
 

Latent Effects of Exposure to Lead and the Association with Neurological Outcomes 
via Epigenetics and Genetics 

by 
Zishaan Farooqui 

A dissertation submitted in partial fulfillment  
of the requirements for the degree of  

Doctor of Philosophy  
(Environmental Health Sciences)  

in The University of Michigan  
2015 

 
 
 
 
 
 
 
 

 
Doctoral Committee: 

 
Associate Professor Dana C. Dolinoy, Co-Chair 
Assistant Professor Sung Kyun Park, Co-Chair 
Professor Howard Hu, University of Toronto  
Professor Henry Paulson  
Assistant Professor Maureen Sartor 

 
 



 ii  

Acknowledgements

 

I would like to begin by thanking God and family, especially my mother and father. 

Without that foundation, I would be nowhere. 

My thesis advisors, Dr. Dana Dolinoy and Dr. Sung Kyun Park, have been absolutely 

amazing. Not only did Dana take me on as the first MD-PhD student in the EHS department, 

she also mentored me through a research project that was new ground for both of us. Dana 

allowed me the freedom to carve out a unique niche in the lab, and although isolating 

mouse neurons was painstakingly tedious, I cannot state enough how much I appreciate 

the support and big-picture mindset that Dana provided throughout the process. She has 

always had her students’ best interests in mind and that realization has not escaped me 

either. 

As for Dr. Park, I know I have probably raised his blood pressure by at least an 

amount equivalent to an IQR increase in Pb. Essentially, I am more harmful to my advisors 

than the Pb we study. As a teacher, Sung is a unique blend of gentle, yet intensely rigorous, 

and I cannot put into words how important it was for me to spend hours with him 

discussing how to conduct a study of environmental epidemiology. Sung has pushed me to 

make sure I understand the nuances of study design and analysis. The effort that Dana and 

Sung have put into my training is unbelievable. 



 iii  

As for my thesis committee members, Dr. Howard Hu was the first faculty in the 

School of Public Health I had contact with. His expertise in this field of using bone Pb as a 

marker of cumulative exposure has been extremely important. 

 Dr. Maureen Sartor has been extremely supportive and available whenever I have 

bioinformatics questions. Her expertise in analyzing genome-wide data is clearly 

invaluable, but she has also provided input on all parts of my dissertation. 

 Dr. Hank Paulson has also been a crucial member of my committee. Dr. Paulson was 

really the one who strongly suggested that I try genome-wide studies instead of looking for 

only a few candidate genes. I was fortunate enough to use the last batch of NimbleGen tiling 

arrays to carry this project out, and I am glad I did. 

Dr. Kelly Bakulski was in the trenches with me for the most important part of my 

development as a scientist. For me, she has been a leader, teacher, friend, soundboard, 

emergency research contact, and Alps trekking partner. I learned almost every single lab 

skill from Kelly, as well as some coding in R. Not included in this dissertation are the 

plethora of other projects Kelly and I tried that did not come to full fruition: X-ray 

measurement of metals in human AD brain slices, effects of bisphenol A on DNA 

methylation in the brain, implementation of K-XRF measurements at the SPH, and many 

more. My only regret in interacting with Kelly is that I cannot pay her back for her 

invaluable guidance. I only hope I can be as unselfish, generous, and intelligent as her as I 

progress through my own career. 

My entire lab deserves general acknowledgment, but several colleagues deserve 

special recognition. Dr. Chris Faulk and Amanda Barks managed the Pb-exposure mouse 

study from which I extracted brains. We’ve spent hours in the dissection room together, 



 iv  

not only extracting every organ from these mice, but also drafting up a zombie mouse 

movie, which will surely be a blockbuster. Dr. Caren Weinhouse was working on the 

NimbleGen tiling arrays just before I did, and her protocol and guidance was necessary for 

me to run the arrays myself. Tami Jones, our lab manager, cannot be thanked enough. Our 

whole lab would be lost without her. Everyone else in the lab has been incredibly 

supportive in fostering scientific discussion as well as practical lab advice. 

It is also important to acknowledge the people at the Flow Cytometry Core, 

especially Mike Dellheim, Mike Pihalja and Aaron Robida. They ran my brain samples to 

isolate neurons and non-neurons. Without their expertise, this work would not have gotten 

done. 

I am completely indebted to the Medical Scientist Training Program here at the 

University of Michigan. Ellen Elkin, Hilkka Ketola, and Laurie Koivupalo are amazing staff 

members at the MSTP and have provided me with essentials like funding guidance and 

healthcare. Dr. Ron Koenig has given me an opportunity of a lifetime. I was born in a rural 

hospital in India and subsequently grew up near the South Side of Chicago. The MSTP 

provides an opportunity that people from those areas can rarely dream of, much less afford 

financially. Ultimately, I hope to be able to utilize the skills I have learned in this training to 

benefit patients through both clinical and scientific means.



 v  

TABLE OF CONTENTS 
 
ACKNOWLEDGEMENTS ........................................................................................................... ii 
LIST OF TABLES ..................................................................................................................... viii 
LIST OF FIGURES ...................................................................................................................... ix 
ABSTRACT ................................................................................................................................... x 
1. CHAPTER 1: Introduction 

1.1. Overview of Dissertation ...................................................................................................... 1 
1.2. Dementia and Cognitive Decline ....................................................................................... 2 
1.3. Alzheimer’s Disease Epidemiology and Pathophysiology ....................................... 3 
1.4. Environmental Exposure to Pb .......................................................................................... 4 
1.5. Pb Pharmacodynamics .......................................................................................................... 5 
1.6. Pb Effects in the Brain ........................................................................................................... 6 

1.6.1. Acute Neurotoxicity of Pb 
1.6.2. Developmental Origins of Health & Disease and  

    the Chronic Neurotoxicity of Pb 
1.7. Specific Aims of this Thesis ................................................................................................. 9 

1.7.1. Analysis of Cumulative Pb Exposure and Longitudinal Change in 
Cognition 

1.7.2. Gene-environment Interactions and their Association with MMMSE 
Scores 

1.7.3. In Utero Pb exposure and Neuron-specific Epigenetic Changes in Mice 
1.8. References ............................................................................................................................... 11 

2. CHAPTER 2: The association of Pb exposure and longitudinal changes in Mini-
Mental Status Exam scores, global cognition and domains of cognition over time 
2.1. Abstract .................................................................................................................................... 17 
2.2. Introduction ........................................................................................................................... 18 
2.3. Methods  .................................................................................................................................. 19 

2.3.1. Study Population 
2.3.2. Exposure Assessment 
2.3.3. Cognitive Assessments 
2.3.4. Other Covariates 
2.3.5. Data Analysis 

2.4. Results ...................................................................................................................................... 25  
2.4.1. Descriptive Statistics 
2.4.2. Associations between Lead Concentrations and MMSE 
2.4.3. Associations between Lead Concentrations and Global Cognition 
2.4.4. Associations between Lead Concentrations and Cognitive Domains 



 vi  

2.4.5. Sensitivity Analyses 
2.5. Discussion ............................................................................................................................... 28 
2.6. References ............................................................................................................................... 39 

 
3. CHAPTER 3: Effect Modification by Cognition-related Polymorphisms of the 

Association between Cumulative Lead Exposure and Cognitive Decline 
3.1. Abstract .................................................................................................................................... 42 
3.2. Introduction ........................................................................................................................... 43 
3.3. Methods ................................................................................................................................... 45 

3.3.1. Study Population 
3.3.2. Genotyping 
3.3.3. Pb Exposure Assessment 
3.3.4. Cognitive Assessments 
3.3.5. Data Analysis 
3.3.6. Gene-Environment Interaction Analysis 
3.3.7. Genotype Modeling 

3.4. Results ...................................................................................................................................... 51 
3.4.1. Descriptive Statistics 
3.4.2. Main Association between SNPs and MMSE 
3.4.3. Interaction between Pb and SNPs on change in MMSE  

3.5. Discussion ............................................................................................................................... 55 
3.6. References ............................................................................................................................... 70 

4. CHAPTER 4: In Utero Lead Exposure and Neuron-specific Epigenetic 
Changes in Mice 
4.1. Abstract .................................................................................................................................... 74 
4.2. Introduction ........................................................................................................................... 75 

4.2.1. Alzheimer’s Disease, Pb, & Developmental Origins of Health and 
Disease   Hypothesis 

4.2.2. Neuronal Epigenetics 
4.3. Methods ................................................................................................................................... 77 

4.3.1. Mouse Study Population 
4.3.2. Sample Ascertainment and Preparation 
4.3.3. Nimblegen Tiling Array Sample Preparation 
4.3.4. Bioinformatics Pipeline 
4.3.5. Bumphunt Analysis 
4.3.6. Pathway Analysis 

4.4. Results ...................................................................................................................................... 85 
4.4.1. Neuronal Separation 
4.4.2. Overall Differential Methylation 
4.4.3. Bumphunt Analysis 



 vii  

4.4.4. Pathway Analysis 
4.5. Discussion ............................................................................................................................... 87 
4.6. References ............................................................................................................................. 100 

5. CHAPTER 5: Conclusion 
5.1. Summary of Results........................................................................................................... 105 
5.2. Synthesis of Findings ........................................................................................................ 106 
5.3. Use of Longitudinal Models to Track Trajectory of Environment-associated 

Cognitive Decline ................................................................................................................ 107 
5.4. Utility of Discovering Gene-Environment Interactions ....................................... 108 

5.4.1. Potential Mechanisms of Interaction 
5.5. Epigenetics as a Mediator of Pb Effects on Cognition .......................................... 110 
5.6. Public Health Implications.............................................................................................. 113 
5.7. References ............................................................................................................................. 115 



 viii  

LIST OF TABLES 
CHAPTER 2 
Table 2.1: Baseline study characteristics .................................................................................... 33 
Table 2.2: Mean cognition scores (MMSE and “Global” Cognition) over time .............. 34 
Table 2.3: Association between Pb and MMSE over time .................................................... 35 
Table 2.4: Cox proportional hazards ratios of MMSE decline in association  

with Bone Pb Levels....................................................................................................................... 36 
Table 2.5: Association of Pb and Global Cognition over time ............................................. 37 
Table 2.6: Association of IQR increase in Pb and individual cognitive tests over time38 
 
CHAPTER 3 
Table 3.1: Descriptive statistics by model type ........................................................................ 60 
Table 3.2: Allele frequencies in the Normative Aging Study by model type ................. 61 
Table 3.3: Main association of SNPs on MMSE ......................................................................... 62 
Table 3.4: Interaction between Pb and genes to modify MMSE ........................................ 63 

3.4A: Longitudinal Model 
3.4B: Cox Proportional Hazards Model 

Table 3.5: Association of IQR change in Pb by Genotype to modify HR of MMSE<25 65 
 
CHAPTER 4 
Table 4.1: Number of mice used in pooling scheme ............................................................... 91 
Table 4.2: Top pathway hits from individual probe-level DAVID analysis.................... 97 

4.2A: Annotation Cluster 1 
4.2B: Annotation Cluster 2 

Table 4.3: Top pathway hits from probe-level LR path analysis ....................................... 99 
 
  



 ix  

LIST OF FIGURES 
CHAPTER 3 
Figure 3.1: Main Association of genetic variation on hazard ratios of MMSE<25 ...... 66 
Figure 3.2: Association of IQR change in Pb with hazard ratio of MMSE<25,  

by genotype ..................................................................................................................... 67 
Figure 3.3: Association of IQR change in Pb with hazard ratio of MMSE<25,  

by dichotomous genotype ......................................................................................... 68 
Figure 3.S1: Genotype frequencies in subjects with Pb measurements ......................... 69 
 
CHAPTER 4 
Figure 4.1: Fragmentation of NeuN(+) DNA via sonication ................................................. 92 
Figure 4.2: Bioinformatics pipeline ............................................................................................... 93 
Figure 4.3: Fluorescence-activated cell sorting........................................................................ 94 
Figure 4.4: Top hits from bumphunt analysis ........................................................................... 96 



 x  

Abstract

Cognitive function is measured on a spectrum that ranges from normal cognition to 

mild cognitive impairment to severe dementia, which may manifest itself as a 

neurodegenerative disease, such as Alzheimer’s Disease (AD). Evidence suggests that the 

environment may interact with genes to influence susceptibility to cognitive decline via 

interaction with single nucleotide polymorphisms in genes or by modification of the 

epigenome. This work examines the association of a well-known environmental toxicant, 

lead (Pb), with cognition. The overall aim is to examine how genetics and epigenetics 

interact with Pb to influence susceptibility to cognitive decline. 

The first specific aim of this dissertation characterizes the association between 

cumulative Pb exposure and longitudinal changes in scores on the mini-mental status exam 

(MMSE) as well as a measure of global cognition in a cohort of men in the Normative Aging 

Study (NAS). We use linear mixed effects models and generalized additive mixed effects 

models that incorporated cognitive function tests over up to 15 years. Among men 51-89 

years of age at baseline, an interquartile range increase (IQR=21 μg/g) in Pb is associated 

with a lower baseline MMSE (β=-0.128,p=0.04) and a faster decline in the rate of MMSE 

(β=-0.016,p=0.04). We also report a suggestive association between patella Pb and the risk 

of cognitive impairment defined as MMSE score dropping below 25 using Cox proportional 

hazard models (hazard ratio=1.21, 95% CI:0.99-1.49). 
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 The second aim investigates whether single nucleotide polymorphisms found to be 

associated with AD in genome-wide association studies modify the association between Pb 

and the risk of cognitive impairment in the same cohort. We analyze SNPs in genes 

encoding CUGBP,Elav-like family member 1 (CELF1), phosphatidylinositol binding clathrin 

assembly protein (PICALM), clusterin (CLU), complement receptor (CR1), and 

apolipoprotein E (APOE). We find that an IQR increase in patella Pb confers a non-

statistically significant change in risk of dropping below an MMSE score of 25 for subjects 

who were homozygous for the major allele at the CR1 and PICALM genes. However, for 

carriers of the variant allele at CR1 and PICALM, there was an increased risk of dropping 

below an MMSE score of 25 over the longitudinal observation period. The HR for CR1 

variants is 1.51 (95% confidence interval (CI): 1.03-2.21), and for PICALM is 1.44 (95% CI: 

1.04-2.01). No significant modification of the effect of Pb on cognition by APOE is identified. 

The third aim tests the hypothesis that DNA methylation is modified by in utero 

exposure to Pb in a mouse model. Offspring were exposed via the maternal drinking water 

to 0 ppm, 2.1 ppm, or 32 ppm of Pb two weeks before mating, throughout gestation, and 

three weeks after birth. Using NimbleGen Promoter Tiling Arrays, we probed DNA 

methylation levels in a neuron-specific cell population at a genome-wide level. Mice 

exposed in utero to 32 ppm Pb had 11,517 (1.7%) probes with differential methylation as 

compared to non-exposed mice at p<0.005 (lowest FDR=0.3002). Of these, 7554 (65.6%) 

were hypomethylated and 3963 (34.4%) were hypermethylated. We report novel 

exposure-dependent, differentially methylated regions associated with the following genes: 

histamine N-methyltransferase (Hnmt), selection and upkeep of intraepithelial T cells 5 

(Skint5), Xylosyltransferase 1 (Xylt1), olfactory receptor 1085 (Olfr1085), protocadherin 19
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(Pcdh19), and a retrotransposed gene for heterogeneous nuclear riboprotein C (Retro-

Hnrpc). The role of Hnmt (histamine N-methyltransferase) is of particular interest, as it is 

associated with regulation of neurotransmitter levels. 

Overall, this project illustrates that prior exposure to Pb can modulate cognition via 

interaction with genetic variants and the epigenome. This paves the way for understanding 

how environmental exposures exert latent effects over the lifetime of an organism vis-à-vis 

their interaction with the genome. Future studies need to biologically validate gene-

environment interactions found in epidemiologic studies and also utilize mouse models to 

probe mechanisms of how the environment can modify the epigenome. 
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Chapter 1 

Introduction

1.1 Overview of Dissertation 

The current paradigm for understanding human disease involves two major 

features: genetic material, which is inherited and relatively unchanging; and the 

environment, which is constantly in flux.  Inherent to the study of gene-environment 

interactions and disease outcomes are several challenging aspects.  First, assessing the 

effect of exposure in a natural setting is difficult.  Second, the interface between 

environmental toxicants and human physiology is poorly understood.  Although technology 

to probe DNA sequences and gene expression has increased exponentially, our 

understanding of how genes interact to cause disease is still in its early stages. Additionally, 

the environment may exert effects on the epigenome, the layer “on top” of the genome that 

allows for its regulation. Thus, an interdisciplinary approach that utilizes both molecular 

and genetic epidemiology as well as molecular biology, is critical in understanding the 

interface between genes, the environment, and disease. 

 The objective for this dissertation is to characterize how chronic exposure to lead 

(Pb), a model neuro-toxicant, exerts effects on cognitive outcomes throughout an 

individual’s life. We demonstrate this by utilizing epidemiologic methodology as well as 

mouse models to probe exploratory mechanisms of how Pb interacts with the genome. This 

thesis first establishes a general model delineating the association between cumulative Pb 
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exposure and longitudinal changes in cognition. From there, we probe the interaction of Pb 

with human single nucleotide polymorphisms (SNPs) associated with Alzheimer’s Disease 

(AD) in genome-wide association studies (GWAS) and with the mouse epigenome.  

 

1.2 Dementia and Cognitive Decline 

Over the next few decades, a major challenge for medicine will be the delivery of 

healthcare to an aging population. In the United States (U.S.), the proportion of the 

population older than 65 is expected to rise from the current 13% to 19% by the year 2030 

[1]. One of the devastating pathologies associated with aging is dementia, characterized by 

deterioration in cognition, function, and behavior. Patients with dementia are unable to 

perform basic activities of daily living, including dressing, feeding, and bathing. The 

prevalence of dementia, which is already at 35.6 million worldwide, is predicted to double 

every 20 years through the year 2040 [2,3]. Alzheimer’s disease (AD) is the leading cause of 

dementia, and the risk of incident AD nearly doubles every five years after the age of 65 

[2,3]. 

 Cognitive function is thought to exist as a continuum on which dementia is the 

clinical endpoint. The rate of trajectory of cognition over the aging process is key in 

characterizing patients at risk for dementia. A normal process of aging includes an 

expected level of decline in memory, executive function and visuomotor ability. Patients 

with mild cognitive impairment (MCI), however, are a subgroup of patients that have faster 

declines in tests of the aforementioned functions, and are at an increased risk of developing 

dementia [4]. It is thus necessary to characterize factors that might precipitate or dampen 

the conversion from MCI to the full-blown dementia of AD or other neurodegenerative 
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disorders [5]. If the rate of cognitive decline can be further stratified by environmental risk 

factors, it may be possible to intervene in at-risk patients with neuropsychological 

rehabilitation [6] or pharmacologic treatments to alleviate symptoms of memory loss [7]. 

