
First-Principles Calculations of Electronic, Optical, and
Transport Properties of Materials for Energy Applications

by

Guangsha Shi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Materials Science and Engineering and Scientific Computing)

in the University of Michigan
2017

Doctoral Committee:

Assistant Professor Emmanouil Kioupakis, Chair
Associate Professor Pierre Ferdinand P. Poudeu
Assistant Professor Liang Qi
Professor Ctirad Uher



©Guangsha Shi

2017



ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor Prof.
Emmanouil Kioupakis for his continuous support of my Ph.D. study and
related research. Prof. Kioupakis did not only helped me in research with
his great patience and immense knowledge, but also set a best example
to me with his sincerity, kindness, humbleness, and forgiveness. I always
feel it a great honor to be the first student to join his research group in
University of Michigan. I am fortunate to have Prof. Kioupakis not only
as a good mentor in my scientific research, but also as a good mentor in
my life.
Besides my advisor, I would like to thank my committee members Prof.
Pierre Ferdinand P. Poudeu, Prof. Liang Qi, and Prof. Ctirad Uher,
for their insightful comments and encouragement. My sincere thanks
also goes to my fellow group mates Dylan Bayerl, Andrew McAllis-
ter, Michael Waters, Alex Toulouse, Christina Jones, Jihang Lee, Logan
Williams, Kelsey Mengle, Nocona Sanders for the stimulating discus-
sions and memorable moments. I would like to thank my family and my
best friends Weimin Wang and Fanbo Meng in particular, as it is their
love and company that helped me through the hardest times in the last
five years. I am also thankful to Mrs. Renee Hilgendorf for all the ad-
ministrative support and the care she provided all these years.
This research was supported by the National Science Foundation
CAREER award through Grant No. DMR-1254314, and by the Center
for Solar and Thermal Energy Conversion, an Energy Frontier Research
Center funded by the U.S. Department of Energy Office of Science,
Office of Basic Sciences under Award DE-SC0000957. Computational
resources were provided by the National Energy Research Scientific
Computing Center, supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AS02-05CH11231.

ii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Photovoltaic and thermoelectric effects . . . . . . . . . . . . . . . . . . . 2
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Quasiparticle corrections and the GW method . . . . . . . . . . . 5

2 Nanoporous Silicon for Solar-Cell Applications . . . . . . . . . . . . . . . . . 9

2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Optical matrix elements . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Dielectric constant . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.6 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.7 Photovoltaic conversion efficiency . . . . . . . . . . . . . . . . . 21

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Strong Visible-Light Absorbance in Few-Layer SnSe and GeSe . . . . . . . . . 30

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4 Visible-light absorbance . . . . . . . . . . . . . . . . . . . . . . 39
3.2.5 Photovoltaic conversion efficiency . . . . . . . . . . . . . . . . . 41

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Free-Carrier Absorption in n-Type Silicon . . . . . . . . . . . . . . . . . . . . 44

iii



4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Thermoelectric transport properties of p-type SnSe . . . . . . . . . . . . . . . 53

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3 Carrier-density and temperature dependence of transport coeffi-

cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn . . . . . . . . . . 74

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Quasiparticle band structure . . . . . . . . . . . . . . . . . . . . 79
6.2.2 Band-structure parameterization with k · p . . . . . . . . . . . . . 83
6.2.3 Seebeck coefficients . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iv



LIST OF FIGURES

1.1 The original many-body problem of interacting electrons in a static external
potential is reduced to a problem of non-interacting electrons moving in an
effective potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The GW approximation seems to provide band gaps of insulators and semi-
conductors in agreement with experiment, and hence to correct the systematic
DFT underestimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The absorption spectra for silicon calculated at the GW (black dashed) and
GW-BSE (red solid) levels using the BerkeleyGW package[1] compared to
that from experiment[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Some of the nanoporous Si structures with various pore radius R and pore
spacing L examined in this work. Quantum confinement by the nanoscale
pores increases the probability of optical transitions across the band gap of Si
and enhances the absorption coefficient in the visible range. . . . . . . . . . . 13

2.2 The band structures of three of the investigated nanoporous Si structures (A,
B, and C shown in the insets). . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Band-gap values of nanoporous Si as a function of pore radius and spacing.
The lines are fits to the calculated data. The structures with direct band gaps
are marked with solid symbols. . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Average optical (velocity) matrix elements of interband transitions between
the states within 100 meV from the band edges of the investigated nanoporous
Si structures at the Γ point for light polarized perpendicular to the pore di-
rection. The optical matrix elements are given in units of αc, where α is the
fine-structure constant and c is the speed of light. The horizontal dashed line
indicates the typical value of direct optical transition matrix elements across
the direct gap of bulk Si at the Γ point, while the dotted line denotes the char-
acteristic value of indirect (phonon-assisted) optical matrix elements across
the indirect gap of bulk Si. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 The dielectric constant of nanoporous Si as a function of Si volume fraction
for various pore geometries. The data are in very good agreement with both
the Bruggeman formula (solid) and the Maxwell-Garnett formula (dashed). . . 18

v



2.6 Dielectric functions of structures A and B compared to bulk Si. (a) real part
(ε1) and (b) imaginary part (ε2). Electron scattering by the nanoscale pores en-
able optical transitions across the gap in structure A and B. Only direct optical
transitions are considered for bulk Si (no phonon-assisted transitions) and only
direct and quasidirect transitions are included for the nanostructures to high-
light the additional absorption due to the quasidirect transitions in nanoporous
Si. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 (a) Reflectivity and (b) absorption coefficient of nanoporous Si structures A
and B. Dashed lines include excitonic effects due to electron-hole (e-h) inter-
action, while dash-dot lines do not include excitonic effects. The calculated
results are also compared to the experimental data for bulk Si. . . . . . . . . . 22

2.8 Relative converted electrical power produced in nanoporous Si relative com-
pared to the bulk as a function of pore radius and spacing. A thin-film material
thickness of 100 nm is assumed. The data show that nanoporous Si struc-
tures with pore spacing on the order of 3 times the lattice constant of bulk Si
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ABSTRACT

First-Principles Calculations of Electronic, Optical, and Transport Properties of
Materials for Energy Applications

by

Guangsha Shi

Chair: Emmanouil Kioupakis

Solar electricity is a reliable and environmentally friendly method of sustainable
energy production and a realistic alternative to conventional fossil fuels. More-
over, thermoelectric energy conversion is a promising technology for solid-state
refrigeration and efficient waste-heat recovery. Predicting and optimizing new
photovoltaic and thermoelectric materials composed of Earth-abundant elements
that exceed the current state of the art, and understanding how nanoscale structur-
ing and ordering improves their energy conversion efficiency pose a challenge for
materials scientists.
I approach this challenge by developing and applying predictive high-performance
computing methods to guide research and development of new materials for
energy-conversion applications. I present my calculated results on the extraor-
dinary properties of nanostructured semiconductor materials, including strong
visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe.
These findings highlight the capability of nanoscale structuring and ordering to
improve the performance of Earth-abundant materials compared to their bulk
counterparts for solar-cell applications. I also successfully identified the dominant
mechanisms contributing to free-carrier absorption in n-type silicon. My findings
help evaluate the impact of the energy loss from this absorption mechanism in
doped silicon and are thus important for the design of silicon solar cells.
In addition, I calculated the thermoelectric transport properties of p-type SnSe, a
bulk material with a record thermoelectric figure of merit. I predicted the optimal
temperatures and free-carrier concentrations for thermoelectric energy conversion,
as well the theoretical upper limit of the figure of merit. I also determined the
electronic structures and thermoelectric properties of Mg2Si, Mg2Ge, and Mg2Sn,
a family of Earth-abundant thermoelectric compounds.The methods and codes I
developed in my research form a general predictive toolbox for the design and
optimization of the functional properties of materials for energy applications.
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CHAPTER 1

Introduction

The discovery of advanced materials for energy applications has been one of the most sig-
nificant and urgent tasks for society in the new century. The traditional fossil-fuel-based
energy production is not a sustainable solution to our energy needs due to diminishing sup-
ply, air pollution, and CO2 emissions. Moreover, only a fraction of the fossil-fuel energy is
converted to useful work, while the majority is lost to heat. Solar electricity is established
as a reliable and environmentally friendly method for energy production and a viable al-
ternative to fossil fuels, while thermoelectric energy conversion is promising for efficient
waste-heat recovery. Solar electricity has important applications e.g., in the International
Space Station, where photovoltaic solar panels are used to derive electricity from sunlight.
In the outer solar system, where the sunlight is too weak to produce sufficient power, ra-
dioisotope thermoelectric generators are employed to power deepspace spacecraft, such as
the Voyager and Cassini missions, as well as the Curiosity rover of the Mars Science Lab-
oratory. Our work on the discovery of novel photovoltaic and thermoelectric materials is
also a part of Materials Genome Initiative, which was designed to support and accelerate
the discovery and deployment of advanced materials.

Predictive insights from computer simulations can accelerate the discovery of new pho-
tovoltaic and thermoelectric compounds. The development of new materials has been the
catalyst behind most major technological innovations throughout human history. However,
there is a significant delay between the discovery of new materials and their commercial de-
ployment. Advances in computer-simulation algorithms and high-performance computing
resources promise to speedup the development of new compounds with desirable proper-
ties and significantly shorten this time delay. First-principles calculations based on den-
sity functional theory and related techniques are a predictive set of computational tools to
model the structural, electronic, vibrational, and transport properties of materials entirely
from theory. The ability to describe the transport behavior without any input from experi-
ment is a prerequisite for the computational discovery of new thermoelectric materials. The
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theory can also suggest engineering approaches to optimize the thermoelectric performance
without lengthy and costly experimental tests.

1.1 Photovoltaic and thermoelectric effects

The photovoltaic effect was first observed by Alexandre-Edmond Becquerel in 1839 and
its first commercial use was in 1955 at remotely located telephone repeaters. Solar cells
soon established themselves as the power source of choice for satellites in space, and they
have held this role ever since. With increasing advancements in technology, the cost of
photovoltaic technology, which used to be prohibitively high in its early days, has steadily
dropped in recent years. Today, solar electricity has firmly established itself as a premier
method of sustainable energy and as a realistic alternative to conventional fossil fuels.

The selection of photovoltaic materials is generally based on their light absorption effi-
ciency, energy conversion efficiency, manufacturing technology, and cost of production.
The major types of materials that have been successfully used are crystalline and thin
films. Crystalline materials are dominated by single-crystal and polycrystalline silicon,
while thin-film materials include amorphous silicon, Gallium Arsenide (GaAs), Cadmium
Telluride (CdTe), Copper Indium Gallium Diselenide (CuInGaSe2, or CIGS), etc.. Thin-
film materials usually exhibit higher light-absorption efficiency, while the thin deposited
layer reduces the materials cost compared to bulk devices. However, their non-single-
crystal structures typically result in lower energy conversion efficiency than silicon. The
energy conversion efficiency of CIGS, which is the second highest (after GaAs) among all
thin-film materials (tested to be 19.7% in 2013[10]), is still lower than laboratory energy
conversion efficiencies as high as 25% for single-crystal silicon and 20.4% for polycrys-
talline silicon.[11] Currently there is a significant ongoing experimental and computational
research effort on low-dimensional photovoltaic materials. Computational investigations
are particularly useful since they can explore the photovoltaic properties of as-yet unsyn-
thesized materials and can help guide experimental efforts.

Thermoelectric energy conversion is a promising technology for sustainable energy
production and utilization. Fossil-fuel-based energy production is not a sustainable solu-
tion to the energy needs of our society due to diminishing supply, air pollution, and CO2

emissions. Moreover, only a fraction of the fossil-fuel energy is converted to useful work,
while the majority is lost to heat. Thermoelectric conversion is a reliable and environmen-
tally friendly method to convert heat directly into electricity and is a promising solution
to improve the efficiency of fossil-fuel engines. Ongoing research aims to utilize thermo-
electric conversion for waste-heat recovery from automotive radiator and exhaust systems.
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Thermoelectric energy conversion also finds use in solid-state refrigerators. These low-
maintenance devices can be applied to cool, e.g., electronic components without expanding
gases or moving parts.

The coupled electrical and thermal transport properties of thermoelectric materials en-
able the direct conversion of heat into electricity. The best available thermoelectric mate-
rials are doped semiconductors such as Bi2Te3, PbTe, and Si1−xGex.[12, 13, 14, 15] How-
ever, applications of these materials are limited to specialized devices (e.g., deep-space
power generation) because their efficiency is low compared to heat engines. Moreover,
they contain either rare (e.g., Te) or toxic (e.g., Pb) elements, which impedes large-scale
applications. New thermoelectric materials with superior performance will facilitate the
adoption of waste-heat recovery technology and mitigate the impact of fossil fuels on the
environment. Ongoing research efforts at the University of Michigan and elsewhere aim
to discover new thermoelectric compounds, alloys, and nanostructures with enhanced ther-
moelectric performance.[16, 17] The thermoelectric efficiency, which is measured by the
dimensionless figure of merit, is not easy to maximize because optimizing one physical
parameter that affects it often adversely affects another. Therefore, the computational work
based on predictive methods is essential to guide the discovery of good thermoelectric ma-
terials composed of earth-abundant elements.

1.2 Methodology

High-performance-computing calculations have become an indispensable toolbox in ma-
terials research. Atomistic calculations based on density functional theory (DFT) and
many-body perturbation theory (MBPT) enable the predictive theoretical characterization
of materials properties without empirical or adjustable parameters. Advances in software
development and supercomputing hardware enabled the application of DFT and MBPT
to predictively investigate a broad range of materials and phenomena, including quantum
processes in materials such as free-carrier absorption, Auger recombination, and thermo-
electric transport[18, 19, 20], novel wide-gap semiconductors for power electronics and
UV photonics[21, 22, 23], silicon nanostructures for optimal light absorption in the visi-
ble range[24], 2D optoelectronic materials[25, 26, 27], atomistic understanding of resistive
switching materials[28, 29], and the theoretical characterization of experiementally mea-
sured materials properties[30, 31, 32, 33, 34].
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Figure 1.1: The original many-body problem of interacting electrons in a static exter-
nal potential is reduced to a problem of non-interacting electrons moving in an effective
potential.

1.2.1 Density functional theory

First-principles calculations of electronic and optical properties start directly at the level of
established microscopic laws of quantum physics at the atomic level, without assumptions
such as empirical models and adjustable parameters fitted to experimental data. Electrons in
solids form an interacting many-body quantum system moving in the static ionic potential
of the nuclei. To solve for the wave functions and eigen-energies of the many-body electron
system in a brute-force way, one needs to determine the interacting many-body wave func-
tion taking all electron interactions into account, which is computationally prohibitive even
on modern supercomputers even for systems with as few as 10 electrons. An elegant solu-
tion to this problem was made possible with the development of density functional theory
(DFT), in which the properties of a many-electron system can be determined by a universal
functional of the spatially dependent electron density. Because of its satisfactory accuracy
in the treatment of solid-state systems and ita relatively low computational cost compared
to wave-function-based methods, such as Hartree-Fock and higher-order techniques, DFT
is established as one of the most popular and versatile methods in computational materials
physics to determine phase stability, structural properties, bond and surface energies, phase
diagrams, and kinetic barriers.

The theoretical footing of DFT is established by the HohenbergKohn theorem[35],
which demonstrates that the ground state properties of a many-electron system are uniquely
determined by its electron density that depends only on the three spatial coordinates. The
Kohn-Sham method[36] reduces the many-body problem of interacting electrons in a static
external potential to a fictitious problem of non-interacting electrons moving in an effective
potential, the Kohn-Sham potential, as shown in Figure 1.1, whose solution gives the same
electron density as the original interacting problem. In practice, the exact universal func-
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tional that incorporates all effects of electron exchange and correlation is approximated by
analytical expressions. Popular choices for the exchange-correlation functional are local
versions such as the local density approximation (LDA),[37] which assumes that the elec-
tron gas is locally uniform and its exchange-correlation energy is given by the results of
quantum Monte-Carlo calculations[38], or the generalized gradient approximation (GGA),
e.g., in the Perdew-Burke-Ernherhoff parameterization (PBE),[39] which also incorporates
the gradient of the density. Effectively, the Kohn-Sham theorem reduces the interacting
N-particle problem to N one-particle problems. The cost of DFT using a local exchange-
correlation functional is therefore lower than the Hartree-Fock method and similar to the
cost of the Hartree method. For practical DFT calculations, several more approximations
and implementation choices need to be made regarding the interaction of valence elec-
trons with core electrons (e.g., all-electron or pseudopotential DFT), the basis set (e.g.,
plane waves, real-space grids, or numerical atom-centered orbitals), the boundary condi-
tions of the simulation box (periodic boundary condictions or vanishing wave function at
the boundary), etc. Several codes exist that implement different versions of DFT, such as
Quantum-Espresso or VASP.[40, 41]

1.2.2 Quasiparticle corrections and the GW method

DFT is, in principle, an exact theory to reproduce and predict ground-state properties, such
as the total energy and atomic structure, but it is not a theory to address excited state
properties, such as the band structure and optical excitation energies. The problem arises
when an electron is added to the system of interacting electrons. This electron interacts
with the surrounding electrons via the screened Coulomb interaction and the combination
of the electron and the cloud of the disturbed neighboring electrons behaves effectively
like a new particle with renormalized properties called a quasiparticle. A solution to this
problem is achieved with many-body perturbation theory in the GW approximation. The
approximation is that the self-energy Σ is expanded in a formal Taylor series in terms of
the single-particle Green’s function G and the screened Coulomb interaction W and the
lowest order term is kept in the expansion[42, 43]. The GW method has been shown to
provide more accurate results for band structures than DFT and local exchange-correlation
funcitonals. While DFT within LDA or PBE underestimates band gaps systematically, the
GW approximation provides band gaps of insulators and semiconductors in much better
agreement with experiment[44], as shown in Figure 1.2. The GW method is implemented
in the BerkeleyGW software package.[1]

The GW approximation provides accurate description of electronic structures but it is
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Figure 1.2: The GW approximation seems to provide band gaps of insulators and semi-
conductors in agreement with experiment, and hence to correct the systematic DFT under-
estimation.
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a one-particle-excitation theory and thus not sufficient to obtain correct optical proper-
ties, which are two-particle excitations. Optical spectra of semiconducting materials are
strongly affected by the attractive interaction between the photo-excited electron in the
conduction band and the hole that it leaves behind in the valence band. This electron-
hole interaction creates new bound states with excitation energies below the gap known as
excitons. To describe excitonic effects, one should switch from a one-particle formalism
to a two-particle theory by solving the Bethe-Salpeter Equation (BSE)[45]. An example
absorption spectrum for silicon computed at the GW and GW-BSE levels is shown in Fig-
ure 1.3. The calculated spectrum is found to have good agreement with experiment only
when both the quasiparticle effects within the GW approximation and the excitonic ef-
fects are included. The careful treatment of excitonic effects is particularly important for
quantum-confined structures such as nanowires[46, 47, 21] where quantum-confinement
effects additionally increase the exciton binding energy and shift the onset of optical ab-
sorption to lower energies.
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Figure 1.3: The absorption spectra for silicon calculated at the GW (black dashed) and
GW-BSE (red solid) levels using the BerkeleyGW package[1] compared to that from
experiment[2].
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CHAPTER 2

Nanoporous Silicon for Solar-Cell Applications

Bulk silicon is a poor light emitter and absorber, but its optical properties are significantly
enhanced by nanostructuring. We use first-principles calculations to investigate the elec-
tronic and optical properties of nanoporous silicon. We determine and analyze the elec-
tronic structure, optical coefficients, and photovoltaic conversion efficiency as a function
of pore size and spacing. Our results show that the visible-range absorption coefficient of
nanoporous Si is greatly improved compared to the bulk for pore spacings and sizes on
the scale of a few nanometers. The photovoltaic efficiency is improved to up to 2.7 times
compared to bulk Si and the theoretical maximum conversion efficiency reaches up to 6.3%
for a thin-film nanoporous material thickness of 135 nm. Our results show that nanoporous
Si is a promising material for thin-film photovoltaic applications.
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Silicon is an earth-abundant material of great importance in semiconductor electronics
such as integrated circuits and solar cells. However, Si is an indirect-gap semiconductor and
optical transitions across its minimum gap require the assistance of phonons.[48] This re-
sults in a low absorption coefficient in the visible range and increases the material thickness
and cost for photovoltaic applications. The indirect band gap of bulk Si also makes it an
inefficient light emitter and precludes its applications for active optoelectronic components.
Increasing the light absorption and emission in Si could extend the already established Si
manufacturing technology into optoelectronics and has been an area of intense research
activity.

