottlenecks for these hot components to in-

vestigate the performance improvement potential for a general-purpose processor.

Figure 3.11 presents the instructions per cycle (IPC) and potential architectural bot-

tlenecks (including front-end, speculation and back-end) for each component, identi-
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Figure 3.11: IPC and Bottleneck Breakdown

fied using VTune. A few of the service components including DNN and Regex execute

relatively efficiently on Xeon cores. This graph indicates that even with all stall cycles

removed (i.e., perfect branch prediction, infinite cache, etc) the maximum speed-up

is bound by around 3×. Considering the orders of magnitude difference indicated by

the scalability gap, further acceleration is needed to bridge the gap.

3.5 Accelerating Sirius

In this section, we describe the platforms and methodology used to accelerate the

key components of Sirius. We also present and discuss the results of accelerating each

of these components across 4 different accelerator platforms.
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Table 3.3: Platform Specifications

Multicore GPU Phi FPGA
Model Intel Xeon E3-1240 V3 NVIDIA GTX 770 Intel Xeon Phi 5110P Xilinx Virtex-6 ML605

Frequency 3.40 GHz 1.05 GHz 1.05 GHz 400 MHz
# Cores 4 8* 60 N/A

# HW Threads 8 12288 240 N/A
Memory 12 GB 2 GB 8 GB 512 MB

Memory BW 25.6 GB/s 224 GB/s 320 GB/s 6.40 GB/s
Peak TFLOPS 0.5 3.2 2.1 0.5

* Core = SM (Streaming Multiprocessor), 2048 threads/SM

3.5.1 Accelerator Platforms

This paper uses a total of four platforms, summarized in Table 3.3, to accelerate

Sirius. The baseline platform is an Intel Xeon Haswell CPU running single-threaded

kernels. The advantages and disadvantages of each accelerator platform are summa-

rized below.

• Multicore CPU - Advantages: High clock frequency, not limited by branch

divergence. Disadvantages: Least amount of threads available.

• GPU - Advantages: Massively parallel. Disadvantages: Power hungry, custom

ISA, hard to program, large data transfer overheads, limited branch divergence

handling.

• Intel Phi - Advantages: Many core, standard programming model (same ISA),

manual porting (optional compiler help), handles branch divergence, high band-

width. Disadvantages: Data transfer overheads, relies on compiler. Note: 1 core

is used for the operating system running on the device itself.

• FPGA - Advantages: Can be tailored to implement very efficient computation

and data layout for the workload. Disadvantages: Runs at a much lower clock

frequency, expensive, hard to develop for and maintain with software updates.

29



Table 3.4: Sirius Suite and Granularity of Parallelism

Service Benchmark Baseline Input Set Data Granularity
ASR Gaussian Mixture Model (GMM) CMU Sphinx [67] HMM states HMM state

Deep Neural Network (DNN) RWTH RASR [103] HMM states Matrix mult.
QA Porter Stemming (Stemmer) Porter [95] 4M word list Individual word

Regular-Expression (Regex) SLRE [29] 100 expr./400 sent. Expr-sentence pair
Conditional Random Fields (CRF) CRFsuite [92] CoNLL Task [115] Sentence

IMM Feature Extraction (FE) SURF [35] JPEG Image Image tile
Feature Description (FD) SURF [35] Vector of Keypoints Keypoint

3.5.2 Sirius Suite: A Collection of IPA Compute Bottlenecks

To investigate the viability and trade-offs of accelerating IPAs, this work extracts

the key computational bottlenecks of Sirius (described in Section 3.4) to construct a

suite of benchmarks called Sirius Suite. Sirius Suite as well as its implementations

across the described accelerator platforms are available alongside the end-to-end Sirius

application [28]. As a basis for Sirius Suite, we port existing open-source C/C++

implementations available for each algorithmic component to our target platforms.

We additionally implemented standalone C/C++ benchmarks based on the source

code of Sirius where none were currently available. The baseline implementations

are summarized in column 3 of Table 3.4. For each Sirius Suite benchmark, we built

an input set representative of IPA queries. Table 3.4 shows the granularity at which

each thread performs the computation on the accelerators. For example, both GMM

and DNN kernels receive input feature vectors from the HMM search, which are all

scored in parallel but at different levels of abstraction, respectively, based on each

implementation.

3.5.3 Porting Methodology

The common porting methodology used across all platforms is to exploit the large

amount of data-level parallelism available throughout the processing of a single IPA

query. The following subsections describe the platform-specific highlights of the port-

ing efforts.
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Multicore CPU

The Pthread library is used to accelerate the kernels on the multicore platform

by dividing the size of the data. Each thread is responsible for a range of data over

a fixed number of iterations. This approach allows each thread to run concurrently

and independently, synchronizing only at the end of the execution.

For the image matching kernels, the images are pre-processed for feature extraction

by tiling the images. Each thread of the CPU is assigned one or more tiles of the input

image (depending on the size of each tile). This allows to spawn threads once at the

beginning of execution and synchronize threads at the end, instead of parallelizing

at a smaller granularity within the SURF algorithm, which would require multiple

synchronizations between loops. However, as the tile size decreases, the number of

“good” keypoints decreases, so the tile size is fixed to a minimum of 50×50 per thread.

GPU

Sirius Suite use NVIDIA’s CUDA library to port the Sirius components to the

NVIDIA GPU. To implement each CUDA kernel, we varied and configured the GPU

block and grid sizes to achieve high resource utilization, matching the input data

to the best thread layout. Additional string manipulation functions currently not

supported in CUDA for the stemmer kernel.

Intel Phi

We port our Pthread versions to the Intel Phi platform, leveraging the ability of

the target compiler to parallelize the loops on the target platform. For this, we use

Intel’s ICC cross-compiler. The Phi kernel is built and run directly on the target

device allowing for rapid prototyping and debugging. On the Phi platform, we sweep

the total amount of threads spawned in increments of 60, increasing the number of

hardware threads per core. For some kernels, the maximum number of threads (with

enough input data) did not always yield the highest performance. To investigate

the potential of this platform to facilitate ease of programming, we use the standard
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Figure 3.12: FPGA GMM Diagram

programming model and custom compiler to extract performance from the platform.

As such, the results represent what can be accomplished with minimal programmer

effort.

FPGA

We use previously published details of FPGA implementations for a number of our

Sirius Benchmarks in this work. However, due to limited published details for two of

our workloads and to gain further insights, we design our own FPGA implementations

for both GMM and Stemmer and evaluate them on a Xilinx FPGA.

GMM - The major computation of the algorithm lies in three nested loops that

iteratively score the feature vector against the training data. This training data

comes from an acoustic model, a language model, and a dictionary in the forms

of a means vector, a pre-calculated (precs) vector, a weight vector, and a factor

vector. All of this data is used to generate a score for the probability of an HMM
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Figure 3.13: FPGA Stemmer Diagram

state transition. The focus when implementing the algorithm on the FPGA is to

maximize parallelization and pipeline utilization, which leads to the design presented

in Figure 3.12. This figure depicts both a core that computes the score of a single

iteration of the outermost loop and a callout of a log differential unit. The log

differential unit is used to fully parallelize the innermost loop, while the entire core

can be instantiated multiple times to parallelize the outermost loop. Because of this,

the design is highly scalable as multiple cores can be used to fill the FPGA fabric.

The middle loop of the algorithm is not parallelizable and is represented by the Log

Summation unit. This design is able to create a high throughput device with a linear

pipeline.

Stemmer - The Stemmer algorithm computes the root of a word by checking for

multiple conditions, such as the word’s suffixes or roots. Figure 3.13 summarizes a

single step for the stemmer implementation. By taking advantage of the mutual ex-

clusivity of test conditions, we are able to parallelize these comparisons, which allowed

the FPGA to achieve a much lower latency than the original Porter algorithm. This

implementation performs multiple vector operations simultaneously to count vowels,
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Table 3.5: Speedup of Sirius Suite Across Platforms

Service Benchmark CMP GPU Phi FPGA

ASR
GMM 3.5 70.0 1.1 169.0
DNN 6.0* 54.7* 11.2 110.5 [54]

QA
Stemmer 4.0 6.2 5.6 30.0

Regex 3.9 48.0 [118] 1.1 168.2 [120]
CRF 3.7 3.8 [94] 4.7 7.5 [109]

IMM
FE 5.2 10.5 2.5 34.6 [38]
FD 5.9 120.5 12.7 75.5 [38]

* This includes DNN and HMM combined.

vowel-consonant pairs, and compare suffixes. Together, these operations select the

correct word shift for the specific step. This forms a single pipelined core based upon

six steps dealing with the different possibilities of suffixes. We instantiate multiple

cores to fill the FPGA fabric to deliver maximum performance.

3.5.4 Accelerator Results

Table 3.5 and Figure 3.14 present the performance speedup achieved by the Sirius

kernels running on each accelerator platform, organized by service type. For the

numbers from prior literature, we scale the FPGA speedup number to match the

FPGA platform based on fabric usage and area reported in prior work. We also use

numbers from literature for kernels (Regex and CRF) that were already ported to the

GPU architecture and yielded better speedups than our implementations.

ASR

The GMM implementation, extracted from CMU Sphinx’s acoustic scoring, had

the best performance on the GPU (70×) after optimizations. These custom opti-

mizations on the GPU achieved an order of magnitude improvement by optimizing

the data structure layout to ensure coalesced global memory accesses. This leveraged

concurrent reads to sequential memory positions for a warp (32 threads). In addition,

it was possible to store the entire data required for the GMM in the GPU memory
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Figure 3.14: Heat Map of Acceleration Results

(2GB) during the deployment time reducing communication between the host and

device. The Phi platform did not perform as well as the GPU, indicating that the

custom compiler may not have achieved the optimal data layout. The FPGA imple-

mentation using a single GMM core achieved a speedup of 56×; when fully utilizing

the FPGA fabric it achieved a 169× speedup using 3 GMM cores. RWTH’s DNN

includes both multithreaded and GPU versions out-of-the-box. The RWTH’s DNN

parallelizes the entire framework (both HMM search and DNN scoring) and achieves

good speedup in both cases. In the cases where a custom kernel is used or cite lit-

erature, we assume a 3.7× speedup for the HMM [44] as a reasonable lower bound.

QA

The NLP algorithms as a whole have very similar performance across platforms

because of the nature of the workload: high input variability with many test state-

ments causes high branch divergence. Fine tuning the stemming algorithm on the

Phi to spawn 120 threads instead of the maximum and switching from allocating a

range of data per thread to interlaced array accesses yields a better performance given

the lower number of threads used. The FPGA stemmer implementation achieved a
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6× speedup over the baseline with a single core using only 17% of the FPGA fabric.

Scaling the number of cores to fully utilize the resources of the FPGA yielded a 30×

speedup over the baseline. The stemmer algorithm contains many test statements

and is not well suited for SIMD operations. Improving the initial stemmer imple-

mentation for the GPU by replacing most of the conditional branches with efficient

XOR operations [106] did not yield benefits in our experiments. The fine-grained

XOR-based implementation performed worse than the initial version due to addi-

tional synchronization between threads.

IMM

The image processing kernels achieved the best speedup on the GPU which uses

heavily optimized OpenCV [39] SURF implementations yielding speedups of 10.5×

and 120.5× for FE and FD, respectively. Prior work shows that the FPGA yields

better FE speedups but does not show similar increases for FD. The tiled multicore

version yields good speedup but the performance does not scale as well on the Phi

because the number of tiles is fixed, which means there is little advantage to having

more threads available. The GPU version has better performance because it uses a

data layout explicitly optimized for a larger number of threads.

3.6 Implications for Future Server Design

In this section, we investigate the performance, power, and cost-efficiency trade-

offs when configuring servers with different accelerator platforms for Sirius.

3.6.1 Server Level Design

We first investigate the end-to-end latency reduction and the power efficiency

achieved across server configurations for Sirius’ services including ASR, QA and IMM.

36



0 1 2 3 4 5
FPGA

Phi

GPU

CMP (sub-query)

CMP

0.22

0.19

ASR_GMM ASR_HMM

0 1 2 3 4 5
0.3

0.09*

*

ASR_DNN ASR_HMM

0 2 4 6 8 10 12 14
FPGA

Phi

GPU

CMP (sub-query)

CMP

0.94

QA_Stemmer
QA_Regex

QA_CRF
QA_Other

0 1 2 3
0.05

0.12

IMM_FE IMM_FD

Latency (s) (* includes DNN and HMM combined)

Figure 3.15: Latency Across Platforms for Each Service
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Latency Improvement

Figure 3.15 presents the end-to-end query latency across Sirius’ services on a single

leaf node configured with each accelerator. Presented are both results for ASRs that

use GMM/HMM and DNN/HMM as key algorithms. The latency breakdown for all

hot components within a service is also presented in the figure. QA is focused on the

NLP components comprising 88% of the cycles of QA as search has already been well

studied [55].

