
Optimization Models and Algorithms for
Prototype Vehicle Test Scheduling

by

Yuhui Shi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in The University of Michigan
2017

Doctoral Committee:

Associate Professor Marina A. Epelman, Co-chair
Associate Professor Amy E.M. Cohn, Co-chair
Associate Professor Amitabh Sinha
Dr. Daniel Reich, Ford Motor Company

Yuhui Shi

yuhuishi@umich.edu

ORCID ID: 0000-0001-5763-2445

c© Yuhui Shi 2017

All Rights Reserved

ACKNOWLEDGEMENTS

First, I would like to express the deepest appreciations to my advisors Professors

Amy Cohn and Marina Epelman. They went above and beyond in guiding and

supporting me through my four-year doctorate study, and addressed great flexibility

in allowing me exploring various interesting ideas.

I also would like to thank Professor Amitabh Sinha for being on my committee.

I have had inspiring discussions with him during my dissertation work. I always

enjoyed the short meetings with him and was surprised at the amount of topics we

covered during the 10-minute meetings.

In addition, I would like to express my gratitude to the generous support and

founding I received from Ford Motor Company to allow me to study the interesting

problems they encountered during their business operations. Especially, I would

like to extend my thanks to my colleagues at Ford, Doctors Daniel Reich, Jae-Young

Jung, Yan Fu and Erica Klampfl. Pursing a doctorate degree while working significant

amount of time for a company in the industry is not a easy task. Without your help

and support, this cannot be possible. I enjoyed the summers I spent at Ford working

with you smart people.

Finally, I would like to thank my wife Yihuan for her persistent support during

my life.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . viii

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Background . 1
1.2 Problem description . 3

1.2.1 The General Test Scheduling Problem (GTSP) . . . 6
1.3 Thesis outline . 10
1.4 Literature review . 12

II. Scheduling of general tests . 18

2.1 Introduction . 18
2.2 Mixed integer formulation . 20
2.3 Heuristic algorithm . 22

2.3.1 Fit-and-Swap test scheduling heuristic 23
2.3.2 Ordering satisfiability problem 24
2.3.3 Integer programming models for grouping crash tests 27
2.3.4 Test planning algorithm summary 30

2.4 Numerical results . 30

III. Scheduling of safety crash tests 34

3.1 Introduction . 34
3.1.1 Background . 35

3.2 System overview . 37

iii

3.2.1 Test management module 37
3.2.2 Rehit rules module 39
3.2.3 Program scheduling module 41

3.3 Models and solution approaches 44
3.3.1 A review of delayed column generation methods . . 45
3.3.2 Set-partitioning formulation of CTSP 47

3.4 Delayed column generation algorithm 50
3.4.1 Aggregating the vehicle capacity constraints 54
3.4.2 Offline pricing algorithm 56
3.4.3 Column dominance 58
3.4.4 Strategies to generate compatible columns 59

3.5 Branch-and-price method . 60
3.5.1 Branching rules . 61
3.5.2 Other implementation details 64

3.6 Numerical results . 67
3.6.1 Data preparation and testing platform 67
3.6.2 Results . 70

IV. Scheduling of safety crash tests under supporting resource
constraints . 75

4.1 Introduction . 75
4.1.1 Literature review on scheduling under resource con-

straints . 77
4.2 Mixed integer formulation . 79
4.3 Set-partitioning formulations 81
4.4 Delayed column generation algorithm 83

4.4.1 Constraint programming formulation of the pricing
problem . 84

4.4.2 A sequencing then timing strategy to solve the pric-
ing problem . 87

4.4.3 Finding the initial set of variables 91
4.4.4 A primal heuristic based on dual price of resources . 92

4.5 Scheduling multiple vehicle programs 94
4.5.1 Decomposition by the vehicle program 95

4.6 Numerical results . 96
4.6.1 Single program . 96
4.6.2 Multiple programs 98

V. Conclusion . 101

5.1 Conclusion . 101
5.2 Future research directions . 102

5.2.1 Branch-and-price algorithm for scheduling under sup-
porting resource constraints 103

iv

5.2.2 Decomposition by the planning horizon in solving
multiple vehicle program scheduling 104

5.2.3 Scheduling with expediting resources 107
5.2.4 Application to stochastic scheduling 110

APPENDIX . 112

BIBLIOGRAPHY . 131

v

LIST OF FIGURES

Figure

1.1 The Gantt chart provides a character- and color-coded crash schedule. 4

1.2 The crash sequence document provides a compact summary of rehit
strategies, highlighting test combinations on vehicles. 5

1.3 The crash tree specifies assignment of tests to specific prototype ve-
hicles and the relevant specifications of the prototypes 5

2.1 Fit-and-Swap algorithm illustration 26

3.1 Example of a crash-test mode record from the TP3S web applica-
tion, showing the requirements for an Insurance Institute for Highway
Safety test. 38

3.2 Rehit rules lookup shows whether two crash tests can be run on the
same prototype vehicle in the specified order. For tests that are off-
center, rules are based on whether the tests are to be executed on the
same or opposite sides of the prototype. 39

3.3 The user interface allows dates to be selected for scheduling mile-
stones in a program. 42

3.4 An engineer enters test requirements, by connecting vehicle specifi-
cations to test modes and milestones. 43

3.5 The prototype vehicle delivery schedule is shown, along with the pos-
sible control models that could be delivered each date. 44

3.6 Run optimizations and view results. 45

3.7 Assigning individual tests to vehicles versus assigning test sequences
to vehicles . 48

vi

3.8 A flow chart of the delayed column generation approach 53

3.9 Parallel offline pricing algorithm for 6 sequences using 3 processors . 58

3.10 Percentage of instances solved (<5% optimality gap) by delayed col-
umn generation in each size group. 72

3.11 The optimality gap and solution time (in secs) versus the number of
tests . 73

3.12 Optimality gap: branch-and-price vs. delayed column generation . . 74

4.1 Example of resource over-utilization 76

4.2 Time discretization assignment model 79

4.3 A slot based pricing model . 85

4.4 Offline pricing of all sequence compositions 91

4.5 Percentage of solved and unsolved instances 97

4.6 Optimality gap vs. number of tests 98

4.7 Average optimality gap for different values of overlap level L 99

5.1 Two vehicle programs that partially overlap 105

vii

LIST OF TABLES

Table

2.1 Test compatibility table; “0” indicates that the test in this row cannot
be performed prior to the test in the column, “1” indicates otherwise. 19

2.2 Description of problem instances used in computational experiments.
The full IP formulation of Section 2.2 did not produce feasible solu-
tions within 1 hour time limit on any of these instances. 31

2.3 Vehicle usage results for the three methods. Note that for Instance
1 the full IP in the subroutine was not solved to optimality: after
60 minutes, the optimality gap was 7.7%; the best feasible solution
found in that time is reported. 32

2.4 Runtimes, in seconds, of test grouping subroutines and Fit-and-Swap
heuristics on the resulting test sets. *Note that for Instance 1 the full
IP in the subroutine was not solved to optimality: after 60 minutes,
the optimality gap was 7.7%; the time reported reflects time until
finding the best feasible solution, which was passed to the Fit-and-
Swap heuristic. 33

3.1 The table provides data characteristics of problem instances used in
our computational experiments. 68

3.2 Parameters controlled during the data instance synthesis process . . 69

3.3 Definition of size groups . 70

3.4 The table provides run times (in seconds) for our full-enumeration
and column-generation algorithms, where a dash indicates that the
algorithm did not terminate. 71

3.5 Average performance of delayed column generation algorithm 72

viii

3.6 Average performance of branch-and-price algorithm 73

4.1 Average performance of delayed column generation for single-program
instances of CTSPR . 97

4.2 Average performance of delayed column generation for two-program
instances of CTSPR . 99

A.1 Numerical result for CTSP using delayed column generation 114
A.1 Numerical result for CTSP using delayed column generation 115
A.1 Numerical result for CTSP using delayed column generation 116
A.1 Numerical result for CTSP using delayed column generation 117
A.1 Numerical result for CTSP using delayed column generation 118
A.2 Numerical result for CTSP using branch-and-rpice 119
A.2 Numerical result for CTSP using branch-and-rpice 120
A.2 Numerical result for CTSP using branch-and-rpice 121
A.2 Numerical result for CTSP using branch-and-rpice 122
A.2 Numerical result for CTSP using branch-and-rpice 123
A.3 Numerical results for CTSPR . 124
A.3 Numerical results for CTSPR . 125
A.3 Numerical results for CTSPR . 126
A.3 Numerical results for CTSPR . 127
A.4 Numerical result for solving multiple vehicle program scheduling . . 128
A.4 Numerical result for solving multiple vehicle program scheduling . . 129
A.4 Numerical result for solving multiple vehicle program scheduling . . 130

ix

ABSTRACT

Optimization Models and Algorithms for Prototype Vehicle Test Scheduling

by

Yuhui Shi

Chair: Marina Epelman, Amy Cohn

Automotive makers conduct a series of tests at pre-production phases of each new

vehicle model development program. The main goal of those tests is to ensure that

the vehicle models meet all design requirements by the time they reach the produc-

tion phase. These tests target different vehicle components or functions, such as

powertrain systems, electrical systems, safety aspects, etc. However, one big issue is

that the cost of the resources, mainly prototype vehicles, invested in the testing pro-

cess is exceedingly expensive. An individual prototype vehicle can cost over 5 times

its counterpart’s price in the commercial market because many of the parts and the

prototype vehicles themselves are highly customized and produced in small batches.

Parts needed often require months of lead time, which constrains when vehicle builds

can start. That, combined with inflexible time-window constraints for completing

tests on those prototypes introduces significant time pressure, an unavoidable and

challenging reality. What makes the problem even more difficult is that in addition

to the prototype vehicle resources, there are other constrained supporting resources

involved during the execution of those tests, such as testing facilities, instruments

and equipment like cameras and sensors, human-power availability, etc.

x

An efficient way to conquer the problem is to develop test plans with tight sched-

ules that combine multiple tests on vehicles to fully utilize all available time while

balancing the loads of other supporting resources. There are many challenges that

need to be overcome in implementing this approach, including complex compatibility

relationships between the tests and destructive nature of, e.g., crash tests.

In this thesis, we show how to mathematically model these test scheduling prob-

lems as optimization problems. We develop corresponding solution approaches that

enable quick generation of an efficient schedule to execute all tests while respecting

all constraints. Our models and algorithms save test planners’ and engineers’ time,

increase their ability to quickly react to program changes, and save resources by

ensuring maximal vehicle utilization.

xi

CHAPTER I

Introduction

1.1 Background

Product Development division at the Ford Motor Company is responsible for de-

signing and testing new vehicles and readying them for production. Each vehicle

program (e.g., 2020 Ford Fusion, 2018 Ford Escape) progresses through several con-

secutive stages: concept, design, development and testing, etc., before a new vehicle

is manufactured on the assembly line. After the concept and design phases are com-

pleted, prototype vehicles are built and subjected to tests to ensure the new vehicle

model meets all the design criteria. Each required test needs to be completed by

its deadline to ensure adherence to the overall program timing. Test planners and

engineers are tasked with scheduling all the tests, placing orders for parts to build

the required prototype vehicles, scheduling the order of the builds (e.g., prototype

vehicle with automatic transmission on day 1, one with manual transmission on day

2) and assigning the vehicles to departments in charge of tests for different vehicle

components, systems, and aspects (e.g., powertrain, electrical, safety).

Each prototype built during the development and testing phases of a vehicle pro-

gram can cost as much as 5 times more than its counterparts seen on the market

because many of the parts and the prototypes themselves are hand-made and highly

customized. Parts needed often require months of lead time, which constrains when

1

prototype vehicle builds can start. That, combined with inflexible deadlines for com-

pletion of tests on those vehicles, introduces significant time pressure, an unavoidable

and challenging reality associated with maintaining the overall program timing. One

way to alleviate time pressure is to build more vehicles, essentially decreasing com-

petition between tests for available vehicle time; however, this would greatly increase

the cost of each program. Additionally, there are other capacitated resources that

constrain the throughput of the testing process, such as testing facilities, instruments

like sensors and cameras, human-power availability, etc. Therefore, even if there are

enough vehicles, the maximum number of tests that can be performed concurrently

is subject to the availability of those resources.

An efficient way to reduce prototype usage is to develop test plans with tight

schedules that combine multiple tests on vehicles to maximally utilize available time

while balancing the load of other supporting resources. There are many challenges

that need to be overcome in implementing this approach. For example, many tests

are destructive (e.g., crash tests performed by the safety department), preventing

scheduling further tests on the same vehicle. Another complicating factor is that

different tests may have different vehicle specification requirements; for example, one

test may require a hybrid engine whereas another may require a conventional 4-

cylinder I4 engine, prohibiting combinations of these tests on the same vehicle.

Prior to our work, test plans at Ford were exclusively developed manually using

pen and paper and Excel spreadsheets. However, this process is tedious and con-

structing a test plan may take days, if not weeks. The schedule achieved may not

be optimal in terms of the number of vehicles needed; moreover, when changes occur

to deadlines, individual tests requirements, etc., manually editing the plan requires

significant additional time and effort, and may lead to decreasing vehicle utilization.

In this thesis, we formally define the problem of obtaining optimized schedules (i.e.,

ones that minimize the number of vehicles used subject to all pertinent constraints)

2

and introduce computational algorithms that replace the tedious manual scheduling

process engineers undertake for each program. Automation saves test planners’ and

engineers’ time, increases their ability to quickly react to program changes, and saves

resources by providing schedules with high vehicle utilization.

1.2 Problem description

In its essence, test scheduling for a vehicle program involves deciding which pro-

totype vehicles will be used for which of the tests, and when each test is going to be

performed. A high-quality schedule would achieve high utilization of prototype vehi-

cles, while observing test specifications and rules for combining multiple tests on the

same prototype, following timing targets for completion of each test, and balancing

the resource loads across different vehicles.

To illustrate the complexities involved in defining and solving each test scheduling

instance, we begin with an example of a typical schedule generated specifically for

the safety testing lab for a vehicle program at Ford. This may be viewed as part of

a full schedule for a vehicle program because tests from other department, such as

powertrain or aerodynamics, are not showed here.

While the actual execution of a test may only take seconds, such as in a safety crash

test, preparing the prototype vehicle may take days or even weeks, depending on the

readiness of the prototype when it is delivered to the organization that conducts the

test. Initial preparation work, such as changing or adding parts, is carried out at one

facility. Typically, a few days before a test is executed, the prototype is transferred to

the lab location, where it is then instrumented with sensors, ballasts, data acquisition

devices, and any other required components.

Figure 1.1 shows a small example schedule Gantt chart for a series of crash tests.

Each row contains a single crash test with detailed timing information represented by

character- and color-coding. The day each prototype is delivered for the test is marked

3

Figure 1.1: The Gantt chart provides a character- and color-coded crash schedule.

with a “D.” The prototype is then prepared during the following days. The majority

of tests are performed at the crash barrier, where the actual crashes happen, in which

case the vehicle may require sign-off (“S”), walk-around (“W”), turnaround time in

queue, the actual crash (“1”) and post-crash analysis time. (A few “abuse”-type tests

do not require crashing the vehicle into a barrier and have a simpler structure.)

In addition to the timing of each test, the Gantt chart in Figure 1.1 provides

information on the utilization of each prototype: the first column contains prototype

vehicle number, with “R1” appended to represent the first rehit (second crash) on

this prototype, “R2” — to represent the second rehit (third crash), etc. For example,

prototype number 8, which is scheduled to be delivered to the safety department on

March 1st, will first be used for a low speed front collision test, followed by a higher

speed rear impact test.

Although the Gantt chart provides fine details for executing a crash plan, it is

less well-suited for viewing the plan’s efficiency at a high level. The average number

of crashes per vehicle, known as the rehit ratio, is a key metric of a schedule. The

crash-test sequence document, shown in Figure 1.2, is designed to highlight vehicle

utilization and the associated rehit ratio. Each line represents a vehicle, with its

sequence of crashes listed across the columns. Yet another method for summarizing

assignments of tests to prototypes is the so-called “crash tree” illustrated in Figure 1.3.

4

Here, the rows of the table correspond to tests, the columns — to specifications of

prototypes used for each test, and the notations in the table indicate test-to-prototype

assignment and the position of each test in the rehit sequence. Safety engineers would

construct the coarse plan as shown in the crash sequence document and the crash tree,

before starting on the finer timing details included in the Gantt chart.

Figure 1.2: The crash sequence document provides a compact summary of rehit
strategies, highlighting test combinations on vehicles.

Figure 1.3: The crash tree specifies assignment of tests to specific prototype vehicles
and the relevant specifications of the prototypes

Until recently, test planners constructed all these documents manually (including

the detailed timing information in the Gantt chart above), using a standard Excel

5

template. As we discuss in the following chapters, we have designed a web-based

support system for automated scheduling with a database that is implemented so as

to capture all the timing information associated with each test, allowing for automatic

generation of the Gantt chart once the test assignment and rehit sequencing decisions

have been made.

1.2.1 The General Test Scheduling Problem (GTSP)

In this section, we discuss the common settings of the General Test Scheduling

Problem (GTSP) and introduce corresponding notation. In the following chapters,

we will introduce variations of the GTSP that each have special features.

In the GTSP, we are given a set of tests T and a set of available vehicles V . For

each test t ∈ T , duration pt, release date rt, and due date dt are specified. For each

vehicle v ∈ V , release date qv is also specified; tests that are assigned to a vehicle

cannot begin until its release date.

The goal is to plan a schedule to execute all tests in a way that minimizes an

objective function that combines the number of prototype vehicles used and a time-

related penalty function reflecting the “tardiness” of tests completed after their due

dates. In the schedule, we need to decide: (1) the assignments of tests to prototype

vehicles, (2) the sequencing of tests that are assigned to the same vehicle, and (3) the

execution interval of each test on the vehicle.

In the final schedule, it is possible that we use only a subset of vehicles V . The

set V represents a “budget” of vehicles available for tests, and it is often set rather

conservatively. The optimal schedule often uses fewer vehicles than are given; how-

ever, if it turns out that there does not exist a feasible schedule within the current

vehicle budget, a testing planner will always go back to the upper level management

and renegotiate the budget.

There are several constraints we need to consider in planning a schedule.

6

Temporal constraints Each test t ∈ T takes amount of time pt to complete, and

execution of test t cannot start before the test’s release date rt. If the due date dt

serves as a hard constraint, i.e., a deadline, then the test must be completed before dt.

However, in some cases the due dates are treated as soft constraints by associating a

time-related penalty with the test missing its deadline. Throughout the thesis, we use

a penalty based on tardiness: if test t starts execution at time st, then it is completed

at time st + pt, and its tardiness is max{0, st + pt − dt}. In our models, we use a

mixture of approaches: there is a fixed “grace period,” within which tardy tests are

penalized for missing their due dates; if completion time of a test exceeds the grace

period, the schedule is considered infeasible.

In addition, the vehicles that are used to execute the tests are not all available

through the entire planning horizon. The reason is that they are built in small batches

and with a lot of highly customized parts that require long lead times. Therefore,

the number of such prototype vehicles that can be built each week is limited. They

are delivered for tests gradually, and for each vehicle v, release time qv is specified.

As a result, all tests that are assigned to vehicle v need to start after the vehicle is

available, i.e., after time qv.

Specification compatibility When considering assigning more than one test to

the same vehicle, we need to consider several factors that might prevent these tests

from sharing a vehicle.

First, if combining two tests on a particular vehicle makes it impossible for one or

both of the tests to meet their due dates (with grace period, if appropriate) due to

the timing specifications of the tests and vehicle release, this combined assignment is

invalid.

Secondly, tests usually require specific parts configurations of vehicles. For exam-

ple, the deformation of a vehicle in a perpendicular frontal crash test is sensitive to

7

the layout under its engine hood. Therefore, when developing a new vehicle model

that can be equipped with different engine types, such as 4-cylinder or V6 engines,

test planners want to perform perpendicular frontal crash tests on both of the vehicle

trims to ensure the safety standards on both designs. Other types of tests may also

have requirements on body type, electrical system, even the material of the seats.

Therefore, if two tests require different configurations of vehicles, it may be impossi-

ble to perform them on a same vehicle. However, there are cases when, even though

tests require different configurations, e.g., different types of tires on the vehicle, it

is relatively easy to re-configure the vehicle (change the tires) to make the sharing

possible.

Even if two tests require compatible vehicle configurations, we still need to consider

the sequencing restrictions when deciding the order among multiple tests. We discuss

the details of such restrictions next.

Sequencing restrictions Many of the tests are destructive and impact certain

vehicle areas or functions afterwards. For example, a lot of high-impact safety crash

tests totally disable the vehicle after the crash happens. Therefore, after those tests

are completed, the vehicle is unusable for other tests. Even some tests that are not

as destructive as a crash test still impact systems and structures of the vehicle, which

might influence the accuracy of any following tests. So whenever multiple tests are

assigned to the same vehicle, the order of executing them plays an important role in

getting reliable and accurate test results.

For example, if two tests, ti and tj, are performed on the same vehicle, and ti is

a non-destructive test while tj is a high-impact crash test as described above, it is

important to ensure ti is performed before tj, because it is possible that the vehicle

will have to be discarded after test tj.

In the example above, we say an order ti → tj is permissible while the order

8

tj → ti is not. The relation between two tests that determines whether they can be

performed in a particular order on the same vehicle is called a rehit rule. Notice that

a rehit rule is usually independent of vehicle configuration requirements of tests and

only depends on what type of tests they are.

Specification compatibility and sequencing restrictions can be captured in a |T |×

|T | binary matrix, denoted by A. An element aij of A equals 1 if tests ti and tj

have compatible vehicle configuration requirements and performing ti prior to tj on

the same vehicle is allowed by the rehit rules, and aij = 0 if these tests cannot be

combined, or combined in this order. Notice that having aij = 1 does not necessarily

means that aji = 1 since rehit rules are not always symmetric, as illustrated in the

above example of combining non-destructive and destructive tests. However, if aij = 0

because ti and tj have different vehicle configuration requirements, then we also have

aji = 0.

Another interesting property of matrix A is that permissible orders do not have

transitive property, i.e., having permissible orders ti → tj and tj → tk does not

necessarily mean that ti → tk is permissible. This lack of transitivity makes it essential

to check for a topological order among all tests when more than 2 tests are assigned to

the same vehicle. For example, it may be the case that combining 3 tests is impossible,

even if any pair of them is compatible in a particular order.

Determination of specification compatibilities and sequencing restrictions is highly

reliant on the engineering expertise of test engineers. Procedures for collecting this

information are described in Chapter III.

Support resources capacity In many instances, in addition to prototype vehicles,

other supporting resources are involved in the execution of a test. For example, most

of the crash tests at Ford are performed at a crash barrier facility where controllable

barriers are instrumented to simulate different impact angles and areas of crashes.

9

The number of these barriers is limited and barriers take a long time to set up before

a crash. Therefore, the number of crashes that can be performed at the facility during

a single day is subject to a capacity constraint. Same is often true for other types

of resources, such as human labor. Sometimes, a vehicle is ready for testing in terms

of physical preparation work but still waits in the garage simply because there are

not enough engineers to initialize the testing process on that vehicle. Therefore, it

is critical to take capacities of these supporting resources in every time period into

account when scheduling the tests.

This issue is very common when it comes to concurrent scheduling of multiple

vehicle programs. Because Ford is developing multiple new vehicle models each year,

including pickup trucks, compact cars, sedans, and SUVs, these vehicle programs are

competing for supporting resources if their testing periods overlap with each other.

Therefore, it is essential to consider such constraints when dealing with this variation

of the problem.

1.3 Thesis outline

In the following section, we will review the relevant literature.

In each of the following chapters we will discuss a variation of the general test

scheduling problem (GTSP).

In Chapter II we discuss models and algorithms for scheduling of general tests from

a wide range of departments, where a large portion of the tests are non-destructive.

As a result, sharing a vehicle across departments for different testing purposes is

common and actually encouraged to achieve better utilization of expensive resources.

We show that formulating the problem as a general mixed integer linear program is

not sufficient due to large sizes of problem instances in this setting. Even identifying

a good feasible solution is exceedingly difficult. Therefore, motivated by the list

scheduling algorithm used to solve bin-packing problems, we propose a variation of

10

the algorithm that can handle the unique constraints and complexities of GTSP. In

particular, we discuss implementation details of the algorithm and propose a lower

bounding technique that can evaluate the quality of solutions obtained by heuristics.

This chapter is based on Reich et al. (2016).

One of the lessons learned from our work in Chapter II is that a good schedule

for the safety crash tests is critical in reducing the number of prototype vehicles

used by the entire vehicle program. The destructive nature of crash tests means

that once a prototype vehicle is delivered for safety testing, it is unlikely that it

will be used for other testing purposes afterward. In addition, because of the high

precision requirements on crash test outcomes, it is also unlikely that crash tests would

share prototype vehicles with other tests (like powertrain system tests). Therefore,

scheduling crash tests is rather self-contained.

In Chapter III we focus on the scheduling of safety crash tests. Because we are

dealing with a subset of all tests considered in Chapter II, more detailed models and

algorithms are proposed. Again, we show that modeling the crash test scheduling

problem (CTSP) as an MILP is not sufficient to solve it. Alternatively, we model it

as a set-partitioning model that contains a large number of variables, and propose

a delayed column generation algorithm that can obtain high quality solutions. We

discuss various implementation details that speed up the algorithm, and suggest an

exact solution approach based on a branch-and-price algorithm. A shortened version

of some of the material in this chapter has appeared in Shi et al. (2017).

In Chapter IV, we study a variation of the CTSP, where prototype vehicles are

not the only resource required to execute a crash test, but other types of supporting

resources, such as equipments, manpower, and testing facilities also play a role in

the scheduling. Based on the model proposed in Chapter III, we extend the set-

partitioning formulation to a richer context that can handle the additional resource

constrains. The solution approach also fits into the framework of delayed column

11

generation, but alternative methods for solving the pricing problem are proposed.

Finally, in chapter V, we summarize our results and discuss the impact of our

work.

1.4 Literature review

Although certain aspects of the optimization problem addressed in this thesis

are specifically motivated by prototype vehicle test scheduling at Ford, it has some

features of bin packing on the one hand, and parallel machine scheduling on the other,

and can be viewed as an extension of both problems.

In the classic bin packing problem, a set of items with different sizes needs to be

packed into bins of limited capacities, and the minimum number of bins required is

to be determined. There are extensive studies of this problem (see, e.g., Coffman Jr

et al. 1996). In our setting, determining the minimum number of vehicles needed

to perform all tests is akin to bin packing with non-identical bins (vehicles), whose

capacity reflects the time interval during which the vehicle is available, and with

additional restrictions on the compatibility of items (tests) to be assigned to the

same bin. A paper in this area most closely related to our research is Elhedhli et al.

(2011). In it, the authors consider a variation of the bin packing problem with conflicts

between items. The authors provide a set-partitioning formulation of the problem and

propose a branch-and-price algorithm to solve it exactly, with the pricing problem

solved as a knapsack problem with conflicts. Our problem, however, is more complex,

since tests assigned to the same vehicle need to be scheduled as well.

In the parallel machine scheduling problem, a set of time-sensitive tasks with as-

sociated processing times need to be scheduled on a given set of machines, while

minimizing a certain criterion, usually time-related, such as make-span or total tardi-

ness. The literature on parallel machine scheduling has developed over several decades

and contains a variety of models and algorithms; comprehensive surveys and com-

12

parisons between different solution strategies can be found in Cheng and Sin (1990),

Potts and Strusevich (2009), and Sterna (2011). Associating machines with vehicles

and jobs with tests, one can see many similarities between test scheduling and cer-

tain types of machine scheduling problems. Indeed, in machine scheduling jobs often

have release and due dates, and test compatibility and sequencing restrictions can be

represented by including setup times between jobs, setting them to very high values

for tests that cannot be performed together or in a particular order. However, our

test scheduling problem has several features that make it unique in the scheduling

literature. In particular, machines are usually assumed to be available throughout the

scheduling process, whereas prototype vehicles are released gradually during testing.

Moreover, while specification of which machines are capable of executing which jobs

is considered in the literature, whether a prototype vehicle has the features needed

for a particular test is determined by the other tests assigned to this vehicle (see

Section 1.2 for details), making a priori specification impossible. Finally, the objec-

tive of minimizing the number of vehicles used is fairly uncommon in the scheduling

literature. In light of the above, in our review of machine scheduling literature we

will focus on the papers that aim to minimize the number of machines used. We

also discuss representative papers which emphasize sequencing aspects of scheduling

in the presence of precedence constraints or setup times, especially those that utilize

heuristic algorithms similar to the Fit-and-Swap heuristic we propose in Section 2.3,

to emphasize relevant results as well as elucidate the distinct features of our problem.

A small subset of machine scheduling literature focuses on a problem most closely

related to ours, where the goal is to optimize some machine-related metrics, such

as the cost of holding and using machines, rather than the traditional job-related

time metrics. In addition to bin-packing resources, in the context of scheduling, a

particularly relevant paper Cieliebak et al. (2004) studies the so called “Scheduling

with Release times and Deadlines on a minimum number of Machines (SRDM)”

13

problem, where each task has a duration and a time window for execution, and the

number of machines required to perform all tasks on time remains a decision. The

authors propose a polynomial algorithm for the special case when time windows of

jobs are tight (namely, exactly 1 plus job duration). In the more general case, they

propose an approximation method called Greedy-Best-Fit, which is a list scheduling

algorithm that assigns jobs to the machine with the left-most available time slot.

They prove that this heuristic is a 9-approximation algorithm in the special case of

equal processing times. Yu and Zhang (2009) improves the approximation bound

from 9 to 6 for the same special case. For another special case of common release

dates, the authors of the latter paper propose another list scheduling algorithm, called

Greedy-Increasing-Slack, which sorts and assigns jobs in reverse order of flexibility of

shifting within its time window. This method has a constant approximation bound

2.

For a related vehicle routing problem, Lee et al. (2012) studies minimizing the

number of trucks to satisfy customer loads, where each load has a time window

during which it should be delivered. The authors propose a two-phase approach which

uses a time-indexed formulation to form sequences of loads and later heuristically

assigns them to trucks. Such an approach can solve instances with up to 34 loads

and 10 trucks — smaller than the test scheduling instances for which we provide

computational results.

Several other papers consider machine scheduling while minimizing the number

of machines used, including Kravchenko and Werner (2009); Alidaee and Li (2014);

Finke et al. (2009). However, they each make restrictive assumptions to guarantee

that their proposed algorithms solve the problem exactly or with a guaranteed bound.

For example, equal processing times and/or common release or due dates of jobs

are often assumed in such papers. Interestingly, in Finke et al. (2009) the authors

also consider precedence constraints among different jobs across machines, where the

14

start of job A cannot precede the completion of another job B (they do assume equal

processing times). They propose polynomial algorithms that can solve this problem

for special cases of precedence graph structures, such as trees and chains. Although

precedence relationships may seem similar to a feature of the test scheduling problem,

in the latter the precedence relationship between two tests is only relevant if they are

assigned to the same vehicle.

In the more traditional context of scheduling (one where the number of available

machines is specified a priori), one class of problems that is particularly relevant is

the setting with sequence-dependent setups. If we model the precedence relations

between two tests, where test A cannot precede test B when assigned to the same

machine, by making the setup time between tests A and B arbitrarily large, we

can view the problem as a special case of the sequence-dependent setup case. For

example, Zhu and Heady (2000) and Balakrishnan et al. (1999) model the problem

of minimizing the earliness and tardiness in this setting using a Mixed Integer Linear

Programming (MILP) formulation together with various strengthened constraints.

However, they can only solve relatively small instances, with less than 10 jobs and

5 machines. Sawik (2010) studies another sequence-dependent setup time problem,

where setup time of each task is related to its starting time. He proposes a time-

indexed MILP formulation that can be solved for small instances with up to 50 tasks

and 10 machines. Since tractability of MILP formulations is limited, another set

of papers focuses on heuristic methods. Perhaps the most common approach is to

use list scheduling methods motivated by the bin packing problem. Kim et al. (2003)

considers the problem of minimizing the total weighted completion time where all jobs

have common release dates. They propose a Best-Fit method, where the duration of

each job is computed by also taking into consideration information about its setup

time. This is achieved by adding, for example, the average setup time or minimum

setup time to the job’s duration. Then the jobs are ordered by longest processing

15

time and assigned to machines where such assignment contributes least (with shortest

processing time) to the objective function value. It should be noted that the intuition

behind the Fit-and-Swap heuristic we propose in Section 2.3 may appear similar to

such Best-Fit methods. While the heuristics have a greedy nature in common, their

Best-Fit approach tends to evenly distribute all jobs onto given machines to optimize

a time-based objective — an approach that would not be suitable if minimizing the

number of machines used is desired. A number of papers emphasize the sequencing of

jobs. For example, Kurz and Askin (2001) proposes several heuristics that combine

the greedy approach to minimize makespan with TSP heuristics for job sequencing.

Heady and Zhu (1998) uses the same idea, where the entire set of jobs is pre-ordered

using some rules such as Earliest Due Data (EDD) on each machine. Duplicate jobs

are gradually removed from each machine and those remaining are re-sequenced in

a greedy way until a full schedule is found. As we already discussed, in the test

scheduling problem, approaches that attempt to sequence the tests before assigning

them to vehicles are not applicable.

There have also been extensive efforts to solve machine scheduling problems with

other heuristic methods, such as meta-heuristics or tabu search (for examples, see Cao

et al. 2005; Radhakrishnan and Ventura 2000; Liu 2013; Sivrikaya-rifolu and Ulusoy

1999; Lin and Hsieh 2014; Rabadi et al. 2006). It is also common to combine several

heuristics in order to obtain high-quality solutions. For example, Chen and Wu (2006)

consider parallel machine scheduling problems where jobs have types, and limited time

is available for transitioning between two types of jobs on a single machine. They

combine thresh-accepting methods, tabu lists, and improvement procedures in order

to obtain high-quality solutions. They showed that such combinations can outperform

methods that adopt only a single idea. However, Chapter II we chose to focus on a

simpler, less computationally demanding heuristic that proved more easily applicable

specifically for the GTSP.