Nanostructuring is a promising approach to engineer the optical properties of Si and
increase the efficiency of thin-film Si solar cells. Pattering the surface of Si with nanopores
of 220 nm diameter has been demonstrated to reduce the surface reflection to less than
5% and increase optical absorption in the visible range.[49] Moreover, Si nanowires with a
diameter of 390 nm increase the optical path length in thin-film solar cells by up to a fac-
tor of 73 and deliver efficiencies above 5%.[50] Similar Si nanowire array geometries have
been found to suppress reflectivity and improve absorption in the visible range.[51, 52] The
structural features of the above-mentioned Si nanostructures are on the order of 100 nm,
which is comparable to the wavelength of visible photons and therefore has a strong effect
on wave propagation and reflection in solar cells made of these nanostructures. However,
nanostructures of this scale do not exhibit strong quantum confinement and the funda-
mental electronic properties of Si (e.g., band gap, exciton binding energy, optical matrix
elements) are not affected significantly compared to the bulk. Nanostructuring with pores
of 60 nm diameter has been demonstrated to enable optical gain and stimulated emission in
nanoporous crystalline Si, but this is attributed to recombination at A-center defects.[53]

Si nanostructures with features on the scale of a few nanometers are strongly affected
by quantum confinement and their optical absorption and emission properties can be sig-
nificantly enhanced compared to the bulk. Besides increasing the band gap, quantum con-
finement breaks the momentum-conservation requirement along the confinement direction
and increases the probability of optical transitions across the indirect band gap. Nanostruc-
turing can thus enable the emission of visible light from Si.

Visible photoluminescence at room temperature has been reported for Si quantum wire
arrays with features on the 5-nm scale.[54]

Luminescence has also been reported in 1-nm wide Si nanoparticles that can be tailored
through modification of the surface chemistry.[55] Moreover, highly efficient and color-
tunable visible LEDs have been fabricated with Si nanocrystals with a size between 1 and
2 nm.[56]
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Previous theoretical work has examined the electronic and optical properties of a range
of nanometer-sized Si nanostructures. Van de Walle and Northrup investigated the elec-
tronic properties of Si-based layered structures using first-principles methods.[57] They
found that a two-layer Si structure has a direct band gap and a strong direct transition
between the band-edge states. Hybertsen studied the phonon-assisted and zero-phonon
transitions in Si nanostructures and found that phonon-assisted processes dominate optical
transitions for nanofeature sizes above 1.5 to 2 nm.[58] A genetic algorithm was employed
by d’Avezac et al. to search for all possible Si/Ge superlattices and found one specific con-
figuration with a direct band gap and a strong dipole-allowed transition.[59] Direct band
gaps were also observed by Peelaers et al. for Si/Ge core-shell nanowires with a diameter
of 1.2 to 1.6 nm[60] and by Yang et al. for Si nanowire with a diameter of 1.2 nm.[46]
Moreover, a large exciton binding energy (0.8-1.1 eV) was reported by Yang et al.[46] and
by Bruno et al.[47] for Si nanowires with a diameter less than 2 nm. The strong excitonic
effects in these nanostructures are attributed to the enhanced electron-hole interaction due
to the quantum confinement. This body of theoretical work provides strong evidence that
Si nanostructures with characteristic features on the order of a few nanometers are very
promising for optoelectronic applications.

Nanoporous Si presents the advantage that the pores introduce quantum confinement
and carrier scattering only in two of the three spatial dimensions. Thus, nanopores cause
the scattering of electrons by the pore sidewalls and enable the absorption of light with
polarization perpendicular to the pore direction. However, at the same time nanopores do
not strongly affect carrier scattering or the carrier mobility along the pore direction, and
thus allow for high carrier-extraction efficiency. As a result, thin-film nanoporous Si may
overcome the stability and efficiency limitations of disordered hydrogenated amorphous Si,
which suffers from the detrimental Staebler-Wronski effect.[61]

In this work we present and analyze the electronic and optical characteristics of nanoporous
Si with nanoscale patterns on the order of a few nanometers. Quantum confinement by the
nanopores increases the band gap and enhances carrier scattering, thus improves the optical
absorption that is desired in solar-cell applications. We show that nanoporous Si can exhibit
simultaneously improved absorption, reduced reflectivity, and increased photovoltaic con-
version efficiency compared to bulk Si. Our results indicate that the photovoltaic efficiency
of nanoporous Si can be improved by up to 2.7 times compared to the bulk for a film thick-
ness of 135 nm and that the maximum absolute conversion efficiency in nanoporous Si can
reach up to 6.3%. Therefore, nanoporous Si thin films can have a higher photovoltaic con-
version efficiency than thin-film bulk Si and a substantially increased efficiency to material
cost ratio than commercial bulk Si solar cells, and could be applied to develop low-cost and
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flexible Si solar cells with an appreciable efficiency. This work has been published in ACS
Photonics.[24]

2.1 Methodology

We studied the electronic and optical properties of nanoporous Si using first-principles cal-
culations based on density functional theory (DFT) and many-body perturbation theory.
We performed DFT calculations to obtain the ground-state charge density and electronic
wave functions using the local-density approximation[38, 62] for the exchange-correlation
potential. We used the plane-wave pseudopotential method[63] with a plane-wave cut-
off of 16 Ry and norm-conserving pseudopotentials[64] as implemented in the Quantum-
ESPRESSO code[40]. We calculated the quasiparticle band energies of nanoporous Si
using the one-shot GW method[65] and the BerkeleyGW code[1]. The static dielectric
function was calculated with a 7 Ry plane-wave cutoff and extended to finite frequency us-
ing the generalized plasmon-pole model of Hybertsen and Louie[65]. The Coulomb-hole
self-energy term was calculated using a sum over three times as many unoccupied bands as
occupied bands using the static-remainder approach[66]. The dielectric function was calcu-
lated using all occupied bands and unoccupied bands up to 7.5 eV above the valence-band
maximum. The quasiparticle energies of the nanoporous Si structures with L=3aSi were
calculated with a 2×2×4 Monkhorst-Pack[67] mesh while the other structures with larger
unit cells were studied with a 1×1×4 Monkhorst-Pack mesh. We also used the Bethe-
Salpeter equation formalism[45] to study two-particle excitations and calculate the optical
absorption and reflectivity spectra including excitonic effects. Excitonic effects on the op-
tical absorption spectra have only been considered for the three examined structures A, B,
and C with the smallest pore spacing (L = 3aSi) due to the high computational expense of
Bethe-Salpeter calculations for larger structures.

2.2 Results and Discussion

2.2.1 Structure

Figure 2.1 shows some of the nanoporous Si structures examined in this work. The struc-
tural models were constructed by perforating bulk Si with nanoscale pores of radius R and
spacing L along the [001] direction. Although hexagonal pore patterns are encountered
experimentally, we considered a square-lattice distribution of pores because the hexagonal
lattice is incommensurate with the symmetry of the (001) surface of Si and results in too
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R = 4.26 Å! R = 6.02 Å!

L = 3aSi!

L = 4aSi!

L = 5aSi!

R = 2.69 Å!

Figure 2.1: Some of the nanoporous Si structures with various pore radius R and pore
spacing L examined in this work. Quantum confinement by the nanoscale pores increases
the probability of optical transitions across the band gap of Si and enhances the absorption
coefficient in the visible range.
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Figure 2.2: The band structures of three of the investigated nanoporous Si structures (A,
B, and C shown in the insets).

13



large simulation cells. We expect that a hexagonal pore arrangement yields similar results
to the investigated square pore arrangement for the electronic and optical properties and
the photovoltaic efficiency enhancement as a function of pore size and spacing. We inves-
tigated a total of 20 nanoporous Si structures with pore spacing up to six times the lattice
constant of the conventional unit cell of bulk Si (aSi = 5.43 Å) and pore radius ranging
from 2.7 to 13.5 Å. The Si dangling bonds on the nanopore surfaces were passivated with
H atoms to eliminate mid-gap defect states that contribute to nonradiative recombination.
Chemical passivation by oxygen[68], methyl[69] (CH3), and halogen[70] is used in prac-
tice to eliminate surface dangling bonds in porous Si and Si nanowires for higher ambient
stability. The nanoporous Si systems we studied are all intrinsic. The additional screening
and free-carrier absorption by free carriers are weak at typical solar irradiation conditions
and are not expected to affect the calculated results. We studied nanostructures containing
up to 300 atoms in the periodic cell, and GW calculations for the largest simulations cells
required up to 10,000 CPU hours. All structures were relaxed to minimize the stress and
the forces on the atoms.

2.2.2 Band structure

Figure 2.2 shows the band structures of three nanoporous Si structures [A (L = 3aSi, R =

2.69 Å), B (L = 3aSi, R = 4.26 Å), and C (L = 3aSi, R = 6.02 Å)] along the in-plane
(Γ–X) and out-of-plane (Γ–Z) directions.

These three structures have the same pore spacing but different pore radii. As the pore
size increases, the band gap widens from 1.66 eV to 3.13 eV due to increasing quantum
confinement. The band gap of structures A and B is indirect with the valence-band maxi-
mum located at the Γ point and the conduction-band minimum located at the X point. The
difference between the minimum direct and the indirect gap, however, decreases to below 1
meV for structure C and thus direct transitions also contribute to optical absorption near the
onset for this structure. Since the conduction-band minimum of bulk Si is located at a point
between Γ and X, the shift of the conduction-band minimum in nanoporous Si is attributed
to band structure distortion by the introduction of nanopores. The lowest conduction band
gets flatter along the quantum-confined direction as the pore radius increases and becomes
almost horizontal for structure C.

The band gap of nanoporous Si as a function of pore radius and spacing is shown in
Figure 2.3. Most structures are found to have quasi-direct band gaps and are marked with
solid symbols in Figure 2.3. The band gaps tend to be quasi-direct for large pore spacing,
which is the case for most examined structures withL = 5aSi orL = 6aSi. This is explained
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Figure 2.3: Band-gap values of nanoporous Si as a function of pore radius and spacing.
The lines are fits to the calculated data. The structures with direct band gaps are marked
with solid symbols.

by the multiple folding of the Brillouin zone along the quantum-confined direction. The
gap is also more likely to be quasi-direct for structures with large pore size, a trend already
analyzed for structures A, B, and C. The band-gap values were fitted as a function of pore
radius R and spacing L according to:

Egap(R,L) = Ebulk
gap +

1

L2
f

(
R

L

)
(2.1)

where the calculated band gap of bulk Si, Ebulk
gap , is 1.295 eV (which is within the typical 0.1

eV accuracy of the computational method compared to the experimental value of 1.17 eV at
0 K [71]), and f(x) is a shape-dependent term representing different levels of confinement
for different values of theR/L ratio that was found to be f(x) = (1923x2+14976x4) eV Å2

.
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2.2.3 Optical matrix elements

Though most nanoporous structures with large pore spacings have a quasi-direct band gap,
the transition probability across these gaps are small compared to typical direct-gap transi-
tions. Figure 2.4 shows the average optical (velocity) matrix elements of interband transi-
tions between states within 100 meV from the band edges at the Γ point for light polarized
perpendicular to the pore direction. The optical matrix elements for all examined struc-
tures are smaller than the typical value for the direct allowed transition in bulk Si at the
Γ point and for most structures they are also smaller than the typical indirect (phonon-
assisted) optical transition matrix elements of bulk Si (Figure 2.4). Therefore, the reported
direct gaps of Figure 2.3 are quasi-direct since they are associated with small transition
probabilities. Only the matrix elements for the smallest pore spacing (L = 3aSi) are larger
than the characteristic value of phonon-assisted transitions. This is in agreement with the
earlier work of Hybertsen,[58] who found that phonons are the dominant carrier-scattering
mechanism that mediates optical transitions in Si for nanoscale features larger than 1.5 to 2
nm. The transition probability across the band gap is largest when quantum confinement is
strongest (large pore radius and small pore spacing) and decreases with decreasing degree
of quantum confinement. In the limit of small pore size and large pore separation the matrix
elements approach zero, since this is the limit of the transition across the indirect gap of
bulk Si, which is forbidden without the assistance of phonons.

2.2.4 Dielectric constant

The dielectric constants of all studied nanoporous Si structures are summarized in Fig-
ure 2.5. Screening is enhanced for increasing Si volume fraction. The first-principles
results are in good agreement with both the 2D Bruggeman nonsymmetric model[72]

fSi =
1− εeff

1− εSi

(
εSi

εeff

) 1
2

, (2.2)

and the 2D Maxwell-Garnett model[73]

εeff − εSi

εeff + εSi
= (1− fSi)

1− εSi

1 + εSi
, (2.3)

where εSi and εeff are the dielectric constants of bulk and nanoporous Si, respectively. The
2D Maxwell-Garnett model considers vacuum cylinder inclusions in a matrix of bulk Si,
while the 2D Bruggeman model treats both Si and vacuum as cylindrical inclusions in a
theoretical effective medium. The Bruggeman model is thus an extension to the Maxwell-
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Figure 2.4: Average optical (velocity) matrix elements of interband transitions between
the states within 100 meV from the band edges of the investigated nanoporous Si structures
at the Γ point for light polarized perpendicular to the pore direction. The optical matrix
elements are given in units of αc, where α is the fine-structure constant and c is the speed
of light. The horizontal dashed line indicates the typical value of direct optical transition
matrix elements across the direct gap of bulk Si at the Γ point, while the dotted line denotes
the characteristic value of indirect (phonon-assisted) optical matrix elements across the
indirect gap of bulk Si.
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Garnett model.[74] Our first-principles results show that both models are similarly valid in
describing the dielectric constant of porous Si at the nanoscale.

2.2.5 Optical properties

To understand the effect of quantum confinement on the optical properties of nanoporous Si
we examine the real (ε1) and imaginary (ε2) parts of the dielectric function for structures A

and B and compare it to the dielectric function of bulk Si (Figure 2.6). A Gaussian function
with a width of 0.15 eV was used to account for the broadening of the optical spectra. For
the purposes of this analysis, only direct optical transitions (no phonon-assisted absorption)
across the direct gap of bulk Si have been included in Figure 2.6. The two nanoporous
Si structures have the same pore spacing but different pore radii. Structure A has larger
ε1 than structure B and is closer to bulk Si (Figure 2.6a). This is because structure A

exhibits stronger screening effects than structure B due to its higher Si volume fraction.
The imaginary part curves (Figure 2.6b) show that the direct absorption edges for both
examined nanoporous Si structures occur at lower energies (1.70 eV for structure A and
2.15 eV for structure B, Figure 2.2) than the first direct optical transition of bulk Si (3.4
eV [75]), which indicates that scattering of electrons by the nanopores enables quasi-direct
optical transitions across the band gap. The refractive index n and the extinction coefficient
κ are determined from ε1 and ε2 using

n(E) =
1√
2

√
ε1(E) +

√
ε21(E) + ε22(E), (2.4)

and

κ(E) =
1√
2

√
−ε1(E) +

√
ε21(E) + ε22(E), (2.5)

where E is the photon energy. The reflectivity and absorption coefficient were calculated
from n and κ by

R(E) =
(n− 1)2 + κ2

(n+ 1)2 + κ2
, (2.6)

and

α(E) =
4πκ

hc/E
, (2.7)
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and are shown as a function of photon energy for nanoporous Si structures A and B in
Figure 2.7. Structure B shows lower reflectivity (Figure 2.7a) and larger optical gap (Fig-
ure 2.7b) than structure A and bulk Si[4] because of its lower Si volume fraction and
stronger quantum confinement. Strong confinement in structure B also leads to stronger
pore-electron scattering, which gives higher electron transition probability and absorption
coefficient than both structure A and bulk Si in the 2.3–3.2 eV energy range (Figure 2.7b).
We note that we did not include phonon-assisted optical transitions for nanoporous Si,
which would increase the absorption even further.

2.2.6 Excitons

We studied excitonic effects in nanoporous Si arising from the electron-hole interaction.
Excitonic effects have been shown by first-principles calculations to modify the optical co-
efficients of bulk Si due to the coherent coupling of different electron-hole configurations[76,
45]. In quantum-confined structures such as nanowires[46, 47, 21] excitonic effects addi-
tionally increase the exciton binding energy and shift the onset of optical absorption to
lower energies.

Structure B has a larger exciton binding energy (0.23 eV) than structure A (0.13 eV)
since the increased quantum confinement enhances the strength of the electron-hole in-
teraction (Figure 2.7b). Though the exciton binding energy of the examined nanoporous
structures A and B is increased by an order of magnitude compared to bulk Si (15 meV)[45]
it is one order of magnitude smaller than that of Si nanowires with comparable confinement
radius (0.8-1.1 eV) determined from theoretical predictions.[46, 47] This is attributed to
the weaker quantum confinement in nanoporous Si than nanowires since the Si regions are
connected in the nanoporous geometry and have a larger confinement volume for the same
linear confinement dimension (Figure 2.1).

