
Property Enforcement for Partially-Observed
Discrete-Event Systems

by

Xiang Yin

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2017

Doctoral Committee:

Professor Stéphane Lafortune, Chair
Assistant Professor Necmiye Ozay
Professor Demosthenis Teneketzis
Professor Dawn Tilbury

Xiang Yin

xiangyin@umich.edu

ORCID iD: 0000-0003-1944-1570

c© Xiang Yin 2017

All Rights Reserved

To my parents and my grandparents.

ii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my advisor, Professor

Stéphane Lafortune, for his encouragement, guidance and for giving me so much

freedom to explore anything I am interested in. I would also like to thank Professor

Necmiye Ozay, Professor Demosthenis Teneketzis and Professor Dawn Tilbury for

accepting to sit on my dissertation committee.

I would like to thank my colleges Dr. Eric Dallal, Dr. Yi-Chin Wu, Yiding Ji,

Romulo Meira Goes, Dr. Lilian Carvalho, Dr. Richard Hill, Dr. Eunsuk Kang and

Dr. Christoforos Keroglou for their discussions on Discrete-Event Systems and other

research topics. I would also like to thank Maxwell Morrison and Siyuan Sheng for

helping me to implement some algorithms in the dissertation.

I thank my friends Zhaojian Li and Cao Gao for their supports and encourage-

ments. I also would like to thank Dinghao Hu, Chen Zhang, Zhengye Bian and Xi-

aowei Wu for their remote but daily companies through our small group the Chinese

Academy of “Kobe” Sciences.

I would like to acknowledge the financial support from NSF grant CCF-1138860,

NSF grant CNS-1446298, NSF grant CNS-1421122 and the Rackham Predoctoral

Fellowship Award from the Rackham Graduate School at the University of Michigan.

Finally, I sincerely thank my parents, Yi Zhang and Guangli Yin, and my grand-

parents, Shuying Chen and Zhengguo Zhang, for their constant support and love. I

would not have been the person I am today without their support. I owe my fiancee,

Dr. Tingting Bai, too much in past five years. I would like to express my deepest

gratitude to Tingting for her love, support and sacrifice. I love you.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . ix

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Literature Review . 4
1.1.1 Property Enforcement via Supervisory Control . . . 4
1.1.2 Property Enforcement via Sensor Activation 6

1.2 Organization and Main Contributions 8

II. A Uniform Approach for Property Enforcement via Supervi-
sory Control . 12

2.1 Introduction . 12
2.2 Preliminary . 13
2.3 Problem Formulation . 17
2.4 Bipartite Transition System 20
2.5 A Uniform Approach for Enforcing Properties 26

2.5.1 All Enforcement Structure for a Given Property . . 27
2.5.2 Construction of the AES 29

2.6 Synthesis of Maximally Permissive Supervisors 32
2.6.1 General Case . 32
2.6.2 Case of Σc ⊆ Σo . 35
2.6.3 The Issue of Liveness 38

2.7 Applications of the Uniform Approach 39

iv

2.7.1 Enforcement of Safety 40
2.7.2 Enforcement of Current-State Opacity 41
2.7.3 Enforcement of K-Diagnosability 42
2.7.4 Enforcement of Strong Detectability 46
2.7.5 Enforcement of Anonymity 48
2.7.6 Enforcement of Attractability 49

2.8 Conclusion . 52

III. Synthesis of Non-blocking Supervisors for IS-Based Properties 53

3.1 Introduction . 53
3.2 Problem Formulation . 54
3.3 Non-blocking All Enforcement Structure 55

3.3.1 Definition of the NB-AES 56
3.3.2 Properties and Construction Algorithm 58

3.4 Synthesis of Non-blocking Supervisors 61
3.4.1 Synthesis Algorithm 61
3.4.2 Correctness of the Synthesis Algorithm 70
3.4.3 Discussion . 74

3.5 Illustrative Example . 75
3.6 Conclusion . 78
3.7 Appendix . 79

3.7.1 Implementation of the Algorithms 79
3.7.2 Complexity Analysis 82

IV. The Range Control Problem . 85

4.1 Introduction . 85
4.2 Problem Formulation . 87
4.3 Synthesis of the Infimal Supervisor 88

4.3.1 The Role of Strict Sub-automaton 89
4.3.2 Synthesis Algorithm 93

4.4 Control Simulation Relation 102
4.4.1 Difficulty in Handling the Lower Bound 102
4.4.2 Definition of the CSR 104
4.4.3 Properties of the CSR 107

4.5 Synthesis of a Maximally-Permissive Supervisor 111
4.5.1 Synthesis Algorithm 111
4.5.2 Correctness of the Algorithm 118

4.6 Conclusion . 123
4.7 Appendix . 123

V. A Uniform Approach for Centralized Sensor Activation . . . 126

5.1 Introduction . 126

v

5.2 Preliminary . 128
5.2.1 Information Mapping 128
5.2.2 The Observer . 131

5.3 Problem Formulation . 132
5.4 A General Most Permissive Observer 135

5.4.1 Information State Dynamics 135
5.4.2 Bipartite Dynamic Observer 137
5.4.3 Generalized MPO and its Properties 141

5.5 Synthesis of Optimal Sensor Activation Policies 144
5.6 Applications of the Generalized MPO 146

5.6.1 Application to Control and Diagnosis 146
5.6.2 Application to Fault Prediction 147
5.6.3 Application to Cyber-Security 150

5.7 Conclusion . 151

VI. Sensor Activation in Decentralized Decision Making 152

6.1 Introduction . 152
6.2 Problem Formulation and Solution Overview 155

6.2.1 Decentralized Distinguishability 155
6.2.2 Problem Formulation and Solution Overview 159

6.3 Constrained Minimization Problem 161
6.3.1 Constrained Minimization Problem 161
6.3.2 Problem Reduction 162

6.4 Synthesis Algorithm . 170
6.5 Application of the Decentralized State Disambiguation Problem174

6.5.1 Decentralized Fault Diagnosis 174
6.5.2 Decentralized Supervisory Control 177
6.5.3 Decentralized Fault Prediction 179

6.6 Extension to the Conjunctive Architecture 181
6.7 Conclusion . 183

VII. Conclusion and Future Work . 184

7.1 Conclusion . 184
7.2 Future Work . 185

BIBLIOGRAPHY . 188

vi

LIST OF FIGURES

Figure

2.1 For G: Σc = {a, b, c},Σo = {o1, o2}, and XS = {5} 19
2.2 Example of the construction of the AES. In the diagrams, rectan-

gular (blue) states correspond to Y -states and oval (yellow) states
correspond to Z-states. For simplicity, in the diagrams, we omit all
uncontrollable events in the control decisions, e.g., decision {} repre-
sents {o1, o2}, and so forth. 28

2.3 For G: Σc = {b, o},Σo = {a, c, d, o}, and f is the fault event. For the
sake of brevity, in the diagram of the AES, we write state (x, n) in the
form of xn and all uncontrollable events in the control decisions are
omitted. We also represent all Z-states z such that ∀xn ∈ I(z) : n ≥ 0
as a single state F , since we can diagnose the failure unambiguously
at such states. 43

3.1 An example of (NB-)AES. For G: Σc = {c1, c2}, Σo = {o1, o2} where
state 15 is illegal. uc denotes all uncontrollable events. 56

3.2 For G: Σuo = ∅ and Σuc = {b}. 59
3.3 Example of Steps 1 and 2. 65
3.4 Example of Steps 3, 4 and 5. Note that states in AU1 ×G have been

renamed for simplicity. 69
3.5 Conceptual illustration of the proof of Theorem III.1. 72
3.6 Example discussed in Section 3.5. 76
3.7 For G: Σc = {c1, c2},Σo = {o}, and states 9 and 10 are illegal. . . . 77
3.8 Example of Inter-Connected System: The figure shows the corre-

sponding ICS for the automaton and its NB-AES shown in Figure 3.1.
The blue dashed rectangles and yellow dashed rectangles correspond
to the Y -states and the Z-states in the BTS, respectively. 80

4.1 Let G be the system, K be the legal behavior and R be the required
behavior. Max1 and Max2 are two incomparable maximal solutions
in K, i.e., Max1 6⊂ Max2 and Max2 6⊂ Max1. However, Max1
contains the required behavior R, while Max2 does not contain any
string in R. 86

4.2 For G, we have Σo = {a, b} and Σc = {c1, c2}. 90

vii

4.3 In Fig. 4.3(a), G′ is the entire automaton and K′ is obtained by
removing illegal state 7 from G′. 94

4.4 For R, K and G: Σc = {v, w} and Σo = {a, b, v}. 103
4.5 Figures in Example 4.5.1. 119
5.1 System G with Σo = {o}, Σs = {σ1, σ2}, and Σuo = {e, f} 133
5.2 Examples of BDOs that represent two incomparable minimal solu-

tions; [blue] rectangular states and [yellow] oval states represent, re-
spectively, Y -states and Z-states. 140

5.3 Example of MPO . 140
6.1 Examples of sensor activation policies and observers 158
6.2 Automaton Ṽ. 165
6.3 Decentralized minimal solutions . 173
6.4 Augmented system G̃ . 177

viii

LIST OF ABBREVIATIONS

CPS Cyber-Physical Systems

DES Discrete Event Systems

IS-based information-state-based

AES All Enforcement Structure

MPIEP Maximally Permissive IS-Based Property Enforcement Problem

BTS Bipartite Transition System

NB-AES Non-blocking All Enforcement Structure

SCC Strongly Connected Component

NB-MPIEP Non-blocking Maximally Permissive IS-Based Property Enforcement
Problem

EBTS Extended Bipartite Transition System

UBTS Unfolded Bipartite Transition System

CELC Critical Elementary Livelock Cycle

ICS Inter-Connected System

MPRCP Maximally-Permissive Range Control Problem

CSR Control Simulation Relation

BDO Bipartite Dynamic Observer

MPO Most Permissive Observer

ix

ABSTRACT

Property Enforcement for Partially-Observed Discrete-Event Systems

by

Xiang Yin

Chair: Stéphane Lafortune

Engineering systems that involve physical elements, such as automobiles, aircraft,

or electric power pants, that are controlled by a computational infrastructure that

consists of several computers that communicate through a communication network,

are called Cyber-Physical Systems. Ever-increasing demands for safety, security,

performance, and certification of these critical systems put stringent constraints on

their design and necessitate the use of formal model-based approaches to synthesize

provably-correct feedback controllers. This dissertation aims to tackle these challenges

by developing a novel methodology for synthesis of control and sensing strategies for

Discrete Event Systems (DES), an important class of cyber-physical systems. First,

we develop a uniform approach for synthesizing property enforcing supervisors for

a wide class of properties called information-state-based (IS-based) properties. We

then consider the enforcement of non-blockingness in addition to IS-based properties.

We develop a finite structure called the All Enforcement Structure (AES) that em-

beds all valid supervisors. Furthermore, we propose novel and general approaches to

solve the sensor activation problem for partially-observed DES. We extend our results

for the sensor activation problem from the centralized case to the decentralized case.

x

The methodology in the dissertation has the following novel features: (i) it explicitly

considers and handles imperfect state information, due to sensor noise, and limit-

ed controllability, due to unexpected environmental disturbances; (ii) it is a uniform

information-state-based approach that can be applied to a variety of user-specified re-

quirements; (iii) it is a formal model-based approach, which results in provably correct

solutions; and (iv) the methodology and associated theoretical foundations developed

are generic and applicable to many types of networked cyber-physical systems with

safety-critical requirements, in particular networked systems such as aircraft electric

power systems and intelligent transportation systems.

xi

CHAPTER I

Introduction

Engineering systems that involve physical elements, such as automobiles, aircraft,

or electric power pants, that are controlled by a computational infrastructure that

consists of several computers that communicate through a communication network,

are called Cyber-Physical Systems (CPS). In the study of CPS, verification and syn-

thesis are two important research issues. In large complex automated systems, we are

first interested in verifying whether or not the given system satisfies a certain proper-

ty of interest. When the answer is negative, we wish to synthesize some strategy that

provably enforces the property by a certain enforcement mechanism. Ever-increasing

demands for safety, security, performance, and certification of these critical systems

put stringent constraints on their design and necessitate the use of formal model-based

approaches to synthesize provably-correct feedback controllers. Safety-criticality of

these systems and often times the need for certification make it essential to employ

methodologies that lead to provably-correct solutions. Fast and principled ways of

synthesizing controllers with correctness guarantees for these systems will directly

benefit the industries developing such systems as one can significantly reduce the

system integration, verification and validation cycle (and therefore time-to-market).

Unfortunately, today’s design tools to handle these requirements are inadequate.

Ad hoc approaches are currently employed by software teams to implement case-by-

1

case solutions, which do not have safety guarantees. These solutions consist more

or less of large lists of “if-then-else” rules whose overall outcome as a system is in

general impossible to decipher. Such ad hoc solutions are especially error-prone due

to the fact that it is not possible to exhaustively enumerate all possible combinations

of variables for all different accident scenarios.

This dissertation aims to tackle these design challenges by developing a nov-

el methodology for synthesis of provably correct control and sensing strategies for

Discrete Event Systems (DES), an important class of cyber-physical systems. DES

models are widely used in the study of complex automated systems where the behavior

is inherently event-driven, as well as in the study of discrete abstractions of contin-

uous, hybrid, and/or cyber-physical systems. In particular, abstraction techniques

that lift system dynamics from the underlying continuous-state and continuous-time

domain to the domain of a discrete-state and event-driven (labeled) transition sys-

tem have recently proven to be highly effective in solving control problems where the

requirements take the form of a set of safety and liveness properties, expressed either

in some kind of temporal logic or as regular language constraints over the higher-level

event set. We therefore can capture the high level design requirements of the cyber-

physical system at the level of the abstracted discrete transition system, as a set of

logical constraints imposed on the discrete transition system.

In the context of DES, many properties have been studied. In the standard su-

pervisory control problem [64], the properties under consideration are safety and

non-blockingness: safety requires that the system should only execute legal behaviors

(modeled in terms of a regular language); non-blockingness requires that the system

should always be able to eventually achieve one in a set of desired behaviors. Di-

agnosability is related to the problem of fault diagnosis and isolation in automated

systems and it requires that any type of fault event be diagnosed unambiguously with-

in a bounded delay [77, 133]. In [10, 36, 70, 71, 73, 74, 107, 119, 124], a confidentiality

2

property for partially-observed DES called opacity is studied. Opacity captures the

plausible deniability of the system’s “secret” in the presence of an outside observer

that is potentially malicious. Anonymity is a type of opacity that is of interest in the

study of privacy. Several other properties have been considered in the DES literature

to capture different requirements on the behavior of the system; among them we men-

tion predictability [29, 47, 126], detectability [88, 89], and attractability [9, 60, 78]. In

the computer science literature on verification and reactive synthesis, linear temporal

logic or branching time logic are also used to describe desired properties of systems;

see, e.g., [21].

In many applications, the system of interest is partially observed due to the lim-

ited sensing capabilities. In this dissertation, we are concerned with the problem

of enforcing a certain property on its set of behaviors for a partially-observed DES.

Specifically, we investigate two different enforcement mechanisms: supervisory control

and dynamic sensor activation. If the property is related to the actual behavior of the

system, one of the most commonly-used enforcement mechanisms is to restrict the

system behavior by supervisory control. The theory of supervisory control for DES

was initiated by Ramadge and Wonham [64]; for this reason, it is often referred to as

the Ramadge-Wonham Framework. In this framework, a supervisor disables/enables

events of the system dynamically based its observations in order to restrict the system

such that the closed-loop behavior satisfies some given property. In some situations,

restricting the system’s behavior via control may be infeasible. However, if the prop-

erty is specifically related to the observed behavior of the system, i.e., to the strings

of events output by the system, then an alternative approach is to change this output

information by activating/deactivating sensors; this is the sensor activation problem.

The principal objective of dissertation is the development of novel approaches for

solving the control problem and the sensor activation problem for the purpose of

property enforcement.

3

1.1 Literature Review

1.1.1 Property Enforcement via Supervisory Control

In the standard supervisory control problem, the properties to be enforced are

safety and non-blockingness. This problem was solved in [64] in the case of full ob-

servation (e.g., no unobservable events). In the partial observation setting, different

solutions methodologies have been proposed; see, e.g., the following original refer-

ences and books [12, 20, 35, 42, 52, 83, 106]. In particular, in [20, 52], the necessary

and sufficient conditions for exactly achieving a specification language were given.

These are the well-known controllability, observability, and Lm(G)-closure condition-

s. When the given specification language cannot be exactly achieved, one is interested

in synthesizing solutions that are not only safe and non-blocking, but also maximally

permissive in the sense that there does not exist another solution that is strictly larger

and is still safe and non-blocking; in other words, such solutions are locally maximal.

Since observability may not be preserved under union, no supremal solution exists in

general, unless additional assumptions are made.

Many approaches have been considered in the literature for synthesizing safe and

non-blocking supervisors for partially observed DES; see, e.g., [1,8,11,18,19,34,43,93].

One approach is to find the supremal controllable normal and closed sub-language,

as initially defined in [20, 52]; see also, e.g., [8, 18, 41] for computational algorithms.

However, since normality is stronger than observability, such a solution may be too

restrictive, even empty in some cases. In [11, 93], solutions that are provably larger

than the supremal controllable normal sub-language are provided. In [93], the authors

identified a class of observable sub-languages that is invariant under the specifically

defined “strict subautomaton union” operation. In [11], the authors identified a new

language property, called relative observability, that is stronger than observability,

weaker than normality, and preserved under the standard union of languages. The

4

authors also provided an algorithm to compute the supremal controllable and relative

observable sub-language. The solutions obtained by the techniques of [93] and [11] are

incomparable and neither of them is maximal in general. Moreover, both techniques

may return empty solutions even when non-empty solutions exist. The decidability of

the problem of synthesizing a non-empty solution, i.e., a solution that is both safe and

non-blocking, was established in [34]. If the decidability condition holds, in [132], the

authors provided an algorithm that always returns a non-empty solution; however,

the solution obtained is not maximal in general.

On-line and off-line approaches have been developed to compute maximal con-

trollable and observable solutions when the non-blockingness requirement is relaxed,

i.e., when the specification is given by a prefix-closed language; see, e.g., [4, 27, 31].

However, these approaches cannot be applied to the case where the specification is de-

scribed by a non-prefix-closed language, since the resulting solutions may be blocking.

In [44, 68], the computation of the infimal prefix-closed controllable and observable

super-language of a given lower bound specification language was provided. Besides

these, some other approaches have also been considered in the literature. In [34, 43],

the use of nondeterministic supervisors was advocated. The problem of supervisor

(or controller) synthesis under partial observation has also been investigated in other

frameworks; see, e.g., [1, 17, 48, 61, 96]. To the best of our knowledge, the synthesis

of non-blocking and safe deterministic supervisors that are maximally permissive for

partially observed DES has remained an open problem. Also, how to synthesize a

maximal safe supervisor that contains a given lower bound behavior is open.

Besides the standard supervisory control problem under partial observation, many

different approaches have also been proposed to synthesize supervisors for different

properties under partial observation. In [76], an integrated approach to control and

diagnosis was studied. Specifically, the authors presented an approach for designing

a maximally permissive supervisor that enforces diagnosability. This problem is al-

5

so referred to as the active diagnosis problem. Several approaches have also been

proposed in the literature for enforcing opacity of a given system that is not opaque

at the outset; see, e.g., [2, 5, 23, 26, 72, 92]. In this context, the control problem is

to synthesize a partial-observation supervisor that prevents behaviors that reveal the

secret from occurring in the controlled system. In other words, the objective for the

opacity-enforcing supervisor is to hide the system’s secret in the presence of the ex-

ternal intruder. In [87], the author studied the problem of synthesizing a supervisor

that enforces detectability. The enforcement of attractability was studied in [9, 60]

for the fully-observed case and more recently in [78] under the partial observation

assumption. The controller synthesis problem for non-interference was studied in [6].

While there is a wide literature on the enforcement of properties of DES using su-

pervisory control, several open problems remain. First, except for the standard super-

visor control problem under partial observation, all other works assume that Σc ⊆ Σo,

where Σc and Σo are the sets of events that can be controlled and observed by the

supervisor, respectively. In other words, the solutions to these property enforcement

problems are only available under the assumption that all controllable events are ob-

servable. Second, all of the existing literature deals with different property-enforcing

problems separately, i.e., each enforcement technique developed is only applicable to

a specific property. Moreover, the enforcement of some properties, such as anonymity,

has not yet been addressed in the literature.

1.1.2 Property Enforcement via Sensor Activation

The problem of sensor optimization in DES was initially studied in [25,30,37,129];

the goal in these works was to find an optimal set of observable events that is fixed

for the entire execution of the system and enforces a given DES-theoretic property.

This problem is referred to as optimal sensor selection for static observations. In

the context of dynamic observations, where sensors can be turned on/off dynamical-

6

ly, the corresponding problem of optimal sensor activation has also received a lot of

attention in the literature; see, e.g., [14–16, 22, 79, 80, 85, 86, 97, 101, 103, 104] for a

sample of this work and the recent survey paper [82] for an extensive bibliography.

In [16,97], the problem of dynamic sensor activation for the purpose of fault diagnosis

was studied; the optimal synthesis problems considered therein were solved according

to numerical cost criteria. In [101, 104], both centralized and decentralized sensor

activation problems for the purposes of control and diagnosis, respectively, were s-

tudied. The features of these works are: (i) the properties of interest to be enforced

are (co)observability or (co)diagnosability; (ii) the optimality criterion is logical; and

(iii) the solutions are only sub-optimal in the sense that by enlarging the solution

space (by refining the state space of the system), better solutions could be obtained

in principle. In [103] and [85], online approaches were proposed for two different prop-

erties, observability and detectability, respectively. The complexity of synthesizing

a minimal sensor activation policy for diagnosability was studied in [14]. In [16], a

structure called the Most Permissive Observer (MPO) was proposed for solving the

problem of dynamic sensor activation for the purpose of fault diagnosis. The MPO is

a finite structure that embeds all valid sensor activation policies, i.e., all policies that

enforce the property of K-diagnosability. Therefore, the MPO can serve as a basis for

finding one optimal solution with respect to some cost criterion. This approach was

extended to timed systems in [13] and to the problem of opacity in [15]. Recently, an

information-state-based characterization of the MPO structure was proposed in [22];

this work shows that the size complexity of the MPO could be reduced, as compared

with the original MPO from [16], by appropriately defining the notion of information

state in the context of the enforcement of K-diagnosability.

In many large scale systems, the information structure is decentralized due to the

distributed nature of the sensors. In the decentralized diagnosis problem considered

in [24], the system is monitored by a set of local agents that work as a team in

7

order to diagnose every occurrence of fault events. In [101], the problem of dynamic

sensor activation for decentralized diagnosis is studied. Specifically, a “window-based

partition” approach is proposed in order to obtain a solution. However, a drawback of

this approach is that the solution obtained is only optimal w.r.t. a finite (restricted)

solution space and may not be language-based optimal in general. In other words, by

enlarging the solution space by refining the state space of the system model, better

solutions could be obtained in principle. In [104], the problem of dynamic sensor

activation for decentralized control is also studied, where the solution obtained is

again optimal w.r.t. a finite solution space. To the best of our knowledge, the problems

of language-based sensor optimization for decentralized diagnosis and decentralized

control have remained open problems, as is mentioned in the recent survey [82].

1.2 Organization and Main Contributions

The main contributions and the organization of this dissertation are summarized

as follows.

Chapter II: A Uniform Approach for Property Enforcement via Supervi-

sory Control ([109,114,121])

In this chapter, we propose a uniform approach that is applicable to the enforcement,

by supervisory control, of a large class of properties that can be expressed in terms

of suitably-defined information states. We refer to such properties as information-

state-based (or IS-based) properties. Roughly speaking, an IS-based property is a

property that only depends on the current local information of the system, as avail-

able to the supervisor, and does not explicitly depend on the future behavior of the

system. Specifically, our approach is based on the construction of a finite information

structure called the All Enforcement Structure (AES). By construction, the AES

embeds in its structure all property-enforcing supervisors. Therefore, it can serve as

8

the basis for solving the synthesis problem.

Chapter III: Synthesis of Non-Blocking Supervisors for IS-Based Proper-

ties ([110,120])

In this chapter, we tackle the supervisor synthesis problem for non-blockingness in ad-

dition to the enforcement of an IS-based property. We define another finite bipartite

transition system that we call the Non-blocking All Enforcement Structure (NB-AES).

We then provide a synthesis algorithm, based on the NB-AES, that constructs a non-

blocking and maximally permissive supervisor that enforces an IS-based property, if

one exists. This is the first algorithm with such properties and it answers a long

standing open problem that was unsolved for more than 25 years.

Chapter IV: The Range Control Problem ([117,118,125])

In this chapter, we study a generalized supervisor synthesis problem called the Maxi-

mally Permissive Range Control Problem. In this problem, we not only want to find a

locally maximal supervisor, but we also require that the synthesized maximal supervi-

sor contain a given behavior. We only restrict our attention to the safety requirement

and not do consider the issue of blockingness. More specifically, we consider two

specification languages: the safety specification language K, which is also referred

to as the upper bound language, and a prefix-closed lower bound language R ⊆ K,

which models the required behavior that the closed-loop system must achieve. To

solve the range control problem, we present a new synthesis algorithm based on the

two notions of AES and Control Simulation Relation (CSR). Although we only con-

sider prefix-closed languages, i.e., nonblockingness is not considered, to the best of

our knowledge, the maximally-permissive range control problem we solve herein was

an open problem even in this case.

Chapter V: A Uniform Approach for Centralized Sensor Activation ([112,

116])

9

In this chapter, we consider the problem of dynamic sensor activation in centralized

and partially-observed DES. The objective in this problem is to synthesize a sensor

activation policy that dynamically turns sensors on/off online in order to achieve a

given objective, e.g., to control the system or to diagnose faults. This problem is im-

portant since in many applications turning more sensors on implies that more energy

or bandwidth is consumed. Therefore, it is of interest to synthesize a sensor activa-

tion policy that is optimal with respect to some criterion, subject to the constraints

of the problem. To solve this problem, we define a generalized version of the Most

Permissive Observer (MPO). This generalized MPO embeds all valid solutions to the

enforcement of an IS-based property in its finite structure. Based on the MPO, we

present an algorithm for the synthesis of optimal sensor activation policies under a

logical performance objective.

Chapter VI: Sensor Activation in Decentralized Decision-Making ([113,

123])

In this chapter, we investigate the problem of decentralized decision-making in DES

that operate under dynamic observations. In this context, the system is monitored

by a set of agents that act as a team to make a global decision. The sensors of each

agent can be turned on/off online dynamically according to a sensor activation policy.

We define a general decentralized decision-making problem called the decentralized

state disambiguation problem, which covers the decentralized control problem, the

decentralized fault diagnosis problem, and the decentralized fault prognosis problem.

The goal is to find a language-based minimal sensor activation policy for each agent

such that the agents can always make a correct global decision as a team. A novel

approach to solve this problem is proposed. We adopt a person-by-person approach to

decompose this decentralized minimization problem into two centralized constrained

minimization problems. Each centralized constrained minimization problem is then

reduced to the centralized sensor activation problem that we solve in Chapter V.

10

We prove that the solution obtained by our procedure is minimal w.r.t. the system

language, in contrast to the works in the literature where minimality was with respect

to a finite solution space.

Chapter VII: Conclusion and Future Work

We conclude the dissertation and discuss several potential future directions.

11

CHAPTER II

A Uniform Approach for Property Enforcement

via Supervisory Control

2.1 Introduction

In this chapter, we propose a uniform approach that is applicable to the en-

forcement, by supervisory control, of a large class of properties that can be ex-

pressed in terms of suitably-defined information states. We refer to such properties as

information-state-based (IS-based) properties. Roughly speaking, an IS-based prop-

erty is a property that only depends on the current local information of the system,

as available to the supervisor, and does not explicitly depend on the future behavior

of the system. The approach that we develop to tackle this problem is significantly

different from the previous approaches in the literature, which are also concerned with

property enforcement by supervisory control. Specifically, our approach is based on

the construction of a finite information structure called the All Enforcement Structure

and abbreviated as AES. The AES is a game structure between the supervisor and

the “environment” (aka system). By construction, the AES embeds in its structure

all property-enforcing supervisors. Therefore, it can serve as the basis for solving the

synthesis problem.

The single uniform solution methodology is applicable not only to safety and opac-

12

ity, but to any property that can be expressed as an IS-based property. This includes,

but is not restricted to, safety, diagnosability, opacity, detectability, anonymity and

attractability. There are properties that cannot be formulated as IS-based properties;

the prime example is non-blockingness, which will be addressed in the next chapter.

In Table 2.1, we compare our proposed approach with previous work. To the best of

our knowledge, the problem of synthesizing a maximally permissive supervisor that

enforces anonymity has not yet been considered in the literature; this property can

be enforced by our general methodology. Moreover, we relax the assumption made

by previous works that all controllable events should be observable. We show that,

in this more general setting, uniqueness of a maximally permissive solution is lost.

Hence, our focus is on the synthesis of solutions that are provably (locally) maximally

permissive.

The rest of this chapter is organized as follows. In Section 2.2, we present the mod-

el of the system to be analyzed. In Section 2.3, we formulate the information-state-

based property enforcement problem that we solve in this chapter. In Section 2.4, we

define a class of bipartite transition systems that is used for solving the property en-

forcement problem. In Section 2.5, we define the structure called AES, the key notion

for the approach investigated in this chapter. We then present a general-purpose syn-

thesis algorithm that returns a maximally-permissive partial-observation supervisor

based on the AES in Section 2.6. In Section 2.7, we show how the proposed uniform

approach can be applied to enforce different specific properties. Finally, we conclude

this chapter in Section 2.8.

2.2 Preliminary

In this section, we review some basic concepts and notations that will be used in

this chapter. Let Σ be a finite set of events and denote by Σ∗ the set of all finite

strings over Σ, including the empty string ε. A language L ⊆ Σ∗ is a subset of Σ∗.

13

T
ab

le
2.

1:
C

om
p
ar

is
on

b
et

w
ee

n
th

e
p
ro

p
os

ed
u
n
if

or
m

ap
p
ro

ac
h

an
d

p
re

v
io

u
s

ap
p
ro

ac
h
es

P
ro

p
e
rt

y
S
af

et
y

O
p
ac

it
y

D
ia

gn
os

ab
il
it

y
D

et
ec

ta
b
il
it

y
A

n
on

y
m

it
y

A
tt

ra
ct

ab
il
it

y
P

re
v
io

u
s

W
o
rk

s
[4

,1
8,

20
,5

2]
[2

,5
,2

6,
72

]
[7

6]
[8

7]
N

on
e

[7
8]

P
re

v
io

u
s

A
ss

u
m

p
ti

o
n

s
N

on
e

Σ
a
⊆

Σ
o
,

Σ
c
⊆

Σ
o
1

Σ
c
⊆

Σ
o

Σ
c
⊆

Σ
o

N
/A

Σ
c
⊆

Σ
o

A
ss

u
m

p
ti

o
n

s
in

th
is

ch
a
p

te
r

N
on

e
Σ
a

=
Σ
o

N
on

e
N

on
e

Σ
a

=
Σ
o

N
on

e
1

Σ
c
,Σ

o
an

d
Σ

a
ar

e,
re

sp
ec

ti
v
el

y,
th

e
se

t
of

ev
en

ts
th

a
t

ca
n

b
e

co
n
tr

o
ll

ed
b
y

th
e

su
p

er
v
is

o
r,

th
e

se
t

o
f

ev
en

ts
th

a
t

ca
n

b
e

o
b
se

rv
ed

b
y

th
e

su
p

er
v
is

o
r,

an
d

th
e

se
t

of
ev

en
ts

th
at

ca
n

b
e

ob
se

rv
ed

b
y

th
e

ex
te

rn
a
l

o
b

se
rv

er
.

14

The prefix closure of language L is the set L = {t ∈ Σ∗ : ∃u ∈ Σ∗ s.t. tu ∈ L}. We

say that a language is prefix-closed if L = L. Given language L and string s ∈ L,

we denote the active (event) set at s in L by ∆L(s) = {σ ∈ Σ : sσ ∈ L} and use

L/s = {t ∈ Σ∗ : st ∈ L} to denote the set of continuations of s in L. For any string

s ∈ Σ∗, we denote by |s| the length of s with |ε| = 0. For any σ ∈ Σ, s ∈ Σ∗, we use

σ ∈ s to denote that σ occurs at least once in s.

The DES of interest is modeled as a deterministic finite-state automaton

G = (X,Σ, δ, x0, Xm), (2.1)

where X is the finite set of states, Σ is the finite set of events, δ : X × Σ → X is

the partial transition function, where δ(x, σ) = y means that there is a transition

labeled by event σ from state x to state y, x0 ∈ X is the initial state and Xm is the

set of marked states. The transition function δ is extended to X ×Σ∗ recursively by:

δ(x, sσ) = δ(δ(x, s), σ), where x ∈ X, s ∈ Σ∗ and σ ∈ Σ. For brevity, we also write

δ(x0, s) as δ(s). The language generated by G is described by L(G) = {s ∈ Σ∗ :

δ(x0, s)!}, where ! means “is defined”; the marked language is Lm(G) = {s ∈ Σ∗ :

δ(x0, s) ∈ Xm}.

Given two automata A = (XA,Σ, δA, xA,0) and B = (XB,Σ, δB, xB,0), we say that

A is a sub-automaton of B, denoted by A v B, if δA(xA,0, s) = δB(xB,0, s) for all

s ∈ L(A). We say that A is a strict sub-automaton 1 of B, denoted by A @ B, if

(i) A v B; and (ii) ∀x, y ∈ XA,∀s ∈ Σ∗ : δB(x, s) = y⇒ δA(x, s) = y. Note that, for

any two automata A and B such that L(A) ⊆ L(B), we can always refine the state

spaces of A and B and obtain two new automata A′ and B′ such that L(A′)=L(A),

L(B′)=L(B) and A′ @ B′.

In the framework of supervisory control [64], the system G is controlled by a

1The definition of strict sub-automaton used in this dissertation is slightly stronger than the
definition used in [18].

15

supervisor that dynamically enables/disables events of the system such that some

specification is provably achieved. The event set Σ is partitioned into two disjoint

subsets: Σ = Σc∪̇Σuc, where Σc is the set of controllable events and Σuc is the set

of uncontrollable events. We say that a control decision γ ∈ 2Σ is admissible if

Σuc ⊆ γ, namely, uncontrollable events can never be disabled. We define Γ = {γ ∈

2Σ : Σuc ⊆ γ} as the set of admissible control decisions. When the system is partially

observed [20, 52], Σ is also partitioned into two disjoint sets: Σ = Σo∪̇Σuo, where Σo

is the set of observable events and Σuo is the set of unobservable events. The natural

projection P : Σ∗ → Σ∗o is defined by

P (ε) = ε and P (sσ) =

 P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σuo

(2.2)

P is extended to P : 2Σ∗ → 2Σ∗o by P (L) = {t ∈ Σ∗o : ∃s ∈ L s.t. P (s) = t}, where

L ⊆ Σ∗. The inverse projection P−1 : Σ∗o → 2Σ∗ is defined by P−1(t) := {s ∈ Σ∗ :

P (s) = t}; P−1 is also extended to P−1 : 2Σ∗o → 2Σ∗ by P−1(s) = {s ∈ Σ∗ : ∃t ∈

L s.t. P (s) = t}, where L ⊆ Σ∗o. Since a supervisor can only make decisions based on

its observations, a partial-observation supervisor is a function S : P (L(G))→ Γ. We

use the notation S/G to represent the controlled system and the language generated

by S/G, denoted by L(S/G), is defined recursively as follows:

i) ε ∈ L(S/G); and

ii) [s ∈ L(S/G) ∧ sσ ∈ L(G) ∧ σ ∈ S(s)]⇔ [sσ ∈ L(S/G)].