The baseline in this figure, CMP, is the latency of the original algorithm imple-

mentations of Sirius running on a single core of an Intel Haswell server, described

in Table 3.3. CMP (sub-query) is the Pthreaded implementation of each service

exploiting parallelism within a single query, thus reducing the single query latency.

This is executed on 4 cores (8 hardware threads) of the Intel Haswell server. CMP

(sub-query) in general achieves a 25% latency reduction over the baseline. Across all

services, the GPU and FPGA significantly reduce the query latency. For example, the

FPGA implementation of ASR (GMM/HMM) reduces the speech recognition query

latency from 4.2s to only 0.19s. The FPGA outperforms the GPU for most of the

services except ASR (DNN/HMM). Although the Phi can reduce the latency over the

single core baseline (CMP), the Phi is generally slower than the Pthreaded multicore

baseline.

Energy Efficiency

Figure 3.16 presents the energy efficiency (performance/watt) for each acceler-

ator platform across four services of the Sirius pipeline, normalized to the perfor-

mance/watt achieved by using all cores on a multicore CPU by query-level parallelism.

Here performance is defined as 1/latency. Table 3.6 presents the power (TDP) for

each accelerator platform. The FPGA has the best performance/watt, exceeding ev-

ery other platform by a significant margin, with more than 12× energy efficiency over
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Table 3.6: Platform Power and Cost

Platform Power TDP (W) Cost ($)

Intel Xeon CPU E3-1240 80 250
NVIDIA GPU GTX 770 230 399

Intel Xeon Phi 5110P 225 2,437
Xilinx Virtex-6 FPGA 22 1,795

the baseline multicore. The GPU’s performance/watt is also higher than the baseline

for 3 of 4 services. Its performance/watt is worse than the baseline for QA, mainly

due to its moderate performance improvement for this service.

3.6.2 Datacenter Design

Based on the latency and energy efficiency trade-offs for server platforms discussed

in the previous section, this section evaluates multiple design choices for datacenters

composed of accelerated servers to improve performance (throughput) and reduce the

total cost of ownership (TCO).

Throughput Improvement

The latency reduction shown in Figure 3.15 can translate to significant throughput

improvements. Figure 3.17 presents the throughput improvement achieved using var-

ious acceleration platforms without degrading latency beyond the baseline. Similar to
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Figures 3.15 and 3.16, the CMP baseline executes the original Sirius workload on the

Intel Haswell platform, where all four cores are utilized to serve queries, thus achiev-

ing similar throughput as CMP (sub-query level). Note that CMP’s query latency

is however significantly longer because CMP (sub-query level) exploits parallelism

within a single query. Figure 3.17 demonstrates that significant latency reductions

achieved by the GPU and FPGA translate to significant throughput improvement.

For example, the GPU provides 13.7× throughput improvement over the baseline

CMP for ASR (DNN/HMM), while the FPGA achieves 12.6× throughput for IMM.

For QA, the throughput improvement across the platforms is generally more limited

than other services.
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Table 3.7: TCO Model Parameters [33]

Parameter Value
DC Depreciation Time 12 years

Server Depreciation Time 3 years
Average Server Utilization 45%

Electricity Cost $0.067/kWh
Datacenter Price $10/W
Datacenter Opex $0.04/W

Server Opex 5% of Capex / year
Server Price (baseline) $2,102 [30]
Server Power (baseline) 163.6 W [30]

PUE 1.1

Figure 3.18 presents the throughput improvement achieved using each acceleration

platform at various load levels (the server is modeled as an M/M/1 queue). Compared

to Figure 3.17, which presents the throughput improvement at 100% load, when con-

sidering queuing effect, the lower the server load, the bigger impact latency reduction

would have on throughput improvement. In other words, Figure 3.17 demonstrates

a lower bound of throughput improvement for a queuing system. Since datacenter

servers often operate at medium-to-low load, as shown in Figure 3.18, significantly

higher throughput improvement can be expected.

TCO Analysis

Improving throughput allows reduction in the amount of computing resources

(servers) needed to serve a given load. However, reducing the number of servers may

or may not lead to reduction in the total cost of ownership of a datacenter (DC).

Although reducing the machines leads to reduction on DC construction cost and

power/cooling infrastructure cost, it may increase the per server capital or operational

expenditure cost either by additional accelerator purchase cost or the energy cost.

Here we present a cost analysis to evaluate the implication on the datacenter cost

when using each accelerated server platform. The TCO analysis is performed using

the TCO model recently proposed by Google [33]. The parameters used in the TCO
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model are described in Table 3.7. The server price and power usage are based on

the following server configuration based on the OpenCompute Project: 1 CPU Intel

Xeon E3-1240 V3 3.4 GHz, 32 GB of RAM, and two 4TB disks [30].

Figure 3.19 presents the datacenter TCOs with various acceleration options, nor-

malized to the TCO achieved by a datacenter that uses only CMPs. Overall, the

FPGA and GPU provide high TCO reduction. For example, the GPU achieves over

8× TCO reduction for ASR (DNN) and the FPGA achieves over 4× TCO reduction

for IMM. The next section further discussed the TCO results and use them to derive

the DC designs.

Homogeneous Datacenter Design

Based on latency results from Figure 3.15 and TCO results from Figure 3.19, we

first investigate the trade-offs when designing a homogeneous datacenter, that is, all

servers in the datacenter have the same configuration. Homogeneous datacenters are

often desirable as they minimize the management and maintenance overhead [86].

When designing a datacenter, it would be ideal to maximize performance (e.g.,

minimize query latency or improve throughput for a given latency constraint) and

minimize the total cost of ownership. However, trade-offs may need to be made as

to which objective should be prioritized if both cannot be optimized by the same
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design. Figure 3.20 presents the trade-offs between the query latency improvement

and the TCO improvement for each server option across four Sirius services. The

x-axis presents latency improvement and the y-axis shows the TCO improvement.

As shown in the figure, the FPGA achieves the lowest latency (highest latency

improvement) among all accelerating platforms for 3 out of 4 services studied. How-

ever, the FPGA’s relatively high purchase cost allows GPUs to achieve similar or

higher TCO savings with smaller latency reduction as the FPGAs. When the FPGA

is not considered an option, the GPU achieves the optimal latency and TCO for

all services. Even with the FPGA as an accelerator candidate, a GPU-accelerated

datacenter provides the best latency and TCO for ASR using DNN.

Table 3.8: Homogeneous DC (GMM and DNN are ASR services)

With FPGA Without FPGA Without {FPGA, GPU}
GMM DNN QA IMM GMM DNN QA IMM GMM DNN QA IMM

Hmg-latency FPGA
Hmg-TCO (w/ L constraint) GPU GPU CMP

Hmg-power eff. (w/L constraint) FPGA
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Table 3.8 summarizes the homogeneous datacenter design for each of the main

Sirius services under different conditions and optimization objectives. Presented are

three first-order design objectives: minimizing latency, minimizing TCO with a la-

tency constraint, and maximizing energy efficiency with a latency constraint, shown

as three rows of the table. The latency constraint here is CMP (sub-query) using the

latency shown in Figure 3.15. The first row (with FPGA, without FPGA, without

FPGA or GPU) also shows the design constraints for the accelerator candidates.

Key Observation - In conclusion, FPGAs and GPUs are the top 2 candidates

for homogeneous accelerated datacenter designs across all three design objectives. An

FPGA-accelerated datacenter allows DCs to minimize latency and maximize energy

efficiency for most of the services and is the best homogeneous design option for

those objectives. Its power efficiency is desirable for datacenters with power con-

straints, especially for augmenting existing filled datacenters that are equipped with

capped power infrastructure support. It also improves TCO for all four services. On

the other hand, FPGA-accelerated datacenters incur higher engineering cost than the

rest of the platforms. For DCs where engineering cost needs to be under a certain

constraint, GPU-accelerated homogeneous datacenters achieve relatively low latency

and high throughput. They also achieve similar or higher TCO reduction than FPGA

due to its low purchase cost. GPUs could be a desirable option over FPGAs when

the high engineering overhead of FGPA implementation is a concern, especially given

the quick workload churn (e.g., binaries are updated on the monthly basis) in modern

datacenters.

Table 3.9: Heterogeneous DC (GMM and DNN are ASR services)

With FPGA Without FPGA Without {FPGA, GPU}
GMM DNN QA IMM GMM DNN QA IMM GMM DNN QA IMM

Het-latency FPGA GPU (3.6x) FPGA
Het-TCO (w/ L constraint) GPU FPGA (20%) FPGA (19%) GPU CMP

Het-power eff. (w/L constraint) FPGA

Heterogeneous (Partitioned) Datacenter Design
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Next, we explore the design options for partitioned heterogeneous datacenters.

Because each service can run on its most suitable platform in a partitioned hetero-

geneous datacenter, this strategy may provide additional opportunities for further

latency reduction or TCO reduction. Table 3.9 shows various DC design choices

for different design objectives (rows), accelerator candidate sets (with FPGA, with-

out FPGA, and without FPGA and GPU) and services (columns). The numbers in

parenthesis show the improvement on the metric of the specific design objective of

that row when the DC design switches from a homogeneous baseline to a heteroge-

neous partitioned design.

As shown in the first row of the table, when designing a partitioned heterogeneous

DC for ASR, QA and IMM services, if all accelerators are considered viable candi-

dates, GPUs can be used to optimize the latency for ASR (DNN) and achieves 3.6×

latency reduction for that service compared to the homogeneous DC using FPGA

across all services. Similarly, using FPGAs for QA and IMM achieves 20% and 19%

TCO improvement, respectively.

Key Observation - In conclusion, the partitioned heterogeneity in the study

does not provide much benefit over the homogeneous design. The amount of benefit

is certainly dependant on the workload partition across services. However, overall,

most of the algorithms and services in the Sirius workload exhibit a similar trend in

terms of preferences for accelerators for FPGA and GPU. There is also additional

cost associated with managing a heterogeneous/partitioned datacenter that needs to be

justifiable by the performance gain.

Query-level Results for DC designs

In previous sections, we focused on latency, energy-efficiency, and TCO trade-offs

for various acceleration options across three services in Sirius. In this section, we focus

on these trade-offs across three query types supported by Sirius, namely, Voice Com-
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Figure 3.22: Bridging the Scalability Gap

mand (VC), Voice Query (VQ) and Voice Image Query (VIQ). Figure 3.21 presents

the query latency of three query types achieved by the best two homogeneous data-

centers, composed of GPU- and FPGA-accelerated servers, respectively. In addition

to query latency, energy efficiency of the servers and the TCO of the datacenters to

support these query types are also presented. GPU-accelerated homogeneous data-

centers achieve on average 10× latency reduction, and FPGA-accelerated datacenters

achieve a 16× reduction. The accelerated datacenters also reduce the TCO on average

by 2.6× and 1.4×, respectively.

Figure 3.22 presents the latency reduction of these two accelerated datacenters
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and how homogeneous accelerated datacenters can significantly reduce the scalability

gap for datacenters, from the current 165× resource scaling (previously shown in

Figure 1.2) down to 16× and 10× for GPU- and FPGA-accelerated datacenters,

respectively.

3.7 Summary

This chapter introduced Sirius, an open end-to-end intelligent personal assistant

application, modeled after popular IPA services such as Apple’s Siri. Sirius leverages

well-established open infrastructures for speech recognition, computer vision, and

question-answering systems. We use Sirius to investigate the performance, power,

and cost implications of hardware accelerator-based server architectures for future

datacenter designs. We show that GPU- and FPGA-accelerated servers can improve

the query latency on average by 10× and 16×. Leveraging the latency reduction,

GPU- and FPGA-accelerated servers can reduce the TCO by 2.6× and 1.4×, respec-

tively.
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CHAPTER IV

DjiNN and Tonic: DNN as a Service

This chapter presents the design and study of DjiNN and Tonic Suite, a Deep

Neural Network (DNN) as a service infrastructure to study how future Warehouse

Scale Computers (WSC) should evolve for DNN processing. The insight made in

this chapter is that if intelligent web services can all leverage a common machine

learning algorithm and infrastructure, the optimizations applied can be focused on

the common case benefiting a range of intelligent web services. DjiNN is a centralized

DNN service infrastructure that supports a diverse set of DNN-based applications

in WSCs. Tonic Suite is a suite of 7 DNN-based applications from a wide range

of domains including image classification, facial recognition, speech recognition and

natural language processing. After characterizing the 7 Tonic Suite applications, our

findings will show there are significant bottlenecks inhibiting an efficient system for

DNN processing. The techniques set forth in this chapter show significant gains can

be had in performance that translate into Total Cost of Ownership (TCO) reduction

for a datacenter equipped with Graphics Processing Units (GPUs).
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4.1 Designing a DNN Web Service

We present the design of DjiNN, a general DNN-as-a-Service infrastructure that

supports a spectrum of emerging IPA applications, and Tonic Suite, a set of 7 end-

to-end applications built on the DjiNN service. DjiNN is a centralized DNN service

infrastructure that supports a diverse set of DNN-based applications in WSCs. Tonic

Suite is a suite of 7 DNN-based applications from a wide range of domains includ-

ing image classification, facial recognition, speech recognition and natural language

processing. We extract the underlying DNN computation from each individual Tonic

application. We create the generalized and configurable DjiNN service with a com-

mon interface to process the DNN computation for each application. In designing the

DNN as a service, we target the following objectives:

1. Decoupled Architecture - The DjiNN web service needs to be a standalone

service accepting and processing requests coming over the network.