2.2.7 Photovoltaic conversion efficiency

Our predictive results can be applied to answer whether nanopores can improve the photo-
voltaic conversion efficiency of thin-film Si solar cells and to identify promising nanoporous
Si structures for photovoltaic applications. The calculated reflectivity and absorption coef-
ficient are two important factors that affect the photovoltaic conversion efficiency, defined
as the fraction of solar energy converted to electrical power per unit area of material. The
electrical power density is calculated by integrating the converted spectral irradiance over
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the solar-spectrum wavelengths

P =

∫ λmax

0

W (λ)[1−R(λ)]A(λ)C(λ) dλ, (2.8)

where λ is the photon wavelength, λmax is the longest wavelength that can be absorbed by
the nanostructure and is determined by the direct band gap of the nanoporous Si structure,

λmax =
hc

Edir
g
, (2.9)

and W (λ) is the solar spectral irradiance at Air Mass 1.5.[77] The term R(λ) is the reflec-
tivity of the front surface of the material and the absorbance A(λ) is given by

A(λ) = 1− e−α(λ)d (2.10)

where d is the thickness of the material. The term C(λ) is a conversion factor to account
for the fraction of the photon energy converted to electronic energy (i.e., to the excitation
energy of one electron-hole pair across the minimum band gap),

C(λ) = λ
Eg

hc
(2.11)

where Eg is the minimum (direct or indirect) band gap of the material.
Several competing factors affect the photovoltaic conversion efficiency of thin-film

nanoporous Si compared to bulk. Decreasing the volume fraction of Si in the nanostructures
reduces the reflectivity on the front surface and increases the fraction of solar photons that
enter the material. Moreover, quantum confinement by the nanopores enables pore-electron
scattering and enhances the absorption of solar photons. In addition, the increased band
gap of nanoporous Si results in a higher fraction of converted photon energy (Equation 3.4)
and increased converted power density. On the other hand, larger band-gap values in the
nanostructures blueshift the absorption edge and reduce the absorption of long-wavelength
photons. To explore how these competing effects affect the photovoltaic conversion effi-
ciency of thin-film Si, we calculated the electrical power of all 20 structures for a material
thickness of 100 nm using Equation 3.2. The relative converted electrical power for the
nanoporous structures compared to bulk Si is shown in Figure 2.8 as a function of pore ra-
dius and spacing. The data show that the introduction of nanopores can indeed improve the
efficiency over the bulk. Among all the nanostructures studied, structure B (L = 3aSi and
R = 4.26Å) exhibits the highest converted electrical power density (Equation 3.2), which is
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about 2.5 times that of bulk Si for the considered thin-film thickness of 100 nm. If, in addi-
tion, we assume the effect of an antireflective coating to suppress the surface reflectivity of
both bulk Si and structure B, the efficiency ratio decreases from 2.5 to 1.9 but the absolute
efficiency of structure B increases from 4.1% to 5.9%. The structures with the smallest pore
spacing show the highest conversion efficiencies for this material thickness. For fixed pore
spacing the converted power first increases with increasing pore radius, due to the enhanced
pore-electron scattering and increased converted electrical energy, followed by a decrease
due to the blueshift of the absorption threshold that cancels out the other advantages of
nanostructuring. The optimized photovoltaic conversion efficiency is achieved for small
pore spacing and a radius-to-spacing ratio around 0.25 to 0.30. We note that excitonic ef-
fects have a significant effect on the efficiency of nanoporous Si and increase the converted
power by as much as a factor of 2.5. We also note that phonon-assisted absorption, which
is the only absorption mechanism of visible light in bulk Si, has not been considered for
the nanoporous structures. If electron-phonon scattering is also considered for the nanos-
tructures (in addition to electron-pore scattering) then the conversion efficiency is expected
to increase further.

Our data can identify which photon wavelengths contribute the most to the produced
electrical power for each Si structure. As an example, Figure 2.9 presents a comparison
of the converted power density of nanoporous structures A and B with bulk Si analyzed in
terms of absorbed photon wavelength for a material thickness of 100 nm. The location of
the peak of the converted spectral irradiance for each structure is determined from the com-
bined wavelength dependence of the solar irradiance, the reflectivity, and the absorption
coefficient. The spectral peak for nanoporous Si structure B occurs at a longer wavelength
than structure A and bulk Si because the absorption spectrum for structure B exhibits a peak
at 2.7 eV (460 nm) (Figure 2.7b) which corresponds to large values of the solar irradiance.

In thin-film nanoporous Si structures the effect from Fabry-Perot resonance may not be
neglected and reflections between the front and back surface should also be considered. In
this case, the photovoltaic conversion efficiency is defined as

P =

∫ λmax

0

W (λ)[1−R(λ)− T (λ)]C(λ) dλ (2.12)

where R(λ) and T (λ) are the reflectivity and transmissivity

R(λ) =

∣∣∣∣r1 −
t21r2e

−iδ

1− r1r2e−iδ

∣∣∣∣2 , (2.13)

24



0

1

2

3

4

P
h

o
to

v
o

lt
a

ic
 e

ff
ic

ie
n

c
y
 (

%
)

0 0.1 0.2 0.3 0.4 0.5
Pore radius-spacing ratio (R/L)

0

0.5

1

1.5

2

2.5

P
(R

, 
L

) 
/ 

P
(b

u
lk

 S
i)

L = 3a

L = 3a w/ e-h

L = 4a

L = 5a

L = 6a

Figure 2.8: Relative converted electrical power produced in nanoporous Si relative com-
pared to the bulk as a function of pore radius and spacing. A thin-film material thickness
of 100 nm is assumed. The data show that nanoporous Si structures with pore spacing on
the order of 3 times the lattice constant of bulk Si (16.3 Å) can exceed the photovoltaic
efficiency of an equivalent bulk Si structure. Excitonic effects have only been consid-
ered for the smallest nanopore structures due to the computational cost of the calculations.
Phonon-assisted optical processes that further increase the absorption coefficient have not
been included in the absorption spectra of the nanostructures.
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and B and compared to bulk Si. The integrated area under each curve yields the converted
electrical power per unit area for each structure. A material thickness of 100 nm is assumed.

26



and

T (λ) =

∣∣∣∣ −t1t2e−iδ1− r1r2e−iδ

∣∣∣∣2 . (2.14)

The quantities r1,2 and t1,2 are the amplitude factors of the reflected and transmitted field at
the front and back surface. The phase factor δ is defined as

δ =
2πñd

λ
, (2.15)

where ñ is the complex refractive index. Thin-film effects introduce oscillations in the effi-
ciency curves (Figure 2.10) due to the periodicity of the reflectivity and transmissivity with
material thickness. The advantages of nanoporous Si compared to the bulk material for
energy conversion are more pronounced in the 100-nm thickness regime. The nanoporous
Si structure B shows the largest enhancement of conversion efficiency over bulk Si by a
factor of 2.7 at the two peaks that correspond to thickness of 25 nm and 135 nm. Assuming
the solar irradiance based on the direct standard AM 1.5 spectrum, nanoporous Si structure
B has a photovoltaic conversion efficiency of 1.5% for a material thickness of 25 nm and
6.3% at a thickness of 135 nm. We note that a full investigation of solar-cell efficiency re-
quires knowledge of the impact of defects on the device performance, as well as a number
of other efficiency loss mechanisms (e.g., non-radiative recombination, energy loss at in-
terfaces, etc.). However, defect simulations for these nanostructures are challenging, while
the nature and concentration of defects depends on the growth conditions of the sample.
In the present study we focus on the fundamental energy-conversion properties, therefore
the efficiency we estimate constitutes an upper limit value. Nevertheless, our predictive
calculations show that nanoporous Si with pore size and spacing on the scale of a few
nanometers can indeed exhibit improved photovoltaic performance over bulk Si and can
yield a theoretical maximum conversion efficiency of a few percent in thin-film solar-cell
applications.

2.3 Conclusions

In conclusion, we used first-principles methods to calculate the electronic and optical prop-
erties of nanoporous Si with pore spacing and radius on the order of a few nanometers.
We found that the inclusion of nanoscale pores increases the electronic band gaps due to
quantum confinement and results in quasi-direct gaps for most examined structures. The
visible-range absorption coefficient is greatly improved in nanoporous Si with small pore
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spacings and appropriately chosen pore sizes. Though quantum confinement reduces the
wavelength range for the absorption of solar photons, the enhanced absorption coefficient
as well as the reduced reflectivity and increased band gap improve the photovoltaic effi-
ciency compared to bulk Si by a factor of 2.7 and yields a theoretical maximum conversion
efficiency of 6.3% for thin-film (135 nm thick) solar cells.

Therefore, the enhanced electronic and optical properties of nanoporous Si make it a
promising material for thin-film photovoltaic applications.
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CHAPTER 3

Strong Visible-Light Absorbance in Few-Layer
SnSe and GeSe

SnSe and GeSe are layered compound semiconductors that can be exfoliated to form two-
dimensional materials. In this work, we use predictive calculations based on density func-
tional and many-body perturbation theory to study the electronic and optical properties
of single-layer, double-layer, and bulk SnSe and GeSe. The fundamental band gap is di-
rect in single-layer and double-layer GeSe, but indirect in single-layer and double-layer
SnSe. Moreover, the interplay of spin-orbit coupling and lack of inversion symmetry in the
monolayer structures results in anisotropic spin splitting of the energy bands, with poten-
tial applications in directionally dependent spin transport. We also show that single-layer
and double-layer SnSe and GeSe exhibit unusually strong optical absorbance in the visible
range. Our results suggest that single-layer and double-layer SnSe and GeSe are promis-
ing materials for ultra-thin-film photovoltaic applications with theoretical upper bounds
to the conversion efficiency that approach the efficiency records realized in organic and
dye-sensitized solar cells.
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Electrons in two-dimensional materials such as the transition metal dichalcogenides
(TMDs) display an array of unique properties that enable novel electronic and optoelec-
tronic applications. Unlike graphene, TMD monolayers have sizable band gaps that enable
the fabrication of semiconductor devices including transistors, light emitters, and solar
cells. TMDs undergo an indirect-to-direct band-gap transition if their thickness is reduced
to a monolayer, as confirmed with optical measurements and first-principles calculations
for MoS2. [78, 79] The direct band gaps of TMD monolayers make them suitable for opto-
electronic devices, for example light-emitting diodes (LEDs) and lasers. [80, 81, 82] More-
over, TMD monolayers have a strong optical absorbance in the visible range and can be
used to fabricate solar cells with light-to-electricity conversion efficiencies of ∼0.5%.[81]
Theoretical calculations also predict that the extraordinary absorbance of TMDs enables
ultrathin (∼1 nm) solar cells based on a stack of graphene and MoS2 with an energy conver-
sion efficiency of up to 1%.[83] In addition to their unusual optical properties, atomically
thin TMDs display interesting spin physics that is promising for spin-transport applica-
tions. For example, the combined effects of spin-orbit coupling and inversion-symmetry
breaking in TMD monolayers results in a strong coupling of the spin and valley degrees of
freedom[84] that can be combined in spintronic and valleytronic devices.

Similar to TMDs, several IV-VI compounds including GeSe and SnSe also crystallize
in layered structures with weak bonding between the layers. SnSe was recently demon-
strated to be an exceptionally promising thermoelectric material with a record figure of
merit at high temperature.[5, 85] SnS, a material similar to SnSe, is promising for thin-film
solar cells because of its optimal bandgap (∼1.3 eV) and high absorption coefficient.[86]
While atomically thin TMD compounds have been the subject of extensive research, lit-
tle is known about the properties of few-layer IV-VI materials. Tritsaris et al. studied
few-layer SnS and found its optoelectronic properties to be tunable with the number of
layers.[87] Recently, Li et al. synthesized 1-nm-thick SnSe nanosheets with a lateral size
of ∼300 nm using a colloidal route.[88] In addition, density functional calculations show
that single-layer IV-VI compounds are stable in either a distorted NaCl or litharge struc-
ture with formation energies comparable to single-layer MoS2,[89] which indicates that
mechanical exfoliation of bulk IV-VI materials may also be a possible route to produce
atomically thin samples.

In this work, we perform first-principles calculations based on density functional the-
ory (DFT) and many-body perturbation theory to analyze the electronic and optical prop-
erties of few-layer SnSe and GeSe. The fundamental band gaps are found to be direct in
single-layer and double-layer GeSe, but indirect in SnSe few-layer structures. Our anal-
ysis reveals that the interplay of spin-orbit coupling with the symmetry of the monolayer
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structures results in anisotropic spin-orbit splitting of the bands that can find applications in
directionally dependent spin-transport devices. We also found that the optical absorbance
in the visible range is high for the few-layer structures, reaching values as high as 47% for
bilayer SnSe with a thickness of just 1 nm. Our results suggest that few-layer SnSe and
GeSe are promising materials for ultra-thin-film flexible photovoltaic applications with an
upper limit to the conversion efficiency that rivals the record efficiencies of organic and
dye-sensitized solar cells. This work has been published in Nano Letters.[26]

3.1 Methodology

Our first-principles computational methodology is based on the combination of DFT with
many-body perturbation theory, which yields excellent results for the electronic and op-
tical properties of inorganic materials and nanostructures.[90] All calculations use the
generalized gradient approximation[91] for the exchange-correlation potential. The struc-
ture was optimized using the projector-augmented waves and a plane-wave cutoff of 300
eV as implemented in the Vienna Ab initio Simulation Package.[41, 92] We calculated
the quasiparticle band structures with the one-shot GW method[65] and the BerkeleyGW
code.[1] To calculate electron wave functions for subsequent GW calculations, we used
norm-conserving pseudopotentials[64] and a plane-wave cutoff of 50 Ry as implemented in
Quantum-ESPRESSO.[40] The static dielectric function was calculated with a 20 Ry plane-
wave cutoff and extended to finite frequency using a generalized plasmon-pole model.[65]
The Coulomb-hole term was calculated using the static-remainder approach[66] and a sum
over unoccupied bands up to 8 Ry above the valence band maximum (VBM). Spin-orbit
coupling corrections to the GW eigenvalues were calculated in a non-self-consistent way by
evaluating the off-diagonal elements of the spin-orbit part of the Hamiltonian and diagonal-
izing the resulting matrix.[93] For the bulk systems, we sampled the Brillouin zone using a
grid of 6×6×4 to determine the polarizability matrices and quasiparticle energies. For the
few-layer systems, we used a shifted k-point grid of 8×8×1 for the polarizability matrices
and a 16×16×1 grid for the quasiparticle energies. We truncated the Coulomb interac-
tion in the few-layer systems along the directions perpendicular to the layers to remove the
artificial interaction between adjacent periodic simulation cells.[94] We used maximally
localized Wannier functions[95, 96] to interpolate the quasiparticle energies and spin-orbit
coupling matrix elements to fine meshes in the first Brillouin zone as in Ref. [97] to de-
termine the band structures and band extrema. We calculated the exciton binding energies
and optical absorption spectra with the Bethe-Salpeter equation method as implemented in
BerkeleyGW.[45] For the bulk systems, the electron-hole interaction kernel was interpo-
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Figure 3.1: Crystal structure of single-layer SnSe showing the (a) zigzag (parallel to a)
and (b) armchair (parallel to b) directions, and (c) the corresponding Brillouin Zone.

lated on a 24×24×12 k-point grid. For the few-layer systems, we recalculated the polar-
izability matrices and electron-hole interaction kernel using a k-point grid of 32×32×1 to
capture the long-range variations of the screening. These computational parameters con-
verge the lattice constants to within 1%, the GW eigenvalues to less than 0.1 eV, and the
exciton binding energies to less than 50 meV. The detailed procedures and results of the
convergence tests for these computational parameters are discussed in the Supporting In-
formation. We have previously performed similar calculations with this methodology for
PbI2 and the obtained results are in good agreement with experiment.[98]

3.2 Results and Discussion

3.2.1 Structure

SnSe and GeSe are the compound analogues of elemental phosphorene and crystallize in
a similar layered structure. The symmetry group of their low-temperature crystal structure
is Pnma and resembles a distorted NaCl arrangement. Figure 3.1 shows the structure of
single-layer SnSe along the in-plane zigzag and armchair directions, as well as the corre-
sponding Brillouin Zone with the high-symmetry X and Y points denoted. Although the
bulk crystal has an inversion point, the inversion symmetry is broken in the monolayer
structures. We will show later that the combination of this lack of inversion symmetry
along with spin-orbit coupling breaks the spin degeneracy of the monolayer band structure
and leads to directionally dependent spin-orbit-induced spin splitting of the band structure.
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Figure 3.2: Band structures of (a) single-layer, (b) double-layer, and (c) bulk SnSe. The
energies of the transitions from the valence-band maximum (VBM) to the two conduction-
band minima (CBM) along and Γ–Y are denoted. Solid arrows indicate direct transitions
and dashed arrows indicate indirect transitions. The minimum direct gap in single-layer and
double-layer SnSe is located along Γ–Y (solid arrows), but in bulk SnSe the smallest direct
gap (1.14 eV) is located along Γ–X (not shown). The SnSe monolayer is an indirect-gap
material, but the energy difference between the indirect gap (1.63 eV) and the minimum
direct gap (1.66 eV) is small. The monolayer lacks inversion symmetry, and thus spin-orbit
coupling breaks the spin degeneracy of the band structure. Although the spin symmetry is
broken along the Γ–X direction, the bands are spin-degenerate along Γ–Y. This is due to
the different symmetry of the monolayer structure along the armchair and zigzag directions,
leading to directionally dependent spin splitting and spin-transport properties.
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Figure 3.3: Band structures of (a) single-layer, (b) double-layer, and (c) bulk GeSe. The
energies of the transitions from the valence-band maximum (VBM) to the three conduction-
band minima (CBM) along the Γ–X and Γ–Y directions are denoted. Solid arrows indicate
direct transitions and dashed arrows indicate indirect transitions. The minimum direct gap
in single-layer and double-layer GeSe occurs along Γ–Y (solid arrows). The smallest direct
gap of bulk GeSe (1.29 eV) also occurs along Γ–Y (not shown). The GeSe monolayer is a
direct-gap material, but there is only a small energy difference between the direct (1.87 eV)
and the indirect gap (1.89 eV). The monolayer lacks inversion symmetry, and thus spin-
orbit coupling breaks the band spin degeneracy, except for points along the Γ–Y direction.
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3.2.2 Band structure

The calculated band structures of bulk SnSe and GeSe, including quasiparticle and spin-
orbit coupling corrections, are shown in Figs. 3.2 and 3.3. The band gap of bulk SnSe is
indirect, with the valence-band maximum along Γ–Y and the conduction-band minimum
along Γ–X. The conduction band displays two local minima along Γ–Y, one near Γ and
one closer to Y. The bands of bulk SnSe show strong non-parabolicity and warping, as dis-
cussed in the context of the thermoelectric properties of this material.[85] The value of the
bulk SnSe gap (0.89 eV) is in good agreement with optical-absorption measurements (0.90
eV[99]). The gap of bulk GeSe is also indirect, with the valence-band maximum and the
conduction-band minimum at different points along Γ–Y, the conduction-band minimum
being close to Γ. Local conduction-band minima appear at energies 0.10 eV and 0.17 eV
higher than the global minimum along Γ–X and Γ–Y, respectively. The bulk GeSe gap
(1.10 eV) is also in good agreement with optical-absorption measurements (1.10 eV[100],
1.08 eV[101]).