 

1.3 Alzheimer’s Disease Epidemiology and Pathophysiology 

AD is the most prevalent form of dementia, comprising approximately 60-80% of 

cases [8]. Early-onset AD (EOAD) occurs in people younger than the age of 60 and 

comprises about 5% of all AD cases. EOAD is associated with highly penetrant genetic 

mutations in the gene for amyloid precursor protein (APP) as well as genes in the APP 

processing pathway, presenilin 1 (PSEN1) and presenilin 2 (PSEN2) [9,10]. These latter two 

proteins, along with anterior pharynx-defective 1a (APH1a), are part of a gamma-secretase 

complex [9]. Along with beta-secretase 1 (BACE1), gamma-secretase cleaves APP to form 

the amyloidogenic cleavage products Aβ40 and Aβ42 that aggregate into the characteristic 

histopathologic plaques of AD [11]. On the other hand, the ADAM proteases (a’ disintegrin 

and metalloproteases) such as ADAM10 and ADAM17 are alpha-secretases that act on APP 

to create non-amyloid-forming cleavage products [12-14]. 

 Although genetics explains much of the susceptibility to EOAD, the etiology of late-

onset AD (LOAD) is much less clear. Several studies have identified the apolipoprotein E-ε4 

(APOE-ε4) allele as a risk factor for LOAD [15-19]. A putative function of the APOE protein 

is the promotion of proteolytic degradation of Aβ. The APOE-ε4 isozyme is thought to be 

less efficient in this process compared to APOE-ε2 [20]. Additional GWAS have identified 

apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), 

clusterin (CLU), complement receptor (CR1), and CUGBP,Elav-like family member 1 
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(CELF1) as genes that modify the risk of LOAD, among others [16,18,21,22]. APOE, PICALM, 

CLU, and CR1 are of particular importance because they have also been shown to modify 

non-pathologic cognitive decline, implicating that they may modify the progression 

towards dementia [23-25]. However, all of the genes discovered via GWAS account for up 

to only 33% of the variation in liability to AD [26,27]. This suggests that either there are 

unknown genes that play a role in pathogenesis of disease, or that environmental 

exposures confer a substantial risk of developing AD dementia.

 

1.4 Environmental Exposure to Pb 

Prior to the banning of Pb in gasoline, paint, canned goods, and other consumer 

products in the 1970s and 1980s in the U.S. and other countries, the general public was 

ubiquitously exposed to Pb [28]. Policies aimed at reducing Pb exposure such as the 

removal of Pb from gasoline, children’s toys, and municipal drinking water have 

dramatically decreased adverse outcomes in children and increased economic productivity 

[29]. After the phaseout of leaded gasoline began in 1976 in the U.S., mean blood Pb levels 

(BLL) dropped from 12.8 μg/dL in 1976 to 2.8 μg/dL in 1992 [30,31]. 

Despite these reductions in exposure, global consumption of Pb is actually 

increasing today [32]. Pb is currently ranked number two on the priority list of hazardous 

substances by the Agency for Toxic Substances and Disease Registry [33]. At Superfund 

sites that are on the National Priorities List (NPL), Pb is particularly an issue due to its 

frequency, toxicity, and potential for human exposure [34]. PbCl2 is produced at high 

temperatures needed for waste combustion and can be deposited into the soil and water 

surrounding municipal waste incineration sites [35]. Pb can also be inhaled near NPL sites 
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as a result of fly ash, which contains several heavy metals [35]. As of 2013, there are still 

over 135,000 U.S. children between ages 1-5 living with blood lead levels (BLL) greater 

than 5 μg/dL [36], the level beyond which the Centers for Disease Control and Prevention 

(CDC) recommend public health action [37]. An additional source of Pb exposure is from 

homes built before 1978. Leaded paint, plumbing pipes, and solder containing Pb may not 

have been removed from these homes, and thus serve as a persistent source of exposure 

via drinking water, house dust, or other kinds of ingestion [38,39]. Thus, populations that 

live near Superfund sites or in industrial areas with old homes are particularly vulnerable 

to the effects of Pb exposure [40]. Pb is a persistent environmental hazard abroad as well 

as in the U.S., with industrial emissions of Pb increasing across the globe [41,42]. 

Surprisingly, as of late 2014, areas in Afghanistan, Algeria, Iraq, Myanmar, North Korea, and 

Yemen have yet to ban the use of tetraethyl Pb (TEL) in gasoline [43]. 

The major routes of exposure to Pb are inhalation, ingestion through drinking 

water, and exposure to contaminated sediments and soil [44]. Of these routes, the World 

Health Organization estimates that 80% of the daily intake of Pb is due to ingestion of food, 

dirt, and dust [32,45,46]. Food-borne exposure varies depending on country, with certain 

populations in China receiving up to 7.7 μg/kg/day via rice consumption and drinking 

water, whereas the daily intake from food in the U.S. is close to 0 μg/kg [34]. 

 

1.5 Pb Pharmacodynamics 

A dynamic, compartmental model can describe the body burden of Pb. The most 

basic version of this model states that Pb is distributed amongst three compartments: 

blood, soft tissue, and bone [47,48]. In adults, approximately 75-95% of the body burden of 
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Pb is stored in the bone compartment, 1.5-3.5% in the blood compartment, and the rest is 

stored in soft tissue including the brain, liver, and kidneys. In children, the distribution of 

Pb is skewed more towards soft tissue and away from developing bone [48]. Pb can serve 

to replace calcium (Ca2+) in hydroxyapatite structures of bone, and thus has a longer, more 

stable half-life in bone as compared to other tissues. Although estimates of half-life vary 

depending on the population studied, blood lead is thought to decay in the body with a half-

life of around 30 days [49], thereby serving as a proxy of ongoing steady-state or recently 

elevated exposure. On the other hand, bone Pb can be measured using K-shell X-ray 

Fluorescence (KXRF) in either trabecular or cortical bone, represented in this study by the 

patella and tibia, respectively. Trabecular bone has been reported to decline precipitously 

following initial measurements in men in the Normative Aging Study (NAS), followed by a 

relatively slower, steady state of decline [50]. This suggests that patella bone Pb represents 

a moving average of exogenous exposure to Pb over the last 10 years [50]. However, 

because of the higher turnover of trabecular bone, it is reasonable to interpret patella Pb 

levels as the predominant bone that provides Pb back to circulation [51]. Cortical Pb, on the 

other hand, has recently been shown to have a half-life (t1/2) of 48.5 years, much longer 

than previously thought [50]. Thus, tibia Pb can be interpreted as the long-term cumulative 

exposure over much of an individual’s lifetime. Interpretations of bone Pb measures vary 

depending on the population. Pregnant woman and the elderly, for example, have much 

higher rates of bone turnover, which can cause Pb mobilization into the blood 

compartment, where it is more toxic to tissues [52]. 

 

1.6 Pb and Effects in the Brain 
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1.6.1 Acute Neurotoxicity of Pb – Neurotoxicity from Pb can be classified as either acute 

or chronic. Acute symptoms of Pb exposure involve rapid onset of nausea, headaches, and 

changes in cognition. The direst effect of extreme doses of Pb is lead encephalopathy, in 

which the sub-acute symptoms of headache, irritability, mental dullness and tremors may 

worsen to paralysis, convulsions, coma, or death [53]. Acute high-dose Pb toxicity is 

mediated by morphological alterations of the nervous system, such as alteration of synapse 

formation and disruption of neuronal migration and differentiation [53,54]. Additionally, 

Pb can replace Ca2+, thereby modulating ion channel function and neurotransmitter release 

[55]. Pb also acts to interfere with calcium release from the mitochondria, which promotes 

formation of reactive oxygen species [56,57]. Epidemiologic data at a sub-acute time-scale 

of toxicity (as measured by blood lead, on the order of weeks to months) in children 

corroborates toxicological findings. Children exposed to Pb at BLL’s ranging from 10-30 

μg/dL exhibit markedly decreased IQ scores relative to those with BLL’s <2.4 μg/dL [58]. In 

a study done in Chennai, India where the mean BLL was >10 μg/dL, increases in BLLs were 

significantly associated with impaired visual-motor ability [59] and higher scores in 

anxiety and attention deficit/hyperactivity disorder (ADHD) indices [60]. In adults, 

increases in BLLs were significant predictors of cross-sectional tests of performance in 

memory and language [61]; attention, visuospatial, and visuomotor ability [62]; and mini-

mental status exam (MMSE) scores [63]. 

 

1.6.2 Developmental Origins of Health and Disease and the Chronic Neurotoxicity of 

Pb – Mechanisms of the long-term effects of Pb are less well delineated. Indeed, it is 

possible that the morphological damage exacted by Pb on the brain early in life simply 
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carries over throughout the life course. However, there is evidence that early life Pb 

exposure may act in accordance with the Developmental Origins of Health and Disease 

(DOHaD) hypothesis, which states that environmental insults ranging from nutrient 

starvation to active exposure to toxicants cause damages to the developing body that 

manifest once the organism is older [64,65]. Indeed, early life exposure to Pb has been 

shown to result in AD-like pathology in monkeys. In monkeys exposed to Pb in the first 

year of life, histopathological lesions of Aβ plaques were found 20 years later, in 

conjunction with upregulation of genes important in the APP pathway [66]. 

Increasing evidence points to epigenetics as a potential mechanism by which Pb 

exerts latent, long-term effects [31]. The epigenome is the set of factors other than the DNA 

sequence that exerts control over genetic regulation. Although every cell in an individual 

carries the same complement of DNA, its epigenome varies across different cell types [67]. 

Thus, it is critical to analyze epigenetic changes in a cell type-specific context. One of the 

major covalent epigenetic regulators of the genome that is relatively stable over time, yet 

susceptible to environmental perturbations early in life, is DNA methylation. Prior work 

from our lab exposing viable yellow Agouti mice (Avy) in utero to Pb has revealed dose-

specific changes in DNA methylation, indicating that early Pb exposure influences 

epigenetic reprogramming [68]. The epigenome is vulnerable to change at multiple points 

in life, but due to waves of reprogramming during embryogenesis, effects of in utero 

exposure are especially cogent [69]. Additionally, as shown in a study of human LOAD cases 

vs controls, there appears to be a modest discordance in DNA methylation in LOAD cases 

[70]. Rats [71] and monkeys [72] administered physiologically relevant levels of Pb (blood 

levels~19-26 µg/dL) early in life had an increase in 8-oxo-dG, a marker for oxidative stress 
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found on DNA, in the brain when measured later in life. A decrease in DNA 

methyltransferase activity (DNMT) was also observed in the monkey brains. Together, 

these findings indicate that early exposure to Pb may modulate oxidative stress and DNA 

methylation pathways, and ultimately, gene expression relevant to neurological outcomes 

that may manifest later in life. 

 To our knowledge, there are no epidemiologic studies that correlate very early-life 

Pb exposure to cognitive outcomes. However, long-term Pb exposure can be measured in 

tibia and patella bone, as mentioned previously. In the NAS population, a community 

dwelling cohort, patella Pb was significantly associated with a change in MMSE score from 

the first visit to second visit [72]. Tibia and patella Pb were associated with visual-spatial 

tests [73]. However, both of these studies looked at only the difference in scores between 

two consecutive tests. A longitudinal study which looks at several repeat measures would 

be more useful in characterizing the association between environmental risk factors, 

genetics, and cognitive decline over time. 

 

1.7 Specific Aims of this Thesis 

 

1.7.1 Analysis of Cumulative Pb Exposure and Longitudinal Change in Cognition – 

The rate of cognitive decline is accelerated in patients with MCI who are at risk for 

dementia. Understanding the effect of environmental exposures can help identify how 

patients respond to environmental insults. The first aim of this thesis was to establish a 

model of the association of cumulative Pb exposure with the rate of change in scores on the 

MMSE. We also tested the association of cumulative Pb exposure with individual tests of 
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cognition spanning memory, language, and visuospatial domains; as well as a summary 

score of a battery of cognitive tests that we termed “global cognition”. 

 

1.7.2 Gene-Environment Interactions and their Association with MMSE Scores – 

APOE, PICALM, CLU, and CR1 all modify the susceptibility to AD [16] and cognitive decline 

[23-25]. CELF1 is another risk susceptibility gene for AD, and is also associated with plasma 

homocysteine levels [74]. Since Pb is associated with plasma homocysteine as well [75], 

CELF1 is a particularly interesting candidate for study of gene-environment interaction. 

The second aim of this thesis uses the model developed in the first aim to understand how 

cognition-related genes modify susceptibility to Pb exposure-related cognitive decline. 

 

1.7.3 In Utero Pb exposure and Neuron-specific Epigenetic Changes in Mice –  

The third objective of this thesis is to explore modification of DNA methylation as a 

possible mechanism by which Pb may exert a chronic, latent effect. Studies by Zawia et al 

suggest that early life exposure to Pb may modulate DNA methylation at a genome-wide 

level [76]. Additionally, Alzheimer’s cases show modest differences in DNA methylation as 

compared to control [70]. It is possible that larger changes occur in one cell type, but are 

masked when evaluated in bulk tissue. No prior studies have conducted genome-wide DNA 

methylation analyses in neuron-specific cells extracted from mice that were subject to any 

kind of environmental exposure. The third aim of this thesis is to characterize genome-

wide differential methylation in neurons of 10-month old mice that were exposed to 

varying levels of Pb in utero through maternal drinking water.
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CHAPTER 2 

The association of Pb exposure and longitudinal changes in Mini-Mental Status Exam 

scores, global cognition and domains of cognition over time

2.1 Abstract 
 
Lead exposure is associated with declines in cognitive function, including screening 

measures such as the Mini-Mental Status Exam (MMSE) as well as measures of specific 

cognitive domains. However, little is known about the associations between bone Pb 

concentrations and longitudinal changes in cognition over the course of 10-15 years. Our 

aim was to examine the longitudinal associations of cumulative lead exposure with 

baseline level and changes in scores on the MMSE, individual tests of cognition, and global 

cognition, which is a summary score of a battery of cognitive tests. In a subcohort of the VA 

Normative Aging Study (n=741 for MMSE, n=715 for global cognition between 1993 and 

2007), we used linear mixed effects models to estimate the associations between patella or 

tibia bone Pb concentrations, estimates of cumulative exposure, and repeated measures of 

cognition (MMSE scores, individual tests of cognition, and global cognition). Among men 

51-89 years of age at baseline, patella Pb was associated with MMSE, both at baseline and 

longitudinally over a period of 15 years. Patella Pb was not associated with summary 

scores of global cognition at baseline or longitudinally. Tibia Pb was not associated with 

baseline measures or changes in MMSE or global cognition. Associations between Pb and 
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baseline level or change in individual tests of cognition varied by domain. We found an 

association between Pb and changes in cognition over time in several measures of 

cognition, including MMSE and individual tests.

 

2.2 Introduction 

Approximately 13 percent of the US population is aged 65 and older, and that 

demographic is expected to reach 19 percent by 2030 [1], leading to increased numbers of 

older adults susceptible to cognitive impairment and neurodegenerative diseases [2,3]. 

Worldwide, an estimated 35.6 million people were living with dementia in 2010, and this 

figure is expected to nearly double by 2030 [4]. Cognitive impairment is part of a spectrum 

that deviates from normal aging, eventually leading to dementia. Dementia and mild 

cognitive impairment are associated with reductions in memory, visuospatial, orientation, 

and language domains.  

Exposure to lead (Pb) adversely affects cognition, independent of age-related 

cognitive decline. In adults, Pb exposure from occupational or environmental sources has 

been inversely associated with scores on the Mini Mental Status Exam (MMSE) [5-8]. 

Patella Pb was associated with declines in scores on the MMSE, [9] as well as measures of 

visuospatial and visuomotor ability [10], indicating that a mobilized, accumulated Pb 

burden may impact cognition [11].  Combined, these studies indicate that multiple markers 

of cognition are needed to evaluate the effects of Pb on global as well as specific measures 

of cognition. 
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Prior research has only measured changes in MMSE or other cognitive tests over 

two visits. In most cognitive aging studies, mean MMSE score increases between first and 

second repeat tests, attributed in part to a learning effect, where subjects recognize 

questions from previous tests [12,13]. 

This study evaluated the associations between long term Pb exposure and 

longitudinal changes in cognition repeatedly measured for over 10 years. As such, the 

learning effect can be accounted for over more tests per subject. Multiple repeat measures 

over time analyze change in score, allowing for less susceptibility to confounder bias and 

can also strengthen the case for lead being part of pathophysiology in causing cognitive 

decline. Our hypothesis is that bone Pb is associated with decline over 10-15 years, and we 

tested this by evaluating the association between Pb and the following measures: MMSE, a 

created summary score called global cognition, and domain-specific individual tests.  

 

2.3 Methods 

2.3.1 Study Population – This research was conducted on a subgroup of the VA 

Normative Aging Study, which is a longitudinal cohort established in Massachusetts in 

1963.[14] Healthy men (n=2,280), between the ages of 21-80, were recruited and 

participated in clinical examination and complete health and lifestyle questionnaires every 

3 to 5 years.  At enrollment, men were excluded from the study if they had a past or present 

history of heart disease, cancer, diabetes, gout, asthma, sinusitis, bronchitis, peptic ulcer, or 

blood pressure greater than 140/90 mm Hg. Starting in 1993, 1131 men underwent a 

battery of tests to assess cognitive function (described below). 
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From 1991 until 1999, 876 participants had bone Pb measurements. The overlap of 

subjects with both patella and tibia bone lead measurement and cognitive measurement 

included 795 subjects. We further excluded subjects who had a patella Pb or tibia Pb 

measure with uncertainty greater than 15 µg/g (n=2) or 10 µg/g (n=6), respectively, and 

this yielded 788 subjects (n=2397 observations). Measurements with high uncertainty in 

bone Pb usually indicate excessive subject movement during measurement.[15] For the 

MMSE analysis, we excluded subjects who did not have an MMSE score (n=43), yielding 

776 subjects at baseline (n=2245 observations). Finally, we excluded subjects with missing 

data on covariates: education level (n=30 subjects), and alcohol intake (n=8 subjects)). This 

yielded a final number of 741 subjects with at least one MMSE assessment and full 

covariate data for the MMSE analysis. The sixth (n=20) and seventh assessments (n=1) for 

MMSE were dropped to account for influential outliers, resulting in 2132 total observations 

for the 741 subjects. 

In order to validate the longitudinal regression, we also ran a logistic regression 

model using the MMSE score outcome. The model tested the association between bone Pb 

and the OR of a subject registering an MMSE score less than 25 at any time point after 

baseline. In this logistic model, we excluded subjects with baseline MMSE scores less than 

25. Additionally, in order to pickup on any possible point in time where the subjects score 

dropped below our specified cutoff of MMSE <25, we had to assess change in score, and 

thus it was necessary to exclude any subjects who did not have at least two tests. 

