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Abstract

In this dissertation, we will cover aspects of the phenomenology of supersymmet-

ric models, with an emphasis on models with heavier scalar partners of Standard

Model fermions. We first introduce the Standard Model, providing explanations for

why it should be extended by Supersymmetry. We also provide an introduction

to general aspects of supersymmetric models, making use not only of bottom-up

phenomenological constraints, but also top-down theoretical insight from String/M-

Theory compactifications. In the body of this dissertation, we study in detail the

phenomenology of supersymmetric models with heavier scalars at current and future

colliders, as well as in low-energy flavor experiments in both the absence and the

presence of CP violation. Finally, we discuss general implications of String theory

for dark matter in supersymmetric models, as well as the dynamics of Grand Unified

Theories in a broad class of models.
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Chapter 1

Introduction

This dissertation covers various aspects of the phenomenology associated with low-energy

Supersymmetry (SUSY). In particular, we will focus on the phenomenology of supersym-

metric models that have heavier scalars, meaning in the few TeV to 10’s of TeV range.

These models are of interest because they have attractive features like alleviating flavour

issues in SUSY, while retaining some of the core motivations for SUSY, such as having a

small Higgs Boson mass. In this dissertation we will discuss such models in different con-

texts. One motivation for such models is from M-Theory (based on pioneering work in

[10, 11, 12, 13, 14, 15, 16, 17, 18]). We present the collider [19] and flavour [20] phenomenol-

ogy of M-Theory derived models in Chapter 2 and Chapter 5 respectively. Independently

of M-Theory, we will also consider the phenomenology of simplified models which can be

of general interest. In Chapter 3 we will see how these simplified models can be discovered

at colliders [21], and in Chapter 4 we will see how CP-conserving flavour observables can

constrain or discover their indirect signatures [22]. These first four chapters cover specific

phenomenological aspects of supersymmetric models with heavier scalars. In contrast, in

Chapters 6 and 7, we will cover general features and concepts which can be applied to all

types of supersymmetric models. In particular, we will discuss in Chapter 6, how if Super-

symmetry is the low-energy realisation of a compactified String/M-Theory, this can have a

profound impact on dark matter in the theory [23]. Finally in Chapter 7, we will discuss

generalities of grand unified theories, and apply them to various examples of theories [24].

In this introduction, we will go over some of the aspects of the Standard Model, including

the Higgs sector, and therefore motivate why SUSY is an attractive framework for physics

beyond the Standard Model (BSM). We will then provide a lightning introduction to SUSY,

and then explain why models with heavier scalars are a well-motivated region of the theory-
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space. Finally, at the end of the introduction is an outline of the dissertation, where we

explain briefly what each chapter covers, and explains some of the results.

1.1 An overview of the Standard Model

The Standard Model of particle physics has been extremely successful for the last 40 years

in describing nearly all phenomena observed in low- and high-energy experiments. The

discovery of the Higgs Boson in 2012 [25, 26] marked the completion of the puzzle of the

Glashow-Weinberg-Salam model (Electroweak part of the Standard Model), and thus the

completion of the Standard Model. However, as will be explained in more detail subsequently,

it has raised many questions which can only be answered with new physics. Briefly, we will

go over the basic mathematical formulation of the Standard Model. We will then discuss the

reasons for needing physics beyond the Standard Model.

The theoretical basis of the Standard Model is that it has an SU(3)c × SU(2)w × U(1)Y

group structure, with the field content and charges under each group written out in table

1.1 below.

The SU(2)w×U(1)Y part of the theory describes weak and electromagnetic interactions.

It is a chiral theory, meaning that the left-handed and right-handed fields do not transform

in the same way under the symmetries of the theory. In this case, the left-handed fields

transform as doublets of SU(2)w, whereas the right-handed fields transform as singlets. The

symmetry group undergoes spontaneous symmetry breaking via the Higgs mechanism, as

will be described in more detail later, to leave an unbroken U(1)em, the electromagnetic

force. It therefore has 3 massive bosons (the W’s and the Z), and one massless boson (the

photon).

Meanwhile the SU(3)c part of the theory describes the strong interactions. It is an

unbroken symmetry, with exactly massless bosons, the gluons. In the same way that the

electroweak forces do not distinguish between colours, the strong force does not distinguish

between flavours, coupling equally strongly to all species of quarks.

Mathematical formulation of the Standard Model

The Lagrangian of the theory can be written as

LSM = Lgauge + Lmatter + LY ukawa + LHiggs , (1.1)
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Field SU(3)c SU(2)w U(1)Y Spin

H =

(
H+

H0

)
1 2 1

2
0

W 1,2,3
µ 1 3 0 1

Bµ 1 1 0 1

gaµ 8 1 0 1

Qi
L =

(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

3 2 1
6

1/2

uiR = uR, cR, tR 3 1 2
3

1/2

diR = dR, sR, bR 3 1 −1
3

1/2

LiL =

(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

1 2 −1
2

1/2

eiR = eR, µR, τR 1 1 −1 1/2

Table 1.1: Field content and charges under the gauge groups of the Standard Model.

where the first term is the gauge sector of the theory, the second is the fermionic sector, the

third holds the Yukawa interactions between the fermions and the Higgs field, and the last

contains the Higgs sector. The gauge Lagrangian consists of:

Lgauge =
∑
G

−1

4
F a
µνF

µν,a , (1.2)

where the sum is done over each of the groups; Greek indices denote Lorentz indices; and the

latin index corresponds to the group index. Einstein summation convention for the indices
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is assumed here, and in the rest of the text. The field strength tensor Fµν is defined as

F a
µν =

∂µBν − ∂νBµ Abelian,

∂µW
a
ν − ∂νW a

µ + gfabcW b
µW

c
ν Non-Abelian,

(1.3)

for Abelian and Non-Abelian gauge groups, where g and fabc are the gauge coupling and the

structure constant of the group, respectively.

The matter content of the Lagrangian contains the fermionic fields we wrote in table 1.1

above, which by virtue of their spin, obey the Dirac equation, giving rise to the following

structure:

Lmatter =
∑
i,j

f̄ iLi /Df
i
L + f̄ jRi /Df

j
R , (1.4)

where we have separated out the fermions according to their chirality, with sums over the i

left-handed and j right-handed fields. Here, D is the covariant derivative

Dµ = ∂µ −
∑
G

igtaAaµ , (1.5)

which is contracted with a gamma matrix in Feynman slash notation: /D = γµDµ. The ta

are the generators of the corresponding group G. The above part of the Lagrangian therefore

gives rise to all the fermionic interactions with the spin-1 bosons of the Standard Model.

The Yukawa sector of the Standard Model is required to give masses to the fermions, and

has the following form:

LY ukawa = −yiju Q̄i
LH̃u

j
R − yijd Q̄i

LHd
j
R − yijl L̄iLHejR , (1.6)

where the yij are matrices in flavour-space, and H̃ = −iσ2H, where σ2 is one of the Pauli

matrices. When the Higgs boson acquires a vacuum expectation value, v, the Yukawa La-

grangian will give rise to mass terms for each of the fermions, given by yv/
√

2. These terms

also give rise to the Higgs-fermion interactions of the Standard model.

The Higgs sector

The Higgs sector of the Standard Model deserves some more care, as it will lead into one

of the primary motivations for considering Supersymmetry as an attractive theory of new

physics.
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The Higgs Lagrangian is

LHiggs = |DµH|2 − µ2|H|2 − λ|H|4 , (1.7)

which is manifestly symmetric under SU(2)w × U(1)Y by construction. The potential is

minimised for 〈H〉 = 0 when µ2 > 0 and λ > 0. However, when µ2 < 0, the potential

develops a new minimum at

〈H〉 =
1√
2

(
0

v

)
, v =

√
−µ2

λ
. (1.8)

This new minimum does not respect the SU(2)w × U(1)Y symmetry, but rather only

has one U(1) symmetry left over, which we identify as that of electromagnetism, U(1)em.

Since there were initially 3 + 1 generators, but the residual symmetry only has 1, there are

3 broken generators, corresponding to massless Goldstone bosons. These Goldstone bosons

do not remain massless, however, as they are “eaten” by three of the gauge bosons of the

theory, giving them a mass. This can be seen by writing out the kinetic part of LHiggs:

|DµH|2 = |
(
∂µI2 − igY Y BµI2 − ig2t

aW a
µ

)
H|2

=
1

2

∣∣∣∣∣
((

∂µ 0

0 ∂µ

)
− igY

2

(
Bµ 0

0 Bµ

)
− ig2

2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

))(
0

h+ v

)∣∣∣∣∣
2

=
1

2
(∂µh)2 +

g2
2

8
(h+ v)2

(
|W 1

µ |2 + |W 2
µ |2
)

+
1

8
(h+ v)2

(
| − gYBµ + g2W

3
µ |2
)
,

where we denote the U(1)Y gauge coupling as gY , the SU(2)w gauge coupling as g2, Y is the

hypercharge of the Higgs boson (in this case 1/2), and h is the physical Higgs boson which

remains out of the four initial degrees of freedom of the complex scalar doublet.

We see that there are two mass terms, one for the combination |W 1
µ |2 + |W 2

µ |2, and one

for the combination | − igYBµ + ig2W
3
µ |2. The first we identify as being W+

µ W
µ,−, where

W+
µ =

1√
2
W 1
µ − iW 2

µ , (1.9)

with mass

m2
W =

g2
2

4
v2 , (1.10)
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and the second we identify as the Z boson mass term, with

Zµ =
g2W

3
µ − gYBµ√
g2
Y + g2

2

, (1.11)

with mass

m2
Z =

g2
Y + g2

2

4
v2 . (1.12)

The photon, which is the orthogonal combination of Bµ and W 3
µ to that of the Z boson,

Aµ =
g2W

3
µ + gYBµ√
g2
Y + g2

2

, (1.13)

remains massless, in concordance with expectations. The angle which diagonalises W 3
µ and

Bµ is called the electroweak angle, and is defined as

sin θW =
gY√
g2
Y + g2

2

, (1.14)

such that there is a simple tree-level relation between the masses of the W and Z bosons

1− m2
W

m2
Z

= sin2 θ , (1.15)

which is a result of a custodial symmetry. This custodial symmetry is broken at the one-loop

level, so that the corrections to the above relation are loop-suppressed. For more information

on this custodial symmetry, see for example [27].

We now turn our attention to the physical Higgs Boson h. We see from expanding the

potential

V (H) =
µ2

2
(v + h)2 +

λ

4
(v + h)4

= −1

2
λv2(v + h)2 +

λ

4
(v + h)4

= λv2h2 + λvh3 +
λ

4
h4 , (1.16)

where in going from the first to the second line, we have replaced −µ2 = λv2. We see that

the physical Higgs boson gets a mass,

m2
h = 2λv2 = −2µ2 . (1.17)
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This last equation contains one of the strongest motivations for physics beyond the Stan-

dard Model. In principle, the bare mass µ that we wrote at the start could have taken

on any value, since there was no mechanism or symmetry to make it small. However, we

have observed a Higgs Boson with a mass of 125 GeV [25, 26, 28], which is much lighter

than the cut-off of the theory, which, naively, should be the Planck scale Mpl = 1019 GeV.

This is troubling, because the Higgs Boson mass receives radiative corrections, which are

quadratically divergent:

∆m2
h ' −

3y2
t

8π2
Λ2 , (1.18)

where yt is the Top quark Yukawa, which is nearly 1, therefore giving the dominant contri-

bution to the divergence, and Λ is the ultraviolet cut-off of the theory. Therefore, naively,

the Higgs Boson mass should be of order Λ ∼ Mpl, and not at the electroweak scale. The

puzzle of why the Higgs is so light is known as the “hierarchy problem”, and is one of the

primary motivations for Supersymmetry. How and why Supersymmetry helps alleviate the

hierarchy problem will be explained in the next section.

1.2 Introduction to Supersymmetry

The dangerous radiative corrections to the Higgs Boson mass that we saw in the preceding

section can be mitigated in a number of ways. One might think that by postulating new

physics at some scale Λ to cancel off the divergence in Eq. 1.18, the problem would be

solved. However, this new physics must have a very specific structure in order to properly

cancel the divergence. For example, introducing some scalar S that couples quadratically to

the Higgs gives rise to a correction

∆m2
h '

κ

16π2
(Λ2 − 2m2

S log Λ/mS) , (1.19)

so for the contributions from both the scalar (above) and the fermion (Eq. (1.18)) to cancel

would require exactly tuning the coupling of the scalar to the Higgs, κ. Such a tuning is

difficult to justify from a theoretical perspective. However, we point out the useful fact that

scalars give contributions to the Higgs mass that carry the opposite sign to that of the top

quark, which is a fermion.

Ideally, there would be a symmetry argument that could be used to explain why κ ' 6y2
t

in order to exactly cancel the large quadratically divergent piece of Eq. (1.18), and this is

precisely where Supersymmetry provides an elegant solution.
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The Supersymmetry Algebra

Let us now take a step back and consider the symmetries of spacetime. We know from the

Coleman-Mandula theorem [29], which was subsequently extended [30], that for an interact-

ing quantum field theory, such as the Standard Model, the number of ways of extending the

Poincaré symmetry of spacetime is extremely restricted. However, one of the only allowed

extensions is Supersymmetry. The generators of Supersymmetry are spinors, and therefore

obey anticommutation relations.

Therefore, in addition the usual Poincaré generators (boosts, rotations, translations), one

includes complex spinor generators Q and Q†, which obey the following anticommutation

relations:

{Qα, Qβ} = {Q†α̇, Q†β̇} = 0, {Qα, Q
†
α̇} = 2σµαα̇Pµ , (1.20)

where Pµ is a translation generator (momentum), and σµαα̇ = (1, σi), where σi are the usual

Pauli matrices. The Supersymmetry generators commute with translations

[Pµ, Qα] = [Pµ, Q
†
α̇] = 0 . (1.21)

The effect of these generators on various states is to turn a fermion into a boson, and

vice versa.

Q|fermion〉 → |boson〉, Q|boson〉 → |fermion〉, (1.22)

The irreducible representations of the Supersymmetry algebra are called supermultiplets,

which contain both bosons and fermions. Bosons and fermions that reside in the same

supermultiplet are referred to as “superpartners”. For N = 1 Supersymmetry, defined to

be where there is only one Q and one Q†, we can therefore have four different types of

supermultiplets (assuming spin ≤ 2):

• Chiral supermultiplet: (spin-0 scalar, spin-1/2 fermion),

• Vector supermultiplet: (spin-1/2 fermion, spin-1 boson),

• Rarita-Schwinger supermultiplet: (spin-1 boson, spin-3/2 fermion),

• Graviton supermultiplet: (spin-3/2 fermion, spin-2 boson),

which we can then use to construct our supersymmetric theory. The third type of supermul-

tiplet we have called “Rarita-Schwinger” because it contains a spin-3/2 fermion which obeys
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the Rarita-Schwinger equation. However, it is not to be confused with the “gravitino” which

will be referred to hereafter, which is the spin-3/2 fermion in the Graviton supermultiplet.

In the case when the Supersymmetry is unbroken, because P µPµ commutes with both

Q and Q†, the masses of all particles in a supermultiplet must be the same. This would

mean, for example, that if we had an exactly supersymmetric Standard Model, we would

expect to see superpartners of Standard Model particles with the exact same mass. Since

phenomenologically, this is clearly not the case, it means that Supersymmetry must broken

in the vacuum we exist in. We will return to this point later, when discussing Supersymmetry

breaking mechanisms.

The Minimal Supersymmetric Extension to the Standard Model (MSSM)

Having briefly explained what Supersymmetry is, and how the various supermultiplets can

be constructed, let us now consider what the minimal contents of a supersymmetric Standard

Model would look like.

We saw the field content of the Standard Model in Table 1.1, so the obvious first step is to

promote all those fields to supermultiplets of some type. For each of the spin-1 bosons of the

Standard Model, looking at our list above, we see that there must now be a corresponding

vector supermultiplet. Meanwhile for each of the chiral fermion fields, there must be a chiral

supermultiplet.

For each 2-component Weyl fermion, there are 2 fermionic degrees of freedom, nF . Since

Supersymmetry requires that nF = nB in each supermultiplet, where nB is the number of

bosonic degrees of freedom, for a Weyl fermion we must introduce a complex scalar with

nB = 2. The nomenclature for the superpartner of a Standard Model fermion is to add s-

(for scalar) in front, so an electron’s superpartner is a selectron, and so on.

For each massless (before symmetry breaking) gauge boson, nB = 2, therefore the super-

partner must be a Weyl fermion with nF = 2. Since the gauge bosons reside in the adjoint

representation of the gauge group, their superpartners must also reside in the adjoint, and

are therefore self-conjugate. The nomenclature for the superpartner of a Standard Model

gauge boson is to add -ino at the end, so a gluon’s superpartner is a gluino, and so on.

The Higgs sector of the theory is somewhat more complicated, as promoting the single

Standard Model Higgs into a chiral supermultiplet introduces a set of problems. A Higgs

supermultiplet with Hypercharge Y = 1/2 will couple to up-type quarks only, while a Higgs

supermultiplet with Hypercharge Y = −1/2 will couple to down-type quarks and leptons

only, due to the requirement that the Yukawa terms in a supersymmetric theory be holomor-
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phic. Additionally, including only one of the two supermultiplets would lead to anomalies.

A requirement of a consistent theory is that gauge anomalies be cancelled (see e.g. [31]),

e.g. Tr[(ta)2Y ] = Tr[Y 3] = 0, and the inclusion of only one Higgs supermultiplet with Hy-

percharge Y = ±1/2 would result in the traces not evaluating to zero. Therefore, for the

minimal supersymmetric version of the Standard Model to be consistent, we must intro-

duce two Higgs supermultiplets, Hu and Hd, with Hypercharge Y = 1/2 and Y = −1/2

respectively. The overall field content is shown in Table 1.2.

Supermultiplet SU(3)c SU(2)w U(1)Y Field & Spin

Hu =
(
H+
u , H0

u

)
1 2 1

2
(h+

u , h
0
u) : 0, (h̃+

u , h̃
0
u) : 1/2

Hd =
(
H0
d , H−d

)
1 2 −1

2
(h0

d, h
−
d ) : 0, (h̃0

d, h̃
−
d ) : 1/2

W 1,2,3 1 3 0 W 1,2,3
µ : 1, W̃ 1,2,3 : 1/2

B 1 1 0 Bµ : 1, B̃ : 1/2

ga 8 1 0 gaµ : 1, g̃a : 1/2

Qi 3 2 1
6

(
u, d
)i
L

: 1/2,
(
ũ, d̃
)i
L

: 0

U c
i 3̄ 1 −2

3
u†,iR : 1/2, ũ∗,iR : 0

Dc
i 3̄ 1 1

3
d†,iR : 1/2, d̃∗,iR : 0

Li 1 2 −1
2

(
ν, e
)i
L

: 1/2,
(
ν̃, ẽ
)i
L

: 0

Ec
i 1 1 1 e†,iR : 1/2, ẽ∗,iR : 0

Table 1.2: Supermultiplets and charges under the gauge groups of the Minimal Supersym-
metric Standard Model.

With this supermultiplet content, we can then construct “superfields”, in order to even-

tually be able to construct a Lagrangian for the Minimal Supersymmetric Standard Model

(for more, see for example [32] and [33]). In order to do this, we use the following coordinate
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system:

xµ, θ
α, θ†α̇ , (1.23)

where θα, θ†α̇ are complex anti-commuting Weyl spinors with mass dimension −1/2. This also

requires the introduction of derivatives with respect to these anti-commuting coordinates,

namely Chiral covariant derivatives:

Dα =
∂

∂θα
− i(σµθ†)α∂µ, Dα = − ∂

∂θα
+ i(θ†σ̄µ)α∂µ, (1.24)

D†α̇ =
∂

∂θ†α̇
− i(σ̄µθ)α̇∂µ, D†α̇ = − ∂

∂θ†α̇
+ i(θσµ)α̇∂µ , (1.25)

In this coordinate system, a general superfield can then be written as

F(x, θ, θ†) = φ+ θψ + θ†χ† + θθF + θ†θ†G+ θ†σ̄µθVµ + θ†θ†θξ + θθθ†η† + θθθ†θ†D , (1.26)

which has 8 bosonic degrees of freedom, φ, F,G,D and four in Vµ, and 8 fermionic degrees

of freedom in the four 2-component spinors ψ, χ, ξ, η.

A chiral superfield Φ (like the ones we will need for the MSSM), is then obtained by

Φ = D†D†F , (1.27)

Φ = φ+ iθ†σ̄µθ∂µφ+
1

4
θθθ†θ†∂2φ+

√
2θψ′ − i√

2
θθθ†σ̄µ∂µψ

′ + θθF , (1.28)

so that in terms of the components of the general superfield above, ψ =
√

2ψ′, χ† = 0, G =

0, Vµ = i∂µφ, ξ = 0, η = − i√
2
σ̄µ∂µψ

′. We notice that φ is the scalar partner of ψ′, and

F is an auxiliary field.

A vector superfield V , like the ones we will need for the supermultiplets containing the

vector bosons of the MSSM, is obtained by requiring that V be real. Thus ψ† = χ†, G =

F ∗, ξ† = η†. In so-called Wess-Zumino gauge, we can eliminate the fields φ, ψ, F , this can

then be written as

V = θ†σ̄µθVµ + θ†θ†θη + θθθ†η† +
1

2
θθθ†θ†D , (1.29)

where we identify Vµ as a gauge boson, with η being the gaugino superpartner, and D being
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an auxiliary field. The field strength chiral superfield is then defined as:

Wα =

−1
4
D†D†DαV, Abelian,

−1
4
D†D†(exp(−V )Dα expV ), non-Abelian.

(1.30)

Given these superfields, one can construct what is known as a “superpotential” W , which

is a holomorphic function of chiral superfields, is invariant under the gauge symmetries of

the theory, and has mass dimension 3. We may also construct what is known as the “Kähler

potential” K, which is a function of chiral superfields and, antichiral superfields (Φ∗), and

the vector superfield, in a way that is supergauge invariant. From these, we may construct

Lagrangians:

L =
1

4

(∫
d2θ W(B)W(B) +Wα(W )Wα(W ) +Wα(g)Wα(g) + h.c.

)
+

∫
d2θ(W + h.c.) +

∫
d2θd2θ†K (1.31)

For readers interested in learning more of the mathematical formulation of supersymmet-

ric Lagrangians, please see for example [34, 35, 32].

The Minimal Supersymmetric Standard Model superpotential is written as:

W = −U cYuQHu −DcYdQHd − EcYeLHd + µHuHd , (1.32)

where we have dropped flavour and SU(2) indices i and α. The Yf are matrices of Yukawa

couplings. The superfields in the superpotential are constructed out of the supermultiplets

tabulated above in 1.2.

In principle, there are four other terms that we could have written down in the MSSM

superpotential, which are gauge invariant and renormalizable, but violate either baryon

number B or lepton number L. When included, these terms would result in tree-level proton

decay and neutrino masses, and therefore there are strong constraints on the couplings of

those terms. However, one can define a symmetry, known as R-parity, under which those

terms are not allowed:

PR = (−1)3(B−L)+2s , (1.33)

where s is the spin of the field. The particles in the same supermultiplet now clearly have

different PR, with Standard Model particles and the two Higgses having PR = +1, and
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superpartners having PR = −1. Phenomenological consequences of this are that a) the

lightest superparticle in the theory with PR = −1 can not decay further, and is therefore

absolutely stable, and b) superpartners can only be produced in even numbers.

We will now briefly discuss Supersymmetry breaking, since it will be important to under-

standing how one can have supersymmetric models with relatively light gauginos, but heavy

scalars.

Lightning Introduction to Supersymmetry Breaking

If our vacuum had unbroken Supersymmetry, this would have fixed the Higgs Boson hierarchy

problem by guaranteeing that the quadratic divergences to all scalar masses of the theory

would cancel to all orders in perturbation theory. In the Minimal Supersymmetric extension

of the Standard Model (MSSM), Supersymmetry dictates that the dimensionless couplings

are related in the right way to cancel the quadratic divergences we saw in Eq. (1.18). Taking

for example the top quark contribution given in Eq. (1.18), Supersymmetry requires that

the coupling κ in Eq. (1.19) should be given by 2 × Ncy
2
t , where Nc = 3 is the number of

colours of the stop quark, so that the quadratically divergent parts of Eq. (1.18) and Eq.

(1.19) exactly cancel. The factor of two arises due to the fact that for each Standard Model

fermion, we had to introduce exactly two bosonic degrees of freedom.

However, as discussed briefly, phenomenologically, by the absence of degenerate super-

partners, we know that Supersymmetry is broken in our vacuum. We can nevertheless deduce

some information about how the breaking comes about by requiring that the breaking does

not spoil the relations between the dimensionless couplings that resulted in the cancellation

of the quadratic divergences. This leads us to consider what is known as “soft” Supersym-

metry breaking, where the MSSM Lagrangian contains two parts, one which is invariant

under Supersymmetry, and one which explicitly breaks Supersymmetry, but only contains

mass terms and coupling parameters with positive mass dimension:

LMSSM = LSUSY + Lsoft ���SUSY . (1.34)

The first term contains all the gauge and Yukawa interactions, preserving the relationship

between dimensionless couplings, while the second contains the masses of the superpartners

13



and the trilinears:

−Lsoft ���SUSY =
1

2

(∑
a

MaG̃a + h.c.

)
+
(
Aij
U ũ

i
Lhuũ

∗,j
R + Aij

Dd̃
i
Lhdd̃

∗,j
R + Aij

E ẽ
i
Lhdẽ

∗,j
R + h.c.

)
+ (m̃2

q)
i
j q̃
i,†
L q̃

j
L + (m̃2

u)
i
jũ
i,T
L ũj,∗L + (m̃2

d)
i
j d̃
i,T
L d̃j,∗L + (m̃2

`)
i
j l̃
i,†
L l̃

j
L + (m̃2

e)
i
j ẽ
i,T
L ẽj,∗L

+m2
Huh

†
uhu +m2

Hd
h†dhd + (Bµhuhd + h.c.) , (1.35)

where the Ma, with a = 1, 2, 3 are the masses of the Bino, Wino and Gluino respectively, the

A are trilinear couplings which have mass dimension one, the second line gives bare masses

to all the scalar partners of Standard Model fermions, and the third line gives the Higgs

scalar mass terms. If there was a common mass scale for all the terms in Lsoft ���SUSY , which

we will denote as m̃, the expected corrections to the Higgs mass would be approximately

∆m2
h ∼ m̃2 λ

16π2
log

Λ

m̃
, (1.36)

where λ is some dimensionless coupling (recall from the discussion earlier that the prob-

lematic quadratically divergent corrections cancel, but the log-divergent term in Eq. (1.19)

does not). This would suggest that in order to not spoil the supersymmetric solution to the

hierarchy problem, m̃ should not be very large, and indeed, should not be much larger than

the TeV scale. This is one of the strongest motivations for low-energy Supersymmetry.

The exact values of the parameters of the soft Supersymmetry-breaking Lagrangian de-

pend on the precise mechanism for breaking Supersymmetry. In fact, Supersymmetry break-

ing mechanisms are in and of themselves a rich field of ongoing study. As a result, we will

not presume to go into too much detail here, but will instead present a few of the more

well-known/motivated options, and an overview of the types of spectrum they would give.

We will use the following notation here, and later on, for the gaugino masses: m1/2,

and for the scalar masses: m0. While having universal gaugino and scalar masses will not

necessarily always be the case, it is a useful tool for getting a feel for the scales involved.

• Gravity mediation: Supersymmetry may be broken in a hidden sector, and is com-

municated to the visible sector by Planck-suppressed operators [36, 37, 38, 39, 34]. The

resulting soft masses are set, in most models, by the value of the gravitino mass, M3/2:

m2
0 ∼M2

3/2, m1/2 ∼ O(M3/2) . (1.37)

in most cases, although m1/2 � M3/2 can occur in certain constructions [40]. In M-
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Theory with gravity mediation, however, m1/2 � M3/2 is generally expected (see for

example [11]).

• Gauge mediation: Supersymmetry is again broken in a hidden sector, but is now

communicated to the visible sector by “messenger fields”, which couple indirectly to the

fields of the MSSM via the ordinary gauge interactions [41, 42, 43]. The resulting soft

masses are then generated by radiative corrections, and are therefore loop-suppressed

relative to the mass scale of the messengers ΛM :

Ma ∼
g2
a

16π2
ΛM , m2

i ∼ Λ2
M

(∑
a

(
g2
a

16π2

)2

Ca(i)

)
, (1.38)

where a denotes gauge group, i denotes scalar species, and Ca(i) is the quadratic

Casimir invariant.

• Gaugino mediation: In an extra-dimensional setup, Supersymmetry may be broken

in a hidden sector on a brane that is separated spatially from the visible sector brane

along the extra dimension(s). Here, the gauge supermultiplets propagate in the bulk

(i.e. between the branes), and therefore feel the Supersymmetry breaking directly,

although the effects are suppressed by the size/length of the extra dimension(s) [44,

32, 45, 46]:

m1/2 ∼
〈F 〉
M2

5R5

, (1.39)

in a 5-dimensional setup, where 〈F 〉 is the non-zero vacuum expectation value of an

auxiliary field F on the hidden sector brane, and M5, R5 are a mass and length scale as-

sociated with the fifth dimension. The scalar masses then feel Supersymmetry breaking

only at loop level.

• Anomaly mediation: again in an extra-dimensional setup (although 4D realisations

exist), Supersymmetry is broken on the spatially separated brane, but the transmission

to the visible sector brane is not due to the gauge supermultiplets, which do not prop-

agate in the bulk. Instead, the breaking manifests itself due to an anomalous violation

of scale invariance, through the non-zero beta functions and anomalous dimensions of

the MSSM fields and couplings. The various soft parameters are then [32, 47, 48]:

Ma ∼M3/2
b

(1)
a g2

a

16π2
, (m2)ij ∼M2

3/2

d

dt
γij , (1.40)
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where b
(1)
a is the one-loop beta function coefficient of the gauge coupling, γij is the

anomalous dimension matrix of the fields, and “. . .” depends on the beta functions of

the gauge and Yukawa couplings.

• Breaking in the G2-MSSM: in this compactified 11-dimensional M-Theory, Su-

persymmetry is broken by the stabilisation of the moduli fields associated with the

compact extra dimensions. The breaking is then communicated to the visible sector

gravitationally, leading to [11, 13, 14, 18, 19]:

m1/2 ∼ αGUTM3/2, m2
0 ∼M2

3/2(1− C) , (1.41)

where αGUT is the unified theory coupling, and C is a parameterisation of higher order

corrections from the Kähler potential, which can take on values between 0 and 1.

From this brief overview of only a few Supersymmetry breaking mechanisms, there is

clearly a wide range of low-energy spectra that can arise. However, since in this dissertation

we are mostly concerned with spectra that give heavier scalars, that means we will not

be so interested in, for example, spectra arising from pure gauge- or anomaly-mediated

Supersymmetry breaking. However, the breaking in the G2-MSSM, for example, provides a

proof of concept of having light gauginos (suppressed by approximately a loop factor) relative

to the scalars. This is precisely the type of spectrum we will mostly consider in subsequent

chapters.

1.3 Motivation for studying Supersymmetry with heav-

ier scalars

As discussed in the previous section, it is quite possible for the pattern of Supersymmetry

breaking from compactified String/M-Theory to give spectra with scalars that are a loop

factor heavier than the gauginos. Given this sort of spectrum, there are then various phe-

nomenological and theoretical considerations we can apply to reduce the range of possible

spectra, which will provide a motivation for studying Supersymmetry with heavier scalars

(10-100 TeV).

The first motivation is purely theoretical. In, for example, the G2-MSSM, the gravitino

mass M3/2 is entirely fixed by the dynamics of the compactification. As we will see in Chapter

2, we can use certain assumptions about the compactification to fix a range of values for M3/2
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which are theoretically viable. We will see that there is a benchmark value of M3/2 ∼ 35

TeV, with slight modifications of the compactification yielding a variation around that value

of about a factor of 3, so from 10-100 TeV. Thus, we have a working String compactification

that suggests we should be studying Supersymmetry with heavier scalars.

The second motivation is phenomenological. If the lightest visible supersymmetric parti-

cle (LVSP) is stable (which is not guaranteed, as we will see in Chapter 6), then it could be

a dark matter candidate. In order to achieve the correct dark matter relic density, we would

expect the mass of the LVSP to then be in the 100-1000 GeV range, if it is a gaugino/higgsino.

This suggests that spectra of interest should have relatively light gauginos/higgsinos, but

places no requirement on the scalars other than m0 ≥ m1/2, µ, where µ is the higgsino mass

parameter. However, from LHC searches for scalars, we know that they are likely to be heav-

ier than ∼ 1 TeV. This therefore hints at a small hierarchy between the gauginos/higgsinos

and the scalars.

The third motivation is also phenomenological. The Higgs Boson mass, as discussed,

receives radiative corrections to its tree-level mass, as discussed above. As it happens, the

observed mass of 125 GeV is easily achievable if in fact there are heavier scalars [49, 50, 51,

52, 53].

1.4 Outline of this dissertation

1.4.1 Chapter 2: Superpartners at LHC and Future Colliders

Predictions from Constrained Compactified M-Theory

In this chapter, which is based on [19], written in collaboration with Gordon L. Kane and

Bob Zheng, we present a particularly well-motivated supersymmetric theory which predicts

heavier SUSY scalars. We make use of both experimental results as well as theoretical tools

to constrain this theory both from the bottom-up, and from the top-down. In particular,

we require that the theory be consistent with the observed Higgs Boson mass (bottom-up),

and understanding of a type of string theory called M-Theory (top-down), to find a class

of supersymmetric spectra which can be probed at colliders. We make use of, and expand

on, results obtained many years ago [10, 11, 12, 13, 14, 15, 16, 17, 18]. We then study

the implications of a benchmark spectra for searches to be conducted at the LHC, and at

possible future colliders, including a 100 TeV proton-proton collider. We find that making

use of both bottom-up and top-down constraints provides a strong theoretical grounding for
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the types of models that will be considered throughout this dissertation.

1.4.2 Chapter 3: Reaching for Squarks and Gauginos at a 100

TeV proton-proton Collider

This chapter is based on [21], written in collaboration with Bob Zheng. In this chapter, we

study in more detail the potential for discovering supersymmetric models with heavier scalars

at a 100 TeV proton-proton collider. In order to cover a wider range of the parameter space

with heavier scalars, we consider a variety of simplified models which are loosely motivated

by the benchmark spectrum from Chapter 2. We then analyse the possible reach of a

100 TeV proton-proton collider when the heavy squarks are produced in association with

gluinos, winos, higgsinos and binos, in various configurations. For squarks above ∼ 20 TeV,

associated production becomes the only possible discovery channel, since the squark pair

production cross-section is too small. Some of the results from this chapter were included in

Chapter 3 of the “Physics at the FCC-hh” Report [54], a report commissioned to investigate

the physics prospects of a future 100 TeV proton-proton collider.

1.4.3 Chapter 4: Impact of Future Lepton Flavor Violation Mea-

surements in the Minimal Supersymmetric Standard Model

In this chapter, which is based on [22], written in collaboration with Aaron T. Pierce,

we change tack from the previous two chapters, where we studied the phenomenology of

supersymmetric models with heavier scalars at colliders. Instead, in this chapter we consider

a wide range of supersymmetric models, including some with lighter scalars, and how these

can be studied via their effects on low-energy experiments. In particular, we consider the

specific situation where there is no new CP violation from the SUSY sector. We then

analyse how the constraints from experiments searching for quark flavour-changing neutral

currents compare with those searching for lepton flavour violation. These experiments, while

incapable of directly discovering supersymmetric particles, can indirectly probe the pattern

of Supersymmetry breaking. We show that when the SUSY scalars are heavier, lepton flavour

violation experiments will probe large new regions of the parameter space. We also show the

constraints on the parameter space for lighter supersymmetric particles, for completeness.
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1.4.4 Chapter 5: Theoretical Prediction and Impact of Funda-

mental Electric Dipole Moments

In this chapter, which is based on [20], written in collaboration with Gordon L. Kane, we

again study effects of Supersymmetry which can be tested using low-energy experiments.

In this chapter, unlike in chapter 4, we allow CP violation to be present, and therefore

study in particular the electric dipole moments of the electron and neutron generated by

the supersymmetric particles. Also unlike in chapter 4, in this chapter we study in greater

detail the same compactified M-Theory that we studied in Chapter 2. The reason is that

the assumption that the M-Theory is correct provides greater control on both the expected

amount of CP violation, as well as the spectrum of superparticles. We find that in this

M-Theory compactification, while one might have thought that the heavier scalars would

mean that the electric dipole moments would be small, this is not the case. In fact, two-

loop diagrams, which are of lesser importance for electroweak-scale Supersymmetry, actually

dominate when the scalars are heavy. As a result, we find that the particular M-Theory

compactification we study predicts an electron electric dipole moment that is in reach of

the next generation of experiments, thereby providing a strong test of the theory. As a

corollary, we explain why in such a compactified M-Theory, electric dipole moments should

be expected to be so small.