The calculated band structures of single-layer and double-layer SnSe and GeSe are also
shown in Figs. 3.2 and 3.3. One local conduction-band minimum is located along each
of the Γ–X and Γ–Y directions of the few-layer structures while the valence band maxi-
mum is along Γ–Y. The minimum gap is found to be direct in single-layer and double-layer
GeSe, and indirect in single-layer and double-layer SnSe. However, the difference be-
tween the indirect gap and the smallest direct gap of the monolayers is small, on the order
of 20–30 meV, which is within the typical 0.1 eV accuracy of the computational method.
It is therefore plausible that the nature of the gaps for the single-layer structures (direct
or indirect) may not be properly determined by our computational results. On the other
hand, the small energy difference between the two conduction-band minima along Γ–X
and Γ–Y in these single-layer materials indicate that the nature of the gap may be tunable
from direct to indirect or vice versa by the application of external controls (e.g., strain).
Both band gaps increase as the number of atomic layers in the structure decreases due to
quantum confinement. For the single-layer structures, the spin-orbit coupling interaction
splits the spin-degenerate bands due to the lack of inversion symmetry. However, the bands
are spin degenerate along Γ–Y due to the symmetry of the crystal. As a result, the spin-
orbit-induced splitting of the bands is strongly anisotropic, with potential applications for
directionally dependent spin transport. The anisotropic spin-transport properties may be
further tuned by the application of in-plane strain, similar to the effect of strain on con-
trolling the anisotropic electrical conductance in phosphorene.[102] The splitting of the
conduction-band minimum along Γ–X is 70 meV in SnSe and 50 meV in GeSe. This band
splitting due to spin-orbit coupling and lack of inversion symmetry has also been reported
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Table 3.1: The exciton binding energies (in eV) of single-layer, double-layer and bulk SnSe
and GeSe.

1-layer 2-layer bulk
SnSe 0.27 0.20 <0.01
GeSe 0.32 0.23 <0.01

Table 3.2: The full-width at half-maximum (fwhm) of the exciton wave function squared
of single-layer and double-layer SnSe and GeSe along the zigzag (a) and armchair (b) axis.

1-layer 2-layer
a (Å) b (Å) a (Å) b (Å)

SnSe 40 40 48 49
GeSe 34 34 42 41

for MoS2 monolayers and other TMDs, with similarly large energy splitting values.[103]

3.2.3 Excitons

In addition to increasing the band-gap energy, the strong quantum confinement in the few-
layer structures also results in strong excitonic effects. Although the exciton binding energy
is small in bulk materials (less than 10 meV according to our calculations), it increases
to 0.27 eV in SnSe and 0.32 eV in GeSe single layers (Table 3.1), which indicates that
excitons are thermally stable at room temperature in the few-layer structures. The exciton
binding energies in these nanometer-thick IV-VI materials are smaller than the exciton
binding energies of similarly confined III-V semiconductors (e.g., 1.4 eV in 1-nm thick InN
nanowires[104]) due to the heavier electron effective mass of the IV-VI compounds.[85]
Although the effect of spin-orbit coupling was not taken into account in evaluating the
excitonic effects, we expect it to only have a minor effect in the calculated values since
it only reduces the direct band gap energies by less than 40 meV in all the systems we
considered. Figure 3.4 shows the electron wave function of the lowest-energy exciton in
single-layer SnSe. The electron part of the exciton wave function displays the Sn py orbital
character (oriented along the b axis) of the conduction band. We used the full-width at
half-maximum (fwhm) of the envelope function to evaluate the size of exciton (Table 3.2).
For both SnSe and GeSe, the excitons are more localized in the single-layer structures than
in the double layers, and they exhibit a similar width along the zigzag and the armchair
directions. We also found excitons to be systematically smaller in GeSe than in SnSe
materials, which is consistent with the trend of the exciton binding energies (Table 3.1).
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Figure 3.5: Optical absorption spectra of (a, b) single-layer, (c, d) double-layer, and (e, f)
bulk SnSe for light polarized along the zigzag (left side) and armchair (right side) direc-
tions. The solid red lines and dashed blue lines are the spectra with and without excitonic
effects included, correspondingly. The vertical lines indicate the onset of optical absorption
for the corresponding curve.

3.2.4 Visible-light absorbance

The few-layer structures of SnSe and GeSe are unusually strong absorbers of visible radi-
ation. Figures 3.5 and 3.6 show the optical absorption spectra of single-layer, double-layer
and bulk SnSe and GeSe as a function of photon energy and polarization. The absorbance
of the few-layer structures A as a function of photon energy E is calculated according to

A(E) = 1− e−α(E)d = 1− e−
2πE
hc

ε2d, (3.1)

where α is the absorption coefficient, ε2 is the imaginary part of the dielectric function,
and d is the thickness of the simulation cell perpendicular to the layers. Similar to black
phosphorus,[105] the absorption spectra differ for light polarized along the zigzag or arm-
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Figure 3.6: Optical absorption spectra of (a, b) single-layer, (c, d) double-layer, and (e, f)
bulk GeSe for light polarized along the zigzag (left side) and armchair (right side) direc-
tions. The solid red lines and dashed blue lines are the spectra with and without excitonic
effects included, correspondingly. The vertical lines indicate the onset of optical absorption
for the corresponding curve.
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chair directions due to the in-plane anisotropy of the materials. We also note that both the
direct band gap and the optical gap (i.e., the lowest direct exciton energy) of the two ma-
terials blueshift as the number of layers decreases in both SnSe and GeSe. The amount of
blueshift is determined by the combined effects of enlarged band gap due to quantum con-
finement and stronger electron-electron interactions, and increased exciton binding energy
due to larger spatial overlap of electron and hole wave functions in the few-layer structures.
The visible-light absorbance of the few-layer materials is found to be remarkably large, ap-
proaching values up to 38% percent in single-layer and 47% percent in double-layer SnSe.
We attribute the high absorbance in the few-layer structures to the nature of the atomic
orbitals that form the band extrema of these materials. Since the group-IV cations occur in
the 2+ charge state, the lowest conduction bands consist of cation p orbitals (Ge 4p or Sn
5p), while the filled Se valence 4p orbitals form the topmost valence bands. Since there are
three p orbitals per cation that are directional in space, they give rise to three anisotropic
bands per cation atom in the unit cell, each with large effective mass along the directions
perpendicular to the p-orbital orientation axis. The band characters of these IV-VI materi-
als is in contrast to direct-gap III-V semiconductors such as GaAs and GaN, for which the
s-orbital character of the conduction-band minimum at Γ results in a unique, isotropic con-
duction band with a small electron effective mass. As a consequence of the larger number
of bands that occur near the band extrema and their larger directionally-averaged effective
masses, the joint density of states is larger in IV-VI than in III-V compounds and results
in a larger probability of optical transitions across the gap, and hence a larger absorption
coefficient.

3.2.5 Photovoltaic conversion efficiency

The combination of the unusually strong optical absorbance in the visible range and the val-
ues of the semiconducting gap of few-layer SnSe and GeSe makes them promising for ef-
ficient ultrathin solar-cell applications. We used the method we developed elsewhere[106]
to calculate the theoretical upper limit to the conversion efficiency of sunlight to lowest
exciton energy for these ultrathin materials (Table 3.3). The estimated upper limit to the
converted power P is based on the overlap between the solar spectrum and the absorbance:

P =

∫ λmax

0
W (λ)A(λ)C(λ) dλ∫∞

0
W (λ) dλ

, (3.2)
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Table 3.3: The upper limit of the energy conversion efficiency of sunlight to lowest-energy
excitons for single-layer and double-layer SnSe and GeSe.

1-layer 2-layer
SnSe 7.1 10.4
GeSe 5.2 7.2

where λ is the photon wavelength, λmax is the longest wavelength that can be absorbed by
the few-layer SnSe and GeSe and is determined by the lowest-exciton energy (Eo),

λmax =
hc

Eo
, (3.3)

and W (λ) is the solar spectral irradiance at Air Mass 1.5.[77] A(λ) is the directionally
averaged absorbance of the few-layer structures plotted in Figs. 3.5 and 3.6, and the term
C(λ) is the conversion factor to account for the fraction of the photon energy converted to
lowest-exciton energy (i.e., the thermalization loss),

C(λ) = λ
Eo

hc
. (3.4)

Although the absorbance of SnSe and GeSe few-layer structures is comparable, SnSe mate-
rials have consistently larger conversion efficiencies than their GeSe counterparts because
of the larger overlap between their absorbance and the solar spectrum. The typical upper
limit to the energy conversion efficiency for few-layer GeSe and SnSe takes values of a
few percent and can be as high as 10.4% for bilayer SnSe. This remarkable efficiency up-
per limit it is achieved with a SnSe material thickness of just 1 nm and is comparable to
the current efficiency records realized with organic and dye-sensitized solar-cell technolo-
gies. Our results therefore indicate that ultrathin SnSe is a promising material for efficient
thin-film flexible solar cells.

3.3 Conclusions

In summary, we determined the quasiparticle band structures and optical properties of
single-layer, double-layer, and bulk SnSe and GeSe using first-principles calculations.
Single-layer and double-layer GeSe have a direct band gap, while the gaps of the SnSe
monolayer and bilayer are indirect. Spin-orbit coupling and lack of inversion symme-
try in the monolayers results in directionally dependent splitting of the energy bands and
anisotropic spin-transport properties. The exciton binding energy is approximately 300
meV in both monolayer materials, which results in thermally stable excitons at room tem-
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perature. We also uncovered the strong absorbance of few-layer SnSe and GeSe in the
visible range that reaches values as large as 47%, which suggests potential applications in
efficient, ultrathin, and flexible photovoltaic devices with upper bounds to the conversion
efficiency that rivals organic and dye-sensitized devices.
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CHAPTER 4

Free-Carrier Absorption in n-Type Silicon

The absorption of light by free carriers in semiconductors such as silicon results in intra-
band electron or hole excitations, and competes with optical transitions across the band gap.
Free-carrier absorption therefore reduces the efficiency of optoelectronic devices such as
solar cells because it does not generate electron-hole pairs and results in energy loss. In this
work, we use first-principles calculations based on density functional theory to investigate
direct and indirect free-carrier absorption in n-type silicon. We determine the free-carrier
absorption coefficient as a function of carrier concentration and compare to experiment. We
also identify the dominant mechanisms that contribute to free-carrier absorption processes,
and analyze the results to evaluate the impact of this loss mechanism on the efficiency of
silicon solar cells.
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Silicon is an earth-abundant material of great importance in semiconductor electronics
such as solar cells. However, Si has an indirect band gap and optical transitions across
its minimum gap require the assistance of phonons.[48] This results in a low absorption
coefficient in the visible range and increases the material thickness and cost for photovoltaic
applications. In Si solar cells, Si is doped to introduce free carriers for high conductivity,
and the free carriers can also absorb photons in a variety of ways. The weak cross-gap
light absorption in the visible range associated with the electron-phonon scattering is thus
in competition with the absorption of light by free carriers. The free-carrier absorption
processes may include the dissipative process in the plasmon oscillations, as well as one-
particle transitions from a filled conduction-band state to a higher one.

Figure 4.1 shows the GW band structure of Si, which has a calculated indirect band gap
of 1.27 eV. When free electrons in the conduction band absorb photons, they may undergo
either direct or indirect transitions, provided energy and momentum are conserved in the
absorption process. In the case of indirect absorption, additional momentum is supplied
by a scattering process. We will consider three important indirect processes here: those
mediated by phonons, those due to the scattering by ionized impurities, and those due to
the scattering by plasmons. The latter two are especially important in heavily doped Si.

Free-carrier absorption is usually treated by the Drude model. This model works well
for intraband absorption processes in the infrared but fails for absorption in the visible
range where the bands deviate from parabolicity. Moreover, the Drude model is based
on the scattering time approximation and the scattering time is usually derived by fitting to
experimental data, and thus the model is not adequate for an accurate determination of free-
carrier absorption of a novel material. A first-principles method has been developed and
calculated results have been previously reported for nitrides[107, 108] and SnO2[109, 110]
with a focus on phonon- and charged-impurity-assisted absorption. In this work we go
beyond the previous work by (i) addressing five different free-carrier absorption processes,
including plasmon dissipative process, direct transition, and phonon-, charged-impurity-,
and plasmon-assisted transitions, (ii) discussing the comparison between theoretical results
and experiment, and (iii) predicting the free-carrier absorption above the band gap of Si
and the subsequent energy loss in silicon solar cells.
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4.1 Methodology

4.1.1 Formalism

The imaginary part of dielectric function for the plasmon dissipative process is calculated
using a linearized Boltzmann Equation with a relaxation time approximation[111]:

ε2(ω) =
4πσ

ω(1 + ω2τ 2)
, (4.1)

where σ is the conductivity and τ is the relaxation time of carriers. Fermi’s golden rule is
used to calculate the direct and indirect absorption coefficients. For direction absorption,
the imaginary part pf dielectric function is expressed as:

ε2(ω) =
16π2e2

ω2

∑
ijk

|e · 〈ik|v|jk〉|2δ(~ω − εik + εjk), (4.2)

where v is the velocity operator along the direction of the polarization of light e, and ~ω is
the photon energy. i and j indicate the band number indices, and k the wave vectors. For
the phonon-assisted absorption, the absorption coefficient is expressed as:

αel-ph(ω) = 2
4π2e2

ωcnr(ω)

nIZ

NkNq

∑
νijkq

|e · (S1 + S2)|2 × Pδ(εj,k+q − εik − ~ω ± ~ωνq),

(4.3)

where Z and nI are the charge and concentration of the defects, c is the speed of light and
nr is the refraction index. The generalized matrix elements S1 and S2 and the statistics
factor P are

S1(k, q) =
∑
m

vim(k)gel-ph
mj,ν(k, q)

εmk − εik − ~ω
, (4.4)

S2(k, q) =
∑
m

gel-ph
im,ν(k, q)vmj(k + q)

εm,k+q − εik ± ~ωνq
, (4.5)

P = (nνq +
1

2
± 1

2
)(fik − fj,k+q), (4.6)
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where vij(k) are the velocity matrix elements, gel-ph
ij,ν (k, q) are electron-phonon coupling

matrix elements, and nνq and fik are the phonon and electron occupation numbers. The
upper (lower) sign corresponds to phonon emission (absorption). The expressions for
the charged-impurity- and plasmon-assisted absorption are similar to that for the phonon-
assisted absorption with the phonon frequencies set to zero and are expressed as:

αimpurity(ω) = 2
4π2e2

ωcnr(ω)

n2
IZ

2V

NkNq

∑
ijkq

|e · (S1 + S2)|2 × δ(εj,k+q − εik − ~ω), (4.7)

αplasmon(ω) = 2
4π2e2

ωcnr(ω)

n2
IZ

2V

NkNq

∑
ijkq

|e · (S1 + S2)|2 × Pδ(εj,k+q − εik − ~ω), (4.8)

where V is the volume of cell. The generalized matrix elements (S1 and S2) are again
given by Eqs. 4.4 and 4.5 but with the gel-ph

ij,ν (k, q) replaced by the charged-impurity and
plasmon matrix elements:

gimpurity
ij (k, q) =

1

V
〈i,k| 4πe2Z

ε(q)(q2 + λ2)
|j,k + q〉, (4.9)

gplasmon
ij (k, q) = 〈i,k| 4πeq

ε(q)(q2 + λ2)

√
~ωplasmon√

2V
|j,k + q〉, (4.10)

where λ is the screening length, and ε(q) is a model dielectric function[112] given by

ε(q) = 1 +

[
1

ε(0)− 1
+ d(

q

λTF
)2 +

~2q4

4m2ω2
plasmon

]−1

. (4.11)

Here d is a parameter taken to be 1.563, λTF the Thomas-Fermi screening length, and
ωplasmon the plasmon frequency. The screening length λ corresponds to Debye screening in
the nondegenerate case (Fermi energy lower than the conduction band minimum) and to
Thomas-Fermi screening in the degenerate case.

4.1.2 Computational details

We studied the electronic properties of Si using first-principles calculations based on den-
sity functional and many-body perturbation theory. We calculated the ground-state charge
density and electronic wave functions using the generalized gradient approximation[38, 91]
for the exchange-correlation potential. We used the plane-wave pseudopotential method[63]
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Figure 4.1: Si band structure depicting different free-carrier absorption processes: (a)
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generalized optical matrix elements S1 and S2.
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Figure 4.2: Contributions to the free-carrier absorption at the electron concentrations of
(a) 1018cm−3 and (b) 1019cm−3 at 300K.

with norm-conserving pseudopotentials[113] and a plane-wave cutoff of 40 Ry as imple-
mented in the Quantum-ESPRESSO code[40].

The quasiparticle band structure of Si was calculated using the one-shot GW method[65]
and the BerkeleyGW code[1]. The static dielectric function was calculated with a 20 Ry
plane-wave cutoff and extended to finite frequency using the generalized plasmon-pole
model of Hybertsen and Louie[65]. The Coulomb-hole self-energy term was calculated
using a sum over unoccupied bands up to 9 Ry above the valence band maximum us-
ing the static-remainder approach[66]. The quasiparticle energies were determined on
an 8×8×8 grid and interpolated in the BZ using maximally localized Wannier function
formalism[95, 96]. Subsequently, we interpolated the quasiparticle energies on a fine mesh
of 120×120×120 to determine the direct absorption coefficient coefficient with Fermi’s
golden rule.

The phonon dispersion and electron-phonon coupling matrix elements were calculated
for Si with density-functional perturbation theory[114] on a 40×40×40 grid of phonon q

vectors in the first BZ. For each phonon vector the electron-phonon matrix elements were
determined using electron wave functions at k and k + q on an 8×8×8 grid. Imaginary
part of the electron-phonon self-energies[115] was used for broadening of the δ function
and the energy denominators. For the impurity scattering and plasmon scattering, the cou-
pling matrix elements were calculated on the same grid of phonon q vectors. For indirect
absorptions, we assume that all the free carriers are located at the conduction band mini-
mum and thus eliminated the sum over k in Eq. 4.3, 4.7, and 4.8.
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Figure 4.3: Calculated values (lines) for the free-carrier absorption coefficient are in very
good agreement with the experimental results[3] (symbols) for n-type Si at 300K.

4.2 Results and Discussions

Figure 4.2 shows different contributions to free-carrier absorption in Si, including dissipa-
tive plasmon absorption, direct absorption, and phonon-, charged-impurity-, and plasmon-
assisted indirect absorption, at two different carrier concentrations. The vertical dashed line
indicates the calculated band gap of silicon (1.27 eV). Different absorption processes are
found to dominate in different wavelength ranges. At a carrier concentration of 1018cm−3

(FIG. 4.2(a)), the phonon-assisted absorption is a little larger than the dissipative plas-
mon absorption in the ultraviolet and visible range, while the other contributions are much
smaller. At longer wavelengths below the band gap energy, the direct transition starts to
dominate, and the dissipative plasmon and phonon-assisted absorption become compara-
ble, about one order smaller than the direct transition. At even longer wavelengths and
photon energies below 100 meV, the dissipative plasmon absorption dominates the absorp-
tion, and the charged-impurity assisted absorption also starts to have an important effect.
When the carrier concentration is ten times larger, the curves seem to be shifted up together,
approximately by a rigid shift.

Figure 4.3 compares the calculated free-carrier absorption coefficient of Si with exper-
iment [3] at various electron concentrations. The calculated values are the sum of different
contributions, including dissipative plasmon absorption, direct absorption, and phonon-,
charged-impurity-, and plasmon-assisted indirect absorption. Our calculated values have
good agreement with experiment at various wavelengths and electron concentrations. This
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Figure 4.4: Calculated free-carrier absorption coefficient at different electron concentra-
tions compared to cross-gap absorption from experiment[4].

convinces us that we correctly identified the most important absorption processes that con-
tribute to the overall result.