We also define Lm(S/G) = L(S/G) ∩ Lm(G).

Given a prefix-closed language K = K, we say that K is controllable (w.r.t. L(G)

and Σc) if (∀s ∈ K, σ ∈ Σuc)(sσ ∈ L(G) ⇒ sσ ∈ K); we say that K is observable

(w.r.t. L(G), Σc and Σo) if (∀s, s′ ∈ K, σ ∈ Σc)(P (s) = P (s′)∧sσ ∈ K∧s′σ ∈ L(G)⇒

s′σ ∈ K); we say that K is normal (w.r.t. L(G) and Σo) if K = P−1[P (K)]∩L(G). It

16

is well known that there exists a supervisor S such that L(S/G) = K if and only if K

is controllable and observable [20,52]. In general, observability is not preserved under

union, unless additional assumptions are made. For instance, it was shown in [54] that

if Σc ⊆ Σo, then controllability and observability together imply normality, which is

preserved under union. However, this assumption is not required here.

We define several operators that will be used later. The set of all possible states

in G reachable from the initial state x0 via some string in sublanguage L ⊆ L(G)

with the same projection as s ∈ L, is given by

RG(s, L) := {x ∈ X : ∃t ∈ L s.t. P (t)=P (s) ∧ x = δ(x0, t)} (2.3)

The unobservable reach of the subset of states S ⊆ X under the subset of events

γ ⊆ Σ is given by

URγ(S) := {x ∈ X : ∃u ∈ S,∃σ ∈ (Σuo ∩ γ)∗ s.t. x = δ(u, σ)}. (2.4)

The observable reach of the subset of states S ⊆ X under observable event σ ∈ Σo is

given by

Nextσ(S) := {x ∈ X : ∃u ∈ S s.t. x = δ(u, σ)}. (2.5)

2.3 Problem Formulation

In this section, we define the class of information-state-based properties and for-

mulate the Property Enforcement Problem that we solve in this chapter.

In many applications, we are interested in enforcing some properties on the system

behavior via supervisory control. In general, a property on a language (or a language-

based property) is a function ϕ : 2Σ∗ → {0, 1}, where for any language L, ϕ(L) = 1

means that L satisfies property ϕ. We write that L |= ϕ if ϕ is a language-based

17

property and ϕ(L) = 1. For example, safety is a typical property of interest. Let

K ∈ 2Σ∗ be a specification language. Then the safety property ϕ : 2Σ∗ → {0, 1}

can be defined by: for any L ∈ 2Σ∗ , ϕ(L) = 1 ⇔ L ⊆ K. To enforce a given

property on the system, we need to synthesize a supervisor that restricts the system

behavior to a sublanguage that satisfies the property; moreover, it is desired that

this sublanguage be as large as possible w.r.t. set inclusion. In other words, the

supervisor should only disable an event if it is necessary to do so. By considering

a general property instead of only safety, the standard supervisory control problem

under partial observation [20,52] is generalized to the Maximally Permissive Property

Enforcement Problem defined as follows.

Problem 1. (Maximally Permissive Property Enforcement Problem). Given system

G and language-based property ϕ : 2Σ∗ → {0, 1}, synthesize a partial observation

supervisor S : P (L(G))→ Γ, such that

1. L(S/G) |= ϕ;

2. For any S ′ satisfying 1) and 2), we have that L(S/G) 6⊂ L(S ′/G).

In the formulation of the above problem, the property of interest is defined over

languages; hence, it may not be possible to bound a priori the memory needed for

its verification. To simplify our problem, hereafter, we will investigate a particular

class of properties called Information-State-based (IS-based) properties. Since we are

dealing with partially observed systems, we define the notion of an information state

as a subset IS ⊆ X of states of G and denote by I = 2X the set of all information

states. IS-based properties are defined as follows.

Definition 2.3.1. (IS-Based Property). Given an automaton G, an IS-based property

ϕ w.r.t. G is a function ϕ : I → {0, 1}, where ∀i ∈ 2X , ϕ(i) = 1 means that i

satisfies this property. We say that sublanguage L ⊆ L(G) satisfies ϕ w.r.t. G, which

is denoted by L |=G ϕ, if ∀s ∈ L : ϕ(RG(s, L)) = 1.

18

0

𝑎

3

5

1 4

6

𝑜1

𝑎

𝑜1

2
𝑜2

𝑏 𝑐
0

3

5

4

6

𝑜1

𝑎

𝑜1

𝑏 𝑐
0

𝑎

1

𝑏 𝑐
0

𝑎

3

5

1 4

6

𝑜1

𝑎

𝑜1

𝑏 𝑐

𝑜1 𝑜1 𝑜1 𝑜1 𝑜1 𝑜1 𝑜1

𝑒 𝑒

(a) System G

0

𝑎

3

5

1 4

6

𝑜1

𝑎

𝑜1

2
𝑜2

𝑏 𝑐
0

3

5

4

6

𝑜1

𝑎

𝑜1

𝑏 𝑐
0

𝑎

1

𝑏 𝑐
0

𝑎

3

5

1 4

6

𝑜1

𝑎

𝑜1

𝑏 𝑐

𝑜1 𝑜1 𝑜1 𝑜1 𝑜1 𝑜1 𝑜1

𝑒 𝑒

(b) Solution G1

0

𝑎

3

5

1 4

6

𝑜1

𝑎

𝑜1

2
𝑜2

𝑏 𝑐
0

3

5

4

6

𝑜1

𝑎

𝑜1

𝑏 𝑐
0

𝑎

1

𝑏 𝑐
0

𝑎

3

5

1 4

6

𝑜1

𝑎

𝑜1

𝑏 𝑐

𝑜1 𝑜1 𝑜1 𝑜1 𝑜1 𝑜1 𝑜1

𝑒 𝑒

(c) Solution G2

Figure 2.1: For G: Σc = {a, b, c},Σo = {o1, o2}, and XS = {5}

We will show later in Section 2.7 that by some proper state space refinements,

many important properties in the DES literature, e.g., safety, diagnosability, opacity,

detectability and attractability, can be formulated as IS-based properties.

Example 2.3.1. Let us consider the system G in Figure 2.1(a), where the set of

observable events is Σo = {o1, o2}. Consider the subset of states XS = {5}. We

define the IS-based property ϕ : I → {0, 1} by

ϕ(i) = 0⇔ i ⊆ XS (2.6)

∀i ∈ I. We will show later in Section 2.7 that the IS-based property defined above

essentially captures a security property called current-state opacity. One may inter-

pret XS as the set of secret states that the system wants to hide from a potentially

malicious external observer, referred to as the intruder. We say that property ϕ holds

if the intruder can never determine unambiguously that the secret has occurred based

on its observation capabilities. If the intruder’s observable set is Σo = {o1, o2}, then

the system language L(G) does not satisfy ϕ, since RG(bao2,L(G)) = {5} ⊆ XS, i.e.,

upon the occurrence of string bao2, the secret state 5 will be revealed to the intruder.

Similarly to the property enforcement problem, we formulate the Maximally Per-

19

missive IS-Based Property Enforcement Problem (MPIEP) as follows.

Problem 2. (Maximally Permissive IS-Based Property Enforcement Problem). Giv-

en system G and IS-based property ϕ : 2X → {0, 1} w.r.t. G, synthesize a partial

observation supervisor S : P (L(G))→ Γ, such that

1. L(S/G) |=G ϕ;

2. For any S ′ satisfying 1) and 2), we have that L(S/G) 6⊂ L(S ′/G).

We will show in Section 2.6 that under the assumption that Σc ⊆ Σo, there always

exists a unique supremal solution to MPIEP. However, this is not true in general, as

illustrated in the following example.

Example 2.3.2. Consider again the system G in Figure 2.1(a). Let the set of con-

trollable events be Σc = {a, b, c}, which is incomparable with Σo. To enforce property

ϕ defined in Example 2.3.1, we need to find a controllable, observable, and live sublan-

guage of L(G) that satisfies ϕ. It is easy to verify that solutions L(G1) and L(G2),

shown in Figure 2.1(b) and Figure 2.1(c), respectively, are two maximal controllable

and observable solutions satisfying ϕ. However, the union of these two solutions is

not a valid solution, since the system needs to enable event a at state 1 and to disable

event a at state 3; but states 1 and 3 are indistinguishable in L(G1) ∪ L(G2). This

violates the property of observability.

2.4 Bipartite Transition System

In this section, we define the general notion of Bipartite Transition System (BTS).

Definition 2.4.1. A bipartite transition system T w.r.t. G is a 7-tuple

T = (QT
Y , Q

T
Z , h

T
Y Z , h

T
ZY ,Σ,Γ, y0) (2.7)

where

20

• QT
Y ⊆ I is the set of Y -states;

• QT
Z ⊆ I × Γ is the set of Z-states and I(z) and Γ(z) denote, respectively, the

information state and the control decision components of a Z-state z, so that

z = (I(z),Γ(z));

• hTY Z : QT
Y ×Γ→ QT

Z is the partial transition function from Y -states to Z-states,

which satisfies the following constraint: for any y ∈ QT
Y , z ∈ QT

Z and γ ∈ Γ, we

have

hTY Z(y, γ) = z ⇒ [I(z)=URγ(y)] ∧ [Γ(z) = γ] (2.8)

• hTZY : QT
Z×Σ→ QT

Y is the partial transition function from Z-states to Y -states,

which satisfies the following constraint: for any y ∈ QT
Y , z ∈ QT

Z and σ ∈ Σ, we

have

hTZY (z, σ) = y ⇔ [σ ∈ Γ(z) ∩ Σo] ∧ [y = Nextσ(I(z))] (2.9)

• Σ is the set of events of G;

• Γ is the set of admissible control decisions of G;

• y0 ∈ QT
Y is the initial Y -state where y0 = {x0}.

The purpose of defining the notion of BTS is to describe, in a general manner

that will be specialized later, the “game” between the “supervisor/controller” and

the “system/environment” (G). To capture this game, we need a bipartite structure,

with two types of nodes (states). A Y -state is an information state, from which the

supervisor issues control decisions. A Z-state is an information state augmented with

control decisions, from which the system “selects” observable events to occur within

the set of enabled events. A transition from a Z-state to a Y -state represents the

observable reach, i.e, y in the above definition is the set of states reachable from

some state of the information state component of the preceding Z-state through the

21

single observed event just executed by G. A transition from a Y -state to a Z-state

represents the unobservable reach and “remembers” the set of enabled events from

the Y -state that leads to it. This means that I(z) is the set of states reachable

from some state in the preceding Y -state through some enabled unobservable event

string, and that Γ(z) is the control decision made in the preceding Y -state. Since the

supervisor cannot choose which event will occur once it has made a control decision,

all enabled and feasible observable events should be defined at a Z-state; this is

why we put “⇔” in Equation (2.9). Finally, we say that a Z-state z is terminal if

(∀x ∈ I(z))(∀σ ∈ Σo ∈ Γ(z))[δ(x, σ)¬!].

Example 2.4.1. Consider again the system G in Figure 2.1(a). As an example of

a BTS, the reader is referred directly to Figure 2.2(b), which is a particular type of

BTS that we will discuss later in this chapter. From the initial Y -state y0 = {0},

by making control decision γ = {a, c, o1, o2} (the uncontrollable events o1 and o2 are

omitted in the figure), we will reach Z-state z = hTY Z(y0, γ) = ({0, 3, 4}, {a, c, o1, o2}).

From z, only one observable event, o1, can happen, and it leads to the next Y -state

y1 = hTZY (z, o1) = {5, 6}. This BTS includes another control decision at y0 = {0},

γ = {b, o1, o2}, from which no observation will occur. Finally, at Y -state {5, 6},

this BTS includes a single control decision, where only the uncontrollable events are

included.

Given two BTSs T1 and T2, we say that T1 is a subsystem of T2, denoted by

T1 v T2, if QT1
Y ⊆ QT2

Y , Q
T1
Z ⊆ QT2

Z , and for any y ∈ QT1
Y , z ∈ Q

T1
Z , γ ∈ Γ, and σ ∈ Σ,

we have that

1) hT1
Y Z(y, γ) = z ⇒ hT2

Y Z(y, γ) = z; and

2) hT1
ZY (z, σ) = y ⇒ hT2

ZY (z, σ) = y.

For example, we see that the BTS in Figure 2.2(b) is a subsystem of the BTS in

Figure 2.2(a). Also, the union of T1 and T2 is defined as a BTS T1 ∪ T2 such that:

22

QT1∪T2
Y = QT1

Y ∪ Q
T2
Y , Q

T1∪T2
Z = QT1

Z ∪ Q
T2
Z ; and for any y ∈ QT1∪T2

Y , z ∈ QT1∪T2
Z , γ ∈ Γ

and σ ∈ Σ, we have that

1) hT1∪T2
Y Z (y, γ) = z ⇔ ∃i ∈ {1, 2} : hTiY Z(y, γ) = z; and

2) hT1∪T2
ZY (z, σ) = y ⇔ ∃i ∈ {1, 2} : hTiZY (z, σ) = y.

In general, the control decision defined at a Y -state may not be unique. Therefore,

given a BTS T , we define CT (y) := {γ ∈ Γ : hTY Z(y, γ)!} to be the set of control

decisions defined at y ∈ QT
Y . For simplicity, we also write y

γ−→T z if z = hTY Z(y, γ) and

z
σ−→T y if z = hTZY (z, σ). Note that, for two BTSs T1 and T2, we have that hT1

Y Z(y, γ) =

hT2
Y Z(y, γ) whenever they are defined. Therefore, we will drop the superscript in

hTY Z(y, γ) and write it as hY Z(y, γ) and y
γ−→ z if it is defined for some T ; the same

holds for hZY and z
σ−→ y. We call γ0σ1γ1σ2 . . . σnγn, where γi ∈ Γ, σi ∈ Σo, a run. A

run also induces a sequence

y0
γ0−→ z0

σ1−→ y1
γ1−→ . . .

γn−1−−−→ zn−1
σn−→ yn

γn−→ zn

We say that a run is generated by T if its induced sequence is defined in T .

We say that a BTS T is

• complete, if ∀y ∈ QT
Y : CT (y) 6= ∅; and

• deterministic, if ∀y ∈ QT
Y : |CT (y)| = 1.

If T is deterministic, then we also use notation cT (y) to denote the unique control

decision defined at y ∈ QT
Y , i.e., CT (y) = {cT (y)}. The completeness condition says

that for any Y -state, we need to be able to pick at least one control decision; the

determinism condition says that such a control decision is unique at each Y -state.

Let S : P (L(G)) → Γ be a partial observation supervisor. It works as follows.

Initially, it makes control decision S(ε). Then new control decision S(σ) is made upon

23

the occurrence of (enabled) observable event σ, and so forth. Let s = σ1 . . . σn ∈

P (L(S/G)) be an observed string. Then the execution of s induces a well-defined

sequence

y0
S(ε)−−→ z0

σ1−→ y1
S(σ1)−−−→ . . .

σn−→ yn
S(σ1...σn)−−−−−→ zn

We denote by ISYS (s) and ISZS (s), the last Y -state and Z-state in y0z0y1z2 . . . zn−1ynzn,

respectively, i.e., ISYS (s) = yn and ISZS (s) = zn. That is, ISYS (s) and ISZS (s) are the

Y -state and the Z-state that result from the occurrence of string s under supervisor

S, respectively.

The next result states that given a supervisor S and a string s ∈ L(S/G), the

Z-state defined above is, in fact, equivalent to the set of all possible states the system

can be in after observing P (s).

Lemma 2.4.1. Given a system G and a supervisor S, for any string s ∈ L(S/G),

we have

I(ISZS (P (s))) = RG(s,L(S/G)). (2.10)

Proof. We prove by induction on the length of P (s). For any string s, let |P (s)| = n.

Let sk denote the string that consists of the first k events in P (s) for k = 0, . . . , n and

ek denote the (k+1)th event in P (s) for k = 0, . . . , n−1, so that s0 = ε, s1 = e0, etc. . .

Define y0 as usual. For k = 0, . . . , n, let zk = hY Z(yk, S(sk)), and for k = 0, . . . , n−1,

define yk+1 = hZY (zk, ek). By definition, we know that

RG(s,L(S/G)) = {v ∈ X : ∃s′ ∈ L(S/G) s.t. P (s)=P (s′) ∧ v=δ(x0, s
′)} (2.11)

Therefore, the inductive hypothesis is that:

I(zk) = {v ∈ X : ∃s′k ∈ L(S/G) s.t. P (s′k)=sk ∧ v=δ(x0, s
′
k)} (2.12)

24

Induction Basis: s0 = ε

I(z0) = URS(ε)(y0) = {v ∈ X : ∃t ∈ (S(ε) ∩ Σuo)
∗ s.t. v=δ(x0, t)}

= {v ∈ X : ∃t ∈ L(S/G) s.t. P (t) = ε ∧ v = δ(x0, t)}

Induction Step: Assume that the induction hypothesis is true at k. Then

yk+1 = hZY (zk, ek)

= {v ∈ X : ∃u ∈ I(zk) s.t. v = δ(u, ek)}

= {v ∈ X : ∃s′k ∈ L(S/G) s.t.P (s′k) = sk ∧ v = δ(x0, s
′
kek)} (2.13)

and

I(zk+1) = URS(skek)(yk+1)

= {v ∈ X : ∃u ∈ yk+1,∃t ∈ (S(skek) ∩ Σuo)
∗ s.t. v = δ(u, t)}

= {v ∈ X : ∃s′k+1 ∈ L(S/G) s.t. P (s′k+1) = skek ∧ v = δ(x0, s
′
k+1)}

This completes the proof.

By the above Lemma and the definition of L(S/G), we can also express ISYS (s)

and the information state component of ISZS (s) as follows

ISYS (s) = {x ∈ X : ∃t ∈ (Σ∗Σo ∪ {ε}) ∩ L(S/G) s.t. P (t) = s ∧ δ(x0, t) = x}

I(ISZS (s)) = {x ∈ X : ∃t ∈ L(S/G) s.t. P (t) = s ∧ δ(x0, t) = x}

With the above notions, we can “decode” supervisors from a BTS as explained in

the following definition.

25

Definition 2.4.2. A supervisor S is said to be included in a complete BTS T if

(∀s ∈ P (L(S/G)))[S(s) ∈ CT (ISYS (s))]. (2.14)

We denote by S(T) the set of all supervisors included in T .

Example 2.4.2. The BTS shown in Figure 2.2(b) is a complete BTS. By picking

control decision {b, o1, o2} (shown as {b} in the figure) at the initial Y -state {0},

no future observable behavior can occur, since the only enabled and feasible event e

forms an unobservable self-loop at state 1. This leads to a BTS-included supervisor

S defined by S(ε) = {b, o1, o2}.

If a BTS T is deterministic, then the supervisor included in T is unique, since

the control decision at each Y -state is unique. In this case, we denote by ST the

unique supervisor included in T , i.e., S(T) = {ST}. Essentially, T is a realization

of supervisor ST . However, not all supervisors can be realized by a BTS, since a

supervisor may make different control decisions at different visits to the same Y -

state. We say that a supervisor S is information-state-based (IS-based) if

∀s, t ∈ P (L(S/G)) : ISYS (s) = ISYS (t)⇒ S(s) = S(t).

Then, a supervisor can be realized by a BTS iff it is IS-based.

2.5 A Uniform Approach for Enforcing Properties

In this section, we define the All Enforcement Structure, a specific type of BTS

that embeds all supervisors that enforce a given IS-based property in its transition

structure. We then discuss its properties and its construction.

26

2.5.1 All Enforcement Structure for a Given Property

In Lemma 2.4.1, we have shown that given a supervisor S, for any string s ∈

P (L(G)), the Z-state ISZS (s) reached is the set of all possible states the system could

be in after s. As a consequence, if we construct a BTS that is “as large as possible”

and in which all reachable Z-states satisfy the IS-based property, then the resulting

structure should contain all valid property-enforcing supervisors. This leads to the

definition of the All Enforcement Structure for a given property.

Definition 2.5.1. (All Enforcement Structure). Given a system G and an IS-based

property ϕ : I → {0, 1} w.r.t. G, the All Enforcement Structure (AES) for property

ϕ, denoted by

AESϕ(G) = (QAES
Y , QAES

Z , hAESY Z , hAESZY ,Σ,Γ, y0), (2.15)

is defined as the largest complete BTS w.r.t. G such that ∀z ∈ QAES
Z : ϕ(I(z)) = 1.

By “largest” subsystem, we mean that for any T satisfying the above conditions, we

have that T v AESϕ(G).

Note that if T1 and T2 are two complete BTSs in which all Z-states satisfy ϕ, then

it is easy to see that the union of them is still a BTS in which all Z-states satisfy ϕ.

Therefore, the notion of “largest BTS” in the definition is well defined. This will also

be seen when we present the algorithm for the construction of the AES later.

Example 2.5.1. We return to system G in Figure 2.1(a) with the IS-based property

in Equation (2.6). The BTS shown in Figure 2.2(b) is, in fact, its AES. For example,

at initial Y -state {0}, we cannot make control decision {a, b, c}, which would lead us

to Z-state ({0, 1, 2, 3, 4}, {a, b, c}). This is because upon the occurrence of event o2,

Y -state {5} would be reached, from which no matter what control decision we take,

the secret will be revealed. We will discuss later that how to construct the AES.

Remark 2.5.1. In Figure 2.2(a), we can also take control decision {a} at the initial

Y -state y0 = {0}. However, this control decision is equivalent to decision {}, since

27

{2}

{𝑏}

{𝑐}

{𝑏, 𝑐}

{𝑎, 𝑏, 𝑐}

{𝑎, 𝑐}

{}
0 , {}

{0,1}, {𝑏} {0,1,3}, {𝑏, 𝑐}

{0,3}, {𝑐}

{0,1,2,3,4}, {𝑎, 𝑏, 𝑐}

{0,3,4}, {𝑎, 𝑐}

{5,6} {5,6}, {} {0,1,2}, {𝑎, 𝑏}

{2,5,6}

{5} 𝑜1

𝑜1

𝑜2

{0}

{5}, {}

{2}, {}

{2,5,6}, {}

𝑜1
𝑜1

{}

{𝑎, 𝑏}

{}

{}

{}

𝑜2

𝑜1
𝑜2

𝑜2
𝑜1

𝑜1

{𝑏}

{𝑎, 𝑐}

{0,1}, {𝑏}

{0,3,4}, {𝑎, 𝑐} {5,6} {5,6}, {}

{0}

𝑜1

𝑜1

{}

(a) The resulting structure after procedure DoDSF

{2}

{𝑏}

{𝑐}

{𝑏, 𝑐}

{𝑎, 𝑏, 𝑐}

{𝑎, 𝑐}

{}
0 , {}

{0,1}, {𝑏} {0,1,3}, {𝑏, 𝑐}

{0,3}, {𝑐}

{0,1,2,3,4}, {𝑎, 𝑏, 𝑐}

{0,3,4}, {𝑎, 𝑐}

{5,6} {5,6}, {} {0,1,2}, {𝑎, 𝑏}

{2,5,6}

{5} 𝑜1

𝑜1

𝑜2

{0}

{5}, {}

{2}, {}

{2,5,6}, {}

𝑜1
𝑜1

{}

{𝑎, 𝑏}

{}

{}

{}

𝑜2

𝑜1
𝑜2

𝑜2
𝑜1

𝑜1

{𝑏} {𝑎, 𝑐}
{0,1}, {𝑏} {0,3,4}, {𝑎, 𝑐} {5,6} {5,6}, {} {0}

𝑜1 𝑜1

{}

(b) The constructed AES

Figure 2.2:
Example of the construction of the AES. In the diagrams, rectangular
(blue) states correspond to Y -states and oval (yellow) states correspond
to Z-states. For simplicity, in the diagrams, we omit all uncontrollable
events in the control decisions, e.g., decision {} represents {o1, o2}, and
so forth.

event a will never be executed within the unobservable reach. Formally, we say that

a control decision γ ∈ Γ is irredundant at information state i ∈ I if, for any σ ∈ γ,

there exists x ∈ URγ(i) such that δ(x, σ) is defined. From now on, we only consider

irredundant control decisions in the AES, which will clearly not affect its properties.

Similarly, we say that a supervisor S is irredundant if for any s ∈ P (L(S/G)), control

decision S(s) is irredundant at information state ISYS (s). Hereafter, we also assume

without loss of generality that any S is irredundant.

The following theorem shows that the AES (only) contains valid solutions to the

property enforcement problem.

Theorem II.1. Suppose that ϕ is an IS-based property w.r.t. G. A supervisor en-

forces property ϕ if and only if it is an AES-included supervisor. Mathematically,

L(S/G) |=G ϕ⇔ S ∈ S(AESϕ(G)) (2.16)

28

Proof. By Lemmas 2.4.1, we know that the LHS of Equation (2.16) holds if and only

if ∀s ∈ P (L(S/G)) : ϕ(I(ISZS (s))) = 1, Therefore, the “if” part follows immediately

from Definitions 2.4.2 and 2.5.1.

Next, we prove the “only if” part by contradiction. Suppose that L(S/G) |=G ϕ,

i.e., ∀s ∈ P (L(S/G)) : ϕ(I(ISZS (s))) = 1. We assume that S 6∈ S(AESϕ(G)).

First, we know that there exists a complete BTS T such that S ∈ S(T). Specif-

ically, the complete BTS T can be constructed as follows: QT
Y := {y ∈ I : ∃t ∈

P (L(S/G)) s.t. y = ISYS (t)}, QT
Z := {z ∈ I × Γ : ∃t ∈ P (L(S/G)) s.t. z = ISZS (t)}

and for any y ∈ QT
Y , CT (y) := {γ ∈ Γ : ∃t ∈ P (L(S/G)) s.t. y = ISYS (t)∧ γ = S(t)}.

In other words, any Y or Z-state in T are a Y or Z-state reached by supervisor S under

some string t ∈ P (L(S/G)), respectively. Clearly, we know that ∀z ∈ QT
Z : ϕ(I(z)) =

1. Since S /∈ S(AESϕ(G)), we know that there exists a string s ∈ P (L(S/G)), such

that S(s) /∈ CAESϕ(G)(IS
Y
S (s)). In this case, the union of T and AESϕ(G) is strict-

ly larger than AESϕ(G), since control decision S(s) is defined at Y -state ISYS (s)

in T ∪ AESϕ(G) but not in AESϕ(G). This is a contradiction since by definition,

AESϕ(G) is the largest BTS satisfying the condition in Definition 2.5.1.

2.5.2 Construction of the AES

The construction algorithm for the AES follows directly from its definition and

proceeds in two steps. First, we construct the BTS that enumerates all possible

behaviors for each state by a depth-first search and remove all Z-states that violate

the IS-based property. Second, we prune states that violate the completeness from

the remaining part of the BTS, until convergence is achieved. In practice, in the

depth-first search part, we do not need to search the whole state space and we can

stop the search of a branch once a Z-state that violates the IS-based property is

encountered.

The above procedure is formally described in Algorithm FIND-AES whose pa-

29

Algorithm 1: FIND-AES

input : G and ϕ
output: AES

1 AES.Y ← {y0}, AES.Z ← ∅ and AES.h← ∅;
2 DoDFS(G, y0, AES);
3 Prune(AES);
4 AES ← Accessible(AES);

procedure DoDFS(G, y, AES, ϕ);
5 for γ ∈ Γ do
6 z ← hY Z(y, γ);
7 if ϕ(I(z)) = 1 then
8 AES.h← AES.h ∪ {(y, γ, z)};
9 if z 6∈ AES.Z then

10 AES.Z ← AES.Z ∪ {z};
11 for σ ∈ γ ∩ Σo do
12 y′ ← hZY (z, σ);
13 AES.h← AES.h ∪ {(z, σ, y′)};
14 if y′ 6∈ AES.Y then
15 AES.Y ← AES.Y ∪ {y′};
16 DoDFS(G, y′, AES, ϕ);

procedure Prune(AES);
17 while exists Y -state in AES that has no successor do
18 Delete all such Y -states in AES and delete all their predecessor Z-states;

30

rameters are as follows: (i) AES represents the AES that we want to construct; (ii)

AES.Y and AES.Z are its sets of Y - and Z-states, respectively; and (iii) AES.h is its

transition function. Initially, AES.Y is set to be y0 = {x0}. The depth-first search is

then started; it is implemented by the procedure DoDFS. Line 7 is used to determine

whether the Z-state encountered satisfies property ϕ. If not, we terminate the search

of this branch. Otherwise, we compute all possible Y -state successors and make a

recursive call. This recursive procedure allows us to traverse the whole reachable

space of Y - and Z-states. The above procedure may result in Y -states that have

no successors. Therefore, we need to iteratively prune: (i) all Y -states that have

no successor states; and (ii) all Z-states for which at least one observation is not

defined. This step is captured by procedure Prune. Finally, states that are no longer

accessible from the initial state of the AES need to be removed before the algorithm

returns. Algorithm FIND-AES will terminate in finite steps, since the number of Y -

and Z-states is finite.

Example 2.5.2. Consider our running example. We apply Algorithm FIND-AES

to construct the corresponding AES. The resulting BTS after running the procedure

DoDSF is shown in Figure 2.2(a). At the initial Y -state, we cannot take control de-

cision {} since this will lead to a deadlock Z-state ({0}, {}). The depth-first search

DoDSF terminates at Y -state {5}, since no matter what control decision we take

from {5}, a Z-state (marked in red in Figure 2.2(a)) that violates the IS-based prop-

erty (i.e., that reveals the secret) will be encountered. After procedure DoDSF is done,

we need to run procedure Prune. This starts by removing Y -state {5}, since no suc-

cessor state is defined from it. Since Y -state {5} has been removed, all its predecessor

Z-states, i.e., ({0, 3}, {c}), ({0, 1, 2}, {a, b}) and so forth, must also be removed. Fi-

nally, we remove inaccessible states {2, 5, 6} and {2} and obtain the AES shown in

Figure 2.2(b).

Theorem II.2. Algorithm FIND-AES correctly constructs the AES.

31

Proof. Let T be the BTS returned by Algorithm FIND-AES. T is a complete BTS

by procedure Prune. Since procedure DoDSF only traverses the state space where

all Z-states satisfy ϕ, we know that ∀z ∈ QT
Z : ϕ(I(z)) = 1. Therefore, it remains to

show that T is the largest BTS with the desired properties; for that proof, we proceed

by contradiction.

Assume that T ′ is another complete BTS such that ∀z ∈ QT ′
Z : ϕ(I(z)) = 1 and

it is strictly larger than T , i.e., T v T ′ and QT
Y ∪ QT

Z ⊂ QT ′
Y ∪ QT ′

Z . Therefore, in

Algorithm FIND-AES, T is obtained by pruning states from some BTS T ′′ (which

may not satisfy the desired properties) such that T ′ v T ′′; e.g., T ′′ can be the resulting

BTS after procedure DoDFS. Then, any Y - or Z-states in T ′ will not be removed in

T ′′ by procedure Prune. Therefore, Algorithm FIND-AES will converge to a BTS

that is strictly lager than T (at least as large as T ′). This contradicts the fact that

Algorithm FIND-AES converges to T .

2.6 Synthesis of Maximally Permissive Supervisors

In this section, we present a synthesis algorithm that returns a solution to MPIEP.

We first discuss the general case, where Σc and Σo need not be comparable. Then we

show that, under the assumption that Σc ⊆ Σo, there always exists a unique supremal

solution to MPIEP.

2.6.1 General Case

Given an IS-based property, Theorem II.1 provides us with a straightforward

procedure for synthesizing a property-enforcing supervisor. We can simply start from

the initial Y -state and pick one control decision defined in the AES; then we pick

all possible observations for the successor Z-state, and so forth, until reaching a Z-

state that has no successor state. However, this procedure may result in a solution

with infinite domain, since we may select different control decisions upon different

32

visits to the same information state. Therefore, we will restrict our attention to an

information-state-based (IS-based) solution. We will show later that, in fact, such a

restriction is without loss of generality.

We present a synthesis algorithm, called Algorithm MAX-SYNT, for constructing

an IS-based supervisor S∗ that solves MPIEP. This algorithm starts from y0. For

each reachable Y -state y, it picks one control that is locally maximal and for each

reachable Z-state, it picks all possible observations, until: (i) a terminal Z-state is

reached; or (ii) a Y -state that has already been visited is reached. This is implemented

by procedure Expand in Algorithm MAX-SYNT, which is simply a depth-first search.

In other words, we pick a locally maximal control decision and fix it for each Y -state.

This will result in a BTS T that includes a unique supervisor ST , which is our solution.

The follow theorem establishes the correctness of Algorithm MAX-SYNT.

Algorithm 2: MAX-SYNT

input : AESϕ(G)
output: S∗

1 T.Y ← {y0}, T.Z ← ∅ and T.h← ∅;
2 Expand(T,AESϕ(G), y0);
3 S∗ ← ST ;

procedure Expand(T,AESϕ(G), y);
4 Find a locally maximal control decision

γ ∈ CAESϕ(G)(y) s.t. ∀γ′ ∈ CAESϕ(G)(y) : γ 6⊂ γ′;
5 z ← hY Z(y, γ);
6 T.h← T.h ∪ {(y, γ, z)};
7 if z 6∈ T.Z then
8 T.Z ← T.Z ∪ {z};
9 for σ ∈ γ ∩ Σo do

10 y′ ← hZY (z, σ);
11 T.h← T.h ∪ {(z, σ, y′)};
12 if y′ 6∈ T.Y then
13 T.Y ← T.Y ∪ {y′};
14 Expand(T,AESϕ(G), y′);

Theorem II.1. Let S∗ be a solution returned by Algorithm MAX-SYNT. Then S∗

33

solves MPIEP.

Proof. First, we note that L(S/G)]satisfies ϕ; this follows from Theorem II.1 and the

fact that, by construction, S∗ is an AES-included supervisor. Therefore, it remains

to show that S∗ is maximal; for that proof, we proceed by contradiction.

Assume that S∗ is not maximal, which means that there exists another AES-

included supervisor S ′ ∈ S(AESϕ(G)) such that L(S∗/G) ⊂ L(S ′/G). Therefore,

there exists a string w ∈ P (L(S∗/G)) ⊆ P (L(S ′/G)) such that S∗(w) ⊂ S ′(w)

and S∗(w′) = S ′(w′),∀w′ ∈ {w} \ {w}. We know that ISYS∗(w) = ISYS′(w); let us

call this Y -state y. But this means that the control decision S∗(w) at y violates

the locally maximal construction rule, i.e., there should not exist a control decision

γ ∈ CAESϕ(G)(y) : S∗(w) ⊂ γ. This is a contradiction. Hence no such S ′ exists.

By Theorem II.1, we know that the AES is non-empty if MPIEP has a solution.

Moreover, when the AES is non-empty, Algorithm MAX-SYNT always returns a

solution to MPIEP. Therefore, we have the following result.