2. Diverse Applications - A general DNN service must be capable of processing

requests from a wide range of applications.

3. Request Processing - The DNN web service must be able to process multiple

incoming requests with low overhead.

4.2 DjiNN and Tonic

Figure 4.1 presents an overview of the system. Tonic Suite applications make re-

quests to the DjiNN Service. DjiNN houses the trained DNN network architecture and

configuration in-memory for each Tonic Suite application. To process each applica-

tion’s requests, DjiNN executes the DNN inference pass, which generates a prediction

using the pre-processed input from the application, and returns the prediction result

to the application.
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Figure 4.1: DjiNN Architecture

4.2.1 DjiNN Service

The goal of the DjiNN service is to provide a unified service that executes the DNN

portion of the Tonic Suite applications. In our design, we target the following objec-

tives:

• Decoupled Architecture – DjiNN needs to be a standalone service accepting

and processing external requests. The DjiNN service is designed to accept

requests using a custom socket protocol over TCP/IP. We use Caffe [69] for

DNN computation, an open-source actively developed DNN library widely used

in both academia and industry. For each incoming request, DjiNN spawns a

worker thread, executes the DNN computation, and sends the prediction back

to the application.

• Diverse Applications – A general DNN service must be capable of processing

requests from a wide range of applications. Caffe’s general framework supports

various types of neural network layers. This enables flexible neural network

configurations using Caffe. Caffe is extended to support DNN architectures

from various applications representative of emerging WSC workloads including

image processing, speech recognition, and natural language processing. Fig-
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ure 4.1 shows the design, where DjiNN receives image, speech, and text based

requests. DjiNN currently supports 7 DNN based Tonic applications. Sup-

porting more applications simply requires providing DjiNN a pretrained neural

network model.

• Request Processing – DjiNN must be able to process multiple incoming

requests with limited overhead. At initialization, DjiNN loads the pre-trained

model associated with each application into memory, giving all worker threads

read-only access to this data. Consequently, incoming requests using the same

model are accepted without needing to load their own copy of the model into

memory.

4.2.2 Tonic Suite

Table 4.1: Tonic Suite Neural Network Architectures

Type Application Network NN Type Layers Params
Image Classification (IMC) AlexNet [50] CNN 22 60M

Image Service Digit Recognition (DIG) MNIST [79] CNN 7 60K
Facial Recognition (FACE) DeepFace [111] CNN 8 120M

Speech Service Automatic Speech Recognition (ASR) Kaldi [96] DNN 13 30M
Part-of-Speech Tagging (POS) SENNA [47] DNN 3 180K

NLP Service Chunking (CHK) SENNA [47] DNN 3 180K
Name Entity Recognition (NER) SENNA [47] DNN 3 180K

The DNN applications used in Tonic Suite are the bread and butter of the DjiNN

service. They are based on recently published neural networks that achieve state-of-

the-art accuracy in their target domains, which are summarized in Table 4.1. The

suite of applications bundled with the neural network configurations, the trained

models, and the server infrastructure to run the end-to-end applications have been

released [10].

Image Task

Tonic Suite’s image tasks encompass three applications: image classification, digit

recognition, and facial recognition. The image tasks do not have pre or postprocess-
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ing steps; the service sends the most likely prediction about the image back to the

application. Each of the three image applications is described below.

Image Classification (IMC) - Image classification sends an image to the DjiNN

service and a prediction of what the image contains is sent to the application. This

prediction is made by a model trained on 1.4M images from ImageNet [50], which

can predict 1000 unique classes. AlexNet, a neural network architecture developed by

Krizhevsky et al. [75], achieves very high accuracy and outperforms other methods in

large scale image classification competitions [102].

Digit Recognition (DIG) - Digit recognition sends an image of a hand-written

digit to the service and a prediction of the most likely digit (between 0-9) is returned

to the application. The network architecture is based on MNIST [79], a widely used

neural network for this task that achieves over 98% accuracy. A sample image is

included in Figure 4.1.

Facial Recognition (FACE) - The facial recognition application predicts the iden-

tity of faces using the DjiNN webservice. The neural network architecture used in

Tonic Suite was recently published by Facebook. DeepFace [111] is a facial recog-

nition network that achieves near human-accuracy. This network is replicated into

Tonic Suite and trained on a publicly available dataset of celebrity faces from Pub-

Fig83+LFW [36]. Using this dataset, DjiNN service classifies the input from 83

candidate celebrity faces.

Automatic Speech Recognition (ASR) Task

Included in Tonic Suite is a DNN based speech-to-text decoder adapted from

Kaldi [96], a state-of-the-art speech recognition toolbox actively developed by re-

searchers from Microsoft and academia. Kaldi’s speech processing techniques have

been demonstrated to achieve very low word error rates (WER) on standard decoding

benchmarks. The speech recognition application requires preprocessing to generate

feature vectors describing the speech input that are sent to the DjiNN webservice.
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The service returns predictions for each feature vector that are postprocessed to find

the most likely sequence of text to produce the final result.

Natural Language Processing (NLP) Task

Included in Tonic Suite are NLP tasks designed to glean semantic information from

input text. These tasks include part-of-speech (POS) tagging, word chunking (CHK),

and name entity recognition (NER). For these applications, the text is preprocessed

into word vector representations before being sent to DjiNN. After receiving the word

predictions from the DNN service, the postprocessing step searches for the most likely

sequence of tagged words. The neural networks are based on Senna [47], a natural

language processing toolbox developed by NEC Labs. The pretrained models are

trained on Wikipedia for over 2 months and achieve over 89% accuracy for these

applications.

Part-of-Speech Tagging (POS) Part-of-speech tagging assigns each word with a

part of speech, for example if it is a noun or a verb.

Word Chunking (CHK) Word chunking tags each segment of a sentence as a noun

or verb phrase where each word is labeled as a begin-chunk (B-NP) or an inside-chunk

(I-NP). First, this application internally makes a POS service request, updates the

tags for its input, and then makes its own DNN service request.

Name Entity Recognition (NER) Name entity recognition labels each word in

the sentence with a category, for example whether it is a location or a person.

4.3 Identifying Bottlenecks for a DNN Service

This section presents a real-system analysis of the DNN service and evaluates

the baseline DNN service performance on a state-of-the-art GPU. This section also

compares the GPU performance with the performance achieved on an Intel Xeon

processor. It then conducts a performance analysis to identify bottlenecks to guide
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Table 4.2: Platform Specifications

Hardware Specifications Quantity
System 4U Intel Dual CPU Chassis, 8× PCIe 3.0 × 16 slots 1
CPU Intel Xeon E5-2620 V2, 6C, 2.10 GHz 2
HDD 1TB 2.5” HDD 1

Memory 16GB DDR3 1866 MHz ECC/Server Memory 16
GPU NVIDIA Tesla K40 M-Class 12 GB PCIe 8

further throughput optimizations in the following sections. The configuration of the

experimental platform is summarized in Table 4.2. We use 1 GPU for all the experi-

ments in this section.

4.3.1 DNN vs. non-DNN Components

First each DNN application is profiled on the Intel Xeon to characterize the

amount of computation the back-end DNN service constitutes for each application.

Figure 4.2 presents the average execution cycle breakdown for each application be-

tween its DNN portion and the rest of the computation (made up of query pre- and

postprocessing). For IMC, DIG, and FACE, the input images are directly fed into the

DNN. Consequently, almost all of the cycles for the image services are spent on DNN

computation. ASR requires substantial pre- and postprocessing to translate a voice

recording into the final text. Nevertheless, the DNN service still consumes almost

half of the execution cycles for ASR. For the NLP tasks, which also have pre- and

postprocessing, more than two thirds of the total execution time is DNN computa-

tion. This result demonstrates that DNN computation consumes a high percentage

of the total execution time for almost all applications, motivating the need to design

a common efficient DNN service in datacenters.
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Figure 4.2: Cycle Breakdown for each DNN Application

4.3.2 Performance Bottlenecks

To guide the throughput optimizations, each DNN service is profiled using the

NVIDIA Profiler [9] and the NVIDIA Visual Profiler [26] to conduct performance

analysis. Figure 4.3 presents the profiling information of several hardware perfor-

mance counters for each application. The metrics are collected at the kernel level

for each application, and are weighted by each kernel’s execution time to calculate

the average performance of the entire application. As shown in the figure, the ratio

of the IPC to the peak IPC (IPC/Peak IPC) is relatively low for NLP tasks. All

applications exhibit low memory bandwidth utilization (low L1, shared memory, and

L2 bandwidth utilization) relative to the peak bandwidth utilization, indicating that

the low IPC is not caused by a memory bandwidth limit. On the other hand, the IPC

is roughly correlated to the GPU occupancy, the ratio of the number of active warps

to the theoretical peak number of active warps. All three NLP tasks have under 20%

occupancy, while ASR achieves above 90% occupancy. Low occupancy indicates that
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Figure 4.3: Performance Bottleneck Analysis

the GPU is not fully utilized for the NLP tasks. The kernels of these applications do

not have enough thread blocks to hide the operation latency.

4.4 Designing a High Throughput System

As observed in the previous section, the throughput improvement achieved by a

GPU is substantially different across the DNN service component of all applications.

This is due to the different neural network architectures of each application and the

resulting varying degrees of GPU occupancy.

In this section, we investigate and design techniques aiming to achieve the max-

imal throughput for the DNN service on GPUs. We investigate three throughput

improving techniques: 1) batching multiple queries into a combined query to increase

occupancy on the GPU; 2) executing concurrent kernels to achieve better GPU re-

source efficiency; and 3) scaling the number of GPUs in a server. In addition to

designing and evaluating techniques for throughput improvement, this investigation
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also allows us to gain insights on the throughput capability of state-of-the-art GPUs

for the DNN service.

Table 4.3: DjiNN Service Applications

App Input Data Size (KB) Output Batch size

IMC 1 image 604 1 classification 16
DIG 100 images 307 100 classifications 16

FACE 1 image 271 1 classification 2

ASR 548 feature vectors 4594 548 probability vectors 2

POS 28 word sentence 38 28 probability vectors 64
CHK 28 word sentence 75 28 probability vectors 64
NER 28 word sentence 43 28 probability vectors 64

4.4.1 Batching DNN Inputs to Improve Throughput

We first investigate techniques to increase GPU occupancy and DNN service

throughput by batching multiple DNN inputs into a single query. The application

name, input type, input size, and output data for the DNN service of each application

is summarized in the first 4 columns of Table 4.3. To batch multiple inputs into a

larger query the query input size is increased by stacking multiple inputs into a larger

matrix. Consequently, this increases the dimensions of the matrix multiplication ex-

ecuted in the DNN’s forward pass on the GPU. The increased computation achieved

by batching increases the occupancy on the GPU and the system throughput.

For each application, we vary the batch size and study the impact on the through-

put and latency achieved by the GPU. Figure 4.4 presents how throughput is affected

with varying input batch sizes. As shown in the figure, all applications exhibit a sim-

ilar trend: the throughput first increases then plateaus as the batch size continues to

increase. The throughput saturation point for each application is at a different batch

size. In addition, the throughput benefits from batching are different across applica-

tions. Automatic Speech Recognition (ASR), which already achieves a considerable
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Figure 4.5: GPU Occupancy as Batch Size Increases
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Figure 4.6: Latency as Batch Size Increases

58



(120×) throughput improvement over a Xeon core (Figure 1.3) and near 100% GPU

occupancy without batching (Figure 4.3), has a small throughput gain with larger

batch sizes. On the other hand, some applications achieve very high throughput im-

provement from batching. For example, NLP tasks achieve over a 15× throughput

improvement.

This throughput improvement is from improving the GPU occupancy by batch-

ing queries, as shown in Figure 4.5. For NLP tasks, the baseline (batch size of 1)

involves too little computation to fully occupy the GPU’s resources, achieving only

20% occupancy. Increasing the batch size increases the amount of computation re-

quired. Consequently, the neural network computation uses more resources and the

GPU occupancy significantly increases, achieving above 80% occupancy at a batch

size of 64. There is no data for FACE beyond a batch size of 8 in this figure because

of the large size of the neural network and the high profiling overhead incurred.

