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ABSTRACT

Spacecraft Collision Avoidance

by

Charles Bussy-Virat

Chair: Prof. Aaron J. Ridley

The rapid increase of the number of objects in orbit around the Earth poses a serious

threat to operational spacecraft and astronauts. In order to effectively avoid collisions,

mission operators need to assess the risk of collision between the satellite and any other

object whose orbit is likely to approach its trajectory. Several algorithms predict the

probability of collision but have limitations that impair the accuracy of the prediction.

An important limitation is that uncertainties in the atmospheric density are usually

not taken into account in the propagation of the covariance matrix from current epoch

to closest approach time.

The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accu-

rately predict the positions and velocities of spacecraft. The central capability of

SpOCK is a high accuracy numerical propagator of spacecraft orbits and computa-

tions of ancillary parameters. The numerical integration uses a comprehensive mod-

eling of the dynamics of spacecraft in orbit that includes all the perturbing forces that

a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled

by thermospheric models to allow for an accurate representation of the atmospheric

drag. SpOCK predicts the probability of collision between two orbiting objects taking

xv



into account the uncertainties in the atmospheric density. Monte Carlo procedures

are used to perturb the initial position and velocity of the primary and secondary

spacecraft from their covariance matrices. Developed in C, SpOCK supports paral-

lelism to quickly assess the risk of collision so it can be used operationally in real

time.

The upper atmosphere of the Earth is strongly driven by the solar activity. In

particular, abrupt transitions from slow to fast solar wind cause important distur-

bances of the atmospheric density, hence of the drag acceleration that spacecraft are

subject to. The Probability Distribution Function (PDF) model was developed to

predict the solar wind speed five days in advance. In particular, the PDF model is

able to predict rapid enhancements in the solar wind speed. It was found that 60%

of the positive predictions were correct, while 91% of the negative predictions were

correct, and 20% to 33% of the peaks in the speed were found by the model. En-

semble forecasts provide the forecasters with an estimation of the uncertainty in the

prediction, which can be used to derive uncertainties in the atmospheric density and

in the drag acceleration.

The dissertation then demonstrates that uncertainties in the atmospheric density

result in large uncertainties in the prediction of the probability of collision. As an

example, the effects of a geomagnetic storm on the probability of collision are illus-

trated. The research aims at providing tools and analyses that help understand and

predict the effects of uncertainties in the atmospheric density on the probability of

collision. The ultimate motivation is to support mission operators in making the

correct decision with regard to a potential collision avoidance maneuver by providing

an uncertainty on the prediction of the probability of collision instead of a single

value. This approach can help avoid performing unnecessary costly maneuvers, while

making sure that the risk of collision is fully evaluated.
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CHAPTER I

Introduction

This dissertation focuses on predicting the risk of collision between operational

spacecraft and objects in orbit around the Earth. More specifically, it studies the

effects of uncertainties in the atmospheric density on the probability of collision.

1.1 Collision avoidance

1.1.1 History of collision avoidance

The population of objects in orbit around the Earth has dramatically increased

in the past decade. In April 2005, the National Aeronautics and Space Administra-

tion (NASA) performed its first collision avoidance maneuver on a robotic spacecraft

(Terra satellite). Two years later, the Chinese satellite Fengyun-1C was voluntarily

destroyed, causing the largest increase in debris in space history (∼ 3,000 objects

larger than 10 cm). On February 10th, 2009, the collision between operational com-

munication satellite Iridium 33 and retired Russian communication satellite Cosmos

2251 generated 2,000 debris larger than 10 cm and thousands smaller pieces at an

altitude of 800 km. It is now quite common that the International Space Station (ISS)

needs to be moved to avoid collisions. In 2015, four collision avoidance maneuvers and

one “shelter-in-Soyuz” procedure were performed by the ISS (Liou, 2016; Newman,

2016). The “shelter-in-Soyuz” procedure is a safety protocol that requires the three

1



astronauts on-board to seek emergency shelter in the Soyuz capsule, docked to the

space station, to prepare for a getaway.

There are currently 23,000 objects orbiting the Earth that are at least 10 cm

wide. Among them, ∼ 5,000 are spacecraft (1,500 are still operational), ∼ 5,000 are

mission related debris and rocket bodies, ∼ 13,000 are fragmentation debris (some of

these resulted from the Iridium 33 collision with Cosmos 2251 and the destruction of

Fengyun-1C) (Liou, 2016). In addition to these relatively big objects, it is estimated

that an extra half million objects larger than 1 cm and 100 million objects larger

than 1 mm are in orbit. Even submillimiter objects represent a threat for humans

and satellites because of the very high speed that orbiting objects have relative to

each other: the average relative velocity of satellites orbiting at a Low Earth Orbit

(LEO) (h ∼ few hundred kilometers) is ∼10 km/s and the average relative velocity

of satellites orbiting at the Geosynchronous Earth Orbit (GEO) (h ∼ 36, 000 km)

is 0.5 km/s. Collisions with small untracked debris are also thought to cause many

anomalies on satellites.

An important issue is that only objects greater than 10 cm are big enough to

be tracked in LEO orbit and only objects greater than 1 m are tracked in GEO

orbits. Passive techniques, like shielding, are used against smaller debris or against

meteoroids that cannot be tracked either (Council et al., 2011). For example, the ISS

is shielded to resist debris smaller than 1 cm. Another concern is that debris stay in

orbit for a very long time. Due to friction with the atmosphere, debris at relatively low

altitude (under ∼ 700 km) re-enter the atmosphere, but sometimes only after decades.

However, objects at higher altitude, particularly in GEO orbits, never re-enter the

atmosphere and therefore, since launches continue, they accumulate with time. The

GEO orbit regime is widely used for telecommunications and Earth observations, as

well as space science. If no orbit maintenance maneuver is performed on a GEO

satellite, gravitational perturbations from the Sun and the Moon make its inclination

2



oscillate around the Equator with an amplitude of 15◦ (Allan and Cook , 1964). This

can pose a threat for operational GEO satellites that orbit at the Equator as the

inactive satellites drift back through the GEO belt (Lee and Yoola Hwang , 2012;

Vallado and McClain, 2007). A solution is to increase the altitude by a few hundreds

km at the end of the spacecraft life, moving the satellite into a “graveyard orbit”.

Figure 1.1 shows the evolution of the number of objects since the first satellite was

launched in 1957. The dots represent space objects in LEO and GEO orbits (Liou,

2016). Note that only tracked objects cataloged in the Space Surveillance Network

are shown, so a large number of small debris (< 10 cm) are not represented. The

number of objects has been increasing dramatically over the last few decades: debris

keep accumulating in orbit, dangerously increasing the probability of collision with

operational satellites, and humans (Liou, 2016; Council et al., 2011; Aida et al., 2009;

Aida and Kirschner , 2010; Aida et al., 2015).

Figure 1.1:
Evolution of the number of tracked objects since the first satellite in orbit
in 1957. In each panel, the Earth on the left shows debris in LEO orbits,
and the Earth on the right shows debris in GEO orbits (Liou, 2016).

In the next section, a review of the current methods used to avoid collisions
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between operational satellites and objects in orbit is presented. First, the different

steps followed by mission operators to avoid collisions are detailed. Then, the typical

approach used to predict the probability of collision between two space objects is

explained. Finally, examples of collision avoidance maneuvers that are commonly

carried out are given.

1.1.2 Procedures for collision avoidance

Collision avoidance requires the knowledge of the position and velocity of all ob-

jects in orbit. Occasionally, satellite mission operators can keep track of their satellites

with good accuracy using Global Positioning System (GPS) data, but the trajectories

of all the other orbiting objects are much harder to follow. Space Situational Aware-

ness (SSA) refers to the effort of gathering and updating the trajectories of natural

and man-made orbiting objects (Stoll et al., 2013). Two organizations support the

SSA process worldwide: the Joint Space Operations Center (JSpOC) and the Space

Data Association (SDA). SDA was established for satellite operators to share the

most up-to-date satellite data (Stoll et al., 2013). JSpOC is currently the single 24/7

global provider used in collision avoidance due to the accuracy and timeliness of the

available information (Aida et al., 2015).

Although the procedure for collision avoidance can vary between satellite opera-

tors, the overall scheme is similar, and is presented in this section.

1.1.2.1 Terminology

• State: vector that represents any kind of information about the satellite. It

usually includes the position and velocity, and sometimes the drag and solar

radiation coefficients used in the computation of atmospheric drag and solar

radiation pressure accelerations.

• Covariance matrix: matrix that represents the uncertainties in the state, as well
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as how the elements are correlated with each other. The i-th diagonal element

corresponds to the variance of the i-th parameter (square of the standard devia-

tion). The off-diagonal element i, j is proportional to the correlation coefficient

between the i-th and the j-th elements.

• Primary spacecraft/satellite: the operational satellite the Owner/Operator (O/O)

wants to prevent from collisions.

• Secondary object: any space object in orbit that can potentially encounter the

primary spacecraft. Example: debris or operational satellite.

• Assessor: entity that assesses the risk of collision.

1.1.2.2 Procedure steps

The flow diagram in Figure 1.2 describes the overall process used in collision

avoidance. There are three main steps in the collision avoidance process:

1. Conjunction Assessment (CA);

2. Risk analysis;

3. Mitigation.

Conjunction assessment

The goal of the conjunction assessment is to identify any possible close approach

between the primary spacecraft and any space object in orbit. This can be an op-

erational or a non-operational satellite or a piece of orbital debris. It requires the

maintenance of a catalog of all space objects. JSpOC tracks more than 23,000 ob-

jects to evaluate any risk of collision with operating satellites (Laporte, 2014).
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Figure 1.2:
Flow diagram showing the procedures for predicting, assessing, and mit-
igating a risk of collision.

The ideal approach that an O/O would follow to identify any potential close

approach with its satellite is to regularly send to JSpOC its latest ephemeris. This

implies that the O/O has a tracking system, such as an optical telescope, a radar, or

a GPS on-board the spacecraft. This is not always possible as not every mission has

the capacity to track the spacecraft, in which case the O/O must rely solely on the

tracking conducted by JSpOC. Therefore, this step is indicated as a dotted box in

Figure 1.2.

From the information of the latest ephemeris, JSpOC looks for any close approach
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with the cataloged objects. A close approach is defined as any distance between the

primary and secondary object less than 1 km, and with a radial distance less than

200 m for LEO orbits (for Medium Earth Orbit (MEO) and GEO orbits the overall

distance must be smaller than 10 km) (Aida and Kirschner , 2010; Laporte, 2014).

JSpOC screens for any close approach in the following 7 days for LEO orbits and

10 days for GEO/High Elliptical Orbit (HEO) orbits (Lauri K. Newman, 2016). It

first filters out objects that cannot possibly encounter the primary satellite by com-

paring the maximum perigee with the minimum apogee of the two orbits. If this

distance is greater than a given threshold, then the secondary object does not rep-

resent any threat so it is ruled out. Otherwise, an analytical method is used to

determine the closest point between the two elliptical orbits. An example of such

method, the Alfano-Negron Close Approach Software (ANCAS), is presented by Al-

fano and Thorne (1994) and will be explained in a further section. If this distance

is smaller than a given threshold, it generates ephemerides for both objects. It then

considers a screening volume box around the primary satellite and looks for any pen-

etration of this box by the secondary object, in which case a conjunction is possible

to occur. JSpOC then generates a Conjunction Data Message (CDM) that includes

the following information about the closest approach (Hejduk and Frigm, 2015):

• Time of Close Approach (TCA);

• States of both objects at TCA;

• Covariance matrices of both objects at TCA;

• Encounter information: miss distance, relative speed, TCA;

• Orbit Determination (OD) information (force model settings, OD quality).

The CDM is sent to the assessor to give alert of a possible encounter.
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CDMs are usually not sufficient for the mission operator to make a decision re-

garding a potential collision avoidance maneuver. Indeed, CDMs do not provide any

direct recommendation to perform a maneuver, do not take into account possible

maintenance maneuvers the mission operator plans or have recently executed, and do

not take into account the operational constraints of the mission operator (Laporte,

2014). More importantly, they do not provide any level of confidence in the prediction.

Therefore, the next step of the collision avoidance process consists in determining the

probability of collision associated with the close approach predicted by JSpOC.

Risk analysis

When the assessor receives a CDM from JSpOC, they assess the level of risk

associated with the conjunction. This step is called the Conjunction Assessment Risk

Analysis (CARA).

The entity that plays the role of the assessor depends on the satellite operator.

NASA Goddard Space Flight Center (GSFC) provides CARA to ∼ 65 operational

satellites including NASA unmanned operational assets, United State Government as-

sets, and international partner assets (Newman, 2016). Not all mission operators use

the services of NASA-GSFC to perform risk analysis. For example, RapidEye, a Cube-

Sat constellation mission, uses the services from the European Space Agency (ESA)’s

Space Debris Office (SDO) to evaluate the risk associated with the close approach

(Stoll et al., 2013, 2011). The French Space Agency, Centre National d’Etudes Spa-

tiales (CNES), uses their own assessor Conjunction Analysis and Evaluation Service,

Alerts and Recommendations (CAESAR) (Laporte, 2014). The German Space Oper-

ations Center (GSOC) also performs CARA for the eight satellites that they monitor

(6 in LEO, 2 in GEO) (Aida et al., 2009; Aida and Kirschner , 2010; Aida et al.,

2015).
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To evaluate the risk, the assessor calculates the probability of collision Pc based

on the covariance matrices and the states of both objects at TCA. There are several

methods to calculate Pc. The common approach is presented here.

The covariance matrix of each of the two objects is represented by an ellipsoid,

with an orientation given by the principal axes of the covariance matrix. These two

ellipsoids are illustrated in Figure 1.3.

Figure 1.3:
Ellipsoids surrounding the primary and secondary spacecraft to repre-
sent the uncertainties in the position of each object (STK - Analytical
Graphics, Inc.).

The volume of intersection of the two ellipsoids represents the probability of colli-

sion of the two objects. Because computing the intersection volume implies calculating

a three-dimensional integral, which can be computationally intense and complex, a

few assumptions are usually made (Sanchez-Ortiz et al., 2015):

• the orbital uncertainties of the primary object are not correlated with the orbital
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uncertainties of the secondary object;

• the uncertainty in velocity is negligible;

• the uncertainty in position for both objects is constant during the encounter;

and

• the relative motion can be considered rectilinear.

The last two assumptions are valid if the duration of the encounter is short enough

(< 500 s) or equivalently if the relative velocity between the primary and secondary

objects is high enough (> 10 m/s) (Hejduk and Frigm, 2015). Because the relative

motion is assumed to be rectilinear, the 3D problem can be reduced to a 2D problem

treated in the plane normal to the relative velocity vector, called the conjunction

plane. Because the two covariance matrices are assumed to be uncorrelated, they can

be combined in one covariance matrix: C = C1 + C2 (Chan, 2008). The combined

covariance matrix is assumed to be both centered at the position of the secondary

object, and constant during the encounter.

The position uncertainty is usually represented by a Gaussian three-dimensional

probability function (Sanchez-Ortiz et al., 2015; Akella and Alfriend , 2000; Alfriend

et al., 1999; Foster , 2001):

pi( ~δr) =
1√

(2π)3 det(Ci)
e−

1
2
~δr

T
C−1

i
~δr (1.1)

where ~δr is the distance vector of the object i from its nominal position (i = 1 or

2), and Ci the covariance matrix associated with the uncertainties in the position of

object i.
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The probability Pc is then expressed as (Sanchez-Ortiz et al., 2015):

Pc =
1

2π
√

det(C)

R∫
−R

√
R2−x2∫

−
√
R2−x2

e−
1
2
~rTC−1~rdzdx (1.2)

where R is the sum of the two object radii, ~r the vector between the point of interest

in the conjunction plane and each point (x, z) in the circle of radius R (integration

area).

Another well known method to calculate the probability of collision relies on Monte

Carlo simulations. This technique will be explained in more details in Chapter II.

Once the probability of collision is calculated, its value is compared against the

defined Accepted Collision Probability Level (ACPL) (Sanchez-Ortiz et al., 2015).

This level represents the probability of collision threshold above which a maneuver

should be performed. It is defined by the spacecraft operator and depends on the

level of risk the mission is able to accept. A large value of ACPL involves a low

number of maneuvers but it implies that the operator is ready to accept higher risks.

On the other hand, if ACPL is set to a very low value, the number of maneuvers

could be large. As explained in a further section, maneuvers require fuel so a large

number of maneuvers could cost more fuel than the related fuel budget allocated for

collision avoidance (Sanchez-Ortiz et al., 2015). The value of ACPL also depends

on the uncertainty of the orbital data. If the uncertainty is large, the probability of

collision is less likely to get large values so a high value of ACPL (10−3 for example)

is associated with a very low number of encounters. However, if the orbital data are

more accurate, the probability of collision is more likely to reach higher values and

therefore a high number of encounters could be predicted to occur (Sanchez-Ortiz

et al., 2015). Consequently, ACPL should be set to a lower value if the orbital data

are not very accurate (e.g., from Two Line Elementss (TLEs)) than if it is accurate
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(e.g., from CDMs), in which case a higher value of ACPL is often advised. Other

factors that influence the optimum value of ACPL are the population at the altitude

of the primary spacecraft, and the object size of the primary spacecraft.

Mitigation

If the assessor determines that the probability of collision is higher than the level

of accepted risk, it alerts the O/O and recommends a maneuver (Laporte, 2014). The

O/O plans a maneuver and sends its characteristics to the assessor, who then predicts

the new orbit resulting from the maneuver and sends its prediction to JSpOC. Based

on these new ephemerides, JSpOC screens the orbits against their internal catalog to

check if the maneuver does not increase the risk of collision with other objects, and

sends the result of the screening to the assessor. If the risk of collision is reduced

by the maneuver (either no close approach has been detected by JSpOC or the new

probability of collision is lower than ACPL), then the O/O is advised by the assessor

to carry it out (Stoll et al., 2013). Otherwise, the O/O needs to plan another maneuver

strategy. One possible decision is to not perform any maneuver if no solution can be

found to decrease the risk of collision (option not shown in Figure 1.2).

1.1.3 Maneuver strategies

The O/O is responsible for making the final maneuver decision and for executing

it (Newman, 2016). A common maneuver is to increase the separation in the radial

direction between the two objects by giving a thrust in the in-track direction half an

orbit before the close approach (Aida et al., 2015; Lee and Yoola Hwang , 2012). Table

1.1 (Stoll et al., 2011; Walter , 2008) shows the effect of a thrusting on the orbital

elements in the in-track, cross-track, and radial directions. A burn in any direction

changes the orbit and can therefore be potentially used to increase the separation
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Table 1.1:
Effects of thrusting maneuvers in the three directions on the orbital ele-
ments (Stoll et al., 2011; Walter , 2008).

Effects In-track thrust Radial thrust Cross-track thrust

semi-major axis X
eccentricity X X
inclination X

RAAN X
argument of perigee X X X

distance between the two spacecraft. Although a combination of burns in all three

directions is possible (Stoll et al., 2011), in-track thrusting is usually recommended,

for different reasons (Chan, 2002, 2008; Aida and Kirschner , 2010; Aida et al., 2015).

First, it is much simpler to execute operationally. Burns in the cross-track or radial

directions are possible but the operation is generally more complicated to execute

(Chan, 2002, 2008). A separation is achieved in a shorter period with a maneuver in

the in-track direction than with a maneuver in the out-of-plane direction. Moreover,

cross-track burns change the inclination and the Right Ascension of the Ascending

Node (RAAN) of the orbit, which is disadvantageous for Sun-synchronous orbits.

Another reason is that the orbit prediction is usually more accurate in the radial

direction (Aida and Kirschner , 2010). Finally, cross-track thrusting use more fuel

than in-track burns (Stoll et al., 2011).

After the maneuver, a complementary maneuver is necessary to bring the satellite

back to the nominal orbit, if needed. Indeed, the mission objectives often involve

constraints on the orbit. This is particularly true for Sun-Synchronous orbits, repeat-

groundtrack (for example with the Aqua, Aura, and Terra spacecraft (McKinley ,

2008)), minimum altitude variation orbits, and for GEO orbits (Vallado and McClain,

2007).

Performing a maneuver is not always necessary, though. Maneuvers consume fuel,

are risky, complicated, and can also be disruptive to mission operations and to zero

gravity experiments such as the ones conducted in the ISS. An alternative is to change
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the execution epoch or size of a regular orbit maneuver (Aida and Kirschner , 2010).

This option is usually preferred as it is more fuel efficient, less complicated and less

risky than operating an avoidance maneuver. However, it is not always available as

the timing of the initially planned maneuver does not necessarily coincide with the

time of the predicted close approach.

1.1.4 Challenges in predicting collisions for Low Earth Orbits

The altitude regime below about 500 km involves important challenges for collision

avoidance. At these altitudes, the main force acting on spacecraft and debris is

atmospheric drag (after gravity) and is a perturbing force particularly hard to model

and predict.

The drag acceleration adrag of a simple surface is represented by (Vallado and

McClain, 2007):

adrag = −1

2

CDA

m
ρv2rel

vrel

vrel
(1.3)

where CD, A, andm are the drag coefficient, area projected towards the velocity vector

and mass of the surface respectively, and vrel is the satellite velocity with respect to

the moving atmosphere of density ρ. Equation 4.2 demonstrates the dependence of the

drag acceleration on the thermospheric density ρ. Under 500 km, the thermosphere

is too dense to be neglected in accurate orbit calculations. It is the most complex

parameter to estimate, the reasons of which are now detailed.
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1.2 Challenge: predicting the atmospheric density

Although the neutral mass density at altitudes where LEO satellites orbit is small

(a few grams per cubic km on average at 400 km), it is enough to create drag on

orbiting objects and considerably modify their motion. This is an important consid-

eration in the planning of the satellite mission, particularly in predicting the lifetime

of the spacecraft and collision avoidance with other space objects (Emmert , 2015).

Many thermosphere models attempt to estimate the thermospheric density. The

High Accuracy Satellite Drag Model (HASDM) (Storz et al., 2005) was developed

in 2002 by the Air Force Space Battlelab to improve satellite trajectory predic-

tion accuracy by analyzing the effect of drag on trajectories of LEO satellites. It

has been combined with empirical density model Jacchia-Bowman 2008 (Bowman

et al., 2008b), which is an improved version of the 2006 version that is based on

Jacchia’s diffusion equations, in the Jacchia-Bowman-HASDM 2009 (D. Pachura,

2016). This is currently used at JSpOC. Other examples of thermosphere models

include the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar

Extended (NRLMSISE)-00 Model 2001 (Picone et al., 2002), the Global Ionosphere

Thermosphere Model (GITM) (Ridley et al., 2006), and the Thermosphere-Ionosphere

Electrodynamics Global Circulation Model (TIEGCM) (Roble and Ridley , 1994).

There are two main reasons why the thermospheric density is particularly hard

to model. The first one is that the atmosphere between 100 and 500 km altitude

is strongly coupled to the space environment. This system is very complex and the

response of the density of this coupling is very challenging to estimate. The second

reason is that the inputs to this coupled system, mainly linked to solar activity, are

themselves quite difficult to predict. This double challenge makes it very hard to

predict the density at LEO orbits, and hence the drag acceleration. In this section,

these two reasons are described more fully.
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1.2.1 Thermosphere coupling with the space environment

The thermosphere

The Earth’s thermosphere is the upper layer of the atmosphere between 90 and

about 600 km. Figure 1.4 shows the altitude profiles of the neutral densities in the

thermosphere (Emmert , 2015). The primary constituents of the thermosphere are

molecules of nitrogen (N2), oxygen (O2), and atomic oxygen (O) (Schunk and Nagy ,

2009). The total neutral density drops exponentially with altitude, with a scale height

that varies from 25 km (quiet solar activity) to 75 km (strong solar activity) (Emmert ,

2015). This vertical variation is associated with zonal and meridional variations that

vary with season and activity level. The global average density reaches maxima at

the equinoxes and minima in July and January (Emmert , 2015). The amplitude of

the semiannual (19%) and annual (13%) variations increase with height and solar

activity (Bowman et al., 2008a; Emmert and Picone, 2010; Lei et al., 2012).

The neutral density is highly driven by the interaction of the thermosphere with

the Sun, the magnetosphere, the ionosphere, and the lower atmosphere. These in-

teractions result in the heating of the atmosphere, which causes it to expand and

increase the density at LEO altitudes. This implies that to predict the thermospheric

density, models not only need to predict the inputs to this strongly coupled system,

but also need to accurately model the response of the thermosphere to these inputs.

This is one of the main reasons why predicting atmospheric drag is so challenging. In

this section, the couplings of the thermosphere with the Sun, the magnetosphere, the

ionosphere and the lower atmosphere are first presented. A particular attention is

given to the impact of strong solar events on the thermospheric density as they cause

important disturbances by dramatically increasing the effects of these couplings.
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Figure 1.4:
Density profiles of the main constituents of the thermosphere (Emmert ,
2015).

1.2.1.1 Coupling with the Sun

The atmosphere is heated via the absorption of Extreme UltraViolet (EUV) radi-

ation. The decrease in intensity, dI, of the photon flux, I, due to the absorption by

a layer dz of the atmosphere is given as:

dI = −Ini(z)σidz (1.4)

where σi is the cross absorption cross section and ni(z) the neutral density of con-

stituent i at the altitude z where the absorption occurs (Schunk and Nagy , 2009).

The Sun is assumed to be at the zenith (90◦ overhead). The integration of Equation

1.4 from the top of the atmosphere to an altitude, z, results in a vertical neutral
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density profile of constituent i expressed as (Schunk and Nagy , 2009):

ni(z) = ni(z0)
T (z0)

T (z)
exp

 z∫
z0

dz′

Hi(z′)

 (1.5)

where z0 is an altitude reference, T the temperature of the atmosphere, and Hi the

neutral gas scale height of constituent i. Hi is defined as (Schunk and Nagy , 2009):

Hi(z) =
kT (z)

mig(z)
(1.6)

where k is the Boltzmann constant (k = 1.38 × 10−23 m2 kg s−2 K−1), mi the mass

of the neutral species i, and g the gravitational acceleration. One can show that

the optical depth τ , defined as the integration of the density along a vertical column

times the absorption cross section σi for wavelength λ (τ =
∫∞
z

∑
i ni(z)σidz) can be

written as (Schunk and Nagy , 2009):

τ(z) =
∑
i

ni(z)σiHi(z0) (1.7)

In the case of a multispecies absorption of a radiation coming from a zenith angle θ,

Equation 1.7 is generalized as:

τ(z) =
1

cos θ

∑
i

ni(z)σiHi(z0) (1.8)

The optical depth is directly proportional to the scale height Hi, itself proportional

to the temperature T . By absorbing the energy of the solar EUV radiation, the ther-

mosphere is heated. Figure 1.5 shows the temperature profile of the thermosphere at

solar maximum and solar minimum, derived from the density model NRLMSISE-00.

Because the solar flux in the EUV and X-ray wavelengths increases during solar max-

imum, the thermosphere gets heated more at solar maximum than at solar minimum
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by about a factor 2 (Emmert , 2015).

Figure 1.5:
Temperature profiles at solar maximum and solar minimum modeled by
NRLMSISE-00 (Emmert , 2015).