16

In recent years, optimization models have been introduced specifically for test

scheduling on prototype vehicles. Chelst et al. (2001) focuses on determining the

number of unique types of prototype vehicles needed for a program, given the spec-

ification requirements of all individual tests. This work, in collaboration with Ford,

dates back to a time when planning was less process driven and resource constrained,

so the models did not consider all the timing and compatibility requirements that

are essential today. Bartels and Zimmermann (2009) formulates the prototype ve-

hicle test scheduling problem using mixed integer programming. While their model

incorporates many of the same factors as the model we develop, it has limited compu-

tational tractability. It also differs in its assumptions around the vehicle build decision

process: they introduce flexibility in determining the build schedule whereas the build

schedule is inflexible in our model, which is aligned with the current operational pro-

cess at Ford. Limtanyakul and Schwiegelshohn (2012) proposes a hybrid model for

scheduling prototype vehicle tests: integer programming is the first-stage model that

determines vehicle specification (e.g., hybrid or conventional engine, manual or auto-

matic transmission) and test-to-vehicle assignments; constraint programming is the

second-stage model that determines timing and sequencing. While their approach

is effective on smaller instances, their computational results demonstrate a lack of

scalability. The first stage continues to provide candidate solutions for the second

stage, but their constraint programming model cannot consistently reassign the tests

to produce a feasible schedule.

In addition to the papers discussed above, we will cover more relevant papers

when we proceed to each specific chapter.

17

CHAPTER II

Scheduling of general tests

2.1 Introduction

In this chapter, we discuss the General Scheduling Planning Problem (GTSP) for

general tests during new vehicle development stages. During the development stage

of a new vehicle model, prototype vehicles of that model need to be tested for a wide

variety of design aspects, such as powertrain, safety, aerodynamics, etc. However, as

we discussed in Section 1.1, the prototypes are extremely expensive. To reduce the

number of vehicle prototypes required for testing, sharing the vehicles among different

tests is encouraged and helps improve utilization of expensive resources.

The size of the portfolio of tests is often large for this version of the scheduling

problem. Therefore, it is extremely difficult to solve a problem instance to optimality.

We first introduce an Mixed Integer Linear Programming (MILP) formulation of the

scheduling problem as a reference. However, the formulation suffers from several

computational issues and is generally extremely challenging to solve. We propose

an alternative — a modified list scheduling heuristic motivated by the bin packing

problem, that can handle the constrains and other specifics of our problem.

At the beginning of each vehicle program, one engineer from each department

(powertrain, safety, electrical, etc.) is typically responsible for entering the depart-

ment’s testing requirements into a shared Excel file. These requirements include test

18

durations, vehicle specification requirements, test severity and additional information.

Once all the requirements have been gathered, a test planner begins developing the

program schedule.

Three main decisions are required for scheduling:

• How many prototype vehicles need to be built?

• What specifications are required for those vehicles (moonroof, manual trans-

mission, engine type, etc.)?

• Which tests are assigned to each vehicle?

In addition to ensuring that schedules allocate sufficient amounts of time for each

test to be completed by its individual due date, the test planner must also ensure that

compatibility relations between tests assigned to the same vehicle are not violated.

For example, if one test requires a 6-cylinder V6 engine and another test requires a

4-cylinder I4 engine, they are not compatible with each other and cannot be assigned

to the same vehicle. Another example is test severity, i.e., if one test is destructive,

it may render a vehicle unusable for (certain kinds of) further testing.

Expertise on compatibility of tests currently resides with individuals, so we part-

nered with those experts to develop templates for storing their knowledge in stan-

dardized formats. During the scheduling process, these compatibility rules can be

accessed systematically by constructing a |T | × |T | binary matrix A. While the ac-

tual compatibility rules are confidential, the sub-matrix of A in Table 2.1 provides

an illustrative example.

Test i Test j
Test i 0 1
Test j 0 0

Table 2.1: Test compatibility table; “0” indicates that the test in this row cannot be
performed prior to the test in the column, “1” indicates otherwise.

19

Notice that compatibility is not symmetric. In the example in Table 2.1, tj may

be performed after ti, but not before. This is typical of testing requirements. For

example, consider two crash tests: a crash test at 2 miles per hour (MPH), e.g.,

a sensor test on the front bumper of a vehicle, and a 30 MPH structural test also

striking the front bumper. Running the 2 MPH test first will not damage the bumper,

so the 30 MPH test can follow. However, running the 30 MPH test first will render

the bumper unusable for the sensor test to follow.

2.2 Mixed integer formulation

In this section, we introduce our original MILP formulation for the GTSP.

We define binary decision variables uv, v ∈ V such that uv = 1 means that vehicle

v is being used, i.e., some tests are assigned to the vehicle; uv = 0 otherwise. We

define binary decision variables xt,v, t ∈ T, v ∈ V to indicate the assignments of tests

to vehicles, where xt,v = 1 if we assign test t to vehicle v; xt,v = 0 otherwise. Binary

decision variables yti,tj , ti, tj ∈ T : ti 6= tj indicate the relative order between two

tests ti and tj if they are one the same vehicle: yti,tj = 1 if ti and tj are assigned to the

same vehicle and ti precedes tj; yti,tj = 0 otherwise. Notice that ti is not necessarily

conducted immediately before tj, just some time prior to tj, if yti,tj = 1. Finally, we

define continuous decision variables st, t ∈ T as the starting times of tests.

The formulation is as follows:

20

min
∑
v∈V

uv (2.1)

s.t. xt,v ≤ uv v ∈ V, t ∈ T (2.2)∑
v∈V

xt,v = 1 t ∈ T (2.3)

sti + pti ≤ stj +M(1− yti,tj) (ti, tj) ∈ T × T : ti 6= tj (2.4)

yti,tj + ytj ,ti ≤ 1 (ti, tj) ∈ T × T : ti 6= tj (2.5)

xti,v + xtj ,v − 1 ≤ yti,tj + ytj ,ti v ∈ V, (ti, tj) ∈ T × T : ti 6= tj (2.6)

yti,tj = 0 ti, tj ∈ T : ti 6= tj, ati,tj = 0 (2.7)

st ≥ rt t ∈ T (2.8)

st ≥
∑
v

qvxt,v t ∈ T (2.9)

st + pt ≤ dt t ∈ T (2.10)

xt ∈ {0, 1} , yti,tj ∈ {0, 1} , st ≥ 0. (2.11)

In this formulation, objective (2.1) is to minimize total vehicle usage by summing

up binary indicators uv, ∀v ∈ V . Constraints (2.2) link the assignment decision vari-

ables x with the vehicle usage variables u: if some tests are assigned to a vehicle,

then its usage indicator uv must be 1. Constraints (2.3) ensure that each test gets as-

signed to exactly one vehicle. Constraints (2.4) and (2.5) enforce pairwise sequencing

relationships for tests that are assigned to the same vehicle through the precedence

disjunctive decision variables y using a big-M formulation, where the value of M

can be set equal to the length of the planning horizon. Constraints (2.6) link those

variables with the assignment variables. Constraints (2.7) enforce compatibility for

tests assigned to the same vehicle. Constraints (2.8), (2.9), and (2.10) ensure that

each test is performed during its time window, and starts after the delivery of the

21

vehicle to which it is assigned (in this problem setting, tests must be completed by

their specified due dates, which are treated as “hard” deadlines).

This general formulation can be applied to many other scheduling applications.

However, there are two problems with the above formulation that can lead to poor

tractability: symmetry caused by identical vehicles (i.e., ones with the same release

dates) and lack of tightness of the linear programming relaxation caused by the dis-

junctive constraints (2.4). To improve the formulation, we have included symmetry-

breaking constraints: for any two identical vehicles with indices vi and vj where

vi ≤ vj, we require that uvi ≤ uvj , and xt,vi ≥ xt,vj ∀t ∈ T , i.e., we require that vi

is used before vj. Moreover, we set M equal to the length of the planning period,

starting from the delivery of the earliest vehicle to the latest deadline by which all

tests need to be completed — the best available easily computable a priori value.

We implemented all algorithms using Java and used CPLEX 12.6 as our LP and

MIP solver, and ran the experiments on a desktop platform with Xeon E1241 pro-

cessor and 32 GB RAM. We tested formulation (2.1)–(2.11) on instances of varying

sizes with limited success. On smaller instances (ones consisting of only crash tests

for a program), CPLEX was able to find optimal or near-optimal solutions within an

hour. However, for any of the three problem instances (representative of a full pro-

gram) reported in our computational experiments in Section 2.4, CPLEX was unable

to produce even a feasible solution.

2.3 Heuristic algorithm

Due to large numbers of tests that need to be scheduled, it is extremely difficult

to solve a typical instance of the GTSP by an exact method. In this section, we

introduce a heuristic and optimization subproblems that we can combine to obtain

high-quality feasible solutions for larger problem instances.

22

2.3.1 Fit-and-Swap test scheduling heuristic

The GTSP can be viewed as a generalization of the classical bin-packing problem,

which motivated us to propose a variant of the list scheduling (allocation) algorithms,

which are widely used to solve bin-packing problems, extended for the GTSP.

In the bin packing problem, objects of different sizes must be packed into a finite

number of bins or containers in a way that minimizes the number of bins used. The

problem is a combinatorial NP-hard problem which can be viewed as a special case of

GTSP, thus easily proving that GTSP is also NP-hard. To see that, we let all vehicles

release at a same time 0, i.e., qv = 0, ∀v ∈ V . Additionally, we set release times of

tests and deadlines to be the same, too, i.e., rt = 0 and dt = d, ∀t ∈ T . In this case,

the duration of test t, pt, serves as the item size in the bin packing problem and d is

the capacity of each bin.

We propose a greedy heuristic for generating a test schedule. The heuristic at-

tempts to assign tests, in decreasing order of duration, to the vehicle with the largest

capacity. Our method is similar to the First-Fit algorithm used in bin packing prob-

lems, and has a greedy flavor similar to methods used in Cieliebak et al. (2004), Yu

and Zhang (2009), and Kim et al. (2003) for their respective objectives; however,

before assigning a test to a vehicle, we must consider compatibility, sequencing re-

strictions, test time windows, and vehicle delivery date to determine if this assignment

is feasible.

The algorithm, to which we refer as the Fit-and-Swap heuristic, is summarized in

Algorithm 1 and illustrated in Figure 2.1 on an instance with 3 vehicles and 6 tests.

Procedurally, first we order the tests in decreasing order of their durations, and the

vehicles in decreasing order of their (time) capacities, as shown in Figure 2.1(a). We

then select the vehicle at the top of the list (one with largest capacity), and attempt

to fill the time available on this vehicle with an ordered sequence of tests. We search

through the test list in order until we find one that is compatible (in terms of vehicle

23

specifications) with tests already assigned to this vehicle (if any), and has sufficiently

short duration to fit in the (remaining) available time on the vehicle, as shown in

Figure 2.1(b). If the vehicle already has some tests assigned, we solve the Ordering

Satisfiability Problem (defined in Section 2.3.2) that determines whether there is a

feasible order for combining the new test with already assigned ones, taking into

account each test’s time window and test sequencing restrictions. If not, this test

cannot be assigned to the vehicle and the algorithm proceeds to the next test in the

list.

When the end of the test list is reached, the identified set of tests is fixed, and the

vehicle list is searched to find a vehicle with the smallest capacity that is sufficient

for these tests (determined by solving the corresponding instances of the Ordering

Satisfiability Problem). If such a vehicle differs from the current one, then the set of

tests (possibly in a different order) is assigned to the former, and the latter is emptied,

as shown in Figure 2.1(c). By swapping the vehicles, as in Figure 2.1(d), we may find

opportunities for increasing vehicle utilization. For example, if the tests assigned to a

vehicle with 100 available days only require 95 days, then we would assign this group

of tests to a vehicle with 95 days, and the 100 day vehicle would remain available.

The algorithm terminates when there are no unassigned tests, as shown in Figure

2.1(e), or there is insufficient remaining vehicle capacity to assign additional tests.

We observed that the current manual procedure for assigning tests is similar to

this heuristic. Current practice already requires engineers to produce highly efficient

schedules. Our goal for this work was to produce equivalent or slightly more efficient

schedules, but do so significantly faster.

2.3.2 Ordering satisfiability problem

When attempting to add each new test to a vehicle within the Fit-and-Swap al-

gorithm, we must be able to determine whether a feasible ordering exists, based both

24

Sort the vehicle list V in decreasing order of vehicle capacity;
Sort the test list T in decreasing order of test durations;
foreach v ∈ V do

foreach t ∈ T do
if v is empty then

if time available on v is sufficient for t then
assign t to v;

end

else
if Ordering Satisfiability Problem is feasible then

assign t to v;
end

end

end
remove assigned tests from T ;
find v′ ∈ V with the smallest capacity, such that the set of tests on v can
be reassigned to v′;

if v′ 6= v then
reassign all tests from v to v′;
swap locations of v and v′ in V ;

end

end

Algorithm 1: Fit-and-Swap algorithm

on compatibility relationships between tests (Table 2.1) and individual test release

dates and deadlines. To do this efficiently, we solve the Ordering Satisfiability Prob-

lem, which can be seen as a significant simplification of the full integer programming

25

(a) (b)

(c) (d)

(e)

Figure 2.1: Fit-and-Swap algorithm illustration

model in Section 2.2, and is formulated as follows:

st1 + pt1 ≤ st2 +M(1− yt1,t2) (t1, t2) ∈ T̄ × T̄ : t1 6= t2 (2.12)

yt1,t2 + yt2,t1 = 1 (t1, t2) ∈ T̄ × T̄ : t1 6= t2 (2.13)

yt1,t2 = 0 (t1, t2) ∈ E (2.14)

st ≥ rt t ∈ T̄ (2.15)

st ≥ qv t ∈ T̄ (2.16)

st + pt ≤ dt t ∈ T̄ (2.17)

yt1,t2 ∈ {0, 1} , st ≥ 0. (2.18)

Here, T̄ is the candidate set of tests at the current iteration of the Fit-and-Swap algo-

rithm, and v is the vehicle being filled. Unlike in the original integer program (2.1)–

(2.11)which optimized vehicle usage, here, a vehicle and a subset of assigned tests are

pre-selected, making the Ordering Satisfiability Problem a feasibility problem. The

26

only variables needed are the binary sequencing variables yt1,t2 and continuous start

time variables st. Vehicle usage and test assignment constraints (2.2) and (2.3) are

no longer required, and the original constraints (2.5), (2.6), and (2.9) reduce to (2.13)

and (2.16), respectively.

Compared with the original IP in Section 2.2, which became intractable for larger

problem instances, a typical instance of the Ordering Satisfiability Problem can be

solved in under 1 second by an integer programming solver. With subset T̄ containing

no more than 20 pre-selected tests that are already assigned to a pre-selected vehi-

cle, the problem size is limited to at most 400 binary variables, many of which are

eliminated by constraints (2.14).

When all tests in the set T̄ have the same release dates and deadlines, the ordering

sub-problem can be reduced even further to the following linear constraint:

zt2 ≤ zt1 − 1 (t1, t2) ∈ E, (2.19)

where the values of continuous decision variables zt, t ∈ T̄ , provide the order of the

tests. Alternatively, one can formulate this special case as a problem of topologically

sorting all nodes in a directed graph, where each test t corresponds to a node and

directed arcs reflect ordering possibilities among compatible tests.

2.3.3 Integer programming models for grouping crash tests

Due to the destructive nature of crash tests, their scheduling is both particularly

important and restricted. The test scheduling process in the safety department is

focused on maximizing crash rehits — multiple crashes on the same vehicle — so

that the fewest number of vehicles is destroyed, thereby increasing the supply of

undamaged parts that can be made available for other purposes or programs.

The safety department is in the unique position of consistently being the last

27

user of shared vehicles. While other groups’ tests may be staggered throughout

the schedule, crash tests are consolidated. Therefore, isolating and scheduling them

separately is convenient, and does not significantly impact the optimality of the overall

schedule. To implement this approach, we first aggregate crash tests into groups using

an integer optimization model. These groups are then passed into the Fit-and-Swap

algorithm, which schedules all the tests, treating the grouped crashes as a single test

each. The computational results presented in the next section confirm the benefits

of this pre-grouping approach, which consistently reduces the number of crashed

vehicles.

One method to group crash tests is to formulate and solve an instance of the

integer program (2.1)–(2.11) with the set T containing only crash tests. (We refer

to this approach to crash test grouping as grouping via full IP.) However, obtaining

solutions and proving optimality can still be computationally prohibitive, even for

these smaller subproblems. Thus, we also consider a simplified approach to crash test

grouping.

In practice, it is rare to have more than three crash tests executed on a single

vehicle. Moreover, a balanced schedule is preferable; for example, it is generally

better to have two vehicles with two crash tests each than three on one and one on

the other. This motivated us to use the following matching-based model.

Let TS ⊂ T be the set of all safety (i.e., crash) tests. The formulation below

uses binary variables wt1,t2,v for all t1, t2 ∈ TS with t1 < t2 and all v ∈ V to indicate

whether t1 and t2 can be matched and executed on vehicle v. (We do not define

variables w for t2 > t1 to avoid double-counting; however, test t2 may be scheduled

before t1.)

28

maximize
∑
v∈V

∑
t1,t2:t1<t2

wt1,t2,v (2.20)

s.t.
∑
v∈V

(∑
t2:t2<t1

wt2,t1,v +
∑

t2:t1<t2

wt1,t2,v

)
≤ 1, t1 ∈ TS (2.21)

∑
t1,t2:t1<t2

wt1,t2,v ≤ 1, v ∈ V (2.22)

wt1,t2,v = 0, {t1, t2} ∈ Ev, v ∈ V (2.23)

wt1,t2,v ∈ {0, 1} , t1, t2 ∈ TS : t1 < t2, v ∈ V.

For each vehicle v, set Ev enumerates all pairs {t1, t2} of safety tests that are in-

compatible based on specification, ordering, or vehicle-specific timing and deadline

restrictions; we identify the set Ev in a pre-processing step. The objective (2.20)

maximizes the number of matches among safety tests, while constraints (2.21) ensure

that each test is combined with at most one other, and the pair of tests is assigned to

at most one vehicle. Constrains (2.22) ensure that each vehicle is used at most once,

and constraints (2.23) enforce compatibility requirements.

Once the number of pairings is maximized, we can search for triplets and quadru-

plets of tests by solving another instance of the matching problem on the set of

previously identified pairs and remaining individual tests. (We refer to this approach

as grouping via matching.)

Each of the identified rehit grouping is passed to the Fit-and-Swap heuristic as an

individual test with the following associated parameter values: for a grouping-based

test tG = (t1, . . . , tn), ptG =
∑n

i=1 pi,

dtG = ptG + min
i=1,...,n

{
di −

i∑
k=1

pk

}
,

and rtG computed by the following Algorithm 2:

29

rtG := dtn − ptn ;
for i = n− 1 : 1 do

rtG := min{dti , rtG} − pti
end

Algorithm 2: Group release time calculation algorithm

Finally, we apply the Fit-and-Swap heuristic to schedule all tests in the program,

treating the identified rehit groupings as single tests. Recall that the heuristic assigns

longer tests first, which in effect gives scheduling priority to groups of safety tests,

ensuring that all deadlines within the group are met. Note that the assignments of

test groups to vehicles made in the grouping subroutines may differ from the final

assignments generated by the Fit-and-Swap heuristic.

2.3.4 Test planning algorithm summary

The Test Planning Algorithm combines the heuristic and optimization subprob-

lems presented above to obtain feasible solutions to the integer programming model

in Section 2.2. The steps of the Test Planning Algorithm are summarized as follows:

1. Read in the tests and create set T and crash test subset TS.

2. Read in the vehicle release schedule and create vehicle set V .

3. Read in compatibility rules and construct set E.

4. (Optional) Formulate and solve a grouping IP on TS and V (Section 2.3.3) and

update T with grouped tests.

5. Run the Fit-and-Swap algorithm on T and V and return the schedule.

2.4 Numerical results

For our computational experiments, we tested instances from three recent vehicle

programs at Ford. The total number of tests, and the number of safety tests, in each

30

program are presented in Table 2.2. We attempted to solve these instances using

the IP presented in Section 2.2 with the symmetry-breaking constraints added, but

CPLEX was unable even to find a feasible solution within the 1 hour time limit, which

is also noted in Table 2.2.

Table 2.2: Description of problem instances used in computational experiments. The
full IP formulation of Section 2.2 did not produce feasible solutions within
1 hour time limit on any of these instances.

Number of tests Number of safety tests IP feasible solution?

Instance 1 501 82 No
Instance 2 474 49 No
Instance 3 434 14 No

Next, we applied the Fit-and-Swap heuristic algorithm from Section 2.3.1, with-

out safety tests grouping, and with grouping via matching and via IP. Table 2.3

presents vehicle usage results for the three methods. The first important takeaway

is the significant reduction in the number of vehicles crashed when using either of

the grouping subroutines. On the three instances tested, both subroutines arrived at

the same number of crashed vehicles, demonstrating the effectiveness of the simpler

matching-based approach. The actual pairings, though, were different, evidenced by

the differences in the overall solutions.

While Fit-and-Swap without grouping produced solutions inferior in all respects

for two of the instances, for Instance 2 the total number of vehicles was actually

slightly smaller. However, this would come at the expense of crashing 11 more vehi-

cles, thereby destroying expensive resources.

We also report vehicle utilization, which is calculated as the ratio between the

sum of capacities of all vehicles used in a schedule, and the total duration of all the

tests in the program. This metric can be used to compare efficiency of test schedules

in different programs, which may vary in size and therefore in the number of vehicles

used. However, considered in isolation this metric may be misleading. As can be

31

seen in Table 2.3, solutions with different numbers of vehicles can yield identical

utilizations by selecting vehicles of different capacities. For this reason, maximizing

utilization is not the primary objective, but it is still an important metric for assessing

the schedule.

Table 2.3: Vehicle usage results for the three methods. Note that for Instance 1 the
full IP in the subroutine was not solved to optimality: after 60 minutes,
the optimality gap was 7.7%; the best feasible solution found in that time
is reported.

Total number
of vehicles

Number of vehicles
crashed

Vehicle
utilization

No crash test grouping subroutine
Instance 1 109 57 0.871
Instance 2 143 43 0.946
Instance 3 112 13 0.923

Crash test grouping via matching
Instance 1 96 52 0.941
Instance 2 144 32 0.946
Instance 3 110 11 0.937

Crash test grouping via full IP
Instance 1 97 52* 0.939
Instance 2 145 32 0.945
Instance 3 110 11 0.937

Table 2.4 summarizes the runtimes of the three approaches, separating runtimes

for the subroutines and the Fit-and-Swap heuristics applied to the resulting test sets.

The full IP has limited tractability even when used as a subroutine, while the matching

IP is solved quite efficiently. The Fit-and-Swap heuristic is quick in all cases.

32

Table 2.4: Runtimes, in seconds, of test grouping subroutines and Fit-and-Swap
heuristics on the resulting test sets. *Note that for Instance 1 the full
IP in the subroutine was not solved to optimality: after 60 minutes, the
optimality gap was 7.7%; the time reported reflects time until finding the
best feasible solution, which was passed to the Fit-and-Swap heuristic.

No subroutine Matching Full IP
Fit-and-Swap Subroutine Fit-and-Swap Subroutine Fit-and-Swap

Instance 1 8.5 59 6.4 833* 5.2
Instance 2 3.3 2 2.6 8 2.8
Instance 3 3.2 < 1 2.8 < 1 3.0

33

CHAPTER III

Scheduling of safety crash tests

3.1 Introduction

From Chapter II, we have seen the importance of an efficient schedule of crash

tests to the overall vehicle usage in all the tests for the entire program. The main

reason is that crash tests are destructive and can render a vehicle unusable for any

further tests. Therefore, crash tests tend to use dedicated vehicles not only to reduce

the number of vehicles destroyed but also to improve crash result accuracy by isolating

them from other departments’ tests. In chapter II, we have tested solving the MILP

formulation (2.1)–(2.11) of the GTSP just for crash tests. However, computational

experiments indicate that it is difficult to obtain a provably high-quality solution

due to the challenges we described in Section 2.2. As an alternative, we proposed a

matching based method by observing that it is rare to have more than 2 crash tests

on a single vehicle.

Compared to existing practices, this matching algorithm performed fairly well for

most of the vehicle programs the safety organization is dealing with, since performing

two tests (i.e., one rehit) is a widely used strategy. However, not all safety tests

are destructive or severely destructive. For example, there are tests that are testing

mainly sensors and deployment of airbags that can be triggered electronically without

performing an actual crash. In those cases, it is possible that more than 2 safety tests

34

are performed on a vehicle. Hence, in this chapter, we seek a more accurate model

than the matching method we proposed in Section 2.3.3. Additionally, we consider a

more flexible treatment of test due dates.

3.1.1 Background

Ford has performed over 20,000 crash tests since 1954, with a steep increase in

recent years as a result of more product launches and new or additional tests required

by safety regulations. These factors greatly increase the number of crash tests re-

quired each year and the complexity of planning and scheduling. Prototypes built for

product development testing can cost hundreds of thousands of dollar each, because

many of the parts and the full-vehicle prototypes are handmade and highly cus-

tomized. Commonly, a vehicle program corresponding to development for a product

launch requires over 50 vehicles for crash testing, so maximum utilization is critical

for balancing engineering resources and program timing.

Maximizing utilization is not a simple matter. Crashes are destructive, and only

certain tests can be combined together on the same prototype vehicle. Program

milestones and staggered prototype vehicle delivery form a difficult timing problem.

The different configurations of vehicles offered (e.g., types of powertrain, trim, body-

style) are an additional source of complexity, because a comprehensive testing plan

matches crash tests to specific configurations.

Until recently, crash-test plans were developed manually using pen and paper and

Excel spreadsheets. This process was tedious, and constructing a test plan could

take several days or weeks. The schedule produced was highly dependent on the

knowledge and experience of the individual planning engineer. Determining if the

crash schedule was optimal in terms of the number of vehicles needed was nearly

impossible. Reacting to delays and program changes required extensive rework of the

test plan.

35

In this chapter, we describe the custom-made crash-test scheduling system we

developed and implemented, which transformed a labor-intensive process relying on

high levels of expertise, to one that automates time-consuming scheduling analyses

through mathematical optimization, while also institutionalizing expert knowledge.

Instead of a more traditional assignment-based modeling approach, we developed an

integer programming model using composite variables representing sequences of tests

to be performed on a single prototype vehicle. To the best of our knowledge, we are

the first to apply this modeling technique to problems that combine the features of

both bin packing and complex sequential job scheduling. We also describe a column-

generation algorithm for solving our formulation, with a pricing problem structured

specifically for crash-test scheduling.

Our system produces optimized schedules in seconds or minutes (depending on

program complexity and size). Engineers can use the time saved to run what-if

scenarios including double-shifting prep time, working weekends and (or) holidays,

and introducing flexibility for vehicle specifications. This gives planning engineers and

program management personnel concrete data on resource requirements and potential

areas of flexibility.

A key to delivering our technology and maximizing its benefits was designing

the system for ease of use with engineers’ current working document formats. We

developed interfaces that ensure data quality and completeness. We designed our

optimization package to run on Ford’s High Performance Computing Center servers,

while integrating it into a user-friendly web application with a backend database.

The success of the Test Planning Scheduler Support System (TP3S) application

is evidenced by the rapid technology adoption within the safety group of product de-

velopment. After a series of pilots and limited releases, the application was rolled out

for use on all future programs. As of summer 2015, TP3S has been used to develop

crash-test plans for the following vehicle programs: Ford SuperDuty, C-Max, Fiesta,

36

EcoSport, Mustang, Fusion, and Edge; and Lincoln MKC and MKX. In addition to

a host of benefits, from improved planning processes and information infrastructure

to valuable time saved by engineers, the use of TP3S enables increased utilization of

testing resources, especially prototype vehicles, thus allowing more tests to be per-

formed under the same resource consideration and imposing a higher safety standard

within the company.

In the following sections, we introduce crash-test specifications, discuss the com-

plexities associated with scheduling them, and present our web application along

with the underlying optimization model and solution algorithms. We conclude by

describing the evolution of the TP3S application and its impact at Ford.

3.2 System overview

In this section we describe TP3S — a web-based application we developed for use

by Ford engineers for crash-test planning. This system has multiple benefits. It allows

for systematic collection of information about crash-test modes,1 timing, and rehit

compatibility into a centralized database, institutionalizing expert knowledge. It also

allows engineers to explore bottlenecks and potential improvements in test schedules

by quickly specifying various testing scenarios. An optimal or near-optimal schedule

for each scenario is generated in seconds or minutes by a custom-built optimization

engine we developed.

3.2.1 Test management module

The first tab of the TP3S web interface is dedicated to test management, i.e., spec-

ifying and displaying information about each relevant crash-test mode. For example,

Figure 3.1 shows the application screen with requirements for an Insurance Institute

1A test mode is an abstraction of types of crash tests, which is independent of vehicle configu-
ration. For example, crashing the front side of a vehicle at a perpendicular angle at 35 mph into a
barrier is a common test mode.

37

Figure 3.1: Example of a crash-test mode record from the TP3S web application,
showing the requirements for an Insurance Institute for Highway Safety
test.

for Highway Safety (IIHS) 40 percent front-overlap test, which include a driver-side

crash-impact position, a driver-side dummy sized to a 50th percentile male, an execu-

tion speed of 64 kilometers per hour (KPH), and the standard timing for preparing,

executing, and analyzing the test. To ensure consistency of the test data, our ap-

plication includes screens to maintain and view relational database information on

categorizations, dummy types, and other aspects of the test, which are navigable

through the submenu bar.

Note that some timing information is expressed in days, while shifts are used for

aspects of test timing that have flexibility to speed up execution by running multiple

shifts per day. The impact of this flexibility can be explored in the scheduling process

by considering what-if scenarios. Note also that the time allocated for a crash test

may differ depending on whether it is the first test on the vehicle or a rehit. In

particular, it is common for rehits to require less initial prep work, because some of

the prep was already completed for a prior crash test; however, rework time may

38

increase for repairs needed to restore the vehicle to prime condition.

Through the use of the TP3S application, we have built a database that currently

contains over 100 unique crash-test modes, a subset of which are run on each vehicle

program.

3.2.2 Rehit rules module

Figure 3.2: Rehit rules lookup shows whether two crash tests can be run on the same
prototype vehicle in the specified order. For tests that are off-center, rules
are based on whether the tests are to be executed on the same or opposite
sides of the prototype.

As a result of its high speed of 64 KPH, an IIHS 40 percent front-overlap test

damages a prototype vehicle severely enough so that it cannot generally be reused for

other testing. However, it may be possible to conduct a less destructive crash prior

to the IIHS test on the same prototype, if time permits and required specifications of

the prototype are similar. The second tab of the TP3S application serves to display

information on whether scheduling two crashes back-to-back on the same prototype

is allowed, based on the rules provided by a core group of safety engineers. Figure 3.2

shows an example: here, we can schedule a low-speed front-offset test, which runs at

under 10 MPH, prior to the IIHS test, so long as it is done on the opposite (passenger)

side of the vehicle. This combination also appears on prototype 11 in Figures 1.1, 1.2

39

and 1.3. When setting these rehit rules, engineers consider the location and extent of

the damage expected from the first crash test conducted. If the damage is expected

to be either insignificant or easily repairable, the combination is generally permitted;

if not, the combination is prohibited.

In addition to the two crash-test mode selections in Figure 3.2, a third dropdown

allows the user to select a rehit rules library, which is designed for a specific vehicle

platform and conservativeness measure. The vehicle platform is an important iden-

tifier because the same crash-test mode causes different levels of damage on different

sized vehicles, e.g., a Focus compact car versus an Explorer SUV. The conserva-

tiveness measure (“common practice” in the example shown) allows the engineer to

take a more or less aggressive approach, with the understanding that more aggressive

approaches may require additional resources later on. Specifically, if damage from

an initial crash exceeds expectations, the rehit crash scheduled on the same vehicle

may require an additional unbudgeted vehicle or additional parts may be required for

repairs.

With over 100 unique test modes, the application currently contains over 10,000

rehit rules per vehicle platform and conservativeness measure. We developed a system

for grouping test modes into crash categories to reduce the data entry burden on our

core safety team. Categories capture position and impact type, so that the main

distinguishing characteristic between test modes in a category is crash speed. Using

this model allows core safety team members to set rules based on speed, e.g., any

crash-test mode in the “front barrier offset” category can precede any crash-test mode

in the “side pole” category, if the former test mode is run under a specified speed

cutoff and the tests are conducted on opposite sides of the vehicle. A lower cutoff

speed may be set for same-side combinations. (If the cutoff is set to 0, no tests from

these categories can be combined, and if the cutoff is set high enough, all pairings are

allowed.)

40

The number of crash categories is currently around one third of the number of

test modes, reducing the data entry burden by an order of magnitude. We further

reduced this burden by designing the user interface to enable setting multiple rehit

rules simultaneously, after selecting the category of the first test. We also provide

deep-copy functionality that replicates an entire rehit rules library, which can then

be edited to increase or decrease the level of conservativeness with minimal effort.

The application contains additional screens, navigable through the submenu bar

in Figure 3.2, where engineers can view all tests allowed before or after a specified

test for a selected vehicle platform and conservativeness measure.