Figure 4.6 presents the query latency for each DNN service. All inputs in a batched

query are combined in an aggregated large matrix computation and thus share the

same query latency across inputs within a batch. As shown in the figure, the query

latency for each DNN service increases slightly at first. As the throughput plateaus,

the latency starts to increase sharply. At this point, the GPU is saturated and the

queuing delay starts to dominate the latency.

Based on Figures 4.4 and 4.6, we identify the batch size for each application to

achieve high throughput while limiting query latency impact. These final values are

summarized in the last column of Table 4.3. Overall, with the selected batch size, we

achieve 15× throughput improvement for NLP tasks and 5× for IMC with limited

latency increases in both cases.
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Figure 4.7: IMG Service Throughput as the Number of DNN Server Instances In-
creases

4.4.2 Supporting Multiple DNN Services on a GPU

Next, we use NVIDIA’s Multi-Process Service (MPS) [25], which allows kernels

from different processes to execute concurrently on the GPU. Without MPS, each

CUDA process allocates separate scheduling and storage resources on the GPU. Each

time a different process executes, the GPU must context switch before resuming

execution; all processes must timeshare the GPU. MPS allocates a shared pool of

scheduling and storage resources for independent processes. As a result, the GPU

can schedule multiple kernels concurrently from the same pool of resources without

the need to context switch.

Figures 4.7, 4.8, and 4.9 present the throughput improvement as the number of

concurrent DNN services on the GPU increases from 1 to 16 (the maximum number

of simultaneous processes that MPS supports). Throughput is measured as queries

per second (QPS). Using MPS, DNN service instances can concurrently execute on
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Figure 4.10: IMG Service Latency as the Number of DNN Server Instances Increases

the GPU. For comparison, the non-MPS cases are also presented, where queries from

multiple DNN service instances are time sharing the GPU. The batch sizes summa-

rized in the last column of Table 4.3 are used for each application. As shown in the

figure, the achieved throughput increases as the number of DNN services on the GPU

increases. With MPS, increasing concurrent kernels further improves throughput be-

yond what batching achieves (shown when the number of DNN instances is equal

to 1). As previously described, without MPS, CUDA kernels launched by different

processes timeshare the GPU’s resources and have limited concurrency. With MPS,

CUDA kernels launched by different processes can be executed concurrently. Because

of this concurrency, the server queuing time for the next available time slice on the

GPU is reduced and throughput increases. The throughput plateaus as the number

of concurrent DNN services on the GPU further increases. Overall, the DNN service

achieves up to a 6× throughput improvement with concurrent service execution on
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Figure 4.13: Throughput Improvement after Optimizations (GPU over Single-thread
CPU)

the GPU.

Figures 4.10, 4.11, and 4.12 present the query latency as the number of concurrent

DNN services on the GPU increases. The query latency is relatively small when the

number of concurrent DNN services is under 4 but increases sharply as the number

of DNN services grows. MPS successfully limits the latency increase when compared

to experiments without. As discussed earlier, MPS reduces the queuing and thus, as

shown in the figures, reduces the query latency up to 3×, compared to the non-MPS

configuration. Compared to the baseline configuration of executing a single service

at a time on the GPU, the DNN service applications benefit from concurrent DNN

services, which improves both throughput and latency.

Combining Figures 4.7, 4.8, and 4.9, with Figures 4.10, 4.11, and 4.12 four MPS

concurrent DNN servers on one GPU achieves high throughput gain with limited la-

tency impact. For the DNN portion of most applications, more than 4 concurrent

DNN services would have to trade high latency increase for low throughput improve-
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Figure 4.14: IMG Service Throughput as Number of GPUs Increases

ment. Note the latency achieved using 4 concurrent DNN services on the GPU is

smaller than the single query service time on the CPU.

Figure 4.13 summarizes the final throughput improvements on a K40 GPU after

applying input batching (with the best batch size next to each application in the

figure) and MPS. We achieve significant throughput benefits across the applications

through these two optimizations. For NLP applications, batching and MPS together

improve the GPU throughput gain from 7× to over 120×. The DNN service compo-

nents achieve over 100× throughput improvement on the GPU for all but the FACE

application, which achieves a 40× improvement.

4.4.3 GPU Scalability

To further improve the system throughput, we scale the number of GPUs in a

server and measure the system throughput of our optimized DNN service. The re-

sults are presented in Figures 4.14, 4.15, and 4.16, with each application configured
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Figure 4.16: NLP Service Throughput as Number of GPUs Increases
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to use the optimal batch size and 4 MPS processes per GPU. As shown in the fig-

ure, both image services and the speech recognition service achieve near-linear scaling

as the number of GPUs increases. There is no communication between GPUs and

the PCIe bandwidth between the CPU and each GPU is sufficient for these services.

However, for the NLP tasks, which have relatively small neural networks, the through-

put plateaus as the number of GPUs reaches 4. For NLP tasks, each query requires

less computation and the throughput (QPS) is several orders of magnitude higher

than the other two services. The throughput plateau is due to the PCIe bandwidth

limitation.

In conclusion, the GPU scalability is dependent on the DNN characteristics for

each application. For 3 out of 7 applications, by combining the optimizations and

scaling the number of GPUs, 1000× throughput improvement is achieved on the 8

GPU system over a CPU core.

4.5 Implications for Future WSC Designs

Based on the insights gained from our throughput investigations in prior sections,

we discuss the design of cost-efficient servers and the WSC systems necessary to pro-

vide a centralized DNN service for a wide range of applications. We first characterize

the bandwidth requirements of the DNN service, identifying bandwidth to the GPUs

as the performance bottleneck for NLP applications. Then consider three WSC de-

sign strategies for housing the DNN service and develop a TCO model to investigate

the tradeoffs between the three designs, identifying the bandwidth constraint as a

limiting factor for the TCO improvement of certain classes of DNN-based services.

Finally, we describe and evaluate several network and interconnect architectures that

can address the bandwidth limitation.
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Figure 4.17: IMG Service Throughput as Number of GPUs Increases (no PCIe band-
width limits)

4.5.1 Bandwidth Requirements for Peak Throughput

To design the network configurations for the DNN servers in datacenters, we

examine the bandwidth requirements of the DNN service. The peak throughput

gain is measured to guage what can be achieved without bandwidth constraints. To

do so, communication is avoided by pinning the input of the DNN service to the

GPU memory, which eliminates any data transfer (including transferring the final

result). We stress-test the system to measure the throughput of a system with no

PCIe bandwidth limit. Repeating the experiment of scaling out the number of GPUs

using this PCIe-bypassing setup, we measure the theoretical throughput improvement,

presented in Figures 4.17, 4.18, and 4.19. Without the PCIe bandwidth limit, all

applications exhibit near-linear throughput improvement as the number of GPUs

increases. This is expected because the computational capabilities are increasing
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Figure 4.18: ASR Service Throughput as Number of GPUs Increases (no PCIe band-
width limits)
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Figure 4.19: NLP Service Throughput as Number of GPUs Increases (no PCIe band-
width limits)
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Figure 4.20: IMG Service Bandwidth Requirement as Number of GPUs increases
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Figure 4.21: ASR Service Bandwidth Requirement as Number of GPUs Increases

70



1 2 3 4 5 6 7 8
Number of GPUs

0

20

40

60
B

an
dw

id
th

 (G
B
/s
)

Ethernet

PCIe

POS
CHK
NER

Figure 4.22: NLP Service Bandwidth Requirement as Number of GPUs Increases

without any bandwidth contention.

Based on the throughput improvement without the bandwidth constraint, we

calculate the network bandwidth requirement for each application to achieve the

maximum throughput. Figures 4.20, 4.21, and 4.22 present the network bandwidth

requirements as the number of GPUs increases. As a point of reference, the peak

bandwidth of several existing technologies, PCIe v3 and 10Gb ethernet (10GbE), are

shown on the graph. For the computation-heavy tasks (IMC, DIG, FACE, ASR),

the system is not bound by the PCIe bandwidth and the theoretical throughput can

be achieved by a network with a bandwidth of at least 4GB/s. On the other hand,

the light-computation tasks (NLP) require far higher bandwidth to sustain the near-

linear throughput scaling. Later, these bandwidth requirements will be used as a

guide to designing WSCs that are provisioned with sufficient bandwidth to overcome

these bottlenecks.
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Figure 4.23: Three WSC Designs Considered

4.5.2 WSC Architectures for a DNN Service

We next describe three design points for WSCs that can be used to house the

DjiNN service as illustrated in Figure 4.23.

CPU Only Design As a baseline, we describe a CPU only datacenter that has no

GPU capability. This design, presented in Figure 4.23a, includes homogeneous servers

and contain beefy CPU servers that service all of the workloads in the datacenter,

including non-DNN applications, DNN applications, and the DjiNN service. Each

DNN query that hits the datacenter passes through a front-end (e.g., a load balancer)

to one of the CPU servers. The path taken by each query is illustrated by a red arrow

in Figure 4.23a. After the query hits the NIC, it is placed in memory for the CPU to

process in full.

Integrated GPU Design Second, Figure 4.23b presents the design of a datacenter

with Integrated GPUs, containing a single server type of beefy CPUs and GPUs. In

this design, the work of processing a query is handled within one server. However,

unlike the CPU Only design, the work of processing the query is split between the

CPU and the GPU. The path of the query to the CPU is shown as a red arrow in

Figure 4.23b and upon receiving the query, the CPU performs (if necessary) prepro-

cessing on the query. The result of the preprocessing is passed to the GPU hosting
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the DjiNN service via the PCIe bus (blue arrow in Figure 4.23b), where the GPU

processes the request. By offloading DNN inference to the GPU, this model offers

substantially higher throughput over the CPU Only model. However, by joining the

GPU and CPU within the same box, along with the overwhelming preference in WSC

design for homogeneous server configurations [32], GPUs have to be apportioned to

servers to accommodate the homogeneous case. This study assumes 12 GPUs per

server based on the latest available number of PCIe ×16 slots available today on

commodity high performance motherboards.

Disaggregated GPU Design To address the lack of flexibility of the integrated

design, this work considers a design that has Disaggregated GPUs. In this design,

two types of servers coexist in the datacenter. Beefy CPU servers, resembling those

described for the CPU Only model, handle all non-DNN workloads as well as pre-

and postprocessing for DNN queries. In this design, illustrated in Figure 4.23c, each

DNN-based query is first preprocessed on the CPU server, then the result is sent over

the network to a GPU server hosting the DjiNN service. The GPU server is designed

as a multicore system with wimpy CPU cores whose purpose is to pass query data to

the GPUs.

The advantage of this approach over the Integrated GPU is it decouples the GPUs

and beefy CPUs. Such a decoupling can be critical in WSCs where designers are mo-

tivated to use a limited number of server configurations to simplify hardware and

software maintenance and insure against overspecializing servers in the presence of

ever-evolving workloads. By decoupling CPUs and GPUs, the amount of GPU com-

pute can be provisioned to handle the amount of GPU work available in the datacenter

without adding GPUs to each server. However, a major challenge in this model is

to provision sufficient bandwidth between the CPU and GPU servers. To provide

the necessary bandwidth between the two, 16 dedicated 10GbE NICs1 are aggregated

1PCIe ×16 supports up to 15.875GB/s. 10GbE can theoretically sustain 1.25GB/s, but may have
significant protocol overheads. Assuming 80% of theoretical peak can be obtained, 16× 1.25GB/s
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Table 4.4: TCO Parameters

Component Cost Factor
300W GPU-capable server $6864
High-end 240W GPU $3314
75W wimpy server $1716
Networking equipment $750/10GbE NIC
WSC capital expenditures $10/Watt
Operational expenditures $0.04/Watt/month
Power Usage Efficiency (PUE) 1.1
Electricity $0.067 per kWh
Interest rate on capital expenditures 8%
Server lifetime 3 years
Loan amortization period 3 years
Server maintenance/operations 5%/month

on each device and employ a high performance network fabric to sustain sufficient

bandwidth.

4.5.3 Total Cost of Ownership

To assess the tradeoffs between these three designs, we compute the Total Cost

of Ownership (TCO) for WSCs constructed to house DNN-based webservices us-

ing a methodology inspired by Barroso et al. [32]. The methodology for computing

TCO includes upfront hardware capital expenditures (e.g., purchasing servers, CPUs,

memory, GPUs, networking equipment, facilities, etc.), operating costs (operations,

maintenance and power), as well as financing costs. The GPU and CPU failure rate

differences are not explicitly modelled. Cost factors are summarized in Table 4.4.