Another effect of solar EUV radiation is photoionization of neutrals. When a

photon encounters a particle in the thermosphere (O, O2, N2), it can ionize it. The

photoionization reaction can be written as: X + hν → X+ + e−, where X is the

molecule of the atmosphere being ionized, h is the Plank constant (h = 6.63× 10−34

m2.kg.s−1), and ν is the frequency of the solar radiation. X+ is the resulting ion

from the photoionization and e− is called a photoelectron. Photoelectrons are very

energetic because the solar radiation typically has more energy than the ionization

threshold of the particle. The excess of energy goes into kinetic energy of the pho-

toelectrons that heat the thermosphere by collisions with the neutrals. Therefore,

collisions of neutrals by photoelectrons are another source of thermospheric heating

resulting from the solar EUV radiation. In addition, when the ion is lost, most often

through dissociative recombinations, or X+
2 + e− → X +X, energy is typically given
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off and absorbed by the particles, which heats the thermosphere.

1.2.1.2 Coupling with ionosphere-magnetosphere system

Ionosphere

The ionosphere is the region of the upper atmosphere where the presence of elec-

trons and ions become increasingly important. It is arranged in five layers (Gombosi ,

1998). In the D region (60-90 km) and the E region (90-140 km), the dominant ions

are O+
2 , NO+, and N+

2 . Chemical reaction time scales are extremely short, such

that the chemical source of ions, mainly photoionization due to EUV and X-rays,

is balanced by losses due to dissociative recombinations. Collisions between charged

particles are not important because the E region plasma is weakly ionized (the total

ion density of 105 cm−3 and the neutral density is greater than 1011 cm−3). In the F1

region (140-200 km), the dominant ion is NO+, with O+ becoming dominant in the

upper F1 region (> 180 km). The F2 region (200-500 km) is where the ion density

maximum occurs: at 300 km, the ion density peaks at ∼ 106 cm−3 with a predom-

inance of O+ ions. This region is characterized by a balance between chemical loss

processes and plasma transport, such as ambipolar diffusion and wind-induced drifts

along the magnetic field lines, as well as electrodynamic drifts across the magnetic

fields lines (vdrift ∝ E × B). The dominant neutral is atomic oxygen O, with a

density on the order of 108 cm3. In the topside ionosphere (> 500 km), the O+ ion

density drops and the contribution of the lighter helium and hydrogen ions increases

(Schunk and Nagy , 2009; Gombosi , 1998).

The coupling between the thermosphere and the ionosphere has a strong impact on

the thermospheric density. The ionosphere heats the thermosphere through collisions

between ions and neutrals. Joule heating is due to the presence of electric currents
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in the ionosphere that interact with the magnetospheric electric fields mapping to

the ionosphere. It is another important source of heating, particularly during strong

solar events, as it will be shown in a further section. Finally, exothermic chemical

reactions are also one of the most important sources of heating of the thermosphere

(Richmond and Thayer , 2000; Vasyliūnas and Song , 2005).

Magnetosphere

The magnetosphere is the region of space surrounding the Earth where the influ-

ence of its magnetic field controls the properties of charged particles. It extends to

about 10 Earth radii in the sunward direction, and to a couple ofon hundred Earth

radii in the antisunward direction (Gombosi , 1998). Because the solar wind (plasma

material emanating from the solar corona) is supersonic and super Alfvenic, a shock

forms on the dayside to slow down the solar wind and divert the charged particles

around the magnetic field, called the bow shock. The magnetopause is the boundary

between the magnetosphere and the shocked solar wind, and is defined as where the

solar dynamic pressure balances the Earth’s magnetic pressure. The region between

the bow shock and the magnetopause is called the magnetosheath. The magnetic

field lines on the night side stretch along the solar wind flow direction, forming the

magnetotail. Figure 1.6 represents these different structures in the magnetosphere

(Gombosi , 1998).

Although the Earth’s magnetosphere acts like a shield against the solar wind,

charged particles from the solar wind can still penetrate the magnetopause through

magnetic reconnection on the day side. On the night side, solar wind particles can

enter the magnetosphere and then also travel along magnetic field lines and collide

with the upper atmosphere creating the auroral oval, which is a band a few de-

grees wide located about 20◦ equatorward from the poles during quiet times, moving
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to lower latitudes during strong solar events (Schunk and Nagy , 2009). Figure 1.6

shows the solar wind particles that can penetrate the magnetopause and drift along

the magnetic field lines (blue) to enter the Earth upper atmosphere in the auroral

oval. This phenomenon, called particle precipitation, produces aurora by excitation

of atmospheric particles, that then return to lower energy states by emitting light

at altitudes between 100 and 250 km. Similar to the solar EUV ionization, particle

precipitation deposits energy and causes ionization to occur. Particle precipitation is

a direct source of heating by collision with neutrals and an indirect source of heating

due to the resulting chemical heating and ion-neutral interactions, such as frictional

heating and ion-neutral heat transfer (Rees et al., 1983).

Figure 1.6:
Structure of the Earth’s magnetosphere and auroral oval where particle
precipitation produces aurora and heats the upper atmosphere (http:
//www.hk-phy.org/iq/aurora/aurora_e.html).
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1.2.1.3 Solar storms and substorms

Coronal mass ejections and solar flares

The Sun can eject large amounts of hot and ionized gas (1012 to 1013 kg) into the

interplanetary medium, called Coronal Mass Ejections (CMEs). The ejection speeds

range from 50 km/s to 2,000 km/s. In the regions from where the CMEs emanate,

the Sun’s magnetic field lines are closed, constraining the plasma from expanding

outwards. These regions are usually found near the solar equator (Hundhausen, 1999;

Gombosi , 1998).

The basic magnetic structure of the Sun is dipolar. The solar wind blows outward.

When the solar wind moves along a magnetic field line of the Sun, it accelerates to

faster speeds, but equatorial field lines inhibit the motion so the flow is slower near the

equator. Sometimes, faster speed regions move to lower latitude and get mixed with

slower speeds plasma. These interactions are called Corotating Interaction Regions

(CIRs). Sometimes, the magnetic field traps plasma and the “bubble” expands greatly

and can be explosively released, resulting in a flare (energy by light) and a CME

(energy by plasma and magnetic field). Flares are typically in the wavelength of

EUV and X-rays, which ultimately drive ion density and temperature change in the

Earth’s atmosphere. CMEs can have strong magnetic fields in the core (magnetic

cloud) and form a shock in the front.

When a solar storm, a CME, or a CIR encounters the Earth, it creates a ge-

omagnetic storm (Tsurutani et al., 2006). In the next section, the mechanism of

geomagnetic storms and their impact on the Earth’s thermosphere are presented.

Impact of strong solar events on the thermosphere

The initial compression of the magnetopause is called the sudden commencement.

When the Interplanetary Magnetic Field (IMF), an extension of the solar magnetic

field into the interplanetary medium, has a large southward component it triggers
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magnetic reconnection on the dayside of the magnetopause. Magnetic reconnection

is a rearrangement of the Earth’s magnetic field lines that results in a conversion of

magnetic energy to thermal energy and particle acceleration. Magnetic reconnection

at the dayside of the magnetopause enables the solar wind particles to penetrate into

the Earth’s magnetosphere, which ultimately increases the particle precipitation in

the Earth’s atmosphere. Moreover, the magnetospheric and ionospheric electric fields

intensify, which increase the Joule and particle heating in the thermosphere. While

solar EUV absorption is the main source of thermospheric heating during solar quiet

times and is centered on the dayside at low latitudes, Joule heating dominates dur-

ing strong solar events and is concentrated at high latitudes near the auroral zone.

The heating that happens at high latitudes results in density changes that can be

an order of magnitude in intensity and that spread rapidly across the globe, such

that the density increases everywhere within 3-6 hours of the storm commencement.

This intensification of energy input into the Earth’s upper atmosphere corresponds

to the main phase of the geomagnetic storm and lasts from a few hours to a day. The

recovery phase, during which the thermospheric conditions go back to a steady state,

can take several days. The thermosphere loses energy from radiative cooling by NO,

whose density is enhanced during the increased auroral precipitation (Gombosi , 1998;

Schunk and Nagy , 2009).

A number of publications has studied the variations in thermospheric density

resulting from geomagnetic storms. For example, it was found that CIRs can cause

density increases by 75% on average with periodicities of 9 and 13.5 days (Lei et al.,

2011). These periodicities are a result of the 27 day rotation of the Sun, which is

consistent with the fact that CIRs emanate from coronal holes that rotate with the

Sun. Figure 1.7 shows the density variations in daytime and at night resulting from

a CIR hitting the Earth. The density increases by more than 75% in less than a day.
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It then takes about a week to recover to its nominal value. Liu et al. (2012) showed

that the density response to a CIR is larger during solar minimum, at nighttime, and

in the summer.

Solar flares also drive density increases in the thermosphere. Using GITM, Pawlowski

and Ridley (2011) showed that the dayside density response due to a solar flare de-

pends linearly on the integrated input energy. A 15% density increase followed by

the excitation of gravity waves resulting from two solar flares in 2003 and 2004 was

reported in Pawlowski and Ridley (2008). A 30% to 60% increase at low to mid-

latitudes in the density response to EUV solar flux enhancement resulting from a

solar flare was reported in Sutton et al. (2006).

Forbes et al. (2005) analyzed the effect of three coronal mass ejections on the

density of the thermosphere and found density perturbations of ∼ 20% resulting from

the constructive interferences of Traveling Atmospheric Disturbancess (TADs) (grav-

ity waves generated by localized heating resulting from geomagnetic storms) at the

equator. Bruinsma et al. (2006) and Sutton et al. (2005) studied the response to se-

vere solar and geomagnetic storms. Both noted a rapid response of the thermospheric

density (∼ a few hours) at all latitudes with enhancements by more than three times

the density. Bruinsma and Forbes (2007) calculated the density enhancements at the

equator during sudden increases in geomagnetic activity and reported up to 800%

density increases.

1.2.1.4 Conclusion

The thermosphere is strongly coupled to the surrounding space environment. It is

coupled to the lower atmosphere through gravity waves and tides, to the ionosphere

through Joule heating, chemical reactions, and collisions with ions, to the magneto-

sphere through particle precipitation and electrodynamic coupling, and to the Sun

through EUV absorption and collisions with photoelectrons. When the solar activity
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Figure 1.7:
Density variations in daytime and at night resulting from a CIR hitting
the Earth(Lei et al., 2011).

is low, the absorption of solar EUV is the main source of heating of the thermo-

sphere and the main cause of density variations. During strong solar events, the

enhancement of Joule heating resulting from an increase of the ionospheric and mag-

netospheric electric currents, and the intensification of particle precipitation from the

solar wind along magnetic field lines mapping into the thermosphere at high latitudes,

become dominant and can highly perturb the thermospheric density. This is why the

response of the thermospheric density to the space environment is very complex, and

the main reason why atmospheric drag is hard to model. Additionally, the inputs to

this coupled system are themselves hard to predict.

1.2.2 Predictions of the solar activity

The space environment of the Earth is mainly driven by solar activity, more

specifically, the solar flux, the solar wind velocity and IMF (mainly the Bz com-

ponent, perpendicular to the ecliptic plane). Space weather refers to the study of
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these parameters as well as their impact on the Earth’s magnetosphere, ionosphere,

and thermosphere. One of the basic problems in space weather forecasting is that

the drivers (solar wind speed and IMF) are only measured about 1 h before they

affect the environment. In order to allow for adequate planning for some members of

the commercial, military, or civilian communities, reliable long-term space weather

forecasts are needed (Wright et al., 1995; Bussy-Virat and Ridley , 2014).

Direct measurements of the drivers are not always possible. For example, since

the upper atmosphere absorbs EUV radiation, measurements of solar EUV can not

be made from the ground, but only from rockets and satellites. Instead, proxies

are used to model such drivers, such as F10.7. This is the solar radio flux at a

wavelength of 10.7 cm and it is commonly used to model EUV irradiance (Emmert ,

2015). Moreover, the perturbations of the Earth’s magnetic field resulting from its

interaction with the IMF and the solar wind particles are described by magnetic

activity indices such as Kp and Ap. These indices can be derived from magnetic

perturbations directly measured from ground stations on Earth. The current models

that predict these proxies are first presented. The multiple models that have been

developed to predict the solar wind velocity will then be reviewed.

The Bz component plays an important role in auroral activity but, because of its

very large variability, it is very hard to predict. There is no model that is currently

able to forecast it with a reasonable accuracy.

1.2.2.1 Predictions of F10.7 and Ap

The rotation period of the Sun depends on the latitude: it is 25 days at the equator

and 35 days at the poles. On average, it is about 27.2 days. Consequently, the same

active regions of the Sun are directed toward the Earth roughly every 27 days. This

implies that a 27 day periodicity should also be observed in the solar radiation flux.
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On a larger time scale, the 11 year change in the Sun’s magnetic activity induces a

11 year periodicity in the EUV flux. Figure 1.8 (left) shows the variations of a 27 day

average of F10.7 from 1995 until 2016. The 11 year periodicity is evident, with solar

minima in 1997 and 2008 (F10.727d ∼ 70), and solar maxima in 2002 (F10.727d > 200)

and 2013 F10.727d ∼ 150. Figure 1.8 (right) demonstrates the 27 day periodicity of the

daily average F10.7 over five months in 2014.
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Figure 1.8:
27 day average of F10.7 solar flux from 1995 to 2016 (left); daily average
F10.7 solar flux over 5 months (right) (Omniweb data).

Many models exist to predict the solar flux F10.7, and the geomagnetic indices

Kp and Ap.

The Space Weather Prediction Center (SWPC) at the National Oceanic and At-

mospheric Administration (NOAA) provides a 27-day forecast of the F10.7 radio flux

and the geomagnetic indices Kp and Ap (http://www.swpc.noaa.gov/). These pre-

dictions are based on the persistence of patterns in the solar and geomagnetic activity

from one solar rotation to the next.

The SOLAR2000 model (Tobiska et al., 2000; Tobiska, 2003; Tobiska and Bouwer ,

2006) uses different techniques to predict the F10.7 flux depending on the time scale

of the predictions. Neural-network algorithms are used for short term forecast (1-72
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hour). Interplanetary hydrogen backscatter measurements provide a proxy of solar

far-side Lyman that can be used to forecast solar irradiance for 14-28 day forecasts.

For 1-6 month forecasts, Fast Fourier Transforms of non-stationary periodicities are

used to estimate the solar irradiance. Finally, statistical methods predict the F10.7

radiation flux for very long time scales (several years).

Other models include the SVR model (Huang et al., 2009), which uses neural

network techniques, and the Support Vector Machine (SVM) (He et al., 2008). Linear-

regression techniques (McNish and Lincoln, 1949) use relationships between F10.7 and

the sunspot numbers. Precursor models have shown the best performance for long

term predictions (several years), such as the solar dynamo model (Schatten et al.,

1978).

1.2.2.2 Prediction of the solar wind speed

Many predictive empirical and physics-based solar wind speed models have been

created, most of them coronal or heliospheric. One of the most commonly used is the

Wang-Sheeley-Arge (WSA) Model, currently used at the SWPC at NOAA. Wang and

N.R. Sheeley (1992) found a correlation between the solar wind speed and the inverse

of the divergence rate of the magnetic field in the corona. Based on this relationship,

they created a model to predict the solar wind speed by extrapolating observations

of the photospheric magnetic field into the corona. Arge and Pizzo (2000) improved

and tested its performance by comparing the predictions to data collected by the

Wind satellite for 3 years (1994-1997), in particular for the 1996 solar minimum. The

average fractional deviation and the correlation were found to be equal to 0.15 and

0.4, respectively. Arge et al. (2003) proposed a new relationship for the solar wind

speed as a function of the magnetic field expansion factor of open coronal field lines

and of the minimum angular separation at the photosphere between an open field foot

point and its nearest coronal-hole boundary. Another longer-term validation study
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conducted by Owens et al. (2005) showed that the root-mean-square error between

the model and the data is better at solar maximum than at solar minimum. How-

ever, the large-scale structure is better predicted during solar minimum than during

solar maximum. The WSA Model has also been compared in previous studies to the

Persistence Model (which keeps the velocity constant at its current value). MacNeice

(2009a) validated the ability of the WSA Model to forecast specific solar events, while

MacNeice (2009b) showed that the WSA Model provides better predictions than the

Persistence Model clearly only after 2 days.

The Hakamada-Akasofu-Fry (HAF) Model (currently used at the Air Force Weather

Agency) is a solar wind speed prediction model. Fry et al. (2007) presented results of

the solar wind forecast based on this model. It particularly distinguished simulations

of the ambient solar wind and simulations of event-driven solar wind (for example,

CMEs). Predictions of shocks following solar events such as CMEs are detailed in

Fry et al. (2001) and Smith et al. (2004). Norquist and Meeks (2010) compared the

predictions between the WSA and the HAF Models (5 day forecasts over 6 years of

Solar Cycle 23). The WSA gave slightly better predictions than the HAF Model for

the speed of the solar wind. For instance, correlations between the model and the

data are slightly better for the WSA Model (0.42) than for the HAF Model (0.32).

However, both models under-represent the temporal variability of speed of the solar

wind: the standard deviation is smaller in the models than it is in the data, by about

15%.

Toth and Odstrcil (1996) conducted a comparison of methods for simulations of

MHD Models, one of which was the ENLIL Model, which enables numerical mod-

eling of solar wind structures and disturbances in 3-D (Odstrcil , 2003). An idea

proposed in the past was to couple models. For instance, the ENLIL heliospheric

30



model was also coupled to the Magnetohydrodynamics Around Sphere (MAS) coro-

nal model (also called the CORHEL model) to predict solar wind parameters based

on solar and coronal structures (Odstrcil et al., 2004). Owens et al. (2008) also made

a comprehensive study of the coupling of kinematic, empirical, and MHD Models.

The MAS/ENLIL and WSA/ENLIL Models were compared in Lee et al. (2009) to

measurements from the ACE satellite during the declining phase of Solar Cycle 23.

However, this was a study of a more scientific nature, and it did not test the fore-

casting ability. In particular, it revealed a good agreement for the general large-scale

solar wind structures but not for the CME or shock associated with active regions.

Other methods based on observations of the chromosphere have been created. For

instance, a hybrid intelligent system uses magnetic field observations and combines

the potential field model and an artificial neural network to give prediction of the

daily solar wind speed (Wintoft and Lundstedt , 1997). The correlation between pre-

dictions from the model and the data between 1976 and 1994 varies from 0.2 to 0.5,

depending on the year. Robbins et al. (2006) presented another model to predict solar

wind speed related to geomagnetic events. The model was based on the location and

the size of coronal holes. It differs from the WSA Model in particular because it does

not need a full magnetic synoptic map but only the image of one coronal hole to give

predictions. The linear correlation was 0.38 for the 11 years of comparison between

the model and data. The Pch method (Luo et al., 2008) was based on a correlation

between the speed and the brightness of the solar EUV emission (characterizing the

brightness and the area of a coronal hole). Leamon and McIntosh (2007) also pre-

sented predictions based on the structure of the chromosphere.

Another method, the support-vector-regression algorithm, was applied in Liu et al.

(2007) to predict the value of solar wind speed. The comparison of the predictions to
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the data shows very good results, but the predictions are only 1 to 3 h ahead of real

time.

Finally, Owens et al. (2013) made a comprehensive study of the 27 day periodicity

of the solar wind parameters and presented a possible way to make predictions based

on this periodicity. In particular, they showed that the correlation between two solar

rotations is very good for the speed during solar minimum or the declining phase of

a solar cycle. However, this is not the case during solar maximum, where no clear

correlation was found. The study also explained how such a model can represent a

benchmark for other space weather forecast models.

1.2.3 Summary

In this section, the two main reasons why the atmospheric density is hard to

predict have been explained. First, the thermosphere, where LEO satellites orbit, is a

very complex system coupled to its surrounding environment: the lower atmosphere,

the ionosphere, the magnetosphere, and the Sun. The response of the density to

this coupling is not perfectly known so thermospheric models can only determine

the density at the position of the satellite with a limited accuracy, usually around

80%. Moreover, the inputs of this coupling system that are mainly linked to the solar

activity are really hard to predict. Strong solar events such as CMEs and solar flares,

can completely disturb the thermosphere and cause large and abrupt variations of

the density, resulting in important perturbations of the drag acceleration. For these

reasons, the most complex and challenging factor to predict and model in the drag

equation is the atmospheric density.
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1.3 Contributions of the thesis

Assessing the risk of collision between two spacecraft in the next days involves

the prediction of their positions and velocities. In that regard, the Spacecraft Orbital

Characterization Kit (SpOCK) was developed. Spacecraft are subject to perturbing

forces such as gravity, atmospheric drag, third and fourth body gravitational pertur-

bations (mainly from the Sun and the Moon), Sun and Earth radiation pressure, and

tides. The numerical integration of SpOCK software uses a comprehensive model-

ing of the dynamics of spacecraft in orbit by taking into account these perturbing

forces. Specifically, the non-spherical portion of the mass distribution of the Earth

is modeled with a decomposition of spherical harmonics for the gravitational poten-

tial. Moreover, SpOCK uses thermospheric models (NRLMSISE-00 and GITM) to

derive the atmospheric density at the position of the spacecraft, allowing for an accu-

rate representation of the atmospheric drag. The fundamental function of any orbit

propagator is the accurate prediction of orbits, but SpOCK also includes a variety

of functionalities that can be used for mission design and analysis. For example, it

allows the computation of solar power and the coverage of ground stations. SpOCK

supports parallelism and is therefore well suited for ensemble, Monte Carlo, or satel-

lite constellation analysis. The algorithm, as well as a validation and demonstrations

of the different functionalities are presented in Chapter II.

Uncertainties in the atmospheric drag can result in important errors in the pre-

dictions of the positions and velocities of satellites orbiting at low altitude (< 600

km), causing a real challenge for collision avoidance. These uncertainties are mainly

induced by uncertainties in the neutral density of the upper atmosphere. As this

region of the atmosphere is strongly coupled with the Sun, predicting the solar ac-

tivity, and being able to quantify the uncertainties on that forecast, are important

steps of the overall process of determining the drag acceleration. The Probability

Distribution Function (PDF) model, a data based empirical model, was developed in
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that regard, and is described in Chapter III. Although focusing on the prediction of

the solar wind speed, the technique can be generalized to the prediction of the solar

flux, the Interplanetary Magnetic Field, the proton density and temperature. The

PDF model predicts the solar wind speed five days in advance and the uncertainty

interval associated with the main prediction. Ensemble forecasts provide the forecast-

ers with an estimation of the uncertainty in the prediction and with an estimation

of the possible spread in the characteristics. Transitions from slow to fast solar wind

represent a particular concern because they result in the strongest disturbances of

the atmospheric density, hence the drag acceleration. These transitions are observed

as peaks in the solar wind speed. The PDF model predicts several features of the

peak in speed associated with fast transitions, including the amplitude of the peak

as well as the time when the maximum occurs. A single value for the prediction of

the magnitude of the speed and the time when the increase occurs is associated with

an estimation of the error on the peak prediction. Specifically, the uncertainty on

the predicted amplitude and in the time of the peak provides the forecast commu-

nity with an interval of uncertainty on the prediction. The first version of the PDF

model focused on predictions of the background solar wind speed, which corresponds

to times when the solar activity is quiet or moderate. This version is introduced in

the first section of Chapter III. The improvement of the PDF model for predictions

of such transitions led to the second version of the model that is presented in the

second section of Chapter III. In particular, comparisons of the predictions with the

observations made by the Advanced Composition Explorer satellite are made, as well

as comparison of the accuracy of the model with the previous studies that predicted

such transitions, in particular those made by the WSA model (MacNeice, 2009a,b;

Owens et al., 2005, 2008; Emmons et al., 2013).

Collision risk assessment is usually performed without taking into account the

uncertainties in the atmospheric density. However, neglecting the large uncertainties

34



in the forecast of the solar activity and in the coupling of the upper atmosphere

with the Earth’s space environment (i.e., the ionosphere and the magnetosphere)

can result in important errors in the prediction of the probability of collision. In

particular, strong and abrupt solar events such as CMEs, solar flares, and CIRs can

completely change the outcome of a prediction on the risk of a collision. SpOCK

offers an approach of taking into account these considerations for the calculation of

the probability of collision. The algorithm, presented in Chapter IV, relies on Monte

Carlo procedures that allow for an accurate prediction of the probability of collision.

Uncertainties in the predictions of the solar flux F10.7 and the geomagnetic index

Ap are included in the process so that a correct modeling of the uncertainties in

the forecast of the atmospheric density allows for a more realistic determination of

the probability of collision. In particular, the effects of these uncertainties on the

risk of collision are presented. The effects of geomagnetic storms on the probability

of collision are then illustrated with an example of a parallel conjunction between

two spacecraft two days after epoch. On March 17th, 2015, a strong storm hit the

upper atmosphere, with values of the geomagnetic index Ap exceeding 200. Density

enhancements by almost 50% at 400 km strongly increased the drag, modifying the

orbits of the satellites. The effects on the risk of collision are presented. The algorithm

developed can be used in real-time, and can provide mission operators with a better

estimation of the risk of collision.
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CHAPTER II

Orbit propagation

The Spacecraft Orbital Characterization Kit (SpOCK) is presented. This soft-

ware enables mission analysts to accurately model the motion of spacecraft in orbit.

It also allows the computation of solar power, the coverage of ground stations, and

the assessment of risk of collision between two space objects. SpOCK supports paral-

lelism and is therefore well suited for ensemble, Monte Carlo, or satellite constellation

analysis. The algorithm, a validation and demonstrations of the different functional-

ities are presented. Chapter IV will introduce in detail the collision risk assessment

algorithm and some of its applications.
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2.1 Introduction

Space mission design and analysis requires the use of software tools to adequately

address the desired requirements of a particular mission. A key element of such tools

is the ability to design and analyze the candidate orbits and the spacecraft’s environ-

ment along those orbits. While there exist several capable commercial off the shelf

software solutions (Satellite Took Kit (STK) from Analytical Graphics, Inc (AGI),

and Free Flyer from a.i. Solutions), and even a few open source ones (Java Astrody-

namics Toolkit (JAT) (http://jat.sourceforge.net/), and the General Mission Analysis

Tool (GMAT) (http://opensource.gsfc.nasa.gov/projects/GMAT/index.php)), such

solutions may not be adequate for all interested parties. Civilian, defense, and sci-

entific requirements in such readily available software are as variable as the number

of missions serving each of these fields. These readily available solutions address the

requirements of their largest user base (justifiably so), sometimes at the expense of

specialized, infrequent users. Other issues one may encounter with such software

packages include the need to obtain expensive licenses or extensions (plug-ins), lack

of customization, and lack of cross-platform support.

Therefore, SpOCK, a feature rich mission design tool created specifically to ad-

dress the needs of space and atmospheric physicists was developed. SpOCK, which is

distributed in C, is better described as a software framework that enables physicists

to study past, present, and future space missions as necessary. The central capability

of SpOCK is a high accuracy numerical propagator of spacecraft orbits and compu-

tations of ancillary parameters. The modular code base allows users to quickly and

efficiently implement new features and enhance current capabilities as well as write

simulations for any number of scenarios. SpOCK supports parallelism and is therefore

well suited for ensemble, Monte Carlo, or satellite constellation analysis.

In this chapter, numerical methods are reviewed and the specific capabilities of

SpOCK are described in further details. We then describe a few examples of analyses
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that have been performed using SpOCK are provided, including the examination

of coverage of tropical storms by the CYclone Global Navigation Satellite System

(CYGNSS). Finally, we review some validation data of SpOCK. SpOCK is validated

by comparing different computations with the STK from AGI.
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2.2 Methodology

In this section, the algorithm used to integrate the spacecraft trajectory in SpOCK

is presented. Then, a description of the different features and their implementation

is given.