1.4.5 Chapter 6: The lightest visible-sector supersymmetric par-

ticle is likely to be unstable

This chapter and chapter 7 deviate slightly from the preceding chapters, in that they do

not specifically study supersymmetric theories with heavier scalars. Instead, they consist of

more general results that apply to all supersymmetric theories, and are therefore relevant to

the models with heavier scalars considered in the previous chapters. In this chapter, which is

based on [23], written in collaboration with Bobby Acharya, Gordon L. Kane, Brent Nelson

and Malcolm Perry, we present an argument based on compactified string/M-Theory, that

the lightest visible supersymmetric particle, which is typically assumed to be stable, is in

fact unstable. This conclusion can have profound implications for the understanding of dark

matter in supersymmetric theories, since the lightest visible-sector supersymmetric particle is

usually assumed to be a component, if not all of, the dark matter. By arguing that string/M-

Theory indicates that the lightest visible supersymmetric particle is likely to be unstable, we

are indicating that it cannot be the dark matter, and therefore motivates a paradigm shift.
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We argue a few crucial conditions are met by generic string/M-Theory compactifications,

that cause the lightest visible supersymmetric particle to decay into a “hidden sector”. This

can have observable consequences at colliders, but even more important consequences for

supersymmetric model-building, as it requires the serious consideration that dark matter

resides in a hidden sector.

1.4.6 Chapter 7: Visualizing gauge unification with high-scale

thresholds

In this chapter, which is based on [24], written in collaboration with James D. Wells, we

again present more general results, which can be applied to Supersymmetry with heavier

scalars. We study in particular how the gauge couplings of a low-energy theory, such as Su-

persymmetry, can be unified in a Grand Unified Theory (GUT). We present in this chapter

a novel way of visualising the evolution of gauge couplings as a function of scale, in terms

of the high-scale threshold corrections that would be required to achieve unification. This

novel approach has the benefit of presenting the results in an easily interpretable graphical

representation. Additionally, it has the benefit of being agnostic of the specifics of the ul-

traviolet theory, and can therefore be applied to any GUT one wishes to consider. Finally,

it is powerful because, unlike usual studies of unified theories, it does not require the defi-

nition of a unified gauge coupling. Due to the potential violence from high-scale threshold

corrections, defining a unified gauge coupling is not necessarily physically meaningful from

the IR perspective. We apply our method to various models, including a supersymmetric

model with heavy scalars, thus providing a link to the preceding chapters.
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Chapter 2

Superpartners at LHC and Future

Colliders Predictions from

Constrained Compactified M-Theory

2.1 Introduction

In this chapter, we will discuss how taking a concrete compactification of M-Theory, the

G2-MSSM, will allow us to derive a well-motivated spectrum with heavier supersymmetric

scalars, and then study the phenomenology. We use both theoretical and phenomenological

motivations to arrive at a benchmark spectrum.

If Supersymmetry (SUSY) is considered as an effective theory of a well-motivated ultravi-

olet (UV) completion, concrete predictions can be made about the Supersymmetric particle

(sparticle) spectrum that is to be expected at the TeV scale. In a top-down approach, the

Supersymmetry breaking parameters are set by high-scale dynamics. This leads to con-

crete, testable predictions for sparticle masses, as opposed to treating sparticle masses as

free parameters in a multidimensional parameter space.

In this chapter, we illustrate the power of this top-down approach for a particularly well-

motivated UV completion of Supersymmetry: M-theory compactifications on manifolds with

G2 holonomy [55, 56, 57, 58, 59]. We call this framework the G2-MSSM, following earlier

papers which have studied its phenomenological properties [10, 11, 14, 13]. Due to the rigidity

of top-down theoretical constraints from moduli stabilization and Supersymmetry breaking,

the sparticle spectrum is completely fixed by electroweak symmetry breaking (EWSB), once

both the gravitino mass M3/2 and the superpotential µ-term are specified. Furthermore, the
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measured value of the Higgs mass picks out a particular slice in the (µ,M3/2) plane; thus all

sparticle masses can be fixed by determining either µ or M3/2.

Given minimal assumptions (explained in more detail in Appendix A) regarding the

geometry of the compact G2-manifold, M3/2 is approximately calculable once the moduli are

stabilized and SUSY is broken. This results in a central value of M3/2 = 35 TeV. Imposing

EWSB and Higgs mass constraints, M3/2 = 35 TeV corresponds to a gluino mass of 1.5 TeV.

The result M3/2 = 35 TeV can be altered if UV threshold corrections to the non-perturbative

superpotential are non-negligible. Allowing a wider range of 20 TeV < M3/2 < 50 TeV due

to currently unknown UV corrections gives a range of gluino masses, 1 TeV < Mgluino < 2

TeV. Thus a gluino mass within this range can be taken as a prediction of the compactified

M-theory framework.

For concreteness we will focus on the central value M3/2 = 35 TeV, which gives a bench-

mark spectrum with a 1.5 TeV gluino. All sfermion and heavy Higgs masses are of O(M3/2),

while the Wino(Bino)-like lighter gauginos have masses of 615 (450) GeV. The hierarchy

between gauginos and M3/2 follows from the dynamics of moduli stabilization. Specifically,

both the hidden sector meson and moduli F-terms contribute to the gravitino mass M3/2,

while only the moduli F-terms contribute to gaugino masses. The moduli F-terms are sup-

pressed with respect to hidden sector meson F-terms by about αGUT ≈ 1/25, resulting in .

TeV gaugino masses despite M3/2 being tens of TeV [14]. As will be discussed below, this

benchmark spectrum is not constrained by LHC-8. Both gluino pair production and direct

electroweak gaugino production should yield discoveries with . 300 fb −1 of LHC-14 data,

particularly since electroweak gauginos yield distinctive signatures through χ0
2 → χ0

1 + h

which has a nearly 100% branching ratio. This bencmark spectrum predicts µ ≈ 1.4 TeV,

leading to heavy Higgsinos which are out of reach of LHC-14.

We will also discuss implications of the G2-MSSM for future colliders. Taking the bench-

mark spectrum, we will show that 1.5 TeV Higgsinos are accessible at both 50 and 100 TeV

colliders. Furthermore, the heavier squarks are also accessible at 100 TeV colliders, with

hundreds of squark-gluino associated production events expected with & 1000 fb−1 of data.

In particular, we point out for the first time (as far as we know) that for a gluino mass

of ∼ TeV, the cross-section for associated stop-gluino-top production pp → g̃ + t̃1 + t, and

potentially even sbottom-gluino-bottom pp→ g̃+ b̃1 + b, can be sizeable at 100 TeV colliders

for stops and sbottoms lighter than ∼ 20 TeV. This is especially relevant for MSUGRA-like

theories with universal scalar masses at the GUT scale, in which third generation squarks

are expected to be lighter due to RGE effects.
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Thus the benchmark spectrum has the remarkable feature that Higgsinos and squarks are

accessible at future colliders, despite the scale of SUSY breaking M3/2 being in the tens of

TeV range. Furthermore, the constrained relationship between SUSY breaking parameters

implies that within the G2-MSSM, the discovery of a single sparticle is enough to actually

measure M3/2. Given the discovery of a single sparticle, the rest of the G2-MSSM spectrum is

determined uniquely, resulting in a multitude of additional predictions which can be readily

confirmed or falsified in ongoing and upcoming collider experiments. This point highlights

the potential power of top-down approaches in greatly reducing the naive parameter space

of Supersymmetry. We will provide details concerning these points in later work; the results

can basically be seen from equations (2.1, 2.2) and Figure 2.1 in Section 2.2 below.

The chapter is organised as follows. Section 2.2 gives a brief overview of the G2-MSSM

framework, and discusses how the benchmark spectrum corresponding to M3/2 = 35 TeV

is obtained. Readers interested only in experimental predictions should skip this section.

Section 2.3 provides the sparticle spectrum and relevant branching ratios corresponding to

the benchmark spectrum obtained in Section 2.2. Predictions for LHC-14 are given in Section

2.4, while predictions for future colliders are given in Section 2.5. Finally, we summarise the

results in Section 5.5.

2.2 Theoretical Framework

We begin by reviewing some features and successes of the compactified M-theory framework.

G2-compactifications of M-theory provide a natural setting for full moduli stabilisation and

broken N = 1 Supersymmetry in a deSitter vacuum, while also solving the gauge hierarchy

problem [10, 11, 14, 13]. Additionally, EDM [15, 20] and flavour constraints (such as Bs →
µµ) [60] are avoided. However, it may not explain (g − 2)µ, while the strong CP problem

is solved by the axionic components of moduli fields [61]. The presence of late-decaying

moduli results in a non-thermal cosmological history which solves the moduli problem and

the gravitino problem [12]. Since the baryon asymmetry and the dark matter both arise from

moduli decay (including axions), the ratio of baryonic matter to dark matter is calculable

[62]. R-parity conservation is expected [63]; thus consistency with the observed DM relic

abundance implies that the visible sector LSP will decay to hidden sector DM particles [64]1.

µ is incorporated into the theory following the proposal of Witten [67] and including effects

1For non-thermal cosmologies, a stable Bino-LSP will overclose the universe, while a stable Wino-LSP is
in tension with indirect detection contraints [65, 66].
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of moduli stabilisation [17]. Calculations in this framework anticipated the mass and decay

branching ratios of the Higgs boson observed at the LHC [50].

A key result of the aforementioned references is that once moduli stabilization breaks

Supersymmetry and cancels the vacuum energy at tree level, the relationship between SUSY

breaking parameters becomes very constrained. Upon moduli stabilization and SUSY break-

ing, the soft breaking parameters at the renormalization scale Q ∼MGUT are given by [13]:

m2
0 ≈M2

3/2 (1− C) , A0 ≈ 1.5M3/2 (1− C) ,

Ma ≈ [−0.032η + αGUT (0.034 (3Ca − C ′a) + 0.079C ′a(1− C))]×M3/2 (2.1)

where Ca = (0, 2, 3) and C ′a = (33/5, 7, 6). m0 and A0 are universal soft scalar masses

and trilinears, and “C” parameterizes higher order Kähler potential corrections arising from

higher dimensional operators as defined in Appendix A. The quantity η parameterizes KK-

threshold corrections to the unified gauge coupling; we will argue in Section 2.2.2 that η ∼ 1,

unless the geometry of the G2 manifold becomes incredibly complicated. A review of moduli

stabilization and SUSY breaking along with the derivation of (2.1) is presented in Appendix

A. The hierarchy between gaugino masses and M3/2 arises because M3/2 feels contributions

from both hidden sector meson and moduli F-terms, while Ma feels contrbutions from only

the moduli F-terms which are suppressed by approximately αGUT ≈ 1/25 with respect to

the meson F-terms. A more detailed discussion of this point is deferred to Appendix A.

Thus the entire sparticle spectrum is essentially fixed once M3/2, µ and C are specified.

We will show in Section 2.2.1 that imposing consistent EWSB along with the measured value

of the Higgs mass Mh = 125.2±0.4 GeV [28, 68] reduces the 3D space of allowed (M3/2, µ, C)

values to an approximately one-dimensional space. As a result, the entire sparticle spectrum

is completely determined for a given value of M3/2. In Section 2.2.2 we will use additional

top-down considerations to approximately calculate M3/2, giving a central value of M3/2 ≈ 35

TeV which we use to obtain the benchmark spectrum considered in Section 2.3 and onwards.

2.2.1 Imposing Constraints: EWSB and the Higgs Mass

In the previous section, we have stated that the sparticle spectrum is essentially determined

by three quantities: M3/2, µ, C, or equivalently M3/2, µ/M3/2, C. In principle, these quan-

tities are calculable from the full UV theory. In practice however, there are theoretical

uncertainties which preclude a full top-down calculation. Instead, we will show in this sec-

tion how bottom-up constraints of EWSB along with the measured Higgs mass provide two
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independent constraints, reducing the naive 3D region to a one-dimensional strip. This il-

lustrates the power of combining top-down calculations with known bottom-up constraints

to increase the predictiveness of a particular theory.

A detailed discussion of how the constraints from EWSB and Mh = 125.2 ± 0.4 GeV

are imposed is given in Appendix B; the result is shown in Figure 2.1. One can see that

EWSB constraints restrict the region to an approximately 2D-slice. Imposing the constraint

Mh = 125.2 ± 0.4 reduces this slice to a thin band; the thickness of this band is due

primarily to experimental uncertainties on Mh, Mt and αs [50]. The range 0 < µ/M3/2 . 0.1

is motivated by both top-down [17] and little hierarchy [69] arguments; this is discussed in

more detail in Appendix B.

Upon imposing these bottom-up constraints, the entire sparticle spectrum becomes an

approximately one-dimensional strip in the original 3D space. In the next section, we take

the perspective that Figure 2.1 fixes the entire spectrum in terms of M3/2, and use equation

(A.6) to approximately compute M3/2 to be ≈ 35 TeV, and obtain the associated benchmark

spectrum.

2.2.2 Obtaining a Benchmark Spectrum

Having established that the entire Supersymmetric particle spectrum is essentially deter-

mined for a given value of M3/2, we discuss how M3/2 can be approximately computed from

the UV theory. Upon moduli stabilization and SUSY breaking, the standard Supergravity

expression for the gravitino mass gives [13] :

M3/2 ≈
9× 105

V
3/2
X

(
A2

Q

)
TeV (2.2)

where Q is the rank of a hidden sector SU(Q) gauge group which undergoes gaugino con-

densation, and A2 is the corresponding non-perturbative superpotential coefficient (see Eq.

(A.1) in Appendix A). VX is the volume of the G2-manifold in 11-D Planck units. We refer

interested readers to Appendix A for a more detailed derivation of Eq. (2.2).

In principle, VX is a function of the moduli fields and is thus calculable once moduli are

stabilized. However the particular expression for VX in terms of moduli fields is not fully

known; we can instead fix VX by ensuring that dimensional reduction to 4D gives the correct
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Figure 2.1: Upper Figure: The dark gray surface shows the slice of M3/2, c, µ/M3/2 pa-
rameter space which satisfies EWSB, while red points also satisfy the Higgs mass constraint
Mh = 125.2± 0.4 GeV. The blue shaded region corresponds to points which are inconsistent
with µ/M3/2 . 0.1; see the Appendix for further discussion. In these plots, µ is defined at
the renormalization scale Q2 = mt̃1mt̃2 . The mesh lines are added for perspective, and do
not have any physical significance.
Lower Figure: A projection of the upper figure onto the M3/2 − µ/M3/2 plane.
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value for Newton’s constant [70]. This fixes VX to be [13]:

VX ≈ 137.4L(Q)2/3, L(Q) = 4q sin2

(
5πω

q

)
(2.3)

where L(Q) is a topological invariant which parameterizes threshold corrections from Kaluza-

Klein states. This form for L(Q) was computed in [70], assuming that the visible sector SU(5)

gauge fields are compactified on a Lens space Q ∼= S3/Zq in the presence of a non-trivial

Wilson line. For a brief introduction to Wilson lines, see Appendix C. 5ω is an integer

parameterizing the effect of the Wilson line, as will be discussed below.

To proceed, we briefly review the motivation for considering SU(5) gauge theories com-

pactified on a Lens space Q. In G2-compactifications of M-theory, non-abelian gauge fields

arise from co-dimension 4 ADE singularities and thus propogate on a 7-dimensional manifold

H [56]. In our notation, we take H ∼= Q×M where M is our Minkowski spacetime. Starting

from an SU(5) GUT theory, the issues of GUT breaking and doublet-triplet splitting must

be resolved for a realistic model. As pointed out by Witten, both problems are elegantly

solved in the presence of a non-trivial Wilson line background [67], which breaks SU(5) to

the SM while admitting a geometric symmetry which solves doublet-triplet splitting.

The resulting symmetry is determined by the fundamental group of Q, which for Q ∼=
S3/Zq is simply Zq. The non-trivial Wilson line gives the

∫
d2θµHuHd superpotential term

charge 5ω under Zq, while
∫
d2θMTuTd is uncharged. However, realistic phenomenology

requires non-zero µ, which implies that Zq is broken once moduli with charge −5ω obtain

vev ’s [17]. If Zq is completely broken, higher-dimensional Kähler potential operators will

generate dangerous lepton-number violating operators which generically violate neutrino

mass bounds [63]. Thus Zq must be broken to a non-trivial subgroup Zp, where:

p = GCD(q, 5ω), p 6= 1 (2.4)

The simplest case which satisfies these requirements is therefore the case where p = 4

and 5ω = 2, corresponding to the Lens space S3/Z4 and an unbroken Z2 symmetry once a

non-zero µ term is generated. For our benchmark spectrum, we take these values and obtain

from (2.2), (2.3):

M3/2 ≈ 35

(
A2

Q

)
TeV. (2.5)

27



25 000 30 000 35 000 40 000 45 000 50 000
1000

1200

1400

1600

1800

2000

M3�2HGeVL

M
G

lu
in

oHG
eV

L

Figure 2.2: Gluino mass vs M3/2 for points which satisfy EWSB and Higgs mass constraints,
i.e. the red points in Figure 2.1.

Note that this also fixes η in (A.7) [70]:

η = 1− 5αGUT
2π

ln

(
L(Q)

q

)
≈ 0.956 (2.6)

We see that 1− η is loop suppressed, and can only be O(1) for q & 100. This validates our

earlier claim that one naturally expects η ∼ 1.

The only remaining undetermined factor in our benchmark spectrum is A2/Q in (2.5).

In the context of Supersymmetric field theories, the precise normalization A2 = Q [71] in the

DR scheme was determined by requiring the consistency of various techniques used to study

non-perturbative SUSY gauge theories [72]. However, in the present context there may be

UV threshold corrections which modify the relation A2/Q = 1. To obtain the benchmark

spectrum, we retain A2/Q = 1, which gives M3/2 = 35 TeV. Imposing constraints from

EWSB and Mh for this benchmark value fixes C ≈ 0.52 and µ ≈ 1.4 TeV, resulting in

the benchmark spectrum to be discussed in Section 2.3. Figure 2.2 illustrates the effect of

relaxing this assumption; the gluino mass is plotted for 0.6 . A2/Q . 1.4, corresponding to

20 TeV . M3/2 . 50 TeV. M3/2 = 20 TeV may barely avoid tension with BBN constraints

[16], depending on the particular values of moduli couplings and TRH .

In order to obtain a very approximate lower bound on Mg̃, we use the FastLim [73]
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package. The program currently only implements some of the possible event topologies,

and does not yet implement cascade decays such as g̃ → qqχ0
2 → qqhχ0

1. Therefore, when

using FastLim we treat the aforementioned cascade decays as g̃ → qqχ0
2 → qqχ0

1, neglecting

additional objects from χ0
2 → χ0

1 + h. This simplification obviously reduces sensitivity to

searches involving high (≥ 6) jet multiplicity. Using this method, we obtain the approximate

bound Mg̃ & 1.1 TeV in the compactified M-theory framework, though clearly a more precise

analysis is desirable. Nonetheless, the benchmark spectrum with a 1.5 TeV gluino mass sits

comfortably outside the excluded region, as we will discuss in Section 2.3.

2.3 The spectrum and the branching ratios

In this section we present the benchmark spectrum that results from the theoretical frame-

work presented in Section 2.2. In the compactified M-Theory all scalars are generically of

order the gravitino mass, with the universal scalar mass given by m0 ∼ O(1)M3/2 . We use

the computing package SOFTSUSY [8] to do two-loop RGE evolution of the high scale soft

parameters to obtain sparticle pole masses.

We compute the branching ratios for the decays of some of the superpartners using

SDECAY [74], which are given in Table 2.1. We focus in particular on the superpartners that

we expect to see at the LHC or at future colliders.

Decay BR (%)
g̃ → χ+

1 q1,2q̄1,2 25
g̃ → χ±1 bt̄, tb̄ 23
g̃ → χ0

1tt̄ 20
g̃ → χ0

2q1,2q̄1,2 12
g̃ → χ0

1q1,2q̄1,2 8
g̃ → χ0

2bb̄ 7
g̃ → χ0

2tt̄ 4
g̃ → χ0

1bb̄ 1

Decay BR (%)
χ0

4 → χ±1 W
∓ 60

χ0
4 → χ0

2h 27
χ0

4 → χ0
1h 8

χ0
4 → χ0

2Z 4
χ0

4 → χ0
1Z 2

χ0
3 → χ±1 W

∓ 60
χ0

3 → χ0
2Z 26

χ0
3 → χ0

1Z 8
χ0

3 → χ0
2h 4

χ0
3 → χ0

1h 2

χ0
2 → χ0

1h 98
χ0

2 → χ0
1Z 2

Decay BR (%)
χ±2 → χ±1 h 31
χ±2 → χ±1 Z 30
χ±2 → χ0

2W
± 30

χ±2 → χ0
1W

± 9

χ±1 → χ0
1W

± 100

Table 2.1: Branching ratios of gluino, neutralinos and charginos. The numbers do not add
to 100 in the case of the χ0

4 branching ratios due to rounding errors.
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Particle Mass (GeV)
m0 24200
M3/2 35000
q̃L,R 24000
t̃2 19300
t̃1 13500

b̃2 23900

b̃1 19300
g̃ 1500
χ0

1 450
χ0

2 614
χ0

3 1460
χ0

4 1460
χ±1 614
χ±2 1460
h 125.22

Figure 2.3: Spectrum given GUT scale input values calculated from the theory for the central
value M3/2 = 35 TeV. This spectrum has the GUT scale inputs m0 ≈ 24 TeV and A0 ≈ 25
TeV, where m0 and A0 are respectively the universal scalar mass and soft-breaking trilinear.
The GUT scale gaugino masses are M1 = −1020 GeV, M2 = −730 GeV, M3 = −590 GeV.
Details on how this spectrum was derived are presented in Section 2.2. For the gaugino
masses and trilinear, we take the sign convention opposite to that of SOFTSUSY [8]. This
relative sign affects the 2-loop term in the gaugino mass RGE’s which is proportional to At.

Since the squark masses are of O(M3/2) at the high scale, they are not detectable at

the LHC. RGE running splits the squarks to give the physical spectrum shown in Fig. 2.3.

The neutralinos χ0
1 (χ0

2) are Bino (Wino)-like, while χ0
3, χ

0
4 are Higgsino-like. Note that the

mixing angles in the neutralino and chargino sectors are small, as µ�MW ,MZ . In previous

studies of the G2-MSSM, the LSP was taken to be Wino-like, as a Wino-LSP serves as a

good DM candidate in string-motivated non-thermal cosmologies [75]. However, obtaining

a Wino-like as opposed to a Bino-like LSP requires large KK-threshold corrections to GUT

scale gaugino masses (see e.g. [76]), which we argued is unnatural in Section 2.2. In this

note, we assume that any would-be Bino-like LSP relic abundance decays to a hidden sector

DM candidate, but the LSP is sufficiently long-lived to appear stable on collider scales3.

Of note is the 100 % branching ratio of χ±1 → χ0
1W

±, and the 98.7 % branching ratio

of χ0
2 → χ0

1h. Note that the χ0
2 → χ0

1Z decay width is subdominant to that of χ0
2 → χ0

1h.

2For details regarding how the Higgs mass is calculated, we refer the reader to Appendix B.
3This occurs for example if χ0

1 decays to hidden sector DM via kinetic mixing [64, 23].
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This can be explained as follows. The χ0
2χ

0
1h coupling arises from couplings of the form

W̃ 0H̃h and B̃0H̃h in the gauge eigenstate basis. Since χ0
1 and χ0

2 are Bino and Wino-like,

the χ0
2 → χ0

1h amplitude is suppressed by a single power of gaugino-Higgsino mixing angles,

O(MZ/µ). In contrast, in the gauge eigenstate basis only Higgsinos couple directly to Z via

couplings of the form ZµH̃
†σµH̃. Thus the Zµχ

0
1
†
σµχ0

2 coupling is suppressed by two powers

of gaugino-Higgsino mixing angles, resulting in a suppresion of the χ0
2 → χ0

1Z amplitude by

O(M2
Z/µ

2).

Note that this spectrum with a 1.5 TeV gluino should not have been discovered at LHC-8.

In simplified models with decoupled squarks, the strongest limits on the gluino production

come from multijet + MET searches [77, 78, 79, 80], which place the bound Mg̃ & 1.35 TeV.

When setting limits on simplified models, the gluino is assumed to have a 100% branching

ratio into either qqχ0
1 or ttχ0

1 final states. For more realistic spectra such as the one considered

here, the gluino mass bound will weaken significantly due to branching ratio factors.

2.4 LHC-14 Predictions

In this section, using the spectrum derived and presented above, we discuss the channels

we expect to be observable at the LHC. We expect to see three channels, pp → g̃g̃, pp →
χ0

2χ
±
1 and pp → χ±1 χ

∓
1 , and only these. The fact that only these three channels would

be apparent is a feature of the M-theory construction. The scalars being heavy makes

them kinematically inaccessible. The hierarchy between µ and the gaugino masses Ma (and

µ � MZ) results in a Bino-like LSP and Wino-like NLSP with heavy Higgsinos, meaning

that only two neutralino/chargino direct production channels are accessible at LHC-14.

We computed using the production cross-sections to leading order for the three chan-

nels listed above using MadGraph5 [81] and multiplied them by K factors calculated using

Prospino [82, 83, 84]. The results, including the expected number of events N given 300

fb−1 of data, are tabulated below.

Channel σ (fb) N

pp→ g̃g̃ 19 5800

pp→ χ0
2χ
±
1 19 5800

pp→ χ±1 χ
∓
1 10 3000

Given the LSP mass of 450 GeV, a 1.5 TeV gluino is expected to be discoverable at the
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5σ level at LHC-14 given 300 fb−1 of data [85, 86]. The gluino mass and cross-section allow

immediate deduction of the gluino spin [87] and therefore confirmation that the discovery

is indeed Supersymmetry. With squarks heavy, that procedure is straightforward. Further-

more, the χ0
2 → χ0

1h decay mode allows for discovery potential in the chargino/neutralino

direct production channels. For the benchmark spectrum considered here, direct χ0
2, χ

±
1 pro-

duction should be discoverable at LHC-14 with 1000 fb−1 of data [88]. We understand that

careful background studies need to be done to be sure these processes can be observed. The

signatures are distinctive and event numbers large enough so it seems likely signals can be

seen, but people more expert than us need to demonstrate the signals are really robust.

2.5 Future Collider Predictions

In this section, we briefly discuss the possible discoveries to be made at future colliders

given the spectrum under consideration. We focus in particular on two possible proton-

proton colliders, one with
√
s = 50 TeV, and the other with

√
s = 100 TeV. Prospects

for Supersymmetry at such higher energy colliders has been studied recently [86, 89, 90],

although not in the context of a top-down, UV complete theory.

Given the spectrum, we find that some crucial new channels are accessible, namely pp→
tt̃1g̃, pp→ bb̃1g̃, pp→ q̃1(L,R)g̃, pp→ χ0

3χ
0
4, pp→ χ0

3χ
±
2 , pp→ χ0

4χ
±
2 and pp→ χ±2 χ

∓
2 .

Unfortunately, scalars are too heavy to be pair-produced [89]. However, we note that

associated production of first family squarks with gluinos is accessible. The splitting of

the light stop and the heavier first family squark masses, plus the kinematic measurement

of the first family squarks, combine to give a precise measurement of the gravitino mass,

the fundamental quantity that determines all masses in the theory, and thus deeply probes

Supersymmetry breaking!

The associated production of stops and sbottoms can come from gluon splitting, or from

the top (bottom) quark being considered as a parton. The question of when the top quark

parton distribution function (PDF) becomes important has been studied recently [91], and

it has been found that using a top PDF has only a small effect at
√
s = 100 TeV. Therefore

we simulate the production of stop gluino by looking at diagrams where the gluon splits and

emits a top quark also. The bottom PDF is better known, and has a more significant effect

at the energies in question, but for the purposes of this calculation, we present results using

gluon splitting for the associated production of sbottoms. The dominant Feynman diagram

for top stop gluino production is shown in fig. 2.4. The diagram for sbottoms is identical
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with b, b̃ swapped for t, t̃. We recognise that careful studies of bottom and top PDFs need

to be done to get fully reliable numbers.

t

t̄

t̃1

g

g g̃

g̃

Figure 2.4: Dominant Feynman graph for stop associated production by gluon splitting.

We computed using MadGraph5 [81] the production cross-sections to leading order for

these channels for both
√
s = 50 TeV and 100 TeV. The results are tabulated below, including

the number of events N expected given 3000 fb−1 of data.

Channel σ50 TeV (fb) N50 TeV σ100 TeV (fb) N100 TeV

pp→ tt̃1g̃ 7.1× 10−5 0 1.6× 10−2 47

pp→ bb̃1g̃ 2.6× 10−6 0 3.0× 10−3 9

pp→ q̃1(L,R)g̃ 3.2× 10−4 1 3.0× 10−1 900

pp→ χ0
3χ

0
4 9.2× 10−1 2800 3.4 10200

pp→ χ0
3χ
±
2 1.8 5400 6.4 19200

pp→ χ0
4χ
±
2 1.8 5400 6.4 19200

pp→ χ±2 χ
∓
2 1.0 3000 3.7 11100

Although the number of stop events is not large, the gluino mass will already be known

from LHC, which makes the stop and bottom search significantly simpler. The sbottom

production cross-section is expected to be greater given that we make the approximation of

gluon splitting rather than using the bottom PDF. We expect 15 or so stop events should

already be found given 1000 fb−1 of data, as well as 300 first generation squark events. The

relatively large number of first family squark associated production events means these should

be detectable. Major potential backgrounds for there channels are tt̄ and vector boson+jets.

We also expect the heavy neutralinos and chargino to be detected, already at a 50 TeV, and

certainly at a 100 TeV collider. Note there are other electroweakino production channels e.g.

χ0
2χ
±
2 which have subdominant production cross-sections, two or more orders of magnitude
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smaller than those presented here. Because of their small production cross-sections, we do

not list those channels here.

2.6 Conclusion

In this chapter, we have examined predictions for Supersymmetric particle masses in the G2-

MSSM, motivated by phenomenogically realistic compactifications of M -theory. By combin-

ing top-down constraints from moduli stabilization with bottom-up constraints from EWSB

and the measured Higgs mass, the sparticle spectrum is completely determined by M3/2.

Furthermore, given reasonable assumptions regarding the topology of the G2 manifold, the

gravitino mass is approximately calculable, giving a benchmark value M3/2 = 35 TeV.

We emphasize that we do not give a pure derivation of M3/2 = 35 TeV, or of an upper

limit of ∼ 50 TeV. Rather we use all available top-down information from the UV theory,

along with constraints and generic arguments, to find a “natural” value of the gravitino and

gluino masses in the G2-MSSM. If one is agnostic about UV physics, one could by hand

fine-tune these quantities away from their natural or generic values that we deduce from

the G2-MSSM plus constraints. The natural and generic values we report are quite different

from the “näıve natural” values in the absence of any theory.

The benchmark spectrum corresponding to M3/2 = 35 TeV is not constrained by LHC-8,

and turns out to provide exciting phenomenology for LHC-14 and future colliders. The gluino

mass is expected to be about 1.5 TeV for this benchmark spectrum, while the Wino(Bino)-

like gaugino mass is about 614(450) GeV. The hierarchy between gaugino masses and M3/2

arises because M3/2 feels contributions from both the hidden sector meson and moduli F-

terms, while gaugino masses only feel contributions from the moduli F-terms which are

suppressed by about αGUT ≈ 1/25 with respect to the meson F-terms. Three and only three

production channels should discoverable at LHC-14: pp → g̃g̃, pp → χ0
2χ
±
1 and pp → χ±1 χ

±
1

where χ0
1 and χ0

2 are respectively Bino and Wino-like. The expected signature of the χ±1 χ
±
1

channel is χ+χ− → W+W− + MET. The χ0
2χ
±
1 production channel gives the final state

χ0
2χ
±
1 → W± h + MET, which should be quite a clear channel at the LHC [88].

We have also investigated the prospects for the discovery of the heavier stops, first family

squarks and Higgsinos at future colliders. We find that associated production of gluino stop

pp→ g̃t̃1t, gluino sbottom pp→ g̃b̃1b as well as gluino squark production pp→ g̃ũ, d̃ should

be seen at a 100 TeV collider, with leading-order production cross-sections of 1 × 10−2,

3× 10−3 and 3× 10−1 fb respectively. This leads to hundreds of gluino-squark events given
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3000 fb−1 of data; precise knowledge of the gluino mass can help seperate these events from

SM background. The heavy Higgsinos should also be detectable at a 50 TeV collider, and

produced in relative abundance at a 100 TeV collider. The relevant Higgsino production

channels are pp→ χ0
3χ

0
4, pp→ χ0

3χ
±
2 , pp→ χ0

4χ
±
2 and pp→ χ±2 χ

±
2 . The relevant production

cross sections at 50 (100) TeV are σ ∼ 1.8 (6.4) fb for pp → χ0
3,4χ

±
2 , and σ ∼ 1.0 (3.5) fb

for pp → χ0
3χ

0
4 and pp → χ±2 χ

±
2 . Thus given 3000 fb−1 of data, we expect of order a few

thousand events for each channel at a 50 TeV collider, and of order tens of thousands of

events at a 100 TeV collider.

To summarise, we have shown that the G2-MSSM provides a constrained top-down frame-

work, in which gluinos and some electroweakinos are discovered at LHC-14. The discovery of

a single sparticle uniquely determines the remainder of the sparticle spectrum. Thus given

a discovery of gauginos at LHC-14, a discovery of squarks and Higgsino at 100 TeV colliders

within the predicted mass range would give strong evidence towards Supersymmetry and an

UV completion like the compactified M-theory construction presented here.

While in this chapter we studied the precise collider phenomenology of a particular com-

pactified M-Theory, in the next chapter we will consider the collider phenomenology of a

general class of models which have similar features to those we considered here.
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Chapter 3

Reaching for Squarks and Gauginos at

a 100 TeV proton-proton Collider

3.1 Introduction

Current LHC data constrains strongly-interacting superpartner masses to lie near or above

a TeV, disfavoring electroweak-scale SUSY in a wide variety of models. Also, as discussed

both in Section 1.3 and Chapter 2 above, it is therefore becoming increasingly well motivated

to consider the possibility that the superpartner masses lie above ∼ 1 TeV, perhaps evading

the kinematic reach of LHC-14. This has prompted numerous studies of the SUSY discovery

potential of future hadron colliders, which have demonstrated that a
√
s = 100 TeV collider

can extend the kinematic reach for superpartners into the multi-TeV range [86, 92, 90, 89, 19,

93, 94, 95, 96, 97]. While in Chapter 2 we studied the spectrum associated with a particular

M-Theory compactification, in this chapter we study more general simplified models, which

have qualitatively similar spectra to that of Chapter 2.

Previous studies of SUSY at future hadron colliders have focused primarily on pair pro-

duction, either of colored superpartners [86, 92, 89] or of electroweak-inos [90, 93, 94, 95, 96].

In this chapter, we instead examine the reach of a
√
s = 100 TeV collider for associated

production of a heavy squark along with a lighter gaugino. This production channel is

particularly noteworthy if the squark masses are O(10)’s of TeV, such that squark pair pro-

duction is kinematically inaccessible at
√
s = 100 TeV. Spectra where squarks are hierarchi-

cally heavier than the gluino/electroweak-inos are predicted in many SUSY breaking models

such as anomaly mediation [47, 48] or more general “mini-split”-type scenarios [98, 11, 51].

Moreover, multi-TeV squark masses can naturally accommodate the stop masses required to
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achieve a 125 GeV Higgs boson within the MSSM.

In this chapter, we demonstrate that associated squark-gaugino production at a
√
s = 100

TeV proton-proton collider provides a probe of & 10 TeV squark masses which is comple-

mentary to pair production. Our main results are summarized in Figures 3.1-3.5, which

show the reach of a
√
s = 100 TeV proton-proton collider with 3 ab−1 integrated luminosity

for squark-gaugino associated production in various spectra 1.