Power is measured on the GPU-enabled system to supply power draw estimates. In

characterizing the price of the servers and GPUs, competitive market prices are used

for the components at the time of this writing. For the GPU-capable server and GPU

parts, the configurations priced are reflective of the high-end server used throughout

this paper. To characterize the costs of networks in the approach, 500 server leaf

connection yields 16GB/s.
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Table 4.5: DNN Service Workloads

Type Description
MIXED Mix (IMC, DIG, FACE, ASR, POS, CHK, NER)
IMAGE Image processing (IMC, DIG, FACE)
NLP Natural language processing (POS, CHK, NER)

nodes are assumed and connected to a hierarchical 10GbE network containing a mix

of core and edge switches. Then the cost of those switches is averaged out across the

10GbE NICs installed in the servers to arrive at a cost estimate of $750 per NIC.

To characterize each WSC design, we first assume a workload composed in part

by one of the DNN service mixes described in Table 4.5 and in part by non-DNN

webservices. For this mix of webservices, we provision enough compute for the CPU

Only design point to characterize its TCO and obtain a series of performance targets

for each service. For example, given a workload composed of 70% from the MIXED

DNN workload along with 30% non-DNN services, we provision 30% of the servers

to non-DNN services and 10% to each of the DNN services (the MIXED workload is

composed of 7 services). We then build out the Integrated GPU and Disaggregated

GPU designs, each matching the throughput obtained by the CPU Only design,

finally applying the model described above to characterize their TCO.

DNN’s Implications for WSC Design The results of the TCO analysis are

presented in Figure 4.24 for (a) the MIXED workload, (b) the IMAGE workload and

(c) the NLP workload. Each plot presents the TCO of the three WSC designs across

a range of assumptions about the mix of DNN and non-DNN services (x-axis), where

the presented TCO is normalized to the CPU Only case and presented on a log scale

(y-axis).

For the MIXED workload presented in Figure 4.24a, both GPU-based designs

show substantial improvements over the CPU Only design, except when the work-

load is composed almost entirely of non-DNN services. This demonstrates that there
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are potentially sizable cost savings available by accelerating DNN-based services (up

to 20× for Disaggregated GPU design) as these services consume an increasing volume

of cycles in WSCs. The Disaggregated GPU design also improves upon the Integrated

GPU design by between 10% and 2×, which can be attributed to the relatively in-

efficient use of GPUs by some of the DNN services in the Integrated GPU design.

In particular, each server in the Integrated GPU design utilizes the same number of

GPUs, while the NLP services can saturate only a subset of those available GPUs

because they are bandwidth-limited by the PCIe interface. This inefficiency is allevi-

ated by the Disaggregated GPU design, which decouples CPUs and GPUs and allows

for fewer GPUs to be employed in the WSC.

The IMAGE workload, presented in Figure 4.24b, behaves similar to the MIXED

workload, except there is a crossover point when the number of DNN services exceeds

72% of the workload. After this point, the Integrated GPU design has lower TCO

than the Disaggregated GPU design. Because the TCO benefits in the Disaggregated

GPU design over the Integrated GPU design arise from over-provisioning GPUs in

the Integrated GPU design, those benefits slowly disappear as the workload running

in the WSC is comprised of more DNN-based services that utilize all of the GPUs in

the server (i.e. IMC, FACE and DIG).

The NLP case, presented in Figure 4.24c has a similar trend to 4.24a: the Disag-

gregated GPU model has the lowest TCO over most of the workload mixes and is a

modest improvement over the Integrated GPU design over that entire range. How-

ever, the TCO for the NLP case is much closer to the TCO of the CPU Only design,

showing a maximum improvement of 4×, as opposed to the 20× for the MIXED case.

This difference occurs because, instead of being partially composed of NLP services

as in the MIXED workload, the NLP workload is composed entirely of NLP services.

Because the performance of the NLP applications is bound by the bandwidth of the

PCIe, the available GPUs cannot be fully utilized.
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Table 4.6: Interconnect and Network Configurations. The networks are designed
to use bonded ethernet connections numerous enough to saturate the CPU/GPU
interconnect, assuming an additional protocol overhead of 20% on ethernet. Prices
are phrased as the purchase cost over the PCIeV3/10GbE design point

Interconnect Ethernet

Architecture Bandwidth (GB/s) Price ($) Bandwidth (GB/s) Price ($/NIC)

PCIeV3/10GbE 1× PCIe v3 bus shared by GPUs 15.87 +$0 1.25 per NIC, up to 16 NICs +$0

PCIeV4/40GbE 1× PCIe v4 bus shared by GPUs 31.75 +$2000 5 per NIC, up to 9 NICs +$1250

QPI/400GbE 1 QPI link between GPU and CPU socket 307.2 (25.6 per link) +$4000 50 per NIC, up to 8 NICs +$4250
6 links/GPUs per socket

4.5.4 Addressing the Bandwidth Bottleneck

To address this bandwidth limitation, we consider two alternative designs to the

typical configuration comprised of GPUs supplied by PCIe v3 and a 10GbE network.

First, representative of cutting edge technology available today, we describes a design

that connects the GPUs with PCIe v4, which doubles the bandwidth of PCIe v3 to

31.75GB/s. Accordingly, the network is provisioned to also have more bandwidth by

using a 40GbE network with teamed connections at the server level. Assuming a 20%

protocol overhead for ethernet, the PCIe v4 bus can be saturated by 9 teamed 40GbE

connections. Second, representative of a more aggressively designed system that uses

near-future technology, a design that employs Quick Path Interconnect (QPI) [76] is

considered to connect CPUs to GPUs inside the server. Assuming 12 GPUs inside a

2-socket server, 6 point-to-point QPI links would be needed in each socket. Standard

QPI links available at the time of this writing yield 25.6 GB/s, which is a total of

307.2 GB/s across all 12 links. To provision enough bandwidth in the network to

feed the GPUs, and again assuming a 20% protocol overhead for ethernet, 8 teamed

400GbE connections are sufficient to saturate the QPI links.

We summarize these alternative design points in Table 4.6. Included in the table

are the assumptions about the cost of these alternative designs, which are devel-

oped using a similar methodology described for the PCIe v3/10GbE design point,

along with projections of the unit costs for PCIe v4, QPI, 40GbE NICs/switches and
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400GbE NICs/switches.

Network Impact on Performance and TCO The impact of these design points

are characterized with improved bandwidth by scaling up the networking equipment in

the Disaggregated GPU model. The assumption is made that bandwidth-constrained

DNN services (NLP) bypass the bandwidth limitations demonstrated in Figure 4.22

and continue to scale up in throughput beyond the throughput measured on the

GPU-enabled server. In the Disaggregated GPU design, we model this performance

improvement due to scaling up the network then introduce designs for the CPU Only

and Integrated GPU cases that match the performance improvement. Note that we

model CPU Only designs as having PCIe v3 and 10GbE, as improving the network

does little to improve performance of the CPU Only design.

The results of this exercise are presented in Figure 4.25, applying it to workloads

comprised entirely of either the MIXED DNN service (a) or of the NLP DNN service

(b) in Figures 4.25 (the IMAGE workload is not bandwidth constrained, so it is

not considered here). The figure shows the performance improvement achieved by

introducing the improved network into the Disaggregated GPU design as black lines

with “x” marks. Each group of bars shows the growth in various components of TCO

that are associated with growing the WSC to improve performance.

Several interesting conclusions can be drawn from these experiments. First, im-

proving the bandwidth provisioning in the network is an essential step to unlocking

the full potential of GPUs for bandwidth-heavy NLP services. Large performance im-

provements can be realized while minimally impacting TCO in GPU-enabled WSCs.

As the figure shows, the growth in TCO for the Disaggregated GPU design stems

primarily from increased networking costs because the approach relies heavily on the

network to pass large amounts of data from CPU-based compute servers to GPU-

centric servers. In the Integrated GPU design the cost increases are slight, showing
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up primarily in the MIXED workload as increases in the server cost (PCIe and QPI

costs appear as part of the server costs). For the NLP workload, improving the

bandwidth actually reduces TCO slightly for both improved network designs. This

occurs because the increased utilization of GPUs allows the design to use fewer GPUs

while still improving performance significantly. Second, scaling up the performance of

DNN-based services is extremely difficult to do without accelerating them. For both

the MIXED and NLP workloads, scaling up throughput requires scaling up the num-

ber of servers in the CPU Only design roughly in proportion to that increase. Given

current CPU and GPU designs, this identifies GPUs as being the more promising

direction for scaling up DNN-based webservices.

4.6 Summary

This work introduces DjiNN, an open source deep neural network service and

Tonic Suite, a suite consisting of 7 end-to-end DNN-based applications in the vision,

speech, and natural language processing domains. Using DjiNN, we design a high-

throughput DNN system based on massive GPU server designs. In most cases, our

final server design achieves over a 100× throughput gain on a single GPU compared to

the CPU baseline, and achieves almost linear scaling with the number of GPUs. We

study the total cost of ownership to provide insights into designing future warehouse

scale computer architectures for DNN services. In terms of total cost of ownership,

GPU-enabled datacenters show an improvement over CPU-only designs by 4-20×. In

the case of bandwidth-heavy NLP applications, we show that leveraging improved

GPU interconnect and network components to alleviate bandwidth constraints is one

of the keys to achieving the aforementioned improvements.
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CHAPTER V

Fine-Grained Cross-Input Batching for Natural

Language Processing

This chapter introduces fine-grained cross-input batching as a technique to ad-

dress scalability issues for deep learning based Natural Language Processing (NLP)

applications. As the underlying Deep Neural Network (DNN) based NLP algorithms

change, hitherto designed systems must equally adapt. In this chapter, we investigate

a set of three distinct NLP applications and show, not just how varied the algorithmic

landscape is for deep learning based applications, but how varied NLP applications

are with respect to each other. The key finding is that NLP applications have compu-

tational characteristics making current systems perform suboptimally. The technique

set forth in this chapter addresses the iterative and dependent computation patterns

involved in executing an end-to-end NLP application and shows substantial improve-

ments over other systems.
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5.1 Natural Language Processing Applications

Recent advances in machine learning techniques has prompted the emergence of

applications where users interact with their personal computing devices using natural

language rather than a constrained set of buttons and fields. The category of machine

learning tasks facilitating this transition, Natural Language Processing (NLP), has

become critical to the evolution of modern user interfaces. In this work, we aim to

answer research questions as system designers building datacenter systems hosting

state-of-the-art NLP applications. We aim to study NLP applications that are 1)

representative of complete applications designed to service user queries and 2) achieve

the state-of-the-art accuracy in solving their respective tasks. Based on these criteria,

we surveyed recent publications and select 3 applications solving two of the most

prominent problems among the NLP community: sentiment analysis and automatic

text summarization.

Sentiment Analysis - This application (SA) analyzes the emotions and attitudes

in natural language, an application that plays a pivotal role in business planning,

political campaigns, and social media analysis [82]. We investigate a Convolutional

Neural Network (CNN) based implementation [72] (SA-CNN) and a tree-structured

long short-term memory neural network based implementation [110] (SA-LSTM). SA-

CNN and SA-LSTM achieve state-of-the-art accuracy on binary and 5-class sentiment

analysis, respectively. To achieve state-of-the-art accuracy on 5-class classification,

SA-LSTM uses a parser that generates a constituency tree [123]. This constituency

tree describes the semantic relationships of the words in the sentence the application

is analyzing.

Summarization - Automatic Text Summarization extracts the crux from a body

of text, allowing users and higher-level algorithms to ignore extraneous information.

Automatic summarizations are widely used in news and content delivery services, for
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Table 5.1: Application Specifications

Application Network Input Input Length Description
SA-LSTM [110] LSTM Movie Reviews [24] 2 - 67 Words Sentiment Analysis
NAMAS [101] DNN News Articles [11] 1 - 20 Words Text Summarization
SA-CNN [72] CNN Movie Reviews [24] 2 - 67 Words Sentiment Analysis

example by news agency and websites to automatically generate synopses, keywords

and titles of news articles [8,13]. In this work, we study the abstractive summarization

application, NAMAS [101] which is designed at Facebook to generate news titles based

on the first sentence of a news article.

5.2 Characterization

In this section, we characterize three state-of-the-art NLP applications and juxta-

pose their computational characteristics with previously studied deep learning based

applications.

5.2.1 Variable and Dependent Invocations

To understand the dynamism of the SA-LSTM application and the rest of the

NLP applications studied, we begin by studying the nature of the inputs to these

applications and how they affect the variability in computation.