2.2.1 Numerical methodology

The fundamental function of any satellite mission analysis tool is the accurate

prediction of orbits. Spacecraft are subject to perturbing forces such as gravity,

atmospheric drag, third and fourth body gravitational perturbations (mainly from

the Sun and the Moon), Sun and Earth radiation pressure, and tides. Gravity is

clearly the largest force that the satellites encounter, while the importance of the rest

is quite dependent on the altitude of the satellite. Once the forces are summed, the

acceleration is determined. From this, the velocity and position are derived through

numerical integration using modern numerical techniques.

2.2.1.1 Dynamic model: perturbing forces

Gravity model

The gravity itself is a complex force to model. The Earth is not a perfect sphere

so the distribution of its mass is non-spherical. This implies that the gravitational

force varies as a function of the position. A good approach that takes into account

the non-spherical portion of the mass distribution of the Earth is to represent the

gravitational potential (U) as a decomposition of spherical harmonics (Vallado and

McClain, 2007):

U =
µ

r

[
1 +

∞∑
l=2

l∑
m=0

(
R⊕
r

)l
Pl,m [sin (φgcsat)] {Cl,m cos (mλsat) + Sl,m sin (mλsat)}

]
(2.1)

where r is the distance of the satellite from the center of the Earth, λsat and φgcsat
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are the longitude and geocentric latitude of the satellite, Pl,m are the Legendre

functions, Cl,m and Sl,m are the gravitational coefficients, l and m are the degree

and order of the decomposition, and µ and R⊕ are the gravitational parameter

(µ = 398, 600.442km3/s2) and mean equatorial radius of the Earth (= 6, 378.137km),

as defined in the World Geodetic System 1984 (WGS84) (National Imagery and Map-

ping Agency , 2000). The coefficients Cl,m and Sl,m used in the propagator are taken

from the Earth Gravitational Model 1996 (EGM96) (Lemoine et al., 1997). The grav-

itational potential of a simple sphere is the first term of the right hand side (µ
r
). The

double summation describes the perturbation due to the non-spherical distribution of

the Earth mass. This spherical harmonic decomposition breaks into three categories

(Vallado and McClain, 2007):

• zonal harmonics, that represent bands of latitude (m = 0);

• sectorial harmonics, that represent bands of longitude (l = m);

• tesseral harmonics, that represent tiles (l 6= m 6= 0).

The strongest perturbation is due to the first zonal harmonic C2,0, more commonly

noted J2 (J2 = 0.0010826267), which corresponds to the equatorial bulge due to the

Earth’s rotation causing it to be oblate.

Atmospheric drag

For Low Earth Orbit (LEO) satellites below ∼ 500 km, atmospheric drag is the

main force acting on a satellite, after gravity, and cannot be neglected for accurate

orbit calculations. The drag acceleration adrag of a simple surface is represented by

(Vallado and McClain, 2007):

adrag = −1

2

CDA

m
ρv2rel

vrel

vrel
(2.2)
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where CD, A, and m are the drag coefficient, area projected towards the velocity

vector (discussed below) and mass of the surface respectively, and vrel is the satellite

velocity with respect to the moving atmosphere of density ρ.

Atmospheric drag is hard to model, mainly because the thermospheric density is

very complex to model. It is driven by many phenomema that are themselves hard to

predict, such as the solar X-Ray and EUV fluxes, aurora, high latitude Joule heating,

which are often proxied by indices such as F10.7, Ap, Kp, and Hemispheric Power.

Even if the drivers are well known, deriving the density is still a challenge for the

scientific community. Many thermosphere models attempt to model it. The High Ac-

curacy Satellite Drag Model (Storz et al., 2005) was developed in 2002 by the Air Force

Space Battlelab to improve satellite trajectory prediction accuracy, by analyzing the

effect of drag on trajectories of LEO satellites. It has been combined to the empirical

density model Jacchia-Bowman 2008 (Bowman et al., 2008b), an improved version of

the Jacchia-Bowman 2006 model that is based on Jacchia’s diffusion equations, in the

Jacchia-Bowman-HASDM 2009 (Newman et al., 2015), and is currently used at the

Joint Space Operations Center (JSpOC). Other examples of thermosphere models

include the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar

Extended (NRLMSISE) model (Picone et al., 2002), the Global Ionosphere Ther-

mosphere Model (GITM) (Ridley et al., 2006), and the Thermosphere-Ionosphere

Electrodynamics Global Circulation Model (TIEGCM) (Roble and Ridley , 1994).

Third body perturbation

Gravitational perturbations by a third body (Sun and Moon) are also modeled

in the propagator. The accelerations due to these perturbations can be written as

(Vallado and McClain, 2007):

a3rd body = µ3

(
rsat, 3
r3sat, 3

− rEarth, 3
r3Earth, 3

)
(2.3)
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where µ3 is the gravitational parameter of the third body (Sun or Moon), rsat, 3

the vector from the satellite to the third body, and rEarth, 3 the vector from the

Earth to the third body. The first term represents the gravitational force of the

third body on the satellite. The second term, called the indirect effect, corresponds

to the gravitational force of the third body on the Earth (Vallado and McClain,

2007). The National Aeronautics and Space Administration (NASA) SPICE Toolkit

(naif.jpl.nasa.gov) is used to calculate the position of the Sun and the Moon at

every time step of the propagation.

Solar radiation pressure

Finally, the Sun’s radiation pressure is taken into account in the propagator with

the acceleration described in Equation 2.4 (Wyatt , 1961).

asrp = −CrA
m

LSun

4 ∗ π ∗ c ∗ r3sat, Sun
rsat, Sun (2.4)

where A is the cross sectional area as seen by the Sun (discussed below), m the mass

of the satellite, Cr the solar radiation coefficient, LSun the luminosity of the Sun

(LSun = 3.823 × 1026 W), c the speed of light (c = 299, 792.458 km/s), and rsat, Sun

the vector from the satellite to the Sun.

Combining forces

For each perturbing force computed independently, Figure 2.1 shows the error

made on the position after one day of propagation by neglecting the different forces

at different altitudes. For example, the black circles represent the difference in po-

sition after one day between a propagation modeling the atmospheric drag in a two

body spherical gravitational potential and a propagation only modeling a two body

spherical gravitational potential, without atmospheric drag. A similar approach was
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followed for the solar radiation pressure (magenta diamonds), the third body pertur-

bations from the Moon and the Sun (green stars), and the main perturbing gravi-

tational effect due to the Earth equatorial bulge (coefficient J2, blue triangles). A

propagation modeling the gravity potential as a spherical harmonics decomposition

of order and degree 20 was compared to the propagation modeling only the equatorial

bulge. The difference in position between both propagation represents the error made

by neglecting terms of order greater than 2 in the spherical harmonics decomposition

presented in Equation 2.1. It is represented by the red squares in Figure 2.1.

As the altitude increases, the error made by neglecting the atmospheric drag

decreases. For altitudes higher than 1,000 km, the thermospheric density is so low

that the drag can be neglected, since the error is approximately smaller than the round

off error on the position. The error made by neglecting the equatorial bulge (blue

triangles) decreases with the altitude, as does the error made by neglecting the higher

order spherical harmonics (red squares). However, both the errors made by neglecting

the third body (green stars) and solar radiation pressure (magenta diamonds) increase

with altitude. Since the distance to the Sun on the day side decreases as the altitude

increases, the solar radiation pressure effects get more important. The third body

effects get also more important with the altitude because the term of amplitude r−2sat, 3

in Equation 2.3 varies more as the satellite orbits the Earth. Overall, the most

important term is the equatorial bulge of the Earth.

Note that these results depend highly on many factors, such as the cross sectional

area with respect to the Sun and with respect to the velocity, the mass of the space-

craft, the solar activity, the drag, and solar radiation pressure coefficients. Therefore,

the relative contribution of each perturbing force changes as well. For example, if the

area/mass ratio increases, the solar radiation pressure increases and can have more

effect than the third body perturbation (the ratio used in Figure 2.1 is 0.01 m2/kg).

However, the variation of the error with the altitude stays the same as in Figure 2.1.
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Figure 2.1:
Position error after one day as a function of the altitude for different
perturbing forces. Top is from 300 to 2000 km, bottom is from 300 to
36,000 km.
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2.2.1.2 Numerical integration

The flow diagram in Figure 2.2 shows the structure of SpOCK’s algorithm. Here,

the integration block is presented (center of the diagram). The inputs and outputs of

SpOCK are presented in a further section.
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Figure 2.2: Flow diagram of SpOCK and its functionalities.

The total acceleration computed at each time step of the simulation is the sum of

the accelerations due to gravity, drag, third body perturbations, and solar radiation

pressure. The propagator then uses a Fourth Order Runge-Kutta method with a fixed

time step to integrate the acceleration at each time step of the simulation. Once the

simulation reaches the final epoch or the spacecraft reaches an altitude below 100 km,
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implying reentry into the Earth’s atmosphere, the propagation stops. The time step

is chosen by the user at initialization. Figure 2.3 shows the error made on the position

as a function of the integrator step size. SpOCK was run for one day with a circular

orbit at 5,000 km with different time steps. The position after one day was compared

with the position calculated with a time step of one second. The error varied linearly

in logarithmic scale, which reflects an exponential increase in error with the time step.

The error increases to hundreds and thousands of kilometers as the time step reaches

several minutes. Errors due to neglecting the different perturbing forces reported in

Figure 2.1 are also shown (with a time step of 10 s for reference). Neglecting any of

the perturbing forces results in a higher error than the error caused by a time step of

10 s compared to a time step of 1 s. This underlines the impact of perturbing forces

on the dynamics, even atmospheric drag, which is very weak at 5,000 km because of

the very low atmospheric density.
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Figure 2.3:
Position error after one day as a function of the integration step size for
a 5,000 km orbit. Also shown is the error from neglecting perturbing
forces in the same orbit, taking a 10 seconds time step. Note that errors
for time steps smaller than 1 s are not represented here. As the step
size approaches 0, the error is expected to increase because of truncation
effects.

2.2.2 Functionalities of SpOCK

The flow diagram in Figure 2.2 illustrates the functionalities of SpOCK (top cen-

ter), as well as the inputs the user needs to set up to initialize the program (bottom

left). In this section, these will be introduced first. Then, the different features will

be presented.

2.2.2.1 Initialization of SpOCK

There are several inputs the user needs to set up for a simulation:

• initial state: position and velocity of the spacecraft at the start epoch;

47



• geometry: a description of the geometry of the spacecraft;

• attitude: the orientation of the spacecraft during the propagation; and

• force model: which forces to include in the dynamics.

This section summarizes the different options the user has to implement each of these

inputs.

Orbit initialization

To initialize the orbit, the user has different options. The most simple one is

to use osculating orbital elements: apogee altitude, inclination, argument of perigee,

Right Ascension of the Ascending Node (RAAN), true anomaly, and eccentricity. The

user can also initialize the orbit with Two Line Elements (TLE). One can also give

the initial state (position and velocity) in the Earth Centered Earth Fixed (ECEF)

reference system, or in the Earth Centered Inertial (ECI) reference system.

Sometimes satellites are deployed from a single launch vehicle, such as what is

done for secondary payloads, satellites from the International Space Station (ISS), or

constellation missions such as CYGNSS. Satellites are ejected from a same position

with different speed and angle, which slightly changes the parameters of their orbit

(in particular the inclination and the semi-major axis). For mission planning and

collision avoidance, it is important to be able to know what the relative motion is

between spacecraft. SpOCK is able to initialize the position and the velocity of the

satellites from a deployment module, by specifying the initial position of the module

(with osculating orbital elements, that transformed in SpOCK to initial positions and

velocities in ECI coordinates) and the angle and speed of ejection of each satellite in

the Local Horizontal Local Vertical (LVLH) reference system.

Spacecraft geometry and attitude
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To accurately model the perturbing forces (atmospheric drag and solar radiation

pressure) and compute the power generated by the solar panels, the geometry and

the attitude of the spacecraft need to be accurately characterized in the simulation.

To represent the geometry of the spacecraft, the satellite is divided up into surfaces

in an input file. For each surface, the following are specified:

• the normal to the surface expressed in the spacecraft body reference system;

• the area of the surface;

• the total solar cell area of the surface;

• the drag coefficient and the standard deviation around this value if ensembles

of the drag coefficient are run; and

• the solar radiation coefficient.

The user has different options to characterize the attitude of the spacecraft. The

satellite can have one of its faces be constantly nadir or Sun pointing, or the satellite

can be rotating at a constant rate in the body reference frame. Moreover, since a

constant cross section area is not relevant for a spacecraft with a varying attitude,

SpOCK allows input of the attitude as a function of time and it determines the cross

section area in the ram direction for drag, and in the Sun direction for power and

solar pressure. As expressed in Equations 4.2 and 2.4, the drag and solar radiation

pressure accelerations can be accurately modeled by SpOCK with the specification of

the geometry and the attitude of the spacecraft.

Force model

As explained in section 2.2.1.1, several perturbing forces need to be considered in

the propagation to accurately model the trajectory of the spacecraft.
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The propagator allows a decomposition of the gravitational potential with an

order and degree of 360, guaranteeing an accurate representation of the non-spherical

portion of the mass distribution of the Earth. Within the input file, the user can select

the maximum order of gravity to include. The higher the order, the more accurate the

gravitational potential. Figure 2.4 (top) shows the maximum difference in position

over one day of propagation for a LEO orbit at 300 km, between a simulation that

uses an order N and a reference simulation using order 40. N varied from 2 (only

including the equatorial bulge represented by the J2 term), to 40. The case with a

perfect spherical potential (i.e., neglecting the J2 term) was not considered as it leads

to significantly larger errors in position than an aspherical Earth. One can notice

that the difference in position is very large when considering only the J2 term (> 16

km) compared to higher orders, for which the error drops to values well below 1 km.

Although the general trend of the error is to decrease as the order increases, one can

notice the non-linear effect of increasing the order of the gravity model.

Modeling more orders is computationally intensive and the user may not need

the accuracy for the particular task. Figure 2.4 (bottom) shows the run time as a

function of the gravity model order. This figure demonstrates the rapid increase of

computational time with the level of accuracy of the aspherical potential. While the

error only decreases slightly for orders greater than 30, the run time increases to

values up to 4 times higher for order above 30. Therefore, the user needs to make a

compromise between accuracy and computational time. For most applications, orders

below 20 are sufficient, particularly for satellites orbiting at higher altitudes because

the influence of the asphericity of the Earth decreases, as shown below.
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Figure 2.4:
Position error (top) and computational time (bottom) after one day of
propagation as a function of the order of the gravitational potential spher-
ical harmonics decomposition used.51



For LEO orbits, the atmospheric drag is also a perturbing force that is relatively

difficult to model accurately. Because the thermospheric density is highly variable,

representing it with a constant value in Equation 4.2 leads to important errors when

modeling the drag acceleration. The propagator offers the possibility to use either

the NRLMSISE or the GITM model to calculate the density at the satellite position,

under different driving conditions. If the thermospheric NRLMSISE is used, the solar

flux F10.7 and geomagnetic index Ap can be specified as constant values during the

propagation, or as time-varying values. For this latter option, SpOCK downloads the

data from Omniweb (http://omniweb.gsfc.nasa.gov/). If the simulation includes

the future, predictions from the Space Weather Prediction Center (SWPC) from the

National Oceanic and Atmospheric Administration (NOAA) are used. The users can

also input their own file with the values of F10.7 and Ap as a function of time. The

NRLMSISE density model is called at each time step of the propagation using the

time-varying values of F10.7 and Ap. This allows the propagator to accurately model

the density, and consequently the drag acceleration.

Each of these perturbing forces (drag, solar radiation pressure, Sun and Moon

gravitational perturbation) can be easily turned on or off independently. This provides

users with the ability to rapidly run a coarse simulation to explore mission planning

or run with a highly accurate determination of the position for collision avoidance

calculations.

2.2.2.2 Features

As with any propagator, SpOCK predicts the positions of satellites. It also has

other features, such as computing the solar power generated by solar panels, predicting

the position of specular points between two satellites (Earth surface reflection points

of the signal from a transmitting satellite to a target satellite), assessing the coverage

by ground stations, and assessing the risk of collision with another object in orbit.
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This section describes some of these features. The collision risk assessment tool will

be presented in detail in Chapter IV.

Solar power

A crucial component of any satellite mission is determining the amount of power

generated by solar panels. SpOCK has a feature to allow this, given a user specified

geometry of the solar panels in the body frame of reference, as well as the efficiency

of the solar cells. The propagator calculates the solar power SP generated by these

surfaces as a function of time when the satellite is in sunlight:

SP =
Ns∑
i=1

fAiηi cosφi (2.5)

where i is the index for the solar panel with an area Ai, Ns the total number of solar

panels, f the solar flux (f = 1358 W/m2), φi the angle between the normal to the

solar panel and the direction of the Sun, and ηi the solar cell efficiency. Examples of

solar power computations are presented in Section 2.3.3.

Specular points

A specular point is the location on the surface of the Earth of the reflection of a

signal sent by one satellite to a target satellite, as shown in Figure 2.5. As a remote

sensing technique, this can be used to calculate sea surface heights, ionospheric total

electron content, or the root mean squared slope of the ocean that can then be related

to the surface wind speed.
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Figure 2.5: Geometry of a specular point.

This technology is used on the CYGNSS mission. The CYGNSS mission, launched

in December 2016, consists of eight satellites that measure the wind speeds within

tropical storms using reflected Global Positioning System (GPS) signals off the ocean

surface. Being able to plan in advance when the specular points between the CYGNSS

and GPS spacecraft will be in a storm or cyclone is an important requirement of the

mission. SpOCK is used to predict the position of the specular points between the

GPS and CYGNSS constellations. A demonstration of this feature is presented in

Section 2.3.1.

Ground station coverage

Another feature available in the propagator is the calculation of when a satellite

is visible to a ground station. This is important for mission design and mission

planning for the transmission of data between the satellite and the ground. For a set

of ground stations and minimum elevation angles (representing the cones in which the

satellite has to be in order to communicate with the ground station), the propagator

returns the times when the satellites are in sight of the ground stations. Examples
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are presented in Section 2.3.2.

Collision risk assessment

SpOCK can assess the risk of collisions with other space objects in orbit (oper-

ational satellites or debris). Monte Carlo procedures are used to perturb the epoch

state (position and velocity) of the primary and secondary spacecraft from the given

covariance matrices. If a close approach is found (defined as a relative distance smaller

than a given threshold), it calculates the number of samples from each of the two sets

of satellite ensembles that are spaced out by less than the sum of both object radii.

This situation is recorded as a collision. The probability of collision is equal to the

total number of collisions divided by the number of samples used in the ensemble

simulation.

In addition to modeling uncertainties in the initial state, SpOCK can also model

uncertainties in the thermospheric density, the drag coefficient, and the attitude. To

model the uncertainty in the density, SpOCK uses the predictions of the solar activity

and adds a random Gaussian variability to the values. The standard deviation of

the Gaussian distributions is based on an average of the error in the activity level

predictions compared to actual observations over the last five years.

Modeling the uncertainty in the attitude consists in having thousands of samples

that drift with a random angular velocity from a nominal attitude for a given time

before going back to the nominal attitude. This enables the simulation of the attitude

determination and control system of satellites that randomly drift from a nominal

attitude.

Finally, to model the uncertainty in the drag coefficient, the user can either add

a dimension to the state covariance matrix that includes the variance of the drag

coefficient, or directly specify the standard deviation on the drag coefficient of each

surface.
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This complete modeling of the uncertainties (state, thermospheric density, drag co-

efficient, attitude) allows the assessment of the risk of collision by taking into account

both errors in the initial state and in the dynamics of the system, which improves the

accuracy of the risk assessment calculation. Determining the risk of collision with a

Monte Carlo technique is computationally intensive, since one has to consider a large

number of ensemble members in order to produce accurate results of the probability of

collision as it is most often a very low number. For example, NASA recommends per-

forming a collision avoidance maneuver if the probability of collision exceeds a value

of 10−4. To be more computationally efficient, SpOCK runs the ensemble members

in parallel, which allows the risk assessment to be performed in only a few hours.

Chapter IV will explore the effects of uncertainties in the thermospheric density

on the probability of collision.

56



2.3 Demonstration of capabilities

2.3.1 Storm Intersection Forecast Tool (SIFT)

The main objective of the CYGNSS mission is to measure wind speeds in tropical

storms. Measuring the reflected power of GPS signals off the surface of the ocean, the

Delay Doppler Mapping Instrument (DDMI) infers the surface roughness to derive

the wind speed. The points where the signals sent by the GPS are reflected back to

the CYGNSS satellites are called specular points, as explained in Section 2.2.2.2.

Figure 2.6:
GPS signal propagation and scattering geometries (left); Example of a
Delay Doppler Map (right) (Clarizia, 2015).

Figure 2.6 shows the geometry of a GPS signal scattered off the ocean surface

and reflected to the CYGNSS Left-Hand Circular Polarization (LHCP) antenna. The

strength of the reflected signal contains information about the roughness of the ocean

as a function of delay and Doppler, that can then be related to the wind speed around

the specular point. An example of a Delay Doppler Map (DDM) is given in Figure

2.6. Typically, the winds over the ocean do not have much structure over scales of 25-

100 km, allowing the decimation of the DDM to an area directly around the specular

point. Within a tropical cyclone, however, the wind speed can gave significant struc-
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tures, which makes the information contained within the DDM further away from the

specular point valuable. However, the problem is that this requires more information

to be transmitted to the ground stations, requiring more operations cost. Therefore,

the mission would like to limit the times of larger DDM transmissions to only time

periods when flying directly over the cyclone. When this situation occurs, the satel-

lites switch from the standard mode to the Full Delay Doppler Mapping (FDDM)

mode. The Mission Operation Center (MOC), based at the SouthWest Research

Institute (SWRI) in Boulder, Colorado, does not constantly communicate with the

satellites. Consequently, the MOC sends the commands a day and half in advance

to tell the observatories when to switch to the FFDM, which creates the need for a

tool that predicts when individual CYGNSS observations will fly over the cyclone.

These considerations constrain the MOC to anticipate when the GPS and CYGNSS

satellites align in a way that results in specular points being within the cyclone, and

requires an accurate prediction of the positions and velocities of the two constellations

in order to predict the positions of the specular points.

SpOCK can predict when the specular points will be within the path of the cy-

clone. Because a perfect prediction of the storm trajectory is impossible, NOAA

regularly publishes predictions of cyclones path and size, along with uncertainties as-

sociated with these predictions (http://manati.star.nesdis.noaa.gov/TC_cone_

info/). To know when the specular points have a good chance to be within the storm,

the tool predicts the probability of each specular point being within the cyclone one

to two days in advance. From the most recent CYGNSS and GPS positions and

velocities information, as well as the inputs necessary to propagate the orbits (pre-

dicted attitude of the observatories and latest predictions of solar activity), SpOCK

calculates the position of the specular points for the next two days. It then combines

these results with the NOAA prediction of the storm trajectory to predict when the
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specular points will be in the cyclone. A Graphical User Interface (GUI) was im-

plemented by the CYGNSS science team to allow for quick and easy visualization

of the trajectories of the observatories, the specular points, and the cyclones. This

interface enables the Science Operation Center (SOC) at the University of Michigan

to visualize animations of these trajectories in order to select times when the specular

points intersect the storm. The SOC requests that the MOC in Boulder, Colorado

send commands to the CYGNSS satellites to switch the DDMI to the Full Delay

Doppler Mapping mode for these particular times. The GUI also shows the positions

of the three ground stations (Chile, Australia, and Hawaii) to which the observatories

can downlink the data measured during the over-flight, so that the full DDMs can be

retrieved quickly to allow for rapid specification of the winds through the hurricane.

Figure 2.7 shows an example of specular point trajectories that intersect the path

of a cyclone, from the SIFT GUI. Specular point paths by one CYGNSS observatory

for three consecutive orbits predicted one day ahead are shown. Two tracks of specular

points are predicted to overlap with the cyclone trajectory during the first fly-by of

CYGNSS, so the SOC would send a request to the MOC to turn on the FDDM for

this particular observatory over-flight.
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Figure 2.7:
Specular points path over five hours (3 passes of a CYGNSS satellite)
near the cyclone. The dark red disk represents the current position of
the cyclone (2016-10-01T04:00:00), and the light red disk its predicted
trajectory. The black line represents the trajectory (past and future)
determined by NOAA and the shaded red cone includes the 34 knots
radii of the cyclone. The hurricane is predicted to move North.

2.3.2 Coverage of ground stations

SpOCK can compute the times in which a satellite can communicate with partic-

ular ground stations. The user specifies the position and minimum elevation angle of

each ground station, and SpOCK computes the azimuth and elevation angles in both

the ground station and the spacecraft reference systems, as well as the range. The

output file includes these four angles and the range for every second of the propaga-

tion. A summary report is also created that shows the access start and end times

when the spacecraft flies over the ground station, in the cone defined by the minimum

elevation angle.
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Figure 2.8 shows an example of the coverage of three ground stations over one day

by one of the eight CYGNSS satellites: South Point (HI, USA), Santiago (Chile), and

Western Australia (Australia). The minimum elevation angle used for each station is

5◦. Over the day, CYGNSS flies over each station 5 times, with durations of about

8 minutes. This type of figure is automatically generated by SpOCK when the user

chooses to compute the coverage of ground stations.

00:00 04:00 08:00 12:00 16:00 20:00
Real time

Hawaii

Australia

Chile

Example of the coverage of 3 ground stations by CYGNSS - Access times over a day

Figure 2.8:
Example of the coverage of 3 ground stations by CYGNSS - Access times
over a day.

2.3.3 Solar power

In this section, a few examples of computation of solar power by SpOCK are pre-

sented. SpOCK can be used for mission design to investigate the optimum spacecraft

geometry to meet the power requirements of the mission, once the orbital parameters,
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such as inclination, altitude, and attitude, have been selected.

Year long simulations are sometimes necessary to ensure that the solar panels will

generate enough power during the entire mission, since the precession of the orbital

planes with respect to the Sun, as well as seasonal effects, are quite important. The

equatorial bulge of the Earth increases the gravitational attraction and introduces a

force component toward the equator. This force induces a torque that rotates the

angular momentum of the orbit around the rotational axis of the Earth, causing the

satellite’s orbital nodes to precess westward (for prograde orbits, and eastward for

retrograde orbits). The zonal gravitational harmonic coefficient J2 represents this

bulge. A mathematical equation can be derived to evaluate the precession rate of the

nodes (Vallado and McClain, 2007):

Ω̇ = −3

2
R2⊕J2

√
µ

a7
cos i

(1− e2)2
(2.6)

where i is the inclination, a the semi-major axis, and e the eccentricity of the orbit.

For example, if the orbit is circular at 510 km with an inclination of 35◦ (such as the

orbit of CYGNSS), the nodes will precess with an angular rate of 6.23◦/day, which

corresponds to 6.32 revolutions of the ascending node during a year, with respect to

a fixed position in the ECI frame.

Because of the rotation of the Earth around the Sun, the relative position of the

Sun in the ECI frame changes by 360◦ in a year. Since this motion is eastward and

the precession of the orbital plane is westward (for prograde orbits), then the Local

Time of the Ascending Node (LTAN) (the angle between the Earth-Sun vector and

the ascending node) evolves faster than the precession rate: LTAN = Ω̇ + 360/365.