When comparing theory to experiment, we focus on photon energies lower than the
band gap of Si, as it is hard to separate the contribution of free-carrier absorption from
that of cross-gap absorption in experiment for photon energies larger than the band gap.
Since free-carrier absorption competes with cross-gap absorption while it does not gener-
ate electron-hole pairs, it is important to be able to predict the contribution of free-carrier
absorption above the band gap and thus better understand the energy loss from it in Si
solar cells. Figure 4.4 shows the calculated free-carrier absorption coefficient at differ-
ent electron concentrations as well as the cross-gap absorption from experiment[4]. Free-
carrier absorption is much smaller than cross-gap absorption at wavelengths smaller than
or within the visible range, but it becomes comparable to or even larger than cross-gap
absorption when the photon energy gets closer to the band gap of Si (photon wavelength
of 800-1000 nm), especially at high doping concentrations. Therefore, heavily doped Si
contacts in Si solar cells absorb a significant fraction of solar photons in the 800-1000 nm
range through free-carrier absorption, which reduce the overall efficiency of solar cells by
an amount depending on the doping and material thickness. Our calculated results can
therefore be applied to model the absorption loss in silicon solar cells due to free-carrier
absorption.
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4.3 Conclusions

In summary, we discussed plasmon dissipative process, direct transition, and phonon-,
charged-impurity-, and plasmon-assisted transitions in n-type Si. Each process creates dif-
ferent features at different wavelengths, which highlights the importance of first-principles
calculations for the accurate determination of the free-carrier absorption coefficient. The
calculated results are in good agreement with experiment and validates the successful iden-
tification of the dominant free-carrier absorption processes. Free-carrier absorption is found
to be comparable or even larger than the cross-gap absorption at photon energies close to
the band gap for heavily dopes Si, and is thus a nonnegligible source of energy loss in Si
solar cells.

52



CHAPTER 5

Thermoelectric transport properties of p-type
SnSe

We used density functional and many-body perturbation theory to calculate the quasipar-
ticle band structures and electronic transport parameters of p-type SnSe both for the low-
temperature Pnma and high-temperature Cmcm phases. The Pnma phase has an indirect
band gap of 0.829 eV while the Cmcm has a direct band gap of 0.464 eV. Both phases ex-
hibit multiple local band extrema within an energy range comparable to the thermal energy
of carriers from the global extrema. We calculated the electronic transport coefficients as
a function of doping concentration and temperature for single-crystal and polycrystalline
materials to understand previous experimental measurements. The electronic transport co-
efficients are highly anisotropic and are strongly affected by bipolar transport effects at high
temperature. Our results indicate that SnSe exhibits optimal thermoelectric performance at
high temperature when doped in the 1019–1020 cm−3 range.
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Thermoelectric materials enable the direct conversion of heat to electricity and can
be used to recover usable energy from waste heat. The efficiency of thermoelectric en-
ergy conversion is determined by the dimensionless figure of merit of the material, ZT =

S2σT/(κL + κel), where S is the Seebeck coefficient, σ is the electrical conductivity, T is
the absolute temperature, and κL and κel are the lattice and electronic contributions to the
thermal conductivity. High ZT values occur in materials with high electrical conductivity,
high Seebeck coefficient, and low thermal conductivity, such as p-type IV-VI compounds
(i.e., PbSe, PbTe, and their alloys) with reported ZT values as high as 1.8.[15, 14, 116]
SnSe is another IV-VI compound that has attracted little attention as a thermoelectric ma-
terial. Recently, Zhao et al. reported figure-of-merit values as high as 2.6 in single-crystal
samples of unintentionally doped p-type SnSe.[5] SnSe undergoes a phase transition at
813 K from the low-temperature phase (Pnma space group) to the high-temperature Cmcm

phase (Fig. 5.1). The highest ZT values were found near and above this phase-transition
temperature of 813 K.

In this work we present the quasiparticle band structures and thermoelectric transport
coefficients of both the low-temperature (Pnma) and high-temperature (Cmcm) phases of
SnSe. In Section 6.1 we discuss our first-principles methodology for the calculation of
the band structures and transport coefficients. In Section 6.2 we present and discuss our
findings. In Section 6.2.1 we report values for the band gaps, band-extrema locations, and
carrier effective masses for both phases. We found multiple local band extrema that lie close
in energy to the the band edges and need to be considered when calculating the thermoelec-
tric transport properties. In Section 5.2.2 we calculate the Seebeck coefficient and electrical
conductivity of both SnSe phases and compare to recent experimental measurements. In
Section 5.2.3 we report the carrier-density and temperature dependence of the electronic
transport coefficients. The transport coefficients are very different along the perpendicular
direction (a axis) and the two in-plane directions (b and c axes). Bipolar transport effects
were found to play an important role in carrier transport at high temperatures. We predict
that SnSe shows good thermoelectric performance at high temperature when doped in the
1019–1020 cm−3 range. This work has been published in Nano Letters.[26]

5.1 Methodology

We studied the electronic properties of SnSe using first-principles calculations based on
density functional and many-body perturbation theory. We calculated the ground-state
charge density and electronic wave functions using the generalized gradient approximation[38,
91] for the exchange-correlation potential. We used the plane-wave pseudopotential method[63]
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Figure 5.1: Crystal structures of (a) the low-temperature (Pnma) phase and (b) the high-
temperature (Cmcm) phase of SnSe. The black borders indicate the conventional unit cells
of the two phases.

with norm-conserving pseudopotentials[113] and a plane-wave cutoff of 200 Ry as imple-
mented in the Quantum-ESPRESSO code[40]. The electrons from the outermost valence
shell (5s and 5p) as well as those from the semicore atomic shell (4s, 4p, and 4d) are in-
cluded for Sn. The crystal structures of the two phases are shown in Fig. 5.1 along the b

axis.
We used the experimentally measured values for the lattice vectors and atomic posi-

tions of SnSe at 300K for the low-temperature Pnma phase (a = 11.50 Å, b = 4.45 Å, c

= 4.153 Å) and at 813 K for the high-temperature Cmcm (a = 4.31 Å, b = 6.24 Å, c =
4.31 Å) phase.[117] The Cmcm phase, which has higher symmetry than the Pnma phase,
was studied using its primitive 4-atom unit cell instead of the conventional 8-atom cell
(Fig. 5.1). The Brillouin zone was sampled using a Monkhorst-Pack grid[118] of 6×6×2
for the low-temperature phase and 6×6×4 for the high-temperature phase.

We calculated the quasiparticle band structure of SnSe using the one-shot GW method[65]
and the BerkeleyGW code[1]. The static dielectric function was calculated with a 20 Ry
plane-wave cutoff and extended to finite frequency using the generalized plasmon-pole
model of Hybertsen and Louie[65]. The Coulomb-hole self-energy term was calculated
using a sum over unoccupied bands up to 16 Ry above the valence band maximum using
the static-remainder approach[66]. Corrections due to spin-orbit coupling interaction[93]
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Figure 5.2: Quasiparticle band structures of (a) the low-temperature (Pnma) phase and
(b) the high-temperature (Cmcm) phase of SnSe. Pnma-SnSe has an indirect band gap of
0.829 eV, while the band gap of Cmcm-SnSe is direct with a magnitude of 0.464 eV. Both
phases exhibit multiple local band extrema that lie close in energy to the global extrema.

were calculated in a non-self-consistent way using plane waves up to a cut-off energy of
50 Ry. We used the maximally localized Wannier function formalism[95, 96] to interpo-
late the quasiparticle energies and spin-orbit coupling matrix elements to arbitrary points
in the first Brillouin zone[119]. Subsequently, we interpolated the quasiparticle energies on
fine meshes in the first Brillouin zone (120×120×60 for Pnma-SnSe and 120×120×80 for
Cmcm-SnSe) to determine the thermoelectric transport coefficients of p-type SnSe with the
Boltzmann transport equation in the constant-relaxation-time approximation.[120, 121]

5.2 Results and discussion

5.2.1 Band structure

The calculated band structures of Pnma-SnSe and Cmcm-SnSe, including quasiparticle
and spin-orbit coupling corrections, are shown in Figs. 5.2(a) and 5.2(b). The band gap of
Pnma-SnSe is found to be indirect with a magnitude of 0.829 eV, while Cmcm-SnSe has
a direct band gap with a magnitude of 0.464 eV. The Brillouin-zone positions, energies,
and multiplicities of the band extrema of Pnma-SnSe and Cmcm-SnSe are summarized in
Table 5.1. All energies are referenced to the valence-band maximum (VBM) of each phase.
In Pnma-SnSe, the position of the VBM is at (0.00, 0.35, 0.00) along the Γ–Y direction of
the first Brillouin zone. There is also a local valence-band maximum at (0.00, 0.42, 0.00)
that lies within 1 meV lower in energy than the VBM. The conduction-band minimum
(CBM) is located at (0.33, 0.00, 0.00) along the Γ–X direction. The calculated band gap
(0.829 eV) is in good agreement with optical-absorption measurements (0.86 eV[5] and
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0.898 eV[99]). We note that the optical-absorption measurements include excitonic effects
that were not included in our calculations. The smallest direct transition energy was found
to be 1.03 eV and occurs at (0.32, 0.00, 0.00), which is close to the CBM location. In
Cmcm-SnSe, both the VBM and CBM are located at (0.34, 0.50, 0.00) along the X–A
direction. In addition, the band structure exhibits a local valence-band maximum, VBM1
at (0.00, 0.20, 0.39) along the Γ–H direction, located just 31 meV lower in energy than
the global VBM. A local conduction-band minimum, CBM1 is found at (0.00, 0.54, 0.08)
along the X–H1 direction, located 70 meV higher in energy than the global CBM.

Figures 5.3 and 5.4 show a set of constant-energy surfaces of the valence and conduc-
tion bands for both SnSe phases plotted within the first Brillouin zone. The plots demon-
strate the multiple local extrema for both phases. The local extrema reside within an energy
range of kBT (kB is the Boltzmann constant) from the band edges for temperatures near the
phase-transition temperature (813 K) around which the highest ZT values have been re-
ported. Therefore, all local extrema need to be taken into account when analyzing the
transport properties of n-type and p-type SnSe.

The effective-mass parameters are also reported for both phases in Table 5.1. To deter-
mine the principal axes of the effective mass tensors. we fit the energy isosurfaces using a
three-dimensional ellipsoid function. Our results show that the a, b, and c crystallographic
axes coincide with the principal axes of the effective mass ellipsoids within less than two
degrees. The effective mass at each extremum is highly anisotropic. With the exception of
the CBM1 local minimum of the Cmcm phase, the effective mass has a larger value along
the a axis, perpendicular to the atomic layers, than either of the in-plane directions b and
c. This is due to the two-dimensional nature of the material, which favors electron trans-
port within the atomic layers than perpendicular to them. Although the CBM has a larger
effective mass along the a axis than the VBM for both phases, electrons have a smaller
density-of-states effective mass than holes around the band gap based on the density of
states plot (Fig. 5.5). This is because the energy window over which the conduction band
is parabolic is narrower than 10 meV above the CBM, while the conduction band shows
significant nonparabolicity and warping at higher energies. For this reason, the transport
properties are not simply predicted from the effective-mass model, and their calculation
requires the full band structure in the entire Brillouin zone.

5.2.2 Transport coefficients

Figures 5.6(a) and 5.6(b) show the calculated Seebeck coefficients for single-crystal Pnma-
SnSe and Cmcm-SnSe as a function of crystal direction and temperature. The calculated
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Figure 5.3: (a) The first Brillouin zone of the low-temperature (Pnma) phase of SnSe.
(b∼d) Constant-energy surfaces of the highest valence band with an energy of (b) 10 meV,
(c) 50 meV, (d) 100 meV lower than the VBM energy. (e∼g) Constant-energy surfaces of
the lowest conduction band with an energy of (e) 10 meV, (f) 50 meV, (g) 100 meV higher
than the CBM energy.
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Figure 5.4: (a) The first Brillouin zone of the high-temperature (Cmcm) phase of SnSe.
(b∼d) Constant-energy surfaces of the highest valence band with an energy of (b) 10 meV,
(c) 50 meV, (d) 100 meV lower than the VBM energy. (e∼g) Constant-energy surfaces of
the lowest conduction band with an energy of (e) 10 meV, (f) 50 meV, (g) 100 meV higher
than the CBM energy.
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Figure 5.5: Density of states of (a) the low-temperature (Pnma) phase and (b) the high-
temperature (Cmcm) phase of SnSe around the band gap.

data are also compared to the experimental values reported by Zhao et al. for single-crystal
samples[5]. For these calculations we assumed a doping concentration (i.e., net free-carrier
concentration) of 6×1017 cm−3, which agrees with the experimental Hall measurements at
300 K.[5] Although the two phases of SnSe are stable in different temperature regimes, we
present theoretical results for the transport coefficients for both phases at all temperatures
for completeness. In the 300–600 K temperature range the calculated Seebeck coefficients
for the Pnma phase increase with temperature and are in good agreement with the ex-
perimental data [Fig. 5.6(a)]. For temperatures in the range of 600–813 K electrons are
thermally excited across the gap and induce bipolar transport, which reduces the Seebeck
coefficient. Our theoretical Seebeck-coefficient data for the Pnma phase along the b and c
axes are larger than experiment in this temperature regime because our theory predicts that
the onset of bipolar transport occurs at higher temperatures than experiment [Fig. 5.6(a)].
This is because we have not included the effect of temperature on the calculated band struc-
ture, which in general decreases the band gap with increasing temperature and reduces the
temperature onset of bipolar transport. The theoretical Seebeck coefficient for the Pnma

phase along the a axis decreases rapidly as a function of temperature above 600 K and
eventually changes sign around 840 K, which is above the phase-transition temperature of
813 K. We attribute the rapid decrease and sign reversal of the Seebeck coefficient along
the a axis in this temperature range to the increasing negative contribution of thermally ex-
cited electrons to the Seebeck coefficient under bipolar-transport conditions. The calculated
Seebeck coefficient data for the Cmcm phase in Fig. 5.6(b) show that bipolar transport sets
in at lower temperatures than in Pnma-SnSe because Cmcm-SnSe has a lower band gap.
Moreover, our calculations predict that for the experimental doping level of 6×1017 cm−3

the sign of the Seebeck coefficient along the a direction becomes negative for temperatures
above 600 K, and in particular in the 813–1000 K temperature range where the Cmcm phase
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is stable. The experimental Seebeck coefficient values for the Cmcm phase along the b and
c directions are larger than our calculated results, while no sign reversal of the Seebeck co-
efficient along the a direction is observed experimentally. We discuss the potential origins
of this discrepancy later in this Section.

We also calculated the Seebeck coefficients of polycrystalline Pnma-SnSe as a function
of carrier density and temperature and compared to experiment. The Seebeck coefficients
for polycrystalline Pnma-SnSe are evaluated by calculating the directional average along
the a, b, and c axes weighted by the electrical conductivity according to Parker’s work[122]:
Savg = (Saσa +Sbσb +Scσc)/(σa +σb +σc). This equation results from the directional av-
erage of the transport tensors L(0) and L(1) [121]. The calculated Seebeck data are plotted
as a function of hole concentration for two temperatures (300 K and 750 K) in Fig. 5.7(a).
The calculated coefficients are found to be in very good agreement with the recent exper-
imental work by Chen et al. for p-type polycrystalline SnSe doped with Ag.[6] As the
hole concentration increases from 1017 to 1020 cm−3, the Fermi energy decreases down to
83 meV and 33 meV below the VBM at 300K and 750K, correspondingly. Figure 5.7(b)
indicates the states within the energy window of± kBT around the Fermi energy for a hole
concentration of 1020 cm−3 at 300 K and 750 K for Pnma-SnSe along the Y–Γ–X path,
which includes the three topmost local valence band maxima. The Figure shows that top-
most two local valence-band maxima have a larger contribution to electronic transport than
the third highest valence-band maximum both at 300 K and at 700 K.

Figures 5.6(c) and 5.6(d) show the calculated electrical conductivity divided by the
scattering time for the Pnma and Cmcm phases of single-crystal SnSe as a function of tem-
perature and crystal direction. The net free-carrier concentration is taken to be 6×1017

cm−3, which is the same as the calculation of Seebeck coefficients. The electrical con-
ductivity is similar along the b and c axes but much smaller along the a axis. This trend
is in good agreement with experiment[5] and stems from the anisotropic two-dimensional
nature of the material. In the 300–700 K temperature range the calculated data for the
Pnma phase do not depend strongly on temperature, indicating that the free-carrier con-
centrations do not change substantially in this temperature regime. For temperatures above
700 K bipolar transport sets in and both the number of thermally excited carriers and the
electrical conductivity increase exponentially with temperature. The electrical conductiv-
ity for the Cmcm phase has a similar behavior to the Pnma phase, with the difference that
due to the smaller band gap of Cmcm-SnSe bipolar transport starts to occur at lower tem-
peratures around 500 K. The experimental data for the Pnma phase show a temperature
dependence qualitatively similar to our calculations. The electrical conductivity decreases
weakly with temperature in the 300–550 K range, while for temperatures above 550 K it
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Figure 5.6: Calculated values (lines) for the Seebeck coefficient S (a, b), the electrical
conductivity divided by the constant scattering time σ/τ (c, d), and the Fermi energy (e,
f) of the low-temperature (Pnma) phase and high-temperature (Cmcm) phase of SnSe for a
doping concentration (net free-carrier concentration) of 6.0×1017cm−3, which matches the
experimental Hall coefficient measurements at 300 K in Zhao’s work[5].
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Figure 5.7: (a) Directionally averaged Seebeck coefficient of Pnma-SnSe as a function of
net free-carrier concentration and temperature. The calculated data are in very good agree-
ment with the experimental results for polycrystalline SnSe reported in Chen’s work[6].
(b) Band structure of Pnma-SnSe along the Y–Γ–X path, which includes the three topmost
local valence band maxima. The shaded regions indicate the energy window of ± kBT
around the Fermi energy for a hole concentration of 1020 cm−3 at 300 K (top panel) and
750 K (bottom panel).

increases exponentially as carriers are thermally excited across the gap. Remarkably, the
experimental conductivity data for the Cmcm phase show a weak decrease with tempera-
ture above the phase-transition temperature of 813 K, in sharp contrast with the exponential
increase observed for temperatures above 500 K in our calculations.

Figures 5.6(e) and 5.6(f) show the calculated Fermi energy for the Pnma and Cmcm

phases of single-crystal SnSe as a function of temperature for a net free-hole concentration
of 6×1017 cm−3. The Fermi energy lies within the band gap for both phases at 300 K (0.1
eV above the VBM for Pnma and 0.05 eV above the VBM for Cmcm). As the temperature
increases, electrons get thermally excited from the valence to the conduction band and
the Fermi energy shifts towards the middle of the band gap. The Fermi energy of the
Cmcm phase stabilizes near the middle of the gap for temperatures above 700 K, which
signifies a comparable concentration of free electrons and holes and is consistent with the
sign reversal of the Seebeck coefficient at these high temperatures. The a direction exhibits
much stronger bipolar transport effects than the other two directions for both the Pnma and
the Cmcm phases because the band velocity of the bottom conduction band along the a

axis is much larger than that of the top valence band. We note that electrons have larger
mobility than holes along the a axis despite their larger effective mass due to the warping
of the bottom conduction band, as discussed in Section 6.2.1.

