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Abstract 

Noise is one of the most common occupational exposures in the United States; up to 22 

million workers are exposed to dangerous noise levels each year.  Excessive noise exposure can 

lead to noise-induced hearing loss (NIHL). Exposure to high levels of noise may also be a 

contributing factor for a number of non-auditory outcomes, including injuries, cardiovascular 

disease, stress, and depression. This dissertation research focused on improving our 

understanding of the relationship between occupational noise exposure and NIHL by completing 

three distinct but related projects. 

Project 1 investigated the feasibility of using smart devices (iPods and iPhones) to 

accurately measure occupational noise in laboratory experiments and real-life workplaces. This 

project was divided into four experiments, three of which took place in a controlled laboratory 

setting, and one of which was a field test of the devices in two groups of workers. Experiment 1 

demonstrated that certain combinations of applications and microphones could provide 

measurements within +/ 2.0 A-weighted decibels (dBA) of a reference noise level. Experiment 2 

showed that the best-performing microphone and application combinations could provide 

measurements within +/- 2.0 dBA of a reference level across different generations of devices.   

Experiment 3 demonstrated that the 8-hr time weighted average (TWA) measured by the smart 

devices was within +/- 1.5 dBA of a paired noise dosimeter. Finally, experiment 4 determined 

that, on average, smart devices overestimated workplace exposures by up to 2.2 dBA among 

workers exposed to highly variable noise. 



 xiv 

Project 2 developed a job-exposure matrix (JEM) for every occupation in the United 

States.  This was done by collecting data from the government, private, industry and the 

published literature. From this dataset 748,598 measurements made using the Occupational 

Health and Safety Administration’s (OSHA) Permissible Exposure Limit (PEL) were used to 

impute exposures for occupations without measurement data. Each measurement was assigned a 

job title based on the Bureau of Labor Statistics’ (BLS) standard occupational classification 

(SOC) system. Because this classification system is hierarchical, it was possible to impute values 

for SOCs using SOCs where data was available. Of 443 SOCs, 19% and 74% were estimated to 

have noise exposures >85 dBA and >80 dBA, respectively, although many SOCs had wide 

credible intervals, indicating a significant amount of uncertainty around the point estimates.  

 Project 3 compared the ability of the OSHA PEL and the National Institute of 

Occupational Safety and Health’s (NIOSH) Recommended Exposure Limit (REL) to predict 

NIHL. Noise exposures were estimated for a previously established cohort of construction 

workers followed for 10 years using both the PEL and REL metrics. These exposure estimates 

were used in mixed models predicting hearing threshold levels (HTLs). Akaike information 

criterion (AIC) was calculated to evaluate model fit. The modeled estimates were also compared 

to hearing loss estimates from an International Organization of Standards (ISO) NIHL model. In 

all but one instance, the models using the REL were found to have a better model fit. The mixed 

models predicted more hearing loss than the corresponding ISO model; however, the REL 

showed closer agreement to the corresponding ISO model than the PEL. 

 The completion of these projects have made it easier to collect and use occupational noise 

measurements for epidemiological purposes.  In addition, this research will help inform best 



 xv 

practices for collecting occupational noise measurements to that they can be used to better 

predict NIHL. 
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Chapter 1 - Introduction 

Introduction 

 
Noise is a generic term used to describe unwanted sound.  Depending on the frequency, 

intensity, and source of noise, exposures can be merely an annoyance or a major detriment to 

human health resulting in not only hearing loss but also increased risk of cardiovascular disease 

and injury.1–4 Noise in community environments can result from many different sources, 

including road traffic, aircraft, construction sites, and heavy industry.5 Exposure to noise in the 

workplace typically occurs at much higher sound pressure levels than in communities. An 

analysis of self-reported data from the National Health and Nutrition Examination Survey 

(NHANES) estimated that as many as 22 million workers are exposed to hazardous noise each 

year.6  The number of cases of noise induced hearing loss (NIHL) is difficult to track. The 

Occupational Health and Safety Administration (OSHA) only began to require employers to 

record NIHL as a specific category of occupational disease in 2002; prior to this date hearing 

loss was only recorded if it resulted in an employee missing a day of work, which rarely occurs.7 

An analysis conducted by Masterson et al. found that prevalence of hearing loss from 2006 to 

2010 ranged from about 12 to 25% for noise exposed workers depending on their industry of 

employment.8 A later study looking at the annual number of disability-adjusted life years 

(DALYs) attributed to hearing loss found that across all industries an estimated 2.53 healthy 

years were lost each year per 1,000 noise-exposed workers in the US.9 While the exact 

prevalence of NIHL is unknown it is reasonable to surmise that NIHL affects hundreds of 

thousands of workers in the US.   
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NIHL consistently ranking as one of the most common workplace injuries and has a 

significant economic impact, with an estimated cost of $242 million in worker's compensation 

alone in the United States every year.6  This is in addition to the estimated $1 billion spent by the 

Veterans Administration (VA) every year in compensation for NIHL and tinnitus.10 The exact 

financial cost of hearing loss, outside of direct compensation, is difficult to estimate, as there are 

very few published studies, and those that do exist use different assumptions in calculating the 

financial burden of hearing loss. A study in 2000 estimated that, depending on the age of onset, 

profound hearing loss (>70 dBA) could cost between $900 and $965,000 per adult. This study 

included lost productivity, special services, and direct medical costs in their calculations.11 The 

World Health Organization estimates that the total cost of hearing loss in the US may range 

between $30 and $300 billion.12 A more recent study estimated that if the  20% of  US hearing 

loss represented by NIHL was prevented it would save between $58 and $152 billion annually.13  

Measurement of Occupational Noise Exposures 

OSHA currently sets a permissible exposure limit (PEL) for occupational noise exposure 

at 90 A-weighted decibels (dBA) with a 5 dB exchange rate (ER), and 90 dB threshold as an 8 

hr-TWA. Measurements made using the OSHA criterion are denoted as average levels, LAVG .
14 

The ER is a value used to determine the allowable exposure time at a given level of noise 

exposure.  As an average exposure is increased by the ER the allowable exposure time is halved; 

conversely if a noise exposure is decreased by the ER, the allowable exposure time is doubled. 15 

The National Institute for Occupational Safety and Health (NIOSH) sets its Recommended 

Exposure Limit (REL) for noise at 85 dBA with a 3 dB ER, and with an 80 dB threshold as an 

8hr-TWA.  Measurements made using the NIOSH criterion are referred to as equivalent 

continuous average levels and denoted by the term LEQ. 16 The recommended standard put forth 
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by NIOSH does not account for technical and economic feasibility and as a result is not legally 

enforceable, while the regulation promulgated by OSHA is enforceable as well as having been 

determined to be economically and technically feasible. The criterion adopted by NIOSH is more 

protective as it has a lower exposure limit and a more conservative ER.  

Figure 1-1 illustrates the difference in allowable exposure time using the OSHA and 

NIOSH criteria. There is a substantial difference in allowable exposure time between the two 

criteria.  While the difference between 85 and 90 dBA criterion levels may not appear large, it is 

important to consider that, given the log scale on which decibels are computed, an increase in 3 

dBA results in a doubling in sound energy. At this time most other industrialized nations, 

including China and countries in the European Union, have adopted an 85 dBA exposure limit 

with a 3 decibel ER, essentially mirroring the NIOSH REL.15 

 
 

.  

Figure 1-1 Allowable exposure time using the OSHA and NIOSH noise criteria 
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Two different types of devices are typically used to measure broadband (i.e., not 

frequency-specific) occupational noise exposure.  The first is a sound level meter (SLM). These 

devices can vary from very simple units that only provide an instantaneous measure of noise 

levels to sophisticated devices capable of data logging measured levels over intervals of time and 

providing simple statistical measures.  There are two classifications for field-applicable SLMs: 

Types 1 and 2. Type 1 SLMs are considered precision, laboratory-grade instruments and are 

accurate within 1 dBA of a reference noise, type 2 SLMs are used for general purpose 

measurements and are accurate within 2 dBA of a reference noise.17 Type 2 SLMs are most 

commonly used by occupational health practitioners.  

While these devices can be placed in a worker's hearing zone (a 30 cm sphere around the 

worker’s head) for measurements of short duration, they are cumbersome and better suited for 

area noise surveys.14 To measure an individual worker's daily exposure, noise dosimeters are 

used.   As with SLMs, dosimeters are classified as Type 1 or Type 2 and can range from simple 

devices that only record the average noise level (LEQ or LAVG) over their run time to devices that 

can log average, minimum, maximum, and other noise metrics over time using multiple criteria 

simultaneously.17 

The microphones in both SLMs and dosimeters measure sound pressure in pascals (Pa) 

because the human ear can detect sounds from 0.00002 (20µPa) to 20 Pa the decibel (dB) 

notation is commonly used.  The decibel is a dimensionless measurement that is based on the 

logarithm of a ratio of the sound pressure level and a reference sound pressure level, which is 

usually 20µPa.18 Measurements are made across a wide frequency range typically 20-20,000 

hertz (Hz). Fletcher and Munson recognized that humans perceive some frequencies of noise 

better than others, based on this research several weighting factors were developed to adjust for 
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susceptibility of hearing loss at different frequencies.19 This has resulted in all modern noise 

measurement devices that measuring noise using A-weighted decibels (dBA). These devices can 

measure noise using  either a slow (1-second) or fast (0.125-second) measurement interval 

depending on the type of noise being measured.17 Typical sound level meters can measure noise 

levels up to 120 dBA.  Modern devices can integrate the measured noise exposure and provide 

an estimated 8-hr time weighted average (TWA) based on the threshold setting (i.e. the level of 

noise that must be reached before it is added to the overall dose), exchange rate (e.g. the 

doubling or halving time), and the criterion level. 

Type 1 and 2 dosimeters and SLMs typically cost hundreds to thousands of dollars.  

Because of the cost of purchasing SLMs and dosimeters there is a growing interest in utilizing 

ubiquitous personal handheld smart devices (e.g., smart phones, tablets, etc.) to measure noise 

exposure.  In 2014, Kardous and Shaw were the first to evaluate the feasibility of using these 

devices to measure noise in a laboratory setting and found that smart devices could be used to 

reliably measure noise exposure in some instances.20 A study released later that year by Nast et 

al. found the opposite to be true. 21 Because the number of smart devices continues to grow each 

year, one of the aims of this dissertation was to expand on the work conducted by Kardous and 

Shaw and further evaluate the feasibility of smart devices to supplement or replace noise 

dosimeters as the device used to measure occupational noise exposure.22  

Effects of Noise Exposure on Human Hearing 

The human ear is divided into three parts: the outer ear, middle ear, and inner ear.  The 

outer ear consists of the pinna, external auditory meatus (ear canal), and tympanic membrane 

(eardrum).  The pinna serves to focus the sound wave in to the ear cannel. The shape of the pinna 

amplifies sounds in the 2-4 kHz range by as much as 15 dB23. Once in the ear cannel, the sound 

wave vibrates the tympanic membrane (eardrum) which transmits the sound to ossicular bone 
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chain.24 The middle ear consists of three ossicular bones (the malleus, incus, and stapes) which 

transfer the sound wave from the air-filled cavities of the outer and middle ear to the cochlea, 

which demarcates the inner ear.25  The ossicles further mechanically amplify the frequency range 

of 2-4 kHz, which is why human hearing is more sensitive – and more vulnerable to noise 

exposure – in those frequencies 23. 

The cochlea is a fluid filled spiral-shaped tube in the inner ear which converts the 

physical energy of sound waves to electrical energy interpreted by the brain as sound. When a 

sound wave enters the cochlea it causes a compression of the fluid in the inner ear which creates 

a wave that passes over the basilar membrane.25 Depending on the frequency of the sound wave 

the fluid will compress different locations along the basilar membrane, which contains hair cells 

that are critical for hearing. Higher frequency sounds will compress fluid at the base of the 

membrane, while lower frequency sounds will compress fluid at the apex of the membrane. The 

compression of the membrane will bend stereocilia, which are organelles of the hair cells that 

generate nerve impulses which are then sent along the auditory nerve to the brain.25,26 

The most well-known health effect of hazardous noise is its effects on human hearing. 

NIHL is characterized by reduced hearing sensitivity at particular frequencies (3,000, 4,000, or 

6,000 Hz), with a recovery at 8,000 Hz27 and frequencies of 2000 Hz and below. It has been 

found that occupational exposure to 80 dBA of steady state noise over ten years produces very 

little hearing loss while 85 dBA for ten years will result in about 10 dB of hearing loss at the 

most sensitive frequencies.15 As noise levels increase, a greater amount of hearing loss occurs 

across all audiometric frequencies as seen in figure 1-2.  
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Figure 1-2 Estimated occupational noise induced permanent threshold shifts at various 

frequencies produced by 10 years or more of exposure to noise (Reprinted from the Noise 

Manual 5th Edition) 

Hearing loss can result from two different types of damage, conductive and sensorineural.  

Conductive hearing loss occurs when the outer or middle ear are damaged in such a way that it 

interferes with the sound wave entering the ear and being transferred to the cochlea.  This is less 

common in adults than sensorineural hearing loss and is primarily caused by infection, physical 

trauma from accidents or impulse noise.14 This type of hearing loss can often be treated by 

antibiotics or surgical procedures depending on the etiology of the condition causing hearing 

loss.28,29  Conversely, sensorineural hearing loss is caused by damage in the inner ear. This is 

most commonly caused by hazardous noise exposure; which can either be chronic continuous 

noise, or few (or even one) impulsive noise transients, and can also occur naturally as a person 

ages (presbycusis) and is exposed to noise outside of the workplace (sociocusis).30,31  Hazardous 

noise causes the stereocilia in the cochlea to shear off at the base and become fused into giant 
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cilia or disappear entirely. This reduces the electrical signals sent to the brain when a sound wave 

enters the inner ear resulting in irreversible hearing loss. 

Audiometric evaluations are used to determine the change in hearing over time, which 

may be the result of noise exposure during the interval between tests.  According to both the 

OSHA noise standard, and recommended practice, workers should receive a baseline audiogram 

before employment or being assigned to an area with hazardous noise. The test measures pure-

tone hearing threshold levels (HTLs) at various audiometric test frequencies (0.5, 1, 2, 3, 4, 6, 

and sometimes 8 kHz) after a quiet period of at least 14 hours. The worker is then given a 

follow-up audiogram annually. Each audiogram is compared to the baseline to determine if 

hearing loss has occurred. Figure1-3 shows an example of an audiogram demonstrating normal 

hearing (blue line) and a notch at 4,000 Hz (red line), as well as various gradations of hearing 

loss. 

 

Figure 1-3 An example of an audiogram for normal (blue) and abnormal hearing (red) 

Unlike other occupational exposures that may have noticeable acute health effects, NIHL 

develops over a long period of time in most cases. A temporary, reversible shift in audiometric 
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thresholds may occur before permanent NIHL occurs. However it is not known whether a 

temporary threshold shift may increase the risk of hearing loss later in life.26,32 On an individual 

level NIHL can greatly reduce a person’s quality of life by limiting their economic potential and 

isolating them from their family members and friends. 33,34  NIHL also creates a large economic 

burden for healthcare systems that treat those who have suffered hearing loss from hazardous 

noise exposure. Both the personal and societal burdens are preventable by properly controlling 

hazardous noise exposures.   

Non-Auditory Effects of Occupational Noise Exposure 

 
 Studies in a variety of industries over the past two decades have indicated that workers 

who are exposed to high levels of noise (>85 dBA, either as a TWA or as a brief exposure) 

experience injuries at higher rates than those exposed to low levels of noise.35–38  Workers who 

had their hearing impaired either by hearing loss or hearing protection were also found to have 

higher rates of injuries.  This may be due to the difficulty in communication or perceiving 

warning sounds in the workplace.39–44 Some studies suggest a combination of occupational noise 

exposure and NIHL can increase the risk of occupational accidents. 45,46  

Occupational noise exposure may also be associated with adverse cardiovascular health 

outcomes.  From a public health standpoint, hypertension affects about 67 million people in the 

US; while coronary heart disease (CHD) is currently the leading cause of death among men and 

women in the US, costing the US healthcare system billions of dollars each year.47 There is also 

evidence that noise exposure can result in increased hypertension many hours after the exposure 

has ceased.48,49  Several cross-sectional and cohort studies have found an association between 

chronic occupational noise exposure and hypertension.50–54  While increased blood pressure is a 

risk factor for CHD, studies have found an association between occupational noise exposure and 
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CHD when adjusted for increased blood pressure.4,49,55,56 Melamed et al. 1997 found that men 

less than 44 years old that were exposed to greater than 80 dBA during their work shift had 

higher levels of total cholesterol and triglycerides then men exposed to lower levels of noise. 

Additionally, men who were exposed to greater than 80 dBA and reported a high level of noise 

annoyance had a significantly higher mean cholesterol level (p=0.003) than those who were 

exposed to below 80 dBA and reported a low level of annoyance. 55 Virkkunen et al. 2005 

further speculated that the mechanism for noise-induced CHD goes through “the noise-stress-

metabolic syndrome pathway”.4  However, the authors acknowledged the difficulty in 

determining whether hypertension has a mediating or confounding effect on CHD 4  There is still 

insufficient evidence as to whether there is a mechanism where noise exposure increases the risk 

of CHD independent of hypertension status. 

 Finally, occupational noise exposure can also lead to increased psychological stress, both 

in and outside the workplace. 57,58  If left unaddressed, workplace stress can lead to depression, 

chronic fatigue, concentration, and sleep problems; all of which can decrease workplace 

efficiency and lead to more workplace accidents.57–60 Community noise can also make it difficult 

to fall asleep or stay asleep.61,62 Sleep disturbance is also a risk factor for cardiovascular disease 

(CVD) which further complicates the relationship between noise exposure and CVD. 

Motivation for Research 

 
 Despite the ubiquitous nature of noise exposures, there are still many gaps in our 

knowledge of occupational noise exposure. The vast majority of noise measurements take place 

in mining, manufacturing and other industrial settings.63 This is due to the fact that these 

occupational environments have obvious sources of hazardous noise. These industries often have 

the resources to establish and maintain hearing conservation programs which provide guidelines 
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to monitor exposures and maintain records of employee’s hearing levels. For example, OSHA 

requires that employers identify workers who are exposed to more than 85 dBA as an 8-hour 

TWA and provide hearing protection devices and yearly audiometric tests to monitor a worker’s 

hearing.64    However, many jobs in service, construction, and other industries have the potential 

for hazardous noise exposure and have not been adequately evaluated. Even in industries where 

noise monitoring has traditionally been conducted there are still gaps in our understanding of 

noise exposure profiles. This is due in part to the costs and time required to implement a robust 

noise monitoring program. 

 The second and third chapters of this dissertation pertains to research conducted to help 

lower the economic and technical barriers to collecting high quality noise exposure data. This 

was done by evaluating the feasibility of using commercially available personal handheld smart 

devices (e.g., smart phones.) and commercially available applications (“apps”) for these devices 

designed to measure noise exposure. Measurements made with smart devices, apps, and internal 

and external smart device microphones in laboratory and workplace settings were compared to 

traditional noise measurement instruments to assess the accuracy of measurements made with the 

smart devices. 

 The fourth chapter of this dissertation describes the development of a large dataset of 

occupational noise measurements and use these measurements to construct a job-exposure matrix 

(JEM) for all occupations in the US and Canada.  This was accomplished by collecting noise 

exposure data from the published literature, government agencies, consulting groups, and private 

industries. The collected data were cleaned and standardized to the Bureau of Labor Statistics 

(BLS) Standard Occupational Classification System (SOC). Taking advantage of the hierarchal 

structure of the SOC system, it was possible to use imputation to estimate noise exposure for 
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occupations that did not have any data allowing for the construction of a completed JEM that can 

be used by researchers and practitioners to estimate occupational noise exposures by job title.   

 The fifth chapter of this dissertation describes the reanalysis of a dataset from a cohort of 

construction workers followed for 10 years and described by Seixas et al. in 2012.65 Seixas et al 

used the NIOSH exposure assessment criteria (e.g., 85 dBA exposure limit and 3 dB ER) to 

calculate noise exposure for the workers in the study.  Hearing threshold levels were tracked 

throughout the study and linear mixed models were used to predict hearing threshold levels 

based on noise exposure and other factors.  There is some debate on whether the NIOSH criteria 

or OSHA criteria (e.g., 90 dBA exposure limit and 5 dB ER) is more predictive of NIHL risk. 

This debate is centered primarily on the difference in ER between the two criteria. Data and 

measurements available on the cohort provided an opportunity to recalculate the cohort’s noise 

exposure using the OSHA criteria, and to then compare the predictive power of the two noise 

metrics by comparing the corresponding model fit and comparing model predictions to the 

International Organization of Standards’ (ISO) standard models of NIHL.  

 The completion of the projects described in chapters two, three, and four have made it 

easier, less resource-intensive, and more financially feasible to conduct exposure assessments for 

noise.  It has also made it possible, for the first time, to synthesize noise measurements from 

multiple sources and use that information to better prioritize further noise sampling and predict 

hearing loss based on a person’s occupation.  The completion of the project in chapter 5 

contributes to the ongoing scientific debate regarding whether the 5 and 3 dB ER is more 

appropriate.  The project has important implications for the first two projects, as it will provide 

guidance for how measurements should be made using smart devices and it will also give insight 

into which measurement criterion in the JEM provides a better measure of exposure. 
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Chapter 2 -Improving the Accuracy of Smart Devices to Measure Noise 

Exposure  

Abstract 

 
Occupational noise exposure is one of the most frequent hazards present in the 

workplace; up to 22 million workers have potentially hazardous noise exposures in the US. As a 

result, noise-induced hearing loss is one of the most common occupational injuries in the United 

States. Workers in manufacturing, construction, and the military are at the highest risk for 

hearing loss. Despite the large number of people exposed to high levels of noise at work, many 

occupations have not been adequately evaluated for noise exposure. The objective of this 

experiment was to investigate whether or not iOS smartphones and other smart devices (Apple 

iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this 

experiment three different types of microphones were tested with a single model of iPod and 

three generations of iPhones: the internal microphones on the device, a low-end lapel 

microphone, and a high-end lapel microphone marketed as being compliant with the 

International Electrotechnical Commission’s (IEC) standard for a Class 2-microphone. All 

possible combinations of microphones and noise measurement applications were tested in a 

controlled environment using several different levels of pink noise ranging from 60 to 100 dBA. 

Results were compared to simultaneous measurements made using a Type 1 sound level 

measurement system.  Analysis of variance and Tukey's honest significant difference (HSD) test 

were used to determine if the results differed by microphone or noise measurement application. 
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Levels measured with external microphones combined with certain noise measurement 

applications did not differ significantly from levels measured with the Type 1 sound 

measurement system.  Results showed that it may be possible to use iOS smartphones and smart 

devices, with specific combinations of measurement applications and calibrated external 

microphones, to collect reliable, occupational noise exposure data under certain conditions and 

within the limitations of the device. Further research is needed to determine how these devices 

compare to traditional noise dosimeter under real-world conditions.  

 

Introduction 

 
Smartphones have become ubiquitous in the United States; in 2011 the US Census 

Bureau estimated that 73.5% of people over the age of 25 used smartphones.66  In addition to 

providing a convenient form of communication, these devices have the ability to run computer 

programs referred to as applications or “apps”.  Using the processing power of these devices 

many companies have applications that can be used to track a user’s behaviors, fitness and 

health.   

A large number of applications that may be useful to environmental health professionals 

and industrial hygienists are available from various sources.  Many of these apps provide a 

convenient way to record safety and health audits, look up regulations or exposure limits, or 

evaluate centrally-monitored exposure conditions (e.g., heat, weather conditions, or air pollution 

levels) on a mobile device.  Other applications are used as companions to external sensors that 

communicate wirelessly with the smartphone. One of the most common occupational exposures 

that smartphone applications are able to measure is noise, as every smartphone is built around a 

microphone designed to record voices for communication.  
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Noise is one of the most common occupational exposures.  It is estimated that over 22 

million people each year are exposed to levels of noise in excess of 85 A-weighted decibels 

(dBA) as a time weighted average (TWA).16
  Most professional sound level meters (SLMs) and 

noise dosimeters are costly to purchase or rent and often require proprietary software to analyze 

the collected measurements.  While it is unlikely that smartphones or smart devices will replace 

traditional noise measurement devices for compliance purposes, they have the potential to be 

used as low cost survey tools.  Additionally, these devices have immense value in providing 

“crowd sourced” data for environmental noise levels; in fact, several projects are currently 

underway that have attempted to map the noise of certain areas.67,68 Finally, there is a potential 

for these applications to be useful in developing countries or low income areas where cheaper 

versions of smartphones are available, but it is not feasible to use a professional sound level 

meter or noise dosimeter.22 

The potential opportunities presented by noise measurement applications are obvious 

given the prevalence of smartphones, their ease of use, and low cost compared to traditional 

noise measurement devices. Despite the best efforts of the developers, these applications have 

not been harmonized to any performance standard. The most comprehensive review of 

smartphone applications that measure occupational noise was conducted by Kardous and Shaw 

of the National Institute for Occupational Safety and Health (NIOSH) in 2014,20  and found that a 

small number of applications (4 out of 192 applications tested) offer the functionality and 

accuracy to be potentially useful for making occupational noise measurements. A subsequent 

study by another group found that even the best application evaluated was not accurate enough to 

make reliable noise measurements.69  
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In light of these conflicting results it is clear that further research into the accuracy of 

noise measurement applications is needed.  As Kardous and Shaw indentified, different models 

of the same smartphone platform (iPhone, Apple Inc, Cupertino, CA) performed differently.   

This is an issue, especially for Android-based devices, as hundreds of models of smartphones 

with differing components and operating systems are manufactured each year by multiple 

manufacturers, and each of these factors could potentially lead to large variations in 

measurements. In addition, it is not always easy or possible to calibrate the internal microphone 

of a smartphone, which can lead to systematic error in measured levels.  Some applications have 

a feature to automatically calibrate to a certain microphone, but the effectiveness of this feature 

has not been independently evaluated.  Finally, the size and fragility of the smartphone makes it 

impractical to be used as a personal noise exposure instrument by  mounting it in an individual’s 

hearing zone – a hemisphere around the person’s ear with a radius of approximately 18 inches.18  

If a smartphone’s microphone is physically covered by clothing or other materials it is likely that 

the smartphone would not make an accurate measurement.   

To further assess approaches to smartphone-based noise exposure assessment, we 

compared the accuracy of smartphone noise measurements across different smart devices and 

applications.  We also evaluated the accuracy of measurements made using the devices’ internal 

microphone, as well as using two external microphones, an approach which has been discussed, 

but not been utilized previously.  

Methods 

 
The three applications found by Kardous and Shaw (2014) to perform the most accurate 

A-weighted noise level measurements were selected for further consideration since they met the 

NIOSH criteria for functionality and accuracy in this experiment.  These applications were 
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NoiSee (EA LAB), SPLnFFT Noise Meter (Fabien Lefebvre), and SoundMeter (Faber 

Acoustical, LLC) all of which are available on the iTunes Store.20 Only applications available on 

the iOS operating system were considered.  This was done because the iOS operating system is 

more tightly controlled than other mobile operating systems and Apple devices have more 

uniform hardware than Android devices. This design choice will limit the generalizability of the 

results to only iOS devices.  The chosen applications ranged in price and features (Table 2-1).  