Corollary 2.6.1. MPIEP is solvable if and only if the AES is non-empty.

Since supervisor S∗ is IS-based by construction, we also have the following result.

Corollary 2.6.2. For any IS-based property ϕ, there exists an IS-based supervisor

that solves MPIEP iff AESϕ(G) is non-empty.

Example 2.6.1. We return to our running example. If we pick locally maximal

control decision {a, c} at the initial Y -state {y0} and pick the unique control decision

∅ at the reachable Y -state, which means that all controllable events are disabled, then

we will obtain the maximal solution that was shown earlier in Figure 2.1(b). On the

other hand, if we pick control decision {b} at {0}, which is also locally maximal, then

no observable behavior can occur thereafter; this corresponds to the maximal solution

shown in Figure 2.1(c).

34

Remark 2.6.1. The running time of the entire synthesis procedure is O(22|X|+2|Σc|).

First, we need to construct the AES by Algorithm FIND-AES, which consists of two

procedures, DoDSF and Prune. The procedure DoDSF may result in a BTS that,

in the worst case, has 2|X|+|Σc| + 2|X| states. The complexity of procedure Prune is

quadratic in the size of the above BTS. The complexity of Algorithm MAX-SYTN is

linear in the size of the AES that, in the worst case, also has 2|X|+|Σc| + 2|X| states.

Therefore, our synthesis procedure is exponential in the size of G. However, it was

shown in [99] that synthesizing a partial observation safe supervisor, which is a special

case of our problem, is NP-hard. Therefore, this exponential complexity seems to be

unavoidable and it is due to the partial observation feature of our problem.

2.6.2 Case of Σc ⊆ Σo

It was shown in [54] that, under the assumption that Σc ⊆ Σo, observability and

controllability together imply normality. Therefore, there exists a supremal control-

lable and observable sublanguage when Σc ⊆ Σo. It was also reported in [76] (respec-

tively, [26] and [78]) that, under the assumption that Σc ⊆ Σo, there exists a supremal

controlable, observable and diagnosable (respectively, opaque and attractable) sub-

language. In fact, we can prove the corresponding general result for any IS-based

property in our framework.

The following lemma reveals that, under the assumption that Σc ⊆ Σo, the infor-

mation state encountered does not depend on the control policy we take.

Lemma 2.6.1. Let S1 and S2 be two supervisors. Under the assumption that Σc ⊆

Σo, we have that

(∀s ∈ L(S1/G) ∩ L(S2/G))[I(ISZS1(P (s))) = I(ISZS2(P (s)))] (2.17)

Proof. We prove this lemma by induction on the length of P (s). For any string s, let

35

|P (s)| = n. Let sk and ek be the same notations defined in the proof of Lemma 2.4.1.

For any i = 1, 2, define yi0 as usual and for k = 0, . . . , n, let zik = hY Z(yik, S
i(sk)), and

for k = 0, . . . , n− 1, define yik+1 = hZY (zik, ek). Therefore, the inductive hypothesis is

that:

I(z1
k) = I(z2

k) (2.18)

Induction Basis (s0 = ε):

I(z2
0) = URS2(ε)(y0) = {v ∈ X : ∃t ∈ (S2(ε) ∩ Σuo)

∗ s.t. v=δ(x0, t)}

= {v ∈ X : ∃t ∈ (S1(ε) ∩ Σuo)
∗ s.t. v=δ(x0, t)}

= URS1(ε)(y0) = I(z1
0)

where S2(ε) ∩ Σuo = S1(ε) ∩ Σuo holds because Σc ∩ Σuo=∅.

Induction Step:

Assume that the induction hypothesis is true at k. Then

y2
k+1 = hZY (z2

k, ek) = {v ∈ X : ∃u ∈ I(z2
k) s.t. v = δ(u, ek)}

= {v ∈ X : ∃u ∈ I(z1
k) s.t. v = δ(u, ek)}

= y1
k+1

I(z2
k+1) = URS2(skek)(y

2
k+1) = URS2(skek)(y

1
k+1) = URS1(skek)(y

1
k+1) = I(z1

k+1)

where URS2(s′kek)(y
1
k+1) = URS1(s′kek)(y

1
k+1) follows from the same argument as in the

induction basis. This completes the proof by induction.

Consider two different supervisors; under the assumption that Σc ⊆ Σo, the in-

formation state components of the Z-states encountered upon the occurrence of the

same string are identical. Therefore, in this scenario, state estimation (from observed

events) does not depend on the control policy we take. In [3], the authors show that

36

for centralized partial observation control problems, a given Z-state (termed as max-

imal information set in [3]) is independent from the control policy the supervisor will

take in the future. (This is not true in general in decentralized control; see again [3].)

In essence, Lemma 2.6.1 extends this result and says that, under the assumption that

Σc ⊆ Σo, control and state estimation are one-way “fully separated”, i.e., in addition

to the non-dependency of state estimation on the future control actions, the Z-state

even does not depend on the past control actions. This separability also leads to the

follows theorem, which says that for any IS-based property, under the assumption

that Σc ⊆ Σo, there exists a unique maximal permissive supervisor that enforces the

property.

Theorem II.2. Assume that Σc ⊆ Σo. Then there exists a unique (supremal) solution

to MPISEP.

Proof. By contradiction. Suppose that ϕ : I → {0, 1} is the IS-based property that we

want to enforce. We assume that S1 and S2 are two different solutions to MPISEP, i.e.,

L(S1/G) and L(S2/G) are two incomparable maximal controllable and observable

sublanguages satisfying ϕ. Under the assumption that Σc ⊆ Σo and that the two

given languages are controllable and observable, we know that their union will also

be controllable and observable. Hence, there exists a partial observation supervisor

S∗ such that L(S∗/G) = L(S1/G) ∪L(S2/G). Specifically, for any s ∈ P (L(S∗/G))

we have S∗(s) = S1(s) ∪ S2(s).

Next, we show that S∗ also enforces ϕ. Let us assume that S∗ does not enforce

property ϕ, i.e., ∃s ∈ L(S∗/G) s.t. ϕ(RG(s,L(S∗/G))) = 0. Since L(S∗/G) =

L(S1/G) ∪ L(S2/G), we know that ∃i ∈ {1, 2} s.t. s ∈ L(Si/G). By Lemma 2.6.1,

we know that I(ISZS∗(P (s))) = I(ISZSi(P (s))). Moreover, by Lemma 2.4.1, we know

that RG(s,L(S∗/G)) = RG(s,L(Si/G)). However, ϕ(RG(s,L(Si/G))) = 1, since Si

enforces property ϕ. This implies that ϕ(RG(s,L(S∗/G))) = 1, which is a contradic-

tion. Therefore, S∗ also enforces property ϕ.

37

The above result contradicts the fact that L(S1/G) and L(S2/G) are maximal.

Therefore, there only exists a unique solution to MPISEP.

We have shown that Algorithm MAX-SYNT always returns a maximal solution;

moreover, under the assumption that Σc ⊆ Σo, this maximal solution is unique.

Therefore, in this scenario, Algorithm MAX-SYNT returns the unique supremal so-

lution.

Corollary 2.6.3. Let S∗ be the solution returned by Algorithm MAX-SYNT. When

Σc ⊆ Σo, S
∗ is the unique supremal solution to MPIEP.

Remark 2.6.2. In the standard supervisory control problem, the supremal controllable

and observable sublanguage can be obtained under the assumption that Σc ⊆ Σo by

computing the supremal controllable and normal sublanguage [18]. Since both the

supremal normal approach and Algorithm MAX-SYNT take exponential complexity

in the size of the system, our approach does not improve upon the complexity of the

previous result under this restrictive assumption. Instead, Algorithm MAX-SYNT

provides an alternative approach for the computation of supermal controllable and

normal sublanguage for this special case.

2.6.3 The Issue of Liveness

In additional to IS-based property, in many applications, we also need to consider

the (weaker) liveness property. Liveness is an important property in many cyber

and cyber-physical systems, e.g., software systems [50] and flexible manufacturing

systems [49]. Formally, we say that a language L is live if for any s ∈ L, we have

∆L(s) 6= ∅. We say that system G is live if its generated language L(G) is live.

In fact, the definitions of many properties, e.g., diagnosability and detectability, are

based on the assumption that the system under consideration is live. Therefore, we

need to assume that G is live and we must ensure that the controlled system is also

38

live. The liveness assumption on G is without essential loss of generality, since it

can be relaxed by adding observable self-loops at terminal states, as is done in [77].

(Essentially, this means that system deadlock is observable.) In order to enforce

liveness, we can added the following requirement to Definition 2.5.1: for any Z-state

z ∈ QAES
Z , we have

∀x ∈ I(z), ∃σ ∈ Γ(z) : δ(x, σ)! (2.19)

It is straightforward to show that in the resulting modified AES, instead of the result

in Theorem II.1, we have instead that

[S/G is live] ∧ [L(S/G) |=G ϕ]⇔ S ∈ S(AESϕ(G)) (2.20)

In other words, the modified AES will contain all property-enforcing supervisors,

resulting in live behavior. The modified AES can be constructed in the same manner

as the construction the AES. Specifically, in line 7 of FIND-AES, in addition to check

if ϕ(I(z)) = 1, we also need to check if Equation (2.19) holds. Then we can apply

Algorithm MAX-SYNT based the modified AES, which will return a live property-

enforcing supervisor; the correctness of this approach is proved in [121].

2.7 Applications of the Uniform Approach

In this section, we show that how to apply the uniform approach described in this

chapter to the enforcement of several specific properties commonly encountered in

the study of DES. Our uniform approach comprises three steps:

1. Formulate the property to be enforced as an IS-based property;

2. Construct the AES using Algorithm FIND-AES;

3. Find a maximal solution based on the AES using Algorithm MAX-SYNT.

39

In Sections 2.5 and 2.6, we have discussed Steps 2 and 3, respectively; it remains to

discuss how to formulate a given property as an IS-based property, whenever feasible.

As was mentioned earlier, there are properties that cannot be formulated as IS-based

properties; one such example is non-blockingness [120]. However, as we will see in this

section, many important properties in the DES literature, including but not restricted

to safety, opacity, diagnosability, detectbility, anonymity and attractability, can be

formulated as IS-based properties. Therefore, all of them can be enforced by using

the above three-step methodology.

2.7.1 Enforcement of Safety

Given a prefix-closed specification language K, we say that language L ⊆ L(G)

is safe if L ⊆ K. When the uncontrolled system is not safe, the standard supervisory

control and observation problem [20,52] asks to synthesize a least restrictive supervisor

such that the controlled system is safe. We show that this can be solved by our uniform

approach.

Let K = L(K), for some automaton K. In [18], the authors provide an algorithm

to construct refined automata KS = (XKS
,Σ, δKS

, x0,KS
) and GS = (XGS

,Σ, δGS
, x0,GS

)

such that the following holds: 1) L(GS) = L(G) and L(KS) = L(K); 2) KS is a

sub-automaton of GS; 3) KS @ GS. For the construction of GS and KS, the reader

is referred to [18]. The above conditions imply that XKS
captures the legal behaviors,

i.e., any string in L(GS) that leads to a state in XKS
is safe and any string in L(GS)

that leads to a state in XGS
\XKS

is unsafe.

For the refined system model GS, we define the IS-based property ϕsafe : 2XGS →

{0, 1} w.r.t. GS as follows. For any information state i ∈ 2XGS , ϕsafe(i) = 1 ⇔ i ⊆

XKS
. Then we have the following result.

Proposition 2.7.1. Let K be the specification automaton and GS be the refined

system automaton defined above, then language L ⊆ L(G) is safe if and only if

40

L |=GS
ϕsafe.

Proof. The proof follows directly from Definition 2.3.1 and Lemma 2.4.1, since L 6|=Gs

ϕsafe if and only if ∃s ∈ L : δGS
(x0,GS

, s) /∈ XKS
, which is equivalent to L 6⊆ L(KS) =

L(K).

Hence, to solve the safety control problem, it suffices to synthesize a supervisor

that enforces the IS-based property ϕsafe w.r.t. the refined state space of GS. There-

fore, the maximally permissive safety control problem can be solved by our uniform

approach.

2.7.2 Enforcement of Current-State Opacity

Opacity is a confidentiality property for partially-observed systems. It captures

the plausible deniability of the system’s “secret” in the presence of an outside observer

that is potentially malicious. First, we recall the definition of current-state opacity,

as it is presented in [51,107].

Definition 2.7.1. Let G = (X,Σ, δ, x0) be the system automaton. Language L ⊆

L(G) is said to be current-state opaque w.r.t. XS ⊆ X,G and P if

(∀s∈L : δ(x0, s)∈XS)(∃t∈L) [P (s)=P (t) ∧ δ(x0, t) 6∈XS] (2.21)

Note that we assume in this section that the external observer and the supervisor

have the same observation set, Σo.

To formulate the current-state opacity enforcement problem in our framework, we

define the IS-based current-state opacity property ϕopa : 2X → {0, 1} as follows. For

any information state i ∈ 2X , we have

ϕopa(i) = 0⇔ i ⊆ XS (2.22)

41

The following result says that the IS-based property ϕopa correctly captures the opac-

ity property.

Proposition 2.7.2. Let G be the system automaton, XS ⊆ X be the subset of secret

states, and ϕopa be the IS-based property defined above. Language L ⊆ L(G) is

current-state opaque if and only if L |=G ϕopa.

Proof. We proceed by contrapositive. By definition, G is not current-state opaque

if and only if (∃s ∈ L)(∀t ∈ L)[P (s) = P (t) ⇒ δ(x0, t) ∈XS], which is equivalent to

(∃s∈L)(∀x ∈ RG(s, L))[x ∈ XS]. This is equivalent to ∃s ∈ L : ϕopa(RG(s, L)) = 0,

i.e., L 6|=G ϕopa.

Consequently, the opacity enforcement problem can be solved by using ϕopa in

our uniform approach. Our running example has already shown how to synthesize a

maximally permissive supervisor enforcing opacity.

Remark 2.7.1. It was shown in [107] that several other notions of opacity, e.g.,

language-based opacity, initial-state opacity, and initial-and-final-state opacity, can be

transformed to current-state opacity in polynomial time. Therefore, the enforcement

of these notions of opacity can be done by first transforming them to current-state

opacity and then enforcing current-state opacity as discussed above.

2.7.3 Enforcement of K-Diagnosability

In fault diagnosis problems, ed ∈ Σuo is a fault event whose occurrences must

be diagnosed by the diagnoser within a finite number of steps. Suppose L is the

language to be diagnosed. We define Ψ(ed, L) = {sed ∈ L : s ∈ Σ∗} to be the set of

strings that end with the fault event. We say that a language is K-diagnosable if this

diagnosis delay is uniformly bounded by a given number K. The formal definition of

K-diagnosability is recalled from [16,22,77].

42

1

𝑓

3

5

𝑎

𝑐

2

𝑎

0

4

𝑜

𝑒

𝑎, 𝑏

𝑑
𝑜

𝑓

𝑎

𝑐

𝑎

𝑜

𝑒

𝑎, 𝑏

𝑑

𝑜

0,-1

2,-1

4,-1

1,0

3,1

5,2

𝑜
3,2 𝑜

1

𝑓

3

5

𝑎

𝑐

2

𝑎

0

4

𝑜

𝑒

𝑎

𝑑
𝑜

1

𝑓

3

5

𝑎

𝑐

2

𝑎

0

4

𝑒

𝑎, 𝑏

𝑑

5,-1

𝑒
(a) G

1

𝑓

3

5

𝑎

𝑐

2

𝑎

0

4

𝑜

𝑒

𝑎, 𝑏

𝑑
𝑜

𝑓

𝑎

𝑐

𝑎

𝑜

𝑒

𝑎, 𝑏

𝑑

𝑜

0,-1

2,-1

4,-1

1,0

3,1

5,2

𝑜
3,2 𝑜

1

𝑓

3

5

𝑎

𝑐

2

𝑎

0

4

𝑜

𝑒

𝑎

𝑑
𝑜

1

𝑓

3

5

𝑎

𝑐

2

𝑎

0

4

𝑒

𝑎, 𝑏

𝑑

5,-1

𝑒
(b) GD

1

𝑓

3

5

𝑎

𝑐

2

𝑎

0

4

𝑜

𝑒

𝑎, 𝑏

𝑑
𝑜

𝑓

𝑎

𝑐

𝑎

𝑜

𝑒

𝑎, 𝑏

𝑑

𝑜

0,-1

2,-1

4,-1

1,0

3,1

5,2

𝑜
3,2 𝑜 5,-1

𝑒

𝑓

𝑎

𝑐

𝑎

𝑏

𝑑

0

2’

4’

1

3

𝑎

𝑑

𝑜

2

4

5

𝑒

𝑎

(c) L(S∗/G)

{ } {𝑏} 𝑎
0−1, 10, 2−1 , {𝑏}

31, 2−1 , {𝑜} 31, 2−1 , { }

0−1, 10 , { } {0−1}
𝑎

31, 2−1, 4−1 , { }

{ }

𝑑

𝑎
{ } {𝑜}

𝑜 𝑐

4−1 , {𝑜} 4−1 , { }

{31, 2−1, 4−1} {31, 2−1}

F

{4−1} 𝑎

{32} {52} {5−1}
𝑑 𝑑

{ }

𝑐
𝑎

{ } {𝑜} 𝑜

{𝑜}, { }

𝑐

{ }
5−1 , { }

(d) AESϕdiag
(GD)

Figure 2.3:
For G: Σc = {b, o},Σo = {a, c, d, o}, and f is the fault event. For the sake
of brevity, in the diagram of the AES, we write state (x, n) in the form
of xn and all uncontrollable events in the control decisions are omitted.
We also represent all Z-states z such that ∀xn ∈ I(z) : n ≥ 0 as a single
state F , since we can diagnose the failure unambiguously at such states.

43

Definition 2.7.2. (K-Diagnosability). A live language L is said to be K-diagnosable

w.r.t. P and ed ∈ Σuo if

(∀s ∈ Ψ(ed, L))(∀t ∈ L/s)[|t| ≥ K ⇒ (∀w ∈ P−1(P (st) ∩ L) : ed ∈ w)] (2.23)

To formulate K-diagnosability as an IS-based property, we need to refine the state

space of the original system G, which is similar to the refinement procedure in [22].

Given G = (X,Σ, δ, x0) and non-negative integer K, we define the new automaton

GD = (XD,Σ, δD, xD,0), where

• XD ⊆ X × {−1, 0, 1, . . . , K} is the set of states;

• Σ is the set of events (same as defined in G);

• δD : XD × Σ → XD is the partial transition function that is built from δ in G

as follows: for any u = (x, n) ∈ XD, σ ∈ Σ,

δD(u, σ) =


(δ(x, σ),−1), if n = −1 and σ ∈ Σ \ {ed}

(δ(x, σ), n+ 1), if 0 ≤ n < K or n = −1 ∧ σ = ed

(δ(x, σ), K), if n = K

(2.24)

• xD,0 = (x0,−1) ∈ XD is the initial state.

By construction, we have that L(G) = L(GD), i.e., GD is language-equivalent to G

but refines its state space. Therefore, we can analyze the (language-based) property

of diagnosability based on the refined system GD. To this end, we define the IS-based

property termed K-diagnosability.

Definition 2.7.3. The property of IS-based K-diagnosability ϕdiag : 2XD → {0, 1}

w.r.t. GD is defined by: for any i ∈ 2XD ,

ϕdiag(i) = 0⇔ (∃u, v ∈ i)[[u]n = −1 ∧ [v]n = K] (2.25)

44

where [u]n denotes the integer component of state u.

The following result establishes that to enforce K-diagnosablility, it suffices to

enforce the property of IS-based K-diagnosability defined above.

Proposition 2.7.3. A live language L ⊆ L(G) = L(GD) is K-diagnosable w.r.t. P

and ed if and only if L |=GD
ϕdiag.

Proof. We proceed by contrapositive.

L is not K-diagnosable

⇔∃tv = tv,1tv,2, tu ∈ L s.t. tv,1 ∈ Ψ(ed, L) and

tv,2 ≥ K and ΣF 6∈ tu and P (tu) = P (tv) Def. 2.7.2

⇔∃tv, tu ∈ L s.t. [δK(xD,0, tv)]n = K and [δD(xD,0, tu)]n = −1 and P (tu) = P (tv)

⇔∃tv ∈ L s.t. ϕdiag(RGD
(tv, L)) = 0 Def. 2.7.3

⇔L 6|=GD
ϕdiag Def. 2.3.1

The second equivalence is from the definition of GD.

Example 2.7.1. Let us consider the system G in Figure 2.3(a), where the set of

controllable events is Σc = {b, o} and the set of observable events is Σo = {a, c, d, o};

these two sets are incomparable. Event f is the unique fault event. Consider a

desired diagnosis delay of K = 2. The corresponding unfolded system GD is shown

in Figure 2.3(b). The corresponding AES AESϕdiag
(GD) for GD w.r.t. ϕdiag is given

in Figure 2.3(d). Note that, to construct the AES, we need to consider the issue of

liveness discussed in Section 2.6.3. For the sake of brevity, we write state (x, n) in

the form of xn. For example, at Y -state {31, 2−1, 4−1}, we cannot enable event o,

since no matter what control decision we take after the occurrence of o, a Z-state that

contains both states 32 and 4−1 will be encountered, i.e., the IS-based property ϕdiag

will be violated.

45

By applying Algorithm MAX-SYNT to AESϕdiag
(GD), a maximally permissive

supervisor S∗ is obtained; we highlight the chosen locally maximal control decision at

each reachable Y -state (which in this example is unique) and all feasible observable

events at each reachable Z-state in the diagram. The corresponding controlled behavior

is given in Figrue 2.3(c). By Theorem II.1, L(S∗/G) is a maximal live, controllable,

observable and 2-diagnosable sublanguage of L(G).

2.7.4 Enforcement of Strong Detectability

Detectability is a property arising in state estimation of DES. In [87], the en-

forcement of strongly detectability is studied under the assumption that Σc ⊆ Σo.

Here, we show that strongly detectability with a pre-specified detection delay K, or

strongly K-detectability, can be enforced without such an assumption by using the

uniform approach. First, we recall the formal definition of strongly K-detectability

from [87,89].

Definition 2.7.4. (Strongly K-Detectability). A live language L ⊆ L(G) is said to

be strongly K-detectable w.r.t. P and G if

(∀s ∈ L)[|P (s)| ≥ K ⇒ |RG(s, L)| = 1] (2.26)

Analogous to the enforcement of diagnosability, given an automaton G = (X,Σ, δ, x0),

we can build a new automaton GT = (XT ,Σ, δT , xT,0), where

• XT ⊆ X × {0, 1, . . . , K} is the set of states;

• Σ is the set of events;

• δT : XT × Σ → XT is the partial transition function and for any u = (x, n) ∈

46

XT , σ ∈ Σ, δT is defined by

δT (u, σ) =


(δ(x, σ), n), if σ ∈ Σuo ∧ n<K

(δ(x, σ), n+ 1), if σ ∈ Σo ∧ n<K

(δ(x, σ), K), if n = K

(2.27)

• xT,0 = (x0, 0) is the initial state.

With the refined system GT , we define IS-based K-detectability as follows.

Definition 2.7.5. (IS-Based Strongly K-Detectability). The property of IS-based K-

detectability ϕdet : 2XT → {0, 1} w.r.t. GT is defined by: for any i ∈ 2XT ,

ϕdet(i) = 0⇔ (∃u ∈ i : [u]n = K) ∧ |i| > 1, (2.28)

where [u]n denotes the integer component of u.

The following result says that to enforce strongly K-detectability it suffices to

enforce the IS-based property ϕdet defined above.

Proposition 2.7.4. A live language L is strongly K-detectable w.r.t. P and G if and

only if L |=GT
ϕdet.

Proof. We proceed by contrapositive.

L is not strongly K-detectable w.r.t. P and G

⇔∃s ∈ L s.t. |P (s)| ≥ K and |RG(s, L)| > 1 Def. 2.7.4

⇔∃s ∈ L s.t. |P (s)| ≥ K and |RGT
(s, L)| > 1

⇔∃s ∈ L s.t. [δT (xT,0, s)]n = K and |RGT
(s, L)| > 1

⇔∃s ∈ L s.t. ϕdet(RGT
(s, L)) = 0

⇔L 6|=GT
ϕdet Def. 2.3.1

47

The third and fourth equivalences follow from the construction of GT and the def-

inition of ϕdet, respectively. For the second equivalence, first we have the following

observations:

(1) |RG(s, L)| > 1 if and only if

∃t ∈ L : P (s) = P (t) ∧ δ(x0, t) 6= δ(x0, s) (2.29)

(2) |RGT
(s, L)| > 1 if and only if

∃t ∈ L : [P (s) = P (t)] ∧ [δ(x0, t) 6= δ(x0, s) or max{|P (t)|, K} 6= max{|P (s)|, K}]

(2.30)

However, is always true that max{|P (t)|, K}=max{|P (s)|, K} if P (s)=P (t). There-

fore, Equation (2.30) is equivalent to Equation (2.29), which implies that |RG(s, L)|>

1⇔|RGT
(s, L)|>1.

2.7.5 Enforcement of Anonymity

Strong detectability requires that the supervisor eventually be able to determine

the exact system state. In security and privacy applications, when the system is

monitored by a potentially malicious observer, we may want to enforce the exact

opposite, i.e., the exact system state should never be revealed. This is related to the

notion of opacity discussed earlier and it is termed anonymity [90], which is defined

as follows.

Definition 2.7.6. (Anonymity). Language L ⊆ L(G) is said to be anonymous w.r.t.

P and G if

(∀s ∈ L)(∃t ∈ L)[P (s) = P (t) ∧ δ(x0, s) 6= δ(x0, t)] (2.31)

Anonymity is different from either detectability or opacity. However, anonymity

48

can be easily formulated as an IS-based property, which means that it can enforced

by using the uniform approach. To this end, we define the IS-based property ϕano :

2X → {0, 1} w.r.t. G by: for any i ∈ 2X , ϕano(i) = 0 ⇔ |i| = 1. Then we have

the following result, which says that enforcing anonymity is equivalent to enforcing

IS-based property ϕano.

Proposition 2.7.5. Language L is anonymous w.r.t. P and G if and only if L |=G

ϕano.

Proof. L is not anonymous if and only if (∃s ∈ L)(∀t ∈ L)[P (s) = P (t)⇒ δ(x0, s) =

δ(x0, t)], This is equivalent to (∃s∈L)[|RG(s, L)| = 1], i.e., L 6|=G ϕano.

2.7.6 Enforcement of Attractability

The last property enforcement problem we study in this section is the state at-

traction problem. In this problem, the goal is to design a supervisor such that the

controlled system will converge to a desired attractor in a bounded number of event

occurrences. In [78], the state attraction problem under partial observation is studied

under the assumption that Σc ⊆ Σo. We show that this assumption can be relaxed by

taking the uniform approach developed in this chapter. Hereafter, instead of allow-

ing arbitrary bounded convergence delay, we require that the system converge to the

attractor in a pre-specified number of steps, leading to the notion of K-attractability.

Definition 2.7.7. (K-Attractability). Let G = (X,Σ, δ, x0) be the system automaton.

Language L ⊆ L(G) is said to be K-attractable w.r.t. G and A ⊆ X if for any s ∈ L,

we have

1. |s| ≥ K ⇒ δ(x0, s) ∈ A;

2. δ(x0, s) ∈ A⇒ ∀st ∈ L : δ(x0, st) ∈ A.

Remark 2.7.2. In [78], the authors assume that A ⊆ X is an invariant set, i.e., (∀x ∈

A)(∀s ∈ Σ∗)[δ(x, s) ∈ A]. In this case, the second requirement in Definition 2.7.7

49

will be satisfied trivially. Therefore, the definition of attractability we consider here

is more general.

Given an automaton G = (X,Σ, δ, x0), to formulate K-attractability as an IS-

based property, we first construct the new automaton GA = (XA,Σ, δA, xA,0), where

• XA ⊆ X × {0, 1, . . . , K} is the set of states;

• Σ is the set of events;

• δA : XA × Σ → XA is the partial transition function and for any u = (x, n) ∈

XA, σ ∈ Σ, δT is defined by

δA(u, σ)=

 (δ(x, σ), n+ 1), if n < K ∧ x 6∈ A

(δ(x, σ), K), if n < K ∧ x ∈ A or n = K
(2.32)

• xA,0 = (x0, 0) is the initial state.

We define IS-based K-attractability as follows.

Definition 2.7.8. The property of IS-based K-attractability ϕatt : 2XA → {0, 1} w.r.t.

GA is defined by: for any i ∈ 2XA,

ϕatt(i) = 0⇔ ∃u ∈ i : [u]x 6∈ A ∧ [u]n = K (2.33)

where [u]x and [u]n are the state component and the integer component of u, respec-

tively.

The following result says that to enforce K-attractability w.r.t. G, it suffices to

enforce the IS-based property ϕatt w.r.t. GA defined above.

Proposition 2.7.6. A live language L is K-attractable w.r.t. G if and only if L |=GA

ϕatt.

50

Proof. We proceed by contrapositive.

L is not K-attractable w.r.t. G

⇔∃s ∈ L s.t. [|s| ≥ K ∧ δ(x0, s) 6∈ A] or [δ(x0, s) ∈ A ∧ ∃t ∈ L/s : δ(x0, st) 6∈ A]

⇔∃w∈L s.t. [δA(xA,0, w)]x 6∈ A and [δA(xA,0, w)]n = K

⇔∃w ∈ L s.t. ϕatt(RGA
(w,L)) = 0 Def. 2.7.8

⇔L 6|=GA
ϕatt Def. 2.3.1

For the second equivalence, the proof of the “⇒” direction can be done by taking

w = s if the first case holds and w = st if the second case holds. For the “⇐”

direction, since [δA(xA,0, w)]n = K, by the construction of GA, we know that (i)

|w| ≥ K or (ii) ∃w1w2 ∈ {w} s.t. δ(x0, w1) ∈ A and δ(x0, w1w2) 6∈ A. These two

cases correspond to the two cases after the first equivalence, respectively.

Remark 2.7.3. So far, we have discussed the enforcement of K-diagnosability, K-

detectability andK-attractability. SinceK-diagnosability (respectively, K-detectability

and K-attractability) is stronger than diagnosability (respectively, detectability and

attractability), enforcing the former one implies that the latter one is also enforced.

Moreover, the uniform approach guarantees the diagnosis (respectively, detection and

attraction) delay of the controlled system, which cannot be guaranteed by the previ-

ous approaches. In this sense, enforcing these properties with desired delay K is a new

feature of the uniform solution rather than a restrictive assumption. However, if one

does not care about the diagnosis (respectively, detection and attraction) delay and

just wants to enforce diagnosability (respectively, detectability and attractability),

then the maximally permissive solution obtained for K-diagnosability (respectively,

K-detectability and K-attractability) may not be the maximally permissive solution

for diagnosability (respectively, detectability and attractability). Moreover, as K

increases, the permissiveness of the solution increases, but the complexity of the syn-

51

thesis algorithm also increases, since we need to “unfold” the system for more steps.

In other words, there is a tradeoff between the permissiveness of the solution and the

complexity of synthesis algorithm when there is no delay K required a priori. In this

case, one may proceed as follows. First, one may start with a solution by choosing a

relatively small K. If the permissiveness of this solution satisfies the design require-

ment, then stop. Otherwise, choose a larger K and repeat the above procedure until

a desirable solution is found.

2.8 Conclusion

In this chapter, we presented a uniform approach to the problem of synthesizing

a maximally permissive supervisor that enforces a certain property for a partially-

observed discrete-event system that does not originally satisfy the property. To this

end, we defined a class of properties called Information-State-Based properties and a

novel information structure called the All Enforcement Structure that embeds all valid

supervisors enforcing any IS-based property. Based on the AES, a synthesis algorithm

was provided to synthesize a locally maximal solution to this problem, without making

any assumptions about the observability properties of the controllable events. In this

regard, our approach relaxes the assumption that all controllable events are observable

in the existing works on property enforcement by supervisory control. We showed

that many important properties in the DES literature can be enforced by the uniform

approach described in this chapter. Moreover, this approach can be applied to enforce

other properties, such as anonymity, for which no synthesis methodologies exist in

the current literature. In addition, the AES can be used for solving quantitative

optimal property enforcement control problems when a cost structure is imposed

on this problem. Since the AES embeds all valid property-enforcing supervisors, it

provides a suitable solution space over which to solve such optimal control problems.

52

CHAPTER III

Synthesis of Non-blocking Supervisors for

IS-Based Properties

3.1 Introduction

In Chapter II, we have proposed a uniform approach that is applicable to the

enforcement of a large class of properties called the IS-based properties. Unfor-

tunately, non-blockingness, one of the most important property in the supervisory

control theory cannot be formulated as an IS-based property. This is because that

non-blockingness requires that for any string in the closed-loop language, there exists

a continuation of the string leading to a marking state; this information depends on

the future behaviors of the system, which cannot be simply evaluated based on the

current information-state.

In this chapter, we tackle the supervisor synthesis problem for non-blockingness

in addition to IS-based property. We define another finite bipartite transition system

that we call the “Non-Blocking All Enforcement Structure” (or NB-AES hereafter).

The NB-AES contains in its transition structure all supervisors that are deadlock-free.

We obtain the necessary and sufficient conditions for the solvability of the maximally

permissive control problem. We then provide a synthesis algorithm, based on the

NB-AES, that constructs a non-blocking and maximally permissive supervisor that

53

enforces an IS-based property, if one exists. This is the first algorithm with such

properties. Unlike the case of IS-based property, for which an IS-based supervisor

is always sufficient when a solution exists, we show that 2X may not be sufficient

to represent a non-blocking supervisor; additional memory is required in general.

However, we show that a finite memory is also sufficient to represent a non-blocking

supervisor.

This Chapter is organized as follows. In Section 3.2, we revisit some basic ter-

minologies and formulate the problem we want to solve. In Section 3.3, we define

a new BTS called the NB-AES. In Section 3.4, we present an algorithm based on

the NB-AES that returns a solution to the non-blocking synthesis problem (if one

exists) and the correctness proof of the proposed algorithm. An illustrative example

of our synthesis algorithm, for which previous approaches return empty solutions is

provided in Section 3.5. Finally, we conclude this chapter in Section 3.6. In addi-

tion, Appendix 3.7.1 discusses in more detail implementation issues that arise in the

synthesis algorithm of Section 3.5. The computational complexity of the synthesis

algorithm of Section 3.5 is analyzed in Appendix 3.7.2.

3.2 Problem Formulation

Let L ⊆ L(G) be a prefix-closed language. We say that L is non-blocking

(w.r.t. G) if L ∩ Lm(G) = L. Given an automaton G, an execution is a sequence

〈x1, σ1, . . . , σk−1, xk〉, where xi ∈ X, σi ∈ Σ and xi+1 = δ(xi, σi),∀i ∈ {1, 2, . . . , k−1}.

We say that an execution forms a cycle if x1 = xk; we say that a cycle is an elementary

cycle if ∀i, j ∈ {1, 2, . . . , k−1} : i 6= j ⇒ xi 6=xj. A Strongly Connected Componen-

t (SCC) in G is a maximal set of states C ⊆ X such that ∀x, y∈C, ∃s∈Σ∗ : δ(x, s)=y;

a SCC C is said to be non-trivial if ∀x, y∈C, ∃s∈Σ∗ \ {ε} : δ(x, s)=y. A livelock in

G is a non-trivial SCC C such that: (i) C ∩ Xm = ∅, i.e., there is no marked state

in it; and (ii) ∀x ∈ C, ∀σ ∈ Σ : δ(x, σ) ∈ C, i.e., there is no transition defined out

54

of it. We say that 〈x1, σ1, . . . , σk−1, xk〉 is an elementary livelock cycle if: (i) it is an

elementary cycle; and (ii) there exists a livelock C, such that {x1, x2, . . . , xk−1} ⊆ C.