There are several discrepancies between our theoretical calculations and the experimen-
tal data for the Seebeck coefficient and electrical conductivity of SnSe above the phase-
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transition temperature of 813 K. Although the calculated Seebeck coefficients are in very
good agreement with the low-temperature Pnma phase experimental data, our calculations
do not reproduce the approximately constant Seebeck coefficients reported experimentally
for the Cmcm phase above 813 K.[5] Moreover, the origin of the experimentally observed
behavior of the electrical conductivity for the Cmcm phase is not clear. We expect the
number of thermally excited carriers for the Cmcm phase to increase exponentially with
temperature above 500 K due to bipolar transport. It is not obvious what is the cause of
the discrepancy between theory and experiment at high temperatures. On the one hand, the
disagreement could be attributed to limitations of our computational method. Our calcula-
tions assume the relaxation time to be constant, isotropic, and the same for both electrons
and holes. The relaxation time may be very different between electrons and holes, and it
may also vary with direction, energy, and temperature. Moreover, we have not explicitly
considered temperature effects on the energy eigenvalues. However, the good agreement
between our calculated data and experiment for single-crystal and polycrystalline Pnma-
SnSe suggests that our calculated band structures are accurate and the constant relaxation
time is a valid approximation. On the other hand, the increasing temperature and the phase
transition may affect the nature or concentration of defects and dopant impurities in the
material and thus the net free-carrier concentration. Indeed, it is hard to identify a different
reason why the conductivity does not continue to increase exponentially with temperature
above the transition to the lower-band-gap Cmcm phase as reported experimentally.[5] Fur-
ther evidence for this point is provided by our data for the upper limit of ZT discussed
later.

5.2.3 Carrier-density and temperature dependence of transport coef-
ficients

To further explore the optimal temperature and carrier concentration for the best thermo-
electric performance, we calculated the thermoelectric transport properties of both Cmcm

and Pnma phases of p-type SnSe as a function of temperature and net free-carrier concen-
tration. Figure 5.8 shows the Seebeck coefficient as a function of temperature and carrier
concentration along the a, b, and c axes. In the 300–600 K range the Seebeck coefficient
data for the Pnma-SnSe phase are almost isotropic and increase with temperature. In this
temperature range the Seebeck coefficients decrease at higher carrier concentrations due to
the reduction of the asymmetry of the density of states around the Fermi level for higher
doping levels. As temperature increases above 600 K, bipolar transport occurs and reduces
the Seebeck coefficients. The bipolar transport sets in at lower temperatures for lower car-
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Figure 5.8: Seebeck coefficient as a function of temperature and carrier concentration
for the low-temperature (Pnma) (a, c, e) and high-temperature (Cmcm) phases (b, d, f) of
SnSe along the a, b, and c axes of the crystal structure. The Seebeck coefficients for the
Pnma-SnSe phase are almost isotropic at low temperatures. Bipolar transport reduces the
Seebeck coefficients at high temperatures in both phases, and even changes its sign from
positive to negative at low carrier concentrations.
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rier concentrations. The temperature that the bipolar transport begins increases from 550
K to 700 K as the carrier concentration increases from 1017 cm−3 to 1018 cm−3. For a net
free-carrier concentration of 1017 cm−3 the Seebeck coefficient along a and c axes changes
sign as temperature increases, which implies that the thermally excited electrons start to
dominate transport and the character of semiconductor changes from p-type to n-type. For
temperatures above 813 K, SnSe transitions to the Cmcm phase and the calculated Seebeck
coefficients are smaller than the Pnma phase. This is explained by the more important role
of bipolar transport in the high-temperature Cmcm phase since it has a smaller band gap
than the Pnma phase.

The calculated electrical conductivity of p-type SnSe divided by the scattering time
(σ/τ ) is plotted in Fig. 5.9 as a function of crystal phase, crystal direction, net free-carrier
concentration, and temperature. The electrical conductivity is similar along the b and c axes
but it is much smaller along the a axis. The thermally excited carriers dominate transport
and the electrical conductivity increases exponentially with temperature for temperatures
above the onset of bipolar transport. The temperature onset of bipolar transport increases
as the doping concentration increases because a larger number of thermally excited carriers
is needed to overcome the contribution by the doping carrier concentration to the electrical
conductivity. For temperatures above the phase transition (i.e., greater than 813 K) the
Cmcm phase is found to have much larger electrical conductivity than the Pnma phase
because of the more important role of bipolar transport for Cmcm-SnSe.

The power factor of Pnma and Cmcm SnSe divided by the scattering time is evaluated
according to PF/τ = S2σ/τ and is shown as a function of crystal direction, temperature,
and net free-carrier density in Fig. 5.10. The power factor shows dips along the a and c
axes because the Seebeck coefficient changes sign from positive to negative and takes a
zero value at the dip position. The highest values are observed along the b axis, while the
values are slightly smaller along the c axis and much smaller along the a axis. This trend
[PF(b) > PF(c) > PF(a)] agrees with the experimental observations.[5] For high doping
concentrations the power factor increases with increasing temperature. The highest power
factor is found for the highest carrier concentration (1020 cm−3) at the highest temperature
(1000 K).

Figure 5.11 shows the electron contribution to the thermal conductivity divided by scat-
tering time (κel/τ ) for the two phases and the three crystal directions as a function of net
free-carrier density and temperature. The electron thermal conductivity increases with in-
creasing temperature and doping concentration. It takes higher values along the in-plane b
and c directions than the perpendicular a direction, and it shows bipolar transport behavior
similar to the electrical conductivity.
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Figure 5.9: Electrical conductivity divided by the scattering time (σ/τ ) as a function of
temperature and carrier concentration for the low-temperature (Pnma) (a, c, e) and high-
temperature (Cmcm) phases (b, d, f) of SnSe along the a, b, and c axes of the crystal
structure. The electrical conductivity is similar along the b and c axes but it is much smaller
along the a axis. The Cmcm phase is found to have larger electrical conductivity than the
Pnma phase above 813 K (phase-transition temperature) because of the more important
role of bipolar transport for Cmcm-SnSe.
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Figure 5.10: Power factor (PF) divided by the scattering time as a function of temperature
and carrier concentration for the low-temperature (Pnma) (a, c, e) and high-temperature
(Cmcm) phases (b, d, f) of SnSe along the a, b, and c axes of the crystal structure. The
power factor shows dips along the a and c axes because the Seebeck coefficient changes
sign from positive to negative and takes a zero value at the dip position. The highest values
are observed along the b axis. The highest power factor is found for the highest carrier
concentration (1020 cm−3) at the highest temperature (1000 K).
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Figure 5.11: Electronic component of the thermal conductivity divided by the scattering
time as a function for the low-temperature (Pnma) (a, c, e) and high-temperature (Cmcm)
phases (b, d, f) of SnSe along the a, b, and c axes of the crystal structure. The electron
thermal conductivity increases with increasing temperature and doping concentration. It
takes higher values along the in-plane b and c directions than the perpendicular a direction,
and it shows bipolar transport behavior similar to the electrical conductivity.
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Figure 5.12: The ratio of κel to σT as a function of temperature and carrier concentration
for the low-temperature (Pnma) (a, c, e) and high-temperature (Cmcm) phases (b, d, f) of
SnSe along the a, b, and c axes of the crystal structure. The values for this ratio in the limit
of low temperature and low doping concentration, 1.7–2.2×10−8 W Ω K−2, are typical
for the Lorentz number of semiconductors for non-degenerate carriers. As the temperature
increases, this ratio is greatly enhanced due to bipolar transport.

69



Figure 5.12 shows the ratio of the thermal conductivity to the electrical conductivity
multiplied by the temperature, κel/σT , as a function of direction, doping concentration,
and temperature. The values for this ratio in the limit of low temperature and low doping
concentration are 1.7×10−8 W Ω K−2, 1.8×10−8 W Ω K−2, and 1.9×10−8 W Ω K−2 for
the Pnma phase along the a, b, and c axes, respectively, and 2.2×10−8 W Ω K−2 for the
Cmcm phase along all three directions. These are typical values for the Lorentz number of
semiconductors for non-degenerate carriers. As the temperature increases, bipolar trans-
port increases the electronic thermal conductivity more than the electrical conductivity due
to the bipolar diffusion term that is proportional to σeσh/(σe + σh), where σe and σh are
the contributions to electrical conductivity by electrons and holes, respectively[123] and
increases the value of this ratio. This bipolar diffusion becomes significant if electrons and
holes have large and similar electrical conductivities. As shown in Fig. 5.12, the κel/σT

ratio increases by as much as a factor of 47 along the a direction of the Pnma phase at
high temperature for a doping concentration of 1017 cm−3. A similar enhancement of the
Lorenz number under bipolar transport has also been observed for bismuth telluride.[124] A
constant value of (1–2.4)×10−8 W Ω K−2 for the Lorenz number is frequently used exper-
imentally to estimate the lattice and electronic contributions to the thermal conductivity.[5]
Our findings show that this assumption needs to be reexamined for SnSe if bipolar transport
affects the values of the electrical and electronic thermal conductivity at high temperatures.

Figure 5.13 shows the ratio of S2σT to κel for Pnma-SnSe and Cmcm-SnSe as a func-
tion of crystal direction, net free-carrier density, and temperature. This quantity is related
to the figure of merit ZT according to

ZT =
S2σT

κel

κel

κel + κL
. (5.1)

The quantity S2σT/κel is independent of the constant scattering time and is an upper limit
to the figure of merit. It approaches ZT if the lattice contribution to the thermal con-
ductivity is negligible compared to the electronic term. For low doping concentration and
low temperature, the thermal conductivity is dominated by the lattice term and evaluating
ZT requires knowledge of the lattice thermal conductivity and the electron scattering time.
However, at high carrier concentration and high temperature the ratio S2σT/κel approaches
ZT because the lattice thermal conductivity decreases with temperature and takes a remark-
ably low value at a temperature above 700 K (0.20 W m−1 K−1)[5], while the electronic
thermal conductivity increases with increasing temperature (due to bipolar transport) and
increasing doping concentration. Our results for Cmcm-SnSe show that for net free-carrier
concentration on the order of 1017–1018 cm−3, which is in the range of the experimental
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Figure 5.13: S2σT/κel as a function of temperature and carrier concentration for the
low-temperature (Pnma) (a, c, e) and high-temperature (Cmcm) phases (b, d, f) of SnSe
along the a, b, and c axes of the crystal structure. At high carrier concentration and high
temperature, this ratio approaches ZT since the lattice thermal conductivity was found to
take a remarkably low value at a temperature above 700 K from experiment.
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Hall measurements of Zhao et al.,[5] the upper limit to ZT along the b and c axes is much
smaller than the remarkably high ZT values (as much as 2.6) reported experimentally. This
is an indication that the concentration of dopants in the experimental work of Zhao et al.[5]
is larger than the Hall coefficients measured at room temperature (6×1017 cm−3) as the
temperature increases beyond the phase transition. For net free-hole concentrations in the
1019–1020 cm−3 range and temperatures above 700 K the upper limit to ZT takes values
substantially larger than 1 along the b and c axes, both for the Pnma and the Cmcm phase
of SnSe. It is desirable to dope SnSe with acceptors in the range of 1019–1020 cm−3 to
optimize the figure of merit at high temperature.

5.3 Conclusions

We investigated the band structure and electronic transport properties of both the low-
temperature Pnma and the high-temperature Cmcm phase of SnSe. We calculated the band
gaps and carrier effective masses and we found that both phases exhibit multiple local band
extrema near the band edges that need to be considered when evaluating the thermoelec-
tric properties for this material. We determined the electrical conductivity to be highest
along the b axis and smallest along the a axis for various carrier concentrations. The other
transport properties also show a significant degree of anisotropy between the perpendicular
direction (a axis) and the two in-plane directions (b and c axes). Bipolar effects strongly
affect electronic transport at high temperatures and low carrier concentrations, and cause
a sharp decrease and sign reversal of the Seebeck coefficients. The difference between
our calculated transport properties and the experimental results in the range of low carrier
concentration and high temperature may be attributed to the possible change of the na-
ture or concentration of defects and dopant impurities in the material due to the increasing
temperature and the phase transition. Our calculated transport coefficients shed light into
recent experimental measurements that reported a remarkably high figure-of-merit value
(2.6) for Cmcm-SnSe. Our results predict that SnSe would show optimal thermoelectric
performance at high temperature when doped in the 1019–1020 cm−3 range.
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Table 5.1: Calculated values of the positions and energies of the conduction and valence
band extrema, and effective masses along the a, b, and c axes for the low-temperature
(Pnma) and high-temperatute (Cmcm) phase of SnSe. The positions (k1, k2, k3) are in
crystal coordinates. The energies are referenced to the energy of the VBM for each phase.

Multiplicity (k1, k2, k3) E (eV) m∗a m∗b m∗c
Pnma
VBM 2 (0.00, 0.35, 0.00) 0.000 0.74 0.31 0.16

VBM1 2 (0.00, 0.42, 0.00) 0.000 0.90 0.12 0.15
CBM 2 (0.33, 0.00, 0.00) 0.829 2.40 0.11 0.15
Cmcm
VBM 2 (0.34, 0.50, 0.00) 0.000 0.34 0.04 0.09

VBM1 2 (0.00, 0.20, 0.39) -0.031 0.77 0.12 0.05
CBM 2 (0.34, 0.50, 0.00) 0.464 3.07 0.04 0.10
CBM1 2 (0.00, 0.54, 0.08) 0.534 0.06 0.82 1.52
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CHAPTER 6

Quasiparticle band structures of Mg2Si, Mg2Ge,
and Mg2Sn

We apply density functional and many-body perturbation theory calculations to consis-
tently determine and parameterize the relativistic quasiparticle band structures of Mg2Si,
Mg2Ge, and Mg2Sn. The quasiparticle band gaps, including spin-orbit coupling effects, are
determined to be 0.728 eV, 0.555 eV and 0.142 eV for Mg2Si, Mg2Ge and Mg2Sn, respec-
tively. The inclusion of the semicore electrons of Mg, Ge, and Sn in the valence is found
to be important for the accurate determination of the band gaps of Mg2Ge and Mg2Sn. We
also developed a Luttinger-Kohn Hamiltonian and determined a set of band parameters to
model the near-edge relativistic quasiparticle band structure consistently for all three com-
pounds that can be applied for thermoelectric device simulations. Our calculated values
for the Seebeck coefficient of all three compounds are in good agreement with available
experimental data for a broad range of temperatures and carrier concentrations. Our re-
sults indicate that quasiparticle corrections are necessary for the accurate determination of
Seebeck coefficients at high temperatures at which bipolar transport becomes important.

74



Mg2X (X = Si, Ge, Sn) compounds are efficient thermoelectric materials composed of
relatively inexpensive and Earth-abundant elements, and are thus promising for large-scale
thermoelectric energy-conversion applications. Experimental results on these compounds
and their alloys indicate favorable thermoelectric properties with large values of the See-
beck coefficient, high electrical conductivity, low thermal conductivity, and values for the
dimensionless thermoelectric figure of merit (ZT ) that can exceed unity. The figure of
merit of unary Bi-doped n-type Mg2Si reaches values up to 0.86 at 862 K,[7] but it im-
proves drastically in Mg2Si1−xSnx alloys. Values of ZT around 1.1 were measured in
n-type Mg2Si1−xSnx solid solutions in the 600-870 K temperature range,[125] and even
higher ZT values (1.3) were subsequently reported for alloys with an optimal composition
(Mg2Si0.3Sn0.7) near 700 K.[17] The higherZT values in Mg2Si1−xSnx alloys are attributed
both to the reduction of the thermal conductivity due to alloy-disorder scattering,[126] as
well as to the convergence of two non-degenerate conduction bands (that are energy re-
versed in Mg2Si and Mg2Sn) for the particular Mg2Si0.3Sn0.7 alloy composition.[17]

In addition to Mg2Si and Mg2Sn compounds and alloys, Mg2X alloys incorporating
Mg2Ge have attracted attention for thermoelectric applications. Binary alloys of Mg2Ge
with Mg2Sn (n-type Mg2Sn0.75Ge0.25) have been reported to exhibit a ZT = 1.4 at 450
◦C.[127] In addition, theoretical calculations have predicted that the thermoelectric fig-
ure of merit of n-type Mg2Ge0.5Sn0.5 can exceed 2 at 1000 K for a free-electron con-
centration of 1020 cm−3.[128] There is also evidence that the thermoelectric properties
of Mg2Si1−xSnx can be further improved by forming ternary alloys with Mg2Ge. While
binary Mg2Si1−xSnx and Mg2Ge1−xSnx alloys have been reported to exhibit miscibility
gaps,[129] the immiscible gap is reduced in ternary Mg2Si1−x−ySnxGey.[130] A figure of
merit of ZT = 1.4 was reported for Bi-doped n-type Mg2Si0.55Sn0.4Ge0.05 at 800 K,[131]
while ZT values greater than 1.45 were found in Mg2Si0.3GeySn0.7−y (06y60.05).[130]
The high thermoelectric efficiency of ternary alloys has been attributed to the widening
of the band gap of Mg2Si1−xSnx by Ge substitution and the subsequent suppression of
bypolar transport at high temperatures,[132] as well as increased conduction band degen-
eracy and reduced lattice thermal conductivity due to enhanced alloy-disorder scattering of
phonons.[130]

The band structure and electronic properties of Mg2X have also been investigated with
atomistic calculations to provide theoretical understanding to the wide body of experimen-
tal data. Early results obtained with the empirical pseudopotential method (EPM) underes-
timate the band gap of Mg2Si by approximately 0.2 eV but greatly overestimate the gaps of
Mg2Ge and Mg2Sn.[133] Previous density functional theory (DFT) calculations using the
local density approximation (LDA) exchange-correlation functional underestimate the band
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gaps of Mg2X compounds by up to 0.6 eV,[134, 135] due to the systematic underestima-
tion of band gaps by the LDA functional. Moreover, calculations using the Korringa-Kohn-
Rostoker (KKR) method and the LDA functional revealed the important role of relativistic
corrections including spin-orbit coupling to the valence band structure and thermopower
calculations of p-type Mg2X materials.[136] However, the band-gap values obtained from
KKR are also based on LDA and need to be adjusted to experimental values to yield accu-
rate thermoelectric transport coefficients at high temperature.[137] DFT calculations based
on the modified Becke-Johnson functional (m-BJ) yield accurate values for the gaps of
Mg2Si (0.58 eV) [138] and Mg2Sn (0.3 eV)[139], although the reported Mg2Sn results do
not include the effect of spin-orbit coupling on the valence bands.[139] Band gaps cal-
culated with the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional are in good agreement
but slighly smaller than experiment,[140] although the reported calculations did not include
spin-orbit coupling effects. On the other hand, band structure calculations based on many-
body perturbation theory and the all-electron GW method result in accurate gaps for Mg2Si
and Mg2Ge that are less than 0.1 eV different from experiment.[141] Overall however, ac-
curate band structures that include both quasiparticle and relativistic corrections have not
been consistently determined for all three Mg2Si, Mg2Ge, and Mg2Sn compounds.