Squark-gluino production can discover squark masses up to 32 TeV for . 4 TeV gluino

masses in spectra with a large gluino-neutralino LSP mass splitting (Fig 3.1). For spectra

with a small gluino-neutralino LSP mass splitting, squark masses up to 40 TeV can simi-

larly be discovered (Fig. 3.2). Notably, our analysis finds that the gluino-neutralino DM

coannihilation region [100, 101] can be excluded for squark masses . 32 TeV. For squark-

Wino (Bino) LSP production, Wino (Bino) masses up to 4 (2) TeV can be discovered for

squark masses . 9 (6) TeV (Figs. 3.3-3.4). We find a similar reach for squark-Wino NLSP

production (Fig 3.5), even without utilizing objects resulting from NLSP → LSP decay.

Our results indicate that squark-gaugino production represents a SUSY discovery mode at

a
√
s = 100 TeV proton-proton collider in a wide variety of models with heavy first- and

second-generation squarks.

The remainder of this chapter is organized as follows. Section 3.2 discusses our general

methodology and simulation strategies. Section 3.3 presents in detail our analysis of squark-

gluino associated production, while Section 3.4 presents our analysis of squark-Wino/Bino

associated production. We summarize our results in Section 3.5.

3.2 General Methodology

In this section we briefly discuss the general methodology of the analyses presented below.

Event topologies arising from heavy squark - light gaugino associated production are char-

acterized by a hard leading jet and significant /ET . These objects result primarily from the

squark decay products, as the associated gaugino is produced at relatively low transverse

momentum. The dominant SM background for such events is in the tt+ jets and vector

boson + jets channels [86], which fall off rapidly with increasing leading jet pT , /ET , and

/ET/
√
HT (HT is defined as the scalar sum of the jet transverse energies).

In the following analyses, we consider the reach of a
√
s = 100 TeV proton-proton collider

1Note that a recent study in [99] calls for an integrated luminosity of between 10 and 20 ab−1 at a future
100 TeV proton-proton collider. We present here results for 3 ab−1 as a conservative estimate, and so as to
be directly comparable with the current literature.
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given 3 ab−1 integrated luminosity. The minimum production cross section yielding & 10

events is roughly ∼ 10−2 fb, corresponding to mq̃ + mg̃ ∼ 35 TeV (mq̃ + mW̃ ∼ 15 TeV)

for squark-gluino (squark-Wino) associated production. For such masses, good background

discrimination is achieved with hard leading jet pT cuts for squark-gluino production, and

with hard /ET/
√
HT cuts for squark-Wino/Bino production. Our strategy is as follows: for

each analysis we impose a set of baseline cuts catered to a set of spectra. We then scan

over leading jet pT and /ET cuts (squark-gluino) or /ET/
√
HT cuts (squark-Wino/Bino) to

maximize significance σ, defined by

σ ≡ S√
1 +B + λ2B2 + γ2S2

. (3.1)

S (B) is the number of signal (background) events passing cuts, and γ (λ) parameterize

systematic uncertainties associated with signal (background) normalization. Details of the

event generation and collider simulation are given in Appendix D. Like most future collider

studies, our simulated σ values are subject to O(1) uncertainties associated with e.g. the

performance of a detector which is yet to be designed. However, this translates to a compar-

atively mild uncertainty for the predicted reach, due to the rapid decrease of the production

cross sections as a function of increasing mass.

Simplified Models

In the analyses presented below, we consider the following SUSY simplified models:

Model Particle Content Fig.

Squark-Gluino q̃, g̃, χ0
1 = B̃

Non-compressed M1 = 100 GeV Fig. 3.1

Compressed mg̃ −mχ0
1

= 15 GeV Fig. 3.2

Squark-Wino LSP q̃, χ0
1 = W̃ Fig. 3.3

Squark-Bino LSP q̃, χ0
1 = B̃ Fig. 3.4

Squark-Wino NLSP q̃, NLSP = W̃ , χ0
1 = B̃/H̃ Fig. 3.5

Split M1/µ = 100 GeV

Non-split mW̃ −mχ0
1

= 200 GeV

Table 3.1: Simplified models considered in this chapter.

which encompass a wide array of potential event topologies arising from squark-gaugino
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production. We take degenerate first and second generation squark masses, and decouple

all sparticles not listed in Table 3.1. For the squark-gluino non-compressed model, our

results are not sensitive to the choice of M1 = 100 GeV as the LSP is effectively massless

for mχ0
1
� mg̃. The squark-gluino compressed model is motivated by the gluino-neutralino

coannihilation region [100, 101]. We choose mg̃ −mχ0
1

= 15 GeV as a fiducial value, though

the leading jet pT -based analysis presented below is robust as long as mg̃ −mχ0
1
� mg̃. For

the Wino NLSP models, we choose two spectra with differing LSP masses to illustrate the

effects of increasing the NLSP-LSP mass splitting. In the “non-split” case, we have chosen

an NLSP-LSP mass splitting of 200 GeV so that the NLSP decays to the LSP + on-shell

SM bosons.

3.3 Squark-Gluino Associated Production

In this section we discuss squark-gluino associated production. As this process only involves

αs, it can be important at a
√
s = 100 TeV proton-proton collider even if mq̃+mg̃ & 35 TeV.

If a heavy squark of order tens of TeV is produced in association with a gluino of mass . 10

TeV, the leading jet from the squark decay will be very hard, pT ∼ mq̃/2. Furthermore the

neutralino resulting from the decay chain q̃ → qg̃ → 3 qχ0 will be very boosted, resulting in

large /ET . These kinematic features result in a striking collider signature with very low SM

background.

We explore the reach in squark-gluino production at a
√
s = 100 TeV proton-proton

collider for the two types of squark-gluino spectra listed in Table 3.1. For simplicity we

assume the LSP is a Bino, and all other neutralinos/charginos are decoupled. Relaxing

this assumption allows squark decays to intermediate neutralinos/charginos, resulting in

additional final state objects which can be used for background discrimination.

For both non-compressed and compressed spectra, we impose the following baseline cuts:

HT > 10 TeV, /ET/
√
HT > 20 GeV1/2

while for the non-compressed spectra we impose the additional cut:

8 jets with pT > 50 (150) GeV

The softer cut is optimized for heavier squarks and lighter gluinos, while the harder cut is

optimized for lighter squarks and heavier gluinos. Upon imposing these baseline cuts, we
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then scan over leading jet pT and /ET cuts in order to maximize significance σ as defined

in (3.1). We have verified that the optimal cuts render any “background” from gluino pair

production subdominant to the SM background.

The results of this analysis are depicted in Figs. 3.1 and 3.2, which show the reach of a
√
s = 100 TeV proton-proton collider with 3 ab−1 of integrated luminosity. The solid, long

dashed and short dashed lines correspond respectively to systematic uncertainties of 5, 10

and 15% for the signal normalization, while the background systematic uncertainty is fixed

to 20%. The projected reach is fairly insensitive to background systematic uncertainties, as

the number of background events is quite low due to the hard leading jet pT and /ET cuts.

As is evident from Figs. 3.1 and 3.2, a
√
s = 100 TeV collider with 3 ab−1 integrated

luminosity can begin probing much of the “mini-split” parameter space for sufficiently low

gluino masses. Final states in the compressed spectra yield more /ET compared to the non-

compressed spectra, due to the decay of the boosted gluino that arose from the decay of

the massive squark, resulting in the greater reach depicted in Figure 3.2. Notably, with 3

ab−1 integrated luminosity the entire neutralino-gluino coannihilation region (whose upper

endpoint lies at mg̃ ≈ mχ̃ ≈ 8 TeV [101]) can be excluded if the squark masses are . 32

TeV.

It is worthwhile to compare Figs. 3.1 and 3.2 to projected reaches for gluino pair produc-

tion. Our results for non-compressed spectra have some overlap with [86]2, which considered

both pair production and associated production in similar spectra with squark masses . 24

TeV. The results of [86] indicate that gluino pair production will likely be the discovery

channel for colored superpartners for the spectra in Fig. 3.1 provided mg̃ . 14 TeV. On the

other hand, if the gluino and the LSP are nearly degenerate, searches for gluino pair produc-

tion rapidly lose sensitivity [86]. Thus if the gluino and the LSP are nearly degenerate as in

the gluino-neutralino coannihilation scenario, squark-gluino associated production would be

a potential discovery channel for colored superpartners.

2A search optimizing over HT cuts as opposed to leading jet pT cuts was done in [86]. For the spectra in
Fig. 3.1, the HT cut based analysis has a 3-5 TeV weaker reach in mq̃ + mg̃ with respect to squark-gluino
associated production.
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3.4 Squark-Wino and Squark-Bino Associated Produc-

tion

In this section we discuss squark-Wino and squark-Bino associated production. These chan-

nels are particularly important if squark-gluino associated production is inaccessible due to a

sufficiently heavy gluino mass3. The event topology is qualitatively similar to squark-gluino

production, as the squark will decay to a boosted jet and boosted Wino/Bino while the

associated Wino/Bino is produced at relatively low pT . However as noted in Section 3.2,

associated squark-Wino/Bino production probes significantly lighter squark masses than

squark-gluino production. Consequently, multi-TeV leading jet pT and /ET cuts are not as

effective for background discrimination in squark-Wino/Bino production. Instead, we find

that hard /ET/
√
HT cuts are quite effective at reducing the tt+ jets and vector boson + jets

background without rejecting too many signal events.

In order to determine the projected reach for squark-Wino/Bino production at a
√
s =

100 TeV pp collider with 3 ab−1 integrated luminosity, we impose the following baseline cuts:

pT (j1) > 2 TeV, /ET > 3 TeV, ∆φ(j, /ET ) > 0.5

where the ∆φ cut is imposed only on the two leading jets. We then scan over /ET/
√
HT cuts

for each spectrum to maximize σ as defined in (3.1).

Our focus is on spectra listed in Table 3.1 where at most one of the gaugino/Higgsino

mass parameters M1, M2, µ are . 1 TeV, such that the gauge eigenstates are approxi-

mately aligned with the mass eigenstates in the neutralino/chargino sectors. We omit the

“compressed” region mq̃ −mχ̃ < 1 TeV, as in this region the event topology of associated

squark-Wino/Bino production is similar to squark pair production, only with a substantially

smaller cross section. Assuming a systematic uncertainty of 10% for the signal normaliza-

tion, the results of the above analysis for the various spectra in Table 3.1 are depicted in

Figures 3.3-3.5.

Figure 3.3 shows the reach for squark-Wino production with a pure Wino LSP; the solid,

short-dashed, long-dashed lines correspond to background uncertainties of 5%, 10% and 15

%. In Figure 3.4 we show the reach for squark-Bino production with a pure Bino LSP.

The solid, short-dashed, long-dashed lines correspond to background systematic uncertain-

ties of 4%, 5% and 6%. Compared to squark-Wino production, the reach for squark-Bino

3In the MSSM, a gluino which is hierarchically heavier than the squarks requires fine-tuning of the soft
masses. This can be avoided however in a model with Dirac gluinos [102, 103].
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associated production is quite sensitive to background uncertainties. This is because the

5σ contours for squark-Bino production correspond to significantly lower masses due to the

smaller production cross-section, resulting in lower optimal /ET/
√
HT cuts and thus larger

backgrounds.

In Figure 3.5 we show the reach of the /ET/
√
HT based monojet analysis for squark-Wino

production with a Wino NLSP, with background uncertainties fixed to be 5%. The green

lines correspond to MNLSP−MLSP = 200 GeV, while the red lines correspond to MLSP = 100

GeV. For comparison, the blue lines show the reach for squark-Wino production when the

Wino is the LSP. Away from the mq̃ ∼ mW̃ region the sensitivity is lower for a Wino NLSP,

as /ET is being traded for W,Z and higgs bosons arising from the NLSP→ LSP decay. Note

that the analysis considered here does not exploit the additional SM bosons present in the

Wino NLSP scenario. Thus the reach for the Wino NLSP scenario depicted in Figure 3.5

applies regardless of whether the LSP is Bino-like or Higgsino-like. Exploiting the additional

SM bosons could extend the reach for the Wino NLSP scenario, so the result presented here

is a conservative estimate.

We close this section by comparing the results of Figures 3.3-3.5 to studies of pair pro-

duction at
√
s = 100 TeV. Given 3 ab−1 integrated luminosity, squark pair production can

discover squark masses up to 2.5 TeV [86] (assuming a conservative 20 % background sys-

tematic uncertainty). In the pure Wino case, searches in VBF channels can discover Winos

up to 1.1 TeV [96]. Disappearing tracks can also provide a collider probe of pure Wino LSP

pair production. Extrapolating the disappearing tracks background from the 8 TeV ATLAS

study [104], the projected reach is 2-3 TeV for pure Winos [90]. However, the data-driven

disappearing-track background at 100 TeV is difficult to estimate, making this projected

reach less reliable than the reach in the VBF channel or the reach depicted in Figure 3.3.

Finally, pair production of Wino NLSPs has been considered in [93, 94]. Assuming no sys-

tematic uncertainties, for a Higgsino LSP the project discovery reach is 2.3 TeV, while for a

Bino LSP the reach is 1-3 TeV depending on the NLSP→ Z LSP branching ratio. Compar-

ing these reaches to Figures 3.3-3.5, we see that squark-Wino/Bino associated production

can provide a SUSY discovery mode provided the squark is not too much heavier than the

Wino/Bino.
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3.5 Summary

In this chapter, we have examined in this chapter the kinematic reach for squark-gaugino

associated production at a 100 TeV proton-proton collider. We studied a variety of simplified

models listed in Table 3.1 with heavier scalars, with relatively lighter gauginos, as motivated

previously. In models where squark pair production is kinematically inaccessible at a 100

TeV collider, squark-gaugino associated production may be the discovery mode for SUSY in

a large portion of parameter space.

For squark-gluino production withO(TeV) gluinos, the discovery reach for first-generation

squarks can be up to 40 TeV for compressed spectra, where the LSP is 15 GeV lighter than

the gluino, and up to 32 TeV for non-compressed spectra, subject to systematic uncer-

tainties. For squark-Wino LSP production, we have shown that the discovery reach for the

Wino slightly exceeds 4 TeV for squarks of ∼ 8 TeV, subject to systematic uncertainties. For

squark-Wino NLSP production we have analysed two scenarios: one where the NLSP-LSP

mass difference is 200 GeV, and one where the LSP mass is ∼ 100 GeV. In the first scenario,

the Wino discovery reach is just under 4 TeV for squarks of ∼ 8 TeV. In the second scenario,

the reach extends up to 6 TeV. Our results in the Wino-NLSP scenario are insensitive to

the nature of the LSP. For . 10 TeV squark masses, squark-Wino associated production

marks a significant increase in the Wino reach compared to pair production channels. We

also consider squark-Bino associated production, and find that the kinematic reach for the

Bino is up to 2 TeV for squarks of mass ∼ 6 TeV, subject to systematic uncertainties.

The results presented here raise the exciting prospect of directly probing a region of

parameter space that so far has been the exclusive domain of indirect searches through low-

energy FCNC observables. The squark-gaugino associated production channels studied here,

coupled with studies of Supersymmetry at 100 TeV colliders already undertaken [86, 92, 90,

89, 19, 93, 94, 95, 96, 97], provide a strong physics case for the construction of such a collider.

This chapter concludes the study of the collider phenomenology of supersymmetric models

with heavier scalars. In the next chapter, we will move on to studying low-energy flavor

observables of similar models.
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Figure 3.1: Experimental reach for squark-gluino associated production at a 100 TeV proton-
proton collider with 3 ab−1 integrated luminosity, for spectra with a ∼ 100 GeV LSP mass.
The solid, long dashed and short dashed lines are for and 5, 10, 15% systematic uncertainty
for the signal respectively. Blue lines indicate 5σ discovery reach and red lines indicate 95%
exclusion limits. We assume 20% systematic uncertainty in the background. Below 20 TeV
in mq̃ is discussed in [86].
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Figure 3.2: Experimental reach for squark-gluino associated production at a 100 TeV proton-
proton collider with 3 ab−1 integrated luminosity for spectra with mg̃ −mχ0

1
= 15 GeV. The

different lines follow the conventions of Fig. 3.1. We assume 20% systematic uncertainty in
the background.
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Figure 3.3: Experimental reach for squark-Wino LSP associated production at a 100 TeV
proton-proton collider with 3 ab−1 integrated luminosity. The solid, long dashed and short
dashed lines are for 5, 10, 15% systematic uncertainty for the background respectively. Blue
lines indicate 5σ discovery reach and red lines indicate 95% exclusion limits. We do not
consider the grey shaded region (mq̃ − mW̃ < 1 TeV) for reasons given in the text. We
assume 10% systematic uncertainty for the signal.
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Figure 3.4: Experimental reach for squark-Bino LSP associated production at a 100 TeV
proton-proton collider with 3 ab−1 integrated luminosity. The solid, long dashed and short
dashed lines are for and 4, 5, 6% systematic uncertainty for the background respectively.
Blue lines indicate 5σ discovery reach and red lines indicate 95% exclusion limits. We do
not consider the grey shaded region (mq̃ −mB̃ < 1 TeV) for reasons given in the text. We
assume 10% systematic uncertainty in the signal.

47



6000 8000 10 000 12 000 14 000 16 000

1000

2000

3000

4000

5000

6000

mq
� HGeVL

m
W�

HG
e
V

L

Figure 3.5: Experimental reach for squark-Wino associated production at a 100 TeV proton-
proton collider with 3 ab−1 integrated luminosity. Solid lines indicate 5σ discovery reach,
and dotted lines indicate 95% exclusion limits. Blue curves correspond to a Wino LSP,
while the green (red) curves correspond to a Wino NLSP with MNLSP −MLSP = 200 GeV
(MLSP ∼ 100 GeV). The results are applicable for both Bino- and Higgsino-like LSP. We do
not consider the grey shaded region (mq̃ −mW̃ < 1 TeV) for reasons given in the text. We
assume 5% systematic uncertainty in the background and 10% in the signal.
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Chapter 4

Impact of Future Lepton Flavor

Violation Measurements in the

Minimal Supersymmetric Standard

Model

4.1 Introduction

Lepton flavor violation (LFV) and quark flavor changing neutral currents (FCNCs) are pow-

erful probes of new physics, reaching scales well beyond those accessible at present colliders.

A significant effort is underway to improve sensitivity to rare LFV processes such as µ→ eγ

and µ to e conversion (see Table 4.1). However, for example, the neutral kaon mass dif-

ference places strong bounds on flavor violation in the quark sector, and in some models

LFV and quark FCNCs are related to one another. It is interesting to explore under what

conditions new LFV experiments will be the most sensitive probe of new physics, supersed-

ing limits from the quark sector. We discuss this question in the context of the Minimal

Supersymmetric Standard Model (MSSM).

Many studies of flavor violation within the MSSM exist, see e.g. [105, 106, 107, 108,

109, 110, 111, 112, 113, 114, 115] for overviews. Indeed, most of the calculations of the rare

processes we explore here have appeared elsewhere in the literature. Our focus will be a

comparison between LFV and quark FCNCs, trying to get a feel for the relative power of

these constraints.

Supersymmetry (SUSY) breaking scalar masses can receive contributions from operators
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of the form

K ∼ κij
M2

X†aXaΦ
†
iΦj (4.1)

in the Kähler potential. Here Φ are MSSM superfields with generation indices i, j, and Xa

are fields associated with the breaking of SUSY with non-vanishing FX , and M is associated

with the mediation scale of SUSY breaking. Such operators can induce off-diagonal terms in

the scalar mass matrices, given by m2
ij = κij〈FXa〉2/M2. These terms are a source of flavor

violation beyond the Standard Model. The size and form of these off-diagonal contributions

depend on the particulars of the UV theory that induces this non-renomalizable operator.

It is possible the SUSY breaking respects a Grand Unified Theory (GUT) structure, in

which case the quark and lepton flavor violation can be related. However, even in this case

quark and lepton superfields residing in different representations may feel SUSY breaking

differently. For example, in an SU(5) GUT, since the left-handed (LH) lepton superfields

reside in the 5̄ while the LH quark superfields reside in the 10, this leads to the possibility

of a mismatch between contributions to LFV and quark FCNCs. (See for example [116] and

discussion in [113].)

It is also possible that off-diagonal mass terms for squarks and sleptons are a priori

unrelated. Indeed, even if initial flavor violation is related by a symmetry, a mismatch

between squark and slepton off-diagonal mass terms may arise once neutrino masses are

incorporated into the theory. The inclusion of neutrino Yukawa couplings may lead to sizeable

entries in the left-handed slepton mass matrix due to Renormalisation Group Equation

(RGE) running from the GUT scale down to the right-handed neutrino scale [117, 118, 119,

120, 121, 122]. Such models naturally lead to non-zero LFV while not contributing to quark

FCNCs. This approach has been considered in various contexts, including SO(10) [118, 123]

and SU(5) GUT models [117]. The size of these effects are model dependent, but can be

large. But even in the case where the quark and lepton flavor violation are decoupled, it is

of interest to understand just how different the allowed flavor violation is, consistent with

current and upcoming experiments.

New phases in the SUSY breaking parameters would contribute to CP-violating processes,

such as εK . If the phases are O(1), extremely strong bounds exist, forcing scalars to be in

the PeV regime [113]. It is possible that searches for electric dipole moments (EDMs) could

eventually provide constraints competitive with those from εK , a possibility that has been

studied recently in, e.g. [137, 4, 3, 138, 139, 113, 20]. However, it is possible a mechanism

renders the phases in SUSY breaking parameters small. Moreover, LFV measurements such
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Observable Exp. Measurement SM prediction

∆mK (3.484± 0.006)× 10−12 MeV [124] (3.19± 0.41(stat.)±0.96(sys.))× 10−12 MeV [1]
∆mBd (3.337± 0.033)× 10−10 MeV [124] (3.48± 0.52)× 10−10 MeV [125]
sin 2βd 0.682± 0.019 [126] 0.748+0.030

−0.032 [127]
∆mBs (1.1691± 0.0014)× 10−8 MeV [124] (1.2± 0.18)× 10−8 MeV [125]
sin 2βs −0.015± 0.035 [126] −0.03761+0.00073

−0.00082 [127]

Observable Current Limit (90% C.L.) Future sensitivity (90% C.L.)

BR(µ→ eγ) 4.2× 10−13 [128] 6× 10−14 [129]
BR(τ → eγ) 3.3× 10−8 [130] 10−9 [131]
BR(τ → µγ) 4.4× 10−8 [130] 10−9 [131]
BR(µ→ e)Au 7.0× 10−13 [132]
BR(µ→ e)Al 10−16 [133]
BR(µ→ 3e) 1.0× 10−12 [134] 10−16 [135, 136]

Table 4.1: The experimental measurements and SM predictions for quark observables and
the current and future sensitivities of lepton flavor violating processes. Long distance effects
in ∆mK are difficult to quantify. The quoted SM ∆mK value is a recent Lattice QCD
calculation [1] which uses unphysical values for the pion, kaon and charm quark masses,
and as such should not be taken as precise. So, in our numerical work we allow the SUSY
contribution to fully saturate the experimental value.

as µ→ eγ are CP-conserving, so a true “apples to apples” comparison is with CP-conserving

observables in the quark sector. In this analysis we will restrict ourselves to the assumption

that all phases are zero (or at least negligibly small). In the kaon sector, for example, the

limits from ∆MK supersede those from εK for phases . 10−2.

In this work we consider two scenarios and discuss the interplay between quark FCNCs

and LFV in each. In the first, we use the observed Higgs boson mass of 125 GeV as motivation

to consider scalar masses that may be (much) heavier than a few TeV, and could fall in the

10’s of TeV to even a PeV range [50, 49, 52, 51]. Additionally, having heavy scalars allows

for off-diagonal masses to be relatively large, potentially up to O(1) of the diagonal masses,

thus lessening the need for a mechanism to suppress flavor violation. At the same time,

the observed abundance of dark matter (DM) indicates either gaugino masses Mi or the

Higgsino mass parameter µ should be near the TeV scale (see, for example, [98, 140, 141]).

So, in the first scenario, we imagine a modest hierarchy between the fermionic and scalar

superpartners. In the second scenario, we consider the possibility that all superpartners lie

close to the TeV scale.

In Sections 4.2 and 4.3, we review the structure of the effective Hamiltonians which

contribute to quark FCNCs and LFV in the MSSM. In the quark sector, our primary focus is

on meson mixing. For LFV we discuss `j → `iγ decays and µ to e conversion. (We comment
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briefly on the b → sγ transition in Sec. 4.2.3). We discuss the parametric dependencies

of the various operators entering the effective Hamiltonian for each process we consider,

and comment on what parameters are most important in what regimes. We discuss the

dependence of both quark FCNCs and LFV on Left-Left (LL), Right-Right (RR) and LR

mixing. A goal of these sections is to highlight which insertions are most constrained and

how this may differ between the quark and lepton sector, an issue which we quantify further

in Section 4.5. In Section 4.4 we analyse in more depth how the various gaugino masses Mi

and the µ-term impact the strength of quark FCNC constraints relative to LFV bounds. The

relative power of LFV and quark FCNCs is summarized in Figs. 4.7 – 4.14, which represent

the main results of this chapter. Finally, in Section 4.6 we summarise the results of our

analysis, and comment on the implications.

4.2 Anatomy of quark FCNC processes

In this section we review contributions to quark flavor violating observables. In the kaon

sector, since we concentrate on CP-conserving new physics, our focus is on ∆MK . In the B

sector, even if new physics contributions are CP-conserving, measurements of CP-violating

quantities such as sin 2βd are relevant. We review our treatment of B-mixing in Sec. 4.2.2.

We briefly comment on ∆F = 1 constraints in 4.2.3.

4.2.1 ∆F = 2 transitions

The dominant SUSY contribution to meson oscillations is typically gluino-squark box dia-

grams.1 In these processes, one may use the mass insertion approximation for sufficiently

small off-diagonal elements in the squark mass matrix, with these insertions appearing on

the internal squark lines, shown as crosses in Fig. 4.1 for kaon oscillation. We take the

squark mass-squared matrix to be given by

M2
q̃ =

(
m̃2
q(1 + δijLL) m̃2

q(δ
ij
LR)

m̃2
q(δ

ij
RL) m̃2

q(1 + δijRR)

)
, (4.2)

where the indices i, j = 1, 2, 3 run over generations. An analogous convention is used for

sleptons.

1For large values of the ratio of the vacuum expectation values of the two Higgs doublets tanβ, an
additional heavy Higgs-mediated contribution to meson oscillations (see, e.g., [111]) may be relevant (tanβ ∼
50 for mA ∼ m̃q).
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Figure 4.1: Typical kaon mixing diagram induced by SUSY. The crosses represent flavor-
violating mass insertions.

The interaction can be described by the corresponding effective Hamiltonian

Heff =
5∑
i=1

CiQi +
3∑
i=1

C̃iQ̃i + h.c. (4.3)

where the Ci are the Wilson coefficients for the dimension-6 operators Qi

Q1 = (d̄αLγµs
α
L)(d̄βLγµs

β
L), Q2 = (d̄αRs

α
L)(d̄βRs

β
L), Q3 = (d̄αRs

β
L)(d̄βRs

α
L),

Q4 = (d̄αRs
α
L)(d̄βLs

β
R), Q5 = (d̄αRs

β
L)(d̄βLs

α
R) (4.4)

and Q̃i given by interchanging L↔ R for i = 1, 2, 3. For the numerical values of the hadronic

matrix elements 〈K̄0|Qi|K0〉 we use the values for the bag factors Bi(2 GeV) from [142], the

lattice result for fK from [143], and the reported kaon mass mK from [124]. Meanwhile

for the B-meson hadronic matrix elements, we use the values for the bag factors Bi(mb)

and the lattice results for fB, fBs from [144], and the reported B-meson masses from [124].

Expressions for the Wilson coefficients including the Leading Order QCD corrections [145]

are reproduced in Appendix E.

In Fig. 4.2, we display the contribution to meson mixing assuming that δLL = δRR. δLR is

set to zero – in any case its contribution is expected to be subdominant, see Eq. (4.6) below.

In both the
m2
g̃

m̃2
q
≡ xg̃ � 1 and xg̃ ' 1 regions, for equal sized insertions, the contribution

to ∆F = 2 processes is dominated by the operator Q4 with coefficient C4. Notably, this

dominant operator depends on the product δLL × δRR (rather than δ2
LL or δ2

RR), so can be

varied relative to the others. As we will see, the relative size of δLL and δRR will impact the

relative strength of of the quark flavor violation and LFV probes.

LR insertions are not expected to be relevant for ∆F = 2 transitions for large (& TeV)

squark masses. The LR insertions arise due to off-diagonal terms in the scalar trilinear
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Figure 4.2: The products Ci(µ)Qi for kaon oscillations, for insertions δLL = δRR = 0.3,
δLR = δRL = 0, and m̃q = 20 TeV (we set µ = mc). Shown here are C1Q1 (blue), C4Q4 (red)
and C5Q5 (green), demonstrating the domination of C4Q4 for all values of xg̃. Not shown
are C2Q2 and C3Q3, which depend only on LR insertions, set to zero here. In any case, these
are expected to be subdominant, see text. The numerical values for the Qi are obtained
as described in the text. The relative importance of the CiQi is the same for B-meson
oscillations.
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couplings Aij and have the form

δijLR ∼
mqA

ij

m̃2
q

. (4.5)

The result of the quark mass suppression is that A-terms must be very large to affect meson

mixing:

A12

m̃q

& 170
m̃q

TeV

A13

m̃q

& 5
m̃q

TeV

A23

m̃q

& 50
m̃q

TeV
. (4.6)

Such large A-terms would not be expected unless the SUSY-breaking spurion were charged

under the flavor symmetry, a possibility which we do not consider further.

While LR insertions are unlikely to be relevant for meson mixing as described above,

they are potentially relevant for the ∆F = 1 transition of b→ sγ (which we discuss later in

Section 4.2.3).

4.2.2 Treatment of constraints from B-meson observables

B-meson mixing provides a total of four constraints on the new SUSY contributions. For

each of the Bq mesons (q = d, s) there are the measured mass difference ∆mBq as well as the

measurement of the CP violation in the mixing.

In the Bd sector, the observed CP violation in mixing is given by:

sin 2φd =
sin 2βd + rd sin θd

CBd
, (4.7)

where rd =
|〈B̄d|HSUSYeff |Bd〉|
|〈B̄d|HSMeff |Bd〉|

, θd is a potential new CP-violating phase, which we take to vanish,

and

CBd =
(
1 + r2

d + rd cos(2βd − θd)
)1/2

. (4.8)

Here, sin 2βd is the SM prediction, for which we take the latest (Summer 2015) CKMfitter

collaboration global fit [127]2 Similarly in the Bs sector, we use the latest value of sin 2βs from

the CKMfitter collaboration global fit, and an expression for sin 2φs analogous to Eq. (4.7),

with the expectation that the SM prediction is sin 2φs = sin 2βs. We then calculate the χ2

2When constraining the SUSY contribution, we use the global fit as the central value for SψKs rather
than the directly experimentally measured value. They agree within 2σ.
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values of the combined constraints from the mass difference ∆mBq and sin 2βq to find the

excluded regions in our various plots.

While the experimental precision on both sin 2φd and sin 2φs is expected to improve [146],

improvements in theoretical precision are less easy to forecast. If the expected experimental

improvement is matched by theory, this will result in O(1) modifications of the bounds on

the allowed δ. In our numerical results, we show the expected improvement assuming the

theoretical precision increases by a factor of two.

4.2.3 Treatment of ∆F = 1 transitions

The ∆F = 1 decay of b→ sγ is known to impose strong constraints on the 2− 3 sector for

TeV-scale superpartners (see for example [147, 148, 149, 111]). Particularly when imposing

constraints on LR mass insertions, it is necessary to include the results from b → sγ to

obtain the constraints on quark 2− 3 transitions. Constraints on LL and RR insertions can

also be derived, and are also relevant. Our procedure for calculating the branching ratio is

the following: we take the leading contributions to the operators C7, C8, C̃7, C̃8 from heavy

Higgs boson and gluino diagrams from [111], and use the expression in [150, 151] to calculate

the branching ratio for generic new physics contributions to the above listed operators. We

assume that the heavy Higgs bosons are degenerate with the squarks and sleptons. We

then impose that the branching ratio be within the 90% confidence interval given the latest

experimental results [126], and the theoretical estimate for the branching ratio at NNLO

in the SM [152, 153]. For simplicity, we assume vanishing flavor violation in the up squark

sector (which affects potential chargino diagrams, which are usually subdominant in any

case). For heavy Higgs boson masses comparable to squark masses, we find the charged

Higgs boson diagram to be smaller than, but not negligibly small compared with the gluino

contribution, when δ is near its experimentally allowed value. We note that the sign of the

product Mg̃A
23 which appears in the gluino diagram is physical.

In the future, sensitivity of the High Luminosity LHC to flavor changing top quark decays,

t→ hq (q = u, c), where h is the Higgs boson, is expected to reach BR(t→ hq). 2× 10−4

[154, 155] with 3 ab−1. Recent studies (see for example [156] and references therein) indicate

that for typical regions of SUSY parameter space, the future sensitivity will be insufficient

to probe these rare decays in the MSSM. For this reason we do not compare here the top

quark FCNC with the relevant LFV process, h → τµ. This LFV Higgs boson decay has

been studied in the context of the MSSM in, for example, [157, 158].
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4.3 Anatomy of LFV processes

In this section we review supersymmetric contributions to the processes `i → `jγ and µ→ e

conversion in nuclei. We discuss what contributions dominate in what regimes and comment

on the dependence on the gaugino masses and µ.

4.3.1 `i → `jγ

The branching ratio of `i → `jγ is

BR(`i → `jγ) =
48π3αem
G2
F

(
|AL|2 + |AR|2

)
, (4.9)

where the amplitudes AL,R are the coefficients of higher-dimensional operators in the effective

Hamiltonian

Heff = e
m`i

2

(
AL ¯̀

jσ
µνPL`i + AR ¯̀

jσ
µνPR`i

)
Fµν . (4.10)

The dominant contribution to AL arises from Wino loops [113]

AW̃L =
α2

4π

1

m̃2
`

δ
`i`j
LL

[
−1

8
g1(xW̃ ) + g2(xW̃ , xµ) + sgn(µM2)

√
xW̃xµtβg3(xW̃ , xµ)

]
, (4.11)

where the gi are loop functions given in Appendix F, and xW̃ , (xµ) ≡ m2
W̃

m̃2
`
,
(
µ2

m̃2
`

)
. We have

abbreviated tan β as tβ. If the sign of µM2 is positive (negative), AW̃L exhibits destructive

(constructive) interference. We will refer to each of these cases in the following analysis.

There are additional contributions to AL and AR due to a Bino loop [159, 111]

AB̃L ⊃
α1

4π

1

m̃2
`

δ
`i`j
LL sgn(µM1)

√
xB̃xµtβ

[
f3n(xB̃) +

f2n(xB̃, xµ)

xµ − xB̃

]
, (4.12)

AB̃R ⊃
α1

4π

1

m̃2
`

δ
`i`j
RR sgn(µM1)

√
xB̃xµtβ

[
f3n(xB̃)− 2f2n(xB̃, xµ)

xµ − xB̃

]
, (4.13)

with the f2,3n are loop functions given in Appendix F and xB̃ ≡
m2
B̃

m̃2
`
.

While the above contributions to AR and AL apply to all `i → `jγ processes, there is

an additional diagram which gives an important contribution for µ → eγ only, arising due

to a Bino loop with two flavor changing insertions combined with a flavor-conserving LR
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insertion on an internal stau line [159, 113]. The flavor-conserving insertion results in an

enhancement of mτ/mµ:

AB̃R ⊃
α1

4π

(
mτ

mµ

)
sgn(µM1)

√
xB̃xµtβ

m̃2
`

f4n(xB̃)δµτLLδ
τe
RR , (4.14)

where f4n(xB̃) is a loop function that can be found in Appendix F. The analogous expression

for AL is found by taking Eq. (4.14) and interchanging the LL and RR insertions. This

diagram is of particular interest if a flavor symmetry suppresses 1 − 2 insertions, since Eq.

(4.14) only depends on 1− 3 and 2− 3 insertions.

In Section 4.2 we saw that meson mixing did not put meaningful constraints on off-

diagonal trilinear terms even for TeV scale scalars. In contrast, the LR mixing contributions

to LFV may be non-negligible. Consider the contribution to radiative lepton decay arising

from a Bino loop, reproduced below [159, 111]

AB̃L ⊃
α1

2π

δ
`i`j
RL

m̃`

√
xB̃
mµ

f2n(xB̃) , (4.15)

with AB̃R given by the δLR insertion. For xB̃ ∼ 1, we see that this is only suppressed by one

power of m̃`. Since δijLR arises due to terms of the form

δijLR '
mfA

ij

m̃2
`

, (4.16)

we can use these expressions to constrain the ratio of Aij/m̃` for a given value of m̃`.