All of the applications allowed for a user to select different measurement standards for 

integrating noise exposure. SPLnFFT and SoundMeter both allowed for user-customized 

threshold, criterion level, and exchange rate, which allows for greater flexibility in making 

measurements. Only SPLnFFT and SoundMeter allowed for the export of stored measurements 

as a comma separated value (.csv) file that can be opened in a spreadsheet program. 

Application Developer Weightings Standards  

Exchange 

Rate Projected Dose Data Export Price 

NoiSee EA Lab A, C, Flat OSHA/ISO 3, 4, 5 Yes No $0.99 

SPLnFFT Fabien Lefebvre A, B, C, Flat Custom 3, 4, 5 Yes Yes A $3.99 

SoundMeter Faber Acoustical  A, C, Flat Custom A 3, 4, 5 A Yes A Yes A $20.00 
A Requires additional in-application purchases for an additional $20 

Table 2-1 Summary of chosen applications and features 

Three different Apple device models were evaluated during this experiment, all of which 

used the latest version of iOS (8.1, except for the iPhone 4 which used iOS 7.1). Three 5th 

generation Apple iPods were the primary devices used.  iPods are very similar to iPhones except 

that they lack the ability to communicate with cellular networks.   These devices were chosen 

because they are cheaper to acquire than iPhones, which makes them more practical to deploy.  

In addition to these devices, the iPhone 4, 4S, and 5S were all evaluated to compare their ability 

to measure noise levels and provide some insight into the effects of the slight hardware 



 18 

differences between the models. The applications that were evaluated were identical across the 

different devices.  

In addition to evaluating the internal microphones on the devices two additional external 

microphones were used.  One microphone was the iMM-6 Calibrated Measurement Microphone 

from Dayton Audio (Springboro, OH) and the other was the i436 microphone from MicW 

(Beijing, China), which complies with the IEC’s)standard for a Class2 SLM which has a 

tolerance of +/- 1.4 dB at 1000 Hz.70–72  Both microphones have a 3.5 mm audio plug that 

connects to the headphone jack on smart devices. The microphones were calibrated to 94 dB SPL 

using the application’s calibration setting and a Larson Davis (Provo, UT) Cal 150B SLM 

calibrator before the start of the experiment. 

The first experiment evaluated the influence of internal vs. external microphones on 

variability in measured noise levels in the same type of devices running the same applications.  

This was done by placing three 5th generation Apple iPods in a reverberant noise chamber at the 

NIOSH acoustic testing laboratory in Cincinnati, OH.  A diffuse sound field could was generated 

to prevent the location of the device’s microphone from influencing the results.  Pink noise was 

generated through three JBL XRX715 two-way loud speakers using the REATPLus software 

(ViAcoustics, Austin, TX).  Sound level measurements were obtained through the Trident Multi-

Chanel Acoustic Analyzer Software (ViAcoustics, Austin, TX) using a Larson Davis 2559 ½” 

inch microphone.  The entire system simulates a Type 1 sound level measurement instrument.   

Pink noise was generated at 60 dBA and the chamber was allowed 20 seconds to ensure 

that a stable sound field was established so that the devices would provide a stable reading.  

Using a USB webcam, measurements from the screens of the 3 devices were recorded and 

observed remotely, eliminating the need to re-enter the reverberant chamber to record 
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measurements. After the measurements were recorded, the sound level was increased by 5 dBA 

and allowed to stabilize. This process was repeated in 5 dBA increments up to 100 dBA. This 

was done 6 times for each combination of microphone and application, so that each of the 3 

devices made 54 measurements for each combination of application and microphone, or a total 

of 162 measurements for each combination of the application and microphone.  In total, 1,458 

measurements were made in experiment 1. 

The results were recorded in Excel (Microsoft, Redmond, WA) and transferred to 

STATA 14 (College Station, TX) for analysis. The mean difference between the reference 

microphone and the iPods was calculated for each stimulus noise level for every combination of 

microphone and application. A difference of 0 dB would indicate perfect agreement between the 

iPods and the reference system, while a larger difference would indicate worse agreement 

between the iPods and SLM. In addition, a one-way Analysis of Variance (ANOVA) was used to 

determine if the three devices produced significantly different measurements. An ANOVA was 

also used to test if the microphone, application, and noise level had a significant impact on the 

difference in measurements between the reference system and the iPods. Tukey’s HSD test was 

done post-hoc to determine if differences were observed between the different combinations of 

microphones and applications.    

In the second experiment we evaluated whether external microphones could be used to 

reduce the variation of noise measurements between different models of smartphones using the 

same application.  This has practical implications because as new smartphone models are 

released older models often become obsolete as the manufacturer discontinues updates and 

support for the older models. A student’s t-test was used to compare the measurements of the 

reference system to the measurements made by the different devices. In addition, an ANOVA 
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was used to compare the mean difference in noise measurements between the different devices 

using the same application and microphone. A significant difference between the different iOS 

devices would indicate that replacing a device’s internal microphone with an external 

microphone does not improve the precision of the measurements across different generations of a 

device. However, if there is not a significant difference, it would suggest that external 

microphones can be used to help increase the precision of measurements across different 

generations of devices. Fifty-four measurements were collected for each combination of device, 

microphone, and application. In total 540 measurements were collected in experiment 2.  All 

other parameters were identical to those used in experiment 1. 

Results 

 
Table 2-2 presents a summary of the mean difference calculations between the reference 

system and the iPods using several different application and iPods combinations. Across all three 

applications the iPod’s internal microphone performed poorly. The NoiSee application could 

only measure up to 90 dBA using the built-in microphone.  Both the iMM-6 and i436 

microphones performed well when paired with the SoundMeter application, with only a 1 dB 

difference in sound level measurements when compared to the reference. Figure 2-1 provides a 

graphical summary of the distribution of differences in measurements stratified by application 

and microphone. The large interquartile range (IQR) for many of the combinations of 

applications and microphones suggests that only with particular configurations can a smart 

device be used to make reliable noise measurements.  
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 Reference Noise Level (dBA) 

Application 
Microphone 

60 A 65 70 75 80 85 90 95 100 
Type 

NoiSee Internal 7.1(0.9) 7.1(0.8) 7.1(0.8) 7.1(0.8) 7.2(0.8) 4.5(0.6) 0.1(0.6) >LOQ >LOQ 
 iMM-6 -0.1(0.6) -0.1(0.6) -0.1(0.6) -0.1(0.7) 0(0.6) 0(0.2) -0.1(.2) -0.7(0.2) -4.3(0.3) 
 i436 1.5(0.3) 1.3(0.3) 1.3(0.4) 1.3(0.3) 1.3(0.3) 1.5(0.3) 0.1(0.3) 0.2(0.3) 0(0.4) 
           

SPLnFFT Internal 2.1(1.0) 1.6(0.8) 1.6(0.8) 1.6(0.8) 1.6(0.8) 2.8(0.7) 1.5(2.9) 2.8(0.7) 2.7(0.7) 

 iMM-6 1.1(0.7) 1(0.7) 1.1(0.8) 1.1(0.7) 1(0.7) 2.1(0.8) 1.6(2.2) 2.1(0.7) 2(0.7) 
 i436 1.3(2.5) 1.2(2.2) 1.2(2.4) 1.2(2.3) 1.5(2.8) 2(2.8) 2.2(2.2) 2.3(2.4) 2.3(2.3) 
           

SoundMeter Internal 2.9(0.9) 3.2(0.8) 3.3(0.8) 3.3(0.8) 3.3(0.3) 3.4(0.3) 2.2(0.3) 3.3(0.3) 3.4(0.3) 

 iMM-6 0(0.3) -0.1(0.3) 0(0.3) 0(0.3) 0(0.3) 0(0.3) 0(0.3) 0(0.3) 0(0.3) 

  i436 1(0.4) 0.9(0.4) 1(0.3) 1(0.4) 0.4(2.4) 0.9(0.4) 0.9(0.4) 0.9(0.4) 1(0.4) 

Table 2-2 Mean differences and (standard deviation) between the iPods and sound level meter 

from experiment 1 

 
Figure 2-1 Difference in measurements between the iPods and SLM 
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The ANOVA (results not shown) comparing all the measurements made by the three 

iPods found that there was no significant difference in the measurements made by the three 

devices, even when stratified by the application and type of microphone that was used.  This 

indicates that when the same types of devices use the same applications and microphones the 

results will likely be precise (i.e., small variability between devices), but not necessarily accurate 

(i.e., potentially large difference from the true noise level).  

The results of the two-way ANOVA model examining the effect of the reference noise 

level, application, microphone, and the interaction between the application and microphone 

found that all terms in the model were highly significant (p <0.001). This provides further 

support for the results in Figure 2-1 that shows certain combinations of applications and 

microphones perform better than others. The results also suggest that the accuracy of certain 

applications or microphones may differ across noise levels. The results are further complicated 

by the significant interaction term between the application and microphone; this means that 

microphones will perform differently depending on the application they are paired with.  

The results from Tukey’s pairwise comparison for the applications and microphones are 

presented in Table 2-3, which compares the mean difference between the different applications. 

The SoundMeter application had the lowest mean difference suggesting that it provide the most 

accurate noise measurements, followed by NoiSee and then SPLnFFT.  While both NoiSee and 

SPLnFFT performed worse than the SoundMeter application, only SPLnFFT had a significantly 

larger mean difference.  All three microphones were found to perform significantly different 

when compared to one another, with the best performance demonstrated by the iMM-6, then the 

i436, and then the internal microphone.  Both the iMM-6 and i436 microphones, when 

calibrated, had a mean difference less than 2 dB, which is within the tolerance of a Type 2 sound 
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level meter, suggesting that they may be appropriate to use for making accurate noise 

measurements.  The results suggest that the internal microphone does not consistently provide 

measurements within the tolerance of a Type 2 sound level meter.  

Application 1 Application 2 

Mean 1 

(dBA) N 1 

Mean 2 

(dBA) N 2 dif 

HSD Test 

Statistic 

        
NoiSeeA SPLnFFT 1.49 441 1.70 486 0.22 2.89 

NoiSee SoundMeter 1.49 441 1.35 486 0.13 1.63 

SPLnFFT SoundMeter 1.70 486 1.35 486 0.35 4.52A 

        
Microphone 1 Microphone 2       

        

iMM-6 Internal 0.09 486 3.45 441 3.35 43.11B 

iMM-6 i436 0.09 486 1.17 486 1.07 13.77B 

Internal i436 3.45 441 1.17 486 2.28 29.34B 
A Because the Noisee app censored measurements >90 dBA those measurements were not 

included in this analysis.  
B Indicates a significant (p<0.05) difference 

Table 2-3 Tukey’s multiple pairwise comparisons for the mean difference (dB) in measurements 

between different applications and microphones 

The second experiment was designed to determine if an external microphone and 

application combination would allow different versions of a smartphone to make reliable 

measurements.  Table 2-4 provides the mean difference, standard deviation, and sample size for 

each configuration tested.  Across the different devices and using the internal microphone, the 

mean difference between the smartphone and reference system ranged from -1.09 to 24.99, with 

most of the configurations having a mean difference greater than 2 dB, which is outside the 

accuracy of a Type-2 instrument.  When an external microphone was added all devices had a 

mean difference less than 1 dB.  A student’s t-test found that devices using the iMM-6 and i436 

microphones did not have significantly different measurements than the reference (p= 0.8825 

and p= 0.7610, respectively). 
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  Microphone 

Device  iMM-6 Internal i436 

iPhone 4A Mean  24.99  

 SD  0.12  

 N  54  

     
iPhone 4S Mean -0.11 -1.09 0.50 

 SD 0.091 4.08 0.085 

 N 54 54 54 

     
iPhone 5S Mean 0.02 1.76 0.82 

 SD 0.08 1.39 0.082 

 N 54 54 54 

     
iPod 5G Mean -0.55 2.78 -0.01 

 SD 0.09 0.16 0.07 

 N 54 54 54 
A The iPhone 4 was not compatible with the external 

microphones 

Table 2-4 Mean difference (dB) between various smartphones configurations running the 

SoundMeter application, and the SLM  

The results of the one-way ANOVA comparing the mean difference of all the devices 

running the SoundMeter application found that the difference between the devices to be highly 

significant (p<0.0001) in all cases. The results of a subsequent Tukey’s multiple pairwise 

comparison between the different devices are presented in table 2-5. Only the 5th generation iPod 

and iPhone were found to not have significantly different mean differences.    

Device 1A Device 2 Mean 1 Mean 2 Difference 

HSD Test 

Statistic 

iPhone 4 iPhone 4s 17.01 0.21 16.80 133.10C 

 iPhone 5s 17.01 1.08 15.94 126.25 C 

 iPod 5G 17.01 1.35 15.67 124.09 C 

      

iPhone 4s iPhone 5s 0.21 1.08 0.87 6.86 C 

 iPod 5G 0.21 1.35 1.14 9.01 C 

      
iPhone 5s iPod 5G 1.08 1.35 0.27 2.15 
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A N = 54 for each microphone  B All devices were running the SoundMeter application  
C Indicates a significant (p<0.05) difference 

Table 2-5 Tukey’s multiple pairwise comparisons for the mean difference in measurements 

between the different devices and SLM 

Discussion 

 
The results from experiment 1 indicate that it is possible to use different iOS smart 

devices to make accurate noise measurements under certain conditions. However as Table 2-5 

shows, the internal microphones on the devices tested are not able to make noise measurements 

within 2 dB of a reference noise level, which indicates that the internal microphone is not 

equivalent to a microphone on a Type-2 SLM. This is not surprising, as the internal microphones 

were designed to only capture a person’s voice with sufficient accuracy to communicate 

information, and not to perform sound level measurements.  In addition, when using the NoiSee 

application with the internal microphone it appears that the application will clip measurements at 

90 dBA, effectively limiting the measurement range of this device/application combination. This 

limits the usefulness of the application as both a SLM and a dosimeter for use in high noise 

occupational or recreational settings.   Based on the results, it appears that smartphone 

applications measuring noise with the internal microphone should not be used in assessing 

personal noise exposures.  

Our results suggest that an external microphone and source of calibration are needed to 

make sufficiently accurate noise measurements.  This somewhat increases the costs of using 

smartphones to make noise measurements.  However, these microphones are relatively cheap in 

comparison to the cost of a smart device; the iMM-6 costs approximately $20 while the i436 

costs approximately $130.  The need for calibration is a larger issue, but calibrators can also be 

purchased at a relatively small cost.  For those without calibration equipment, several 

applications have pre-defined profiles for certain microphones.  However, there has been no 
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evaluation as to the accuracy of using these pre-defined profiles.  Additionally, the microphone 

manufacturer may provide the microphone’s sensitivity which can be entered into the application 

to crudely calibrate the measured levels.  Again, there has been no formal investigation in to the 

accuracy of the measurements using this method, so the results should be interpreted with 

caution. 

Despite the additional technical challenges of using an external microphone the results 

presented in Table 2-2 and Figure 2-1 indicate that using external microphones is crucial for 

accuracy.  Although the results in Table 2-4 indicate that the iMM-6 microphone performed 

significantly better than the i436 microphone, both microphones had a mean difference less than 

2 dB when compared to the Type-1 SLM.  Additionally, the results from experiment 2 show that 

these microphones may potentially allow different generations of devices to make accurate noise 

measurements when running the same application. The results of the t-test indicated that the 

measurements made by devices using either the iMM-6 or i436 external microphones did not 

differ significantly from the Type-1 SLM.  However, as the results from the ANOVA and 

Tukey’s multiple pairwise comparison tests indicates there is still a significant difference 

between different devices using the same microphone and application.  This indicates that the 

different generations of smartphones may give accurate results (i.e. within 2.0 dBA of a 

reference level) but the measurements may be significantly different between different devices.  

Another complicating factor in using smartphones to perform noise measurements is the 

selection of an application.  The 3 applications evaluated in this experiment were chosen based 

on the results from Kardous and Shaw (2014).20 Based on the results in Table 2-2 & Table 2-4 

the SoundMeter application performed better than the other two applications. However, it is 

important to consider that between 2013 and 2015 Apple has gone from the 8th to the 9th iteration 
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of iOS, and additional applications may have been added, removed, or updated in the iTunes 

application store. For instance, NoiSee has not been updated since 2012.  The speed at which 

applications and software change makes it difficult to say with absolute certainty which 

application will provide the most accurate measurements.  However, the fact that the developer 

of the SoundMeter application produces other products in addition to the smartphone application 

makes it likely that the application will continue to be supported in the near future.   

Several studies have examined the accuracy of various smartphone applications to 

measure noise.  However, these studies have only evaluated the accuracy of internal 

microphones.  The results from this experiment again demonstrate that generally the internal 

microphone should not be relied on to make accurate noise measurements.20,69,73 The only 

exception has been found by Murphy et al. (2016), who reported that the Sound Level Analyzer 

Lite (SLA Lite) application for iOS had a mean difference ranging from -0.76 to 0.57 dB.74  This 

is encouraging because using the device’s internal microphone reduces technical and logistical 

barriers to making accurate measurements and more closely emulates how a typical layperson 

would use their smart device.  However, Murphy et al. (2016) also noted that the accuracy of 

smart devices varied widely, especially for devices running the Android operating system. As 

demonstrated here, using external microphones greatly reduces the variation of the 

measurements in different generations of iOS devices. It is possible that using an external 

microphone can also increase the accuracy and reduce the variability of measurements made by 

Android devices, but this has not yet been evaluated.  

It is also worth noting that Murphy et al. (2016) was examining the accuracy of smart 

devices for general environmental noise measurements. In this context it is logical to assume that 

the increased variability from using the device’s internal microphone is less important because of 
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the potential to collect hundreds or thousands of measurements, but a systematic bias in 

measurements can still result in erroneous measurements.  However, in instances where a large 

number of samples cannot be collected the large measurement variability can drastically impact 

the exposure estimate.  This is especially true in the workplace where samples sizes are typically 

much smaller, and where overestimation of exposures can lead to the implementation of costly 

controls, while underestimation of exposures can result in workers not being adequately 

protected from hazardous noise exposure.  

Conclusions 

 
This study expands on previous studies by evaluating applications that were previously 

identified to be the most accurate in conjunction with inexpensive external microphones.  The 

use of these external microphones dramatically increased the accuracy and precision of the 

measurements made by the smart devices that were evaluated.  The results presented here were 

from measurements made in a continuous noise environment. Further studies should be 

conducted looking at the performance of smartphones in calculating noise dose in an 

environment with intermittent or rapidly changing noise. Despite the technical challenges that 

were discussed, the results of this study indicate that in certain situations smartphones running 

the correct application and equipped with an external calibrated microphone can collect noise 

measurements within 2.0 dBA of a type 1 SLM which is roughly just as accurately as a Type-2 

SLM.  It is very unlikely that smartphones will be used for compliance measurements in the near 

future.  However, smartphones have significant value as survey tools, and as SLMs in low 

resource areas. In addition, these devices can be used to map environmental noise in a 

community by utilizing a smartphone’s GPS function.75,68,76,67 Finally, as sensor technology 
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improves it may be possible to collect data on multiple physical hazards at once by using the 

smartphone as the device that stores and exports the data from the sensors.  
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Chapter 3 – Using Smart Devices to Measure Intermittent Noise in the 

Workplace 

Abstract 

 
Smart devices (phones, tablets, etc.) are becoming more common in the workplace. 

Previous research has shown that these devices can potentially provide accurate noise 

measurements when exposed to continuous noise. This study attempts to determine if smart 

devices can provide accurate noise measurements when exposed to varying noise in the 

workplace. In experiment 1, four iPods were each paired with a Larson Davis Spark dosimeter 

and exposed to randomly fluctuating pink noise in a reverberant sound chamber. Descriptive 

statistics and the mean difference between the iPod and its paired dosimeter were calculated for 

the 1-second data logged measurements.  The calculated time weighted average (TWA) was also 

compared between devices. In experiment 2, 15 maintenance workers and 14 office workers 

wore an iPod and dosimeter during their work shift for a maximum of 5 work days. A mixed 

effects linear regression model was used to control for repeated measures and to determine the 

effect of the device type on the on the projected 8-hour TWA. In experiment 1 a total 315,306 1-

second data logged measurements were made. The interquartile range of the mean difference fell 

within +/- 2.0 dBA which is the standard used by the American National Standards Institute to 

classify a type 2 sound level meter. The mean difference of the calculated TWA was within +/- 

0.5 dBA except for one outlier.   In experiment 2, the results of the mixed effects model found 

that, on average, iPods measured an 8-hour TWA 1.7 dBA higher than their paired dosimeters.  
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This study shows that in some instances iPods have the ability to make reasonably accurate noise 

measurements in the workplace, but they are not as accurate as traditional noise dosimeters. 

Introduction  

 
Hearing loss is the third most common chronic condition in the United States and noise 

induced hearing loss (NIHL) is the most common work related illness 9. Noise is the single 

greatest preventable cause of hearing loss and one of the most common occupational hazards.77 

The National Institute of Occupational Safety and Health (NIOSH) estimates that over 22 million 

American workers are exposed to hazardous noise >85 A-weighted decibels (dBA).16 NIHL 

prevalence can vary widely depending on the industry. Workers in traditionally noisy industries 

(mining, construction, manufacturing and transportation) have a prevalence of NIHL ranging 

from 9.5 to 34.8%, and in these industries there is considerable information available regarding 

noise exposures.78 There is much less information about noise exposure available in the service 

industry, healthcare, and the wholesale and retail trade despite a prevalence of any hearing 

impairment ranging from 7.8 to 16.7%, i.e., not much below that of industries traditionally 

perceived as “noisy”.78  Many companies in these industry sectors do not have formal 

occupational health departments that can monitor a worker’s exposure to noise.   

Collecting exposure information in these industries requires the use of noise dosimeters 

or sound level meters, which are expensive and require trained individuals to operate and 

interpret the results. By contrast, smart devices (phones, tablets, and other devices) have the 

ability to utilize applications (“apps”) that can make noise measurements in a very 

straightforward and simple manner. A study by Nast et al. in 2014 found that the measurements 

made by a variety of apps on an iPhone 4S were subject to significant error and were considered 

unsuitable to measure noise.69 However, a laboratory study conducted by Kardous and Shaw in 



 32 

2014 tested 10 Apple iOS and four Android apps and found that four iOS apps had a mean 

difference within 2.0 dBA of  a reference sound.20 The authors also found that different 

generations of Apple products had varying levels of accuracy in measuring noise. Another 

laboratory study by Murphy and King in 2016 found that iOS apps were generally superior to 

Android apps, but that the app used, phone model, and age of the device could all affect the 

measurement accuracy.74 We conducted a study in 2016 that examined the effect of several 

commercially available microphones, the MicW i436 and the Dayton Audio iMM-6, on the 

accuracy of noise measurements in reverberant sound chamber.  Using a similar method to 

Kardous and Shaw (2014) measurements were taken using different generations of iOS devices 

running three different apps while using the external microphones.  We found that both external 

microphones substantially increased the accuracy and precision of noise measurements and 

reduced the measurement variability introduced by different iOS devices and apps.79  

All of the previous studies were conducted in a controlled laboratory setting and were 

focused on assessing the accuracy of smart devices when measuring steady state (i.e., non time-

varying) noise.  However, in the workplace such stable exposure conditions are uncommon. In 

addition, most of the contemporary noise measurements apps have the ability to datalog and 

integrate a noise dose over a workday, but such measurements have never been compared to 

measurements from traditional noise dosimeters. This study aimed to address these knowledge 

gaps in two ways. The first (experiment 1) was to determine how accurately smart devices 

measured intermittent noise in a laboratory setting by comparing measurements made by a noise 

dosimeter to those made by smart devices. The second (experiment 2) was to compare the real-

world accuracy of smart device noise measurements to those made with noise dosimeters in two 

worker populations with different exposure profiles.  
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Methods 

 
For experiment 1 a 4-hour sample of random pink noise was generated in MATLAB 

version 8.5 (Natick, MA) using the “Pink Noise Generation with MATLAB Implementation” 

software package (Hristo Zhivomirov 2013).  The noise was exported as a .wav file and loaded 

in to the REATPLus software (ViAcoustics, Austin, TX) and transduced through three JBL 

XRX715 two-way loud speakers inside a reverberant sound chamber located at the NIOSH 

acoustic testing laboratory in Cincinnati, OH  (see Figure 3-1 for an example of the equipment 

used).79 The reverberant sound chamber allowed for the generation of a sound field with equal 

energy throughout the chamber, which negated the influence of microphone location on the noise 

measurement.  

 

Figure 3-1 The paired dosimeters and devices mounted on a stand in the reverberant sound 

chamber prior to testing in experiment 1 

Noise was measured using four Spark Model 706 dosimeters (Larson Davis, Depew, 

NY), each of which was paired with a 5th generation iPod (Apple, Cupertino, CA) running iOS 
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version 9.3.2 with the SoundMeter app (Faber Acoustical, LLC) and a MicW i436 external 

microphone (Beijing, China). The application and microphone were chosen because they 

provided the most accurate measurements in our previous study.79 In addition, the MicW i436 

claims that it meets the International Electrotechnical Commission’s (IEC) standard for a class 2 

microphone.71,72 The clocks on all of the instruments were synchronized, and each pair of 

devices was started at the same time and set to log noise measurements at 1-second intervals for 

the duration of the experiment. Both the dosimeter and the iPod were set with a threshold of 40 

dB, exchange rate (ER) of 3 dB, and a criterion level of 85 dB. This was done to ensure that the 

full range of noise levels presented in the chamber was integrated into the noise dose measured 

by both devices. All of the devices were calibrated at 114 dB using a Larson Davis Cal 150B 

SLM calibrator before and after the experiment.  Each pair of devices was exposed to random 

pink noise for between 15 and 240 minutes over 11 different trials; this allowed for evaluation of 

effects of different runtimes on agreement of the paired devices. Because this experiment was 

comparing paired devices the results from all the trials were combined into one dataset for 

analysis.  Descriptive statistics and the mean difference were calculated for each device pair for 

both the 1-sec data logged measurements and the time-weighted average (TWA) calculated for 

each measurement by both devices.   

Experiment 2, which involved human participants, was approved by the institutional 

review board at the University of Michigan (HUM00100764).  Fifteen volunteer maintenance 

workers at the University of Michigan were recruited and provided informed consent to 

participate in the study.  The maintenance workers were chosen because we believed that they 

would be exposed to high levels of intermittent noise given their work activities.  Each was 

followed for a maximum of five consecutive work days. Fourteen volunteer office workers at the 
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university with no occupational noise exposure were also recruited and followed for a maximum 

of five consecutive workdays. During their work-shifts, which were all 8-hours in duration, all 

workers wore a 3M Edge eg-5 (3M, Maplewood, MN) and a 5th generation Apple iPod Touch 

inside a protective case running iOS version 9.3.2 with the SoundMeter app, and connected to a 

MicW i436 external microphone. The microphones for both devices were placed side-by-side on 

the dominant hand shoulder of the participant (see Figure 3-2 for an example) for the duration of 

each measured work-shift. In the event that the iPod failed to record a measurement the paired 

dosimeter measurement was also excluded from the analysis.  