With the same example, the ascending node makes 7.32 revolutions with respect to

the Earth-Sun direction. Figure 2.9 shows an example, as viewed from the North Pole.
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Seven orbits are represented, each separated by a day. Since a complete revolution of

the ascending node with respect to the Sun takes 365/7.32 ∼ 50 days, these 7 orbits

correspond to 15% of a full revolution of the ascending node. As time goes, the orbit

precesses westward, or equivalently in the direction of decreasing local time.
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Figure 2.9:
Precession of the ascending node with respect to the Sun over 7 days -
example with CYGNSS’s orbital parameters. The arrow on each orbit
represents the direction of motion of the satellite (eastward as the orbit
is prograde).

The precession of the orbit is important to take into account when computing the
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power because it changes the orientation of the orbit with respect to the Sun. For

example, the orbit-average power of a 3-axis stabilized, nadir facing 1U CubeSat or-

biting at an inclination of 90◦ is shown in Figure 2.10 (top), with the LTAN indicated

at the local minima and maxima. Only the zenith face of the CubeSat is assumed to

have solar panels. Because the orbit is polar, it does not precess in the inertial frame.

The variation of the orbit-average power is due to the rotation of the Earth around

the Sun. In other words, the LTAN changes by 360◦ in exactly one year. The maxima

of the orbit-average power in Figure 2.10 (top) are reached for a noon-to-midnight

orbit because the angle between the Sun direction and the normal to the solar panel

is the smallest (0◦). However, when the orbit is dawn-to-dusk, the CubeSat moves

near the terminator and the Sun light grazes the solar panel for the entire orbit. In

this example, the dawn-dusk orbit happens at the solstices. Therefore, because the

Earth is tilted by ∼ 23◦ with respect to the ecliptic plane, the angle between the orbit

and the Sun direction is not 90◦ but 67◦, which explains why the zenith facing solar

panels still receive some sunlight.

As explained in Section 2.2.2.1, the user can change the geometry of the spacecraft

by modifying the normal vector in the Local Vertical Local Horizontal frame for

each surface. This can be used in mission planning when trying to determine the

geometrical configuration that optimizes the solar power. To give an example, two

1U wings extending from the zenith panels in the cross-track directions fully covered

with solar cells were added to the previous 1U CubeSat, and their angle with respect

to the nadir and horizontal cross-track was varied. For instance, if the angle was 90◦,

it means that the wings were folded all the way to the port and starboard faces of

the CubeSat. An angle of 0◦ means that the wings were in the same plane as the

zenith face. Figure 2.10 (bottom) shows the orbit-average power of four 1U CubeSats

with wings that make different angles with the local body horizontal: 0◦ (black), 30◦
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(green), 60◦ (red), and 90◦ (blue). For flat wings (0◦, black line), the shape was the

same as in Figure 2.10 (top) but the power was multiplied by a factor 3, since the

two wings had a solar cell area equal to the zenith face. As the wings were more

tilted (30◦, 60◦, 90◦), the power for the noon-to-midnight orbit decreased. When the

wings were completely folded (90◦), they did not get any sunlight from the Sun in the

noon-midnight plane since the Sun vector was in the orbital plane. Therefore, the

total power received by the CubeSat was similar to the power of the CubeSat without

any wings in Figure 2.10 (top) (1.2 W) for only the times when the orbit was in the

noon-midnight plane (3-21 and 9-21). However, when the orbit was dawn-to-dusk,

the flat wings (0◦) received less power than the tilted wings because the Sun direction

was almost perpendicular to the orbital plane, allowing sunlight to fall on one of the

panels constantly. Therefore, the more tilted the wings were, the more power they

received from the Sun.
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Figure 2.10:
Orbit-average power of a 1U CubeSat in a polar orbit (top); orbit-average
power of a 1U CubeSat in a polar orbit with wings at different angles
(bottom).

Although simplified here, this kind of analysis is often made in mission design

when the geometry of the spacecraft must be optimized to maximize the solar power

over the entire mission. The propagator offers the possibility of making such analysis
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by only modifying a simple geometry file.
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Table 2.1: Osculating elements for three test case orbits.
a (km) i (◦) Arg of Perigee (◦) RAAN (◦) True anomaly (◦) e

LEO 6758.524129 51.667871 151.908712 45.649594 32.718375 0
HEO 26553.376213 63.400000 270.000001 330.214160 359.999998 0.740969
GEO 42164.166418 0 103.882708 0 226.368596 0

2.4 Comparison with other tools

In order to validate the propagator, results from the High Precision Orbit Propa-

gator (HPOP) within STK from AGI were compared to SpOCK results. Specifically,

the position and velocity, ground coverage, and solar power were compared.

2.4.1 Inertial position and velocity

Vallado and McClain (2007) recommended considering different types of orbits in

order to fully validate a propagator, in particular because the magnitude of the per-

turbing forces vary dramatically with altitude. Therefore, ephemerides were compared

between HPOP and SpOCK for three different orbits, following a similar approach

to Gaylor et al. (2006), so that results could be compared with their study: LEO

(altitude = 380 km), High Elliptical Orbit (HEO) (eccentricity = 0.74, semi-major

axis = 26,553 km), and Geosynchronous Earth Orbit (GEO) (altitude = 35,786 km).

Initial osculating elements of the orbits are presented in Table 2.1. As it will be

shown, the differences between SpOCK and HPOP are similar to the ones between

JAT and HPOP as presented in Gaylor et al. (2006).

To validate the force models, each perturbing force was run independently:

1. two-body spherical Earth;

2. two-body spherical Earth with atmospheric drag using NRLMSISE with a con-

stant F10.7 of 100, a constant Ap of 15 (Kp = 3 in HPOP), drag coefficient =

2, and area/mass = 0.01 m2/kg;

3. two-body spherical Earth with third-body perturbations (Sun and Moon);
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4. two-body spherical Earth with solar radiation pressure using solar radiation

pressure coefficient = 1, area/mass = 0.01 m2/kg; and

5. spherical harmonic gravity model using the WGS84 - EGM96 model with degree

and order equal to 20.

For each of these orbits, satellites were propagated for one day with HPOP and

SpOCK with an integration time step of 5 seconds and ephemerides were generated

every 60 seconds. The numerical integration is made using a fourth-order Runge-

Kutta method in STK and SpOCK.

Table 2.2 shows the maximum position and velocity differences over the entire

propagation for the LEO orbit. The two-body spherical Earth with and without the

third-body perturbation from the Moon and the Sun show maximum differences of

12 millimeters between HPOP and SpOCK. When the spherical harmonic gravity

model was used, both propagators agreed to within 2 meters, and 5 meters when the

solar radiation pressure was taken into account. The largest difference occured when

the atmospheric drag was computed, with a 9.5 meter maximum difference. This

may be due to the fact that the thermospheric density is very complex to model.

NRLMSISE is highly dependent on inputs such as F10.7 and Ap (or Kp) and the

exact way the thermospheric model was used in STK is not well documented, so

errors might come from the difficulty in perfectly matching the atmospheric models.

In particular, STK uses the geomagnetic index Kp while SpOCK uses Ap. A value

of 3 for Kp is converted into a value of 15 for Ap (http://www.ngdc.noaa.gov/stp/

GEOMAG/kp_ap.html). However, this is not an exact solution, which implies that a

difference in the thermospheric density can possibly arise from this conversion. For

example, if Ap were equal to 14 (16) instead of 15, the maximum position difference

with HPOP increased to 150 m (125 m), which demonstrates the high sensitivity of

the density model, and therefore the propagation, to its inputs. Because the altitude

was very low (380 km), the density was quite important, so it is consistent that the
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Table 2.2:
Maximum position and velocity differences over one day with different
perturbing forces for the LEO orbit.

Perturbing force Position (m) Velocity (m/s)

Two-body spherical Earth 0.012 0.001
Two-body spherical Earth & drag 9.554 0.011

Two-body spherical Earth & third-body 0.012 0.001
Two-body spherical Earth & solar pressure 5.382 0.005

WGS84 - EGM96 2.011 0.003

Table 2.3:
Maximum position and velocity differences over one day with different
perturbing forces for the HEO orbit.

Perturbing force Position (m) Velocity (m/s)

Two-body spherical Earth 0.063 0.001
Two-body spherical Earth & drag 0.250 0.001

Two-body spherical Earth & third-body 0.063 0.001
Two-body spherical Earth & solar pressure 1.838 0.002

WGS84 - EGM96 8.319 0.006

uncertainty on the atmospheric drag was the main source of errors.

Table 2.3 shows the maximum position and velocity differences over the entire

propagation for the HEO orbit. This time, the most important source of differences

between both propagators was the gravity model, accounting for a difference of 8.3

meters after a day. When the other forces were run independently, differences of less

than a meter were found, except for the solar radiation pressure, which resulted in a

maximum difference of 1.8 meters.

Table 2.4 shows the maximum position and velocity differences over the day for

the GEO orbit. In every case, the difference in positions was well under a meter,

with the maximum difference occurring when the solar pressure was used as it was

the main perturbing force at this very high altitude.

For each configuration, the maximum difference in velocity was a few millimeters

per second.
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Table 2.4:
Maximum position and velocity differences over one day with different
perturbing forces for the GEO orbit.

Perturbing force Position (m) Velocity (m/s)

Two-body spherical Earth 0.076 0
Two-body spherical Earth & drag 0.076 0

Two-body spherical Earth & third-body 0.075 0.001
Two-body spherical Earth & solar pressure 0.714 0.001

WGS84 - EGM96 0.098 0.001

2.4.2 Coverage of ground stations

The ground station coverage by a CYGNSS satellite over a day computed by

SpOCK and presented in Figure 2.8 was compared against the coverage derived in

STK. The access times were very similar, with maximum differences smaller than

a second, so the blocks symbolizing the accesses in Figure 2.8 overlap with the ones

from the coverage computed by STK. A 1 s difference in access time translates into

an elevation difference in angle of the spacecraft as seen from the ground station of

only tan−1
[
7.6/

(
R⊕ + 500

)]
= 0.06◦ for a satellite orbiting at 500 km with a speed

of 7.6 km/s.

2.4.3 Solar power

In this section, the solar power computed for CYGNSS over one orbit by SpOCK

is compared to calculations made in STK. The geometry of CYGNSS is illustrated in

Figure 2.11. The spacecraft included 0.0612 m2 solar cells on each the ram and wake

faces, as well as 0.558 m2 of cells on the zenith face.
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Figure 2.11:
Artistic representation of one of the eight CYGNSS satellites (http:
//clasp-research.engin.umich.edu/).

The circular orbit was initialized at 500 km, with an inclination of 35◦, and a

RAAN, true anomaly and argument of perigee of 0◦. Figure 2.12 shows the power

generated by the three solar panels (ram, wake, zenith) for a nadir pointing config-

uration. The dots represent the power computed by STK, and the solid lines the

power computed by SpOCK. Figure 2.12 shows a very good agreement between both

power computations, with a Normalized Root Mean Square Error of 0.13 % (defined

as

√
(PSpOCK−PSTK)

2

P 2
STK

× 100, where u represents the temporal average of the quantity

u), showing that the SpOCK power calculation tool is very consistent with the STK

tool.
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Figure 2.12:
CYGNSS power over one orbit computed by SpOCK (solid lines) and
STK (dots).
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2.5 Summary

The numerical integration of SpOCK uses a comprehensive modeling of the dy-

namics of spacecraft in orbit by taking into account the perturbing forces acting on

the satellite. Specifically, the non-spherical portion of the mass distribution of the

Earth is modeled with a decomposition of spherical harmonics for the gravitational

potential. Moreover, SpOCK uses thermospheric models (NRLMSISE and GITM)

to derive the atmospheric density at the position of the spacecraft, allowing for an

accurate representation of the atmospheric drag. The errors resulting from neglecting

perturbing forces and from integrating the trajectories with a too large time step were

presented.

In addition to modeling the motion of satellites, the different functionalities of

SpOCK were introduced. For instance, the coverage of the three ground stations that

communicate with the CYGNSS observatories was computed with the determination

of the access times over a day. The precession of the ascending node due to the

asphericity of the Earth was demonstrated over a 7 day simulation. The orbit-average

solar power of a 1U CubeSat in a polar orbit with wings at different angles was

computed to study the influence of the spacecraft geometry on the power generated

by the solar cells of the satellite. The influences of seasons and of the precession of

the nodes were shown too. Finally, a demonstration of the SIFT was made. This

algorithm predicts the intersection of the CYGNSS observatories’ specular points

trajectories with the path of tropical storms forecast by NOAA. It provides support

to the CYGNSS mission operation center in sending the commands a day and half

in advance to tell the observatories when to switch to the higher resolution mode in

order to take more accurate measurements of the winds in the cyclone.

SpOCK was validated by comparing the inertial positions and velocities with re-

sults from the High Precision Orbit Propagator within the Satellite Took Kit from

Analytical Graphics, Inc.. Specifically, the ephemerides after one day of propaga-

74



tion were compared for three different orbits: Low Earth Orbit (altitude = 380 km),

High Elliptical Orbit (eccentricity = 0.74, semi-major axis = 26,553 km), and Geo-

stationary Orbit (altitude = 35,786 km). The complete force model was validated by

evaluating the perturbing forces independently. The comparison showed sub-meter

differences between SpOCK and HPOP positions, except for the validation of the drag

model in the LEO configuration for which a difference of 10 meters was found, prob-

ably due to a difference in modeling the atmospheric density. Differences in velocities

did not exceed a few mm/s.

Collision risk assessment has been implemented in SpOCK and will be presented

in Chapter IV.
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CHAPTER III

Predictions of the solar wind speed

3.1 The Probability Distribution Function model (version 1)

Uncertainties in the atmospheric drag can result in important errors in the pre-

dictions of the positions and velocities of satellites orbiting at low altitude (< 600

km), posing a real challenge for collision avoidance. These uncertainties are mainly

induced by uncertainties in the neutral density of the upper atmosphere, which are

driven by the solar activity, in particular the solar wind speed. The Probability Dis-

tribution Function (PDF) model was developed to predict the solar wind speed five

days in advance, and to assess the uncertainty on the prediction. The first version

of the PDF model focused on predictions of the background solar wind speed, which

corresponds to times when the solar activity is quiet or moderate. The methodology

is presented, as well as results of comparisons with the Wang-Sheeley-Arge (WSA)

model.

3.1.1 Methodology

There are two concepts that drive the PDF model. The first is the idea that the

solar drivers do not randomly change from hour to hour. For example, it has been

shown that persistence is one of the best models of the solar wind speed for short-

term predictions (e.g., Norquist and Meeks , 2010). For the two first days of prediction,
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keeping the speed constant at its current value is one of the best estimators for the

value of the speed. This implies that the solar wind speed changes relatively slowly,

such that, if the speed at the present time is known, then the speed in an hour from

now will most likely be quite similar to the value now. This idea can be formalized

into a probability-based model, where PDFs can be derived for the solar wind speed,

given the current speed and the prediction horizon (each hour from the current time

until 5 days into the future). Through exploring the behaviour of the solar wind speed

over times of many 10s of hours, it was noted that the prediction can be separated

into two different groups, differentiated by whether the speed had been increasing or

decreasing over the previous 12 hours.

The second idea of the PDF model is based on the approximately 27-day rotation

of the Sun. The rotation period depends on the latitude: it is 25 days at the equator

and 35 days at the poles. On average, it is about 27.2 days. Therefore, the same active

regions of the Sun are directed towards the Earth every 27 days. This implies that a

27-day periodicity should also be observed in the solar wind speed, the Interplanetary

Magnetic Field (IMF), and the solar-radiation flux. A comprehensive study of this

27-day periodicity has been detailed by Ram et al. (2010). That study highlighted a

strong 27-day periodicity, but also signatures of periodicities corresponding to 13.5,

9, and 6.8 days. Given the 27-day periodicity of the Sun, a model theoretically can

be created in which the solar wind-speed prediction can be based on the solar wind

speed 27 days ago. PDFs can therefore be created given the present speed and the

speed in approximately 27 days from now.

The biggest problem with this technique is that the solar structures are not per-

fectly periodic. Two consecutive solar rotations can lead to very different speeds of the

solar wind, as shown in Figure 3.1. The Pearson correlation between these two speeds

is 0.2 (all the correlation numbers that we present in this study correspond to Pearson

correlations). The Pearson correlation, a number between -1 (anti-correlated) and 1
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(correlated), quantifies the similarities between the shapes of two curves. The problem

with a cross-correlation comparison is that the two series could be quite steady, with

small variations on top of a large baseline, and the cross correlation could return a

value of almost zero, even though the baselines are identical. This is because the cross

correlation focuses only on the variations, which could be a minor part of the signal.

With the solar wind speed, the baseline can sometimes be quite large, compared to

the variations. A root-mean-squared (Root Mean Squared (RMS)) difference can also

be used to quantify the differences between two series. For an RMS, if baselines are

similar, even though the (small) variations are different, the result will be close to

0. A normalized root-mean-squared difference divides the RMS by the mean value

of one of the series, so that one can judge the relative difference between the series.

For example, an Normalized Root Mean Squared (NRMS) of 0 still implies perfect

agreement, but an NRMS of 0.8 (which is the value calculated for the two speeds in

Figure 3.1) implies that one series is different from the other by an offset of 80%. The

mathematical expression is:

NRMS =

√
(u− v)2

u2
(3.1)

where u and v are two different series and the symbol u represents the mean of the

series u.

It was often found that the lag between consecutive solar rotations is not exactly

27 days. Indeed, this is often the case. The optimum lag could vary between ap-

proximately 22 and 32 days ago. Table 3.1 shows that when the lag was forced to

exactly 27 days, the correlation and NRMS are relatively poor. However, when the

lag was allowed to adjust to optimize the correlation or the NRMS, these values were

dramatically improved. The correlation and NRMS were calculated for 6,000 5-day

periods of solar wind speed during 1995-2011.
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Example of a bad correlation between two solar rotations
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Figure 3.1:
Example of the solar wind speed during two rotations that correspond to
a bad correlation.

Table 3.1:
The mean correlation and NRMS between approximately 6,000 consecutive
solar rotations with an absolute 27-day lag and with allowing the lag to
be adjusted until an optimum is found.

Condition Correlation NRMS
27-day 0.22 0.19

27±5 day 0.89 0.09

The general idea for forecasting the solar wind speed i hours into the future would

be to use the data from one solar rotation ago (OSRA), or 27 days plus an optimum

lag ago (denoted tOSRA = tnow − 27 days + lag). This optimum lag could be found

using the last, for example, 3 days of solar wind data, compared to the solar wind

speed approximately 27 to 30 days ago. The expectation was that using the lag

tOSRA, the predictions of the solar wind speed would improve. Instead, the opposite

was found. Using the lag of exactly 27 days (t27 = tnow − 27 days) produced the

best results. Figure 3.2 illustrates this. The red lines show the correlation (left) and

NRMS (right) between the 3-day period just before the current time and the period

0-3 days before tOSRA days ago, where the lag was allowed to vary to optimize the
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result up to the value on the X-axis. For example, at an x-axis value of 1 day, the lag

was allowed to shift to any value between ±1 day (for a total shift of between 26-28

days). For a value of 4 days, the lag was allowed to shift to any value between ±4

days (for a total shift of between 23-31 days). With the knowledge that the lag is not

exactly 27 days, but a bit more or less than this value, the red lines show the expected

behaviour: as the window size of comparison is opened more and more, the correlation

and NRMS improve. The values of the red lines at the 0 and 5-day marks are shown

in Table 3.1. The blue lines are the comparisons between the subsequent three days,

using the optimized lag determined for the past three days. At lag=0, the red and

blue lines have the same values, since t27 was used for all times compared. When

the lag was allowed to increase, the comparisons for the subsequent days become

worse. This means that, statistically, the optimum lag for the last three days is not

the optimum lag for the next three days. The optimized lag changes rapidly, which

makes prediction of the solar wind speed using the previous solar rotation extremely

difficult.
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Figure 3.2:
Dropoff in the correlation (left) and the NRMS (right) of the predictions.
With a correlation, values close to 1 are better, while with an NRMS,
values close to 0 are best.
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This is the main issue that the PDF model has to face. It implies that if the

optimum lag can not be predicted, then the method can not use the past solar rotation

in an optimized way for the prediction of the following five days. At this time, it is

unknown how to predict the optimum lag. Currently, as described below, the lag is

calculated by using a temporally weighted NRMS comparison, where the current time

is weighted the strongest and the data from three days ago is weighted the least. This

allows the delay to be optimized for the time now, instead of an average of the last

three days. Attempting to determine this lag will be the focus of future research and

should greatly improve the forecast ability of this type of model. With the current

PDF model, there is a greater reliance on the PDFs based on the current solar wind

speed and trend.

Construction of the PDFs

The first set of PDFs are simply the distribution of speeds each hour for the next

120 hours, given the speed now and the slope of the 12 preceding hours. For example,

if the current solar wind speed is 450±10 km/s and if the mean of the speed of the 12

past hours is greater than the speed now (meaning that the speeds are decreasing),

then the distribution of speeds for 1, 10, and 24 hours after the current time is given

by the left plot in Figure 3.3. The right plot shows the same thing, but for increasing

solar wind speed. The most important thing to notice about the progression of PDFs

is that the peak decreases in intensity and that the width of the distribution increases

with time. This means that, as the forecast horizon becomes longer, there is a larger

number of speeds that could happen and that the percentage of likeliness that the

most probable speed will happen decreases. Furthermore, the peak of the PDFs in

the left plot move towards slower speeds. This is consistent with the fact that the

speed is decreasing. In the right plot, the peak in the PDFs also decrease in speed,

but the tails at high solar wind speeds become larger, which shows that there is a
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population of speeds that can be significantly larger than the current 450 km/s speed.

These PDFs can be compared to a PDF of all of the solar wind speeds over the entire

model time period, shown in Figure 3.4 (the analysis includes the Coronal Mass

Ejections (CMEs) that occurred during the time period). While these plots are on

different scales, it can be seen that the global solar wind distribution peaks at about

9.5%, while the 24-hour PDF peaks at approximately 20% for the decreasing-speed

case (left plot) and 15% for the increasing-speed case (right plot). This indicates that

the 24-hour PDF is still more useful for predictions than simply using a PDF of all

of the solar wind.

PDFs of speeds in 1, 10, and 24 hours
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Figure 3.3:
Examples of three PDFs (1, 10 and 24 hours from the current time) from
P1 based on the current speed being 450 km/s and the speed decreasing
(left) and increasing (right) over the last 12 hours.
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Solar Wind Distribution
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Figure 3.4:
The probability distribution function of the solar wind speed over 1995-
2011 from 260-800 km/s, with the median and most probable values in-
dicated.

The PDFs were created for bins from 260-800 km/s with bin sizes of 20 km/s

(i.e., bin center ±10km/s). The prediction horizon stretches from one to 120 hours,

and the data is separated into increasing or decreasing solar wind speeds. This set of

PDFs will be called P1. Figure 3.5 gives examples of predictions made using only the

P1 PDFs, given the current solar wind speed (Time=0) and the direction of the slope

of the solar wind speed over the previous 12 hours. The top two plots and the left plot

in the middle row show examples in which the solar wind speed was decreasing, while

the right plot in the middle row and the bottom plots show times in which the speed

was increasing. The majority of the time, the predicted speed is within the red curves,

which indicate the 10% and 90% levels of the PDF. The solar wind-decreasing cases

appear to be better predicted than the solar wind-increasing cases, which is to be

expected, given that the solar wind-decreasing cases have narrower and taller PDFs .
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PDF Predictions - Example 1
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Figure 3.5:
Six examples of solar wind speed predictions out to 120 hours using the
P1 PDFs. In these cases, the actual solar wind data is shown as black
stars. The predictions are indicated by the colored lines, with the most
probable and median values indicated by the purple and dark blue lines.
The light blue lines indicate the 25th and 75th percentiles, while the red
lines indicate the 10th and 90th percentiles.
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These plots illustrate one of the advantages of using PDFs to determine the

predictions–a range (or uncertainties) of the predictions can be determined. Fur-

thermore, an ensemble of different solar wind-speed prediction scenarios could be

generated to allow for ensemble forecasting of the near-Earth space environment. Us-

ing either of these allows the forecaster to have more information about the prediction

than simply the value and the past performance.

From the P1 PDFs, the median solar wind speed (50% of the speeds are be-

low/above this speed) and the most probable speed (speed that corresponds to the

peak in the PDF, which is typically a bit lower than the median speed), as demon-

strated in Figure 3.4, can be determined. The median speed (M1) and the most

probable speed (VP1), as determined by the set of PDFs P1, can be used to generate

a typical single-value predictive model of the solar wind speed.

The second set of PDFs will be called P2. They are based on the 27-day periodicity

of the solar wind speed. For each hour of solar wind data from 1995-2011, the optimum

lag was found to the following solar rotation. An NRMS comparison with the previous

five days was used to determine the optimum lag. The solar wind speed at tOSRA

was then noted. PDFs from 260-800 km/s with bin sizes of 20 km/s (i.e., bin center

±10km/s) were created. The change of speed was not included in this case, nor were

there predictions beyond the value at the optimum lag time. Therefore there are

significantly fewer PDFs in this set. As with PDF P1, the median speeds (M2) and

the most probable speeds (VP2) were determined from PDFs in P2.

To summarize, if a prediction of the solar wind speed in i hours is desired, two

PDFs are available. P1 gives directly the distribution of speeds in i hours, given

the current speed and the trend in speed. In order to use P2, a lag needs to be

determined from “exactly” one solar rotation ago, or approximately 27 days - i hours

ago. Mathematically, this can be thought of as tOSRA,i = tnow − 27 days + lag + i

hours. The solar wind speed at tOSRA,i determines which PDF P2 should be used to
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predict the solar wind speed in i hours from now. A slightly different set of PDFs

(P227) can be created simply based on a 27-day delay, instead of finding the optimized

delay. This time can be referred to mathematically as: t27,i = tnow − 27 days + i

hours.

Construction of the pre-models

We introduce the following notations:

• vpred,i: the speed to be predicted in i hours from the current time;

• vpdf,i: the speed determined by one of the PDFs for i hours from the current

time (or, more specifically, vP1,i and vP2,i);

• vOSRA,i: the actual speed one solar rotation ago (optimized), plus i hours; and

• v27,i: the actual speed 27 days ago, plus i hours.

An important point is that vOSRA,i and v27,i are actual solar wind speeds and are not

derived from PDFs, with the difference being the use of an optimized lag (vOSRA,i)

or an exact lag of 27 days (v27,i).

A simple way to take into account the two speeds vpdf,i (vP1,i or vP2,i) and vOSRA,i

(or v27,i) in the model is to use the expression:

vpred,i = a× vpdf,i + b× vOSRA,i (3.2)

where a and b are parameters that can varied (with a + b = 1) to optimize the

prediction ability. This model would select a speed from a PDF and an actual speed

from approximately 27 days ago in an optimized way.

To summarize, there are four different decisions that can be made to build the

model:
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1. whether the PDF that is used is based on the current solar wind speed (P1) or

the solar wind speed approximately 27 days ago (P2);

2. whether the median or most probable value from the PDFs is used;

3. whether the solar wind speed from the previous rotation is determined using an

optimized lag or not; and

4. the value of a and b in Equation 3.2, which determines the reliance on either the

predicted speed based on the PDFs (a = 1) or the actual speed approximately

27 days ago (b = 1).

For example, to predict vpred,i, the following parameters could be used:

1. vPDF,i is vP1,i;

2. the median of vP1,i is used;

3. vOSRA,i uses an optimized lag; and

4. a = 0.7 and b = 0.3.

The Median 1 model is the pre-model that uses the median speed determined by P1;

the VP 1 model uses the most probable speed determined by P1; the Median 2 model

uses the median speed determined by P2; and the VP 2 model uses the most probable

speed determined by P2.