Table 5.1 shows the three NLP applications studied where the second column

shows the different types of neural network architectures. The network type defines

how the input is processed strongly suggesting there will be large differences between

the three applications. We use the entire dataset (training and testing) supplied

with each open-source implementation as a representative dataset of the variability

in input these applications have in deployed environments. The fourth column shows

the range of input sizes in each dataset where for example the SA-LSTM application

has input sentences ranging from 2 to 67 words.
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Figures 5.1, 5.2, and 5.3 show the result of our experiment where we plot the

probability mass function (PMF) of each application. The x-axis is the number of

invocations to the neural network (NN) computation. SA-LSTM (Figure 5.1) and

NAMAS (Figure 5.2) have large variance in the number of NN invocations. Before

processing an input sentence, SA-LSTM preprocesses its input using a constituency

parser that extracts the semantic relationships of the words in the sentence [123] and

the resulting input to the LSTM is a parse tree. The number of NN invocations is

the number of nodes in the parse tree. Additionally, there is a direct dependence

between the invocations of the NNs since there is an explicit hierarchical dependence

between each NN (leaf node). The input to the NAMAS application is a news article

headline and a desired length for the output summary. The number of NN invocations

for NAMAS is the number of words in the output summary. There is a dependence

between each NN invocation because the output word in the previous step impacts the

word generated at the next timestep to generate a grammatically correct summary.

While the dataset for SA-CNN has a range between 2 and 67 words, the application

pads the input to the network to the longest sentence in the training data (in this

case 67 words). Consequently, there is no variance in the number of NN invocations

as the CNN is executed once. For the rest of this work, we use this application as a

representative application of static neural network processing.

We can conclude that two of three applications investigated show high input vari-

ability that is directly correlated with the input to the application. Additionally,

the algorithmic structure of SA-LSTM (tree-structured input) and NAMAS (linear

dependency between NN invocations) creates a dependency between NN invocations

that, as we will see later in this work, expose new challenges in designing efficient

systems for deep learning based applications.
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Figure 5.1: NN Invocation Variability for SA-LSTM
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Figure 5.2: NN Invocation Variability for NAMAS
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Figure 5.3: NN Invocation Variability for SA-CNN
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Figure 5.4: Latency and FLOPS of DNN Applications on the GPU

5.2.2 Kernel Computation

Intuitively, the iterative nature of processing natural language lends itself to

smaller Neural Network (NN) kernels since an NN invocation processes a single word,

compared to, for example, an entire image.

We characterize this difference in Figure 5.4, which shows the number of floating-

point operations per NN invocation on the GPU and the corresponding GPU latency.

These applications include the NLP applications (left) as well as those from Tonic

Suite [10] (right).

Generally, the NLP applications have a lower number of operations when com-

pared to their most similar counterparts in Tonic Suite. SA-LSTM is most similar in

its network architecture as the three NLP applications in Tonic Suite (POS, CHK,

NER) and have the lowest number of operations from the applications studied. NA-

MAS is the most similar to the ASR workload of Tonic Suite in that it has large fully

connected layers that execute for each NN invocation and has the highest number

of operations executed. SA-CNN is a CNN that is most similar to IMC and FACE

and has almost two orders of magnitude less operations than the Tonic Suite applica-
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tions. On average, the NLP applications take 3.6ms to execute on the GPU where the

SA-LSTM invocations to the NN are in the sub-millisecond range. Conversely, the

Tonic Suite applications have an average execution time on the GPU of more than

10ms. While NAMAS stands apart as an application that has the highest latency

on the GPU across all the applications studied, as we saw in the previous section

its dependent and iterative computational pattern still makes it drastically different

than the Tonic Suite applications.

From this we can take away that, as expected from the nature of the input and

computation, NLP applications have small per NN invocation latencies making it

more difficult to offload a large portion of work to an accelerator for processing.

5.2.3 Cycle Breakdown

We next look at the breakdown of cycles spent doing NN computation versus

the rest of the application. As shown in the previous chapter, NN computation is

amenable to GPU acceleration so we investigate portions of the workload that we

can potentially accelerate. Figure 5.5 shows the breakdown of the execution of all

three applications where the NN executes on the GPU and rest of the applications

executes on the CPU. 60% of the cycles in SA-LSTM are consumed by the NN portion
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while the rest is outside the NN. SA-LSTM has a large preprocessing step where the

input is sent to a parser that generates a constituency tree, representing the semantic

relationship of the words in the sentence. The application makes multiple calls to the

NN and requires the result of the previous NN call before processing the next input.

After each leaf node is processed, there is also an NN call that composes the output of

two leaf nodes. Simply put, the application is extracting useful information from each

word, combining the two results into a vector representation, and using it as input

to the next NN. This ensures that information is propagated up the tree. NAMAS

consumes 66% of its cycles inside the NN. The output of a single NN invocation in

the application is a list of potential next words in the summary and a probability

associated with each. A Viterbi search is applied before the next invocation of the

NN to prune the list of candidate words that could make up the summary. SA-

CNN consumes the most cycles inside the CNN. This is expected because after a

preprocessing step of padding the input and generating the vector representation of

all the words, this is used as the input to a CNN with multiple layers whose output

is the resulting sentiment. As a result, there is no iterative computation.

Given the iterative nature of the workload and the smaller per NN computation,

these breakdowns are expected since the workload either consumes cycles traversing

the parse tree (SA-LSTM) or processing the intermediate results of the NNs output

(NAMAS). This differs significantly from the computation breakdown seen in Sec-

tion 4.3 where on average across all 7 applications over 80% of the computation is

spent inside the NN. In fact, for the image workloads the NN portion consumes 99%

of the cycles (minimal pre- and post-processing).

From this characterization, we can conclude that NLP applications have three

distinct characteristics: 1) they have input dependent and variable NN computation,

2) the compute per NN call is relatively small, and 3) they spend a large fraction of

their execution time outside the NN, iteratively calling the NN engine. Next, we will

89



investigate the behavior of these applications and their characteristics when deployed

using state-of-the-art systems for DNN based applications.

5.3 Applicability of the Current State-of-the-art

In this section, we investigate how current techniques of characterizing DNN based

applications apply and show the shortcomings of using the DjiNN web service with

the NLP applications.

5.3.1 Batching to Increase Occupancy

Prior work uses occupancy and batching as a way to quantify how effectively the

GPU is utilized and increase system throughput. We investigate applying the same

principles to the NLP applications studied and juxtapose the DjiNN applications

for comparison. Figure 5.6 shows the DjiNN applications juxtaposed with the three

applications studied in this chapter (SA-LSTM, NAMAS, SA-CNN). The y-axis is

the throughput gain achieved by each application at a batch size of 4 on the GPU

normalized to a batch size of 1 (no batching). The x-axis is the occupancy of each

application. Occupancy is a metric to quantify how effectively the resources of the

GPU are being utilized by the application. Specifically, it is the ratio between the

number of active warps and the theoretical number of warps this application could

spawn on the device. The occupancy is collected using the NVIDIA Profiler [9] and

it is weighted by each kernel’s execution time to calculate the average performance

of the entire application.

A few interesting insights can be drawn from this graph. First looking at the

occupancy, the NLP applications all exhibit relatively low occupancy (at a batch size

of 4) when compared to the DjiNN applications. Naturally, they are more similar to

the cluster of the NLP applications that have low occupancy from DjiNN. However,

90



0.0 0.2 0.4 0.6 0.8 1.0
GPU Occupancy

2x

4x

6x

8x

10x

12x

T
h
ro
u
g
h
p
u
t 
G
a
in
 a
t 
B
S
=
4

IMC

DIGFACE ASR

POS
NER
CHK

SA-LSTM

NAMAS

SA-CNN
DjiNN

NLP

Figure 5.6: Occupancy and Throughput Gain using DjiNN Batching

91



Executed 
batch size=3

Queries Available

NN
Q2

NN

NN

NN

Q1

NN

NN

Q3

NO
OP

NO
OP

NO
OP

NN
Q2

NN

NN

NN

Q1

NN

NN

Q3

Batch Formation

Executed 
batch size=2

Executed 
batch size=1

(a) (b)

Figure 5.7: Padding to Batch

this graph also tells us that the NLP applications don’t benefit as much from larger

batch sizes as the DjiNN applications do (correlates with the low occupancy of the

application at that batch size). NAMAS and SA-LSTM have low occupancy and

relatively low throughput gains, when compared to the DjiNN applications.

5.3.2 Applying DjiNN Style Batching

Current systems providing a high throughput DNN service, namely DjiNN (de-

tailed in Chapter IV), rely on a fixed DNN topology to batch inputs together into a

larger matrix to execute on the GPU.

Padding to Batch The dynamic structure of the DNNs present in these NLP

applications poses a significant challenge for DjiNN as the system currently assumes

batches are formed application-side and the batches are perfectly formed. Figure 5.7a

shows 3 queries incoming to the DjiNN service with variable length inputs (boxes show

different number of NN invocations for each query). For DjiNN to be able to process

these queries, it would need to pad the queries to the longest query of the batch before
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being sent to the DjiNN web service (Figure 5.7b). DjiNN would execute the batch

computation in lockstep since there is a sequential dependency of the NNs within

a single query but NNs of independent queries can execute in the same batch. As

Figure 5.7b shows as the queries execute, less meaningful computation is executed.

Wasting Compute Figure 5.8 shows the amount of computation wasted as the

batch sizes increases. We use a trace of randomly generated queries that have variable

input lengths for each application. As soon as there are enough queries to form

a batch, all queries will be padded to the longest batch. As batch size increases,

the range of query lengths within a single batch increases meaning more queries

must be padded. At batch size of 32, up to 60% of the computation is unnecessary

computation, significantly wasting computation on the GPU. At a certain batch size,

the computation wasted plateaus because the dataset does not have infinitely long

inputs to continue illustrating the problem.

The previous two sections show that GPU occupancy is not sufficient to derive

throughput gain from batching and DjiNN’s batching technique is not suitable for

these NLP applications. This strongly suggests we need to find a better indicator
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of the potential benefits that can be had from designing a system for these NLP

applications that also encompasses the DjiNN (static) applications.

5.3.3 Taxonomizing Dynamic DNNs

The analysis in the previous two sections suggests we need a new way to assess

what systems to use when designing systems for dynamically defined neural network

computation. We showed that generally all DNN based applications can benefit from

batching but it is not a good indicator of how well a system for DNN computation

will perform for a given application. In this section, we propose a new taxonomy that

uses the characteristics of the NLP applications to differentiate them compared to

the statically defined networks previously studied.

Figure 5.9 presents the three NLP applications and the seven DjiNN applications.

On the x-axis is the occupancy at a batch size of 1 and the y-axis is the coefficient

of variation of NN computation for each of the applications. This is a metric used

to quantify variability in the NN computation a given application calculated as the

standard deviation of the length of the input dataset over the mean.

This graph exposes two clusters of applications. The first is the set of applica-

tions that are amenable to DjiNN batching, these are the applications that have low

variability in their NN computation. It is expected that SA-CNN would fall into

this category because it does not have variability in its computation (all queries are

padded to a fixed length). The second cluster, SA-LSTM and NAMAS, have high

variability in their computation and are clustered relatively close to each other.

As our experimental results will show, the higher the variability in the compu-

tation (highest is SA-LSTM), the more an application can benefit from a precisely

designed system to address the challenges in providing high throughput for this class

of applications. We have now shown that two applications sit apart and are not

amenable to current systems for DNN processing. We next design a system to ad-
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dress the challenges in increasing system performance for these applications that is

also applicable to the DjiNN amenable applications.

5.4 System Design for NLP

To investigate the design of a system specialized for dynamic NLP applications,

we design an infrastructure to support fine-grained cross-input batching, a novel tech-

nique to address the new challenges emergent of large scale system design for these

applications. We first outline the requirements of such a system and describe the

implementation addressing each of the requirements.

5.4.1 Requirements

NLP applications have three core characteristics: they have dependent NN calls

rendering intra-query batching impossible (Section 5.2.1), they have iterative and

small NN computation making batching even more critical (Section 5.2.2), and they

have intermediate non-NN processing making the computation iterative (Section 5.2.3).

We design a runtime system that accounts for these characteristics while providing

benefits for applications that use traditional batching techniques. We target the fol-

lowing objectives:

1. Dependency and Input Length Agnostic Batching - The system must

be able to batch NN computation, irrespective of dependencies between NN

calls and the variable length of the incoming queries.

2. High Throughput Web Service - The system must be able to deliver and

sustain high throughput, accept queries over the network as a web service, and

handle concurrent requests.

3. Scalable Design - The system must be designed in a manner that can scale
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to fully utilize the underlying resources available.

5.4.2 System Design

Next, we detail the specific design of the system targeting each of the design goals

previously mentioned.

Fine-Grained Cross-Input Batching (FGCIB) - We design fine-grained cross-

input batching to allow NN batching across multiple queries. The system collects

NN computation from multiple inflight queries to form a batch of NN computation

that has independent NNs within a single batch. As shown in Figure 5.10, a thread

processing the query will execute the CPU portion of the query until it meets NN

computation (colored box in the diagram), at which point it will place the NN com-

putation in a work queue, save the progress of that query, and suspend its execution.

The thread is now free to service new incoming queries and repeat the process. At a

given batch size, the NN engine will pull the NN computation from the queue, batch

the input, execute the batched NN computation, and make a callback to the NLP

service signaling the NLP service the queries can resume their execution.