The electron transport properties of Mg2X have also been investigated theoretically
with the Boltzmann transport equation. Numerous transport studies were based on band
structures of compounds and alloys obtained from DFT calculations [139, 137, 136, 138].
However, the computational cost of DFT becomes prohibitive for calculations of structures
with more than a few hundred atoms. On the other hand, effective band Hamiltonians (e.g.,
based on k · p theory or the effective-mass approximation) enable computationally effi-
cient thermoelectric device simulations. Although k · p is the method of choice to simulate
semiconductor electronic and optoelectronic devices, the reported transport simulations of
Mg2X materials are based on simple effective-mass models that do not capture the entire
complexity of the bands. For example, isotropic and parabolic bands were used for the
valence bands[142] and also for both the valence and the conduction bands[143]. How-
ever, the non-parabolicity and anisotropy of the bands become important at high doping
and high temperature.[136] In particular, experiments have revealed that a single effective
mass model is insufficient to fit the Seebeck coefficient data at carrier densities higher than
1020 cm−3.[144] More accurate model Hamiltonians (e.g., based on k · p theory[145]) with
parameters optimized to reproduce relativistic quasiparticle band structures consistently for
all three Mg2X compounds are therefore necessary for the accurate modeling of electronic
transport properties.

In this work, we use first-principles calculations based on density functional and many-
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body perturbation theory in the GW approximation to determine and parameterize the rel-
ativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn. We evaluate the
effect of semicore electrons and spin-orbit coupling on the calculated GW band gaps. Our
calculated band gaps, conduction-band energy differences, and spin-orbit splittings are in
good agreement with available experimental data. Moreover, we fit the GW band struc-
tures of all three compounds with an effective Hamiltonian based on k ·p theory to obtain a
consistent parameterization of the near-edge band structures of all three compounds that in-
cludes quasiparticle and relativistic corrections. Our band structures accurately reproduce
the available measured Seebeck coefficients for all three compounds, while our derived
band parameterizations can be applied for the accurate and efficient modeling of electronic
transport in Mg2X thermoelectric materials and devices.

This manuscript is organized as follows. In Section 6.1 we discuss our computational
methodology for the determination of the quasiparticle band structure of Mg2X com-
pounds. In Section 6.2 we present and discuss our calculated results. In Subsection 6.2.1
we discuss the features of the band structures of Mg2X , we assess the importance of the
various approximations involved in the calculations, and we compare to experimental re-
sults. In Subsection 6.2.2 we parameterize the quasiparticle band structure with a k · p
model Hamiltonian that can be subsequently applied for large-scale device simulations.
Last, in Subsection 6.2.3 we determine the Seebeck coefficients of Mg2X as a function
of carrier density and temperature, and we compare to available experimental data to val-
idate the accuracy of our calculated band structures in predicting thermoelectric transport
properties.

6.1 Methodology

We studied the electronic band structure and thermoelectric properties of Mg2X com-
pounds using first-principles calculations based on denisty functional theory (DFT) and
many-body perturbation theory. We performed DFT calculations to obtain the ground-state
charge density and electronic wave functions within the generalized gradient approximation
with the Perdew-Burke-Ernzerhof (PBE) parameterization for the exchange-correlation
potential.[91] We used the plane-wave pseudopotential method[63] as implemented in the
Quantum-ESPRESSO code[40]. We employed norm-conserving pseudopotentials gener-
ated with the Atomic code and a plane-wave cutoff of 350 Ry, 500 Ry and 350 Ry for
Mg2Si, Mg2Ge and Mg2Sn, respectively[64]. We also examined the effect of semicore
electons on the band structure by treating both the outermost-shell electrons (e.g., 5s and
5p for Sn) and those from the next complete atomic shell (i.e., the 4s, 4p, and 4d electrons
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Table 6.1: Atomic parameters used to generate valence and semicore pseudopotentials:
the orbitals treated as part of the valence and their electronic configuration, the cutoff radii
for the s, p, and d pseudopotential components (rs, rp, and rd, respectively), and the choice
of the local component.

Element Valence orbitals rs rp rd Local
Valence Mg 3s23p03d0 2.14 2.54 2.54 s

Si 3s23p23d0 1.75 1.93 1.50 d
Ge 4s24p1.754d0.25 1.98 2.18 2.46 d
Sn 5s25p1.755d0.25 2.33 2.39 2.69 s

Semicore Mg 2s22p63d0 0.60 0.60 0.60 s
Ge 3s23p63d10 0.60 0.60 0.60 s
Sn 4s24p64d10 0.80 0.80 0.80 p

of Sn) as valence electrons. A summary of the atomic parameters used for the generation
of the pseudopotentials is presented in Table 6.1. Our subsequent GW results show that the
semicore states of Mg, Ge, and Sn need to be included in the valence in order to obtain ac-
curate values for the calculated band gaps of Mg2Ge and Mg2Sn. All calculations were per-
formed for the experimentally measured values for the lattice parameters: 6.338 Å, 6.393
Å, and 6.760 Å for Mg2Si, Mg2Ge and Mg2Sn, respectively[146]. The Brillouin zone was
sampled using a 6×6×6 Monkhorst-Pack grid[118]. We calculated the quasiparticle band
structure of Mg2X compounds using the one-shot GW method[65] and the BerkeleyGW
code[1]. The dielectric function was calculated at zero frequency and extended to finite
frequency using the generalized plasmon-pole model of Hybertsen and Louie[65]. The
Coulomb-hole self-energy term was calculated using the static-remainder approach[66].
The dielectric matrix cutoff and the number of bands used for the Coulomb-hole summa-
tion are shown in Table 6.2. These parameters were increased until a convergence of 10
meV in the resulting quasiparticle band gaps was achieved. Corrections due to spin-orbit
coupling (SO) interaction[93] were calculated in a non-self-consistent way using plane
waves up to a cut-off energy of 100 Ry. We used the maximally localized Wannier function
formalism[95, 96] to interpolate the quasiparticle energies and spin-orbit coupling matrix
elements to a fine mesh (120×120×120) in the first Brillouin zone, and then determined the
Seebeck coefficients with the Boltzmann transport equation in the constant-relaxation-time
approximation.[120, 121] This methodology has previously been applied to investigate the
electronic and transport properties of SnSe[85], Pb7Bi4Se13[97], and TiO2[147].
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Table 6.2: Values for the GW calculation parameters [wave-function plane-wave cutoff
energy (psi cutoff), dielectric-matrix plane-wave cutoff energy (ε cutoff), and number of
bands used in the Coulomb-hole self-energy term) used to converge the quasiparticle band
gaps to within 10 meV for calculations employing the valence pseudopotential for Si and
the semicore pseudopotentials for Mg, Ge, and Sn from Table 6.1.

Material ψ cutoff (Ry) ε cutoff (Ry) # bands in CH sum
Mg2Si 350 30 900
Mg2Ge 500 30 1000
Mg2Sn 350 30 1000

6.2 Results and discussion

6.2.1 Quasiparticle band structure

Our results for the band gaps of the Mg2X compounds calculated using PBE and GW are
summarized in Table 6.3 and compared to previous experimental and theoretical results.
The band gaps (including the effects of spin-orbit coupling) are found to be 0.728 eV,
0.555 eV and 0.142 eV for Mg2Si, Mg2Ge and Mg2Sn, respectively. The valence-band
maximum is located at the Γ point and the conduction-band maximum lies at the X point for
all materials. For Mg2Sn, the underestimation of the band gap by PBE results in an indirect
overlap of the valence and conduction bands, predicting an incorrect semimetallic nature
for this material. The incorrect band occupations for Mg2Sn were fixed by first shifting
the conduction bands by 0.148 eV higher in energy. The value of the shift was chosen in
a self-consistent way, such that the corrected PBE band gap is equal to the quasiparticle
gap after GW corrections. A range of experimental band-gap values has been reported
by various investigators for each Mg2X compound[148, 149, 150, 151, 152, 153, 154,
155, 156, 157]. Typically, the shape of the absorption edge suggests a smaller gap while
the temperature dependence of conductivity predicts a larger one. Our calculated band-
gap values of Mg2Ge and Mg2Sn are found to be in much better agreement with those
determined from absorption measurements.

We also examined the effect of spin-orbit coupling on the band gaps and valence-band
splittings of Mg2X . Mg2Sn has the strongest spin-orbit coupling effect of the three Mg2X

compounds due to its large atomic number. The calculated spin-orbit splittings of the top
valence band at the Γ point are in good agreement with the experimental data from elec-
troreflectance measurements (Table 6.4)[152, 158].

The calculated band structures of Mg2Si, Mg2Ge and Mg2Sn, including quasiparticle
and spin-orbit coupling corrections, are shown in Figure 6.1. The lowest two conduction
bands exhibit local minima at the X point of the Brillouin zone for all three compounds.
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Figure 6.1: Quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn with spin-orbit
coupling effects included, using semicore pseudopotentials for Mg, Ge, and Sn. The X1
and X3 states at the X point are indicated with blue and red arrows, correspondingly.
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Table 6.3: The quasiparticle band gap (in eV) calculated in the present work and measured
by experiment. Here we used valence pseudopotentials for Si, and semicore pseudopo-
tentials for Mg, Ge, and Sn. Our calculated values are compared to previous theoretical
work, as well as experimental measurements using optical absorption or the temperature
dependence of the electrical conductivity.

Mg2Si Mg2Ge Mg2Sn
This work, PBE 0.204 0.144 -0.138
This work, GW 0.739 0.619 0.309

This work, GW+L·S 0.728 0.555 0.142
Theory, EPM[133] 0.53 0.92 0.64
Theory, LDA[135] 0.118 0.166 0.026
Theory, m-BJ[138] 0.58 – –

Theory, TB-mBJ[139] 0.6 – 0.3
Theory, HSE[140] 0.49 – 0.13
Theory, GW[141] 0.65 0.50 –

Experiment 0.62-0.77[148, 149, 150, 151, 157] 0.54-0.74[148, 150, 151, 152, 153, 157] 0.14-0.30[148, 151, 154, 155, 156]

Table 6.4: Spin-orbit splitting (in eV) of the top valence band of Mg2X at Γ.
Mg2Si Mg2Ge Mg2Sn

This work, GW+L·S 0.032 0.190 0.492
Theory, KKR/LDA[136] 0.036 0.208 0.525

Experiment[158] 0.03 0.20 0.48

The two minima lie close in energy (the lower-energy one forming the global conduction
band minimum) and correspond to states of different symmetry, either of the X1 type,
formed by s orbitals of Si, Ge, or Sn, or of the X3 type, formed by s orbitals of Mg.
For both Mg2Si and Mg2Ge the conduction-band minimum is the X1 state, but the order
of the two bands is inverted for Mg2Sn. The order of the two lowest conduction bands
at the X point does not change upon the inclusion of quasiparticle correction and spin-
orbit effects. This conduction-band reordering has also been highlighted in previous band-
structure calculations of binary Mg2X[133], and the large values of the Seebeck coefficient
in alloys has been attributed to the convergece in energy of these two minima[17]. Our
calculated values for the transition energy from state X1 to X3 is summarized in Table 6.5
for all three materials.

To further explore the effect of semicore electrons on the GW-calculated electronic
structures, we also evaluated the band gaps of all three materials using pseudopotentials

Table 6.5: Energy difference between the two lowest conduction bands X1 and X3
(EX3 − EX1, cf. Fig. 6.1) of Mg2Si, Mg2Ge, and Mg2Sn, calculated using the semicore
pseudopotentials for Mg, Ge, and Sn.

Mg2Si Mg2Ge Mg2Sn
This work, PBE 0.214 0.388 -0.305
This work, GW 0.265 0.381 -0.317
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Table 6.6: Band-gap values (in eV) calculated with semicore electrons frozen in the
core (“valence” pseudopotentials) or included in the valence (“semicore” pseudopoten-
tials). Spin-orbit interaction effects are included. Only the valence electrons are used for
the generation of the GPP model parameters.

Pseudopotentials Mg2Si Mg2Ge Mg2Sn
Semicore Mg + semicore X / 0.555 0.142
Valence Mg + semicore X / 0.521 0.010
Semicore Mg + valence X 0.728 0.414 -0.016
Valence Mg + valence X 0.710 0.391 -0.140

with all the semicore electrons frozen in the core. The band-gap values calculated with
different combinations of valence and semicore pseudopotentials are summarized in Ta-
ble 6.6. The inclusion of semicore orbitals in the pseudopotential of Ge and Sn is found to
be necessary to determine accurate band gaps for Mg2Ge and Mg2Sn. The gaps are under-
estimated by at least 100 meV if the semicore s, p, and d electrons are treated as part of
the frozen pseudopotential core instead of valence electrons. In comparison, the inclusion
of semicore orbitals of Mg have a strong effect on the band gap of Mg2Sn, but they do not
play an important role in the band gaps of Mg2Si and Mg2Ge. To understand the origin
of the important role of semicore Mg orbitals for the band gap of Mg2Sn we project the
conduction and valence band wave functions onto the semicore states. We find that Mg
semicore states only contribute to the second lowest conduction state of Mg2Si and Mg2Ge
at the X point (X3) but little to the lowest state (X1). Similarly, Mg semicore states con-
tribute to the lowest conduction band of Mg2Sn (X3) but not to the next-higher conduction
band (X1). The different effect of the inclusion of semicore Mg orbitals on the GW band
gap of the three materials is therefore a consequence the different contributions of these
semicore states to the orbital characters of their bottom conduction bands.

We also examined the role of semicore electrons on the construction of the generalized
plasmon-pole (GPP) model used in GW calculations. The valence charge density is needed
as an input to the sum rules used to generate the parameters for the GPP model. For
our GW calculations for all the Mg2X systems, we examined three different choices for
the charged density input to the GPP model: (i) using the outermost s and p electrons
only (“valence”), (ii) using the outermost valence electrons plus the semicore d shell of
the cations (“semicore d + valence”), and (iii) the outermost valence electrons plus the
entire semicore shell for both Mg and for the cations (“semicore s, p, d + valence”). The
results of the comparison of the three charge-density models for the band gap of Mg2X are
summarized in Table 6.7. The inclusion of Mg semicore orbitals in the plasmon-pole model
has a minor effect of the band gap, as evidenced by the slight reduction of the band gap
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Table 6.7: Calculated values of the band gap (in eV) of Mg2X as a function of the number
of electrons included in the construction of the generalized plasmon-pole model. Spin-orbit
interaction effects are included. The calculations used valence pseudopotentials for Si, and
semicore pseudopotentials for Mg, Ge, and Sn.

Electrons in charge density Mg2Si Mg2Ge Mg2Sn
Semicore s, p, d + valence 0.691 0.752 0.235

Semicore d + valence / 0.740 0.271
Valence only 0.728 0.555 0.142

of Mg2Si by only 37 meV. However, the inclusion of the semicore d electrons has a larger
effect on the gap of Mg2Ge and Mg2Sn, increasing the gap by as much as 0.185 eV for the
case Mg2Ge. Inner semicore orbitals have a minor effect also in the case of Mg2Ge and
Mg2Sn, e.g., decreasing the gap of Mg2Sn by only 36 meV. We argue that including only
the valence orbitals in the GPP model construction yields more realistic values for the gap
than the inclusion of either the semicore d electrons or the entire semicore shell. Since the
semicore electrons are strongly bound to their atoms, they do not screen the electric field
as efficiently as valence electrons and should not be considered as part of the valence for
the GPP sum rules[159, 160]. The dielectric functions calculated from the plasmon-pole
model only using the valence electrons are found to have much better agreement with those
determined from a full-frequency calculation in the present work (Table 6.7).

6.2.2 Band-structure parameterization with k · p

To enable the accurate and consistent modeling of Mg2X electronic and thermoelectric
devices, we developed a parameterized Hamiltonian model based on k · p theory that can
be employed for large-scale device simulations. The GW method provides accurate results
and atomistic understanding for the band structures of materials, but its high computational
cost prohibits its application for the large and complex structures needed for device simu-
lations. To enable multi-scale device simulations we adopt and parameterize an effective-
mass Hamiltonian derived from a generalized Luttinger-Kohn (LK) model[145] using the
k · p method. The 6× 6 Hamiltonian matrix describing the top three valence bands (doubly
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Figure 6.2: The top three valence bands of Mg2Si along the Γ-X, Γ-K, and Γ-L directions
as calculated with GW (including spin-orbit coupling effects, solid line) and parameterized
with a k · p Hamiltonian (dashed line).
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Figure 6.3: The top three valence bands of Mg2Ge along the Γ-X, Γ-K, and Γ-L directions
as calculated with GW (including spin-orbit coupling effects, solid line) and parameterized
with a k · p Hamiltonian (dashed line).
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Figure 6.4: The top three valence bands of Mg2Sn along the Γ-X, Γ-K, and Γ-L directions
as calculated with GW (including spin-orbit coupling effects, solid line) and parameterized
with a k · p Hamiltonian (dashed line).
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Figure 6.5: The two lowest conduction bands of Mg2Si along the X-Γ, X-U, and X-
W direction as calculated with GW (including spin-orbit coupling effects, solid line) and
parameterized with a k · p Hamiltonian (dashed line).
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Figure 6.6: The two lowest conduction bands of Mg2Ge along the X-Γ, X-U, and X-
W direction as calculated with GW (including spin-orbit coupling effects, solid line) and
parameterized with a k · p Hamiltonian (dashed line).
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Figure 6.7: The two lowest conduction bands of Mg2Sn along the X-Γ, X-U, and X-
W direction as calculated with GW (including spin-orbit coupling effects, solid line) and
parameterized with a k · p Hamiltonian (dashed line).
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Table 6.8: Values of the k · p model parameters, band-structure effective masses for the
heavy-hole (HH), light-hole (LH), and spin-orbit split-off (SO) valence bands along Γ-X,
Γ-K, and Γ-L, and valence DOS effective masses for Mg2Si, Mg2Ge, and Mg2Sn.

Mg2Si Mg2Ge Mg2Sn
k · p parameters

γ1 3.317 4.137 4.946
γ2 0.532 0.710 0.596
γ3 1.239 1.612 1.861
γ′1 3.317 4.137 3.518
γ′2 0.532 0.710 0.519
γ′3 1.239 1.612 1.550

Heavy-hole band
mΓ−X
HH 0.444 0.368 0.266

mΓ−K
HH 0.904 0.796 0.600

mΓ−L
HH 1.192 1.095 0.817

Light-hole band
mΓ−X
LH 0.228 0.180 0.163

mΓ−K
LH 0.181 0.142 0.122

mΓ−L
LH 0.173 0.136 0.115

Split-off band
mΓ−X
SO 0.301 0.242 0.284

mΓ−K
SO 0.301 0.242 0.284

mΓ−L
SO 0.301 0.242 0.284

DOS effective mass
m∗DOS 0.914 0.863 0.595

α (eV−1) 119.458 23.469 4.091
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Table 6.9: Values for the k · p model parameters, band-structure effective masses for the
two lowest conduction bands along X-Γ, X-U, and X-W, and conduction DOS effective
masses for Mg2Si, Mg2Ge, and Mg2Sn.