Finally, two simple models are presented for comparison: the Persistence model,

which predicts that the solar wind speed will be constant over the next five days at

the current value; and the OSRA model, which simply predicts the solar wind speed

for the next five days will be exactly as it was 27-22 days ago. The OSRA model is

equivalent to b = 1 and not using an optimized lag above.
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3.1.2 Results and discussion

Results of the Different Pre-models

For each of the pre-models and models, the difference was calculated between

the actual speed and predicted speed as a function of the prediction horizon (i) and

model: ∆V 2
t,i =

(vpred,i−vdata,i)2
v2data,i

, where vdata,i was the real solar wind speed and vpred,i

was the prediction, both of which were i hours from the “current” time. The ∆Vt,i

was calculated for every hour between the current time and 120 hours into the future

(i.e., i=1 to 120), and was done for 6,000 different times between 1995 and 2010 (each

time moving one day forward, t=1995 to 2010). The square root of the mean over t

(the 6000 times) of ∆Vt,i was calculated, to get:

NRMSmodel,i =

√
∆Vt,i (3.3)

This is not exactly the same expression as the NRMS as described by Equation 3.1,

since the normalization is done before the mean as opposed to after the mean.

As described above, the model can be either one of the pre-models (Median 1, VP

1, Median 2, VP 2), the Persistence model, or the OSRA model. The pre-models can

be combined with the solar wind speed from one solar rotation ago through the use

of the parameters a and b, which can vary between 0 and 1 (with a + b = 1). When

combining the pre-models with the solar wind speed from the last solar rotation, an

optimum lag can be included or a lag of exactly 27 days can be used. When a=1 and

b=0, the prediction is based solely on the PDFs – either the PDFs given the solar

wind speed now and the trend (P1) or the PDFs based on the solar wind one solar

rotation ago (P2). When a=0 and b=1, the prediction is based solely on the actual

solar wind speed from (approximately, depending on the method) 27 days ago. Note

that if no optimized lag is used and b = 1, the OSRA model is derived. When the

values of a and b are between 0 and 1, there is a blending of the techniques.
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Figures 3.6 and 3.7 show the NRMSmodel,i for many different models with different

a and b values. The NRMSmodel,i for the persistence model is also indicated as a dotted

line on each plot. On the left side are the models with an optimum lag included in

vOSRA,i, and on the right side are the models without an optimum lag included in

v27,i.
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Figure 3.6:
The different pre-models based on a linear combination of the P1 PDFs
and the solar wind speed one solar rotation ago compared to the Persis-
tence model.
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The Median 2 Model for different a and b VS the Persistence Model - Optimum lag
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Figure 3.7:
The different premodels based on a linear combination of the P2 PDFs and
the solar wind speed one solar rotation ago compared to the Persistence
model.

The first observation that can be made is that all of the models tend to have

a lower NRMSmodel,i value than the Persistence model after approximately one to

three days. The cases on the right (exactly 27-day lag) have models (a close to 0, or

black and blue lines) that have quite poor results for low prediction horizons. This is

because the lag might often be far from a perfect 27 days, such that taking the value

exactly 27 days ago is often quite a poor choice. The models that use an optimized lag
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tend to perform better for shorter prediction horizons, but the models with an exactly

27-day lag tend to perform better for longer prediction horizons, as evidenced by the

black line being lower in the right plots than in the left plots. This is because the

optimized lag calculation is good for the present time, but rapidly becomes useless,

as described above and in Figure 3.2.

Additionally, independent of the lag or which speed is chosen (median vs. most

probable), neither the prediction based on the PDFs alone (a=1) nor the prediction

based on the previous solar rotation alone (b=1) is optimum. It is a linear combi-

nation of the two that provides the best performance. Further, the optimum linear

combination changes with time, such that low prediction horizons tend to be pre-

dicted best with a closer to 1, while later times tend to be predicted best with a and

b close to 0.5.

A subtle feature to note is that the Median values are better than the most

probable values over the entire range of prediction horizons. There is almost always

a consistent bias between the most probable value and the median value, with the

median being larger, as indicated by Figure 3.4.

Finally, none of the models give better predictions than the Persistence model for

the first seven hours. The models that are almost as good as the Persistence model

are the Median 1 and the VP 1 models (with an optimized lag) with a close to one.

All these results mean that the PDF model has to be a combination of the different

pre-models and the Persistence model in order to have the best performance.

The Completed PDF model

As described above, the PDF model has to be a combination of the different pre-

models and the Persistence model. More precisely, the PDF model predicts the speed

in i hours using the pre-models and the Persistence model as follows:

• for 1 ≤ i ≤ 7 hours, Persistence model;
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• for i = 8 hours, Median 1 with an optimized lag and a = 0.9;

• for 9 ≤ i ≤ 12, Median 1 with an optimized lag and a = 0.8;

• for 13 ≤ i ≤ 17, Median 1 with 27-day lag and a = 0.9;

• for 18 ≤ i ≤ 32, Median 1 with 27-day lag and a = 0.8;

• for 33 ≤ i ≤ 51, Median 1 with 27-day lag and a = 0.7;

• for 52 ≤ i ≤ 89, Median 1 with 27-day lag and a = 0.6;

• for 90 ≤ i ≤ 120, Median 1 with 27-day lag and a = 0.5.

Using this formulation, the NRMSmodel,i of the prediction is minimized. Figure 3.8

illustrates the NRMSmodel,i of the final PDF model using this combination of the

pre-models and the Persistence model, as well as comparing the PDF model to the

Persistence model and the OSRA model. After seven hours, the PDF model gives

better predictions than the Persistence model. Additionally, the difference between

the NRMS of the PDF model and the Persistence model increases as the time goes by.

After two days, the PDF model gives considerably better predictions, and after five

days the NRMSmodel,i is equal to 0.19 for the PDF model and is equal to 0.30 for the

Persistence model. Further, the PDF model is better than the OSRA model all of the

time. The Persistence and PDF models are both better than the OSRA model until

about 45 hours, at which time the OSRA model becomes better than the Persistence

model. The OSRA and PDF models converge to be within approximately 0.03 of

each other by the 120-hour prediction horizon, with the PDF model being slightly

better.
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The PDF Model compared to three other models
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Figure 3.8:
A Normalized root-mean-squared comparison between the actual solar
wind speed and the PDF model, the Persistence model, the OSRA model,
and a constant solar wind value of 400 km/s over the 16 years of this study.

Figure 3.9 shows that the same trend is true for the cross correlation also. The

correlation for the PDF model is higher than for the Persistence model after about

twelve hours all the way out to 120 hours. The study by Arge and Pizzo (2000)

showed that the correlation for the WSA model for a five-day prediction horizon was

about 0.4, while Figure 3.9 shows that the PDF model has a correlation of about 0.52

for the same prediction horizon, which is quite comparable.

93



0 20 40 60 80 100 120
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

C
o

rr
e

la
ti

o
n

PDF Model

Persistence Model

Time (hours)

C
o
rr

e
la

ti
o
n

Figure 3.9:
Correlation between the PDF model and the observations (blue) and be-
tween the Persistence model and the observations (black dash line) over
the 16 years of this study.

One fact that might be surprising in this study is that the set of PDFs P2 (i.e.,

PDFs based on the solar wind approximately 27 days ago) are not used in the final

model. The main reason for this is illustrated in Figure 3.2: the determination of

the lag is not optimal and is quite difficult to determine accurately. This means

that we do not know exactly where to look back 27 days ago to find the time that

will best match the solar wind speed in a few days from current time. Therefore,

the speed that is used to determine which P2 PDF is not optimal. In other words,

the inaccuracy in the lag results in using the wrong P2. If the time delay could be

determined accurately, then the technique could go back in time 27 days plus the

optimum lag, then move forward i hours and determine the right PDF P2 to use,

considering the speed at that time. This bias, not present in the prediction made by

the set of P1 PDFs, makes the predictions by P2 worse than the ones by P1.

Two examples of predictions using the PDF model are provided in Figure 3.10.

These two examples were chosen to show that even during a strongly increasing (left)
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or decreasing (right) solar wind speed, the predictions follow the data quite well. In

the first case (left), the solar wind speed increases from about 260 km/s to 450 km/s

over the five days. The PDF model roughly captures the increase, although not the

exact details of the smaller-scale variability in the speed. In the second case (right),

the predictions are very close to the data for the two first days. However, important

differences appear around three days and then decrease around five days. The solar

wind speed observed by ACE has been averaged using a running average over 11

hours to reflect the trend of the variation and filter the high frequency variability of

the solar wind speed.

First Example of predictions with the PDF Model
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Second Example of predictions with the PDF Model
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Figure 3.10:
Two examples of solar wind predictions based on the PDF model with
the prediction in blue and the data in black.

Predicting the solar wind speed during solar maximum is more challenging than

during solar minimum. Figure 3.11 shows the variation of the normalized difference

in speeds between the PDF model and the measurements as a function of time. As

illustrated in this figure, the error in the 24-hour ahead prediction was higher during

the solar maximum in 2002 than it was during the two last solar minima, in 1996 and

2008.
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The PDF Model from 1995 to 2012 - 24 hours ahead predictions
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Figure 3.11: The RMS over the two last solar cycles for 24 hours ahead predictions.

The fact that the errors in the predictions made by the PDF model are higher

during a solar maximum may be a consequence of two different phenomena: (1) as de-

tailed in Owens et al. (2013), no clear correlation in speed between two solar rotations

was found during solar maximum, whereas during solar minimum, the variability of

the solar wind speed is much more periodic. This implies that using data from one

solar rotation ago during solar maximum may not be the best idea. (2) During solar

maximum, there are more impulsive events, which are not really accounted for in the

PDF model. These impulsive events, such as CMEs, make it so the current speed

(preceding the CME) is not a good indicator of the future speed (during the CME).

In addition, unless two CMEs occured 27 days apart, the past solar rotation would

not be a good indicator of the solar wind speed. This fact shows a weakness in the

PDF model: it does not have the ability to predict impulsive events, which is an

active area of research.

Figure 3.12 illustrates the variability of the lag (calculated with a one day step)

over both a long (solar cycle) and a short (two solar rotations) time scales. There

is a great deal of variation in the lag, even on a day-to-day basis. However, it is
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interesting to note that this variability increases at the solar maximum and decreases

at the solar minimum, making the predictions based on the current lag easier during

solar minimum (discussed below). Figure 3.13 quantifies this by showing the monthly

standard deviation of the lag as a function of time. The standard deviation is shown

to have a minimum in 2007-2008 and a maximum in 2000-2002.
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Figure 3.12:
The optimum lag between solar rotations over 11 years (left) and over
two solar rotations (right).
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Figure 3.13:
The dotted line shows the standard deviation of the lag during each
month. The solid line shows a 13 month running average of the standard
deviation, so the trend can be determined.

Because the variability of the lag during a solar minimum seems to be less than

during a solar maximum (Figure 3.13), the predictions based on the previous solar

rotation should be more relevant during a quiet period of solar activity. This is

verified in Figure 3.14 where a and b were calculated for a period corresponding to

a solar maximum and a period corresponding to a solar minimum (only a is plotted,

and b is simply 1 − a). Recall that a is the weight of the current solar wind speed,

while b is the weight of the last solar rotation. One can notice that in 2008, the

value of a is decreased for all prediction horizons (after seven hours since the seven

first hours correspond to the Persistence model), showing that using the last solar

rotation provides a more accurate solution. However, a is increased in 2002, reflecting

the high variability of the solar speed during such a period, and therefore predictions

that have to rely mostly on the predictions based on the current solar wind speed.
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Figure 3.14:
Coefficient a in the PDF model: during a solar maximum (blue) and
during a solar minimum (red). Coefficient b is equal to 1− a.

While it is impossible to estimate the optimum lag at this time, if the optimum

lag was able to be forecast, the predictions would dramatically improve. Figure

3.15 compares the NRMS of predictions that use an optimum lag to the NRMS of

predictions made by the OSRA model, with only a 27-day lag. The error is more

than four times lower with an optimum lag. Moreover, the corresponding NRMS is

much lower than any other model: the difference between the prediction and the data

is about 5%, which means that for a typical solar wind speed of 400 km/s, the error

would be around 20 km/s only. This shows how important finding an optimum lag

is, and points to a need to have studies explore how to determine this optimum lag.
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Figure 3.15:
The NRMS if the lag was optimum compared to the NRMS without any
lag.

One idea that is being explored for the next generation of the PDF model will be

to look at structures on the Sun, such as sunspots, and compare them to the same

structures one solar rotation ago. This will enable us to find the lag so that the two

sets of structures are superimposed on each other the best. This lag may be the one

to take into account for the predictions in three days, time for the solar wind to travel

from the Sun to the Earth.

Direct Comparison to the WSA model

The PDF model has been directly compared to the WSA model. The WSA

model has been run for two whole years, 2008 and 2011, to make one to five days

ahead predictions that have been compared to the same predictions made using the

PDF model.

Examples of predictions using the PDF and WSA models are shown in Figure 3.16.

They correspond to one to five days ahead predictions for June 10 - July 10, 2011.

Two main observations can be made. First, the one-day ahead predictions using the
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PDF model get the sudden increase in speeds around the 25th of June (even if they

underestimate the increase for the first two days), while the WSA model does not.

Then, both the PDF and WSA models miss the variability of the solar wind speed

under short time scales. The average structure of the speed is conserved but the high

frequency variability is lost.
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4 Day Ahead Prediction - 2011
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Figure 3.16:
Example of predictions made by the PDF and the WSA models for June
10 - July 10, 2011. The actual data is shown as a solid black line,
while predictions (one or two per day) by the PDF and WSA models
are plotted in red and blue, respectively. One - through five - day ahead
predictions are shown.
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The RMS difference between each model and the observations by the ACE satellite

were calculated. The results are presented in Table 3.2. The year of 2011 is right

between a solar minimum (2008) and a solar maximum (∼ 2013). Looking at the PDF

model column of this table, the RMS starts off small on the first day, then grows to

a maximum value on day 3, at which time it asymptotes. This is consistent with

Figure 3.8. Additionally, the Persistence model has a similar trend, but asymptotes

to a higher level, also consistent with Figure 3.8. However, the WSA model has RMS

errors that are approximately constant for all prediction horizons. These values are

close to the value that the PDF model asymptotes to, indicating that the PDF model

is most likely slightly better than the WSA for the first (approximately) two days,

then is quite similar to the WSA model. This is consistent with the study made by

MacNiece (2009), which showed that persistence is better than the WSA model for

the first two days of prediction. Table 3.2 also shows that for the last solar minimum

that occured in 2008, the PDF model performs better than the WSA model: the RMS

is less by about 15 km/s for every prediction horizon. These results are consistent

with the study by Owens et al. (2005), which found that the Root Mean Square

Error between the WSA model and the data is better at solar maximum than at solar

minimum.

Table 3.2:
The RMS between the PDF, WSA, and Persistence models and the obser-
vations by ACE for 2008 and 2011.

Prediction Horizons RMS PDF (km/s) RMS WSA (km/s) RMS Persistence (km/s)
2008 2011 2008 2011 2008 2011

1-day ahead 83 66 107 88 79 68
2-day ahead 93 83 105 84 119 100
3-day ahead 90 89 103 88 147 118
4-day ahead 88 88 105 91 163 128
5-day ahead 90 88 107 90 173 130
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3.1.3 Conclusion

From this study a few different conclusions can be drawn:

1. The solar wind speed is quite periodic, but the period is not always exactly

27 days; it changes on a day-to-day basis and can vary between approximately

±5 days of the mean 27-day period. This makes it quite difficult to predict

the next five days using data from the previous solar rotation. Indeed, using

an optimized lag is best for the first 12 hours of prediction; afterwards, using

a straight 27 days for the lag is best. Moreover, keeping the speed constantly

equal to the median speed of the solar wind, 400km/s, gives a constant NRMS

better than the NRMS calculated from the last solar rotation without any lag.

2. The solar wind speed typically changes quite slowly, such that using the current

solar wind speed is the optimum prediction for the first seven hours.

3. The current solar wind speed, as well as the trend in the solar wind speed

(speeding up or slowing down) allows creation of probability distribution func-

tions for the solar wind speed i hours into the future. The width of the PDF

increases as time goes on, while the peak in the PDF decreases. The PDFs

are narrower and taller than the distribution function of the solar wind in gen-

eral, which means that these PDFs are more useful for predictions, than just

assuming the solar wind distribution.

4. These PDFs can be used to generate ensemble prediction scenarios for the solar

wind speed or to assign an uncertainty on the prediction based solely on the

median speed.

5. Using a linear combination of the medians of the PDFs based on the current

solar wind speed and trend as well as the actual solar wind speed from ap-

proximately 27 days ago allows the best predictions. This linear combination is
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highly weighted towards using the current value of the solar wind for low pre-

diction horizons and using both roughly evenly for larger prediction horizons.

It is shown that this linear weighting can change over the solar cycle, with more

weighting on the previous rotation during solar minimum conditions.

6. The final PDF model performs equal to or better than the Persistence model for

all times up to a five-day prediction. The further out the prediction, the better

the PDF model does compared to the Persistence model. After five days, the

difference in the NRMS of 0.11 between the two models reflects an improvement

of the accuracy of the prediction of 40 km/s for a typical solar wind velocity

of 400 km/s. The model also performs better than simply taking data from 27

days ago, although after approximately three days, the differences between the

two levels off, with the PDF model then being slightly better than simply using

the data from 27 days ago.

7. The comparison of the PDF model to the WSA model predictions made for

2011 showed that the final PDF model performs better than the WSA model

for one-day ahead predictions. For longer prediction horizons, both models

perform about the same. For 2008, the last solar minimum, the PDF model

performs better than the WSA model for all prediction horizons, with a 15 km/s

difference in the accuracy of the predictions.

8. The predictions with the PDF model give better results during the last two

solar minima (in 1996 and 2008) than during the solar maximum in 2002.

9. If the lag between solar rotations was predicted more accurately, then it would

improve the predictions of the PDF model. The current errors vary from 10%

(predictions in one day) to 20% (predictions in 5 days), but with a perfect

knowledge of the lag, they could decrease to values around 5%. It is unclear

how to determine the perfect lag, though.
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The main flaw of the first version of the PDF model is that it is not able to predict

transitions from slow to high solar wind speed. The cause is that vpdf,i is based only on

the current speed and the slope in the twelve previous hours. This study showed that

statistically the majority of times when the slope of the solar wind speed is positive,

the speed starts to decrease after a few hours. What the PDF model misses is that

when the slope is above certain levels, the speed rises to a peak above 500 km/s and

is considered a high speed event. Therefore, when a shock reaches the Earth, the

PDF model does not predict the speed reaching above the high speed event cutoff of

500 km/s.

Consequently, the PDF model was improved to predict rapid increases in speed.

Since CMEs often happen randomly and are not often associated with a similar event

that occurred roughly twenty-seven days ago, the One Solar Rotation Ago (OSRA)

model should not be used for the prediction of such transitions. Indeed, even when

an event repeats over one rotation, this study showed that the time between the two

events is not exactly one solar rotation but that there is an unpredictable and highly

variable lag. Therefore, version 2 focuses on predictions using only PDFs, which

means that a = 1 and b = 0 in Equation 3.2.
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3.2 The Probability Distribution Function model (version 2)

3.2.1 Current models of solar wind speed peak predictions

The space weather forecasting community has a particular interest in the predic-

tion of transitions from slow to fast solar wind (Wright et al., 1995). A strong increase

in the speed leads to enhanced geomagnetic activity that affects the near-Earth space

environment. Such transitions can be associated with shocks or high speed streams,

which can be a consequence of a CME (MacNeice, 2009a).

Many models have been created and refined to predict the magnitude of the so-

lar wind speed increase and its arrival time at the Earth. The Interplanetary Shock

Propagation Model (ISPM) (Smith and Dryer , 1990) and the Shock Time of Arrival

(STOA) model (Dryer , 1974) estimate the propagation time of the shocks from the

Sun to the Earth and are based on type II meter wave burst data. The Hakamada-

Akasofu-Fry (HAF) kinematic solar wind model has the ability to predict the speed,

the solar wind density, and the IMF. Fry et al. (2001) compared the predictions of

shock arrival times made by HAF with the predictions made by the IPSM and the

STOA models for 36 events between 1997 and 1999. They defined the shock arrival

time as the time when the ram pressure rose above the background ram pressure by a

certain threshold. They calculated the contingency table for the 36 events and showed

that HAF (version 1) had comparable skills to the two shock models. Smith et al.

(2009) evaluated the skills of HAF (version 2) during the declining phase of Solar Cy-

cle 23 (2002 to 2006) for predictions of shock arrival times and compared them with

predictions during the ascending phase (1997 to 2000, Fry et al. (2003)) and the maxi-

mum of the solar cycle (2000 to 2002, McKenna-Lawlor et al. (2006)). They predicted

particular events and compared the shock arrival time and the strength (given by the

ratio of the maximum pressure and background pressure) of the predicted shocks to

the observed shock at 1 AU. Comparing the number of hits, misses, and false posi-
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tives, they concluded that the predictions were a bit improved for the ascending and

maximum conditions, as opposed to the solar minimum conditions. McKenna-Lawlor

et al. (2006) compared predictions of 173 shocks during the maximum phase of So-

lar Cycle 23 by STOA, ISPM, and the HAF model (version 2). The accuracy of a

model can be defined as the sum of hits (i.e., the number of times the model correctly

identified shocks) and correct nulls (i.e., the number of times the model correctly

identified non-shock time periods) divided by the total number of predictions, times

100. In that study, the STOA, ISPM, and HAF v-2 models received scores of 54%,

60%, and 52%, respectively, for a hit window (size of the window in which the event

was allowed to be observed in) of ±24 hours. The number of events classed as hits

decreased when the window size was ±12 hours, so the accuracies were lower: 44%,

54%, and 42%, respectively. For a window size larger than ±24 hours, the results

were not relevant, because the shock might not have been related to the specific solar

event. However, the accuracy is not the best measure to assess the ability of a model

in predicting rare events: a high accuracy could mainly be due to a large number of

correct nulls, which is not crucial for forecasters, who are mostly interested in hits.

The threat score, defined as the number of hits divided by the sum of hits, misses

(i.e., the model did not predict an event that actually occurred), and false positives

(i.e., the model predicted an event that actually did not occur), is a more suitable

measure. Similar to the accuracy, it does not take into account the number of correct

nulls (Buizza, 2001).

Vandegriff et al. (2005) introduced a model that predicted shock arrival times.

The method relied on the energetic particle intensity data. It was able to predict the

shocks 24 hours in advance with an accuracy of 8.9 hours, and 12 hours in advance

with an accuracy of 4.6 hours.

Kim et al. (2010) developed a model to predict the occurrence of geomagnetic

storms and their strengths, which were represented by the Dst index. The prediction
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was based on the CME parameters (southward orientation of the magnetic field in

the CME source region, asymmetry of the CME shape, and CME source location).

They found that the predictions of the Dst index were far from the observed index,

but the model showed good skill at predicting when a geoeffective event may occur,

based on when the Dst index calculated by the model became less than -50 nT.

Finally, the WSA model was tested for the predictions of high-speed enhance-

ments. These correspond to abrupt transitions from slow to fast solar wind. MacNe-

ice (2009a) presented an algorithm to characterize this type of transition and tested

the performance of the WSA model in predicting these events. He answered the

question: “[I]f the WSA model predicts or does not predict a high speed event in

the next 24 hours, what is the probability that a high speed event will or will not

occur?” (MacNeice, 2009a) and found that 29% of the positive forecasts and 89%

of the negative forecasts were accurate, showing an improvement compared with the

study by Owens et al. (2005). MacNeice (2009b) provided a similar study but used

other sources of magnetograms. Averaging over the three sources of magnetograms,

he found that a positive/negative forecast was correct 17%/94% of the time.

Forecasters need to be able to understand the level of confidence they can place in

the predictions. A single value for the prediction of the magnitude of the speed and

the time when the increase occurs needs to be associated with an estimation of the

error made on the prediction. Ensemble forecasts can quantify this uncertainty. Few

studies have been published regarding this issue. The WSA model, coupled to the

ENLIL model, has been used to start to perform ensemble modeling of the background

solar wind at the Community Coordinated Modeling Center since 2009 by taking the

average of the two models’ output for each of the solar wind parameters (Taktakishvili

et al., 2009). Emmons et al. (2013) coupled the WSA, ENLIL and CONED models to

create ensemble forecasts for 15 CMEs. They compared the predicted distributions

of the propagation time and the Kp index (obtained from 100 sets of CME cone
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parameters derived from the CONED model) with the observations and found that

out of the 15 events, 5 (33%) had propagation times that were within the ensemble

average plus or minus one standard deviation, and 8 (53%) had propagation times

within the range of the ensemble, while 10 (67%) had maximum Kps that were within

the range of the ensemble. Mays et al. (2015) found that the arrival time was within

the range of the ensemble for 8 out of 17 events (47%). They also showed that

the accuracy of the predictions depends on the CME input parameters and that the

ensembles do not sample a wide enough spread in these parameters. Cash et al.

(2015) used an ensemble approach to study the effect of the input parameters. They

considered the initial speed, the angular width, the direction, and the ambient solar

wind background and put in evidence their influence on the predicted arrival time of

a CME that occured in July 2012. Goddard’s Space Weather Laboratory received

support in 2012 to implement such ensemble forecasts.

This study presents an improvement of the PDF model (Bussy-Virat and Ridley ,

2014) (Section 3.1) for predictions of transitions from slow to fast solar wind. The

older model did not have this ability as it was based on all solar wind data over 15

years rather than focused on only solar wind speed increases. The model now is able

to predict these transitions when there is an increase in the slope of the solar wind

speed and performs better when transitions are associated with strong variations in

the magnitude of the IMF or the density. This includes predictions of shocks. The way

that this study characterized such transitions was very similar to the one presented in

Owens et al. (2005) and MacNeice (2009a). The model presented here predicts several

features of the peak in speed, including the amplitude of the peak as well as the time

when the maximum occurs. It also provides ensembles of predictions of each peak,

which enables forecasters to have an estimation of the uncertainty in the prediction,

or the possible spread in the characteristics. We compare the predictions with the

observations made by the Advanced Composition Explorer satellite and compare the
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accuracy of the model with the previous studies that predicted such transitions, in

particular those made by the WSA model (MacNeice, 2009a,b; Owens et al., 2005,

2008; Emmons et al., 2013).

3.2.2 Methodology

3.2.2.1 Identification of high speed events

An algorithm was created to identify transitions from slow to fast solar wind,

named high speed enhancements (or high speed events). It is similar to the one

presented in MacNeice (2009a) because it detects any sharp transition above a certain

speed gradient. Figure 3.17 (left) shows an example of a single peak and key times

within the peak for reference. The peak-finding algorithm can be summarized as:

1. The solar wind speed is averaged with an 11-hour running average to filter out

the high-frequency variability of the solar wind.

2. The algorithm flags any increase in speed by more than 50 km/s in less than

24 hours, noting the time in which this occurs as tbeginning.

3. The end of the peak is identified as the time when the speed decreased by 50

km/s in less than 36 hours and is noted as tend. This less sharp gradient is a

consequence of a study (not shown here) that showed that the slope is typically

less sharp in the descending phase of the peak than in its ascending phase.

4. The time of the maximum of the peak is noted as tpeak.
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Example of the detection of a peak in the speed
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Figure 3.17:
Example of the detection of a peak in April 2004 using a minimum
gradient of 70 km/s in 24 hours (left); example of the detection of peaks
in March-June of 2006 adding a threshold at 500 km/s for the maximum
value of the peaks (right).