Single Instance, Multiple Workers - The web service is designed using Thrift [107].

Thrift provides a flexible cross-language interface for designing web services capable
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of accepting concurrent requests over a network connection. To further increase the

throughput, we decompose the system into asynchronous pipeline stages where the

overall throughput of the system is dominated by the stage with the lowest through-

put. As we will discuss in the evaluation, we use multiple workers pushing work to

a common work queue to increase the throughput of the non-NN portion (labeled as

“Other” in Figure 5.5) of the workload thereby making the NN processing stage the

bottleneck.

Multiple Instances, Multiple Workers - We replicate the number of NLP service

instances with a tunable number of workers to fully utilize the resources of the system.

Each instance has its own work queue meaning there are now multiple instances of the

DNN engine executing work on the GPU, further increasing the system utilization.

The front-end dispatch queue round-robins queries to all the service instances.

5.5 Evaluation

We next evaluate fine-grained cross-input batching, documenting our observations

and its efficacy in accelerating NLP applications with irregular computational struc-

tures. We first evaluate the system for a single NLP service instance then scale the

system up consuming the full resources of the experimental platform.

5.5.1 Methodology

Our experimental setup uses a client-server architecture. Acting as the client is

Treadmill [122], an open-source load generator deployed at Facebook, to send queries

to our server over the network. The server uses the FGCIB technique described

in Section 5.4 to process the queries. Queries are sent following an exponentially

distributed inter-arrival rate, as prior research shows such a distribution accurately

models production query arrival times [90]. The queries are dispatched from the front-

end dispatch queue to each service instance on the server hosting the NLP services
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for processing.

The applications, available as open-source projects, are using highly optimized

open-source libraries for their underlying NN processing. SA-LSTM and NAMAS are

using Torch [46] and SA-CNN is using Theano [37]. For the CPU baseline, we link the

libraries to Intel’s MKL [18] while the GPU implementations are linked to cuBLAS

for the matrix multiplication portion of the NN workloads. For all experiments, the

machine learning model is pinned to the GPU so the only data transferred is the NN

input. The platform used is a dual-socket Intel Xeon CPU E5-2630v3 running at

2.40GHz with 8-cores, 2-way HyperThreading and an NVIDIA Titan X GPU. One

socket of the machine is dedicated to running the parser that is used by SA-LSTM to

generate the tree before the LSTM is executed and one socket for the applications.

5.5.2 Single Service Instance

Throughput Improvement Figures 5.11, 5.12, and 5.13 show the throughput of

using a single NLP service instance for SA-LSTM, NAMAS, and SA-CNN, respec-

tively. On the x-axis of each graph, we show the CPU baseline, the GPU baseline,

and FGCIB. The bars are the throughput achieved for each baseline as well as the

throughput as we scale the batch size for FGCIB. We also plot the occupancy of the

system to show, as we increase the batch size, the increased utilization of the GPU

using the technique. In this experiment, FGCIB is configured to use a single instance

and a single worker pushing work into the batching queue.

Interestingly, the CPU baseline for SA-LSTM (Figure 5.11) achieves higher through-

put than the GPU baseline. From our characterization, this is expected because given

the application makes multiple calls to the GPU, there is substantial overhead in ker-

nel launch and data transfer (input to the NN) to the GPU. As previously mentioned,

given the processing for a single NN is relatively small and the CPU is using a highly
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Figure 5.11: Throughput of FGCIB for SA-LSTM
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Figure 5.12: Throughput of FGCIB for NAMAS
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Figure 5.13: Throughput of FGCIB for SA-CNN

optimized matrix multiplication library, the CPU baseline achieves almost 2× the

throughput of the GPU baseline. At a batch size of 1, FGCIB achieves lower through-

put than the GPU baseline and achieves its lowest occupancy. This overhead is due

to the extra logic and structures (work queues) required to support the technique.

However as we increase the batch size, the system throughput increases and the over-

head is amortized as FGCIB is able to fill its pipeline stages and more effectively use

the GPU resources available, efficiently pushing batched work to the GPU. At a batch

size of 4, the technique outperforms the CPU baseline. After a batch size of 8, the

throughput plateaus because the bottleneck is now in feeding the GPU work. With

more CPU workers pushing work to the queue, we can expect to further increase the

throughput. Given the relatively small size of the NN computation, the occupancy

only starts to increase at a relatively large batch size. For NAMAS (Figure 5.12), the

GPU baseline outperforms the CPU baseline. At a batch size of 1, FGCIB achieves

marginal benefits over the GPU baseline because of pipelining (more queries can be

inflight). The highest throughput is achieved at a batch size of 4 before the occu-

pancy and throughput plateau. There are two explanations for this: 1) the GPU’s
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occupancy at this point is near maximum so batching beyond 4 does not provide

additional gains, and 2) the CPU is now the bottleneck since there is a substantial

CPU portion required to process each NN call, involving a large data transfer from

the GPU back to the host. Overall, NAMAS achieves over a 2× throughput benefit

over the next best baseline. SA-CNN (Figure 5.13) achieves significant throughput

benefits from using the system as well. As previously noted, there is no iterative or

dependent computation for this workload so the benefits are entirely from batching

inputs and using an asynchronous, pipelined system.

Single Query Latency Figure 5.14 shows the average latency of a single query

for the CPU, GPU, and FGCIB. For each configuration, the latency is shown at

the highest throughput achieved by that configuration with minimal queueing delay,

meaning the latency collected is at low load for the baselines. For FGCIB, we select

the smallest batch size yielding the highest throughput. This is a batch size of 16

for SA-LSTM, 4 for NAMAS, and 4 for SA-CNN. For two of the three applications,

the latency of FGCIB is higher than both of the baselines. We have identified several
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optimizations that can be applied to improve the single query latency. For example,

SA-LSTM is tree structured meaning there is leaf node parallelism allowing batching

NN computation within a single query. This would reduce the latency of a single

query given the tree would accomplish its computation earlier and would not be

preempted in the batching queue by new queries. Persistent kernel launch would also

reduce latency. Given we are launching the same kernel (layer) on the GPU at a fixed

batch size multiple times (more so than static applications), amortizing the kernel

launch time would reduce the latency of communicating with the GPU. The Titan

X GPU also has two copy engines (host-to-device and device-to-host), which would

allow FGCIB to overlap large data transfers incurred from batching multiple queries

together. These copy engines allow for bidirectional, simultaneous communication.

This would be beneficial for NAMAS which generates a large tree of states between

each NN invocation, which translates to a large communication overhead.

All three applications achieve significant throughput benefits over to the CPU

and GPU baselines. From this experiment, we can takeaway the following: 1) only

at larger batch size does FGCIB begin to see benefits and amortize the overhead of

pushing work to the GPU; 2) an asynchronous and pipelined design allows applica-

tions that do not have iterative and dependent computation to still benefit from the

infrastructure put in place for FGCIB. The single query latency of FGCIB is one

order of magnitude larger than the baseline system. We have identified several key

components at the algorithmic and system level that can be optimized that would

further reduce the latency.

The results also suggest the following: 1) using more workers could further improve

system throughput, and 2) the occupancy of the GPU is still relatively low meaning

there is still performance left on the table because the GPU is not fully loaded. We

next investigate scaling up the system to fully utilize the experimental platform.
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5.5.3 Scaling to Multiple Service Instances

In the previous section, we investigated the throughput of a single instance of the

NLP service running on our experimental platform. The results strongly suggested

the need to scale up the system to increase utilization and further increase system

throughput. In this section, we investigate scaling up the number of NLP service

instances across the baselines and our system. We compare FGCIB to the DjiNN

service infrastructure out of the box and to a batching baseline of padding all the

queries in a batch to the length of the longest friend.

Figure 5.15 shows the results of this study across all three applications investi-

gated. The throughput is normalized to the throughput achieved by the DjiNN service

out of the box (multiple service instances, no batching). For each configuration, we

empirically select the best configuration amongst service instances, number of workers,

and batch size (when applicable). For the baselines (CPU, DjiNN, DjiNN + Padding),

the number of workers is set to 1. For FGCIB and DjiNN + Padding, we select the

smallest batch size with the highest throughput by sweeping the configurations avail-

able.
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We empirically found the best configuration of FGCIB for SA-LSTM to be 4

instances, 4 workers, and a batch size of 32. SA-LSTM achieves the highest through-

put improvements over the DjiNN baseline. This is because this workload has the

strongest prevalence of the NLP characteristics across the three applications studied

and so benefits the most from FGCIB (iterative, dependent, small NN computation).

NAMAS achieves small benefits over the DjiNN baselines with the best configuration

to be 1 instance, 1 worker, and a batch size of 4. Scaling the number of instances or

workers did not further increase the throughput because the GPU portion is the bot-

tleneck and already achieves relatively high occupancy at a batch size of 4. Finally,

for SA-CNN the best configuration is 4 instances, 4 workers, and a batch size of 16.

Given the queries are already padded for the application, the DjiNN + Padding con-

figuration achieves very similar throughput to FGCIB. The marginal gains of FGCIB

over that baseline can be attributed to the pipelining of the infrastructure.

Generally, SA-LSTM and NAMAS achieve significant throughput gains from the

technique. NAMAS achieves a 6.7× throughput improvement over the CPU. On

average, FGCIB achieves 7.8× throughput improvement over the CPU. As shown in

Figure 5.15, our system achieves 2.8× higher throughput than the GPU baseline (max-

imum number of instances sharing the GPU). When compared to the state-of-the-

art acceleration technique, the system on average achieves 2.3× higher throughput.

Specifically, our system achieves on average 4.5× higher throughput for SA-LSTM and

NAMAS while achieving slightly higher throughput for CNN. These results demon-

strate that our system is more effective than state-of-the-art at handling deep learning

applications with dynamically defined computation and performs slightly better (no

worse) compared to the state-of-the-art for traditional statically-defined deep learning

applications.
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5.6 Summary

Natural Language Processing (NLP) applications represent the next, relatively

unexplored set of applications that system architects need to rethink their systems

for. The departure from statically defined NN based applications is inherent in the

nature of the inputs to the NLP applications that require not only analysis of the in-

dividual words but also of their semantic position in the sentence. We identify three

representative NLP applications that seemingly use the same algorithmic compo-

nents (neural networks) but have drastically different computational characteristics.

Through our in-depth characterization, we show that NLP applications have three

main characteristics: 1) iterative and dependent NN computation, 2) the computa-

tion per NN call is small, and 3) a significant fraction of the time is spent outside the

NN for intermediate processing. These characteristics lead current systems for high

throughput DNN inference systems to perform suboptimally. We propose a design

to address the limitations of current systems while also supporting statically defined

NN workloads. Our system allows batching NN computation across queries to break

the dependencies introduced within a query and allow queries of different length to

be batched. We achieve on average 7.6× throughput improvements over an optimized

CPU baseline and 2.8× over the current state-of-the-art GPU system.
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CHAPTER VI

Conclusion and Future Directions

As cloud providers are building increasingly larger WSCs to accommodate the

growing demand for a variety of web services, the type of applications running in

these WSCs is changing. Traditional workloads, like web search and social networks,

while still prevalent and widely used are beginning to share infrastructure with a

new class of applications, namely intelligent web services. As this dissertation shows,

these new web services are computationally very different from what is running in

current WSCs. These intelligent web services are not only sharing resources in current

WSCs, they are prompting new accelerator based designs given their large compute

footprints. This dissertation investigates the design of an end-to-end application

composed of three distinct intelligent web services to build an intelligent personal

assistant. As intelligent web services began to mature in the last few years, DNNs

became the algorithm of choice underlying the computation. This work then inves-

tigated providing a unified DNN as a service infrastructure arguing that a common,

optimized engine can benefit a suite of intelligent web services of which large-scale

applications like intelligent personal assistants are composed of. This thesis then

concludes its investigation by focusing on natural language processing as the broad

applicability and interest has spawned accelerated progress in this domain of intelli-

gent web services and design a novel system for large-scale deployment of these web
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services.

6.1 Summary of Themes and Results

The design of end-to-end intelligent web service applications - Through

our investigations in studying intelligent web services, we found it was critical to

design applications composed of intelligent web services representative of those used

in production systems by the large cloud service providers.

• We designed the first open-source end-to-end voice and vision based personal

assistant based on investigative research to construct a system using the same

algorithmic components deployed in production systems.

• We designed and open-sourced a DNN as a service infrastructure to study how

DNN based intelligent web services can be deployed at scale.

• Alongside our open-source artifacts, we composed benchmark and application

suites to evaluate the end-to-end systems, paving the way for studying intelligent

web services in the future.

• We found it was critical to leverage load testing frameworks to study the rapidly

evolving and changing landscape of intelligent web services to expose critical

bottlenecks in current designs.