We say that L ⊆ L(G) is a livelock language if any automaton generating L contains

a livelock; otherwise, we say that L is livelock-free. Also, we say that L ⊆ L(G) is

a deadlock language if ∃s ∈ L : ∆L(s) = ∅ ∧ s /∈ Lm(G); otherwise, we say that L

is deadlock-free. Clearly, L is non-blocking if and only if it is both deadlock-free and

livelock-free. We can also extend these concepts to a supervisor by evaluating its

generated langauge. Specifically, let S : P (L(G))→ Γ be a supervisor for G. We say

that S is

• non-blocking (w.r.t. G) if L(S/G) is non-blocking w.r.t. G

• deadlock-free (w.r.t. G) if L(S/G) is deadlock-free w.r.t. G.

Similarly to the Maximally Permissive IS-Based Property Enforcement Problem

(MPIEP) we formulate the Non-blocking Maximally Permissive IS-Based Property

Enforcement Problem (NB-MPIEP) as follows.

Problem 3. (Non-blocking Maximally Permissive IS-Based Property Enforcement

Problem). Given system G and IS-based property ϕ : 2X → {0, 1} w.r.t. G, synthesize

a partial observation supervisor S : P (L(G))→ Γ, such that

1. L(S/G) is non-blocking w.r.t. G;

2. L(S/G) |=G ϕ;

3. For any S ′ satisfying 1)-2), we have that L(S/G) 6⊂ L(S ′/G).

3.3 Non-blocking All Enforcement Structure

In this section, we tackle the non-blockingness requirement. We first define the

Non-Blocking AES (NB-AES), a bipartite transition system obtained from the AES

55

that contains all non-blocking control policies satisfying the IS-based property; then

we investigate its construction and properties.

3.3.1 Definition of the NB-AES

Definition 3.3.1. (Live decision string). Given a BTS T , for any Y -state y ∈ QT
Y

and state x ∈ y in it, we say that a decision string γ1γ2 . . . γn, where γi ∈ Γ for

i = 1, . . . n, is live for (y, x) in T if there exists a string s = ξ1σ1ξ2 . . . σn−1ξn, where

ξi ∈ (Σuo ∩ γi)∗, σi ∈ Σo ∩ γi, such that δ(x, s) ∈ Xm and ∀i < n : γi+1 ∈ CT (yi),

where y
γ1σ1...γiσi−−−−−−→T yi. We say that y is live in T if for any x ∈ y, (y, x) is live in T .

0

1

3 5 117

8 12

15

2

6 4 9

10

13

14

1b 2b

2o 2o

2o2o
1o 1o

1o1o

1c

1c 1c

1c
1o

1o2o2o2c 2c

2c 2c

2c
2c1c 1c

(a) Automaton G

{ }
1o 2o

{ , }2c{ , }2c

1o
1o 2o

2o

{ }
1o

2o

{ , }1c{ , }1c

uc
{ }{ }uc

{3,4},{ } {0}

{3,4} {5,6}

{5,6},{ }

{0,1,2},{ }

{1,2}

{1,2},{ }

uc uc uc
uc

uc uc

uc

uc

uc

uc

1c
{3,4,7,10}

{ , }uc 2c
{3,4,8,9}

{ , }uc
2c

{5,6,11,14}

{ , }uc
1c

{5,6,12,13}

{ , }uc

(b) AESϕ(G)

{ }
1o 2o

{ , }2c{ , }2c

1o
1o 2o

2o

{ }
1o

2o

{ , }1c{ , }1c

{0}

{3,4} {5,6}{0,1,2},{ }

{1,2}

{1,2},{ }

uc uc uc
uc

uc

uc

uc

uc

1c
{3,4,7,10}

{ , }uc 2c
{3,4,8,9}

{ , }uc
2c

{5,6,11,14}

{ , }uc
1c

{5,6,12,13}

{ , }uc

(c) AESNB
ϕ (G)

Figure 3.1:
An example of (NB-)AES. For G: Σc = {c1, c2}, Σo = {o1, o2} where
state 15 is illegal. uc denotes all uncontrollable events.

56

Example 3.3.1. Let G be the automaton shown in Figure 3.1(a). Let us consider

safety specification ϕ defined by ϕ(i) = 0⇔ 15 ∈ i, i.e., state 15 is the unique illegal

state. The resulting AES w.r.t. G for ϕ is shown in Figure 3.1(b). Then {uc}{c2, uc}

is a live decision string for state 1 ∈ {1, 2}, since string o1c2, which leads state 1 to

marked state 8, exists under this decision string.

Intuitively, the liveness property of a Y -state simply says that given a current in-

formation state, for each state in it, we can always find a sequence of control decisions

under which this state will be able to reach some marked state through some string.

The verification of the liveness property of a Y -state is a reachability problem in an

automaton that is built from the original BTS by explicitly adding transitions to

capture reachability within states in Z-states. Details can be found in the appendix.

The purpose of the above notion of liveness of information states is to eliminate

one source of blocking: clearly, if a Y -state is not live, then no matter what control

decision we take at that Y -state, we will always be blocked by some state in it.

In the case of Z-states, we introduce a notion of deadlock-freeness to complement

the notion of liveness of Y -states. Specifically, for a Z-state z, we require that any

state x ∈ I(z) should either have an unobservable path to a marked state or a path

that goes outside of the Z-state; otherwise, it will also be a source of blocking. This

leads to the following definition, which depends on Z-state z and on G, but not on

the BTS that z is part of.

Definition 3.3.2. (Deadlock-free Z-state). A Z-state z is said to be deadlock-free if

for all x ∈ I(z) we have

(∃s ∈ (Γ(z) ∩ Σuo)
∗)[δ(x, s) ∈ Xm] ∨ (∃s ∈ (Γ(z) ∩ Σuo)

∗(Γ(z) ∩ Σo))[δ(x, s)!] (3.1)

Otherwise, z is said to be a deadlock Z-state.

We are now ready to define the NB-AES structure, which contains all safe and

57

non-blocking solutions.

Definition 3.3.3. (Non-blocking All Enforcement Structure). Given a system G

and an IS-based property ϕ : I → {0, 1} w.r.t. G, the Non-blocking All Enforcement

Structure (NB-AES) for property ϕ, denoted by

AESNBϕ (G) = (QNB
Y , QNB

Z , hNBY Z , h
NB
ZY ,Σ,Γ, y0), (3.2)

is defined as the largest complete BTS w.r.t. G such that

1 ∀y ∈ QNB
Y : y is live in AESNBϕ (G); and

2 ∀z ∈ QNB
Z : ϕ(I(z)) = 1 and z is deadlock-free.

In the above definition, the largest non-blocking subsystem of the AES is uniquely

defined, since the union of any subsystems satisfying the above properties still satisfies

these properties. Similar to the case of the AES, we also only consider the reachable

part of the NB-AES hereafter.

Example 3.3.2. Going back to Figure 3.1, the NB-AES w.r.t. G for ϕ is shown in

Figure 3.1(c). Comparing with its AES, since all Y -states in it are live, the deadlock

Z-states that are removed are ({3, 4}, {uc}) and ({5, 6}, {uc}).

3.3.2 Properties and Construction Algorithm

By definition, the NB-AES is also a complete BTS. Thus, we can talk about the

properties of its included supervisors, which are given in the following theorem.

Theorem III.1. For the set of NB-AES included supervisors, the following two prop-

erties are satisfied:

1. If S ∈ S(AESNBϕ (G)), then S is a deadlock-free supervisor satisfying ϕ;

2. If S is a non-blocking supervisor satisfying ϕ, then S ∈ S(AESNBϕ (G)).

58

Proof. 1) Since the NB-AES is a subsystem of the AES, we know that L(S/G) |=G ϕ.

Now, let us assume that L has a deadlock, which implies that there exists s ∈ L such

that δ(x0, s) /∈ Xm and δL(s) = ∅. In terms of information state evolution, we

know that δ(x0, s) ∈ ISZS (P (s)). By Definition 3.3.2, this implies that the Z state

ISZS (P (s)) is a deadlock state, which contradicts the definition of the NB-AES. Thus,

S is deadlock-free.

2) We prove by contrapositive, i.e., we show that if S /∈ S(AESNBϕ (G)) then S

cannot cannot simultaneously be non-blocking and ϕ-enforcing. Since the NB-AES

is a subsystem of the AES, there are two cases for S /∈ S(AESNBϕ (G)):

Case 1: S /∈ S(AESϕ(G)). By Theorem II.1, S is not ϕ-enforcing.

Case 2: S ∈ S(AESϕ(G)) but S /∈ S(AESNBϕ (G)). We now show that in this case S

is blocking. By Definition 3.3.3, it can be shown by contradiction that there exists

s ∈ L(S/G) such that one of the two following cases holds: (i) ISZS (P (s)) is a

deadlock Z-state. By Definition 3.3.2, L is blocking; (ii) ISYS (P (s)) is not live. If

y = ISYS (P (s)) is not live, then by Definition 3.3.1, there exists at least one state in

y where no control decision can be made to lead it to a marked state. Specifically,

(∃t ∈ L(S/G) : P (t) = P (s))(∀v ∈ Σ∗ : tv ∈ L(S/G))[δ(x0, tv) /∈ Xm]. Thus, S is

blocking.

0 1
b

a a
2

(a) Automaton G

{0} a {1} a {2}

b

b
{ }

{ }

a
a

bb

b

a{ , }a

b
{0},{ }

{1},{ }

{1},{ , } {2},{ }
{ }

(b) The corresponding NB-AES

Figure 3.2: For G: Σuo = ∅ and Σuc = {b}.

Note that for S ∈ S(AESNBϕ (G)), S need not be livelock-free in general. Let us

consider the automaton G in Figure 3.2(a) and its corresponding NB-AES shown in

Figure 3.2(b). Clearly, supervisor S such that L(S/G) = (ab)∗ is included in the NB-

AES, but it is a livelock supervisor. However, the above statement is true when G is

59

acyclic, i.e., there is no cycle in G, since in this case, the deadlock-freeness condition

and the non-blockingness condition are equivalent. Therefore, we have the following

result.

Corollary 3.3.1. If G is acyclic, then S is non-blocking and ϕ-enforcing iff S ∈

S(AESNBϕ (G)).

Algorithm 3: FIND-NB-AES

input : AESϕ(G)
output: AESNBϕ (G)

1 A←FIND-AES(G);
2 Delete all Z-states in A that are deadlock states;
3 while exists Y -state in A that is not live do
4 Delete all Y -states in A that are not live;
5 while exists Y -state in A that has no successor do
6 Delete all such Y -states in A and delete all their predecessor

Z-states;

7 if the initial Y -state has been removed then
8 return the NB-AES does not exist;

else
9 AESNBϕ (G)← Accessible(A);

The construction procedure for the NB-AES is given by Algorithm FIND-NB-AES.

The basic idea of the construction algorithm follows directly from the definition. We

need to keep pruning states from the AES structure until convergence. Specifically,

there are three kinds of states that we need to prune:

(i) All Z-state that are deadlock states;

(ii) All Y -states that are not live; and

(iii) All Y or Z-states that violate the definition of completeness.

In the algorithm, the elimination of (i), (ii) and (iii) are implemented in line-2, line-4

and line-6, respectively. Note that for (ii) and (iii), iteration steps are required, since

60

pruning states may change the liveness or the completeness of the transition system.

However, (i) just needs to be executed once, since the deadlock property does not

depend on T .

Proposition 3.3.1. The running time of FIND-NB-AES is in O(|X||Σ|22|X|+|Σc|−1).

Proof. The proof is given in the appendix.

3.4 Synthesis of Non-blocking Supervisors

3.4.1 Synthesis Algorithm

We now tackle the synthesis problem for non-prefix-closed specification languages,

i.e., non-blockingness must be ensured in addition to an IS-based property. Formally,

we show how to synthesize a maximal non-blocking supervisor from the NB-AES.

In the prefix-closed case, once the AES is built, we can randomly pick one control

decision and fix it at each reachable information state and this will give us a (IS-

based) supervisor for IS-based property ϕ. However, this strategy may not work in

the non-prefix-closed case, since the NB-AES only guarantees that there exists a good

decision, but arbitrarily choosing one control decision may return a livelock solution.

This phenomenon was already pointed out by the example in Figure 3.2. Moreover,

if we go back to the example in Figure 3.2, we find that we cannot remove any (Y or

Z) state from the NB-AES, otherwise, some nonblocking solutions will be excluded.

This means that the NB-AES is already the most “compact” structure that contains

all non-blocking solutions, even if it contains some livelock solutions. One conjecture

is that we can search through the space of IS-based supervisors, which is finite, for

the desired maximal solution. Unfortunately, an IS-based solution does not exist in

general; an example where this occurs is presented in Section 3.5.

The non-existence, in general, of an IS-based supervisor that is both ϕ-enforcing

and non-blocking implies immediately that state space refinement is required if we

61

want to synthesize a solution from the NB-AES. Our synthesis algorithm, which is

described formally below, is based on the idea of suitably “unfolding” the NB-AES.

To begin with, we need to build an IS-based supervisor (Step 1) and then determine

whether or not there exists a livelock in it (Step 2). If not, then we are done and

return the solution. If yes, then we need to break the livelock at some point and

resolve it by unfolding the NB-AES at that point such that a live decision string can

be added at the livelock point (Steps 3 and 4). This will give us a new (non-IS-

based) supervisor. Finally, we need to go back to Step 2 and test again until the

iteration converges (Step 5). However, two questions arise: (i) Where should we

break a livelock? and (ii) How can we unfold the NB-AES? In order to answer these

two questions, we first define the concept of “extended BTS” and then we use this

notion to define “unfolded” BTS.

Let Z be the set of integers and N be the set of non-negative integers. E is called

an Extended Bipartite Transition System (EBTS) of T if it is a partial unfolding of a

BTS T resulting in sets QE
Y = QT

Y ×Z and QE
Z = QT

Z×Z with corresponding transition

functions hEY Z : QE
Y × Γ → QE

Z and hEZY : QE
Z × Σ → QE

Y over the extended state

space, such that the restrictions of hEY Z and hEZY to domains QT
Y and QT

Z , respectively,

are consistent with hTY Z and hTZY whenever hEY Z and hEZY are defined. Specifically,

hEY Z((y, n), γ) (respectively, hEZY ((z, n), σ)) is of the form (hTY Z(y, γ), δ(y, n, γ)) (re-

spectively, (hTZY (z, σ), δ(z, n, σ))), where δ : (QT
Y ∪ QT

Z) × Z × (Γ ∪ E) → Z is some

updating function for the integer component of the state. (The exact form of δ is left

unspecified for the purpose of this general definition.) Given an EBTS E, its included

supervisors is defined analogously as before for a BTS in Definition 2.4.2 we will still

use the notations S(E) to represent the supervisors included in E. Clearly, if E is a

complete EBTS of a complete BTS T , then S(E) ⊆ S(T).

The definition of an EBTS only requires that the restriction of the transition func-

tion to domains QT
Y and QT

Z be consistent with the BTS. However, we also want that

62

the restriction of the transition function to domain Z satisfy certain rules (namely,

it should “remember” the number of times the current state has been visited). This

leads to the notion of an Unfolded Bipartite Transition System (UBTS), which is a

particular type of EBTS defined as follows. For simplicity, we will write state (y, n)

as yn. Given an extended state xn ∈ QE
Y ∪ QE

Z , PreEY (xn) and PreEZ (xn) denote,

respectively, the set of Y -states and the set of Z-states that can reach this state

through some runs in E, excluding itself; also, we call xn a control state if n ∈ N and

a transient state if n ∈ Z \ N.

Definition 3.4.1. We say that U is an unfolded BTS of a complete BTS T if it is

an EBTS of T , such that:

1. (∀yn ∈ QU
Y)[|CU(yn)| ≤ 1];

2. (∀zn ∈ QU
Z)(∀σ ∈ Σ)[hZY (z, σ)!⇒ hUZY (zn, σ)!];

3. There are no cycles in U ;

4. For any yn ∈ QU
Y , if n ∈ N, then n = |{yñ ∈ PreUY (yn) : ñ ∈ N}|. Similarly, for

any zn ∈ QU
Z , if n ∈ N, then n = |{zñ ∈ PreUZ(zn) : ñ ∈ N}|.

5. The terminal states of U are either (i) terminal Z-states or (ii) Y -states of the

form yn with n ≥ 1.

For brevity, hereafter, we also write yn
c−→U z

n′ for hUY Z(yn, c) = zn
′

and zn
σ−→U y

n′

for hUZY (zn, σ) = yn
′
.

Conditions 1) and 2) together imply that except for Y -states with no defined con-

trol decision, a UBTS will be complete. Condition 4) says that the integer component

of any control state in U is n if there are n control states in its predecessors that have

the same Y - or Z-state component. By condition 5), any branch of the UBTS ends

up with a repeated control Y -state or a terminal Z-state. Thus, given a UBTS U ,

63

we can merge each terminal Y -state yn, n ≥ 1 with its predecessor state y0 and de-

note the resulting new EBTS by Ũ . Specifically, Ũ is obtained by removing states

R := {yn ∈ QU
Y : |CU(yn)| = 0} from U and for any yn ∈ R, any transition that origi-

nally goes to state yn in U will go to the corresponding state y0 in Ũ . By definition of

a UBTS, Ũ is a complete EBTS. Moreover, we note that the set of supervisors S(Ũ)

included in Ũ is a singleton, since there is only one control decision at each Y -state

in Ũ . Thus, we call the unique supervisor included in Ũ the supervisor induced by

UBTS U and denote it by SU . Similarly, for any Y -state y ∈ QŨ
Y , we denote by cŨy

the unique control decision defined at y, i.e., CŨ(y) = {cŨy }. The supervisor SU can

be realized by an automaton AU = (QŨ
Y ,Σ, ξ, q0, Q

Ũ
Y), where q0 is the initial Y -state

of Ũ and ξ : QŨ
Y ×Σ→ QŨ

Y is a partial function defined by: for any q ∈ QŨ
Y , σ ∈ Σ, we

have (i) ξ(q, σ)=q if σ∈cŨy ∩ Σuo; (ii) ξ(q, σ)=hŨZY (hŨY Z(y, cŨy), σ) if σ∈cŨy ∩ Σo; and

(iii) ξ(q, σ) is undefined if σ 6∈ cŨy . Then we can compute the controlled behavior by

L(SU/G) = L(AU×G), where “×” denotes the usual product composition operation

of automata; see, e.g., [12] (p. 78).

If L(SU/G) is a livelock language, then there exists an elementary livelock cycle

〈q1, σ1, . . . , σk−1, qk〉 in AU ×G such that ∃i ∈ {1, . . . , k−1} : σi ∈Σo, since U only

contains deadlock-free Z-states. We call such a cycle a Critical Elementary Livelock

Cycle (CELC). In our problem, any CELC in a livelock of AU×G corresponds to the

presence of some elementary cycle in Ũ . Moreover, since a cycle in Ũ is obtained by

merging some terminal Y -state ym and its corresponding y0 in U , then for a CELC,

there exists some terminal Y -state in U that leads to it. We call such a terminal

Y -state an entrance Y -state of the CELC. More specifically, let 〈q1, σ1, . . . , σk−1, qk〉

be a CELC. Note that qi is in the form of (yni
i , xi). Then, there exists an observable

event σi, i∈ {1, . . . , k−1} such that qi+1 = (y0
i+1, xi+1) but hUZY (hUY Z(yni

i , c
Ũ
y
ni
i

), σi) =

ymi+1,m 6= 0, where cŨ
y
ni
i

is the unique control decision defined at yni
i in Ũ . In other

words, ymi+1 is a terminal Y -state of U , which is not in Ũ . Then ymi+1 is an entrance

64

{0,1,2},{ }uc

{ }uc

{ , }uc2c

1o
2o

{ }uc

uc

uc

uc2c

{ , }

{3,4,8,9}
{ , }

{5,6,12,13}
{ , }

{3,4} {5,6}

{1,2}

{3,4} {1,2},{ } {5,6}

uc1c

{0}0

0 0

0

11 1o 2o

1o 2o

0

0

0

0
1c

(a) UBTS U0 (without the dashed lines)

2c

2o

,

{3,4} {5,6}

{1,2}

1c

{0}0 0

01o
2o

1o
2o

0

1o
1b

2b

(b) AU0

2c

2b1b

1c1c2c

1o
2o

1o
2o

1o 2o
1o

2o

1o2o

1o2o

({5,6}, 5)0

({0}, 0)0({0}, 1)0 ({0}, 2)0

({5,6}, 6)0 ({3,4}, 4)0

({5,6}, 13)0 ({3,4}, 9)0

({1,2}, 2)0

({3,4}, 3)0

({3,4}, 8)0 ({5,6}, 12)0

({1,2}, 1)0

(c) L(SU0
/G) = L(AU0

×G)

Figure 3.3: Example of Steps 1 and 2.

Y -state of the CELC and we call xi+1 ∈ yi+1 a corresponding state in the entrance

Y -state. In Definition 3.3.1, we introduced the notion of live decision string for a state

pair (y, x), y ∈ QT
Y , x ∈ y in a BTS T . We say that a live decision string γ1γ2 . . . γn is

locally maximal for (y, x) if there does not exist another live decision string γ′1γ
′
2 . . . γ

′
n

for (y, x) in T such that ∀i ∈ {1, 2, . . . , n} : γi ⊆ γ′i and ∃j ∈ {1, 2, . . . , n} : γj ⊂ γ′j.

Example 3.4.1. Consider the automaton G shown in Figure 3.1. An example

of UBTS is given in Figure 3.3(a); it is an unfolding of AESNBϕ (G). By merg-

ing state pairs ({3, 4}0, {3, 4}1) and ({5, 6}0, {5, 6}1) in U0 (connected by the dashed

lines), we get the corresponding EBTS Ũ0. The induced supervisor SU0 is realized by

the automaton AU0 shown in Figure 3.3(b). The language of the controlled system

L(SU0/G) = L(AU0×G) is given in Figure 3.3(c). By the properties of the NB-AES,

we know that SU0 is ϕ-enforcing and deadlock-free. However, we see that it is blocking.

In AU0 ×G, we see that 〈({3, 4}0, 4), c2, ({3, 4}0, 9), o1, ({1, 2}0, 2), o1, ({3, 4}0, 4)〉 is

a CELC, which is due to the presence of the cycle {3, 4}0 → {1, 2}0 → {3, 4}0 in Ũ0

65

(we omit the Z-states in the cycle since they are uniquely determined). Therefore,

{3, 4}1 is an entrance Y -state of this CELC and 4 ∈ {3, 4} is a corresponding state

in it.

We are now ready to state our synthesis algorithm, which is formally presented

in Algorithm NB-SOLU. For the sake of readability, we decompose Algorithm NB-

SOLU into five steps that are mapped to the corresponding lines in the statement of

the algorithm.

Step 1: Generate an initial UBTS (lines 1-2): The goal of this step is

to initially generate an IS-based supervisor via building a UBTS from the NB-AES.

First, we set U0 to be the UBTS that only contains the initial state y0
0 of the NB-AES

and call procedure EXPAND (lines 13-26). This procedure expands the initial state

and constructs a UBTS by a breadth-first search in the NB-AES. First, pick a locally

maximal control decision for y0
0; then, for the Z-state encountered, find all its Y -state

successors and pick one locally maximal control decision for each of them, and so

forth, until: (i) a terminal Z-state is reached; or (ii) a Y -state yn whose information

state component has already been visited is reached, i.e., n 6= 0. Note that, all the

states added by EXPAND are control states, since the integer components are always

greater than or equal to zero. Since the construction procedure stops once a Y -state

is repeated, the largest index for a Y -state in the UBTS at this step should be 1

and the UBTS induced supervisor is IS-based. Note that the language L(SU0/G) is a

maximal language, since we take locally maximal control decisions in the construction

procedure; however, it may be blocking in general.

Step 2: Detect livelock (lines 4-5): The goal of this step is to detect a livelock

(if one is present) and find a state where it can be properly broken. If L(SUi
/G) is

livelock-free, then we stop the algorithm and return the current UBTS as the solution.

If not, we need to find one CELC causing livelock and a corresponding entrance Y -

state, as defined earlier.

66

Algorithm 4: NB-SOLU)

input : AESNBϕ (G)
output: SUk

1 Set i← 0, QUi
Y ← {y0

0},M = 0;
2 EXPAND(Ui);
3 i← i+ 1, Ui ← Ui−1;

while L(SUi−1
/G) is a livelock language do

4 find an entrance state yke ∈ Q
Ui
Y for one CELC and a corresponding

state xe ∈ ye that is also in the livelock.;
5 Find a locally maximal live decision string γ1γ2 . . . γn for (ye, xe) in the

NB-AES.;
6 From state yke , augment Ui with run γ1σ1 . . . σn−1γn and the Y and

Z-states reachable along its prefixes, where σj is defined in Def. 3.3.1.
Specifically, we augment Ui with the following transitions:

yke
γ1−→Ui

zk1
1

σ1−→Ui
yk2

1 . . .
σn−1−−−→Ui

y
k2n−2

n−1

γn−→Ui
zk2n−1
n

where the values of yj and zj are determined by hZY and hY Z ,
respectively, by the definition of an EBTS and kj = M − j, for any
j = 1, . . . , 2n− 1.;

7 M ←M − 2n+ 1.;
8 EXPAND(Ui);
9 i← i+ 1, Ui ← Ui−1;

10 return SUi−1
;

procedure Expand(U);
11 while ∃yn ∈ QU

Y such that CU(yn) = ∅ ∧ n = 0 or ∃zn ∈ QU
Z such that

∃σ ∈ Γ(z) ∩ Σo : hZY (z, σ)! ∧ hUZY (zn, σ) is not defined (3.3)

do
12 for yn∈QU

Y such that CU(yn) = ∅ ∧ n = 0 do
13 Find a control decision γ ∈ CAESNB

ϕ (G)(y) in AESNBϕ (G) such that

∀γ′ ∈ CAESNB
ϕ (G)(y) : γ 6⊂ γ′;

14 Augment U with transition: yn
γ−→U z

n′ , where z = hY Z(y, γ) and

n′ = |{z̃ñ ∈ PreUZ(yn) : z̃ = z and ñ ≥ 0}|

15 for zn ∈ QU
Z such that (3.3) holds do

16 for σ∈Γ(z)∩Σo satisfying (3.3) do

17 Augment U with transition: zn
σ−→U y

n′ , where y = hZY (z, σ) and

n′ = |{ỹñ ∈ PreUY (zn) : ỹ = y and ñ ≥ 0}|

67

Step 3: Resolve livelock (lines 6-7): This step aims to resolve the livelock

found in Step 2. Specifically, we unfold the UBTS from an entrance Y -state of the

livelock by finding a live decision string in the NB-AES. The states added at this

step are transient states and we use a global variable M in Algorithm NB-SOLU

to remember how many transient states we have added to U . Consequently, all the

transient states in U have different (negative) integer components. Also, to achieve

maximality, all newly added control decisions are locally maximal.

Remark 3.4.1. To find such locally maximal live decision strings, one approach is to

first find an arbitrary live string and then sequentially replace each control decision

in it by a larger one, whenever feasible, from γ1 to γn. A formal algorithm for this

construction is given in the appendix.

Step 4: Complete the UBTS (line 8): After Step 3, the resulting transition

system may no longer be a UBTS. Thus, we need to complete Ui as a UBTS such

that we can again induce a supervisor from it. This step is implemented by calling

again the procedure EXPAND, which finds one control decision for each Y -state that

has no successors, and adds all observations for each Z-state that has some defined

observations (i.e., is not terminal).

Step 5: Iteration: Finally, we need to go back to Step 2 until the iteration

stops, i.e., until all livelocks have been resolved.

Example 3.4.2. Consider the automaton G and its NB-AES from Figure 3.1. Con-

sider the UBTS U0 and its induced language L(SU0/G) shown in Figure 3.3. We see

that U0 is a valid UBTS generated after Step 1, which ends up with the repeated

Y -states {3, 4}1 and {5, 6}1, but it induces a livelock solution. Consider the CEL-

C highlighted in Figure 3.3 as we have discussed in Example 3.4.1. In Step 2, we

find that ye = {3, 4}1 is an entrance Y -state of this livelock and return ({3, 4}1, 4).

For Step 3, one possible choice is to take control decision {c1, uc} at {3, 4}1, s-

ince state 4 will be able to reach marked state 10 via c1. Therefore, a transient

68

uc

{ }uc

{ , }uc2c

1o 2o

{ }uc

uc

uc

uc2c

{ , }

{3,4,8,9}
{ , }

{5,6,12,13}
{ , }

{3,4} {5,6}

{1,2}

{3,4} {1,2},{ } {5,6}

uc

{0}0

0 0

0

11

1c

1c

{ , }uc1c

{3,4,7,10}
{ , }uc1c

{0,1,2},{ }1o 2o

1o 2o

0

0 0

0

-1

(a) Incomplete UBTS U ′1

uc

{ }uc

{ , }uc2c

1o
2o

{ }uc

uc

uc

uc2c

{ , }

{3,4,8,9}
{ , }

{5,6,12,13}
{ , }

{3,4} {5,6}

{1,2}

{3,4} {1,2},{ } {5,6}

uc

{0}0

0 0

0

11

1c

1c

{ , }uc1c

{3,4,7,10}
{ , }uc1c

 {1,2}

{0,1,2},{ }1o 2o

1o
1

0

0 0

-1

01o 2o

(b) UBTS U1

0

1

3 5

8 12

2

6 4

13 9

1c

1' 2'

3' 4'

7 10

1b 2b

2o

1o

2c

1o

1o

1o
1o

1o

1o

1o

2o

2o

2o

2o

2o
2c1c

1c 1c

(c) L(SU1/G) = L(AU1 ×G)

Figure 3.4:
Example of Steps 3, 4 and 5. Note that states in AU1 × G have been
renamed for simplicity.

69

Z-state ({3, 4, 7, 10}, {c1, uc})−1 is added and the resulting BTS U ′1 is shown in Fig-

ure 3.4(a). However, in U ′1, the enabled observable event o1 is not defined at Z-state

({3, 4, 7, 10}, {c1, uc})−1. Thus, Step 4 will call procedure EXPAND again to com-

plete the UBTS by adding a new Y -state {1, 2}1 that can be reached by observing o1

into U ′1. Since {1, 2} already exists in the UBTS, we stop the procedure EXPAND and

get U1 shown in Figure 3.4(b) and its induced language L(SU1/G) is shown Figure

3.4(c). Since L(SU1/G) is livelock-free, we stop the synthesis procedure and return it

as a maximal controllable, observable, safe, and non-blocking solution.

Remark 3.4.2. In Figure 3.3(a), we could also select control decision {c2, uc} at state

{5, 6}0. It can be easily verified that this will induce a non-blocking and IS-based

solution. Thus we can stop the synthesis at Step 2 and return this solution. However,

as discussed earlier, the above situation may not always hold. This is why we chose

the non-IS-based solution to illustrate all the steps of Algorithm NB-SOLU.

3.4.2 Correctness of the Synthesis Algorithm

In this section, we show that (i) the synthesis algorithm presented in the previous

section converges in a finite number of iterations and (ii) the resulting solution is

maximal.

In the synthesis steps of Algorithm NB-SOLU, the supervisor should not only know

its current information state, but it also needs to remember the number of times the

current state has been visited. However, this does not tell us how much memory we

need to realize the supervisor. The following theorem reveals that the supervisor can

be represented in a finite structure, i.e., the resulting language is regular.

Theorem III.1. Algorithm NB-SOLU converges in a finite number of iterations.

Proof. Suppose that x ∈ yn is detected in AUi
×G at Step 2, where x is a correspond-

ing state of an entrance Y -state yn, n ≥ 1 and i ≥ 1. This implies that there exists

70

a CELC 〈(y0, x), σ1, . . . , σk, (y
0, x)〉 in AUi

×G. We define the pair being resolved for

the CELC as the last state in the CELC before the final state (y0, x) such that (i) its

first component is y0; and (ii) it is entered by an observable event. More specifically,

we can write this CELC in the form of

(y0, x)
σ1

1σ
1
2 ...σ

1
k1−−−−−−→ (y0, x2)

σ2
1σ

2
2 ...σ

2
k2−−−−−−→ (y0, x3) · · ·

σj
1σ

j
2...σ

j
kj−−−−−→ (y0, xj+1)

σj+1
1 σj+1

2 ...σj+1
kj+1−−−−−−−−−−→ · · ·

σr−1
1 σr−1

2 ...σr−1
kr−1−−−−−−−−−−→ (y0, xr)

σr
1σ

r
2 ...σ

r
kr−−−−−−→ (y0, x) (3.4)

where σjkj ∈ Σo, j = 1, . . . , r and (y0, xr) is the pair being resolved. Note that, inside

of the CELC, cycle 〈y0, . . . , yn−1, y0〉 in AUi
may be involved for r times. Figure 3.5

illustrates the notions of detected and resolved states in the context of the CELC.

In order to prove the theorem, it suffices to prove that any pair (y0, x), x ∈ y can

be resolved at most once in Step 3. To see this, let us first suppose that x ∈ yn was

detected in AUi
×G at Step 2, where n ≥ 1 and i ≥ 1. Let (y0, xr), xr ∈ y be the

corresponding pair being resolved. Note that xr and x need not necessarily be the

same state. Since Step 3 is executed after detecting x ∈ yn, the above CELC will be

broken and a path from x ∈ yn to a marked state is introduced. Formally, in AUi+1
×G,

we know that f[AUi+1
×G]((y

0, xr), σr1σ
r
2 . . . σ

r
kr

) = (yn, x) and there exists a string t ∈ Σ∗

such that f[AUi+1
×G]((y

0, xr), σr1σ
r
2 . . . σ

r
kr
t) ∈ QUi+1

Y ×Xm, where f[AUi+1
×G] denotes the

transition function of AUi+1
×G. This path is also illustrated in Figure 3.5. In fact,

t can be the corresponding live path for the live decision string introduced at yn as

defined in Definition V.1.

Now, let us assume that after some iteration steps, xr ∈ y0 is resolved again for

a CELC in AUi+q
×G, q ≥ 2. This means that (y0, xr) is in a livelock of AUi+q

×G.

Moreover, we have already shown that there exists a string σr1σ
r
2 . . . σ

r
kr
t from (y0, xr)

to a marked state in AUi+1
×G. Such a marked state is also reachable from (y0, xr)

in AUi+q
×G, since Ui+q is unfolded from Ui+1 and any states reachable in Ui+1 are

71

𝑦0

⋯

⋯
𝑦𝑛

𝑥

𝑡

𝑥𝑟

𝑥𝑟

𝑥𝑟−1

𝑥𝑟−1 𝑥

𝜎1
𝑟𝜎2

𝑟…𝜎𝑘𝑟
𝑟

resolved

detected

Figure 3.5: Conceptual illustration of the proof of Theorem III.1.

still reachable in Ui+q. More specifically, such a marked state can be reached from

(y0, xr) via the same string σr1σ
r
2 . . . σ

r
kr
t as above. Therefore, (y0, xr) cannot be in any

livelock, which gives us a contradiction. Thus we conclude that any pair (y, x), x ∈ y

can be resolved at most once in Step 3.