 

Figure 3-2 An example the noise dosimeter and iPhone microphone placed on a worker in 

experiment 2 

Both the dosimeter and smart device were set to measure noise using the method 

specified by NIOSH with an exchange rate of 3 dB, criterion level of 85dB, and a threshold of 80 

dB 16. All devices were pre and post calibrated at 1000Hz and 114 dB using a Larson Davis Cal 

150B SLM calibrator before and after data collection. Measurements from devices with a post 

calibration <113.5 and >114.5 dB were excluded. The exposure profiles of all workers were 

visually examined using the 3M Detection Management Software (3M, Maplewood, MN). 
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Descriptive statistics were calculated for the 8-hour TWA for each group of workers in STATA 

14 (College Station, TX). A mixed effects linear regression model was developed to compare the 

difference in measurements between the dosimeter and smart device while accounting for 

repeated measurements. This model is displayed in Equation 1, where  𝑌𝑖𝑡 indicates the 8-hour 

TWA for subject i at time t, 𝛽1 and 𝛽2are indicator variables for what type of device was used 

and from which group the worker came, 𝑏𝑖is the random intercept for the worker and 𝑏𝑖𝑡 is the 

random intercept for day nested in the worker.   

Equation 1.  

𝑌𝑖𝑡 =  𝛼 + 𝛽1(𝑑𝑒𝑣𝑖𝑐𝑒) + 𝛽2(𝑔𝑟𝑜𝑢𝑝) + 𝑏𝑖 + 𝑏𝑖𝑡 + 𝜀𝑖 

Results 

 
Table 3-1 presents a summary of the measurements made by each device in experiment 1. 

On average each device made 39,413 measurements across all the trials. Measured noise levels 

ranged between 34.8 to 98.0 dBA with a mean of 75.0 dBA and a standard deviation of 4.5 dBA. 

The difference in 1-second data logged measurements for each pair of devices is displayed in 

Figure 3-3. A value of 0 indicates perfect agreement between the devices while values further 

away from 0 indicate less agreement. The inter-quartile range (IQR) of the differences between 

the iPod and dosimeter fall within or very close to the +/- 2.0 dBA range which is the criteria 

used by the American National Standards Institute (ANSI) to classify type-2 microphones.17 

However, there were numerous outlier measurements that were outside the +/- 2.0 dBA range. 

Similarly, Figure 3-4 shows that the difference in the calculated 8-hour TWA between the 

dosimeter and iPod pairs is typically +/- 0.5 dB, with the exception of one outlier. Figure 3-4 

also suggests that the iPods tend to produce measurements that are slightly higher than the 

dosimeters. 
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 Mean SD Min Max Avg. N Total N 

Total 75.0 4.5 34.8 98.0 28,664 315,306 

Pair 1       
iPod 74.7 4.9 35.7 88.9 3,585 39,430 

Dosimeter 74.9 4.1 37.1 88.3 3,585 39,430 

Pair 2       
iPod 75.7 5.0 34.8 89.5 3,582 39,400 

Dosimeter 75.8 3.9 40.4 87.6 3,582 39,400 

Pair 3       
iPod 74.8 4.8 36.6 89.3 3,583 39,409 

Dosimeter 75.1 4.2 36.6 98.0 3,583 39,409 

Pair 4       
iPod 74.5 4.8 36.4 90.2 3,583 39,414 

Dosimeter 74.6 4.0 37.9 88.1 3,583 39,414 

Note: There were a total of 11 trials conducted for each pair in experiment 

1. 

Table 3-1 Summary statistics for noise exposure (in dBA) for experiment 1 

 

Figure 3-3 Difference in 1-second logged measurements for each pair of devices from 

experiment. The dashed line represents +/- 2 dBA respectively 
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Figure 3-4 Difference between the 8-hour TWA for each dosimeter/iPod pair from experiment 1 

Descriptive statistics for both occupational groups are presented in Table 3-2.  A total of 

54 iPod and dosimeter measurements were collected from the maintenance workers while 50 

iPod and dosimeter measurements were collected from the office workers. The results from the 

first day of monitoring the maintenance workers were discarded because of widespread failure of 

the iPods due to a lack of protective cases. This resulted in only four days of data from the 

maintenance workers cohort. Despite the fact the office worker cohort was monitored for an 

additional day (i.e., 5 days vs. 4), many of the office workers had work obligations that required 

them to miss a day or more of the study.  This resulted in the office worker cohort having fewer 

samples than the maintenance workers. As would be expected, the maintenance workers had on 

average higher levels of noise exposure compared to the office workers. However, office 

workers had a larger standard deviation, suggesting that there is a greater variability in the 8-hour 

TWA measurements for the office workers than the maintenance workers. For both groups of 

workers the iPods on average produced higher measurements than the noise dosimeters. Table 3-

3. shows that the mean difference between the measurements made by the dosimeters and the 
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iPods ranged between -0.2 and -4.4 dBA for the maintenance workers and -1.6 to 0.6 dBA for 

the office workers, depending on the measurement day.  

  Device 

Occupational Group   iPod Dosimeter 
 N 54 54 

Maintenance Workers 
Mean  84.1 81.6 

SD 5.5 6.3 

    
 N 50 50 

Office Workers 
Mean 65.9 65.2 

SD 9.6 9.2 

Table 3-2 Descriptive statistics for experiment 2, 8-hour TWA noise measurements (dBA) made 

using an iPod and noise dosimeter 

  Day  Total 

Group   1a 2 3 4 5   

Maintenance Workers 

Mean   -3.8 -4.4 -0.2 -1.5  -2.5 

SD  7.7 9.6 2.8 2.3  6.4 

N  12 14 13 15  54 

         

Office Workers 

Mean  -0.3 -0.9 0.6 -1.6 -1.3  -0.7 

SD 2.4 6.7 4.2 2.5 4.4  4.4 

N 7 11 11 10 11  50 
a Day 1 measurements were not included because of widespread failure of the iPods. 

Table 3-3 Mean difference in Experiment 2 between the 8-hour TWA measurements (dBA) made 

by the iPod and dosimeter 

Results from the mixed effects regression model are presented in Table 3-4. By including 

a random intercept for each participant and each day nested within participant the measurements 

from the iPod and dosimeter are centered for each person and day. This made it possible to 

determine that the iPods systematically measured noise exposure 1.7 dBA higher than the noise 

dosimeters. On average noise exposure for the maintenance workers was 22.8 dBA higher than 

the office workers.  Approximately 76.9% of the variance in the model was explained by the 

random effect for worker and day nested within worker.  This implies that only 23.1% of the 
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variance between measurements made by the iPods and dosimeters could not be explained by the 

model. 

 

Fixed Effects 

Coefficient 

(dBA) SE P-value 95% CI (dBA) 

Intercept  86.4 1.6 <0.001 83.3 89.5 

Devicea  -1.7 0.6 0.004 -2.9 -0.6 

Groupb -22.8 1.7 <0.001 -26.0 -19.5 

      
Random Effects Estimate SE    
Subject: Random Intercept 40.3 14.7  19.7 82.5 

Day: Random Intercept 16.2 4.4  9.5 27.6 

Residual 16.9 2.4  12.8 22.3 
a 0 = iPod, 1 = dosimeter 
b 0 = maintenance workers, 1 = office workers 

Table 3-4 Fixed and random effects for the mixed effects linear regression model for Experiment 

2 

 

Discussion 

 
We have successfully evaluated the performance of smart devices used to measure 

intermittent noise exposures in comparison to gold-standard measurement instruments.  The 

results from experiment 1 add to the growing body of evidence that low cost external 

microphones can be used by a smart device to collect noise measurements that approach the 

accuracy of conventional instruments. The median for the difference between 1-second logged 

measurements was close to 0 dBA for all the pairs of devices (Figure 3-3).  However, there are a 

number of measurements in which the difference in measurements between the two devices is > 

2.0 dBA. Each pair of devices was started manually; while care was taken to start and stop the 

measurements at the same time, it is likely that each dosimeter/iPod pair was recording slightly 

different 1-second intervals, which may account for some differences. Traditional noise 

dosimeters are built for a singular purpose while even factory-new iPods in so-called “airplane 
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mode” (i.e., with communication functions disabled) are running numerous processes that could 

impact the performance of the application recording noise measurements.  We had no way to 

detect or account for this possible difference during our analysis. Despite these potential sources 

of error, Figure 3-4 shows that the 8-hour TWA calculated by the iPods was generally within 0.5 

dB of the TWA calculated by the matched dosimeters. Previous studies have shown that smart 

devices can make very accurate measurements when exposed to continuous noise and compared 

to results from a sound level meter.20,79 However, this is the first study that examined the 

accuracy of smart devices in measuring intermittent noise and compared the calculated 8-hour 

TWA to results from a noise dosimeter.  

  Experiment 2 represented a field test of smart devices to determine how well they 

performed in a “real world” scenario and determine how durable the devices were in the 

workplace. The two occupational groups were chosen because we expected them to have 

dissimilar exposure profiles.  As shown in Table 3-1, maintenance workers were indeed exposed 

to higher levels of noise, though the office workers had a larger standard deviation in their mean 

8-hour TWAs. The mean difference in 8-hour TWAs between smart devices and noise 

dosimeters was smaller for office workers than for maintenance workers (Table 3-2). This is 

likely due to the fact that office workers are not routinely exposed to levels of noise that exceed 

the threshold setting on the dosimeter.  This was to be expected and suggests that the smart 

devices are not incorrectly measuring sub-threshold noise as above the threshold, which would 

contribute to an artificial increase in a worker’s 8-hour TWA. Unlike office workers, 

maintenance workers were regularly exposed to noise levels exceeding the threshold setting of 

the devices.  Visual examination of the graphical output from the dosimeter software indicated 

that the maintenance workers were generally exposed to more rapidly fluctuating levels of noise 
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than the office workers, which likely also contributed in the lower agreement between the 

dosimeters and iPods. This suggests that smart device apps may be less accurate in measuring 

rapidly fluctuating noise levels and should not be used to measure peak or maximum noise 

levels. 

Using a mixed effects linear regression model we were able to account for the repeated 

measure design of this study and to evaluate the systematic difference in measurements made by 

the iPods compared to the traditional noise dosimeters.  Overall, the iPod produced an 8-hour 

TWA that was 1.7  dBA higher than the noise dosimeter with a standard error of 0.6 dBA. While 

the overall mean difference falls within the 2 dB tolerance limit ANSI uses to define a type 2 

SLM, when the model was run stratified by occupational group the iPod produced an 8-hour 

TWA that was 2.6 and 0.7 dBA higher than a dosimeter in the maintenance and office workers, 

respectively. This suggests that smart devices should not be used in place of dosimeters for 

compliance measurements, especially for workers who are exposed to variable levels of noise 

throughout the workday. Therefore, these results should not be interpreted as an indication that 

smart devices with an external microphone are equivalent to a type-2 SLM. It is also important to 

consider that there are a large number of noise measurement apps available.  This study only 

used one app (SoundMeter) based on previous data that showed this app performed the better 

than several other apps that were available.20 It is unknown how well other apps would perform 

because they have not been evaluated to the same extent that SoundMeter was here in our 

previous study or in Kardous and Shaw (2014).20,79  Additionally, there many other models of 

external microphones available however, there has been little research done on the quality of 

these microphones 
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In addition to the quantitative results, we were able to make several observations about 

the durability and the feasibility of using smart devices to measure noise in the workplace.  The 

first observation is that many smart devices will automatically turn off when exposed to 

temperatures that exceed the devices’ safe operating parameters. When this happens the noise 

measurement app is closed and no measurements are made. Additionally, using an external 

microphone necessitates attaching the microphone to a 3.5mm extension cord so that the 

microphone can be mounted in the hearing zone of the measured subject while the smart device 

is placed in a pocket. The smart device could theoretically be mounted in a worker’s hearing 

zone, but the design and fragility of smart devices makes this infeasible in practice. If the 

external microphone is disconnected from the device the app will either stop recording 

measurements or continue recording measurements using the internal microphone, which has 

been found to be highly inaccurate in some cases.20,79 This occurred during the first day of 

sampling the maintenance workers and resulted in the discarding of all of the first day’s 

measurements. This issue was resolved by purchasing several protective cases for the iPods.   

Among office workers, it can be difficult for a person without pockets to wear an iPod for their 

entire work shift. This can be alleviated by using armbands to mount the device and using a short 

3.5 mm extension cord to mount the microphone in the hearing zone. 

Conclusions 

 
Despite these drawbacks, we have shown that commercially available iOS apps paired 

with an external microphone can make reasonably accurate full-shift noise measurements. The 

high prevalence of smart phone use in the United States and around the world means that with an 

external microphone and app it is possible for lay individuals to make accurate noise level 

measurements at work or in the general environment.22,66  While smart devices and apps are not 
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accurate enough to replace traditional noise dosimeters at this time, they do have the potential to 

reduce the cost and difficulty of identifying worker who need further monitoring or should be 

enrolled in a hearing protection program, particularly in industries with limited occupational 

health and safety resources. These devices can also empower workers to make their own 

measurements and lobby their employer for additional noise monitoring or the implementation of 

noise controls. In situations where traditional noise dosimeters are not available, such as small 

businesses, smart devices can be used to gather reliable noise exposure data.  The quality of the 

collected data is still dependent on the user, making it imperative that these apps provide some 

basic measurement instructions on how to effectively collect noise measurements. However, the 

use of smart devices provides an opportunity for workers and occupational health professions to 

better characterize noise exposure in the workplace that can then be used to make decisions on 

how to best protect a worker’s hearing.  
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Chapter 4  - Imputation of Missing Values in a Large Job Exposure Matrix 

Using Hierarchical Information 

Abstract 

Job exposure matrices (JEMs) represent a useful and efficient approach to estimating 

occupational exposures. This study uses a large dataset of full-shift measurements and employs 

imputation strategies to develop noise exposure estimates for almost all broad level standard 

occupational classification (SOC) groups in the US. The JEM was constructed using 748,598 

measurements from the government, private industry and the published industry. Imputation was 

used to take advantage of the hierarchical structure of the SOCs and the mean occupational noise 

exposures were estimated for all broad level SOCs, except those in major group 23-0000 (Legal 

Occupations), for which no data were available. The estimated posterior mean for all broad 

SOCs was found to be 82.1 dBA with within- and between-major SOC variabilities of 22.1 and 

13.8, respectively. Of the 443 broad SOCs, 85 were found to have an estimated mean exposure 

>85 dBA while 10 were >90 dBA. By taking advantage of the size and structure of the dataset 

we were able to employ imputation techniques to estimate mean levels of noise exposure for 

nearly all SOCs in the US. Possible sources of errors in the estimates include misclassification of 

job titles due to limited data, temporal variations that were not accounted for, and variation in 

exposures within the same SOC. Our efforts have resulted in an almost completely-populated 

noise JEM that provides a valuable tool for the assessment of occupational exposures to noise. 

Imputation techniques can lead to maximal use of available information that may be incomplete. 
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Introduction 

Noise induced hearing loss (NIHL) is the most common workplace injury, affecting an 

estimated 11.4% of workers in the United States.78  While it is difficult to quantify the economic 

costs of NIHL, the US Veterans Administration reported direct costs of $1.2 billion in 2006 on 

hearing disability and tinnitus in addition to $288 million spent annually by the Veterans 

Administration on hearing aids.80,81  More recently, we have estimated the direct and indirect 

costs of preventable NIHL to be between $58 and $152 billion annually in the US, with a central 

estimate of $123 billion per year.13  Thus is reasonable to assume that NIHL has a substantial and 

underappreciated ongoing impact on the US economy. Despite the clear relationship between 

hazardous noise exposure (>85 dBA) and hearing loss it is estimated that more than 22 million 

US workers are exposed to hazardous levels of noise at work.6,16 

While it is well-established that hazardous noise exposure causes NIHL, conducting 

occupational epidemiological studies to further elucidate and quantify this relationship is 

challenging.  Ideally, prospective cohort studies would be implemented to follow workers and 

monitor their noise exposure for a decade or more until the onset of significant NIHL. However, 

the costs and time required to conduct a longitudinal study make this approach difficult and rare. 

Typically, researchers instead rely on retrospective cohort studies to assess the relationship 

between an occupational exposure and a disease.82 In these retrospective studies it can be 

difficult to develop to accurately estimate exposures.83 To overcome these difficulties researchers 

have increasingly relied on job exposure matrices (JEMs) to retrospectively assess occupational 

exposures.82,84–88  

In its most basic form a JEM consists of two axes: one axis contains a list of jobs or job 

descriptions, and the other contains qualitative or quantitative information about the magnitude 

and/or prevalence an exposure.82 A JEM can be further refined by adding further information on 
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specific job tasks, and the time period of exposure. The main advantage of a JEM is that it allows 

the use of previously collected industrial hygiene measurement records that greatly simplify 

epidemiological exposure assessment. A JEM also makes it possible to identify occupations and 

industries that have high levels of an exposure so that targeted controls can be implemented to 

reduce potential exposures.  

There are many issues that arise when using a JEM as an exposure assessment tool. The 

first is that exposure varies depending on both a worker’s job title and the industry that the 

worker is employed in.63 Workers with similar job titles can have large differences in their 

exposures depending on the industry they are employed in. It has also been shown that the 

majority of purportedly homogeneously exposed groups (HEGs) of workers – often based on job 

title – in the same workplace had more than a 2-fold difference in exposures.89  The second issue 

is that exposure typically vary over time for a worker in the same job as changes in their 

workplace lead to a change in exposure patterns.82,89 Finally, data scarcity often necessitates the 

use of qualitative exposure measures, which reduce the statistical power of a JEM to detect an 

exposure-response relationship.90 

The JEM we describe here consists of 748,598 full-shift occupational noise 

measurements made according to the Occupational Safety and Health Administration’s (OSHA) 

Permissible Exposure Limit (PEL) for noise.14 Our previous meta-analysis of a subset of 715,867 

measurements included in this JEM found that 26.4% of 235 job titles had no heterogeneity 

across sources (literature, government and industry reported sources), while 63.0% of job titles 

were found to have moderate to high levels of heterogeneity.91 Despite the size and scope of this 

JEM, many job titles still lack exposure information.  The goal of this present study is to take 

advantage of the hierarchical structure of the job title system used in this JEM in order to 
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develop imputation strategies to calculate estimates of exposure and variability for job titles in 

which no exposure information is available and then determine which job titles have an 

estimated exposure greater than the current OSHA action level (AL) of 85 dBA and PEL of 90 

dBA. 

 

Methods 

The JEM was constructed using OSHA14 and Mine Safety and Health Administration 

(MSHA)92 PEL measurements (i.e. a 90 dBA criterion level and threshold, and 5 dB time-

intensity exchange rate) from government databases maintained by OSHA and MSHA, 

measurements from the published literature, and measurements submitted by private industry. 

Details about the data cleaning process for the JEM have been described elsewhere.91,93 Briefly, 

data was received from the various sources in an electronic format, typically a Microsoft Excel 

file (Redmond, WA). The data was imported in to STATA 14 (College Station, TX) for data 

cleaning.  Industry information was first coded using the 2012 North American Industrial 

Classification System (NAICS) from the US Census Bureau.94 Using information on the industry 

of employment and job titles from the various government agencies, companies, and published 

literature from which measurement data were drawn, each measurement was assigned a job title 

using the Bureau of Labor Statistics’ 2010 Standard Occupational Classification (SOC).95 

 The SOC structure is hierarchical and made up of major, minor, broad, and detailed 

groups. Figure 4-1 provides an example of this structure using the detailed SOC 33-9099 which 

corresponds to the SOC group of “Protective Service Workers, All Other” and is nested in the 

broad SOC 33-9090, “Miscellaneous Protective Service Workers”. The broad SOC is in turn 

nested in the minor SOC 33-9000, “Other Protective Service Workers,” which resides within the 

major SOC 33-0000,“Protective Service Occupations”.  
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Figure 4-1 Example of the hierarchical structure in the SOC system reprinted from the 2010 

SOC User Guide (Bureau of Labor Statistics 2010) 

 To take advantage of the hierarchical structure of the SOC system we chose to use a 

parametric Bayes imputation method to impute missing values at the broad SOC level. All 

models were performed in R. There were a total of 461 broad SOCs, 222 (48%) of which had 

missing data. Of these 222 broad SOCs four were in the major SOC group 23-0000 (Legal 

Occupations). Because we did not have any measurements for this occupational group we could 

not perform any imputation; imputation was possible for all other broad SOCs. We first created 

training and validation datasets to evaluate imputation accuracy by comparing observed and 

imputed data in the validation dataset in order to benchmark our imputation against the truth. We 

then used the full dataset to impute missing values for each broad SOC to be used for future 

research.  

Model Construction and Validation 

A hierarchical model was used to estimate missing values in the dataset.  The derivation of the 

method used is presented in Appendix 1. Let i denote the index of major SOCs and let j denote 

the index of broad SOCs that are nested within the major SOCs. There are two data components 

in this model: the observed SOCs and the missing SOCs. We assign separate indices for these 
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two data components. For those broad SOCs that are observed, 𝑌𝑖𝑗
𝑜𝑏𝑠 is the sample mean of the 

jth broad SOC in the ith major SOC. Consider a model describing our information about a 

hierarchical dataset {𝑌1
𝑜𝑏𝑠, … , 𝑌𝐼

𝑜𝑏𝑠} where 𝑌𝑖
𝑜𝑏𝑠 = {𝑌𝑖1

𝑜𝑏𝑠, … , 𝑌𝑖𝑛𝑖
𝑜𝑏𝑠} consisting of all the observed 

data in the ith major SOC. 𝑠𝑖𝑗
𝑜𝑏𝑠 and 𝑛𝑖𝑗

𝑜𝑏𝑠 are the corresponding sample standard deviation and 

sample size, respectively, corresponding to  the jth broad SOC nested in the ith major SOC. All 

that is known about this dataset are 𝑌𝑖𝑗
𝑜𝑏𝑠, 𝑠𝑖𝑗

𝑜𝑏𝑠 and 𝑛𝑖𝑗
𝑜𝑏𝑠 and the hierarchical structure of the 

dataset. 𝜃𝑖𝑗
𝑜𝑏𝑠 is the true (unknown) mean of jth observed broad SOC in the ith major SOC and is 

described Equation 1 while 𝜃𝑖𝑘
𝑚𝑖𝑠 is the true mean of kth missing broad SOC in the ith major 

SOC. 

Equation 1 

𝑌𝑖𝑗
𝑜𝑏𝑠~𝑁(𝜃𝑖𝑗

𝑜𝑏𝑠 ,
(𝑠𝑖𝑗
𝑜𝑏𝑠)2

𝑛𝑖𝑗
𝑜𝑏𝑠 ) 

The random variables 𝜃𝑖𝑗
𝑜𝑏𝑠 can be thought of as independent samples from the major 

SOC with index , 𝑖 , described by some fixed but unknown feature parameter 𝜃𝑖 and 𝜎2 where 𝜃𝑖 

is the true mean of ith major SOC and 𝜎2 is the variation of broad SOCs within this major SOC. 

Similarly, the random variables 𝜃𝑖𝑘
𝑚𝑖𝑠 can also be thought of as independent samples from the 

major SOC with index , 𝑖 , described by 𝜃𝑖 and 𝜎2. In the normal model, we model the data as 

conditionally independent and identically distributed (i.i.d.) normal (𝜃𝑖 , 𝜎
2): 

𝜃𝑖𝑗
𝑜𝑏𝑠 ~ 𝑁(𝜃𝑖 , 𝜎

2) 

𝜃𝑖𝑘
𝑚𝑖𝑠 ~ 𝑁(𝜃𝑖, 𝜎

2) 
To represent the information about 𝜃𝑖, we treat 𝜃𝑖 , 𝑖 = 1,… , 𝐼 as independent samples from the 

population mean. Assume the true population mean level is 𝜇 and the variation among all major 

SOCs is 𝜏2. Then the distribution of 𝜃𝑖 is: 

𝜃𝑖  ~ 𝑁(𝜇, 𝜏
2) 
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In sum, we have a hierarchical normal model that describes the heterogeneity of means 

across different broad SOCs and major SOCs. In this hierarchical model we assume that the 

within- and between-major SOC sampling models are both normal. We further assume that the 

sample mean of each broad SOC is distributed around the true mean of that broad SOC. The 

within-major SOC sampling variability 𝜎2 is assumed to be constant across major SOC groups 

and the between-major SOC sampling variability 𝜏2 is also assumed to be constant. The fixed 

but unknown parameters in this model are 𝜃𝑖𝑗
𝑜𝑏𝑠, 𝑖 = 1,… , 𝐼; 𝑗 = 1,… , 𝑛𝑖

𝑜𝑏𝑠, 𝜃𝑖𝑘
𝑚𝑖𝑠, 𝑖 = 1,… , 𝐼; 𝑘 =

1, … , 𝑛𝑖
𝑚𝑖𝑠, 𝜃𝑖 , 𝑖 = 1, … , 𝐼 and 𝜇, 𝜏2, 𝜎2 which will be estimated. For the parameters 𝜇, 𝜏2, 𝜎2, we 

need to specify prior distributions on them. We chose to use the standard conjugate normal and 

inverse-gamma prior distributions for these parameters as shown in equation 2. 

Equation 2 

𝜏2~𝐼𝑛𝑣 − 𝑔𝑎𝑚𝑚𝑎 (
𝜂0

2
,
𝜂0𝜏0

2

2
) ; 𝜎2~𝐼𝑛𝑣 − 𝑔𝑎𝑚𝑚𝑎 (

𝜐0

2
,
𝜐0𝜎0

2

2
); 𝜇~𝑁(𝜇0, 𝛾0

2) 

Implying the densities  𝑝(𝜏2) =
1

𝜏
2(
𝜂0
2
+1)
exp (−

𝜂0𝜏0
2

2𝜏2
) and 𝑝(𝜎2) =

1

𝜎
2(
𝜐0
2
+1)
exp (−

𝜐0𝜎0
2

2𝜎2
). 