3.2.3 Program scheduling module

The third tab of the TP3S application is dedicated to program scheduling, i.e.,

specification and scheduling of crash tests for each vehicle program (e.g., 2016 Ford

Explorer). The primary scheduling responsibility for each program is assigned to a

lead engineer in the safety department. This lead engineer is tasked with forming

the initial plan well in advance of its execution to place orders for parts with long

lead times. As the testing commencement date nears, the plans are typically up-

dated several times to account for delays in part deliveries and changes in engineering

designs.

The engineer’s first step is to set dates for standard safety milestones, shown in

Figure 3.3. Some milestones have only a due dates, whereas others may also include

a date before which tests cannot be executed. We designed the scheduling module to

allow plans to be easily updated for program timing changes: the milestones listed

are connected to tests, so that if dates associated with those milestones are updated,

the new timing is automatically associated with all connected tests.

The engineer’s next step is to connect test models and milestones with prototype

vehicle specifications using the screen shown in Figure 3.4. The engineer first con-

41

Figure 3.3: The user interface allows dates to be selected for scheduling milestones in
a program.

structs a list of vehicle specifications (e.g., engine type, driveline type, driver side

location, and other vehicle characteristics relevant for some or all of the test modes)

and lists available options for each specification (gas or diesel engine, 4x2 or 4x4 driv-

eline, etc.). The engineer then constructs control models, which are the combinations

of those options, as columns. The required crash-test modes are then added to the

plan as rows; for convenience, predefined lists of crash modes, e.g., for a European

car or a North American truck, can be imported and then modified by deleting or

adding specific test modes. The engineer connects a test mode to a control model by

clicking a cell within the matrix, which opens a dialog to select an associated timing

milestone. For example, in Figure 3.4, the 1’s in each column indicate required tests

that need to be performed on the corresponding control model; note that the tests

indicated in the last column can be performed on a vehicle with either engine type.

The prototype vehicles are used by all departments (safety, powertrain, electrical,

etc.) within the Product Development organization. Thus, the lead safety engineer

coordinates test schedules with a planner from Ford’s centralized test planning group

that oversees the distribution and sharing of prototypes. Based on these interactions,

42

Figure 3.4: An engineer enters test requirements, by connecting vehicle specifications
to test modes and milestones.

the engineer develops a schedule for expected deliveries of prototype vehicles to the

safety department for crash testing. This schedule is input, tracked and updated

using the screen shown in Figure 3.5.

When envisioning a decision support system for scheduling, one of our foremost

goals was to enable what-if scenario analysis through which lead engineers could iden-

tify the main program constraints. For example, running a scenario with a couple of

weeks of additional time would allow engineers to examine whether timing constrains

vehicle utilization. Running a scenario with relaxed vehicle specifications, such as en-

gine selection, would allow engineers to quantify the relationship between engineering

design and resources required for testing.

Figure 3.6 shows the application screen for running optimizations, with options

for what-if scenarios. When an optimization job is submitted, the application con-

nects to Ford’s High Performance Computing Center and passes a single database ID,

which allows all the information associated with the vehicle program to be retrieved

by our executable Java scheduling program. This design of decoupling the web inter-

face used for transactional data functions and the scheduling optimization program

43

Figure 3.5: The prototype vehicle delivery schedule is shown, along with the possible
control models that could be delivered each date.

allows engineers to run multiple scenarios in parallel. When the scheduling program

terminates, the results are stored in the database and are automatically retrieved by

the web application. An Excel spreadsheet is downloadable from the screen in Figure

3.6 containing the scheduling documents from Figures 1.1, 1.2, and 1.3.

Although a lead engineer is responsible for each program, plans are discussed

and reviewed with fellow engineers, supervisors and managers. These reviews aim to

ensure plans stay within budget, are executed on time, and are maximally efficient.

By implementing several permissions levels in the application, we have allowed the

lead engineer to construct and edit program information, grant read-only permission

to fellow engineers, and have work viewable by management as a default.

3.3 Models and solution approaches

In this and the following sections, we discuss the models and algorithms that power

the back-end scheduler of the TP3S system. In Section 2.2, we proposed an MILP

for solving the GTSP. The MILP model of Crash Test Scheduling Problem (CTSP)

is the same — we make a distinction since in this chapter all tests are crash tests.

As a result, instance sizes of CTSP tend to be smaller. However, it is still difficult

44

Figure 3.6: Run optimizations and view results.

to solve the MILP formulation within a reasonable optimality gap. Alternatively, we

propose a set-partitioning formulation that is equivalent to the MILP and propose a

delayed column generation approach to solve the problem.

3.3.1 A review of delayed column generation methods

There are many papers using column generation method to solve large-scale dis-

crete optimization problems. Gilmore and Gomory (1961, 1963) proposed using a

linear programming technique to solve large-scale cutting stock problems. In the cut-

ting stock problems, there are demands on rolls of metal or paper with different width

requirement. The way to produce those rolls with different widths is to cut a large

roll into smaller ones. The goal is to minimize the usage of large rolls while satisfying

the demand. The problem is formulated as a set-covering formulation by defining

cutting patters for a large roll and then deciding the subset of patterns to use in

the production. As there manny possible patterns patterns, the authors introduced

a delayed column generation algorithm that can solve the linear relaxation of the

original problem to optimality. The algorithm does not include all variables at once

45

but rather generates them dynamically by solving a pricing sub-problem. Specifically,

the pricing sub-problem in the cutting stock problem can be solved as a knapsack

problem within pseudo-polynomial time. At the last step of the solution process, a

rounding scheme is used to obtain a feasible integer solution to the original problem

based on the optimal solution of the linear relaxation.

There are many papers that apply the column generation idea in other problem

settings. We ask readers to refer to two comprehensive review papers, Desrosiers

and Lübbecke (2005); Lübbecke and Desrosiers (2005) on this topic. Notably, column

generation is extremely popular in solving scheduling and routing problems, such as

in Taillard (1999); Ribeiro and Soumis (1994); Lavoie et al. (1988).

A key issue to resolve in the development of a successful delayed column generation

algorithm is the ease of solving the pricing problem to generate new variables to

include in the master problem. For example, in the cutting stock problem, the pricing

problem is solved as a knapsack problem. In the vehicle routing problems, the pricing

problem is usually formulated as finding a shortest path in a graph. In both cases,

efficient (pseudo)-polynomial algorithms (Dynamic Programming, Dijkstra’s) can be

applied. However, in the case of crash test scheduling, because of the presence of time

window constraints, compatibility, and precedence relations between tests, solving the

pricing problem is a nontrivial task. In the following sections, we shall cover how we

conquer this computational challenge.

Another commonly discussed topic when developing a delayed column generation

algorithm is how to obtain an integer solution, since delayed column generation only

solves linear relaxations of integer programs. Three approaches are commonly used:

(1) we can solve the linear relaxation of the original problem and gather the columns

generated in the process, and then re-introduce integrality constraints and solve a

restricted version of the original problem; (2) similarly, we can solve the linear re-

laxation to optimality, and then use some approximation algorithm such as rounding

46

to obtain a feasible integer solution based on the optimal solution of the linear re-

laxation, as we have seen in the case of solving cutting stock problems; (3) we can

implement a branch-and-bound algorithm for the original integer program, using de-

layed column generation to solve linear relaxations of problems at each node of the

branch-and-bound tree. The latter strategy is known as the branch-and-price algo-

rithm, and is discussed in Barnhart et al. (1998); Savelsbergh (1997); Mehrotra and

Trick (1996). In this chapter, we consider and test each of the 3 strategies.

In the following sections, we will discuss how to apply delayed column generation

to CTSP.

3.3.2 Set-partitioning formulation of CTSP

MILP formulation (2.1)–(2.11) approaches the CTSP by deciding the assignments

of tests to vehicles, and then sequencing tests that are assigned to each vehicle.

Following the ideas of the papers mentioned above, we propose an alternative way of

modeling the scheduling problem by using composite variables, namely, aggregating

multiple tests into a scheduling unit. We define a sequence of tests ω as an ordered list

of tests that are to be performed on the same vehicle. Notice that for this sequence

to be valid all tests in this sequence should have compatible vehicle specifications and

should be executable in the specified order, i.e., for any ordered pair of tests ti and

tj that are contained in ω, we should have aij = 1.

Assume a sequence ω contains k tests, t1, t2, . . . , tk, where t1 is the first test to be

performed in that sequence. When assigned to a vehicle v, we can assume t1 will start

execution right after the vehicle is released at time qv. Similarly, we can argue that

all the following tests should start execution right after their respective predecessors

have completed, to minimize the tardiness incurred by missing the due dates,2 unless

2In this chapter, we do not consider any additional supporting resources required for testing, and
thus this assumption is without loss of generality. In the following chapter, this assumption is no
longer made.

47

a test is not released until a later time. Therefore, the starting time sti , i = 1, . . . , k

of each test can be computed as

sti =

 min{rti , qv} i = 1

min{rti , sti−1
+ pti−1

} i = 2, . . . , k.
(3.1)

Hence, the cost of assigning sequence ω to vehicle v is cω,v ≡
∑k

i=1(sti +pti−dti)+ +c′v,

where the first term sums up the total tardiness of all tests on this vehicle (assumed

to have unit cost per unit of time), and c′v is the (fixed) cost of using v, expressed in

appropriate units.

Figure 3.7: Assigning individual tests to vehicles versus assigning test sequences to
vehicles

Now the scheduling problem reduces to deciding the assignment of sequences to

vehicles to complete all tests as showed in Figure 3.7. Let T denote the set of all test

modes specified for a vehicle program and let Ω denote the set of all valid sequences.

Our formulation uses binary variables λω,v, ω ∈ Ω, v ∈ V , with λω,v = 1 indicating

that the sequence of tests ω is assigned to vehicle v. Note that a variable λω,v is only

defined if all tests in sequence ω have the same vehicle specification requirements as

the vehicle they are assigned to, i.e., those tests can be actually performed on vehicle

v. Our optimization model, which we termed CTSP-MP (for Master Problem) is as

follows:

48

CTSP-MP minimize
∑

ω∈Ω,v∈V

cω,vλω,v (3.2)

s.t.
∑

ω∈Ω:t∈ω,v∈V

λω,v = 1, t ∈ T, (3.3)

∑
ω∈Ω

λω,v ≤ 1, v ∈ V, (3.4)

λω,v ∈ {0, 1} .

In objective (3.2), cω,v, ω ∈ Ω, v ∈ V is the cost of assigning sequence ω to a

vehicle v, and is informed by the cost of using the vehicle and the timing associated

with the assignment. Constraints (3.3) ensure that each test gets assigned, where

the notation t ∈ ω means that t is contained in the sequence ω. Constraints (3.4)

are vehicle capacity constraints: for each vehicle v, there can be at most 1 sequence

assigned to it.

Set-partitioning integer programming problems similar to CTSP-MP typically

have tight linear programming relaxations and other features that make them well-

suited for the standard branch-and-bound algorithm. However, a potential drawback

of models built with composite variables, encompassing an entire sequence of deci-

sions, is their size. Indeed, the potential number of test sequences we would need to

consider could scale exponentially with the number of tests. Although the number

of valid test sequences is limited by compatibility and timing considerations, in some

of the instances that we consider in our computational tests, the model exceeded the

limit that CPLEX (our solver of choice) was capable of holding in memory. For that

reason, we provide two optimization approaches within the TP3S application.

The first optimization approach uses a full enumeration of valid test sequences.

If successful, this method is guaranteed to solve CTSP-MP to optimality as the

example in Figure 3.6 illustrates; however, in some instances this method exceeded

49

allocated memory and terminated without finding a solution. The alternative ap-

proach applies delayed column generation to CTSP-MP, thus avoiding enumerating

all variables a priori.

Our computational experiments suggested that, while the full enumeration ap-

proach was often superior, occasionally it was unable to solve the problem because of

memory limitations. The delayed column generation method, although slower, was

able to scale more gracefully on larger problem instances, serving as a reliable backup

to the first method. These observations have been reinforced through the use of the

optimization module of the TP3S application at Ford. As larger test sets are consid-

ered in the future, the column generation methodology is likely to prove even more

valuable. Therefore, in the following sections, we mainly focus on the description

of the delayed column generation algorithm and various techniques for improving its

performance.

3.4 Delayed column generation algorithm

We introduce a delayed column generation heuristic for solving CTSP-MP to

near-optimality; in our computational experiments, this method proved effective in

several instances that could not be handled by full-enumeration. Our method is sim-

ilar to the branch-and-price algorithm proposed in Barnhart et al. (1998) for large

scale combinatorial problems. Rather than implementing a full branch-and-price al-

gorithm, we first provide a heuristic that solves the root-node partitioning problem

using only the columns generated in solving its LP relaxation (branch-and-price im-

plementation is discussed in Section 3.5).

Consider the LP relaxation of formulation CTSP-MP obtained by replacing the

integrality constraint λω,i ∈ {0, 1} by λω,i ≥ 0, denoted by CTSP-LMP (for Linear

Master Problem). The upper-bound constraints λω,i ≤ 1 are implicitly enforced by

(3.3). As is typical in delayed column generation algorithms, we start with a subset

50

of all variables of CTSP-LMP and solve this restricted version (CTSP-RLMP) of

the original problem. Then, we continue adding variables that have the potential to

improve the objective function value of the restricted problem until the optimum is

reached.

Let the initial subset of all variables be Ω′ ⊂ Ω. Consider the Restricted Linear

Master Problem:

CTSP-RLMP minimize
∑

ω∈ω′, i∈{1,...,m}

cω,vλω,v (3.5)

s.t.
∑

ω∈ω′:t∈ω,v

λω,v ≥ 1, t ∈ T, (3.6)

∑
ω∈ω′

λω,v ≤ 1, v ∈ V, (3.7)

λω,v ≥ 0 ω ∈ ω′, v ∈ V.

Notice that we replaced equality (3.3) with inequality in (3.6). This is a valid substi-

tution because whenever we find that a test is covered more than once in an optimal

schedule, we can always remove duplicates from all but one sequences to make the

equality relation hold; the objective function value would not deteriorate, but would

not improve either, by optimality. One advantage of doing the substitution is that

the dual variables associated with this set of constraints will always be nonnegative.

Let (π, ρ) be the optimal values of dual variables associated with sets of constraints

(3.6) and (3.7), respectively. Then the reduced cost of a decision variable λω,v is

Γω,v = cω,v −
∑
t∈T

δω,tπt − ρv. (3.8)

The associated pricing problem is defined to determine the sign of the optimal value

51

of the problem

CTSP-PP minimizeω∈Ω, v∈V Γω,v; (3.9)

if the optimal value is nonnegative, then the current solution to the CTSP-RLMP

is optimal for the full CTSP-LMP, otherwise, if there exists some ω̃ ∈ Ω and ṽ ∈ V

such that ω̃ 6∈ ω′, and Γω̃,ṽ < 0, then we conclude that variable λω̃,ṽ should be added

to CTSP-RLMP to improve the solution.

By repeating this process, at some iteration, CTSP-PP cannot identify further

variables that have negative reduced cost. Then, we claim that we have solved CTSP-

RLMP to optimality. If the optimal solution λRLMP to CTSP-LRMP does not

involve fractional values, then we can also claim that we have found the optimal

integer solution λRLMP to CTSP-RMP and CTSP-MP. Otherwise, we reintroduce

the integrality constraints λ ∈ {0, 1} and solve CTSP-RMP using all the variables

we have generated in the column generation process to find a feasible integer solution

to CTSP-MP. An illustration of the solution process is shown in Figure 3.8

Problem CTSP-PP can be viewed as a search for a test sequence and vehicle

combination with the smallest reduced cost. When it is possible to explicitly enumer-

ate all valid test sequences, the minimization problem PP can be solved by “pricing

out” each combination (note that, unlike when solving the full master problem, we

don’t need to hold the entire set of variables in memory; they can be created and eval-

uated one by one). When explicit enumeration is impossible or undesirable, we can

formulate an integer linear program for solving CTSP-PP. We approach CTSP-PP

by minimizing Γω,v over ω separately for each v ∈ V .

Recall that A ∈ <|T |×|T | is the matrix that specifies precedence relationships

among tests: its (i, j)th element aij = 1 if test ti is allowed to be performed before

test tj if they are performed on the same vehicle; aij = 0 otherwise. (Matrix A is

52

Figure 3.8: A flow chart of the delayed column generation approach

determined based on information provided in screens illustrated in Figures 3.2 and

3.4.) As usual, let rt, pt, dt, t ∈ T , denote the release time, processing time, and

due date of test t ∈ T , respectively (see Figures 3.1 and 3.3), and qv, v ∈ V — the

scheduled delivery time of vehicle v ∈ V (see Figure 3.5).

Let xt, t ∈ T, be binary variables such that xt = 1 if test t is included in the

sequence; yti,tj , ti, tj ∈ T, be binary variables such that yti,tj = 1 if both tests ti

and tj are included in the sequence and ti is performed before tj (not necessarily

immediately); st, t ∈ T, be continuous variables denoting the starting time of test t;

finally, let ot, t ∈ T, be continuous variables that the tardiness of each test. If we

consider assigning a sequence to vehicle v, then the corresponding pricing problem

53

just consists of selecting tests and determining their timing:

CTSP-PP-MILPv

min 1 +
∑
t∈T

wtot −
∑
t∈T

πtxt − ρv (3.10)

s.t. xti + xtj − 1 ≤ yti,tj + ytj ,ti ≤
1

2
(xti + xtj), ti, tj ∈ T : ti 6= tj

(3.11)

yti,tj = 0, ti, tj ∈ T : ati,tj = 0 (3.12)

sti + pti ≤ stj +M(1− yti,tj), ti, tj ∈ T : ti 6= tj (3.13)

st ≥ rt, t ∈ T (3.14)

st ≥ qv, t ∈ T (3.15)

st + pt ≤ dt + ot, t ∈ T (3.16)

xt ∈ {0, 1}, yti,tj ∈ {0, 1}, st ≥ 0, ot ≥ 0. (3.17)

Formulation CTSP-PP-MILPv is based on the assignment formulation of the test

scheduling problem; since it is restricted to only one vehicle, it is significantly easier to

solve. The constraints have similar definitions as their counterparts in (2.1)–(2.11). If

the optimal value of the problem is negative, the variable λω,v, with ω corresponding

to the sequence of tests identified by solving CTSP-PP-MILPv, can be added to

the master problem, with cω,v = 1 +
∑

t∈ω wtot.

In the following sections, we discuss techniques that can be applied to improve

computational performance of this column generation approach.

3.4.1 Aggregating the vehicle capacity constraints

One way to strengthen the set-partitioning formulation is by aggregating the ve-

hicle capacity constraints (3.4). This aggregation has multiple advantages: (1) it

reduces the number of variables in the formulation; (2) it eliminates symmetry in the

54

branching tree; (3) it reduces the complexity of the pricing problem.

In the vehicle set V , there are often vehicles that are identical in terms of release

dates and, possibly, configurations (if they are not universal models). Suppose two

vehicles vi and vj are identical in the above sense. Then our formulation of the master

problem contains two constraints in the set of (3.4), namely
∑

ω∈Ω λω,vi ≤ 1 and∑
ω∈Ω λω,vj ≤ 1. Suppose we solve set-partitioning formulation CTSP-MP using

branch-and-bound algorithm, and at some iteration, we have a fractional solution

where, say, λω,vi = 0.5, λω,vj = 0. In this case, we will enforce branching constraints

on the fractional value of λω,vi by setting either λω,vi = 1 or 0. In the latter branch, we

may encounter another fractional solution where λω,vi = 0, λω,vj = 0.5. This solution

satisfies the branching constraint we imposed; however, it is effectively identical to

the previous fractional solution we have seen. In other words, by interchanging vi

with vj, the solver does not improve the integrality of the fractional solution. This

type of symmetry is due to the similarity of vehicles vi and vj, and can be made worse

by presence of multiple identical vehicles.

Motivated by this example, we propose to aggregate each subset of identical

vehicles. Specifically, we partition the entire set of vehicles V into smaller sub-

sets V1, V2, . . . , Vm such that a subset Vi contains vehicles that have the same re-

lease date and configuration. Let V denote the set of prototype vehicles and let

V1, V2, . . . , Vm ⊂ V denote the groups of identical vehicles (i.e., those delivered on the

same day and having identical specifications; if each vehicle is unique, m = |V |). We

have ∪mi=1Vi = V, and Vi ∩ Vj = ∅, i 6= j.

Instead of assigning sequences ω to individual vehicles, we will assign them to

vehicle subsets in the set-partitioning formulation, i.e., we replace (3.4) with

∑
ω∈Ω

λω,i ≤ |Vi|, i = 1, . . . ,m.

55

This reduces the total number of variables from |Ω| × |V | to |Ω| ×m, where m ≤ |V |.

Moreover, the symmetry caused by identical vehicles will be eliminated. In addition,

instead of solving a pricing problem CTSP-PP-MILPv for each vehicle, we can solve

it for each vehicle group Vi.

3.4.2 Offline pricing algorithm

In small and moderate-sized problem instances, it may be possible to enumerate

all valid sequences in the set Ω. However, we may not want to solve the full master

problemtextbfCTSP-M. For example, even when the memory of the computer can

hold the entire collection of variable objects, some solvers still have limits on their

memory usage. Moreover, the full formulation may be slow to solve even when mem-

ory is not the bottleneck. Delayed column generation was introduced to overcome

these issues; however, solving the pricing problem CTSP-PP-MILP to optimality

can sometimes be very expensive, even more expensive than explicitly evaluating the

reduced cost of every valid column. In this section, we propose an alternative way

of solving the pricing problem by an explicit scan over the entire collection of valid

sequences Ω.

First, we show how to calculate the reduced cost given the optimal dual variable

values of CTSP-LRMP for a variable λω,v. Suppose ω contains k tests t1, t2, . . . , tk.

Recall that we can assume, without loss of optimality, that each test starts as soon as

it’s available (released) or the previous test in the sequence is completed, whichever

comes later. Then the starting times sti , i = 1, . . . , k can be computed as

sti =

 min{rti , qv} i = 1

min{rti , sti−1
+ pti−1

} i = 2, . . . , k.

Next, we can compute individual tardiness contributions oti = [sti +pti−dti]+ of each

56

test ti in the sequence. With that, the reduced cost of λω,v is

Γω,v = c′v +
k∑
i=1

wtioti −
k∑
i=1

πti − ρv.

Notice that the computation of the reduced cost for a given variable involves just

simple arithmetics. We can apply the formula to the entire collection of columns and

then do a scan over the collection to get the column with most negative reduced cost.

The complexity is dependent on the maximal number of tests a sequence can contain.

Suppose that number is K, then the complexity is O(|T |K). If we wish to return more

than one column at each iteration, e.g., we want the top 5% of all variables which

have the most negative reduced costs to be returned, we can sort the entire collection

of variables in increasing order of their reduced costs; in this case, the complexity is

O(K|T |K log |T |).

This evaluation process can be easily parallelized to achieve a perfect linear speed-

up due to the independence of the computation between variables. For example, if H

processors are available, we can partition the entire set of variables λω,v, λ ∈ Ω, v ∈ V

into H subsets of equal or almost equal size. Then we apply the formula to every

variable in each of the H subsets and scan over the subsets to get the column with

most negative reduced cost locally. This process can be executed in parallel as showed

in Figure 3.9

Afterwards, we aggregate the best local columns to return the best global column.

The complexity is O(|T |K/H).

If sorting is required, we can first sort the subsets locally after the reduced costs

are computed, then combine them into a globally sorted list of variables in linear

time.

57

Figure 3.9: Parallel offline pricing algorithm for 6 sequences using 3 processors

3.4.3 Column dominance

Even if we can enumerate all possible columns and store them in computer mem-

ory, it is essential to reduce the set of possible columns as much as possible, to speed

up the pricing operation as described in Section 3.4.2. It is also useful to remove

dominated columns from the master problem after we solve its linear relaxation and

proceed to solve the integer version (i.e., one with restored integrality constraints.)

Suppose we have two different sequences ω′ and ω′′, and for any t ∈ ω′, we also

have t ∈ ω′, i.e., the tests contained in ω′ are a subset of the tests contained in ω′′.

We say that ω′ is dominated by ω′′ when assigned to vehicle group i if cω′,i = cω′′,i. In

other words, if variable λω′′,i is included in the RMP, variable λω′,i will never be active

in the RMP because we can always substitute λω′,i with λω′′,i without increasing the

objective function value while covering more tests.

If for two different sequences ω′ and ω′′, ω′ is dominated by ω′′ when assigned to

any vehicle group i, i = 1, . . . ,m, then we say sequence ω′ is dominated by ω′′. We

can remove any variables involving using sequence ω′ whenever a variable using ω′′ is

used.

58

3.4.4 Strategies to generate compatible columns

Notice that we do not always need to solve the pricing problem CTSP-PP to op-

timality. Indeed, any column with negative reduced column can be added to CTSP-

LRMP to improve the objective function value. Therefore, one strategy for generat-

ing columns is to add all columns found while solving the pricing problem that have

negative reduced costs, or are otherwise deemed beneficial to the overall solution, to

the CTSP-LRMP. This is exceedingly handy if we adopt the offline pricing strat-

egy as described in Section 3.4.2 by storing all columns with negative reduced column

while scanning over the entire collection of them. However, this strategy may add too

many useless columns that will never be used in the CTSP-LRMP, which would

consume extra memory and make the size of the CTSP-LRMP excessive.

On the other hand, if we adopt an overly parsimonious approach to choosing

columns to add to CTSP-LRMP in each iteration, we may encounter a feasibility

issue in the last step of our algorithm. In particular, when we attempt to find an

integer solution to the restricted master problem, the instance that uses only the

columns generated in the process of solving the linear relaxation of the master problem

may be infeasible once integrality restrictions are restored.

In light of the above, we can adopt a strategy which balances the added com-

plexity of adding too many columns and the benefit of returning multiple columns

at each iteration. Specifically, we return a set of columns that can produce a full

integer feasible solution to the CTSP-LRMP. Such columns together satisfy the

constraints (3.3) and (3.4). We adopt a very simple heuristic algorithm to generate

such collections of columns.

We first return the column with the most negative reduced cost to the CTSP-

LRMP. After that, we remove all tests that are contained in that column and the

vehicle used from the pricing problem data. Then, we re-solve the pricing problem

for the column with the smallest reduced cost using remaining tests and vehicles. We

59

repeat that procedure until we cover the entire set of tests.

If we solve the pricing problem as an MILP, i.e., CTSP-PP-MILP, this pro-

cedure involves solving the MILP repeatedly. However, if we adopt the strategy

of offline pricing described in section 3.4.2, we can achieve the desired result with

just one scan over the entire sorted collection of available columns with complexity

O(K|T |K+1 log |T |) if we assume |V | ∼ |K|.

Computational experiments have showed that by generating such a set of compat-

ible columns at each iteration, we can significantly improve the convergence speed of

the delayed column generation algorithm for solving the CTSP-LRMP (even though

the amount of time it takes to do the pricing increases), as well as ensure feasibility

of its integer counterpart in the last step of the algorithm.

3.5 Branch-and-price method

Delayed column generation algorithm described in Section 3.4 is an efficient way to

solve large-scale linear programming problems. However, it can only solve the linear

relaxation of the original set-partitioning formulation to optimality. If we simply re-

introduce integrality constraints on λω,v and solve the resulting IP using only columns

that were generated in the process of solving CTSP-LRMP, we are not guaranteed

to find an optimal solution to the original problem.

In order to find the optimal solution to the original set-partitioning formulation

CTSP-MP, where λ’s are binary variables, we need to implement a branch-and-

bound algorithm, specifically, a branch-and-price algorithm, since column generation

will be necessary to solve linear relaxations of problems at the nodes of the branch-

and-bound tree. This section describes the details of our implementation of branch-

and-price.

60

3.5.1 Branching rules

Recall that, in the branch-and-price algorithm, a linear relaxation of an integer

program at each node of the branch-and-bound tree will be solved via delayed column

generation. Therefore, branching rules must be designed in a way that maintains

applicability of the column generation scheme, and in particular, the pricing sub-

problem that we developed.

To illustrate the issue at hand, suppose we adopt the traditional branching ap-

proach: if the solution to the LP relaxation at a node is non-integer, find a fractional

variable λω,v ∈ (0, 1) and create two branches by adding constraints λω̃,ṽ = 1 and

λω̃,ṽ = 0, respectively.

In the first branch, the sequence ω̃ is always assigned to vehicle ṽ. We can remove

the tests contained in sequence ω̃ from the test portfolio T and vehicle ṽ from the

vehicle set V , and apply delayed column generation to the set-partitioning formulation

with the remaining tests and vehicles.

In the second branch, we forbid the assignment of sequence ω̃ to vehicle v, and

we need to respect this branching constraint when generating columns by solving

the pricing problem. However, we do not have control over what types of columns

will be generated when we solve the integer programming formulation of the pricing

problem, so if it turns out the column with the most negative reduced cost does not

satisfy the branching constraint, we need to somehow find another column which

does not use the current test sequence and vehicle assignment while optimizing the

reduced cost among all remaining columns. As we go deeper into the branching

tree and add more branching constraints of this type, keeping track and enforcing

these constraints in subsequent pricing problems will become increasingly complex.

We can try enforcing these hierarchies of constraints by introducing cuts, but these

can fundamentally change the structure of the pricing problem and may cause more

computational challenges. This issue is well-recognized in the literature on branch-

61

and-price methods. A common way to resolve this difficulty is to use alternative

branching rules; the general idea is, rather than branching on the variables in the

set-partitioning formulation, to branch on appropriately defined auxiliary variables.

For the problem at hand, we propose a branching rule based on the integrality of

the following auxiliary variables:

yvti,tj =
∑

ω∈Ω: ti,tj∈ω, ti→tj

λω,v, (3.18)

defined for every vehicle v and every pair of tests ti and tj, and

xvt =
∑

ω∈Ω: t∈ω

λω,v, (3.19)

defined for each vehicle v and test t.

Let λω,v, ω ∈ Ω, v ∈ V be an optimal solution of the linear relaxation of the

master problem CTSP-MP defined in (3.2)–(3.4). We can show that integrality of

y’s and x’s defined in (3.18) and (3.19) is necessary and sufficient for integrality of

λ’s.

Necessity follows trivially, since a sum of integers is also integer.

We will establish sufficiency by contradiction: suppose x’s and y’s are all integers,

but there exist ω′ ∈ Ω and v′ ∈ V such that λω′,v′ ∈ (0, 1). Suppose ti ∈ ω′. In order

to satisfy constraint (3.3) for ti, there must exist a different variable λω′′,v′′ ∈ (0, 1),

with ti ∈ ω′′. Consider the following two cases:

• Case 1: v′ = v′′. Since there cannot be any duplicate columns generated by the

column generation method, we must have ω′ 6= ω′′. Therefore, we must have

one of the following two sub-cases:

– Case 1a: ∃tj such that tj ∈ ω′, tj 6∈ ω′′;

– Case 1b: ∃tj such that tj 6∈ ω′, tj ∈ ω′′.

62

In either of the two cases, we have

1 =
∑
v

∑
ω:ti∈ω

λω,v ≥
∑
ω:ti∈ω

λω,v′ =
∑

ω:ti∈ω,tj∈ω

λω,v′ +
∑

ω:ti∈ω,tj 6∈ω

λω,v′

>
∑

ω:ti∈ω,tj∈ω

λω,v′ =
∑

ω:ti,tj∈ω;ti→tj

λω,v′ +
∑

ω:ti,tj∈ω;tj→ti

λω,v′

= yv
′

ti,tj
+ yv

′

tj ,ti
> 0.

The first strict inequality follows since in either case 1a or 1b, there exists some

λv
′
ω̄ > 0, where ti ∈ ω̄, tj 6∈ ω̄. The second strict inequality follows because

in either case 1a or 1b, there exists some λv
′

ω̂ > 0, where ti, tj ∈ ω̂. Therefore∑
ω:ti,tj∈ω λω,v′ > 0.

However, yv
′
ti,tj

and yv
′
tj ,ti

are integers, and their sum cannot be strictly between

0 and 1, leading to a contradiction.

• Case 2: v′ 6= v′′. We have

1 =
∑
v

∑
ω:ti∈ω

λω,v >
∑
ω:ti∈ω

λω,v′ = xv
′

ti
> 0.

The first strict inequality follows since, for ti ∈ ω′′, λω′′,v′′ > 0. The second

strict inequality follows since λω′,v′ > 0 for ti ∈ ω′. However, xv
′
ti

is an integer,

which leads to a contradiction.

In summary, if all x’s and y’s are integers, then all λ’s must be integers, too.

We also make a note of the fact that if λ’s are feasible for the linear relaxation of

(3.2)–(3.4), then each of the auxiliary variables has a value in the interval [0, 1].

Next, we show that by imposing branching constraints on x and y variables, we do

not add more complexity to the pricing problem used for delayed column generation

at a node in the branching tree. If at some node in the tree we identify that yvti,tj

is fractional for some tests ti and tj and vehicle v, we can create two branches by

63

imposing constraints yvti,tj = 1 and yvti,tj = 0.

• Forcing yvti,tj = 1 is equivalent to making the following modifications to the

pricing problems:

– in pricing problems on vehicle v, use both ti and tj, and ti precedes tj;

– in pricing problems on vehicles other than v, since neither ti nor tj can be

assigned to them, delete them from the set of available tests.

• Forcing yvti,tj = 0 is equivalent to adding a new compatibility rule that ti cannot

precede tj on vehicle v; other pricing problems remain unchanged.

If we identify that xvt is fractional for some test t and vehicle v, we can create two

branches where

• forcing xvt = 1 is equivalent to forcing test t to be assigned to vehicle v in the

corresponding pricing problem;

• forcing xvt = 0 is equivalent to forbidding assignment of test t to vehicle v in

the corresponding pricing problem.

If we formulate the pricing problem as an MILP as described in Section 3.4, the

above requirements can be enforced by appropriate fixing of values of variables in the

model.