Let the set of Y -states of AESNBϕ (G) be denoted by QNB
Y . Then,

∑
y∈QNB

Y
|y| ≤∑|X|

i=1 i
(|X|
i

)
= |X|2|X|−1 gives an upper bound for the number of iterations.

Proposition 3.4.1. If the NB-AES has been constructed, then the running time of

Algorithm NB-SOLU is O([|X|32|X| + |Σ|]|X|22|X|+|Σ|).

Proof. The proof is given in the appendix.

Suppose that Algorithm NB-SOLU stops after n steps of iteration and returns

UBTS Un; then the induced supervisor SUn has the following properties.

Theorem III.2. SUn is a non-blocking supervisor that enforces ϕ.

Proof. Follows directly from Theorem III.1 and the livelock-free stopping condition

in Step 2.

72

Theorem III.3. SUn is maximal, i.e., for any non-blocking S ′ satisfying ϕ, we have

L(SUn/G) 6⊂ L(S ′/G).

Proof. We prove this theorem by contradiction. Assume that L(SUn/G) is not max-

imal, i.e., ∃S ′ ∈ S(AESNBϕ (G)) such that S ′ is non-blocking and L(SUn/G) ⊂

L(S ′/G). This implies the following two facts1:

1. (∀s ∈ L(SUn/G))[SUn(s) ⊆ S ′(s)];

2. (∃t ∈ L(SUn/G))[SUn(t) ⊂ S ′(t)].

Let us consider the string t ∈ L(SUn/G) such that SUn(P (t)) ⊂ S ′(P (t)) and SUn(t′) =

S ′(t′), ∀t′ ∈ {P (t)} \ {P (t)}. Then we know that ISYSUn
(P (t)) = ISYS′(P (t)), and we

call this Y -state y. Then, for the control decision at y in SUn , i.e., SUn(P (t)), one of

the two following cases holds:

(i) SUn(P (t)) is a control decision returned by Step 1 or 4. By the construction rule,

we know that ∀γ′ ∈ CAESNB
ϕ (G)(y) : SUn(P (t)) 6⊂ γ′. Since S ′ ∈ S(AESNBϕ (G)), by

Definition 2.4.2, we know that SUn(P (t)) ⊂ S ′(P (t)) cannot happen.

(ii) SUn(P (t)) is a control decision returned by Step 3. Suppose that SUn(P (t)) is in

a live control decision string γ1γ2 . . . γn and let w := ξ1σ1ξ2 . . . ξi−1σi−1ξn be the corre-

sponding live path as defined in Definition 3.3.1. We assume, without loss of general-

ity, that SUn(P (t)) = γ1, SUn(P (t)σ1) = γ2, . . . , SUn(P (t)σ1 . . . σn−1) = γn. Consider

another live control decision string γ′1γ
′
2 . . . γ

′
n, where γ′i := S ′(P (t)σ1 . . . σi−1), 1 ≤

i ≤ n. Such a live control decision string is well defined since L(SUn/G) ⊂ L(S ′/G)

and tw is also in L(S ′/G). By fact 2) above we know that γi ⊆ γ′i, i ≥ 2. Moreover,

we know that γ1 ⊂ γ′1. Thus, γ′1γ
′
2 . . . γ

′
n is strictly lager than γ1γ2 . . . γn, which con-

tradicts the fact that γ1γ2 . . . γn is locally maximal.

For each case, we obtain a contradiction. Thus, no more permissive supervisor exist-

s.

1Without loss of generality, we assume that the supervisors are irredundant.

73

Remark 3.4.3. The intuition behind the above proof is that it is impossible to con-

struct a supervisor that generates a language strictly larger than the one obtained by

the proposed algorithm, since we have taken either locally maximal control decisions

(case (i)) or locally maximal control decision strings (case (ii)). For the first case, it

is easy to see that the control decision SUn(P (t)) is locally maximal. For the second

case, it does not mean that we cannot find a single control decision γ′1 such that

γ1 ⊂ γ′1. However, if we do so, then γ′1γ2 . . . γn will not be a live decision string. The

intuition behind this phenomenon is that, in partially-observed DES, enabling more

events at the current state may result in more conservative decisions in the future.

In other words, the control decision string γ1γ2 . . . γn is locally maximal as a whole.

Recall that the NB-AES exists if there exists a non-empty solution to the problem

under consideration and Algorithm NB-SOLU always returns a maximal solution in a

finite number of iterations if the NB-AES exists. Consequently, we have the following

theorem.

Theorem III.4. NB-MPIEP is solvable if and only if AESNBϕ (G) exists.

Hence, the existence of the NB-AES provides the solvability condition for NB-

MPIEP.

3.4.3 Discussion

We have solved the maximally permissive supervisor synthesis problem for IS-

based property with prefix-closed and non-prefix-closed specification languages. It

was shown in [64] that when the plant can be fully observed, under the assumption

that H v G, the maximal permissive supervisor (for safety and non-blockingness)

can be repressed in the form of S : X → Γ. For the partially-observed prefix-closed

specification case, since the information state we defined captures all the information

we need to solve the problem, the supervisor for any IS-based property we synthe-

sized is in the form of S : I → Γ. For the non-prefix-closed specification case, we have

74

shown that the information state is not sufficient anymore to carry all the informa-

tion we need for synthesis purposes; in this case, the “real” information state is the

information state originally defined augmented with an integer that represents the

number of times the current state has been visited. Thus, the maximally permissive

supervisor is in fact in the form of S : I × Z→ Γ.

3.5 Illustrative Example

We illustrate the synthesis algorithm of Section 3.4, Algorithm NB-SOLU, by an

illustrative example. In particular, this example shows that: (i) IS-based non-blocking

supervisors may not always exist in general; and (ii) a maximal solution can still be

obtained by using Algorithm NB-SOLU, even when other algorithm return empty

solutions.

System Model: Consider the following guideway problem: A town is divided into

two zones, zone 1 and zone 2, with single-way streets as shown in Figure 3.6. At

the top of the zones, there is a recycling station. Everyday, only one zone will send

a robot (r1 or r2) to clean up the streets. The robot sent by zone 1 can only move

counter-clockwise, i.e., move forward or turn left; the robot sent by zone 2 can only

move clockwise.

Control: There are two traffic lights, L1 and L2, close to the bottom intersection as

shown in the figure. The lights control the robots as follows: When L1 is red, if robot

r1 is at point a, then it must wait until the light turns green; if robot r2 is at point

c, then it can choose to wait there or turn right. The effect of L2 is analogous.

Sensing: There is a radar around the traffic lights that detects whether there is a

robot in region D, which is in front of each light, every time unit. However, the radar

cannot distinguish which zone the detected robot belongs to.

Specification: Since all streets are one-way streets, with legal directions shown in

Figure 3.6, we do not want movement in the reverse direction to happen. Without

75

M

L1 L2

D

A

B

C

E

Zone 1 Zone 2

1r

2r

a b c d
D

Figure 3.6: Example discussed in Section 3.5.

any traffic light, the robot from zone 1 could possibly violate this specification by

entering zone 2 through the points a, b, c and d. Clearly, if both L1 and L2 are kept

red, then the above specification can be satisfied trivially. However, in order for the

robot to be able to unload the trash it collected along the streets, we require that

the robot should always be able to enter region E. In summary, the goal for us is

to design a control policy for the traffic lights for one day’s operation based on the

radar information and such that the above requirements are satisfied.

The above problem can be modeled as a supervisory control problem under par-

tial observation. First, we use unobservable and uncontrollable events a1 and a2 to

represent the nondeterministic initial setting, since we do not know where the robot

starts from. Event o is used to model the event that the radar detects a robot in

region D, which is observable but not controllable. We use event c1 to represent that

there is a robot that crosses L1 (from the RHS to the LHS or from the LHS to the

RHS); this event is controllable but not observable. We define c2 analogously for the

control effect of L2. Events b1 and b2 represent that robots r1 and r2 unload their

trash, respectively; these events are unobservable and uncontrollable. The automaton

model G of this system is shown in Figure 3.7(a), in which states 9 and 10 are illegal

states.

The corresponding NB-AES the safety specification w.r.t. G is shown in Fig-

76

01 2

3 4

9

o

2c
5

2b1b

1c

1c 2c

o oo
o o

7 8

6

10

1a 2a

(a) Automaton G

{0}

{0,1,2},{ }

{3,4}

uc

{ }

o

uc

oo o

{ , }uc1c { , }uc2c

{3,4,5,7}

{ , }1c
{ }uc

uc

{3,4,6,8}

{ , }2c uc
{3,4},{ }uc

(b) The corresponding NB-AES

{0}

{3,4}

uc
{ }

o

uc

{ , }uc1c

0

1c uc

{3,4}1
o

{0,1,2},{ }

{3,4,5,7},{ , }

0 0

0

(c) UBTS U0

{0}

{3,4}

uc
{ }

o

uc

{ , }uc1c

{ , }uc2c

0

1c uc

{3,4}1

{3,4}2
o

o

{0,1,2},{ }

{3,4,5,7},{ , }

{3,4,6,8},{ , }uc2c

0 0

0

-1

(d) UBTS U1

01 2

3 4

o
5

2b

1b

1c

2c

o

o

o

o o

7

4'

1a 2a

3'

5

8

o

o

(e) L(SU1
/G)

Figure 3.7: For G: Σc = {c1, c2},Σo = {o}, and states 9 and 10 are illegal.

77

ure 3.7(b). By applying Algorithm NB-SOLU, we first obtain the initial UBTS U0

shown in Figure 3.7(c), which induces a livelock solution. Thus, we need to un-

fold from the entrance Y -state {3, 4}, which results in the UBTS U1 shown in Fig-

ure 3.7(d). UBTS U1 induces the controllable, observable, safe, and non-blocking

sublanguage L(Ũ1/G) shown in Figure 3.7(e). Moreover, this language is maximal.

This example, while simple, has important implications. First, note that the

solution obtained by Algorithm NB-SOLU is a non-IS-based solution, since it enables

c1 when state {3, 4} is visited for 2k + 1 times and it enables c2 when state {3, 4} is

visited for 2k times, k ∈ N. Moreover, we see that any fixed control decision at Y -state

{3, 4} will result in a livelock solution. This verifies our earlier assertion in Section 3.4

that IS-based solutions may not exist in general and that the unfolding steps of

Algorithm NB-SOLU are indeed needed. Second, for this problem, the supremal

controllable normal solution and the solutions obtained by using the methods in

[11,93] are all empty, even though a solution exists.

3.6 Conclusion

In this chapter, we solves the problem of synthesizing a non-blocking supervisor

for an IS-based property. This extends the results in Chapter II from the prefix-

closed case to the non-prefix-closed case. This results in a maximally permissive

non-blocking supervisor enforcing an IS-based property for a partially observed DES.

For this purpose, defined the Non-Blocking All enforcement Structure, another new

bipartite transition system obtained from the AES that takes non-blockingness into

account in addition to IS-based property. We provided a synthesis algorithm that

uses the NB-AES to synthesize the desired maximal, controllable, and observable

sublanguage. Finally, the convergence and maximality of this algorithm were proved.

This also solve the previously open problem of synthesizing a safe and non-blocking

supervisor, which is a special case of NB-MPIEP.

78

3.7 Appendix

3.7.1 Implementation of the Algorithms

In this section, we discuss implementation issues related to the construction and

synthesis algorithms in the chapter. Specifically, we answer the following two ques-

tions.

1). How to verify the liveness property defined in Definition 3.3.1?

2). How to find a local maximal live decision string γ1γ2 . . . γn for any state pair

(y, x), y ∈ QT
Y , x ∈ y in a BTS T?

The key to these two problems is to build an automaton that contains all state

connections inside of each Y -or Z-state in the BTS. We call such an automaton the

Inter-Connected System (ICS).

Definition 3.7.1. (Inter-Connected System). Given a bipartite transition system T

(w.r.t. G), its corresponding Inter-Connected System is defined as the automaton

ICST = (QICST
,ΣICST

, δICS
T
, qICS

T

0 , QICST

m), where

• QICST ⊆ (QT
Y ×X) ∪ (QT

Z ×X) is the set of states defined by

– (y, x) ∈ QICST
if y ∈ QY

T and x ∈ y,

– (z, x) ∈ QICST
if z ∈ QZ

T and x ∈ I(z);

• ΣICST
= Σ ∪ Γ is the set of events;

• δICST
: QICST × Σ → QICST

is the partial transition function defined by: for

any γ ∈ Γ, σ ∈ Σ

– δICS
T
((y, x1), γ) = (z, x2) if x1 = x2 and hTY Z(y, γ) = z

– δICS
T
((z, x1), σ) = (z, x2) if δ(x1, σ) = x2 and σ ∈ Γ(z) ∩ Σuo

– δICS
T
((z, x1), σ) = (y, x2) if δ(x1, σ) = x2, σ ∈ Γ(z)∩Σo and hTZY (z, σ) = y

79

0

2b
01 21b

3

4
5

6

1 2

1 2

14

5 6

1c 1c

11

5 6

13

2c2c

12

3 4

8 9

2c 2c

7 10

3 4

1c 1c

{ }uc

1o

1o

2o

2o

{ , }uc1c

{ , }uc1c
{ , }uc1c

{ , }uc1c
{ , }uc2c

{ , }uc2c

{ }uc { }uc

1o

1o
2o

2o

1o

1o

2o

2o

1o

1o
2o

2o

{ , }uc2c

{ , }uc2c

Figure 3.8:
Example of Inter-Connected System: The figure shows the corresponding
ICS for the automaton and its NB-AES shown in Figure 3.1. The blue
dashed rectangles and yellow dashed rectangles correspond to the Y -states
and the Z-states in the BTS, respectively.

• qICST

0 = ({x0}, x0) is the initial state;

• QICST

m = {(z, x) ∈ QICST
: x ∈ Xm} is the set of marked states.

The ICS for an EBTS U is defined analogously.

Given an automaton, we say a state is co-accessible if there is a string from this

state to a marked state and we say an automaton is co-accessible if all states in it

are co-accessible; see, e.g., [12]. The following result says that to verify the liveness

a Y -state in T it suffices to verify the co-accessibility of its corresponding states in

ICST .

Proposition 3.7.1. Given a BTS T and its Inter-Connected System ICST , a Y -state

y in T is live if and only if for any state x ∈ y in it, (y, x) ∈ QICST
is co-accessible

in ICST .

80

Proof. (⇒) Since the Y -state y is live in T , then Definition 3.3.1 implies that for any

state x ∈ y in it, there exists a decision string γ1γ2 . . . γn such that under this decision

string there exists a string s = ξ1σ1ξ2 . . . σn−1ξn, ξi ∈ (Σuo∩γi)∗, σi ∈ Σo∩γi, such that

δ(x, s) ∈ Xm. By the definition of the ICS, such a string w = γiξ1σ1γ2 . . . σn−1γnξn

also exists in ICST and δICS
T
((y, x), w) ∈ QICST

m . Thus, (y, x) is co-accessible.

(⇐) By construction. Recall that ΣICST
= Σo ∪Σuo ∪Γ. Then we first define two

natural projections PC : (Σo ∪Σuo ∪Γ)∗ → Γ∗ and PCO : (Σo ∪Σuo ∪Γ)∗ → (Σo ∪Γ)∗,

i.e., for any s ∈ (ΣICST
)∗, PC(s) is of the form γ1γ2γ3 . . . , γi ∈ Γ and PCO(s) is of the

form γ1σ1γ2σ2 . . . , γi ∈ Γ, σi ∈ Σo.

Since for any x ∈ y, (y, x) is co-accessible in ICST , we can find a string t =

e1e2 . . . em ∈ (ΣICST
)∗ such that δICS

T
((y, x), t) ∈ QICST

m . By Definition 3.3.1, it is

clear that PC(t) is a live decision string for (y, x). Consequently, y is live in T .

Corollary 3.7.1. Given a BTS T , all Y -states in T are live if and only ICST is

co-accessible.

In the construction algorithm of the NB-AES, we need to check whether or not

there exists a Y -state in a BTS that is not live. By Corollary 3.7.1, this suf-

fices to check the co-accessibility of the ICST . Specifically, we need to first build

ICSAESϕ(G), the ICS of the AES; then, for each iteration step, we check whether or

not ICSAESϕ(G) is co-accessible. If a state (y, x) ∈ QICSAESϕ(G)
is not co-accessible,

then (i) the Y -state y in AESϕ(G) should be removed and; (ii) the set of states

{(y′, x′) ∈ QICSAESϕ(G)
: y′ = y} should also be removed from the ICS; we then repeat

until the ICS is accessible.

Now we are ready to show how to find a locally maximal live decision string

γ̃1γ̃2 . . . γ̃n for (y, x), as needed in Algorithm NB-SOLU. In the proof of Proposi-

tion 3.7.1, we have already shown how to find a live decision string for a given (y, x).

For computation simplicity, we can find a shortest live path s in ICST such that

δICS
T
((y, x), s) ∈ QICST

m and get the shortest live decision string γ1γ2 . . . γn = PC(s)

81

and its corresponding run γ1σ1γ2σ2 . . . σn−1γn = PCO(s). To find a locally maximal

decision string, our approach is simply to sequentially replace each single control de-

cision in PC(s) by one that is as large as possible. Specifically, we start from γ1 and

see whether or not we can pick a control decision γ′1 in CAESNB
ϕ (G)(y) such that: (i)

γ1 ⊂ γ′1 and (ii) γ′1γ2 . . . γn is also a live decision string. If γ′1 satisfies these two

conditions, then we replace γ1 by γ′1, and try to grow γ′1, and so forth, until we can-

not find a larger one. Then we proceed to analyze γ2, γ3, . . . by the same manner.

The only difference is that when we try to replace γi by γ′i, we just need to consider

the existence of the decision string γ′iγi+1 . . . γn and do not need to consider those

that have already been grown to be maximal (namely, γ1 to γi−1). This procedure is

formally described by Algorithm L-MAX.

Algorithm 5: L-MAX

input : y and γ1σ1γ2σ2 . . . σn−1γn
output: γ̃1γ̃2 . . . γ̃n

1 i← 1, y1 ← y;
2 while i ≤ n do
3 for γ′ ∈ CAESNB

ϕ (G)(yi) do

4 if γi ⊂ γ′ and the run γ′σiγi+1σi+1 . . . σn−1γn is defined at yi in the
NB-AES then

5 γ̃i ← γ′;

else
6 γ̃i ← γi;

7 yi+1 ← hZY (hY Z(yi, γ̃i), σi);
8 i← i+ 1;

3.7.2 Complexity Analysis

Proof of Proposition 3.3.1.

Proof. First, we need to build AESϕ(G), which can be done in O(|X||Σ|2|X|+|Σc|) as

discussed earlier. For each Z-state in AESϕ(G), checking whether it is deadlock-free

can be done inO(|X||Σ|). Thus, line 2 in the algorithm can be done inO(|X||Σ|2|X|+|Σc|).

82

As discussed in Appendix 3.7.1, before starting the iteration, we need to build

ICSAESϕ(G), which has
∑

y∈QAES
Y
|y| +

∑
z∈QAES

z
|I(z)| ≤ (1 + 2|Σc|)

∑|X|
i=1 i

(|X|
i

)
=

(1 + 2|Σc|)|X|2|X|−1 number of states and 2|Σc|
∑

y∈QAES
Y
|y| + |Σ|

∑
z∈QAES

z
|I(z)| ≤

(2|Σc| + 2|Σc||Σ|)|X|2|X|−1 number of transitions; we denote these upper bounds by

n1 and n2, respectively. Thus, the construction of ICSAESϕ(G) can be done in

O(|X||Σ|2|X|+|Σc|−1).

Since we need to remove at least one Y -state for each iteration step, the whole

iteration procedure will execute at most |QAES
Y | number of times, which is bounded by

2|X|. For each iteration step, by Corollary 3.7.1, we need to verify the co-accessability

of ICSAESϕ(G), which can be done in O(n1 + n2); then we search through the state

space of QAES
Y and remove the Y -states that have no successors and the corresponding

states in the ICS, which is still bounded by O(n1 + n2). Thus, the total complexity

for the construction of the NB-AES is O(|X||Σ|22|X|+|Σc|−1).

Proof of Proposition 3.4.1

Proof. First, in Algorithm NB-SOLU, the EBTS Ũi contains at most |X|222|X| Y -

states and the same number of Z-states. Therefore, in the ICS ICSŨi , there are at

most n′1 := |X|322|X|+1 states and n′2 := |X|322|X|+|Σ|+1 transitions. The above n′1 and

n′2 are estimated based on the fact that the largest superscript of any control Y -state

y is |y| and for each iteration we introduce at most |X|2|X| transient Y -states. Now

we are ready to analyze the complexity of the synthesis algorithm.

First, let us consider the complexity of each single iteration step (Step 2-4):

• Step 2 is a livelock detection problem in the ICS of Ũi, which can be done in

O(n′1 + n′2).

• Step 3 involves two problems:

1) a shortest path search problem in the ICS of Ũi, which requires O(n′1 + n′2)

and

83

2) the problem of growing this path to be maximal. For this problem, since

such path has a length N = |X|2|X|+1, in the worst case, then it requires a

complexity of O(N2|Σc| + (N − 2)2|Σc| + · · ·+ 2|Σc|) = O((N+1)2

4
2|Σc|).

• Step 4 calls the procedure EXPAND, which can be done in O(|Σo|2|X|+|Σc| +

|Σo||X|2|X|).

Thus, the complexity of a single iteration step is of O([|X|32|X| + |Σ|]2|X|+|Σ|).

In the convergence proof of Algorithm NB-SOLU, we have already shown that

|X|2|X|−1 provides an upper bound for the number of iterations. Combining this

with the above results, we get that the total complexity of Algorithm NB-SOLU is

O([|X|32|X| + |Σ|]|X|22|X|+|Σ|).

84

CHAPTER IV

The Range Control Problem

4.1 Introduction

So far, we have solved the problem of synthesizing a non-blocking supervisor that

enforces an IS-based property. As we have shown in Chapters II and III, the supervisor

synthesis problem may not have a unique supremal solution in general. Instead, there

may be several incomparable locally maximal solutions. Our approach “randomly”

selects one solution among these locally maximal solution. In particular, the maximal

solution obtained is a particular type of maximal solutions, namely, greedy maximal

solutions. In a greedy maximal solution, the supervisor tries to enable as many events

as possible at each control decision instant. However, no consideration is given to

including some minimum required behavior in these solutions, a meaningful criterion

when choosing among locally maximal solutions. This phenomenon is illustrated in

Figure 4.1.

In order to resolve the above issue, we consider in this chapter a generalized su-

pervisor synthesis problem called the Maximally-Permissive Range Control Problem.

In this problem, we not only want to find a locally maximal supervisor, but we also

require that the synthesized maximal supervisor contain a given behavior. Namely,

we want to find a “meaningful” maximal solution. However, instead of investigating

the general IS-based property with non-blockingness requirement as we did in Chap-

85

𝑅

ℒ(𝐆)
𝑀𝑎𝑥1

𝐾

𝑀𝑎𝑥2

Figure 4.1:
Let G be the system, K be the legal behavior and R be the required
behavior. Max1 and Max2 are two incomparable maximal solutions in
K, i.e., Max1 6⊂ Max2 and Max2 6⊂ Max1. However, Max1 contains
the required behavior R, while Max2 does not contain any string in R.

ters II and III, in this chapter, we only restrict our attention to safety requirement

and not do consider the issue of blockingness. More specifically, we consider two

specification languages: the safety specification language K, which is also referred

to as the upper bound language, and a prefix-closed lower bound language R ⊆ K,

which models the required behavior that the closed-loop system must achieve. To

solve the range control problem, we present a new synthesis algorithm based on the

two notions of AES and Control Simulation Relation (CSR). Although we only con-

sider prefix-closed languages, i.e., nonblockingness is not considered, to the best of

our knowledge, the maximally-permissive range control problem we solve herein was

an open problem even in this case.

This chapter is organized as follows. In Section 4.2, we formulate the maximally-

permissive range control problem that we solve in the chapter. In Section 4.3, we

first reveal that the notion of strict sub-automaton plays an important role in the

range control problem. Then we provide a new constructive approach for computing

the infimal supervisor. In Section 4.4, we define the notion of Control Simulation

Relation (CSR). The CSR is used to resolve the future dependency issue, which is the

main difficulty in handling maximal permissiveness with the lower bound constraint.

In Section 4.5, we first provide an algorithm to synthesize a maximally-permissive

supervisor that contains the required behavior. Then we prove the correctness of

the proposed algorithm. We also discuss how to verify whether a given supervisor is

86

maximal or not. Finally, we conclude the chapter in Section 4.6.

4.2 Problem Formulation

In this chapter, we consider a generalized supervisory control synthesis problem,

called the range control problem, where we have two prefix-closed specification lan-

guages:

• the upper bound language K=K⊆L(G); and

• the lower bound language R=R⊆K.

The upper bound K describes the legal behavior of the system and we say that a

supervisor S is safe if L(S/G) ⊆K. Recall that the maximal safe supervisor may

not be unique and there may be two incomparable maximal supervisors S1 and S2

such that L(S1/G) 6⊂ L(S2/G) and L(S2/G) 6⊂ L(S1/G). In order to synthesize a

“meaningful” maximal solution, we introduce a lower bound language R describing

the required behavior that the closed-loop system must achieve. Examples of using

the range requirement to impose design constraints can be found in [38, 52, 53, 58].

We now formulate the Maximally-Permissive Range Control Problem (MPRCP):

Problem 4. (Maximally-Permissive Range Control Problem). Given system G, low-

er bound language R and upper bound language K, synthesize a maximally-permissive

supervisor S∗ : P (L(G))→ Γ such that R ⊆ L(S∗/G) ⊆ K.

Remark 4.2.1. We make several comments on MPRCP.

1. First, under the assumption that Σc ⊆ Σo, MPRCP has a unique solution, if one

exists. Specifically, it suffices to compute the supremal controllable and normal

sub-language of K, denoted by K↑CN , and test whether or not R ⊆ K↑CN . If

so, then K↑CN is the unique supremal solution; otherwise, there does not exist a

solution to MPRCP.

87

2. Second, when the lower bound requirement is relaxed, i.e., R = {ε}, MPRCP is

solved by the results in Chapter II, since safety is an IS-based property and it

suffices to synthesize an arbitrary maximal supervisor without taking the lower

bound into consideration.

3. Finally, if the maximal permissiveness requirement is relaxed, then we just need to

compute infimal controllable and observable language of R, denoted by R↓CO, and

test whether or not R↓CO ⊆ K. If so, then R↓CO is the most conservative solution;

otherwise, MPRCP does not have a solution.

Hence, many existing problems solved in the literature are special cases of MPRCP.

However, to the best of our knowledge, MPRCP is still open for the general case,

which is clearly more difficult than the above special cases.

Throughout this chapter, we use K = (XK ,Σ, δK , x0,K) to denote the automaton

generating K, and use R = (XR,Σ, δR, x0,R) to denote the automaton generating

R. For the sake of simplicity and without loss of generality, as we have discussed

in Section 2.7.1. we assume that K @ G. Therefore, in the chapter, we consider

IS-based property ϕsafe, which is essentially the upper bound (safety) requirement,

defined by:

∀i ∈ 2X : ϕsafe(i) = 1⇔ i ⊆ XK (4.1)

Since ϕsafe is uniquely defined based on K, hereafter, we also write the AESAESϕsafe
(G)

as AES(G,K).

4.3 Synthesis of the Infimal Supervisor

Although there does not exist a unique maximal safe supervisor in general, there

does exist a unique infimal supervisor that contains the lower bound. Here we explain

the intuition of the existence of the infimal supervisor; formal proof can be found

88

in [68]. Let S1 and S2 be two safe supervisors. Then we can always construct a new

supervisor S12 defined by ∀s ∈ Σ∗o : S12(s) = S1(s) ∩ S2(s). It is easy to show that

L(S12/G) = L(S1/G) ∩ L(S2/G). Therefore, if both S1 and S2 achieves R, then S12

also achieves R. Hence, there always exists a unique infimal supervisor that achieves

R. We denote by R↓CO the closed-loop behavior of the unique infimal supervisor; this

language is also referred to as the infimal prefix-closed controllable and observable

super-language of R [68].

The goal of this section is to synthesize a BTS TR that realizes the infimal super-

visor achieving the lower bound, i.e., L(STR/G) = R↓CO. This infimal supervisor will

be further used as a basis to solve MPRCP. Before we start this section, we introduce

the following monotonicity properties of the AES defined for the safety specification.

Let y ∈ QAES
Y be a Y -state in AES(G,K). We say that a control decision γ ∈ Γ is

safe at y if γ ∈ CAES(G,K)(y). Then we have the following monotonicity properties.

Proposition 4.3.1. (Monotonicity Properties [109]).

1. Any control decision that is safe at Y -state y1 is also safe at Y -state y2 ⊆ y1.

2. If control decision γ1 is safe at Y -state y, then so is any control decision γ2 ⊆ γ1.

Note that the monotonicity properties only hold for safety specification in the

prefix-closed case. In general, they do not hold for other IS-based property in the

non-prefix-closed case.

4.3.1 The Role of Strict Sub-automaton

Recall that the goal of this section is to construct a BTS TR such that L(STR/G) =

R↓CO. Although we know that R↓CO is shown to be a regular language, this fact in

itself is not sufficient for the purpose of synthesis. Specifically, we are interested

in whether or not R↓CO can be achieved by an IS-based supervisor which can be

realized by a BTS. This question is very important, since it essentially asks what is

89

{ }

1

2 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑢

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

1

2 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑢

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

1

3′, 4,5′ , {𝑐1}

𝑏

{𝑐1}

{𝑐2}

{ }

3,4′, 6′ , {𝑐2}

{𝑐2}

{𝑐1}

{ }

𝑎

3,4′ , { }

3,4′

1,2 , { }

𝑎, 𝑏
{𝑐1}

{ }

{ }
1

3,4,5 , 3,4

3,4 , { }

1,2 , {𝑐1} 3′, 4

3′, 4 , { }

3,4′, 5,5′ , {𝑐1} 3′, 4,6,6′ , {𝑐2}

1 4 3 5 6
𝑎 𝑏 𝑐1 𝑐2

{𝑐1}
3,4,6 ,
{𝑐2}

{𝑐2}

(a) K and G

{ }

ܽ ܾ ܾܽ � ܿଵ ܿଶ ܿଶ
ܿଶ ܿଵ

ܿଵ

ܽ ܾ ܾܽ �
ܿଵ ܿଶ

ܿଶ
ܿଶ ܿଵ

ܿଵ ’ ’’ ’ܿଶ ܿଵ ܿଶ ܿଵ ܿଶ ܿଵ
ͳ

͵′, Ͷ,ͷ′ , {ܿଵ}
ܾ{ܿଵ}

{ܿଶ}
{ }

͵,Ͷ′, ͸′ , {ܿଶ}{ܿଶ}
{ܿଵ}

{ }ܽ
͵,Ͷ′ , { }

͵,Ͷ′

ͳ,ʹ , { } ܽ, ܾ {ܿଵ} { }

{ }

ͳ

͵,Ͷ,ͷ , ͵,Ͷ ͵,Ͷ , { }

ͳ,ʹ , {ܿଵ}͵′, Ͷ
͵′, Ͷ , { }

͵,Ͷ′, ͷ,ͷ′ , {ܿଵ}͵′, Ͷ,͸,͸′ , {ܿଶ}

ܽ ܾܿଵ ܿଶ {ܿଵ}

͵,Ͷ,͸ , {ܿଶ}

{ܿଶ}

(b) AES(G,K)

{ }

1

2 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑢

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

1

2 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑢

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

1

3′, 4,5′ , {𝑐1}

𝑏
{𝑐1}

{𝑐2}

{ }

3,4′, 6′ , {𝑐2}

{𝑐2}

{𝑐1}

{ }

𝑎

3,4′ , { }

3,4′

1,2 , { }

𝑎, 𝑏
{𝑐1}

{ }

{ }
1

3,4,5 , 3,4

3,4 , { }

1,2 , {𝑐1} 3′, 4

3′, 4 , { }

3,4′, 5,5′ , {𝑐1} 3′, 4,6,6′ , {𝑐2}

1 4 3 5 6
𝑎 𝑏 𝑐1 𝑐2

{𝑐1}
3,4,6 ,
{𝑐2}

{𝑐2}
(c) R

Figure 4.2: For G, we have Σo = {a, b} and Σc = {c1, c2}.

the right state space in order to realize the infimal supervisor that contains R. One

may conjecture that there always exists a BTS TR such that L(STR/G) = R↓CO

when R↓CO ⊆ K. However, this is not true in general as illustrated by the following

example.

Example 4.3.1. Let us consider the system G shown in Fig. 4.2(a). The upper

bound automaton K is obtained by removing the single illegal state 7 from G. Then

the AES for safety specification AES(G,K) is shown in Fig. 4.2(b). We consider a

lower bound language R which is generated by automaton R shown in Fig. 4.2(c). One

can easily check that any IS-based supervisor S does not contain R. This is because

events a and b lead to the same Y -state {3, 4} in any BTS and control decision S(a)

and S(b) should always be the same in any IS-based supervisor S. However, we can

find a non-IS-based supervisor S ′, which enables c1 after observing a and enables c2

after observing b, such that R↓CO = L(S ′/G).

The reason why there may not exist an IS-based supervisor that achieves R↓CO

is explained as follows. Suppose that R is a sub-automaton of K such that we can

90

match the state space of R with the state space of K. Let s ∈ P (R) be an observable

string in P (s) and define

yR(s) = {x ∈ XR : ∃t ∈ R ∩ (Σ∗Σo ∪ {ε}) s.t. δR(x0, t) = x ∧ P (t) = s}

as the “information state” of R reached upon observing s, which is analogous to a

Y -state in a BTS. Then it is possible that two different “information states” under the

original control strategy can be merged as a single information state under the new

(more permissive) control strategy. As a consequence, information is lost by using

the newly reached information state. We call this phenomenon information merge.

For example, for the lower bound automaton R shown in Fig. 4.2(c), we have that

yR(a) = {3} and yR(b) = {4}. In order to achieve R, in addition to enabling events a

and b initially, we also need to enable event u, since it is uncontrollable. Then the two

different “information states” {3} and {4} in R, which are reached by observing a

and b, respectively, will be merged as a single state {3, 4}. However, simply knowing

state {3, 4} is not sufficient for making control decisions in order to contain the lower

bound behavior. To find an IS-based solution, state {3, 4} has to be split into two

states: one is reached by observing a and the other is reached by observing b.

Let y ∈ 2X be an information state and suppose that XR ⊆ X. We denote by

y|R the restriction of y to the state space of R, i.e., y|R = {x ∈ XR : x ∈ y}. The

following result says that the state merging phenomenon described above will not

occur when R is a strict sub-automaton of K.

Proposition 4.3.2. Assume that R @ K @ G. Then for any supervisor S such that

R ⊆ L(S/G), we have that

1. ∀s∈P (R) : ISYS (s)|R = yR(s);

2. ∀s, t∈P (R) : yR(s) 6=yR(t)⇒ISYS (s) 6=ISYS (t).