The algorithm allows for any modification in the choice of these gradients (50

km/s in 24 hours can be changed to 70 km/s in 30 hours, for example) as well as

setting a threshold on the minimum value of the maximum speed. Examples of peaks

found by the automated algorithm are shown on Figure 3.17 (right). Vertical red

lines are drawn when peaks are found by the algorithm using a minimum gradient

of 50 km/s in 24 hours and adding a threshold at 500 km/s on the minimum value

of the peak. We can notice that the algorithm finds every peak in this three-month

period.

For this study, peaks with gradients larger than 50 km/s in 24 hours were inves-

tigated.

3.2.2.2 New Probability Distribution Function model

Forecasters need to know when the high speed events will occur as well as the

magnitudes. In this regard, several approaches were investigated. The first idea was

to relate the amplitude of the peak (defined as the difference between the minimum
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and maximum speed in the peak) to the maximum slope in the ascending phase of

the peak (noted smax). Figure 3.18 shows the distribution of the amplitude of 761

peaks detected by the algorithm as a function of the maximum slope. The slope is

calculated with a step of two hours:

slopei =
vi+1 − vi−1

2
(3.4)

smax = max([slope0, slope1, slope2, ..., slopen]) (3.5)

where slopei is the slope i hours after the beginning of the peak (in km/s/hour), n is

the number of hours until the maximum of the peak, and vi±1 are the speeds i ± 1

hours after the beginning of the peak.
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Figure 3.18: Amplitude of a peak in function of the maximum slope.

The correlation between the maximum slope and the amplitude was 0.71 with

a mean absolute error between the data and a linear fit of 55 km/s. Distribution

functions of the amplitude were made for each bin representing a range of slopes

of 2 km/s/hour. Note that the minimum value on the x-axis of Figure 3.18 is 4.77
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km/s/hour: every peak found by the algorithm between 1995 and 2012 had a maxi-

mum slope greater than 4.77 km/s/hour. The PDF model uses these distributions for

slopes below 10 km/s/hour. Although the exact value of 10 km/s/hour is arbitrary,

for slopes above 10 km/s/hour, events get more rare so not enough data can be used

to make such accurate distributions. Therefore, the PDF model uses Gaussian distri-

butions with a mean value equal to the amplitude given by the linear fit (blue curve

in Figure 3.18) and a full width at half maximum of 110 km/s. Figure 3.19 shows

the distribution of the peak amplitudes given a maximum slope of 6 km/s/hour (left)

and 20 km/s/hour (right). From these distributions, the median and the deviations

from this median (10%, 25%, 75%, and 90%) were determined. In the first case, the

distribution of the predicted amplitudes has a median at 88 km/s, and in the second

case the median is at 275 km/s. This higher value can be explained by the fact that

the maximum slope detected in the ascending phase is almost four times higher than

in the first case. When the model detects that a peak is occurring, the maximum

slope is determined and the predicted peak amplitude (noted ∆v) of the solar wind

speed is derived, given Figure 3.18 and the distribution functions described above, to

specify the uncertainty on the predicted amplitude. This method is used to determine

the speed of the peak (vpeak) and the uncertainty in the speed of the peak.
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Figure 3.19:
Example of a PDF (left) and a Gaussian (right) distribution of the am-
plitude of the peak for a maximum slope of 6 km/s/hour (left) and 20
km/s/hour (right): the red dash lines represent the 10%, 25%, 75%, and
90% quartiles, the blue dash line represents the median.

The time of the peak is important and can be deduced in two different ways. The

first relies on the solar wind speed continuing to increase at the maximum measured

rate to the peak amplitude, as described above. The time (further noted t75%, the

meaning of which will be described below) can thus be derived by dividing the ampli-

tude by the slope smax: t75% = tcurrent+(vpeak−vcurrent)/smax. However, it was noted

that this time occurs earlier than the actual time of the peak. The speed typically

increases quickly, then the gradient decreases significantly, resulting in a peak that

lasts longer than expected if only the maximum slope is considered. Therefore, a

second method was explored to find the actual time of the peak.

This method relies on the PDF of the time it takes for the speed to increase from

the beginning of the peak (at tbeginning) to the maximum of the peak (at tpeak). A

study not presented here showed that although there is a relationship between the

amplitude of the peak and the maximum slope (Figure 3.18), there is not a clear

relationship between tpeak − tbeginning and the maximum slope. The distribution of

times for the 761 peaks is shown in Figure 3.20. It is sharp enough and the most
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probable value is high enough for the prediction based on this method to be valuable.

The median of the distribution is 23 hours, meaning that 50% of the time, the speed

will take less than 23 hours to increase from the speed at tbeginning to the speed at

tpeak. Therefore, the predicted time from the beginning to the maximum of the peak

(noted ∆t) is specified as 23 hours, with an uncertainty distribution as specified in

Figure 3.20. This method is used to determine the time of the peak (tpeak) and the

uncertainty in the time of the peak.
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Figure 3.20: Histogram of the time from the beginning of the peak to its maximum.

Combining the two methods described above and in Figure 3.21, vpeak (= vcurrent+

∆v) occurs at tpeak (= tcurrent + ∆t). When the rapid rise ends (at t75%), the peak is

assumed to have reached 75% of its maximum speed: v75% = vpeak − 0.25 ∗ (vpeak −

vcurrent). Two polynomial expressions of order 3 link the speeds vcurrent to v75% (at

t75%) and v75% to vpeak (at tpeak), so that the slopes before and after t75% are continuous

and the slope at tpeak is 0, which is the definition of a maximum. Specifically, the

following algorithm is used:

1. The maximum slope smax is calculated in the ascending phase (from vdata,min to
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vcurrent). Using Figure 3.18 and the distribution functions described in the first

method, the PDF model derives ∆v to find vpeak: vpeak = vdata,min + ∆v.

2. The time and speed when the rapid rise ends are calculated from vpeak and smax:

t75% = tcurrent+(vpeak−vcurrent)/smax and v75% = vpeak−0.25∗ (vpeak−vcurrent).

The first polynomial expression calculates the speeds that occur between tcurrent

and t75% (blue dashed line in Figure 3.21).

3. The time tpeak when vpeak is reached is derived from tbeginning (increase by 50

km/s in less than 24 hours) and the PDF of Figure 3.20. The second polynomial

expression calculates the speeds that occur between t75% and tpeak (red dashed

line in Figure 3.21).

4. Once the ascending phase has been predicted, the model uses the methodol-

ogy described in Bussy-Virat and Ridley (2014) (Section 3.1) to predict the

descending phase of the peak (black dashed line).
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Figure 3.21:
Calculation of the speeds from the current time to the time the speed is
predicted to reach its maximum value.

Examples of predictions made by the model are shown in Figure 3.22. For example,

in the top left graph the actual speed (black line) increased from 440 km/s to 600 km/s

in less than 15 hours. The peak was predicted (blue line) to occur in 24 hours from

the start time with an amplitude of 110 km/s (above the current solar wind speed),

which corresponded to an underestimation of the peak speed. The descending phase

of the actual speed followed the predicted descending phase very closely. Moreover,

the actual speed was in between the 25% and 75% quartiles 108 hours out of the 120

hour prediction horizon and in between the 10% and 90% quartiles 115 hours out

of the 120 hours. The other examples illustrate the variety of results that the PDF

model predicts, as well as the actual solar wind speed data.
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Figure 3.22:
Examples of predictions with the PDF model version 2. The black line
is the actual speed; the blue line is the median of the PDFs; the light
blue lines are the 25% and 75% quartiles (interquartile range); the red
lines are the 10% and 90% quartiles.
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3.2.2.3 Comparison with peaks in the Interplanetary Magnetic Field and

the density

A sudden large increase in the speed could be due to either a high speed stream or

could be the result of a shock in front of a CME that reaches the Earth environment.

In such events, the IMF magnitude and density should also increase before the velocity

peaks, since speed increases can act as a “snow plow” on the density and IMF. The

same algorithm that characterized a peak in the speed was also applied to find peaks

in the IMF magnitude and the density. The thresholds on the IMF and density

gradients were 4 nT/day and 8 cm−3/day, respectively. A threshold was added on

the minimum value for the peaks in IMF and density: 6 nT and 10 cm−3, respectively

(i.e., any peak under 6 nT and 10 cm−3 were not considered). Once peaks in the solar

wind density and IMF magnitude were found, they were compared with peaks in the

solar wind speed.

Figure 3.23 (left) shows the histogram of the lags between the maxima of a peak

in the IMF magnitude and the maxima in the speed, with a bin size of 3 hours. The

maximum in the speed typically occurs 10-30 hours after the maximum of the peak

in IMF magnitude. These results imply that if the algorithm finds a peak in the IMF

magnitude then it can be expected that it will find a peak in the speed several hours

after. Specifically, the most probable time delay is 11 hours, while the median delay

is 20 hours. A similar analysis shows that peaks in density occur before peaks in

speed as well.
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Figure 3.23:
Histogram of lag between a peak in IMF and a peak in the speed (left).
Histogram of lag between the beginning of a peak in the IMF and the
beginning of a peak in the speed (right).

Figure 3.23 (left) also indicates that peaks in the speed can be found more than 40

hours after the peak in the IMF magnitude. However, this might be due to random

peaks that are not related to the shock. To reduce the effect of limiting the peak in

speed to being above a given threshold, the times when both peaks (IMF and speed)

start to increase can be compared by determining the lag tbeginning,speed−tbeginning,IMF ,

where tbeginning is the time in which the gradient in IMF magnitude or speed has

crossed a given threshold. The histogram of these time delays is shown in Figure 3.23

(right). The median value of the histogram is now at 10 hours but the curve drops

at 15 hours such that 80% of events have delays less than 30 hours. This means that

most of the time, a rapid increase in the IMF magnitude will be followed by a rapid

increase in the speed in the following day (most likely in the next 10 hours). Any

increase in speed beyond one day most likely cannot be attributed to the shock but

may correspond to a random increase in speed.

Figure 3.24 (left) shows an example of a high speed event that occurred after a

peak in the IMF. At tbeginning,speed (marked by a vertical blue line), the IMF magnitude
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(solid red line) had already increased by large values. However, Figure 3.24 (right)

shows an example where the peak in the IMF occurred after the peak in the speed.

As illustrated in Figure 3.23 (left), this situation happens much more rarely.
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Figure 3.24:
Example of a peak in the speed after a peak in the IMF (left); the peak
in IMF occurs after the peak in the speed (right).

3.2.2.4 Assessment of the new Probability Distribution Function model

To assess the ability of the new PDF model to predict high speed events, con-

tingency tables were calculated. A typical contingency table presents the number

of events that were correctly predicted, or true positives (i.e., the model predicted

an event and there actually was an event), the number of false positives (i.e., the

model predicted an event that actually did not occur), the number of missed events,

or pure misses (i.e., the model did not predict an event that actually occurred), and

the number of correct non-events, or true negatives (i.e., the model predicted there

would be no event and there actually was no event).

The sensitivity of a model represents the probability that an event that actually

occurred was correctly predicted by the model, and is defined as:

sensitivity =
# true positives

# events
=

# true positives

# true positives + # pure misses
(3.6)
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The positive predicted value (PPV) is the probability that a predicted event actually

occurred, and is defined as:

PPV =
# true positives

# predictions of an event
=

# true positives

# true positives + # false positives
(3.7)

The negative predicted value (NPV) is the probability that a negative forecast was

correct, and is defined as:

NPV =
# true negatives

# predictions of a non-event
=

# true negatives

# true negatives + # pure misses
(3.8)

For the three numbers, the ideal value is 100%.

To get a complete view of the quality of the model, all three of these numbers

should be calculated and compared. For example, a model that does not ever predict

any peaks never leads to any false positives, but has 0 true positive so the sensitivity is

0%. A model that always predicts a peak in the next 24 hours would have a sensitivity

of 100% but its PPV would tend to 0% since it would have a very large number of false

positives. This is why forecasters are interested in models that present a good balance

between these numbers so that they are able to give correct predictions (positive and

negative) as often as possible. Finally, the false alarm rate (= 1 - PPV) is a measure

that forecasters are also interested in, as it corresponds to the probability that a

predicted event did not actually occur.

3.2.3 Results and discussion

The improved PDF model was run between 1995 and 2012 to make one-day for-

ward predictions, moving by steps of 3 hours between each of the predictions. This

enabled the testing of the ability of the model to predict the speed at any phase of

the high speed event. For each prediction, a similar question was asked as the one by

MacNeice (2009a,b): “[I]f the model predicts / does not predict a high speed event in
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the next 24 hours, does a high speed event actually occur?” However, answering this

question gives only the PPV and the NPV. To determine the sensitivity, a further

question must be asked: “[I]f there is actually a high speed event, what is the proba-

bility that the model predicted it?” To answer these questions, we used the definition

of the high speed event given in the previous section. Specifically, an event, predicted

(vpred) or observed (vdata), is categorized as a high speed event if the speed now or in

the next 24 hours has a gradient greater than 50 km/s/day and goes over 500 km/s.

If one of these two conditions is not met then it is not a high speed event.

Figure 3.25 illustrates how this analysis was made. The six graphs represent

predictions of the same (observed) high speed event at different times, moving by

steps of three hours between each prediction: 13 UT, 16 UT, 19 UT, 22 UT, 01 UT

(next day), and 04 UT (next day). At 13 UT and 16 UT, the event had not yet

started so the slope was not higher than the threshold at 4.77 km/s/hour. According

to the distributions from Figure 3.18, every peak found by the algorithm between

1995 and 2012 had a maximum slope greater than 4.77 km/s/hour. Therefore, no

peak was predicted and the two predictions were pure misses (bottom left of the

contingency table). At 19 UT, the current speed had increased sufficiently for the

PDF model to predict a peak, but the gradient was not high enough for the prediction

of the maximum speed to be close to the actual peak. Therefore, the PDF model,

although predicting a peak, underestimated the amplitude of the increase, and was

a pure miss as well. At 22 UT, 01 UT (next day), and 04 UT (next day), the PDF

model correctly predicted the event: both the amplitude and the time of the peak

closely match the actual speed, and the descending phase follows the shape of the

actual speed. However, recall that the event is categorized as a high speed event if the

current speed is below 500 km/s and increase to a value above 500 km/s. This implies

that only the predictions at 22 UT and 01 UT (next day) are taken into account in the

contingency table and counted as true positives (top left of the contingency table).
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Ignoring predictions when the current speed is already higher than this threshold

ensures that the assessment of the model reflects a meaningful forecast quality, and

not simply observational assist. To conclude, of the six times, three were pure misses,

two were true positives, and the last event was ignored because the current speed had

already increased at a value higher than 500 km/s so the forecast was not meaningful.
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Figure 3.25:
Examples of predictions with the PDF model version 2. The black line
is the actual speed; the blue line is the median of the PDFs.
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Table 3.3:
Contingency table for any types of high speed events (HSE: high speed
event.)

Actual solar wind
HSE NO HSE

PDF
predictions

HSE 798 523
NO HSE 3,125 33,401

3.2.3.1 Predictions of high speed events

The contingency table for the results of the predictions from 1995-2012 data is

presented in Table 3.3. Out of the 3,923 events that occurred, 798 were predicted by

the PDF model (note that several predictions can correspond to the same high speed

event but at different times of the ascending phase of the peak, as shown in Figure

3.25). This corresponds to a sensitivity of 20.3%. There were 523 false positives,

which implies that the PPV was 60.4%. 3,125 of the 36,526 negative predictions were

incorrect, which means that the NPV was 91.4%, so 8.6% were pure misses. If the

past performance is an indication of future performance, a positive forecast by the

PDF model will be correct 60.4% of the time, while a negative forecast will be correct

91.4% of the time. The PDF model should be able to predict 20.3% of the high speed

events.

On the other hand, the performance of the PDF model changes in the presence of

IMF and density peaks. While the model itself does not change at all, if an operator

of the model sees a peak in the IMF and density, the operator can be more confident

in the PDF model. This is shown by considering only time periods that include

peaks in both the IMF and the density. The results of these events are shown in the

contingency table in Table 3.4.

A positive forecast was correct 69.5% of the time, while a negative forecast was

correct 72.0% of the time. The PDF model was able to predict 33.6% of the high

speed events. Although the NPV decreased (91.4% to 72.0%), the PDF model missed

fewer high speed events (the sensitivity increased from 20.3% to 33.6%) and led to
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Table 3.4:
Contingency table for high speed events associated with IMF and density
peaks (HSE: high speed event).

Actual solar wind
HSE NO HSE

PDF
predictions

HSE 137 60
NO HSE 271 696

fewer false positives under these conditions (the PPV increased from 60.4% to 69.5%).

3.2.3.2 Direct comparison with the Wang-Sheeley-Arge model

MacNeice (2009b) provided results of high speed event predictions made by the

WSA model. He found that a positive forecast was correct 17% (= PPV) of the time

and that a negative forecast was correct 94% (= NPV) of the time. However, we

chose to make a direct comparison between the PDF and the WSA models using the

same definition of the high speed event described earlier in the text for both models,

since it was unclear if exactly the same things were being compared in the MacNeice

(2009b) study as here. In addition to comparing the PPV and the NPV of the two

models, their sensitivities were also compared, which is of equal importance for the

space weather forecasting community as the PPV and the NPV. The WSA model was

run for one year in 2011 to make one day ahead predictions at a temporal resolution

of 24 hours. To link the current speed to the speed 24 hours ahead and to provide the

same temporal resolution as the PDF model, a cubic spline interpolation was used.

Multiple parameters that characterize a high speed event were used to explore

their influence on the model results: the gradient in 24 hours (noted gd, equal to 50

km/s/day so far) and the threshold (noted vth, equal to 500 km/s so far) between

slow to fast solar wind. Four sets of values were chosen from different combinations of

vth and gd: vth = 500 km/s and vth = 600 km/s with gd = 50 km/s/day and gd = 70

km/s/day. As MacNeice (2009a) concludes, the algorithm that defines a high speed

event can have a significant influence on the results. It is therefore important to apply
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the selection criteria and evaluation matrix to both models.

The sensitivity, the PPV, and the NPV for both the WSA and the newly modified

PDF model are presented in Table 3.5. MacNeice (2009b) used a value for gd of 50

km/s/day and a value for vth of 500 km/s. For the corresponding column of Table

3.5, a sensitivity of 22%, a PPV of 17.9% (corresponding to a false alarm rate of

82.1%), and an NPV of 90.5% for the WSA model were found, very similar to values

found in MacNeice (2009b). For the PDF model, the sensitivity, the PPV, the false

alarm rate, and the NPV were 19.1%, 66.7%, 33.3%, and 91.1%, respectively, close

to the values found for the study over 17 years. The sensitivity of the WSA model

(22%) is slightly better than the sensitivity of the PDF model (19.1%). However,

the WSA model leads to two to three times as many false positives than the PDF

model (i.e., the false alarm rate is 2.5 times higher for the WSA model). The PDF

model leads to four times more true positives than the WSA model (i.e., the PPV is

4 times higher for the PDF model). Both NPV are comparable, which means that

when either model says that there is not an event, it is true about 91% of the time.

Changing gd to 70 km/s/day (leaving vth as 500 km/s) does not change the results

by much. It decreases the sensitivity and increases the false alarm rate by about four

percentage points for both models, implying that both models have slightly more false

positives.

However, when changing vth from 500 km/s to 600 km/s (keeping gd at 50

km/s/day, for example), the sensitivity of the WSA model drops by a factor of two.

The false alarm rate of both models is also affected, particularly for the PDF model,

in which this increased vth leads to twice as many false positives (i.e., the false alarm

rate increases by a factor of two). The NPV is better for both models. This may be

due to the fact that since vth has increased, there are fewer events that are counted

as high speed events in the observations, so the number of true negatives increases

for the same number of pure misses. These results indicate that the PDF model most
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likely overpredicts the solar wind speeds during a peak.

Whatever the value of gd and vth are, the PDF model appears to be more reliable

than the WSA model for predictions of high speed events. Because the false alarm

rate is smaller for the PDF model, the PDF model leads to fewer false positives than

the WSA model. If the threshold for the fast solar wind speed is set at 600 km/s,

then the number of misses is also smaller for the PDF model. This can be seen by

a higher (by a factor ∼ 2) sensitivity. The NPV, which represents the ability of a

model to predict correctly the absence of an event, is comparable for each set of gd

and vth. Finally, the PPV and NPV found in this study are consistent with those

described in MacNeice (2009a,b).

3.2.3.3 Ensemble predictions of high speed events

Figure 3.22 shows examples of ensemble predictions of high speed events made by

the PDF model. For example, the top left graph shows that the actual speed (black

solid line) stays in between the 25% and 75% quartiles for about 108 hours and in

between the 10% and 90% quartiles for about 115 hours. This means that most of the

time, the PDF model manages to predict the uncertainty interval associated with the

main prediction. However, these intervals by themselves are not sufficient to judge

if they are relevant. For example, if the widths of the probability distributions the

model uses were of the order of 1,000 km/s then the actual speed would always be in

between the 25% and 75% quartiles, but the prediction of the uncertainty would not

be useful for the forecasters because of the huge uncertainty interval (± 500 km/s)

associated with the prediction. Therefore, it is important to look at the width of

these uncertainty intervals. On the six different predictions shown in Figure 3.22, the

half widths are, on average, about 100 km/s for the 25%-75% quartiles and 150 km/s

for the 10%-90% quartiles.

The average time the observations last between the 25% and 75% quartiles and
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the 10% and 90% quartiles were calculated, as well as the average 25%-75% and 10%-

90% widths over all the predictions made between 1995 and 2012. The results were

classified according to whether the prediction was a true positive, a false positive, or

a pure miss.

Out of 120 hours, the observations were in between the 25%-75% quartiles for 58

hours for true positives, 68 hours for false positives, and 26 hours for pure misses.

These numbers increased to, respectively, 88 hours, 86 hours, and 55 hours for 10%-

90% quartiles. The smaller time for the pure miss in both cases may be explained

by the fact that the model did not predict a high speed event for these times, so the

associated speed distributions from the PDF model were narrower. This is confirmed

by the measurements of the half-widths: 53 km/s and 95 km/s for the 25%-75% and

10%-90% quartiles, respectively, when the prediction was a miss. When it was a

true positive and a false positive, the average widths of the 25%-75% and 10%-90%

quartiles were around 145 km/s and 230 km/s, respectively.

3.2.4 Conclusion

An algorithm was created to identify transitions from slow to fast solar wind as

any increase in the speed by more than 50 km/s in less than 24 hours. This enabled

the construction of new PDFs for the prediction of high speed events. To predict

the peak value of the speed, PDFs of the amplitude of the peak were calculated as a

function of the maximum slope before the peak. The distribution of the time it takes

for the speed to increase from the beginning of the peak to the maximum of the peak

was used to predict the time of the peak. From these, predictions of the solar wind

speed including peaks could be made.

Contingency tables were calculated to assess the ability of the new PDF model

to predict high speed events by answering the following question: “[I]f the model

predicts / does not predict a high speed event in the next 24 hours, does a high
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speed event actually occur?” It was found that 60.4% of the positive predictions were

correct, while 91.4% of the negative predictions were correct. 20.3% of the peaks in

the speed are found by the model. The percentage increases to 33.6% when there

is an associated peak in both the solar wind density and IMF magnitude before the

increase in the solar wind speed.

A direct comparison with the WSA model showed that the number of false posi-

tives is more than three times smaller for the PDF model compared with the WSA

model. The sensitivity (probability that an actual occurring event is correctly pre-

dicted by the model) is similar in both models, as is the NPV (probability that a

negative forecast is correct). However, when the peak reaches very high speeds (>

600 km/s), the PDF model misses fewer events than the WSA model, but tends to

have more false positives than when the speed is lower.

Finally, ensemble predictions of high speed events by the PDF model provides

the forecast community with an interval of uncertainty on the prediction. The study

showed that on average, the observations were in between the 25%-75% quartiles ∼

60 hours out of 120 hours and in between the 10%-90% quartiles ∼ 85 hours out of

120 hours.

This study was published in Bussy-Virat and Ridley (2016).

133



CHAPTER IV

Effects of density uncertainties on the probability

of collision

The rapid increase of the number of objects in orbit around the Earth poses

a serious threat to operational spacecraft and astronauts. In order to effectively

avoid collisions, mission operators need to assess the risk of collision between the

satellite and any other object whose orbit is likely to approach its trajectory. Several

algorithms predict the probability of collision but have limitations that impair the

accuracy of the prediction. An important limitation is that uncertainties in the

atmospheric density are usually not taken into account in the propagation of the

covariance matrix from current epoch to closest approach time. The atmosphere

between 100 km and 500 km is strongly driven by solar and magnetospheric activity.

Therefore, uncertainties in the drivers directly relate to uncertainties in the neutral

density, hence in the drag acceleration. This results in important considerations for

the prediction of LEO orbits, especially for the determination of the probability of

collision. This chapter shows how uncertainties in the atmospheric density can cause

significant differences in the probability of collision and presents an algorithm that

takes these uncertainties into account to more accurately assess the risk of collision.

As an example, the effects of a geomagnetic storm on the probability of collision are

illustrated.

134



4.1 Introduction

The population of objects in orbit around the Earth has dramatically increased

in the past decade. In April 2005, NASA performed its first collision avoidance

maneuver on a robotic spacecraft (Terra satellite). Two years later, the Chinese

satellite Fengyun-1C was destroyed, causing the largest increase in debris in space

history (about 3,000 objects larger than 10 cm). On February 10th, 2009, the collision

between the operational communication satellite Iridium 33 and the retired Russian

communication satellite Cosmos 2251 generated 2,000 debris larger than 10 cm, with

many thousands of smaller pieces at an altitude of 800 km. In 2015, four collision

avoidance maneuvers and one “shelter-in-Soyuz” procedure were performed by the

ISS (Liou, 2016; Newman, 2016).

Collision avoidance requires the knowledge of the position and velocity of all ob-

jects in orbit. Some satellite mission operators can keep track of their satellites

quite accurately using GPS data, but the trajectories of all other orbiting objects are

harder to follow. Space Situational Awareness (SSA) refers to the effort of gathering

and updating the trajectories of natural and man-made orbiting objects (Stoll et al.,

2013). Two organizations support the SSA process: JSpOC and the Space Data

Association (SDA). SDA was established for satellite operators to share the most

up-to-date satellite data (Stoll et al., 2013). JSpOC is currently the single full time

global provider of object positions used in collision avoidance due to the accuracy and

timeliness of the available information (Aida et al., 2015). It tracks more than 23,000

objects to evaluate the risk of collision with operating satellites by looking for any close

approach with cataloged objects. If a potential conjunction is predicted by JSpOC,

a Conjunction Data Message (CDM) is generated, which includes information about

the close approach to alert the mission operator of a possible encounter. To evaluate

the risk of collision, the probability of collision Pc is calculated based on the covari-

ance matrices and the states of both objects at the Time of Close Approach (TCA).
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This step is called the Conjunction Assessment Risk Analysis (CARA).

In order to perform CARA, the probability of collision must be accurately de-

termined. This is done by comparing the covariance matrices of the two objects at

the time of closest approach. A covariance matrix represents the uncertainties in the

state of the object. The i-th diagonal element corresponds to the variance of the

i-th parameter (square of the standard deviation). The off-diagonal element i, j is

proportional to the correlation coefficient between the i-th and the j-th elements. The

covariance matrices of each of the two objects are represented by an ellipsoid, with an

orientation given by the principal axes of the covariance matrix. These two ellipsoids

are illustrated in Figure 4.1.