Since no prior information is available, we specify non-informative priors for all these 

parameters. A graphical representation of the model is presented in Figure 4-2.  
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Figure 4-2 An illustration of the hierarchical structure used in this analysis. There are 22 major 

SOCs and various number of broad SOCs within each major SOC. For example, the first major 

SOC has 22 broad SOCs and the 22nd major SOC has 3 broad SOCs 

The unknown quantities include the broad SOC means 𝜃𝑖𝑗
𝑜𝑏𝑠, 𝑖 = 1, … , 𝐼; 𝑗 =

1, … , 𝑛𝑖
𝑜𝑏𝑠, 𝜃𝑖𝑘

𝑚𝑖𝑠, 𝑖 = 1,… , 𝐼; 𝑘 = 1,… , 𝑛𝑖
𝑚𝑖𝑠, the major SOC means 𝜃𝑖 , 𝑖 = 1,… , 𝐼, the population 

mean 𝜇, the within major SOC sampling variability 𝜎2 and the between major SOC sampling 

variability 𝜏2. Posterior inference for these parameters can be made by constructing a Gibbs 

sampler, which approximates the posterior distribution. After some calculation, we find that the 

conditional distribution of every mean parameter, including the broad SOC means 𝜃𝑖𝑗
𝑜𝑏𝑠, 𝑖 =

1, … , 𝐼; 𝑗 = 1,… , 𝑛𝑖
𝑜𝑏𝑠, 𝜃𝑖𝑘

𝑚𝑖𝑠, 𝑖 = 1,… , 𝐼; 𝑘 = 1,… , 𝑛𝑖
𝑚𝑖𝑠, the major SOC means 𝜃𝑖 , 𝑖 = 1,… , 𝐼, the 

population mean 𝜇, is normal. The conditional distribution of SOC sampling variability 𝜎2 and 

the conditional distribution of the between major SOC sampling variability 𝜏2 are both inverse 

gamma.  

Posterior approximation proceeds by iterative sampling of each unknown quantity from its 

full conditional distribution. We choose the number of iterations S to be 10000 and set the 

Observations

Broad SOC level

Major SOC level

Population level μ,τ
2

θ1,σ
2

θ11

Y11, n11,, 
s11

... θ130

Y130, 
n130,, s130

θ22,σ
2

θ221

Y221 , 
n221,, s221

θ222

Y222 , n222, 
s222

θ223

Y223, n223, 
s223

...
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starting values for each of these parameters. Given a current state of the unknowns 

{𝜃11
𝑜𝑏𝑠(𝑠)

, … , 𝜃𝐼𝑛𝐼
𝑜𝑏𝑠(𝑠) , 𝜃11

𝑚𝑖𝑠(𝑠), … , 𝜃𝐼𝑛𝐼
𝑚𝑖𝑠(𝑠)

, 𝜃𝑖
(𝑠)
, 𝜇(𝑠), 𝜏2(𝑠), 𝜎2(𝑠)}, a new state is generated as 

follows: 

1. Posterior step: sample 𝜃𝑖
(𝑠+1)

, 𝑖 = 1,… , 𝐼 from 

𝜃𝑖|𝜇
(𝑠), 𝜃𝑖1

𝑜𝑏𝑠(𝑠), … , 𝜃𝑖𝑛𝑖
𝑜𝑏𝑠(𝑠), 𝜃𝑖1

𝑚𝑖𝑠(𝑠), … , 𝜃𝑖𝑛𝑖
𝑚𝑖𝑠(𝑠)

, 𝜏2(𝑠), 𝜎2(𝑠) based on its full conditional 

distribution 

2. Posterior step: sample 𝜇(𝑠+1) from 𝜇|𝜃1
(𝑠+1), … , 𝜃𝐼

(𝑠+1), 𝜏2(𝑠) 

3. Posterior step: sample 𝜏2(𝑠+1) from 𝜏2|𝜃1
(𝑠+1), … , 𝜃𝐼

(𝑠+1), 𝜇(𝑠+1) 

4. Posterior step: sample 𝜎2(𝑠+1) from 

𝜎2|𝜃11
𝑜𝑏𝑠(𝑠), … , 𝜃𝐼𝑛𝐼

𝑜𝑏𝑠(𝑠), 𝜃11
𝑚𝑖𝑠(𝑠), … , 𝜃𝐼𝑛𝐼

𝑚𝑖𝑠(𝑠), 𝜃1
(𝑠+1), … , 𝜃𝐼

(𝑠+1)
 

5. Posterior step: sample 𝜃𝑖𝑗
𝑜𝑏𝑠(𝑠+1)

, 𝑖 = 1,… , 𝐼, 𝑗 = 1,… , 𝑛𝑖
𝑜𝑏𝑠 from 𝜃𝑖𝑗

𝑜𝑏𝑠|𝜃𝑖
(𝑠+1)

, 𝜎2(𝑠+1) 

6. Imputation step: sample 𝜃𝑖𝑗
𝑚𝑖𝑠(𝑠+1)

, 𝑖 = 1,… , 𝐼, 𝑗 = 1, … , 𝑛𝑖
𝑚𝑖𝑠 from 𝜃𝑖𝑗

𝑚𝑖𝑠|𝜃𝑖
(𝑠+1)

, 𝜎2(𝑠+1) 

Repeat the above procedure for S times when convergence has already reached. After a 

thinning procedure and a burn-in period, the draws will be used for the posterior 

inference. This process is illustrated in figure 4-3. A detail description of this Bayesian 

parametric imputation procedure is presented in Appendix 1. 
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Figure 4-3 An illustration of the imputation process used to estimate exposures 

Prior to imputation of the full JEM, the imputation model was evaluated by dividing the 

available data in to a training and validation set. The training dataset consisted of 189 broad 

SOCs that were randomly chosen from the available dataset of 239 broad SOCs provided the 

broad SOC contained more than one measurement, as imputation cannot be conducted with one 

measurement. The remaining 50 broad SOCs, including those with a single measurement, were 

assigned to the validation dataset.  The posterior distribution of the mean and variances was 

calculated at the broad and major SOC level in the training dataset and compared to the observed 

data in the validation dataset. After the model evaluation the training and validation datasets 

were combined and all data were used for imputation of the final JEM. 

Results 

A summary of the estimates from the model validation is presented in Table 4-1, where 

the population mean (μ), is estimated to be 82.4 dBA, the within-major SOC variability (σ2) is 

20.0 and the between-major SOC variability (𝜏2) is 13.3. The estimated mean noise exposure for 
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each major SOC ranged from 78.4 (43-0000, “Office and Administrative Support Occupations”) 

to 85.5 dBA (45-0000. “Farming, Fishing, and Forestry Occupations”).  The 95% credible 

interval varied depending on the number of broad SOCs present within each major SOC (Table 

4-2). Figure 4-4. displays a fairly strong agreement between the 189 estimated and observed 

broad SOC means in the training dataset. However, Figure 4-3b illustrates that the agreement 

between the observed and predicted SOC means in the validation dataset was not as strong as the 

training dataset as expected.  Of the 50 broad SOCs in the validation dataset 11 observed sample 

means were outside the 95% credible interval and 39 fell inside the credible interval, however, 7 

of those broad SOCs that fell outside contained only one measurement (Figure 4-5). 

Parameter Posterior mean Posterior standard 

deviation 

95% Credible 

interval 

𝜇 82.3 0.90 (80.64, 84.19) 

𝜎2 20.0 2.51 (15.66, 25.48) 

𝜎 4.4 0.28 (3.96, 5.05) 

𝜏2 13.3 5.28 (6.22, 26.50) 

𝜏 3.5 0.68 (2.49, 5.15) 

Table 4-1 Summary of posterior distribution of parameters from the model validation 

Major 

SOC Major SOC Title 

Posterior 

mean 

Posterior 

standard 

deviation 

95% credible 

interval 

Number 

of broad 

SOCs1 

11-0000 Management Occupations 81.8 1.77 (78.42, 85.28) 7 

13-0000 

Business and Financial 

Operations Occupations 82.7 2.38 (78.2, 87.6) 3 

15-0000 

Computer and Mathematical 

Occupations 80.9 2.72 (75.41, 86.1) 2 

17-0000 

Architecture and Engineering 

Occupations 80.7 1.63 (77.58, 84) 7 

19-0000 

Life, Physical, and Social 

Science Occupations 82.8 2.01 (78.88, 86.83) 4 

21-0000 

Community and Social Service 

Occupations 80.7 2.83 (74.73, 86.01) 2 

25-0000 

Education, Training, and 

Library Occupations 84.0 2.85 (78.53, 89.57) 2 

                                                      
1 Number of broad SOCs in the training dataset 
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27-0000 

Arts, Design, Entertainment, 

Sports, and Media 

Occupations 82.1 2.00 (78.22, 86.05) 5 

29-0000 

Healthcare Practitioners and 

Technical Occupations 79.9 1.82 (76.19, 83.26) 6 

31-0000 

Healthcare Support 

Occupations 82.3 2.91 (76.59, 87.97) 1 

33-0000 Protective Service Occupations 81.2 1.82 (77.55, 84.74) 5 

35-0000 

Food Preparation and Serving 

Related Occupations 82.7 1.56 (79.65, 85.93) 8 

37-0000 

Building and Grounds 

Cleaning and Maintenance 85.0 2.53 (80.23, 89.84) 2 

39-0000 

Personal Care and Service 

Occupations 84.8 1.93 (80.91, 88.58) 5 

41-0000 Sales and Related Occupations 82.3 2.07 (78.23, 86.59) 3 

43-0000 

Office and Administrative 

Support Occupations 78.4 1.15 (76.19, 80.61) 16 

45-0000 

Farming, Fishing, and Forestry 

Occupations 85.5 1.98 (81.65, 89.49) 4 

47-0000 

Construction and Extraction 

Occupations 83.5 0.85 (81.84, 85.12) 27 

49-0000 

Installation, Maintenance, and 

Repair Occupations 83.3 1.18 (80.96, 85.51) 14 

51-0000 Production Occupations 85.2 0.68 (83.87, 86.59) 43 

53-0000 

Transportation and Material 

Moving Occupations 83.3 0.97 (81.45, 85.22) 21 

55-0000 Military Specific Occupations 78.9 2.77 (73.2, 83.85) 2 

Table 4-2 Posterior distribution of major SOC means from the model validation 
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a) Difference between predicted and observed broad SOC means in the training dataset 

(n=189). 

 
b) Difference between predicted and observed broad SOC means in the validation dataset 

(n=50). 

 
Figure 4-4 Difference between predicted and observed values for observed and predicted values 
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Figure 4-5 Posterior and observed broad SOCs means for the validation dataset (n=50) 

 

Table 4-3 summarizes the population mean, and the within- and between-major SOC 

variability for the entire dataset (i.e. the combined validation and training datasets).  The 

population mean was estimated to be 82.1 dBA and the within- and between-major SOC 

variability was estimated to be 22.1 and 13.8, respectively. As seen in table 4-4,The estimated 

mean noise exposure for each major SOC ranged from 78.6 (25-0000, “Education, Training, and 

Library Occupations”) to 86.4 dBA (45-0000, “Farming, Fishing, and Forestry Occupations”). 

Similar to what we observed in the model validation results (Table 4-2), major SOCs that 

consisted of a larger number of broad SOCs had smaller 95% credible intervals. 

  



 59 

Parameter Posterior mean Posterior standard 

deviation 

95% Credible 

interval 

𝜇 82.1 0.91 (80.30, 83.93) 

𝜎2 22.1 2.49 (17.73, 27.52) 

𝜎 4.7 0.26 (4.21, 5.25) 

𝜏2 13.8 5.37 (6.56, 26.57) 

𝜏 3.7 0.68 (2.56, 5.15) 

Table 4-3 Summary of posterior distribution of parameters from the model imputation 

 
The model predictions at the broad SOC level can be found in Appendix 2. The estimated 

population mean was 82.1 dBA while the estimated population standard deviation was 3.1 dBA. 

Of the 443 broad SOCs, 338 (76.3%) were found to have an estimated mean exposure >80 dBA, 

while 85 (19.2%) were found to have an estimated mean exposure greater than the current OSHA 

AL. Additionally, 10 broad SOCs were found to have an estimated mean exposure greater that 

the OSHA PEL. The distribution of estimated broad SOC means can be found in Figure 4-6, and 

indicates that the majority of broad SOCs have estimated mean noise exposure levels between 80 

and 85 dBA. 

 
Figure 4-6 The distribution of estimated mean noise exposures (dBA) at the broad SOC 
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Major 

SOC Major SOC Title 

Posterior 

mean 

Posterior 

standard 

deviation 

95% credible 

interval 

Number 

of broad 

SOCs2 

11-0000 Management Occupations 82.0 1.63 (78.63, 85.13) 9 

13-0000 

Business and Financial 

Operations Occupations 81.4 2.03 (77.25, 85.12) 5 

15-0000 

Computer and Mathematical 

Occupations 80.4 2.27 (75.89, 84.77) 4 

17-0000 

Architecture and Engineering 

Occupations 81.3 1.54 (78.3, 84.4) 9 

19-0000 

Life, Physical, and Social 

Science Occupations 81.4 1.85 (77.74, 85.06 6 

21-0000 

Community and Social Service 

Occupations 80.6 2.99 (74.7, 86.29) 2 

25-0000 

Education, Training, and 

Library Occupations 78.6 2.23 (74.09, 82.94) 4 

27-0000 

Arts, Design, Entertainment, 

Sports, and Media 

Occupations 83.5 1.85 (79.95, 87.12) 7 

29-0000 

Healthcare Practitioners and 

Technical Occupations 81.5 1.70 (78.18, 84.85) 8 

31-0000 

Healthcare Support 

Occupations 82.1 2.94 

 

76.41, 87.98) 1 

33-0000 Protective Service Occupations 79.7 1.64 (76.47, 82.92) 7 

35-0000 

Food Preparation and Serving 

Related Occupations 82.8 1.42 (79.97, 85.63) 10 

37-0000 

Building and Grounds 

Cleaning and Maintenance 84.6 2.55 (79.7, 89.79) 2 

39-0000 

Personal Care and Service 

Occupations 84.6 1.83 (81.04, 88.19) 7 

41-0000 Sales and Related Occupations 81.1 1.89 (77.39, 84.77) 5 

43-0000 

Office and Administrative 

Support Occupations 78.8 1.13 (76.59, 80.98) 18 

45-0000 

Farming, Fishing, and Forestry 

Occupations 86.4 1.75 (83.04, 89.81) 6 

47-0000 

Construction and Extraction 

Occupations 83.6 0.88 (81.88, 85.26) 29 

49-0000 

Installation, Maintenance, and 

Repair Occupations 83.3 1.16 (81.18, 85.65) 16 

51-0000 Production Occupations 85.4 0.72 (84.02, 86.79) 45 

53-0000 

Transportation and Material 

Moving Occupations 83.7 1.00 (81.77, 85.69) 23 

55-0000 Military Specific Occupations 78.8 2.78 (73.14, 84.12) 2 

                                                      
2 Total number of broad SOCs in the training and validation datasets 
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Table 4-4 Posterior distribution of major SOC means from the model imputation 

Discussion 

In this study we used principled validation strategy to evaluate the performance of an 

imputation strategy to estimate noise exposures in a large JEM. The imputation strategy borrows 

information across broad SOCs by assuming a common hierarchical distribution with parameters 

that are shared. The imputed SOC means were assessed for imputation accuracy in a validation 

dataset consisting of randomly chosen subset of SOCs. The strong agreement between the 189 

estimated and observed broad SOC means in the training dataset was because these observed 

broad SOCs were used to build the hierarchical model and thus their data were “known” to the 

model, which yielded statistically overly optimistic estimates. The broad SOCs in the validation 

dataset were not used in building the hierarchical model and were thus “unknown”. The 

estimated SOC mean of a broad SOC in the training set was a weighted average of the observed 

SOC mean 𝑌𝑖𝑗
𝑜𝑏𝑠 and the estimate of minor SOC mean 𝜃𝑖 that it was nested in, and the weights 

were proportional to the estimated 𝜎2 (variation within major SOC) and 
(𝑠𝑖𝑗
𝑜𝑏𝑠)

2

𝑛𝑖𝑗
𝑜𝑏𝑠  (variation in the 

observed SOC mean). As the variation within major SOCs was high in this dataset, and the 

variation in the observed SOC mean was very low for most broad SOCs, the estimated SOC 

mean would likely to be leaning towards the observed SOC mean. However the estimated mean 

of a broad SOC in the validation set was entirely based on the estimated mean of the major SOC 

that it was nested in; no additional information was available that could be used for this purpose. 

As a result, the agreement between the observed and predicted SOC means in the validation 

dataset were not as strongly associated as the training dataset.   

Our estimates were developed from large datasets of measurements provided by the 

government, private industry, and the published literature. By taking advantage of the 
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hierarchical structure of the SOC system we were able to use imputation to iteratively impute the 

missing values of the mean of the broad SOCs and to draw updated samples of the parameters 

based on both the means of the observed broad SOCs and the means of the missing broad SOCs.  

Due to the limited sample size within each minor SOC, we chose to ignore the minor SOC level 

in this hierarchical model. Instead we assumed that the broad SOCs within the same major SOC 

are more alike those broad SOCs in other major SOCs. This assumption has the potential to 

introduce error in the exposure estimates if the majority of broad SOCs within a major group 

were clustered under one minor group with the other minor groups only containing a few broad 

SOC measurements. However, any such error stems from the available data rather than the 

model used for this analysis. The imputation strategy is based on a parametric hierarchical model 

relying on normality and homogeneous variance within a broad SOC. These assumptions could 

be violated leading to erroneous imputation. The validation analysis on the 50 randomly chosen 

SOCs provide a realistic sense of accuracy when a new missing exposure is predicted for an 

SOC. 

In the parametric Bayes imputation method that we used, we plugged in the posterior 

mean estimates of the unknown quantities as our single imputation results. However instead we 

could possibly create random draws from the posterior distributions of these quantities and then 

create multiple imputed datasets. The advantage of multiple imputation over the single 

imputation is that it takes into account the uncertainty in the imputation procedure. 

Another potential source of error in our exposure estimates occurs because these data 

represents occupational noise exposures from 1970-2014. As reported by Middendorf in 2004 

and Roberts et al. in 2016 occupational noise exposures have been decreasing overall in the 

general industry and mining sectors.63,93 If a majority of measurements for a particular 
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occupation were clustered in a short time span then it is possible that the measurements used by 

the model to develop exposure estimates may be biased.  

 The largest potential source of error in our estimates is likely the variability of exposure 

within each broad SOC.  This is a common issue for any JEM that attempts to quantify exposures 

across several different industries. As identified by Rappaport et al. there is considerable 

variation in personal exposure for workers with similar job titles within the same workplace 89. 

Grouping workers by job title is common practice in industrial hygiene because it is easy and 

straightforward to assign workers to an occupational group. However, as Anderson et al. have 

demonstrated, the standard occupational coding systems used in Canada were inadequate to 

accurately group workers in the pulp and paper industry.96 We recognize that these shortcomings 

of the SOC system may result in misclassification of exposure.  However, these issues are 

minimized by the large number of measurements and by use of the imputation method to 

estimate exposures from a distribution of possible exposures.97 

 The results of our analysis indicated that the majority of broad SOCs were estimated to 

be exposed to noise ≥ 80.0 and <85.0 dBA. While these broad SOCs are not estimated to exceed 

the OSHA action level, it is worth noting that the average estimated exposure and standard 

deviation for broad SOCs in this group were 82.3 and 3.6 dBA, respectively, with a 95% 

confidence interval between 72.3 and 89.4 dBA. This suggests that while the estimated mean 

exposure for these groups was below the action level there is considerable uncertainty in these 

exposures that must be considered when using these estimates to identify occupations that should 

be enrolled in hearing conservation programs (HCPs). This is in contrast to broad SOCs that are 

in the >=85.0, <90.0 dBA and > 90.0 dBA groups, which have an average estimated exposure of 

87.1, 91.6 dBA and standard deviations of 1.2 and 0.8 dBA, respectively.  For these two groups 
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there is far greater confidence that noise exposures exceed the action level or PEL and that 

controls must be implemented to protect workers from excessive exposure.  

 Exposure estimates for individual broad SOCs can be found in Appendix 2.  While these 

estimates cannot replace personal measurement data, they do provide a starting point for 

occupational health professionals to identify workers who may be overexposed to noise. 

Additionally, the provided measure of variability will help inform and guide the decisions of 

occupational health professionals regarding workers in job groups whose exposure may vary 

from day to day depending on the specific work tasks being conducted. 

 To our knowledge the exposure estimates from our model are based on the most 

comprehensive dataset of occupational noise exposure ever collected. The only other instance of 

a comprehensive JEM developed for occupational noise was reported by Sjӧstrӧm et al. in 2013. 

The authors of that paper used a mixture of 569 quantitative noise measurements and qualitative 

measurements made by expert judgment to assign exposure groupings for 129 unique job 

families.88 In contrast to what has been seen in the US, occupational noise exposures in Sweden 

saw only a slight decrease from 1970 to 2004 which, likely reflects the difference in the dates of 

promulgation and enforcement of occupational health laws in the US compared to Sweden 63,88. 

It is not straightforward to directly compare the results from our JEM to the JEM constructed by 

Sjӧstrӧm et al. because we only used quantitative measurements in our JEM.  In addition, 

Sweden uses a more protective noise exposure standard than OSHA (85 dBA criterion level and 

3 dB time-intensity exchange rate) while OSHA uses the less protective 90 dBA criterion level 

and 5 dB time-intensity exchange rate, making it impossible to directly compare the 

measurements.15 
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 Despite the limitations associated with this JEM we believe it represents a useful tool for 

occupational health professionals and researchers. Our future plans include combining the 

exposure estimates from this model with information on the frequency of noise exposure from 

Department of Labor’s Occupational Information Network (O*NET) system by using responses 

from survey question 4.C.2.b.1.a, which asks respondents to provide a response from 0-100% 

“How often does this job require working exposed to sounds and noise levels that are distracting 

or uncomfortable?”.98  This will build on previous work by Choi et al. that used the responses 

from O*NET’s databases to create statistical models to predict NIHL.99 Our exposure estimates 

can also be used with noise-induced hearing loss models published by the International 

Organization for Standards (ISO) to predict hearing threshold levels of participants in the 

National Health and Nutrition Examination Survey (NHANES) which contains both audiometric 

and employment history data.100,101   Each of these steps will yield better noise exposures 

estimates that can, in turn, be used to guide efforts to control noise exposures and reduce 

occupational NIHL. 
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Chapter 5 -Evaluating the Risk of Noise-Induced Hearing Loss Using 

Different Noise Measurement Criteria 

Abstract 

This study examines whether the Occupational Safety and Health Administration’s 

(OSHA) average noise level (LAVG) or the National Institute of Occupational Safety and Health’s 

(NIOSH) equivalent continuous average (LEQ) noise measurement criteria better predicts hearing 

loss. A cohort of construction workers was followed for 10 years (2000 to 2010), during which 

time their noise exposures and hearing threshold levels (HTLs) were repeatedly assessed. Linear 

mixed models were constructed with HTLs as the outcome, either the OSHA (LAVG) or NIOSH 

(LEQ) measurement criteria as the measure of exposure, and controlling for, age, gender, duration 

of participation, and baseline HTLs (as both a covariate or an additional repeated measure).  

Model fit was compared between models for HTLs at 0.5, 1, 2, 3, 4, 6, and 8 kHz using the 

Akaike Information Criterion (AIC). The 10th, 50th, and 90th percentiles of hearing outcomes 

predicted by these models were then compared to the hearing outcomes predicted using the 

ISO1999:2013 model. The mixed models using the LEQ were found to have smaller AIC values 

than the corresponding LAVG models. However, only the 0.5, 3, and 4 kHz models were found to 

have an AIC difference greater than 2. When comparing the distribution of predicted hearing 

outcomes between the mixed models and their corresponding ISO outcomes it was found that 

LEQ generally produced the smallest difference in predicted hearing outcomes. Despite the small 

difference and high correlation between the LEQ and LAVG the LEQ was consistently found to 

better predict hearing levels in this cohort.   



 67 

 

Introduction 

It is estimated that about 24 million workers are exposed to hazardous levels of 

occupational noise each year in the US alone.6 Prolonged exposure to hazardous noise can lead 

to noise induced hearing loss (NIHL), which is estimated to affect 11.4% of the working 

population in the US.78 NIHL can diminish a worker’s ability to detect audible warnings and 

hinder communication with coworkers102, and may also increase the risk of injury in the 

workplace.38,43,103–106 Outside of the workplace those with NIHL can feel socially isolated and 

have a higher prevalence of depression and anxiety compared to those without hearing loss.60  

Regulations and recommendations with regards to occupational noise exposure have 

changed since the first noise exposure limit was introduced in the 1950s.107 Before the founding 

of the Occupational Health and Safety Administration (OSHA), the Department of Labor (DOL) 

used its authority under the Walsh-Healey Public Contracts Act to propose a Permissible 

Exposure Limit (PEL) for noise of 85 dBA with a time-intensity exchange rate (ER) – i.e., the 

amount of change in average noise level needed to double or halve the allowable exposure time – 

varying between 2 and 7 dB based on the intermittency of the noise exposure.108 However, this 

standard was quickly replaced by a PEL of 90 dBA with a simplified 5 dB ER, which was 

adopted by OSHA when that agency was established in 1971 and which remains in effect 

today.109–112  In 1972 the National Institute of Occupational Safety and Health (NIOSH) released 

its initial Criteria for a Recommended Standard for Occupational Exposure to Noise in which 

NIOSH “reluctantly concurred with the generally acceptable 90 dBA exposure level for an 8-

hour day.” However, NIOSH also recognized the need to for reducing the 8 hour exposure level 

to 85 dBA based on the evidence presented in the document.113 In this document NIOSH did not 

take a position on the appropriate ER. In 1994 the American Conference of Governmental 



 68 

Industrial Hygienists (ACGIH) revised its threshold limit value (TLV) for noise to be 85 dBA 

with a 3 dB ER.114 NIOSH revisited the issue in 1998 when they released a revised Criterion for 

a Recommended Standard Occupational Exposure to Noise with a recommended exposure limit 

(REL) of 85 dBA and a 3 dB ER.16 The difference between the 5 dB and 3 dB exchange rates has 

a major impact on the allowable exposure durations for high levels of intermittent noise. For 

truly non-varying noise the ER used makes no difference, but as noise becomes more variable, as 

is commonly the case in many industries such as construction, the difference between the two 

ERs becomes increasingly important.115  

The divergence between the OSHA regulation and NIOSH recommendation for 

occupational noise exposure has been a point of contention in the industrial hygiene 

profession.116–119 However, much of the debate has focused on the differing exchange rates rather 

than the differing exposure limits. The 3 dB ER is based on the equal energy hypothesis, which 

states that that an equal amount of sound energy will produce an equal amount of hearing 

damage regardless of the temporal distribution of the exposure over a work shift or longer 

period.109 This was supported mainly by the research done by Eldred et al. in 1955 and was 

further buttressed by Burns and Robinson in 1970.109 Since then several studies have provided 

further support to the equal energy hypothesis, and field studies using the 3 dB ER have found 

NIHL rates that are similar to those documented in ISO 1990:1999 (now ISO 1999:2013).101,120–

123 

Unlike the 3 dB ER, the 5 dB ER used by OSHA attempts to account for predictable, 

intermittent exposure to noise (e.g., noise exposures interrupted by regularly spaced quiet breaks) 

that may occur in the workplace. However, there is no formal definition in OSHA’s noise 

standard of what the distinction is between continuous and intermittent noise. The 5 dB ER was 
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first suggested in a set of damage risk criteria curves published by the Committee on Hearing, 

Bioacoustics, and Biomechanics’ (CHABA) Intersociety Committee in its 1967 guidelines for 

controlling noise exposure.124 ACGIH also initially endorsed a 5 dB ER in 1969.125 In the same 

year the Department of Labor adopted a regulation virtually identical to ACGIH’s standard.125 

Despite the fact that most countries have adopted the 3 dB ER for regulatory standards, 

and the much of the published literature supports using the 3 dB ER, some authors argue that 

there is insufficient evidence to support this presumably more protective ER.15,126–128 The main 

argument put forth by those opposed to the 3 dB ER is that there are very few modern studies 

examining whether the 3 or 5 dB ER produces better exposure estimates for predicting NIHL, 

and some older studies found that using a 3 dB ER would lead to an overestimated risk of 

NIHL.123  

Because it is widely accepted that hazardous noise exposure leads to NIHL, it is unethical 

to conduct experimental human exposure studies. Animal studies, primarily of chinchillas129,  

have found that the same amount of noise exposure produces a similar amount of NIHL 

regardless if the noise exposure occurs with breaks or continuously, suggesting that the equal 

energy hypothesis, and thus the 3 dB ER, is acceptable.130,131 However, there is still considerable 

uncertainty when extrapolating these results to humans due to inter-species differences in NIHL 

risk and the use of noise exposures that are not characteristic of exposures in the workplace.132–

134  Studies of highly-exposed worker populations are challenging due to the need for long-term 

access to, and cooperation from, the workers.  In addition, OSHA’s hearing conservation 

amendment in 1981 required employers to provide an effective hearing conservation program to 

all employees exposed >85 dBA as an 8-hour TWA.111 This resulted in a large increase in the use 
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of hearing protection devices (HPDs),135 which substantially complicates the estimation of 

personal noise exposures and subsequent study of NIHL risk.  