91

Proof. First, we show the first statement. By the definition of ISYS , we have that

ISYS (s) ={x ∈ X : ∃w ∈ {ε} ∪ (L(S/G) ∩ Σ∗Σo) s.t. δ(x0, w) = x ∧ P (w) = s}

={x ∈ XR : ∃w ∈ {ε} ∪ (R ∩ Σ∗Σo) s.t. δR(x0, w) = x ∧ P (w) = s} ∪ AG\R

=yR(s) ∪ AG\R

where AG\R = {x∈X : ∃w∈{ε}∪((L(S/G)\R)∩Σ∗Σo) s.t. δ(x0, w)=x∧P (w)=s} ⊆

X \ XR. The reason why we know that AG\R does not contain a state in R is that

we have already assumed that R is a strict sub-automaton of both K and G. Hence,

any string that goes outside of R will not go back to the state space of R. Therefore,

we have that

ISYS (s)|R = yR(s)|R ∪ AG\R|R = yR(s) (4.2)

Next, we show the second statement. Let us consider two arbitrary strings s, t ∈

P (L(R)) such that yR(s) 6= yR(t). By the first statement, s we can write ISYS (s) in

the form of ISYS (s) = yR(s) ∪ AG\R, where AG\R ⊆ X \XR. Similarly, we can write

ISYS (t) in the form of ISYS (t) = yR(t) ∪ BG\R, where BG\R ⊆ X \ XR. Note that

yR(s), yR(t) ⊆ XR. Therefore, since yR(s) 6= yR(t), we have ISYS (s) 6= ISYS (t).

Remark 4.3.1. The intuition of the above result is explained as follows. Since R @ K,

any newly introduced string, namely a string in L(K) \ L(R), must lead to a state

in XK \ XR. Therefore, if strings s and t lead to two distinct “information states”

y1 = yR(s) and y2 = yR(t) under the original supervisor, respectively, then the newly

reached Y -states y′1 and y′2 under a supervisor whose closed-loop language contains

R must be in the form of y′1 = y1 ∪ ŷ1 and y′2 = y2 ∪ ŷ2, respectively, where ŷ1, ŷ2 ⊆

XK \XR. Since y1 6= y2, we know that y′1 6= y′2.

Based on Lemma 4.3.2, we make the following assumption hereafter.

Assumption 1: R @ K @ G.

92

Remark 4.3.2. Note that the above assumption is without loss of generality: if R,

K and G do not satisfy this assumption, then we can always refine the state spaces

of R, K and G by constructing new automata R′, K′ and G′ such that 1) R′ @

K′ @ G′; and 2) L(R) = L(R′), L(K) = L(K′) and L(G) = L(G′). Such a pre-

processing algorithm can be found in the Appendix, which generalizes the procedure

in [18] from two automata to three automata. In the worst case, the refined system

model G′ contains |X| × (|XK |+ 1)× (|XR|+ 1) states. Therefore, only polynomial-

space refinement is needed to make Assumption 1 hold; this is different from the

state-partition-automata-based refinement in the literature, which has an exponential

complexity. This assumption and Proposition 4.3.2 play important roles in this paper;

they will also be involved several times in our later development. Finally, we remark

that the reason why we assume that K @ G and the reason why we assume that

R@K are different. We assume that K@G to guarantee that legality of strings is

fully captured by states. We assume that R@K to make sure that the information

merge phenomenon will not occur.

Example 4.3.2. Let us return to Example 4.3.1. The original automata R and K

in Figs. 4.2(c) and 4.2(a) do not satisfy the assumption that R @ K. Therefore, we

refine the state spaces of K and G and obtain new automata K′ and G′ shown in

Fig. 4.3(a) such that R @ K′ @ G′, L(K) = L(K′) and L(G) = L(G′). The AES

AES(G′,K′) for the refined system is shown in Fig. 4.3(b). We see that the original

state {3, 4} in AES(G,K) splits into two states {3′, 4} and {3, 4′} in AES(G′).

4.3.2 Synthesis Algorithm

We are now ready to show how to compute the supervisor that achieves R↓CO. In

particular, we show that such a supervisor can be realized by a BTS.

93

{ }

ܽ ܾ ܾܽ � ܿଵ ܿଶ ܿଶ
ܿଶ ܿଵ

ܿଵ

1

2 4 3

5 6 7

ܽ ܾ ܾ ܽ �
ܿଵ ܿଶ

ܿଶ
ܿଶ ܿଵ

ܿଵ 3 ’ 4 ’
5 6 ’ ’ ܿଶ ܿଵ ܿଶ ܿଵ ܿଶ ܿଵ

ͳ
͵′, Ͷ,ͷ′ , {ܿଵ}

ܾ{ܿଵ}
{ܿଶ}

{ }
͵,Ͷ′, ͸′ , {ܿଶ}{ܿଶ}

{ܿଵ}
{ }ܽ͵,Ͷ′ , { }

͵,Ͷ′

ͳ,ʹ , { }ܽ, ܾ{ܿଵ} { }
{ }ͳ

͵,Ͷ,ͷ , ͵,Ͷ͵,Ͷ , { }

ͳ,ʹ , {ܿଵ}͵′, Ͷ
͵′, Ͷ , { }

͵,Ͷ′, ͷ,ͷ′ , {ܿଵ}͵′, Ͷ,͸,͸′ , {ܿଶ}

ܽ ܾܿଵ ܿଶ {ܿଵ} ͵,Ͷ,͸ ,{ܿଶ}{ܿଶ}

(a) K′ and G′

{ }

1

2 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑢

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

1

2 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑢

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

1

3′, 4,5′ , {𝑐1}

𝑏
{𝑐1}

{𝑐2}

{ }

3,4′, 6′ , {𝑐2}

{𝑐2}

{𝑐1}

{ }

𝑎

3,4′ , { }

3,4′

1,2 , { }

𝑎, 𝑏
{𝑐1}

{ }

{ }
1

3,4,5 , 3,4

3,4 , { }

1,2 , {𝑐1} 3′, 4

3′, 4 , { }

3,4′, 5,5′ , {𝑐1} 3′, 4,6,6′ , {𝑐2}

1 4 3 5 6
𝑎 𝑏 𝑐1 𝑐2

{𝑐1}
3,4,6 ,
{𝑐2}

{𝑐2}

(b) AES(G′,K′)

Figure 4.3:
In Fig. 4.3(a), G′ is the entire automaton and K′ is obtained by removing
illegal state 7 from G′.

Let y ⊆ XR be a set of states in R. We first define the following set of events

ΓR(y) := {σ ∈ Σ : ∃x ∈ y,∃s ∈ Σ∗uo s.t. δR(x, sσ)!}

The following result reveals that ΓR(y) is indeed the set of events that should be

enabled at y in order to achieve R.

Proposition 4.3.3. For any supervisor S : P (L(G))→ Γ, R ⊆ L(S/G), if and only

if,

∀s ∈ P (L(S/G)) : ISYS (s)|R 6= ∅ ⇒ ΓR(ISYS (s)|R) ⊆ S(s).

Proof. (⇒) By contradiction. Assume that ∃s ∈ P (L(S/G)) such that ISYS (s)|R 6= ∅

and ΓR(ISYS (s)|R) 6⊆ S(s). Let σ be an event in ΓR(ISYS (s)|R)\S(s). By the definition

of ΓR(·), we have that ∃x ∈ ISYS (s)|R,∃w ∈ Σ∗uo s.t. δR(x,wσ)!. Since x ∈ ISYS (s)|R,

there exists a string t ∈ R such that P (t) = s and δR(x0, t) = x, which implies that

twσ ∈ R. However, since σ /∈ S(s) = S(P (tw)), we know that twσ /∈ L(S/G). This

contradicts the fact that R ⊆ L(S/G).

(⇐) It suffices to show that, t ∈ R ⇒ t ∈ L(S/G). We proceed by induction on

the length of the projection of t.

Induction Basis: For string t ∈ R such that |P (t)| = 0, we know that t ∈

94

(ΓR({x0}) ∩ Σuo)
∗ ∩ R. Since ΓR({x0}) = ΓR(ISYS (ε)) ⊆ S(ε), we know that t ∈

(S(ε) ∩ Σuo)
∗ ∩ L(G) ⊆ L(S/G), i.e., the induction basis holds.

Induction Hypothesis: Assume that t ∈ R ⇒ t ∈ L(S/G) for any t such that

|P (t)| = k.

Induction Step: To prove the induction step, we show that vσw ∈ R ⇒ vσw ∈

L(S/G), where |P (v)| = k, σ ∈ Σo and w ∈ Σ∗uo. Note that any string t such that

|P (t)| = k+ 1 can be written in the above form. Let v′ ∈ {v} be the longest prefix of

v that ends up with an observable event and let x = δ(x0, v
′) ∈ XR. Since |P (v′)| =

|P (v)| = k, by the induction hypothesis, we know that v′ ∈ L(S/G). Therefore,

x = δ(x0, v
′) ∈ ISYS (P (v)). By the definition of ΓR(·), all events between v′ and vσ

are in ΓR({x}). Since x ∈ XR and x ∈ ISYS (P (v)), we know that ISYS (P (v))|R 6= ∅.

Therefore, ΓR({x}) ⊆ S(P (v)), which implies that vσ ∈ L(S/G). Similarly, let

x′ = δ(x0, vσ) ∈ XR. We know that x′ ∈ ISYS (P (v)σ) and ISYS (P (v)σ)|R 6= ∅. Again,

since ΓR({x′}) ⊆ S(P (v)σ), we have sσw ∈ L(S/G). This completes the induction

step.

Now, we are ready to present the algorithm that constructs the BTS TR such

that L(STR/G) = R↓CO. Specifically, the BTS TR is constructed by a depth-first

search as follows. Initially, we start from the initial Y -state y0. For each Y -state

y encountered, if y|R 6= ∅, we choose ΓR(y|R) ∪ Σuc as the unique control decision

defined at y. Note that y|R 6= ∅ implies that y can be reached by some string in P (R),

i.e., the supervisor is not sure whether or not the system has already gone outside the

lower bound language R. Therefore, we choose ΓR(y|R) ∪Σuc as the control decision

since it is the smallest control decision we need in order to contain R. If y|R = ∅,

then we know for sure that the system has already gone outside R and we just choose

Σuc as the control decision, i.e., all controllable events are disabled. To summarize

95

the above rule, in the constructed BTS TR, we have that

∀y ∈ QTR
Y : cTR(y) =

 ΓR(y|R) ∪ Σuc if y|R 6= ∅

Σuc if y|R = ∅

Based on the above discussion, Algorithm INF-SYNT is proposed to constructed TR.

Namely, for each Y -state encountered, we choose one control decision based on the

above-discussed rules; for each Z-state encountered, we need to consider all observable

events that are feasible. Such a depth-first search is implemented by the recursive

procedure termed DoDFS. Moreover, Algorithm INF-SYNT returns “No Solution”

when a Y -state y such that ΓR(y|R) ∪ Σuc 6∈ CAES(G,K)(y) is encountered. This

implies that achieving the lower bound R will violate the safety specification, either

immediately or unavoidably in the future. In this case, MPRCP has no solution. Of

course, R↓CO always exists, but our focus herein is on solving MPRCP. (If the focus

is solely on the computation of R↓CO, then it suffices to set K = L(G) in the above

development.)

Next, we first illustrate Algorithm INF-SYNT by an example. Then we prove its

correctness.

Example 4.3.3. Let us return to the running example in this chapter. The input

parameters of Algorithm INF-SYNT are R and AES(G′,K′) shown in Figs. 4.2(c)

and 4.3(b), respectively. We start procedure DoDFS from the initial Y -state y0 = {1}.

Since {1}|R 6= ∅, we take control decision ΓR({1}) ∪ Σuc = Σuc (which is depicted

as {} in Fig. 4.3(b) for simplicity since all events in it are uncontrollable events),

and move to the successor Z-state ({1, 2}, {}). Then we need to consider all possible

event occurrences from this Z-state. If a occurs, then Y -state {3, 4′} is reached. Since

{3, 4′}|R = {3} 6= ∅, we need to take control decision ΓR({3}) ∪ Σuc = {c1} ∪ Σuc.

Similarly, we need to take control decision {c2} ∪ Σuc if Y -state {3′, 4} is reached.

The above procedure yields deterministic BTS TR, which is the part highlighted in

96

Fig. 4.3(b).

Algorithm 6: INF-SYNT

input : R and AES(G,K).
output: TR.

1 QTR
Y ← {y0}, QTR

Z ← ∅;
2 DoDFS(y0, TR);
3 return TR;

procedure DoDFS(y, TR);
4 if y|R 6= ∅ then
5 if ΓR(y|R) ∪ Σuc ∈ CAES(G,K)(y) then
6 Act← ΓR(y|R) ∪ Σuc;

else
7 return “No Solution”;

else
8 Act← Σuc;

9 z ← hY Z(y, Act);

10 Add transition y
Act−−→ z to hTRY Z ;

11 if z /∈ QTR
Z then

12 QTR
Z ← QTR

Z ∪ {z};
13 for σ ∈ Σo : hZY (z, σ)! do
14 y′ ← hZY (z, σ);

15 Add transition z
σ−→ y′ to hTRZY ;

16 if y′ /∈ QTR
Y then

17 QTR
Y ← QTR

Y ∪ {y′};
18 DoDFS(y′, TR);

We now prove the correctness of Algorithm INF-SYNT. First, we show that,

under the assumption that R @ K @ G, Algorithm INF-SYNT will never return “No

Solution” when a solution exists.

Theorem IV.1. Algorithm INF-SYNT returns “No Solution” if and only if R↓CO 6⊆

K.

Proof. (⇐) By contraposition. Suppose that Algorithm INF-SYNT returns BTS TR.

Since STR is an IS-based supervisor, we know that, for any s ∈ P (L(STR/G)) such

97

that ISYSTR
(s)|R 6= ∅, we have

STR(s) = cTR(ISYSTR
(s)) = ΓR(ISYSTR

(s)|R) ∪ Σuc

Therefore, by Proposition 4.3.3, we know thatR ⊆ L(STR/G). Then, by the definition

of ↓CO, we know that R↓CO ⊆ L(STR/G). Moreover, STR is safe since it is an AES-

included supervisor, i.e., L(STR/G) ⊆ K. Overall, we know that R↓CO ⊆ K.

(⇒) By contradiction. Assume that Algorithm INF-SYNT returns “No Solution”

but R↓CO ⊆ K. Therefore, we know that there exists a supervisor S such that

R ⊆ L(S/G) ⊆ K and there exists a sequence in the form of

y0
ΓR(y0|R)∪Σuc−−−−−−−−→ z1

σ1−→ y1 . . .
ΓR(yn−1|R)∪Σuc−−−−−−−−−−→ zn

σn−→ yn (4.3)

in procedure DoDFS in Algorithm INF-SYNT such that

1. ∀i = 0, . . . , n : yi|R 6= ∅; and

2. ∀i = 0, . . . , n− 1 : ΓR(yi|R) ∪ Σuc ∈ CAES(G,K)(yi); and

3. ΓR(yn|R) ∪ Σuc 6∈ CAES(G,K)(yn).

Next, we show by induction that, for any i = 0, . . . , n, we have that

yi ⊆ ISYS (σ1 . . . σi) and yi|R = ISYS (σ1 . . . σi)|R (4.4)

Clearly, the induction basis holds for i = 0, since y0 = ISYS (ε). Let us assume that

Equation (4.4) holds for i = k; we need to show that Equation (4.4) holds for i = k+1.

98

By definition, we know that

yk+1

={x∈X : ∃x′∈yk,∃w∈((ΓR(yk|R) ∪ Σuc) ∩ Σuo)
∗ s.t. δ(x′, wσk+1) = x} (4.5)

={x∈XR : ∃x′∈yk|R,∃w∈((ΓR(yk|R) ∪ Σuc) ∩ Σuo)
∗ s.t. δR(x′, wσk+1) = x} ∪ AG\R

(4.6)

where AG\R ⊆ X \ XR. Note that the second equality is a consequence of the as-

sumption that R @ G, since any string that leaves the state space of R must lead to

a state in X \XR. Similarly, we can write

ISYS (σ1 . . . σk+1)

={x∈X : ∃x′∈ISYS (σ1 . . . σk),∃w∈(S(σ1 . . . σk) ∩ Σuo)
∗ s.t. δ(x′, wσk+1)=x} (4.7)

={x∈XR : ∃x′∈ISYS (σ1 . . . σk)|R,∃w∈(S(σ1 . . . σk)∩Σuo)
∗ s.t. δR(x′, wσk+1) = x}

∪BG\R (4.8)

={x∈XR : ∃x′∈ISYS (σ1 . . . σk)|R,∃w∈((ΓR(ISYS (σ1 . . . σk)|R) ∪ Σuc)∩Σuo)
∗

s.t. δR(x′, wσk+1) = x} ∪BG\R (4.9)

={x∈XR : ∃x′∈yk|R,∃w∈((ΓR(yk|R) ∪ Σuc) ∩ Σuo)
∗ s.t. δR(x′, wσk+1) = x} ∪BG\R

(4.10)

where BG\R ⊆ X \XR. Note that the second equality also comes from the assumption

that R @ G. The third equality comes from the fact that, for any string

w ∈ ((S(σ1 . . . σk) \ ΓR(ISYS (σ1 . . . σk)|R)) ∩ Σuo)
∗

δR(x′, wσk+1) is not defined for x′ ∈ XR. The last equality follows from the induction

hypothesis that yk|R = ISYS (σ1 . . . σk)|R.

Therefore, by Equations (4.6) and (4.10), we know that yk+1|R = ISYS (σ1 . . . σk+1)|R.

99

Moreover, by the induction hypothesis and Proposition 4.3.3, we know

ΓR(yk|R) = ΓR(ISYS (σ . . . σk)|R) ⊆ S(σ1 . . . σk). (4.11)

Since Equation (4.4) holds for i = k, combing Equations (4.5), (4.7) and (4.11)

together, we know that yk+1 ⊆ ISYS (σ1 . . . σkσk+1), i.e., Equation (4.4) holds for

i = k + 1.

Now, let us go back to the sequence in Equation (4.3). Since L(S/G) ⊆ K, we

know that

S(σ1 . . . σn) ∈ CAES(G,K)(IS
Y
S (σ1 . . . σn)) (4.12)

We have proved that yn ⊆ ISYS (σ1 . . . σn). Then, by Proposition 4.3.1, we know

that S(σ1 . . . σn) ∈ CAES(G,K)(yn). Moreover, since we have shown that ΓR(yn|R) =

ΓR(ISYS (σ1 . . . σn)|R), by Proposition 4.3.3, we know that ΓR(yn|R)∪Σuc ⊆ S(σ1 . . . σn).

Then, by Proposition 4.3.1 again, we know that ΓR(yn|R) ∪ Σuc ∈ CAES(G,K)(yn).

However, this is a contradiction.

Remark 4.3.3. Note that the “only if” part of the proof of the above theorem relies on

the assumption that R @ K. In fact, if R @ G does not hold, then Algorithm INF-

SYNT may return “No Solution” even whenR↓CO ⊆ K. For example, let us use R and

AES(G,K) shown in Figs. 4.2(c) and 4.2(b), respectively, as the input parameters

of Algorithm INF-SYNT, where R is a sub-automaton of G but not a strict sub-

automaton. Then, after taking control decision Σuc at the initial state and observing

event a, we will reach Y -state {3, 4}. Since ΓR({3, 4}) ∪ Σuc = {c1, c2} ∪ Σuc /∈

CAES(G,K)({3, 4}), Algorithm INF-SYNT returns “No Solution”. However, a solution

does exist since R↓CO ⊆ K. This highlights our earlier assertion that the strict

sub-automaton condition plays an important role in the synthesis algorithm.

The next result reveals that the BTS returned by Algorithm INF-SYNT is indeed

the one that realizes the infimal safe supervisor.

100

Theorem IV.2. Suppose that Algorithm INF-SYNT returns BTS TR. Then we have

L(STR/G) = R↓CO.

Proof. We prove this by contradiction. Let us assume that L(STR/G) 6= R↓CO. In

the proof of Theorem IV.1, we have shown that R ⊆ L(STR/G). Then we know that

there exists a supervisor S ′ such that R ⊆ L(S ′/G) ⊂ L(STR/G). Therefore, we

know that there exists an observable string s ∈ P (L(S ′/G)) ∩ P (L(STR/G)) such

that S ′(s) ⊂ STR(s). For string s, we have the following two cases.

Case 1: ISYSTR
(s)|R = ∅.

In this case, by Algorithm INF-SYNT, we know that STR(s) = cTR(ISYSTR
(s)) = Σuc.

However, it contradicts the fact that S ′(s) ⊂ STR(s), since S ′(s) always contains Σuc.

Case 2: ISYSTR
(s)|R 6= ∅.

In this case, by Algorithm INF-SYNT, we know that STR(s) = ΓR(ISYSTR
(s)|R)∪Σuc.

Since R ⊆ L(S ′/G), by Proposition 4.3.3, we know that ΓR(ISYS′(s)|R) ∪ Σuc ⊆

S ′(s). Moreover, by Proposition 4.3.2, we know that ISYS′(s)|R = ISYSTR
(s)|R = yR(s),

since both S ′ and STR contains R. This implies that ΓR(ISYSTR
(s)|R) ∪ Σuc ⊆ S ′(s).

However, this also contradicts the fact that S ′(s) ⊂ STR(s).

Remark 4.3.4. Although language-based formulas for R↓CO were provided in [44,68],

the formula-based approach does not tell us what is the right structure to realize the

supervisor achieving R↓CO. To the best of our knowledge, no constructive approach

for R↓CO, in terms of supervisor, is provided in the literature. The results in this

section not only provide a direct constructive approach to compute the infimal prefix-

closed controllable and observable super-language, but also provides a new structural

property about the corresponding infimal supervisor. In particular, we show that,

under the assumption that R @ K @ G, 2X is sufficient enough to represent this

supervisor, i.e., the infimal supervisor can be written in the form of STR : 2X → Γ.

Moreover, the BTS TR that realizes the infimal supervisor will be further used as a

basis to synthesize a maximal safe supervisor containing R. This will be discussed in

101

Section 4.5.

4.4 Control Simulation Relation

In this section, we first discuss the difficulty that arises in solving the range control

problem. Then we define the notion of Control Simulation Relation (CSR) as the tool

to overcome the difficulty.

4.4.1 Difficulty in Handling the Lower Bound

In order to synthesize a maximal supervisor, the general idea is to guarantee by

construction that the control decision made by the supervisor at each instant cannot

be improved any further. However, this is not an easy task. Suppose that y ∈ QAES
Y

is a Y -state in the AES; we know that any control decision in CAES(G,K)(y) is a safe

control decision. Therefore, if there is no lower bound requirement and one is only

interested in the safety upper bound K, then we can simply pick a “greedy maximal”

decision from CAES(G,K)(y). This is essentially the strategy we use in Chapters II

and II; a similar strategy (but not based on the AES) is used in [4]. However,

the following example illustrates how to choose a control decision from CAES(G,K)(y)

becomes much more complicated when the lower bound specification R has to be

considered.

Example 4.4.1. Let us consider automata R,K and G shown in Figs. 4.4(a), 4.4(b)

and 4.4(c), respectively, where we have R @ K @ G. Let Σc = {v, w} and Σo =

{a, b, v}. The AES AES(G,K) is shown in Fig. 4.4(d). By applying Algorithm INF-

SYNT, we construct BTS TR that realizes the infimal supervisor achieving R↓CO; TR

is shown in Fig. 4.4(e). Initially, TR chooses to disable w, i.e., cTR(y0) = {}, while

enabling w is also a safe choice at the initial Y -state according to the AES. It seems

that choosing {w} provides more behavior than choosing {}. However, if we choose

102

𝑎

𝑎

{}

{ } {𝑤} 1,2 ,

{}

3,4

3,4 , { }

{𝑤}

1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

1

3

𝑎 𝑣
1

3

2

5

𝑎

𝑤
6

4 7

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

𝑣

𝑣

1 , { }

{𝑣}
𝑣

3 , {𝑣}

3 , {}

{𝑣, 𝑤}

{𝑣, 𝑤}

1

3,5 ,
3

{𝑤}

5,6 , {𝑤} 3,5 , {𝑤} 6

{𝑤}
3,4,5 ,

{𝑤}

𝑏 𝑏
𝑏

𝑏 {𝑤}

𝑣

𝑎

{ }
1 , { }

{𝑣}
𝑣

3 , {𝑣}

1

3

1

3

5

𝑎

𝑤
6

𝑣

𝑤

𝑏

1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑤

𝑏

𝑏

(a) R

𝑎

𝑎

{}

{ } {𝑤} 1,2 ,

{}

3,4

3,4 , { }

{𝑤}

1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

1

3

𝑎 𝑣
1

3

2

5

𝑎

𝑤
6

4 7

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

𝑣

𝑣

1 , { }

{𝑣}
𝑣

3 , {𝑣}

3 , {}

{𝑣, 𝑤}

{𝑣, 𝑤}

1

3,5 ,
3

{𝑤}

5,6 , {𝑤} 3,5 , {𝑤} 6

{𝑤}
3,4,5 ,

{𝑤}

𝑏 𝑏
𝑏

𝑏 {𝑤}

𝑣

𝑎

{ }
1 , { }

{𝑣}
𝑣

3 , {𝑣}

1

3

1

3

5

𝑎

𝑤
6

𝑣

𝑤

𝑏

1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑤

𝑏

𝑏

(b) K

ܽ
ܽ {}{ } {ݓ} ͳ,ʹ ,

{}
͵,Ͷ

͵,Ͷ , { }
{ݓ}

 ݓ ܽ 2
6

4 ܽ

 ݓ
 ݒܾ

ܾ ݓ
 1 ݒ ܽ

3

2

5

 ݓ ܽ
6

4 7

 ݓ ܽ
ܾ

 ݒ
 ܾ ݓ

 ݒ ݒ

ͳ , {ݒ}{ } ͵ ݒ , ͵{ݒ} , ,ݒ}{} ,ݒ}{ݓ {ݓ ͳ͵,ͷ {ݓ}͵ ͷ,͸ , ͷ,͵{ݓ} , {ݓ} ͸
Ͷ,ͷ,͵{ݓ} {ݓ}
 ܾ ܾ ܾ ܾ {ݓ}

 ܽ ݒ
{ }ͳ , {ݒ}{ } ͵ ݒ , {ݒ}

ͳ
͵

 ݓ ܽ
 ݒ

ܾ ݓ
 ݓ ܽ

 ݓ ܽ
ܾ ݓܾ

 ܾ

(c) G

ܽ
ܽ {}

ʹ,ͳ {ݓ} { } ,
{}

͵,Ͷ

͵,Ͷ , { }

 {ݓ}

 ݓ ܽ
 ݓ ܽ
 ݒܾ

ܾ ݓ
 ݓ ܽ ݒ ܽ

 ݓ ܽ
 ݒܾ

ܾ ݓ
 ݒ ݒ

ͳ , {ݒ} { }
͵ ݒ , ͵ {ݒ} , {}

,ݒ} {ݓ

,ݒ} {ݓ

ͳ ͵,ͷ , ͵ ͷ,͸ {ݓ} , ͷ,͵ {ݓ} , ͸ {ݓ}

 {ݓ}
͵,Ͷ,ͷ ,

 {ݓ}

 {ݓ} ܾ ܾ ܾ ܾ

 ܽ ݒ
{ }ͳ , {ݒ}{ } ͵ ݒ , {ݒ}

ͳ
͵

 ݓ ܽ
 ݒ

ܾ ݓ
 ݓ ܽ

 ݓ ܽ
ܾ ݓܾ

 ܾ
(d) AES(G,K)

𝑎

𝑎

{}

{ } {𝑤} 1,2 ,

{}

3,4

3,4 , { }

{𝑤}

1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

1

3

𝑎 𝑣
1

3

2

5

𝑎

𝑤
6

4 7

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

𝑣

𝑣

1 , { }

{𝑣}
𝑣

3 , {𝑣}

3 , {}

{𝑣, 𝑤}

{𝑣, 𝑤}

1

3,5 ,
3

{𝑤}

5,6 , {𝑤} 3,5 , {𝑤} 6

{𝑤}
3,4,5 ,

{𝑤}

𝑏 𝑏
𝑏

𝑏 {𝑤}

𝑣

𝑎

{ }
1 , { }

{𝑣}
𝑣

3 , {𝑣}

1

3

1

3

5

𝑎

𝑤
6

𝑣

𝑤

𝑏

1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑤

𝑏

𝑏
(e) TR

Figure 4.4: For R, K and G: Σc = {v, w} and Σo = {a, b, v}.

{w}, then upon the occurrence of a, we can only choose to disable v, since we are not

sure whether the current state is 3 or 4. This leads to failure to contain the lower

bound behavior (av)∗, where we need to enable v after observing a. Therefore, the

lower bound behavior can only be achieved by choosing {} at the beginning rather than

choosing {w}, which is greedy maximal.

The above example illustrates the following issue. In some scenario, enabling more

events is not a good choice, since it may introduce more information uncertainty.

Consequently, to maintain safety, the control decision may become more conservative

in the future due to this information uncertainty. This may make the lower bound

behavior unachievable. More problematically, we do not know whether or not enabling

an event will lead to failure to contain the lower bound behavior, unless we get stuck

at some instant in the future, e.g., after observing event o in the previous example.

Moreover, we do not know a priori, when or whether or not this phenomenon will

103

occur in the future. In other words, whether or not a decision defined in the AES is a

“good” control decision depends on its effects in the future. This future dependency

is the fundamental difficulty of the range control problem and it is in fact the essential

difference between MPRCP and the standard supervisor synthesis problem without

a lower bound requirement.

4.4.2 Definition of the CSR

In order to resolve the future dependency issue discussed above, we propose a

simulation-like relation, called the Control Simulation Relation (CSR), to pre-process

this future dependency and transform it to local information. The key idea is to

compare two BTSs T1 and T2 and to establish a formal relationship between states

in T1 and states in T2. The formal definition of the CSR is presented next.

Definition 4.4.1. (Control Simulation Relation). Let T1 and T2 be two BTSs. A

relation Φ = ΦY ∪ΦZ ⊆ (QT1
Y ×Q

T2
Y)∪ (QT1

Z ×Q
T2
Z) is said to be a control simulation

relation from T1 to T2 if the following conditions hold:

1. (y0, y0) ∈ Φ;

2. For every (y1, y2) ∈ ΦY we have that:

y1
γ1−→T1 z1 in T1 implies the existence of y2

γ2−→T2 z2 in T2 such that γ1 ⊆ γ2 and

(z1, z2) ∈ ΦZ;

3. For every (z1, z2) ∈ ΦZ we have that:

z1
σ−→T1 y1 in T1 implies the existence of z2

σ−→T2 y2 in T2 such that (y1, y2) ∈ ΦY .

We say that T1 is control-simulated by T2 or that T2 control-simulates T1, denoted by

T1 � T2, if there exists a control simulation relation from T1 to T2.

Intuitively, the control simulation relation captures whether or not T2 is able to

match an arbitrary control decision made by T1 by either taking the same control

104

decision or a control decision that is strictly larger than the one made by T1 and

maintain this ability for all possible future behaviors.

Given two BTSs T1 and T2, a relevant question is whether or not there exists a

CSR from T1 to T2. To answer this question, we define an operator

F : 2Q
T1
Y ×Q

T2
Y ∪ 2Q

T1
Z ×Q

T2
Z → 2Q

T1
Y ×Q

T2
Y ∪ 2Q

T1
Y ×Q

T2
Y

as follows. For any Φ = ΦY ∪ ΦZ ⊆ (QT1
Y ×Q

T2
Y) ∪ (QT1

Z ×Q
T2
Z), we have that

1. (y1, y2) ∈ F (ΦY) if (y1, y2) ∈ ΦY and for any transition y1
γ1−→T1 z1 in T1, there

exists y2
γ2−→T2 z2 in T2 such that γ1 ⊆ γ2 and (z1, z2) ∈ ΦZ .

2. (z1, z2) ∈ F (ΦZ) if (z1, z2) ∈ ΦZ and for any transition z1
σ−→T1 y1 in T1, there

exists z2
σ−→T2 y2 in T2 such that (y1, y2) ∈ ΦY .

The following results reveal how operator F is related to the CSR.

Proposition 4.4.1. The operator F has following properties:

1. Φ is a control simulation relation from T1 to T2, if and only if, Φ ⊆ F (Φ) and

(y0, y0) ∈ Φ;

2. Φ1 ⊆ Φ2 ⇒ F (Φ1) ⊆ F (Φ2).

Proof. The proof is similar to the proof in [91] for the standard simulation relation.

Suppose that Φ = ΦY ∪ ΦZ is a control simulation relation from T1 to T2. Let

(y1, y2) ∈ ΦY . Since (∀y1
γ1−→T1 z1)(∃y2

γ2−→T2 z2)[γ1 ⊆ γ2 ∧ (z1, z2) ∈ ΦZ], we know

that (y1, y2) ∈ F (Φ). Similarly, for any (z1, z2) ∈ ΦZ , since (∀z1
σ−→T1 y1)(∃z2

σ−→T2

y2)[(y1, y2) ∈ ΦY], we know that (z1, z2) ∈ F (ΦZ). Therefore, we conclude that

Φ ⊆ F (Φ) and (y0, y0) ∈ Φ.

Suppose that Φ ⊆ F (Φ) and (y0, y0) ∈ Φ. Clearly, the first requirement in Def-

inition 4.4.1 is satisfied. For any (y1, y2) ∈ ΦY , we know that the first requirement

105

in the definition of F implies that second requirement in Definition 4.4.1. Similarly,

for any (z1, z2) ∈ ΦZ , we know that the second requirement in the definition of F

implies that third requirement in Definition 4.4.1. Hence, we know that Φ is a control

simulation relation from T1 to T2.

Now we prove the second property. For any (y1, y2) ∈ F (Φ1) ∩ (QT1
Y × Q

T2
Y), we

have that (y1, y2) ∈ Φ1 and

(∀y1
γ1−→T1 z1)(∃y2

γ2−→T2 z2)[γ1⊆γ2 ∧ (z1, z2)∈Φ1] (4.13)

Since Φ1 ⊆ Φ2, we know that (y1, y2), (z1, z2) ∈ Φ2. Therefore, Equation (4.13) implies

that (y1, y2) ∈ F (Φ2). Similarly, for any (z1, z2) ∈ F (Φ1)∩ (QT1
Z ×Q

T2
Z), we have that

(z1, z2) ∈ Φ1 and (∀z1
σ−→T1 y1)(∃z2

σ−→T2 y2)[(y1, y2) ∈ Φ1]. Since Φ1 ⊆ Φ2, we also

know that (y1, y2), (z1, z2) ∈ Φ2. Therefore, (z1, z2) ∈ F (Φ2).

The above results have the following implications. First, since Φ ⊆ F (Φ) for

any CSR Φ, we know that the maximal relation Φ is a fixed-point of operator F ,

i.e., F (Φ) = Φ. Note that F (Φ) ⊆ Φ always holds. By the second property in

Proposition 4.4.1, we know that F is monotone. Therefore, by Tarski’s fixed-point

theorem [94], we know that the supremal fixed-point of F , denoted by Φ∗(T1, T2),

exists and it can be computed as follows

Φ∗(T1, T2) = lim
k→∞

F k((QT1
Y ×Q

T2
Y) ∪ (QT1

Z ×Q
T2
Z)) (4.14)

In other words, Φ∗(T1, T2) is a maximal control simulation relation from T1 to T2 if

(y0, y0) ∈ Φ∗(T1, T2). Otherwise, T1 6� T2 if (y0, y0) 6∈ Φ∗(T1, T2). This is similar to the

standard simulation relation; see, e.g., [91]. Note that the limit in Equation (4.14)

can be achieved within at most |QT1
Y ||Q

T2
Y |+ |Q

T1
Z ||Q

T2
Z | iterations.