Additionally, we did not drop the sixth and seventh assessment, although one patient with 

seven assessments had a baseline score less than 25, and was therefore dropped. This 

resulted in 521 total subjects at baseline. 



 21 

A similar exclusion based on missing data for covariates of interest yielded 715 

subjects with at least one measure of global cognition (n=1410 observations). Here, the 

fourth assessment was dropped to account for influential outliers, resulting in 1365 total 

observations for the 715 subjects analyzed for changes in global cognition. 

 

2.3.2 Exposure Assessment – Bone lead was measured using K-shell X-ray fluorescence 

(KXRF) spectroscopy as previously described.[10] Briefly, 109Cd gamma rays excite the K-

shell electrons of Pb embedded in bone, which emit an X-ray photon that can then be 

detected. An ABIOMED KXRF Instrument was used to measure lead at the tibia and the 

patella, corresponding to cortical and trabecular bone, respectively. The KXRF beam 

collimator was directed perpendicular to the tibial midshaft and at a 30o angle from the 

horizontal for the patella for 30-minute measures.[10,16-18] 

 

2.3.3 Cognitive assessments – Several cognitive screening tools were used for this 

analysis: the MMSE, NES2 (Neurobehavioral Evaluation System 2),[19] CERAD (Consortium 

to Establish a Registry for Alzheimer’s Disease),[20] and WAIS-R (Wechsler Adult 

Intelligence Scale-Revised).[21] The MMSE assesses overall cognition by testing several 

domains including memory, visuospatial ability, attention, language, and orientation. 

Validated in multiple populations, the MMSE is widely used as a screening test for 

dementia,[22] and to assess cognitive decline in non-demented populations.[23] Declines 

of the MMSE over time may indicate underlying pathologies such as Alzheimer’s disease, 

where the MMSE declines by an average of 1.8-4.2 points per year,[24-26] or normal 
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cognitive declines associated with aging. The MMSE includes 30 questions, but the present 

analysis did not include “Which County are we in?” because counties in Massachusetts do 

not have political meaning. Thus, the maximum score was 29. These measures were taken 

repeatedly over 20 years, generally every 3 years. 

We also assessed scores from 7 individual tests used in the NES2, CERAD, or WAIS-

R, which have been described elsewhere [6,27,28]. Two of the tests, word list total recall 

and verbal fluency (both CERAD), are generally associated with language. The digit span 

backward sum test (WAIS-R), total number recalled for digit span test (WAIS-R), and word 

list delayed recall test (CERAD) are proxies for memory. The pattern recognition test 

(NES2) and visual drawings summary score (CERAD) serve as proxies for visuospatial 

ability. These tests do overlap in their associations with memory, language and visuospatial 

ability, but are mentioned only in order to group tests into categories for easier 

interpretation. In addition to assessing each of these tests individually, we calculated a 

summary score of these tests, referred to as “global cognition”, which we tested as a 

separate proxy for worsening neurological impairment.  To standardize comparisons in 

creating the summary score, we calculated z-scores for each test by subtracting the 

observed value for any subject at any time from the mean baseline cognitive score, and 

divided that value by the standard deviation of the baseline cognitive score. Overall global 

cognition was assessed by average z-scores of 6 of the tests (total number recalled for digit 

span backward was excluded due to similarity with digit span backward sum). 
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2.3.4 Other Covariates – We included age at first cognitive test, highest education level 

and baseline smoking status, and alcohol intake as covariates in our regression model. 

Smoking status was assessed by questionnaire and subjects were re-categorized as 

“current smokers”, “had smoked in the past and quit”, or “had never smoked”. Alcohol 

intake was assessed by whether a person had more than two alcoholic beverages per day. 

Education level was categorized from years of education separately for the MMSE and the 

NES analyses. For the MMSE analysis, subjects were categorized as not having finished high 

school (<12 years), those who were high school graduates or completed some college (12-

15 years), and college graduates (>16 years).  

 

2.3.5 Data Analysis – The datasets used in this study were managed using SAS software 

(version 9.4 for Windows) and all analyses were performed using R Software version 3.1.0. 

We used linear mixed effects models to assess the association between baseline Pb 

exposure and longitudinal changes, separately in each of the measures of cognition 

described above. Our baseline model included baseline patella Pb, time from first visit, the 

interaction of Pb and time, and baseline covariates (age, alcohol intake, smoking, and 

education). Linear mixed effects modeling allows for differences in the number of repeated 

measures across a subject’s visits. Our linear mixed effects model included random 

intercepts for individual as well as random slopes for time in order to account for 

correlations among the repeated measurements. 

To account for the learning effects with MMSE and global cognition, we ran a second  

model, referred to as the First-test indicator model, that was the same as the basic model, 
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with the addition of an indicator variable to adjust for whether or not a test was the 

subject’s first assessment.  

Model 1 (Basic Model):  

𝐶𝑜𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡

≈  𝐵0 +  𝐵1 ×  𝑃𝑃 +  𝐵2 × 𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 +  𝐵3 ×  (𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 ×  𝑃𝑃) + 𝐵4

× 𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  +  𝐵5 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +  𝐵6 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝐵7

× 𝐴𝐴𝐴𝐴ℎ𝑜𝑜 

Model 2 (First-test Indicator model):  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡

≈  𝐵0 +  𝐵1 ×  𝑃𝑃 +  𝐵2 × 𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 +  𝐵3 × (𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 ×  𝑃𝑃)

+  𝐵4 × 𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  +  𝐵5 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +  𝐵6 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

+  𝐵7 × 𝐴𝐴𝑐𝑐ℎ𝑜𝑜 + 𝐵8 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

This model, similar to one employed in prior studies [29] can partially account for the 

learning effect by separating the change from visit 1 to visit 2, and regressing based on 

longitudinal changes from subsequent visits. We found no difference among the results for 

these models. However, because MMSE is susceptible to a learning effect, as we observed in 

our study (Table 2), we chose to report analyses based on the first-test indicator model. 

Additionally, MMSE has a ceiling effect and may not be best modeled linearly. Thus, we also 

ran a cox proportional hazards model where the dichotomous outcome was whether or not 

a patient dropped below a cutoff score of 25 on the MMSE assessment at any point during 

enrollment. The longitudinal analyses of individual tests and summary measure of global 

cognition were reported from the basic model only. 
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We performed several sensitivity analyses to test the robustness of our findings. 

First, there is a possibility for a selection bias related to health factors driving cohort 

participation in general and also the exclusion criteria at initial NAS recruitment. In order 

to minimize this, we excluded subjects who were greater than 45 years of age at the time of 

NAS study enrollment because people over 45 would be more likely to exhibit health 

symptoms that would keep them out of the NAS and thus be more susceptible to these 

selection pressures. As another sensitivity analyses, we repeated our analyses with 

additional covariates including the history of a diagnosis of either hypertension, stroke, 

chronic heart disease or myocardial infarction, as those might be potential mechanisms by 

which cognitive decline is occurring and have been previously associated with Pb exposure.   

 

2.4 Results 

2.4.1 Descriptive Statistics – Among the 741 men with MMSE scores, mean patella Pb 

concentrations were 30.64 µg/g (SD=19.44) and tibia Pb was 21.62 µg/g (SD=13.33) (Table 

1). The average participant age was 67.77 (SD: 6.82) at the time of the first cognitive 

assessment (51.4-98.0 years). The mean time between cognitive assessments was 4.8 

years. The mean MMSE score for all subjects increases by 0.4 from visit 1 to visit 2, 

suggestive of a learning effect (Table 2). However, we see a subsequent decline of 0.6 

points in mean scores from visit 2 to visit 5. There was a negligible increase in the Z-score 

measure of global cognition between visits 1 and 2, and a decrease in the mean z-score by 

visit 3. 
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2.4.2 Associations between Lead Concentrations and MMSE – Table 3 presents 

longitudinal associations of bone lead with changes in MMSE score from the linear mixed 

effects models. At time=0 (baseline), each IQR difference in patella Pb (21 ug/g) was 

associated with a 0.15 point decrease in MMSE score (p = 0.04). IQR differences in tibia Pb 

(15 ug/g) were not significantly associated with baseline MMSE scores (p = 0.15). As 

expected, MMSE scores display an overall decline with time. There was a 0.096 point 

decrease in MMSE score per year when patella Pb was modeled (p < 0.0001), and a 0.095 

point decrease per year when tibia Pb is modeled (p < 0.0001). We observed a significant 

association between the interaction term for time and patella Pb and MMSE, indicating 

faster declines in MMSE scores as patella Pb levels increase (Table 3).  On average, MMSE 

scores were 0.016 points lower per IQR increase in baseline patella Pb per year of follow-

up (p-value = 0.04) (Figure 1). This suggests that for every 10 years of follow-up the MMSE 

scores are expected to drop by 0.16 points per IQR increase in baseline patella Pb. We 

found a less significant interaction between tibia Pb and time (p = 0.19). 

We also assessed whether or not each subject dropped below a cutoff MMSE score 

of 25 (Table 4). An IQR increase in patella Pb was associated with a 1.21 times greater risk 

of having an MMSE score dip below the cutoff of 25 (95% confidence interval (CI) of HR: 

0.99-1.49; p = 0.07). The same analysis done with tibia Pb yields an insignificant 

association with MMSE score (HR=1.31; 95% CI: 0.89-1.94; p = 0.18). 

 

2.4.3 Associations between Lead Concentrations and Global Cognition – As expected, 

time was significantly associated with global cognition z-scores, with a 0.15 point decrease 

in z-score associated with 1 year of follow-up time for either analysis including tibia or 



 27 

patella Pb (p < 0.0001 for both). Although the association of tibia Pb and patella Pb with 

baseline global cognition z-scores did not reach the alpha-level of 0.05 for significance, 

there was a slight suggestion of association (p=0.16 for tibia Pb and p=0.069 for patella Pb). 

Additionally the interaction between Pb and time was not significantly associated with Z-

scores of global cognition in either measure of bone Pb. 

 

2.4.4 Associations between Lead Concentrations and Cognitive Domains – In order to 

organize results from individual tests, each test was assigned loosely to a domain, and is 

reported under that domain in Table 6. The trajectories of each cognitive test score varied 

by domain (language, memory, visuospatial). In the language domain, there was a 

significant main association between time and patella and tibia Pb, respectively. There was 

a 0.014 point decrease in the word list total recall z-score for every interquartile increase 

in patella Pb per year of follow-up (p = 0.04). A similar result was seen for the word list 

delayed recall test, which is a similar test, although shown here as different domain. An IQR 

increase in patella Pb was associated with 0.014 point decrease in word-list delayed recall 

per year of follow-up (p = 0.03). There were no significant associations between changes in 

language or memory domain tests and the interaction between tibia Pb and time of follow-

up. 

In the visuospatial domain, the baseline mean visual drawings summary score was 

associated with a 0.108 point decrease for every IQR increase in patella Pb. Patella Pb 

concentration was not associated with pattern recognition scores over time (pinteraction 

PbxTime = 0.35) or visual drawings summary score over time (pinteraction PbxTime = 0.57) We also 

saw an overall decrease with time in both test scores included in the visuospatial domain. 



 28 

Pattern recognition scores decreased by 0.017 points per year of follow-up (p = 0.026), and 

visual drawing summary score declined by 0.043 points per year of follow-up (p < 0.0001). 

Tibia Pb parameter estimates were within 5% of the values we reported with patella Pb. 

However, there was an additional significant interaction between time and tibia Pb not 

found with patella Pb in the visuospatial domain. Every IQR increase in tibia Pb was 

associated with a 0.016 point increase in the visual drawing summary z-score per year 

change in time (pinteraction PbxTime = 0.03). 

 

2.4.5  Sensitivity Analyses – Our sensitivity analyses yielded similar results for the 

parameters of interest (βTime Of Follow Up, βPb, βPb*Time Of Follow Up) within 10% of magnitude of the 

association found in the primary analysis. This was true for the analysis in which we 

excluded subjects who were >45 years of age at enrollment as well as the analysis in which 

we accounted for history of hypertension, stroke, chronic heart disease or myocardial 

infarction. There was one exception in the model in which subjects older than 45 years at 

entry into the NAS were excluded. The magnitude of the association between MMSE and 

the interaction of tibia Pb and time was 31% of that found in the primary analysis (βPb*Time Of 

Follow Up = 0.0034, p = 0.72). 

 

2.5       Discussion 

              We have further characterized the association between cognition and the 

interaction of bone Pb with time of follow-up. Our data suggest that the longitudinal 

trajectory of the MMSE score is associated with bone Pb levels and does change with time, 
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which is consistent with previous literature. As shown in table 2, MMSE scores slightly rose 

from visit 1 to 2 (on average), but then declined. The decline in MMSE scores from visits 2 

to 5 was consistent with trends observed previously in the NAS [9]. 

In order to contextualize the effect size of parameter estimates, we reported 

interquartile ranges of Pb for tibia and patella. For example, the magnitude of association 

between each IQR increase in patella lead and MMSE score is 1.2 times that of the average 

yearly cognitive decline. In other words, an individual with an amount of patella Pb that is 

21 ug/g higher is predicted to have a cognitive score that is 83% of that in an individual 

who aged an additional year without the additional IQR increase in Pb. Thus, our findings 

suggest that patella Pb has an important effect compared to age, a factor known to 

influence cognition [13]. The effect that patella Pb has over time is 16% of the average 

yearly decline in MMSE, as seen by the interaction term of βPb*Time Of Follow Up. In other words, 

an individual in our study would have to age 0.16 years in order to predict the same decline 

associated with an IQR increase in patella Pb. 

Each individual cognitive test can be roughly assigned to a domain of cognition, 

although there is overlap between domains. In our analysis, the language domain included 

word list total recall and verbal fluency; the memory domain included digit span backward 

sum, total number recalled for digit span, and word list delayed recall; and the visuospatial 

domain included pattern recognition and visual drawings summary score. Age has varying 

effects on different domains and tests of cognition. For example, the individual tests of 

cognition that decline with age, when measured separately, have parameter estimates for 

βTime Of Follow Up that are 13-40% smaller in magnitude relative to the same parameter 
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estimates found using global cognition measures, suggesting that aging may have a 

cumulative effect on overall cognition rather than each individual test. 

Our findings are consistent with other studies. It has been established that cross-

sectional cognitive test scores vary with bone Pb [6,7,9,30]. Additionally, in the same 

population, the change in cognition was measured by the difference in MMSE scores 

between the first two visits only [9]. Although the previous study did not incorporate up to 

five visits, it still observed a significant association between increasing Pb and decreasing 

MMSE (one-IQR higher patella Pb concentration associated with -0.24 point change in 

MMSE), which was about 1.5 times the magnitude of what was found in our present study. 

Our data add to these findings by assessing longitudinal repeat measures from 15 years 

rather than 3-4 years. The decline of scores over this longer period of time is larger than 

the practice effect, allowing for effective modeling. Other studies of longitudinal change in 

cognition have noted similar trends as well [11,29,31]. 

Additionally, we noted that several individual cognitive test scores (word list recall, 

both delayed and total) decreased faster with higher exposure to Pb. Although we did 

notice a positive interaction between time and tibia Pb in our visual summary score, the 

main effect of time and the main effect of tibia Pb were still inversely associated with 

MMSE. Additionally, our study finds a significant inverse association between the visual 

drawings sum test and both tibia and patella Pb, respectively. Overall, the visuospatial and 

language domain had significant associations with either tibia or patella Pb and time, or the 

interaction of Pb and time. 
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MMSE scores are not easily converted to Z-scores because they are more prone to 

non-linear change. In other words, a decrease from an MMSE score of 28 to 27 is much less 

severe than a decrease from 25 to 24. Thus, we also performed a separate logistic 

regression analysis of MMSE scores that takes into account the non-continuous nature of 

the variable. Our results from that analysis supported the findings of the linear mixed 

effects analysis. The results of the longitudinal model suggest that the trajectory of MMSE 

scores over time will vary depending on Pb exposure (Table 3). The logistic analysis 

supplements this finding, suggesting that patella Pb exposure may be associated with a 

clinically important shift in cognition.  

A strength of the present study is the use of Pb measured in both cortical and 

trabecular bone, corresponding to the tibia and patella. These sites were chosen because of 

their differences in half-life. Reports on the half-life of Pb in bone vary by site as well as 

with factors such as age, prior exposure, and other conditions that modify bone turnover. 

Trabecular bone is reported to have an elimination half-life (t1/2) of 8-20 years [16,32]. 

Cortical bone has a much longer half-life, with estimates ranging from 10-48.6 years 

[16,18,32]. Tibia bone Pb measures may be interpreted as the cumulative lead exposure in 

our population, whereas patella bone Pb serves as the predominant bone that provides Pb 

from bone resorption back to circulation [32]. This may explain why, in our analyses, 

patella Pb had a more statistically significant association with MMSE scores relative to tibia 

Pb. 

Our study also has the possibility for selection bias due to loss to follow up. 

However, in data not shown, neither patella Pb nor tibia Pb was associated with number of 

follow-up visits. Our sensitivity analysis excluding people with less than three visits did not 
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affect parameter estimates. Additionally, MMSE and global cognition models were analyzed 

adjusting for follow-up time, and it was not significantly associated with the outcome. 

The major strength of our study is that it employs longitudinal data from up to five 

visits, allowing us to observe changes in cognition over time. Additionally, bone Pb is a 

well-established biomarker of long-term Pb exposure. Our data employ both tibia and 

patella bone Pb measurements, allowing us to assess the effect of varying measures of long-

term Pb exposure. Although a number of subjects have migrated over the 50 years of the 

study, the NAS is a cohort of men who have lived in a relatively homogeneous geographic 

area, allowing us to adjust for known confounders and mitigating the effect of unknown 

confounders. We have used longitudinal models to measure the association of an important 

toxicant with changes in cognition over time. Such models can be used for future purposes 

to assess the role of interaction amongst exposures or between gene and environment over 

time.
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Table 2.1: Baseline Study Characteristics – Normative 
Aging Study. Boston, Massachussets 

  MMSE Global Cognition 
Number of Subjects 741 715 
     
Mean Age in years (SD) 67.77 ± 6.82 68.43 ± 7.11 
     
Mean Patella Pb in μg/g 
(SD) 

30.64 ± 19.44 30.47 ± 19.65 

Mean Tibia Pb in μg/g 
(SD) 

21.62 ± 13.33 21.39 ± 13.31 

     
Education in number of 
years (%)    

<12 33 (4.4) 33 (4.6) 
12-15 yrs 555 (74.9) 532 (74.4) 
16+ 153 (20.6) 150 (21.0) 

     
Smoking Status (%)    

Never 221 (29.8) 209 (29.2) 
Current Smoker 47 (6.3) 44 (6.2) 
Former Smoker 473 (63.8) 462 (64.6) 

     
More than 2 alcoholic 
beverages per day? (%)    

No 585 (78.9) 560 (78.3) 
Yes 156 (21.1) 152 (21.3) 

 

A total of 741 subjects who met restriction criteria and had both Pb and MMSE measures 

were included in the study. A total of 715 subjects had both Pb and individual test scores 

(which were used for creation of global cognition measure). 
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Table 2.2: Mean Cognition Scores (MMSE and “Global” 
Cognition) over time 

Visit N 
subjects Mean MMSE (±SD) N 

subjects 

Mean Global 
Cognition Score 

(±SD) 

1 707 26.9 ± 1.4 715 1.45E-06 ± 3.6 
2 556 27.1 ± 1.6 452 0.0096 ± 3.8 

3 404 26.7 ± 1.8 198 -0.12 ± 3.8 

4 265 26.7 ± 1.8 n/a n/a 
5 125 26.5 ± 2.0 n/a n/a 

 

No subjects who had data available for bone Pb, cognitive tests and covariates had more 

than three visits, and thus visits 4 and 5 are designated as “n/a” in the column for mean 

global cognition score. 
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Table 2.3  - Association between Pb and MMSE over time 
Patella Pb 
 Parameter β-Estimate 95% CI  p-value 

IQR change in Pb -0.150 (-0.275, -0.025) 0.02 

Time -0.096 (-0.118, -0.074) <0.0001 

IQR change in Pb*time -0.016 (-0.031, -0.0009) 0.04 

Tibia Pb 
 Parameter β-Estimate 95% CI p-value 

IQR change in Pb -0.098 (-0.229, 0.034) 0.15 

Time -0.095 (-0.117, -0.073) <0.0001 

IQR change in Pb*time -0.011 (-0.026, 0.005) 0.18 

Each exposure (patella or tibia) was included as a predictor in a separate model. Covariates 

included baseline age, smoking status, education level, and alcohol consumption. 