Annual audiometric evaluations are used to determine the degree of change in hearing 

over time, which may be the result of noise exposure during the interval between tests.  

According to both the OSHA noise standard, and recommended practice, workers should receive 

a baseline audiogram before employment or being assigned to an area with hazardous noise. The 

test measures pure-tone hearing threshold levels (HTLs) at various audiometric test frequencies 

(0.5, 1, 2, 3, 4, 6, and sometimes 8 kHz) after a quiet period of at least 14 hours.136 The worker is 

then given a subsequent audiogram annually. Evaluation of within-worker changes in hearing 

thresholds between baseline and subsequent audiograms allows for surveillance and 

identification of NIHL.  While large, longitudinal audiometric datasets are maintained by 

corporations and organizations in the US and globally, these datasets are often not available to 

researchers, and the quality of the audiometric measurements (and supporting noise measurement 

data) contained in the datasets can be highly variable due to variations in testing procedures and 

environments, as well as supporting information collected at the time of the test.137,138   

To overcome these difficulties, we have re-analyzed exposure and audiometric data from 

a research cohort of construction apprentices that were first described in Seixas et al. in 2004139, 

and subsequently in 2012.65  This inception cohort was chosen due to reported infrequent use of 

hearing protection and the availability of high-quality baseline and annual audiometric test data 

accompanied by a robust set of longitudinal noise measurements.65,140  Using linear mixed 

models, we estimated the amount of NIHL experienced by these workers when using the 3 dB 

ER as well as the 5 dB ER to estimate noise exposure. We then compared the models to see 

which best fit the observed changes in audiometric hearing thresholds. Predictions from both 
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models were then compared to the International Standard Organization’s ISO model101 for 

estimating NIHL.  

 

Methods 

The exposure and audiometric data for this analysis comes from a 10-year longitudinal 

study of commercial construction apprentices from eight different trades described previously by 

Seixas et al. in 2012.65,141 The study was divided into two different phases. In phase 1 (2000-

2005), construction apprentices were recruited during their first year of apprenticeship training, 

and were given baseline questionnaires and audiometric tests at 0.25, 0.5, 1, 2, 3, 4, 6, and 8 kHz 

using a Tremetrics RA 300 audiometer with TDH-39 headphones in a test van meeting OSHA’s 

requirements for background noise.141  Subjects were then given follow-up tests approximately 

every year for 4 years. Graduate students assumed to have non-harmful (i.e., <70 dBA) 

occupational exposures were recruited as control subjects.121 Subjects who had completed at 

least two tests were re-recruited for additional yearly audiometric tests for another 4 years during 

phase 2 (2006-2010).65  Audiograms were obtained at 0.5, 1, 2, 3, 4, 6, and 8 kHz using a 

Grason-Standler GSI-61 audiometer with ER-3A insert earphones (Eden Prairie, MN) in a test 

booth meeting the American National Standard Institute’s (ANSI) criteria for an audiometric test 

environment.65  To account for the two different phases a dummy variable was included in all 

statistical models to control for the phase of the study. 

Exposure to noise was assessed using a task-based approach as described by Neitzel et al. 

in 2011.140  The task-based noise levels were calculated from 1,310 full-shift noise 

measurements (with noise levels data logged at 1-min intervals and simultaneous recording of 

task involvement and timing by subjects) collected between 1997 and 2008 on commercial 

construction sites.65 Information on task duration from the questionnaires were combined with 
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task-specific noise levels and normalized to a 2000 hour working year to account for the large 

variability in the number of hours worked across subjects.65 Exposure metrics were calculated for 

each subject within the interval between audiometric tests, and also cumulated over the subject’s 

full duration in the study. Equation 1 from Seixas et al. 2012 calculates the LEQ – the equivalent-

continuous sound level using a 3 dB ER – where Lt is the mean LAVG level for task t which was 

done for H hours as reported by individual i in the subject-interval j lasting Y years, and LNC 

denotes non-construction hours in noisy jobs that were assigned a level of 85 dBA.   

Equation 1  

𝐿𝐸𝑄𝑖𝑗𝑇𝐵2000 = 10log10[
1

2000 × 𝑌𝑖𝑗
((∑𝐻𝑖𝑗𝑡10

𝐿𝑡/10) + (𝐻𝑁𝐶𝑖𝑗× 10
𝐿𝑁𝐶

10⁄ ))]

𝑇

𝑡=1

 

We used equation 2 in the current study to calculate the task-based LAVG, which is the average 

sound level using a 5 dB ER, normalized to a 2000 hour working year.  

Equation 2 

𝐿𝐴𝑉𝐺𝑖𝑗𝑇𝐵2000 = 16.61log10[
1

2000 × 𝑌𝑖𝑗
((∑𝐻𝑖𝑗𝑡10

𝐿𝑡/16.61) + (𝐻𝑁𝐶𝑖𝑗× 10
𝐿𝑁𝐶

16.61⁄ ))]

𝑇

𝑡=1

 

 

Controls were assigned an exposure of 70 dBA because noise exposure at this level will not 

cause any measurable hearing loss.121 Pearson’s correlation was calculated to measure the 

correlation between the LEQ and LAVG for each subject over each study interval and cumulatively 

for the study duration. The ratio of the LMAX and LEQ was calculated, using energy averaging to 

account for the fact that decibels are log-scale measurements to determine the peakiness of the 

exposure.  

Linear mixed models were developed to predict HTLs in each ear over time at 0.5, 1, 2, 

3, 4, 6 and 8 kHz; these are the audiometric test frequencies recommended as part of a 
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comprehensive hearing loss prevention program.16  Noise exposure metrics were transformed by 

subtracting 70, thus giving an ‘unexposed’ level of 0 dBA. Models were run using either the 

LAVG or LEQ exposure metric.  The models were run using the combined data from phase 1 and 2 

so that our results could be compared to those of Seixas et al. 2012.65  The models were adjusted 

for the baseline covariates, age (<30 years ≥30 years) and gender. The models included random 

intercepts for subjects (b0i), dominant ears nested within subjects (boi•l), and a random slope for 

years since baseline at the subject level (b1i•l).  An additional set of models was developed using 

the exposure metrics described previously, but which included the baseline hearing thresholds as 

an additional covariate. This was done to compare the model results to what was found by Seixas 

et al. 2012.65   

The general equations for the linear mixed models are presented in equation 3 where i 

indexes the subject i1,...,i316, l the ear (dominant or non-dominant hand side) l1,…,l617, and t 

indexes visit time since baseline t1,…,t9.
65 The term Tit indexes the number of years for a subject 

since baseline at time t, Xit is the subject’s cumulative noise exposure at time t, and Zit∙l represents 

the other fixed effect covariates for ear l nested within subject i at time t. By including the 

number of years since baseline and the cumulative noise exposure it was possible for the model 

to account for the effect of ageing in addition to noise exposure on HTLs.  

Equation 3 

𝑌𝑖𝑡∙𝑙 = 𝛽0 + (𝑏0𝑖 + 𝑏0𝑖∙𝑙) + (𝛽1 + 𝑏1𝑖∙𝑙)𝑇𝑖𝑡 + 𝛽2𝑋𝑖𝑡 + 𝛽3𝑇𝑖𝑡 + 𝛾𝑍𝑖𝑡∙𝑙 + 𝜀𝑖𝑡∙𝑙 

All models were run in STATA 14 (College Station, TX) using restricted maximum 

likelihood (REML) estimates and an unstructured covariance. This was done to minimize the 

bias in the variance component while providing the best model fit, and to be consistent with the 

previous analysis by Seixas et al.65,142,143  The fit of the four LEQ and LAVG models (LEQ 
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controlling for baseline vs. baseline as an additional repeated measure) and LAVG controlling for 

baseline vs. baseline as an additional repeated measure) was compared by using the Akaike 

Information Criterion (AIC), a goodness of fit statistic that penalizes complex models.144 Models 

with lower AIC values were deemed to better fit the data. The difference in AIC scores between 

the LEQ and LAVG models was calculated. A difference of 0-2 indicates that there is substantial 

evidence that both models fit the data, a difference of 4-7 indicates that one model fits the data 

considerably better, and a difference >10 indicates that one model does not fit the data.145 

The 10th, 50th, and 90th percentiles of hearing outcomes from the four models were 

compared to the 10th, 50th, and 90th percentiles estimated levels of hearing loss associated with 

age and noise (NTLAN) predicted using the LEQ and LAVG exposure metrics in the model 

proposed in ISO1999:2013.101 Briefly, this was done by first calculating the median level of 

predicted noise-induced permanent threshold shift (NIPTS) at the 0.5, 1, 2, 3, 4, and 6 kHz 

hearing frequency for each worker using equation 4 (from ISO1999:2013).101 For both the LEQ 

and LAVG where N50 is the predicted median NIPTS, μ and v represent frequency dependent 

correction factors, t represents the length of exposure, t0 represents 1 year, LEX,8h represents noise 

exposure for an 8 hour working day (either LEQ or LAVG), and L0 represents the frequency 

dependent sound level at which effect on hearing is negligible.101 For participants that had an 

exposure duration less than 10 years, N was extrapolated using equation 5 where N50, t<10 

represents the median NIPTS for exposures less than 10 years, t represents the exposure time (in 

years), and N50, t=10 represents the estimated NIPTS at 10 years of exposure. Assuming a 

Gaussian (normal) distribution, the ISO model provides multiplier values that can be used with 

adjustment factors to calculate the 10th and 90th percentiles of the NIPTS distribution.  

Equation 4 
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𝑁50 = [𝜇 + 𝑣 ×𝑙𝑜𝑔 (
𝑡
𝑡0⁄
)]×(𝐿𝐸𝑋,8ℎ − 𝐿0)

2 

Equation 5 

𝑁50,𝑡<10 =
𝑙𝑜𝑔(𝑡 + 1)

𝑙𝑜𝑔(11)
×𝑁50,𝑡=10 

 HTLs as a function of age were calculated for the same audiometric frequencies using 

equation 6 where Hmd, y is the median hearing threshold due to age, a is the gender and frequency 

adjustment factor, y is the person’s age, and Hmd;18 is the median hearing threshold of an 

ontologically normal person that is 18 years old. Because the equation centers the age at 18 the 

Hmd;18 term is taken as 0.    Different percentiles can be calculated for each frequency using the 

provided multiplier and adjustment factors. The HTL associated with age and noise was 

calculated at the 10th, 50th, and 90th percentiles using Equation 7 where H’ is the hearing 

threshold associated with age and noise exposure, H is the hearing threshold associated with age, 

and N is the permanent threshold shift caused by noise exposure for the respective frequency and 

percentile. 

Equation 6 

𝐻𝑚𝑑,𝑦 = 𝑎(𝑦 − 18)
2 + 𝐻𝑚𝑑;18 

Equation 7 

𝐻′ = 𝐻 + 𝑁 − 
𝐻×𝑁

120
 

 

Results 

Figure 5-1 presents scatter plots of the LEQ and LAVG for each worker at each interval 

(Figure 5-1a) at which their noise exposure was estimated, as well as for their cumulative 

exposures (Figure 5-1b). The LEQ measurements were on average 3-4 dB higher than their 

associated LAVG measurements. For both interval-specific and cumulative exposures, the LEQ and 
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LAVG measurements were highly and significantly correlated (r = 0.968 and r = 0.974, 

respectively).  The number of subjects available at each follow up is displayed in Table 5-1. 

 

Figure 5-1 Scatter plot and correlation for a) interval-specific exposures and b) cumulative 

exposures 

 
Time 

Point Number of Subjects 

1 316 

2 308 

3 308 

4 259 

5 203 

6 132 

7 110 

8 86 

9 41 

Table 5-1 Number of subjects at each follow up. 
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Table 5-2 compares the AIC values for both the LEQ and LAVG models with and without 

the baseline HTL covariate at the 0.5, 1, 2, 3, 4, 6, and 8 kHz audiometric test frequencies.  

When the baseline HTLs were included the LEQ models fit the data better than LAVG models at 

each test frequency. However, only the 0.5, 3, and 4 kHz test frequencies were found to have an 

AIC difference >2 and only the 4-kHz frequency had a difference >4. When the baseline HTLs 

were not included as a covariate and instead treated as additional repeated measurements the LEQ 

models better fit the data at all the test frequencies except for 2 kHz. In addition, the difference 

between the LEQ and LAVG models AIC decreased at all the test frequencies except for the 3 and 4 

kHz frequencies, where the differences increased by about 2-3.    

  Models with baseline HTLs  Models without baseline HTLs 

Audiometric 

Frequency 

(kHz)  LEQ LAVG 

Difference 

(LEQ-LAVG) 

 

LEQ LAVG 

Difference 

(LEQ-LAVG) 

0.5  16858.24 16860.76 -2.52  20010.75 20013.18 -2.43 

1  16410.74 16412.56 -1.82  19459.59 19461.00 -1.41 

2  17098.14 17098.55 -0.41  20226.13 20226.05 0.08 

3  17468.53 17471.47 -2.94  20872.27 20877.10 -4.83 

4  18538.37 18542.41 -4.04  22383.88 22389.32 -5.44 

6  19394.87 19395.82 -0.95  23475.21 23475.85 -0.64 

8  19928.21 19928.87 -0.66  23756.35 23756.39 -0.04 

Table 5-2 Comparison of AIC values for the LEQ and LAVG models at 0.5, 1, 2, 3, 4, 6, and 8, kHz 

audiometric frequencies. 

The fixed and random effects from the LEQ and LAVG models with the baseline HTLs for 

the 4-kHz test frequency are presented in Table 5-3.  The coefficients associated with each 

covariate were generally similar between the LEQ and LAVG 4 kHz models. Those workers with 

higher baseline hearing levels were found to suffer worse hearing loss due to noise during the 

study than those in the baseline group in both models. Cumulative noise exposure had a small, 

but significant effect on hearing levels. This trend was consistent at these three frequencies that 
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had an AIC difference >2, except at the 0.5 kHz frequency where cumulative exposure was 

found to be a significant predictor of hearing loss in the LEQ model, but not in the LAVG model.  

 4 kHz LEQ  4 kHz LAVG 

Fixed Effects Coefficient SE P-value  Coefficient SE P-value 

Intercept 2.05 0.97 0.034  2.01 0.97 0.038 

Phase 2 2.22 0.55 <0.001  2.28 0.55 <0.001 

Age (>30) 3.03 0.9 0.001  3.02 0.9 0.001 

Gender (male) 2.05 1.05 0.05  2.09 1.05 0.045 

HTL at baseline (ref <10)        
10-20 7.49 0.79 <0.001  7.49 0.79 <0.001 

>20 30.22 1.09 <0.001  30.22 1.09 <0.001 

Years since BL 0.25 0.14 0.86  0.15 0.12 0.2 

Noise exposure x years  0.02 0.01 0.003  0.02 0.01 0.034 

        
Random Effects Estimate SE   Estimate SE  
Subject: random intercept 

SD 4.78 0.48   4.78 0.48  
Subject: random slope SD 0.74 0.05   0.73 0.05  
Subject intercept-slope 

corr. 0.02 0.11   0.04 0.11  
Ear: random intercept SD 6.46 0.30   6.46 0.30  
Residual SD 4.20 0.70   4.20 0.070  

Table 5-3 Fixed and random effects for the LEQ and LAVG models with the baseline HTLs 

covariate for the 4-kHz hearing frequency 

Table 5-4 presents the fixed and random effects for the LEQ and LAVG models with the 

additional repeated measurements. The coefficients for each covariate were very similar except 

for the number of year since baseline which was found to not be associated with changes in the 

HTLs in the LEQ nor the LAVG models. 

 4 kHz LEQ  4 kHz LAVG 

Fixed Effects Coefficient SE P-value  Coefficient SE 

P-

value 

Intercept 3.21 1.70 0.06  3.23 1.70 0.058 

Phase 2 2.42 0.51 <0.001  2.49 0.51 <0.001 

Age (>30) 7.55 1.57 <0.001  7.50 1.57 <0.001 

Gender (male) 7.41 1.82 <0.001  7.39 1.82 <0.001 

Years since BL -0.06 0.14 0.680  0.11 0.12 0.367 

Noise exposure x years  0.02 0.01 0.002  0.02 0.01 0.049 
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Random Effects Estimate SE   Estimate SE  
Subject: random intercept 

SD 10.89 0.57   10.89 0.57  
Subject: random slope SD 0.82 0.06   0.82 0.06  
Subject intercept-slope 

corr. 0.08 0.09   0.10 0.09  
Ear: random intercept SD 7.67 0.33   7.67 0.33  
Residual SD 3.97 0.05   3.98 0.05  

Table 5-4 Fixed and random effects for the LEQ and LAVG models without baseline HTLs 

covariate for the 4-kHz hearing frequency 

Table 5-5 compares the 10th, 50th, and 90th percentiles of hearing loss at the 0.5, 1, 2, 3, 4, 

and 6 kHz audiometric frequencies from the ISO hearing loss model using both the LAVG and LEQ 

exposure metric to the 10th, 50th, and 90th percentiles of hearing loss at the same frequencies 

predicted by our mixed models with the baseline HTLs. The difference between the ISO 

prediction and our models was similar for both the LEQ and LAVG exposure metrics.  However, as 

seen in figure 5-2, 14 out of the 18 comparisons (77.7%) the mixed model using the LEQ 

exposure metric more closely matched the estimated hearing loss that was calculated by the ISO 

model, suggesting that the LEQ performs slightly better than the LAVG in predicting hearing loss in 

this cohort.   
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 LEQ  LAVG  
Frequency 

(kHz) Model ISO Difference  Model ISO Difference 

Smallest 

Difference 

10th  

Percentile         
0.5 1.86 -5.76 7.62  1.87 -5.76 7.63 LEQ 

1 0.91 -5.61 6.52  0.91 -5.69 6.60 LEQ 

2 1.26 -6.34 7.60  1.26 -6.12 7.38 LAVG 

3 0.74 -6.53 7.27  0.72 -6.6 7.32 LEQ 

4 1.43 -5.88 7.31  1.42 -6.76 8.18 LEQ 

6 4.75 -8.56 13.31  4.76 -8.39 13.15 LAVG 

         
50th 

Percentile         
0.5 6.28 0.85 5.43  6.28 0.85 5.43 Same 

1 5.62 1.69 3.93  5.62 0.97 4.65 LEQ 

2 6.69 2.18 4.51  6.68 1.66 5.02 LEQ 

3 7.37 4.83 2.54  7.38 2.66 4.72 LEQ 

4 8.44 6.66 1.78  8.41 3.64 4.77 LEQ 

6 12.82 5.99 6.83  12.84 4.12 8.72 LEQ 

         
90th 

Percentile         
0.5 13.53 9.19 4.34  13.51 9.17 4.34 Same 

1 14.23 9.47 4.76  14.24 9.37 4.87 LEQ 

2 18.44 13.21 5.23  18.45 11.65 6.80 LEQ 

3 23.42 13.99 9.43  23.43 12.57 10.86 LEQ 

4 34.60 15.70 18.90  34.64 13.74 20.9 LEQ 

6 35.78 16.42 19.36  35.79 14.59 21.2 LEQ 

Table 5-5 Comparison of estimated hearing loss using the LEQ and LAVG exposure metrics in the 

ISO hearing loss and mixed models with baseline HTLs covariate 
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Figure 5-2 Difference between model (with baseline HTL covariate) and ISO predictions of 

hearing loss at the 10th, 50th, and 90th percentiles for the LEQ and LAVG metrics. 

Table 5-6 presents the differences between the 10th, 50th, and 90th percentiles of hearing 

loss at the same frequencies between the mixed models without the additional repeated 

measurements and the ISO hearing loss model using both the LEQ and LAVG exposure metrics. 

Figure 5-3 shows that for 13 out of 18 comparisons (72.2%) the LEQ exposure metrics more 

closely matched the estimate hearing loss that was calculated by the ISO model. The mixed 

models using the LEQ with the additional measurements were found to produce a better 

agreement with the ISO model than the mixed models with the baseline HTLs except for the 50th 

percentile of the 6-kHz test frequency and the 90th percentile 1 and 6 kHz test frequencies. 

Similarly, the mixed models using the LAVG without the additional measurements were found to 

produce a better agreement with the ISO model than the mixed models including the baseline 
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HTLs expect for the 50th percentile of the 6 kHz test frequencies and the 90th percentiles at the 2 

and 6 kHz test frequencies.  

 LEQ  LAVG  
Frequency 

(kHz) Model ISO Difference  Model ISO Difference 

Smallest 

Difference 

10th  

Percentile         
0.5 1.62 -5.76 7.38  1.62 -5.76 7.38 Same 

1 0.63 -5.61 6.24  0.64 -5.69 6.33 LEQ 

2 0.93 -6.34 7.27  0.91 -6.12 7.03 LAVG 

3 0.47 -6.53 7.00  0.47 -6.6 7.07 LEQ 

4 1.19 -5.88 7.07  1.19 -6.76 7.95 LEQ 

6 4.67 -8.56 13.23  4.68 -8.39 13.07 LAVG 

         
50th 

Percentile         
0.5 6.11 0.85 5.26  6.12 0.85 5.27 LEQ 

1 5.39 1.69 3.70  5.4 0.97 4.43 LEQ 

2 6.5 2.18 4.32  6.47 1.66 4.81 LEQ 

3 7.25 4.83 2.42  7.26 2.66 4.60 LEQ 

4 8.25 6.66 1.59  8.23 3.64 4.59 LEQ 

6 13.33 5.99 7.34  13.34 4.12 9.22 LEQ 

         
90th 

Percentile         
0.5 13.39 9.19 4.20  13.37 9.17 4.20 Same 

1 17.36 9.47 7.89  14.01 9.37 4.64 LAVG 

2 18.26 13.21 5.05  24.06 11.65 12.41 LEQ 

3 22.45 13.99 8.46  22.45 12.57 9.88 LEQ 

4 33.34 15.70 17.64  33.35 13.74 19.61 LEQ 

6 36.12 16.42 19.70  36.11 14.59 21.52 LEQ 

Table 5-6 Comparison of estimated hearing loss using the LEQ and LAVG exposure metrics in the 

ISO hearing loss and mixed models without the baseline HTLs covariate 
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Figure 5-3 Difference between model (without baseline HTL covariate) and ISO predictions of 

hearing loss at the 10th, 50th, and 90th percentiles for the LEQ and LAVG metrics 

Discussion 

The debate on whether the LEQ or LAVG exposure metric is more predictive of NIHL risk 

is a controversial subject, and no single study will be able to conclusively settle this debate.  

However, this study suggests that the LEQ is the more appropriate metric for predicting NIHL and 

provides a better foundation for developing exposure response relationships and providing 

guidance for the development of regulations and standards. One of the main strengths of our 

study is that it used a cohort of noise-exposed workers that were followed for approximately 10 

years. This represents an exposure duration sufficient for NIHL to occur; in fact, the majority of 

loss expected over the course of a working lifetime in noise is predicted to occur within the first 

ten years of exposure.101 
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The first set of mixed models used in this analysis did not include a covariate for baseline 

HTLs.  Instead, the baseline HTLs were considered as additional measurements in the model. 

This was done because audiometric tests have inherent variability and measurement error, as 

demonstrated by the statistically significant effect of the study phase on HTLs due to changes in 

equipment and operators.146  In addition, the causal relationship between noise exposure and 

hearing loss, results in the inclusion of baseline HTLs in the model biasing the results towards 

the mean.147 The additional repeated measurements in the models without the baseline 

adjustment still allow for us to account for an individual subject’s change in HTLs over time 

without biasing the relationship between the exposure and hearing outcomes. Because of this we 

believe the models with the additional measurements are more appropriate than the models that 

control for baseline HTLs; however, we presented those models here to allow for comparison 

with the findings of Seixas et al. 2012.65 

The second set of mixed models used in this analysis allowed us to control several 

covariates including age, hearing levels at baseline, and the number of years exposed to noise 

during the study, all of which can impact HTLs.  When comparing the mixed model using the 

LEQ to the mixed model using the LAVG we found that the LEQ model produced a lower AIC 

compared to the LAVG model in at all test frequencies, indicating the LEQ model had a better fit. 

However, the difference between the two models was generally small, and only three of seven 

test frequencies were found to have an AIC difference >2, i.e., a difference indicative of 

meaningfully different performance between the LAVG and LEQ models. It is worth noting that the 

3 and 4 kHz test frequencies (along with 6 kHz) have been found to be most susceptible to noise-

induced hearing loss.24 
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When the 10th, 50th, and 90th percentiles of predicted hearing loss using the ISO model 

were compared to the same percentiles of predicted hearing loss from our mixed models with 

baseline HTLs, the LEQ models showed better agreement.  However, we found that in all cases 

our mixed models predicted greater NIHL than the ISO models. This is likely due to the fact that 

a subset of workers in this cohort had already experienced hearing loss prior to enrollment.  

These workers tended to have worse and more variable hearing outcomes compared to those who 

enrolled in the study with less or minimal hearing loss.  The ISO model provides no way for 

preexisting hearing loss to be factored into the NIHL predictions based on age and known noise 

exposure.101  When we compared the 10th, 50th, and 90th percentile of predicted hearing loss from 

the mixed models with the additional measurements we again found that the LEQ models showed 

better agreement with the ISO model than the LAVG model, but overall the models without 

baseline HTLs had better agreement than the models with the baseline HTLs.   