Example 4.4.2. We consider again the AES AES(G,K) and BTS TR shown in

106

Figs. 4.4(e) and 4.4(d), respectively. We compute the maximal CSR between TR and

AES(G,K); we write Φ∗(TR,AES(G,K)) = Φ∗Y ∪Φ∗Z, where Φ∗Y ⊆ QTR
Y ×QAES

Y and

Φ∗Z ⊆ QTR
Z ×QAES

Z . Then we have

Φ∗Y = {({1}, {1}), ({3}, {3}))}

Φ∗Z = {(({1}, {}), ({1}, {})), (({3}, {v}), ({3}, {v})), (({3}, {v}), ({3, 5}, {v, w}))}

The reason why ({3}, {3, 4}) /∈ Φ∗Y is that {v} is defined at {3} in TR but there is

no decision containing {v} defined at {3, 4} in the AES. Consequently, we know that

(({1}, {}), ({1, 2}, {w})) /∈ Φ∗Z, where ({1}, {}) and ({1, 2}, {w}) are the predecessor

Z-states that enter {3} and {3, 5} with the same event a, respectively.

4.4.3 Properties of the CSR

Hereafter, we present properties of the CSR that will be used later.

The first result reveals that the CSR indeed captures whether or not any possible

behavior from a state in a BTS can be matched by another BTS from some different

state.

Proposition 4.4.2. Let T1 and T2 be two complete BTSs and z1 ∈ QT1
Z and z′1 ∈ Q

T2
Z

be two Z-states in T1 and T2, respectively. Then (z1, z
′
1) ∈ Φ∗(T1, T2), if and only if,

for any sequence

z1
σ1−→ y1

γ1−→ . . .
γn−1−−−→ zn−1

σn−→ yn
γn−→ zn (4.15)

in T1, there exists a sequence

z′1
σ1−→ y′1

γ′1−→ . . .
γ′n−1−−−→ z′n−1

σn−→ y′n
γ′n−→ z′n (4.16)

in T2, such that γi ⊆ γ′i,∀i ≥ 0.

Proof. The “only if” part is straightforward. For a sequence in Equation (4.15), we

107

can always construct a sequence in Equation (4.16) by choosing γ′i for each i ≥ 0 such

that γi ⊆ γ′i and (hY Z(yi, γi), hY Z(y′i, γ
′
i)) ∈ Φ∗(T1, T2). The definition of the CSR

guarantees the existence of such γ′i at each y′i encountered.

Next, we show the “if part” by contraposition. Suppose that (z1, z
′
1) 6∈ Φ∗(T1, T2).

Then, by Equation (4.14), either there exists an event σ1 ∈ Σo : hZY (z1, σ1)! but σ1 ∈

Σo : hZY (z1, σ1)¬!, where “¬!” means “is not defined”; or there exists Φ1 ⊃ Φ∗(T1, T2)

such that (z1, z
′
1) ∈ Φ1 but

(∃σ1 ∈ Σo)[(y1, y
′
1) 6∈ Φ1] (4.17)

where y1 = hZY (z1, σ1) and y′1 = hZY (z′1, σ1).

For the first case, we know immediately that there exists a sequence z1
σ1−→ y1

γ1−→ z2

in T1, where γ1 is an arbitrary control decision in CT1(y1), such that there does not

exist a sequence z′1
σ1−→ y′1

γ′1−→ z′2 in T2 satisfying γ1 ⊆ γ′1. Hereafter, we consider the

case where Equation (4.17) holds. Again, by Equation (4.14), (y1, y
′
1) 6∈ Φ1 implies

that either

(∃γ1 ∈ CT1(y1))(∀γ′1 ∈ CT2(y′1))[γ1 6⊆ γ′1] (4.18)

or there exists Φ2 ⊃ Φ1 such that (y1, y
′
1) ∈ Φ2 but

(∃γ1 ∈ CT1(y1)(∀γ′1 ∈ CT2(y′1) : γ1 ⊆ γ′1)[(z2, z
′
2) 6∈ Φ2] (4.19)

where z2 = hY Z(y1, γ1) and z′2 = hY Z(y′1, γ
′
1).

Suppose that Equation (4.18) holds, then we also know immediately that there

exists a sequence z1
σ1−→ y1

γ1−→ z2 in T1, such that there does not exist a sequence

z′1
σ1−→ y′1

γ′1−→ z′2 in T2 satisfying γ1 ⊆ γ′1. Suppose that Equation (4.19) holds. Let

γ1 ∈ CT1(y1) be a control decision satisfying Equation (4.19) and let γ′1 ∈ CT2(y′1)

be an arbitrary control decision such that γ1 ⊆ γ′1. Note that γ1 ⊆ γ′1 implies

108

that ∀σ ∈ Σo : hT1
ZY (z2, σ)! ⇒ hT2

ZY (z′2, σ)!. Since (z2, z
′
2) /∈ Φ2, by Equation (4.14),

∃Φ3 ⊃ Φ2 such that (z2, z
′
2) ∈ Φ3 but

(∃σ2 ∈ Σo)[(y2, y
′
2) 6∈ Φ3] (4.20)

where y2 = hZY (z2, σ2) and y′2 = hZY (z′2, σ2).

By iteratively applying the above arguments, suppose that, for some m ≥ 1, we

have that

(∃γm ∈ CT1(ym))(∀γ′m ∈ CT2(y′m))[γm 6⊆ γ′m] (4.21)

and

(∀1 ≤ i ≤ m)(∃Φ2i−1 ⊃ Φ2i−2 : (zi, z
′
i) ∈ Φ2i−1)(∃σi ∈ Σo :)[(yi, y

′
i) 6∈ Φ2i−1] (4.22)

where yi = hZY (zi, σi), y
′
i = hZY (z′i, σi) and Φ0 = Φ∗(T1, T2); and

(∀1≤ i≤m− 1)(∃Φ2i⊃Φ2i−1 : (yi, y
′
i)∈Φ2i)(∃γi∈CT1(yi))

(∀γ′i ∈ CT2(y′i) : γi ⊆ γ′i)[(zi+1, z
′
i+1) 6∈ Φ2i] (4.23)

where zi+1 = hY Z(yi, γi) and z′i+1 = hY Z(y′i, γ
′
i). In particular, Equations (4.21),

(4.22), and (4.23) are the generalizations of Equations (4.18), (4.20) and (4.19), re-

spectively. Then we know that there exists a sequence z1
σ1−→ y1

γ1−→ . . .
γm−1−−−→ zm−1

σm−→

ym
γm−→ zm in T1 such that, for any sequence z′1

σ1−→ y′1
γ′1−→ . . .

γ′m−1−−−→ z′m−1
σm−→ y′m

γ′m−→ z′m

in T2, if γi ⊆ γ′i, i = 0, . . . ,m − 1, then there does not exist a control decision

γ′m ∈ CT2(y′m) such that γm ⊆ γ′m. This completes the contrapositive proof.

Note that, since Φ1 ⊂ Φ2 ⊂ · · · ⊂ Φ2m is strictly increasing, such a m always

exists. To see this, let Φ2m = (QT1
Y ×Q

T2
Y)∪ (QT1

Z ×Q
T2
Z), which is the largest possible

relation. Suppose that for any i < m, there exists Φ2i ⊃ Φ2i−1 such that (yi, y
′
i) ∈ Φ2i

but (∃γi ∈ CT1(yi))(∀γ′i ∈ CT2(y′i) : γi ⊆ γ′i)[(zi+1, z
′
i+1) 6∈ Φ2i] Then for Φ2m, it must

109

be (∃γm ∈ CT1(ym))(∀γ′m ∈ CT2(y′m))[γm 6⊆ γ′m] since there does not exist a relation

that is larger than Φ2m anymore.

The next result reveals the relationship between the CSR and the closed-loop

behavior of the system.

Proposition 4.4.3. Let T1 and T2 be two deterministic BTSs. Then L(ST1/G) ⊆

L(ST2/G), if and only if, T1 � T2.

Proof. (⇒) By contraposition. Suppose that T1 6� T2, which means that (y0, y0) /∈

Φ∗(T1, T2). Therefore, either (i) cT1(y0) 6⊆ cT2(y0); or (ii) (z1
1 , z

2
1) /∈ Φ∗(T1, T2), where

zi1 = hY Z(y0, cTi(y0)), i = 1, 2. If case (i) holds, then we know immediately that

L(ST1/G) 6⊆ L(ST2/G), since ST1(ε) = cT1(y0) 6⊆ cT2(y0) = ST2(ε). If case (ii) holds,

then by Proposition 4.4.2, there exists a string σ1 . . . σn ∈ P (L(ST1/G)) such that

ST1(σ1 . . . σi) ⊆ ST2(σ1 . . . σi),∀i = 1, . . . , n − 1 but ST1(σ . . . σn) 6⊆ ST2(σ . . . σn).

Therefore, we still have that L(ST1/G) 6⊆ L(ST2/G).

(⇐) By contraposition. Suppose that L(ST1/G) 6⊆ L(ST2/G). Then we know that

there exists σ1 . . . σn ∈ P (L(ST1/G)) such that ST1(σ1 . . . σn−1) ⊆ ST2(σ1 . . . σn−1) but

ST1(σ1 . . . σn) 6⊆ ST2(σ1 . . . σn). Since T1 is deterministic, the above string σ1 . . . σn

uniquely determines the following sequence in T1

y0

γ1
0−→ z1

1
σ1−→ y1

1

γ1
1−→ . . .

γ1
n−1−−−→ z1

n−1
σn−→ y1

n

γ1
n−→ z1

n (4.24)

where γ1
i = ST1(σ1 . . . σi) is the unique control decision defined at y1

i . However, there

does not exist a sequence

y0

γ2
0−→ z2

1
σ1−→ y2

1

γ2
1−→ . . .

γ2
n−1−−−→ z2

n−1
σn−→ y2

n

γ2
n−→ z2

n (4.25)

in T2 such that γ1
i ⊆ γ2

i ,∀i = 1, . . . , n, since the control decision from each y2
i in T2 is

uniquely defined and the only control decision defined at y2
n, i.e., ST2(σ1 . . . σn), does

110

not contain γ1
n = ST1(σ1 . . . σn).

The last result reveals that the CSR is transitive.

Proposition 4.4.4. Let T1, T2 and T3 be three BTSs such that T1 � T2 and T2 � T3.

For i = 1, 2, 3, let yi ∈ QTi
Y and γi ∈ CTi(yi) be a Y -state in Ti and a control decision

defined at this state, respectively. Then

[(z1, z2) ∈ Φ∗(T1, T2) ∧ (z2, z3) ∈ Φ∗(T2, T3)]⇒ [(z1, z3) ∈ Φ∗(T1, T3)]

where zi = hY Z(yi, γi), i = 1, 2, 3.

Proof. Let z1
σ1−→ y1

1

γ1
1−→ . . .

γ1
n−1−−−→ z1

n−1
σn−→ y1

n

γ1
n−→ z1

n be an arbitrary sequence in

T1. Since (z1, z2) ∈ Φ∗(T1, T2), by Proposition 4.4.2, there exists a sequence z2
σ1−→

y2
1

γ2
1−→ . . .

γ2
n−1−−−→ z2

n−1
σn−→ y2

n

γ2
n−→ z2

n in T2 such that γ1
i ⊆ γ2

i ,∀i = 1, . . . , n. Similarly,

since (z2, z3) ∈ Φ∗(T2, T3), by Proposition 4.4.2, there exists a sequence z3
σ1−→ y3

1

γ3
1−→

. . .
γ3
n−1−−−→ z3

n−1
σn−→ y3

n

γ3
n−→ z3

n in T3 such that γ2
i ⊆ γ3

i ,∀i = 1, . . . , n. Therefore,

(z1, z3) ∈ Φ∗(T1, T3) by Proposition 4.4.2.

4.5 Synthesis of a Maximally-Permissive Supervisor

In this section, we first present the main synthesis algorithm that solves MPRCP.

Then we prove its correctness.

4.5.1 Synthesis Algorithm

As we discussed earlier, to synthesize a maximally permissive supervisor contain-

ing R, we need to consider some information in the future. Fortunately, such future

information has been transformed to local information by the CSR. The idea of the

synthesis algorithm is as follows. First, we construct BTS TR that includes the infimal

supervisor STR achieving R↓CO. Then we compute the maximal CSR between BTS

111

TR and the AES AES(G,K). Next, we construct a new BTS, denoted by T ∗, such

that TR � T ∗, by using a depth-first search procedure. Specifically, suppose that y

is a Y -state in T ∗ at which we need to choose a control decision. First, this control

decision should be chosen from CAES(G,K)(y) in order to guarantee safety. In order

to take care of the lower bound behavior, we need to make sure that this control

decision preserves the CSR. The reason why we consider the CSR between TR and

AES(G,K) is that TR realizes the infimal supervisor containing R; namely, any BTS

whose induced supervisor contains R should “simulate” the behavior of TR.

In order to formalize the above idea, let y ∈ QAES
Y be a Y -state in the AES and

ŷ ∈ QTR
Y be a Y -state that “tracks” y in TR such that y|R, ŷ|R 6= ∅. (How ŷ “tracks”

y will be clear later.) We denote by Φ∗R := Φ∗(TR,AES(G,K)) the maximal CSR

from TR to AES(G,K). Then we define

Ξ(y, ŷ) :=

γ ∈ Γ :
γ∈CAES(G,K)(y) and γ⊇cTR(ŷ) and

(hY Z(ŷ, cTR(ŷ)), hY Z(y, γ)) ∈ Φ∗R


Set Ξ(y, ŷ) will be the key in the synthesis algorithm. Intuitively, γ ∈ Ξ(y, ŷ) is a

control decision such that:

1. It is safe at y, i.e., γ ∈ CAES(G,K)(y); and

2. It contains the corresponding control decision made by STR at ŷ, i.e., cTR(ŷ); and

3. Any behavior that can occur from the corresponding Y -state ŷ in TR can still occur

from y in the AES by taking γ.

We are now ready to present the main synthesis algorithm, which is formal-

ly presented in Algorithm MAX-RANGE. Let us explain how it works. Initially,

we construct TR and compute the maximal CSR Φ∗(TR,AES(G,K)) from TR to

AES(G,K). Then we construct a new deterministic BTS T ∗ by a depth-first search

112

as follows. Initially, we start from the initial Y -state y0. We pick one control deci-

sion from the AES for each Y -state encountered (how this control decision is picked

will be specified soon) and pick all observations for each Z-state encountered. This

depth-first search is implemented by recursive procedure DoDFS in Algorithm MAX-

RANGE, which traverses the reachable state space of T ∗. Moreover, during the

construction BTS of T ∗, we use TR to track the sequence that reaches the Y - or Z-

state in T ∗. Specifically, whenever T ∗ moves from a Y -state y to a Z-state z (line 10),

we need to move from Y -state ŷ to its (unique) successor Z-state ẑ in TR (line 12).

Similarly, whenever T ∗ moves from a Z-state z to a Y -state y via observable event

σ (line 18), we need to move from Z-state ẑ to a successor Y -state ŷ in TR through

the same observable event σ (line 20). In other words, Y -state ŷ in TR essentially

“tracks” Y -state y in the AES or in T ∗, since they are always reached by sequences

that have the same projected string. Note that we use TR to track T ∗ only when the

current Y -state y encountered in T ∗ satisfies y|R 6= ∅. Whenever y|R = ∅, then we

just set ŷ = ∅ (line 21). This means that we know for sure that the string is already

outside of L(R).

Now it still remains to discuss how to choose the control decision at each Y -state

in T ∗. To this end, we need to consider two cases for each Y -state y encountered:

1) Suppose that y|R 6= ∅; this means that y must be reached by a sequence y0
γ1σ1...γnσn−−−−−−→

y such that the projected string in this sequence is in P (R), i.e., σ1 . . . σn ∈ P (R).

Then we know that there exists a sequence in TR that “tracks” the above sequence,

which means that ŷ 6= ∅. In this case, we choose a locally maximal decision in Ξ(y, ŷ),

since we still need to be able to match any behavior in R in the future. This case is

implemented by line 8 of Algorithm MAX-RANGE.

2) Suppose that y|R = ∅; this means that y must be reached by a sequence y0
γ1σ1...γnσn−−−−−−→

y such that σ1 . . . σn /∈ P (R). This also implies that ŷ = ∅. Then we simply chose

a locally maximal decision in CAES(G,K)(y), since we know for sure that the string

113

is already outside of L(R). This case is implemented by line 9 of Algorithm MAX-

RANGE.

We illustrate Algorithm MAX-RANGE in the next example.

Example 4.5.1. Let us return to the system we have considered in Example 4.4.1.

The inputs are BTS TR that includes the infimal supervisor and the AES AES(G,K),

which are shown in Figs. 4.4(e) and 4.4(d), respectively. We first start procedure

DoDFS from the pair of initial Y -states, i.e., y = ŷ = y0 = {1}. Since (({1}, {}),

({1, 2}, {w})) /∈ Φ∗R, we know that Ξ({1}, {1}) = {∅}. Therefore, the only control

decision we can choose is {} and we have z = ẑ = hY Z(y, {}) = ({1}, {}). Then upon

observing o, we reach new Y -states y = ŷ = {3}. This time we have Ξ({3}, {3}) =

{{w}, {v, w}}, since ({3}, {v}) is related to both ({3}, {v}) and ({3, 5}, {v, w}). There-

fore, we choose {v, w} at state {3} in T ∗. Then we move to z = ({3, 5}, {v, w}) and

ẑ = ({3}, {v}).

Now, from Z-state ({3, 5}, {v, w}), if event v occurs, T ∗ moves to Y -state y =

{1}, which has already been visited. If event b occurs, T ∗ moves to Y -state y =

{6}. However, TR cannot track this move since b is not defined at ẑ = ({3}, {v})

in TR. Therefore, we set ŷ = ∅, which means that the string is already outside of

R. Therefore, for Y -state {6}, we just choose a locally maximal control decision in

CAES(G,K)({6}), i.e., {w}, and move to z = ({5, 6}, {w}) and ẑ = ∅. Finally, by

observing b again, T ∗ moves back to Y -state {6} that has been visited. This completes

the depth-first search and returns the deterministic BTS T ∗ shown in Fig. 4.5(a),

which includes a supervisor ST ∗ such that R ⊆ L(ST ∗/G) ⊆ K, where L(ST ∗/G) is

shown in Fig. 4.5(b). (We will prove later that this supervisor is indeed maximal.)

Remark 4.5.1. One can verify that the language shown in Fig. 4.5(c) is a maximal

controllable and observable sub-language of K. In fact, this solution is obtained

by using the strategies proposed in [4], i.e., we pick a locally maximal decision in

CAES(G),K(y) for each Y -state y and disregard the lower bound requirement. However,

114

Algorithm 7: MAX-RANGE

input : R and AES(G,K).
output: T ∗.

1 TR ←INF-SYNT(R,AES(G,K)) ;
2 Φ∗R ← Φ∗(TR,AES(G,K)) ;
3 QT ∗

Y ← {y0}, QT ∗
Z ← ∅;

4 DoDFS(y0, y0, T
∗);

5 return T ∗;

6 procedure DoDFS(y, ŷ, T ∗);
7 if y|R 6= ∅ then
8 Find a locally maximal element Act in Ξ(y, ŷ), i.e.,

∀γ ∈ Ξ(y, ŷ) : Act 6⊂ γ;

else
9 Find a locally maximal element Act in CAES(G,K)(y), i.e.,

∀γ∈CAES(G,K) : Act 6⊂γ;

10 z ← hY Z(y, Act);
11 if ŷ 6= ∅ then
12 ẑ ← hY Z(ŷ, cTR(ŷ));

else
13 ẑ ← ∅;

14 Add transition y
Act−−→ z to hT

∗
Y Z ;

15 if z /∈ QT ∗
Z then

16 QT ∗
Z ← QT ∗

Z ∪ {z};
17 for σ ∈ Σo : hZY (z, σ)! do
18 y′ ← hZY (z, σ);
19 if ẑ 6= ∅ and hZY (ẑ, σ)! then
20 ŷ′ ← hZY (ẑ, σ);

else
21 ŷ′ ← ∅;
22 Add transition z

σ−→ y′ to hT
∗

ZY ;
23 if y′ /∈ QT ∗

Y then
24 QT ∗

Y ← QT ∗
Y ∪ {y′};

25 DoDFS(y′, ŷ′, T ∗);

115

this solution does not fully contain R although it is maximal.

Note that, given arbitrary Y -states y and ŷ, set Ξ(y, ŷ) may be empty. For

example, in Fig. 4.4, if we take y = {3, 4} and ŷ = {3}, the we know that Ξ(y, ŷ} = ∅,

since cTR(ŷ) = {v} but no control decision defined at y in the AES contains {v}.

If such a scenario occurs, then Algorithm MAX-RANGE may get stuck before it

correctly returns T ∗. However, the following result reveals that Ξ(y, ŷ) is always non-

empty for any Y -states y and ŷ encountered in Algorithm MAX-RANGE, i.e., the

control decision Act in line 8 of Algorithm MAX-RANGE is always well-defined.

Proposition 4.5.1. For any Y -state y reached in procedure DoDFS, if ŷ 6= ∅, then

Ξ(y, ŷ) 6= ∅. Moreover, y|R = ŷ|R.

Proof. We prove by induction on the length of the sequence that reaches y in proce-

dure DoDFS.

Induction Basis: The induction basis holds, since for the initial state, we have

that y0|R = y0, i.e., cTR(y0|R) ∈ Ξ(y0, y0).

Induction Hypothesis: We assume that, for any Y -state reached by sequence in

the form of

y0
γ0−→ z1

σ1−→ y1 . . .
γn−1−−−→ zn

σn−→ yn

in procedure DoDFS, if ŷn 6= ∅, we have Ξ(yn, ŷn) 6= ∅ and yn|R = ŷn|R.

Induction Step: To proceed, we show that, for any Y -state reached by sequence

in the form of

y0
γ0−→ z1

σ1−→ y1 . . .
γn−1−−−→ zn

σn−→ yn
γn−→ zn+1

σn+1−−−→ yn+1

in procedure DoDFS, if ŷn+1 6= ∅, we have that Ξ(yn+1, ŷn+1) 6= ∅ and yn+1|R =

ŷn+1|R, where ŷn+1 is the state reached by the following sequence in TR

y0

cTR (y0)
−−−−→ ẑ1

σ1−→ ŷ1

cTR (ŷ1)
−−−−→ . . .

cTR (ŷn−1)
−−−−−−→ ẑn

σn−→ ŷn
cTR (ŷn)
−−−−→ ẑn+1

σn+1−−−→ ŷn+1

116

First, we show that yn+1|R = ŷn+1|R. To see this, we write

yn+1|R

={x∈X : ∃x′∈yn,∃wσn+1∈L(G) s.t. w∈(γn∩Σuo)
∗ and δ(x′, wσn+1)=x}|R

={x∈XR : ∃x′∈yn|R,∃wσn+1∈L(R) s.t. w∈(γn∩Σuo)
∗ and δ(x′, wσn+1)=x}|R

={x∈XR : ∃x′∈ ŷn|R,∃wσn+1∈L(R) s.t. w∈(cTR(ŷn)∩Σuo)
∗ and δ(x′, wσn+1)=x}|R

={x∈X : ∃x′∈ ŷn, ∃wσn+1∈L(G) s.t. w∈(cTR(ŷn)∩Σuo)
∗ and δ(x′, wσn+1)=x}|R

=ŷn+1|R

The second and the fourth equalities follow from the assumption that R @ G, since

any string that leaves the state space of R must lead to a state in X \XR. The third

equality follows from the induction hypothesis that yn|R = ŷn|R and the fact that

ΓR(ŷn|R) = cTR(ŷn) ⊆ γn.

Next, we show that Ξ(yn+1, ŷn+1) 6= ∅. According to line 8 in Algorithm MAX-

RANGE, we know that γn is chosen such that γn ∈ Ξ(yn, ŷn). Note that Ξ(yn, ŷn) is

non-empty by the induction hypothesis. Therefore, we know that cTR(ŷn) ⊆ γn and

(hY Z(ŷn, cTR(ŷn)), hY Z(yn, γn)) ∈ Φ∗R

This implies that (ŷn+1, yn+1) ∈ Φ∗R. Therefore, we know that for any sequence

ŷn+1

cTR (ŷn+1)
−−−−−→ ẑn+2

σn+2−−→ . . .
cTR (ŷn+k−1)
−−−−−−−→ ẑn+k

in TR, there exists a sequence

yn+1
γn+1−−−→ zn+2

σn+2−−−→ . . .
γn+k−1−−−−→ zn+k

in the AES, such that cTR(ŷn+i) ⊆ γn+i,∀i ≥ 1. Hence, γn+1 ∈ CAES(G,K)(yn+1) and

117

(ẑn+2, zn+2) ∈ Φ∗R, i.e.,

(hY Z(ŷn+1, cTR(ŷn+1)), hY Z(yn+1, γn+1)) ∈ Φ∗R (4.26)

Therefore, we know that γn+1 ∈ Ξ(yn+1, ŷn+1), i.e., Ξ(yn+1, ŷn+1) is also non-empty.

This completes the induction step.

Remark 4.5.2. Let us discuss the complexity of Algorithm MAX-RANGE. First, we

need to construct the AES, which takes O(|X||Σ|2|X|+|Σ|). Then Algorithm INF-

SYNT takes O(|X||Σ|2|X|) to construct TR, since there are at most 2|X| Y -states and

the same number of Z-states in TR; for each Y -state it takes O(|X||Σ|) to determine

its control decision and for each Z-state it takes O(|Σ|) to consider all possible obser-

vations. Computing the maximal CSR Φ∗R takes O(22|X|+2|Σ|). For procedure DoDFS

in Algorithm MAX-RANGE, it takes O(2|Σ|) to determine control decision Act for

each Y -state and it takes O(|Σ|) to consider all observations for each Z-state. In

the worst case, there are still 2|X| Y -states and the same number of Z-states in T ∗,

which implies that procedure DoDFS takes O(2|X|+|Σ|) to construct T ∗. Therefore,

the overall complexity of Algorithm MAX-RANGE is O(22|X|+2|Σ|), which is expo-

nential is the size of G. As we mentioned earlier, it is well-known that the supervisor

synthesis problem under partial observation is NP-hard even without the lower bound

requirement [99]. Therefore, it is highly unlikely that there exists a polynomial-time

algorithm for MPRCP.

4.5.2 Correctness of the Algorithm

In this section, we establish the correctness of Algorithm MAX-RANGE, i.e., it

effectively solves MPRCP.

Hereafter, we still denote by T ∗ the BTS returned by Algorithm MAX-RANGE

and denote by ST ∗ the supervisor induced by T ∗. First, we show that ST ∗ is s a safe

118

𝑎

𝑎

{}

{ } {𝑤} 1,2 ,

{}

3,4

3,4 , { }

{𝑤}
1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

1

3

𝑎 𝑣
1

3

2

5

𝑎

𝑤
6

4 7

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

𝑣

𝑣

1 , { }

{𝑣}
𝑣

3 , {𝑣}

3 , {}

{𝑣, 𝑤}

1

3

{𝑤}

5,6 , {𝑤} 3,5 , {𝑤} 6

{𝑤}
3,4,5 ,

{𝑤}

𝑏 𝑏
𝑏

𝑏 {𝑤}

𝑣

𝑎

{ }
1 , { }

{𝑣, 𝑤}
𝑣

1

3

1

3

5

𝑎

𝑤
6

𝑣

𝑤

𝑏

1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑤

𝑏

𝑏

{𝑣, 𝑤}
3,5 ,

3,5 ,

5,6 , {𝑤} 6
{𝑤}

{𝑣, 𝑤}

𝑏

𝑏
(a) T ∗

𝑎

𝑎

{}

{ } {𝑤} 1,2 ,

{}

3,4

3,4 , { }

{𝑤}
1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

1

3

𝑎 𝑣
1

3

2

5

𝑎

𝑤
6

4 7

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

𝑣

𝑣

1 , { }

{𝑣}
𝑣

3 , {𝑣}

3 , {}

{𝑣, 𝑤}

1

3

{𝑤}

5,6 , {𝑤} 3,5 , {𝑤} 6

{𝑤}
3,4,5 ,

{𝑤}

𝑏 𝑏
𝑏

𝑏 {𝑤}

𝑣

𝑎

{ }
1 , { }

{𝑣, 𝑤}
𝑣

1

3

1

3

5

𝑎

𝑤
6

𝑣

𝑤

𝑏

1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑤

𝑏

𝑏

{𝑣, 𝑤}
3,5 ,

3,5 ,

5,6 , {𝑤} 6
{𝑤}

{𝑣, 𝑤}

𝑏

𝑏
(b) L(ST∗/G)

𝑎

𝑎

{}

{ } {𝑤} 1,2 ,

{}

3,4

3,4 , { }

{𝑤}
1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

1

3

𝑎 𝑣
1

3

2

5

𝑎

𝑤
6

4 7

𝑎

𝑤

𝑏

𝑣

𝑤

𝑏

𝑣

𝑣

1 , { }

{𝑣}
𝑣

3 , {𝑣}

3 , {}

{𝑣, 𝑤}

1

3

{𝑤}

5,6 , {𝑤} 3,5 , {𝑤} 6

{𝑤}
3,4,5 ,

{𝑤}

𝑏 𝑏
𝑏

𝑏 {𝑤}

𝑣

𝑎

{ }
1 , { }

{𝑣, 𝑤}
𝑣

1

3

1

3

5

𝑎

𝑤
6

𝑣

𝑤

𝑏

1

3

2

5

𝑎

𝑤
6

4

𝑎

𝑤

𝑏

𝑤

𝑏

𝑏

{𝑣, 𝑤}
3,5 ,

3,5 ,

5,6 , {𝑤} 6
{𝑤}

{𝑣, 𝑤}

𝑏

𝑏

(c) Another maximal solution

Figure 4.5: Figures in Example 4.5.1.

supervisor.

Lemma 4.5.1. L(ST ∗/G) ⊆ K, i.e., ST ∗ is safe.

Proof. This follows directly from Theorem II.1. Since for each Y -state y encountered,

cT ∗(y) is chosen from Ξ(y, ŷ), which is a subset of CAES(G,K)(y). Therefore, ST ∗ is an

AES-included supervisor, which means that it is safe.

Next, we show that language R is contained in L(ST ∗/G).

Lemma 4.5.2. R ⊆ L(ST ∗/G).

Proof. We use Proposition 4.3.3 to show that ST ∗ contains the lower bound R. Let us

consider an arbitrary observable string s ∈ P (L(ST ∗/G)) such that ISYST∗
(s)|R 6= ∅.

For simplicity, we denote y = ISYST∗
(s). Since y|R 6= ∅, when y is reached for the first

time in procedure DoDFS of Algorithm MAX-RANGE, i.e., when state y is added,

it is reached by a sequence y0
γ1σ1...γnσn−−−−−−→ y in T ∗, where σ1 . . . σn ∈ P (R). Since

σ1 . . . σn ∈ P (R), we know that there exists a corresponding sequence y0

γ′1σ1...γ′nσn−−−−−−→ ŷ

in TR that tracks the above sequence leading to y in T ∗, i.e., ŷ is the Y -state that

tracks y in the depth-first search. Note that σ1 . . . σn need not be equal to s since there

may exist multiple sequences that lead to y and the depth-first search just randomly

picks one of them. Therefore, ŷ may depend on the specific implementation of the

depth-first search.

119

By Algorithm MAX-RANGE, we know that cT ∗(y) is chosen such that cTR(ŷ) ⊆

cT ∗(y). By Algorithm INF-SYNT, we know that cTR(ŷ) is chosen such that ΓR(ŷ|R)∪

Σuc = cTR(ŷ). By Proposition 4.5.1, we know that y|R = ŷ|R. Moreover, ST ∗ is an

IS-based supervisor, which implies that ST ∗(s) = cT ∗(y). Overall, we know that

ΓR(ISYST∗
(s)|R) = ΓR(ŷ|R) ⊆ cTR(ŷ) ⊆ cTR(y) = ST ∗(s).

Recall that s is an arbitrary string in P (L(ST ∗/G)). Therefore, by Proposition 4.3.3,

we know that R ⊆ L(ST ∗/G).

Finally, we show that ST ∗ is maximal.

Lemma 4.5.3. ST ∗ is a maximally-permissive supervisor, i.e., for any safe supervisor

S ′, L(ST ∗/G) 6⊂ L(S ′/G).

Proof. By contradiction. Assume that ST ∗ is not maximal. This implies that there

exists another safe supervisor S ′ such that L(ST ∗/G) ⊂ L(S ′/G). This implies that

1. ∀s ∈ L(ST ∗/G) : ST ∗(P (s)) ⊆ S ′(P (s)); and

2. ∃s ∈ L(ST ∗/G) : ST ∗(P (s)) ⊂ S ′(P (s)).

Let us consider an observable string t ∈ P (L(ST ∗/G)) such that ST ∗(t)⊂ S ′(t) and

∀t′ ∈ {t} \ {t} : ST ∗(t
′) = S ′(t′). Then we have that ISYST∗

(t) = ISYS′(t); we call this

Y -state y.

We claim that, for the above Y -state y and control decision S ′(t), we have

(hY Z(y, cT ∗(y), hY Z(y, S ′(t))) ∈ Φ∗(T ∗,AES(G,K)) (4.27)

Too see this, let us consider an arbitrary sequence

y
cT∗ (y)−−−→ z1

σ1−→ y1
cT∗ (y1)−−−−→ . . . zn

σn−→ yn
cT∗ (yn)−−−−→ zn+1 (4.28)

120

in T ∗. Since, L(ST ∗/G) ⊆ L(S ′/G), S ′ induces the following sequence

y
S′(t)−−→ z′1

σ1−→ y′1
S′(tσ1)−−−−→ . . . z′n

σn−→ y′n
S′(tσ1...σn)−−−−−−→ z′n+1 (4.29)

Since S ′ is a safe supervisor, by Theorem II.1, we know that S ′ is an AES-included

supervisor. This implies that the above sequence exists in the AES. Therefore, by

Proposition 4.4.2, we know that Equation (4.27) holds.

Next, we consider two cases for this Y -state y to show the contradiction.

Case 1: y|R = ∅.

Since S ′ is a safe supervisor, by Theorem II.1, we know that S ′(t) ∈ CAES(G,K)(y).

Moreover, cT ∗(y) is chosen as a maximal element in CAES(G,K)(y). Therefore, we

obtain a contradiction immediately since cT ∗(y) ⊂ S ′(t) is not possible.

Case 2: y|R 6= ∅.

Suppose that Y -state y is reached, for the first time, by the following sequence

y0
γ1−→ z1

σ1−→ y1
γ2−→ . . .