Interpretation of parameters: Pb – baseline association of IQR change in patella Pb and 

MMSE; Time – change in MMSE for every IQR increase in Pb per year change in time; 

Pb*Time – change in MMSE for every IQR increase in Pb per year change in time. The IQR 

for patella Pb was 21 ug/g and for tibia Pb was 15 ug/g. 
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Table 2.4: Hazards ratios of MMSE decline in association with Bone Pb Levels 

  Point Estimate 95% CI p-value 
HR associated with an IQR 
increase in Patella Pb 1.21 (0.99, 1.49) 

0.07 
      
HR associated with an IQR 
increase in Tibia Pb 1.05 (0.82,1.35) 

0.70 
 

Cox proportional hazards regression describing hazard ratio (HR) of having MMSE score 

drop below 25 (≤24) and patella or tibia Pb exposure. All models were adjusted for 

education, smoking status, and alcohol intake. 
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Table 2.5 – Association of Pb and Global Cognition over time 
Patella Pb     
 Parameter β-Estimate Confidence Interval p-value 

IQR change in Pb -0.250 (-0.518, 0.019) 0.07 

Time -0.147 (-0.187, -0.107) <0.0001 

IQR change in Pb*time -0.027 (-0.069, 0.014) 0.20 

Tibia Pb 

 Parameter β-Estimate Confidence Interval p-value 

IQR change in Pb -0.206 (-0.453, 0.089) 0.16 

Time -0.148 (-0.184, -0.106) <0.0001 

IQR change in Pb*time 0.002 (-0.040, 0.038) 0.93 
 

This was modeled similarly to the regression shown in Table 2.3. Global cognition was 

created as the average of the sum of z-scores of 6 of the individual test. All models were 

adjusted for education, smoking status, and alcohol intake.
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Table 2.6: Association of IQR increase in Pb and individual cognitive tests over time 

Patella Pb Effect of Baseline Pb Effect of Time Effect of Time*Pb 
Interaction 

  Parameter P-value Parameter P-value Parameter P-value 

Language Domain 
 

  
 

  
 

  
Word List Total Recall 0.008 0.83 -0.024 <0.001* -0.014 0.04* 

Verbal Fluency -0.04 0.29 -0.018 0.008* -0.007 0.29 
Memory Domain          

Digit span backward sum -0.041 0.28 0.001 0.85 -0.005 0.52 
DSBT (total #recalled for digit span) -0.045 0.24 -0.004 0.55 -0.008 0.26 

Word List delayed Recall 0.013 0.74 -0.03 <0.0001* -0.014 0.03* 

Visuospatial Domain          

Pattern Recognition, #correct -0.053 0.15 -0.017 0.03* 0.004 0.57 

Visual Drawings, sum -0.108 <0.01* -0.043 <0.0001* 0.007 0.35 

Tibia Pb Effect of Baseline Pb Effect of Time Effect of Time*Pb 
Interaction 

  Parameter P-value Parameter P-value Parameter P-value 

Language Domain 
 

  
 

  
 

  
Word List Total Recall 0.04 0.33 -0.024 0 -0.006 0.42 

Verbal Fluency -0.05 0.24 -0.018 0.01 -0.005 0.47 
           
Memory Domain          

Digit span backward sum -0.039 0.36 0.001 0.87 -0.001 0.92 
DSBT (total #recalled for digit span) -0.046 0.29 -0.004 0.53 -0.004 0.58 

Word List delayed Recall 0.076 0.07 -0.031 <0.0001* -0.008 0.26 
           
Visuospatial Domain          

Pattern Recognition, #correct -0.072 0.08 -0.017 0.03* 0.006 0.47 
Visual Drawings, sum -0.142 <0.01* -0.043 <0.0001* 0.016 0.03 

Linear mixed effects regression of the association between individual cognition tests and 

patella or tibia Pb exposure, with adjustment education, smoking status, and alcohol intake. 
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CHAPTER 3 

Effect Modification by Cognition-related Polymorphisms of the Association between 

Cumulative Lead Exposure and Cognitive Decline

3.1 Abstract 

Bone lead is a significant predictor of declines in scores on the Mini Mental Status Exam 

(MMSE) in older adults, indicating that accumulated lead burden may impact cognitive 

function. It is unknown if genes associated with Alzheimer’s disease and cognitive 

impairment modify the association between lead and cognitive function. We aimed to 

evaluate whether APOE (rs429358 and rs7412), PICALM (rs3851179), CLU (rs11136000) 

CR1 (rs6656401), and CELF1 (rs7933019) polymorphisms found to be associated with 

Alzheimer’s disease in genome-wide association studies modify the association between 

cumulative lead exposure and incident cognitive impairment defined by having an MMSE 

score<25. A subset of men from the VA Normative Aging Study (n=574, mean age=67.2) 

had genotypes, bone lead, and MMSE scores assessed. Mixed effects regression as well as 

Cox proportional hazards modeling was used to assess the interaction of genotype and Pb 

to modify the hazard ratio (HR) of cognitive impairment over 12-15 years of follow-up. 

After adjusting for age, smoking status, alcohol intake, and education, the HR associated 

with an interquartile range (21 μg/g) increase in patella lead was 2.15 (95% confidence 

interval (CI), 1.36-3.41) for subjects heterozygote at the CR1 locus, but it was 1.11 (95% CI, 
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0.85-1.44) for subjects with no CR1 minor allele (pinteraction=0.01). For subjects who were 

homozygous for minor allele at PICALM, the HR associated with and IQR increase in patella 

lead was 3.54 (95% CI, 0.95-13.25), whereas a null association was found for men with no 

minor allele (pinteraction=0.08). We found no significant effect modification by ApoE. This 

study suggests that genetic variants associated with Alzheimer’s disease and cognitive 

impairment may influence vulnerability to lead’s effect on cognitive decline. 

 

3.2 Introduction 

As the proportion of the population that is over the age of 65 increases [1], the 

burden of neurological diseases is expected to increase along with it [2-5]. Although full-

blown dementia is the most damaging clinical endpoint, it is increasingly becoming evident 

that neurological impairment occurs on a spectrum of worsening cognitive function. 

Dementia as a result of neurodegenerative disease such as Alzheimer’s disease (AD) is a 

major concern, but mild cognitive impairment may be a transition stage from normal 

cognition into dementia [6,7]. There is clinical utility in the prediction of factors that push 

people along the spectrum of neurological function towards dementia in general, AD-

related or otherwise [8]. 

Both genetic and environmental factors are thought to be associated with cognition. 

A meta-analysis of 74,046 individuals identified 11 new loci for susceptibility to AD [9], in 

addition to those that were previously well characterized [10-14]. Several reports suggest 

that approximately 24-33% of the variation in liability to AD disease can be explained by 

common single nucleotide polymorphisms (SNPs) [15,16]. Some AD-associated loci of note 
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are at ApoE-associated alleles rs429358 and rs7412, and near the phosphatidylinositol 

binding clathrin assembly protein (PICALM), clusterin (CLU), complement receptor-1 (CR1), 

and CUGBP, Elav-like family member 1 (CELF1) genes. In addition to their association with 

AD, many of these genes are also associated with several indicators along the spectrum of 

cognitive decline, including declines in mini-mental status exam (MMSE) scores [17], 

principle components of fluid-type cognitive tests [14], and trajectories of global cognition 

and attention tests [18]. 

Although genetic associations account for some of the variation in cognitive 

impairment, a major portion of the variance in cognitive liability is associated with either 

as-of-yet unknown genetic and epigenetic factors, or with environmental perturbations. 

Lead (Pb), well known to be associated with cognitive decline, is defined by several 

different measures. Bone Pb, an indicator of cumulative exposure to Pb, has been found to 

be associated with cross-sectional cognitive measures of language, memory and 

visuospatial ability [19,20] as well as with MMSE [21]. Of note, bone Pb levels also shown 

associations with longitudinal changes in a limited number of cognitive tests[22], also 

including the MMSE [23]. The first aim of this thesis expands on these studies by including 

data from at least 5 visits in a longitudinal analysis. We also found a significant association 

of patella Pb with longitudinal MMSE scores. 

Individuals with the ApoE-ε4 are more likely to have lower cross-sectional scores on 

individual tests of cognition [24]. However, the interplay of genetics and environmental 

exposure in the association with longitudinal changes in global cognition as measured by 

the MMSE is of key interest in the current study. Pb has been shown to be associated with 

APOE expression levels [25], and APOE variants at rs7412 and rs429358 are CpG switches 
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[14]. A CpG switch occurs when a variant allele creates or deletes a new CpG site that may 

be methylated. This suggests that methylation may play a role in how Pb modifies ApoE. 

Additionally, there is a precedent for a gene-environment interaction between Pb and 

SNP’s: genes in the iron metabolism [26] and oxidative stress [27] pathways have been 

shown to modify the association between Pb and cognition. Given prior association of Pb 

with expression of genes associated with neuro-degeneration, the current study aims to 

determine whether APOE-associated alleles rs429358 and rs7412, as well as PICALM, CLU, 

CR1, and CELF1 modify the effect of Pb on longitudinal MMSE scores. 

 

3.3 Methods 

 

3.3.1 Study Population – This research was conducted on a subgroup of the VA 

Normative Aging Study, which is a longitudinal cohort established in Massachusetts in 

1963 [28]. Healthy men (n=2,280), between the ages of 21-80, were recruited and 

participated in clinical examination and complete health and lifestyle questionnaires every 

3 to 5 years.  At enrollment, men were excluded from the study if they had a past or present 

history of heart disease, cancer, diabetes, gout, asthma, sinusitis, bronchitis, peptic ulcer, or 

blood pressure greater than 140/90 mm Hg. Starting in 1993, 1131 men underwent a 

battery of tests to assess cognitive function (described below). 

From 1991 until 1999, 876 participants had bone Pb measurements. The overlap of 

subjects with both patella bone lead measurement and a mini-mental status exam (MMSE) 

assessment included 795 subjects. Our exclusion method followed that described in the 

study population section of Aim 1. Briefly, from the subjects who had an MMSE assessment 
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and bone lead measurements, we further excluded subjects who had a patella Pb or tibia Pb 

measure with uncertainty greater than 15 µg/g (n=2) or 10 µg/g (n=6), respectively, and 

this yielded 788 subjects (n=2397 observations). Measurements with high uncertainty in 

bone Pb usually indicate excessive subject movement during measurement [29]. For the 

MMSE analysis, we excluded subjects who did not have an MMSE score (n=43), yielding 

776 subjects at baseline (n=2245 observations). Finally, we excluded subjects with missing 

data on covariates: education level (n=30 subjects), and alcohol intake (n=8 subjects)). This 

yielded a final number of 741 subjects with at least one MMSE assessment and full 

covariate data for the MMSE analysis. The sixth (n=20) and seventh assessments (n=1) for 

MMSE were dropped to account for influential outliers, resulting in 2132 total observations 

for the 741 subjects. 644 of these subjects had genotype information for PICALM and CR1, 

645 for CLU, 632 for CELF1, and 600 for the ApoE alleles rs7412 and rs429358. 

In order to validate the longitudinal regression, we also ran a Cox proportional 

hazards model using the MMSE score outcome. The model tested the association between 

bone Pb and the hazard ratio of a subject registering an MMSE score less than 25 at any 

time point after baseline. In this hazards model, it was necessary to exclude subjects that 

did not have follow-up MMSE test results (n=167). This resulted in 574 total subjects at 

baseline. 516 of these subjects had genotype information for PICALM, 514 for CR1, 515 for 

CLU, 504 for CELF1, and 494 for the APOE alleles rs7412 and rs429358. 

 

3.3.2 Genotyping – Genetic polymorphism measurements for the APOE allele included 

rs429358 and rs7412. For the APOE SNPs, as well as for PICALM (rs3851179), CR1 
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(rs6656401), and CLU (rs11136000), genotyping was done as previously described [17]. 

Briefly, multiplex PCR assays were designed using Sequenom SpectroDESIGNER software 

by inputting sequences containing the single nucleotide polymorphism (SNP) site and 

100 bp flanking sequence on either side of the SNP. Most assays were genotyped using the 

Sequenom MassArray MALDI-TOF mass spectrometer (SpectroDESIGNER, Sequenom). 

Assays that failed to multiplex were genotyped using TaqMan 5′ exonuclease (Applied 

Biosystems, Foster City, CA) and ABI PRISM 7900 Sequence Detector System. 

The SNP associated with CELF1, rs7933019, was extracted from a study of folate 

network genes [30]. Briefly, genotyping was performed in the region 2kb on either side of 

the gene via an Illumina GoldenGate custom genotyping panel. SNP selection encompassed 

2 kb on either side of the gene to include promoter and/or regulatory region variants. 

 

3.3.3 Pb Exposure Assessment – Bone lead was measured using K-shell X-ray 

fluorescence (KXRF) spectroscopy as previously described [31]. Briefly, 109Cd gamma rays 

excite the K-shell electrons of Pb embedded in bone, which emit an X-ray photon that can 

then be detected. An ABIOMED KXRF Instrument was used to measure lead at the tibia and 

the patella, corresponding to cortical and trabecular bone, respectively. The KXRF beam 

collimator was directed perpendicular to the tibial midshaft and at a 30o angle from the 

horizontal for the patella for 30-minute measures [31-34]. Our previous study found more 

significant associations with patella Pb, so to simplify results, we present only patella Pb 

analyses. 
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3.3.4 Cognitive assessments – The cognitive screening tool used for this analysis was the 

mini-mental status exam, or MMSE. The MMSE assesses overall cognition by testing several 

domains including memory, visuospatial ability, attention, language, and orientation. 

Validated in multiple populations, the MMSE is widely used as a screening test for dementia 

[35], and to assess cognitive decline in non-demented populations [36]. Declines of the 

MMSE over time may indicate underlying pathologies such as Alzheimer’s disease, where 

the MMSE declines by an average of 1.8-4.2 points per year [37-39], or normal cognitive 

declines associated with aging. The MMSE includes 30 questions, but the present analysis 

did not include “Which County are we in?” because counties in Massachusetts do not have 

political meaning. Thus, the maximum score was 29. These measures were taken 

repeatedly over 20 years, generally every 3 years. 

 

3.3.5 Data Analysis – The datasets used in this study were managed using SAS software 

(version 9.4 for Windows) and all analyses were performed using R Software version 3.1.0. 

We used linear mixed effects models to first assess the main association between the 

genotype of each subject and longitudinal changes. Linear mixed effects modeling allows 

for differences in the number of repeated measures across a subject’s visits. Our model 

included random intercepts for individual as well as random slopes for time in order to 

account for correlations among the repeated measurements. Model 1 (shown below) 

included genotype, time from first visit, the interaction of genotype and time, baseline 

covariates (age, alcohol intake, smoking, and education), and an indicator variable termed 

“FirstTestIndicator”, which adjusted for whether an MMSE assessment was the subject’s 

first or not. This variable, similar to one employed in Aim 1 as well as prior studies [22], 



 49 

can partially account for the learning effect by separating the change from visit 1 to visit 2, 

and regressing based on longitudinal changes from subsequent visits. 

 

Model 1 (Longitudinal model):  

𝑀𝑀𝑀𝑀 ≈  𝐵0 +  𝐵1 × 𝑆𝑆𝑆 + 𝐵2 × 𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 +  𝐵3 × (𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 ×  𝑆𝑆𝑆)

+  𝐵4 × 𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  +  𝐵5 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +  𝐵6 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

+  𝐵7 × 𝐴𝐴𝐴𝐴ℎ𝑜𝑜 + 𝐵8 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

Model 2 (Cox Proportional Hazards Model):  

log( 
𝜆1(𝑡 | 𝑋𝑘)
𝜆0(𝑡)

 )

≈  𝐵0 +  𝐵1 ×  𝑃𝑃 + 𝐵2 × 𝑆𝑆𝑆 + 𝐵3 × 𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  + 𝐵4

× 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +  𝐵5 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝐵6 × 𝐴𝐴𝐴𝐴ℎ𝑜𝑜 

Additionally, MMSE has a ceiling effect and may not be best modeled linearly. Thus, we also 

ran a cox proportional hazards model (Model 2 above), where the hazard ratio 𝜆1(𝑡 | 𝑋𝑘)
𝜆0(𝑡)  is 

the relative risk of the event at time t that any subject’s MMSE score drops below 25, 

adjusted for variables defined by Xk. 

 

3.3.6 Gene-Environment Interaction Analysis – We tested the association of the 

interaction of Pb and SNP status on change in MMSE by incorporating a three-way 

interaction term between Pb, SNP, and Time into Model 1. 

 

Model 3 (Gene-Environment Longitudinal Model): 
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𝑀𝑀𝑀𝑀 ≈  𝐵0 +  𝐵1 × 𝑃𝑃 + 𝐵2 × 𝑆𝑆𝑆 + 𝐵3 × 𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 +  𝐵4 ×  (𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1

×  𝑆𝑆𝑆) + 𝐵5 ×  (𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 ×  𝑃𝑃) +  𝐵6 × (𝑃𝑃 ×  𝑆𝑆𝑆) +  𝐵7

× (𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 × 𝑃𝑃 ×  𝑆𝑆𝑆) +  𝐵8 × 𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  +  𝐵9

× 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +  𝐵10 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝐵11 × 𝐴𝐴𝐴𝐴ℎ𝑜𝑜 +  𝐵12

× 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

As shown in Model 4, the association of the interaction of Pb and genotype on the MMSE 

hazards ratio was assessed by adding an interaction term between Pb and SNP to Model 3. 