Recently there has been an increased interest in the impact of non-Gaussian noise – 

complex noise consisting of varying, intermittent, and interrupted exposures – on the risk and 

severity of NIHL. A recent contract report to NIOSH summarized the peer-reviewed literature 

and came to the conclusion that an exposure metric modified by a measure of kurtosis could 

provide a more accurate predictor of NIHL than simply the LEQ or LAVG alone.148 To evaluate this 

possibility, we compared the AICs of our LEQ and LAVG mixed models with an added variable for 

peakiness, using metrics previously developed and evaluated by Seixas et al. on the same cohort 

of construction workers.149 Following the inclusion of the peakiness metric the LEQ model still 

demonstrated generally lower AIC values compared to its equivalent LAVG model, but the 

difference between AICs was reduced to <2 for all models.  The LEQ was still a better fit in our 

model, but our finding that the inclusion of a measure of peakiness and resulting improvement in 
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model fit suggests that a combination of the LEQ and some sort of measure of kurtosis may 

further improve the model.  Further research is needed to investigate the impact of including a 

measure of kurtosis on NIHL predictions.  

Our study only examined the effects of noise exposures in construction workers, who are 

exposed to intermittent noise, so these results may not be generalizable to occupational groups 

that are exposed to truly continuous noise or who have regular, scheduled breaks from exposure. 

There is limited evidence to support the notion that most occupations have such breaks, 

consistent with the rationale behind the LAVG.
115,150  The high correlation between the LEQ and 

LAVG exposure measurements made on construction workers resulted in similar levels of model 

fit and predicted hearing outcomes. This was further complicated by the fact that many of the 

construction workers evaluated here had pre-existing hearing loss. One set of mixed models 

controlled for this situation through the use of a categorical variable for baseline hearing level. 

The other set of mixed models instead used the baseline HTLs as additional measurements and 

excluded the fixed effect for baseline HTLs.  Regardless, it is not possible to account for baseline 

hearing levels in the ISO model.101 This is likely the reason that our mixed models consistently 

predicted higher hearing thresholds than the ISO model, and highlights an important weakness in 

the ISO model. 
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Chapter 6 – Summary, Conclusions, and Future Research 

 This dissertation research focused on improving our ability to assess occupational noise 

exposures through three separate but complementary projects.  The first project, summarized in 

chapters 2 and 3, evaluated the feasibility of using new technologies to reduce the cost and 

technical barriers associated with collecting exposure information. The motivation for that 

project was to increase the total number of noise measurements available to researchers and 

occupational health practitioners, particularly in occupations where few data are available. The 

existence of large, previously-collected noise exposure datasets for common occupations made it 

possible to complete the second project of this dissertation, construction of a large job exposure 

matrix (JEM) that provides estimated noise exposure levels for nearly all occupations in the US.   

This JEM represents a tool for surveillance of trends in noise levels, as well as for targeting of 

specific high-exposure occupations for additional assessment and control.  The third and final 

project in this dissertation examined the ability of two different noise metrics (those specified by 

the Occupational Safety and Health Administration, OSHA, and the National Institute for 

Occupational Safety and Health, NIOSH) predicted hearing loss in a cohort of construction 

workers using both linear mixed models and recognized hearing loss models.101,136 While these 

three projects are very distinct, the underlying goal of each of them is to improve exposure 

assessment methods for assessing the relationship between occupational noise exposure and 

NIHL.  
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Project 1 

 The first project of this dissertation involved evaluating the accuracy of smart devices to 

measure occupational noise. The results of this project showed that under some circumstances 

smart devices can be used to make accurate noise measurements, and adds to the growing 

evidence that these devices have utility for measuring noise exposure.20,151,152 This finding has 

major implications for assessing occupational and community noise exposures, as it is estimated 

that 72% of Americans, and 45% of the world’s entire population, use a smartphone.153 

Wealthier countries currently have a much higher percentage of smartphone users, many areas in 

Asia and Africa have begun to use the technology as well.153 While it is unrealistic to expect 

even the majority of the billions of smartphone users to measure noise with their devices, having 

this capability distributed among so many people makes it possible – for the a first time – to 

“crowd-source” exposure measurements and obtain reasonably accurate results. This has already 

occurred on a minor scale in several cities where smart device microphones and GPS capabilities 

are used to produce noise maps of the city, 67,73–76 but these previous efforts have been hampered 

by uncertainties regarding the accuracy of the collected data. 

  In the workplace, smart devices can be used by concerned workers to demonstrate 

evidence of possible overexposure to noise and trigger a more formal exposure assessment by an 

industrial hygienist. There is also great potential for these apps to serve as an educational tool for 

workers by providing feedback and instruction on when and how to wear hearing protection. The 

apps evaluated during this dissertation research had to be purchased from the developer; this 

creates a financial barrier that may prevent workers from using higher-quality apps.  However, 

NIOSH recently released their version of a noise measurement app for iOS.  This app has the 

advantage of being both free and supported by a government agency with expertise in noise 

assessment, and offers useful options such as a calibration feature, which is absent on many 
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commercially-produced apps.154 While the requirement of an external microphone to make 

accurate measurements is still an outstanding issue, it is worth noting that these microphones can 

be acquired for as little as $20, which is still far less than the cost to purchase a type 2 SLM. 

 Despite the progress made in applying technology to noise exposure assessment, there are 

still avenues for further research.  The majority of apps tested have been on Apple’s iOS 

platform, despite the fact the Android platform makes up a larger market share of smart 

devices.155 This is due to the fact that the Android platform is used by a variety of device 

manufacturers, resulting in a large number of devices with differing components.  This diversity 

in Android hardware has made it difficult to formally assess the large variety of apps available 

on that platform.  However, the use of an external microphone offers the opportunity to 

standardize noise measurements, providing that an Android app that allows users to select an 

external microphone could be developed in the future. Future researchers investigating the 

feasibility of using Android devices will be able to use the testing procedures developed during 

this dissertation research as a template for additional experiments. 

 There is also the possibility that some apps could, with the user’s consent, upload 

exposure, job, and other meta data to a central database for use by researchers. This possibility 

raises several important issues regarding privacy, data storage and access, and quality control. In 

addition, the amount of data that could be received would make it challenging to analyze in a 

way that would provide any meaningful information. However, the completion of the second 

project of this dissertation provides a foundation for using and translating large amounts of 

exposure information into an effective exposure assessment tool.  

Project 2 

The second project addressed the process of creating a coherent database of noise 

measurements in order to establish an occupational noise exposure JEM.  The process 
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established as part of this dissertation can continue to be used as new data become available, 

whether from traditional noise measurement instruments or from smart devices.  The JEM 

currently contains over 1,000,000 occupational noise measurements, and represents a powerful 

exposure assessment tool for researchers. The focus of this dissertation research, development of 

an imputation model that can be used to estimate noise exposure for almost every job in the US, 

was critical to populate jobs in the JEM for which no measurement data were available. 

However, the JEM also makes it possible to conduct analyses of noise exposures for specific 

industries; we have already done so for the mining industry, and analysis for general industry is 

underway.93 

A previous meta-analysis of the data found that there is considerable heterogeneity in 

exposure measurements obtained from government, industry, and literature sources, and that 

there is evidence that some sources produce biased estimates.91 The data we have do not allow us 

to identify the underlying cause of this bias, but it could be due to differences in sampling 

strategies used by government agencies and private industry.156 This issue highlights the limit of 

using a purely data driven approach to assessing exposure to occupational noise.  

To further enhance the exposure estimates provided by the JEM, a measure of frequency 

of exposure can be assigned to each job title at the broad SOC level by using data from the 

Bureau of Labor Statistics’ (BLS) Occupational Information Network (O*NET) occupational 

survey. Specifically, the question “How often does this job require working exposed to sounds 

and noise levels that are distracting or uncomfortable?” (element 4.C.2.b.1.a) provides a 

continuous response from 0 (never) to 100 (always) that could be used. Because job titles in the 

JEM are coded using the same system used by the BLS is O*NET, this measure of exposure 
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frequency could easily be integrated in to the JEM, and would provide a measure of an additional 

aspect of occupational noise exposure. 

 

 The validity of the JEM can be assessed in several ways.  The simplest way would be to 

make additional measurements for each job title and compare the newly-collected exposures to 

the estimated levels for those job titles in the JEM.  This would be very time-consuming and 

costly to do; however, in addition to validating the JEM, this effort would also add additional 

exposure information to the JEM.  It would be more practical to assign individuals from the 2012 

National Health and Nutrition Examination Survey (NHANES) an estimated noise exposure 

based on their reported occupations and duration of employment, and to use statistical modeling 

and the ISO noise-induced hearing loss prediction models to estimate their expected NIHL based 

on their occupational exposures.  The expected vs. observed audiometric thresholds could then 

be compared; small differences would suggest high validity of the JEM exposure estimates.  The 

estimated exposures from the JEM could also be used to predict NIHL in occupational cohorts 

for which audiometric data is available.  This would make it possible to validate the exposure 

estimates for specific job titles that are of interest.  

 The data that make up the JEM will be freely available for researchers and interested 

individuals to download.  There is also an opportunity to develop an online system where 

individuals can search for exposure information on specific job titles or industries and retrieve 

graphical information about exposures over time and across different jobs and industries.  This 

would provide a valuable tool for the public and workers to better understand and conceptualize 

their noise exposures at work.    

 The JEM contains exposure measurements made using the Occupational Safety and 

Health Administration’s (OSHA) permissible exposure limit (PEL), action level (AL) and the 
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National Institute for Occupational Safety and Health’s (NIOSH) recommended exposure limit 

(REL). Because the PEL is the legally enforceable exposure limit, the majority of measurements 

in the JEM were made according to the PEL criteria.18 Starting in 1983, the JEM also contains 

measurements made using the OSHA AL method.  However, most other government agencies 

around the world use a method similar to the NIOSH REL, which was adopted in 1998.16 There 

is a debate in the industrial hygiene community as to whether the OSHA or NIOSH criteria for 

measuring noise exposure better predicts the risk of NIHL. This is an important consideration for 

using the JEM as an exposure assessment tool.  If one method is found to be superior to the 

other, then future data collection efforts for the JEM should emphasize collecting measurements 

made using the superior method.  

Project 3 

 The third and final project in this dissertation research focused on evaluating whether 

noise measurements made using the NIOSH REL (LEQ) or OSHA PEL (LAVG) method produced 

better estimates of NIHL in a cohort of construction workers who were followed for a maximum 

of ten years. To do this, linear mixed models were constructed predicting hearing levels at 0.5, 1, 

2,3,4, 6, and 8 kHz using the two exposure metrics to calculate cumulative exposure.  Two sets 

of these models were run: the first set included a covariate controlling for baseline hearing 

threshold levels (HTLs), while the second did not include this covariate, but instead considered 

the baseline HTLs as an additional repeated measurement. Model fit was evaluated by comparing 

the AICs between equivalent LEQ and LAVG models. In most cases the LEQ models had the lower 

(better) AIC, this was especially true at the hearing frequencies more sensitive to hearing loss 

(i.e. 3, 4, 6 kHz). 

 The predictions from the mixed models were also compared to the equivalent ISO NIHL 

model predictions.  In all cases the ISO model predicted far less hearing loss than what was 
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observed in the cohort. This is likely due to the fact that the ISO model assumes that the 

individuals have not experienced any measurable hearing loss prior to their exposure, which was 

not the case for the cohort; workers in the cohort entered the study with an average hearing 

threshold level of 9.3, 13.1, and 19.3 dB at 3, 4, and 6 kHz respectively. However, the mixed 

models using the LEQ produced NIHL estimates closer to the equivalent ISO model than the 

mixed models using the LAVG.  

 These results provide evidence that the LEQ is a better metric for measuring noise 

exposure and estimating the risk of NIHL than the LAVG metric.  However, the difference 

between these two metrics is small. Similar research in a larger cohort of workers is needed to 

determine if a more pronounced difference can be identified. Additional research should also 

examine the effect of the “peakiness” of noise exposure on NIHL risk. A recent literature review 

concluded that some combination of the LEQ and a measure of peakiness could produce more 

accurate estimates of NIHL.148  When a measure of peakiness was added to the mixed models in 

this project, the AICs decreased (improved) substantially for all the models regardless of whether 

the LEQ or LAVG was used, although the LEQ models still generally had lower AIC values.  This 

suggests that the peakiness measure improved the fits of the model, but further research is 

needed to determine how a measure of noise peakiness should be constructed.  Many researchers 

have used the ratio of the LMAX to the LEQ or LAVG as a measure of noise peakiness. However, 

there is little evidence that this metric effectively captures the sharpness of the peak of (kurtosis) 

of an individual’s occupational noise exposure. Regardless of what measure is used, there is 

evidence to suggest that noise peakiness is an important consideration when assessing the risk of 

NIHL.  
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 The results of these three projects have improved our ability to assess occupational noise 

exposure and further elucidate the relationship between noise exposure and NIHL.  The 

completion of these projects has also opened up new avenues of research.  The availability of 

apps changes very quickly, and while the NIOSH app brings some stability to the iOS app 

marketplace, hardware changes necessitate constant re-evaluation of these apps’ performance.  

This can be done using the method developed in chapters 2 and 3 of this dissertation. Data 

collected by smart devices and traditional noise measurement instruments can be integrated into 

the JEM to improve exposure estimates which can be validated in epidemiological studies. 

Finally, as the amount of exposure data increases it will increase the power of statistical models 

to detect if there is a difference in NIHL estimates using the LAVG or LEQ. The pursuit of these 

new avenues of research will further increase our understanding of noise exposure and NIHL.  
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Appendences 

Appendix 1. The Imputation Process  

The imputation procedure 

The unknown quantities in our system include the broad SOC means 𝜃𝑖𝑗
𝑜𝑏𝑠, 𝑖 = 1, … , 𝐼; 𝑗 =

1, … , 𝑛𝑖
𝑜𝑏𝑠, 𝜃𝑖𝑘

𝑚𝑖𝑠, 𝑖 = 1,… , 𝐼; 𝑘 = 1,… , 𝑛𝑖
𝑚𝑖𝑠, the major SOC means 𝜃𝑖 , 𝑖 = 1,… , 𝐼, the population 

mean 𝜇, the within major SOC sampling variability 𝜎2 and the between major SOC sampling 

variability 𝜏2. Joint posterior inference for these parameters can be made by constructing a Gibbs 

sampler which approximates the posterior distribution 

𝑝(𝜃11
𝑜𝑏𝑠, … , 𝜃𝐼𝑛𝐼

𝑜𝑏𝑠, 𝜃11
𝑚𝑖𝑠, … , 𝜃𝐼𝑛𝐼

𝑚𝑖𝑠, 𝜃1, … , 𝜃𝐼 , 𝜇, 𝜏
2, 𝜎2|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎): 
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𝑜𝑏𝑠, … , 𝜃𝐼𝑛𝐼

𝑜𝑏𝑠, 𝜃11
𝑚𝑖𝑠, … , 𝜃𝐼𝑛𝐼

𝑚𝑖𝑠, 𝜃1, … , 𝜃𝐼 , 𝜇, 𝜏
2, 𝜎2|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎)

∝ 𝑝(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎|𝜃11
𝑜𝑏𝑠, … , 𝜃𝐼𝑛𝐼

𝑜𝑏𝑠, 𝜃11
𝑚𝑖𝑠, … , 𝜃𝐼𝑛𝐼

𝑚𝑖𝑠 , 𝜃1, … , 𝜃𝐼 , 𝜇, 𝜏
2, 𝜎2). {∏∏𝑝(𝜃𝑖𝑗

𝑜𝑏𝑠|𝜃𝑖 , 𝜎
2)

𝑛𝑖
𝑜𝑏𝑠
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𝐼

𝑖=1

}

∙ {∏∏𝑝(𝜃𝑖𝑘
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} ∙ 𝜋(𝜇) ∙ 𝜋(𝜏2) ∙ 𝜋(𝜎2) 

Collecting the terms that depend on 𝜃𝑖𝑗
𝑜𝑏𝑠 shows that the full conditional distribution of 𝜃𝑖𝑗

𝑜𝑏𝑠 must 

be proportional to 

(𝜃𝑖𝑗
𝑜𝑏𝑠|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎, 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑝𝑎𝑟𝑎) ∝ 𝑒xp

(

  
 
−
(𝑌𝑖𝑗

𝑜𝑏𝑠 − 𝜃𝑖𝑗
𝑜𝑏𝑠)

2

2
(𝑠𝑖𝑗
𝑜𝑏𝑠)
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∙ exp(−

(𝜃𝑖𝑗
𝑜𝑏𝑠 − 𝜃𝑖)

2

2𝜎2
) 

After some calculations, we find that conditional on 𝜎2 and 𝜃𝑖, 𝜃𝑖𝑗
𝑜𝑏𝑠 must be conditionally 

independent of other 𝜃𝑖𝑗
𝑜𝑏𝑠 as well as independent of the data from broad SOCs other than ij.  

𝜃𝑖𝑗
𝑜𝑏𝑠~𝑁(𝜇𝑖𝑗

𝑜𝑏𝑠, (𝜎𝑖𝑗
𝑜𝑏𝑠)2) 

where 𝜇𝑖𝑗
𝑜𝑏𝑠 = 

𝑌𝑖𝑗
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2

(𝜎2 + 
(𝑠𝑖𝑗
𝑜𝑏𝑠)

2

𝑛𝑖𝑗
𝑜𝑏𝑠 )

 

The conditional distribution of 𝜃𝑖𝑘
𝑚𝑖𝑠 will be normal distribution 

𝜃𝑖𝑘
𝑚𝑖𝑠~𝑁(𝜃𝑖, 𝜎

2) 
The conditional distribution of 𝜃𝑖 is also normal distribution 

𝜃𝑖~𝑁(𝜇𝑖, 𝜏𝑖
2) 
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where 𝜇𝑖 =
𝜇𝜎2+∑ 𝜃𝑖𝑗

𝑜𝑏𝑠𝜏2
𝑛𝑖
𝑜𝑏𝑠

𝑗=1
+∑ 𝜃𝑖𝑘

𝑚𝑖𝑠𝜏2
𝑛𝑖
𝑚𝑖𝑠

𝑘=1

𝑛𝑖
𝑜𝑏𝑠𝜏2 + 𝑛𝑖

𝑚𝑖𝑠𝜏2 + 𝜎2
 and 𝜏𝑖

2 =
𝜎2𝜏2

𝑛𝑖
𝑜𝑏𝑠𝜏2 + 𝑛𝑖

𝑚𝑖𝑠𝜏2 + 𝜎2
 

The conditional distribution of 𝜇 is normal distribution 

𝜇~𝑁(
∑ 𝜃𝑖𝛾0

2 + 𝜇0𝜏
2𝐼

𝑖=1

𝐼𝛾0
2 + 𝜏2

,
𝜏2𝛾0

2

𝐼𝛾0
2 + 𝜏2

) 

The conditional distribution of 𝜏2 will be inverse gamma distribution 

𝜏2~𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(
𝐼 + 𝜂0
2

,
∑ (𝜃𝑖 − 𝜇)

2 + 𝜂0𝜏0
2𝐼

𝑖=1

2
) 

The conditional distribution of 𝜎2 will be inverse gamma distribution 

𝜎2~𝐼𝑛𝑣

− 𝐺𝑎𝑚𝑚𝑎(
∑ 𝑛𝑖

𝑜𝑏𝑠𝐼
𝑖=1 +∑ 𝑛𝑖

𝑚𝑖𝑠𝐼
𝑖=1 + 𝜐0
2

,
∑ ∑ (𝜃𝑖𝑗

𝑜𝑏𝑠 − 𝜃𝑖)
2𝑛𝑖

𝑜𝑏𝑠

𝑗=1
𝐼
𝑖=1 + ∑ ∑ (𝜃𝑖𝑘

𝑚𝑖𝑠 − 𝜃𝑖)
2
+ 𝜐0𝜎0

2𝑛𝑖
𝑚𝑖𝑠

𝑘=1
𝐼
𝑖=1

2
) 

Posterior approximation proceeds by iterative sampling of each unknown quantity from its full 

conditional distribution. First we choose the number of iterations S to be 10000 and decide 

starting values for each of these parameters. Given a current state of the unknowns 

{𝜃11
𝑜𝑏𝑠(𝑠)

, … , 𝜃𝐼𝑛𝐼
𝑜𝑏𝑠(𝑠) , 𝜃11

𝑚𝑖𝑠(𝑠), … , 𝜃𝐼𝑛𝐼
𝑚𝑖𝑠(𝑠)

, 𝜃𝑖
(𝑠)
, 𝜇(𝑠), 𝜏2(𝑠), 𝜎2(𝑠)}, a new state is generated as 

follows: 

1. Posterior step: sample 𝜃𝑖
(𝑠+1)

, 𝑖 = 1,… , 𝐼 from 

𝜃𝑖|𝜇
(𝑠), 𝜃𝑖1

𝑜𝑏𝑠(𝑠), … , 𝜃𝑖𝑛𝑖
𝑜𝑏𝑠(𝑠), 𝜃𝑖1

𝑚𝑖𝑠(𝑠), … , 𝜃𝑖𝑛𝑖
𝑚𝑖𝑠(𝑠)

, 𝜏2(𝑠), 𝜎2(𝑠) based on its full conditional 

distribution 

2. Posterior step: sample 𝜇(𝑠+1) from 𝜇|𝜃1
(𝑠+1), … , 𝜃𝐼

(𝑠+1), 𝜏2(𝑠) 

3. Posterior step: sample 𝜏2(𝑠+1) from 𝜏2|𝜃1
(𝑠+1), … , 𝜃𝐼

(𝑠+1), 𝜇(𝑠+1) 

4. Posterior step: sample 𝜎2(𝑠+1) from 

𝜎2|𝜃11
𝑜𝑏𝑠(𝑠), … , 𝜃𝐼𝑛𝐼

𝑜𝑏𝑠(𝑠), 𝜃11
𝑚𝑖𝑠(𝑠), … , 𝜃𝐼𝑛𝐼

𝑚𝑖𝑠(𝑠), 𝜃1
(𝑠+1), … , 𝜃𝐼

(𝑠+1)
 

5. Posterior step: sample 𝜃𝑖𝑗
𝑜𝑏𝑠(𝑠+1)

, 𝑖 = 1,… , 𝐼, 𝑗 = 1,… , 𝑛𝑖
𝑜𝑏𝑠 from 𝜃𝑖𝑗

𝑜𝑏𝑠|𝜃𝑖
(𝑠+1)

, 𝜎2(𝑠+1) 

6. Imputation step: sample 𝜃𝑖𝑗
𝑚𝑖𝑠(𝑠+1)

, 𝑖 = 1,… , 𝐼, 𝑗 = 1, … , 𝑛𝑖
𝑚𝑖𝑠 from 𝜃𝑖𝑗

𝑚𝑖𝑠|𝜃𝑖
(𝑠+1)

, 𝜎2(𝑠+1) 



 109 

Appendix 2. Exposure Estimates from Imputation Model 

Major 

SOC 

Major SOC 

Title 

Broad 

SOC Broad SOC Title 

Mean 

(dBA) 

Standard 

Deviation 

2.5% 

quantile 

97.5% 

quantile 

11-0000 

management 

occupations 11-1010 chief executives 84.8 1.57 81.78 87.94 

11-0000 

management 

occupations 11-1020 

general and 

operations 

managers 81.8 4.92 72.32 91.67 

11-0000 

management 

occupations 11-1030 legislators 82.0 4.87 72.46 91.57 

11-0000 

management 

occupations 11-2010 

advertising and 

promotions 

managers 82.0 4.85 72.42 91.52 

11-0000 

management 

occupations 11-2020 

marketing and sales 

managers 82.1 4.9 72.28 91.33 

11-0000 

management 

occupations 11-3010 

administrative 

services managers 82.1 4.95 72.25 92.18 

11-0000 

management 

occupations 11-3020 

computer and 

information 

systems managers 77.0 3.73 69.56 84.33 

11-0000 

management 

occupations 11-3030 financial managers 82.0 5 72.21 91.76 

11-0000 

management 

occupations 11-3050 

industrial 

production 

managers 86.3 0.3 85.73 86.89 

11-0000 

management 

occupations 11-3060 

purchasing 

managers 81.9 4.99 72.31 91.47 

11-0000 

management 

occupations 11-3070 

transportation, 

storage, and 

distribution 

managers 81.6 0.44 80.72 82.46 

11-0000 

management 

occupations 11-3110 

compensation and 

benefits managers 82.0 5.07 71.67 92.22 

11-0000 

management 

occupations 11-3120 

human resources 

managers 81.9 4.83 72.46 91.31 

11-0000 

management 

occupations 11-3130 

training and 

development 

managers 82.0 4.89 72.61 91 

11-0000 

management 

occupations 11-9010 

farmers, ranchers, 

and other 

agricultural 

managers 92.4 0.47 91.49 93.31 

11-0000 

management 

occupations 11-9020 

construction 

managers 81.9 4.98 72.41 91.68 
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11-0000 

management 

occupations 11-9030 

education 

administrators 81.9 3.43 75.15 88.7 

11-0000 

management 

occupations 11-9040 

architectural and 

engineering 

managers 81.8 4.97 72.5 92.02 

11-0000 

management 

occupations 11-9050 

food service 

managers 81.9 5 72.51 92.17 

11-0000 

management 

occupations 11-9060 

funeral service 

managers 81.9 4.97 71.83 91.21 

11-0000 

management 

occupations 11-9070 gaming managers 77.0 2 72.97 80.86 

11-0000 

management 

occupations 11-9080 lodging managers 81.8 5.04 71.62 91.66 

11-0000 

management 

occupations 11-9110 

medical and health 

services managers 78.7 2.86 73.28 84.36 

11-0000 

management 

occupations 11-9120 

natural sciences 

managers 77.3 3.72 70.08 84.37 

11-0000 

management 

occupations 11-9130 

postmasters and 

mail 

superintendents 82.1 5.02 72.03 91.64 

11-0000 

management 

occupations 11-9150 

social and 

community service 

managers 81.8 4.98 72.02 91.26 

11-0000 

management 

occupations 11-9160 

emergency 

management 

directors 82.0 5.1 71.99 91.82 

11-0000 

management 

occupations 11-9190 

miscellaneous 

managers 82.0 4.96 71.97 91.6 

13-0000 

business and 

financial 

operations 

occupations 13-1010 

agents and business 

managers of artists, 

performers, and 

athletes 81.5 5.14 71.29 91.24 

13-0000 

business and 

financial 

operations 

occupations 13-1020 

buyers and 

purchasing agents 77.6 2.1 73.43 81.83 

13-0000 

business and 

financial 

operations 

occupations 13-1030 

claims adjusters, 

appraisers, 

examiners, and 

investigators 81.2 5.14 71.22 91.29 

13-0000 

business and 

financial 

operations 

occupations 13-1040 compliance officers 92.8 1.89 89.22 96.55 

13-0000 

business and 

financial 

operations 

occupations 13-1050 cost estimators 81.5 5.03 71.31 91.37 

13-0000 

business and 

financial 13-1070 

human resources 

workers 77.9 2.94 72.1 83.48 
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operations 