3.5.2 Other implementation details

3.5.2.1 Finding best incumbent

In order to evaluate the optimality gap early in the branching tree, we need an

incumbent, i.e., a feasible integer solution, to provide the upper bound on the set-

partitioning formulation. Then, whenever we are solving a pending node and get an

integer solution, we can update the best incumbent if the current integer solution

64

provides a better objective function value. However, the branch-and-bound process

may not generate an initial integer solution for quite some time.

Alternatively, we can use heuristics to find feasible integer solutions at branching

nodes. Section 3.4 has provided us a way of doing so by solving an integer version

of the set-partitioning formulation using subsets of columns. However, doing this at

each node is rather computationally expensive. Therefore, we only try to solve the

integer version of the set-partitioning formulation at the root node of the branching

tree, and every k nodes when exploring remainder of the tree. The choice of k depends

on our preferences for a particular balance between desire for a good integer solution

and dedication of computing resources.

3.5.2.2 Node selection strategy

In order to balance the emphasis on finding an optimal solution and quickly de-

tecting integer solutions along the tree, we use an alternating strategy to select which

node to explore next. Specifically, we maintain two synchronized queue data struc-

tures, a LIFO queue (stack) and a priority queue where nodes are ordered by the

best bound potentials, i.e., objective function values of their parent nodes (the lower

bound for the linear relaxation at the current node). At even steps, we fetch a node

from the LIFO queue; at odd steps, we fetch a node from the priority queue.

3.5.2.3 Hierarchical integrality check

Let’s take a look back at the branching rules we discussed in Section 3.5.1. Fixing

yvti,tj to zero or one for some ti, tj ∈ T and v ∈ V is equivalent to making tests ti

and tj (in this order) incompatible, or fixing the assignment of these two tests to this

vehicle. Similarly, fixing xvt to zero or one is equivalent to forbidding the assignment

of this test to this vehicle, or requiring it. In both cases, the branching constraints

are only taking effect for the pricing problem associated with an individual vehicle,

65

which does not contain much useful information since we have multiple vehicles to

consider in the pricing problem. If the final column generated by the pricing problem

does not use vehicle v, then the newly added constraint implied by the branching

rules is not useful.

Whenever we create branches in the tree, ideally we want to divide the feasible

region in a more balanced way. Therefore, rather than checking for fractional yvti,tj ’s

for every ti, tj ∈ T, v ∈ V , we instead define

zti,tj ≡
∑
v∈V

(
yvti,tj + yvtj ,ti

)
.

In other words, zti,tj = 1 if ti, tj are assigned to the same vehicle, regardless of their

orders; and 0 otherwise.

It can be easily shown that if yvti,tj are all integers for all v ∈ V , then zti,tj must

be integer, since the sum of integers must be an integer. On the other hand, if we

detect a fractional zti,tj for some ti, tj ∈ T , we can conclude that there must be

yvti,tj or yvtj ,ti that is fractional for some v ∈ V . In this case, we need to do further

branching to eliminate fractional variable values. Instead of further detection of the

fractional x variables which contribute to the fractional value of y variable, we can

directly partition the feasible region into two branches: zti,tj = 1 and zti,tj = 0. The

second constraint is equivalent to imposing an incompatibility relation between ti and

tj in the following pricing problems, while the first constraint is equivalent to always

assigning the two tests ti and tj together in every generated column.

Thus, we can partition the feasible region in a more balanced way, while preserving

the structure of the pricing problems.

66

3.6 Numerical results

3.6.1 Data preparation and testing platform

We implemented our algorithms in Java 8 using IBM ILOG CPLEX 12.6 as the

linear programming and MILP solver. Models were built using CPLEX Concert

Technology API in Java. We did our own implementation of the logic of delayed

column generation and branch-and-price algorithms, i.e., CPLEX was the only third-

party software package used in our program. All parallel algorithms were implemented

in a master-worker framework by using Java’s threadpool feature. All algorithms were

tested on a machine with Intel Xeon E1230 processor with 32GB RAM.

We tested our algorithms on two types of data instances: real and synthesized.

As part of the development of TP3S application, we collaborated with Ford to

obtain data associated with 7 past vehicle programs (safety testing part) for which

schedules were developed manually. For each of the vehicle programs, we had infor-

mation on the portfolio of tests that need to be performed, vehicles available and

their release times, and engineering information on the compatibility and precedence

relations between different tests. Table 3.1 provides high-level characteristics of those

programs. As we can see in Table 3.1, real instances vary in the number of total tests

depending on the vehicle program. A new vehicle model that only involves incremen-

tal changes compared with previous year model requires a small set of tests since most

of the designs have been thoroughly tested in previous years. In contrast, a brand

new design may require a large portfolio of tests to be performed on the prototype

vehicles for the purpose of validation. However, for all the instances we have seen, it

is rare that the number of tests exceeds 100.

The value in the “Num Vehicles” column of the table is the cardinality of the

set V and reflects the budget of vehicles made available for testing by the safety

group. This number usually serves as an upper bound, albeit a fairly conservative

67

Table 3.1: The table provides data characteristics of problem instances used in our
computational experiments.

Instance ID Num Vehicles Num Tests Density

1 36 46 0.90
1r 36 46 0.89
2 64 60 0.99

2r 64 60 0.88
3 95 64 0.94

3r 95 64 0.87
4 87 81 0.98

4r 87 81 0.79
5 15 18 0.86

5r 15 18 0.82
6 19 23 0.87

6r 19 23 0.84
7 18 12 0.96

7r 18 12 0.90

one, on the number of vehicles ultimately required. An obvious selection for that

upper bound is just the number of total tests in the vehicle program since we can

always assume that a schedule that assigns each test to a dedicated vehicle is a valid

one. The “Density” column captures the level of incompatibility between tests. It is

computed as the percentage of 0’s in the binary matrix A discussed in Section 1.2.1,

i.e., 1−
∑|T |

i=1

∑|T |
j=1 aij/|T |2. A higher density of the matrix A means that it is unlikely

that many tests can share a vehicle, which is common in the crash testing procedure

considering their destructive nature. Meanwhile, a lower density of incompatibility

means more flexibility in the scheduling. In practice, we are often interested in solv-

ing instances where the vehicle specification requirements of test requests are relaxed.

This is useful for engineers to measure the impact of engineering complexity on re-

sources required for testing. Therefore, for each of the problem instances, we also

considered a version where such specification constraints are relaxed. In Table 3.1,

they are marked with “r” after the instance ID.

To better evaluate the performance of our algorithms, we also synthesized a wide

68

Table 3.2: Parameters controlled during the data instance synthesis process

Parameter Range

Number of tests 10 – 300
Number of vehicles 8 – 240
Incompatibility density (L) 0.8, 0.85, 0.9, 0.95
Tightness of time window (F) 1.0, 1.5, 2.0, 2.5

range of data instances that resemble the real instances, as well as instances that were

more extreme in terms of size, rarely seen in current reality, to better understand any

limitations of our algorithms.

We varied several parameters during the instance generation process: (1) the

number of tests; (2) the number of budgeted vehicles and their release times; (3) the

compatibility and precedence relations between tests; (4) the tightness of the time

windows. For (1), we generated a wide range of instances, ranging from 10 to 300

tests. The durations of tests were sampled from the empirical distribution that was

based on tests from real instances 1–7. For (2), we set vehicle budget to be equal to

80% of the total test number (i.e., we assumed that at least 20% of the tests would

share a vehicle with another test). For (3), after generating the tests, we set a target

density level L and sampled the value of each entry of compatibility matrix A from a

Bernoulli distribution with success probability 1− L. At the last step, we generated

release times and milestones (due dates) for tests randomly, by controlling the time

between the two endpoints via a “tightness factor” F . Setting F = 1 means that

the time window is roughly equal to the average duration of the tests, which means

there is little flexibility in shifting the execution of the test without causing any time

penalty. Therefore, a low factor F means tighter time window constrains and less

flexibility in terms of timing, and vice versa. Table 3.2 summarizes the choices of

controlled parameters in the generation of the synthesized data.

By enumerating all combinations of the parameter values, we generated 256 syn-

thetic data instances in addition to the 7 original and 7 relaxed instances we obtained

69

Table 3.3: Definition of size groups

Size group Num. tests range

Small < 30
Typical 30 – 60
Moderate 70 – 90
Large 100 – 150
Extreme > 150

from Ford. We can partition these instances into 5 groups based on the number of

tests: small, typical, moderate, large, and extreme, where small contains less than

30 tests, typical contains 30-60, moderate contains 70-90, large contains 100-150, and

extreme contains 150-200 (see Table 3.3).

3.6.2 Results

We first tested the full enumeration approach applied to the CTSP-MP, as well

as delayed column generation algorithm (without branch-and-price), on real instances.

Table 3.4 shows the runtime of the two algorithms. The full enumeration algorithm

solved most of the instances to optimality. However, we have two instances, 7r and

10r, where the number of variables exceeded available memory; we mark these cases

as “−” in the table. The column generation algorithm is often slower, but it was able

to handle all the instances, solving all but two of them to optimality (and coming

within 3.5% and 0.3%, respectively, of optimality for the remaining two instances).

When testing the delayed column generation algorithm on the synthesized data

instances, we set the time limit for the last step — solving CTSP-RMP with all

columns generated while solving CTSP-LRMP — to 300 seconds. The objective

function value of CTSP-LRMP provides a lower bound for CTSP-MP. Therefore,

when measuring optimality, we compare the best incumbent we attained while solving

CTSP-RMP to the optimal value of CTSP-LRMP.

In general, the delayed column generation algorithm scales well and can solve most

70

Table 3.4: The table provides run times (in seconds) for our full-enumeration and
column-generation algorithms, where a dash indicates that the algorithm
did not terminate.

Instance ID Full Enumeration Column Generation

1 3.08 2.358
1r 3.82 2.352
2 1.83 34.283

2r 50.82 83.324
3 35.14 35.12

3r - 47.701
4 3.70 17.874

4r - 43.602
5 0.29 0.575

5r 0.34 0.942
6 0.39 1.829

6r 0.50 1.788
7 0.14 0.217

7r 0.19 0.285

instances in small, typical, moderate, and large groups to optimality. The average

statistics are shown in Table 3.5. “Avg. RMP Gap” is the average of optimality gaps

returned by the solver when solving the integer version of the CTSP-RMP. “Avg.

Opt Gap” is the average of optimality gaps computed by comparing the best integer

solution with the optimal objective function value of the relaxation CTSP-LRMP.

As we can see from the table, except for the extreme group, the delayed column

generation performed exceedingly well both in terms of solution times and solution

quality. But as the number of tests grows larger, we are apparently not introducing

enough variables into CTSP-RMP, and the integer problem becomes challenging

to solve. The algorithm starts to struggle to find a good quality solution. We also

recorded the percentage of the solved instances (which we defined as instances for

which we can obtain a solution within 5% optimality gap) in Figure 3.10 for different

size groups. Similarly, we are able to solve almost all instances in groups other than

large and extreme. We show the dependence of optimality gaps and solution times

on the number of tests in Figure 3.6. As we can see, the optimality gap increases

71

Table 3.5: Average performance of delayed column generation algorithm

Size group Sol. time (sec) Avg. RMP Gap Avg. Opt Gap

Small 9.46E-03 0.00% 0.00%
Typical 1.46E+00 0.00% 2.11%
Moderate 3.54E+01 0.00% 2.40%
Large 2.50E+02 2.34% 3.96%
Extreme 2.18E+03 13.63% 17.10%

Figure 3.10: Percentage of instances solved (<5% optimality gap) by delayed column
generation in each size group.

drastically when the number of tests exceeds 150.

Next, we tested the branch-and-price algorithm on synthesized instances. For

the branch-and-price algorithm, the optimality gap can be computed as the relative

difference between the best incumbent and the best lower bound, which is the lowest

objective function value of the linear relaxations of all pending nodes. We terminated

the algorithm after 1800 seconds. The average performance statistics are shown in

Table 3.6, which includes average solution time, optimality gap, and number of tree

nodes explored in each group. From the table, we can see the branch-and-price

algorithm performs extremely well for all groups except extreme. Specifically, we

can solve instances in small, typical, moderate almost to optimality. Additionally, we

also compare the solution attained by branch-and-price algorithm with those attained

by delayed column generation heuristics which corresponds to just solving the root

72

Figure 3.11: The optimality gap and solution time (in secs) versus the number of
tests

Table 3.6: Average performance of branch-and-price algorithm

Opt Gap Obj Val
Size group Sol. Time Opt Gap Nodes Exp. Improv. Improv.

Small 7.25E-02 0.01% 1.848485 0.06% 0.01%
Typical 1.34E+02 0.12% 324.6508 1.99% 0.67%
Moderate 8.48E+02 0.82% 391.4167 1.58% 0.87%
Large 1.09E+03 3.27% 113.1875 0.94% 0.64%
Extreme 2.60E+03 11.89% 4.090909 2.70% 2.36%

73

node in the branching tree. “Opt Gap Improv.” column of the table presents the

absolute improvement in the optimality gap (%). This can be achieved either by

finding a better incumbent or improving the lower bound to prove optimality. We

also include the column “Obj Val Improv.” containing the percentage improvement in

the objective function value of the best feasible solution found by the two algorithms.

As we can see, for small instance group, the improvements are trivial. But for typical,

moderate, and large groups, we do improve the optimality gap significantly as well as

succeeded in finding better solutions. A graphical comparison of the optimality gaps

obtained by the branch-and-price algorithm and delayed column generation algorithm

is shown in Figure 3.12. Even for extreme instance group, doing further branching can

Figure 3.12: Optimality gap: branch-and-price vs. delayed column generation

still help to find better solutions compared with just solving the root node. Among all

instances, branch-and-price algorithm improves the optimality gap of 69% of them.

Among the 69% improved instances, in 62% of them the branch-and-price algorithm

found a better incumbent for; in 7% of them branch-and-price improved the lower

bound solely without finding a better solution.

For a complete results of using delayed column generation and branch-and-price

algorithms to solve CTSP, we ask reader to refer to Table A.1 and Table A.2.

74

CHAPTER IV

Scheduling of safety crash tests under supporting

resource constraints

4.1 Introduction

In Chapter III we considered a version of the test scheduling problem where proto-

type vehicles are the only resource required for the execution of tests. In that setting,

the primary goal of optimization is to reduce the number of vehicles used, combined

with an optional penalty function related to time metrics, used when treating time

window constraints as soft ones (due dates) rather than hard ones (deadlines).

However, in reality, the execution of a test has requirements far more complex

than just a prototype vehicle. For example, when conducting a crash test, the vehicle

used will be delivered to a safety testing lab. At the lab, the vehicle is first equipped

with different instruments and equipment such as sensors, dummies, cameras, weight

ballasts, etc., in order to collect data during the crash, simulate injuries to vehicle

occupants, and monitor vehicle deformation and dummy motion. For some types of

equipment, e.g., dummies that are equipped with high precision sensors and micro-

computers, the lab may have access to only a limited number of units — in some

cases, only one. In these circumstances, if too many crash tests that require access

to such a resource during their execution are scheduled to be conducted on the same

75

or consecutive days, it becomes impossible to finish them in a timely manner due to

lack of access to sufficient resources. In these situations, we would spread out the

execution of such tests to alleviate the “peak time” demand for the scarce resource.

Figure 4.1 gives an example of over-utilization of a resource. In this example with

5 tests, each test is requiring 1 unit of a particular resource during its execution.

However, the daily supply for this resource is only 2 units. Therefore, the schedule

proposed on the left, which would use 3 units of this resource on one of the days is

not feasible. On the other hand, if we introduce some buffer time (delay of execution

for a following test) between tests, then we can reduce the peak usage of the resource

from 3 to 2, resulting in a feasible schedule on the right.

Figure 4.1: Example of resource over-utilization

In addition to equipment and instruments, there are other types of constrained

resources in the testing process: manpower, facility availability, etc. In this chapter,

we study a version of the crash test scheduling problem in which limited availability

of such supporting resources is taken into account. Depending on the types of the

crash tests considered, different subsets of resources may be needed. For example,

different dummies are required in different tests, and some of the crash tests may not

even require a dummy to be installed. A single test may also require different subsets

of resources during different stages. For example, the vehicle might be delivered

to different facilities for different types of preparation work, thus requiring different

76

facility resources.

In order to simplify the problem, we assume that a single resource is consumed

during the execution of a crash test at a constant daily rate of 1 unit. We assume that

the supply of this resource available on day e (for epoch) is Re. Although simplifying,

this assumption does not sacrifice a lot of generality since it can easily adapted to

respect the different availabilities of multiple resources and stages of execution. For

example, we can modify the constant consumption rate to represent the changing

demands on the resource.

With the introduction of capacity constraints on a supporting resource, the goal

is to find a schedule that minimizes the objective function that combines the cost

of using prototype vehicles and a time penalty, as in the previous chapter, but now

subject to the resource capacity constraint at each time epoch. We refer to this

problem as the crash test scheduling problem under supporting resource constraints

(CTSPR).

4.1.1 Literature review on scheduling under resource constraints

Resource constraints other than just the machines in the scheduling context fre-

quently arise in practice, and thus there are many papers that study this variation of

the problem. Blazewicz et al. (1983) gives a comprehensive review on this topic under

different resource type and machine settings. Classification method and complexity

analysis are given for the unit processing time special case. Optimality conditions

and polynomial algorithms are given for this special case. More recently, Hartmann

and Kolisch (2000); Kolisch and Hartmann (2006) give surveys of a wide range of

heuristics on solving the Resource-Constrained Project Scheduling problem. Com-

putational experiments have been conducted to compare the performance of various

methods on a standard library of problem instances. Garey and Johnson (1975) ex-

amine the computational complexity of scheduling problems associated with a certain

77

abstract model of a multiprocessing system. It can be showed that under some special

settings, when the number of processors is either 2 or 3, the problem can be solved

with low order polynomial algorithms. But in general, even with one resource type,

the problem is NP-complete and hard to solve. Davis and Heidorn (1971) propose

an algorithm to solve the resource-constrained project network scheduling problem,

where every task requires unit processing time. The approach is a form of bounded

enumeration originally developed for the assembly balancing problem. Computational

results on small instances are reported. Chen (2005) studies the problem where tasks

are of various types and whenever a machine needs to switch from processing one

type of work to another, a non-renewable resource is consumed; the supply of the

resource is limited, and therefore there is a limit on the number of changes of work

types. The paper proposes a heuristic to solve this type of problems.

Except heuristics, which are mostly commonly used in solving scheduling prob-

lems with resources constraints, there are other papers which explores combining

several methods to solve this type of problems. Christofides et al. (1987) proposes

a branch-and-bound algorithm for projects with resource constraints. The algorithm

is based on the idea of using disjunctive arcs for resolving conflicts that are created

whenever sets of activities have to be scheduled whose total resource requirements

exceed the resource availability in some periods. Various lower bounding techniques

including linear relaxation and Lagrangian relaxation are proposed. Computational

results on instances up to 25 activities and 3 types of resources are reported. Edis

and Oguz (2011) combines Lagrangian relaxation and Constraint Programming to

solve the resource-constrained scheduling problem. The resource constraint is relaxed

by introduction of Lagrangian multipliers and solved iteratively by a sub-gradient

method for optimal values of multipliers. Then the partial solution obtained by solv-

ing the relaxation is fed into a constraint programming formulation to get a feasible

solution.

78

In this chapter, we discuss extensions of the models and methods of Chapter III

to this variation of the test scheduling problem. In addition to considering scheduling

tests in a single vehicle program, we consider scheduling multiple programs whose

testing periods may overlap, forcing them to share limited resources.

4.2 Mixed integer formulation

One way to incorporate resource constraints into the problem is to extend the

mixed integer program (2.1)–(2.11) to keep track of resource usage in every epoch.

Namely, we can discretize the time horizon into epoch slots and assign test starting

times to these slots (rather than using continuous variables), enabling us to calculate

total resource consumption in every epoch. Figure 4.2 gives an illustration of the

resulting constrained assignment model. The green slots indicate the starting times

of different tests assigned to the vehicles.

Figure 4.2: Time discretization assignment model

In this formulation, we define binary decision variables xet,v, where xet,v = 1 if we

decide to assign test t to vehicle v, and the execution of t starts at epoch e.

Then the formulation is:

79

minimize
∑
v∈V

c′vuv +
∑

t∈T,v∈V

∑
e∈E

θvt,ex
e
t,v (4.1)

s.t.
∑

v∈V,e∈E

xet,v = 1 t ∈ T (4.2)

∑
t∈T,e∈E

xet,v ≤ uv v ∈ V (4.3)

xet,v = 0 e ∈ E : e ≤ max{qv, rt}, t ∈ T, v ∈ V (4.4)

1− xeti,v ≥
∑

e≤e′≤e+ptj

xe
′

tj ,v
ti, tj ∈ T, e ∈ E (4.5)

1− xeti,e ≥
∑
e′≥e

xe
′

tj ,v
ti, tj ∈ T : aij = 0, v ∈ V (4.6)

∑
t∈T,v∈V

∑
e−pt≤e′

xe
′

t,v ≤ Re e ∈ E (4.7)

xet,v ∈ {0, 1}, uv ∈ {0, 1}

As before, objective (4.1) is the total cost of the vehicles used and cost attributed

to test completion tardiness θet,v = max{e+ pt − dt, 0}, which is the tardiness of test

t if it starts in epoch e. Also familiar are constraints (4.2), which make sure every

test is covered, and (4.3), which forbid any assignments to a vehicle if it is not being

used. (4.4) are the time window constraints, indicating that no test can start before

it is released and vehicle to which it is assigned becomes available. (4.5) prevent

two tests that are assigned to the same vehicle from overlapping with each other

during their executions. For a time epoch e, we look back pj periods and check if

test tj starts within this timeframe. If so, then the execution of tj is ongoing and no

test assigned to this vehicle should start its execution in epoch e. (4.6) enforce the

ordering restriction for a pair of tests ti and tj where tj cannot follow ti on the same

vehicle. Finally, (4.7) verify that resource consumption across all tests in each epoch

is within available limits.

80

The above model contains only binary decision variables. The number of variables

depends on the number of tests |T |, the number of vehicles |V |, and the length of time

horizon |E|. In a typical problem instance, the length of planning horizon (taking

into account the grace period following the latest due date) is usually around 1 year,

i.e., on the order of 300 epochs. Therefore, we can see the timing horizon significantly

amplifies the number of decision variables.

Numerical experiments have shown that this model is generally difficult to solve es-

pecially for large instances where more tests, or longer planning horizon, are involved.

Therefore, we will approach this problem with an extension of the set-partitioning

formulation of Section 3.3.2 instead.

4.3 Set-partitioning formulations

We want to adapt the set-partitioning formulation and the solution approach we

used in Chapter III to work with the resource constraints. However, we need to revisit

some of the assumptions made in developing the original set-partitioning model. In

particular, in Section 3.3.2 we assumed that once the sequence of tests assigned to a

particular vehicle has been decided, the tests will be executed essentially back-to-back

(see formula (3.1) for calculation of test start times). However, when a supporting

resource is involved, it is possible that a test that is otherwise ready for execution has

to be delayed until the required resource becomes available.

In view of the above discussion, in addition to deciding which tests should be

combined, and in which order, we also need to decide the starting times of tests.

Hence, we extend the definition of a sequence to specify the execution timing decisions

of the tests contained in it. Returning to the example of Figure 4.1, we have 2

schedules each using 3 sequences; the corresponding sequences on the left and right

contain the same tests in the same order, but have different timing.

To summarize, here we define a (timed) sequence as an ordered set of tests together

81

with the start time of each test. To be valid, as before, the tests in the sequence have

to be compatible and their order must be acceptable given the rehit rules; moreover,

their execution start times must be in agreement with release times of the tests

and the vehicle, and tests in the sequence may not overlap. Notationally, while the

actual start times will depend on the vehicle to which the sequence is assigned, the

timing decisions within the sequence can be defined by a sequence of shifts, or delays,

∆t1 , . . . ,∆tk (here, tests in the sequences are executed in the order t1, . . . , tk). When

assigning these tests to vehicle v with release time qv, the actual start time of each

tests can then be computed as sti = qv + ∆ti , i = 1, . . . , k. After the start times

are determined, we can calculate the tardiness of each test and the resulting cost of

assigning the sequence to the vehicle in the same way as in Chapter III.

Then, the scheduling problem reduces to deciding the assignments of these timed

sequences to vehicles, subject to resource availability constraints in each epoch. Let

Ω be the set of all timed sequences and E — the set of epochs, i.e., our planning

horizon. The model is similar to the master problem in Section 3.4: we define binary

decision variables λω,v to represent assignments of (timed) sequences to vehicles, and

formulate the problem as follows:

CTSPR-MP minimize
∑

ω∈Ω,v∈V

cω,vλω,v, (4.8)

s.t.
∑

ω∈Ω: t∈ω,v∈B

λω,v = 1, t ∈ T, (πt), (4.9)

∑
ω∈Ω

λω,v ≤ 1, v ∈ V, (ρv), (4.10)

∑
ω∈Ω,v∈V

1eω,v, λω,v ≤ Re, e ∈ E, (σe) (4.11)

λω,v ∈ {0, 1}

82

Objective (4.8) and constraints (4.9) and (4.10) are already familiar to the reader.

Constraints (4.11) keep track of the resource consumption in each epoch. Here, we

define 1eω,v = 1 if sequence ω uses the resource in epoch e when assigned to v (i.e.,

there exists some test t in ω such that sωt ≤ e ≤ sωt + pt).

Similarly to the set-partitioning formulation in Chapter III, the number of se-

quences can be exponentially large, especially now that we have incorporated timing

decisions as part of the sequence definition. In this case, it is unlikely that we can

enumerate all the variables. Therefore, we rely on using delayed column generation

for this model.

4.4 Delayed column generation algorithm

Following the ideas of Section 3.4, we will use delayed column generation to solve

the linear relaxation of CTSPR-MP, and then re-impose integrality restrictions to

find a feasible integer solution using only variables that were introduced in the column

generation process.

As indicated in the formulation, we associate dual variables πt, ρv, and σe with

constraints (4.9), (4.10), and (4.11), respectively, in the linear relaxation of the master

problem and its restrictions. Since we have modified our definition of a sequence

and introduced a new set of constraints, we need to modify our pricing problem

accordingly. One way of doing that is to formulate the pricing problem as a one

vehicle version of CTSPR-MILP where time is discretized into epochs. However,

this time-indexed formulation is difficult to solve even for a single vehicle, becoming

prohibitively computationally expensive since it needs to be solved repeatedly.

Therefore, we propose two alternative approaches to solve the pricing problem:

(1) using constraint programming, and (2) using a sequence-then-time strategy.

83

4.4.1 Constraint programming formulation of the pricing problem

In Constraint Programming (CP), each variable can be assigned values from spec-

ified range, or domain, which usually contains a finite number of options, and rela-

tionships between decision variables are stated in the form of logical constraints. The

main goal of a CP problem is usually to find a solution that satisfies all constraints.

CP solvers use a domain refinery method to reduce the domain of each decision vari-

able as computation progresses. If the domain for a decision variable only contains a

single value, then we can conclude that it has to be the final value of that variable; if

the domain is empty, then we can conclude that the problem does not have a feasible

solution; if there are multiple value candidates in the domain and the solver cannot

decide which one is the true value, it will create multiple branches of the original

problem, with the decision variable taking on each of the possible values in separate

branches. A CP solver will perform this branching whenever it encounters a pend-

ing decision regarding the value of a variable. For some of the branches it creates,

where decision variables are fixed, constraints might imply conflicts, in which case the

solver needs to trace back to the branching point where this assignment was made

and fathom this infeasible branch. This procedure is called back-propagation.

Here we will discuss using CP to solve the pricing problem in the delayed column

generation algorithm for solving the linear relaxation of CTSPR-MP. Suppose π,

ρ, and σ are the optimal values of dual variables associated with the constraints of

the linear restricted master problem CTSPR-LRMP obtained by restricting the

variables to a subset of all timed sequences. There are three types of decisions we

need to make in the pricing problem: (1) which vehicle should be used; (2) what is

the composition of the tests in the sequence; (3) when does each of these tests start.

Again, we can decompose the pricing problem by vehicle (or vehicle group) as we did

in Section 3.4.1. Once the vehicle (group) selection is fixed, each subproblem that

corresponds to individual vehicle (groups) is independent of the others.

84

We propose a slot-based constraint programming model to select tests to form a

sequence and to time them appropriately to minimize the reduced cost. Let K be the

maximum number of tests can be performed on a single vehicle (this number can be

derived based on rehit rules and timing considerations of the vehicle program). Then,

there are K slots on the selected vehicle where we can assign tests. Notice that we do

not have to use up all K slots. Hence, we introduce a dummy test t0 which stands for

“nothing” or “empty” if assigned to a slot — this way, each sequence will consist of

exactly K tests. After deciding the assignments of tests to the K slots, the next step

is to determine the start times of tests in each slots, to complete a timed sequence.

The decision process is shown in Figure 4.3.

Figure 4.3: A slot based pricing model

Let Tg ∈ T ∪{t0}, g = 1, . . . , K, be decision variables representing the choice of a

test assigned to slot g in the sequence, and let integer variables Sg ∈ E, g = 1, . . . , K

denote the start times of the test in each slot. We have the following formulation of

85

the pricing problem for vehicle v:

CSTPR-PP-CP

minimize cv +
K∑
g=1

oTg ,Sg −
K∑
g=1

πTg − ρv −
∑
e∈E

σe
∑
g

heTg ,Sg
, (4.12)

s.t.
K∑
g=1

(Tg == ti) ≤ 1, ti ∈ T, (4.13)

min{qv, rTg} ≤ Sg, g = 1, . . . , K, (4.14)

Sg+1 ≥ Sg + pTg , g = 1, . . . , K − 1, (4.15)

(Tg == ti)→ (Tg′ ! = tj),

g = 1, . . . , K, g′ = g + 1, . . . , K, ti, tj ∈ T : aij = 0 (4.16)

(Tg == t0)→ (Tg′ == t0), g = 1, . . . , K, g′ = g + 1, . . . , K.

(4.17)

Objective function (4.12) is the reduced cost associated with assigning sequence con-

structed in this model to vehicle v, where oTg ,Sg = max{STg + pTg − dTg , 0}, i.e., it

is the tardiness of the test in slot g, and heTg ,Sg
= 1 if STg ≤ e ≤ STg + pTg , which

tracks the penalty associated with using the resource in epoch e. Notice that o’s

and h’s can be computed beforehand for every combination of values of Tg, Sg and

Tg, Sg, e. (4.13) guarantee that each test is included in the sequence at most once.

(4.14) ensure that tests start after their release times and the vehicle available time.

(4.15) specify the precedence relations between two consecutive slots, where the test

in slot g needs to be completed before the test at slot g + 1 can start. (4.16) enforce

the sequencing restriction if tj cannot follow ti, i.e., aij = 0 in the binary matrix A.

(4.17) indicate that once we decide to assign the dummy test t0 to some slot, it means

we are “closing” the sequence and assigning the dummy test to all the following slots

as well. This helps to reduce the symmetry of the sequence composition that is caused

by varying the position of the dummy test t0 in the sequence.

86

Notice that there is a clear hierarchy in the decision process. If we decide the

composition and order of the sequence, i.e., the values of Tg’s, the timing decisions

Sg are relatively easy to figure out, as we will see in the formulation (4.19)-(4.23).

Therefore, we can enforce the above hierarchical search strategy during the solution

process. Experiments have shown it is a useful strategy that can significantly improve

computational times.

In the implementation, it is also useful to convert CTSPR-PP-CP into a feasi-

bility problem by transforming the objective (4.19) into a constraint

cv +
K∑
g=1

oTg ,Sg −
K∑
g=1

πTg − ρv −
∑
e∈E

σe
∑
g

heTg ,Sg
≤ −ε (4.18)

for a small ε > 0. The reason is that, unlike in the branch-and-bound algorithm for

integer programming, the CP solution process does not provide lower bounds on the

objective function values of various branches.

4.4.2 A sequencing then timing strategy to solve the pricing problem

As we described in Section 4.4.1, there is a clear hierarchical decision pattern to

solving the pricing problem via constraint programming, since choosing the start times

of tests in the sequence is relatively easy once the composition and ordering of the

sequence has been determined. Therefore, when designing an algorithm for solving

the pricing problem, we can take advantage of this hierarchy among the variables by

decomposing the search process into stages: a sequence composition stage followed by

a timing stage. Computational experiments have shown that this strategy can speed

up the solution process.

However, one drawback of this strategy is that every time we solve the pricing

problem, we need to reinitialize the search algorithm as if we have no prior information

about the problem. Notice that only a small portion of the problem changes at each

87

iteration: only the coefficients in (4.18) change due to the changes in the values of the

dual variables, while the decision region remains invariant across iterations. However,

even after solving the pricing problem many times, the we do not retain information

about what the feasible region for a valid column looks like. Therefore, instead of

relying on constraint programming solvers to help us detect a negative reduced cost

column, we discuss explicitly separating the test selection and sequencing decisions

from the timing decisions, and develop algorithms that can take advantage of this

structure.

4.4.2.1 Optimal timing of a given sequence of tests

In this subsection we will provide a pseudo-polynomial algorithm that uses dy-

namic programming to determine the start times of individual tests and the vehicle to

assign this sequence of tests to so that the reduced cost is minimized, for a sequence

consisting of a given ordered subset of tests.