Model 4 (Gene-Environment Cox Proportional Hazards Model):  

log( 
𝜆1(𝑡 | 𝑋𝑘)
𝜆0(𝑡)

 )

≈  𝐵0 +  𝐵1 ×  𝑃𝑃 +  𝐵2 × 𝑆𝑆𝑆 +  𝐵3 × 𝑃𝑃 × 𝑆𝑆𝑆 + 𝐵4 × 𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  

+  𝐵5 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +  𝐵6 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝐵7 × 𝐴𝐴𝐴𝐴ℎ𝑜𝑜 

 

3.3.7 Genotype modeling – Based on gene distributions shown in supplementary 

information (Figure S1), we used two methods to model the association of each SNP with 

MMSE. The two-degree-of-freedom (two-DF) approach compares the heterozygous (Aa) to 

the wild-type (AA) reference as well as the homozygous variant (aa) to the wild-type. The 

dichotomous model combines subjects who are carriers of the variant group [homozygous 

variant (aa) + heterozygous (Aa)] and compares them to the reference wild-type (AA). 

These methods were chosen over a method in which the homozygous variant (aa) is the 

reference because some of our SNPs of interest had very low minor allele frequency 

(Supplementary Figure S1). 
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3.4 Results 

 

3.4.1 Descriptive statistics – Among the total 741 men with MMSE scores, mean patella 

Pb concentrations were 30.64 µg/g (SD=19.44) and tibia Pb was 21.62 µg/g (SD=13.33) 

(Table 1). The average participant age was 67.77 (SD: 6.82) at the time of the first cognitive 

assessment (51.4-98.0 years). The number of subjects used in the Cox proportional hazards 

analysis was 574. The sample size varied based on genotype, as summarized in 

Supplementary Figure 3.S1. The frequency of homozygous minor allele carriers was below 

5% for the following SNPs: ApoE rs7412 (0.6%), ApoE rs4293583 (1.8%), and CR1 (3.7%). 

Given the low frequency of the minor allele of these SNPs, we also report dichotomous 

analyses in which carriers of at least one allele are combined into one group. All genes were 

in Hardy-Weinberg equilibrium (Table 3.2, pHWE>0.05) 

 

3.4.2 Main Association between SNPs and MMSE – We first examined the main 

association between SNPs and MMSE. The overall results are reported in Table 3, and three 

SNPs that approached statistically significant levels of association are described here. The 

homozygous minor group at the PICALM SNP was associated with a 0.408 point lower 

baseline MMSE score (p=0.053). The other associations were not significant, but were 

consistent across the dichotomous model and two-DF model. The variant carrier group, as 

defined by the dichotomous model, is associated with a 0.205 point lower baseline MMSE 

score (p=0.08), and a decline that is less steep, relative to the wild-type group, by 0.022 

(p=0.18). Although the values for the PICALM SNP do not reach an α-level <0.05, the minor 

allele is generally associated with a negative baseline MMSE score, but an increase in MMSE 
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score over time relative to wild-type. These longitudinal results conflict with those found in 

the Cox proportional hazards (Cox PH) model in which the variant PICALM allele has a non-

statistically significant protective association (HRany carrier=0.679, p=0.109). 

 

The minor allele for CR1 had a significant association with baseline MMSE. Using the two-

DF model, the heterozygous group had 0.25 (p=0.045) lower baseline MMSE score relative 

to wild-type group, and the homozygous variant group had a 1.11 point (p<0.001) lower 

MMSE score at baseline. The association of allelic status and change in MMSE over time is 

given by the interaction terms (SNP x Time). The heterozygous group had a 0.048 point-

per-year higher slope (p=0.008), and the homozygous variants had a 0.100 point-per-year 

higher slope (p=0.002), relative to wild-type, respectively. The dichotomous model was 

consistent with the longitudinal model, with the variant carrier group being associated 

with a 0.35 point lower baseline MMSE score (p=0.004), but a 0.054 point-per-year lower 

slope, or a less steep of a decline (p=0.002). No associations between MMSE and CR1 

analyzed in the Cox proportional hazards model were close to an α-level of 0.05. 

 

The group that was heterozygous at APOε allele rs429358 had a significant positive 

association with baseline MMSE, with the baseline score being 0.39 points higher 

(p=0.001). Although the variant group had a lower baseline score, this association was not 

significant. The heterozygous group had a steeper decline over time in MMSE (-0.05 points-

per-year, p=0.007). The results of the dichotomous model supported this effect. The variant 

carrier group was associated with a 0.39 point increase in baseline MMSE score (p=0.005) 

relative to the homozygous wild-type group. The variant carriers were associated with a 
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0.055 point-per-year steeper decline (p=0.004). Results from the Cox PH model where 

rs429358 was modeled using the two-DF method suggest that the homozygous minor 

group had a 4.84 times higher hazards ratio (HR) of having an MMSE<25 compared to the 

wild-type group (p=0.003). However, the HR for the heterozygous carriers was not 

significant (HR=0.770, p=0.44), nor was it significant in the dichotomous model (HRany 

carrier=0.99, p=0.98). 

 

3.4.3 Interaction between Pb and SNPs on change in MMSE – We next examined the 

association of the interaction between Pb and genotype with change in MMSE. Overall 

results are noted in Table 4, and we focus here on PICALM, CLU, CR1 and rs429358 because 

they had near-significant associations between the interaction term [Pb x Gene] with MMSE 

in the Cox PH models. 

As shown in Figure 2, the HR associated with an IQR (21 μg/g) change in Pb in the 

subjects homozygous for the major PICALM allele was 1.04 (95% CI: 0.77-1.40), but the HR 

associated with Pb in the homozygous minor group was 3.54 (95% CI: 0.95-13.25). The p-

value for interaction of Pb and homozygous minor allele status was p=0.08. In the 

dichotomous model, the HR for subjects with at least one minor allele was 1.44 (95%CI: 

1.04-2.01). Although the effect of Pb in this group is significant, the p-value of estimate of 

the interaction effect of Pb and genotype is p=0.13. In the longitudinal model, the beta term 

for interaction of Pb with the homozygous minor group (two-DF model) is -0.023 

(p=0.011), suggesting that in this group, there was a 0.483 point decrease in baseline MMSE 

for every IQR increase in patella Pb (21 ug/dL). There was no significant interaction with 

time in the longitudinal model. 
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For the CR1 SNP, the Cox PH model (two-DF model) also suggested a significant 

interaction between Pb and genotype. The HR associated with Pb in the homozygous major 

group was 1.11 (95% CI: 0.85-1.44), compared to that in the heterozygous group (HR=2.15, 

95% CI: 1.36-3.41), with an interaction p-value of p=0.01. The effect of Pb in the 

homozygous minor group was not significant, nor was the interaction term. The 

longitudinal two-DF model does not suggest significant interactions between Pb and CR1 

genotype (p>0.10). However, the longitudinal dichotomous model suggests that for every 

IQR increase in patella Pb, there was a 0.231 point decrease (p=0.086) in baseline MMSE in 

the subjects who had either one or two minor alleles (A/G + A/A) compared to wild-type 

CR1 (G/G). We note here that the significance level for this interaction did not satisfy α-

level<0.05. 

The β-estimate for the three-way interaction of [Time x Pb x CLU heterozygotes] was 

0.056 (p=0.008) in the two-DF model and 0.051 (p=0.013) for minor allele carriers (C/T + 

T/T vs C/C) in the dichotomous model. The β-estimate for interaction of Pb and time was -

0.042 (p=0.004, data not shown). This suggests that in the wild-type group, every IQR 

increase in Pb is associated with an additional decrease in MMSE score of 0.042 points. 

However, in the heterozygous group (C/T vs C/C) the magnitude of the association of Pb 

with time is dampened. Thus, for C/T group, every IQR increase in Pb is associated with 

0.021 increase change in MMSE score. These results were consistent with those found in 

the Cox PH model, in which results did not reach statistical significance. The hazard ratio 

for Pb in subjects who were homozygous major was 1.49 (95% CI: 0.98-2.28). The HR for 

Pb in any carriers of the minor allele was 1.05 (95% CI: 0.79-1.41). 
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ApoE locus rs429358 also had significant three-way interaction β-estimates in both 

the dichotomous and two-DF models. In the reference homozygous major group (T/T), the 

interaction of an IQR change in Pb and time was associated with a 0.013-point decrease in 

MMSE over time (p=0.19, data not shown). The β-estimate associated with the parameter 

[Time x IQR change in Pb x rs429358 (T/C)] was -0.046 (p=0.06) in the two-DF model and -

0.041 (p=0.09) for minor allele carriers (T/C + C/C) in the dichotomous model. Thus for the 

T/C group, every IQR increase in Pb was associated with a (0.013+0.042)=0.055 point 

decrease in MMSE per year of time (or per year of age increase). Cox PH modeling using 

dichotomous genotype modeling supported the direction of association found in 

longitudinal models, but results did not reach statistical significance. The HR association 

for Pb in subjects who were homozygous major was 1.19 (95% CI: 0.95-1.50), whereas that 

found in subjects who were carriers of at least one minor allele was 1.71 (95% CI: 0.96-

3.05). The association of interaction between Pb and genotype on the HR was not 

significant using either dichotomous or two-DF models of rs429358. 

 

3.5 Discussion 

In our study of older men in the NAS, genes known to be associated with 

neurodegeneration modified the association between cumulative lead exposure and 

declining cognitive function. Cross-sectional MMSE scores were lower for subjects with the 

minor allele of PICALM, but over time, the decline in MMSE scores is less. Cox proportional 

hazards modeling suggested that subjects who were PICALM heterozygotes had a lower HR 

of having their MMSE drop below 25, but that result was not statistically significant (Figure 

1). In prior work, the minor allele of PICALM has been associated with a protective effect on 
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cognitive decline as measured by the 3MS, an expanded measure of the MMSE [18]. The 

PICALM minor allele also had an OR of 0.84 in a meta-analysis of genome-wide association 

studies (GWAS) of AD.[9] Despite this protective main association, we found that carriers of 

the minor allele are more susceptible to the deleterious association between Pb and MMSE 

decline although the parameter for the interaction did not reach α-level<0.05 (p=0.08 in 

two-DF model; p=0.13 in dichotomous model). PICALM is not known to interact with Pb 

pathways, so this result was surprising. If the biological interaction was additive, one 

would expect an effect of the minor allele that protected against Pb-associated cognitive 

decline. The PICALM tagging SNP in this study is intronic and is thought to be associated 

with expression [40]. It is possible that Pb modifies expression of genes via altering DNA 

methylation [41-43]. Thus, the protective effect the minor allele may be dampened by the 

presence of Pb. 

Similar to PICALM, we noted that the minor allele for CR1 was associated with lower 

baseline MMSE scores. However, the decline of MMSE was smaller for both heterozygous 

and homozygous minor groups relative to the group that was homozygous major. This may 

be an artifact of the ceiling effect of MMSE scores because no significant association was 

found between CR1 and the hazard ratio of MMSE score dropping below 25 over the study 

period. Prior work suggests that CR1 rs6656401 is also associated with increased odds of 

Alzheimer’s disease [9]. The CR1 variant does seem to exacerbate the deleterious effect of 

Pb on MMSE scores, as seen by Cox proportional hazards models (Table 5, Figures 1 &2). 

Like PICALM, the CR1 SNP we are observing is intronic, and likely associated with 

expression. 
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The ApoE allele rs429358 is of special interest because of its association with 

cognition in various studies. It is one of two loci that define ApoE-ε4 status, which confers a 

greater risk of developing Alzheimer’s [9]. In a GWAS of cognitive decline as defined by a 

principal component-derived fluid-type general intelligence score, the presence of the 

major “T” allele at rs429358 was associated with less cognitive decline [14]. We observed 

the same main association in the heterozygous group, which had a significantly higher HR 

for MMSE<25 as compared to the homozygous T/T group. Results from our longitudinal 

analysis suggest that the minor allele mitigates the deleterious effect of Pb on cognition at 

baseline, whereas ApoE- ε4 status is associated with lower cross-sectional cognitive scores 

in a prior study[24]. However, our results also show that with time, the effect of the variant 

rs429358 is actually to exacerbate the deleterious association between Pb and cognition, 

which is consistent with the aforementioned paper[24] and others [17]. 

CLU showed some statistically significant effects in the longitudinal model, in which 

we observed a dampened association between Pb and change in MMSE scores such that the 

slope of CLU minor allele carriers was less steep than that of subjects homozygous for the 

CLU SNP. This was in concordance with the association of rs11136000 with increased odds 

of Alzheimer’s disease [9]. However, this is the opposite of its association with cognitive 

decline [18]. 

 

Our data suggest an association between CELF1 and baseline MMSE scores. The 

minor allele homozygous group had lower baseline scores, but their slope was less steep 

than subjects who were homozygous major for the CELF1 SNP. However, this was not 

reproduced in the dichotomous model or the Cox proportional hazards model, suggesting 
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that the result may be an artifact of the ceiling effect of MMSE. We did notice an increasing 

trend of magnitude of HR’s associated with Pb (Figure 3.2), but this was not significant 

(ptrend=0.35). 

This analysis was subject to the same limitations that are part of many gene-

environment studies. Many of our associations were near-significant, and this may simply 

be due to the lack of power to detect associations in interactions. As stated elsewhere, 

when analyzing gene-environment interactions to detect true associations, it will be 

necessary to pool studies in meta-analyses [44]. Although we have reproduced some of the 

results of similar studies [14,17,18], our analysis is unique in that it looks at the effect of 

gene-environment on a longitudinal outcome. It will be necessary to reproduce these 

results in different populations using similar longitudinal outcomes. Additionally, the 

modifying effects we did see may be caused by proximal genes that are in linkage 

disequilibrium with our SNPs of interest. However, we contend that this is unlikely because 

our SNP selection was based on well-characterized prior associations with cognition and 

AD. 

Despite these limitations, this is the first analysis of AD-associated SNPs and their 

interaction with an environmental exposure to modify cognitive trajectories. This work 

demonstrates that variation in genes associated with AD may serve to modify the risk of 

cognitive decline that is associated with cumulative Pb exposure. This subset of variant 

allele carriers may experience a decline in cognition that is more substantial than 

previously considered. Our findings point to additional research avenues to elucidate 

mechanistic pathways that incorporate the effects of environment. This may facilitate the 

development of preventive and treatment measures to abate cognitive decline. As chronic 
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Pb exposure continues to be a public health concern, our findings stress the importance of 

policy to reduce the use of Pb as well as preventive measures to help avoid exposure.
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Table 3.1: Descriptive Statistics by Model Type 

 Longitudinal Model Cox PH Model 

N Subjects 741 574 

Mean Age (SD) 68.1 (7.0) 67.2 (6.6) 

MMSE Mean (SD) 26.6 (1.8) 26.8 (1.7) 

   
Patella Mean (SD) 30.6 (19.4) 29.6 (20.0) 

Tibia Mean (SD) 21.6 (13.3) 20.9 (13.5) 

   Education (Freq %) 
  Less than 12 years 74 (10.0) 61 (10.6) 

High school graduate 263 (35.5) 206 (35.9) 

Some college 193 (26.0) 143 (24.9) 

College graduate 211 (28.5) 164 (28.6) 

   Smoke (Freq %) 
  Never 221 (29.8) 177 (30.8) 

Current smoker 47 (6.3) 30 (5.2) 

Former smoker 473 (63.8) 367 (63.9) 

   TwoDrink (Freq %) 
  < 2 drinks / day 585 (78.9) 452 (78.7) 

≥ 2 drinks / day 156 (21.1) 122 (21.3) 
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Table 3.2: Allele Frequencies in the Normative Aging Study by Model Type 
Longitudinal Model Gene Frequencies (%)   
  Major Heterozygous Minor HWE p-value 
CELF1 300 (47.5) 276 (43.7) 56 (8.9) 0.51 
rs7412 514 (85.7) 82 (13.7) 4 (0.6) 0.71 
rs429358 452 (75.3) 137 (22.8) 11 (1.8) 0.87 
PICALM 280 (43.5) 302 (46.9) 62 (9.6) 0.13 
CLU 226 (35.0) 322 (49.9) 97 (15.0) 0.31 
CR1 435 (67.5) 185 (28.7) 24 (3.7) 0.44 
Cox PH Model 

   
  

CELF1 236 (46.8) 223 (44.2) 45 (8.9) 0.45 
rs7412 423 (85.6) 68 (13.8) 3 (0.6) 0.88 
rs429358 372 (75.3) 112 (22.7) 10 (2.0) 0.65 
PICALM 222 (43.0) 247 (47.9) 47 (9.1) 0.06 
CLU 344 (66.9) 148 (28.8) 22 (4.3) 0.24 
CR1 180 (35.0) 259 (50.3) 76 (14.8) 0.27 

HWE: Hardy-Weinberg Equilibrium, HWE p-value < 0.05 indicates disequilibrium in the gene pool.
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Table 3.3: Main Association of SNPs on MMSE 

Longitudinal Model CELF-1 PICALM CLU CR1 rs7412 rs429358 

2 DF β p-val β p-val β p-val β p-val Β p-val β p-val 
Heterozygous 0.185 0.127 -0.160 0.190 0.124 0.331 -0.255 0.045 0.100 0.550 0.441 0.002 

Hmz Minor 0.030 0.886 -0.408 0.053 0.159 0.374 -1.105 <0.001 -0.005 0.990 -0.230 0.597 
Time*Heterozygous -0.003 0.872 0.025 0.147 -0.022 0.208 0.048 0.008 0.009 0.690 -0.053 0.007 

Time*Hmz Minor -0.012 0.678 -0.006 0.861 -0.014 0.603 0.101 0.009 0.080 0.380 -0.076 0.234 
Dichotomize 

 
  

 
  

 
  

 
  

 
  

 
  

Any carrier 0.159 0.169 -0.205 0.080 0.132 0.275 -0.354 0.004 0.096 0.571 0.388 0.005 

Time*any carrier -0.005 0.785 0.022 0.182 -0.021 0.222 0.054 0.002 0.013 0.565 -0.055 0.004 
Cox Prop Haz 
Model (OR 
reported) 

CELF-1 PICALM CLU CR1 rs7412 rs429358 

2 DF HR p-val HR p-val HR p-val HR p-val HR p-val HR p-val 
Hetero 1.009 0.970 0.672 0.108 1.115 0.685 1.013 0.962 0.696 0.340 0.770 0.439 
Minor 0.994 0.989 0.758 0.648 1.049 0.901 0.502 0.347 0.000 0.995 4.843 0.003 

Dichotomize 
 

  
 

  
 

  
 

  
 

  
 

  