In Fig. 4.3 we show the relative contributions to µ→ eγ (arbitrary units) for comparable

insertions: δµeLL = δµeRR = δµτLLδ
τe
RR = 0.3. The gi and fi correspond to the loop functions

introduced in Eqs. (4.11)–(4.14). tan β is set to 10. The dominant contributions to µ→ eγ

are from the Wino-Higgsino mixing diagrams, denoted by g2 and g3, at small xi. Since both

of these only depend on δLL (see Eqn. (4.11)), at small xi, µ→ eγ will place constraints on

δLL, but not δRR. As xi approaches 1, the Bino contributions porportional to fin can become

important. The dominant operator is that with the LR flavor-conserving insertion, as long

as δµτδτe is not too suppressed relative to the single δµe insertion.

In Fig. 4.3, we see that the largest branching ratio of µ → eγ is obtained in the small

xW̃ , xµ, xB̃ regime. While the figure shown sets tan β = 10, since the dominant contributions

are proportional to g3 (small x) and f4n (large x) both of which are also proportional to tan β,

the scaling is straightforward. The statement was also found to apply for maximising the
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Figure 4.3: The relative importance of various operators to the branching ratio, as well as the
total branching ratio scaled up. This shows that for small x (with all being set equal), the
loop functions g2 and g3 dominate, while for larger values the Bino loop functions f2n, f3n,
and f4n become important. We set m̃` = 20 TeV, and we set δµeLL = δµeRR = δµτLLδ

τe
RR = 0.3 so

that the effective δµe is the same for each operator. tan β = 10.
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branching ratios of τ → µγ and τ → eγ. This is to be contrasted with Fig. 4.2 where small x

did not enhance the meson mixing. Thus, we expect LFV to be a relatively powerful probe

in the small x regime. Given the non-trivial xi dependence, however, we will give a more

detailed study of the dependence on combinations of xB̃, xW̃ and xµ in Section 4.4.

4.3.2 µ→ e conversion in Nuclei

We decompose the contributions to µ→ e conversion.The branching ratio is given by

BR(µ→ e)N =

{∣∣∣∣14eA∗LD + 2(2guL,V + gdL,V )V (p) + 2(guL,V + 2gdL,V )V (n)

∣∣∣∣2
+

∣∣∣∣14eA∗RD + 2(2guR,V + gdR,V )V (p) + 2(guR,V + 2gdR,V )V (n)

∣∣∣∣2} 1

ωcapture
, (4.17)

where ωcapture is the muon capture rate of the nucleus. The AL(R) are the same dipole

coefficients that were given in Section 4.3.1, and gu,dL(R),V are the penguin- and box-type Wilson

coefficients coupling to up or down-type quarks. The terms D, V (p) and V (n) are overlap

integrals calculated in [160] whose values are presented in Appendix G for convenience.

At xW̃ ∼ 1, the branching ratio for µ→ e conversion is dominated by the dipole contri-

butions AL,R. In this limit there is a simple relation between the µ → eγ branching ratio

and that of µ→ e conversion, namely:

BR(µ→ e)N '
G2
FD

2

192π2ωcapture
BR(µ→ eγ) ∼

αem
3

BR(µ→ eγ), when N is Aluminium,

αem
2

BR(µ→ eγ), when N is Gold.

(4.18)

This will apply to our analysis in the case of TeV scale scalars. Given the future experimental

improvements on measuring both µ → e conversion and µ → eγ (see Tab. 4.1), in the case

of dipole domination, conversion can impose limits on LFV insertions comparable to those

from µ→ eγ.

The Wilson coefficients gu,dL(R),V can be decomposed into the box-, γ-penguin and Z-

penguin diagram contributions as

gqL(R)V = gq,boxL(R)V + gq,γL(R)V + gq,ZL(R)V . (4.19)

Wino loops give the dominant contributions to the the gqLV . Since the operators correspond-
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ing to these coefficients become important relative to the dipole contribution at small xi, we

present here the leading contributions in that regime [113].

5gu,boxLV = gd,boxLV =
g4

2

(4π)2m̃2
q

δµeLL
5

4
f

(
m̃2
`

m̃2
q

)
, (4.20)

gu,γ−peng.LV = −2gd,γ−peng.LV =
−2e2g2

2

3(4π)2m̃2
`

δµeLLfγ,L(xW̃ ) (4.21)

' −2e2g2
2

(4π)2m̃2
`

δµeLL

{
1

4
+

1

9
log (xW̃ )

}
, (4.22)

where the second line is in the limit of small xB̃, xW̃ � 1.

gu,Z−peng.LV =
−
(
1− 4

3
sin2 θW

)(
1− 8

3
sin2 θW

) gd,Z−peng.LV

=
−g4

2

(4π)2m̃2
`

δµeLL
1

16

(
1− 8

3
sin2 θW

)
×
{

cos2 βf1 (xW̃ , xµ) + sin2 βf2 (xW̃ , xµ) + sgn(µM2)
√
xW̃xµ sin β cos βf3 (xW̃ , xµ)

}
,

(4.23)

where f(x), fγ,L(x), f1(x), f2(x) and f3(x) are loop functions given in Appendix G.

The contributions proportional to δµeRR can also be derived, and are presented here in the

mass insertion approximation3, to our knowledge, for the first time. Here, Bino exchange

dominates. In the small xi limit, the box diagrams give

gu,boxRV = gd,boxRV =
g4

1

(4π)2m̃2
q

δµeRR
1

4
f

(
m̃2
`

m̃2
q

)
, (4.24)

while the γ-penguin diagrams contribute

gu,γ−peng.RV = −2gd,γ−peng.RV =
−2e2g2

1

3(4π)2m̃2
`

δµeRRfγ,R(xB̃) (4.25)

' −2e2g2
1

(4π)2m̃2
`

δµeRR

(
1

4

)
, (4.26)

where fγ,R(x) is a loop function given in Appendix G. In the final line we have taken the

3Complete expressions for both LL and RR contributions in the mass eigenstate basis can be found in
[122].
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Figure 4.4: The relative importance of various non-dipole operators to the branching ratio
as a function of xW̃ , xµ. We have taken m̃` = m̃q = 20 TeV, tβ = 10, and δLL = δRR = 0.3.
Not shown are the various RH non-dipole operators. They achieve a maximum of 8× 10−15

for the Bino d-quark Z-penguin diagrams (at xi ∼ 10−5) and a maximum of 4 × 10−15 for
the Bino u-quark γ-penguin diagrams (at xi ∼ 0.1).

xB̃ → 0 limit. The Z-penguin diagrams give

gu,Z−peng.RV =
−
(
1− 4

3
sin2 θW

)(
1− 8

3
sin2 θW

) gd,Z−peng.RV =
−g4

1

(4π)2m̃2
`

1

4

(
1− 8

3
sin2 θW

)
δµeRR cos 2βfZ,R(xB̃, xµ).

(4.27)

where fZ,R(xB̃, xµ) is a loop function given in Appendix G.

In Fig. 4.4 we show the dependence of non-dipole operators on a common xi. We see the

branching ratio of µ→ e conversion is dominated by the γ/Z-penguin diagrams for small xi.

Interference between dipole and non-dipole operators in µ→ e conversion

We now review interference effects exhibited in µ → e conversion. Most importantly, there

is interference between the dipole operators and the non-dipole operators listed above. The

physical sign sgn(µMi), where i=1, 2 appears in Eqs. (4.11 – 4.14) in the dipole operators, and

in Eq. (4.23) in the non-dipole operators. While in the Wino Z-penguin operator, Eq. (4.23),

it has only a small effect on the overall size of the contribution, in the dipole operator of Eqs.
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Figure 4.5: The interference of dipole and non-dipole operators as a function of xW̃ , xµ, xB̃.
We have taken m̃` = m̃q = 20 TeV, tβ = 10, and δLL = δRR = 0.1. The blue (green) dotted
line shows the constructive (destructive) contribution from the dipole operators, while the
red dotted line shows the contribution from the non-dipole operators. The dark blue line
shows the constructive branching ratio, while the purple line shows the destructive branching
ratio.

(4.11 – 4.14) it not only changes the size, but also the sign of these contributions relative to

the sum of the non-dipole operators. The result is that if sgn(µMi) = − (+) the branching

ratio of µ→ e conversion exhibits constructive (destructive) interference.

At large values of xi the dipole operators dominate, and the interference effects are less-

ened. At smaller values of xi however, the dipole and non-dipole operators both contribute,

and indeed, there is a region where the LH dipole and LH non-dipole parts cancel exactly. In

this case, the branching ratio for µ→ e conversion is given by the RH contributions, which

are themselves dominated by the non-dipole parts in this regime. This is shown in Fig. 4.5

for m̃` = 20 TeV, but a similar cancellation is robust for all values of m̃`.

4.3.3 Rare `i → 3`j decays

We now examine the operators that contribute to the rare decays of `i → 3`j. In our

numerical analysis we restrict ourselves to the decay µ → 3e, but analytic results apply to

rare tau decays as well. We concentrate on µ→ 3e because of the expected improvement in
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sensitivity from the Mu3e experiment [135, 136], which aims to probe BR(µ→ 3e) . 10−16.

We do not consider τ → 3e(µ) decays in our numerical analysis, as the expected future

sensitivity is not much greater than that of τ → e(µ)γ [146].

The branching ratio of `i → 3`j is given by [107, 109] as

BR(`i → 3`j) '
6π2α2

em

G2
F

{
|ALγ−p.|2 + |ARγ−p.|2 − 2

(
ALγ−p.(A

R
dip.)

∗ + ALdip.(A
R
γ−p.)

∗ + h.c.
)

+

(
16

3
log

mµ

me

− 22

3

)(
|ALdip.|2 + |ARdip.|2

)
+

1

6

(
|BL

1 |2 + |BR
1 |2
)

+
1

3

(
|BL

2 |2 + |BR
2 |2
)

+
1

24

(
|BL

3 |2 + |BR
3 |2
)

+ 6
(
|BL

4 |2 + |BR
4 |2
)

− 1

2

(
BL

3 (BL
4 )∗ +BR

3 (BR
4 )∗ + h.c.

)

+
1

3

(
ALγ−p.(B

L
1 )∗ + ARγ−p.(B

R
1 )∗ + ALγ−p.(B

L
2 )∗ + ARγ−p.(B

L
2 )∗ + h.c.

)
− 2

3

(
ARdip.(B

L
1 )∗ + ALdip.(B

R
1 )∗ + ALdip.(B

R
2 )∗ + ARdip.(B

L
2 )∗ + h.c.

)
+

1

3

[
2
(
|FLL|2 + |FRR|2

)
+ |FLR|2 + |FRL|2

+
(
BL

1 (FLL)∗ +BR
1 (FRR)∗ +BL

2 (FLR)∗ +BR
2 (FRL)∗ + h.c.

)
+ 2

(
ALγ−p.(FLL)∗ + ARγ−p.(FRR)∗ + h.c.

)
+
(
ALγ−p.(FLR)∗ + ARγ−p.(FRL)∗ + h.c.

)
− 4

(
ARdip.(FLL)∗ + ALdip.(FRR)∗ + h.c.

)
− 2

(
ALdip.(FRL)∗ + ALdip.(FLR)∗ + h.c.

) ]}
, (4.28)

where AL,Rdip. are the dipole operator coefficients from from Eqs. (4.11) - (4.14) above, AL,Rγ−p.

are the photo-penguin operator coefficients, the BL,R
i are from box-type operators and the

FLL,RR,LR,RL are from Z-penguin operators, as defined in [109].

Typically at moderate and low tan β, the µ→ eγ dipole operators dominate the µ→ 3e

decay rate [109, 113], in large part due to the appearance of the logmµ/me in the second line

of Eq. (4.28) above.4 There exists then a fairly simple relation between the two branching

4This logarithm arises due to the phase space integration of the final state fermions– there is a infrared
singularity cutoff by the electron mass.
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Figure 4.6: The relative importance of various operators to the branching ratio of µ → 3e,
in arbitrary units. We have scaled each one by the appropriate numerical factor (fPS ≡(

16
3

log mµ
me
− 22

3

)
contains the IR logarithm induced by integration over phase space). This

shows that for all values of x (with all being set equal), the dipole coefficents dominate. We
set m̃` = 20 TeV, and we set δµeLL = δµeRR = δµτLLδ

τe
RR = 0.3 so that the effective δµe is the same

for each operator. tan β = 10.

ratios:

BR(µ→ 3e)

BR(µ→ eγ)
' αem

3π

(
2 log

mµ

me

− 11

4

)
' 6.1× 10−3 . (4.29)

As can be seen in Fig. 4.6, the dipole operators, enhanced by the phase space factor,

greatly dominate over the other operators that contribute to the branching ratio in all regions

of xi parameter space. In our analysis we include the numerical contributions from the other

operators, which are given in the mass insertion approximation in Appendix H.

4.4 Dependence on Fermionic Superpartner Masses

In Section 4.3 above, we saw that there is non-trivial dependence of LFV observables on

xB̃, xW̃ , xµ and tβ. Additionally, the dependence on xg̃ of quark sector observables was
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shown in Fig. 4.2. In this section we examine in detail how the LFV constraints compare

with the quark FCNC constraints as a function of various combinations of gaugino masses

and µ. With this aim in mind, we show the ratio of squark to slepton mass

Rij ≡ m̃q/m̃`, (4.30)

for which constraints derived from transitions between generations i and j are equally strong

from the quark and lepton sectors. We investigate this ratio as a function of various xi.

Because in this section we set δLR = 0, the behavior of the various transitions always goes as

δ/m̃2. Thus, our results in terms of Rij with fixed δ can be reinterpreted as ratios of
√
δ`/δq

for equal sfermion masses.

Before discussing the relative power of different measurements, we first want to determine

what xi affect our observables most. We first examine the dependence of meson oscillation

observables on xg̃. This can be gleaned by studying Fig. 4.2. There is O(1) variation between

small xg̃ and xg̃ ∼ 1, while for xg̃ � 1 the variation becomes important. Since we restrict

ourselves to either the situation where xg̃ � 1 or xg̃ ∼ 1, the relative power of LFV and

quark FCNC observables with respect to xg̃ is at most O(1). In addition, the dependence

of the LFV observables on xB̃ in the regions we consider (xB̃ � 1→ xB̃ ∼ 1) is only slight.

Only if one has large xµ & 1 as well as large xB̃ & 1 does the variation become appreciable.

As such, varying xB̃ does not allow one to change the relative power of the LFV and quark

FCNC observables much. Therefore, we concentrate on the effect of varying xµ and xW̃ .

We now move to quantify the relative power of quark and LFV constraints by solving forR

in several cases. We first specify xg̃. We then find the squark mass which saturates the bound

from meson mixing. Similarly, once we fix xµ, xB̃ and xW̃ we can find the corresponding

slepton mass which saturates the current limits on the processes µ → eγ, τ → eγ and

τ → µγ. We also consider the combinations which saturate the future sensitivity to µ→ eγ,

µ→ e conversion in Aluminium and µ→ 3e. Combining these two results yields R. Results

shown in this section assume constructive interference as defined for the LFV processes

in Section 4.3. Were we to examine the case of destructive interference, when comparing

`i → `jγ with quark FCNCs, we would find qualitatively similar behavior of Rij for values

of xi . 1. R is increased by at most a factor of 2. For large values of xi, the interference

effect is lessened. When comparing µ → e conversion however, interference effects can be

important, as discussed in Section 4.3.2. If we were to examine destructive interference, R

would become very large near xi ∼ 10−3.

We study two separate regimes, one where we fix xB̃ = xW̃ = xg̃ ∼ 1, which corresponds
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to TeV-scale physics, and one where we fix xB̃ = xW̃ = xg̃ ∼ 10−3, corresponding to heavy

scalars, but with O(TeV) gauginos. We then allow only xµ to vary, primarily because its

variation captures most of the important effects. We have already argued that xB̃ and

xg̃’s effects are easily understood. In principle, we could have shown the variation with

respect to xW̃ , but it follows approximately the same pattern as varying xµ. This can be

understood by considering Fig. 4.3. In the small xi regime, the dominant contribution to the

µ→ eγ transition arises due to the LH Wino-Higgsino mixing diagrams with loop functions

g2(xW̃ , xµ) and g3(xW̃ , xµ). In the small xi limit, these functions are approximately

g2(xW̃ , xµ) ∼ xW̃ log xW̃
xµ − xW̃

+
xµ log xµ
xW̃ − xµ

, (4.31)

g3(xW̃ , xµ) ∼ log xW̃
xµ − xW̃

+
log xµ
xW̃ − xµ

, (4.32)

so that the behavior as a function of xµ and xW̃ is the same. Therefore varying one while

keeping the other fixed is enough to illustrate the general behavior.

In the large xi ∼ 1 regime, there is more complicated dependence on various contributions

to the µ → eγ amplitude. We see from both Fig. 4.3 and Fig. 4.7a that the region 0.3 .

xµ, xW̃ . 3 is where most variation occurs. This is also true for 1− 3 and 2− 3 transitions,

as can be seen in Figs. 4.8a and 4.8c. In this regime (the region 0.3 . xµ, xW̃ . 3), we find

the following functions

R12 ' 7.2 +
√

0.85xW̃xµ + log xW̃ + log xµ, (4.33)

R13 ' 54 +
√

2.5xW̃xµ + 7(log xW̃ + log xµ), (4.34)

R23 ' 2.6 +
√

0.28xW̃xµ + 0.2(log xW̃ + log xµ), (4.35)

capture this behavior accurately to within . 6%. We choose this particular functional form

because it closely matches the functional form of the full expressions (found in Appendix F),

with a small number of parameters.

The situation where xB̃ ∼ xW̃ ∼ xg̃ ∼ 1 at the low scale could be realized with a GUT-

scale boundary condition such that a universal scalar mass m0 is small compared with high

scale gaugino masses m1/2. In this case, one arrives at a low-energy spectrum where the

slepton masses are dominated by the Wino mass, and the squark masses are dominated

by the gluino mass. We find that with these boundary conditions, the low scale squark to

slepton mass ratio is fixed, and is approximately m̃q/m̃` ∼ 3. This is shown by the dotted

red line in Fig. 4.7a. Given the constraints from the running on xB̃, xg̃, xW̃ , the only free
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(b) xB̃ = xW̃ = xg̃ ∼ 10−3.

Figure 4.7: These figures show xµ vs. the ratio R12 of squark to slepton mass that saturates
the experimental bounds from kaon oscillations and rare µ decays. We set δLL,RR = 0.1,
δLR = 0 and tβ = 10. In the left figure, xB̃ = xW̃ = 1, while in the right figure xB̃ = xW̃ =
10−3. The solid blue line is the current µ → eγ constraint, the dashed purple line is the
future µ → eγ sensitivity, the solid green line is the future sensitivity to µ → e conversion
in Aluminium, and the dashed orange line corresponds to future µ → 3e sensitivity. The
dotted blue line corresponds to the function for R12 given in Eq. (4.33). The dashed red
line is the ratio of m̃q/m̃` obtained by running from the GUT scale to the low scale given
initial conditions for a universal gaugino mass m1/2(MGUT ) = 3 TeV and universal scalar
mass m0(MGUT ) = 0.5 TeV.

parameters in this case are µ and tβ. We show in Fig. 4.7a how the squark to slepton mass

ratio varies as a function of xµ for the 1− 2 sector, and in Figs. 4.8a and 4.8c for the 1− 3

and 2− 3 sectors respectively.

We show the results for the “heavy scalar case” xB̃ = xW̃ = xg̃ ∼ 10−3 in Fig. 4.7b for

the 1− 2 sector, and in Figs. 4.8b and 4.8d for the 1− 3 and 2− 3 sectors respectively. This

situation could arise for example if the boundary conditions at the GUT-scale are such that

a universal gaugino mass m1/2 is suppressed relative to m0.

We notice that smaller xµ increases the relative strength of the LFV probes for all tran-

sitions. Moreover, R decreases as a function of increasing tβ, i.e. LFV becomes relatively

powerful at large tβ. For the current constraints from µ→ eγ, R12 decreases from R12 ≈ 20

for tβ = 2 to R12 ≈ 6 for tβ = 20 when xi ∼ 1, and from R12 ≈ 1.6 for tβ = 2 to R12 ≈ 0.7

for tβ = 20 when xi ∼ 10−3.

The constraint from µ → e conversion shows a decrease from R12 ≈ 10 for tβ = 2 to

R12 ≈ 3 for tβ = 20 for xi ∼ 1, and from R12 ∼ 0.7 for tβ = 2 to R12 ∼ 0.5 for tβ = 20 when

xi ∼ 10−3. For all transitions, being in the small xB̃, xW̃ , xg̃ regime results in significant
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(d) xB̃ = xW̃ = xg̃ ∼ 10−3.
Figure 4.8: The upper (lower) figures show xµ vs. the ratio R13 (R23) of squark to slepton
mass that saturates the current experimental bounds from Bd (Bs) meson oscillations and
τ → eγ (τ → µγ). We set δLL,RR = 0.1, δLR = 0 and tβ = 10. In the left figure, xB̃ = xW̃ = 1,
while in the right figure xB̃ = xW̃ = 10−3. The solid blue line is calculated using the current
τ → eγ (τ → µγ) constraint, while the dashed purple line uses the future τ → eγ (τ → µγ)
sensitivity. The dotted blue lines corresponds to the functions for R13 (upper left) and R23

(lower left) given in Eqs. (4.34) and (4.35) respectively.
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increases in the relative strength of LFV observables relative to quark FCNC observables.

The increase is a factor of a few for the 1 − 2 and 1 − 3 transitions, and up to an order of

magnitude for the 2− 3 transitions. In the 1− 2 and 2− 3 transitions, we see that at small

values of xi the ratio drops below 1, meaning that the LFV constraints become stronger

than those from the meson oscillation observables. In the 1 − 3 sector however, the ratio

does not drop below 1, a result that is echoed in Section 4.5, where we see that Bd meson

oscillations are a stronger constraint than τ → eγ in much of the δ parameter space also.

We also observe that in Fig. 4.7b for small xB̃, xW̃ , xg̃, µ→ e conversion in the future goes

from being a weaker constraint than the future sensitivity of µ → eγ at small xµ, to being

the stronger constraint for xµ & 0.04.

From our results in this section, we can see that having small xi results in a relative

strengthening of the LFV constraints for all transitions. Nevertheless, varying xi over 3

orders of magnitude typically only results in variation of R by O(few), and at most an order

of magnitude.

4.5 Constraints on δ

In this section we examine constraints on the flavor off-diagonal mass insertions. We show

results for 1− 2 transitions (comparing µ→ eγ, µ→ e conversion and µ→ 3e with ∆mK),

and also for 1 − 3 and 2 − 3 transitions (comparing τ → e(µ)γ with Bd(s) meson mixing).

These analyses summarize the relative sensitivity of quark and lepton flavor violation probes

now and into the future.

It is also of interest to connect these results to GUT constructions and or textures. If

SUSY breaking respects, e.g., an SU(5) GUT symmetry, particles residing within a 5̄ or a

10 may share a common soft mass. Inspired by this relation, we define

δ
˜̀
i
LL = δd̃iRR ≡ δ5̄, (4.36)

δ
˜̀
i
RR = δũiRR = δq̃iLL ≡ δ10.

We will comment on how our results can be rephrased in this language below.

In subsection 4.5.1 we consider the situation where the LR insertions are zero, and all the

mass-squared ratios xi ∼ O(10−2 − 10−3), indicative of a significant but modest hierarchy

between sfermions and fermionic superpartners. In this region of parameter space we are

interested in the possibility that gauginos and the µ parameter are all around the TeV scale,
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but sfermions are much heavier, in the tens to hundreds of TeV, akin to models of split or

mini-split SUSY [98, 141, 161, 2, 162, 11, 14, 51]. There is strong motivation for such models,

and their implications for flavor physics have been considered before [2, 3, 113, 163, 20, 164].

For even smaller x, for fixed sfermion mass, the ∆F = 2 is essentially unchanged. The LFV

BRs increase logarithmically as you go to smaller xi (see Eq. (4.32)). However, too small xi

will result in too small gaugino masses and µ unless the sfermion mass is raised.

In subsection 4.5.2 we consider the case where LR insertions are zero, but the xi = 1.

Finally in subsection 4.5.3 we analyse the case where LR insertions are non-zero, and the

xi = 1. In the latter two sections with xi = 1, the region of parameter space we consider is

one where once again gauginos and the µ parameter are around the TeV scale, motivated

both by naturalness and by dark matter considerations. Therefore we set the sfermion masses

to also be at the TeV scale.

4.5.1 δLR = 0, x small

In this subsection we consider xi � 1, corresponding to a scenario where there is a hierar-

chy between scalar and fermionic superpartners. In Figs. 4.9 and 4.10, we display regions

excluded by quark and lepton FCNC limits in the δLL, δRR plane. Note, meson mixing con-

straints are symmetric under δLL ↔ δRR, so these figures can be reinterpreted as δRR ↔ δ10

and δLL ↔ δ5̄. In our numerical work, we have set δ’s in the up sector to vanish, but flavor

violation in the up sector is in any case subdominant for the meson mixing considered here.

In Fig. 4.9, which corresponds to 1−2 transitions, we have chosen m̃q = m̃` = 20 TeV and

xi = 5×10−3, while for the 1−3 (Figs. 4.10a, 4.10b) and 2−3 transitions (Fig. 4.10c, 4.10d),

we have chosen m̃q = m̃` = 5 TeV and xi = 0.04. The sfermion masses and value of the

common xi for 1 − 2 transitions is chosen so as to avoid falling into the region where the

destructive interference in µ → e conversion is most important, around xi ∼ 10−3 (see

Section 4.3.2 for further discussion). The smaller sfermion masses and larger xi for 1 − 3

and 2 − 3 transitions are chosen so that useful constraints can be shown, and to comply

with limits from Run I of the LHC on gluino masses, respectively. While we have chosen to

show plots for particular sfermion mass assignments, the corresponding limits on δLL,RR will

scale with the masses according to the expressions given in the quark FCNC/LFV anatomy

sections 4.2, 4.3 above. We discuss each of these figures now in turn.

In Fig. 4.9, we display limits from ∆mK , µ → eγ , µ → 3e and µ → e conversion. For

muon conversion we use the future experimental sensitivity in Aluminium, shown in Table

4.1 above. We see from Fig. 4.9 a) that in the case of constructive interference for the
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Figure 4.9: δLL vs δRR plots for 1−2 insertions. These plots compare constraints from ∆mK

(red), BR(µ → eγ) (current (future) in dark (light) blue), µ → e conversion (green) and
BR(µ → 3e) (purple). All regions correspond to the measured (projected) limits at 90%
C.L. We have set m̃q = m̃` = 20 TeV, xg̃ = xµ = xW̃ = xB̃ = 5× 10−3, and tβ = 10.

LFV processes (see discussion below Eqn. 4.11), µ → eγ is already a stronger constraint

than ∆mK . Also in this case, the future sensitivity of µ → eγ will be superior to that

of µ → e conversion. In the case of destructive interference the current constraint from

µ→ eγ is stronger than the future sensitivity of µ→ e conversion (see Fig. 4.9 b)). This is

due to µ → e conversion experiencing large interference between the dipole and non-dipole

operators in the region near xi ∼ 10−3, while the interference in µ→ eγ, arising only within

the dipole operators, is less pronounced. For both constructive and destructive interference,

the strongest constraint will be from the improvement on µ → eγ, and eventually from the

planned Mu3e experiment.

In Fig. 4.10 we assume δ12 is negligibly small, and as such only δ13 and δ23 processes will

be relevant. We choose xi = 0.04 in these plots so that the gauginos and µ are all at 1 TeV.

We compare τ → eγ with ∆mBd , βd in Figs. 4.10a and 4.10b, and τ → µγ with ∆mBs , βs

in Figs. 4.10c and 4.10d. In both sets of plots we also consider the possibility that µ→ eγ

can provide a constraint on δ13δ23 due to the LR flavor-conserving insertion in the mτ/mµ

enhanced Bino loop contribution from Section 4.3.1. We compare the possible constraint

from µ→ eγ under the assumption that δ13
LL,RR = δ23

RR,LL, but δ12 = 0. In this case the only

operator contributing to µ→ eγ is the LR flavor-conserving Bino operator from section 4.3.
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Figure 4.10: δLL vs δRR plots for 1 − 3 (upper) and 2 − 3 (lower) insertions. These plots
compare constraints from ∆mBd and βd, BR(τ → eγ) for the upper plots, and from ∆mBs

and βs, BR(τ → µγ). The dark red regions are already excluded, and the light red shows the
potential future reach with a factor of two improvement. The light orange region shows the
future sensitivity of τ → e/µγ. We have set m̃q = m̃` = 5 TeV, xg̃ = xµ = xW̃ = xB̃ ' 0.04,
and tβ = 10. Also shown is a dark blue region excluded by µ → eγ making the further
assumption that δ13

LL,RR = δ23
RR,LL. The light blue is the future sensitivity given the same

assumption. All regions shown are excluded at 90% C.L.
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Presented are results for both constructive and destructive interference between operators

contributing to the rare τ decays.

For the B-meson observables, the central region near δLL = δRR is dominated by the

operator Q4, as defined in Section 4.2, while the extended regions at small δLL and δRR are

dominated by the operators Q1 and Q̃1 respectively. The two regions where constraints from

Bd-mesons are weaker occur due to cancellation between Q1/Q̃1 and Q4.

In Fig. 4.10a we observe that in the future τ → eγ has the potential to be a stronger

constraint (for constructive interference) on δLL than the current bound from Bd mixing for

small δRR . 2 × 10−2. However, if the constraints from Bd mixing improve by a factor of

two this will reduce the region where τ → eγ has the potential to be a stronger constraint

to 5 × 10−3 . δRR . 2 × 10−2. If δLL ≥ δRR, the constraints from Bd mixing will remain

the strongest. In the case of destructive interference, the future τ → eγ constraint will

only be stronger in a small region where the contributions from the quark FCNC operators

Q1 and Q4 cancel. The current constraints on δLL from µ → eγ under the assumptions

stipulated above are weaker (stronger) than the future constraints from τ → eγ in the case

of constructive (destructive interference).

Meanwhile from Fig. 4.10c we see that the constraints from Bs mixing are currently

stronger than those from LFV in all regions of δ-space. In the future however, the constraints

on δLL from τ → µγ will become stronger for all values of δRR in the case of constructive

interference, and for δRR . 0.3 in the case of destructive interference. The constraints

on δRR from µ → eγ apply only if δ13
LL,RR = δ23

RR,LL. Under this assumption, the current

constraints from µ→ eγ are always stronger than those from Bs meson mixing, and stronger

(weaker) than the future constraints from τ → µγ for constructive (destructive) interference.

Additionally, µ → eγ places constraints on δ23
RR. Limints from τ → µγ one this insertion

are very weak (not visible on this plot). For both constructive and destructive interference,

the future sensitivity of µ→ eγ under the stipulated assumptions is greater than the future

sensitivity of τ → µγ.

Note that µ → 3e can also constrain both 1 − 3 and 2 − 3 transitions in the same way

as µ→ eγ, since the same dipole operators dominate both decays. We do not include these

constraints in Fig. 4.10, as they can be inferred from the relevant constraints in Fig. 4.9.

To summarize, for small xi � 1 (heavy scalars), LFV observables either currently or will

provide stronger constraints on left-handed flavor violation than the quark sector for both

1 − 2 and 2 − 3 transitions. In the case of 1 − 3 transitions however, the constraints from

Bd meson mixing will remain comparable to or stronger than those from LFV observables
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in most of the parameter space. We also wish to re-emphasize the potential of µ → eγ to

provide constraints on 1− 3 and 2− 3 transitions due to the LR flavor conserving operator

from section 4.3.1.

4.5.2 δLR = 0, x = 1

In this subsection we consider the situation when xi = 1. We consider a common superpart-

ner mass MSUSY = 1 TeV in this section.

In Fig. 4.11 we compare the current and future bounds on δ in the 1−2 sector from LFV

processes and ∆mK . We consider both constructive (a) and destructive (b) interference in the

LFV processes. We observe from Fig. 4.11a that µ → eγ is currently a stronger constraint

than ∆mK when there is constructive interference. The future sensitivity of µ→ eγ will be

greater than that of µ→ e conversion for constructive interference. On the other hand, from

Fig. 4.11b (destructive interference), we see that ∆mK is currently a stronger constraint than

µ → eγ if δLL = δRR, and µ → 3e will become the strongest constraint in the future. The

constraints on δRR currently are strongest from µ → eγ, but in the future will be strongest

from µ → 3e. Currently, µ → eγ also dominates the constraint on δLL for constructive

interference. For destructive interference δLL will be most strongly constrained by µ → 3e,

which is slightly stronger than µ → e conversion. This is in contrast with the situation at

small xi, where we saw that the constraint from µ→ e conversion would be weak in the case

of destructive interference. As can be understood by examining Fig. 4.5, this is due to the

interference at large xi ∼ 1 not being as pronounced as at small x ∼ O(few)× 10−3.

Turning now to 1− 3 transitions, we see from Figs. 4.12a and 4.12b that if δ12 = 0, the

bound from Bd mixing will remain a stronger constraint than τ → eγ in a large region of

parameter space. This result is largely independent of whether interference in the leptonic

observable is constructive or destructive, and in the destructive case τ → eγ will not improve

on the Bd mixing bound at all. As in the previous section, we compare the possible constraint

from µ→ eγ under the assumption that δ13
LL,RR = δ23

RR,LL. If this assumption is correct, µ→
eγ is already a stronger probe than the future sensitivity of τ → eγ in all of the parameter

space shown, regardless of interference. However, despite improvements in µ → eγ, the

sensitivity will not be competitive with the constraints from Bd meson mixing near the line

of δLL = δRR.

Finally, we perform the same analysis for τ → µγ, comparing with bounds from Bs

mixing. From Fig. 4.12c, there is a region where τ → µγ already provides the strongest

constraint on 1 − 3 mixing in the case of constructive interference. In the future, such a
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Figure 4.11: δLL vs δRR plots for 1 − 2 insertions. These plots compare the current and
future constraints from ∆mK , BR(µ→ eγ), BR(µ→ 3e) and µ→ e conversion. All regions
correspond to the measured (projected) limits at 90% C.L. . We have set m̃q = m̃` = 1 TeV,
xg̃ = xµ = xW̃ = xB̃ = 1, and tβ = 10.

region will exist for destructive interference as well as seen in Fig. 4.12d. Additionally, we

note µ → eγ (again, with the added assumption δ13
LL,RR = δ23

RR,LL) is already a stronger

probe than both of the other observables in all of the parameter space, and will remain so

into the future. If this assumption does not hold, then we note that b → sγ, shown by the

purple lines, is currently the strongest constraint on δRR for small δLL regardless of the sign

of the product Mg̃A
23, which appears in the gluino diagrams contributing to the amplitude.

The future sensitivity of τ → µγ will improve on these constraints on δLL only if there

is constructive interference in the τ decay amplitude. It will not however improve on the

constraints on δRR, but rather will have comparable sensitivity.

Note that µ → 3e can also constrain both 1 − 3 and 2 − 3 transitions in the same way

as µ→ eγ, since the same dipole operators dominate both decays. We do not include these

constraints in Fig. 4.12, as they can be inferred from the relevant constraints in Fig. 4.11.

4.5.3 δLR 6= 0, x = 1

For TeV-scale superpartner masses, the factor mf/m̃ in the LR insertions is small, but not

negligibly so. We cannot assume that δLR = 0 as we had done when the superpartners were

of O(10) TeV. So, in the x ∼ 1 case, given a particular m̃, using the known SM fermion
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Figure 4.12: δLL vs δRR plots for 1− 3 (upper) and 2− 3 (lower) insertions. The upper plots
compare the current constraints from ∆mBd , βd, τ → eγ on δ13. The lower plots compare
constraints from ∆mBs , βs, b→ sγ, τ → µγ. The dark red regions are excluded by B meson
mixing, the light red is a potential factor of two improvement. The light orange region shows
the future sensitivity of τ → µγ. The purple line shows the current limits from b → sγ.
Also shown is a dark blue region excluded by µ → eγ assuming δ13

LL,RR = δ23
RR,LL. The light

blue is the future sensitivity given the same assumption. We have set m̃q = m̃` = 1 TeV,
xg̃ = xµ = xW̃ = xB̃ ' 1, and tβ = 10.
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Figure 4.13: δLL, δRR vs A12/m̃ plots comparing the constraints from ∆mK (red), the current
(future) limit on BR(µ→ eγ) (dark (light) blue), the future sensitivity of µ→ e conversion
(light green) and the future sensitivity of BR(µ → 3e) (purple), all at the 90% C.L.. We
have set m̃q = m̃` = 1 TeV, xg̃ = xµ = xW̃ = xB̃ = 1, and tβ = 10.

mass, we relax the δLR = 0 assumption. Indeed, we place limits on the ratio Aij/m̃. In this

subsection we assume δRR = δLL ≡ δ.