Recall that the goal of the pricing problem is to find a sequence and a vehicle that

minimizes the reduced cost

∑
v∈V

cvuv +
∑
t∈T

∑
e∈E

oets
e
t −

∑
t∈T

πtxt −
∑
v∈V

ρvuv −
∑
t∈T

∑
e∈E

e+pt∑
j=e

σjs
j
t ,

where uv, v ∈ V, are binary decision variables representing which vehicle is chosen for

the sequence; xt, t ∈ T, are binary variables representing which tests to include in the

sequence; and set , t ∈ T, e ∈ E are binary variables which equal to 1 if test t starts

processing in epoch e. There are 3 main consideration that are related to the timing

decisions for individual tests: (1) the total tardiness penalty
∑

t∈T
∑

e∈E o
e
ts
e
t , which

depends on the start times of individual tests; (2) the term related to resource usage∑
t∈T
∑

e∈E
∑e+pt

j=e σjs
j
t , which also depends on start times; and (3) the selection of a

vehicle for the sequence, which implicitly impacts the timing decisions by connecting

88

the earliest epoch a test can start to the release time of this vehicle. Meanwhile, the

term
∑

t∈T πtxt only depends on the composition of the sequence, and can be treated

as a constant if the sequence is already fixed and given.

Based on the above observation, we can design a dynamic programming (DP)

algorithm to determine the best start times for individual tests in a sequence of given

composition.

Suppose the sequence contains K tests t1, t2, . . . , tK (in this order). Define the

state of the DP as (i, h), where 1 ≤ i ≤ K is the slot in the sequence for which we

are currently deciding the start time and h is the earliest time the test at slot i can

start processing. Define the value function f(i, h) as the minimum cost of processing

all tests in and after the ith slot, given the earliest starting time of test in the ith slot

is h. This cost includes the tardiness of the tests and the penalty for using resources,

as discussed in the above paragraph. The boundary conditions are

f(K,h) = min
s≥h

(s+ ptK − dtK)+ −
s+ptK∑
e=s

σe for any h.

For the last test tK in the sequence, if we start in epoch s, then the tardiness of this

test is (s+ ptK − dtK)+ and the penalty for using the resource for this test is the sum

of dual variables σ from epoch s to s+ ptk . The DP recursion is

f(i, h) = min
s≥max{h,rti}

(s+ pti − dti)
+ −

s+ptk∑
e=s

σe + f(i+ 1, s+ pti)

 .

For a test ti in slot i, if we start the processing at time s, then the immediate

cost (tardiness penalty and the cost of using the resource) can be calculated as

(s+ ptk − dtk)+−
∑s+ptk

e=s σe. Meanwhile, the earliest starting time for the next test in

the sequence is s+ pti . By applying the recursive solution approach, we can compute

values of f(1, h), h ∈ E. The complexity of the DP is related to the timing horizon

89

length |E| and sequence length k, and is O(k|E|).

We then use the values of f(1, h), h ∈ E, to help in deciding which vehicle should

be assigned this sequence. In particular, for a vehicle v, the reduced cost of the

column would be

cv + f(1, qv)−
K∑
i=1

πti − ρv,

where
∑K

i=1 πti only depends on sequence composition, and qv is the release day

of vehicle v, as well as the earliest starting time for the first test in the sequence.

Therefore, to minimize the reduced cost, we can pick vehicle v? such that

v? = arg min
v
{−ρv + f(1, qv) + cv} .

By applying the above procedures, given an ordered subset of tests, we can de-

termine the best vehicle and timing choices for the tests in pseudo-polynomial time.

Thus, to solve the pricing problem, we could exhaustively enumerate all ordered sub-

sets of tests that are valid with respect to compatibility requirements and rehit rules,

and then apply the timing and vehicle selection procedure to find the corresponding

timed sequence with the smallest reduced cost.

As we discussed in Section 3.4.2, due to the destructive nature of the crash tests,

the maximum number of rehits is fairly limited. Therefore, the enumeration of all

possible valid ordered subsets of tests, can be computationally inexpensive, especially

for instances with sparse matrices A.

Following the ideas of Section 3.4.2, we can parallelize the search for the column

with the most negative reduced cost. In particular, we can decompose the search

for the best vehicle and timing choice by considering each ordered subset of tests

separately. The illustration of this approach is shown in Figure 4.4.

90

Figure 4.4: Offline pricing of all sequence compositions

4.4.3 Finding the initial set of variables

One key question in the delayed column generation algorithm is how to find the

initial set of sequences to include in the restricted master problem, since the linear re-

laxation of the initial restricted master problem needs to be feasible for the algorithm

to proceed.

In order obtain the initial set of sequences, we use a two-stage approach. First, we

solve a resource-unconstrained version of the scheduling problem, i.e., CTSP-MP,

using the approach described in Chapter III, which gives us an initial set of sequences

where tests are performed back-to-back. Then we re-time the tests in these sequences

to satisfy the resource constraints. Here, we use a constraint programming approach

to re-time the tests.

Assume that after solving the resource-unconstrained version of the problem, we

obtain a set of untimed sequences and vehicle assignments. Without of loss of gen-

erality, we assume the assignments to be ω′1 → v1, ω
′
2 → v2, . . . , ω

′
k → vk, where

ω′i → vi indicates assigning an untimed sequence ω′i to vehicle vi. Then the next step

is to time the tests subject to the resource constraints across multiple vehicles. Let

the integer decision variables st ∈ E, t ∈ T be the start times of tests, where E is

the set of epochs (planning horizon). We can formulate and solve the problem using

91

ILOG CPLEX CP Optimizer (CPO) as follows:

minimize
∑
t∈T

ot, (4.19)

s.t. rt ≤ st ≤ dt + ot, t ∈ T, (4.20)

qvi ≤ st t ∈ ω′i, i = 1, . . . , k, (4.21)

stl + ptl ≤ stm , tl, tm ∈ ω′i : tl → tm, i = 1, . . . , k (4.22)∑
t∈T :st≤e≤st+pt

1 ≤ Re, e ∈ E, (4.23)

st ∈ E.

Since vehicle usage has already been determined, the objective function (4.19) only in-

cludes the penalty associated with our timing decisions. (4.20) and (4.21) are tempo-

ral constraints for the earliest start time of each test. (4.22) describe the relationship

between timing decisions for tests tl and tm implied by their order in the sequence. Fi-

nally, (4.23) are the resource constraints. Notice that constraints (4.23) are not linear.

CPO provides for a special form of constraints, called global constraints, to enforce

such relations across multiple variables. We can replace (4.23) with a global constraint

called cumulative constraint, cumulative(s1, s2, . . . , s|T |, p1, p2, . . . , p|T |, e) ≤ Re, ∀e ∈

E.

Since the goal of solving this constraint programming formulation is to obtain

an initial set of timed sequences that guarantees feasibility of the linear restricted

master problem, we can ignore the objective (4.19) and treat this problem as a pure

feasibility problem.

4.4.4 A primal heuristic based on dual price of resources

After solving the linear relaxation of the master problem to optimality, we need

to re-introduce integrality constraints λω,i ∈ {0, 1} and solve the problem as a pure

92

binary optimization problem, as we did in Chapter III. This optimization problem

is always feasible after we have introduced the initial set of columns that form a

feasible schedule subject to the resource capacity constraints (4.11) as described in

Section 4.4.3. However, this feasible solution is usually not particularly good since

the sequences were not initially formed with an eye towards the scarce resource.

However, using a good initial feasible solution as a warm start helps the optimiza-

tion solver to better fathom branches that lead to bad solutions in terms of objective

function value in the branch-and-bound algorithm. It also helps to estimate the op-

timality gap at the early stage, which gives a straightforward intuitive metric that

can be used to understand the progress of the optimizer. Therefore, in this section,

we discuss how to use the dual variables πt, ρv, σe to produce a feasible solution using

heuristics.

When solving the linear relaxation of CTSPR-MP, we obtain dual information

for constraints (4.9), (4.10) and (4.11) at every iteration. We use the dual informa-

tion to guide the pricing problem to generate new columns to the RMP. The main

motivation behind the process is that the dual variables πt, ρv, σe capture so called

“shadow prices” of each resource that is capacitated, if we view tests and vehicles as

resources as well. For example, if in epoch e the number of tests in progress is lower

than the capacity of the supporting resource, Re, then by complementary slackness

we know that the corresponding dual variable σe = 0, which encourages the pricing

problem to generate new columns that use the resource in epoch e by charging a lower

price (of 0) for this epoch. Similarly, πt and ρv provide guidance for which tests to

include and which vehicle to assign the sequence to, by setting different prices and

rewards for resources (tests and vehicles).

Motivated by that, at the last iteration of the delayed column generation algo-

rithm, when the linear relaxation is solved to optimality and no more new columns are

to be generated, we can record the values of shadow prices associated with tests, vehi-

93

cles, and resources at the last iteration. These values indirectly capture the utilization

of resources in a schedule. For example, an epoch when the supporting resource is

not used to its full capacity can be viewed as free.

Then, for every possible untimed sequences, we apply the optimal timing algorithm

as described in Section 4.4.2.1, using the dual variable information of πt, ρv, σe. After

doing that, we have a collection of sequence-to-vehicle assignments that minimize the

reduced cost given their test compositions. We sort the entire collection by increasing

order of reduced costs and scan over it to select assignments(columns) that cover as

many tests as possible.

Whenever the supporting resource is used up at a certain epoch after we select a

few columns, we update its dual price to a sufficiently high value to forbid generating

further columns that involve using the resource at that epoch. Similarly, whenever

the vehicles in a vehicle group are all used, we also update the corresponding dual

price for the vehicle group to be large. Under those circumstances, the optimal timing

algorithm will be re-triggered, and a new set of different columns where tests may

be timed differently due the updates in the dual prices. Then we repeat the above

process to add new columns, and update dual prices whenever needed, until all tests

have been included at least once. The resulting set of columns compose a valid full

schedule where constraints (4.11) and (4.10) are respected.

4.5 Scheduling multiple vehicle programs

Our numerical experiments in this chapter include extremely large instances that

contain more than 100 individual tests (going up to several hundred). However, in

reality, it is rare to have more than 100 crash tests performed for one individual

vehicle development program; it is more typical to have around 50 tests, since most

programs represent evolution of existing models that do not need to be subjected to

a full battery of tests.

94

Besides demonstrating the scalability of our algorithm, solving extremely large

instances has another important practical purpose. Although a single vehicle devel-

opment program will not contain this many tests, it is common to have multiple

vehicle models (for different product lines) developed simultaneously within the com-

pany. If testing phases of two vehicle programs do not overlap in time, the scheduling

of those two programs can be performed independently. However, it is fairly common

to have testing phases of two or more programs overlap with each other. Since these

programs will have to share some resources (including instruments, dummies, time at

the crash lab, etc., but typically excluding prototype vehicles), it is essential that test

planners taking this into consideration when planning schedules for those overlapping

vehicle programs.

One can always argue that scheduling for multiple vehicle programs does not

fundamentally differ from solving a very large instance for a single program. However,

we can come up with solution approaches that can explicitly take advantage of the

partial independence of different vehicle programs, namely, decomposing instances

corresponding to multiple program by program and by planning horizon.

4.5.1 Decomposition by the vehicle program

The first natural decomposition strategy we can think of is decomposition by

vehicle program. Aside from the supporting resource constraints (4.11), scheduling

tests for different programs can be done independently.

Suppose we are solving a multi-program instance of CTSPR using delayed column

generation. One place where decomposition by vehicle program can be easily applied

is in solving the pricing problem. In the pricing problem, the supporting resource

constraints in the RMP (4.11) are dualized and represented in the definition of the

reduced cost of a column. Therefore, there is no coupling between different vehicle

programs in the pricing problem. We can set up an independent pricing problem for

95

each vehicle program, where the vehicle-program-specific pricing problem will only

consider tests and prototype vehicles specific to this program.

We can solve each individual vehicle-program-specific pricing problem during the

delayed column generation procedure either in parallel or sequentially. In the se-

quential setting, the time invested in solving all pricing problem scales linearly with

the number of sub-vehicle-programs that are contained in the “combined” instance,

assuming each individual program requires almost same amount of solution time and

differences in terms of size and complexity are insignificant.

Our forthcoming computational experiments demonstrate that instances of similar

sizes but corresponding to multiple programs require significantly less computation

than single-program instance, especially in solving pricing problems.

4.6 Numerical results

4.6.1 Single program

We use a testing environment similar to the one described in Section 3.6.1. For

simplicity, we only consider one supporting resource during the scheduling and we

assume the availability of the resource is constant over time. We set the time limit

to solve the integer version of CTSPR-LRMP to 900 seconds. We only tested the

algorithm on small, typical, moderate, and large groups. The program encountered

memory limit issues when trying to solve the extreme group because of the complexity

of resources constraints. Table 4.1 summarizes the performance statistics of the algo-

rithm on solving instances from various size groups. From the table, we can see that

the algorithm performs well on all groups except large, where instances contain more

than 100 tests. Figure 4.5 shows the percentage of solved and unsolved instances in

each group, where we consider an instance to be solved if we can obtain a solution

with optimality gap of 5% or less. We can solve almost all instances in groups other

96

Table 4.1: Average performance of delayed column generation for single-program in-
stances of CTSPR

Size group Sol. time (sec) Avg. RMP Opt. Gap Avg. Opt Gap

Small 5.10E+01 0.00% 0.61%
Typical 1.77E+02 0.00% 1.79%
Moderate 7.96E+02 1.29% 3.37%
Large 1.04E+03 6.17% 7.22%

than large, and half of the instances in large. Since the average optimality gap re-

ported for this group in Table 4.1 is 7.22%, even instances that we consider unsolved

are frequently quite close to the 5% threshold. The relatively poor performance on

instances in large group might be due to the fact that we are using the same value

of Re (resource capacity) in all instances. As the number of tests increases while

resource availability stays the same, it becomes increasingly more difficult to identify

feasible schedules, and large tardiness penalties become unavoidable since tests have

to be postponed due to lack of resources.

Figure 4.5: Percentage of solved and unsolved instances

We also plot the trend in average optimality gap as the size of the instances grows

in Figure 4.6. For CTSPR, we achieve slightly worse scalability compared to its

97

resource-unconstrained counterpart in the previous chapter. Here, the turning point

is around 120 tests.

Figure 4.6: Optimality gap vs. number of tests

For a complete table of results of solving CTSPR using delayed column generation

algorithm, we ask readers to refer to Table A.3 in the Appendix.

4.6.2 Multiple programs

We also tested our algorithm on instances formed by combining pairs of different

instances to create larger instances representing two programs.

We considered scenarios when two vehicle programs completely overlap with each

other, i.e., the start times of the programs are the same, and scenarios when they

overlap only partially. To control the extent of the overlap, we introduced a param-

eter L which equals 1 if two vehicle programs start at the same time and therefore

overlap with each other entirely; L = 0 if the execution horizons of two programs are

independent; and 0 < L < 1, which means that the second program starts L × |E1|

after the first program starts execution, if we assume the planning horizon of the first

program is E1.

98

The performance statistics are summarized in Table 4.2. The algorithm gener-

ally performs well when solving two-program instances, except when each program’s

instance comes from large group. However, this type of instances are rarely seen in

reality since each large instance contains 100—150 tests; they were truly designed to

test the computational limits of our algorithm rather than to be particularly realistic.

Table 4.2: Average performance of delayed column generation for two-program in-
stances of CTSPR

Combination Sol. Time Avg. RMP Opt Gap Avg. Opt Gap

Small + Small 1.78E-01 0.00% 0.00%
Small + Typical 2.74E+02 0.59% 0.66%
Small + Moderate 5.16E-01 0.00% 0.15%
Small + Large 4.72E+02 0.83% 0.89%
Typical + Typical 1.77E+01 0.00% 0.00%
Typical + Large 5.29E+02 3.68% 5.01%
Large + Large 6.52E+02 21.16% 34.40%

Quite intuitively, we also find that the algorithm performs better on instances

where two programs are relatively independent, i.e., overlap only over a short time,

as shown in Figure 5.1.

Figure 4.7: Average optimality gap for different values of overlap level L

For a complete table of results of solving multiple vehicle program scheduling, we

99

ask reader to refer to Table A.4 in the Appendix.

100

CHAPTER V

Conclusion

5.1 Conclusion

In this thesis, we discussed three types of scheduling problems that arise during

the new vehicle model development stage at Ford.

In the first version, we consider schedules for all the tests from a wide variety of

departments on a macro level. Due to the size of the problem instances, we mainly

depend on using heuristics to attain high quality solutions.

In the second version, we develop schedules specifically for crash tests. The com-

plex time window constraints and sequencing restrictions among those tests make this

variation difficult to be solved just by heuristics. Additionally, due to the destructive

nature of crash tests, a compact schedule for executing them is critical to the over-

all utilization of prototype vehicles for the full schedule. Therefore, more accurate

models and solution approaches are necessary for solving this variation.

In the last variation of the problem, we introduce a new set of constraints, sup-

porting resources constraints, into the model. The reason is that supporting resources

can be the bottleneck for a schedule due to their limited supplies. Therefore, it is ex-

tremely important to consider resources other than just the prototype vehicles when

scheduling crash tests. Based on the set-partitioning formulation we proposed in

Chapter III, we propose an extension of the model where the timing decisions for in-

101

dividual tests are introduced explicitly into the definition of a sequence of tests. We

also solve the scheduling problem for multiple vehicle programs, where the supporting

resources constraints play a more vital role compared with the one for a single vehicle

program.

In the numerical results sections of this thesis, we have shown the effectiveness

and scalability of our algorithms. For all the problem instances that we obtained from

Ford so far, we can always solve them to near-optimality with a small gap (< 1%).

Testing the algorithms on synthesized data instances, we can solve them up to 2 times

the typical size of real instances within an optimality gap less than 5%. For those

more extreme cases we generated to test our performance boundary, most of the time

we were still able to attain feasible solutions within 10% of optimality, which shows

that the algorithm is fairly future-proof in anticipation of solving more challenging

scheduling problems that Ford might face in the future as a stricter compliance on

occupant safety is adopted and more crash tests need to be performed in order to

satisfy the stricter standards.

However, there is still significant space for improvements and topics that are in-

teresting to explore under our current algorithm framework.

5.2 Future research directions

In this section, we discuss the areas where we can further improve our algorithms

to achieve better performance and scalability. Also, we cover potential new variations

of the scheduling problem which can be accommodated by extensions to our current

algorithm framework.

102

5.2.1 Branch-and-price algorithm for scheduling under supporting re-

source constraints

In Section 3.5, we proposed a branch-and-price algorithm to solve CTSP exactly.

From the numerical results, we do see that doing further branching on fractional

variables helps to either improve the quality of the solution found by just solving

the root node linear relaxation, or provide better estimates of the optimality gap of

the solution (occasionally even proving its optimality) by improving the lower bound.

In order to maintain the invariant structure of the pricing problems and produce

more balanced trees, instead of directly branching on the composite variable λω,v, we

build the relation between λ variables and the original variables xt,v and yti,tj in the

CTSP-MILP formulation, and branch on the latter instead.

We can apply similar ideas to develop the branch-and-price algorithm to solve

CTSPR exactly. Aside from the integrality check we do in Section 3.5, we would also

check if

zet =
∑

ω:t∈ω,sωt =e,v

λω,v (5.1)

is fractional or not by summing up all variables where the corresponding column

contains t in the sequence and starts e at time epoch t.

By doing the integrality checks in Section 3.5, we can guarantee that there is no

fractional assignments for a single test to different vehicles and consistent precedence

orders between any two tests. By checking this additional rule (5.1), we can also

guarantee that a single test is non-preemptive and has a fixed starting time on a

vehicle.

However, fixing zet = 1 has a significant impact on the decision region, while fixing

zet = 0 has relatively little impact. To better balance the tree, we can instead check

integrality on an aggregate level, get =
∑

j≤e zt, i.e, if test t has begun its execution

before time epoch e. Thereby, fixing get to 1 or 0 requires the test to begin either

103

before or after t, and thus having approximately the same impact on the sub-decision

region.

5.2.2 Decomposition by the planning horizon in solving multiple vehicle

program scheduling

We discussed one decomposition strategy when solving instances involving multi-

ple vehicle programs — decomposing the problem by the vehicle program when solving

the linear relaxation of the set-partitioning formulation in Section 4.5. In addition, a

further decomposition strategy is to decompose by execution horizon, namely to sep-

arate the execution horizon into different stages and solve a sub-scheduling problem

for each stage. There are cases where two vehicle programs are happening concur-

rently, meaning they start almost at the same time and need to share the supporting

resources throughout their execution periods. However, it is more common to have

different vehicle programs that only partially overlap. There is usually some chrono-

logical order associated with each program, and although they overlap, a second

vehicle program might not enter testing until the first program has been undergoing

testing for a while.

To use an illustrative example, suppose we have two vehicle programs, 1 and 2,

and program 2 begins testing 50 days after program 1 has started its testing. In this

case, vehicle program 1 is utilizing the supporting resources by itself for the first 50

days in the planning horizon. After the first 50 day, the two programs need to work

in a coordinated fashion once program 2 has also begun testing. It is possible that

after, say, another 50 days program 1 will complete all of its tests, thus leaving the

supporting resource solely for the use of program 2.

In the previous example, we can see that the planning horizon can be separated

roughly into 3 stages: (1) the stage when program 1 is using all of the supporting

resources; (2) the stage when programs 1 and 2 need to share resources; (3) the stage

104

when program 2 uses all of the resources. The most important of the three stages is

stage (2), since it requires coordination between programs. If the detailed schedule of

stage (2) is formed first, stages (1) and (3) are relatively independent of each other

since one vehicle program is being considered during each stage. An illustration is

provided in Figure 5.1.

Figure 5.1: Two vehicle programs that partially overlap

One possible way to take advantage of such partial decomposition by planning

horizon is to use a solution approach that combines a Lagrangian relaxation method

and delayed column generation method.

Formally, let us assume that we have two vehicle programs, program 1 and 2, that

do not start at the same time. Without loss of generality, we assume program 1 starts

at time epoch 0, and 2 starts at epoch e′ > 0. Suppose we have an estimate of when

program 1 will wrap up (if time window constraints are hard ones, then it’s the latest

deadline for all tests in the vehicle program), and denote it by e′′. If e′′ ≤ e′, then the

scheduling for those two programs can be entirely decomposed into two independent

scheduling problems. If not, we can decompose the planning horizon according to

the stages we described above: stage E1 = {e| 0 ≤ e < e′} where only tests from

program 1 are being executed; stage Esharing = {e| e′ ≤ e < e′′} where two programs

105

are sharing resources; and E2 = {e| e ≥ e′′} where only tests from program 2 are

being executed.

For stages E1 and E2, we do not need to consider the resource sharing issue. But

for Esharing, two programs need to work in a coordinated way. Assume the set of

tests, set of vehicles, and set of valid sequences for program i are T i, V i, and Ωi,

respectively. The full set-partitioning formulation is

minimize
∑

ω∈Ω1,v∈V 1

cω,vλω,v +
∑

ω∈Ω2,v∈V 2

cω,vλω,v (5.2)

s.t.
∑

ω∈Ωi: t∈ω,v

λω,v = 1, t ∈ T i, i = 1, 2 (5.3)

∑
ω∈Ωi

λω,v ≤ 1, v ∈ V i, i = 1, 2 (5.4)

∑
ω∈Ωi,v

1eω,vλω,v ≤ Re e ∈ E1 ∪ Esharing ∪ E2 (5.5)

λω,v ∈ {0, 1}.

The only coupling relations between programs 1 and 2 is (5.5) when e ∈ Esharing.

Therefore, we introduce Lagrange multipliers σe, e ∈ Esharing and rewrite (5.2) as

L(σ) =
∑
i=1,2

 ∑
ω∈Ωi,v∈V i

cω,vλω,v +
∑

e∈Esharing

σe(Re −
∑

ω∈Ωi,v∈V i

1eω,vλω,v)

 .

For any given σ, the problem can be decomposed entirely into two independent pieces,

where the program 1’s scheduling happens during epochs in E1∪Esharing and program

2’s scheduling happens during epochs in Esharing∪E2. During each individual horizon,

the scheduling problem is equivalent to the one we have seen for a single vehicle

program CTSPR-MP as described in Section 4.3, and can be solved efficiently by

delayed column generation algorithm for moderate sized instances.

To obtain the best bound provided by L(σ), we can implement a sub-gradient

106

method in order to search for the best value of σe, e ∈ Esharing. At each iteration, we

solve the individual scheduling problem for each program independently and combine

two partial solutions to form a full solution for two programs. Then, we use the

solution to obtain the sub-gradient and update σ accordingly. The process repeats

until the σ value converges.

5.2.3 Scheduling with expediting resources

In some situations, resources such as labor can be used to expedite the execution of

some tests. When preparing and instrumenting a vehicle, if we assign more engineers

to work on the task, we may be able to reduce the time it takes to finish it, thus

reducing the execution time. However, the improvements of the working efficiency

are not always proportional to the amount of resources invested. If we assign 100

engineers to a task, it is unlikely we can finish the task in 1
100

th of its original length.

In reality, engineers at Ford usually work around a one-shift (day shift) schedule at

the testing facilities. In some rare cases, if some tests turn out to be overwhelmingly

critical and time-sensitive, there can be two groups of engineers who work around the

clock (day and night shifts) assigned to those tests, in order to speed-up the execution

process.

Here, in order to simplify the problem, we assume that at a given time epoch, we

can have the option to double the execution speed of a task by assigning 2 shifts of

labor to it. Notice in this case, the duration of a test is not a given time span (in

epochs) anymore, but rather a value related to the above decision. Therefore, the

complexity of the test (which we originally termed duration) is usually quantified as

the amount of working hours required to finish the task (in shifts). For example,

instead saying that a test is going to take 10 days to complete, we say that it requires

10 shifts of work to complete. If it is performed in the normal mode (1 shift a day)

constantly, then it will be completed in 10 days, but if we assign 2 shifts of labor to

107

it every day, then its length is 5 days instead.

Because work hours are a limited resource, we cannot expedite every tasks we

have. Instead, we can only concentrate resources on critical tests first, while the

other ones available at the testing facility at the same time might need to wait their

turns due to the scarcity. We also assume that once a test starts its execution, there

has to be at least 1 shift of labor assigned to it at every epoch before it is completed,

i.e., no preemptive execution.

Following the idea in Chapter IV, where we introduce timing decisions into the

definition of a sequence, we can further expand the concept of a sequence by also

introducing the working modes at each epoch for a test. For a test t ∈ ω, aside from

specifying its relative start time ∆t, we also include an array of indicators to stand

for the working modes at each time epoch, namely mt,e ∈ {0, 1, 2}, e ∈ E. mt,e = 0

means no shifts are assigned to t at a relative (to the vehicle release day) epoch e;

mt,e = 1 or mt,e = 2 means that 1 or 2 shift(s) are assigned to it at relative epoch e.

Lastly, we have
∑

e∈Emt,e = pt, where pt is the amount of work (in shifts) required to

finish test t. When the vehicle to which the sequence is assigned to is determined, we

can compute the absolute start times and work modes for each test in the sequence

as st = qv + ∆st and mt,e = mt,e−qv . Then the set-partitioning formulation writes as

minimize
∑
ω,v

cω,vλω,v (5.6)

s.t.
∑

ω: t∈ω,v

λω,v = 1, (5.7)

∑
ω

λω,v ≤ 1, (5.8)

∑
ω,v

mω
t,eλω,v ≤ Re (5.9)

λω,v ∈ {0, 1}

108

where mω
t,e are the number of shifts (labor power) we assign to test t in the sequence

ω as defined above.

To generate new variables, we also need to decide the number of shifts assigned

to a test aside from its start time if we would like to include it in the sequence.

We can adopt the dynamic programming formulation discussed in Section 4.4.2.1

to decide the work modes as well as starting times for tests. Define value function

g(i, h, p), i = 1, . . . , K, h ∈ E, p = 0, . . . , pmax similarly to Section 4.4.2.1, containing

the terms in the reduced cost that depend on the timing decision. Let the state (i, h, p)

be the current slot, current time, and the remaining work amount to complete the

test correspondingly. The recursion is

g(i, h, p) = I{h > dti}+min

 −σe + g(i, h+ 1, p− 1) assign 1 shift, if p− 1 ≥ 0

−2σe + g(i, h+ 1, p− 2) assign 2 shifts, if p− 2 ≥ 0

(5.10)

The boundary conditions are:

g(i, h, pti) = I{h > dti}+ min

g(i, h+ 1, pti) test is not started

−σh + g(i, h+ 1, pti − 1) assign 1 shift

−2σh + g(i, h+ 1, pti − 2) assign 2 shifts

(5.11)

g(i, h, 0) = g(i+ 1, h, pti+1
) (5.12)

g(K,h, p) = I{h > dti}+ min {−σh + g(K,h+ 1, p− 1), 2σh + g(K,h+ 1, p− 2)}

(5.13)

Besides the maximal number of tests that can be performed on a vehicle K, length of

the planning horizon E, the algorithm also depends on the maximum shifts required

for an individual test pmax.

109

5.2.4 Application to stochastic scheduling

Another practical variation of the scheduling problem is to consider uncertainty

into the parameter values. For example, when deciding the portfolio of tests to

conduct for a vehicle program, engineers may not have 100% confidence in how long

a test will take even though the type and requirements of the test is known. Some

vehicle parts required by the test may be delivered late thus affecting the progress

of instrumenting the vehicle. Some mechanical work may be more complicated than

expected and takes more time. A practical approach is to assume the duration of

a test follows a probability distribution. In the most simplified example, we may

assume the duration pt for a test t can take values from a finite set, e.g., a triplet

(p1
t , p

2
t , p

3
t), where p1

t is the best-case (shortest) value, p2
t is the most likely value, and

p3
t is the worst-case value, with some probabilities. We denote a realization of the

test durations for all tests as ξ ∈ Ξ, where Ξ is the set for all realizations, which has

cardinality |T |3 for the discrete triangular case.

Suppose we want to solve CTSP (without resources constraints) under this stochas-

tic test duration setting. If we follow the similar objective function definition, where

we want to minimize a combination of vehicle usage and penalty function related

to timing if a test is performed out of its execution window, the problem reduces

to an expected value minimization problem. Because of the uncertain test dura-

tions, the time penalty of a test depends not only on its own duration realization,

but also on its predecessors’ duration realizations on the same vehicle. If we model

the stochastic problem using formulation CTSP-MILP, then the decision region is

stochastic and depends on the realization of the test durations ξ. Specifically, the

start time decision variables st, t ∈ T, depend on ξ and are indeed st(ξ). However, in

CTSP-MP formulation, since the test composition of a variable λω,v, ω ∈ Ω, v ∈ V

is determined, we can evaluate the expected time penalty for a sequence-vehicle as-

signment analytically and purely offline, i.e., cω,v(ξ) depends on the duration real-

110

ization but can be computed beforehand given the composition of ω and v. Then

the stochastic counterpart can be written by just replacing the objective function by

min
∑

ξ∈Ξ P(ξ)
∑

ω∈Ω,v∈V cω,v(ξ)λω,v. This problem is no more difficult than a deter-

ministic problem.

In another setting, instead of trying to minimize the expected time penalty, we

assume a hard threshold on the maximum violation of the time window constraints

for each test. However, due to the uncertainty of the test durations, we would like

to satisfy this hard threshold constraint with a high probability, say 95%. Roughly

speaking, among all the realization of durations, we can violate 0.05|Ξ| scenarios. If we

view the maximum number of violated scenarios as a type of resource, the stochastic

CTSP reduces to a deterministic CTSPR problem. We introduce an indicator

Iξω,v, ω ∈ Ω, v ∈ V, ξ ∈ Ξ such that Iξω,v = 1 if the sequence-vehicle assignment

violates the hard threshold constraint under duration realization ξ; and 0 otherwise.

The resource capacity constraint is

∑
ξ∈Ξ

P(ξ)
∑

ω∈Ω,v∈V

Iξω,vλω,v ≤ 0.05|Ξ|.

Notice that the indicators Iξω,v can be evaluated offline for every sequence-vehicle

combination beforehand because of the known test compositions. Therefore, solving

a stochastic CTSP with a probabilistic constraint is equivalent to solving a CTSPR

problem where the violated scenarios are a type of resource.

For the case of continuous distributions for durations or more general stochas-

ticity, we can solve the optimization by Monte Carlo sampling and Sample Average

Approximation (SAA) method, which transforms the continuous case into discrete

realizations and similar solution strategy can be applied.