Figure 4.1:
Ellipsoids surrounding the primary and secondary spacecraft to represent
the uncertainties in the positions of each object (STK - AGI).

The volume of intersection of the two ellipsoids represents the probability of col-

lision of the two objects. Computing this intersection volume implies calculating

a three-dimensional integral, which can be computationally intense and complex.

Therefore, the relative motion is assumed to be rectilinear so the derivation can be
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reduced to a two-dimensional integral in the plane normal to the relative velocity

vector, called the conjunction plane (Hejduk and Frigm, 2015; Sanchez-Ortiz et al.,

2015). Moreover, the orbit uncertainties of the primary object are assumed to be un-

correlated with the orbit uncertainties of the secondary object so the two covariance

matrices can be combined in a single covariance matrix (Chan, 2008). Finally, the

position uncertainties of the two objects are assumed constant during the encounter

so the combined covariance matrix is constant during the close approach. These as-

sumptions are valid if the duration of the encounter is short enough (< 500 s) or

equivalently if the relative velocity between the primary and secondary objects is

high enough (> 10 m/s) (Hejduk and Frigm, 2015). The probability of collision, Pc,

is then expressed as (Sanchez-Ortiz et al., 2015; Akella and Alfriend , 2000; Alfriend

et al., 1999; Foster , 2001):

Pc =
1

2π
√

det(C)

R∫
−R

√
R2−x2∫

−
√
R2−x2

e−
1
2
~rTC−1~rdzdx (4.1)

where R is the sum of the two object radii, ~r the vector between the point of interest

in the conjunction plane and each point (x, z) is in the circle of radius R (integration

area).

Others have modified this technique. Patera (2001) used the symmetric form of

the probability density to reduce the 2D integral to a 1D contour integral. The contour

corresponds to the perimeter of the 2D integration area. This method provides an

easier numerical implementation and is computationally faster. Patera (2005) used

numerical quadrature techniques to transform the contour integral to a 1D angular

integral by shifting the origin of the coordinate system. Alfano (2005a) reduced the

2D integral into a 1D integral using the error function and analyzed it applying the

Simpson’s one-third rule.

Although these methods are numerically easy to implement and computationally
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efficient, they rely on multiple assumptions that do not necessarily hold in every con-

junction case. Alfano (2009) assessed Patera’s and Alfano’s methods for linear relative

motion and showed important differences with the baseline Monte Carlo method, par-

ticularly when the relative motion assumption does not hold, where errors up to 60%

where found. Other methods, that do not assume linear relative motion (Adjoin-

ing Cylinders’s method (Alfano, 2005b), Bundled Parallelepipeds’s method (Alfano,

2005b), and method of Voxels (Alfano, 2006)) also resulted in large errors because of

limiting assumptions. Monte Carlo procedures do not require the relative motion to

be linear or the covariance matrices to be constant during the encounter. Therefore,

the collision risk assessment is more accurate. The main drawback of the Monte Carlo

approach is that it is computationally intensive. This method is presented in detail

in Section 4.2.

Alfriend et al. (1999) investigated the sensitivity of the probability of collision to

errors in the covariance matrix and to the encounter geometry. The study under-

lined the fact that although the position covariance at epoch is accurate, the velocity

covariance is too optimistic because it assumes the dynamic model is perfect. Specifi-

cally, the uncertainties in the atmospheric density are usually not taken into account.

As a result, the position uncertainties at the time of close approach are too optimistic

by about an order of magnitude. Alfriend et al. (1999) showed that small errors in

the covariance matrix can cause important changes in Pc.

At LEO altitudes, one the main forces acting on spacecraft and debris is atmo-

spheric drag and is a perturbing force particularly hard to model and predict. The

drag acceleration adrag of a simple surface is represented by (Vallado and McClain,

2007):

adrag = −1

2

CDA

m
ρv2rel

vrel

vrel
(4.2)

where CD, A, andm are the drag coefficient, area projected towards the velocity vector

and mass of the surface respectively, and vrel is the satellite velocity with respect to
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the moving atmosphere of density ρ. Under 500 km, the thermosphere is too dense

to be neglected in accurate orbit calculations. The atmosphere above about 100 km

is strongly coupled to the space environment. This system is very complex and the

response of the density to driving from the ionosphere, magnetosphere, and Sun is very

challenging to estimate. Moreover, the drivers of entire near-Earth space environment,

mainly linked to the solar activity, are themselves difficult to predict. Proxies are used

to model these drivers, such as F10.7. This is the solar radio flux at a wavelength

of 10.7 cm and it is commonly used to model Extreme UltraViolet (EUV) irradiance

(Emmert , 2015). The perturbations of the Earth’s magnetic field resulting from its

interaction with the IMF and the solar wind particles are described by magnetic

activity indices such as Kp, Ap, Dst, and AE. These indices can be derived from

magnetic perturbations directly measured from stations on Earth.

Very few studies have analyzed the impact of uncertainties in the atmospheric

drag, despite the fact that it is the largest source of errors for LEO orbits (Storz et al.,

2005; Emmert et al., 2016). By modeling the errors in EUV ten-day forecasts with a

Brownian motion process, Emmert et al. (2014, 2016) derived an analytical equation

that relates the uncertainties in F10.7 to uncertainties in the in-track position and

found that the in-track position errors grow with time as ∼ t5. Although an analytical

equation saves a lot of computational time, it does not provide a solution accurate

enough for collision risk assessment. In particular, the solution assumes that the only

perturbing force is atmospheric drag. However, neglecting the other perturbations

can lead to important errors, in particular if neglecting the asphericity of the Earth

(Figure 2.1). In addition, the effects of errors in the prediction of the solar proxies

increase dramatically in the presence of a solar storm. D. Pachura (2016) showed

that a miss prediction of an event leads to important changes in the probability of

collision, up to a few orders of magnitude.

This chapter first presents an improvement of SpOCK to accurately predict the
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probability of collision between two space objects using Monte Carlo procedures. The

algorithm models all perturbing forces and takes into account uncertainties in both

F10.7 and Ap. The goal is to show how uncertainties in solar driver predictions result

in important errors in the probability of collision. Additionally, the effects of a miss

prediction of a geomagnetic storm on the probability of collision are demonstrated

in an example. The algorithm developed can be used in real-time, and can provide

mission operators with a better estimation of the risk of collision.
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4.2 Methodology

The central capability of SpOCK is a high accuracy numerical propagator of space-

craft orbits using a comprehensive model of the dynamics of spacecraft in orbit, in-

cluding the asphericity of the Earth, atmospheric drag acceleration, solar radiation

pressure and gravitational perturbations from the Moon and the Sun. Specifically, the

non-spherical portion of the mass distribution of the Earth is modeled with a decom-

position in spherical harmonics of the gravitational potential. Thermospheric models

(NRLMSISE (Picone et al., 2002) and GITM (Ridley et al., 2006)) are implemented

in SpOCK to derive the atmospheric density at the position of the spacecraft, allowing

for an accurate representation of the atmospheric drag. In addition to modeling the

motion of satellites, SpOCK includes several functionalities, such as the coverage of

ground stations, the computation of solar power, and the storm intersection forecast

tool developed for the CYGNSS mission. Developed in C, SpOCK supports paral-

lelism and is therefore well suited for ensemble, Monte Carlo, or satellite constellation

analysis. The algorithm and its different functionalities were presented in Chapter II.

4.2.1 Conjunction Assessment Risk Analysis algorithm

SpOCK can assess the risk of collision with other space objects in orbit (opera-

tional satellites or debris). Monte Carlo procedures are used to perturb the initial

epoch state (position and velocity) of the primary and secondary spacecraft from the

covariance matrices. The algorithm does not have to make any assumptions about

the relative motion, the uncertainties in motion, or the covariances during the time

span.

SpOCK reads in an input file with a similar format as a CDM generated by

JSpOC. More specifically, this input file includes the state (position and velocity)

and the covariance matrices of both space objects (noted O1 and O2) in the ECI

coordinate system (6 × 6 dimension). The sum of the two object radii, Dcollision,
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and the threshold distance under which a close approach is flagged, DCA, are also

indicated in the input file, as well as the number of ensembles used in the Monte

Carlo procedures, noted Ne.

The flow diagram in Figure 4.2 illustrates the process to evaluate the risk of

collision that leads to the determination of the probability of collision between the

two space objects.

142



ANCAS
in	[ti,	ti+1]

𝑈"1, 𝑡0

𝑈"2, 𝑡0
RK4max	prg

<	min	apg
𝑈"1, 𝑡𝑖

𝑈"2, 𝑡𝑖

𝑈"1, 𝑡𝑖 + 1

𝑈"2, 𝑡𝑖 + 1

while	ti+1<tend

DCA	
<	DCA

Record	TCA

yes

yes

No	threat

no

no

CLOSE	APPROACHES	BETWEEN	UNPERTURBED	ORBITS

TCA

DCA

𝑉+𝑚, 1, 𝐸𝐶𝐼
𝑉+𝑛, 2, 𝐸𝐶𝐼
all	n,m

INITILIZATION	OF	PERTURBED	ORBITS

𝑈𝑚, 1, 𝑡𝑖 + 1	
	

𝑈𝑛, 2, 𝑡𝑖 + 1

ti in	
[TCA-T/4,	
TCA+T/4]

ANCAS
in	[ti,	ti+1]

DCA	
<	Dcollision

𝑈𝑚, 1, 𝑡𝑖		𝑈𝑛, 2, 𝑡𝑖

yes yes

RK4

all	n,m

while	ti+1 <	tend

𝑈𝑚, 1, 𝑡𝑖 + 1		𝑈𝑛, 2, 𝑡𝑖 + 1

no

RK4
𝑈𝑚, 1, 𝑡𝑖	

	
𝑈𝑛, 2, 𝑡𝑖

while	ti+1<tend

𝑁𝑇 = 𝑁𝑇 + 1
𝑈𝑚, 1, 𝑡0		
𝑈𝑛, 2, 𝑡0

CONJUNCTIONS	BETWEEN	PERTURBED	ORBITS

all	n,m

𝑁𝑇DCA

At	least	
one	CA No	threat

𝑃𝑐 = 	
𝑁𝑇

𝑁𝐸
2

:	3rd order	polynomial	 rdx,	rdy,	rdz:	5th order	
polynomial

Real	root	in	
[ti,ti+1]	

ANCAS	in	[ti,	ti+1]

𝑑̇ yes

No	threat

no

DCA𝑃𝑑 ̇
TCA

𝑈"1, 𝑡0, 𝑈"2, 𝑡0
𝐶1, C2

𝑈𝑚, 1, 𝑡0
𝑈𝑛, 2, 𝑡0

𝑈𝑚, 1, 𝑡0		
𝑈𝑛, 2, 𝑡0

yes

no

Figure 4.2: Flow diagram of SpOCK’s CARA algorithm.
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Close approach between the unperturbed orbits

Close approaches are screened between the two unperturbed orbits O1 and O2

(purple diagram at the top in Figure 4.2). The initial states of O1 and O2 are noted

U1,t0 and U2,t0 . A first filter rules out the possibility of an encounter if the perigee

of the higher object’s orbit is greater than the apogee of the lower object’s orbit.

However, if this is not the case, the altitudes cross at some point, and the secondary

object represents a potential threat. In that case, the two orbits are propagated for

screening for potential close approaches. The propagator uses a Fourth Order Runge-

Kutta (RK4) method with a fixed time step dt to integrate the acceleration at each

time step ti of the simulation. A close approach is defined as any minimum in the

distance between the two objects smaller than DCA. To determine if a minimum oc-

curs in each interval [ti, ti+1], SpOCK uses a similar algorithm as Alfano-Negron Close

Approach Software (ANCAS) (Alfano, 1994). The flow diagram for this algorithm is

presented in a separated block from the rest of the flow diagram in Figure 4.2 (black

block at bottom of the figure). First, it looks for the existence of a minimum in the

distance between the objects by modeling the time derivative of the distance between

the two objects by a third-order polynomial, Pḋ, and assessing if any real root troot

exist in the interval [ti, ti+1]. The additional condition
dPḋ(troot)

dt
> 0 ensures the root

corresponds to a minimum and not a maximum (not represented in Figure 4.2). If a

root is found in the interval [ti, ti+1], the algorithm then determines the Distance of

Close Approach (DCA) at troot (now noted as TCA). If the relative vector between

the secondary and the primary objects is noted rd = r2 − r1, SpOCK models the

components rd,x, rd,y, and rd,z by fifth-order polynomials Prd,x , Prd,y , and Prd,z . The

distance at close approach is then expressed as:

DCA =
√
P 2
rd,x

+ P 2
rd,y

+ P 2
rd,z

(4.3)
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If DCA < DCA then the situation is recorded as a close approach.

This operation is repeated for each interval [ti, ti+1] of the propagation.

Initialization of perturbed orbits

If a close approach between the two unperturbed orbits is found, there is a po-

tential risk for a collision. In that case, the Monte Carlo process is initialized (green

diagram second to top of Figure 4.2). The initialization consists in perturbing the

ECI states of the primary and secondary objects (U1,t0 and U2,t0). First, the covari-

ance matrices (noted C1 for the primary object and C2 for the secondary object) are

diagonalized and the two sets of six eigenvalues derived. For each set of eigenvalue,

Ne random vectors (6× 1 for the position and the velocity) are generated following a

Normal distribution centered around 0 with a standard deviation equal to the square

root of the eigenvalue of the covariance matrix:

Ṽm,j =



randn
(
0,
√
λ1,j
)

randn
(
0,
√
λ2,j
)

randn
(
0,
√
λ3,j
)

randn
(
0,
√
λ4,j
)

randn
(
0,
√
λ5,j
)

randn
(
0,
√
λ6,j
)


where Ṽm,j represents the mth random vector (m = 1, ..., Ne) associated with the

primary (j = 1) or secondary (j = 2) object, and λi,j the ith eigenvalue (i = 1, ..., 6)

of the covariance matrix Cj.

Each vector Ṽm,j is then converted back to the ECI coordinate system (Ṽm,j,ECI)

with the rotation matrix used for the diagonalization of the covariance matrix.

Finally, each perturbation Ṽm,j,ECI is added to the unperturbed ECI state to

145



generate Ne perturbed states Um,1 and Un,2:

Um,1,t0 = U1,t0 + Ṽm,1,ECI (4.4)

Un,2,t0 = U2,t0 + Ṽn,2,ECI (4.5)

Each ensemble member initialized as Um,j,t0 is now noted Om,j.

4.2.1.1 Conjunctions between the perturbed orbits

Once the 2Ne perturbed orbits are initialized, SpOCK propagates them (blue block

third to top in Figure 4.2). During the propagation, it screens for any conjunction

between a perturbed ensemble Om,1 (m = 1, ..., Ne) of the primary object and a

perturbed ensemble On,2 (n = 1, ..., Ne) of the secondary object. The algorithm is

the same as the one to find a close approach between the unperturbed orbits O1 and

O2. However, it now uses the sum of the two object radii Dcollision as the minimum

distance under which a conjunction is recorded. Therefore, SpOCK first looks for

the existence of a minimum distance in each interval [ti, ti+1], in which case it then

calculates the minimum distance as in Equation 4.3. If this distance is smaller than

Dcollision, the situation is recorded as a collision. SpOCK repeats this operation for

each combination in the set (m,n) resulting in N2
e comparisons. The total number of

collisions found is noted NT .

To be computationally efficient, conjunctions between each perturbed orbit Om,1

and On,2 are not screened in every interval [ti, ti+1] of the propagation, but only in a

time spanning the unperturbed close approach determined in the first step of CARA.

This time span is equal to half an orbital period T to ensure that no collision is

missed between the perturbed orbits. If several close approaches have been found,

then SpOCK applies this algorithm for each interval [TCA− T/4,TCA + T/4].
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Derivation of the probability of collision

Once the 2Ne orbits are propagated and screened for collisions, the probability of

collision is calculated as the ratio between the total number of collisions NT divided

by the total number of possible scenarios N2
e (red block fourth to top in Figure 4.2):

Pc =
NT

N2
e

(4.6)

Dagum et al. (2000) recommends that the total number of possible scenarios,

N(= N2
e ), must be greater than a lower bound that is a function of the absolute error

ε, the level of confidence 1− δ, and the expected value of the probability of collision

PT :

N >
4 (e− 2) [(1− PT )PT ]

ε2
ln

2

δ
(4.7)

providing the condition:

ε < (1− PT )PT (4.8)

For example, if the expected probability of collision is 10−4, then the total number of

possible scenarios must be greater than 1.06 billion to meet a 1% relative accuracy

(ε = 10−6) with a 95% confidence level (δ = 0.05). The condition in Equation in 4.8

is easily met because PT is not near 1 (Alfano, 2009). This implies that the total

number of ensemble members must be greater than 32,600 (Ne >
√

1.06× 109). To

be more computationally efficient, SpOCK runs the ensemble members in parallel,

allowing the risk assessment of a two day scenario to be performed in an hour using

200 cores.

4.2.2 Modeling uncertainties in F10.7 and Ap

The uncertainty in the thermospheric density modeling is generally of the order

of 20% (Alfriend et al., 1999). This is when considering a perfect knowledge of the

147



inputs used in the thermosphere models, such as the solar flux F10.7, Ap, or Dst.

However, predicting the solar drivers a few days ahead adds more uncertainties in

the prediction of the thermospheric density. The large variability of the solar activity

makes the task even harder. Geomagnetic activity driven by solar flares, CMEs, and

Corotating Interaction Regions (CIRs) cause the most important disturbances of the

neutral density. For example, it was found that CIRs can cause density increases by

75% on average (Lei et al., 2011). A 30% to 60% increase at low to mid-latitudes

in the density response to EUV solar flux enhancement resulting from a solar flare

was reported in Sutton et al. (2006) and Pawlowski and Ridley (2011). Bruinsma

et al. (2006) and Sutton et al. (2005) studied the response to severe geomagnetic

storms. Both noted a rapid response of the thermospheric density (∼ a few hours)

at all latitudes with enhancements by more than three times the density. Bruinsma

and Forbes (2007) reported up to 800% density enhancements at the equator during

sudden increases in geomagnetic activity.

Despite these considerations, collision risk assessment is usually performed by

neglecting the uncertainties in the atmospheric density. At LEO altitudes, where

atmospheric drag is the dominant perturbation, this can result in important errors in

the probability of collision.

SpOCK primarily uses the NRLMSISE density model to derive the density at the

position of the spacecraft at each time step of the propagation. The solar inputs

of NRLMSISE are the solar flux F10.7 and the geomagnetic index Ap. These are

predicted in real time for the following 45 days at SWPC from NOAA. To model

uncertainties in the predictions of F10.7 and Ap, SpOCK compares historical 3 day

predictions by SWPC (http://www.swpc.noaa.gov/) with actual measured values.

For each forecast time (1 day, 2 days, 3 days ahead), the difference between the

predicted index and the measured value is computed (Ppredicted−Pmeasured where P is

F10.7 or Ap), from which distributions are derived. The 10%, 20%, 30%, 40%, 50%
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Table 4.1:
Quartiles of the distributions of the difference between the predicted and
actual F10.7.

10% 20% 30% 40% 50% 60% 70% 80% 90%

1 day -4. -3. -2. -0.2 0. 1. 2. 3. 4.8
2 days -6. -4. -2.7 -1. 0. 1. 2.7 4.8 7.
3 days -8. -5. -3. -2. 0. 1. 3. 5. 8.

Table 4.2:
Quartiles of the distributions of the difference between the predicted and
actual Ap.

10% 20% 30% 40% 50% 60% 70% 80% 90%

1 day -7. -3. -2. 0. 1. 2. 3. 6. 9.8
2 days -9. -4. -2. 0. 1. 2. 3. 5. 8.9
3 days -9. -5. -2. 0. 1. 1. 3. 5. 8.

(median), 60%, 70%, 80%, and 90% quartiles are reported in Tables 4.1 (F10.7) and

4.2 (Ap).

The quartile values are used to model the uncertainties in the predictions of F10.7

and Ap. For example, the predictions of F10.7 and Ap on November 26th, 2016 by

SWPC are reported in Table 4.3. The uncertainties on these predictions are taken

from the quartile values of Tables 4.1 and 4.2. While SWPC predicted F10.7 to be

83 on November 27, the 20% quartile of the distribution of difference between the

prediction and the observations being -3 (second column of Table 4.1), so the 20%

quartile of the predicted distribution of F10.7 is 80. The same reasoning is valid for

each quartile, resulting in a distribution of predicted F10.7 on November 27 with

quartiles equal to the values in Tables 4.1 and 4.2, instead of the single nominal value

predicted by SWPC. Applying this approach for each prediction horizon (1 day, 2

Table 4.3: Predictions of F10.7 and Ap by SWPC on November 26th, 2016.
F10.7 Ap

Nov. 26 82 15
Nov. 27 83 10
Nov. 28 83 8
Nov. 29 81 8
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days, and 3 days ahead), SpOCK generates a series of predictions for F10.7 and Ap

3 days ahead. These are shown in Figure 4.3.
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Figure 4.3:
Prediction of the solar flux F10.7 (top) and geomagnetic index Ap (bot-
tom) as a function of forecast time from the 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, and 90% quartiles of the distributions of the error in
historical forecast.
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The density modeled with NRLMSISE from these different solar activity condi-

tions is shown in Figure 4.4. SpOCK assumes that the different quartiles of F10.7

and Ap are related, such that when, for example, the 20% quartile for F10.7 is used,

the 20% quartile for Ap is also used. While this may not be true, with more research

being needed on this, it bounds the problem. The 90% quartile of the distribution

3 days ahead is ∼ 50% higher than the 10% quartile. This means that if SWPC re-

peated the same predictions a large number of times and that these predictions were

compared to the actual values, 80% of the predictions would result in differences in

density that are less than ∼50%, which is large compared to the ∼20% uncertainty

in the initial density, described by Alfriend et al. (1999).
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Figure 4.4:
Atmospheric density at the position of the spacecraft as a function of fore-
cast time modeled by NRLMSISE from the quartiles of the distributions
of the error in historical F10.7 and Ap forecast (shown in Figure 4.3).
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SpOCK uses real time predictions from SWPC and adds uncertainties to assess

the risk of collision under different solar conditions. SpOCK propagates different en-

sembles, consisting of thousands of members, through different thermospheres. Each

individual ensemble is propagated through NRLMSISE driven by the same drivers, so

the members can be realistically compared to each other. Different ensembles repre-

sent different density drivers, such that the dependence of the probability of collision

on the density drivers can be explored. These simulations are run in parallel, which

enables a quick evaluation of the range of possible values of the predicted probability

of collisions, instead of one unique value as it is currently done in a typical conjunction

risk assessment analysis. Examples are shown in Section 4.4.

4.2.3 Modeling other uncertainties

When assessing the true risk of collision, all uncertainties must be taken into

account. Uncertainties in the initial position and velocity are important because of the

limited availability and accuracy of tracking the object. The thermospheric density

is the main source of uncertainties in the propagation of the spacecraft but, as shown

in Equation 4.2, it is not the only parameter of the drag acceleration. Uncertainties

in the drag coefficient and the cross section area are not negligible either.

Drag coefficient

The coefficient of drag CD represents the transfer in momentum between the

molecules of the atmosphere and the surfaces of the satellite. It is a function of

the satellite shape and attitude, of the atmospheric conditions (temperature and

composition), and of the properties of the satellites surfaces. It usually decreases

with the altitude (Moe and Moe, 2005; Horsley , 2012).

In order to model uncertainties in the drag coefficient, SpOCK initializes the

properties of each surface of the ensemble members with drag coefficients following
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Gaussian distributions centered around the nominal values with standard deviations

specified as an extra dimension of the covariance matrices. Figure 4.5 shows an

example of the distribution of 5,000 ensemble members corresponding to a nominal

value of Cd of 2.2 with a standard deviation of 0.2.
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Figure 4.5:
Drag coefficient distribution for 5,000 samples representing an uncertainty
of 0.4 around a nominal value of 2.2.

Attitude

Modeling the uncertainty in the attitude for a controlled satellite that has a known

attitude control uncertainty consists in having ensemble members that drift with a

random angular velocity from a nominal attitude for a given time before going back

to the nominal attitude. This enables the simulation of the attitude determination

and control system of satellites that randomly drift from a nominal controlled atti-
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tude. Additionally, objects that are uncontrolled can be simulated by setting nominal

tumbling rates around the three axes, with uncertainties around those nominal rates

also specified.

Orbital elements

The uncertainties in the initial positions and velocities given in the covariance

matrices are usually formulated in ECI coordinates. However, they can also be ex-

pressed as classical orbital elements (altitude of the apogee, inclination, eccentricity,

true anomaly, RAAN, and argument of perigee) to allow the user to initialize the

orbits with orbital elements rather than with an ECI state.

Although these different uncertainties need to be taken into account in a realistic

collision risk assessment, this study focuses on exclusively modeling uncertainties in

the initial positions and velocities, as well as in the thermospheric density (described

in Section 4.2.2).
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Table 4.4:
Comparison of the cumulative probability of collision between SpOCK and
Alfano (2009).

N SpOCK Pc Alfano Pc ∆Pc / Pc * 100

Case 1 10,176,100 0.221528 0.217467140 1.87
Case 6 23,040,000 0.004199 0.004300500 2.36
Case 7 659,462,400 0.000163 0.000161462 0.95

4.3 Validation

To validate the conjunction assessment risk analysis algorithm in SpOCK, the

cumulative probabilities of collision computed for three different cases were compared

with results from Alfano (2009). More specifically, two LEO configurations (cases 6

and 7 in Alfano (2009)) and one GEO configuration (case 1 in Alfano (2009)) were

analyzed. The initial states and covariance matrices, included in Alfano (2009), were

used to initialize CARA in SpOCK. Alfano (2009) uses a similar CARA algorithm

as SpOCK’s. In all three cases, the time of close approach is 2 days after the epoch.

The dynamic model uses a spherical Earth with no perturbations. The goal here is

to validate the algorithm for computation of the probability of collision. SpOCK’s

propagator and its dynamic model were validated in Chapter II.

Table 4.4 summarizes the results for the cumulative probability of collision. The

relative difference is smaller than 3% for the three cases, proving that both algorithms

are in a good agreement. The small differences might be due to the fact that Alfano

(2009) uses an analytical equation to propagate the covariance matrices from current

epoch to time of closest approach.

Figure 4.6 shows the cumulative distribution functions computed by SpOCK for

cases 1 (top), 6 (center), and 7 (bottom). Similar figures are available in Alfano (2009)

but are not shown here because they correspond to probabilities determined with a

different method than the Monte Carlo approach. Therefore, a direct comparison of

the cumulative probability as a function of time is not possible. However, the trends
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of the figures in Alfano (2009) are very similar to the ones presented in Figure 4.6.

Case 1 represent a nonlinear relative motion that causes the probability to increase

again a few hours after the first close approach. Cases 6 and 7 correspond to a linear

relative motion where the probability of collision starts growing a few minutes before

the unperturbed close approach, with a faster increase for case 6.
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Figure 4.6:
Cumulative probability of collision during the half orbit spanning the
unperturbed close approach. The vertical red dashed line represents the
time of close approach between the two unperturbed orbits. The initial
states and covariance matrices are taken from Alfano (2009): top is case
1, center is case 6, and bottom is case 7.
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4.4 Results and discussion

4.4.1 Effects of atmospheric drag on the probability of collision

To understand the effects of atmospheric drag on the probability of collision, a

collision between two satellites with slightly different velocities is considered. Both

spacecraft start at their respective initial position and Satellite 2 is assumed to have

the higher speed of the two satellites. The distance between the initial positions and

the conjunction point are respectively noted D1 and D2.