We see from Fig. 4.13 that in the case of constructive interference µ→ eγ places stronger

constraints on the size of A12/m̃ than ∆mK in all regions of parameter space, and large

regions if there is destructive interference. Note in the case of constructive interference,

µ → eγ is already constraining A12 . 10−2m̃ for TeV-scale SUSY masses. This is also

true when there is destructive interference except for a sliver of parameter space near the

A12/m̃ = δLL,RR line, where the interference is most pronounced. Eventually, µ→ 3e will be

the strongest constraint on A12/m̃, although only slightly improving on the future µ → eγ

constraint.

In the 1 − 3 sector, we find from Figs. 4.14a and 4.14b that Bd mixing imposes a

stronger constraint than τ → eγ in large regions of parameter space. However, for small

δLL,RR . 2 × 10−3, we find that τ → eγ, both in the case of constructive and destructive

interference, provides a stronger constraint than ∆mBd and SψKs on A13/m̃. We see that

while currently the limit is weak: A13 . 4m̃, in the future τ → eγ will be sensitive up to

A13 . 0.6m̃. Additionally we note that under the assumption that δ13 = δ23, µ → eγ does

not improve the constraints on δLL,RR.

Similarly for the 2− 3 sector, we see from Figs. 4.14c and 4.14d that currently τ → µγ
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(c) Constructive interference for τ → µγ.
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(d) Destructive interference for τ → µγ.

Figure 4.14: δLL, δRR vs. A13/m̃ (upper) and δLL, δRR vs. A23/m̃ (lower) plots. In the upper
plots, we compare the current and future constraints from ∆mBd , βd, τ → eγ. The lower
plots compare the current and future constraints from ∆mBs , βs, b→ sγ, τ → µγ. The dark
red region is excluded by meson mixing at 90 % C.L., and the light red assumes a factor of
two improvement. The solid (dashed) purple line shows the limit from b → sγ in the case
of constructive (destructive) interference. The dark (light) orange region shows the current
(future) sensitivity of τ → eγ (top) and τ → µγ (bottom). We have set m̃q = m̃` = 1 TeV,
xg̃ = xµ = xW̃ = xB̃ ' 1, and tβ = 10. In both panels, the dark (light) blue gives a current
(future) exclusion from µ→ eγ assuming δ13 = δ23.
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imposes a stronger constraint on A23/m̃ than Bs for δLL,RR . 3× 10−2 only. In this region

the current constraint from Bs mixing gives A23/m̃ . 50, improving to A23/m̃ . 40, while

the current constraint from τ → µγ yields A23/m̃ . 4 for both constructive and destructive

interference. The future sensitivity of τ → µγ will constrain A23/m̃ . 0.6 for δLL,RR . 10−2.

However, the strongest constraint comes from b→ sγ, which bounds A23/m̃ . 0.5 for small

δLL,RR, both in the case of constructive (sgn(mg̃A
23 = +) and destructive (sgn(mg̃A

23 = −))

interference. As in Figs. 4.12c and 4.12d, we see that for δLL = δRR, if δ13 = δ23, µ → eγ

can provide a stronger constraint than both τ → µγ and Bs mixing.

Again, µ→ 3e can constrain both 1−3 and 2−3 transitions in the same way as µ→ eγ.

We do not include these constraints in Fig. 4.14, as they can be inferred from the relevant

constraints in Fig. 4.13.

4.6 Summary

We have analysed various quark- and lepton-flavor violating processes in the absence of new

CP violating phases. While the absence of new CP violating phases is a strong assumption,

because LFV measurements are CP conserving, in some ways it provides for the most direct

comparison between the two sectors. In general, relaxing this assumption will strengthen –

considerably in the case of the 1− 2 sector – the bounds on quark flavor violation.

In the case of heavy scalars, a scenario well motivated by the observed Higgs boson

mass, LFV is a particularly powerful probe on LL flavor violation. In the 1 − 2 sector,

improvements on bounds on µ→ eγ, µ→ 3e and µ− e conversion will probe new parameter

space, even accounting for comparable flavor violation in the quark sector. Similarly, again

for δLL, τ → µγ is a powerful probe. τ → eγ, on the other hand, does not represent as

strong a constraint as Bd mixing over much of the parameter space (assuming comparable

flavor violation the squark and slepton matrices). In an SU(5) GUT context, these bounds

can be interpreted as probes of flavor violation in the 5̄ scalar masses.

In the case where all superpartner masses are close to the TeV scale, we obtain similar

results on the LL flavor violation. But in this case, LFV has the opportunity to place limits

on RR insertions as well. These limits can be reinterpreted as probes of flavor violation

in the 10 scalar masses in an SU(5) GUT. Moreover, for TeV scalars, LR insertions are

likely to give important contributions to LFV observables. Significant bounds already exist

on off-diagonal trilinear couplings Aij and these will only strengthen as the experimental

sensitivity to LFV improves.
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In all, in cases where squark mass matrices are related to slepton mass matrices, quark

FCNCs provide a significant constraint. In some areas of parameter space, even improvement

of LFV bounds will not make them the most sensitive. However, there are large swathes of

parameter space where LFV has the chance to be a discovery tool.

In this chapter, we considered the low-energy flavor observables associated with super-

symmetric models, in the absence of CP violation. Since this is a rather strong assumption,

in the next chapter, we study low-energy observables in the presence of CP violation, namely

electric dipole moments. We will do so in the context of the G2-MSSM, which we encountered

previously in Chapter 2.
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Chapter 5

Theoretical Prediction and Impact of

Fundamental Electric Dipole

Moments

5.1 Introduction

In the previous chapter, we studied Lepton and Quark flavor violating effects in Supersym-

metric models in the absence of new sources of CP violation. However, as discussed also in

the introduction to that chapter, strong constraints on CP violation originating from physics

beyond the Standard Model (BSM) have been imposed by measurements of electric dipole

moments (EDMs) of the electron, neutron and heavy atoms. Thus the implication is that

new physics should have generic mechanisms for the suppression of EDMs [4].

In Supersymmetric (SUSY) theories, additional sources of CP violation may arise from

complex phases in the soft SUSY breaking parameters [34, 35]. If SUSY is only an effective

theory for physics at the TeV scale, the phases must be treated as arbitrary, leading to large

predictions for EDMs unless the phases are tuned to be small, or there are cancellations.

CP violation in SUSY models and the implications for EDM predictions has been studied

extensively [165, 166, 167, 168, 169, 170, 137, 171, 138, 172, 173, 163, 139, 113, 174]. If

however, we consider SUSY to be the low energy effective theory of an overarching theory

such as a compactified string/M-theory, then there must be some underlying mechanism to

predict and relate the various phases.

It is well known that the Electroweak scale CP-violating phase of the Standard Model

(SM) cannot provide the source of the CP-violation needed for baryogenesis. The compact-
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ified M-theory predicts the required phase also does not arise in the softly broken super-

symmetric Lagrangian [15]. Baryogenesis can arise via the Affleck-Dine mechanism [175] at

high scales, generated with phases generically present in the super partner’s composite flat

directions and moduli. The magnitudes of both the baryon number and the dark matter

then may arise from moduli decay before nucleosynthesis [62]. The associated phases are

high scale ones that have no effects on EDMs.

Following on from the results presented in [15] and the body of work behind it [10, 11,

13, 14, 16, 61, 18], we now concentrate on analysing the CP violating phases in the effective

four-dimensional theory resulting from N = 1 compactifications of M-theory with chiral

matter.

There are two-loop contributions to the EDMs that may be the dominant ones. Even

in this case, the phases ultimately arise from the superpotential Yukawas that also give the

CKM phase, so we discuss the Yukawa phases first, and turn to the results in Section 5.4.

Readers who want to focus on the upper limits can skip Section 5.3 on a first reading.

Since the phases in the theory only arise in the Yukawa sector at the high scale, mea-

surements of EDMs also become a useful testing ground for various textures at said scale.

We present here an analysis of a variety of different textures and how future measurements

may be used to constrain the set of possible choices.

In Section 5.2 we present a review of the results found in [15] that argue that the dominant

CP violating phases are in the superpotential Yukawas. In Section 5.3 we discuss the sources

of CP violation in the theory, as well as present the various textures we investigate and their

running. We also show how the phases from the Yukawas enter into the computation of

EDMs, summarise the current experimental limits, and discuss the Strong CP contribution.

In Section 5.4 we present our results, both for two-loop and one-loop contributions to the

EDMs. In Section 5.5 we discuss the upper limits and their interpretation.

5.2 Review of Compactified M-Theory prediction of

Supersymmetry phases

Here we summarize the arguments from reference [15] that the high-scale soft-breaking

Supersymmetry Lagangian from the compactified M-theory leads to the prediction that

the dominant CP-violation generating EDMs arises from the phases in the superpotential

Yukawas, and thus has the same source as the CKM phase.

In reference [15] it is shown that terms in the superpotential align with the same phase,

83



leaving just one overall phase, which can be rotated away by a global phase transformation.

The Kähler potential only depends on the real moduli fields, and the meson condensate

φ ≡ (Q̃QT )1/2, so it introduces no explicit phases. This is shown in detail in Section IIB

of reference [15]. Basically by removing overall phases one can see that ∂JK and ∂JW̄ and

therefore F− terms are real. It is also argued in [15] that although higher order corrections

to the Kähler potential exist, they do not give rise to new CP-violating phases. This is

because in the zero flux sector the superpotential only receives non-perturbative corrections

from strong gauge dynamics or membrane instantons. The dynamical alignment of phases

still works if these additional terms are subdominant, which is required for the consistency

of the moduli stabilization. The hidden sector Kähler potential may receive perturbative

corrections since there is no non-renormalization theorem for the Kähler potential. But the

meson field φ is composed of elementary chiral quark fields Q, Q̃ that are charged under

the hidden gauge groups, so higher order corrections must be functions of Q†Q + Q̃†Q̃ by

gauge invariance, so such corrections are always functions of φ†φ which does not introduce

any new phases, since Q†Q = Q̃T Q̃∗. The perturbative corrections to the Kähler potential

are always functions of moduli zi + z̄i which does not introduce any CP violating phases in

the soft terms. The dependence on zi + z̄i follows from the shift PQ symmetry of the axion,

which is only broken by exponentially suppressed contributions. Thus the result that the

CP violating phases in soft parameters are highly suppressed should be quite robust since it

only relied on symmetries.

Also, the Kähler potential has an approximately flavor diagonal structure because of the

presence of U(1) symmetries under which the chiral matter fields are charged. The conical

singularities associated with different flavors do not carry the same charges under the U(1)’s

in a given basis, which forbids the existence of off-diagonal terms. Such terms can arise when

the symmetries are spontaneously broken, but that should be suppressed. Thus the Kähler

metric is expected to be approximately flavor diagonal at the high scale. As we discuss later,

renormalization group running will generate small flavor off-diagonal effects at the EW scale.

Finally, when the superpotential contribution to the overall high scale µ parameter van-

ishes, as it does by the Witten mechanism [67, 17], the µ and B parameters are generated

by the Giudice-Masiero mechanism [176]. Then µ and B have a common phase, but this

phase is not physical since it can be eliminated by a U(1)PQ rotation.

Since µ vanishes if Supersymmetry is unbroken and if the moduli are not stabilised

µ is generically of order 〈φ〉m3/2/MPl, typically an order of magnitude suppressed from

m3/2 [17]. Including supergravity constraints gives consistency conditions B = 2m3/2 and

84



2µ tan β ≈ m3/2.

5.3 CP violation in the Compactified Theory

Given the results of [15], all of the phases in the full Lagrangian originate from the phases

of the Yukawa couplings in the underlying superpotential, up to presumably small correc-

tions from the Kähler potential. The Yukawa matrices enter the theory through the matter

superpotential

W = −U cYuQHu −DcYdQHd − EcYeLHd + µHuHd (5.1)

where the Yi are 3 × 3 complex matrices in family space. The objects U c, Dc, Q,Ec, L,Hu

and Hd are chiral superfields containing the quark, squark, lepton, slepton and Higgs matter

fields. Then, the contributions to CP violation in the compactified M-theory come entirely

from the Yukawa sector of the theory.

The Yukawa matrices give rise to the quark and lepton masses by the following interaction

Lagrangian

LY ukawa = Y u
ij Q̄LiHuuRj + Y d

ijQ̄LiHddRj + Y e
ijL̄LiHdeRj + h.c. (5.2)

where Y α
ij , α = u, d, e, i, j = 1, 2, 3 are the Yukawa matrices, and i, j are family indices.

The matter fields here are SM quarks and leptons. When the Higgs boson gains a vacuum

expectation value, the sizes of the eigenvalues of the Yukawa matrices dictate the masses

of the quarks or leptons. Diagonalisation of the Yukawa matrices is performed by unitary

left-(right-)handed V
L(R)
α matrices in flavour space in the Standard Model:

V L
α

†
Y αV R

α = Y diag
α ∝

mα1 0 0

0 mα2 0

0 0 mα3

 (5.3)

The CKM matrix is defined as VCKM = V L
u
†
V L
d , where these are the up and down-type

left-handed unitary diagonalisation matrices, so there must be O(1) phases in the Yukawa

matrices in order to explain the experimentally observed phase of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. When the Yukawa matrices are diagonalised, the phases that were

in the original 3 × 3 complex matrices are rotated away by the unitary matrices, so that

the eigenvalues are real. Therefore, the left-handed unitary matrices which form the CKM

matrix carry the phases that were originally in the Yukawas.
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The trilinears that arise in the supersymmetric soft-breaking Lagrangian are defined as

Âαij = AαijY
α
ij , where Aαij is a general 3 × 3 matrix. Explicitly, the trilinear terms from the

soft Lagrangian can then be written as:

Lsoft ∼ AuijY
u
ij

˜̄QLiHuũRj + AdijY
d
ij

˜̄QLiHdd̃Rj + AeijY
e
ij

˜̄LLiHdẽRj (5.4)

where Au,d,e are the trilinear matrices in the gauge eigenstate basis of matter fields, and we

are interested in the structure of Y α
ij . The matter fields here are the squarks and sleptons.

Rotating to the super-CKM basis is achieved by using the same rotation matrices that

diagonalised the Yukawa matrices above, but applying them now to the SUSY squark fields.

ÂSCKM ≡ V L
α

†
AαY αV R

α (5.5)

where the family indices have been dropped. If the trilinears are not proportional to the

Yukawas in the flavour-eigenstate basis, i.e. Aαij 6∝ 13×3, the rotation to the super-CKM basis

can in itself induce CP-violating phases in the diagonal components of the Âs, giving rise to

possible contributions to EDMs.

We consider the case where the trilinears Â are not aligned with the Yukawas as a

maximally general treatment of CP violation in the theory.

Additionally, the running of the Yukawas from the high scale to the low scale will mix

potential phases in the off-diagonal components into the diagonal elements, thus giving rise

to CP-violating phases at the low scale.

5.3.1 Yukawa textures

The crux of the analysis lies in the determination of viable Yukawa textures. They need to

satisfy the requirement that they accurately describe the mass hierarchy exhibited in quarks

and leptons, and also that they give the correct CKM angles and phases.

In order to better understand the structure of a Yukawa texture, we assume that we may

decompose it into O(1) complex parameters multiplying real parameters giving the relative

sizes of the elements of the matrix.

Y α
ij = O(1) · Λij (5.6)

where Λij is the matrix of powers in some small parameter ε ∼ α
1/2
GUT ∼ 0.2, set at the high

scale, which will give us the correct hierarchy. While this choice of ε is not the only possible
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one, it implies a connection between flavour structure and grand unification, and is therefore

attractive. The multiplying O(1) is a 3× 3 matrix of magnitude one entries containing the

various phases.

We consider three types of textures in this analysis, symmetric textures with no ze-

roes, symmetric textures with zeroes, and asymmetric textures with no zeroes, the reason

behind these choices being that this allows us to consider a wide variety of possible texture-

dependencies. Although this does not cover all possibilities, we find a maximal prediction,

so no further EDMs will arise from additional Yukawas.

Initially we will consider the two possible cases where either the up-type Yukawa matrix,

Yu is diagonal, or the down-type Yukawa matrix, Yd is diagonal, with the other constrained

only by the CKM matrix. We parameterise the CKM matrix in the following manner without

loss of generality

VCKM = O(1)

 1 ε ε3

ε 1 ε2

ε3 ε2 1

 = O(1)

 1 0.2 0.008

0.2 1 0.04

0.008 0.04 1

 (5.7)

where the O(1) indicates the presence of a matrix of complex parameters of order 1. This is

comparable to the experimentally determined values of the CKM matrix

|VCKM | ∼

 0.97 0.23 0.004

0.23 0.97 0.04

0.008 0.04 0.99

 (5.8)

We assume the following hierarchy for the quark masses, as seen in [?].

mu : mc : mt ≡ (ε8 : ε4 : 1)× vu (5.9)

md : ms : mb ≡ (ε5 : ε3 : 1)× vd (5.10)

me : mµ : mτ ≡ (ε8 : ε4 : 1)× vd (5.11)

where vu = 〈H0
u〉 and vd = 〈H0

d〉 are the vacuum expectation values (VEVs) of the Higgs

fields in equation (5.2), with the SM VEV defined as v2 = v2
u + v2

d. It should be noted here

that we use the up-quark hierarchy for the leptons. While this is non-standard, it is done in

order to have a better fit to the experimentally measured masses.

Below are ratios between the predicted masses and the observed masses for the choice
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of ε = 0.26 for the up-type quarks, ε = 0.27 for the down-type quarks and ε = 0.36 for the

leptons. Fixing the masses of the top, bottom and τ to their known values, we find that

these choices give

mth
u

mexp
u

:
mth
c

mexp
c

:
mth
t

mexp
t

≡ 1.21 : 0.61 : 1 (5.12)

mth
d

mexp
d

:
mth
s

mexp
s

:
mth
b

mexp
b

≡ 1.15 : 0.79 : 1 (5.13)

mth
e

mexp
e

:
mth
µ

mexp
µ

:
mth
τ

mexp
τ

≡ 1.01 : 0.30 : 1 (5.14)

All of these are within order one factors of α
1/2
GUT , so this is compatible with the experimentally

measured values for entries in the CKM matrix, given our parameterisation of VCKM in terms

of ε. The deviation from one can be due to the unknown O(1) factors in our decomposition

of the Yukawa matrices described above.

All EDMs will be proportional to some power of ε, as will be seen in a later section. Since

we are interested in the size of the detectable EDMs, we look for the largest contributions

from the Yukawa couplings, which will have the smallest powers of ε.

The first set of textures we consider is derived as shown in appendix A, and is of the

form

Y u =

 ε8 ε5 ε3

ε9 ε4 ε2

ε11 ε6 1

 , Y d =

ε
5 0 0

0 ε3 0

0 0 1

 (5.15)

where we have taken advantage of being able to perform rotations such that the down-type

Yukawa matrix is diagonal.

The same can be repeated where the up-type Yukawa matrix is diagonal, yielding the

following textures

Y u =

ε
8 0 0

0 ε4 0

0 0 1

 , Y d =

ε
5 ε4 ε3

ε6 ε3 ε2

ε8 ε5 1

 (5.16)

The largest predictions for EDMs, arising from the smallest powers in ε, will typically

arise from terms such as Y
(u,d)

33 Y
(u,d)

32

†
Y

(u,d)
23 in the running of the diagonal terms from the
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high scale, as they involve the (3, 3) term which is 1. This will be seen in section (3.2.1).

The second class of textures we consider are those with zeroes. We study in particular

the only five textures with five zeroes found in [177] at the high scale, given below

Y u =

 0
√

2ε6 0√
2ε6 ε4 0

0 0 1

 , Y d =

 0 2ε4 0

2ε4 2ε3 4ε3

0 4ε3 1

 (5.17)

Y u =

 0 ε6 0

ε6 0 ε2

0 ε2 1

 , Y d =

 0 2ε4 0

2ε4 2ε3 2ε3

0 2ε3 1

 (5.18)

Y u =

 0 0
√

2ε4

0 ε4 0√
2ε4 0 1

 , Y d =

 0 2ε4 0

2ε4 2ε3 4ε3

0 4ε3 1

 (5.19)

Y u =

 0
√

2ε6 0√
2ε6

√
3ε4 ε2

0 ε2 1

 , Y d =

 0 2ε4 0

2ε4 2ε3 0

0 0 1

 (5.20)

Y u =

 0 0 ε4

0
√

2ε4 ε2/
√

2

ε4 ε2/
√

2 1

 , Y d =

 0 2ε4 0

2ε4 2ε3 0

0 0 1

 (5.21)

These have a different hierarchy from that of textures 1 and 2, but all of these textures are

consistent with the low-energy fermion masses and the CKM matrix elements. Note that

since the matrices are symmetric, pairs of zeroes in the off-diagonal components only count

as one zero. Since they are all defined at the high scale, we must turn our attention to their

running.

5.3.2 Running of Yukawa textures

In this section we consider the running of the Yukawa textures described in the previous

section, and look at how the phases from the off-diagonal terms are rotated into the diagonals

by said running. Since we start at the high scale with no phases in the diagonal components,

the running of the diagonal elements is crucial to understanding the appearance of phases

at the low scale.

The evolution of the up and down Yukawa matrices and the trilinear matrices in the
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MSSM is well known [178], and given by,

dY u

dt
=

1

16π2
Y u
{

3 Tr(Y uY u†) + 3Y u†Y u + Y d†Y d
}

+ . . . (5.22)

dY d

dt
=

1

16π2
Y d
{

Tr(3Y uY u† + Y eY e†) + 3Y d†Y d + Y u†Y u
}

+ . . . (5.23)

dÂu

dt
=

1

16π2
Âu
{

3 Tr(Y uY u†) + 5Y u†Y u + Y d†Y d
}

(5.24)

+ Y u
{

6 Tr(ÂuY u†) + 4Y u†Âu + 2Y d†Âd
}

+ . . . (5.25)

dÂd

dt
=

1

16π2
Âd
{

Tr(3Y dY d† + Y eY e†) + 5Y d†Y d + Y u†Y u
}

(5.26)

+ Y d
{

Tr(6ÂdY d† + 2ÂeY e†) + 4Y d†Âd + 2Y u†Âu
}

+ . . . (5.27)

where only terms involving the Yukawa matrices are explicitly shown as they are by far the

dominant contribution. The trace terms are merely numbers, while the Y †Y and Y †Â terms

are matrices that have ε dependencies.

When looking at the evolution of the various terms, we consider the leading terms in ε

that come from the off-diagonal terms, as these will be the ones that multiply the phases that

are being rotated into the diagonal components. It should be noted that ε is a parameter

fixed at the GUT scale that does not run.

Texture specific running

In this section, we look at the leading order contributions in ε to the running of the diagonal

components of the Yukawa textures from section 2.1 in order to estimate the size of potential

phases appearing at the low scale. We consider the running of both the up and down type

textures, as each contributes differently.

For the first texture shown in equation (5.15), the dominant terms in the running of the

Âuii components are:
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dÂu11

dt
∼ 1

16π2

[
Âu13

{
5Y u†

33Y
u

31

}
+ Y u

13

{
4Y u†

33Â
u
31

}
+ . . .

]
∼ 27A0ε

14

16π2
(5.28)

dÂd11

dt
∼ 1

16π2

[
Âd11

{
Y u†

12Y
u

21

}
+ Y d

11

{
2Y u†

12Â
u
21

}]
∼ 3A0ε

23

16π2
(5.29)

dÂu22

dt
∼ 1

16π2

[
Âu23

{
5Y u†

33Y
u

32

}
+ Y u

23

{
4Y u†

33Â
u
32

}
+ . . .

]
∼ 18A0ε

8

16π2
(5.30)

dÂd22

dt
∼ 1

16π2

[
Âd22

{
Y u†

21Y
u

12

}
+ Y d

22

{
2Y u†

21Â
u
12

}]
∼ 3A0ε

13

16π2
(5.31)

dÂu33

dt
∼ 1

16π2

[
Âu33

{
5Y u†

32Y
u

23

}
+ Y u

33

{
4Y u†

32Â
u
23

}]
∼ 9A0ε

4

16π2
(5.32)

dÂd33

dt
∼ 1

16π2

[
Âd33

{
Y u†

32Y
u

23

}
+ Y d

33

{
2Y u†

32Â
u
23

}]
∼ 3A0ε

4

16π2
(5.33)

For the texture given in equation (5.16), the leading order terms are:

dÂu11

dt
∼ 1

16π2

[
Âu11

{
Y d†

12Y
d

21

}
+ Y u

11

{
2Y d†

12Â
d
21

}]
∼ 3A0ε

20

16π2
(5.34)

dÂd11

dt
∼ 1

16π2

[
Âd13

{
5Y d†

33Y
d

31

}
+ Y d

13

{
4Y d†

33Â
d
31

}
+ . . .

]
∼ 27A0ε

11

16π2
(5.35)

dÂu22

dt
∼ 1

16π2

[
Âu22

{
Y d†

23Y
d

32

}
+ Y u

11

{
2Y d†

23Â
d
32

}]
∼ 3A0ε

14

16π2
(5.36)

dÂd22

dt
∼ 1

16π2

[
Âd23

{
5Y d†

33Y
d

32

}
+ Y d

23

{
4Y d†

33Â
d
32

}
+ . . .

]
∼ 18A0ε

7

16π2
(5.37)

dÂu33

dt
∼ 1

16π2

[
Âu33

{
Y d†

32Y
d

23

}
+ Y u

33

{
2Y d†

32Â
d
23

}]
∼ 3A0ε

4

16π2
(5.38)

dÂd33

dt
∼ 1

16π2

[
Âd33

{
5Y d†

32Y
d

23

}
+ Y d

33

{
4Y d†

32Â
d
23

}
+
]
∼ 9A0ε

4

16π2
(5.39)

As mentioned earlier, the leading order terms, here of O(ε4) for both the textures in

equations (5.15) and (5.16), arise from the terms of the form Y
(u,d)

33 Y
(u,d)

32

†
Y

(u,d)
23 . Note that

only the leading results for the remaining textures are presented here, and the explicit matrix

elements that enter in the running of the other textures are not shown.
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For the texture given in equation (5.17), the lowest order terms in ε are

dÂu11

dt
∼ 1

16π2
(12
√

2A0ε
13) (5.40)

dÂd11

dt
∼ 1

16π2
(72A0ε

11) (5.41)

dÂu22

dt
∼ 1

16π2
(60A0ε

10) (5.42)

dÂd22

dt
∼ 1

16π2
(144A0ε

6) (5.43)

dÂu33

dt
∼ 1

16π2
(48A0ε

6) (5.44)

dÂd33

dt
∼ 1

16π2
(288A0ε

6) (5.45)

For the texture given in equation (5.18), the lowest order terms are

dÂu11

dt
∼ 1

16π2
(12A0ε

13) (5.46)

dÂd11

dt
∼ 1

16π2
(72A0ε

11) (5.47)

dÂu22

dt
∼ 1

16π2
(9A0ε

4) (5.48)

dÂd22

dt
∼ 1

16π2
(6A0ε

5) (5.49)

dÂu33

dt
∼ 1

16π2
(18A0ε

4) (5.50)

dÂd33

dt
∼ 1

16π2
(3A0ε

4) (5.51)
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For the texture in equation (5.19), the lowest order terms are

dÂu11

dt
∼ 1

16π2
(18A0ε

8) (5.52)

dÂd11

dt
∼ 1

16π2
(72A0ε

11) (5.53)

dÂu22

dt
∼ 1

16π2
(60A0ε

10) (5.54)

dÂd22

dt
∼ 1

16π2
(144A0ε

6) (5.55)

dÂu33

dt
∼ 1

16π2
(48A0ε

6) (5.56)

dÂd33

dt
∼ 1

16π2
(288A0ε

6) (5.57)

For the texture in equation (5.20), the lowest order terms are

dÂu11

dt
∼ 1

16π2
(24/
√

2A0ε
13) (5.58)

dÂd11

dt
∼ 1

16π2
(72A0ε

11) (5.59)

dÂu22

dt
∼ 1

16π2
(9A0ε

4) (5.60)

dÂd22

dt
∼ 1

16π2
(6A0ε

7) (5.61)

dÂu33

dt
∼ 1

16π2
(18A0ε

4) (5.62)

dÂd33

dt
∼ 1

16π2
(3A0ε

4) (5.63)
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For the texture in equation (5.21), the lowest order terms are

dÂu11

dt
∼ 1

16π2
(9A0ε

8) (5.64)

dÂd11

dt
∼ 1

16π2
(3
√

2A0ε
10) (5.65)

dÂu22

dt
∼ 1

16π2
(9/2A0ε

4) (5.66)

dÂd22

dt
∼ 1

16π2
(3A0ε

7) (5.67)

dÂu33

dt
∼ 1

16π2
(9A0ε

4) (5.68)

dÂd33

dt
∼ 1

16π2
(3/2A0ε

4) (5.69)

5.3.3 Translating from Yukawas to EDMs

Having described various Yukawa textures and their running, we now concentrate on demon-

strating how the phases will enter into a computation of the EDMs.

In the MSSM, the important CP-odd terms in the Lagrangian are

LCP−odd ⊃−
∑

q=u,d,s

mqq(1 + iθqγ5)q + θG
αs
8π
GG̃

− i

2

∑
q=u,d,s

(dEq qF
µνσµνγ5q + dCq qgsT

aGaµνσµνγ5q)

− 1

6
dGq fabcGaµρG

ρ
bνGcλσε

µνλσ

(5.70)

where θG is the QCD θ angle, the second line contains dimension five operators, generated

by CP violation in the SUSY breaking sector and evolved down to ∼ 1 GeV. The coefficients

dE,Cq correspond to the quark electric and chromo-electric dipole moments (EDM, CEDM)

respectively. The last line contains the gluonic dimension six Weinberg operator, to which

all other purely gluonic P - or T -odd operators are proportional [179]. The CP violating

4-fermion operators [180, 137] are negligible in this mini-split type SUSY spectrum [113].

The explicit expressions for the SUSY contributions to EDMs are given in Appendix B.

The phases appear only in the tri-linear Â parameters in our theory, and after RG evolution

and the rotation to the super-CKM basis, they then appear in the off-diagonal elements of
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the squark mass matrices.

δ(m2
q̃)
LR
ii = vq((Â

q
SCKM)ii − µ∗Y q

iiRq) (5.71)

with Rq = cot β, (tan β) for I3 = 1/2, (−1/2) as in Appendix B, and vu(d) = v sin β(v cos β).

The off-diagonal elements of the squark mass matrices enter the expressions for the

SUSY EDM contributions as shown in detail in Appendix B. Thus, we find that the EDM

contribution di ∝ Im(ÂSCKM) depends on the phases in the diagonal terms in the trilinears.

5.3.4 Electric Dipole Moments and Current Experimental Limits

We now summarize the experimental results on the electron, neutron and mercury EDMs.

In minimal SUSY models, the electron EDM arises from one-loop diagrams with chargino

and neutralino exchange, as well as two-loop contributions. Hence we can make the decom-

position

dEe = dχ
±

e + dχ
0

e + d2L
e (5.72)

The current experimental upper bound on the electron EDM is [5]

|dEe | < 8.7× 10−29e cm (5.73)

Calculating the neutron EDM requires assumptions about the internal structure, such

that there are two possible approaches, the chiral model, and the parton model approach.

We will restrict ourselves to the chiral model approach, although a combination could be

done in a future study. The neutron EDM can be decomposed by use of the SU(6) coefficients

into

dn =
4

3
dd −

1

3
du (5.74)

which then requires estimation of the quark EDMs, which can be achieved via a naive

dimensional analysis, such that

dq = ηEdEq + ηC
e

4π
dCq + ηG

eΛ

4π
dG (5.75)

where Λ ∼ 1.19 GeV is the chiral symmetry breaking scale, and the coefficients are the

QCD correction factors, given by ηE = 0.61, ηC ∼ ηG ∼ 3.4, as found in [166, 181]. The

contributions from SUSY come from 1-loop gluino, chargino and neutralino exchange, as
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well as 2-loop contributions, leading to the decomposition

dE,Cq = dg̃(E,C)
q + dχ

±(E,C)
q + dχ

0(E,C)
q + d2L

q (5.76)

and two-loop gluino quark squark diagrams which generate dGq . The current experimental

limit on the neutron EDM is [6]

|dn| < 3× 10−26e cm (5.77)

The mercury EDM results mostly from T-odd nuclear forces in the mercury nucleus,

which induce an interaction of the type (I · ∇)δ(r) between the electron and the nucleus

of spin I. The T-odd forces themselves arise due to the effective four-fermion interaction

p̄pn̄iγ5n [169]. The current theoretical estimate is given by

dHg = −7.0× 10−3e(dCd − dCu − 0.012dCs ) + 10−2 × de (5.78)

where the contribution from the strange quark CEDM is included 1 . The experimental

bound currently stands at [7]

|dHg| < 3.1× 10−29 e cm (5.79)

Strong CP contribution

A possible source of hadronic EDMs in the Standard Model comes from the θ−term of QCD.

This contribution is shown in equation (5.70). The limits on the EDMs of the neutron and

Mercury can be expressed in terms of this θ parameter as follows

dn ∼ 3× 10−16θ e cm

|dHg| ∼ O(10−18 − 10−19)θ e cm (5.80)

The contribution to the electron EDM, on the other hand, comes from electroweak in-

teractions. Thus, with measurements of the neutron EDM and electron EDM, the strong

and weak contributions can hopefully be separated, and θ can also be measured. Our upper

1There are uncertainties around the use of Eqns. (5.74) and (5.78), as discussed in [182]. We use in Eq.
(5.74) the constituent quark model (CQM), but could have used the parton quark model (PQM), with only
slight change in the numerical results. As discussed in detail in Ref. [182], there are differences in the results
obtained in the literature for Eq. (5.78) which have yet to be cleared up.
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limit on the electron EDM is not affected by the strong CP violation, but for the neutron or

Mercury, there could be a strong CP contribution that increases the EW contribution above

the EW upper limit. With sufficient data it may be possible to untangle these.

In the SM, a first analysis of the renormalisation of the θ parameter [183] found that

the first renormalisation occurs only at O(α2), which would give a value of θ ∼ O(10−16).

A subsequent detailed analysis yielded a smaller value of θ ∼ O(10−19) [184]. In this case,

from equation (5.80), we can see that the strong contribution to the neutron EDM from

θ renormalisation would be O(10−32 − 10−35). A more recent analysis yields an estimated

value of θ ∼ O(10−17), giving a contribution to the neutron EDM of O(10−33) [185].

An estimate of electroweak renormalisation contributions to θ in SUSY is presented in

[186], where it is discussed that θ is expected to be small, given that relevant phases are

small, and Mq̃ � O(100 GeV). Thus, observation of a neutron or Mercury EDM should

likely be interpreted as the Electroweak one we estimate in this chapter, but needs detailed

confirmation.

Solutions of the Strong CP problem in string theory have been studied for example in

[61, 187]. In this case a combination of the imaginary parts of the moduli fields is the QCD

axion and solves the Strong CP problem. However, in the presence of non-perturbative

contributions, the minimum of the axion potential need not be zero, and θ can have both

strong and electroweak contributions [61, 188].

5.4 Results

Within the framework we are considering of compactified M-Theory, the general structure

of SUSY breaking parameters is as follows. The gravitino mass is essentially ∼ Fφ/MPl,

which puts it naturally in the range of 25-100 TeV [11]. The F -terms of the moduli are

suppressed with respect to Fφ, and since the gauge kinetic function for the visible sector

depend only on the moduli, it is easy to check that the gaugino masses are suppressed

relative to the gravitino mass. Scalar masses, on the other hand, are not suppressed relative

to the gravitino mass unless the visible sector is sequestered from the SUSY breaking sector,

which is not generic in M-Theory [13]. Thus the scalar masses and trilinears turn out to

be of O(M3/2) & O(50) TeV. Due to the Kähler metric being approximately diagonal in

the flavor indices, the scalar mass matrix is roughly diagonal, with suppressed off-diagonal

components. In the following, we consider electroweakinos with masses . 600 GeV, scalar

masses ∼ 50 TeV, with B and trilinear parameters of the same order. The µ parameter is
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expected to be suppressed compared to the gravitino mass by an order of magnitude [17].

We estimate the contribution to the EDMs of the electron, neutron and mercury from

the operators described in Section 5.3.3 in our chosen M-theory framework.