111

APPENDIX

112

APPENDIX A

Computational result tables

113

Table A.1: Numerical result for CTSP using delayed column generation

Inst id Num tests Num vehicles Incomp density Num seq Iterations Relax Obj val Cols gen Tardiness Used vehicles Obj val time spend(sec) RMP gap Opt gap
s0 10 8 0.82 28 2 2500.00 2 0 5 2500 3.32E-03 0.00% 0.00%
s1 10 8 0.82 28 2 2500.00 2 0 5 2500 4.44E-03 0.00% 0.00%
s2 10 8 0.82 28 2 2509.00 2 9 5 2509 4.48E-03 0.00% 0.00%
s3 10 8 0.82 28 2 2538.00 2 38 5 2538 5.47E-03 0.00% 0.00%
s4 10 8 0.90 20 1 3097.00 0 97 6 3097 2.44E-03 0.00% 0.00%
s5 10 8 0.90 20 1 3103.00 0 103 6 3103 3.23E-03 0.00% 0.00%
s6 10 8 0.90 20 1 3110.00 0 110 6 3110 2.75E-03 0.00% 0.00%
s7 10 8 0.90 20 1 3119.00 0 119 6 3119 6.41E-03 0.00% 0.00%
s8 10 8 0.95 15 1 4000.00 0 0 8 4000 2.12E-03 0.00% 0.00%
s9 10 8 0.95 15 1 4000.00 0 0 8 4000 2.02E-03 0.00% 0.00%
s10 10 8 0.95 15 1 4014.00 0 14 8 4014 2.03E-03 0.00% 0.00%
s11 10 8 0.95 15 1 4040.00 0 40 8 4040 2.21E-03 0.00% 0.00%
s12 10 8 0.98 12 - - - - - - 1.70E-03 - -
s13 10 8 0.98 12 - - - - - - 1.61E-03 - -
s14 10 8 0.98 12 - - - - - - 1.60E-03 - -
s15 10 8 0.98 12 - - - - - - 1.58E-03 - -
s16 20 16 0.80 102 9 3505.00 21 5 7 3505 3.10E-02 0.00% 0.00%
s17 20 16 0.80 102 9 3524.00 25 24 7 3524 3.82E-02 0.00% 0.00%
s18 20 16 0.80 102 7 3587.00 18 87 7 3587 2.81E-02 0.00% 0.00%
s19 20 16 0.80 102 8 3695.00 20 195 7 3695 3.20E-02 0.00% 0.00%
s20 20 16 0.84 84 4 4128.00 10 128 8 4128 1.36E-02 0.00% 0.00%
s21 20 16 0.84 84 7 4139.00 15 139 8 4139 2.08E-02 0.00% 0.00%
s22 20 16 0.84 84 4 4146.00 10 146 8 4146 1.38E-02 0.00% 0.00%
s23 20 16 0.84 84 9 4191.00 17 191 8 4191 3.00E-02 0.00% 0.00%
s24 20 16 0.89 63 2 5000.00 2 0 10 5000 6.83E-03 0.00% 0.00%
s25 20 16 0.89 63 1 5000.00 0 0 10 5000 7.53E-03 0.00% 0.00%
s26 20 16 0.89 63 2 5023.00 2 23 10 5023 8.06E-03 0.00% 0.00%
s27 20 16 0.89 63 3 5096.00 3 96 10 5096 8.63E-03 0.00% 0.00%
s28 20 16 0.95 42 1 6558.00 0 58 13 6558 3.95E-03 0.00% 0.00%
s29 20 16 0.95 42 1 6558.00 0 58 13 6558 4.10E-03 0.00% 0.00%
s30 20 16 0.95 42 1 6576.00 0 76 13 6576 4.04E-03 0.00% 0.00%
s31 20 16 0.95 42 1 6626.00 0 126 13 6626 4.62E-03 0.00% 0.00%
s32 30 24 0.77 235 17 4448.85 57 38 9 4538 3.21E-01 0.00% 2.00%
s33 30 24 0.77 235 19 4516.80 69 96 9 4596 3.77E-01 0.00% 1.75%
s34 30 24 0.77 235 13 4668.50 60 202 9 4702 2.82E-01 0.00% 0.72%
s35 30 24 0.77 235 14 4936.29 62 541 9 5041 3.24E-01 0.00% 2.12%
s36 30 24 0.81 198 13 4992.75 53 42 10 5042 1.49E-01 0.00% 0.99%
s37 30 24 0.81 198 13 5030.86 55 102 10 5102 1.64E-01 0.00% 1.41%
s38 30 24 0.81 198 12 5117.43 54 210 10 5210 1.58E-01 0.00% 1.81%
s39 30 24 0.81 198 14 5315.92 51 357 10 5357 1.98E-01 0.00% 0.77%
s40 30 24 0.87 148 10 5815.22 33 47 12 6047 2.23E-01 0.00% 3.99%
s41 30 24 0.87 148 7 5827.43 27 51 12 6051 2.37E-01 0.00% 3.84%
s42 30 24 0.87 148 8 5880.57 28 90 12 6090 2.07E-01 0.00% 3.56%
s43 30 24 0.87 148 9 6010.00 32 575 11 6075 7.45E-02 0.00% 1.08%
s44 30 24 0.94 84 3 7535.50 4 179 15 7679 1.38E-02 0.00% 1.90%
s45 30 24 0.94 84 3 7536.50 4 179 15 7679 1.40E-02 0.00% 1.89%
s46 30 24 0.94 84 4 7555.00 4 179 15 7679 1.62E-02 0.00% 1.64%
s47 30 24 0.94 84 4 7603.00 5 253 15 7753 2.61E-02 0.00% 1.97%
s48 40 32 0.78 392 19 5490.47 95 134 11 5634 1.51E+00 0.00% 2.61%
s49 40 32 0.78 392 21 5550.04 106 186 11 5686 1.57E+00 0.00% 2.45%
s50 40 32 0.78 392 19 5678.28 98 325 11 5825 1.72E+00 0.00% 2.58%
s51 40 32 0.78 392 21 6073.82 104 736 11 6236 2.12E+00 0.00% 2.67%
s52 40 32 0.83 312 10 6402.83 66 178 13 6678 5.87E-01 0.00% 4.30%
s53 40 32 0.83 312 16 6481.93 96 207 13 6707 9.95E-01 0.00% 3.47%
s54 40 32 0.83 312 16 6618.80 92 315 13 6815 1.32E+00 0.00% 2.96%
s55 40 32 0.83 312 13 6887.92 78 628 13 7128 6.94E-01 0.00% 3.49%
s56 40 32 0.88 233 11 7025.00 51 184 14 7184 2.15E-01 0.00% 2.26%
s57 40 32 0.88 233 11 7064.57 68 175 14 7175 2.32E-01 0.00% 1.56%
s58 40 32 0.88 233 12 7185.50 69 324 14 7324 3.19E-01 0.00% 1.93%

114

Table A.1: Numerical result for CTSP using delayed column generation

Inst id Num tests Num vehicles Incomp density Num seq Iterations Relax Obj val Cols gen Tardiness Used vehicles Obj val time spend(sec) RMP gap Opt gap
s59 40 32 0.88 233 13 7471.00 74 642 14 7642 4.87E-01 0.00% 2.29%
s60 40 32 0.94 131 4 9292.00 12 292 18 9292 2.85E-02 0.00% 0.00%
s61 40 32 0.94 131 5 9322.00 13 322 18 9322 3.43E-02 0.00% 0.00%
s62 40 32 0.94 131 5 9411.00 14 418 18 9418 4.47E-02 0.00% 0.07%
s63 40 32 0.94 131 5 9601.00 11 636 18 9636 4.65E-02 0.00% 0.36%
s64 50 40 0.79 565 18 6818.61 124 63 14 7063 3.62E+00 0.00% 3.58%
s65 50 40 0.79 565 21 6929.68 128 161 14 7161 3.93E+00 0.00% 3.34%
s66 50 40 0.79 565 21 7136.87 126 459 14 7459 4.01E+00 0.00% 4.51%
s67 50 40 0.79 565 21 7555.14 128 893 14 7893 4.14E+00 0.00% 4.47%
s68 50 40 0.84 451 15 7805.58 108 81 16 8081 1.59E+00 0.00% 3.53%
s69 50 40 0.84 451 14 7884.40 89 158 16 8158 1.67E+00 0.00% 3.47%
s70 50 40 0.84 451 16 8038.91 108 369 16 8369 2.08E+00 0.00% 4.11%
s71 50 40 0.84 451 16 8343.15 114 1045 15 8545 1.74E+00 0.00% 2.42%
s72 50 40 0.89 330 10 9094.78 72 172 18 9172 3.77E-01 0.00% 0.85%
s73 50 40 0.89 330 10 9149.00 66 228 18 9228 5.74E-01 0.00% 0.86%
s74 50 40 0.89 330 11 9309.00 79 370 18 9370 4.87E-01 0.00% 0.66%
s75 50 40 0.89 330 12 9576.83 73 1175 17 9675 5.78E-01 0.00% 1.03%
s76 50 40 0.95 184 5 11536.00 17 164 23 11664 1.26E-01 0.00% 1.11%
s77 50 40 0.95 184 6 11587.50 14 180 23 11680 2.63E-01 0.00% 0.80%
s78 50 40 0.95 184 5 11698.50 18 296 23 11796 1.89E-01 0.00% 0.83%
s79 50 40 0.95 184 5 11929.00 18 559 23 12059 1.67E-01 0.00% 1.09%
m0 60 48 0.80 783 22 7932.72 165 295 16 8295 7.14E+00 0.00% 4.57%
m1 60 48 0.80 783 26 8099.23 196 418 16 8418 8.46E+00 0.00% 3.94%
m2 60 48 0.80 783 24 8333.97 171 705 16 8705 8.31E+00 0.00% 4.45%
m3 60 48 0.80 783 23 8853.38 169 1223 16 9223 8.69E+00 0.00% 4.17%
m4 60 48 0.85 615 17 8626.33 131 388 17 8888 3.41E+00 0.00% 3.03%
m5 60 48 0.85 615 16 8789.67 134 555 17 9055 3.74E+00 0.00% 3.02%
m6 60 48 0.85 615 19 9051.00 146 822 17 9322 3.85E+00 0.00% 2.99%
m7 60 48 0.85 615 19 9543.86 143 1265 17 9765 4.37E+00 0.00% 2.32%
m8 60 48 0.90 434 16 10163.60 119 295 20 10295 8.80E-01 0.00% 1.29%
m9 60 48 0.90 434 16 10320.58 118 444 20 10444 1.07E+00 0.00% 1.20%
m10 60 48 0.90 434 16 10556.58 116 712 20 10712 1.35E+00 0.00% 1.47%
m11 60 48 0.90 434 13 11004.33 108 1150 20 11150 1.18E+00 0.00% 1.32%
m12 60 48 0.95 239 5 13613.00 22 613 26 13613 1.02E-01 0.00% 0.00%
m13 60 48 0.95 239 5 13619.00 24 619 26 13619 1.02E-01 0.00% 0.00%
m14 60 48 0.95 239 6 13669.00 22 669 26 13669 1.29E-01 0.00% 0.00%
m15 60 48 0.95 239 5 13830.00 20 1360 25 13860 1.70E-01 0.00% 0.22%
m16 70 56 0.80 1056 26 8996.02 215 313 18 9313 1.61E+01 0.00% 3.52%
m17 70 56 0.80 1056 25 9208.31 219 649 18 9649 2.87E+01 0.00% 4.79%
m18 70 56 0.80 1056 26 9529.25 221 897 18 9897 2.45E+01 0.00% 3.86%
m19 70 56 0.80 1056 30 10259.66 244 1668 18 10668 3.99E+01 0.00% 3.98%
m20 70 56 0.85 820 22 9822.65 191 121 20 10121 7.65E+00 0.00% 3.04%
m21 70 56 0.85 820 23 10036.28 197 370 20 10370 8.01E+00 0.00% 3.33%
m22 70 56 0.85 820 22 10366.77 192 642 20 10642 7.64E+00 0.00% 2.65%
m23 70 56 0.85 820 23 10976.23 194 1369 20 11369 8.97E+00 0.00% 3.58%
m24 70 56 0.90 567 15 11925.68 127 516 23 12016 2.80E+00 0.00% 0.76%
m25 70 56 0.90 567 16 12075.97 126 650 23 12150 1.60E+00 0.00% 0.61%
m26 70 56 0.90 567 14 12267.13 124 887 23 12387 2.15E+00 0.00% 0.98%
m27 70 56 0.90 567 13 12665.26 136 1362 23 12862 3.06E+00 0.00% 1.55%
m28 70 56 0.95 306 7 14888.00 44 413 29 14913 2.36E-01 0.00% 0.17%
m29 70 56 0.95 306 6 14980.50 35 512 29 15012 2.45E-01 0.00% 0.21%
m30 70 56 0.95 306 7 15164.25 38 697 29 15197 3.54E-01 0.00% 0.22%
m31 70 56 0.95 306 7 15614.71 41 1196 29 15696 4.51E-01 0.00% 0.52%
m32 80 64 0.80 1385 32 10041.06 289 6 21 10506 7.45E+01 0.00% 4.63%
m33 80 64 0.80 1385 31 10208.23 273 138 21 10638 6.52E+01 0.00% 4.21%
m34 80 64 0.80 1385 31 10610.08 281 538 21 11038 5.86E+01 0.00% 4.03%
m35 80 64 0.80 1385 30 11791.16 283 1739 21 12239 1.92E+02 0.00% 3.80%
m36 80 64 0.85 1070 22 11027.45 230 416 22 11416 1.45E+01 0.00% 3.52%
m37 80 64 0.85 1070 25 11247.63 233 680 22 11680 1.85E+01 0.00% 3.84%

115

Table A.1: Numerical result for CTSP using delayed column generation

Inst id Num tests Num vehicles Incomp density Num seq Iterations Relax Obj val Cols gen Tardiness Used vehicles Obj val time spend(sec) RMP gap Opt gap
m38 80 64 0.85 1070 23 11575.98 235 988 22 11988 1.45E+01 0.00% 3.56%
m39 80 64 0.85 1070 25 12378.81 262 2140 21 12640 1.52E+01 0.00% 2.11%
m40 80 64 0.90 730 17 13008.33 181 298 26 13298 5.95E+00 0.00% 2.23%
m41 80 64 0.90 730 17 13210.81 178 563 26 13563 6.36E+00 0.00% 2.67%
m42 80 64 0.90 730 18 13540.20 176 1286 25 13786 6.34E+00 0.00% 1.82%
m43 80 64 0.90 730 16 14123.24 189 1921 25 14421 6.00E+00 0.00% 2.11%
m44 80 64 0.95 390 7 16465.00 44 465 32 16465 3.05E-01 0.00% 0.00%
m45 80 64 0.95 390 9 16524.00 51 524 32 16524 4.09E-01 0.00% 0.00%
m46 80 64 0.95 390 7 16665.87 53 671 32 16671 4.15E-01 0.00% 0.03%
m47 80 64 0.95 390 7 17245.82 58 1316 32 17316 6.85E-01 0.00% 0.41%
m48 90 72 0.80 1731 25 11250.00 301 55 23 11555 1.36E+02 0.00% 2.71%
m49 90 72 0.80 1731 28 11376.39 307 307 23 11807 2.52E+02 0.00% 3.79%
m50 90 72 0.80 1731 31 11800.19 324 590 23 12090 8.69E+01 0.00% 2.46%
m51 90 72 0.80 1731 32 13242.09 331 2094 23 13594 3.07E+02 0.00% 2.66%
m52 90 72 0.85 1338 24 11978.83 270 137 25 12637 6.70E+01 0.00% 5.49%
m53 90 72 0.85 1338 24 12240.46 270 372 25 12872 6.23E+01 0.00% 5.16%
m54 90 72 0.85 1338 23 12697.41 251 870 25 13370 4.30E+01 0.00% 5.30%
m55 90 72 0.85 1338 25 13695.87 274 2243 24 14243 8.16E+01 0.00% 3.99%
m56 90 72 0.90 906 15 14181.44 188 562 28 14562 7.60E+00 0.00% 2.68%
m57 90 72 0.90 906 16 14332.39 204 567 28 14567 6.41E+00 0.00% 1.64%
m58 90 72 0.90 906 15 14688.31 188 990 28 14990 6.84E+00 0.00% 2.05%
m59 90 72 0.90 906 18 15390.66 218 2287 27 15787 7.34E+00 0.00% 2.58%
m60 90 72 0.95 496 8 18498.25 72 580 36 18580 1.18E+00 0.00% 0.44%
m61 90 72 0.95 496 7 18596.25 76 1172 35 18672 1.67E+00 0.00% 0.41%
m62 90 72 0.95 496 9 18764.52 68 1354 35 18854 1.47E+00 0.00% 0.48%
m63 90 72 0.95 496 7 19233.56 64 1851 35 19351 1.65E+00 0.01% 0.61%
l0 100 80 0.80 2143 22 12500.00 297 16 26 13016 3.62E+02 1.47% 4.13%
l1 100 80 0.80 2143 31 12581.69 378 100 26 13100 3.92E+02 2.11% 4.12%
l2 100 80 0.80 2143 35 13050.04 394 654 26 13654 4.11E+02 3.45% 4.63%
l3 100 80 0.80 2143 33 14698.16 406 2249 26 15249 4.06E+02 3.37% 3.75%
l4 100 80 0.85 1641 23 13126.70 297 211 27 13711 9.58E+01 0.00% 4.45%
l5 100 80 0.85 1641 27 13403.93 311 508 27 14008 1.23E+02 0.00% 4.51%
l6 100 80 0.85 1641 25 13894.42 305 1388 26 14388 8.33E+01 0.00% 3.55%
l7 100 80 0.85 1641 - - - - - - - - -
l8 100 80 0.90 1103 21 15363.81 281 847 30 15847 2.75E+01 0.00% 3.14%
l9 100 80 0.90 1103 21 15595.79 267 947 30 15947 1.33E+01 0.00% 2.25%
l10 100 80 0.90 1103 17 16074.94 238 1440 30 16440 1.15E+01 0.00% 2.27%
l11 100 80 0.90 1103 22 16962.84 279 2379 30 17379 1.63E+01 0.00% 2.45%
l12 100 80 0.95 610 12 19748.88 113 328 39 19828 2.03E+00 0.00% 0.40%
l13 100 80 0.95 610 11 19834.33 116 877 38 19877 1.78E+00 0.00% 0.22%
l14 100 80 0.95 610 11 20111.03 107 1130 38 20130 1.40E+00 0.00% 0.09%
l15 100 80 0.95 610 10 20808.09 104 1939 38 20939 3.55E+00 0.00% 0.63%
l16 110 88 0.80 2557 21 13750.00 314 0 30 15000 3.86E+02 8.23% 9.09%
l17 110 88 0.80 2557 36 13800.90 448 72 29 14572 4.61E+02 4.84% 5.59%
l18 110 88 0.80 2557 32 14320.76 410 630 28 14630 4.17E+02 0.00% 2.16%
l19 110 88 0.80 2557 37 16293.93 462 2585 29 17085 4.78E+02 4.50% 4.85%
l20 110 88 0.85 1945 28 14372.34 345 390 29 14890 1.84E+02 0.01% 3.60%
l21 110 88 0.85 1945 29 14657.18 372 669 29 15169 1.39E+02 0.00% 3.49%
l22 110 88 0.85 1945 26 15161.44 357 1165 29 15665 1.48E+02 0.00% 3.32%
l23 110 88 0.85 1945 32 16585.40 391 2872 29 17372 3.51E+02 3.15% 4.74%
l24 110 88 0.90 1329 18 17022.78 285 967 33 17467 3.87E+01 0.00% 2.61%
l25 110 88 0.90 1329 19 17243.87 296 704 34 17704 4.10E+01 0.00% 2.67%
l26 110 88 0.90 1329 19 17646.65 287 1632 33 18132 1.99E+01 0.00% 2.75%
l27 110 88 0.90 1329 20 18596.12 296 3066 32 19066 4.16E+01 0.00% 2.53%
l28 110 88 0.95 722 14 21404.13 154 1004 41 21504 4.30E+00 0.00% 0.47%
l29 110 88 0.95 722 10 21531.25 114 1108 41 21608 1.75E+00 0.00% 0.36%
l30 110 88 0.95 722 10 21874.50 108 1453 41 21953 2.05E+00 0.00% 0.36%
l31 110 88 0.95 722 12 22559.50 132 2219 41 22719 4.44E+00 0.00% 0.71%
l32 120 96 0.80 3027 19 15000.00 308 6 33 16506 4.12E+02 9.11% 10.04%

116

Table A.1: Numerical result for CTSP using delayed column generation

Inst id Num tests Num vehicles Incomp density Num seq Iterations Relax Obj val Cols gen Tardiness Used vehicles Obj val time spend(sec) RMP gap Opt gap
l33 120 96 0.80 3027 35 15023.11 492 32 32 16032 5.27E+02 6.21% 6.72%
l34 120 96 0.80 3027 35 15638.66 490 655 32 16655 5.40E+02 5.88% 6.50%
l35 120 96 0.80 3027 37 17884.20 515 2966 32 18966 5.61E+02 5.67% 6.05%
l36 120 96 0.85 2289 30 15189.20 410 128 32 16128 3.59E+02 3.44% 6.18%
l37 120 96 0.85 2289 29 15516.81 404 452 32 16452 3.60E+02 3.45% 6.03%
l38 120 96 0.85 2289 32 16139.38 432 1052 32 17052 3.68E+02 3.57% 5.65%
l39 120 96 0.85 2289 33 18064.68 443 3266 32 19266 3.72E+02 5.83% 6.65%
l40 120 96 0.90 1578 21 17459.04 317 402 35 17902 2.81E+01 0.00% 2.54%
l41 120 96 0.90 1578 21 17689.55 314 713 35 18213 5.49E+01 0.00% 2.96%
l42 120 96 0.90 1578 21 18246.64 317 1270 35 18770 3.93E+01 0.00% 2.87%
l43 120 96 0.90 1578 21 19666.83 351 3201 34 20201 9.64E+01 0.00% 2.72%
l44 120 96 0.95 847 11 22148.27 155 414 44 22414 4.43E+00 0.00% 1.20%
l45 120 96 0.95 847 13 22305.38 156 1069 43 22569 8.39E+00 0.01% 1.18%
l46 120 96 0.95 847 12 22720.51 145 1417 43 22917 4.53E+00 0.00% 0.86%
l47 120 96 0.95 847 13 23745.00 175 2546 43 24046 6.90E+00 0.00% 1.27%
l48 150 120 0.80 4702 19 18750.00 379 360 41 20860 6.61E+02 10.11% 11.25%
l49 150 120 0.80 4702 34 18820.00 661 87 41 20587 1.01E+03 8.57% 9.39%
l50 150 120 0.80 4702 36 19780.35 646 1160 41 21660 1.08E+03 8.65% 9.50%
l51 150 120 0.80 4702 40 22817.99 704 4478 41 24978 1.18E+03 8.64% 9.47%
l52 150 120 0.85 3559 35 18783.59 572 20 40 20020 4.98E+02 6.02% 6.58%
l53 150 120 0.85 3559 31 19159.43 502 419 41 20919 4.87E+02 8.16% 9.18%
l54 150 120 0.85 3559 31 20132.04 550 1456 41 21956 4.90E+02 8.18% 9.06%
l55 150 120 0.85 3559 34 22940.36 619 4442 40 24442 5.10E+02 6.08% 6.55%
l56 150 120 0.90 2430 25 21240.61 435 702 43 22202 3.41E+02 2.75% 4.53%
l57 150 120 0.90 2430 22 21672.29 398 1111 43 22611 3.37E+02 2.59% 4.33%
l58 150 120 0.90 2430 23 22426.43 449 2191 42 23191 3.40E+02 1.88% 3.41%
l59 150 120 0.90 2430 25 24319.58 475 4520 41 25020 3.45E+02 1.30% 2.88%
l60 150 120 0.95 1289 13 27021.96 254 771 53 27271 1.45E+01 0.00% 0.92%
l61 150 120 0.95 1289 14 27267.51 246 1014 53 27514 1.49E+01 0.00% 0.90%
l62 150 120 0.95 1289 13 27927.45 249 1669 53 28169 1.40E+01 0.00% 0.86%
l63 150 120 0.95 1289 16 29502.75 292 3839 52 29839 4.21E+01 0.00% 1.14%
l64 200 160 0.80 8254 20 25000.00 539 7 57 28507 2.02E+03 12.30% 14.03%
l65 200 160 0.80 8254 41 25274.24 951 760 56 28760 4.03E+03 12.12% 13.79%
l66 200 160 0.80 8254 42 27170.98 987 2658 56 30658 4.16E+03 11.37% 12.83%
l67 200 160 0.80 8254 42 31661.70 964 7546 59 37046 4.20E+03 14.53% 17.01%
l68 200 160 0.85 6230 23 25000.00 630 116 57 28616 8.16E+02 12.63% 14.46%
l69 200 160 0.85 6230 33 25378.69 785 520 58 29520 1.05E+03 14.00% 16.32%
l70 200 160 0.85 6230 35 27301.25 825 2705 57 31205 1.09E+03 12.50% 14.30%
l71 200 160 0.85 6230 37 31755.36 872 7639 61 38139 1.15E+03 16.72% 20.10%
l72 200 160 0.90 4226 29 26764.05 674 664 56 28664 4.52E+02 6.58% 7.10%
l73 200 160 0.90 4226 26 27530.84 657 1685 57 30185 4.39E+02 8.68% 9.64%
l74 200 160 0.90 4226 28 28899.23 669 3667 57 32167 4.49E+02 10.04% 11.31%
l75 200 160 0.90 4226 31 32347.79 731 7989 57 36489 4.69E+02 11.33% 12.80%
l76 200 160 0.95 2190 19 34107.74 479 995 67 34495 3.08E+02 0.00% 1.14%
l77 200 160 0.95 2190 16 34752.10 447 1652 67 35152 1.29E+02 0.00% 1.15%
l78 200 160 0.95 2190 18 35790.78 519 3046 67 36546 3.22E+02 1.54% 2.11%
l79 200 160 0.95 2190 20 38954.27 560 6966 65 39466 3.25E+02 0.44% 1.31%
l80 250 200 0.80 12901 22 31311.00 726 135 77 38635 6.20E+03 18.95% 23.39%
l81 250 200 0.80 12901 28 32094.00 942 2021 97 50521 7.95E+03 36.47% 57.42%
l82 250 200 0.80 12901 43 35279.07 1220 4967 92 50967 - 30.78% 44.47%
l83 250 200 0.80 12901 31 41337.50 1066 11571 78 50571 8.98E+03 18.26% 22.34%
l84 250 200 0.85 9753 25 31311.00 851 389 76 38389 1.92E+03 18.43% 22.61%
l85 250 200 0.85 9753 41 32115.75 1145 1552 74 38552 3.03E+03 16.69% 20.04%
l86 250 200 0.85 9753 39 35391.27 1135 4701 75 42201 2.96E+03 16.13% 19.24%
l87 250 200 0.85 9753 40 41390.69 1163 12662 71 48162 3.02E+03 14.05% 16.36%
l88 250 200 0.90 6619 28 32076.06 852 953 70 35953 7.34E+02 10.75% 12.09%
l89 250 200 0.90 6619 34 33191.21 927 2440 73 38940 8.22E+02 14.68% 17.32%
l90 250 200 0.90 6619 31 36088.28 926 5204 72 41204 7.89E+02 12.38% 14.18%
l91 250 200 0.90 6619 36 41779.88 1015 12048 71 47548 8.62E+02 12.12% 13.81%

117

Table A.1: Numerical result for CTSP using delayed column generation

Inst id Num tests Num vehicles Incomp density Num seq Iterations Relax Obj val Cols gen Tardiness Used vehicles Obj val time spend(sec) RMP gap Opt gap
l92 250 200 0.95 3434 19 40797.43 606 1174 82 42174 3.56E+02 3.14% 3.37%
l93 250 200 0.95 3434 20 41773.36 720 2372 82 43372 3.61E+02 3.48% 3.83%
l94 250 200 0.95 3434 23 43984.71 737 5939 79 45439 3.71E+02 2.91% 3.31%
l95 250 200 0.95 3434 20 49060.64 708 10789 79 50289 3.65E+02 2.36% 2.50%
l96 300 240 0.80 18486 21 37834.00 858 814 96 48814 - 22.49% 29.02%
l97 300 240 0.80 18486 39 39520.23 1355 3294 87 46794 - 15.54% 18.41%
l98 300 240 0.80 18486 34 44507.00 1371 9543 114 66543 - 33.12% 49.51%
l99 300 240 0.80 18486 28 52067.00 1118 16954 101 67454 - 22.81% 29.55%
l100 300 240 0.85 13895 22 37834.00 881 1090 95 48590 3.79E+03 22.13% 28.43%
l101 300 240 0.85 13895 43 39566.95 1488 3242 93 49742 7.29E+03 20.45% 25.72%
l102 300 240 0.85 13895 42 44566.21 1437 8394 99 57894 7.34E+03 23.02% 29.91%
l103 300 240 0.85 13895 44 52088.02 1461 16379 96 64379 7.48E+03 19.09% 23.60%
l104 300 240 0.90 9448 32 38149.05 1097 1534 95 49034 1.46E+03 22.16% 28.53%
l105 300 240 0.90 9448 33 40186.37 1155 3773 87 47273 1.50E+03 14.97% 17.63%
l106 300 240 0.90 9448 38 44989.49 1249 8878 101 59378 1.63E+03 24.22% 31.98%
l107 300 240 0.90 9448 33 52353.85 1164 16975 94 63975 1.48E+03 18.16% 22.20%
l108 300 240 0.95 4861 21 48018.72 875 1473 97 49973 4.36E+02 3.77% 4.07%
l109 300 240 0.95 4861 25 49635.36 974 4723 97 53223 4.59E+02 6.68% 7.23%
l110 300 240 0.95 4861 27 53398.01 1021 8788 93 55288 4.75E+02 3.41% 3.54%
l111 300 240 0.95 4861 22 60149.06 872 16286 95 63786 4.48E+02 5.60% 6.05%

118

Table A.2: Numerical result for CTSP using branch-and-rpice

inst id num test num vehicle density tardiness used vehicle obj val time spent (sec) opt gap root obj best bound nodes
s0 10 8 0.82 0 5 2500 1.03E-02 0.00% 2500 2500 1
s1 10 8 0.82 0 5 2500 8.94E-03 0.00% 2500 2500 1
s2 10 8 0.82 9 5 2509 7.92E-03 0.00% 2509 2509 1
s3 10 8 0.82 38 5 2538 9.77E-03 0.00% 2538 2538 1
s4 10 8 0.90 97 6 3097 9.03E-03 0.00% 3097 3097 1
s5 10 8 0.90 103 6 3103 1.76E-02 0.00% 3103 3103 1
s6 10 8 0.90 110 6 3110 1.35E-02 0.00% 3110 3110 1
s7 10 8 0.90 119 6 3119 8.00E-02 0.00% 3119 3119 1
s8 10 8 0.95 0 8 4000 4.16E-03 0.00% 4000 4000 1
s9 10 8 0.95 0 8 4000 4.28E-03 0.00% 4000 4000 1
s10 10 8 0.95 14 8 4014 4.75E-03 0.00% 4014 4014 1
s11 10 8 0.95 40 8 4040 4.91E-03 0.00% 4040 4040 1
s12 10 8 0.98 0 - 4.03E-03 - - - 1
s13 10 8 0.98 0 - 2.82E-03 - - - 1
s14 10 8 0.98 0 - 2.98E-03 - - - 1
s15 10 8 0.98 0 - 3.90E-03 - - - 1
s16 20 16 0.80 5 7 3505 4.77E-02 0.00% 3505 3505 1
s17 20 16 0.80 24 7 3524 6.01E-02 0.00% 3524 3524 1
s18 20 16 0.80 87 7 3587 4.91E-02 0.00% 3587 3587 1
s19 20 16 0.80 195 7 3695 1.27E-01 0.00% 3695 3695 1
s20 20 16 0.84 128 8 4128 5.04E-02 0.00% 4128 4128 1
s21 20 16 0.84 139 8 4139 3.48E-02 0.00% 4139 4139 1
s22 20 16 0.84 146 8 4146 2.87E-02 0.00% 4146 4146 1
s23 20 16 0.84 191 8 4191 5.46E-02 0.00% 4191 4191 1
s24 20 16 0.89 0 10 5000 1.03E-02 0.00% 5000 5000 1
s25 20 16 0.89 0 10 5000 7.14E-03 0.00% 5000 5000 1
s26 20 16 0.89 23 10 5023 1.25E-02 0.00% 5023 5023 1
s27 20 16 0.89 96 10 5096 1.13E-02 0.00% 5096 5096 1
s28 20 16 0.95 58 13 6558 1.28E-02 0.00% 6558 6558 1
s29 20 16 0.95 58 13 6558 8.80E-03 0.00% 6558 6558 1
s30 20 16 0.95 76 13 6576 1.10E-02 0.00% 6576 6576 1
s31 20 16 0.95 126 13 6626 1.11E-02 0.00% 6626 6626 1
s32 30 24 0.77 24 9 4524 1.66E+00 0.23% 4448 4513 29
s33 30 24 0.77 60 9 4560 1.14E+00 0.48% 4516 4538 13
s34 30 24 0.77 187 9 4687 1.24E+00 0.04% 4668 4685 13
s35 30 24 0.77 461 9 4961 9.63E-01 0.08% 4936 4957 11
s36 30 24 0.81 14 10 5014 8.96E-01 0.10% 4992 5009 19
s37 30 24 0.81 45 10 5045 7.51E-01 0.06% 5030 5041 17
s38 30 24 0.81 152 10 5152 1.04E+00 0.35% 5117 5134 23
s39 30 24 0.81 352 10 5352 6.38E-01 0.09% 5315 5347 13
s40 30 24 0.87 491 11 5991 1.32E+00 0.01% 5815 5990 107
s41 30 24 0.87 465 11 5965 1.00E+00 0.09% 5827 5959 81
s42 30 24 0.87 481 11 5981 9.18E-01 0.11% 5880 5974 47
s43 30 24 0.87 575 11 6075 5.53E-01 0.07% 6010 6071 29
s44 30 24 0.94 179 15 7679 9.39E-02 0.14% 7535 7668 15
s45 30 24 0.94 179 15 7679 1.07E-01 0.10% 7536 7671 15
s46 30 24 0.94 179 15 7679 1.06E-01 0.20% 7555 7664 15
s47 30 24 0.94 253 15 7753 1.37E-01 0.19% 7603 7738 19
s48 40 32 0.78 79 11 5579 9.54E+00 0.06% 5490 5575 71
s49 40 32 0.78 161 11 5661 2.00E+01 0.03% 5550 5659 139
s50 40 32 0.78 313 11 5813 3.89E+01 0.02% 5678 5812 291
s51 40 32 0.78 701 11 6201 9.08E+01 0.00% 6073 6200 737
s52 40 32 0.83 536 12 6536 5.93E+00 0.05% 6402 6532 85
s53 40 32 0.83 627 12 6627 1.37E+01 0.01% 6481 6626 213
s54 40 32 0.83 748 12 6748 1.30E+01 0.03% 6618 6746 191
s55 40 32 0.83 506 13 7006 1.04E+01 0.00% 6887 7005 131
s56 40 32 0.88 133 14 7133 1.55E+00 0.11% 7025 7125 39
s57 40 32 0.88 172 14 7172 1.60E+00 0.01% 7064 7171 41
s58 40 32 0.88 288 14 7288 1.87E+00 0.07% 7185 7283 35