occupations 

13-0000 

business and 

financial 

operations 

occupations 13-1080 logisticians 81.4 5.08 71.5 91.35 

13-0000 

business and 

financial 

operations 

occupations 13-1110 

management 

analysts 81.4 5.1 71.17 91.23 

13-0000 

business and 

financial 

operations 

occupations 13-1120 

meeting, 

convention, and 

event planners 81.6 5.11 71.19 91.37 

13-0000 

business and 

financial 

operations 

occupations 13-1130 fundraisers 81.5 5.14 71.16 91.23 

13-0000 

business and 

financial 

operations 

occupations 13-1140 

compensation, 

benefits, and job 

analysis specialists 81.4 5.15 71.05 91.68 

13-0000 

business and 

financial 

operations 

occupations 13-1150 

training and 

development 

specialists 74.6 0.61 73.43 75.8 

13-0000 

business and 

financial 

operations 

occupations 13-1160 

market research 

analysts and 

marketing 

specialists 81.5 5.27 70.84 91.47 

13-0000 

business and 

financial 

operations 

occupations 13-1190 

miscellaneous 

business operations 

specialists 81.3 5.03 71.28 90.96 

13-0000 

business and 

financial 

operations 

occupations 13-2010 

accountants and 

auditors 82.2 3.09 76.36 88.55 

13-0000 

business and 

financial 

operations 

occupations 13-2020 

appraisers and 

assessors of real 

estate 81.4 5.19 70.83 91.44 

13-0000 

business and 

financial 

operations 

occupations 13-2030 budget analysts 81.5 5.18 71.8 91.88 

13-0000 

business and 

financial 

operations 

occupations 13-2040 credit analysts 81.4 5.07 71.47 90.78 
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13-0000 

business and 

financial 

operations 

occupations 13-2050 

financial analysts 

and advisors 81.4 5.16 71.56 91.84 

13-0000 

business and 

financial 

operations 

occupations 13-2060 financial examiners 81.3 5.21 71.24 91.52 

13-0000 

business and 

financial 

operations 

occupations 13-2070 

credit counselors 

and loan officers 81.2 4.88 71.87 90.88 

13-0000 

business and 

financial 

operations 

occupations 13-2080 

tax examiners, 

collectors and 

preparers, and 

revenue agents 81.4 5.07 71.95 91.37 

13-0000 

business and 

financial 

operations 

occupations 13-2090 

miscellaneous 

financial specialists 81.4 5.22 70.91 91.95 

15-0000 

computer and 

mathematical 

occupations 15-1110 

computer and 

information 

research scientists 80.2 5.17 69.89 90.25 

15-0000 

computer and 

mathematical 

occupations 15-1120 

computer and 

information 

analysts 81.5 3.08 75.56 87.57 

15-0000 

computer and 

mathematical 

occupations 15-1130 

software developers 

and programmers 79.2 2.62 73.93 84.39 

15-0000 

computer and 

mathematical 

occupations 15-1140 

database and 

systems 

administrators and 

network architects 80.3 5.29 70.13 91.31 

15-0000 

computer and 

mathematical 

occupations 15-1150 

computer support 

specialists 80.5 5.19 70.08 90.37 

15-0000 

computer and 

mathematical 

occupations 15-1190 

miscellaneous 

computer 

occupations 78.2 1.98 74.34 82.04 

15-0000 

computer and 

mathematical 

occupations 15-2010 actuaries 80.5 5.27 70.38 90.54 

15-0000 

computer and 

mathematical 

occupations 15-2020 mathematicians 80.4 5.2 69.95 90.71 

15-0000 

computer and 

mathematical 

occupations 15-2030 

operations research 

analysts 79.6 3.17 73.41 85.65 

15-0000 

computer and 

mathematical 

occupations 15-2040 statisticians 80.3 5.34 69.89 90.62 
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15-0000 

computer and 

mathematical 

occupations 15-2090 

miscellaneous 

mathematical 

science occupations 80.5 5.19 70.73 90.92 

17-0000 

architecture 

and 

engineering 

occupations 17-1010 

architects, except 

naval 81.0 4.93 71.66 90.95 

17-0000 

architecture 

and 

engineering 

occupations 17-1020 

surveyors, 

cartographers, and 

photogrammetrists 77.4 1.26 75.05 79.86 

17-0000 

architecture 

and 

engineering 

occupations 17-2010 aerospace engineers 76.7 3.57 70.01 83.57 

17-0000 

architecture 

and 

engineering 

occupations 17-2020 

agricultural 

engineers 85.1 0.5 84.15 86.08 

17-0000 

architecture 

and 

engineering 

occupations 17-2030 

biomedical 

engineers 81.3 4.93 72 91.39 

17-0000 

architecture 

and 

engineering 

occupations 17-2040 chemical engineers 81.3 4.99 71.58 90.91 

17-0000 

architecture 

and 

engineering 

occupations 17-2050 civil engineers 81.4 4.92 71.95 91.17 

17-0000 

architecture 

and 

engineering 

occupations 17-2060 

computer hardware 

engineers 81.1 5.06 71.39 91.13 

17-0000 

architecture 

and 

engineering 

occupations 17-2070 

electrical and 

electronics 

engineers 81.1 4.91 71.47 90.78 

17-0000 

architecture 

and 

engineering 

occupations 17-2080 

environmental 

engineers 80.8 1.3 78.25 83.3 

17-0000 

architecture 

and 

engineering 

occupations 17-2110 

industrial 

engineers, 

including health 

and safety 81.1 1.41 78.21 83.91 

17-0000 

architecture 

and 

engineering 

occupations 17-2120 

marine engineers 

and naval architects 81.3 4.97 71.55 91.24 
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17-0000 

architecture 

and 

engineering 

occupations 17-2130 materials engineers 81.1 4.85 71.67 90.78 

17-0000 

architecture 

and 

engineering 

occupations 17-2150 

mining and 

geological 

engineers, 

including mining 

safety engineers 80.1 0.44 79.29 81 

17-0000 

architecture 

and 

engineering 

occupations 17-2160 nuclear engineers 85.9 2.8 80.43 91.34 

17-0000 

architecture 

and 

engineering 

occupations 17-2170 

petroleum 

engineers 81.2 5.01 71.39 90.65 

17-0000 

architecture 

and 

engineering 

occupations 17-2190 

miscellaneous 

engineers 81.2 5.06 71.32 91.29 

17-0000 

architecture 

and 

engineering 

occupations 17-3010 drafters 81.3 4.86 71.58 90.36 

17-0000 

architecture 

and 

engineering 

occupations 17-3020 

engineering 

technicians, except 

drafters 79.9 0.09 79.72 80.1 

17-0000 

architecture 

and 

engineering 

occupations 17-3030 

surveying and 

mapping 

technicians 82.5 2.99 76.61 88.22 

19-0000 

life, physical, 

and social 

science 

occupations 19-1010 

agricultural and 

food scientists 81.4 5.14 71.39 91.55 

19-0000 

life, physical, 

and social 

science 

occupations 19-1020 biological scientists 81.5 4.96 72.06 91.41 

19-0000 

life, physical, 

and social 

science 

occupations 19-1030 

conservation 

scientists and 

foresters 88.5 2.74 83.18 93.97 

19-0000 

life, physical, 

and social 

science 

occupations 19-1040 medical scientists 81.5 5.05 71.08 91.24 

19-0000 

life, physical, 

and social 19-1090 

miscellaneous life 

scientists 76.5 0.72 75.07 77.88 
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science 

occupations 

19-0000 

life, physical, 

and social 

science 

occupations 19-2010 

astronomers and 

physicists 81.4 5.16 71.41 91.29 

19-0000 

life, physical, 

and social 

science 

occupations 19-2020 

atmospheric and 

space scientists 81.4 5.04 71.29 91.77 

19-0000 

life, physical, 

and social 

science 

occupations 19-2030 

chemists and 

materials scientists 79.6 3.47 72.95 86.5 

19-0000 

life, physical, 

and social 

science 

occupations 19-2040 

environmental 

scientists and 

geoscientists 81.5 5.06 71.73 91.31 

19-0000 

life, physical, 

and social 

science 

occupations 19-2090 

miscellaneous 

physical scientists 81.3 5.05 71.48 91.05 

19-0000 

life, physical, 

and social 

science 

occupations 19-3010 economists 81.5 5.04 71.22 91.4 

19-0000 

life, physical, 

and social 

science 

occupations 19-3020 survey researchers 81.4 4.99 71.8 91.39 

19-0000 

life, physical, 

and social 

science 

occupations 19-3030 psychologists 81.4 5.17 71.52 91.75 

19-0000 

life, physical, 

and social 

science 

occupations 19-3040 sociologists 81.6 5.15 71.64 91.39 

19-0000 

life, physical, 

and social 

science 

occupations 19-3050 

urban and regional 

planners 81.5 5.17 71.31 91.3 

19-0000 

life, physical, 

and social 

science 

occupations 19-3090 

miscellaneous 

social scientists and 

related workers 81.4 4.97 71.7 91.26 

19-0000 

life, physical, 

and social 

science 

occupations 19-4010 

agricultural and 

food science 

technicians 84.0 1.57 80.77 86.97 
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19-0000 

life, physical, 

and social 

science 

occupations 19-4030 

chemical 

technicians 79.6 0.32 78.98 80.23 

19-0000 

life, physical, 

and social 

science 

occupations 19-4040 

geological and 

petroleum 

technicians 81.5 5.05 71.45 91.65 

19-0000 

life, physical, 

and social 

science 

occupations 19-4050 nuclear technicians 81.4 5.09 71.38 91.31 

19-0000 

life, physical, 

and social 

science 

occupations 19-4060 

social science 

research assistants 81.4 5.13 71.33 91.2 

19-0000 

life, physical, 

and social 

science 

occupations 19-4090 

miscellaneous life, 

physical, and social 

science technicians 79.4 0.7 78.01 80.72 

21-0000 

community 

and social 

service 

occupations 21-1010 counselors 75.4 3.49 68.55 82.23 

21-0000 

community 

and social 

service 

occupations 21-1020 social workers 80.6 5.58 69.64 91.43 

21-0000 

community 

and social 

service 

occupations 21-1090 

miscellaneous 

community and 

social service 

specialists 83.3 3.72 76.02 90.97 

21-0000 

community 

and social 

service 

occupations 21-2010 clergy 80.4 5.57 69.14 91.52 

21-0000 

community 

and social 

service 

occupations 21-2020 

directors, religious 

activities and 

education 80.8 5.53 69.92 91.48 

21-0000 

community 

and social 

service 

occupations 21-2090 

miscellaneous 

religious workers 80.5 5.55 70.1 91.58 

25-0000 

education, 

training, and 

library 

occupations 25-1010 

business teachers, 

postsecondary 78.7 5.19 68.84 88.94 

25-0000 

education, 

training, and 25-1020 

math and computer 

teachers, 

postsecondary 78.7 5.18 68.76 88.87 
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library 

occupations 

25-0000 

education, 

training, and 

library 

occupations 25-1030 

engineering and 

architecture 

teachers, 

postsecondary 78.4 5.28 68.13 89.12 

25-0000 

education, 

training, and 

library 

occupations 25-1040 

life sciences 

teachers, 

postsecondary 78.5 5.38 67.7 89.39 

25-0000 

education, 

training, and 

library 

occupations 25-1050 

physical sciences 

teachers, 

postsecondary 78.4 5.15 68.58 89.07 

25-0000 

education, 

training, and 

library 

occupations 25-1060 

social sciences 

teachers, 

postsecondary 78.5 5.28 68.5 89.43 

25-0000 

education, 

training, and 

library 

occupations 25-1070 

health teachers, 

postsecondary 78.5 5.02 68.62 88.52 

25-0000 

education, 

training, and 

library 

occupations 25-1080 

education and 

library science 

teachers, 

postsecondary 78.4 5.09 68.75 88.83 

25-0000 

education, 

training, and 

library 

occupations 25-1110 

law, criminal 

justice, and social 

work teachers, 

postsecondary 78.5 5.02 68.59 88.74 

25-0000 

education, 

training, and 

library 

occupations 25-1120 

arts, 

communications, 

and humanities 

teachers, 

postsecondary 78.6 5.21 68.18 89.16 

25-0000 

education, 

training, and 

library 

occupations 25-1190 

miscellaneous 

postsecondary 

teachers 78.5 5.14 68.64 88.75 

25-0000 

education, 

training, and 

library 

occupations 25-2010 

preschool and 

kindergarten 

teachers 78.6 5.16 68.69 88.31 

25-0000 

education, 

training, and 

library 

occupations 25-2020 

elementary and 

middle school 

teachers 78.5 5 68.71 88.28 

25-0000 

education, 

training, and 

library 

occupations 25-2030 

secondary school 

teachers 81.1 0.79 79.53 82.62 
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25-0000 

education, 

training, and 

library 

occupations 25-2050 

special education 

teachers 78.5 5.16 68.21 88.36 

25-0000 

education, 

training, and 

library 

occupations 25-3010 

adult basic and 

secondary 

education and 

literacy teachers 

and instructors  85.3 1.68 81.89 88.55 

25-0000 

education, 

training, and 

library 

occupations 25-3020 

self-enrichment 

education teachers 80.3 4.47 71.8 89.13 

25-0000 

education, 

training, and 

library 

occupations 25-3090 

miscellaneous 

teachers and 

instructors 78.6 5.15 68.29 88.67 

25-0000 

education, 

training, and 

library 

occupations 25-4010 

archivists, curators, 

and museum 

technicians 78.6 5.16 68.66 89.23 

25-0000 

education, 

training, and 

library 

occupations 25-4020 librarians 78.7 5.19 68.45 88.58 

25-0000 

education, 

training, and 

library 

occupations 25-4030 library technicians 61.0 0.67 59.73 62.27 

25-0000 

education, 

training, and 

library 

occupations 25-9010 

audio-visual and 

multimedia 

collections 

specialists 78.7 5.28 68.17 89.25 

25-0000 

education, 

training, and 

library 

occupations 25-9020 

farm and home 

management 

advisors 78.6 5.22 68.18 88.71 

25-0000 

education, 

training, and 

library 

occupations 25-9030 

instructional 

coordinators 78.5 5.22 68.35 88.8 

25-0000 

education, 

training, and 

library 

occupations 25-9040 teacher assistants 78.7 5.25 68.52 88.66 

25-0000 

education, 

training, and 

library 

occupations 25-9090 

miscellaneous 

education, training, 

and library workers 78.6 5.3 68.21 88.96 

27-0000 

arts, design, 

entertainment, 27-1010 

artists and related 

workers 84.7 0.76 83.17 86.08 
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sports, and 

media 

occupations 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-1020 designers 83.3 5.03 73.3 93.32 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-2010 

actors, producers, 

and directors 83.5 5.3 73.08 93.94 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-2020 

athletes, coaches, 

umpires, and 

related workers 87.0 1.18 84.74 89.36 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-2030 

dancers and 

choreographers 83.6 4.95 73.88 93.36 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-2040 

musicians, singers, 

and related workers 88.2 1.17 85.85 90.48 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-3020 

news analysts, 

reporters and 

correspondents 77.5 3.38 70.53 84.08 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-3030 

public relations 

specialists 85.5 1.37 82.7 88.09 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-3040 writers and editors 83.5 5.02 73.68 93.05 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-3090 

miscellaneous 

media and 

communication 

workers 83.7 4.93 74.03 93.72 

27-0000 

arts, design, 

entertainment, 

sports, and 27-4010 

broadcast and 

sound engineering 79.9 3.64 72.79 86.83 
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media 

occupations 

technicians and 

radio operators 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-4020 photographers 83.5 5.04 73.7 93.45 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-4030 

television, video, 

and motion picture 

camera operators 

and editors 84.7 3.76 77.21 92.08 

27-0000 

arts, design, 

entertainment, 

sports, and 

media 

occupations 27-4090 

miscellaneous 

media and 

communication 

equipment workers 83.5 5.16 73.16 93.94 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1010 chiropractors 81.6 4.95 71.59 91.24 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1020 dentists 87.9 1.04 85.88 90 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1030 

dietitians and 

nutritionists 81.5 5.01 72.03 91.11 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1040 optometrists 81.7 4.99 71.94 91.25 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1050 pharmacists 81.5 5.11 71.29 91.18 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1060 

physicians and 

surgeons 86.4 2.77 81.15 91.93 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1070 physician assistants 81.6 5.12 71.5 91.49 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1080 podiatrists 81.6 5.09 71.43 91.45 

29-0000 

healthcare 

practitioners 29-1120 therapists 81.5 5.05 71.56 91.53 
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and technical 

occupations 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1130 veterinarians 85.9 1.51 83.03 88.93 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1140 registered nurses 81.5 4.99 71.53 91.08 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1150 nurse anesthetists 81.5 5.09 71.53 91.42 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1160 nurse midwives 81.5 4.98 71.77 91.69 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1170 nurse practitioners 78.7 4.09 70.9 86.59 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1180 audiologists 81.6 4.88 72.06 91.26 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-1190 

miscellaneous 

health diagnosing 

and treating 

practitioners 81.4 5.1 71.39 91.64 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-2010 

clinical laboratory 

technologists and 

technicians 81.4 4.9 71.62 91.36 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-2020 dental hygienists 81.4 5.02 71.86 91.53 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-2030 

diagnostic related 

technologists and 

technicians 81.3 5.05 71.35 91.37 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-2040 

emergency medical 

technicians and 

paramedics 93.0 2.81 87.58 98.39 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-2050 

health practitioner 

support 

technologists and 

technicians 71.5 1.09 69.39 73.68 
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29-0000 

healthcare 

practitioners 

and technical 

occupations 29-2060 

licensed practical 

and licensed 

vocational nurses 71.5 0.96 69.7 73.38 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-2070 

medical records and 

health information 

technicians 81.5 5.15 71.68 91.57 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-2080 

opticians, 

dispensing 81.3 4.94 71.88 91.21 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-2090 

miscellaneous 

health technologists 

and technicians 81.6 5.19 71.47 91.76 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-9010 

occupational health 

and safety 

specialists and 

technicians 76.3 0.77 74.68 77.78 

29-0000 

healthcare 

practitioners 

and technical 

occupations 29-9090 

miscellaneous 

health practitioners 

and technical 

workers 81.7 5.18 71.65 92.45 

31-0000 

healthcare 

support 

occupations 31-1010 

nursing, 

psychiatric, and 

home health aides 82.1 5.48 71.39 92.87 

31-0000 

healthcare 

support 

occupations 31-2010 

occupational 

therapy assistants 

and aides 82.0 5.49 70.76 92.58 

31-0000 

healthcare 

support 

occupations 31-2020 

physical therapist 

assistants and aides 82.0 5.56 70.96 92.26 

31-0000 

healthcare 

support 

occupations 31-9010 massage therapists 82.3 5.58 71.46 93.3 

31-0000 

healthcare 

support 

occupations 31-9090 

miscellaneous 

healthcare support 

occupations 82.3 1.22 79.89 84.56 

33-0000 

protective 

service 

occupations 33-1010 

first-line 

supervisors of law 

enforcement 

workers 72.0 0.75 70.52 73.52 

33-0000 

protective 

service 

occupations 33-1020 

first-line 

supervisors of fire 

fighting and 

prevention workers 79.8 5.04 70.08 89.66 

33-0000 

protective 

service 

occupations 33-1090 

miscellaneous first-

line supervisors, 

protective service 

workers 79.7 5.02 70.25 89.89 
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33-0000 

protective 

service 

occupations 33-2010 firefighters 83.5 1.14 81.33 85.79 

33-0000 

protective 

service 

occupations 33-2020 fire inspectors 79.5 4.95 69.94 89.39 

33-0000 

protective 

service 

occupations 33-3010 

bailiffs, 

correctional 

officers, and jailers 81.5 0.83 79.96 83.11 

33-0000 

protective 

service 

occupations 33-3020 

detectives and 

criminal 

investigators 69.0 2.21 64.72 73.25 

33-0000 

protective 

service 

occupations 33-3030 

fish and game 

wardens 79.7 5.06 69.78 89.76 

33-0000 

protective 

service 

occupations 33-3040 

parking 

enforcement 

workers 79.8 5.07 69.78 89.78 

33-0000 

protective 

service 

occupations 33-3050 police officers 85.4 0.64 84.15 86.6 

33-0000 

protective 

service 

occupations 33-9010 

animal control 

workers 81.1 2.2 76.74 85.38 

33-0000 

protective 

service 

occupations 33-9020 

private detectives 

and investigators 79.7 5.01 69.96 89.63 

33-0000 

protective 

service 

occupations 33-9030 

security guards and 

gaming 

surveillance 

officers 81.3 1.29 78.81 83.81 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-1010 

supervisors of food 

preparation and 

serving workers 82.2 2.27 77.74 86.69 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-2010 cooks 81.0 1.3 78.57 83.65 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-2020 

food preparation 

workers 82.9 0.91 81.12 84.69 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-3010 bartenders 84.8 1.09 82.7 86.9 
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35-0000 

food 

preparation 

and serving 

related 

occupations 35-3020 

fast food and 

counter workers 78.8 1.64 75.69 82.02 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-3030 

waiters and 

waitresses 84.8 1.7 81.48 88.21 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-3040 

food servers, 

nonrestaurant 82.6 1.21 80.22 84.97 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-9010 

dining room and 

cafeteria attendants 

and bartender 

helpers 81.6 1.2 79.28 83.92 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-9020 dishwashers 86.3 1.08 84.16 88.49 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-9030 

hosts and hostesses, 

restaurant, lounge, 

and coffee shop 82.7 4.72 73.62 92.22 

35-0000 

food 

preparation 

and serving 

related 

occupations 35-9090 

miscellaneous food 

preparation and 

serving related 

workers 83.3 2.43 78.59 87.91 

37-0000 

building and 

grounds 

cleaning and 

maintenance 37-1010 

first-line 

supervisors of 

building and 

grounds cleaning 

and maintenance 

workers 84.5 5.37 73.72 94.69 

37-0000 

building and 

grounds 

cleaning and 

maintenance 37-2010 

building cleaning 

workers 87.1 0.21 86.67 87.49 

37-0000 

building and 

grounds 

cleaning and 

maintenance 37-2020 

pest control 

workers 84.4 5.41 73.86 94.82 
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37-0000 

building and 

grounds 

cleaning and 

maintenance 37-3010 

grounds 

maintenance 

workers 86.9 0.42 86.06 87.75 

39-0000 

personal care 

and service 

occupations 39-1010 

first-line 

supervisors of 

gaming workers 84.6 5.08 74.69 94.68 

39-0000 

personal care 

and service 

occupations 39-2010 animal trainers 84.5 5.16 74.14 94.62 

39-0000 

personal care 

and service 

occupations 39-2020 

nonfarm animal 

caretakers 83.6 2.16 79.53 87.97 

39-0000 

personal care 

and service 

occupations 39-3010 

gaming services 

workers 89.6 0.96 87.74 91.46 

39-0000 

personal care 

and service 

occupations 39-3020 

motion picture 

projectionists 84.4 4.9 74.77 94.07 

39-0000 

personal care 

and service 

occupations 39-3030 

ushers, lobby 

attendants, and 

ticket takers 89.6 1.3 87.08 92.05 

39-0000 

personal care 

and service 

occupations 39-3090 

miscellaneous 

entertainment 

attendants and 

related workers 84.4 1.44 81.62 87.35 

39-0000 

personal care 

and service 

occupations 39-4010 embalmers 84.4 5.16 73.99 94.31 

39-0000 

personal care 

and service 

occupations 39-4020 funeral attendants 84.6 4.94 74.42 94.37 

39-0000 

personal care 

and service 

occupations 39-4030 

morticians, 

undertakers, and 

funeral directors 84.7 5.03 75.32 94.9 

39-0000 

personal care 

and service 

occupations 39-5010 

barbers, 

hairdressers, 

hairstylists and 

cosmetologists 84.6 2.82 79.03 90.15 

39-0000 

personal care 

and service 

occupations 39-5090 

miscellaneous 

personal 

appearance workers 84.5 4.99 74.99 94.56 

39-0000 

personal care 

and service 

occupations 39-6010 

baggage porters, 

bellhops, and 

concierges 80.7 2.4 75.66 85.28 

39-0000 

personal care 

and service 

occupations 39-7010 

tour and travel 

guides 84.6 5.15 74.55 95.01 

39-0000 

personal care 

and service 

occupations 39-9010 childcare workers 83.2 4.08 75.16 91.59 
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39-0000 

personal care 

and service 

occupations 39-9020 personal care aides 84.7 5.14 74.77 95 

39-0000 

personal care 

and service 

occupations 39-9040 residential advisors 84.4 5.04 74.33 94.07 

39-0000 

personal care 

and service 

occupations 39-9090 

miscellaneous 

personal care and 

service workers 84.5 5 75.07 94.17 

41-0000 

sales and 

related 

occupations 41-1010 

first-line 

supervisors of sales 

workers 82.0 1.24 79.65 84.38 

41-0000 

sales and 

related 

occupations 41-2010 cashiers 77.5 1.52 74.55 80.58 

41-0000 

sales and 

related 

occupations 41-2020 

counter and rental 

clerks and parts 

salespersons 81.1 5.13 71.07 91.04 

41-0000 

sales and 

related 

occupations 41-2030 retail salespersons 84.1 0.85 82.45 85.81 

41-0000 

sales and 

related 

occupations 41-3010 

advertising sales 

agents 81.2 5.12 71.28 90.82 

41-0000 

sales and 

related 

occupations 41-3020 

insurance sales 

agents 81.0 5.02 71.03 90.82 

41-0000 

sales and 

related 

occupations 41-3030 

securities, 

commodities, and 

financial services 

sales agents 81.2 4.99 71.52 91.27 

41-0000 

sales and 

related 

occupations 41-3040 travel agents 81.2 5.11 71.21 90.87 

41-0000 

sales and 

related 

occupations 41-3090 

miscellaneous sales 

representatives, 

services 81.4 5.04 71.72 91.05 

41-0000 

sales and 

related 

occupations 41-4010 

sales 

representatives, 

wholesale and 

manufacturing 74.4 2.64 69.16 79.59 

41-0000 

sales and 

related 

occupations 41-9010 

models, 

demonstrators, and 

product promoters 81.3 5.21 70.91 91.56 

41-0000 

sales and 

related 

occupations 41-9020 

real estate brokers 

and sales agents 81.3 5.06 71.47 91.27 

41-0000 

sales and 

related 

occupations 41-9030 sales engineers 81.2 5.05 71.28 91.3 
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41-0000 