If the density of the atmosphere is actually higher than predicted, the increase

in atmospheric drag will have more effect on Satellite 2 than on Satellite 1 because

Satellite 2 moves faster. In other words, Satellite 2’s altitude will decrease faster than

Satellite 1’s, so Satellite 2’s speed will increase more than Satellite 1’s. Therefore,

Satellite 2 will reach the distance D2 before Satellite 1 reaches the distance D1.

Because of this differential change in speed, Satellite 2 will get to the conjunction

point before Satellite 1 so the two satellites will potentially not collide anymore.

Similarly, two spacecraft that are not predicted to collide could actually collide if the

density is different from the prediction.

In the Monte Carlo method, a large number of such situations are considered.

The total number of collisions in the Monte Carlo procedure can therefore directly

depend on the density of the atmosphere in which the spacecraft orbit. In other

words, uncertainties in the predictions of the thermospheric density have an effect on

the probability of collision.

4.4.2 Effects of uncertainties in the thermospheric density predictions on

the probability of collision

In Section 4.2.2, the methodology to model uncertainties in the atmospheric den-

sity resulting from uncertainties in the predictions of the indices F10.7 and Ap was
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explained. In this section, an example of a possible collision is described to illustrate

how the density can affect the probability of collision.

Encounter geometry

SpOCK was run to assess the risk of collision between two hypothetical objects

using the algorithm presented in Section 4.2. Both spacecraft orbit at 400 km with a

30◦ and 60◦ inclination respectively. The RAAN is 0◦ for Satellite 1 and 30◦ for Satel-

lite 2. The ECI states and covariance matrices at the initial epoch (12 am Universal

Time Coordinated (UTC) on November 26th, 2016) are included in Appendix A. A

first collision risk assessment was performed using the median values of the F10.7 and

Ap predictions of Figure 4.3 (50% quartile in green). 50,000 ensemble members were

propagated for each of the two satellites so the total number of possible encounters

is 2.5 billion. According to Dagum’s Equation 4.7, this number of samples allows the

assessment of a probability of collision as low as 4 × 10−5 with a 1% relative accu-

racy and a 95% confidence level. The orbits are propagated with a 10 second time

step and the gravitational perturbation due to the equatorial bulge (J2) is taken into

account. The density is modeled using the predictions of F10.7 and Ap by SWPC

shown in Table 4.3. This scenario represents a situation where the mission operator

wants to assess the risk of collision on November 26th for the following three days.

The two orbits are illustrated in Figure 4.7. The green line represents the orbit of

Satellite 1 (30◦ inclination) and the magenta line represents the orbit of Satellite 2

(60◦ inclination). The closest approach is predicted to occur over the Pacific Ocean.
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Figure 4.7:
2D visualization of the two orbits. Satellite 1 (green line) orbits at 400
km with a 30◦ inclination and a 0◦ RAAN. Satellite 2 (magenta line)
orbits at 400 km with a 60◦ inclination and a 30◦ RAAN.

The relative distance over the first two days between the two unperturbed orbits

is presented in Figure 4.8. The time of closest approach is predicted ∼36 hours after

epoch, at noon on November 27th.
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Figure 4.8:
Distance between the two unperturbed orbits over the first two days of
the propagation. The close approach occurs on November 27th at 12 pm.

The geometry of encounter is illustrated in Figure 4.9. Three 10 s time steps are

represented around the time of closest approach. Object 1 is represented by a square

(smaller inclination) and Object 2 by a circle (higher inclination). The time of closest

approach is predicted to be at 12:00:00.104, at ∼ 21.75◦N latitude.
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Figure 4.9:
Geometry of encounter. Object 1 (30◦ inclination) is represented as square
and Object 2 (60◦ inclination) as a circle.

Collision risk assessment

The minimum distance under which a close approach between the two unperturbed

orbits was flagged was 10 km. Therefore, if the two spacecraft O1 and O2 got close

to each other by less than 10 km then SpOCK’s Monte Carlo algorithm presented in

Section 4.2.1 assessed the risk of collision for this close approach. The sum of the two

spacecraft radii was 1.3 m, implying that any situation with a distance between an

object Om,1 and an object On,2 smaller than 1.3 m was recorded as a collision.

The probability of collision was 1.051 × 10−4, right above the threshold for a

collision avoidance maneuver used by NASA (10−4). The distribution of the time of

closest approach for each collision between a perturbed object Om,1 and a perturbed

object On,2 is shown in Figure 4.10. The 50% width of the distribution (defined the
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difference between the 75% and the 25% quartiles) is 164 ms, which represents the

uncertainty in the time of closest approach. This uncertainty is particularly small

because of the encounter geometry. For example, if the inclinations of the two orbits

were similar, the velocities at conjunction would be almost parallel to each other.

Since uncertainties are usually greater in the along-track direction, the range of values

for the time of close approaches increases for such a parallel conjunction. This will

be shown in Section 4.4.3.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Seconds since 2016-11-27 12:00:00.104

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
e
rc

e
n

ta
g

e
 i
n

 b
in

 (
%

)

50% width = 1.64e-01 s

Figure 4.10: Distribution of the time of close approach for all conjunctions.

To demonstrate the effects of uncertainties in the thermospheric density on the

probability of collision, the risk of collision was assessed with the different densities

shown in Figure 4.4. More specifically, nine cases were evaluated for collision risk

assessment. Each case corresponds to the probability of collision between the two

objects orbiting in an atmosphere whose density is represented by one of the nine

quartiles of Figure 4.4.
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Table 4.5:
Time and distance of close approach for different atmospheric density sce-
narios.

Quartile of the predicted density distribution TCA DCA (m)

10% 2016-11-27 12:00:00.311 125
20% 2016-11-27 12:00:00.213 106
30% 2016-11-27 12:00:00.182 91.2
40% 2016-11-27 12:00:00.124 64.3
50% 2016-11-27 12:00:00.104 58.0
60% 2016-11-27 12:00:00.075 42.6
70% 2016-11-27 12:00:00.047 26.7
80% 2016-11-27 11:59:59.989 1.61
90% 2016-11-27 11:59:59.914 38.2

The time and distance of close approach between the two unperturbed orbits, i.e.,

using the nominal orbital parameters, for each scenario are represented in Table 4.5.

The unperturbed orbits are not predicted to collide because the distances at closest

approach are greater than 1.3 m. But they are flagged to be investigated due to the

distances being less than 10 km.

The higher the density, the more drag there is on the spacecraft, which leads to

a lower orbital altitude and thus a higher orbital speed, resulting in earlier closest

approaches. This can be noticed in Table 4.5 where the time of close approach

gradually decreases from the 10% quartile to the 90% quartile by ∼ 400 ms.

Figure 4.11 shows the positions of the two spacecraft on November 27th at 12:00:00

for the nominal orbit condition for the nine different thermospheric conditions. This

corresponds to the time step preceding the close approach for all quartile scenarios,

except for the 80% and 90% quartiles cases for which it corresponds to the time

step following the encounter. The increasing delay between this snapshot and the

encounter from the 70% quartile scenario to the 10% quartile appears clearly in Figure

4.11. Because the closest approach for the 80% and 90% quartile cases occurred

before the time of this snapshot, the red and purple markers are located beyond the

conjunction point (not represented in the Figure for clarity).
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Figure 4.11:
Snapshot of the unperturbed orbits O1 (square) and O2 (circle) at
12:00:00 pm on November 27th, 2016. The two objects are about to
collide for the 10%, 20%, 30%, 40%, 50%, 60%, and 70% quartile sce-
narios and have just collided for the 80% and 90% quartile scenarios.

Added to the uncertainty of the time of closest approach between ensembles of

a same scenario (160 ms, Figure 4.10), the total uncertainty on the time of close

approach is ∼ 560 ms. This is a small uncertainty and it does not cause any concern

for operations because maneuvers are planned hours in advance. However, this short

uncertainty is due to the encounter geometry, where the 2 objects approach with non

parallel velocities. For parallel conjunctions, this uncertainty grows dramatically, as

it will be shown in Section 4.4.3.

Although the effects of density uncertainties on the time of closest approach are

small for this geometrical configuration, the effects on the probability of collision

are much more important. This is shown in Figure 4.12. Risks of collisions are

usually assessed using a single prediction of the thermospheric density, ignoring any
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uncertainties in the forecast. Figure 4.12 demonstrates the errors resulting from such

an approach. The x axis corresponds to the time of closest approach between the

two unperturbed orbits from Table 4.5, and the y axis to the probability of collision

associated with the close approach. The horizontal red dashed line corresponds to

the probability of collision threshold (10−4) above which a maneuver is typically

recommended.

The scenario corresponding to a thermospheric density predicted from the median

distribution is represented in green and results in a probability of collision of 1.051×

10−4, as shown previously. The maximum probability of collision is obtained with

the 70% quartile scenario (1.129 × 10−4). Although the 40%, 50%, 60%, 70%, and

80% quartile cases lead to probabilities of collision above the maneuver threshold, the

10%, 20%, 30%, and 90% quartile scenarios result in probabilities of collision lower

than this threshold, reaching values as low as 6.575 × 10−5 and ∼ 9 × 10−5. This

corresponds to a relative difference of 25-30% with the probability of collision from

the 60% and 70% quartile scenarios.
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Figure 4.12:
Probability of collision as a function of unperturbed time of closest ap-
proach for different solar activity conditions.

This analysis shows that uncertainties in the prediction of the thermospheric den-

sity can lead to important errors on the probability of collision if only the nominal

prediction is considered for the collision risk assessment, even if the conjunction oc-

curs only 36 hours after the epoch. More specifically, it proves that although 40%

of the possible scenarios for the predicted density (40% to 80% quartiles) lead to

probabilities of collision above the collision avoidance maneuver threshold, there is

also high probability that the actual density is such that the probability of collision

is lower than this threshold. This is represented by the 10%, 20%, 30%, and 90%

quartile scenarios, which in other words imply that there is a 30% chance (all scenario

with densities below the density of the 30% quartile) added to a 10% chance (all sce-
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nario which density is above the density of the 90% quartile) that the probability of

collision is ∼ 25-30% lower than expected.

4.4.3 Probability of collision errors due to a miss prediction of a solar

storm

In this section, a different problem is analyzed. The goal in the previous section

was to study the effects of uncertainties in the prediction of the atmospheric density

on the probability of collision. This section studies the impact of a geomagnetic storm

on the probability of collision.

For this analysis, the geomagnetic storm occurring on March 17th, 2015 was stud-

ied. Two orbits are propagated for two days, starting on March 16th. The encounter

geometry corresponds to a parallel path conjunction: both orbit are at an inclination

of 45◦ at 400 km. Object 2’s eccentricity is slightly higher than Object 1’s eccentric-

ity (0.00002 and 0.00001 respectively). This is a particularly interesting configuration

as the assumption of short time of encounter used in many collision risk assessment

algorithms does not hold for this parallel conjunction geometry.

The geomagnetic index Ap was reported to reach values as high as 200 on March

17. The orbit averaged density modeled at the position of the satellites using NRLMSISE

is shown in Figure 4.13. The red line shows the density modeled from the actual F10.7

and Ap and the blue line represents the density modeled with keeping F10.7 and Ap

constant to the initial value on March 16th.

To study the effect of the storm on the probability of collision, two simulations

were made. The first one used the actual solar activity conditions to model the

atmospheric density (red line in Figure 4.13). The second one used a constant solar

activity for the two days of the simulations (blue line in Figure 4.13). This simulation

corresponded to a situation without a geomagnetic storm. For both runs, the risk of

collision was assessed by SpOCK to compare the probability of collision and the time
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Figure 4.13:
Orbit average density at the position of the spacecraft with the geomag-
netic storm (red) and without the geomagnetic storm (blue).

Figure 4.14 shows the cumulative probability distribution function as a function

of time for both simulations, defined as the total number of recorded collisions as a

function of time, divided by the total number of possible conjunctions. Consequently,

the total cumulative probability of collision at the end of the span is equal to the

probability of collision NT/N used so far in the study. The red line corresponds to

the simulation with the geomagnetic storm, and the blue line without it. The vertical

dashed lines represent the times of closest approach between the unperturbed orbits,

which are also indicated in the top left corner of the graph.
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The conjunction occurs sooner in the presence of the storm by ∼ 2 seconds. This

is due to a stronger drag because of the increase in density resulting from the effects

of the geomagnetic storm on the thermosphere. Therefore, the satellites orbit with

higher velocities and the close approach occurs sooner than without the storm.

The probability of collision in the absence of the storm is slightly above the ma-

neuver threshold (1.13× 10−4). However, with the storm, the probability of collision

is 8.80× 10−5, which is under the maneuver threshold. This ∼ 30% difference in the

probability of collision not only demonstrates the important effect of the storm on

the probability of collision, but it also shows that if on March 16th, the space weather

models had not predicted the storm to occur a day later, the predicted probability of

collision would have been right above the maneuver threshold so the mission operator

would have probably been advised to perform a collision avoidance maneuver. This

miss prediction of the storm would have led to a false alert, which means that the

maneuver would have unnecessarily been carried out. This approach is not specific

to this storm but can be applied to any storm and shows not only that a storm can

greatly change the probability of collision but can also result in making the wrong

decision with regard to a collision avoidance maneuver.
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Figure 4.14:
Cumulative probability of collision as a function of time during the en-
counter. The scenario with the storm is in red and without the storm in
blue. The vertical dashed lines represent the times of closest approach
between the unperturbed orbits (indicated on the top left corner). The
collision avoidance maneuver threshold (10−4) is represented with a black
dashed line.

The influence of the minimum distance of collision on the relative change in prob-

ability of collision resulting from the effects of the storm on the thermospheric density

is shown in Table 4.6. The effects of the geomagnetic storm increase with the de-

crease of the minimum distance of collision: the relative difference in the probability

of collision increases with the decrease of the minimum distance (so does the absolute

difference, not shown in Table 4.6).

The storm perturbed the orbits by increasing the distance at closest approach

between two objects in some cases, and by decreasing the distance at closest approach

between two objects in other cases, as explained in Section 4.4.1. The decrease in

probability of collision shows that taking into account all possible conjunctions, the
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storm overall decreased the total number of encounters in this particular example. In

other words, there are more cases where it increased the distance at closest approach

from a value below the minimum distance (without the storm) to a value above the

minimum distance (with the storm) than cases where it decreased the distance at

closest approach from a value above the minimum distance (without the storm) to a

value below the minimum distance (with the storm).

The fact that the probability decreases more as a result of lowering the minimum

distance of collision in the presence of a storm means that the number of conjunctions

decreases more with the storm than without the storm if the minimum distance of

collision is smaller. To understand why, consider a situation where the storm increased

the distance at closest approach from 1.5 m (without the storm) to 4 m (with the

storm). The situation is recorded as a collision with and without the storm if the

minimum distance of collision if 5 m. If the minimum distance is now 2 m, this

situation is still recorded as a collision without the storm but it is not recorded

anymore as a collision with the storm. In other words, the total number of collisions

without the storm is still the same with the new threshold but it is smaller by one

conjunction in the presence of the storm.

Consequently, for lower probability of collisions (10−5, 10−6 for instance), the

relative difference is expected to be even greater. An application of this study is

that there is often an unknown on the minimum distance of collision to set for the

evaluation of the probability of collision. Recall that this distance corresponds to the

sum of the two object radii only if the objects are spherical, which is not the case

most of the time, particularly if the objects are satellites. Satellites can also have

tethers or booms, such as the CHAllenging Mini-satellite Payload (CHAMP) satellite.

Therefore, the attitude of the satellite has a direct influence on the minimum distance

of collision. Unfortunately, a perfect knowledge of the attitude is impossible, resulting

in uncertainties on the minimum distance of collision. This analysis showed that the
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Table 4.6:
Probability of collision with and without the geomagnetic storm for differ-
ent values of the minimum distance of collision.

Min dist. collision (m) Pc with storm Pc without storm Relative difference

5 0.001701 0.001559 9.1%
2 0.000338 0.000276 22.5%

1.2 0.000113 0.000088 28.4%
1.0 0.000073 0.000056 30.4%

effects of a miss prediction of a storm can vary with the attitude of the spacecraft at

the time of closest approach.
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4.5 Conclusion

The Conjunction Assessment Risk Analysis algorithm developed in SpOCK was

first presented. It uses Monte Carlo procedures to predict the probability of colli-

sion from the covariance matrices of the two objects at epoch. SpOCK propagates

ensemble members that represent small perturbations of the initial positions and

velocities by modeling the perturbing forces such as the perturbations of the grav-

itational potential due to the asphericity and non-uniform mass distribution of the

Earth, the atmospheric drag, the solar radiation pressure and the gravitational per-

turbations from the Moon and the Sun. More specifically, it uses a thermosphere

model, NRLMSISE or GITM, to accurately model the atmospheric density at the po-

sition of the spacecraft, hence the drag acceleration. While propagating the perturbed

orbits, SpOCK screens for collisions between all ensemble members. Specifically, it

interpolates the minimum distance between two objects with fifth order polynomials.

If this distance is smaller than the sum of the two object radii, it records the situation

as a conjunction. After repeating this operation for all ensemble members, SpOCK

divides the total number of encounters by the total number of cases, usually at least

hundred of millions, which gives the probability of collision.

Although atmospheric drag is one of the main perturbing forces for LEO orbits

(representing 90% to 95% of the force in the in-track direction), uncertainties in the

density are usually not taken into account in collision risk assessment algorithms.

Important uncertainties rely on the atmospheric density because the coupling of the

upper atmosphere with the Earth space environment (the ionosphere and the mag-

netosphere) is not well understood, and because the solar activity, the main driver of

this coupled system, is itself really hard to predict. CMEs, solar flares, CIRs cause

important and hardly predictable disturbances of the atmospheric density. Therefore,

ignoring all these effects results in important errors in the prediction of the probability

of collision. After introducing the approach for taking into account the uncertainties
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in the solar activity for the determination of the probability of collision, the effects of

these uncertainties on the risk of collision were studied. More specifically, an example

demonstrated that errors up to 30% are likely to be made if the density goes below

the 30% quartile of the predicted distribution or above the 90% quartile. This large

range of possible values for the density makes it very likely that the actual probabil-

ity of collision deviates from the single expected value if only the nominal prediction

of the density is used to assess the risk of collision. The example showed that this

can result in mission operators making the wrong decision with regard to collision

avoidance maneuvers.

Finally, the effects of geomagnetic storms on the probability of collision were

illustrated with an example of a parallel conjunction between two spacecraft two days

after epoch. On March 17th, 2015, a strong storm hit the upper atmosphere, with

values of the geomagnetic index Ap exceeding 200. Density enhancements by almost

50% at 400 km strongly increased the drag, modifying the orbits of the satellites.

The effects on the risk of collision led to differences up to 30% in the probability of

collision, compared to a situation without a storm. This relative difference was proved

to increase as the minimum distance of collision decreases. This analysis demonstrates

the importance of predicting geomagnetic storms. In this example, the miss prediction

of the geomagnetic storm resulted in a false alert because the probability of collision

without the storm was above the threshold for a collision avoidance maneuver.
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CHAPTER V

Conclusion

Atmospheric drag is the most important perturbing force for LEO orbits (after

gravity). Consequently, large uncertainties in this force result in large uncertainties

in the positions and velocities of satellites, and cannot be neglected for high accu-

racy orbit propagations. However, the risk of collision between space objects is often

assessed by neglecting the uncertainties in the atmospheric density. This thesis pre-

sented an algorithm that takes into account uncertainties in the atmospheric density

for predictions of the risk of collision.

The Probability Distribution Function model was developed to predict the solar

wind speed 5 days in advance. The solar wind speed is a driver of the Earth’s upper

atmosphere and has an influence on its neutral density, which in turn affects the drag

on spacecraft. Therefore, predicting the solar wind speed is an important and neces-

sary step in predicting the atmospheric drag. In addition to predicting the solar wind

speed, the PDF model quantifies the uncertainties associated with the main predic-

tion, which can be directly converted into uncertainties in the atmospheric density,

hence into uncertainties in the drag acceleration. The most important conclusions

that can be drawn from the PDF model are (Chapter III):

1. The first version of the PDF model focused on the prediction of the background

solar wind speed, which corresponds to times when the solar activity is quiet or
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moderate.

2. The PDF model uses a linear combination of probability distribution functions

based on the current solar wind speed and trend with the speed from approxi-

mately 27 days ago. These PDFs can be used to generate ensemble prediction

scenarios for the solar wind speed or to assign an uncertainty on the prediction

based solely on the median speed.

3. The PDF Model performs better than the WSA Model for one-day ahead predic-

tions. For longer prediction horizons, both models perform about the same. For

2008, the last solar minimum, the PDF Model performs better than the WSA

Model for all prediction horizons, with a 15 km/s difference in the accuracy of

the predictions.

4. The second version of the PDF Model allows for the prediction of high speed

events, which are particularly important because they cause the most important

disturbances of the atmospheric density, consequently of the drag acceleration.

5. To predict the peak value of the speed, PDFs of the amplitude of the peak were

calculated as a function of the maximum slope before the peak. The distribution

of the time it takes for the speed to increase from the beginning of the peak to

the maximum of the peak was used to predict the time of the peak.

6. It was found that 60.4% of the positive predictions (prediction that a peak will

occur) were correct, while 91.4% of the negative predictions (prediction that a

peak will not occur) were correct. 20.3% of the peaks in the speed are found

by the model. The percentage increases to 33.6% when there is an associated

peak in both the solar wind density and IMF magnitude before the increase in

the solar wind speed. The number of false positives is more than three times

smaller for the PDF model compared with the WSA model.
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7. Ensemble predictions of high speed events by the PDF model provide the fore-

cast community with an interval of uncertainty on the prediction. The study

showed that on average, the observations were in between the 25%-75% quar-

tiles ∼ 60 hours out of 120 hours and in between the 10%-90% quartiles ∼ 85

hours out of 120 hours. This can in turn give an interval of uncertainty on the

prediction of the atmospheric density, to ultimately quantify uncertainties in

the drag acceleration.

To predict the trajectories of spacecraft orbiting the Earth under the influence of

atmospheric drag, the Spacecraft Orbital Characterization Kit was developed. This

tool enables a highly accurate prediction of satellites motions. The numerical inte-

gration of SpOCK uses a comprehensive modeling of the dynamics of spacecraft in

orbit by taking into account the perturbing forces acting on the satellite. Specifically,

the non-spherical portion of the mass distribution of the Earth is modeled with a de-

composition of spherical harmonics for the gravitational potential. Moreover, SpOCK

uses thermospheric models (NRLMSISE and GITM) to derive the atmospheric den-

sity at the position of the spacecraft, allowing for an accurate representation of the

atmospheric drag. Results showed the error resulting from neglecting perturbing

forces and from integrating the trajectories with time steps that were too large. In

addition to modeling the motion of satellites, the different functionalities of SpOCK

were presented. For instance, the coverage of the three ground stations that commu-

nicate with the CYGNSS observatories was computed with the determination of the

access times over a day. The precession of the ascending node due to the aspheric-

ity of the Earth was demonstrated over a 7 day simulation. The orbit-average solar

power of a 1U CubeSat in a polar orbit with wings at different angles was derived to

study the influence of the spacecraft geometry on the solar power generated by the

solar cells of the satellite. The influence of seasons and of the precession of the nodes

were shown too. Finally, a demonstration of SIFT was made. This algorithm pre-
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dicts the intersection of the CYGNSS observatories’ specular points trajectories with

the path of tropical storms forecast by NOAA. It provides support to the CYGNSS

mission operation center in sending the commands a day and half in advance to tell

the observatories when to switch to the higher resolution mode in order to take more

accurate measurements of the winds in the cyclones. SpOCK was validated by com-

paring the inertial positions and velocities with results from HPOP within STK from

AGI. Specifically, the ephemerides after one day of propagation were compared for

three different orbits: Low Earth Orbit (altitude = 380 km), High Elliptical Orbit

(eccentricity = 0.74, semi-major axis = 26,553 km), and Geostationary Orbit (al-

titude = 35,786 km). The complete force model was validated by evaluating the

perturbing forces independently. The comparison showed sub-meter differences be-

tween SpOCK’s and HPOP’s positions, except for the validation of the drag model in

the LEO configuration for which a difference of 10 meters was found, probably due to

a difference in the modeling of the density between the two propagators. Differences

in velocities did not exceed several mm/s (Chapter II).

Initially designed for mission design and analysis, SpOCK was then improved for

the assessment of the risk of collision between space objects. As the population of

objects in orbit around the Earth dramatically increased in the past decade, the risk

of collisions with operational satellites and astronauts has become a serious threat,

highlighting the importance of accurately predicting when such collisions are likely to

occur. The Conjunction Assessment Risk Analysis algorithm developed in SpOCK

was first presented in Chapter IV. Monte Carlo procedures are used to predict the

probability of collision from the covariance matrices of the two objects at the initial

epoch. SpOCK propagates ensemble members, which represent small perturbations of

the initial positions and velocities. While propagating the perturbed orbits, SpOCK

screens for collisions between all ensemble members. Specifically, it calculates the

minimum distance between two objects with fifth order polynomials. If this distance
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is smaller than the sum of the two object radii, it records the situation as a conjunc-

tion. After repeating this operation for all ensemble members, SpOCK divides the

total number of encounters by the total number of cases, usually at least hundreds of

millions, which gives the probability of collision. The highly populated altitude regime

below 800 km represents a particular challenge because atmospheric drag considerably

perturbs the trajectories of objects. Large uncertainties in the drag acceleration are

the results of important uncertainties in the atmospheric density. Ignoring the effects

of uncertainties in the atmospheric density results in important errors in the predic-

tion of the probability of collision. Despite these considerations, the risk of collision

is usually assessed by neglecting the uncertainties in the atmospheric density. After

introducing the approach for taking into account uncertainties in the atmospheric

density in the determination of the probability of collision, their effects on the risk

of collision were studied. An example showed errors up to 30% in the probability of

collision if the density would go below the 30% quartile of the predicted distribution

or above the 90% quartile. This proved that the actual probability of collision can

deviate from the single expected value using solely the nominal prediction of the den-

sity. The example demonstrated that this approach can result in mission operators

making the wrong decision with regard to collision avoidance maneuvers. Finally,

the effects of geomagnetic storms on the probability of collision were illustrated with

an example of a parallel conjunction two days after epoch. On March 17th, 2015,

a strong storm hit the upper atmosphere, with values of the geomagnetic index Ap

exceeding 200. Density enhancements by almost 50% at 400 km strongly increased

the drag, modifying the orbits of the satellites. The effects on the risk of collision

led to differences up to 30% in the probability of collision, compared to a situation

without a storm. This relative difference was proved to increase as the minimum dis-

tance of collision decreases. This analysis demonstrated the importance of predicting

geomagnetic storms. In this example, the miss prediction of the geomagnetic storm
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resulted in a false alert because the probability of collision without the storm was

above the threshold for a collision avoidance maneuver (Chapter IV).

The ultimate goal of this research is for SpOCK to support mission operators in

making the correct decision with regard to a potential collision avoidance maneuver.

The thesis demonstrated that uncertainties in the atmospheric density result in large

errors in the prediction of the probability of collision. Further studies will investigate

the dependence of the encounter geometry on the effects of such uncertainties. Fi-

nally, SpOCK considers the objects to be spherical when evaluating the probability of

collision. The algorithm will be improved to take into account the exact geometries of

the satellites so that the determination of the probability of collision is more accurate.
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APPENDIX A

Initial states and covariance matrices

Distances are expressed in meters, and time in seconds.
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