5.4.1 Dominant two-loop contributions

There exist two-loop diagrams which could give large contributions to EDMs in supersym-

metric models [167], [189, 190, 191, 192, 193, 194, 195]. For example, the diagrams considered

in [2, 3], one of which is shown in Fig. 5.1, could potentially give large EDMs, as they are not

suppressed by the heavy scalar masses, but rather depend on the charginos and neutralinos

running in the loops.

fL fR

γ h

χ+i

γ

Figure 5.1: An example of a two-loop graph which contributes to fermion EDMs, with
charginos running in the inner loop, γ and higgs in the outer loop.

Their contribution to the fermion EDM would be given by

df = dγHf + dZHf + dWW
f (5.81)

where

dγHf =
eQfα

2

4
√

2π2s2
W

Im(DR
ii )
mfM

+
i

MWm2
H

fγH(r+
iH)

dZHf =
e(T3fL − 2s2

WQf )α
2

16
√

2π2c2
W s

4
W

Im(DR
ijG

R
ji −DL

ijG
L
ji)
mfM

+
i

MWm2
H

fZH(rZH , r
+
iH , r

+
jH)

dWW
f =

eT3fLα
2

8π2s4
W

Im(CL
ijC

R∗
ij )

mfM
+
i M

0
j

M4
W

fWW (r+
iW , r

0
jW ) (5.82)
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where

GL
ij = ViW+cW+V †W+j + Vih+u ch+u V

†
h+u j

−GR∗
ij = UiW−cW−U

†
W−j + Uih−d

ch−d
U †
h−d j

CL
ij = −ViW+N∗jW3

+
1√
2
Vih+uN

∗
jh0u

CR
ij = −U∗iW−NjW3 −

1√
2
U∗
ih−d
Njh0d

DR
ij = sin βVih+uUjW + cos βViW+Ujh−d

DL = (DR)† (5.83)

A priori, in the framework we are working in, these diagrams would seem not to be

important, as the gaugino masses contain no phases at the high scale so the imaginary part

of the chargino and neutralino diagonalisation matrices would be zero. However, phases may

be introduced by the running of the gaugino masses, given here [178]:

dMa

dt
=

2g2
a

16π2
B(1)
a Ma

+
2g2

a

(16π2)2

[
3∑
b=1

B
(2)
ab g

2
b (Ma +Mb) +

∑
x=u,d,e

Cx
a

(
Tr[Y †x Âx]−Ma Tr[Y †x Yx]

)]
(5.84)

with B
(1)
a , B

(2)
ab , C

x
a being matrices of group coefficients, which are also found in [178].

To 1st loop order there will still be no phases resulting from the running of the gaugino

masses as there are no terms that would contain phases. However, at two loop order, phases

can be introduced by the trilinear couplings. The term Tr[Y †x Yx] is manifestly real, and

therefore will not contain phases. However, the term Tr[Y †x Âx] could well cause a phase to

enter the gaugino masses at the low scale in the event where the Yukawa matrices are not

aligned with the trilinears. This term would disappear in the case of alignment, as the two

matrices would be diagonalised by the same left and right unitary matrices. Then we would

have

Tr[Y †x Âx] = Tr[VRY
diag
x V †LVLÂ

diag
x V †R] (5.85)

which is also manifestly real.

Since generically in the M-theory framework we expect the trilinears to not be aligned

with the Yukawas, we compute how large a phase one could get at the low scale given O(1)

phases in the trilinear via the Yukawa matrix, and therefore how this would enter into the

expressions for the EDMs.
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For this purpose we parameterise the trilinear matrix Âx = AxYx where

Ax =

A0e
iφ1 0 0

0 A0e
iφ2 0

0 0 A0e
iφ3

 (5.86)

To a good approximation, the dominant contribution to the phase in Tr[Y †x Âx] will come

from the third generation phase, as the others are suppressed by powers of the small pa-

rameter ε in all the textures we consider here. Consequently the result is largely texture

independent in these two-loop diagrams. This is due to the 1 in the {3, 3} position of the

Yukawa matrix being texture-independent, resulting in the dominance of the third genera-

tion phase. This is different from the 1-loop results, as in those diagrams, the contribution

from the third generation is suppressed relative to the first generation contribution.

Thus we can do a calculation of approximately how big an imaginary part Ma will have

at the low scale by considering the running of the imaginary part only. For the purpose

of the calculation, we work in a situation where we rotate to a basis where the down-type

Yukawa matrix is diagonal, so the phases are contained in the up-type Yukawa matrix.

d Im(Ma)

dt
' 2g2

aC
u
a

(16π2)2
Im(Tr[Y †u Âu])

' 2g2
aC

x
a

(16π2)2
A0 sinφ3

(5.87)

then we find that

Im(Ma) '
2g2

aC
x
a

(16π2)2
A0 sinφ3 log

[
MQ

MGUT

]
(5.88)

such that

Im(M2) ' −200 sinφ3

(
A0

75 TeV

)
GeV (5.89)

where we have used

Cu,d,e
a =

26/5 14/5 18/5

6 6 4

4 4 0

 (5.90)

as found in [178]. This is closely comparable to the result of doing the full two loop running

of the gaugino masses and the gauge couplings using the package RGERun2.0 available for

Mathematica.
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Knowing how large a phase can appear in the gaugino masses, we turn to computing the

diagonalisation matrices for the chargino and neutralino mass matrices, as the phases on

said diagonalisation matrices will appear in the expressions for the EDMs.

The chargino mass matrix is known to be

X =

(
M2

√
2 sin βMW√

2 cos βMW µ

)
(5.91)

where M2 is complex and the other entries are real. This matrix is diagonalised by the

following rotation

Xdiag = U∗XV −1 (5.92)

where U and V are unitary matrices for which analytic expressions can be obtained. Explicit

diagonalisation and the expressions for the matrix elements are given in Appendix I.3.

We can use these matrices to find the imaginary part which enters into the expressions

for dγHf and dZHf through the matrices D(L,R) and G(L,R) defined as above in equation (5.83).

In order to find the imaginary part of C(L,R) however, we must perform a numerical diago-

nalisation of the neutralino mass matrix.

We compute the electron EDM first, with

de = dγHe + dZHe + dWW
e (5.93)

and find that this gives us an upper bound from equation (5.82) of

|de| < 5× 10−30e cm (5.94)

for Mχ+
1
∼Mχ0

2
∼ 274 GeV, Mχ+

2
∼Mχ0

4
∼ 5000 GeV which is well above the estimate from

the leading order contributions. The heavier neutralino’s mass is dominated by the µ term

from the superpotential, which in the M-theory is found to be of order 0.1m3/2 ∼ 5000 GeV

[17]. Since this contribution is from a two loop effect, it does not depend on the scalars, but

rather on the much lighter neutralinos and charginos.

The neutron EDM upper bound from these diagrams comes from using equations (5.82,

5.74) and is

|dn| < 5× 10−29e cm (5.95)

for the same values of the chargino and neutralino masses as for the electron. Again, this

is well above the estimate from the leading order contributions. The ratio of dn/de ∼ 10 is
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approximately in line with the results in [3]. Our values are about two orders of magnitude

lower than their reported results, primarily because we actually compute the phases in the

diagram from the high scale, rather than taking it to be some O(1) factor.

These are upper limits given the predicted values of m3/2, M2 and µ, and therefore could

change given different input values. The misalignment of the trilinears and the Yukawas

is as yet unknown, so we use sinφ3 ∼ O(1) here. A precise value of sinφ3 could in prin-

ciple be determined for a given Yukawa texture given the known CKM phase and known

misalignment.

These are the dominant contributions in the generic case where the trilinears are not

aligned with the Yukawas. If this is the case, then they may be accessible in the next round

of experiments to measure EDMs. A measurement would of course imply that the relative

hierarchy of µ ∼ 10×M2 is correct, as for different values of these two parameters, we would

get a different result. This can be seen in [3]. Of note is that these results are independent

of the choice of texture, due to the third generation dominating. Therefore, a measurement

of an EDM would not allow us to learn the high scale structure of the Yukawa textures. If

the experiments were to not detect an EDM, this would suggest that either the trilinears are

aligned with the Yukawa matrices, or the phases in the trilinears are indeed small. Thus, a

non-detection would give us a better understanding of the relation between the full trilinear

matrices and the Yukawa matrices, regardless of what texture we are considering.

5.4.2 Sub-dominant one-loop contributions

In the situation where the trilinears are aligned with the Yukawas, the two loop result would

be zero, as no phase would enter the gaugino masses, so the diagrams we consider above

would not give a contribution to the EDMs. However, the one loop contribution would in

principle not be zero, due to the existing CKM and possible PMNS phases. The phases in

the Yukawa textures which at the low scale give the CKM and PMNS phases would enter

the one-loop contribution to EDMs after running from the GUT scale, calculated in Section

5.3.2. Therefore, we consider here the five-dimensional electric and chromo-electric couplings

at one-loop, as seen in Fig. 5.2.

As seen in Appendix J.1, we can express the chromo-EDM for the quarks in terms of

the small ratio r ≡ m2
i /m

2
q̃, with i = χ̃0, χ̃±, g̃. The gluino loop dominates, as also seen in
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γ, g

fL g̃, χ̃±, χ̃0 fR

f̃

Figure 5.2: One-loop contributions to the fermion EDMs, with scalars running in the loop.

Appendix J.1, so the largest contribution comes from

dCq ∼
gsαs
4π

Im(AqSCKM)

m3
g̃

r2
[
C(r) + rC

′
(r)
]

(5.96)

The quark EDM contributions are small compared with the quark CEDM contributions. The

term Im(AqSCKM) contains the phases that entered the diagonal entries from the running and

subsequent diagonalsation to the super-CKM basis. The relevant results for this are given

in table 5.1 for each of the textures considered.

Thus, if we make the definition

Kα
ii ≡

Im(Aαii)

A0Y α
ii

∼ Im(Aαii)

mq̃

(5.97)

we can present the results numerically for the various values of ε considered. As a reminder,

for textures 1 and 2, εu ∼ 0.26, εd ∼ 0.27, and for textures 3-7, εu = εd ∼ 0.22.

We rewrite here the expression for dCq in such a way as to present our results more clearly

for given textures.

dCq ∼
gsαs
4π

Kqm3
g̃

m3
q̃

[
C(r) + rC

′
(r)
]

(5.98)

From observing table 5.2, we see that the largest Kα are for the 2nd and 3rd generations.

However, the appearance of these in the loop are suppressed, so only the 1st generation need

be considered for calculating the upper bound on the quark contribution to the EDM of the

neutron.

Thus we present in table 5.3 the upper bounds on the neutron EDM for the various

textures, given our results above, and using the relation in equation (5.74).

We see that the maximal prediction is from texture 2, which gives an upper bound for
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Texture Im(Au
11) Im(Au

22) Im(Au
33) Im(Ad

11) Im(Ad
22) Im(Ad

33)

1 27A0Y
u

11ε
6 18A0Y

u
22ε

4 9A0Y
u

33ε
4 3A0Y

d
11ε

15 3A0Y
d

22ε
10 3A0Y

d
33ε

4

2 3A0Y
u

11ε
12 3A0Y

u
22ε

10 3A0Y
u

33ε
4 27A0Y

u
11ε

6 18A0Y
u

22ε
4 9A0Y

u
33ε

4

3 12
√

2A0Y
u

11ε
7 60A0Y

u
22ε

6 48A0Y
u

33ε
6 72A0Y

d
11ε

7 144A0Y
d

22ε
3 288A0Y

d
33ε

6

4 12A0Y
u

11ε
7 9A0Y

u
22ε

2 18A0Y
u

33ε
4 72A0Y

d
11ε

7 6A0Y
d

22ε
2 3A0Y

d
33ε

4

5 18A0Y
u

11ε
4 60A0Y

u
22ε

6 48A0Y
u

33ε
6 36A0Y

d
11ε

7 36A0Y
d

22ε
3 288A0Y

d
33ε

6

6 24/
√

2A0Y
u

11ε
7 9A0Y

u
22ε 18A0Y

u
33ε

4 36A0Y
d

11ε
7 3A0Y

d
22ε

4 3A0Y
d

33ε
4

7 9A0Y
u

11ε
4 9/

√
2A0Y

u
22ε

2 9A0Y
u

33ε
4 3/

√
2A0Y

d
11ε

6 3/2A0Y
d

22ε
4 3/2A0Y

d
33ε

4

Table 5.1: The results for the various textures in terms of the diagonal Yukawa matrix
elements Y α

ii . The first three columns are for up-type, and the second three are for down-
type.

the neutron EDM of

|dn| ∼ 8× 10−31 ·
( mg̃

1 TeV

)(50 TeV

mq̃

)3 ( ε

0.26

)6

e cm (5.99)

We remark here that this is of order ∼ 100× the expected SM result [196].

The maximal prediction for the mercury EDM can also be seen in table 5.3, and is given

by texture 5, with an upper bound of

|dHg| ∼ 2× 10−32 ·
( mg̃

1 TeV

)(50 TeV

mq̃

)3

e cm (5.100)

We do not give an ε dependence for the mercury EDM as it depends on a combination of

du, dd and ds, all of which have different ε dependences.

We then turn to the results for the electron EDM. From Appendix J.1, we know that the
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Texture Ku
11 Ku

22 Ku
33 Kd

11 Kd
22 Kd

33

1 8× 10−3 0.08 0.04 9× 10−9 6× 10−6 0.02

2 3× 10−7 4× 10−6 0.02 0.01 0.1 0.05

3 4× 10−4 7× 10−3 5× 10−3 2× 10−3 2 0.03

4 3× 10−4 0.4 0.04 2× 10−3 0.3 7× 10−3

5 0.04 7× 10−3 5× 10−3 9× 10−4 0.4 0.03

6 2× 10−3 2 0.04 9× 10−4 7× 10−3 7× 10−3

7 0.02 0.3 0.02 2× 10−4 4× 10−3 4× 10−3

Table 5.2: Numerical results for the various pre-factors Kα. The first three columns are for
up-type, and the second three are for down-type.

only diagram that contributes is the neutralino exchange, since if the two-loop contribution

is absent, there are no CP violating phases coming from the chargino sector in the theory

due to the alignment of the Trilinears with the Yukawa matrices. Thus we have that

dEe ∼
eαEM

4π cos θW

Im(ÂeSCKM)me

m3
B̃

r2 [B(r) + rB′(r)] (5.101)

where the variable r is defined as r ≡ m2
B̃

m2
ẽ
. We recall here that Im(Âeii) ∼ Ke

iimẽi , and so this

can be rewritten as

dEe ∼
eαEM

4π cos θW
memB̃

Ke

m3
ẽ

[B(r) + rB′(r)] (5.102)

Our results are summarised in table 5.4.
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Texture 1 2 3 4 5 6 7

du(×10−31) 4 2× 10−5 0.2 0.2 20 1 10

dd (×10−31) 6× 10−7 6 1 1 0.5 0.5 0.1

ds(×10−31) 4× 10−3 60 900 200 200 4 2

|dn|(×10−31) 1 8 1 1 7 0.3 4

|dHg|(×10−31) 3× 10−2 3× 10−2 7× 10−2 9× 10−3 0.2 4× 10−3 8× 10−2

Table 5.3: Results for the up, down and strange quark EDMs, and the neutron and mercury
EDMs for the various textures.

Texture 1 2 3 4 5 6 7

de (×10−34) 5 2× 10−3 0.2 0.2 0.2 0.2 5× 10−2

Table 5.4: Results for the electron EDM for the various textures.

We see that the maximal prediction is

de ∼ 5× 10−34
( mB̃

200 GeV

)(50 TeV

mq̃

)3 ( ε

0.36

)6

e cm (5.103)

as a result of using texture 1. We remark here that this is of order 105× the SM prediction

[196].

While texture 2 gave the highest neutron EDM, it actually gives the smallest electron

EDM. This comes about primarily as a result of two factors. The first is to do with the naive

dimensional analysis approach to calculating the EDM, in that the EDM of the down quark

contributes 4/3 whereas the up quark contributes −1/3. Thus despite the larger value of

Ku
11 in texture 5, the slightly smaller value of Kd

11 in texture 2 gives a larger result, albeit

marginally. This also explains why texture 7, despite giving the largest du, ends up giving a
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slightly smaller dn, as the du contribution loses out to the dd part.

The second reason, which applies to both texture 5 and texture 2, is due to the running.

The largest contributions to the EDM arise when the smallest powers of ε from running

coincide with the largest powers of ε in the eigenvalues. In this case, in texture 2, Y d
11 ∝ ε5,

and the running contributed a factor of 27ε6. In texture 5, Y u
11 ∝ ε4, and the running

contributed a factor of 18ε4. The pre factors from the running of the full trilinears are

important because they help counteract the large powers of ε.

The electron EDM is suppressed relative to the neutron EDM for a few reasons. Chief

among them is that we have factors of αEM rather than αs, due to the electroweak nature of

the diagram. Another suppression arises due to the loop factor in the electron EDM diagram,

B(r)+rB′(r) being substantially smaller than the loop factor in the gluino exchange diagram

for the quark CEDMs.

It is curious that texture 2, while giving the largest neutron EDM results in the smallest

electron EDM. This comes about because in textures 1 and 2, we assume that the Yukawa

texture for the leptons is of the same form as that of the up quarks. Therefore when we

start in a basis where the up Yukawa texture is diagonal, while it does pick up factors from

the running, they are typically large powers of ε.

5.5 Conclusion

M-Theory M-Theory Split SUSY Generic SUSY Current Limit SM value

(2-loop) (1-loop) (µ ∼ 5 TeV, M2 ∼ 1
3

TeV)

de (×10−28 e cm) 5× 10−2 5× 10−6 ∼ 1 ∼ 1000 0.87 10−10

dn (×10−28 e cm) 0.5 8× 10−3 ∼ 10 ∼ 1000 300 10−4

dHg (×10−28 e cm) 5× 10−4 2× 10−4 N/A N/A 0.31 N/A
dn/de ∼ 10 ∼ 103 ∼ 9 N/A N/A ∼ 106

Table 5.5: Results for the possibly dominant two-loop and 1-loop predictions of EDMs from
compactified M-Theory, as compared to the predictions from Split SUSY [2, 3], Generic
SUSY models [4], the current limits [5, 6, 7] and the expected SM value [4].

In this chapter we have discussed how the CP-violating phases in compactified M-theory

arise only in the Yukawa sector at the high scale, but nevertheless give rise to low scale

EDMs via RGE running and the Super-CKM rotation. Therefore there will be a dependence

on the Yukawa textures at the high scale. For various textures the running and subsequent

diagonalisation of the full trilinear couplings Âαβγ to the Super-CKM basis causes them to

pick up phases at the low scale.
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We have estimated the electron, neutron and mercury EDMs for textures at the high scale,

all of which satisfy experimental constraints on quark masses and CKM matrix elements.

The dominant source of EDMs in the generic case where the trilinears are not aligned with

the Yukawa matrices are from two-loop diagrams involving charginos and neutralinos, and

are therefore not suppressed by large scalar masses. These contributions are much larger

than the one-loop diagrams as a result. While at the high scale the phase in the gaugino

masses is zero, a misalignment between the trilinears and the Yukawas induces a non-zero

phase at two-loop order in the running of the masses. Thus there is a non-zero phase at the

low scale.

A priori one would think that a phase that arises only at two-loop order, which is then

inserted into a two-loop effect, would be smaller than the one-loop contribution. How-

ever, several factors contribute to making the two-loop effects large. The phase induced

by the running of the gaugino masses depends on the full trilinear, which is large (Â ∼
O(75 TeV)) in the M-theory compactification, which results in a relatively large phase, de-

spite the two-loop suppression. Further, the two-loop contribution is approximately d ∼
(α2/π2)(mfmχ̃±/M

3
EW ), as opposed to the d ∼ (α2

s/π)(mfmg̃/m
3
q̃) for the one-loop contri-

bution. Since m3
q̃ � m3

EW , the two-loop contribution turns out to be quite large when the

phases are not small.

These two-loop contributions do not depend on the choice of texture, as they arise mainly

due to the third generation phase entering the gaugino mass running. Since the third gen-

eration coupling is always 1 in the textures we consider here, the texture-dependence is

negligible.

We summarise our results and compare with other models in table 5.5. As seen there,

the estimated upper bounds we find from the two loop contributions are |dn| . 5×10−29e cm

and de . 5× 10−30e cm. These are values that are likely to be accessible in the near future.

A detection would confirm a misalignment between the trilinears in the Soft Lagrangian and

the Yukawa matrices. Non-detection would imply that they are aligned, or that the phase

in the trilinears is indeed small. The results are different from those reported in the Split

SUSY scenario [2, 3], as can be seen in table 5.5 and would therefore provide a means of

distinguishing between that scenario and the compactified M-theory. Further, the ratio of

the EDM predictions from the two-loop diagrams is a strong test of the M2/µ ratio predicted

in the compactified M-theory. These results assume the strong CP contribution is small.

We also compute the sub-dominant one-loop results. The reason being that these would

provide the dominant contributions in the case where the trilinears are indeed aligned with
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the Yukawas. In this case, the estimated upper bounds turn out to depend strongly on

the textures and are all below current experimental limits. We argue that although we

only study some textures, the results for EDM upper limits are generic. We find that the

Electroweak contribution to the neutron and mercury EDMs is larger than the expected

strong contribution in the SM, so any observation of a neutron or mercury EDM may be

interpreted as the Electroweak part, but this would require further study. The upper bound

we estimate for the electron EDM is well below current experimental limits, so we do not

expect experiments in the near future to be able to measure a non-zero EDM.

These results, while done in the context of a compactified M-theory, are likely to be

applicable for supersymmetric models which have scalars similar to the M-theory ones (and

would scale as the scalar mass cubed), and light gauginos, with CP-violating phases arising

only in the Yukawa sector at the high scale.

The upper bounds we find for dn . 8 × 10−31e cm, dHg . 2 × 10−32e cm and de .

5× 10−34e cm are strong and testable predictions of compactified M-theory. They are much

smaller than the sizes expected in supersymmetric and other generic models, but still signif-

icantly larger than the SM predictions. Unfortunately, in this case, where the trilinears are

aligned with the Yukawas, we expect that non-zero EDMs will not be found until there are

major improvements in experimental sensitivity.

The next round of experimental measurements of EDMs will provide valuable insight

into the fundamental Yukawa couplings of the quarks and leptons. If non-zero EDMs are

measured, it would suggest that there is indeed a misalignment between the full trilinears

and the Yukawa couplings, with the dominant EDM contribution arising at two-loop order.

If non-zero EDMs are not found, it would suggest that there is alignment between the

trilinears and the Yukawas. Further advances in experimental sensitivity might then provide

some insight into the structure of the Yukawas at the high scale, given the strong texture

dependence of the dominant one-loop contributions.

This chapter concludes the study of low-energy observables associated with supersym-

metric models with heavier scalars, both in the absence of (Chapter 4) and in the presence

of (this chapter) CP violation. In the next two chapters we will discuss general ideas that

apply to a wider class of models, and have profound implications for supersymmetric models.
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Chapter 6

The Lightest Visible-sector

Supersymmetric Particle is Likely to

be Unstable

6.1 Introduction

In the preceding chapters we have considered primarily the collider and low-energy phe-

nomenology of supersymmetric models, with an emphasis on spectra with heavier scalars.

However, there are other general aspects of the phenomenology of supersymmetric mod-

els which deserve study. In this chapter, we revisit the basic assumption that the lightest

visible-sector supersymmetric particle is stable. While not precisely in the context of models

with heavier scalars, the results of this chapter have wide-reaching impact on all types of

supersymmetric models.

The Standard Model (SM) of particle physics has long been known to lack an adequate

candidate for dark matter. An oft-repeated virtue of its minimal supersymmetric extension

(the MSSM) is that a conserved matter parity, or R-parity, will imply that the lightest

supersymmetric particle is stable, and therefore a natural dark matter candidate [197, 198].

Unfortunately, as we will argue here, when the MSSM is embedded in a ultraviolet (UV)

complete theory, such as string or M -theory, the lightest supersymmetric particle will most

likely not reside in a visible sector.

Whatever the particular details of any particular string compactification may be, there

are certain results that appear to be generic. Of particular importance to this chapter are

the existence of hidden sectors. We define a hidden sector as containing states in the low-
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energy effective theory that are uncharged at tree-level under the SM gauge symmetries,

but can be charged under their own symmetry group GH . Compactified string/M -theory

solutions will generically have hidden sectors, containing, at a minimum, the gauge fields

and gauginos associated the various group factors contained in GH , when the UV solution is

supersymmetric [199, 200]. Such sectors have already been used for model-building purposes,

in particular for the breaking of Supersymmetry (SUSY), which takes place in a hidden sector

and is then mediated to the visible sector.

Hidden sectors will of course interact with our visible sector via gravitational interactions,

but can also have other so-called “portals” to the visible sector [201]. We argue that the exis-

tence of hidden sectors and portals leads to the conclusion that the lightest supersymmetric

particle in the visible sector (LVSP) is likely to be unstable, since there will generically be

a lighter particle in one of the many hidden sectors (an LHSP), into which the LVSP will

decay via the portal. For this decay to occur, a simple list of conditions is required, and

we find that they are all quite typically available, leading to the conclusion that the LVSP

decays. The conditions are the following:

1. There exists one or more hidden sectors.

2. There exists a portal connecting the visible sector to the hidden sector.

3. That hidden sector spectrum includes a particle lighter than the LVSP.

We will concentrate on the kinetic mixing portal [202], as we find this to be the most generic

portal arising from string theory [199]. The existence of other portals would only serve to

strengthen our argument.

6.2 Hidden Sectors in String Theory

A typical feature of the hidden sectors in string/M theory are their multitude and their

richness. The presence of hidden sectors is not optional, but often required to ensure the

mathematical consistency of the theory. While systematic studies remain rare (see the

discussion in [64]), the genericity of large hidden sectors, with many small-rank groups,

has been demonstrated in several contexts. These include the heterotic string in the free-

fermionic approach [203, 204] and in the orbifold limit [205, 206], weakly-coupled Type II

string theory [207, 208], and Gepner models [209]. F -theory models are known to produce
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similarly rich hidden sectors [210]. Finally, let us consider M -theory compactified on a

manifold with G2 holonomy. Whilst, in this case, we are technically far away from being

able to perform systematic surveys of gauge groups, the general picture is expected to be

somewhat similar to the F -theory results of [210]. This can also be argued from duality with

the heterotic and Type-II string theory. Given that the number of hidden sectors is bounded

by the third Betti number, which is typically O(100) [211, 200], it is expected that having

many hidden sectors will also prove generic in M -theory.

It is important to note that the size of the hidden sector gauge group is often much

larger than that of the observable sector. We may use the rank of the group GH (typically a

product of non-Abelian and Abelian factors) as a proxy for the richness of the hidden sector.

Traditional string model-building has centred upon weakly-coupled heterotic or Type II

solutions, which typically give a rank for GH that is larger than GSM , but roughly comparable

in size. In recent years, however, the study of strongly-coupled string theory has been put

on a much firmer footing, particularly in the context of F -theory. Here the expectation is

for the rank of GH to be much larger than GSM , perhaps by orders of magnitude1 (see,

for example, the specific case studied in [212]). What is more, the notion of “generic” has

become increasingly precise in these contexts [213].

In the next section we will consider the phenomenon of kinetic mixing, which requires the

presence of Abelian U(1) factors in the hidden sector. Given the existence of non-Abelian

gauge groups in hidden sectors, it is clear that if they are broken, there can be resulting

U(1) factors in the hidden sector. The mechanisms for breaking the hidden sector gauge

group can be either via Wilson lines, or via radiative breaking at lower energies. The former

case is inherently string-theoretic, in that it requires the presence of non-trivial geometry

in the compact space. The latter mechanism is familiar from four-dimensional field theory.

Furthermore, there can be U(1)’s in the four-dimensional effective field theory that do not

stem from non-Abelian groups, and have a string-theoretic origin. A well-studied example

is the dimensional reduction of Ramond-Ramond (RR) forms on suitable cycles in Type II

theory [214].

To be phenomenologically relevant, it is necessary that any such U(1) be non-anomalous,

for otherwise the gauge boson would receive a mass of order the string scale through the

Green-Schwarz mechanism. In open string theories one typically finds that many of the

U(1) factors are anomalous. What is more, many U(1)s which are non-anomalous may

1Similarly large ranks for GH have been observed for some time in rational conformal field theory con-
structions [209].
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nevertheless acquire a string-scale mass to satisfy higher-dimensional anomaly cancellation

conditions [215, 216]. Yet the effective mass matrix for the collection of U(1)s need not have

full rank, and indeed generally does not [217, 218, 219]. The same has been observed in

heterotic constructions which generalise the structure group of the gauge bundle [220].

Furthermore, there are many circumstances in which one expects massless U(1)s to

emerge. The most obvious are cases in which the U(1) arises from the breaking of a

non-Abelian group via Wilson line breaking, or through parallel splitting of stacks of D-

branes. Abelian factors arising from the zero modes of closed string RR-forms are guaran-

teed to be massless on Calabi-Yau surfaces, and can obtain masses only in non-Kähler back-

grounds [221]. Abelian factors supported by D3-branes cannot participate in the Stückelberg

mechanism as the necessary axionic fields are projected out by orientifolding [222]. All of

these arguments imply that one generically expects light U(1)s in the effective field theory.

6.3 The Kinetic Mixing Portal

The kinetic mixing portal was first considered in the context of four-dimensional field the-

ory [202], in which it arises from the existence, and subsequent integrating out of, heavy

bi-fundamental fields, charged under both U(1)’s. Such states exist typically in open string

theories. For instance, if both U(1)’s are supported by D-branes which are separated in the

extra dimensions, as is the case for all supersymmetric Type I, Type IIA and Type IIB mod-

els, then there will be massive open strings which stretch between the two D-branes, giving

rise to massive bi-fundamentals. There are generalisations of this statement in M -theory,

F -theory and the heterotic string as well.

These bi-fundamentals will lead to a one-loop mixing of the two U(1) symmetries U(1)a

and U(1)b. In the case of interest let U(1)a correspond to the visible sector U(1)Y , and U(1)b

correspond to a hidden sector U(1). The Lagrangian of the U(1) kinetic sector then reads

Lgauge = −1

4
F µν
a Faµν −

1

4
F µν
b Fbµν +

ε

2
F µν
a Fbµν (6.1)

where ε parameterises the mixing of the two U(1)’s each with field strength tensor F µν
i .

Note that in the case of kinetic mixing with U(1)Y in the visible sector, after spontaneous

breaking of the SU(2)w×U(1)Y electroweak symmetry, the photon will still remain massless.

Instead of generating a mass term for the photon, kinetic mixing will instead induce a small
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shift in the mass of the Z boson.

The expected size of ε can be estimated by calculating the two-point polarisation diagram

and is given by [202]

ε ' gagb
12π2

QaQb log

(
1 +

∆m2
ab

M2

)
(6.2)

where ga,b (Qa,b) are the couplings (charges of bi-fundamentals) of U(1)a,b, ∆mab is the

mass splitting of the bi-fundamental fields charged under both groups, and M is the bi-

fundamental mass scale, such that the bifundamentals have mass M + ∆mab. Clearly if the

U(1)’s sit in an unbroken non-Abelian gauge symmetry, ε = 0. If the matter spectrum is

charged under a non-Abelian gauge symmetry with a U(1) factor then the mass degeneracy of

the spectrum would naively cause ε = 0 also. However, this degeneracy is not stable against

radiative corrections, and mass splittings ∆mab are generated, thus rendering ε non-zero.

These bi-fundamentals may have masses M ∼ R
l2s

, where R is the separation of two

stacks of Dp branes connected by the open string. This suggests that the mass should be

M ∼ O(MGUT ). Depending on the size of ∆mab, ε can take on a wide range of possible

values. In particular, if the hidden sector gauge group is broken at a scale MGH ∼ M via a

Wilson line, ε can be of O(10−3) for O(1) charges Qa and Qb and ga ∼ gb ∼ gY . On the other

hand if the hidden sector gauge group is broken radiatively through field theory dynamics

at some much smaller scale MGH � M , ε can be as small as O(10−26) (e.g. if MGH ∼ 1

TeV). Crucially however, barring some non-generic external mechanism to prevent ε from

being generated, it is always non-zero [199]. Since ε enters via a dimension-4 operator, it is

a priori not suppressed by high mass scales.

Explicit calculations of the kinetic mixing parameter (6.2) in Type II constructions

support these arguments. Typical values for the mixing parameter are found to gener-

ally lie in the range 10−3 ≤ ε ≤ 10−1, with values as low as ε ∼ 10−6 accessible via

tuning [223, 224, 225, 226]. Some additional volume suppression in the Type IIB con-

text can be obtained in various LARGE volume scenarios [227], in which the assumption

that gb ∼ gY is relaxed. In this case, a compact volume which generates an intermedi-

ate string scale Ms ∼ 1010 GeV could produce an effective mixing parameter in the range

10−8 ≤ ε ≤ 10−6 [228, 229]. It is unclear whether such large volumes are generic, even within

the context of flux compactifications of Type IIB string theory, though as we will see below,

these values still imply that the LVSP will not be an adequate dark matter candidate.

Finally, we should emphasize that non-vanishing kinetic mixing has also been demon-
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strated in heterotic contexts, including heterotic M -theory [230], Calabi-Yau compactifica-

tions [231] and in certain heterotic orbifold limits [232]. The genericity of kinetic mixing in

string theory, and its typical size (ε ∼ 10−3) appear to bear out the intuition of Dienes et al.

from twenty years ago [199].

6.4 The Decay Mode

Given the existence of a portal, such as the kinetic mixing portal described above, the

stability of the LVSP becomes a simple question of kinematics. Note that the usual argument

for LVSP stability is based on discrete symmetries, but that requires that the LVSP mass is

sufficiently small compared to other particle masses. The LVSP will not decay if it is lighter

than all possible combinations of potential hidden sector decay products permitted by gauge

invariance alone. One can ask for a sufficient condition for LVSP stability: why should the

LVSP be lighter than all hidden sector particles? A key point is that this question has no

obvious answer, and clearly becomes more and more difficult as one increases the number

and complexity of the hidden sectors. If there is no good reason for the LVSP to be light

compared to hidden sector particles then, presumably, the LVSP will decay. How does it

decay?

With Supersymmetry the hidden sector contains the U(1) gauge boson and the associated

gaugino. The sector may also contain matter charged under the hidden U(1). If any of these

states are lighter than the LVSP, then the LVSP can decay via the portal, which induces

a mixing between the Bino and the hidden U(1)-ino in the neutralino mass matrix. Let us

assume that the LVSP is a neutralino, as is common within the MSSM. If a kinetic mixing

portal exists to a hidden sector in which the LHSP is also a gaugino, then LVSP decay is

expected whenever δm = mLV SP −mLHSP > 0. If δm > mZ , the neutralino LVSP undergoes

2-body decay to a Z boson with lifetime

τ
χi→Z χj
2−body ∼ 10−17 s×

(
10−3

ε

)2(
0.01

|Ni3N∗j3|

)2

, (6.3)

where Nkm is a neutralino mixing matrix element. We have assumed a mostly Bino or Wino

LVSP, and have taken mLV SP = 1 TeV and mLHSP = 100 GeV for illustrative purposes.

Three-body decays can occur if δm < mZ , and may dominate [233]. Then the characteristic
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lifetime is

τ
χi→Z χj
3−body ∼ 10−9 s×

(
10−3

ε

)2(
0.01

|Ni3N∗j3|

)2

, (6.4)

where we have taken mLV SP = 1 TeV and mLHSP = 950 GeV for illustrative purposes. There

are also both two- and three-body decays to a Higgs boson, with τχi→h χj ∼ H2
ij

|Ni3N∗j3|2
τχi→Z χj ,

where Hij is the neutralino coupling to higgs bosons. Additionally, if the LVSP is mostly

Higgsino, τ H̃→Z χj ∼ |Ni3N
∗
j3| τ B̃,W̃→Z χj for both the two- and three-body decays.

There can also be decays into a chiral fermion LHSP which can be much lighter; we will

describe the resultant parameter space in a paper in preparation.

6.5 Summary

In this chapter we have put forward arguments that imply that the lightest supersymmetric

particle in the visible sector is most likely not, in fact, stable. It may be metastable, though it

is far more likely that it undergoes prompt decays into hidden sector states. The components

of the argument are simple: (1) there is at least one hidden sector, (2) there is at least one

portal connecting it to the visible sector, and (3) there exists matter in that sector which

is lighter than the LVSP. We have illustrated these arguments with a kinetic mixing portal,

since this appears to be the most generic outcome from string theory, but the presence of

additional portals would only strengthen the argument.