Any carrier 1.007 0.977 0.679 0.109 1.099 0.710 0.939 0.807 0.675 0.301 0.992 0.978 
Abbreviations – CELF1: CUGBP, Elav-like family member 1; PICALM: phosphatidylinositol binding clathrin assembly protein; 
CLU: clusterin; CR1: complement receptor-1; rs7412 and rs429358 are two functional SNPs associated with APOE 
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Table 3.4A: Interaction between Pb and Genes to Modify MMSE - Longitudinal Model 

Longitudinal CELF-1 PICALM CLU CR1 rs7412 rs429358 

2 DF β p-val β p-val β p-val β p-val β p-val β p-val 

IQR Pb -0.090 0.298 -0.046 0.647 -0.163 0.144 -0.067 0.416 -0.116 0.119 -0.164 0.034 
Htz 0.176 0.145 -0.153 0.205 0.130 0.306 -0.261 0.040 0.103 0.551 0.448 0.001 

Minor 0.040 0.849 -0.345 0.101 0.114 0.537 -0.986 0.002 -0.634 0.598 -0.224 0.614 
Time*Htz -0.005 0.763 0.026 0.122 -0.011 0.527 0.049 0.007 0.004 0.882 -0.060 0.002 

Time*Minor -0.012 0.686 -0.005 0.875 -0.012 0.654 0.099 0.013 0.324 0.108 -0.052 0.489 
IQR Pb * Htz -0.029 0.831 -0.041 0.761 0.044 0.749 -0.169 0.233 0.150 0.474 0.335 0.037 

IQR Pb * Minor -0.446 0.072 -0.474 0.011 0.025 0.920 -0.256 0.270 -1.032 0.549 0.166 0.767 
Time*IQR Pb*Htz 0.000 0.999 0.006 0.761 0.056 0.008 0.029 0.168 -0.032 0.314 -0.046 0.063 

Time*IQR Pb*Minor 0.069 0.024 0.032 0.265 0.010 0.790 0.025 0.453 0.346 0.153 0.077 0.530 
Dichotomize 

 
                  

 
  

IQR Pb -0.092 0.290 -0.047 0.641 -0.164 0.142 -0.068 0.408 -0.115 0.120 -0.166 0.032 
Any minor 0.150 0.195 -0.193 0.099 0.129 0.286 -0.348 0.005 0.101 0.551 0.396 0.004 

Time*any minor -0.005 0.763 0.023 0.156 -0.009 0.589 0.054 0.001 0.006 0.794 -0.061 0.001 
IQR Pb*Any minor -0.106 0.406 -0.163 0.201 0.040 0.765 -0.222 0.086 0.136 0.510 0.338 0.031 

Time*IQR Pb*any minor 0.016 0.387 0.012 0.508 0.051 0.013 0.030 0.109 -0.029 0.347 -0.041 0.093 
Abbreviations – CELF1: CUGBP, Elav-like family member 1; PICALM: phosphatidylinositol binding clathrin assembly protein; 
CLU: clusterin; CR1: complement receptor-1; rs7412 and rs429358 are two functional SNPs associated with APOE 
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Table 3.4B: Interaction between Pb and Genes to Modify MMSE - Cox PH Model 

Cox Prop Haz Model (HR reported) 
CELF-1 PICALM CLU CR1 rs7412 rs429358 

2 DF HR p-val HR p-val HR p-val HR p-val HR p-val HR p-val 
Pb 1.006 0.320 1.002 0.801 1.019 0.065 1.005 0.442     1.008 0.158 

Htz 1.005 0.984 0.633 0.074 1.166 0.582 0.913 0.746     0.731 0.375 
Minor 1.034 0.942 0.446 0.342 1.178 0.671 0.560 0.430     4.783 0.004 

Pb*Htz 1.009 0.437 1.013 0.237 0.982 0.144 1.032 0.010     1.020 0.235 
Pb*Minor 1.020 0.568 1.060 0.075 0.998 0.923 0.969 0.554     1.010 0.744 

Dichotomize 
 

                  
 

  
Pb 1.006 0.325 1.002 0.767 1.019 0.065 1.005 0.475 1.008 0.129 1.008 0.159 

Any minor 1.006 0.982 0.629 0.065 1.150 0.596 0.884 0.647 0.688 0.346 0.951 0.873 

Pb*Any minor 1.010 0.380 1.016 0.131 0.984 0.162 1.015 0.156 1.015 0.486 1.017 0.236 
 
Abbreviations – CELF1: CUGBP, Elav-like family member 1; PICALM: phosphatidylinositol binding clathrin assembly protein; 
CLU: clusterin; CR1: complement receptor-1; rs7412 and rs429358 are two functional SNPs associated with APOE 
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Table 3.5: Association of IQR change in Pb by Genotype to modify HR of MMSE<25 
  Two DF Model Dichotomous Model 
Gene Genotype HR 95% CI Genotype HR 95% CI p-trend 

CELF1 
Homozygous C/C 1.15 0.88-1.50 Homozygous C/C 1.14 0.88-1.50   
Variant C/G 1.38 0.91-2.10 "G" Carrier 1.4 0.94-2.10 0.35 
Variant G/G 1.73 0.42-7.12   

PICALM 
Homozygous G/G 1.04 0.77-1.40 Homozygous G/G 1.05 0.78-1.41   
Variant A/G 1.35 0.95-1.93 "A" Carrier 1.44 1.04-2.01 0.06 
Variant A/A 3.5 0.95-13.25   

CR1 
Homozygous G/G 1.11 0.85-1.44 Homozygous G/G 1.1 0.84-1.43   
Variant A/G 2.15 1.36-3.41 "A" Carrier 1.51 1.03-2.21 0.55 
Variant A/A 0.57 0.06-5.12   

CLU 
Homozygous C/C 1.49 0.98-2.28 Homozygous C/C 1.49 0.98-2.28   
Variant C/T 1.03 0.75-1.41 "T" Carrier 1.05 0.79-1.41 0.33 
Variant T/T 1.42 0.55-3.65   

rs429358 
Homozygous T/T 1.19 0.94-1.51 Homozygous T/T 1.19 0.94-1.50   
Variant T/C 1.78 0.93-3.43 "C" Carrier 1.71 0.96-3.05 0.27 
Variant C/C 1.47 0.41-5.27   

rs7412 
Homozygous C/C 1.19 0.95-1.50 Homozygous C/C 1.19 0.95-1.50   
Variant C/T 1.57 0.67-3.67 

"T" Carrier 1.62 0.70-3.74 
0.47 

Variant T/T 1 0-0   
Abbreviations – CELF1: CUGBP, Elav-like family member 1; PICALM: phosphatidylinositol binding clathrin assembly protein; 
CLU: clusterin; CR1: complement receptor-1; rs7412 and rs429358 are two functional SNPs associated with APOE 
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Figure 3.1: Genetic Variation association with hazard ratios of MMSE<25 
 

 
Abbreviations – CELF1: CUGBP, Elav-like family member 1; PICALM: 
phosphatidylinositol binding clathrin assembly protein; CLU: clusterin; CR1: 
complement receptor-1; rs7412 and rs429358 are two functional SNPs associated 
with APOE 



 67 

 
Figure 3.2: Association of IQR change in Pb with hazard ratio of MMSE<25, by   

genotype 

 
 
 
Abbreviations – CELF1: CUGBP, Elav-like family member 1; PICALM: 
phosphatidylinositol binding clathrin assembly protein; CLU: clusterin; CR1: 
complement receptor-1; rs7412 and rs429358 are two functional SNPs associated 
with APOE 
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Figure 3.3: Association of IQR change in Pb with hazard ratio of MMSE<25, by   
dichotomous genotype 

 

 
Abbreviations – CELF1: CUGBP, Elav-like family member 1; PICALM: 
phosphatidylinositol binding clathrin assembly protein; CLU: clusterin; CR1: 
complement receptor-1; rs7412 and rs429358 are two functional SNPs associated 
with APOE 
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Figure 3.S1: Genotype frequencies in subjects with Pb measurements 
 

  
X-axis indicates genotype – 0=Homozygous major allele, 1=Heterozygous, 
2=Homozygous minor allele.  Abbreviations – CELF1: CUGBP, Elav-like family 
member 1; PICALM: phosphatidylinositol binding clathrin assembly protein; CLU: 
clusterin; CR1: complement receptor-1; rs7412 and rs429358 are two functional 
SNPs associated with APOE 
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CHAPTER 4 

In Utero Lead Exposure and Neuron-specific Epigenetic Changes in Mice

 

4.1  Abstract 

Frontal cortex neuronal cells have distinct DNA methylation signatures compared to 

non-neurons.  In addition, the methylation landscape of neuronal cells varies depending on 

neuronal activity, based on in vivo research in adult mice. The methylome of neuronal cells 

may be plastic throughout the lifespan, and it may be particularly sensitive to 

environmental conditions such as lead (Pb) exposure. Studies in rodents and monkeys 

exposed to Pb in the first few weeks and first year of life suggest that epigenetic sensitivity 

is associated with neuropathology in late life. Epigenetic epidemiology research in the 

brain has studied mixed cell types in whole tissue samples, but it is now clear that 

epigenetic analyses that target specific cell types may be more informative, particularly 

since neurons are known to represent approximately only 10% of cells in CNS tissue. The in 

utero exposure groups consisted of offspring exposed via the maternal drinking water to 0 

ppm, 2.1 ppm, or 32 ppm of Pb acetate two weeks before mating, throughout gestation, and 

three weeks after birth.  Using NimbleGen Promoter Tiling Arrays, we probed DNA 

methylation levels in the neuron-specific cell population at a genome-wide level. After 

applying the bioinformatics bumphunting method and a family-wise error rate cutoff of 0.3, 

we report 6 novel exposure-dependent differentially methylated regions associated with 
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the following genes: retro-Hnrnpc, Skint5, Xylt, Olfr1085, Pcdh19, and Hnmt. The roles of 

Hnmt (histamine N-methyltransferase) and Pcdh19 (protocadherin 19) are of particular 

interest for future studies. Hnmt is involved in neurotransmitter metabolism and Pcdh19 is 

implicated in neurodevelopment. 

 

4.2  Introduction 

 

4.2.1  Alzheimer’s Disease, Pb, & the Developmental Origins of Health and Disease 

Hypothesis – Extensive epidemiologic studies have shown that exposure to Pb is 

associated with a wide range of neurological deficits. Neurological impairment is thought to 

be on the spectrum of cognitive decline that eventually leads to clinical dementia [1,2]. 

Early life Pb exposure is associated with neurobehavioral impairment in children [3,4], 

who exhibit worse global executive function, metacognition, and behavioral regulation as 

Pb levels increase. Although there is a paucity of epidemiologic data directly linking Pb to 

neurodegenerative dementias, one study has found a link between cumulative exposure to 

Pb and Parkinson’s disease [5]. In utero exposure to Pb has also been shown to exert 

adverse effects on learning and memory ability in young rats [6]. 

The Developmental Origins of Health and Disease (DOHaD) hypothesis posits that 

environmental perturbations early in life can affect pathophysiology in adulthood [8-13]. 

Even when a given exposure is lifted, its effects are persistent, as seen in studies of children 

whose mothers were exposed to famine conditions while in the first trimester of pregnancy 

[14]. Although the mechanisms by which these alterations are programmed are largely 

unknown, the epigenetic mark, DNA methylation, has emerged as a major candidate for 
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investigation. For example, maternal licking and grooming behavior in rats affects offspring 

glucocorticoid receptor (GR) expression via differential hippocampal CpG methylation of 

the GR gene, altering offspring stress response [15]. These findings suggest that stable 

epigenetic changes, such as DNA methylation, can affect neurodevelopmental outcomes 

over the life-course. Recently, we found that female mice exposed to multiple levels of 

bisphenol A (BPA) in utero display dose-dependent differences in DNA methylation in tail 

tissue at 3 weeks of age [16] and significantly increased hyperactivity later in life [17]. 

While it is crucial to acknowledge that environmental toxicants may cause 

permanent damage to brain structures early in life, there is also ample evidence that 

exposure to a heavy metal such as Pb can cause latent molecular changes that manifest 

much later. Rats [18] and monkeys [7] administered physiologically relevant levels of Pb 

early in life had an increase in a marker for oxidative stress in the brain when measured 

later in the life. Oxidative stress is thought to be a significant mechanism in Alzheimer’s 

Disease (AD) development [19]. Although Pb may act as a general oxidative agent, its 

ability to create 8-oxoguanine lesions may also alter the binding of transcription factors, 

such as SP1, and other regulatory factors that are mediated by CpG methylation, such as 

MECP2 [20]. A decrease in DNA methyltransferase activity (DNMT) was also observed in 

monkey brains. Several genes in the AD pathway have been shown to be differentially 

expressed in monkeys exposed to Pb early in life [7]. ADAM17 [21] and APH1a [22] are 

genes associated with amyloid precursor protein processing. These genes, and others, are 

implicated in AD [23-27]. Given the potential for Pb to modify DNA methylation at genes in 

a pathway relevant to neurodegeneration, we investigated the association of early life 

exposure to lead (Pb) with differential DNA methylation patterns in cortical neurons. 
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4.2.2  Neuronal Epigenetics – It has been traditionally accepted that once established in a 

post-mitotic cell, DNA methylation patterns are highly stable epigenetic markers that 

govern expression and tissue specificity [28,29]. Neuronal cells are peculiar in that they 

have approximately the same life span as the individual, and make and break synaptic 

connections well into adult life [30,31]. Neuronal activity modulates the DNA methylation 

landscape [32,33] and reciprocally, DNA methylation modulates synaptic transmission and 

excitability of neurons [34,35]. Given their distinct function, isolated neuronal cells have a 

markedly distinct methylation profile from bulk cortical tissue [36]. Thus, it is highly 

plausible that neurons, which make up a small percentage of the brain cell population, may 

accumulate changes in methylation in response to environmental exposures that are 

distinct from changes seen in bulk cortical tissue. These changes would be particularly 

relevant, in light of the finding that there are modest methylation differences among human 

AD cases and controls [37]. 

Here, we have isolated the mouse cortex because beta-amyloid plaque deposition 

has been noted in the frontal cortex of AD patients using biopsies as well as PET imaging 

[38]. This study uses an established protocol to separate NeuN+ (a specific marker for 

neuronal nuclei) neuronal cells from NeuN- non-neuronal cells in mice exposed to Pb 

perinatally and measures neuron-specific genome-wide promoter DNA methylation 

patterns at 10 months of age. 

 

4.3 Methods 
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4.3.1 Mouse Study Population – All mating mice were obtained from a C57BL/6J 

background agouti Avy strain [39]. This Avy strain has been maintained in forced 

heterozygosity through the male line for over 200 generations, resulting in an isogenic 

population that is ~93% similar to that of the background C57BL/6J strain [40,41]. Virgin 

dams (a/a) were assigned randomly to one of four treatment groups with exposure to Pb-

acetate through the drinking water. Exposure was started two weeks prior to mating with 

viable yellow agouti male mice (Avy/a), and continued throughout gestation and three 

weeks after birth. Exposure groups included: 2.1 ppm (low), 16 ppm (medium) and 32 ppm 

(high), corresponding to peak blood levels of approximately 2.5, 10, and 25 μg/dL, 

respectively. We chose to focus our analysis on the high Pb exposure (32 ppm) in 

comparison to low (2.1 ppm) or no (0 ppm) Pb exposure. 

Breeding is designed to produce 50% Avy/a offspring and 50% a/a offspring. The 

ectopic expression of the agouti gene in Avy mice is known to affect adult onset obesity and 

tumorigenesis [42], which may confound the relationship between Pb and DNA 

methylation. Therefore, we conducted the mouse cortex epigenetic analysis on a/a 

offspring only. The developmentally exposed Pb and control offspring used in this study 

were sacrificed at 10 months of age to extract the cortex from whole brain in a manner that 

allowed for neuron-specific DNA extraction and epigenetic analysis. 

 

4.3.2  Sample Ascertainment and Preparation – The cerebral cortex was carefully 

dissected from the rest of the brain on dry ice. Approximately ~200 mg of cortical tissue 

was obtained for each mouse, consistent with previously described methods for neuronal 

nuclei separation [36,43]. However, if more than 200 mg was obtained, treatment was 
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scaled appropriately. In order to prepare for fluorescence-activated cell separation (FACS), 

we first minced cortical tissue using razor blades. In order to create a single cell 

suspension, each 200 mg portion of resulting tissue was incubated with 1 mL Accutase 

[Sigma-Aldrich] for 30 min. The Accutase solution was then centrifuged briefly and 

supernatant was replaced with 1.0 mL of Hibernate A (Life Technologies). This was 

subsequently triturated through an ~0.8 mm glass pipette once, and a ~1.0 mm glass 

pipette twice (10 times up and down over 45 seconds for each trituration). This mixture 

was strained once through a 100-micron strainer and once through a 40-micron strainer 

(BD Falcon). In order to separate cells from extracellular matrix and other connective 

tissue, the mixture was then layered on a discontinuous density gradient of Percoll (Sigma-

Aldrich) with layers that were 1 mL each 12%, 18%, and 24% Percoll, diluted in Hibernate 

A and 22 mM NaCl. This was centrifuged at 500 rcf for 10 min. The top layer was then 

pulled out, and fixed and permeabilized by incubation in a 1:1 ratio of ice-cold 100% 

Ethanol for 20 min at 4oC. The EtOH solution was then replaced by Hibernate A. 

Following fixation and permeabilization, the nuclei were ready for immunolabeling. 

We utilized a monoclonal mouse anti-NeuN (clone A60, from Millipore) antibody that was 

pre-conjugated with Alexa Fluor 488. All samples were blocked in 1 mL of a 1% BSA/10% 

goat serum solution for 1 hour prior to immunolabeling. The main sample to be sorted via 

FACS was then incubated in a 1:20,000 solution of Anti-NeuN 488 antibody in the dark for 

30 minutes. This was then washed extensively in PBS solution five times at approximately 

450 rcf for 5 minutes per wash to get rid of unbound antibody. Two control samples were 

implemented to ensure proper interpretation of FACS scatter diagrams. Approximately 100 

μL of the nuclei solution was unlabeled in order to determine baseline scatter profile of cell 
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relative to any remaining debris. An additional 20 μL was used as a saturated binding 

control. Non-fluorescent Anti-NeuN was added in a 10:1 ratio prior to addition of 

fluorescent anti-NeuN. This was in order to saturate specific binding sites. Specific binding 

sites can be saturated, but non-specific binding sites cannot be. Under the assumption that 

non-specific binding is less fluorescent than specific binding, we used the fluorescence 

from non-specific binding control to set the gate for Alexa-Fluor 488 fluorescence at a level 

beyond which we could be certain that only neurons were specifically bound to Anti-NeuN. 

The antibody we employed was pre-conjugated, so there was no need for a secondary 

binding control. 