Mg2Si Mg2Ge Mg2Sn
k · p parameters

γ4 2.221 1.834 1.078
γ5 4.887 4.742 6.541
γ6 0.555 0.961 1.658
γ7 4.957 5.465 4.459
γ8 8.350 8.361 8.926

Lowest conduction band
mX−Γ
CBM1 0.450 0.545 0.928

mX−U
CBM1 0.205 0.211 0.153

mX−W
CBM1 0.205 0.211 0.153

2nd lowest conduction band
mX−Γ
CBM2 1.802 1.041 0.603

mX−U
CBM2 0.202 0.183 0.224

mX−W
CBM2 0.202 0.183 0.224

DOS effective mass
m∗DOS 0.462 0.576 0.556

α (eV−1) 17.485 6.479 5.877

spin degenerate due to inversion symmetry) near the Γ point is given by:
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2 −iq
0 c∗ −b∗ Hhh −i

√
2c′∗ −ib′∗/

√
2

−ib′∗/
√

2 iq i
√

3b′/
√

2 i
√

2c′ Hso 0

i
√

2c′∗ −i
√

3b′∗/
√

2 iq ib′/
√
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, (6.1)

where the matrix elements are given by

Hhh =
~2

2m0

[(γ1 + γ2)(k2
x + k2

y) + (γ1 − 2γ2)k2
z ], (6.2)

Hlh =
~2

2m0

[(γ1 − γ2)(k2
x + k2

y) + (γ1 + 2γ2)k2
z ], (6.3)

Hso =
~2

2m0

[γ′1(k2
x + k2

y + k2
z)] + ∆0, (6.4)

88



b =
−
√

3i~2

m0

γ3(kx − iky)kz, (6.5)

b′ =
−
√

3i~2

m0

γ′3(kx − iky)kz, (6.6)

c =

√
3~2

2m0

[γ2(k2
x − k2

y)− 2iγ3kxky], (6.7)

c′ =

√
3~2

2m0

[γ′2(k2
x − k2

y)− 2iγ′3kxky], (6.8)

and

q =

√
2~2

2m0

[γ′2(k2
x + k2

y)− 2γ′2k
2
z ]. (6.9)

The eigenvalues of this 6×6 generalized LK Hamiltonian are functions of the wave-vector
k and represent the three two-fold spin-degenerate bands: the heavy-hole (HH), light-hole
(LH), and spin-orbit split-off (SO) bands. To determine the Luttinger parameters γ1, γ2, γ3,
γ′1, γ′2, and γ′3, we fit the matrix eigenvalues to the calculated quasiparticle band energies
near the Γ point. The effective masses of the three bands are then related to the Luttinger
parameters along the Γ−X , Γ−K, and Γ− L directions by

mΓ−X
HH =

1

γ1 − 2γ2

, (6.10)

mΓ−X
LH =

1

γ1 + 2γ2

, (6.11)

mΓ−X
SO =

1

γ′1
, (6.12)

mΓ−K
HH =

1

γ1 −
√
γ2

2 + 3γ2
3

, (6.13)

mΓ−K
LH =

1

γ1 +
√
γ2

2 + 3γ2
3

, (6.14)

mΓ−K
SO =

1

γ′1
, (6.15)

mΓ−L
HH =

1

γ1 − 2γ3

, (6.16)

mΓ−L
LH =

1

γ1 + 2γ3

, (6.17)

(6.18)

and

mΓ−L
SO =

1

γ′1
. (6.19)

89



For Mg2Si and Mg2Ge, we apply the constraint that γ1 = γ′1, γ2 = γ′2, and γ3 = γ′3 so that
the Hamiltonian reduces to the original LK Hamiltonian without affecting the accuracy of
the fit. The newly introduced parameters γ′1, γ′2, and γ′3 are, however, found to be necessary
for Mg2Sn to obtain reasonably good agreement between the band energies calculated from
first principles and with the k ·p method. Figures 6.2, 6.3, and 6.4 show the band structures
of Mg2Si, Mg2Ge, and Mg2Sn in the vicinity of the Γ point as determined by the 6×6 k · p
Hamiltonian and compared to the original GW band structure. The Luttinger parameters
and the effective-mass values are listed in Table 6.8. The heavy-hole and light-hole bands
are found to be anisotropic, and the effective mass of the heavy-hole band is largest along
the Γ-L direction. On the other hand, the effective mass of split-off band does not show
any dependence on the direction of wave vectors.

Since the fundamental band gaps are indirect in Mg2Si, Mg2Ge, and Mg2Sn, we ig-
nore the interaction between the valence and conduction bands and analyze the two lowest
conduction bands separately from the valence bands using a 2×2 k · p Hamiltonian,(

H1 q

q H2

)
, (6.20)

where the Hamiltonian matrix elements are given by

H1 =
~2

2m0

[γ4k
2
x + γ5(k2

y + k2
z)], (6.21)

H2 =
~2

2m0

[γ6k
2
x + γ7(k2

y + k2
z)] + ∆12, (6.22)

q =
~2

2m0

γ8kykz, (6.23)

mX−Γ
CBM1 =

1

γ4

,mX−Γ
CBM2 =

1

γ6

, (6.24)

mX−U
CBM1 =

1

γ5

,mX−U
CBM2 =

1

γ7

, (6.25)

and
mX−W
CBM1 =

1

γ5

,mX−W
CBM2 =

1

γ7

. (6.26)

Figures 6.5, 6.6, and 6.7 show the conduction band structures of Mg2Si, Mg2Ge, and
Mg2Sn in the vicinity of the X point as determined by the 2×2 k · p Hamiltonian. The k · p
parameters and the effective-mass values are listed in Table 6.9. The longitudinal effective
masses were determined along the X-Γ direction, and the transverse effective masses were
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Figure 6.8: Experimental[7] (points) and calculated (lines) values for the temperature and
carrier-density dependence of the Seebeck coefficient of n-type Mg2Si. The calculations
are based on (a) PBE and (b) GW band structures and include spin-orbit coupling effects.
The results obtained with the GW band structure are in better agreement with experiment
than those from PBE data.

determined to be the same along the X-U and X-W directions. The longitudinal effective
mass was found to be larger in the second lowest conduction band than in the lowest one
for Mg2Si and Mg2Ge, but larger in the lowest conduction band than in the second lowest
one for Mg2Sn, which is consistent with the energy reordering of the X1 and X3 states we
observed in the band structure (FIG. 6.1).

We also calculated the density-of-states (DOS) effective mass, m∗DOS, which is indepen-
dent of the direction of wave-vectors, by fitting the DOS near the band extrema with the
hyperbolic-band equation,

DOS(E) =
Vcell

2π2
(2m∗DOS)

3
2E

1
2 (1 + αE)

1
2 , (6.27)

where Vcell is the volume of the unit cell and α is a parameter with units of inverse energy
to enable the fitting of the bands with a hyperbola. We derived the DOS effective masses
by fitting the hyperbolic equation to the first hyperbolic region near the valence-band max-
imum and conduction-band minimum. The fitted DOS effective masses m∗DOS and the
hyperbola parameters α are listed in Table 6.8 and 6.9. The curvature of the DOS curves
changes near the top of the split-off band (FIG. 6.2, 6.3, 6.4) and also near the bottom of
the second lowest conduction band (FIG. 6.5, 6.6, 6.7).

6.2.3 Seebeck coefficients

We also determined the Seebeck coefficients of Mg2X in the constant-relaxation-time ap-
proximation to validate the accuracy of our calculated relativistic quasiparticle band struc-
tures in predicting transport properties. Our calculated values for the Seebeck coefficient
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Figure 6.9: Experimental[8, 9] (points) and calculated (lines) values for the Seebeck coef-
ficient of n-type (a) Mg2Ge and (b) Mg2Sn as a function of temperature and carrier density.
The calculated results are based on GW band structures with spin-orbit effect included and
are in good agreement with experimental values.

of Mg2Si as a function of carrier concentration and temperature were calculated based on
PBE and GW band structures and are shown in Fig. 6.8. The calculated data are also com-
pared to the experimental values reported by Tani et al. for Bi-doped Mg2Si.[7] The See-
beck values calculated from PBE show large deviations and wrong trends with temperature
compared to experiment. Since PBE underestimates the band gap of Mg2Si by more than
500 meV, it predicts that electrons get thermally excitated across the gap and induce bipo-
lar transport (which greatly reduces the Seebeck coefficient) at much lower temperatures
than experiment [Fig. 6.8(a)]. In contrast, the GW data result in much better agreement
with experiment for all measured temperatures and carrier concentrations [Fig. 6.8(b)]. In
the 300-500 K temperature range, both the experimental and the GW Seebeck coefficients
increase in absolute magnitude with temperature for all experimental carrier concentrations
and are in good agreement with the experimental Seebeck data. For a free-electorn con-
centration of 4.3×1017 cm−3 bipolar transport sets in at approximately 600 K both for the
GW and the experimental results. For higher-doped samples the onset of bipolar transport
shifts to higher temperatures, since a higher concentration of thermally excited carriers is
needed to compete with the doping density. The GW theoretical results slightly overesti-
mate the magnitude of the Seebeck coefficient compared the experimental data at higher
temperatures since the theory does not include the decrease of the band gap with increasing
temperature and the corresponding stronger contribution of bipolar transport. However,
the overall much better qualitative and quantitative agreement of the GW results with ex-
periment compared to PBE demonstrates the important role of quasiparticle corrections to
the band gap for the accurate determination of thermoelectric transport coefficients at high
temperatures.
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We also calculated the Seebeck coefficients for Mg2Ge and Mg2Sn using the same com-
putational approach and compared them to available experimental data (Fig. 6.9).[8, 9] In
spite of the overall good agreement with experiment for these two materials, two small
discrepancies are observed between the theortical and experimental Seebeck coefficients of
Mg2Sn [Fig. 6.9(b)]. First, the calculated Seebeck coefficients show that bipolar transport
sets in at a slightly lower temperature than experiment for the lowest reported carrier con-
centrations. Moreover, the theoretical values for the highest carrier concentration keep in-
creasing with temperature at high temperatures while the experimental values reach a peak
and subsequently decrease with increasing temperature. We also attribute these discrepan-
cies to the temperature dependence of the band gap of Mg2Sn, which we did not take into
account in the calculation. The gap is expected to decrease by 0.10∼0.19 eV from 100 K to
700 K as estimated from previously reported β coefficients of -1.7∼-3.2 eV/K.[161, 155]
Since the value of the gap of Mg2Sn is small, even the slight overestimation of its value
in our calculations strongly affects the thermally excited carrier concentration and the tem-
perature onset of bipolar transport. Therefore, higher-order theoretical developments that
properly account for the temperature dependence of quasi-particle band structures[162] are
needed to further improve the predictive accuracy of the evaluated thermoelectric coeffi-
cients at high temperatures.

In addition, we calculated the Seebeck coefficients of both p-type and n-type Mg2X

(X = Si, Ge and Sn) for a range of carrier concentrations and temperatures from 300 K to
900 K. The calculated values for Mg2Si [Fig. 6.10(a) and 6.10(b)] are similar to those of
Mg2Ge [Fig. 6.10(c) and 6.10(d)] at low temperatures as the two compounds have similar
band structures. Since the calculated band gap of Mg2Ge (0.555 eV) is smaller than Mg2Si
(0.728 eV), bipolar transport sets in at lower temperatures in Mg2Ge. In Mg2Sn, however,
the Seebeck coefficients are greatly reduced by the strong bipolar transport because of its
much smaller band gap (0.142 eV). Another observation is that all three materials behave as
n-type semiconductors with negative values for the Seebeck coefficient in the limit of high
temperature (900 K) and low carrier concentration (1017cm−3). Under these condictions,
thermoelectric transport is bipolar and dominated by the intrinsic thermally excited elec-
trons and holes, which occur at approximately equal concentrations. For bipolar transport,
the Seebeck coefficient is given by the weighted average of the electron (Sn) and hole (Sp)
Seebeck coefficients S = (σnSn+σpSp)/(σn+σp), weighted by the corresponding electri-
cal conductivities for electrons (σn) and holes (σp).[163] Our data show that the values for
the electron and hole Seebeck coefficients are comparable in all three materials, therefore
the dominant character under extreme bipolar transport is dominated by the carriers with
the highest mobility. Since electrons have a lower overall effective mass that holes in all
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Mg2Ge, and Mg2Sn, respectively.
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three compounds, the limiting value of the Seebeck coefficient at high temperature and low
doping is dominated by the electrons and has a negative sign. The limiting value of the
Seebeck coefficient is found to be largest in Mg2Si (∼100 µV/K) and smallest in Mg2Sn
(∼50 µV/K), due to the stronger asymmetry between electron and hole effective mass in
Mg2Si.

6.3 Conclusions

In conclusion, we calculated the relativistic quasiparticle band structures of Mg2Si, Mg2Ge
and Mg2Sn using first-principles calculations based on density functional and many-body
perturbation theory. We examined in detail the effects of core electrons and spin-orbit in-
teraction on the band gap. The inclusion of semicore states in pseudopotentials of Mg, Ge,
and Sn is found to be important for the accurate determination of the band gap of Mg2Ge
and Mg2Sn. The band gaps are most accurately determined with spin-orbit coupling ef-
fect taken into account and including only the valence electrons in the construction of the
generalized plasmon-pole model. Our calculated Seebeck coefficients based on relativistic
quasiparticle band structures are in much better agreement with experiment than the results
obtaiend from PBE. Our results highlight the important role of quasiparticle corrections to
band structures in order to predict Seebeck coefficients at high temperatures and the onset
of bipolar-transport effects. We also derived effective Hamiltonians that consistently pa-
rameterize the relativistic quasiparticle band structures of all three compounds. Our model
Hamiltonians can therefore be applied to accurately simulate the electronic transport prop-
erties of Mg2X compounds, alloys, and devices, including the regime of high temperatures
needed for thermoelectric waste-heat recovery.
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CHAPTER 7

Summary and Outlook

In conclusion, we applied predictive first-principles computational methods to investigate
the properties of novel photovoltaic and thermoelectric materials for energy applications.
We investigated the electronic and optical properties of nanoporous Si and few-layer SnSe
and GeSe, free-carrier absorption in n-type Si, and thermoelectric transport properteis of
p-type SnSe and Mg2Si, Mg2Ge, and Mg2Sn. A summary of the important findings in these
studies is as follows.

We used first-principles methods to calculate the electronic and optical properties of
nanoporous Si with pore spacing and radius on the order of a few nanometers. We found
that the inclusion of nanoscale pores increases the electronic band gaps due to quantum
confinement and results in quasi-direct gaps for most examined structures. The visible-
range absorption coefficient is greatly improved in nanoporous Si with small pore spacings
and appropriately chosen pore sizes. Though quantum confinement reduces the wavelength
range for the absorption of solar photons, the enhanced absorption coefficient as well as the
reduced reflectivity and increased band gap improve the photovoltaic efficiency compared
to bulk Si by a factor of 2.7 and yields a theoretical maximum conversion efficiency of
6.3% for thin-film (135 nm thick) solar cells. Therefore, the enhanced electronic and op-
tical properties of nanoporous Si make it a promising material for thin-film photovoltaic
applications. This work focuses on the Si nanostructures with cylindrical pores, and the
same method could be applied to those with three-dimensional features as well, which
should have stronger quantum confinement effect and could be a promising area to look
into in future.

We determined the quasiparticle band structures and optical properties of single-layer,
double-layer, and bulk SnSe and GeSe using first-principles calculations. Single-layer and
double-layer GeSe have a direct band gap, while the gaps of the SnSe monolayer and bi-
layer are indirect. Spin-orbit coupling and lack of inversion symmetry in the monolayers re-
sults in directionally dependent splitting of the energy bands and anisotropic spin-transport
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properties. The exciton binding energy is approximately 300 meV in both monolayer ma-
terials, which results in thermally stable excitons at room temperature. We also uncovered
the strong absorbance of few-layer SnSe and GeSe in the visible range that reaches values
as large as 47%, which suggests potential applications in efficient, ultrathin, and flexible
photovoltaic devices with upper bounds to the conversion efficiency that rivals organic and
dye-sensitized devices. We expect that even larger exciton binding energy and tunable
band gaps could be achieved in SnSe/GeSe heterostructures and these new systems will be
studied in the next step.

We discussed plasmon dissipative process, direct transition, and phonon-, charged-
impurity-, and plasmon-assisted transitions in n-type Si. Each process creates different
features at different wavelengths, which highlights the importance of first-principles calcu-
lations for the accurate determination of the free-carrier absorption coefficient. The calcu-
lated results are in good agreement with experiment and validates the successful identifica-
tion of the dominant free-carrier absorption processes. Free-carrier absorption is found to
be comparable or even larger than the cross-gap absorption at photon energies close to the
band gap for heavily dopes Si, and is thus a nonnegligible source of energy loss in Si solar
cells.

We investigated the band structure and electronic transport properties of both the low-
temperature Pnma and the high-temperature Cmcm phase of SnSe. We calculated the band
gaps and carrier effective masses and we found that both phases exhibit multiple local band
extrema near the band edges that need to be considered when evaluating the thermoelec-
tric properties for this material. We determined the electrical conductivity to be highest
along the b axis and smallest along the a axis for various carrier concentrations. The other
transport properties also show a significant degree of anisotropy between the perpendicular
direction (a axis) and the two in-plane directions (b and c axes). Bipolar effects strongly
affect electronic transport at high temperatures and low carrier concentrations, and cause a
sharp decrease and sign reversal of the Seebeck coefficients. The difference between our
calculated transport properties and the experimental results in the range of low carrier con-
centration and high temperature may be attributed to the possible change of the nature or
concentration of defects and dopant impurities in the material due to the increasing temper-
ature and the phase transition. Our calculated transport coefficients shed light into recent
experimental measurements that reported a remarkably high figure-of-merit value (2.6) for
Cmcm-SnSe. Our results predict that SnSe would show optimal thermoelectric perfor-
mance at high temperature when doped in the 1019–1020 cm−3 range. Our future work will
focus on calculating the electronic structure of SnSe at high temperature, including lattice
expansion and crystal disorder due to vibrations.
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We calculated the relativistic quasiparticle band structures of Mg2Si, Mg2Ge and Mg2Sn
using first-principles calculations based on density functional and many-body perturbation
theory. We examined in detail the effects of core electrons and spin-orbit interaction on
the band gap. The inclusion of semicore states in pseudopotentials of Mg, Ge, and Sn
is found to be important for the accurate determination of the band gap of Mg2Ge and
Mg2Sn. The band gaps are most accurately determined with spin-orbit coupling effect
taken into account and including only the valence electrons in the construction of the gen-
eralized plasmon-pole model. Our calculated Seebeck coefficients based on relativistic
quasiparticle band structures are in much better agreement with experiment than the results
obtaiend from PBE. Our results highlight the important role of quasiparticle corrections to
band structures in order to predict Seebeck coefficients at high temperatures and the onset
of bipolar-transport effects. We also derived effective Hamiltonians that consistently pa-
rameterize the relativistic quasiparticle band structures of all three compounds. Our model
Hamiltonians can therefore be applied to accurately simulate the electronic transport prop-
erties of Mg2X compounds, alloys, and devices, including the regime of high temperatures
needed for thermoelectric waste-heat recovery.
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