Several aspects of our argument have appeared elsewhere in the literature in various

forms. Here we have emphasised the generic nature of these components in string/M -theory

solutions. Given the multitude of hidden sectors in string compactifications, it is quite likely

that there exists at least one sector that satisfies these assumptions. Therefore we conclude

that the LVSP will decay. It is the generality of this conclusion that compels us to argue

for a paradigm shift in the thinking of phenomenologists when it comes to dark matter. In

particular it raises the likelihood that dark matter resides in a hidden sector which might be

very difficult to probe.

We conclude by noting that relegating dark matter to some hidden sector has phenomeno-

logical consequences. The resulting lifetime may affect collider signatures; we will return to

study these in a follow-up paper. The kinetic mixing portal scenario illustrated may be

cosmologically perilous, due to long-range forces and millicharged particles, to disruptions in
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Big Bang nucleosynthesis, to a relic overabundance that conflicts with the known age of the

universe [228, 229, 234, 233]. None of these challenges negate the conclusion that the LVSP

is very likely unstable. It is non-generic to avoid sizeable kinetic mixing and light hidden

sector states. Instead, it may turn out that the study of dark matter in string theories will

illuminate that corner of the string/M-theory landscape in which our world resides.

In this chapter we considered the implications of String/M-Theory for the stability of the

LVSP. In the next chapter, we will look at another general aspect of supersymmetric models,

namely the details of unification of the gauge couplings into a Grand Unified Theory. The

analyses both in this chapter, and in the next, have implications for supersymmetry at all

mass scales, including the case where there are heavier scalars.
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Chapter 7

Visualizing Gauge Unification with

High-scale Thresholds

As in the preceding chapter, in this chapter we will study general aspects of supersym-

metric models. Here, we are interested in the high-energy dynamics of the unification of

the gauge couplings. The results of this chapter have wide-ranging applications, even to

non-supersymmetric models, as we will see in one of the examples we consider.

A common practice in the literature when contemplating gauge coupling unification is

to settle upon a weak-scale theory, run the three gauge couplings up to the high scale, and

look for theories where the three gauge couplings meet in one place. Famously, the Standard

Model (SM) does not unify under that rubric but the Minimal Supersymmetric Standard

Model (MSSM) does according to many [235, 236, 237, 238, 239, 240, 241, 242, 243]. However,

such statements are too simple. The SM cannot be ruled out as the IR manifestation of

a Grand Unified Theory (GUT), nor do the three gauge couplings meet at precisely one

point in the MSSM. The key to understanding both claims is that high-scale thresholds are

generically expected, which are due to the multiplets at the high scale that get masses by the

same mechanism that breaks the GUT symmetry. High-scale threshold corrections kick the

infrared couplings further into exact unification if the underlying theory is gauge-coupling

unified.

Despite continuing misstatements by a few at times, these facts have been well known

by the experts for some time. What is not as widely appreciated is how generically pos-

sible unification is in theories without Supersymmetry when expected high scale threshold

corrections are contemplated, and how anomalously low the high-scale threshold corrections

must be in Supersymmetry to satisfy exact unification compared to generic expectations of a
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high-scale unified theory. One of our main goals in this chapter is to argue these two points

by making apples to apples comparisons of the renormalized gauge couplings at high scale

and expected thresholds.

The second main goal of this work is to transform all the information we have of the low-

energy theory into useful data for testing the viability of a high-scale theory of unification.

The resulting output also should provide intuitive and immediate meaning to the unification

seeker. For example, RGE flow of gi couplings up to the high scale never achieve exact

unification, even within supersymmetric theories. Indeed it should not if there are any high

scale thresholds at all. The question then becomes whether the mismatch is too much for a

viable unification theory to overcome. Simple data on gi at an (ambiguously defined) GUT

scale is not enough to answer that question even approximately. Further processing of the

data is required.

In this chapter we advocate the answer to these requirements are plots of the scale-

projected mismatch of couplings vs. the renormalization group running scale: “∆λ plots”.

Definitions and details are below. Suffice it to say in the introduction here that these

plots encapsulate all the needed information about the infrared thresholds of the theory,

unambiguously show what high-scale threshold corrections need to accomplish to achieve

exact unification of the couplings, and provide rapid intuition about the generic features

that a unified theory must possess to have exact unification (e.g., the approximate size of

representations needed). All low-scale theories, including the SM and various forms of low-

scale Supersymmetry, need produce only one plot for researchers to use in testing viability

of their high-scale unified theories.

The literature contains many examples of grand unified theories and their analyses, build-

ing on long-ago studies [235, 236, 237, 238, 244, 239, 240, 241, 242, 243, 245, 246, 247, 248,

9, 249]. Our field continues to pursue grand unification in both supersymmetric contexts

and not. Although weak scale supersymmetric grand unified theories are decidedly still

viable [250], many recent Supersymmetry studies also consider the salient aspects of very

massive superpartners [14, 251, 252, 253, 254, 255]. These theories require somewhat larger

threshold corrections at the high scale, which as we will see may be a positive feature due to

weak-scale Supersymmetry’s requirement of disquietingly small high-scale threshold correc-

tions to achieve exact unification. We demonstrate the utility of this method by applying it

to two simple grand unified theories in the literature: The SO(10) SM theory of Lavoura-

Wolfenstein [256] and the ε-assisted SU(5) supersymmetric theory of Tobe and Wells [257].

Both of these theories are straighforwardly compatible with unification, despite the “run-
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ning of the couplings” not meeting exactly at any one scale. The ∆λ plots will be used to

demonstrate the results graphically.

7.1 Unification of couplings : preliminaries

Let us begin by reviewing a few basic aspects of unification theory and effective field the-

ory. When discussing the unification of couplings it is of great importance that we make

unambiguous statements about what we know from the IR effective theory and what we can

calculate from the UV in a particular GUT theory. It is possible to define a unified coupling

gU in an infinite number of ways that are not physically meaningful. For example, we can

define it to be the value of the couplings g1 and g2 at a scale MU where g1(MU) = g2(MU)

in some scheme. Or we can definite it to be when g2(MU) = g3(MU) = gU , or the value of

(g1 +g2 +g3)/3 when (g1−g2)2 +(g1−g3)2 +(g2−g3)2 is minimized, or an infinite number of

other ways. Although one or more of these definitions can have some utility in some limited

circumstances, in careful testing of theories for exact unification it is not useful to define a

unified coupling gU by any procedure from the IR perspective.

Instead, gU can only be defined from the UV perspective where in the high-energy phase,

or GUT phase, of the theory there is a single gauge coupling gU which is subject to defining

boundary conditions to set its value at some scale, and which subsequently runs with scale.

At some scale M∗ matching is made between the GUT unified theory with gauge coupling gU

and the low-scale theory with gauge couplings g1, g2 and g3. The matching at M∗ involves

a lot of violence from threshold corrections, and gi(M∗) can all be quite different than gU .

For that reason there is little utility in trying to define a physically meaningful gU from the

IR perspective. We shall therefore not rely on such artifices below.

7.2 Analytic Definitions and Procedures

Let us continue with some technical remarks on the calculations involved. The hypercharge,

weak and strong couplings in the IR are the standard g1, g2, g3, where g1 has the appropriate

GUT normalization. Their values change with scale according to the renormalization group

equations (RGEs) of the IR effective theory. From the UV perspective, gU is defined by our

choice of GUT theory. Depending on the choice of UV theory, there may be more than one

scale involved depending on the splitting of the gauge boson and scalar masses.

We use the two-loop RGEs for the evolution of the gauge coupling constants in the IR
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from the electroweak scale to the high scale. The equations are

dgi
dt

= β
(1)
i + β

(2)
i =

big
3
i

16π2
+

g3
i

(16π2)2

[
3∑
j=1

Bijg
2
j +

∑
a=u,d,e

Ca
i Tr

(
Y †aY a

)]
(7.1)

where bi, Bij and Ca
i are group coefficients that can be calculated in the Standard Model

and its extensions [258, 259, 260, 178].

Rather than pick a particular unification scale, we choose a scale µ∗ = 1016 GeV at which

to evaluate various quantities. We select this scale since it is closely related to the constraints

on the masses of the vector bosons associated with proton decay. We know that at scales near

the unification scale, the IR gauge couplings gi(µ∗) are related to the unification coupling

gU(µ∗) by the following relation at one-loop [245, 246]:(
1

g2
i (µ∗)

)
MS

=

(
1

g2
U(µ∗)

)
MS

−
(
λi(µ∗)

48π2

)
MS

(7.2)

where λi(µ∗) are the threshold corrections, computed in the MS scheme, to each gauge

coupling at the scale µ∗. In general, when masses in an irreducible block are identical, λi(µ)

can be defined as [246]

(λi(µ))MS = lVni − 21 lVni ln
MVn

µ
+ lSni ln

MSn

µ
+ 8 lFni ln

MFn

µ
(7.3)

where there is an implicit sum over the n different superheavy particles of a given type (V for

vector bosons, S for scalars and F for fermions). It should be understood that only physical

scalars contribute. The lXi are the weighted Dynkin indices relative to the SM gauge group

i. This computation of λi(µ) is understood to be accurate only in the region near the scale

of unification. The threshold corrections can therefore be determined in the GUT theory of

choice.

In the IR, we may use Eq. (7.2) above and define the following relations that are inde-

pendent of the unification coupling gU(µ∗)(
∆λij(µ∗)

48π2

)
MS, DR

≡
(

1

g2
i (µ∗)

− 1

g2
j (µ∗)

)
MS, DR

=

(
λj(µ∗)− λi(µ∗)

48π2

)
MS, DR

(7.4)

for i, j = 1 , 2, 3, i 6= j. Any two ∆λij then specify all the threshold corrections up to a

constant factor. The subscripts MS and DR indicate that the threshold corrections and

gauge couplings need to be computed in the appropriate renormalization scheme depending
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on whether one is dealing with a SUSY theory (DR) or not (MS).

From the IR, we only know how to compute gi(µ) and run up to some scale µ∗. We may

then use Eq. (7.4) to calculate ∆λij as a function of µ without requiring knowledge of the UV

theory. We may then assume that the UV has some GUT theory description, which would

allow us to compute the threshold corrections λi(µ∗) and their difference, ∆λij(µ∗) given the

spectrum of superheavy particles. If the ∆λij(µ∗) obtained from the IR were to match that

obtained from the UV GUT theory for a particular set of GUT masses, unification is possibly

achieved. There is an ambiguity due to a shift symmetry since the differences matching may

not account for a constant term. Therefore matching the UV and IR calculations of ∆λij

specifies
1

g2
U(µ∗)

+ S and
λi(µ∗)

48π2
+ S (7.5)

where S is some constant shift. Thus Eq. (7.2) is satisfied, but with some ambiguity from

the IR perspective left over as to the unified coupling constant and the size of the threshold

corrections. Of course, from the UV perspective, both are known.

7.3 Numerical Procedure

We compute the running of the gauge couplings in three different cases: (1) the Standard

Model (SM); (2) a generic low-scale CMSSM-like SUSY model with weakly (strongly) coupled

sparticles at 1 TeV (3 TeV); and, (3) a split Supersymmetry-like model with bino and

higgsinos at 1 TeV, winos at 3 TeV, gluinos at 7 TeV and scalar superpartners at 1 PeV.

These three cases are all motivated by theory and current experimental constraints from the

LHC.

We perform the calculation of the RGE running at two-loop order numerically, with the

one-loop coefficients changing depending on the matter content. For the SM, we use the

two-loop beta functions derived in [258]. For the supersymmetric cases, we use the two-loop

beta functions derived in [178] with the appropriate shifts in the one-loop coefficients as we

pass through sparticle thresholds.

Upon applying these spectra to the above formalism we are now able to compute the ∆λ

plot of ∆λ13 and ∆λ23 values from the IR for all three cases as a function of renormalization

scale µ. The SM case is provided in Fig. 7.1. This plot is the only data needed when one

wishes to check SM compatibility with a favorite unification theory. We will do that later in

an SO(10) example.
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Figure 7.1: Plot of ∆λ23(µ) (red) and ∆λ12(µ) (blue) for the Standard Model as a function
of scale µ.

Each supersymmetric theory with a well-defined spectrum of superpartners has its own

unique ∆λ plot. In our two supersymmetric cases (2) and (3) discussed above, it is straight-

forward to make a plot of ∆λ13 and ∆λ23 as a function of µ for each of them as we did

for the SM case in Fig. 7.1. However, there is an even simpler representation of the same

information that we wish to present. One can plot the correlated values of ∆λ23 vs. ∆λ12

parametrized by the renormalization scale µ, where the values of µ are labeled on the line.

This is done for the SM and the CMSSM-like SUSY model (case 2 above) in Fig. 7.2.

To better aid the vision and intuition of these plots we color code the line into red,

orange and green as we cross various thresholds of µ. We suggestively call green “safe” to

follow intuitions of simple grand unified groups that thresholds above 1014 GeV (at least) are

needed to protect the proton from decaying too quickly.

We note in Fig. 7.2 that the supersymmetric line crosses very close to zero for µ '
1016 GeV which is illustrating the famous case for supersymmetric unification. The SM line

strays far from the origin of the plot and illustrates the famous case against SM unification.

However, what precisely does it mean to “stray far” from the origin? How far is too far? The

answer to these questions starts by acknowledging that exact unification at the high scale,
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Figure 7.2: This key visualization plot shows ∆λ23(µ) as a function of ∆λ12(µ) for the
Standard Model and a CMSSM-like SUSY model. Labels on the line indicate the scale µ.
Green regions indicate that a unification scale around those values is moderately safe from
constraints. Orange indicates relatively unsafe, Red indicates very unsafe.

and a high-scale theory, both require analyzing the high-scale threshold corrections that are

generically expected. A line for a theory in the ∆λ plot, such as the SM line in Fig. 7.2, is

“too far” away from the origin if we cannot imagine threshold corrections at the high scale

shifting the couplings enough to bring it back to the origin.

We will see below that in the case of Supersymmetry, there is never a problem in this

regard. In fact, the ∆λ’s are arguably too small and threshold corrections have to either

not be present for some reason or must have tuned cancellations at the high scale for exact

unification to occur. In the case of the SM the corrections are large, and the index of the

representations at the high scale must be comparable to the ∆λ values (up to multiplicative

logarithms) of up to several hundred. However, the index of representations of grand unified

theories based on SO(10) are often in the three digits, such as the 126 representation with

index 35 and the 210 representation with index 56 [261]. Indeed, these representations

play a key role in our first example of the next section: Lavoura and Wolfenstein’s non-

supersymmetric SO(10) theory [256].
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7.4 Exact Unification Examples

Having described the theoretical framework we use, we give below two examples of grand

unified theories that illustrate the viability of SM and supersymmetric GUTs, demonstrate

the utility of the ∆λ plots in the search for a precise spectrum that yields exact unification of

the couplings. The two examples are Lavoura and Wolfenstein’s non-supersymmetric SO(10)

theory [256] and Tobe-Wells supersymmetric SU(5) theory [257].

7.4.1 Lavoura-Wolfenstein SO(10) and the Standard Model

The SO(10) GUT of Lavoura and Wolfenstein [256] has a Higgs structure that consists of

{10 and 126} representations. There is also a 210 which contains heavy scalars that do not

condense. The pattern of symmetry breaking is SO(10) → SU(2)L ⊗ SU(2)R ⊗ SU(4) →
SU(3)c ⊗ SU(2)L ⊗ U(1)Y .

The Lavoura-Wolfenstein Spectrum is shown in table 7.1 below. We label the gauge

bosons according to their SM gauge group representations to make clear that the gauge

bosons leading to proton decay are all at the common mass MV , and those not leading to

proton decay are all at a different mass MR. The mass MR is defined to be MR ≈ vR,

where vR is the VEV of the (1, 3, 10) of the 126, which breaks the SU(2)L⊗SU(2)R⊗SU(4)

symmetry. We label the scalars according to their SU(2)L⊗SU(2)R⊗SU(4) representations.

This is done because the simplifying assumption is made that all the SM representations of

scalars in a given SU(2)L ⊗ SU(2)R ⊗ SU(4) representation will have the same mass. The

(2, 2, 1) component of the 10 contains the SM Higgs and therefore is not listed, as it will not

contribute to the threshold corrections at the unification scale.

The decomposition into the various SM representations for a given SU(2)L ⊗ SU(2)R ⊗
SU(4) can be done. For example, the (1, 1, 15) of the SO(10) 210 yields under (SU(2), SU(3))U(1)Y

the charges

(1, 1)0, (1, 3)Q′ , (1, 3)−Q′ , and (1, 8)0, where Q′ =
2

3

√
3

5
. (7.6)

Making the decomposition explicit is unnecessary for the purposes of defining the spectrum

of masses, but it must be done in order to compute the contributions that each state will

make to the threshold corrections.

The threshold corrections for this particular GUT are obtained by applying the boundary

condition equation for the threshold corrections (Eq. (7.2)) for each of the vector bosons
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Gauge Bosons Scalars
SO(10) SU(2)⊗ SU(3)[U(1)Y ] Mass SO(10) SU(2)L ⊗ SU(2)R ⊗ SU(4) Mass

45 (1, 1)[0] MR 210 (1, 1, 1) N/A

45 (1, 1)[
√

3
5
] MR 210 (2, 2, 6) Goldstone

45 (1, 1)[−
√

3
5
] MR 210 (1, 1, 15) M1

45 (1, 3)[2
3

√
3
5
] MR 210 (2, 2, 10) M1

45 (1, 3)[−2
3

√
3
5
] MR 210 (2, 2, 10) M1

45 (2, 3)[1
6

√
3
5
] MV 210 (1, 3, 15) M4

45 (2, 3)[−1
6

√
3
5
] MV 210 (3, 1, 15) M5

45 (2, 3)[−5
6

√
3
5
] MV 126 (1, 1, 6) M1

45 (2, 3)[5
6

√
3
5
] MV 126 (2, 2, 15) M1

126 (1, 3, 10) M2

126 (3, 1, 10) M3

10 (1, 1, 6) MHc

Table 7.1: Table showing the spectrum of superheavy particles contributing to the threshold
corrections in the Lavoura-Wolfenstein SO(10) GUT, with their various masses.

and scalars that has a mass near the unification scale and summing over all heavy fields.

Each heavy boson contributes

(
λVni
)
MS

= lVni

(
1 + 21 ln

µ∗
MV

)
(7.7)

where lVni is the Dynkin index of the n-th vector boson relative to the SM group labelled

by i, multiplied by their dimensions relative to the other SM gauge groups. Each scalar

contributes (
λSni
)
MS

= −lSni ln
µ∗
MS

(7.8)

with the same labels as before, with the Dynkin index for the scalar. Given the content of
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the Lavoura-Wolfenstein SO(10) GUT, we obtain

λV1 (µ∗) = 8 +
294

5
log

µ∗
MR

+
546

5
log

µ∗
MV

(7.9)

λV2 (µ∗) = 6 + 126 log
µ∗
MV

(7.10)

λV3 (µ∗) = 5 + 21 log
µ∗
MR

+ +84 log
µ∗
MV

(7.11)

for the contributions from vector bosons, and

λS1 (µ∗) = −274

5
log

µ∗
M1

− 142

5
log

µ∗
M2

− 36

5
log

µ∗
M3

− 114

5
log

µ∗
M4

− 2

5
log

µ∗
MHc

(7.12)

λS2 (µ∗) = −50 log
µ∗
M1

− 40 log
µ∗
M3

− 30 log
µ∗
M5

(7.13)

λS3 (µ∗) = −62 log
µ∗
M1

− 17 log
µ∗
M2

− 18 log
µ∗
M3

− 12 log
µ∗
M4

− 12 log
µ∗
M5

− log
µ∗
MHc

(7.14)

for the contributions from the scalars.

We consider a particular set of high-scale mass ratios, chosen to ensure intersection with

the SM ∆λij(µ∗)

MV

MR

= 20,
MV

M1

= 3,
MV

M2

= 7,
MV

M3

= 9.2,
MV

M4

= 10,
MV

M5

= 15,
MV

MHc

=
1

200
. (7.15)

as well as ensuring that MHc is greater than the bound derived in [9]. The choice of the

scalar masses Mi can be made by choosing appropriate couplings to the vev which gives rise

to the mass.

This enables us to evaluate ∆λij(µ∗) in the Lavoura-Wolfenstein GUT. Since we are

interested in what happens if we modify the GUT particle masses, we vary MV , keeping the

ratios fixed. The resultant plot is shown in Fig. 7.3. The point of intersection with the SM

∆λij(µ∗) therefore fixes MV in the Lavoura-Wolfenstein SO(10).

This example has now demonstrated how to process IR data in the form of the ∆λ plot of

Fig. 7.2. Upon choosing a renormalization scale µ∗ there is a single point in the ∆λ23−∆λ12

plane that is compatible with exact unification, and it is required that high-scale thresholds

must give those values. In Fig. 7.3 we show that indeed those values can be achieved for the

spectrum specified in table 7.1, and unification therefore is shown to be viable.
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Figure 7.3: Plot of ∆λ23(µ) as a function of ∆λ12(µ). Shown is the Lavoura-Wolfenstein
SO(10) (blue) with MV /MR = 20, MV /M1 = 3, MV /M2 = 7, MV /M3 = 9.2, MV /M4 = 10,
MV /M5 = 15, and MV /MHc = 1/200, with MV varying between 1013 and 1018. The star
corresponds to the required values of ∆λ12(µ∗) and ∆λ23(µ∗) in the SM. We find that MV =
1.5 × 1015 gives the desired ∆λ12(µ∗) and ∆λ23(µ∗) in the Lavoura-Wolfenstein SO(10) for
the given mass ratios.

7.4.2 Tobe-Wells Supersymmetric SU(5)

We also compare with a SUSY model, taking as an example an SU(5) GUT described by

Tobe and Wells [257]. The Higgs structure of this GUT consist of {24H ,5H ,5H}, and the

gauge representation is a 24. The spectrum of the superheavy particles in this GUT is shown

in Table 7.2.

In this GUT there is an additional non-renormalizable operator connecting the adjoint

Higgs representation to the gauge fields. The operator in question arises from the gauge-

kinetic function of minimal SU(5) written as∫
d2θ

[
S

8MPl

WW +
yΣ

MPl

WW
]

(7.16)

where Σ = 24H . The second term gives rise to corrections to the gauge couplings because
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Gauge Bosons Scalars
SU(5) SU(2)⊗ SU(3)[U(1)Y ] Mass SU(5) SU(2)⊗ SU(3)[U(1)Y ] Mass

24 (2, 3)[−5
6

√
3
5
] MV 24H All MΣ

24 (2, 3)[5
6

√
3
5
] MV 5H + 5H (1, 3)[−1

3

√
3
5
] + (1, 3)[1

3

√
3
5
] MHc

Table 7.2: Table showing the spectrum of superheavy particles contributing to the threshold
corrections in the Tobe-Wells SU(5) GUT, with their various masses.

the adjoint Higgs must acquire a vacuum expectation value

〈Σ〉 = vΣ diag

(
2

3
,
2

3
,
2

3
,−1,−1

)
(7.17)

to break SU(5) to the SM gauge group at the GUT scale. The masses of the X and Y bosons

are related to the vev of Σ by

M2
X,Y =

25

18
g2
Uv

2
Σ. (7.18)

The relationship between the gi and gU couplings is altered by a term depending on

ε/48π2 ≡ 8yvΣ/MPl (
1

g2
i (µ∗)

)
DR

=

(
1

g2
U(µ∗)

)
DR

−
(
λi(µ∗)− ciε

48π2

)
DR

(7.19)

where ci = {−2/3,−1, 2/3}. This allows us to define a further contribution to ∆λij

∆λεij = ciε− cjε (7.20)

which can be included along with the contributions from the threshold corrections.

Threshold contributions to gi(µ
∗) are given in the DR scheme by(

λHeavyi

)
DR

= 6 · lHeavy,i ln
µ∗

MHeavy

(7.21)

where lHeavy,i is the weighted Dynkin index of a heavy particle of mass Mheavy for the i-th

SM gauge group (the factor of 6 is to obtain the appropriate normalization). We may then

write the contributions from the various heavy particles that are not at the unification scale.

For the heavy vector bosons, the contributions are

λV1 (µ∗) = 60 log
µ∗
MV

, λV2 (µ∗) = 36 log
µ∗
MV

, and λV3 (µ∗) = 24 log
µ∗
MV

. (7.22)
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Figure 7.4: Plot of ∆λ23(µ∗) as a function of ∆λ12(µ∗) for the CMSSM-like SUSY model.
The value of MHc was fixed to be 3.3 × 1017 GeV, both to ensure coincidence with the
CMSSM point, and to ensure avoidance of constraints [9]. Three curves of different ε values
show the effect of varying that parameter. The ratio MΣ/MHc was fixed at 0.1, and then
MV was varied. We find that MV = 2.2 × 1016 GeV in the Tobe-Wells SU(5) GUT yielded
matching of ∆λij(µ∗) to the SM.

Contributions from the heavy colored Higgs Hc are

λHc1 (µ∗) = −12

5
log

µ∗
MHc

, λHc2 (µ∗) = 0, and λHc3 (µ∗) = −6 log
µ∗
MHc

, (7.23)

and those from Σ are

λΣ
1 (µ∗) = 0, λΣ

2 (µ∗) = −12 log
µ∗
MΣ

, and λΣ
3 (µ∗) = −18 log

µ∗
MΣ

. (7.24)

The plot for the CMSSM-like SUSY model shown in Fig. 7.4 was made for fixed values

of MHc = 3.3× 1017 GeV, MΣ = 0.1×MHc and ε = 0.03. Then by varying MV we found the

point of intersection of the Tobe-Wells SU(5) ∆λij(µ∗) with the ∆λij(µ∗) from the CMSSM-

like IR theory.

The plot for the Split-SUSY-like model shown in Fig. 7.5 was made for fixed values of
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Figure 7.5: Plot of ∆λ23(µ∗) as a function of ∆λ12(µ∗) for the Split-SUSY-like model. The
value of MHc was fixed to be 3.3×1017 GeV, both to ensure coincidence with the Split-SUSY
point, and to ensure avoidance of constraints [9]. Three curves of different ε values show
the effect of varying that parameter. The ratio MΣ/MHc was fixed at 0.1, and then MV was
varied. We find that MV = 1.9× 1016 GeV in the Tobe-Wells SU(5) GUT yielded matching
of ∆λij(µ∗) to the SM.

MHc = 3.3 × 1017 GeV, MΣ = 0.1 ×MHc and ε = 0.014. Then by varying MV we found

the point of intersection of the Tobe-Wells SU(5) ∆λij(µ∗) with the ∆λij(µ∗) from the Split-

SUSY-like IR theory. This example again shows how the factorization of the IR data and

the UV GUT data can be compared through ∆λ plot visualizations to establish viable exact

unification of the gauge couplings.

7.5 Conclusions

In this chapter we have reviewed the technical procedures for determining if a theory is

compatible with exact unification of the gauge couplings. For theories with a large desert

between the weak scale and the high scale where unification occurs, the problem conveniently

factorizes into an analysis of the low-scale theory and the high-scale theory.

We have demonstrated that the data needed from the low-scale theory to make this
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assessment is encapsulated well by ∆λ23 vs. ∆λ12 plots parametrized by the renormalization

running scale µ. We have constructed these plots for three different low-scale theories: the

SM, a CMSSM-like supersymmetric theory, and a split Supersymmetry theory. The results

give us an immediate and intuitive understanding for the scale of gauge coupling unification

and the size of corrections (i.e., the indices of high-scale representations) needed to achieve

exact unification. They also provide all the information needed technically to perform a

careful check of unification.

We have illustrated this approach by matching the data from the SM ∆λ plot to the

threshold corrections of the Lavoura-Wolfenstein non-supersymmetric SO(10) theory. It is

an example that demonstrates a general result, which is that non-supersymmetric gauge

coupling unification is indeed possible without unexpectedly large threshold corrections in

grand unified theories based on high-rank gauge group with large representations, such as

SO(10).

We also have illustrated the approach by finding a spectrum in the Tobe-Wells SU(5)

theory that matches the needed threshold corrections implied by the SM ∆λ plot. This

example illustrates the general point that supersymmetric unification requires either very

small high-scale threshold corrections, or a partial cancellation of the threshold corrections

to achieve exact unification. In the Tobe-Wells case, that cancellation is aided by a non-

renormalizable coupling of the Higgs to the gauge kinetic function.

We end by pointing out that any plots of the gauge couplings gi or 1/gi or even 1/αi are

of little value for deciding if a theory is favorable to gauge coupling unification. The ∆λ plot

parametrized by the renormalization running scale µ, which can be made for any well defined

theory in the IR, is a significantly better way to collect and visualize the necessary data from

the low-scale theory to apply to question of high-scale unification. Qualitative understanding

of what is required of high-scale thresholds and technical data needed to make the assessment

are contained within the ∆λ plot. We also believe that the physically meaningful ∆λ plots

also show that when it comes to expected high-scale threshold corrections, unification within

a non-supersymmetric theory is just as viable as within a supersymmetric theory. That is to

say, unification is attractive in both approaches, and additional considerations are necessary

to draw preferences.

In this chapter, we studied a new parameterisation of the unification of gauge couplings

into a Grand Unified Theory. We obtained an IR-consistent parameterisation that enables

the visualization of gauge coupling unification, which can be applied to a wide range of

supersymmetric and non-supersymmetric models.
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Chapter 8

Conclusion

In this dissertation, we have studied the phenomenology of supersymmetric models, with

an emphasis on models with heavier scalars. We have provided a brief introduction to the

Standard Model and Supersymmetry, and shown how the latter is useful for solving numerous

unexplained aspects of the former, in Chapter 1. In the same chapter we also motivated why

supersymmetric models with heavier scalars were of interest, from taking into account both

bottom-up and top-down considerations, such as insight from M-Theory.

We have studied the collider phenomenology of models with heavier scalars in Chapters

2 and 3. In Chapter 2, we have studied the phenomenology of a particular M-Theory

compactification on a 7D manifold, and how it would give rise to potential collider signatures

at the LHC and a future collider. We found that the relatively light gluinos could potentially

be discovered at LHC, but the heavier scalars would be out of reach. In Chapter 3 we studied

models with heavier scalars of more general interest, examining how a future 100 TeV proton-

proton collider could be used to discover these heavier scalars. We found that a such a collider

could discover the valence squarks of spectra similar to the one discussed in Chapter 2. It

could also be used to discover heavier electroweakinos in the multi-TeV range.

In Chapters 4 and 5, we studied the flavour and CP phenomenology of various models,

and studied the conditions under which low energy experiments could indirectly probe su-

persymmetric models with slightly heavy scalars. In Chapter 4 we studied CP-conserving

models, and found that lepton flavour violation searches can be the strongest probes of su-

persymmetric models. In Chapter 5 we analysed the same M-Theory compactification as in

Chapter 2, and studied how CP violation would show up through non-zero electric dipole

moments that are within reach of the next round of experiments.

Finally in Chapters 6 and 7, we analysed more general features of supersymmetric models.
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We found that String/M-theory considerations could have important implications for the

stability of the lightest visible supersymmetric particle. This finding suggests that Dark

Matter may not be in the visible sector, but rather in a hidden sector of a UV theory. In

Chapter 7 we studied the conditions for gauge coupling unification to occur in a few different

models, including a non-supersymmetric one. We presented a novel way of visualising gauge

coupling unification in the presence of threshold corrections near the GUT scale.
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Appendix A

Moduli stabilization and SUSY

breaking in the G2-MSSM

In this Appendix, we review the relationship between low energy Supersymmetry and UV

dynamics within theG2-MSSM. This relationship is discussed in [14, 13], and was preceded by

a detailed study of dynamical Supersymmetry breaking through moduli stabilization [10, 11].

We will only describe results relevant for our goal of making predictions for Supersymmetric

spectra for LHC and future colliders. Interested readers are referred to [18] for a more

detailed summary.

In order to stabilize moduli and obtain a de Sitter vacuum, previous studies have assumed

the generic presence of an SU(Q) × SU(P + 1) hidden sector, where SU(Q) is pure super

Yang-Mills and SU(P+1) is super QCD-like with Nf = 1. Non-perturbative effects generate

the following superpotential [71, 262] which breaks Supersymmetry and stabilizes all moduli:

W = A1φ
−2/P exp ib1f1 + A2 exp ib2f2 (A.1)

where 2πb1 (2πb2) = P−1(Q−1). Here f1 and f2 are the gauge kinetic functions of the SU(Q)

and SU(P + 1) gauge groups, and φ is the SU(P + 1) meson condensate in Planck units.

We assume f1 ∝ f2; otherwise it is difficult to stabilize moduli within the supergravity ap-

proximation [11]. For consistency with previous works, we make the simplifying assumption

f1 = f2 = fvis, where fvis is the visible sector gauge kinetic function. We furthermore assume

that the visible sector is an SU(5) GUT.

In order to proceed with the moduli stabilization analysis, we use the Kähler potential
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derived in [13]:

K = −3 log 4π1/3VX + καβ
Φ†αΦβ

VX
+
φφ

VX
+ cαβ

φφ

VX

Φ†αΦβ

VX
+ ... (A.2)

where the volume of the G2 manifold, VX , is a homogenous function of the moduli of degree

7/3 [263], Φ, Φ† represent visible sector fields, καβ is the Kähler metric, and “...” represent

higher dimensional operators which are neglected in the analysis.

The term proportional to cαβ is a higher order correction studied in [13]. It induces flavor

changing neutral currents unless the elements of cαβ are all small, or cαβ ∼∝ καβ up to small

corrections. Because scalars are heavy and the tree-level CP phases are rotated away, flavor

effects are not expected to cause phenomenogical problems [60]. For simplicity, we assume

here that the coefficients of cαβ are diagonal and universal in the basis where καβ is diagonal.

Thus we take:

cαβ =

(
C

3

)
καβ (A.3)

The normalization for C in (A.3) follows that of [13]. We will see that C 6= 0 is required

for consistent EWSB. Relaxing the assumption taken in (A.3) will induce moderate flavor

dependence in the soft breaking parameters, but will not change the gravitino mass or the

overall sparticle mass scale.

Given (A.1),(A.2) and (A.3), determining the dynamics of moduli stabilization is straight-

forward, though rather cumbersome and has been carried out in [13]. The gravitino mass is

determined by the standard supergravity relation:

M3/2 = mple
K/2 |W | ≈ 0.035VX

−3/2mpl |Q− P |
A2

Q
e
−
(
Peff
Q−P

)
, Peff =

14(3(Q− P )− 2)

3(3(Q− P )− 2
√

6(Q− P ))
(A.4)

where in the second equality we have fixed moduli at their stabilized values and imposed

vanishing vacuum energy [11, 13]. Note that for typical values, VX ∼ O(730) [13]. Imposing

vanishing of the vacuum energy enforces Q−P ≥ 3, but does not fix Q−P itself. However,

from (A.4) we see that for Q− P ≥ 4, there still exists a large hierarchy between M3/2 and

the electroweak scale. Thus if a vanishing vacuum energy is imposed, the set of solutions

with Q− P = 3 solves the hierarchy problem. Taking Q− P = 3 in (A.4) results in:

M3/2 ≈
9× 105

V
3/2
X

(
A2

Q

)
TeV. (A.5)
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This result was used in Section 2.2.2 to obtain the benchmark value M3/2 ≈ 35 TeV.

Using the standard relations between the Supergravity Lagrangian and soft SUSY break-

ing parameters [264], it is then straightforward to determine the relation between soft scalar

masses, trilinears and M3/2, as well as the gaugino masses Ma (a = 1, 2, 3) at the renormal-

ization scale Q = MGUT :

m2
0 ≈M2

3/2 (1− C) , A0 ≈ 1.5M3/2 (1− C) , Ma =
eK/2F i∂ifvis

2i Imfvis
+Manomaly

a (A.6)

wherem0 is the universal scalar soft mass, and we haved define trilinears as L = −yijAQ̃i,LHq q̃j,R.

We have seperated the tree-level and anomaly-induced [265] contributions to Ma. The tree

level contribution to Ma is proportional to the moduli F-terms Fs; moduli stabilization re-

sults in Fs ∝ M3/2/VQ where VQ ≈ 1/αGUT is the visible sector 3-cycle volume [14]. Thus,

the tree-level gaugino masses are M tree
a ∼ αGUT M3/2, and since the anomaly contribution

is loop-suppressed, the two contributions are of comparable size. Such a hierarchy between

scalars and gaugino masses has also been observed in other corners of string theory [266, 267],

though the physical mechanism may be different.

Including both M tree
a and Manomaly

a , the full expression for the gaugino masses upon

moduli stabilization is given by [13]:

Ma ≈ [−0.032η + αGUT (0.034 (3Ca − C ′a) + 0.079C ′a(1− C))]×M3/2 (A.7)

where Ca = (0, 2, 3) and C ′a = (33/5, 7, 6) for U(1)Y , SU(2)L and SU(3)c respectively. Here

1 − η parameterizes threshold corrections to the SU(5) gauge coupling from Kaluza-Klein

modes; as discussed in Section 2.2.2, |1− η| . 0.1 is expected for generic compactifications.