sales and 

related 

occupations 41-9040 telemarketers 81.3 5.04 71.36 91.4 

41-0000 

sales and 

related 

occupations 41-9090 

miscellaneous sales 

and related workers 85.6 0.31 85.04 86.27 

43-0000 

office and 

administrative 

support 

occupations  43-1010 

first-line 

supervisors of 

office and 

administrative 

support workers 79.8 1.17 77.58 82.15 

43-0000 

office and 

administrative 

support 

occupations  43-2010 

switchboard 

operators, including 

answering service 78.7 4.75 69.33 88.07 

43-0000 

office and 

administrative 

support 

occupations  43-2020 telephone operators 78.7 4.78 69.58 88.39 

43-0000 

office and 

administrative 

support 

occupations  43-2090 

miscellaneous 

communications 

equipment 

operators 85.6 0.94 83.66 87.34 

43-0000 

office and 

administrative 

support 

occupations  43-3010 

bill and account 

collectors 78.7 4.72 69.35 88.17 

43-0000 

office and 

administrative 

support 

occupations  43-3020 

billing and posting 

clerks 78.8 4.87 69.6 88.47 

43-0000 

office and 

administrative 

support 

occupations  43-3030 

bookkeeping, 

accounting, and 

auditing clerks 83.0 3.55 75.92 89.86 

43-0000 

office and 

administrative 

support 

occupations  43-3040 

gaming cage 

workers 78.7 4.8 69.39 88.11 

43-0000 

office and 

administrative 

support 

occupations  43-3050 

payroll and 

timekeeping clerks 75.0 1.55 71.91 78.08 

43-0000 

office and 

administrative 

support 

occupations  43-3060 procurement clerks 78.9 4.79 69.67 88.21 

43-0000 

office and 

administrative 

support 

occupations  43-3070 tellers 78.9 4.75 69.46 87.94 
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43-0000 

office and 

administrative 

support 

occupations  43-3090 

miscellaneous 

financial clerks 78.6 4.81 69.62 88.29 

43-0000 

office and 

administrative 

support 

occupations  43-4010 brokerage clerks 78.8 4.88 69.35 88.4 

43-0000 

office and 

administrative 

support 

occupations  43-4020 

correspondence 

clerks 78.8 4.9 69.81 88.54 

43-0000 

office and 

administrative 

support 

occupations  43-4030 

court, municipal, 

and license clerks 78.8 4.89 69.14 88.38 

43-0000 

office and 

administrative 

support 

occupations  43-4040 

credit authorizers, 

checkers, and 

clerks 78.8 4.82 69.45 87.72 

43-0000 

office and 

administrative 

support 

occupations  43-4050 

customer service 

representatives 78.6 0.77 77.18 80.08 

43-0000 

office and 

administrative 

support 

occupations  43-4060 

eligibility 

interviewers, 

government 

programs 78.8 4.85 69.22 88.18 

43-0000 

office and 

administrative 

support 

occupations  43-4070 file clerks 78.7 4.81 69.41 88.16 

43-0000 

office and 

administrative 

support 

occupations  43-4080 

hotel, motel, and 

resort desk clerks 80.3 1.18 78.07 82.53 

43-0000 

office and 

administrative 

support 

occupations  43-4110 

interviewers, except 

eligibility and loan 78.7 4.81 69.26 87.95 

43-0000 

office and 

administrative 

support 

occupations  43-4120 

library assistants, 

clerical 79.0 4.93 69.18 88.75 

43-0000 

office and 

administrative 

support 

occupations  43-4130 

loan interviewers 

and clerks 78.8 4.94 69.03 88.38 

43-0000 

office and 

administrative 43-4140 new accounts clerks 78.7 4.95 69.16 88.67 
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support 

occupations  

43-0000 

office and 

administrative 

support 

occupations  43-4150 order clerks 78.8 4.77 69.34 88.02 

43-0000 

office and 

administrative 

support 

occupations  43-4160 

human resources 

assistants, except 

payroll and 

timekeeping 78.8 4.82 69.14 88.09 

43-0000 

office and 

administrative 

support 

occupations  43-4170 

receptionists and 

information clerks 78.8 4.78 69.29 87.95 

43-0000 

office and 

administrative 

support 

occupations  43-4180 

reservation and 

transportation ticket 

agents and travel 

clerks 76.8 1.62 73.61 79.93 

43-0000 

office and 

administrative 

support 

occupations  43-4190 

miscellaneous 

information and 

record clerks 78.9 4.85 69.46 88.14 

43-0000 

office and 

administrative 

support 

occupations  43-5010 

cargo and freight 

agents 82.7 0.97 80.78 84.6 

43-0000 

office and 

administrative 

support 

occupations  43-5020 

couriers and 

messengers 78.8 4.89 69.14 87.85 

43-0000 

office and 

administrative 

support 

occupations  43-5030 dispatchers 77.1 0.78 75.53 78.56 

43-0000 

office and 

administrative 

support 

occupations  43-5040 

meter readers, 

utilities 78.8 4.99 69.45 88.7 

43-0000 

office and 

administrative 

support 

occupations  43-5050 

postal service 

workers 82.2 1.27 79.67 84.72 

43-0000 

office and 

administrative 

support 

occupations  43-5060 

production, 

planning, and 

expediting clerks 81.0 2.87 75.15 86.38 

43-0000 

office and 

administrative 

support 

occupations  43-5070 

shipping, receiving, 

and traffic clerks 77.1 0.42 76.36 77.98 
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43-0000 

office and 

administrative 

support 

occupations  43-5080 

stock clerks and 

order fillers 80.3 0.29 79.73 80.88 

43-0000 

office and 

administrative 

support 

occupations  43-5110 

weighers, 

measurers, 

checkers, and 

samplers, 

recordkeeping 71.2 0.62 69.98 72.38 

43-0000 

office and 

administrative 

support 

occupations  43-6010 

secretaries and 

administrative 

assistants 78.9 4.88 69.69 88.65 

43-0000 

office and 

administrative 

support 

occupations  43-9010 computer operators 78.9 4.78 69.6 88.4 

43-0000 

office and 

administrative 

support 

occupations  43-9030 desktop publishers 78.7 4.78 69.26 87.77 

43-0000 

office and 

administrative 

support 

occupations  43-9040 

insurance claims 

and policy 

processing clerks 78.7 4.87 69.26 88.53 

43-0000 

office and 

administrative 

support 

occupations  43-9050 

mail clerks and 

mail machine 

operators, except 

postal service 78.7 4.85 69.15 87.88 

43-0000 

office and 

administrative 

support 

occupations  43-9060 

office clerks, 

general 70.7 1.38 67.98 73.41 

43-0000 

office and 

administrative 

support 

occupations  43-9070 

office machine 

operators, except 

computer 81.1 3.07 75.31 87.14 

43-0000 

office and 

administrative 

support 

occupations  43-9080 

proofreaders and 

copy markers 78.8 4.75 69.74 88.22 

43-0000 

office and 

administrative 

support 

occupations  43-9110 statistical assistants 77.5 0.79 75.89 78.99 

43-0000 

office and 

administrative 

support 

occupations  43-9190 

miscellaneous 

office and 

administrative 

support workers 73.3 1.08 71.22 75.38 

45-0000 

farming, 

fishing, and 45-1010 

first-line 

supervisors of 86.6 4.96 76.63 96.54 
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forestry 

occupations 

farming, fishing, 

and forestry 

workers 

45-0000 

farming, 

fishing, and 

forestry 

occupations 45-2010 

agricultural 

inspectors 80.4 1.09 78.35 82.59 

45-0000 

farming, 

fishing, and 

forestry 

occupations 45-2020 animal breeders 91.9 0.71 90.49 93.25 

45-0000 

farming, 

fishing, and 

forestry 

occupations 45-2040 

graders and sorters, 

agricultural 

products 85.6 1.75 82.24 89.03 

45-0000 

farming, 

fishing, and 

forestry 

occupations 45-2090 

miscellaneous 

agricultural 

workers 90.9 0.29 90.36 91.48 

45-0000 

farming, 

fishing, and 

forestry 

occupations 45-3010 

fishers and related 

fishing workers 87.6 1.48 84.67 90.52 

45-0000 

farming, 

fishing, and 

forestry 

occupations 45-3020 

hunters and 

trappers 86.4 4.94 76.71 96.35 

45-0000 

farming, 

fishing, and 

forestry 

occupations 45-4010 

forest and 

conservation 

workers 86.4 4.95 76.78 96.17 

45-0000 

farming, 

fishing, and 

forestry 

occupations 45-4020 logging workers 89.6 0.5 88.59 90.62 

47-0000 

construction 

and extraction 

occupations 47-1010 

first-line 

supervisors of 

construction trades 

and extraction 

workers 78.3 0.11 78.05 78.47 

47-0000 

construction 

and extraction 

occupations 47-2010 boilermakers 84.3 1.04 82.31 86.42 

47-0000 

construction 

and extraction 

occupations 47-2020 

brickmasons, 

blockmasons, and 

stonemasons 86.5 0.32 85.83 87.09 

47-0000 

construction 

and extraction 

occupations 47-2030 carpenters 84.7 0.17 84.35 84.99 
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47-0000 

construction 

and extraction 

occupations 47-2040 

carpet, floor, and 

tile installers and 

finishers 87.9 0.68 86.65 89.25 

47-0000 

construction 

and extraction 

occupations 47-2050 

cement masons, 

concrete finishers, 

and terrazzo 

workers 87.6 0.31 87 88.22 

47-0000 

construction 

and extraction 

occupations 47-2060 

construction 

laborers 89.0 0.21 88.63 89.45 

47-0000 

construction 

and extraction 

occupations 47-2070 

construction 

equipment 

operators 86.4 0.23 85.94 86.81 

47-0000 

construction 

and extraction 

occupations 47-2110 electricians 78.3 0.11 78.06 78.49 

47-0000 

construction 

and extraction 

occupations 47-2120 glaziers 84.5 1.22 82.12 86.81 

47-0000 

construction 

and extraction 

occupations 47-2130 insulation workers 84.6 1.42 81.69 87.33 

47-0000 

construction 

and extraction 

occupations 47-2140 

painters and 

paperhangers 82.2 0.93 80.38 84.05 

47-0000 

construction 

and extraction 

occupations 47-2150 

pipelayers, 

plumbers, 

pipefitters, and 

steamfitters 82.4 0.15 82.08 82.67 

47-0000 

construction 

and extraction 

occupations 47-2160 

plasterers and 

stucco masons 83.5 4.78 74.39 92.79 

47-0000 

construction 

and extraction 

occupations 47-2170 

reinforcing iron and 

rebar workers 84.9 1.92 81.05 88.72 

47-0000 

construction 

and extraction 

occupations 47-2180 roofers 89.1 0.65 87.85 90.36 

47-0000 

construction 

and extraction 

occupations 47-2210 sheet metal workers 85.1 0.22 84.65 85.48 

47-0000 

construction 

and extraction 

occupations 47-2220 

structural iron and 

steel workers 80.9 0.79 79.37 82.46 

47-0000 

construction 

and extraction 

occupations 47-3010 

helpers, 

construction trades 79.6 0.39 78.84 80.3 

47-0000 

construction 

and extraction 

occupations 47-4010 

construction and 

building inspectors 83.7 4.81 74.32 93.28 
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47-0000 

construction 

and extraction 

occupations 47-4020 

elevator installers 

and repairers 83.5 4.8 73.96 92.93 

47-0000 

construction 

and extraction 

occupations 47-4030 fence erectors 83.6 4.87 74.17 93.39 

47-0000 

construction 

and extraction 

occupations 47-4040 

hazardous materials 

removal workers 75.3 1.12 73.24 77.51 

47-0000 

construction 

and extraction 

occupations 47-4050 

highway 

maintenance 

workers 83.5 4.79 74.3 92.92 

47-0000 

construction 

and extraction 

occupations 47-4060 

rail-track laying 

and maintenance 

equipment 

operators 80.5 0.61 79.38 81.74 

47-0000 

construction 

and extraction 

occupations 47-4070 

septic tank 

servicers and sewer 

pipe cleaners 85.6 1.1 83.48 87.76 

47-0000 

construction 

and extraction 

occupations 47-4090 

miscellaneous 

construction and 

related workers 81.6 0.57 80.5 82.71 

47-0000 

construction 

and extraction 

occupations 47-5020 

earth drillers, 

except oil and gas 82.3 0.07 82.22 82.48 

47-0000 

construction 

and extraction 

occupations 47-5030 

explosives workers, 

ordnance handling 

experts, and 

blasters 85.5 0.21 85.04 85.86 

47-0000 

construction 

and extraction 

occupations 47-5040 

mining machine 

operators 82.7 0.02 82.7 82.76 

47-0000 

construction 

and extraction 

occupations 47-5050 

rock splitters, 

quarry 84.0 0.11 83.81 84.27 

47-0000 

construction 

and extraction 

occupations 47-5060 roof bolters, mining 84.1 0.04 84.04 84.22 

47-0000 

construction 

and extraction 

occupations 47-5070 

roustabouts, oil and 

gas 83.7 4.82 73.81 93.19 

47-0000 

construction 

and extraction 

occupations 47-5080 

helpers--extraction 

workers 83.9 0.07 83.72 84 

47-0000 

construction 

and extraction 

occupations 47-5090 

miscellaneous 

extraction workers 85.1 0.23 84.61 85.5 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-1010 

first-line 

supervisors of 

mechanics, 83.2 0.65 81.85 84.45 
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installers, and 

repairers 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-2010 

computer, 

automated teller, 

and office machine 

repairers 83.3 4.83 74.19 92.86 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-2020 

radio and 

telecommunications 

equipment 

installers and 

repairers 84.8 0.98 82.97 86.83 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-2090 

miscellaneous 

electrical and 

electronic 

equipment 

mechanics, 

installers, and 

repairers 77.0 1.62 73.99 80.41 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-3010 

aircraft mechanics 

and service 

technicians 87.2 1.04 85.03 89.19 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-3020 

automotive 

technicians and 

repairers 83.7 0.28 83.21 84.28 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-3030 

bus and truck 

mechanics and 

diesel engine 

specialists 83.2 1.07 81.11 85.26 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-3040 

heavy vehicle and 

mobile equipment 

service technicians 

and mechanics 78.8 0.08 78.68 78.98 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-3050 

small engine 

mechanics 86.3 1.54 83.27 89.3 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-3090 

miscellaneous 

vehicle and mobile 

equipment 

mechanics, 

installers, and 

repairers 87.4 1.06 85.48 89.49 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-9010 

control and valve 

installers and 

repairers 88.8 2.23 84.53 93.11 

49-0000 

installation, 

maintenance, 49-9020 

heating, air 

conditioning, and 

refrigeration 87.7 1 85.74 89.57 



 135 

and repair 

occupations 

mechanics and 

installers 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-9030 

home appliance 

repairers 83.5 4.88 73.87 92.92 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-9040 

industrial 

machinery 

installation, repair, 

and maintenance 

workers 84.6 0.11 84.35 84.77 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-9050 

line installers and 

repairers 81.6 0.77 80.08 83.06 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-9060 

precision 

instrument and 

equipment repairers 75.8 2 71.83 79.58 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-9070 

maintenance and 

repair workers, 

general 81.6 0.06 81.5 81.73 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-9080 

wind turbine 

service technicians 83.3 4.9 73.63 92.77 

49-0000 

installation, 

maintenance, 

and repair 

occupations 49-9090 

miscellaneous 

installation, 

maintenance, and 

repair workers 84.2 0.61 83.01 85.41 

51-0000 

production 

occupations 51-1010 

first-line 

supervisors of 

production and 

operating workers 82.2 0.09 81.98 82.33 

51-0000 

production 

occupations 51-2010 

aircraft structure, 

surfaces, rigging, 

and systems 

assemblers 85.6 4.75 76.4 95.38 

51-0000 

production 

occupations 51-2020 

electrical, 

electronics, and 

electromechanical 

assemblers 85.1 0.31 84.54 85.72 

51-0000 

production 

occupations 51-2030 

engine and other 

machine assemblers 85.3 4.77 75.73 94.51 

51-0000 

production 

occupations 51-2040 

structural metal 

fabricators and 

fitters 86.7 0.18 86.35 87.05 

51-0000 

production 

occupations 51-2090 

miscellaneous 

assemblers and 

fabricators 82.7 0.05 82.59 82.79 
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51-0000 

production 

occupations 51-3010 bakers 83.9 0.82 82.31 85.57 

51-0000 

production 

occupations 51-3020 

butchers and other 

meat, poultry, and 

fish processing 

workers 90.6 0.21 90.18 90.98 

51-0000 

production 

occupations 51-3090 

miscellaneous food 

processing workers 88.4 0.16 88.12 88.74 

51-0000 

production 

occupations 51-4010 

computer control 

programmers and 

operators 78.6 0.96 76.82 80.51 

51-0000 

production 

occupations 51-4020 

forming machine 

setters, operators, 

and tenders, metal 

and plastic 91.2 0.27 90.69 91.76 

51-0000 

production 

occupations 51-4030 

machine tool 

cutting setters, 

operators, and 

tenders, metal and 

plastic 87.6 0.07 87.45 87.74 

51-0000 

production 

occupations 51-4040 machinists 80.9 0.12 80.67 81.16 

51-0000 

production 

occupations 51-4050 

metal furnace 

operators, tenders, 

pourers, and casters 87.9 0.22 87.43 88.29 

51-0000 

production 

occupations 51-4060 

model makers and 

patternmakers, 

metal and plastic 85.1 0.78 83.56 86.67 

51-0000 

production 

occupations 51-4070 

molders and 

molding machine 

setters, operators, 

and tenders, metal 

and plastic 88.2 0.21 87.76 88.56 

51-0000 

production 

occupations 51-4080 

multiple machine 

tool setters, 

operators, and 

tenders, metal and 

plastic 88.3 0.17 87.96 88.64 

51-0000 

production 

occupations 51-4110 tool and die makers 82.1 0.19 81.75 82.48 

51-0000 

production 

occupations 51-4120 

welding, soldering, 

and brazing 

workers 85.0 0.08 84.83 85.13 

51-0000 

production 

occupations 51-4190 

miscellaneous 

metal workers and 

plastic workers 89.2 0.09 88.98 89.35 

51-0000 

production 

occupations 51-5110 printing workers 84.0 0.29 83.42 84.58 

51-0000 

production 

occupations 51-6010 

laundry and dry-

cleaning workers 83.2 0.75 81.69 84.65 
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51-0000 

production 

occupations 51-6020 

pressers, textile, 

garment, and 

related materials 89.7 0.3 89.05 90.24 

51-0000 

production 

occupations 51-6030 

sewing machine 

operators 81.3 1.21 78.88 83.63 

51-0000 

production 

occupations 51-6040 

shoe and leather 

workers 89.1 0.45 88.2 89.93 

51-0000 

production 

occupations 51-6050 

tailors, 

dressmakers, and 

sewers 90.8 1.05 88.75 92.73 

51-0000 

production 

occupations 51-6060 

textile machine 

setters, operators, 

and tenders 89.9 0.18 89.56 90.27 

51-0000 

production 

occupations 51-6090 

miscellaneous 

textile, apparel, and 

furnishings workers 88.1 0.27 87.55 88.65 

51-0000 

production 

occupations 51-7010 

cabinetmakers and 

bench carpenters 89.4 0.22 89 89.87 

51-0000 

production 

occupations 51-7020 furniture finishers 83.5 1.53 80.44 86.48 

51-0000 

production 

occupations 51-7030 

model makers and 

patternmakers, 

wood 80.8 2.88 75.21 86.61 

51-0000 

production 

occupations 51-7040 

woodworking 

machine setters, 

operators, and 

tenders 92.5 0.07 92.37 92.62 

51-0000 

production 

occupations 51-7090 

miscellaneous 

woodworkers 90.1 0.21 89.7 90.54 

51-0000 

production 

occupations 51-8010 

power plant 

operators, 

distributors, and 

dispatchers 86.7 0.53 85.66 87.68 

51-0000 

production 

occupations 51-8020 

stationary engineers 

and boiler operators 86.9 0.76 85.39 88.39 

51-0000 

production 

occupations 51-8030 

water and 

wastewater 

treatment plant and 

system operators 75.9 0.47 75 76.86 

51-0000 

production 

occupations 51-8090 

miscellaneous plant 

and system 

operators 82.7 0.43 81.87 83.54 

51-0000 

production 

occupations 51-9010 

chemical 

processing machine 

setters, operators, 

and tenders 83.9 0.13 83.63 84.14 

51-0000 

production 

occupations 51-9020 

crushing, grinding, 

polishing, mixing, 

and blending 

workers 87.5 0.08 87.32 87.63 
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51-0000 

production 

occupations 51-9030 cutting workers 85.1 0.13 84.83 85.35 

51-0000 

production 

occupations 51-9040 

extruding, forming, 

pressing, and 

compacting 

machine setters, 

operators, and 

tenders 86.2 0.65 84.9 87.44 

51-0000 

production 

occupations 51-9050 

furnace, kiln, oven, 

drier, and kettle 

operators and 

tenders 89.6 0.33 89.01 90.27 

51-0000 

production 

occupations 51-9060 

inspectors, testers, 

sorters, samplers, 

and weighers 81.6 0.12 81.39 81.85 

51-0000 

production 

occupations 51-9070 

jewelers and 

precious stone and 

metal workers 85.5 4.93 75.95 94.79 

51-0000 

production 

occupations 51-9080 

medical, dental, and 

ophthalmic 

laboratory 

technicians 68.6 1.62 65.6 71.8 

51-0000 

production 

occupations 51-9110 

packaging and 

filling machine 

operators and 

tenders 86.8 0.19 86.42 87.19 

51-0000 

production 

occupations 51-9120 painting workers 84.3 0.18 84 84.68 

51-0000 

production 

occupations 51-9140 

semiconductor 

processors 85.4 4.85 76.11 95.47 

51-0000 

production 

occupations 51-9150 

photographic 

process workers 

and processing 

machine operators 85.6 4.78 76.42 94.78 

51-0000 

production 

occupations 51-9190 

miscellaneous 

production workers 87.6 0.07 87.5 87.76 

53-0000 

transportation 

and material 

moving 

occupations 53-1010 

aircraft cargo 

handling 

supervisors 83.6 4.91 73.9 92.99 

53-0000 

transportation 

and material 

moving 

occupations 53-1020 

first-line 

supervisors of 

helpers, laborers, 

and material 

movers, hand 86.7 2.41 81.62 91.41 

53-0000 

transportation 

and material 

moving 

occupations 53-1030 

first-line 

supervisors of 

transportation and 

material-moving 

machine and 

vehicle operators 78.2 3 72.2 83.73 
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53-0000 

transportation 

and material 

moving 

occupations 53-2010 

aircraft pilots and 

flight engineers 87.6 0.88 85.93 89.37 

53-0000 

transportation 

and material 

moving 

occupations 53-2020 

air traffic 

controllers and 

airfield operations 

specialists 82.6 0.93 80.81 84.46 

53-0000 

transportation 

and material 

moving 

occupations 53-2030 flight attendants 83.9 4.97 74.2 93.72 

53-0000 

transportation 

and material 

moving 

occupations 53-3010 

ambulance drivers 

and attendants, 

except emergency 

medical technicians 84.7 2.61 79.69 90.03 

53-0000 

transportation 

and material 

moving 

occupations 53-3020 bus drivers 78.0 2.63 72.69 83.14 

53-0000 

transportation 

and material 

moving 

occupations 53-3030 

driver/sales 

workers and truck 

drivers 81.7 0.03 81.64 81.78 

53-0000 

transportation 

and material 

moving 

occupations 53-3040 

taxi drivers and 

chauffeurs 83.7 4.85 74.34 93 

53-0000 

transportation 

and material 

moving 

occupations 53-3090 

miscellaneous 

motor vehicle 

operators 83.7 4.69 74.63 92.77 

53-0000 

transportation 

and material 

moving 

occupations 53-4010 

locomotive 

engineers and 

operators 82.1 2.35 77.18 86.59 

53-0000 

transportation 

and material 

moving 

occupations 53-4020 

railroad brake, 

signal, and switch 

operators 82.0 1.08 79.89 84.21 

53-0000 

transportation 

and material 

moving 

occupations 53-4030 

railroad conductors 

and yardmasters 83.6 4.86 73.81 93.32 

53-0000 

transportation 

and material 

moving 

occupations 53-4040 

subway and 

streetcar operators 83.8 4.8 74.13 92.52 

53-0000 

transportation 

and material 53-4090 

miscellaneous rail 

transportation 

workers 83.8 4.95 73.7 93.48 
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moving 

occupations 

53-0000 

transportation 

and material 

moving 

occupations 53-5010 

sailors and marine 

oilers 83.7 4.68 74.53 92.91 

53-0000 

transportation 

and material 

moving 

occupations 53-5020 

ship and boat 

captains and 

operators 84.8 0.97 82.88 86.63 

53-0000 

transportation 

and material 

moving 

occupations 53-5030 ship engineers 84.0 4.93 74.43 93.35 

53-0000 

transportation 

and material 

moving 

occupations 53-6010 

bridge and lock 

tenders 83.6 4.76 74.3 92.9 

53-0000 

transportation 

and material 

moving 

occupations 53-6020 

parking lot 

attendants 84.0 4.67 74.67 93.03 

53-0000 

transportation 

and material 

moving 

occupations 53-6040 traffic technicians 81.9 1.34 79.25 84.53 

53-0000 

transportation 

and material 

moving 

occupations 53-6050 

transportation 

inspectors 83.6 4.84 73.78 92.48 

53-0000 

transportation 

and material 

moving 

occupations 53-6060 

transportation 

attendants, except 

flight attendants 83.1 0.59 81.98 84.27 

53-0000 

transportation 

and material 

moving 

occupations 53-6090 

miscellaneous 

transportation 

workers 83.8 4.85 74.2 93.45 

53-0000 

transportation 

and material 

moving 

occupations 53-7010 

conveyor operators 

and tenders 88.5 0.44 87.63 89.36 

53-0000 

transportation 

and material 

moving 

occupations 53-7020 

crane and tower 

operators 88.1 0.33 87.48 88.78 

53-0000 

transportation 

and material 

moving 

occupations 53-7030 

dredge, excavating, 

and loading 

machine operators 84.5 0.24 83.98 84.93 
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53-0000 

transportation 

and material 

moving 

occupations 53-7040 

hoist and winch 

operators 80.5 1.59 77.26 83.52 

53-0000 

transportation 

and material 

moving 

occupations 53-7050 

industrial truck and 

tractor operators 86.6 0.17 86.28 86.98 

53-0000 

transportation 

and material 

moving 

occupations 53-7060 

laborers and 

material movers, 

hand 84.9 0.07 84.76 85.04 

53-0000 

transportation 

and material 

moving 

occupations 53-7070 

pumping station 

operators 88.2 1.05 86.14 90.32 

53-0000 

transportation 

and material 

moving 

occupations 53-7080 

refuse and 

recyclable material 

collectors 86.2 0.78 84.74 87.78 

53-0000 

transportation 

and material 

moving 

occupations 53-7110 

mine shuttle car 

operators 79.1 0.37 78.43 79.83 

53-0000 

transportation 

and material 

moving 

occupations 53-7120 

tank car, truck, and 

ship loaders 79.7 0.29 79.13 80.24 

53-0000 

transportation 

and material 

moving 

occupations 53-7190 

miscellaneous 

material moving 

workers 88.5 0.6 87.33 89.66 

55-0000 

military 

specific 

occupations 55-1010 

military officer 

special and tactical 

operations leaders 77.2 3.33 70.54 83.74 

55-0000 

military 

specific 

occupations 55-2010 

first-line enlisted 

military supervisors 78.8 5.5 68.18 89.09 

55-0000 

military 

specific 

occupations 55-3010 

military enlisted 

tactical operations 

and air/weapons 

specialists and crew 

members 74.5 2.27 70.06 78.86 

 