FACS sorting was performed on either FACS Aria or MoFlo Astrios, with assistance 

from the Flow Cytometry Cores at the University of Michigan Biomedical Research Science 

Building and Cancer Center. Before fractionation into NeuN+ samples and NeuN- debris was 

removed based on the profile of forward scatter-area/side scatter-area (FSC-Area vs SSC-

Area). Doublets were removed by first using scatter profile of forward scatter-width vs 

forward scatter-height (FSC-Width vs FSC-Height), then by side scatter-width vs side 

scatter height (SSC-Width vs SSC-Height). Fractionation gates were set using profiles of 

525/50 488-Area fluorescence vs SSC-Area. 

DNA was extracted from cells by modifying previously established methods for DNA 

extraction from blood cells, described in Qiagen protocols (Qiagen). Briefly, all reactions 

were scaled appropriately, but are reported here for 1 mL of FACS-sorted NeuN+ or NeuN- 

sample. Each sample was first incubated with 100 μL of Proteinase K and 1.2 mL of 

proprietary Qiagen lysis buffer at 50oC overnight. One equivalent of 100% frozen ethanol 

was added, followed by centrifugation through a Qiagen DNA binding column. The solution 
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was then washed three times with Qiagen wash buffer, and eluted in ~200 μL of [10 mM 

Tris/0.5 mM EDTA buffer. This DNA was then utilized for tiling array hybridization (only 

neuronal NeuN+ genomic DNA). 

For tiling array analysis, sample pooling was necessary to reach the amount of 

genomic DNA necessary to perform hybridization, approximately 9 μg. The pooling design 

is shown in Table 4.1. Briefly, 3 pooled samples were used for each control, low, and high 

Pb exposure group, resulting in 9 total pooled samples. Each pool consisted of DNA from at 

least two isogenic mice. 

 

4.3.3 Nimblegen Tiling Array Sample Preparation – Genomic DNA from NeuN+ 

samples was sonicated to fragment sizes ranging from 200-1000 bp using an Episonic 

1100-series sonicator (Farmingdale, NY) as described previously (Caren Weinhouse, 

unpublished data). Briefly, 7.5-9 μg of DNA was sonicated in cycles of 15 seconds-ON and 

30 seconds-OFF for a total of 15 minutes in 8-20oC water. After every 5 minutes of 

processing time, water temperature was monitored and cooled as necessary. Figure 4.1a 

shows sonication fragment sizes for all nine samples. Pooled samples 3 and 7 were re-

sonicated to achieve appropriate fragment size range (Figure 4.1b). For each pool, one 

sonicated sample was enriched for methylated DNA, while another sample was used as a 

control genomic input for co-hybridization. 

Methyl-CpG binding domain-based capture (MBD-Cap) was used to enrich 

fragmented samples for methylated DNA (EpiMark Methylated DNA Enrichment Kit, New 

England Biolabs, Ipswich, Massachussets). The EpiMark kit contains MBD2-Fc, which is the 

methyl-CpG binding domain of human MBD2 fused to the Fc tail of human IgG1. This 
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protein was then coupled to protein A magnetic beads via incubation at room temperature 

for 15 minutes, followed by two washes. Fragmented DNA was then added to the MBD2-

Fc/protein A mixture and incubated at room temperature for 20 minutes, and washed 

three times to remove unbound DNA. The methylation-enriched DNA was eluted by 

incubating in water at 65oC for 15 minutes. In order to obtain sufficient amounts of DNA for 

hybridization, 10 ng of the captured DNA was subject to whole genome amplification using 

the GenomePlex Complete Whole Genome Amplification Kit (Sigma-Aldrich, St. Louis, MO). 

The control, un-enriched sample and CpG methylation-enriched sample – 

henceforth referred to as the “experimental” sample – were labeled with Cy3 and Cy5 dye, 

respectively, using the NimbleGen Dual-Color Labeling Kit (Roche NimbleGen, Madison, 

WI) following the protocol outlined in the NimbleGen Array User Guide (NimbleGen Array 

User Guide DNA Methylation Arrays, Version 7.2). Briefly, Cy3 and Cy5 were incubated with 

control and experimental sample, followed by sample amplification via incubation in a 

Klenow fragment and dNTP mixture. These labeled fractions were then pooled together in 

equivalent amounts and co-hybridized to the Roche NimbleGen Mouse DNA methylation 

3x720K CpG island Promoter Array for 16-20 hours. Each array slide contains three 

subarrays, each of which holds 720,000 probes scanning 15,980 CpG islands in 20,404 

murine gene promoters.  Each promoter is covered by probes spanning from 2,960 bp 

upstream of the promoter transcription start site (TSS) to 740 bp downstream of the TSS. 

The length of each probe ranges from 50-75 bp with median probe spacing of 100 bp. After 

hybridization, each array was washed and scanned using a 2 μn-resolution scanner 

(NimbleGen MS 200 Microarray Scanner, used courtesy of Dr. Thomas Glover, Department 

of Human Genetics). 
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4.3.4 Bioinformatics Pipeline – A brief overview of the bioinformatics pipeline is 

shown in Figure 4.2. Scanned images were uploaded to Nimblegen DEVA Software, version 

2.3. Each image was overlaid onto a pre-specified alignment grid in order to extract 

location and raw Cy3 and Cy5 intensity – corresponding to control and experimental 

sample, respectively – of each feature. Locally weighted polynomial regression (LOESS) 

spatial correction was performed in order to correct for position-dependent non-

uniformity of signals within the sub-array. After position-dependent normalization, the 

DEVA software calculated log2(Cy5-labeled experimental/Cy3-labeled control) ratios for 

each probe. Probes were centered around Tukey’s biweight mean for all probes. Briefly, the 

biweight mean is a measure of central tendency that is resistant to outliers. In principle, it 

is calculated by assigning weights to data values based on their departure from the median 

of the data cluster. Thus, log2(ratio) values that are closer to the median of the data are 

assigned higher weights than those that are further away. Quantile normalization was used 

to normalize the data across arrays, using the preprocessCore package in Bioconductor [44]  

in R Statistical Software (version 3). After quantile normalization, each probe-associated 

log2(ratios) was fit to a basic linear regression model, as shown in Equation 4.1 below. The 

βPb dose coefficient signifies the value of change in methylation ratio associated with having 

the given category of Pb exposure relative to non-exposed mice. 

Equation 4.1 

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝐁𝐁𝐁𝒑𝒑𝒑𝒑𝒑_𝒊 ~ 𝛃𝟎 + 𝛃𝑷𝑷 𝒅𝒅𝒅𝒅(𝐏𝐏 𝐝𝐝𝐝𝐝) 

We applied empirical Bayes (e-Bayes) smoothing to the standard errors obtained from the 

regression in Equation 4.1 using the limma Bioconductor package. The e-Bayes method is 
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used to better estimate variance for t-tests performed on a small sample size. The 

moderated t-statistic produced by e-Bayes is a result of a weighted average of each sample 

gene’s variance and the background variance of the whole set of probes. 

 

4.3.5 Bumphunt analysis – We utilized a previously described statistical approach 

termed bumphunting [45] to generate associations between Pb exposure and gene 

promoter methylation at the regional level instead of at the individual probe level. Briefly, 

this statistical analysis uses four steps to summarize the information from consecutive 

probes in any designated promoter region to generate a region-wide methylation 

association with Pb exposure. First, methylation measurements for each probe are plotted 

against the exposure level, which in this case, is categorical variable of control, low, and 

high Pb dose. Next, a regression coefficient is generated for each probe. For consecutive 

probes, these probe-level coefficients are then plotted against their genomic location. Once 

the coefficient values are smoothed along the genomic locations, the area under the 

smoothing line is tested to see if the difference in methylation reaches a pre-defined 

threshold absolute value; in this case, it was set as |0.005|. The area is then tested against 

null distributions that are generated from 1000 bootstrap permutations from the data to 

determine statistical significance of each bump. 

 

4.3.6 Pathway analysis – Individual probes were ranked based on p-values from the 

linear regression model and read into two pathway analysis programs: Pathway Analysis 

using Logistic Regression (LRpath) [46]and Database for Annotation, Visualization and 

Integrated Discovery (DAVID, version 6.7) [47,48]. All probes were input into LRpath, 
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regardess of p-value. For pathway analysis using DAVID, the top 499 differentially 

methylated probes ranked by p-values served as the input set of probes. 

 

4.4 Results 

4.4.1 Neuronal separation – Fluorescence-activated cell sorting was performed in 

several steps. As shown in Figure 4.3A (Gate 1), labeled nuclei that were not residual debris 

comprised 63.12% of the initial sample. Figures 4.3B and 4.3C indicate FSC-Area vs FSC-

Height and SSC-Area vs SSC-Height, respectively. These were used to separate doublets out 

of the sample. There was an auto-fluorescence rate of 0.08% for a sample of 10,000 cells 

(Figure 4.3D, Gate R4). The R5 gate was further adjusted as shown in figure 4.3E, the 

sample that was pre-labeled with non-fluorescent anti-NeuN antibody. Figure 4.4F shows 

that 74.36% of the sample was NeuN+, whereas the NeuN- population comprised 22.83% of 

the sample. These proportions were similar throughout the samples that were sorted. The 

average number of NeuN+ nuclei per sort was 1.21x106 nuclei and 4.65x105 NeuN- nuclei. 

The average amount of DNA extracted was 4.72 ug per 1 million nuclei. 

 

4.4.2 Overall Differential Methylation – Mice exposed in utero to 32 ppm Pb had 11,517 

(1.7%) probes with differential methylation as compared to non-exposed mice at p<0.005, 

(lowest FDR 0.30). Of these, 7554 (65.6%) were hypomethylated (lowest log2(βPb dose)= -

2.22) and 3963 were hypermethylated (highest log2(βPb dose)= 1.93). Mice exposed to 2.1 

ppm Pb had 2793 probes with differential methylation at a p-value <0.005, with 1249 

hypomethylated probes (44.7%) and 1544 hypermethylated probes (55.3%). However, 
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only 3 differentially methylated probes in mice in the low dose Pb exposure group reached 

an FDR cutoff of 0.3. 

 

4.4.4 Bumphunt Analysis – Probe-level data was combined using a bumphunting 

approach in order to find larger differentially methylated regions in the genome. The six 

regions that had the lowest p-values and met an FDR and Family-wise error rate cutoff of 

0.3 are shown in Figure 4.4. The region that was most highly differentially methylated was 

most closely linked with retrotransposed gene for the heterogeneous nuclear 

ribonucleoprotein C (retro-Hnrnpc). The regions associated with Retro-Hnrnpc, Olfactory 

receptor 1085 (Olfr1085), and Histamine N-methyltransferase (Hnmt) were all 

hypermethylated in the mice exposed to 32 ppm Pb in drinking water relative to the 

control and low dose (2.1 ppm Pb). Methylation change in the region associated with 

Selection and upkeep of intraepithelial T-Cell 5 (Skint5) showed more of a monotonic 

response with increasing Pb dose. Mice exposed to both high and low doses of Pb were 

hypomethylated at a 635 base-pair region upstream of Xylosyltransferase (Xylt1). The 

differentially methylated region in Protocadherin 19 (Pcdh19) suggested a non-monotonic 

association with Pb dose, with the highest dose being hypomethylated relative to the low 

dose, but hypermethylated in relation to control. 

 

4.4.3 Pathway Analysis – Pathway analysis was done using two online programs to 

detect which differentially methylated regions in the exposed mice were enriched for 

certain pathways. DAVID analysis utilized 499 differentially methylated regions ranked by 

p-value in the e-Bayes analysis. The top two annotation clusters are shown in Table 4.2A-B. 
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The top annotation cluster had an enrichment score of 2.06, and was enriched for genes in 

the GTPase activator pathways. The next most significant DAVID annotation cluster, with 

an enrichment score of 1.89, was predominantly enriched mainly in neurological systems 

processes and olfactory sensation processes. Although most p-values reported were less 

than 0.01, multiple-comparison corrections of p-value including false discovery rate (FDR), 

Bonferroni, and Benjamini corrections all failed to reach significance. 

Because DAVID pathway analysis only uses a limited number of probes from the 

whole array analysis, we also analyzed all array probes using LRpath. As shown in Table 

4.3, the pathways enriched using LRpath were “Myofibril assembly”, “Determination of 

left/right symmetry”, and “Negative regulation of BMP signaling pathway”. Although the p-

values associated with these pathways were less than 0.01, the FDR method to correct for 

multiple comparisons indicated that these pathways did not reach statistical significance as 

differentially methylated pathways. 

 

4.5 Discussion 

This is the first neuron-specific genome-wide DNA methylation analysis of a group 

of mice that was environmentally exposed in utero to Pb. We demonstrated clear 

separation of anti-NeuN+ cells from anti-NeuN- cells, as shown in Figures 4.3A-E. We 

isolated approximately 0.63-1.74 x 106 NeuN+ nuclei and 0.27-1.26 x 106 NeuN- nuclei, 

yielding DNA on a scale of micrograms for each sample. Although the NimbleGen platform 

used in the current study demanded much of this DNA, the input genomic DNA required for 

genome-wide methylation studies is decreasing with advancing methylation-sequencing 

technologies. 
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Overall, we did not see evidence for an abundance of large changes in percent 

methylation among Pb dose levels. Analysis of consecutive probes as performed in the 

bumphunting approach provided opportunity to identify significant regions (ranging from 

600-2900 bp in size) on whole regions rather than the 100 base-pairs covered by 

individual probes. This analysis yielded a handful of promising sites showing a relationship 

with Pb dose: hypomethylation with increasing Pb dose in some genes (Xylt1), 

hypermethylation in others (Hnmt, Olfr1085, and retro-Hnrnpc). However, given the small 

sample size and FDR level of 0.30, we interpret these results with caution, emphasizing the 

need for orthogonal validation [49], such as bisulfite sequencing of target regions. Despite 

this limitation, given that the direction of methylation varied with gene region, it is possible 

that Pb exposure modifies DNA methylation in a gene- or pathway-specific manner. 

Probe-level analysis did not suggest an association of Pb exposure at low and high 

doses with differential methylation in neuron-specific cell populations, as the DAVID and 

LRpath pathway analyses failed to reach statistical significance after adjusting for multiple 

comparisons. Both pathway analyses were limited in that they utilized information at the 

probe-level. It is possible that several probes that do not reach statistical significance may 

not be picked up by such an analysis; hence our emphasis on using the bumphunt 

approach. Reasons we did not detect a robust effect on DNA methylation by Pb dose 

include: a small sample size with limited power, the assessment of only promoter and CpG 

island regions, and the assessment of only neuronal cells. While our study provides 

evidence that there is a strong overall shift in DNA methylation pattern in neurons due to in 

utero Pb exposure, it does not rule out the possibility of a targeted set of regions or genese 

affected in a dose-dependent manner. 
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Although the present research is unique in its analysis of a cell-specific population, 

neurons are a particularly confounding set of cells in which to study DNA methylation. 

Additionally, as mentioned previously, neuronal activity modifies DNA methylation [32,33], 

suggesting that each individual cell will be differentially methylated depending on its 

activity. Thus, it is difficult to tell which regions of the methylome are activity-dependent, 

prone to direct methylation modification by Pb, or prone to modification by Pb through its 

independent effect on neuronal activity. Future studies would have to differentiate 

between the activity-dependent neuronal methylome and the part of the methylome that 

may be less susceptible to neuronal firing. An additional limitation of the study was that 

our genome-wide analysis platform was a promoter tiling array. Although it provides 

excellent coverage of the genome, it focuses only on promoters. Other literature on the 

association between DNA methylation and various cancers clearly suggests that functional 

CpG methylation may be taking place in CpG shores, and not necessarily associated with 

promoter regions [50,51]. 

Despite the limitations of this study, it is the first to look at a neuron-specific 

population of cells of mice exposed to Pb in utero. The window of susceptibility to exposure 

was critical: all mice in our study were exposed to Pb via the maternal drinking water, 

though gestation and weaning. This unique exposure paradigm allowed us to look at the 

influence of environmental exposures on the methylome during neuro-development. The 

tiling array platform used in these studies was intended as a discovery tool to identify 

pathways and regions that may be differentially methylated in utero dependent on 

environmental exposure. The present study has generated several targets for further 

downstream study, the most interesting of which is Hnmt, due to its clear role in 
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neurotransmitter metabolism. Pcdh19 is also of interest due its expression during 

neurodevelopment in the mouse embryo [52]. Pcdh19 is a cadherin molecule that is also 

associated with epilepsy in females [53]. Future directions of study would include 

correlation of DNA methylation with expression of the Hnmt and Pcdh19 as well as other 

top hits found in the bumphunt analysis. This study was done on a subset of males only, so 

future studies should include an analysis of females to examine potential gender-specific 

effects of Pb. Our results are consistent with prior work published on the effect of early life 

exposure to Pb on the mouse methylome by Dosunmu et al [54]. The authors observed a 

correlation between expression and methylation, but they noted only a small percentage of 

genes were differentially methylated as a result of Pb exposure. The Dosunmu study was 

not performed on a specific population of neurons, nor were mice exposed in utero. 

Combined with results from our study, the sum of results suggests a weak association 

between early-life exposure to Pb and DNA methylation. 
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Table 4.1: Number of mice used in pooling scheme 

  Pooled Sample 1 Pooled Sample 2 Pooled Sample 3 

0 ppm 2 mice 2 mice 2 mice 

2.1 ppm 2 mice 2 mice 2 mice 

32 ppm 3 mice 2 mice 2 mice 
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Figure 4.1 – Fragmentation of NeuN(+) DNA via sonication 

A 
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A) Pooled samples 1-9. Samples 3 and 7, corresponding to pool 3 for control group and 
pool 1 for high dose group, did not reach appropriate fragment size. 
B) Pooled samples 3 and 7, corresponded to lanes 1 and 3, respectively. After re-sonication, 
the samples reached appropriate fragment size.
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Figure 4.2 – Bioinformatics Pipeline. Image alignment and data extraction, Loess correction, and ratio calculation and 
centering were all performed in DEVA software. Quantile normalization across arrays was performed using preprocessCore in 
R Bioconductor. Cross-array analysis includes individual probe-level analysis, region-level analysis, and pathway analysis 
using individual probe-level analysis 
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Figure 4.3 – Fluorescence-activated Cell Sorting 
 

 
A) Plot of FSC-Area vs SSC-Area to filter out debris from nuclei population (encircled area, Gate R1). B and C) – Plots of FCS-
Area vs FCS-Height (B) and SSC-Area vs SSC-Height (C) to remove doublets. Abbreviations – FSC: Forward Scatter, SSC: Side 
Scatter
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Figure 4.3 (cont) – Fluorescence-activated Cell Sorting 
 

            

 
 
D) Unstained control. E) Saturation control, pre-incubated with untagged Anti-NeuN, to 
determine non-specific binding gate. F) Separation of AlexaFluor488-Anti-NeuN+ neuronal 
nuclei in Gate R4 vs non-neuronal Anti-NeuN- nuclei in Gate R5.  
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Figure 4.4: Top hits from Bumphunt analysis. Top hits reaching Family-wise error rate ~ 0.3, False discovery rate ~ 0.29. 
Regions within dashed lines indicate the significant differentially methylated “bump”, regions outside of boundary are plotted 
to show trend outside the region of bump. 