Thus taking η ≈ 1, we have shown that top-down constraints from moduli stabilization fix

the sparticle spectrum in terms of three almost-calculable constrained quantities: M3/2, µ,

and C. Note that all SUSY breaking parameters in (A.6), (A.7) are implicitly defined at

the renormalisation scale Q = MGUT . Given these “high scale” values, one must take into

account RG-evolution and other radiative corrections to obtain sparticle pole masses as

discussed in Section 2.3.
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Appendix B

Constraints from EWSB and Mh

In this appendix, we discuss how both EWSB and with consistency with Mh = 125.2± 0.4

GeV are imposed to reduce the dimensionality of the M3/2, µ, C parameter space. We begin

by consider the EWSB conditions, given by:

M2
Z

2
=
m2
Hd
−m2

Hu tan2 β

tan2 β − 1
− µ2 (B.1)

Bµ =
1

2
sin 2β

(
m2
Hu +m2

Hd
+ 2µ2

)
(B.2)

where mHu and mHd are the tadpole corrected Hu, Hd soft masses, and all parameters are

evaluated at the renormalization scale Q2
EWSB = mt̃1mt̃2 . For the M-theory models we

consider, we expect µ . 0.1M3/2.

There are two independent arguments for such a suppression of µ with respect to M3/2.

The first is a top-down argument, which is related to the doublet-triplet splitting mechanism

[67] discussed in Section 2.2.2. This mechanism results in a geometric symmetry which

forbids the µ term, which is broken by moduli stabilization to generate µ via the Giudice-

Masiero mechanism [176]. Thus generically µ is suppressed with respect to M3/2 by moduli

vev ’s [17]. This suppression was estimated by [17] to be roughly an order of magnitude,

though current theoretical uncertainties preclude a precise estimate. Another argument for

µ . 0.1M3/2 is motivated by electroweak naturalness. A measure of fine-tuning in EWSB is

the degree to which the two terms on the right hand side of (B.1) are required to cancel in

order to obtained the measured value ofMZ . Thus electroweak naturalness favors µ2 �M2
3/2,

which mitigates the cancellation in (B.1) required to obtain MZ ≈ 90 GeV [69].

In addition to µ . 0.1M3/2, we also expect 0 < m2
Hu � m2

Hd
, as m2

Hu
runs significantly
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between Q = MGUT to Q = QEWSB due to the top Yukawa coupling, while the running of

m2
Hd

is small for moderate tan β . 10. The lower bound 0 < m2
Hu is required for consistency

with µ . 0.1M3/2, as can be seen from (B.1). Taking the Bµ,m2
Hd
� µ2, m2

Hu and sin 2β ≈
2/ tan β limit, (B.1) can be written as [69]:

µ2 ≈ m2
Hd

B2 −m2
Hd

(
m2
Hu +

M2
Z

2

)
(B.3)

where B ≈ 2M3/2 at Q = MGUT [14] and B ≈ 1.7M3/2 at Q = QEWSB [69]. Taking

m2
Hd
≈ m2

0 and m2
Hu = M2

3/2f(C) where f(C) accounts for the running of mHu due to the

top trilinear At, we can recast (B.3) in a more suggestive form:

µ2 ≈
M2

3/2(1− C)

B2 −M2
3/2(1− C)

(
M2

3/2 f(C) +
M2

Z

2

)
. (B.4)

Note that f(C) decreases monotonically as C increases [69]. Thus we have used EWSB

conditions to obtain a constraint on the allowed M3/2, µ, C space; we use one-loop RGE’s

and one-loop effective potential corrections [268] to compute f(C) for Figure 2.1. In order

to minimize large logarithmic corrections, we run αs and yt using a 2-step procedure which

explicity accounts for the decoupling of squarks at Q = QEWSB.

We now discuss how the constraint on Mh is incoporated in our analysis. The mass of

the lightest Higgs boson in the MSSM decoupling limit is given schematically by:

M2
h = M2

Z cos2 2β + δM2
h (B.5)

where δM2
h denotes radiative corrections from both SM and MSSM particles; the value of

δM2
h is fixed for given values of M3/2, µ, C. We can then use the EWSB condition (B.2) in

the Bµ,m2
Hd
� µ2, m2

Hu and sin 2β ≈ 2/ tan β limit to express tan β in terms M3/2, C and

µ:

tan β ≈ m2
0

Bµ
≈
M2

3/2(1− C)

Bµ
(B.6)

Thus combining (B.5) and (B.6) with Mh = 125.2 ± 0.4 GeV, we obtain an additional

constraint in the M3/2, µ, C parameter space. To compute Mh for given M3/2, µ, C, we use

the “match-and-run” procedure, outlined for example in [49, 50]. Note that some of the

authors here made an error in [50] regarding SM radiative corrections to Mh; correcting

this error increases Mh by ∼ 1.5 GeV. Our calculation here uses 3-loop RGE’s and 2-loop
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threshold corrections for the matching procedure [52]. From Figure 2.1, we see that the

slice of parameter space consistent with Mh = 125.2± 0.4 has a non-negligible width. This

is due predominantly to experimental uncertanties in Mt, αs and Mh [50]; more precise

measurements of these quantities will sharpen constraints on this parameter space.
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Appendix C

Brief introduction to Wilson Lines

In this Appendix, we will briefly introduce the concept of a Wilson Line, and how it applies

to symmetry breaking.

A Wilson Line is a quantity defined as the path-ordered exponential of a gauge field:

W = TrPexp

(
i

∮
AaµT

adxµ
)
, (C.1)

where the integral is performed over some closed loop. Those familiar with quantum me-

chanics will recognise this as being similar to the Ahoronov-Bohm phase [269]:

exp

(
i
e

~c

∮
~A · ~dx

)
= exp

(
i
eΦ

~c

)
, (C.2)

where Φ is the magnetic flux.

In a theory with a symmetry group G in more than four dimensions, a gauge field in one

of the extra dimensions can gain a non-zero expectation value, which breaks the symmetry.

In, for example, SU(5) in a 5-dimensional theory, let us consider a gauge field AaM(xµ, y),

where a is the group index, M = 0, 1, 2, 3, 4, 5 is the Lorentz index, xµ is the co-ordinate in

the usual four dimensions, and y is the coordinate in the 5th dimension. After decomposition

into four dimensions, the fifth component of the gauge field, Aa5 is a 4D scalar that transforms

in the adjoint representation.

Let us consider a vacuum configuration which will break the SU(5), where A5 has a

vacuum expectation value along the hypercharge direction. If we take the 5th dimension to

be compactified on a circle S1, then we require periodicity of the gauge transformation on
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A5 under y → y + 2πR, where R is the radius of S1

A5(xµ, y)→ A5(xµ, y) +
2n

R
, n ∈ Z (C.3)

We can make this gauge transformation without changing the boundary conditions on the

fields. There are then inequivalent vacua with

〈A5〉 = − c
R
, 0 ≤ c < 2 . (C.4)

For c = 1, we can evaluate the Wilson line

W = diag(1, 1, 1,−1,−1) (C.5)

meaning that the vacuum expectation value of A5 breaks the SU(5) symmetry down to

SU(3) × SU(2) × U(1), similarly to in Chapter 7, where the vacuum expectation value of

the adjoint Higgs was defined in Eq. 7.17.
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Appendix D

Event generation for Chapter 3

Signal events were generated using MADGRAPH5 [81], with showering and hadronization im-

plemented via PYTHIA6.4 [270]. We do not perform MLM for the signal events. We have

validated that this is a good approximation by performing MLM with 2 additional jets for

a number of benchmark spectra; the cut efficiencies do not significantly differ compared

with the unmatched signal events. We use the simulated Snowmass backgrounds [271]. We

expect our kinematic cuts to effectively remove any contamination from QCD backgrounds

and pileup effects, so we neglect both of these in our analysis. We use the Delphes3.1.2

[272] detector simulator, supplemented by the Snowmass detector card [273] for a
√
s = 100

TeV hadron collider. Production cross sections for squark-gluino associated production are

computed at NLO using PROSPINO2 [82]. For squark-Wino/Bino production we use the LO

result computed by MADGRAPH5.Event analysis is performed with MadAnalysis5 [274].
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Appendix E

Wilson coefficients for ∆ = 2 processes

• xg̃ ' 1

At the SUSY scale defined as MSUSY =
√
mg̃m̃q, the squarks and gluinos are integrated

out, and the Wilson coefficients are given by [145]:

C1(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
(24xf6(x) + 66f̃6(x))δ2

LL

]
,

C2(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
204xf6(x)δ2

RL

]
,

C3(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
−36f̃6(x)δ2

RL

]
,

C4(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
(504xf6(x)− 72f̃6(x))δLLδRR − 132f̃6(x)δLRδRL

]
,

C5(MSUSY ) =
α2
s(MSUSY )

216m̃2
q

[
(24xf6(x) + 120f̃6(x))δLLδRR − 180f̃6(x)δLRδRL

]
(E.1)

where the δXY are mass insertions, and the loop functions f6(x) and f̃6(s) are given by

f6(x) =
6(1 + 3x) log x+ x3 − 9x2 − 9x+ 17

6(x− 1)5
,

f̃6(x) =
6x(1 + x) log x− x3 − 9x2 + 9x+ 1

3(x− 1)5
(E.2)

The C̃i are obtained by swapping L ↔ R everywhere for i = 1, 2, 3.
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At the hadronic scale, the Wilson coefficients are given by

C1(µhad) = η1C1(MSUSY ),

C2(µhad) = η22C2(MSUSY ) + η23C3(MSUSY ),

C3(µhad) = η32C2(MSUSY ) + η33C3(MSUSY ),

C4(µhad) = η4C4(MSUSY ) +
1

3
(η4 − η5)C5(MSUSY ),

C5(µhad) = η5C5(MSUSY ) (E.3)

where

η1 =

(
αs(mc)

αs(µhad)

)6/27(
αs(mb)

αs(mc)

)6/25(
αs(mt)

αs(mb)

)6/23(
αs(MSUSY )

αs(mt)

)6/21

,

η22 = 0.983η2 + 0.017η3, η23 = −0.258η2 + 0.258η3,

η32 = −0.064η2 + 0.064η3, η33 = 0.017η2 + 0.983η3,

η2 = η−2.42
1 , η3 = η2.75

1 , η4 = η−4
1 , η5 = η

1/2
1 (E.4)

• xg̃ � 1

In this case one integrates out the squarks at MSUSY = m̃q, then run down to the gluino

mass scale, at which point the gluino is integrated out before running down to the hadronic

scale. The Wilson coefficients at the hadronic scale have been computed to be [145]

C1(µhad) =
α2
s(MSUSY )

216m̃2
q

[
−22δ2

LLκ1

]
,

C̃1(µhad) =
α2
s(MSUSY )

216m̃2
q

[
−22δ2

RRκ1

]
,

C4(µhad) =
α2
s(MSUSY )

216m̃2
q

[
δLLδRR

8

3
(4κ4 + 5κ5) + δLRδRL(64κ4 − 20κ5)

]
,

C5(µhad) =
α2
s(MSUSY )

216m̃2
q

[δLLδRR(−40κ5) + δLRδRL(60κ5)] (E.5)
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where

κ1 =

(
αs(mc)

αs(µhad)

)6/27(
αs(mb)

αs(mc)

)6/25(
αs(mt)

αs(mb)

)6/23(
αs(mg̃)

αs(mt)

)6/21(
αs(m̃q)

αs(mg̃)

)6/15

,

κ4 = κ−4
1 , κ5 = κ

1/2
1 (E.6)

Note the power of
(
αs(m̃q)

αs(mg̃)

)
is 6/15, and not 6/13 as in [145]. This is due to the assumption in

[145] that the third generation of squarks would be of a similar mass as the gluino. Removing

this assumption changes the beta function coefficient.

• xg̃ � 1

Contrary to the case where the gluino is considerably lighter than the squarks, in this

case the gluino is integrated out first at mg̃, then the squarks are integrated out at m̃q before

evolving down to the hadronic scale. The Wilson coefficients at the hadronic scale are given

by

C1(µhad) =
α2
s(MSUSY )

216m̃2
q

(
4ε2

3η
′
1

)
δ2
LL,

C2(µhad) =
α2
s(MSUSY )

216m̃2
q

((
2

3
(64ε2

1 − ε2
2)− 8ε2

3

)
η′22 + (2ε2

2 − 8ε2
3)η′23

)
δ2
RL,

C3(µhad) =
α2
s(MSUSY )

216m̃2
q

((
2

3
(64ε2

1 − ε2
2)− 8ε2

3

)
η′32 + (2ε2

2 − 8ε2
3)η′33

)
δ2
RL,

C4(µhad) =
α2
s(MSUSY )

216m̃2
q

(
4

3
(64ε2

1η
′
4 − ε2

2η
′
5)

)
δLLδRR,

C5(µhad) =
α2
s(MSUSY )

216m̃2
q

(
4ε2

2η
′
5

)
δLLδRR (E.7)

where η′i are the same as the ηi in the xg̃ ' 1 case, and

ε1 =

(
αs(m̃q)

αs(mg̃)

)−8/5

, ε2 = ε
7/16
1 , ε3 = ε

3/8
1 (E.8)

and C̃i are given by interchange of L and R for i = 1, 2, 3.
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Appendix F

Loop functions for `i→ `jγ

We reproduce here the loop functions for the calculation of the branching ratio of `i → `jγ.

g1(x) =
1 + 16x+ 7x2

(1− x)4
+

2x(4 + 7x+ x2)

(1− x)5
log x (F.1)

g2(x, y) = −11 + 7(x+ y)− 54xy + 11(x2y + y2x) + 7x2y2

4(1− x)3(1− y)3
(F.2)

+
x(2 + 6x+ x2)

2(1− x)4(y − x)
log x+

y(2 + 6y + y2)

2(1− y)4(x− y)
log y

g3(x, y) = −40− 33(x+ y) + 11(x2 + y2) + 7(x2y + y2x)− 10xy

4(1− x)3(1− y)3
(F.3)

+
2 + 6x+ x2

2(1− x)4(y − x)
log x+

2 + 6y + y2

2(1− y)4(x− y)
log y

f2n(x) =
−5x2 + 4x+ 1 + 2x(x+ 2) log x

4(1− x)4
(F.4)

f2n(x, y) = f2n(x)− f2n(y) (F.5)

f3n(x) =
1 + 9x− 9x2 − x3 + 6x(x+ 1) log x

3(1− x)5
(F.6)

f4n(x) =
−3− 44x+ 36x2 + 12x3 − x4 − 12x(3x+ 2) log x

6(1− x)6
(F.7)
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Appendix G

Loop functions and overlap integrals

for µ→ e conversion in nuclei

We reproduce here the loop functions used for the calculation of µ → e conversion for

convenience:

f(x) =
1

8(1− x)
+

x log x

8(1− x)2
, (G.1)

f1(x, y) =
x3(3− 9y) + (y − 3)y2 + x2(3y − 1)(1 + 4y) + xy(y(13− 11y)− 4)

2(1− x)2(1− y)2(x− y)2
(G.2)

+
x(2x3 + 2y2 + 3xy(1 + y)− x2(1 + 9y))

(1− x)3(x− y)3
log x

+
y2(y + x(7y − 5)− 3x2)

(1− y)3(x− y)3
log y,

f2(x, y) =
x3(1− 3y) + 3(y − 3)y2 + x(y − 3)y(y + 4) + x2(y(13− 4y)− 11)

2(1− x)2(1− y)2(x− y)2
(G.3)

+
x(2x3 + 2y2 + 3x2(1 + y)− xy(9 + y))

(1− x)3(y − x)3
log x

+
y2(x2 + x(7− 5y)− 3y)

(1− y)3(y − x)3
log y,

f3(x, y) = −12(x+ y + x2 + y2 + x2y + y2x− 6xy

(1− x)2(1− y)2(x− y)2
(G.4)

+
24x(x2 − y)

(1− x)3(y − x)3
log x+

24y(y2 − x)

(1− y)3(x− y)3
log y,
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These loop functions take into account the separation of scale between the gauginos, the

µ−term and the scalar masses. Other loop functions used for the calculation of µ → e

conversion are:

fγ,L(x) =
1− 6x+ 18x2 − 10x3 − 3x4 + 12x3 log x

36(x− 1)5
− 4(7− 18x+ 9x2 + 2x3 + (3− 9x2) log x)

36(x− 1)5

(G.5)

fγ,R(x) =
1− 6x+ 18x2 − 10x3 − 3x4 + 12x3 log x

9(x− 1)5
(G.6)

fZ,R(x, y) =
x(x(1 + 2x) + 2(x− 1)

√
x
√
y − (2 + x)y)

(x− 1)3(x− y)2
log x (G.7)

− y(y(1 + 2y) + 2(y − 1)
√
x
√
y − (2 + y)x)

(y − 1)3(x− y)2
log y

+
y(5 + y) + x2(1 + 5y) + x(5 + y(5y − 22))− 4

√
x
√
y(y − 1)(1− x)

2(x− 1)2(x− y)(y − 1)2

The overlap integrals which appear in Eq. (4.17) were calculated in [160], and are given

here for convenience for 27
13Al:

• D = 0.0357(mµ)5/2,

• V (p) = 0.0159(mµ)5/2,

• V (n) = 0.0169(mµ)5/2.
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Appendix H

Subdominant operator coefficients

and loop functions for `i→ 3`j decays

As discussed in Section 4.3.3, the dipole operators dominate the decay `i → 3`j. Here we

list the sub-dominant photo-penguin, box-type and Z-penguin contributions.

The photo-penguin operator coefficients are closely related to those for µ→ e conversion,

and are:

ALγ−p. =
−g2

2

(4π)2m̃2
`

δ
`i`j
LL fγ,L(xW̃ ) , (H.1)

ARγ−p. =
−g2

2

(4π)2m̃2
`

δ
`i`j
RR fγ,R(xB̃) , (H.2)

where the LH contributions arise dominantly from Wino exchange, while the RH contribu-

tions arise from Bino exchange. The loop functions fγ,L(R) can be found in Appendix G, and

are the same that appeared in the µ→ e conversion process.

The box-type operator coefficients arise due to neutralino/chargino and slepton exchange,

in various configurations. The Higgs-mediated diagrams which contribute to B2 and B3 are

subdominant in the regime of low to moderate tan β considered here, and thus the dominant

coefficients are the BL,R
1 , given by

e2BL
1 =

g4
2

(4π)2
δ
`i`j
LL fBox,L(xW̃ ) , (H.3)

e2BR
1 =

g4
2

(4π)2
δ
`i`j
RR fBox,R(xW̃ ) , (H.4)

where the loop functions fBox,L(R) are given below.
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The Z-penguin operator coefficients which give rise to `i → 3`j decays are the following:

FLL =
g2

2

(4π)2

1

4 sin2 θW
δ
`i`j
LL

(
−1

2
+ sin2 θW

)
×
{

cos2 βf1 (xW̃ , xµ) + sin2 βf2 (xW̃ , xµ) + sgn(µM2)
√
xW̃xµ sin β cos βf3 (xW̃ , xµ)

}
,

(H.5)

FLR =FLL ×
sin2 θW(

−1
2

+ sin2 θW
) , (H.6)

FRR =
g2

1

(4π)2m̃2
`

tan2 θW δ
`i`j
RR cos 2βfZ,R(xB̃, xµ) , (H.7)

FRL =FRR ×
(
−1

2
+ sin2 θW

)
sin2 θW

, (H.8)

where the loop functions f1,2,3, fZ,R are the same loop functions as in µ→ e conversion, and

are found in Appendix G.

Loop functions which appear in the calculation for `i → 3`j are:

fBox,L(x) =
5 + (4− 9x)x+ 2x(6 + x) log x

8(x− 1)3
(H.9)

fBox,R(x) =
1 + (4− 5x)x+ 2x(2 + x) log x

8(x− 1)3
(H.10)
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Appendix I

Yukawa texture derivations

I.1 Textures where one matrix is diagonal

In the special case where we can rotate to a basis where one of the up or down quark Yukawa

matrices is diagonal, the derivation of the other Yukawa matrix is greatly simplified, since

VCKM = (UL
u )†UL

d depends on the diagonalisation matrices.

In the case where the down Yukawa matrix is taken to be diagonal, this simplifies to

VCKM = (UL
u )†13×3. Then since we know that (UL

u )†Y u(Y u)†UL
u = M2

u , where M2
u is the

diagonal matrix of the quark masses squared, we can solve for Y u using the expression

Y u(Y u)† = UL
uM

2
u(UL

u )†. The expression for this is given below:

Y u(Y u)† =

 m2
u + ε2m2

c + ε6m2
t εm2

u + εm2
c + ε5m2

t ε3m2
u + ε3m2

c + ε3m2
t

εm2
u + εm2

c + ε5m2
t ε2m2

u +m2
c + ε5m2

t ε4m2
u + ε2m2

c + ε2m2
t

ε3m2
u + ε3m2

c + ε3m2
t ε4m2

u + ε2m2
c + ε2m2

t ε6m2
u + ε4m2

c +m2
t



≈

ε
16 + ε10 + ε6 ε17 + ε9 + ε5 ε19 + ε11 + ε3

ε17 + ε9 + ε5 ε18 + ε8 + ε4 ε20 + ε10 + ε2

ε19 + ε11 + ε3 ε20 + ε10 + ε2 ε22 + ε12 + 1


(I.1)

where we have used the approximate hierarchy as described in equation (5.9). We then use

the ansatz

Y u =

ε
8 εa εb

εc ε4 εd

εe εf 1

 (I.2)
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and solve for a, b, c, d, e, f .

The same analysis can be repeated for the case where the up-type Yukawa matrix is

diagonal.

I.2 Minimal matrix derivation

It is of interest to consider what the minimal matrix would be, and whether it is symmetric

or not. The only assumption we start with in this derivation is that we know the hierarchy,

which is the same as previously, and that the CKM matrix is parameterised by equation

(5.7). We know the general structure of the unitary diagonalisation matrices to be

UL,R
u =

1 εi εj

εi 1 εk

εj εk 1

 , UL,R
d =

 1 εx εy

εx 1 εz

εy εz 1

 (I.3)

such that

VCKM =

 1 (εi + εx + εj+z) (εj + εy + εi+z)

(εi + εx + εj+z) 1 (εk + εz + εi+y)

(εj + εy + εi+z) (εk + εz + εi+y) 1

 (I.4)

which leads to the following constraints:

• i, x or j + z = 1

• k, z or i+ y = 2

• j, y or i+ z = 3

In the subsequent analysis, we assume that the down diagonalisation matrix has the form

of the CKM matrix, i.e. x = 1, y = 3, z = 2 in order to have our up type diagonalisation

matrix unconstrained, so that to leading order the CKM matrix is satisfied.

We define the following form for the general up type Yukawa matrix

Y u =

ε
8 εl εm

εn ε4 εo

εp εq 1

 (I.5)
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such that

Y uY u† =

 (ε16 + ε2l + ε2m) (ε4+l + ε8+n + εm+o) (εm + ε8+p + εl+q)

(ε4+l + ε8+n + εm+o) (ε8 + ε2n + ε2o) (εo + ε4+q + εn+p)

(εm + ε8+p + εl+q) (εo + ε4+q + εn+p) (1 + ε2p + ε2q)

 (I.6)

We derive conditions on the variables by looking at the diagonal components of the

diagonalised matrices i) UL
u
†
Y uY u†UL

u , and ii) UL
u
†
Y uUR

u . These allow us to determine the

minimal up-type Yukawa texture to be:

Y u =

ε
8 ε4 ε4

ε4 ε4 ε2

ε4 εq 1

 (I.7)

with q unconstrained by the diagonalisation and the unitary matrix that diagonalises Y u is

given by

UL,R
u =

 1 ε4 ε4

ε4 1 ε4

ε4 ε4 1

 (I.8)

I.3 Explicit chargino diagonalisation expressions

We present here the diagonalisation procedure and results for the Chargino mass matrix

with imaginary M2, but all other entries real.

We do so by solving for V and U given that

V X†XV −1 = U∗XX†UT =

(
M2

C1
0

0 M2
C2

)
(I.9)

We parameterise V and U as

U, V =

(
cU,V tU,V cU,V

−t∗U,V cU,V cU,V

)
(I.10)

where ci = cos θi and ti = tan θi, which we solve for.

We give here expressions for X†X and XX† in order to simplify our expressions for ci
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and ti.

X†X ≡
(
A11 A12

A21 A22

)
=

(
|M2|2 + 2 cos β2M2

W M∗
2

√
2 sin βMW +

√
2 cos βMWµ

M2

√
2 sin βMW +

√
2 cos βMWµ 2 sin β2M2

W + µ2

)

XX† ≡
(
B11 B12

B21 B22

)
=

(
|M2|2 + 2 sin β2M2

W M2

√
2 cos βMW +

√
2 sin βMWµ

M∗
2

√
2 cos βMW +

√
2 sin βMWµ 2 cos β2M2

W + µ2

)
(I.11)

Then we find that

tV =
(A22 − A11)±

√
(A11 − A22)2 + 4A21A12

2A21

, t∗V = tV Aij↔Aji

tU =
(B22 −B11)±

√
(B11 −B22)2 + 4B21B12

2B12

, t∗U = tUBij↔Bji

(I.12)

with ci = 1√
1+|ti|2

. It is noted that A(B)12 and A(B)21 contain the phase from the trilinears,

φ3.

This assignment for the entries of V and U renders X diagonal, with phases in the diagonal

components. Since we want our mass eigenvalues to be real, we rotate away the phases, such

that our rotation matrices are actually

U ′ =

(
eiφC1/2 0

0 eiφC2/2

)
·
(

cU tUcU

−t∗UcU cU

)

V ′ =

(
eiφC1/2 0

0 eiφC2/2

)
·
(

cV tV cV

−t∗V cV cV

) (I.13)

so that U ′∗XV ′−1 = XRD where XRD is real and diagonal.
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Appendix J

Contributions to EDMs

J.1 One-loop SUSY contributions to EDMs

In this subsection we present the one-loop SUSY contributions due to the Feynman diagrams

in Fig. 5.2. We use the results of Ibrahim and Nath [166].

The electromagnetic contributions to fermion EDMs are as follows

(
dg̃q
e

)(E)

=
−2αs

3π

2∑
k=1

Im(Γ1k
q )

mg̃

M2
q̃k

Qq̃ B

(
m2
g̃

M2
q̃k

)
(
dχ
±
u

e

)(E)

=
−αEM

4π sin2 θW

2∑
k=1

2∑
i=1

Im(Γuik)
mχ±

M2
d̃k

[
Qd̃ B

(
m2
χ±

M2
d̃k

)
+ (Qu −Qd̃) A

(
m2
χ±

M2
d̃k

)]
(
dχ
±

d

e

)(E)

=
−αEM

4π sin2 θW

2∑
k=1

2∑
i=1

Im(Γdik)
mχ±

M2
ũk

[
Qũ B

(
m2
χ±

M2
ũk

)
+ (Qd −Qũ) A

(
m2
χ±

M2
ũk

)]
(
dχ
±
e

e

)(E)

=
αEM

4π sin2 θW

2∑
i=1

Im(Γei)
mχ±

m2
ν̃

A

(
m2
χ±

m2
ν̃

)
(
dχ

0

f

e

)(E)

=
αEM

4π sin2 θW

2∑
k=1

4∑
i=1

Im(ηfik)
mχ0

M2
f̃k

Qf̃ B

(
m2
χ0

M2
f̃k

)
(J.1)

where

Γ1k
q = e−iφ3Dq2kD

∗
q1k (J.2)
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with φ3 being the gluino phase, which in our theory can be rotated away, and Dq defined as

D†qM
2
q̃Dq = diag(M2

q̃1
,M2

q̃2
). With the sfermion mass matrix M2

f̃
given by

M2
f̃

=

(
M2

L +m2
f +M2

z (1
2
−Qf sin2 θW ) cos 2β mf (A

∗
f − µRf )

mf (Af − µ∗Rf ) M2
R +m2

f +M2
zQf sin2 θW cos 2β

)
(J.3)

where Rf = cot β (tan β) for I3 = 1/2 (−1/2). The chargino vertices are given by

Γuik = κuV
∗
i2Dd1k(U

∗
i1D

∗
d1k − κdU∗i2D∗d2k)

Γdik = κdU
∗
i2Du1k(V

∗
i1D

∗
u1k − κuV ∗i2D∗u2k)

(J.4)

and

Γei = (κeU
∗
i2V

∗
i1) (J.5)

where in each case κf is the Yukawa coupling, defined as κu = mu√
2mW sinβ

and κd,e =
md,e√

2mW cosβ
,

and U and V are the unitary matrices diagonalizing the chargino mass matrix. The neutralino

vertex is defined as

ηfik =
[
−
√

2{tan θW (Qf − I3f )X1i + I3fX2i}D∗f1k − κfXbiD
∗
f2k

]
×
[√

2 tan θWQfX1iDf2k − κfXbiDf1k

] (J.6)

with b = 3 (4) for I3 = −1/2 (1/2), and X being the unitary matrix diagonalizing the

neutralino mass matrix. The CEDM contributions are given by

dg̃ (C)
q =

gsαs
4π

2∑
k=1

Im(Γ1k
q )

mg̃

M2
q̃k

C

(
m2
g̃

M2
q̃k

)

dχ̃
± (C)
q =

−g2gs
16π2

2∑
k=1

2∑
i=1

Im(Γqik)
mχ̃±i

M2
q̃k

B

(
m2
χ̃±i

M2
q̃k

)

dχ̃
0 (C)
q =

g2gs
16π2

2∑
k=1

4∑
i=1

Im(ηqik)
mχ̃0

i

M2
q̃k

B

(
m2
χ̃0
i

M2
q̃k

) (J.7)

And the dimension-6 Weinberg operator gives a contribution

dG = −3αsmt

( gs
4π

)3

Im(Γ12
t )
z1 − z2

m3
g̃

H(z1, z2, z3) + (t→ b) (J.8)

157



with zi =
(
Mt̃i

mg̃

)2

, and zt =
(
mt
mg̃

)2

, with the two-loop function H(z1, z2, zt) being given by

H(z1, z2, zt) =
1

2

∫ 1

0

dx

∫ 1

0

du

∫ 1

0

dyx(1− x)u
N1N2

D4
(J.9)

where

N1 = u(1− x) + ztx(1− x)(1− u)− 2ux[z1y + z2(1− y)]

N2 = (1− x)2(1− u)2 + u2 − 1

9
x2(1− u)2

D = u(1− x) + ztx(1− x)(1− u) + ux[z1y + z2(1− y)]

(J.10)

However, for the purpose of this analysis in this framework, the contribution from this two-

loop effect is negligible, so it will not be calculated. Thus recording these equations is merely

for book-keeping purposes. We consider other two-loop effects which give larger contributions

in the text. Another two-loop effect is from the Barr-Zee diagram with scalars in a loop,

which is treated in the next subsection.

The functionsA(r), B(r) and C(r) used in the equations above are the one-loop functions,

and are given by

A(r) =
1

2(1− r)2

(
3− r +

2 ln r

1− r

)
B(r) =

1

2(r − 1)2

(
1 + r +

2r ln r

1− r

)
C(r) =

1

6(r − 1)2

(
10r − 26 +

2r ln r

1− r −
18 ln r

1− r

) (J.11)

The above equations are rather intractable, and in fact a number of approximations can

be utilized to simplify the calculation. For example, for the neutron and mercury, the quark

CEDM contributions are much larger than the quark EDM contributions (as seen in [15]

), so let us take the example of the dominant gluino contribution, d
g̃ (C)
q . Expanding the

relevant line in equation (J.7), and defining ri =
m2
g̃

m2
q̃i

, we find that

dg̃ (C)
q =

gsαs
4π

[
Im(Γ11

q )
mg̃

m2
q̃1

C(r1)− Im(Γ12
q )

mg̃

m2
q̃2

C(r2)

]
(J.12)

But since Γ11
q = −Γ12

q , we can then simplify this further. Also m2
q̃i

= m2
q̃ ± ∆m, where

∆m = (m2
q̃)LR, i.e. it is the contribution from the off-diagonal components of the squark

158



mass matrix. We will utilize the assumption that since we are interested in the first generation

squarks, the mass splitting is small compared to the squark mass.

This allows us to expand the various factors and functions above and simplify (J.12) to

the following form

dg̃ (C)
q ≈ gsαs

4π

Im(m2
q̃)LR

m3
g̃

r2
[
C(r) + rC

′
(r)
]

(J.13)

as was found in [15].

For the electron EDM, there are a few things we notice which simplify the calculation.

The chargino component depends on Im(Γei), which is zero in the framework considered due

to the absence of CP-violating phases in the chargino sector when the trilinears and Yukawas

are aligned. Thus only the neutralino diagrams contribute. If we assume no mixing, by a

similar analysis to the one performed for the gluino contribution to the quark CEDM, we

find that the result for the electron is given by

dEe ≈
eαEM

4π cos2 θW

Im(m2
ẽ)LR

m3
B̃

r2
[
B(r1) + r1B

′
(r1)

]
(J.14)

J.2 Barr-Zee diagram contributions

In general, Barr-Zee type diagrams can involve squarks, charginos or neutralinos in the inner

loop, with gauge bosons and or higgs bosons in the outer loop. The two-loop diagrams when

the Trilinears are not aligned with the Yukawas are considered above. So here we present

the two-loop results when they are aligned. In this case, since the only phases come from the

Yukawa sector, we need only consider the diagrams with squarks running in the inner loop.

We are particularly interested in diagrams with third generation squarks, t̃ and b̃ running

in the inner loop, since they are lighter and are not suppressed by factors of ε. The general

EDM and CEDM contributions are given by

(
dEf
e

)
= Qf

3αem
32π3

Rfmf

M2
A

∑
q=t,b

ξqQ
2
q

[
F

(
M2

q̃1

M2
A

)
− F

(
M2

q̃2

M2
A

)]

dCf =
gsαs
64π3

Rfmf

M2
A

∑
q=t,b

ξq

[
F

(
M2

q̃1

M2
A

)
− F

(
M2

q̃2

M2
A

)] (J.15)
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where MA is the mass of the pseudoscalar Higgs boson A0, and Rf = cot β (tan β) for

I3 = 1/2 (−1/2) and F (r) is the two-loop function defined as

F (r) =

∫ 1

0

dx
x(1− x)

r − x(1− x)
ln

[
x(1− x)

r

]
(J.16)

The CP-violating couplings are ξt,b, defined as

ξt = −sin 2θt̃mt Im(µeiδt)

2v2 sin2 β

ξb = −sin 2θb̃mb Im(Abe
−iδb)

2v2 sin β cos β

(J.17)

where one should be careful to note that v = 246/
√

2 GeV, and the minus signs are chosen

by convention, differing from [167] and the associated erratum. The variables θt̃,b̃ are the

stop and sbottom mixing angles, and δq = arg(Aq +Rqµ
∗). The squark sector mixing angle

is defined as

tan(2θq) = − 2mq|µRq + A∗q|
M2

Q̃
−M2

q̃ + cos 2βM2
Z(T qz − 2eqs2

w)

≈ −2mq|µRq + A∗q|
M2

Q̃
−M2

q̃

(J.18)

such that we can rewrite the CP-violating couplings given in (J.17) as

ξt ≈
y2
t |A∗t + µ cot β| Im(µeiδt)

M2
Q̃
−M2

t̃

ξb ≈ cot β
y2
b |A∗b + µ tan β| Im(Abe

iδb)

M2
Q̃
−M2

b̃

(J.19)

which can then be used to simplify (J.15) such that it reads
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(
dEf
e

)
= Qf

3αem
32π3

Rfmf

M4
A

Im

[
4y2

t

9
µ(At + µ∗ cot β)F ′

(
M2

q̃1

M2
A

)
+
y2
b

9
Ab(A

∗
b + µ tan β) cot βF ′

(
M2

q̃2

M2
A

)]
dCf =

gsαs
64π3

Rfmf

M4
A

Im

[
y2
tµ(At + µ∗ cot β)F ′

(
M2

q̃1

M2
A

)
+ y2

bAb(A
∗
b + µ tan β) cot βF ′

(
M2

q̃2

M2
A

)]
(J.20)

where in (J.19) above, mt̃,b̃ are the average masses of the stops and sbottoms respectively.

In the above equations, the mass of the CP-odd Higgs mass is given by

M2
A = m2

Hu +m2
Hd

+ 2|µ|2 (J.21)

where the first two contributions are considerably larger than that of µ, but we include the

µ term for completeness.

Barr-Zee contributions turn out to be very small, and are therefore not included in our

final computation of de.
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