Accelerator rich WSCs are critical for intelligent web services - With repre-

sentative end-to-end workloads in hand, we found that current CPU-only WSCs are

inadequately equipped to sustain the demand needed of cloud infrastructures hosting

intelligent web services. Acceleration on the path of a query using intelligent services

is critical.
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• We observed that the compute resources needed to sustain intelligent web ser-

vice workloads is orders of magnitude higher than traditional datacenter work-

loads.

• We used the application suites at hand and ported them across spectrum of

accelerator platforms, and found GPU and FPGA based design are the most

promising moving forward.

• Focusing on DNN based intelligent web services, we aggressively optimized the

DNN as a service infrastructure using batching and concurrent service instances

on a system using 8 server grade GPUs.

• As the landscape of intelligent web services evolves, we developed fine-grained

cross-input batching targeting dynamically defined neural network architectures.

Accelerator based WSC show significant TCO improvements - Acceleration

on the path of a query shows significant promise and after performing a TCO analysis,

we saw significant cost reductions can be had across different designs and optimization

targets.

• Accelerator rich WSCs hosting intelligent web services showed significant TCO

benefits over current designs when equipped with GPUs and FPGAs.

• Not all deep learning applications achieved performance benefits equally which

means the workload composition informs the design choices of the WSCs.

• Addressing PCIe bandwidth bottlenecks for certain DNN based applications

allows system designers to fully unlock the potential of a GPU rich WSC hosting

DNN based intelligent web services.
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6.2 Future Directions

The investigation of intelligent web services and their impact on the future of

WSCs has just begun. This dissertation, while answering a number of questions

in this space, also incites a set of new questions spurring exciting research in this

direction. This section outlines a few of those directions.

Intelligent Personal Assistant Design

This dissertation is the first to design an end-to-end intelligent personal assis-

tant the research community can use and further develop. Sirius has evolved from a

research project into a platform allowing researchers, developers, and industry profes-

sionals to investigate how best to design an end-to-end application leveraging a series

of intelligent web services on the path of a query. The idea of a platform to compose

intelligent services into a pipeline is an exciting future direction as it opens multiple

research directions, to name a few: (i) comparing the accuracy of an intelligent service

in isolation versus in a larger pipeline and how errors propagate, (ii) allows building

large scale applications that can scale beyond a single server, and (iii) proving out

new algorithms given a target application.

Single Service Intelligent Application

The current working assumption is that end-to-end applications that require in-

telligence on the path of a query leverage a multitude of intelligent web services

accomplishing disparate tasks along the way. This has informed the design until now

where designers are able to decompose the task into microservices, easily spreading

the computation across multiple machines. Recent advances in the deep learning

community have shown promise in designing DNNs capable of accomplishing larger

scale tasks within a single DNN outperforming the accuracy of designs using multiple

DNNs for the same task (especially true in the NLP domain). As this evolves, this

may pose a set of new challenges as the microservice architecture may fall out of
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favor for designs of large networks that may not fit in the compute budget of a single

server.

Spreading Computation beyond the Datacenter

While this dissertation focuses on designing and optimizing intelligent web services

in datacenter infrastructures, today’s mobile devices are becoming powerful enough

to share or even accomplish the compute required on the path of an intelligent query.

Cloud providers can leverage the cycles in our pockets or homes further increasing

the efficiency of their datacenters, delivering even lower latency for end users, or

even increasing the scope of use-cases the application can accomplish. The task of

intelligently partitioning work between mobile and cloud is an interesting one, fraught

with challenges in data transmission, network variability, and security and privacy

implications.
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software library. Technical report, Idiap, 2002.

[47] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. The Journal of Machine
Learning Research, 2011.

[48] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition. Audio, Speech,
and Language Processing, IEEE Transactions on, 20(1):30–42, 2012.

[49] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,
M. A. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large scale
distributed deep networks. In NIPS, 2012.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Computer Vision and Pattern Recognition
(CVPR), 2009.

[51] T. H. Dinh, D. Q. Vu, V.-D. Ngo, N. P. Ngoc, and V. T. Truong. High through-
put fpga architecture for corner detection in traffic images. In Communications
and Electronics (ICCE), 2014 IEEE Fifth International Conference on, pages
297–302. IEEE, 2014.

[52] P. R. Dixon, T. Oonishi, and S. Furui. Harnessing graphics processors for the
fast computation of acoustic likelihoods in speech recognition. Comput. Speech
Lang., 23(4):510–526, Oct. 2009.

[53] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for
general-purpose approximate programs. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-45, pages
449–460, Washington, DC, USA, 2012. IEEE Computer Society.

[54] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Aksel-
rod, and S. Talay. Large-scale FPGA-based convolutional networks. Machine
Learning on Very Large Data Sets, 2011.

[55] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the clouds:
A study of emerging scale-out workloads on modern hardware. In Proceedings

116



of the Seventeenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVII, pages 37–48, New
York, NY, USA, 2012. ACM.

[56] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur,
A. Lally, J. W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, and C. Welty.
Building Watson: An Overview of the DeepQA Project — Ferrucci — AI Mag-
azine. AI MAGAZINE, 31(3):59–79, Sept. 2010.

[57] G. D. Forney Jr. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–
278, 1973.

[58] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pas-
canu, J. Bergstra, F. Bastien, and Y. Bengio. Pylearn2: a machine learning
research library. arXiv preprint arXiv:1308.4214, 2013.

[59] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep re-
current neural networks. In Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pages 6645–6649. IEEE, 2013.

[60] J. Hauswald, T. Manville, Q. Zheng, R. Dreslinski, C. Chakrabarti, and
T. Mudge. A hybrid approach to offloading mobile image classification. In
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on, pages 8375–8379. IEEE, 2014.

[61] M. A. Hearst. ’Natural’ Search User Interfaces. Commun. ACM, 54(11):60–67,
Nov. 2011.

[62] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural networks
for acoustic modeling in speech recognition. Signal Processing Magazine, 2012.

[63] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[64] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, L. Tang,
J. Mars, and R. Dreslinski. Adrenaline: Pinpointing and reigning in tail queries
with quick voltage boosting. In Proceedings of the 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), HPCA ’15,
Washington, DC, USA, 2015. IEEE Computer Society.

[65] X. Huang, J. Baker, and R. Reddy. A historical perspective of speech recogni-
tion. Commun. ACM, 2014.

[66] X. Huang, J. Baker, and R. Reddy. A historical perspective of speech recogni-
tion. Commun. ACM, 57(1):94–103, Jan. 2014.

117



[67] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar, and
A. I. Rudnicky. Pocketsphinx: A free, real-time continuous speech recognition
system for hand-held devices. In Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International Conference on, volume 1,
pages I–I. IEEE, 2006.

[68] R. Iyer, S. Srinivasan, O. Tickoo, Z. Fang, R. Illikkal, S. Zhang, V. Chadha,
P. M. S. Jr., and S. E. Lee. Cogniserve: Heterogeneous server architecture for
large-scale recognition. IEEE Micro, 31(3):20–31, 2011.

[69] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093, 2014.

[70] A. Kannan, K. Kurach, S. Ravi, T. Kaufmann, A. Tomkins, B. Miklos, G. Cor-
rado, L. Lukacs, M. Ganea, P. Young, et al. Smart reply automated response
suggestion for email. In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), volume 36, pages 495–503, 2016.

[71] J. Kim, J. Chong, and I. R. Lane. Efficient On-The-Fly Hypothesis Rescoring in
a Hybrid GPU/CPU-based Large Vocabulary Continuous Speech Recognition
Engine. In INTERSPEECH. ISCA, 2012.

[72] Y. Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

[73] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan.
Meet the walkers: Accelerating index traversals for in-memory databases. In
Proceedings of the 46th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-46, pages 468–479, New York, NY, USA, 2013. ACM.

[74] R. Krishna, S. Mahlke, and T. Austin. Architectural optimizations for low-
power, real-time speech recognition. In Proceedings of the 2003 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems,
CASES ’03, pages 220–231, New York, NY, USA, 2003. ACM.

[75] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, 2012.

[76] N. Kurd, J. Douglas, P. Mosalikanti, and R. Kumar. Next generation intel R©
micro-architecture (nehalem) clocking architecture. In VLSI Circuits, 2008
IEEE Symposium on, pages 62–63. IEEE, 2008.

[77] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. 2001.

118



[78] M. Laurenzano, Y. Zhang, L. Tang, and J. Mars. Protean code: Achieving near-
free online code transformations for warehouse scale computers. In Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), MICRO-47, New York, NY, USA, 2014. ACM.

[79] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998.

[80] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch. Thin
servers with smart pipes: Designing soc accelerators for memcached. In Pro-
ceedings of the 40th Annual International Symposium on Computer Architec-
ture, ISCA ’13, pages 36–47, New York, NY, USA, 2013. ACM.

[81] E. C. Lin, K. Yu, R. A. Rutenbar, and T. Chen. A 1000-word Vocabulary,
Speaker-independent, Continuous Live-mode Speech Recognizer Implemented
in a Single FPGA. In Proceedings of the 2007 ACM/SIGDA 15th International
Symposium on Field Programmable Gate Arrays, FPGA ’07, pages 60–68, New
York, NY, USA, 2007. ACM.

[82] B. Liu. Sentiment analysis and opinion mining. Synthesis lectures on human
language technologies, 5(1):1–167, 2012.

[83] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and
Y. Chen. Pudiannao: A polyvalent machine learning accelerator. In Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems(ASPLOS), 2015.

[84] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed graphlab: a framework for machine learning and data mining in the
cloud. Proceedings of the VLDB Endowment(PVLDB), 2012.

[85] J. V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and K. Atasu.
Designing a programmable wire-speed regular-expression matching accelerator.
In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-45, pages 461–472, Washington, DC, USA, 2012.
IEEE Computer Society.

[86] J. Mars and L. Tang. Whare-map: Heterogeneity in homogeneous warehouse-
scale computers. In ISCA ’13: Proceedings of the 40th annual International
Symposium on Computer Architecture. IEEE/ACM, 2013.

[87] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up: Increas-
ing utilization in modern warehouse scale computers via sensible co-locations.
In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), MICRO-44, pages 248–259, New York, NY, USA,
2011. ACM.

119



[88] J. Mars, L. Tang, K. Skadron, M. L. Soffa, and R. Hundt. Increasing utilization
in modern warehouse-scale computers using bubble-up. IEEE Micro, 32(3):88–
99, May 2012.

[89] B. Mathew, A. Davis, and Z. Fang. A low-power accelerator for the sphinx 3
speech recognition system. In Proceedings of the 2003 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, CASES ’03,
pages 210–219, New York, NY, USA, 2003. ACM.

[90] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.
Power management of online data-intensive services. In Computer Architecture
(ISCA), 2011 38th Annual International Symposium on, pages 319–330. IEEE,
2011.

[91] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–3119, 2013.

[92] N. Okazaki. CRFsuite: a fast implementation of Conditional Random Fields
(CRFs), 2007. http://www.chokkan.org/software/crfsuite/.

[93] V. Petrucci, M. A. Laurenzano, Y. Zhang, J. Doherty, D. Mosse, J. Mars, and
L. Tang. Octopus-man: Qos-driven task management for heterogeneous multi-
core in warehouse scale computers. In Proceedings of the 2015 IEEE 21st In-
ternational Symposium on High Performance Computer Architecture (HPCA),
HPCA ’15, Washington, DC, USA, 2015. IEEE Computer Society.

[94] N. Piatkowski. Linear-Chain CRF@GPU, 2011. http://sfb876.tu-
dortmund.de/crfgpu/linear crf cuda.html.

[95] M. F. Porter. An algorithm for suffix stripping. Program: electronic library
and information systems, 14(3):130–137, 1980.

[96] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-
nemann, P. Motlicek, Y. Qian, P. Schwarz, et al. The kaldi speech recognition
toolkit. In Proc. ASRU, 2011.

[97] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope,
A. Smith, J. Thong, P. Y. Xiao, and D. Burger. A reconfigurable fabric for
accelerating large-scale datacenter services. In 41st Annual International Sym-
posium on Computer Architecture (ISCA), June 2014.

[98] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. A.
Horowitz. Convolution engine: balancing efficiency & flexibility in special-
ized computing. In International Symposium on Computer Architecture(ISCA),
2013.

120



[99] A. Research. Wearable Computing Devices, Like Apple iWatch,
Will Exceed 485 Million Annual Shipments by 2018. 2013.
https://www.abiresearch.com/press/wearable-computing-devices-like-apples-
iwatch-will.

[100] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an efficient alter-
native to sift or surf. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2564–2571. IEEE, 2011.

[101] A. M. Rush, S. Chopra, and J. Weston. A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[102] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge(ILSVRC), 2014.

[103] D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sundermeyer, Z. Tüske,
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