119

Table A.2: Numerical result for CTSP using branch-and-rpice

inst id num test num vehicle density tardiness used vehicle obj val time spent (sec) opt gap root obj best bound nodes
s59 40 32 0.88 586 14 7586 3.19E+00 0.03% 7471 7584 61
s60 40 32 0.94 292 18 9292 3.35E-02 0.00% 9292 9292 1
s61 40 32 0.94 322 18 9322 4.29E-02 0.00% 9322 9322 1
s62 40 32 0.94 418 18 9418 1.02E-01 0.07% 9411 9411 5
s63 40 32 0.94 636 18 9636 1.01E-01 0.36% 9601 9601 5
s64 50 40 0.79 41 14 7041 3.63E+02 0.00% 6818 7040 1521
s65 50 40 0.79 133 14 7133 5.10E+02 0.00% 6929 7132 1849
s66 50 40 0.79 326 14 7326 4.49E+02 0.00% 7136 7325 1719
s67 50 40 0.79 772 14 7772 6.01E+02 0.69% 7555 7718 2151
s68 50 40 0.84 14 16 8014 1.08E+02 0.00% 7805 8013 805
s69 50 40 0.84 65 16 8065 8.77E+01 0.01% 7884 8064 547
s70 50 40 0.84 619 15 8119 1.77E+01 0.02% 8038 8117 83
s71 50 40 0.84 884 15 8384 1.08E+01 0.00% 8343 8383 41
s72 50 40 0.89 172 18 9172 4.76E+00 0.01% 9094 9171 57
s73 50 40 0.89 223 18 9223 4.51E+00 0.04% 9149 9219 43
s74 50 40 0.89 364 18 9364 6.24E+00 0.02% 9309 9362 65
s75 50 40 0.89 1163 17 9663 7.38E+00 0.01% 9576 9661 83
s76 50 40 0.95 148 23 11648 1.55E+00 0.03% 11536 11644 45
s77 50 40 0.95 180 23 11680 1.89E+00 0.02% 11587 11678 77
s78 50 40 0.95 296 23 11796 2.35E+00 0.01% 11698 11794 85
s79 50 40 0.95 559 23 12059 5.00E+00 0.02% 11929 12057 179
m0 60 48 0.80 206 16 8206 1.80E+03 1.45% 7932 8088 2733
m1 60 48 0.80 342 16 8342 1.80E+03 1.20% 8099 8243 2257
m2 60 48 0.80 1024 15 8524 1.35E+03 0.62% 8333 8471 1643
m3 60 48 0.80 1505 15 9005 6.02E+02 0.45% 8853 8964 723
m4 60 48 0.85 308 17 8808 8.62E+01 0.01% 8626 8807 181
m5 60 48 0.85 470 17 8970 9.60E+01 0.01% 8789 8969 191
m6 60 48 0.85 739 17 9239 1.29E+02 0.00% 9051 9238 271
m7 60 48 0.85 1184 17 9684 8.47E+01 0.00% 9543 9683 167
m8 60 48 0.90 290 20 10290 2.12E+01 0.01% 10163 10288 97
m9 60 48 0.90 442 20 10442 2.27E+01 0.01% 10320 10440 101
m10 60 48 0.90 658 20 10658 2.28E+01 0.05% 10556 10652 99
m11 60 48 0.90 1111 20 11111 3.13E+01 0.02% 11004 11109 141
m12 60 48 0.95 613 26 13613 2.11E-01 0.00% 13613 13613 1
m13 60 48 0.95 619 26 13619 1.74E-01 0.00% 13619 13613 1
m14 60 48 0.95 669 26 13669 2.02E-01 0.00% 13669 13669 1
m15 60 48 0.95 1341 25 13841 9.99E-01 0.00% 13830 13840 13
m16 70 56 0.80 193 18 9193 9.52E+02 1.00% 8996 9102 519
m17 70 56 0.80 337 18 9337 1.26E+03 0.25% 9208 9314 661
m18 70 56 0.80 682 18 9682 6.03E+02 0.92% 9529 9594 269
m19 70 56 0.80 1501 18 10501 1.80E+03 1.56% 10259 10339 899
m20 70 56 0.85 103 20 10103 8.25E+02 1.00% 9822 10003 909
m21 70 56 0.85 293 20 10293 8.55E+02 0.99% 10036 10192 897
m22 70 56 0.85 631 20 10631 1.63E+03 1.00% 10366 10525 1749
m23 70 56 0.85 1653 19 11153 7.82E+02 0.34% 10976 11115 777
m24 70 56 0.90 466 23 11966 2.66E+01 0.01% 11925 11965 53
m25 70 56 0.90 606 23 12106 1.89E+01 0.03% 12075 12102 35
m26 70 56 0.90 1344 22 12344 4.76E+01 0.03% 12267 12340 95
m27 70 56 0.90 1735 22 12735 3.35E+01 0.01% 12665 12734 59
m28 70 56 0.95 413 29 14913 1.54E+00 0.06% 14888 14904 9
m29 70 56 0.95 512 29 15012 2.11E+00 0.04% 14980 15006 13
m30 70 56 0.95 697 29 15197 1.61E+00 0.12% 15164 15178 9
m31 70 56 0.95 1191 29 15691 4.52E+00 0.01% 15614 15690 29
m32 80 64 0.80 3 21 10503 1.81E+03 4.31% 10041 10068 245
m33 80 64 0.80 437 20 10437 1.81E+03 1.68% 10208 10264 395
m34 80 64 0.80 764 20 10764 1.11E+03 0.99% 10610 10658 191
m35 80 64 0.80 1874 20 11874 1.27E+03 0.58% 11791 11806 143
m36 80 64 0.85 284 22 11284 1.80E+03 1.14% 11027 11156 925
m37 80 64 0.85 572 22 11572 1.80E+03 1.77% 11247 11370 863

120

Table A.2: Numerical result for CTSP using branch-and-rpice

inst id num test num vehicle density tardiness used vehicle obj val time spent (sec) opt gap root obj best bound nodes
m38 80 64 0.85 838 22 11838 1.80E+03 1.09% 11575 11709 1019
m39 80 64 0.85 1994 21 12494 6.04E+02 0.24% 12378 12463 265
m40 80 64 0.90 293 26 13293 6.02E+02 0.88% 13008 13177 755
m41 80 64 0.90 901 25 13401 6.02E+02 0.37% 13210 13352 733
m42 80 64 0.90 1232 25 13732 6.02E+02 0.46% 13540 13669 759
m43 80 64 0.90 1839 25 14339 6.01E+02 0.56% 14123 14259 735
m44 80 64 0.95 465 32 16465 6.84E-01 0.00% 16465 16465 1
m45 80 64 0.95 524 32 16524 7.49E-01 0.00% 16524 16524 1
m46 80 64 0.95 671 32 16671 1.70E+00 0.03% 16665 16665 5
m47 80 64 0.95 1310 32 17310 7.82E+00 0.02% 17245 17306 25
m48 90 72 0.80 1 23 11501 1.81E+03 2.22% 11250 11251 197
m49 90 72 0.80 146 23 11646 1.81E+03 2.18% 11376 11397 213
m50 90 72 0.80 582 23 12082 1.82E+03 2.17% 11800 11825 199
m51 90 72 0.80 1980 23 13480 1.81E+03 1.68% 13242 13256 111
m52 90 72 0.85 285 24 12285 1.80E+03 1.54% 11978 12098 467
m53 90 72 0.85 606 24 12606 1.80E+03 1.92% 12240 12368 431
m54 90 72 0.85 994 24 12994 1.81E+03 1.29% 12697 12828 517
m55 90 72 0.85 2153 24 14153 1.80E+03 2.65% 13695 13788 407
m56 90 72 0.90 319 28 14319 6.02E+02 0.07% 14181 14308 353
m57 90 72 0.90 566 28 14566 6.04E+02 0.96% 14332 14427 329
m58 90 72 0.90 1342 27 14842 6.03E+02 0.38% 14688 14786 439
m59 90 72 0.90 2175 27 15675 9.55E+02 0.85% 15390 15542 585
m60 90 72 0.95 1079 35 18579 5.93E+01 0.00% 18498 18578 121
m61 90 72 0.95 1172 35 18672 5.17E+01 0.01% 18596 18670 105
m62 90 72 0.95 1354 35 18854 3.95E+01 0.00% 18764 18853 101
m63 90 72 0.95 1850 35 19350 8.31E+01 0.00% 19233 19349 171
l0 100 80 0.80 18 26 13018 1.41E+03 4.14% 12499 12500 41
l1 100 80 0.80 100 26 13100 7.53E+02 4.12% 12581 12581 5
l2 100 80 0.80 563 26 13563 7.70E+02 3.93% 13050 13050 5
l3 100 80 0.80 2169 26 15169 1.29E+03 3.19% 14698 14699 21
l4 100 80 0.85 526 26 13526 1.81E+03 2.39% 13126 13210 225
l5 100 80 0.85 771 26 13771 1.80E+03 2.16% 13403 13479 193
l6 100 80 0.85 1277 26 14277 1.81E+03 2.17% 13894 13973 217
l7 100 80 0.85 2524 26 15524 1.82E+03 2.60% 15102 15130 119
l8 100 80 0.90 598 30 15598 6.01E+02 0.76% 15363 15479 209
l9 100 80 0.90 848 30 15848 6.35E+02 0.79% 15595 15724 241
l10 100 80 0.90 1288 30 16288 6.34E+02 0.71% 16074 16172 223
l11 100 80 0.90 2302 30 17302 1.80E+03 1.14% 16962 17107 667
l12 100 80 0.95 328 39 19828 4.87E+01 0.01% 19748 19826 63
l13 100 80 0.95 877 38 19877 1.89E+01 0.01% 19834 19876 21
l14 100 80 0.95 1130 38 20130 8.56E+00 0.07% 20111 20116 9
l15 100 80 0.95 2416 37 20916 2.45E+02 0.00% 20808 20915 343
l16 110 88 0.80 42 29 14542 8.25E+02 5.76% 13750 13750 9
l17 110 88 0.80 50 29 14550 1.01E+03 5.42% 13800 13802 13
l18 110 88 0.80 548 29 15048 1.81E+03 5.03% 14320 14326 35
l19 110 88 0.80 2526 29 17026 1.16E+03 4.48% 16293 16295 17
l20 110 88 0.85 346 29 14846 1.86E+03 3.07% 14372 14403 63
l21 110 88 0.85 605 29 15105 1.81E+03 2.74% 14657 14702 127
l22 110 88 0.85 1105 29 15605 1.81E+03 2.55% 15161 15217 95
l23 110 88 0.85 3024 28 17024 1.81E+03 2.54% 16585 16602 65
l24 110 88 0.90 819 33 17319 1.81E+03 1.19% 17022 17114 397
l25 110 88 0.90 980 33 17480 8.60E+02 0.83% 17243 17336 177
l26 110 88 0.90 1541 33 18041 1.80E+03 1.64% 17646 17749 371
l27 110 88 0.90 2897 32 18897 1.81E+03 1.14% 18596 18683 375
l28 110 88 0.95 981 41 21481 5.51E+01 0.00% 21404 21480 43
l29 110 88 0.95 1106 41 21606 2.87E+01 0.01% 21531 21604 21
l30 110 88 0.95 1453 41 21953 8.80E+01 0.01% 21874 21950 71
l31 110 88 0.95 2212 41 22712 6.02E+02 0.25% 22559 22655 531
l32 120 96 0.80 0 33 16500 9.39E+02 10.00% 15000 15000 9

121

Table A.2: Numerical result for CTSP using branch-and-rpice

inst id num test num vehicle density tardiness used vehicle obj val time spent (sec) opt gap root obj best bound nodes
l33 120 96 0.80 84 32 16084 1.33E+03 7.05% 15023 15024 15
l34 120 96 0.80 638 32 16638 1.12E+03 6.39% 15638 15638 9
l35 120 96 0.80 3048 32 19048 6.04E+02 6.51% 17884 17884 3
l36 120 96 0.85 100 32 16100 7.87E+02 6.00% 15189 15189 9
l37 120 96 0.85 444 32 16444 1.18E+03 5.74% 15516 15551 31
l38 120 96 0.85 1156 31 16656 1.92E+03 2.96% 16139 16177 31
l39 120 96 0.85 2996 32 18996 7.39E+02 5.16% 18064 18064 5
l40 120 96 0.90 386 35 17886 1.81E+03 1.65% 17459 17595 229
l41 120 96 0.90 587 35 18087 1.80E+03 1.54% 17689 17813 235
l42 120 96 0.90 1175 35 18675 1.81E+03 1.72% 18246 18358 211
l43 120 96 0.90 3088 34 20088 1.81E+03 1.73% 19666 19747 133
l44 120 96 0.95 321 44 22321 3.24E+02 0.02% 22148 22317 175
l45 120 96 0.95 982 43 22482 2.68E+02 0.00% 22305 22481 145
l46 120 96 0.95 1417 43 22917 6.04E+02 0.19% 22720 22874 335
l47 120 96 0.95 2897 42 23897 3.36E+02 0.00% 23745 23896 191
l48 150 120 0.80 54 41 20554 9.05E+02 9.62% 18750 18750 3
l49 150 120 0.80 108 41 20608 1.30E+03 9.50% 18820 18820 3
l50 150 120 0.80 1178 42 22178 1.37E+03 12.12% 19780 19780 3
l51 150 120 0.80 4651 41 25151 1.43E+03 10.23% 22817 22817 3
l52 150 120 0.85 47 40 20047 1.85E+03 6.72% 18783 18784 13
l53 150 120 0.85 353 41 20853 1.48E+03 8.82% 19159 19162 13
l54 150 120 0.85 1475 40 21475 1.16E+03 6.67% 20132 20132 7
l55 150 120 0.85 4424 40 24424 6.19E+02 6.47% 22940 22940 3
l56 150 120 0.90 872 43 22372 1.30E+03 5.16% 21240 21274 25
l57 150 120 0.90 1380 42 22380 1.37E+03 3.19% 21672 21687 17
l58 150 120 0.90 1783 43 23283 1.27E+03 3.77% 22426 22437 13
l59 150 120 0.90 4477 41 24977 1.44E+03 2.65% 24319 24332 19
l60 150 120 0.95 850 53 27350 6.03E+02 0.96% 27021 27089 89
l61 150 120 0.95 1012 53 27512 6.01E+02 0.58% 27267 27354 91
l62 150 120 0.95 1677 53 28177 6.05E+02 0.57% 27927 28015 87
l63 150 120 0.95 3762 52 29762 6.08E+02 0.63% 29502 29575 77
l64 200 160 0.80 132 60 30132 4.30E+03 20.53% 25000 25000 3
l65 200 160 0.80 358 57 28858 7.90E+03 14.18% 25274 25274 3
l66 200 160 0.80 2746 56 30746 7.59E+03 13.16% 27170 27170 3
l67 200 160 0.80 7958 58 36958 7.24E+03 16.73% 31661 31661 3
l68 200 160 0.85 8 56 28008 1.41E+03 12.03% 25000 25000 3
l69 200 160 0.85 578 56 28578 1.75E+03 12.61% 25378 25378 3
l70 200 160 0.85 2811 57 31311 1.82E+03 14.69% 27301 27301 3
l71 200 160 0.85 7978 57 36478 1.81E+03 14.87% 31755 31755 3
l72 200 160 0.90 608 58 29608 8.56E+02 10.63% 26764 26764 3
l73 200 160 0.90 1742 56 29742 8.63E+02 8.03% 27530 27530 3
l74 200 160 0.90 3599 59 33099 8.97E+02 14.53% 28899 28899 3
l75 200 160 0.90 8029 56 36029 9.44E+02 11.38% 32347 32347 3
l76 200 160 0.95 980 67 34480 1.56E+03 0.99% 34107 34142 17
l77 200 160 0.95 1682 67 35182 1.54E+03 1.20% 34752 34764 17
l78 200 160 0.95 3310 66 36310 9.79E+02 1.45% 35790 35790 9
l79 200 160 0.95 6911 66 39911 9.22E+02 2.46% 38954 38954 7
l80 250 200 0.80 545 74 37545 - - - - 3
l81 250 200 0.80 1604 79 41104 - - - - 3
l82 250 200 0.80 4912 83 46412 - - - - 3
l83 250 200 0.80 11820 82 52820 - - - - 3
l84 250 200 0.85 328 73 36828 4.74E+03 17.62% 31310 31310 3
l85 250 200 0.85 1024 73 37524 6.54E+03 16.84% 32115 32115 3
l86 250 200 0.85 5061 71 40561 6.99E+03 14.61% 35391 35391 3
l87 250 200 0.85 11621 81 52121 7.20E+03 25.93% 41390 41390 3
l88 250 200 0.90 1164 75 38664 1.67E+03 20.54% 32076 32076 3
l89 250 200 0.90 2635 74 39635 1.71E+03 19.41% 33191 33191 3
l90 250 200 0.90 5759 75 43259 1.73E+03 19.87% 36088 36088 3
l91 250 200 0.90 12150 74 49150 1.87E+03 17.64% 41779 41779 3

122

Table A.2: Numerical result for CTSP using branch-and-rpice

inst id num test num vehicle density tardiness used vehicle obj val time spent (sec) opt gap root obj best bound nodes
l92 250 200 0.95 1300 81 41800 2.12E+03 2.42% 40797 40812 13
l93 250 200 0.95 2120 82 43120 6.02E+02 3.22% 41773 41773 3
l94 250 200 0.95 5688 79 45188 6.15E+02 2.74% 43984 43984 3
l95 250 200 0.95 10787 79 50287 6.03E+02 2.50% 49060 49060 3
l96 300 240 0.80 661 98 49661 - - - - 3
l97 300 240 0.80 3015 91 48515 - - - - 3
l98 300 240 0.80 11893 93 58393 - - - - 3
l99 300 240 0.80 18389 110 73389 - - - - 3
l100 300 240 0.85 894 97 49394 - - - - 3
l101 300 240 0.85 2912 88 46912 - - - - 3
l102 300 240 0.85 8280 95 55780 - - - - 3
l103 300 240 0.85 18562 126 81562 - - - - 3
l104 300 240 0.90 - - - - - - - -
l105 300 240 0.90 1992 96 49992 1.11E+03 - 48018 - 3
l106 300 240 0.90 4881 95 52381 1.15E+03 - 49635 - 3
l107 300 240 0.90 8876 96 56876 1.15E+03 - 53398 - 3
l108 300 240 0.95 15778 94 62778 1.11E+03 - 60149 - 3
l109 300 240 0.95 - - - - - - - -
l110 300 240 0.95 - - - - - - - -
l111 300 240 0.95 - - - - - - - -

123

Table A.3: Numerical results for CTSPR

Inst id Num tests Num vehicles Incomp density Num seq Iterations Relax Obj val Cols Gen Tardiness Used vehicles Obj val Sol time RMP gap Opt gap
s0 10 8 0.82 28 2 2500.00 1 0 5 2500 3.08E+01 0.00% 0.00%
s1 10 8 0.82 28 2 2500.00 1 0 5 2500 3.94E+01 0.00% 0.00%
s2 10 8 0.82 28 2 2522.00 1 22 5 2522 3.31E+01 0.00% 0.00%
s3 10 8 0.82 28 2 2564.00 1 64 5 2564 2.92E+01 0.00% 0.00%
s4 10 8 0.90 20 1 3097.00 0 97 6 3097 2.84E+01 0.00% 0.00%
s5 10 8 0.90 20 1 3103.00 0 103 6 3103 3.15E+01 0.00% 0.00%
s6 10 8 0.90 20 1 3110.00 0 110 6 3110 2.49E+01 0.00% 0.00%
s7 10 8 0.90 20 1 3119.00 0 119 6 3119 1.86E+02 0.00% 0.00%
s8 10 8 0.95 15 1 4000.00 0 0 8 4000 2.09E+01 0.00% 0.00%
s9 10 8 0.95 15 1 4000.00 0 0 8 4000 3.92E+01 0.00% 0.00%
s10 10 8 0.95 15 1 4014.00 0 14 8 4014 1.92E+01 0.00% 0.00%
s11 10 8 0.95 15 1 4040.00 0 40 8 4040 2.77E+01 0.00% 0.00%
s12 10 8 0.98 12 - - - - - - 1.74E+01 - -
s13 10 8 0.98 12 - - - - - - 8.02E+00 - -
s14 10 8 0.98 12 - - - - - - 6.66E+00 - -
s15 10 8 0.98 12 - - - - - - 5.11E+00 - -
s16 20 16 0.80 102 7 3942.00 17 107 8 4107 1.04E+02 0.00% 4.19%
s17 20 16 0.80 102 8 3949.00 18 101 8 4101 1.06E+02 0.00% 3.85%
s18 20 16 0.80 102 7 3971.00 18 150 8 4150 1.41E+02 0.00% 4.51%
s19 20 16 0.80 102 10 4074.00 29 260 8 4260 1.33E+02 0.00% 4.57%
s20 20 16 0.84 84 5 4361.00 7 361 8 4361 1.52E+02 0.00% 0.00%
s21 20 16 0.84 84 5 4368.00 7 368 8 4368 7.92E+01 0.00% 0.00%
s22 20 16 0.84 84 3 4368.00 6 368 8 4368 6.44E+01 0.00% 0.00%
s23 20 16 0.84 84 4 4420.00 6 420 8 4420 8.46E+01 0.00% 0.00%
s24 20 16 0.89 63 2 5000.00 1 0 10 5000 2.89E+01 0.00% 0.00%
s25 20 16 0.89 63 1 5000.00 0 0 10 5000 3.07E+01 0.00% 0.00%
s26 20 16 0.89 63 2 5031.00 1 31 10 5031 3.09E+01 0.00% 0.00%
s27 20 16 0.89 63 1 5132.00 0 132 10 5132 3.82E+01 0.00% 0.00%
s28 20 16 0.95 42 1 6558.00 0 58 13 6558 2.07E+01 0.00% 0.00%
s29 20 16 0.95 42 1 6558.00 0 58 13 6558 2.51E+01 0.00% 0.00%
s30 20 16 0.95 42 1 6576.00 0 76 13 6576 2.34E+01 0.00% 0.00%
s31 20 16 0.95 42 1 6631.00 0 131 13 6631 2.24E+01 0.00% 0.00%
s32 30 24 0.77 235 7 4784.00 27 284 9 4784 2.12E+02 0.00% 0.00%
s33 30 24 0.77 235 11 4838.00 38 338 9 4838 2.81E+02 0.00% 0.00%
s34 30 24 0.77 235 15 4942.00 57 442 9 4942 3.76E+02 0.00% 0.00%
s35 30 24 0.77 235 12 5217.00 53 717 9 5217 2.60E+02 0.00% 0.00%
s36 30 24 0.81 198 9 5318.50 29 430 10 5430 3.13E+02 0.00% 2.10%
s37 30 24 0.81 198 10 5335.00 40 426 10 5426 2.06E+02 0.00% 1.71%
s38 30 24 0.81 198 11 5398.00 34 503 10 5503 3.85E+02 0.00% 1.95%
s39 30 24 0.81 198 9 5597.50 35 614 10 5614 2.05E+02 0.00% 0.29%
s40 30 24 0.87 148 8 5949.50 25 125 12 6125 1.40E+02 0.00% 2.95%
s41 30 24 0.87 148 6 5992.00 19 168 12 6168 1.14E+02 0.00% 2.94%
s42 30 24 0.87 148 7 6068.50 20 230 12 6230 1.54E+02 0.00% 2.66%
s43 30 24 0.87 148 9 6278.00 27 432 12 6432 1.33E+02 0.00% 2.45%
s44 30 24 0.94 84 3 7704.50 2 270 15 7770 1.34E+02 0.00% 0.85%
s45 30 24 0.94 84 3 7704.50 2 279 15 7779 1.23E+02 0.00% 0.97%
s46 30 24 0.94 84 3 7723.00 2 303 15 7803 8.60E+01 0.00% 1.04%
s47 30 24 0.94 84 3 7801.00 2 347 15 7847 7.66E+01 0.00% 0.59%
s48 40 32 0.78 392 20 5927.06 103 255 12 6255 1.99E+03 0.00% 5.53%
s49 40 32 0.78 392 19 5981.35 96 276 12 6276 2.03E+03 0.00% 4.93%
s50 40 32 0.78 392 24 6049.00 122 369 12 6369 2.26E+03 0.00% 5.29%
s51 40 32 0.78 392 21 6296.88 111 683 12 6683 2.19E+03 0.00% 6.13%
s52 40 32 0.83 312 12 6904.75 61 649 13 7149 1.36E+03 0.00% 3.54%
s53 40 32 0.83 312 15 6976.35 72 675 13 7175 9.35E+02 0.00% 2.85%
s54 40 32 0.83 312 19 7086.49 92 719 13 7219 1.11E+03 0.00% 1.87%
s55 40 32 0.83 312 19 7319.00 114 819 13 7319 4.82E+02 0.00% 0.00%
s56 40 32 0.88 233 11 7486.50 45 165 15 7665 3.30E+02 0.00% 2.38%
s57 40 32 0.88 233 10 7504.00 47 194 15 7694 4.29E+02 0.00% 2.53%
s58 40 32 0.88 233 14 7604.50 60 296 15 7796 5.23E+02 0.00% 2.52%

124

Table A.3: Numerical results for CTSPR

Inst id Num tests Num vehicles Incomp density Num seq Iterations Relax Obj val Cols Gen Tardiness Used vehicles Obj val Sol time RMP gap Opt gap
s59 40 32 0.88 233 16 7899.50 73 585 15 8085 4.98E+02 0.00% 2.35%
s60 40 32 0.94 131 2 9782.00 3 282 19 9782 7.72E+01 0.00% 0.00%
s61 40 32 0.94 131 2 9802.00 4 302 19 9802 5.90E+01 0.00% 0.00%
s62 40 32 0.94 131 3 9816.11 5 318 19 9818 1.11E+02 0.00% 0.02%
s63 40 32 0.94 131 2 10005.50 3 521 19 10021 7.10E+01 0.00% 0.15%
s64 50 40 0.79 565 22 7370.57 146 610 14 7610 4.28E+03 0.00% 3.25%
s65 50 40 0.79 565 19 7450.28 144 808 14 7808 4.83E+03 0.00% 4.80%
s66 50 40 0.79 565 22 7592.16 163 814 14 7814 3.48E+03 0.00% 2.92%
s67 50 40 0.79 565 20 7908.96 130 1125 14 8125 3.18E+03 0.00% 2.73%
s68 50 40 0.84 451 15 8373.92 110 567 16 8567 2.48E+03 0.00% 2.31%
s69 50 40 0.84 451 17 8449.44 124 629 16 8629 1.71E+03 0.00% 2.13%
s70 50 40 0.84 451 17 8552.14 125 779 16 8779 2.01E+03 0.00% 2.65%
s71 50 40 0.84 451 20 8795.60 148 991 16 8991 2.28E+03 0.00% 2.22%
s72 50 40 0.89 330 15 9733.00 104 733 18 9733 4.57E+02 0.00% 0.00%
s73 50 40 0.89 330 11 9761.25 71 362 19 9862 8.67E+02 0.00% 1.03%
s74 50 40 0.89 330 15 9785.00 110 785 18 9785 4.10E+02 0.00% 0.00%
s75 50 40 0.89 330 17 10012.50 111 1016 18 10016 5.12E+02 0.00% 0.03%
s76 50 40 0.95 184 7 11855.00 27 355 23 11855 1.28E+02 0.00% 0.00%
s77 50 40 0.95 184 4 11883.00 7 383 23 11883 1.17E+02 0.00% 0.00%
s78 50 40 0.95 184 11 11970.00 26 470 23 11970 1.62E+02 0.00% 0.00%
s79 50 40 0.95 184 6 12227.00 14 727 23 12227 1.35E+02 0.00% 0.00%
m0 60 48 0.80 783 25 8693.19 201 538 17 9038 8.66E+03 0.00% 3.97%
m1 60 48 0.80 783 26 8853.89 219 1019 16 9019 6.62E+03 0.00% 1.86%
m2 60 48 0.80 783 30 9032.33 259 1279 16 9279 1.06E+04 0.00% 2.73%
m3 60 48 0.80 783 30 9383.49 241 1652 16 9652 1.06E+04 0.00% 2.86%
m4 60 48 0.85 615 20 9537.41 172 813 18 9813 3.31E+03 0.00% 2.89%
m5 60 48 0.85 615 19 9684.52 188 929 18 9929 4.75E+03 0.00% 2.52%
m6 60 48 0.85 615 23 9885.79 205 1160 18 10160 5.94E+03 0.00% 2.77%
m7 60 48 0.85 615 25 10278.13 221 1436 18 10436 5.86E+03 0.00% 1.54%
m8 60 48 0.90 434 19 10893.00 162 489 21 10989 1.72E+03 0.00% 0.88%
m9 60 48 0.90 434 19 11007.47 176 634 21 11134 1.71E+03 0.00% 1.15%
m10 60 48 0.90 434 19 11210.82 153 878 21 11378 1.80E+03 0.00% 1.49%
m11 60 48 0.90 434 20 11621.37 169 1253 21 11753 2.50E+03 0.00% 1.13%
m12 60 48 0.95 239 10 14024.75 47 199 28 14199 1.14E+03 0.00% 1.24%
m13 60 48 0.95 239 10 14066.50 52 215 28 14215 1.11E+03 0.00% 1.06%
m14 60 48 0.95 239 9 14173.89 42 316 28 14316 9.33E+02 0.00% 1.00%
m15 60 48 0.95 239 6 14538.89 20 672 28 14672 1.30E+03 0.00% 0.92%
m16 70 56 0.80 1056 25 9756.91 224 667 19 10167 1.81E+04 0.00% 4.20%
m17 70 56 0.80 1056 25 9907.36 253 825 19 10325 3.88E+04 0.00% 4.22%
m18 70 56 0.80 1056 33 10134.83 340 1067 19 10567 4.83E+04 0.00% 4.26%
m19 70 56 0.80 1056 33 10601.52 285 1666 19 11166 4.54E+04 0.00% 5.32%
m20 70 56 0.85 820 22 10620.79 232 495 21 10995 1.17E+04 0.00% 3.52%
m21 70 56 0.85 820 23 10757.15 239 1037 20 11037 2.45E+04 0.00% 2.60%
m22 70 56 0.85 820 28 11030.36 307 1239 20 11239 3.48E+04 0.00% 1.89%
m23 70 56 0.85 820 27 11518.16 263 1884 20 11884 3.99E+04 0.00% 3.18%
m24 70 56 0.90 567 21 13004.11 200 697 25 13197 4.70E+03 0.00% 1.48%
m25 70 56 0.90 567 17 13075.25 192 817 25 13317 5.73E+03 0.00% 1.85%
m26 70 56 0.90 567 24 13222.94 245 951 25 13451 7.70E+03 0.00% 1.72%
m27 70 56 0.90 567 23 13586.56 246 1716 24 13716 6.91E+03 0.00% 0.95%
m28 70 56 0.95 306 17 15430.00 121 507 30 15507 1.41E+03 0.00% 0.50%
m29 70 56 0.95 306 13 15488.92 95 575 30 15575 2.20E+03 0.00% 0.56%
m30 70 56 0.95 306 13 15705.80 95 732 30 15732 6.61E+02 0.01% 0.17%
m31 70 56 0.95 306 11 16035.20 100 1166 30 16166 4.38E+03 0.00% 0.82%
m32 80 64 0.80 1385 35 10650.02 386 561 21 11061 7.75E+04 0.00% 3.86%
m33 80 64 0.80 1385 38 10871.65 424 798 21 11298 1.83E+05 0.00% 3.92%
m34 80 64 0.80 1385 43 11189.18 526 1143 22 12143 3.18E+05 6.06% 8.52%
m35 80 64 0.80 1385 35 11852.24 384 1939 22 12939 3.15E+05 6.87% 9.17%
m36 80 64 0.85 1070 24 11977.48 295 903 23 12403 4.44E+04 0.00% 3.55%
m37 80 64 0.85 1070 25 12134.42 320 1056 23 12556 3.85E+04 0.00% 3.47%