 
A) Retro-Hnrpc, chromosome 9:19,180,385-19,183,204. B) Selection and upkeep of intraepithelial T-Cell 5 (Skint5), 
chromosome 4:113833028-113834608 C) Xylosyltransferase 1 (Xylt1), chromosome 7:116869556-116870191. D) Olfactory 
receptor 1085 (Olfr1085), chromosome 2:86622952-86624928. E) Protocadherin 19 (Pcdh19), chromosome X:131711446-
131713236. F) Histamine N-methyltransferase (Hnmt), chromosome 2:24005732-24007412.
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Table 4.2: Top pathway hits from Individual Probe-level DAVID Analysis 
4.2A - Annotation Cluster 1: Enrichment Score: 2.055 

Category Pathway PValue Count 
Fold 

Enrichment 
GOTERM_MF_FAT GTPase activator activity 0.0025 13 2.794 
GOTERM_MF_FAT GTPase regulator activity 0.0067 18 2.058 
GOTERM_MF_FAT Enzyme activator activity 0.0077 14 2.320 
GOTERM_MF_FAT Nucleoside-triphosphatase regulator activity 0.0080 18 2.024 
SP_PIR_KEYWORDS GTPase activation 0.0525 8 2.371 
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Table 4.2 (cont): Top pathway hits from Individual Probe-level DAVID Analysis 
4.2B - Annotation Cluster 2: Enrichment Score: 1.889 

Category Pathway 
PValu

e 
Coun

t 
Fold 

Enrichment 
GOTERM_BP_FAT Neurological system process 0.0022 58 1.474 
PIR_SUPERFAMILY G protein-coupled olfactory receptor, class II 0.0023 35 1.681 
PIR_SUPERFAMILY Rhodopsin-like G protein-coupled receptors 0.0029 43 1.551 
KEGG_PATHWAY Olfactory transduction 0.0033 38 1.577 
GOTERM_BP_FAT Sensory perception 0.0042 49 1.493 
INTERPRO Olfactory receptor 0.0109 40 1.499 
GOTERM_BP_FAT Cognition 0.0114 49 1.415 
GOTERM_BP_FAT Sensory perception of smell 0.0118 39 1.492 
GOTERM_MF_FAT Olfactory receptor activity 0.0158 40 1.454 
GOTERM_BP_FAT Sensory perception of chemical stimulus 0.0193 40 1.434 
GOTERM_BP_FAT G-protein coupled receptor protein signaling pathway 0.0208 58 1.320 
SP_PIR_KEYWORD
S G-protein coupled receptor 0.0228 48 1.371 
INTERPRO 7TM GPCR, rhodopsin-like 0.0245 47 1.370 
GOTERM_BP_FAT Cell surface receptor linked signal transduction 0.0278 73 1.250 
SP_PIR_KEYWORD
S Transducer 0.0285 49 1.346 
INTERPRO GPCR, rhodopsin-like superfamily 0.0514 48 1.295 
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Table 4.3: Top pathway hits from probe-level LR Path analysis 
Name ConceptType # Genes Coeff OddsRatio P-Value FDR Direction 

Regulation of cell size GO Bio Process 273 -0.195 0.298 6.60E-04 0.588 depleted 

Myofibril assembly GO Bio Process 18 0.387 11.099 9.97E-04 0.588 enriched 

Regulation of cell growth GO Bio Process 205 -0.222 0.251 0.001 0.588 depleted 

Determination of left/right 
symmetry GO Bio Process 32 0.313 7.005 0.001 0.588 enriched 

Cell growth GO Bio Process 257 -0.190 0.306 0.001 0.588 depleted 

Negative regulation of BMP 
signaling pathway GO Bio Process 20 0.369 9.930 0.001 0.588 enriched 
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Chapter 5 

Conclusion

5.1 Summary of Results – This summary section is included for convenient reference 

to the overall results of aims 1-3. 

 

Aim 1 – Among men 51-89 years of age at baseline, and interquartile range increase 

(IQR=21 μg/g )in Pb was associated with a lower baseline MMSE (β=-0.128,p=0.04) and a 

faster decline in the rate of MMSE (β=-0.016,p=0.04). We also found a suggestive 

association between patella Pb and the risk of cognitive impairment defined as MMSE score 

dropping below 25 using Cox proportional hazard models (hazard ratio=1.21, 95% CI:0.99-

1.49). Patella Pb was not associated with summary scores of global cognition at baseline or 

longitudinally. Tibia Pb was not associated with baseline measures or changes in MMSE or 

global cognition. Associations between Pb and baseline level or change in individual tests of 

cognition varied by domain. 

 

Aim 2 – The hazard ratio (HR) associated with an interquartile range (21 μg/g) increase in 

patella lead was 2.15 (95% confidence interval (CI), 1.36-3.41) for subjects heterozygote at 

the CR1 locus, but it was 1.11 (95% CI, 0.85-1.44) for subjects with no CR1 minor allele 

(pinteraction=0.01). For subjects who were homozygous for minor allele at PICALM, the HR 

associated with and IQR increase in patella lead was 3.54 (95% CI, 0.95-13.25), whereas a 
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null association was found for men with no minor allele (pinteraction=0.08). We found no 

significant effect modification by ApoE. 

 

Aim 3 – In a cohort of adult male mice exposed via the maternal drinking water to 0 ppm, 

2.1 ppm, or 32 ppm of Pb two weeks before mating, throughout gestation, and three weeks 

after birth, we analyzed genome-wide DNA methylation levels in a neuron-specific cell 

population. Using the bioinformatics bumphunting method and a combined false-discovery 

rate cutoff of 0.3 and family-wise error rate cutoff of 0.3, we report 6 novel exposure-

dependent differentially methylated regions associated with the following genes: retro-

Hnrnpc, Skint5, Xylt1, Olfr1085, Pcdh19 and Hnmt. 

 

5.2 Synthesis of findings 

There is a growing body of evidence that environmental exposures play a role in 

cognition. This thesis adds weight to that evidence in several ways: it strengthens evidence 

for a causal effect of Pb by establishing significance in a longitudinal model, and it provides 

data to support the hypotheses that the Pb interacts with the genome in two ways: 1.) it 

modifies the effect of single-nucleotide polymorphisms at the epidemiologic level and 2.) it 

alters of DNA methylation. 

In conclusion, I hope to place these findings in the context of the current state of 

knowledge of how environment modifies disease. Does exposure to Pb truly pre-dispose 

humans to accelerated cognitive decline and neurodegenerative disease? If so, does the 

epidemiologic and mouse data help us in delineating mechanisms by which Pb exerts its 
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effect? In answering these critical questions, it is important to look at alternative 

mechanisms and weigh these explanations against the literature and our own results. 

 

5.3 Use of Longitudinal Models to Track Trajectory of Environment-associated 

Cognitive Decline – There is substantial literature to correlate Pb with a broad spectrum 

of cross-sectional cognitive markers in community dwelling older adults. In the Normative 

Aging Study (NAS), blood lead levels in a small sample significantly predicted scores on the 

MMSE [1] as well as tests of speed, memory, and visuospatial ability [2].  However, in a 

larger subset of the same study population in the NAS, blood lead levels were not strongly 

associated with cross-sectional or longitudinal MMSE scores [3] or any tests of visuospatial, 

language, or memory domains, with the exception one cross-sectional association with a 

vocabulary test [4]. Similar findings were reported in the Baltimore Memory Study (BMS), 

in which BLL’s were not associated with any of seven cognitive domains [5]. On the other 

hand, in the NAS, patella Pb was found to be associated with cross-sectional scores as well 

as a decrease between first and second visits in MMSE. Similar results of cross-sectional [6] 

and studies of change were noted in tests of pattern comparison and spatial copying scores 

[4]. Tibia Pb analysis yielded similar, yet slightly less statistically significant results. In the 

BMS tibia lead was associated with lower cross-sectional test scores in 7 cognitive domains 

[5]. Taken together, these findings suggest that at a cross-sectional level, there is consistent 

association with bone Pb levels and impaired cognition. 

Our study adds a crucial component to this body of literature in community-

dwelling older adults. In our population, mean patella and tibia Pb levels were respectively 

30.6 ug/g (SD=19.4) and 21.6 ug/g (SD=13.3), similar to prior studies. We have been able 
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to analyze trajectories of cognition over a longer follow up time of 12-15 years. This allows 

us to move beyond the learning effect that is inherent in tests of cognition. In the general 

literature on MMSE scores and other tests of cognition, the most pronounced cognitive 

decline is seen over a time-scale similar to that reported in this thesis [7-9]. We have been 

able to model the chronic effects of cumulative Pb dose on alteration of cognitive trajectory 

utilizing mixed effects longitudinal regression as well as a Cox proportional hazards 

analysis. This can help public health researchers track the efficacy of preventive 

interventions as well as stratify populations that are at risk for cognitive decline [10,11]. 

This type of analysis is dependent on markers of cumulative exposure, as well as on repeat 

measures of neurological outcomes that span approximately 10 years. Overall, there is 

enough evidence to say that Pb exerts a causal effect on cognitive decline. 

There is one prominent limit on our ability to interpret the effect of Pb on clinical 

outcomes. We have not correlated blood or cumulative bone Pb with neurodegenerative 

disease. To my knowledge, only Parkinson’s dementia has been found to be associated with 

Pb exposure [12,13]. An epidemiologic study that establishes the association between Pb 

and AD would be the most relevant experiment to establish Pb as a general 

neurodegenerative toxicant. A researcher might run a Cox proportional hazards model in 

two possible studies: 1.) A study of the association between Pb measured by inductively 

coupled mass spectrometry (ICP-MS) of post-mortem bone with AD brain specimens or 2.) 

A study of living patients that analyzes the association between K-XRF bone Pb with 

Pittsburgh compound B-assisted brain scans of at-risk patients [14]. 

 

5.4 The Utility of Discovering Gene-Environment Interactions 
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The interplay of genetics and environmental exposure is of key interest in this 

thesis. The basis of gene-environment interaction can be thought of from an evolutionary 

perspective. A randomly selected trait may not influence fitness of a species until external 

conditions pressure the selection for that trait. Similarly, any given genetic variant may 

truly be associated with a disease, but we cannot observe that association until we coax it 

out with environmental exposure. Thus, gene-environment interactions have driven 

selection of species, and are important in modern medicine. SNP gene variants explain only 

up to 33% of the variability in AD. It is possible that studies incorrectly calculate the 

population attributable risk (PAR) explained by genes simply because they ignore the joint 

effect of the interaction between genes and environment [15]. Another benefit of such 

studies is that they may one day allow for preventive advice that takes into account an 

individual’s genetic susceptibility to environmental exposures. 

 

5.4.1 Potential Mechanisms of Interaction – This thesis analyzed the interaction 

between Pb and several genes associated with cognition and/or AD to modify the 

longitudinal trajectory of MMSE scores. A biological interpretation of gene-environment 

interactions found from epidemiologic data must be done on a case-by-case basis. For the 

case of Pb and APOE interaction, Pb has previously been shown to be associated with APOE 

expression levels. Interestingly, the APOE variants at rs7412 and rs429358 are CpG 

switches [16], suggesting that methylation may play a role in how APOE modifies the effect 

of Pb on cognition. Another way in which Pb may be interacting with genes is that SNPs 

may serve as proxies for methylation sites. One cannot ignore the fundamental role of Pb as 

a highly oxidative, divalent cation [17-19]. Pb may differentially interfere with the gene 
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product of APOE variants in comparison to wildtype APOE. What are the potential 

mechanisms of interaction of Pb with PICALM, CR1, and CLU? The SNPs we utilized for these 

genes are intronic, and so the mechanism of their effect on cognition is unclear. PICALM, 

CR1, and CLU are involved in processing and trafficking APP cleavage products, but the 

SNPs we examined are non-coding. Perhaps these SNPs, too, are proxies for epigenetic 

regulators that can be modified by Pb. Future studies would need to determine if Pb 

differentially modifies the expression of these genes. We did not observe any association of 

Pb-CELF1 interaction with cognitive decline. Despite the non-significance (p=0.35), we did 

observe an additive effect of the minor allele on the Pb-associated hazard ratio. CELF1 is 

interesting in its association with cognition [20] as well as plasma homocysteine [21]. 

Plasma homocysteine levels are also shown to increase with cumulative Pb exposure [22]. 

If a true interaction existed, it would show that Pb and CELF1 may converge on similar 

pathways to modify cognition. However, we were not able to observe this in our 

population. 

In summary, do gene-environment interactions truly modify the rate of cognitive 

decline? Our data, combined with prior literature supporting biological plausibility, suggest 

that an interaction is possible. Given the broad-acting effects of Pb, each gene-environment 

interaction must be interpreted on its own merit. To validate such effects, one would have 

to reproduce these findings in other populations. Our study is among the first to propose a 

gene-environment interaction that modifies longitudinal trajectories of neurological 

outcomes.  

 

5.5 Epigenetics as a Mediator of Pb Effects on Cognition 
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Bone Pb is an excellent proxy for long-term cumulative exposure. However, data 

suggests that very early life exposure to toxicants – even when the exposure is removed – 

can pre-dispose an organism to adverse outcomes. The evidence for this developmental 

origin of health and disease is quite strong in some exposures. For example, the maternal 

licking and grooming behavior infant rats are exposed to early in life modifies their stress 

response much later [23,24]. In this example, DNA methylation changes at two CpG sites 

were crucial in mediating the differential stress response. In monkeys exposed to Pb in the 

first year of life, researchers have noted amyloid plaques in post-mortem brain analyses 

[25]. Thus, it is plausible that DNA methylation is a mechanism by which early life exposure 

to Pb leaves a stable mark that modifies neurological outcomes later in life. 

There is ample evidence that Pb is associated with changes in DNA methylation in 

various tissues in the body. Epidemiologic evidence in the NAS shows that bone Pb levels 

are associated with hypomethylation of LINE-1 retrotransposable elements in the DNA of 

peripheral blood cells [26]. In a separate population of mother-infant pairs in Mexico, Alu 

retrotransposons were also hypomethylated in association with maternal bone Pb [27]. 

Both Alu and LINE-1 are repeat elements, and therefore, markers of global DNA 

methylation. Thus, the epidemiologic data presented suggests that Pb may play a role in 

global hypomethylation, and our overall genome-wide data corroborates this, where we 

see hypomethylation in 65.6% of significant differentially methylated genes (p<0.005, 

FDR<0.30). However, a follow up study of the mother-infant pairs in Mexico noted 

hypermethylation with higher bone Pb at the insulin-like growth factor 2 (IGF2) gene [28]. 
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This suggests that although there may global hypomethylation, Pb may act variably on 

individual gene regions. 

A few pieces of toxicologic data are particularly relevant to the role of Pb in 

influencing methylation in the brain. First, human embryonic stem cells display altered 

neuronal differentiation in response to Pb, and these changes may be mediated by DNA 

methylation as measured by the Illumina HumanMethylation450 BeadChip [29]. Second, 

Zawia et al demonstrated that early life exposure to Pb decreases DNA methyltranferase 1 

activity (DNMT1) [25]. The same group has shown modest changes in methylation with 

early life Pb exposure in rats [30]. Our data particularly strengthen this evidence for two 

reasons: First, our exposure paradigm was in utero, where the offspring were exposed via 

maternal drinking water. Therefore, the differential epigenetic modifications observed are 

a result of the actions of Pb on the developing embryo. Secondly, we isolated a neuron-

specific population. This is of key importance because a mixed cell population may not be 

representative of the differential states of methylation of its constituent cell types [31].  

Combining the toxicologic and epidemiologic literature, there seems to be a modest 

association between early life exposure to Pb and DNA methylation. This association may 

be functional, but further research is needed. First, a limitation of our study as well as the 

Zawia studies is the lack of correlation to tests of cognition. Although a memory test such as 

the water maze learning test would allow for us to link exposure, DNA methylation, and 

phenotype along a causal pathway, many of the behavioral tests may not be sensitive 

enough to detect minute differences in the effect of low Pb doses [32]. Aside from 

validation of neurological phenotypes, direct mechanistic studies of how Pb modifies DNA 

methylation will be crucial. Since Pb has a broad number of targets, one might expect it to 
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act in a diffuse manner. There are two potential mechanisms that deserve further 

exploration. First, de novo DNA methylation and maintenance are dependent on substrates 

in the 1-carbon metabolic pathway. Specifically, homocysteine is a key molecule in the 

pathway for transfer of a methyl group to CpG dinucleotides. Since epidemiologic studies 

indicate that Pb elevates homocysteine levels, animal and biochemical studies investigating 

the mechanism by which that occurs would shed light on the interaction between Pb and 

the epigenome. Secondly, the action of Pb as an oxidative molecule may increase the level 

of 8-oxoguanine [33], which is associated with hypomethylation at adjacent CpG sites [34]. 

Pb may also directly oxidate methyl-CpG sites as part of a pathway to demethylation [35]. 

These are all only speculative hypotheses and need to be tested in mice as well as via direct 

biochemical binding studies. 

 

5.6 Public Health Implications 

 

In summary, human disease is a result of a complex interplay of the genome and the 

environment. Despite advances in sequencing and large-scale data analysis of genetic 

variance, medicine has only been able to explain a fraction of variability in multi-factorial 

diseases such as neurodegeneration. This dissertation was aimed at studying how to 

increase the ability to explain variability in disease by modeling the effect of the 

environment. Despite advances in decreasing exposure to toxicants, there are still new, 

harmful environmental exposures arising every day. Modern demands of technology and 

mass consumption of energy have devastating consequences that release toxic materials 

into the environment [36,37]. The effects of destabilization in war leads to exposure to 
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pollution, buried toxicants that are uplifted due to explosive damage, and even heavy 

metals such as uranium [38]. It is imperative that we have a basis with which to study the 

long-term effects of these toxicants, particularly in the brain. This dissertation uses Pb as a 

model toxicant to support the evidence that it is, indeed, a contributing cause of cognitive 

decline. This work has the potential to further modify policy to reduce Pb exposure by 

showing that bone Pb is associated with longitudinal decline. Current policy focuses only 

on blood lead levels, but given the findings of this dissertation and other work, it may be 

useful to track bone Pb in potentially exposed populations [39]. We hope that this finding 

allows researchers to model the longitudinal effects of other environmental exposures to 

better identify groups that are at risk of progressing from normal cognition to MCI to full-

blown dementia. We also recognize that such work has public health implications by 

strengthening the argument to abate Pb use and mitigate Pb exposure. However, simple 

association studies are not enough. This dissertation also examined the genetic and 

epigenetic mechanisms by which long-term exposure to Pb may alter cognition. 
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