125

Table A.3: Numerical results for CTSPR

Inst id Num tests Num vehicles Incomp density Num seq Iterations Relax Obj val Cols Gen Tardiness Used vehicles Obj val Sol time RMP gap Opt gap
m38 80 64 0.85 1070 37 12378.89 419 1676 22 12676 8.28E+04 0.00% 2.40%
m39 80 64 0.85 1070 29 12814.15 355 2156 22 13156 9.12E+04 0.00% 2.67%
m40 80 64 0.90 730 18 13955.54 218 688 27 14188 1.09E+04 0.00% 1.67%
m41 80 64 0.90 730 19 14104.50 240 826 27 14326 9.35E+03 0.00% 1.57%
m42 80 64 0.90 730 20 14375.20 261 1148 27 14648 1.76E+04 0.00% 1.90%
m43 80 64 0.90 730 25 14605.02 340 1860 26 14860 3.27E+04 0.00% 1.75%
m44 80 64 0.95 390 10 17153.00 75 653 33 17153 7.68E+02 0.00% 0.00%
m45 80 64 0.95 390 17 17154.00 196 654 33 17154 1.03E+03 0.00% 0.00%
m46 80 64 0.95 390 13 17277.00 144 779 33 17279 1.04E+03 0.01% 0.01%
m47 80 64 0.95 390 15 17627.38 185 1682 32 17682 8.03E+03 0.01% 0.31%
m48 90 72 0.80 1731 35 11853.13 461 854 26 13854 3.24E+05 14.26% 16.88%
m49 90 72 0.80 1731 35 12098.21 451 802 25 13302 3.24E+05 8.13% 9.95%
m50 90 72 0.80 1731 46 12444.88 617 1164 23 12664 1.22E+05 0.00% 1.76%
m51 90 72 0.80 1731 41 13319.80 508 2108 28 16108 3.26E+05 17.12% 20.93%
m52 90 72 0.85 1338 25 12901.02 354 930 25 13430 1.45E+05 0.00% 4.10%
m53 90 72 0.85 1338 28 13125.00 393 1038 25 13538 1.71E+05 0.00% 3.15%
m54 90 72 0.85 1338 41 13499.52 512 1487 25 13987 2.23E+05 0.00% 3.61%
m55 90 72 0.85 1338 35 14051.30 440 2318 27 15818 3.11E+05 9.56% 12.57%
m56 90 72 0.90 906 26 15334.59 346 989 29 15489 5.66E+04 0.00% 1.01%
m57 90 72 0.90 906 25 15488.00 363 1229 29 15729 1.49E+05 0.01% 1.56%
m58 90 72 0.90 906 22 15857.34 345 1577 29 16077 4.06E+04 0.00% 1.39%
m59 90 72 0.90 906 30 16138.68 456 2851 27 16351 6.32E+04 0.00% 1.32%
m60 90 72 0.95 496 17 19452.08 223 522 38 19522 9.51E+03 0.00% 0.36%
m61 90 72 0.95 496 15 19546.57 144 640 38 19640 7.36E+03 0.00% 0.48%
m62 90 72 0.95 496 15 19696.44 194 1224 37 19724 5.25E+03 0.00% 0.14%
m63 90 72 0.95 496 20 19914.19 278 2524 35 20024 1.88E+04 0.00% 0.55%
l0 100 80 0.80 2143 36 13136.34 534 748 27 14248 3.43E+05 7.54% 8.46%
l1 100 80 0.80 2143 42 13444.30 601 966 30 15966 3.48E+05 15.64% 18.76%
l2 100 80 0.80 2143 52 13835.99 810 1628 26 14628 994.5113 5.20% 5.72%
l3 100 80 0.80 2143 56 14849.58 804 2985 26 15985 989.3598 6.99% 7.65%
l4 100 80 0.85 1641 30 14212.83 454 1002 29 15502 3.15E+05 7.07% 9.07%
l5 100 80 0.85 1641 37 14493.56 544 1169 29 15669 3.18E+05 6.54% 8.11%
l6 100 80 0.85 1641 43 14769.01 622 1675 30 16675 3.23E+05 10.87% 12.91%
l7 100 80 0.85 1641 44 15687.13 683 2795 33 19295 3.23E+05 18.56% 23.00%
l8 100 80 0.90 1103 34 17058.25 551 1816 31 17316 1.09E+05 0.00% 1.51%
l9 100 80 0.90 1103 25 17187.25 468 1030 33 17530 3.06E+05 0.69% 1.99%
l10 100 80 0.90 1103 26 17300.26 444 1612 32 17612 1.43E+05 0.01% 1.80%
l11 100 80 0.90 1103 33 17872.56 610 3226 32 19226 3.08E+05 6.75% 7.57%
l12 100 80 0.95 610 18 20723.88 280 1304 39 20804 1.12E+04 0.00% 0.39%
l13 100 80 0.95 610 19 20930.89 243 1018 40 21018 1.09E+04 0.00% 0.42%
l14 100 80 0.95 610 21 20975.27 302 584 41 21084 1.09E+04 0.00% 0.52%
l15 100 80 0.95 610 27 21613.80 466 2861 38 21861 3.04E+05 0.34% 1.14%
l16 110 88 0.80 2557 45 14401.24 697 806 28 14806 1010.068 2.61% 2.81%
l17 110 88 0.80 2557 53 14695.62 807 1158 29 15658 1020.988 6.12% 6.55%
l18 110 88 0.80 2557 66 15189.42 1096 1689 29 16189 1049.084 6.16% 6.58%
l19 110 88 0.80 2557 71 16489.68 1242 3453 29 17953 1058.823 8.12% 8.87%
l20 110 88 0.85 1945 31 15577.54 551 1247 30 16247 937.0979 3.68% 4.30%
l21 110 88 0.85 1945 37 15850.64 636 1534 30 16534 943.7575 3.99% 4.31%
l22 110 88 0.85 1945 45 16093.34 711 2479 29 16979 949.8954 4.68% 5.50%
l23 110 88 0.85 1945 54 17165.96 934 4141 29 18641 956.3347 7.64% 8.59%
l24 110 88 0.90 1329 33 18520.55 646 1324 35 18824 918.9542 1.24% 1.64%
l25 110 88 0.90 1329 32 18757.65 593 1642 35 19142 917.5644 1.77% 2.05%
l26 110 88 0.90 1329 32 18788.45 626 2268 34 19268 918.3043 1.77% 2.55%
l27 110 88 0.90 1329 38 19717.25 807 4432 33 20932 920.2834 5.42% 6.16%
l28 110 88 0.95 722 17 22686.56 319 1784 42 22784 106.9546 0.00% 0.43%
l29 110 88 0.95 722 16 22781.21 233 782 44 22782 11.33921 0.00% 0.00%
l30 110 88 0.95 722 15 22870.71 191 887 44 22887 18.88204 0.00% 0.07%
l31 110 88 0.95 722 27 23541.00 578 3377 41 23877 908.2491 1.17% 1.43%
l32 120 96 0.80 3027 45 15684.64 803 847 31 16347 1055.087 4.03% 4.22%

126

Table A.3: Numerical results for CTSPR

Inst id Num tests Num vehicles Incomp density Num seq Iterations Relax Obj val Cols Gen Tardiness Used vehicles Obj val Sol time RMP gap Opt gap
l33 120 96 0.80 3027 61 16058.04 1094 1326 32 17326 1093.539 7.27% 7.90%
l34 120 96 0.80 3027 70 16689.47 1330 2453 32 18453 1128.526 9.52% 10.57%
l35 120 96 0.80 3027 72 18306.01 1541 4195 32 20195 1144.103 9.35% 10.32%
l36 120 96 0.85 2289 38 16497.45 637 1478 33 17978 955.9296 7.84% 8.97%
l37 120 96 0.85 2289 42 16862.66 800 1834 33 18334 967.2947 7.97% 8.73%
l38 120 96 0.85 2289 59 17336.66 1073 2755 33 19255 984.9424 9.83% 11.07%
l39 120 96 0.85 2289 71 18711.35 1475 4981 33 21481 1009.223 12.83% 14.80%
l40 120 96 0.90 1578 40 19109.75 790 1344 37 19844 927.0247 3.39% 3.84%
l41 120 96 0.90 1578 35 19383.37 756 2176 36 20176 928.8183 3.73% 4.09%
l42 120 96 0.90 1578 39 19619.76 854 2610 35 20110 931.2616 2.12% 2.50%
l43 120 96 0.90 1578 54 20891.31 1276 4604 36 22604 944.9096 7.50% 8.20%
l44 120 96 0.95 847 28 23936.57 623 2252 44 24252 910.7416 1.19% 1.32%
l45 120 96 0.95 847 22 23983.47 408 1073 46 24073 910.4647 0.16% 0.37%
l46 120 96 0.95 847 22 24066.80 455 1148 46 24148 910.064 0.17% 0.34%
l47 120 96 0.95 847 41 25248.04 1168 4504 43 26004 917.0442 2.67% 2.99%
l48 150 120 0.80 4702 70 19540.21 1525 1387 41 21887 1565.46 10.69% 12.01%
l49 150 120 0.80 4702 70 20195.63 1653 1859 43 23359 1568.07 13.52% 15.66%
l50 150 120 0.80 4702 101 21542.10 2520 4366 43 25866 1824.678 16.71% 20.07%
l51 150 120 0.80 4702 97 24581.87 2715 7924 42 28924 1834.026 15.02% 17.66%
l52 150 120 0.85 3559 50 19947.54 1105 1849 41 22349 1090.795 10.71% 12.04%
l53 150 120 0.85 3559 62 20633.65 1408 2477 43 23977 1176.945 13.86% 16.20%
l54 150 120 0.85 3559 87 21915.62 2054 4601 41 25101 1259.493 12.63% 14.53%
l55 150 120 0.85 3559 87 24777.03 2354 8913 45 31413 1305.364 21.13% 26.78%
l56 150 120 0.90 2430 50 22748.10 1245 1914 45 24414 990.0995 6.71% 7.32%
l57 150 120 0.90 2430 56 23183.88 1382 3480 45 25980 1008.054 10.71% 12.06%
l58 150 120 0.90 2430 58 24334.27 1562 5374 43 26874 1027.247 9.42% 10.44%
l59 150 120 0.90 2430 79 26628.25 2116 7761 44 29761 1081.903 10.45% 11.76%
l60 150 120 0.95 1289 34 28586.00 902 1474 56 29474 934.8881 2.88% 3.11%
l61 150 120 0.95 1289 38 28831.01 1178 2634 54 29634 938.297 2.48% 2.79%
l62 150 120 0.95 1289 37 29813.77 1318 4301 53 30801 942.9943 3.10% 3.31%
l63 150 120 0.95 1289 51 32299.33 1820 7537 53 34037 961.3962 5.02% 5.38%

127

Table A.4: Numerical result for solving multiple vehicle program scheduling

Inst id overlap total num test total num vehicle iterations relax obj val cols gen obj val time spent time spent (sec) opt gap root opt gap
s13 s29 0.25 30 24 1 9005.00 186 9005 3.09E-01 0.00% 0.00%
s13 s29 0.5 30 24 1 9000.00 186 9000 9.91E-02 0.00% 0.00%
s13 s29 0.75 30 24 1 9005.00 186 9005 1.53E-01 0.00% 0.00%
s13 s29 1 30 24 1 9006.00 186 9006 1.50E-01 0.00% 0.00%
s13 s45 0.25 40 32 6 9985.50 593 10027 5.86E-01 0.00% 0.42%
s13 s45 0.5 40 32 7 9985.50 587 10027 4.29E-01 0.00% 0.42%
s13 s45 0.75 40 32 5 9985.50 578 10032 4.53E-01 0.00% 0.47%
s13 s45 1 40 32 8 9993.50 617 10054 4.70E-01 0.00% 0.61%
s13 s61 0.25 50 40 6 11147.00 1264 11147 3.72E-01 0.00% 0.00%
s13 s61 0.5 50 40 8 11137.00 1268 11137 4.07E-01 0.00% 0.00%
s13 s61 0.75 50 40 8 11159.00 1300 11159 4.41E-01 0.00% 0.00%
s13 s61 1 50 40 8 11254.00 1361 11254 4.26E-01 0.00% 0.00%
s13 s77 0.25 60 48 9 13211.00 2355 13211 6.91E-01 0.00% 0.00%
s13 s77 0.5 60 48 8 13175.00 2330 13175 7.30E-01 0.00% 0.00%
s13 s77 0.75 60 48 9 13209.00 2293 13209 8.11E-01 0.00% 0.00%
s13 s77 1 60 48 9 13318.00 2370 13318 7.62E-01 0.00% 0.00%
s29 s45 0.25 50 40 4 10997.50 735 11032 4.10E-01 0.00% 0.31%
s29 s45 0.5 50 40 5 11003.50 724 11032 4.49E-01 0.00% 0.26%
s29 s45 0.75 50 40 7 10997.50 762 11037 4.64E-01 0.00% 0.36%
s29 s45 1 50 40 6 11007.50 774 11051 4.62E-01 0.00% 0.40%
s29 s61 0.25 60 48 9 12152.00 1457 12152 4.77E-01 0.00% 0.00%
s29 s61 0.5 60 48 10 12142.00 1420 12142 5.08E-01 0.00% 0.00%
s29 s61 0.75 60 48 5 12164.00 1398 12164 3.90E-01 0.00% 0.00%
s29 s61 1 60 48 5 12274.00 1371 12274 3.99E-01 0.00% 0.00%
s29 s77 0.25 70 56 7 14216.00 2427 14216 6.97E-01 0.00% 0.00%
s29 s77 0.5 70 56 17 14185.00 2587 14185 9.32E-01 0.00% 0.00%
s29 s77 0.75 70 56 6 14220.00 2409 14220 7.05E-01 0.00% 0.00%
s29 s77 1 70 56 10 14352.00 2708 14352 8.36E-01 0.00% 0.00%
s45 s61 0.25 70 56 7 13190.00 1830 13190 8.16E-01 0.00% 0.00%
s45 s61 0.5 70 56 13 13184.00 1900 13184 9.38E-01 0.00% 0.00%
s45 s61 0.75 70 56 8 13205.00 1838 13205 1.01E+00 0.00% 0.00%
s45 s61 1 70 56 11 13300.00 1939 13300 1.04E+00 0.00% 0.00%
s45 s77 0.25 80 64 7 15256.00 2883 15256 1.42E+00 0.00% 0.00%
s45 s77 0.5 80 64 12 15255.00 3218 15255 1.68E+00 0.00% 0.00%
s45 s77 0.75 80 64 7 15279.00 2823 15279 1.36E+00 0.00% 0.00%
s45 s77 1 80 64 12 15471.00 3343 15471 2.59E+00 0.00% 0.00%
s61 s77 0.25 90 72 11 16415.00 3691 16415 1.26E+00 0.00% 0.00%
s61 s77 0.5 90 72 19 16452.00 3761 16452 1.59E+00 0.00% 0.00%
s61 s77 0.75 90 72 16 16448.00 4147 16448 1.57E+00 0.00% 0.00%
s61 s77 1 90 72 16 16725.00 4636 16725 2.11E+00 0.00% 0.00%
s13 m13 0.25 70 56 16 14678.00 3766 14678 9.06E+00 0.00% 0.00%
s13 m13 0.5 70 56 16 14747.00 3666 14747 7.78E+00 0.00% 0.00%
s13 m13 0.75 70 56 12 14794.00 3642 14794 1.05E+01 0.00% 0.00%
s13 m13 1 70 56 16 14917.40 4116 14983 7.02E+00 0.00% 0.44%
s13 m29 0.25 80 64 15 16204.00 5709 16204 6.14E+02 0.42% 0.42%
s13 m29 0.5 80 64 15 16350.00 5722 16350 6.15E+02 1.15% 1.15%
s13 m29 0.75 80 64 15 16364.00 5908 16364 6.15E+02 0.00% 0.00%
s13 m29 1 80 64 17 16664.00 6158 16664 2.97E+01 0.00% 0.00%
s13 m45 0.25 90 72 17 17769.00 8302 17769 6.04E+02 0.00% 0.00%
s13 m45 0.5 90 72 23 17918.00 7482 17918 6.05E+02 0.00% 0.00%
s13 m45 0.75 90 72 21 18006.00 7731 18006 6.05E+02 0.00% 0.00%
s13 m45 1 90 72 19 18120.29 8670 18154 1.40E+01 0.00% 0.19%
s13 m49 0.25 100 80 39 17076.00 18389 17076 6.19E+02 0.00% 0.00%
s13 m49 0.5 100 80 41 17450.00 14889 17450 6.24E+02 0.00% 0.00%
s13 m49 0.75 100 80 37 17515.16 16998 18914 6.20E+02 7.99% 7.99%
s13 m49 1 100 80 41 17525.28 20247 18294 6.22E+02 3.99% 4.39%
s29 m13 0.25 80 64 17 15682.00 3926 15682 9.75E+00 0.00% 0.00%
s29 m13 0.5 80 64 12 15765.00 3830 15765 3.20E+01 0.00% 0.00%
s29 m13 0.75 80 64 17 15798.00 3963 15798 1.39E+01 0.00% 0.00%

128

Table A.4: Numerical result for solving multiple vehicle program scheduling

Inst id overlap total num test total num vehicle iterations relax obj val cols gen obj val time spent time spent (sec) opt gap root opt gap
s29 m13 1 80 64 19 15989.27 4233 16078 1.31E+01 0.00% 0.55%
s29 m29 0.25 90 72 17 17176.00 5953 17176 6.14E+02 0.00% 0.00%
s29 m29 0.5 90 72 21 17344.00 5851 17344 6.15E+02 0.00% 0.00%
s29 m29 0.75 90 72 16 17198.00 6020 17198 1.75E+01 0.00% 0.00%
s29 m29 1 90 72 19 17699.00 6428 17699 3.63E+01 0.00% 0.00%
s29 m45 0.25 100 80 16 18736.00 8433 18736 6.04E+02 0.00% 0.00%
s29 m45 0.5 100 80 23 18987.00 7774 18987 6.05E+02 0.00% 0.00%
s29 m45 0.75 100 80 19 19021.00 7791 19021 6.04E+02 0.00% 0.00%
s29 m45 1 100 80 25 19210.51 10289 19295 7.22E+01 0.00% 0.44%
s29 m49 0.25 110 88 38 18066.00 18529 18066 6.21E+02 0.00% 0.00%
s29 m49 0.5 110 88 47 18516.46 15307 18522 6.23E+02 0.03% 0.03%
s29 m49 0.75 110 88 40 18577.83 17584 19154 6.21E+02 3.10% 3.10%
s29 m49 1 110 88 46 18635.32 22383 19951 6.25E+02 6.84% 7.06%
s45 m13 0.25 90 72 14 16722.00 4237 16722 1.28E+01 0.00% 0.00%
s45 m13 0.5 90 72 14 16795.00 4211 16795 2.63E+01 0.00% 0.00%
s45 m13 0.75 90 72 13 16838.00 4330 16838 1.69E+01 0.00% 0.00%
s45 m13 1 90 72 23 16969.48 5225 17119 2.61E+01 0.00% 0.88%
s45 m29 0.25 100 80 15 18248.00 6191 18248 6.15E+02 0.00% 0.00%
s45 m29 0.5 100 80 15 18414.00 6175 18414 6.15E+02 0.00% 0.00%
s45 m29 0.75 100 80 19 18454.00 6613 18454 6.15E+02 0.00% 0.00%
s45 m29 1 100 80 24 18908.60 7563 18922 3.03E+02 0.01% 0.07%
s45 m45 0.25 110 88 15 19780.00 8776 19780 6.05E+02 0.00% 0.00%
s45 m45 0.5 110 88 24 20048.75 8151 20068 6.06E+02 0.10% 0.10%
s45 m45 0.75 110 88 23 20070.44 8590 20270 6.06E+02 0.99% 0.99%
s45 m45 1 110 88 28 20205.44 10930 20461 5.70E+02 0.00% 1.26%
s45 m49 0.25 120 96 37 19338.00 18838 19338 6.19E+02 0.00% 0.00%
s45 m49 0.5 120 96 43 19520.00 15848 19520 6.23E+02 0.00% 0.00%
s45 m49 0.75 120 96 43 19598.51 18145 22024 6.24E+02 10.38% 12.38%
s45 m49 1 120 96 44 19727.03 23874 21273 6.27E+02 7.31% 7.84%
s61 m13 0.25 100 80 15 17901.00 4962 17901 1.77E+01 0.00% 0.00%
s61 m13 0.5 100 80 17 18021.00 5148 18021 9.87E+01 0.00% 0.00%
s61 m13 0.75 100 80 16 18061.00 5554 18061 1.14E+02 0.00% 0.00%
s61 m13 1 100 80 19 18363.00 6070 18363 3.58E+01 0.00% 0.00%
s61 m29 0.25 110 88 16 19474.00 6998 19474 6.15E+02 0.00% 0.00%
s61 m29 0.5 110 88 22 19605.00 7021 19605 6.15E+02 0.00% 0.00%
s61 m29 0.75 110 88 19 19790.00 7222 19790 6.15E+02 0.00% 0.00%
s61 m29 1 110 88 21 20202.00 8740 20202 5.07E+01 0.00% 0.00%
s61 m45 0.25 120 96 17 21031.00 9609 21031 6.05E+02 0.00% 0.00%
s61 m45 0.5 120 96 31 21275.00 9046 21275 6.06E+02 0.00% 0.00%
s61 m45 0.75 120 96 26 21452.50 10156 21580 6.07E+02 0.59% 0.59%
s61 m45 1 120 96 36 21632.36 13505 22756 6.09E+02 5.10% 5.19%
s61 m49 0.25 130 104 37 20391.00 19741 20391 6.21E+02 0.00% 0.00%
s61 m49 0.5 130 104 47 20874.00 16479 20874 6.25E+02 0.00% 0.00%
s61 m49 0.75 130 104 43 21143.51 18944 21310 6.25E+02 0.79% 0.79%
s61 m49 1 130 104 54 21316.92 25354 36584 6.35E+02 42.06% 71.62%
s77 m13 0.25 110 88 11 20005.00 5938 20005 1.46E+01 0.00% 0.00%
s77 m13 0.5 110 88 24 20128.00 6191 20128 1.17E+02 0.00% 0.00%
s77 m13 0.75 110 88 19 20173.00 6663 20173 1.25E+02 0.00% 0.00%
s77 m13 1 110 88 28 20538.10 8249 20610 6.05E+02 0.24% 0.35%
s77 m29 0.25 120 96 15 21579.00 8032 21579 6.15E+02 0.00% 0.00%
s77 m29 0.5 120 96 22 21772.00 8201 21772 6.16E+02 0.00% 0.00%
s77 m29 0.75 120 96 27 21979.00 9094 21979 6.17E+02 0.00% 0.00%
s77 m29 1 120 96 29 22521.41 10909 22643 6.20E+02 0.54% 0.54%
s77 m45 0.25 130 104 16 23187.00 10572 23187 6.05E+02 0.00% 0.00%
s77 m45 0.5 130 104 34 23441.00 10388 23441 6.09E+02 0.00% 0.00%
s77 m45 0.75 130 104 40 23693.24 12293 23809 6.09E+02 0.49% 0.49%
s77 m45 1 130 104 42 23937.93 16098 27883 6.13E+02 14.38% 16.48%
s77 m49 0.25 140 112 38 22924.58 20792 23053 6.22E+02 0.56% 0.56%
s77 m49 0.5 140 112 50 23060.30 17998 23199 6.33E+02 0.60% 0.60%

129

Table A.4: Numerical result for solving multiple vehicle program scheduling

Inst id overlap total num test total num vehicle iterations relax obj val cols gen obj val time spent time spent (sec) opt gap root opt gap
s77 m49 0.75 140 112 46 23176.58 21372 24070 6.31E+02 3.85% 3.85%
s77 m49 1 140 112 64 23362.43 30665 28556 6.51E+02 18.48% 22.23%
m13 m29 0.25 130 104 16 23196.00 9602 23196 6.21E+02 0.00% 0.00%
m13 m29 0.5 130 104 22 23674.00 9593 23674 6.21E+02 0.00% 0.00%
m13 m29 0.75 130 104 25 23800.84 10750 23874 6.21E+02 0.31% 0.31%
m13 m29 1 130 104 29 24092.18 13382 27687 6.23E+02 13.87% 14.92%
m13 m45 0.25 140 112 19 24867.00 11872 24867 6.12E+02 0.00% 0.00%
m13 m45 0.5 140 112 36 25200.51 12224 25315 6.12E+02 0.45% 0.45%
m13 m45 0.75 140 112 41 25256.00 14128 27875 6.17E+02 9.56% 10.37%
m13 m45 1 140 112 46 25594.47 18598 31002 6.21E+02 17.61% 21.13%
m13 m49 0.25 150 120 41 24346.92 22358 24748 6.27E+02 1.65% 1.65%
m13 m49 0.5 150 120 47 24818.21 19484 27827 6.37E+02 10.21% 12.12%
m13 m49 0.75 150 120 60 24931.38 23888 41839 6.48E+02 42.30% 67.82%
m13 m49 1 150 120 59 25411.30 31391 46513 6.57E+02 45.61% 83.04%
m29 m45 0.25 150 120 20 26661.00 14467 26661 6.22E+02 0.00% 0.00%
m29 m45 0.5 150 120 44 27198.19 14830 28222 6.30E+02 3.76% 3.76%
m29 m45 0.75 150 120 44 27275.73 18387 32506 6.32E+02 18.18% 19.18%
m29 m45 1 150 120 51 27661.48 21943 - 6.40E+02 - -
m29 m49 0.25 160 128 41 26285.00 25036 26285 6.43E+02 0.00% 0.00%
m29 m49 0.5 160 128 51 26884.79 22120 40106 6.56E+02 36.56% 49.18%
m29 m49 0.75 160 128 56 27089.41 27109 49351 6.64E+02 47.27% 82.18%
m29 m49 1 160 128 67 27456.87 35148 - 6.90E+02 - -
m45 m49 0.25 170 136 39 27572.46 26743 29535 6.29E+02 7.12% 7.12%
m45 m49 0.5 170 136 54 28033.83 25016 28760 6.50E+02 2.59% 2.59%
m45 m49 0.75 170 136 63 28528.64 31698 56194 6.68E+02 50.47% 96.97%
m45 m49 1 170 136 73 29430.53 39444 - 6.98E+02 - -

130

BIBLIOGRAPHY

131

BIBLIOGRAPHY

Alidaee, B., and H. Li (2014), Parallel machine selection and job scheduling to min-
imize sum of machine holding cost, total machine time costs, and total tardiness
costs, IEEE Transactions on Automation Science and Engineering, 11 (1), 294–301.

Balakrishnan, N., J. J. Kanet, and S. V. Sridharan (1999), Early/tardy scheduling
with sequence dependent setups on uniform parallel machines, Computers and Op-
erations Research, 26 (2), 127–141.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance
(1998), Branch-and-Price: Column Generation for Solving Huge Integer Programs.

Bartels, J.-H., and J. Zimmermann (2009), Scheduling Tests in Automotive R&D
Projects, European Journal of Operational Research, 193 (3), 805–819.

Blazewicz, J., J. K. Lenstra, and A. R. Kan (1983), Scheduling subject to resource
constraints: classification and complexity, Discrete Applied Mathematics, 5 (1), 11–
24.

Cao, D., M. Chen, and G. Wan (2005), Parallel machine selection and job scheduling
to minimize machine cost and job tardiness, Computers and Operations Research,
32 (8), 1995–2012.

Chelst, K., J. Sidelko, A. Przebienda, J. Lockledge, and D. Mihailidis (2001), Right-
sizing and Management of Prototype Vehicle Testing at Ford Motor Company,
Interfaces, 31 (1), 91–107, doi:10.1287/inte.31.1.91.9687.

Chen, J.-F. (2005), Unrelated parallel machine scheduling with secondary resource
constraints, The International Journal of Advanced Manufacturing Technology,
26 (3), 285–292.

Chen, J.-F., and T.-H. Wu (2006), Total tardiness minimization on unrelated parallel
machine scheduling with auxiliary equipment constraints, Omega, 34 (1), 81–89.

Cheng, T., and C. Sin (1990), A state-of-the-art review of parallel-machine schedul-
ing research, European Journal of Operational Research, 47 (3), 271–292, doi:
10.1016/0377-2217(90)90215-W.

Christofides, N., R. Alvarez-Valdés, and J. M. Tamarit (1987), Project scheduling
with resource constraints: A branch and bound approach, European Journal of
Operational Research, 29 (3), 262–273.

132

Cieliebak, M., T. Erlebach, F. Hennecke, B. Weber, P. Widmayer, and B. A. C. Ed
(2004), Scheduling With Release Times and Deadlines on A Minimum Number of
Machines, in Exploring New Frontiers of Theoretical Informatics; IFIP 18th World
Computer Congress TC1 3rd International Conference on Theoretical Computer
Science (TCS2004) 2227 August 2004 Toulouse, France, vol. 155, pp. 209–222,
Springer.

Coffman Jr, E. G., M. R. Garey, and D. S. Johnson (1996), Approximation algorithms
for bin packing: a survey, in Approximation algorithms for NP-hard problems, pp.
46–93, PWS Publishing Co.

Davis, E. W., and G. E. Heidorn (1971), An algorithm for optimal project scheduling
under multiple resource constraints, Management Science, 17 (12), B–803.

Desrosiers, J., and M. E. Lübbecke (2005), A primer in column generation, in Column
generation, pp. 1–32, Springer.

Edis, E. B., and C. Oguz (2011), Parallel machine scheduling with additional re-
sources: a lagrangian-based constraint programming approach, in International
Conference on AI and OR Techniques in Constriant Programming for Combinato-
rial Optimization Problems, pp. 92–98, Springer.

Elhedhli, S., L. Li, M. Gzara, and J. Naoum-Sawaya (2011), A branch-and-price algo-
rithm for the bin packing problem with conflicts, INFORMS Journal on Computing,
23 (3), 404–415.

Finke, G., P. Lemaire, J. M. Proth, and M. Queyranne (2009), Minimizing the num-
ber of machines for minimum length schedules, European Journal of Operational
Research, 199 (3), 702–705.

Garey, M. R., and D. S. Johnson (1975), Complexity results for multiprocessor
scheduling under resource constraints, SIAM Journal on Computing, 4 (4), 397–
411.

Gilmore, P. C., and R. E. Gomory (1961), A linear programming approach to the
cutting-stock problem, Operations research, 9 (6), 849–859.

Gilmore, P. C., and R. E. Gomory (1963), A linear programming approach to the
cutting stock problempart ii, Operations research, 11 (6), 863–888.

Hartmann, S., and R. Kolisch (2000), Experimental evaluation of state-of-the-art
heuristics for the resource-constrained project scheduling problem, European Jour-
nal of Operational Research, 127 (2), 394–407.

Heady, R. B., and Z. Zhu (1998), Minimizing the sum of job earliness and tardiness
in a multimachine system, International Journal of Production Research, 36 (6),
1619–1632.

133

Kim, D. W., D. G. Na, and F. F. Chen (2003), Unrelated parallel machine scheduling
with setup times and a total weighted tardiness objective, Robotics and Computer-
Integrated Manufacturing, 19 (1-2), 173–181.

Kolisch, R., and S. Hartmann (2006), Experimental investigation of heuristics for
resource-constrained project scheduling: An update, European journal of opera-
tional research, 174 (1), 23–37.

Kravchenko, S. A., and F. Werner (2009), Minimizing the number of machines for
scheduling jobs with equal processing times, European Journal of Operational Re-
search, 199 (2), 595–600.

Kurz, M. E., and R. G. Askin (2001), Heuristic scheduling of parallel machines with
sequence-dependent set-up times, International Journal of Production Research,
39 (16), 3747–3769.

Lavoie, S., M. Minoux, and E. Odier (1988), A new approach for crew pairing prob-
lems by column generation with an application to air transportation, European
Journal of Operational Research, 35 (1), 45–58.

Lee, S., J. Turner, M. S. Daskin, T. Homem-De-Mello, and K. Smilowitz (2012),
Improving fleet utilization for carriers by interval scheduling, European Journal of
Operational Research, 218 (1), 261–269.

Limtanyakul, K., and U. Schwiegelshohn (2012), Improvements of Constraint Pro-
gramming and Hybrid Methods for Scheduling of Tests on Vehicle Prototypes,
Constraints, 17 (2), 172–203.

Lin, Y.-K., and F.-Y. Hsieh (2014), Unrelated parallel machine scheduling with setup
times and ready times, International Journal of Production Research, 52 (4), 1200–
1214.

Liu, C. (2013), A Hybrid Genetic Algorithm to Minimize Total Tardiness for Un-
related Parallel Machine Scheduling with Precedence Constraints, Mathematical
Problems in Engineering, 2013, 1–11.

Lübbecke, M. E., and J. Desrosiers (2005), Selected topics in column generation,
Operations Research, 53 (6), 1007–1023.

Mehrotra, A., and M. A. Trick (1996), A column generation approach for graph
coloring, informs Journal on Computing, 8 (4), 344–354.

Potts, C. N., and V. A. Strusevich (2009), Fifty years of scheduling: a survey
of milestones, Journal of the Operational Research Society, 60, S41–S68, doi:
10.1057/jors.2009.2.

Rabadi, G., R. Moraga, and A. Al-Salem (2006), Heuristics for the unrelated parallel
machine scheduling problem with setup times, Journal of Intelligent Manufactur-
ing, 17, 85–97.

134

Radhakrishnan, S., and J. a. Ventura (2000), Simulated annealing for parallel machine
scheduling with earliness-tardiness penalties and sequence-dependent set-up times,
International Journal of Production Research, 38 (10), 2233–2252.

Reich, D., Y. Shi, M. Epelman, A. Cohn, E. Barnes, K. Arthurs, and E. Klampfl
(2016), Scheduling crash tests at ford motor company, Interfaces, 46 (5), 409–423.

Ribeiro, C. C., and F. Soumis (1994), A column generation approach to the multiple-
depot vehicle scheduling problem, Operations research, 42 (1), 41–52.

Savelsbergh, M. (1997), A branch-and-price algorithm for the generalized assignment
problem, Operations research, 45 (6), 831–841.

Sawik, T. (2010), An integer programming approach to scheduling in a contaminated
area, Omega, 38 (3), 179–191.

Shi, Y., D. Reich, M. Epelman, E. Klampfl, and A. Cohn (2017), An analytical
approach to prototype vehicle test scheduling, Omega, 67, 168–176.

Sivrikaya-rifolu, F., and G. Ulusoy (1999), Parallel machine scheduling with earliness
and tardiness penalties, Computers and Operations Research, 26 (8), 773–787.

Sterna, M. (2011), A survey of scheduling problems with late work criteria, Omega,
39 (2), 120–129.

Taillard, É. D. (1999), A heuristic column generation method for the heterogeneous
fleet vrp, RAIRO-Operations Research, 33 (1), 1–14.

Yu, G., and G. Zhang (2009), Scheduling with a minimum number of machines,
Operations Research Letters, 37 (2), 97–101, doi:10.1016/j.orl.2009.01.008.

Zhu, Z., and R. B. Heady (2000), Minimizing the sum of earliness/tardiness in multi-
machine scheduling: a mixed integer programming approach, Computers & Indus-
trial Engineering, 38 (2), 297–305.

135