γn−→ zn
σn−→ y (4.30)

in procedure DoDFS in Algorithm MAX-RANGE. Since y|R 6= ∅, we know that

σ1 . . . σn ∈ P (R), i.e., ŷ 6= ∅. Let ŷ be the corresponding Y -state reached by the

sequence in TR that tracks the above sequence, i.e.,

y0

cTR (y0)
−−−−→ ẑ1

σ1−→ ŷ1

cTR (ŷ1)
−−−−→ . . .

cTR (ŷn)
−−−−→ ẑn

σn−→ ŷ (4.31)

Since L(STR/G) ⊆ L(ST ∗/G), by Proposition 4.4.3, we know that TR � T ∗. There-

fore, by the definition of the CSR, Equations (4.30) and (4.31) imply that (y, ŷ) ∈

Φ∗(TR, T
∗). This further implies that

(hY Z(ŷ, cTR(ŷ)), hY Z(y, cT ∗(y))) ∈ Φ∗(TR, T
∗) (4.32)

121

Overall, by Eqs. (4.27) and (4.32) and by Proposition 4.4.4, we get

(hY Z(ŷ, cTR(ŷ)), hY Z(y, S ′(t))) ∈ Φ∗(TR,AES(G,K))

Note that we also have that cTR(ŷ) ⊆ cT ∗(y) ⊂ S ′(t) and S ′(t) ∈ CAES(G,K)(y).

Therefore, we know that S ′(t) ∈ Ξ(y, ŷ). However, cT ∗(y) ⊂ S ′(t) is not possible, since

cT ∗(y) is chosen as a maximal control decision in Ξ(y, ŷ). This is a contradiction.

Finally, combining Lemmas 4.5.1, 4.5.2 and 4.5.3 together, we have the following

theorem.

Theorem IV.1. ST ∗ is a maximally-permissive supervisor such that R ⊆ L(ST ∗/G) ⊆

K, i.e., Algorithm MAX-RANGE effectively solves MPRCP.

Since the resulting supervisor ST ∗ is realized by BTS T ∗, we also have the following

corollary.

Corollary 4.5.1. ST ∗ is an IS-based solution, which implies that the closed-loop

language L(ST ∗/G) is regular.

Remark 4.5.3. We have shown that Algorithm MAX-RANGE solves MPRCP. In fact,

it also solves the maximal-permissiveness verification problem. Specifically, suppose

that there exists a given supervisor S : P (L(G))→ Γ and we want to verify whether

it is maximal or not. In this case, we can just set R = L(S/G) as the lower bound

requirement and apply Algorithm MAX-RANGE to find a maximal safe supervisor

S∗ that contains R. If L(S/G) = L(S∗/G), then we know that the given supervisor S

is already maximally permissive, since we cannot improve it any further. Otherwise,

if L(S/G) ⊂ L(S∗/G), then we know that S is not maximal. To the best of our

knowledge, the maximality verification problem was open in the literature; it is now

solved as a special case of the synthesis problem.

122

4.6 Conclusion

In this chapter, we have solved a generalized supervisor synthesis problem, called

the range control problem, for partially-observed DES. We considered both a standard

upper bound specification that describes the legal behavior and a lower bound specifi-

cation that describes the desired behavior. We provided new information-state-based

constructive approaches for computing both infimal and maximal supervisors satisfy-

ing these requirements. The proposed approach combines the three notions of AES,

strict sub-automaton, and CSR, in a novel manner; each of them plays a different

role in the synthesis problem. This results in a “meaningful” maximally-permissive

safe supervisor that contains a given behavior. An interesting future direction is to

extend the results in this chapter to the non-prefix-closed case.

Finally, all results in Chapters II to IV have been implemented in software DPO-

SYNT [122]; it can be downloaded from https://github.com/xiang-yin/DPO-SYNT.

4.7 Appendix

This appendix provides a state space refinement algorithm, which generalizes the

procedure in [18] from two automata to three automata.

Let R = (XR,Σ, δR, x0,R), K = (XK ,Σ, δK , x0,K) and G = (XG,Σ, δG, x0,G) be

three automata such that L(R) ⊆ L(K) ⊆ L(G). We construct three new automata

R′,K′ and G′ by the following algorithm.

Algorithm PRE-PROCESS

Input: R,K and G such that L(R) ⊆ L(K) ⊆ L(G).

Output: R′,K′ and G′.

Step 1

1-1 Obtain A = (XA,Σ, δA, x0,A) from R by adding a new state called DeadA to

123

https://github.com/xiang-yin/DPO-SYNT

XR and completing the transition function δA by: for any x ∈ XA, σ ∈ Σ,

we have δR(x, σ)¬! ⇒ δA(x, σ) = DeadA. In particular, we have XA = XR ∪

{DeadA}, x0,A = x0,R and L(A) = Σ∗.

1-2 Obtain B = (XB,Σ, δB, x0,B) from K by adding a new state called DeadB to

XK and completing the transition function δB by: for any x ∈ XB, σ ∈ Σ,

we have δK(x, σ)¬! ⇒ δB(x, σ) = DeadB. In particular, we have XB = XK ∪

{DeadB}, x0,B = x0,K and L(B) = Σ∗.

Step 2

2-1 Form the product automaton ABG := A×B×G = (XABG,Σ, δABG, x0,ABG),

where “×” denotes the usual product composition operation of automata; see,

e.g., [12] (p. 78).

Step 3

3-1 Obtain G′ by taking ABG.

3-2 Obtain K′ by taking the largest sub-automaton of ABG where the second

component is not equal to DeadB; that is, delete all state of ABG where the

second state component is DeadB.

3-3 Obtain R′ by taking the largest sub-automaton of ABG where the first com-

ponent is not equal to DeadA; that is, delete all state of ABG where the first

state component is DeadA.

After Step 2, we have that L(ABG) = L(G′) = L(G) since L(A) = L(B) = Σ∗.

By construction, L(K′) = L(K) since we only delete states that have DeadB as their

second component. Similarly, we know that L(R′) = L(R). Moreover, it is clear

from Step 3 that K′ @ G′. since for any string s ∈ L(G) \ L(G), it leads to a state

whose second component is DeadB, but K′ does not contain such a state. Similarly,

we know that R′ @ K′. Overall, have

124

1. L(G′) = L(G), L(K′) = L(K) and L(R′) = L(R);

2. R′ @ K′ @ G′.

In the worst case, G′ contains |X| × (|XK |+ 1)× (|XR|+ 1) states. Therefore, only

polynomial state space refinement is needed to fulfill the assumption that R @ K @

G.

125

CHAPTER V

A Uniform Approach for Centralized Sensor

Activation

5.1 Introduction

In this chapter, we consider the problem of dynamic sensor activation in cen-

tralized and partially-observed DES. The objective in this problem is to synthesize

a sensor activation policy that dynamically turns sensors on/off online in order to

achieve a given objective, e.g., to control the system or to diagnose faults. This prob-

lem is important since in many applications turning more sensors on implies that

more energy or bandwidth is consumed. Therefore, it is of interest to synthesize a

sensor activation policy that is optimal with respect to some criterion, subject to

the constraints of the problem. For instance, in control problems these constraints

involve the property of observability of DES, while in diagnosis problems they involve

the property of diagnosability of DES.

We use the MPO approach [16,22] to investigate the sensor activation problem for

centralized partially-observed DES. However, instead of investigating the enforcement

of a particular property, e.g., observability, diagnosability, or opacity, as was done in

previous works, we study a general class of properties called Information-State-based

(IS-based) properties, that captures all properties previously considered, and more.

126

This is similar to the supervisory control problem studied in Chapters II and III.

However, the IS-based property is defined in a different manner due to the difference

between the supervisory control problem and the sensor activation problem. We first

formulate the problem of dynamic sensor activation for any property that can be

expressed as an IS-based property. We show that this problem formulation is more

general than both the state disambiguation problem and the opacity problem that

have been studied previously in the literature. To solve this problem, we define a

generalized version of the most permissive observer. This generalized MPO embeds

all valid solutions to the enforcement of an IS-based property in its finite structure.

Based on the MPO, we present an algorithm for the synthesis of optimal sensor

activation policies under a logical performance objective.

Compared with prior works where the MPO was employed [15, 16, 22], our con-

tributions are twofold. First, we define the MPO directly from the new notion of bi-

partite dynamic observer without using the recursive definition used in [22]. Second,

the MPO defined in this chapter is more general since we consider a general class of

properties and we show that the most permissive observer for K-diagnosability stud-

ied by [16,22] and the most permissive dynamic mask for opacity studied by [15] are

essentially special cases of the generalized MPO. Moreover, most permissive observers

for observability, detectability, and predictability, which have not been studied so far

in the literature, can all be defined as special cases of the generalized MPO. There-

fore, the dynamic sensor activation problems for these properties can all be solved by

our approach. Moreover, the problem of optimal sensor activation for predictability,

which to the best of our knowledge has not been considered in the literature, can also

be solved by our approach. Similarly, our approach can be employed to solve sensor

activation problems for the enforcement of a wide class of user-defined properties that

can be expressed as IS-based properties. Compared with other solution approaches

for dynamic sensor activation problems, our methodology has the following features.

127

First, the optimal solution that we obtain is language-based. Recall that the solutions

obtained by [101,104] are optimal only w.r.t. finite (restricted) solution spaces, based

on the state space of the system model. Moreover, the generalized MPO that we

define embeds all solutions in its single finite structure. Therefore, it can serve as a

basis for optimization w.r.t. a numerical cost criterion, which cannot be done by the

online approaches described in [85,103].

The remainder of this chapter is organized as follows. In Section 5.2, we introduce

some basic terminologies. In Section 5.3, we formulate the optimal sensor activation

problem for IS-based properties that we solve in this chapter. In Section 5.4, the

generalized MPO is defined. A synthesis algorithm for solving the problem formulated

in Section 5.2 based on the MPO is provided in Section 5.5. In Section 5.6, we show

that: (i) the MPO defined in Section 5.3 generalizes the previous versions of this

notion in the literature; and (ii) new problems, e.g., dynamic sensor activation for

the purpose of fault prediction, can be solved by our approach. Finally, we conclude

the chapter in Section 5.7.

5.2 Preliminary

In this section, we introduce some basic terminologies and notations in the dy-

namic sensor activation problem.

5.2.1 Information Mapping

The DES of interest is still modeled as a deterministic finite-state automaton

G = (X,Σ, δ, x0). The set of marked states is omitted, since we are only interested in

the generated language in the sensor activation problem. In dynamic sensor activation

problems, the sensors are turned on/off dynamically based on the observation history.

When the sensor corresponding to an event σ ∈ Σ is turned “on”, we say that the

event is being monitored. While an event is monitored, any occurrence of it will be

128

observed by the supervisor, diagnoser, predictor, or external observer, according to

the problem under consideration (e.g., control, diagnosis, prediction, or opacification).

At any point in the execution of the system, the set of events θ ∈ 2Σ that we decide

to monitor (by turning their sensors on), is called a sensing decision.

In the setting of dynamic observation, we assume that Σ is partitioned into three

disjoint sets, Σ = Σo∪̇Σs∪̇Σuo, where:

1. Σo is the set of events whose occurrences are always observed, i.e., their sensors

are always turned on and they are continuously monitored;

2. Σs is the set of events that we can choose to monitor or not (by turning their

sensors on/off);

3. Σuo is the set of events that are always unobservable (i.e., there are no sensors

for them).

We say that a sensing decision θ ∈ 2Σ is admissible if Σo ⊆ θ ⊆ Σo ∪Σs and we let Θ

denote the set of all admissible sensing decisions.

We consider a general dynamic observations setting, where the observability prop-

erties of events can be controlled by a sensor activation policy during the evolution of

the system. A sensor activation policy is defined as a deterministic labeled automaton

Ω = (R,L), where

R = (XR,Σ, δR, x0,R) (5.1)

is a deterministic (finite state or infinite state) automaton and L : XR → Θ is a

labeling function that specifies the current set of “observable” events within Σo ∪Σs.

Specifically, for any s ∈ (Σo∪Σs)
∗, Σo ⊆ L(δR(s)) ⊆ Σo∪Σs denotes the set of events

that are monitored after observing s. While an event is monitored, any occurrence

of it will be observed by the observer. In other words, after string s, events not in

L(δR(s)) are currently “unobervable” (i.e., their sensors are turned off). To make Ω

129

implementable, the pair (R,L) needs to satisfy the constraint that

(∀x, x′ ∈ XR)(∀σ ∈ Σ : δR(x, σ)=x′)[x 6= x′ ⇒ σ∈L(x)] (5.2)

This condition says that the sensing decision can be updated (by updating the state

of R) only when a monitored event occurs. In general, XR could be an infinite set.

However, we will show later that the optimal sensor activation policies of interest in

this chapter can always be constructed with finite state spaces.

We say that the observations are static if the set of observable events is fixed a

priori. We denote by ΩΣo the corresponding sensor activation policy for the static

observation with the set of observable events Σo. Specifically, ΩΣo = (R,L) is given

by: 1) XR = {x0,R}; 2) ∀σ ∈ Σo : δA(x0,R, σ) = x0,R; and 3) L(x0,R) = Σo.

Given a sensor activation policy Ω = (R,L), we define the corresponding infor-

mation mapping PΩ :L(G)→(Σo ∪ Σs)
∗ recursively as follows:

PΩ(ε) = ε, PΩ(sσ) =

 PΩ(s)σ if σ ∈ L(δR(s))

PΩ(s) if σ 6∈ L(δR(s))

That is, PΩ(s) is the observation of string s under Ω. For any language L ⊆ Σ∗, we

define PΩ(L) = {t∈Σ∗o : ∃s∈L s.t. PΩ(s)= t}.

Let s ∈ L(G). For the sake of simplicity, hereafter, we also denote by Ω(s) 1 the

sensing decision after observing PΩ(s), i.e., Ω(s) = L(δR(s)).

For any two sensor activation policies Ω = (R,L) and Ω′= (R′, L′), we write that

Ω′ ≤ Ω if

∀s ∈ L(G) : Ω′(s) ⊆ Ω′(s) (5.3)

1In fact, a sensor activation policy can also be represent by a mapping Ω : L(G)→ 2Σo∪Σs such
that ∀s, t ∈ L(G) : PΩ(s) = PΩ(t)⇒ Ω(s) = Ω(t); see, e.g., [101,104].

130

and write that Ω′ < Ω if

[Ω′ ≤ Ω] ∧ [∃s ∈ L(G) : Ω′(s) ⊂ Ω′(s)] (5.4)

5.2.2 The Observer

For any i ∈ 2X , σ ∈ Σo ∪ Σs and θ ∈ 2Σo∪Σs . Recall that

Nextσ(i) = {x1 ∈ X : ∃x2 ∈ i s.t. δ(x2, σ) = x1} (5.5)

We also define

UORθ(i) = {x1 ∈ Q : ∃x2 ∈ i,∃s ∈ (Σ \ θ)∗ s.t. δ(x2, s) = x1} (5.6)

That is, Nextσ(i) is the set of states that can be reached from some state in i im-

mediately after observing σ and UORθ(i) is the set of states that can be reached

unobservably from some state in i under the set of monitored events θ. Note that

operator UOR is slightly different from operator UR defined in Equation (2.4)

Let G = (X,Σ, δ, x0) be the system automaton and Ω = (R,L), R = (XR,Σ, δR, x0,R)

be a sensor activation policy. The observer for G under Ω is

ObsΩ(G) = (Q,Σo ∪ Σs, f, q0), (5.7)

where Q ⊆ 2X × XR is the state space and for any state q ∈ Q, we write q =

(I(q), R(q)) where I(q) ∈ 2X and R(q) ∈ XR. The partial transition function of the

observer is denoted by f : Q × (Σo ∪ Σs) → Q and is defined as follows. For any

131

q = (i, x), q′ = (i′, x′) ∈ Q and σ ∈ Σo ∪ Σs, f(q, σ) = q′ iff

 x′ = δR(x, σ)

i′ = URL(x′)(Nextσ(i))
(5.8)

Finally, the initial state of ObsΩ(G) is q0 = (UORL(x0,R)({x0}), x0,R). For simplicity,

we only consider the reachable part of ObsΩ(G). By the above definition, we have

that L(ObsΩ(G)) = PΩ(L(G)).

We define the state estimator function (or simply “state estimator”) under Ω,

EGΩ : L(G)→ 2X , as follows upon the occurrence of s ∈ L(G):

EGΩ (s) := {x ∈ X : ∃t ∈ L(G) s.t. PΩ(s) = PΩ(t) ∧ δ(x0, t) = x}

By a simple induction (see, e.g., [22]), we can show that, for any s ∈ L(G), we have

I(f(PΩ(s))) = EGΩ (s), i.e., the state components of the observer state reached upon

PΩ(s) is the state estimator value after s.

5.3 Problem Formulation

As was explained in the introduction, in a given problem domain (control, diagno-

sis, and so forth), the sensor activation policy must satisfy some problem-dependent

property (observability, diagnosability, and so forth). For the sake of generality, we

define a property ϕ as a function ϕ : Ω→ {0, 1} and for any sensor activation policy

Ω, we write ϕ(Ω) = 1 to mean that Ω satisfies property ϕ. The properties of interest

are typically defined in a language-based manner rather than a state-based manner.

Hereafter, similar to the supervisor synthesis problem, we also consider a special class

of properties called information-state-based (IS-based) properties. These are proper-

ties whose verification can be performed over information states (i.e., sets of states)

of the (possibly refined) system state space. We formalize this notion next.

132

1

6 4

7

5
𝑜

2
𝜎1

3
𝑜

𝑓
𝑒

𝑜
𝜎2

𝑒, 𝜎1
𝑒

Figure 5.1: System G with Σo = {o}, Σs = {σ1, σ2}, and Σuo = {e, f}

We still define an information state to be a subset of states in X and denote by

I = 2X the set of information states. Roughly speaking, an IS-based property is

a property that only depends on the current knowledge of the system, as provided

by the state estimator function EGΩ under a given sensor activation policy Ω. In

particular, the property should not depend on information about the future behavior

of the system. We will show later that most of the important properties in the DES

literature can be formulated as IS-based properties, possibly after suitable state space

refinements of the original model G. First, we present the formal definition of the

IS-based property.

Definition 5.3.1. (IS-based Property). Let G = (X,Σ, δ, x0) be the system automa-

ton and Ω : L(G)→ Θ be a sensor activation policy. An IS-based property w.r.t. G is

a function ϕ : 2X → {0, 1}. We say that Ω satisfies ϕ w.r.t. G, denoted by Ω |=G ϕ,

if ∀s ∈ L(G) : ϕ(EGΩ (s)) = 1.

Example 5.3.1. Consider the system G in Figure 5.1. Let ϕ : 2X → {0, 1} be an

IS-based property defined as follow:

∀i ∈ 2X : [ϕ(i) = 1]⇔ [6 ∃x ∈ {1, 4, 5, 6} : {3, x} ⊆ i] (5.9)

This IS-based property ϕ requires that we should never confuse state 3 with any state

in {1, 4, 5, 6}.

Let us consider the information mapping Ω defined by ∀s ∈ L(G) : Ω(s) = {o}.

By taking eo ∈ L(G), we know that EGΩ (eo) = {3, 6}. Therefore, Ω 6|=G ϕ.

133

As was mentioned earlier, the objective of this chapter is to synthesize a sensor

activation policy such that some given property provably holds. Since turning sensors

on/off can be costly (for some given cost function on power, bandwidth, or switching

for instance), we define the Minimal Sensor Activation Problem for IS-Based Prop-

erties as follows.

Problem 5. (Minimal Sensor Activation Problem for IS-Based Properties). Let G =

(X,Σ, δ, x0) be the system automaton and ϕ : 2X → {0, 1} be an IS-based property

w.r.t. G. Find a sensor activation policy Ω such that:

(i) Ω |=G ϕ;

(ii) 6 ∃Ω′ such that Ω′ |=G ϕ and Ω′ < Ω.

In some contexts, we may be interested in the dual version of the Minimal Sensor Acti-

vation Problem, the Maximal Sensor Activation Problem for IS-Based Properties. Its

definition is analogous, with “<” replaced by ”>” in condition (ii). As is well known

for the main properties of interest in control or diagnosis of partially-observed DES,

Problem 5 does not have a unique “globally optimal” solution, and many incomparable

“locally optimal” solutions may exist in the logical setting under consideration. This

explains the manner in which condition (ii) is stated. (See Remark 5.5.1.)

Remark 5.3.1. In [102], the state disambiguation problem is defined. Formally, Tspec ⊆

X ×X is the set of state pairs that need to be distinguished and the goal is to find a

minimal Ω such that (∀s ∈ L(G))(∀x1, x2 ∈ EGΩ (s))[(x1, x2) /∈ Tspec]. Clearly, the state

disambiguation problem is a special case of the minimal sensor activation problem

for IS-based properties, since given Tspec, we can always define an IS-based property

ϕspec : 2X → {0, 1} by: ∀i ∈ 2X : [ϕspec(i) = 0] ⇔ [∃x1, x2 ∈ i : (x1, x2) ∈ Tspec].

Therefore, the problem we consider here is more general than the state disambiguation

problem.

134

Remark 5.3.2. In many cases, the system is not only monitored by its internal con-

troller, but it may also be monitored by an external observer that is potentially

malicious. Therefore, instead of disambiguating states, the objective is to confuse

the external observer so that it may not infer a given secret about the system. In

such a scenario, the “disablement” of sensors can be costly, since we need to spend

some additional effort, e.g., adding a dynamic mask, to hide the occurrences of the

corresponding events. In this regard, the optimal dynamic mask synthesis problem

investigated in the literature (see, e.g., [15]) is essentially the maximal sensor acti-

vation problem defined above. This justifies our earlier assertion that the problem

considered in this chapter is very general and covers many earlier works in different

problem domains. We further elaborate on this issue in Section 5.6.

5.4 A General Most Permissive Observer

In this section, we first discuss the evolution of the available information during

the execution of the system under dynamic observations. Then we define the notion

of bipartite dynamic observer, which is similar to the bipartite transition system for

the supervisor synthesis problem. Finally, we define the generalized most permissive

observer that embeds all valid sensor activation policies in its structure.

5.4.1 Information State Dynamics

A sensor activation policy Ω works dynamically as follows. Initially, a sensing

decision θ0 is issued. Then, upon the occurrence of (monitored) event σ1 ∈ θ0,

a new decision θ1 is made and so forth. We call such a sequence in the form of

θ0σ1θ1σ2 . . . , where θi ∈ Θ, σi+1 ∈ θi,∀i ≥ 0, a run. For any s ∈ L(G), suppose

that s = ξ0σ1ξ1σ2 . . . ξn−1σnξn, where ξi ∈ (Σ \ Ω(ξ0σ1 . . . ξi−1σi))
∗,∀i ≥ 0 and σi ∈

Ω(ξ0σ1 . . . σi−1ξi−1),∀i ≥ 1, i.e., PΩ(s) = σ1 . . . σn. Intuitively, ξi is just an unobserved

string and σi is a monitored event. Then the information available to the sensor

135

activation module upon the occurrence of s is, in fact, the run

RΩ(s) := θ0σ1θ1 . . . θn−1σnθn (5.10)

where θi = Ω(ξ0σ1 . . . ξi−1σiξi),∀i ≥ 0.

To capture the alternating nature of sensing decisions and observations of moni-

tored events, similar to the BTS, we define two analogous kinds of states, also termed

Y -states and Z-states, respectively. A Y -state y is an information state from which

a sensing decision is made and Y ⊆ I denotes the set of Y -states. A Z-state z

is an information state augmented with a sensing decision from which observations

of monitored events occur. Z ⊆ I × Θ denotes the set of Z-states and we write

z = (I(z),Θ(z)) for any z ∈ Z. Next, we define the transition function from Y -states

to Z-states, ~Y Z : Y ×Θ→ Z, and the transition function from Z-states to Y -states,

~ZY : Z × Σ→ Y . For any y ∈ I, z ∈ I ×Θ, σ ∈ Σ and θ ∈ Θ,

• z = ~Y Z(y, θ) if and only if

I(z) = {x ∈ X : ∃x′ ∈ y,∃s ∈ (Σ \ θ)∗ s.t. δ(x′, s) = x} and Θ(z) = θ

• y = ~ZY (z, σ) if and only if

σ ∈ Θ(z) and y = {x ∈ X : ∃x′ ∈ I(z) s.t. δ(x′, σ) = x}

For simplicity hereafter, we write y
θ−→ z if z = ~Y Z(y, θ) and z

σ−→ y if z = ~ZY (z, σ).

Intuitively, y
θ−→ z simply represents the unobserved reach under sensing decision θ

and it remembers the sensing decision that leads to it. On the other hand, z
σ−→ y

represents the set of states the system can reach immediately after the occurrence of

event σ. We require that σ ∈ Θ(z), since σ must be monitored.

Now, let s ∈ L(G) be a string and RΩ(s) = θ0σ1θ1 . . . θn−1σnθn be the corre-

sponding run defined in Equation (5.10). Let y0 = {x0} be the initial Y -state. Then

occurrence of the run θ0σ1θ1 . . . θn−1σnθn will reach an alternating sequence of Y−

136

and Z-states

y0
θ0−→ z0

σ1−→ y1
θ1−→ . . .

θn−1−−→ zn−1
σn−→ yn

θn−→ zn (5.11)

We denote by IYΩ (s) and IZΩ (s), the last Y -state and Z-state in y0z0y1z2 . . . zn−1ynzn,

respectively, i.e., IYΩ (s) = yn and IZΩ (s) = zn. By induction on the length of PΩ(s), it

can be verified (see, e.g., the proof of Lemma III.1 in [22]) that

I(IZΩ (s)) = EGΩ (s) (5.12)

which essentially says that the information state component of IZΩ (s) is the state

estimator of s.

Example 5.4.1. Let us return to the system G in Figure 5.1. Consider the sensor

activation policy Ω that monitors event σ1 only when nothing has been observed so far

and monitors noting after the first event is observed. (Note that o is always monitored

by default.) Let us consider the string s = σ1σ2. The corresponding run of s is

RΩ(σ1σ2) = {o, σ1}σ1{o} (5.13)

and the corresponding sequence of Y - and Z-states is

{1} {o,σ1}−−−→({1, 2}, {o, σ1})
σ1−→{4} {o}−−→({4, 5}, {o}) (5.14)

So IYΩ (σ1σ2) = {4}, IZΩ (σ1σ2) = ({4, 5}, {o}) and EGΩ (σ1σ2) = I(IZΩ (σ1σ2)) = {4, 5}.

5.4.2 Bipartite Dynamic Observer

Recall that the sensor activation policy Ω is defined as an automaton A with a

function L. In the following, we define the structure of Bipartite Dynamic Observer

(BDO) that also provide a way to realize a (set of) sensor activation policy(ies).

137

Definition 5.4.1. A bipartite dynamic observer O is a 7-tuple

O = (QOY , Q
O
Z , ~OY Z , ~OZY ,Σ,Θ, y0) (5.15)

where, QOY ⊆ I is a set of Y -states, QOZ ⊆ I×Θ is a set of Z-states, ~OY Z : QOY ×Θ→

QOZ and ~OZY : QOZ × Σ → QOY are partial transition functions such that for any

z ∈ QOZ , y ∈ QOY , θ ∈ Θ and σ ∈ Σ, the following conditions hold

C1. ~OZY (z, σ) = y ⇔ ~ZY (z, σ) = y;

C2. ~OY Z(y, θ) = z ⇒ ~Y Z(y, θ) = z;

C3. ∀y ∈ QOY , ∃θ ∈ Θ : ~OY Z(y, θ)!.

Σ is the set of events of G, Θ is the set of admissible sensing decisions, and y0 = {x0}

is the initial Y -state. For brevity, we only consider the accessible part of a BDO.

The three conditions in the above definition are interpreted as follows. Condition

C1 says that the transition function ~OZY in O is identical to ~ZY . Therefore, for any

z ∈ QOZ , ~OZY (z, σ) is defined for any possible observation σ ∈ Θ(z) by the definition of

~ZY . This is due to the fact that we cannot decide which monitored event will occur

once we make a sensing decision. Conditions C2 says that for the transition function

~OY Z , we have either ~OY Z(y, θ) = ~Y Z(y, θ) or it is undefined. Condition C3 requires

that for any Y -state y ∈ QOY , there exists at least one θ ∈ Θ such that ~OY Z(y, θ) is

defined. This is because a sensor activation policy is defined for all strings in L(G)

and we must make a sensing decision at all accessible Y -states.

Definition 5.4.2. Given a BDO O, we say that a sensor activation policy Ω is

allowed by O if

∀s ∈ L(G) : ~OY Z(IYΩ (s),Ω(s))! (5.16)

With a slight abuse of notation, we write that Ω ∈ O whenever Ω is allowed by O.

138

Note that, given a BDO O, the set of sensor activation policies allowed by O may

not be a singleton, since for each Y -state there may be multiple sensing decisions

to choose from. Moreover, the domain of a sensor activation policy in a BDO need

not be finite since different sensing decisions may be chosen on different visits to

the same Y -state. We say that a BDO O is deterministic if, for any y ∈QOY , there

exists only one θ ∈Θ such that ~OY Z(y, θ)!. It is clear that a deterministic BDO O

allows a unique sensor activation policy; we denote it by ΩO. More specifically, ΩO =

(AO, LO), where AO = (XA, δA,Σo ∪ Σs, x0,A), is defined by: XA = QOY , x0,A = y0

and for any x1, x2 ∈ XA, we have fA(x1, σ) = x2 ⇔ ~OZY (~OY Z(x1, θx1), σ) = x2 and

L(x1) = Θ(~OY Z(x1, θx1)), where θx1 is the unique sensing decision defined at x1 in

O. Note that, in general we may need infinite memory to realize a sensor activation

policy. Therefore, a deterministic BDO can only represent a sensor activation policy

that has at most 2X states. However, we will show later that this memory is always

sufficient for the purpose of synthesis.

Example 5.4.2. Consider again the system G in Figure 5.1. Figure 5.2(a) provides

an example of a deterministic BDO. For the initial Y -state y0 = {1}, by making

sensing decision θ = {o, σ1}, we will reach Z-state z = ~Y Z(y0, θ) = ({1, 2}, {o, σ1}).

From z, only monitored events o and σ1 can be observed. If σ1 is observed, then the

next Y -state is y1 = ~ZY (z, σ1) = {4}. We can verify that the sensor activation policy

Ω defined in Example 5.4.1 is allowed by O1; moreover, it is the only one allowed by

O1 since this BDO is deterministic. Similarly, the BDO O2 shown in Figure 5.2(b)

is also deterministic. However, the BDO shown in Figure 5.3 is not a deterministic

BDO, since there are two sensing decisions {o, σ1} and {o, σ2} defined at Y -state {1}.

139

{1}

{1,2}, {𝑜, 𝜎1}

{4}

𝜎1

𝑜

{3,7}, {𝑜}

{6}, {𝑜}

{4,5}, {𝑜}

{𝑜, 𝜎1}

{𝑜}

{𝑜} {𝑜}

𝑜

𝑜

{3}

{6}

{1}

{𝑜, 𝜎2}

𝜎2 {3,7}, {𝑜}

{𝑜}

{6}, {𝑜}

{1,2,4},

{5}

{5},

{𝑜, 𝜎2}
𝑜 {𝑜}

{𝑜} {𝑜}

𝑜

𝑜

{3}

{6}

(a) Solution O1

{1}

{1,2}, {𝑜, 𝜎1}

{4}

𝜎1

𝑜

{3,7}, {𝑜}

{6}, {𝑜}

{4,5}, {𝑜}

{𝑜, 𝜎1}

{𝑜}

{𝑜} {𝑜}

𝑜

𝑜

{3}

{6}

{1}

{𝑜, 𝜎2}

𝜎2 {3,7}, {𝑜}

{𝑜}

{6}, {𝑜}

{1,2,4},

{5}

{5},

{𝑜, 𝜎2}
𝑜 {𝑜}

{𝑜} {𝑜}

𝑜

𝑜

{3}

{6}

(b) Solution O2

Figure 5.2:
Examples of BDOs that represent two incomparable minimal solutions;
[blue] rectangular states and [yellow] oval states represent, respectively,
Y -states and Z-states.

1

6 4

7

5
𝑜

2
𝜎1

3
𝑜

𝑓

𝑒

𝑜
𝜎2

𝑒, 𝜎1
𝑒

{1}

{1,2}, {𝑜, 𝜎1} {𝑜, 𝜎2}

{4}

𝜎1 𝜎2

𝑜

{3,7}, {𝑜}

{𝑜}

{6}, {𝑜}

{4}, {𝑜, 𝜎2}

{4,5}, {𝑜}

{1,2,4},

{5}
{6}, {𝑜, 𝜎1}

{5},

{𝑜, 𝜎1} {𝑜, 𝜎2}
𝑜

{𝑜}

{𝑜}
{𝑜, 𝜎2} {𝑜} {𝑜, 𝜎1} 𝜎1 {𝑜}

𝜎2

𝑜

𝑜
𝑜

𝑜

{𝑜} {1,2,4,5},

{3}

{6} {3,6}

{𝑜}

𝑜

{1}

{1,2}, {𝑜, 𝜎1}

{4}

𝜎1

𝑜

{3,7}, {𝑜}

{6}, {𝑜}

{4,5}, {𝑜}

{𝑜, 𝜎1}

{𝑜}

{𝑜} {𝑜}

𝑜

𝑜

{3}

{6}

Figure 5.3: Example of MPO

140

5.4.3 Generalized MPO and its Properties

We return to the sensor action problem for IS-based properties formulation in

Section 5.3. By condition (i) in Problem 1, we must find an Ω such that ∀s ∈ L(G) :

ϕ(EGΩ (s)) = 1. However, for any BDO, we know that ∀s ∈ L(G) : I(IZΩ (s)) = EGΩ (s)

and IZΩ (s) is indeed the Z-state reached by the run RΩ(s) in the BDO. Therefore, if

we construct a BDO O such that

∀z ∈ QOZ : ϕ(I(z)) = 1 (5.17)

and such that O is “as large as possible”, then the resulting structure will contain

all sensor activation policies that satisfy ϕ. The property of such a BDO being as

large as possible is actually well defined: if O1 and O2 are two BDOs that both

satisfy Equation (5.17), then their union, in the sense of graph merger, is a BDO that

satisfies Equation (5.17). For example, the BDOs O1 and O2 shown in Figure 5.2(a)

and Figure 5.2(b), respectively, both satisfy Equation (5.17). Their union, which is a

sub-graph of the BDO in Figure 5.3, is also a BDO satisfying Equation (5.17). This

observation leads to the definition of the most permissive observer.

Definition 5.4.3. (Most Permissive Observer). Let G = (X,Σ, δ, x0) be the system

and let ϕ : 2X → {0, 1} be the IS-based property under consideration. The Most

Permissive Observer for ϕ is the BDO

MPOϕ = (QMPO
Y , QMPO

Z , ~MPO
Y Z , ~MPO

ZY ,Σ,Θ, y0)

defined as the largest BDO such that ∀z ∈ QMPO
Z : ϕ(I(z)) = 1.

The following theorem reveals the correctness of the MPO defined above, namely,

the MPO embeds all sensor activation policies satisfying ϕ in its structure.

Theorem V.1. Ω |=G ϕ if and only if Ω ∈MPOϕ.

141

Proof. (⇐) Suppose that Ω is allowed by the MPO. Then we know that for any

s ∈ L(G) we have IZΩ (s) ∈ QMPO
Z by definition. Since ∀z ∈ QMPO

Z : ϕ(I(z)) = 1, by

Equation (5.12), we know that ∀s ∈ L(G) : ϕ(EGΩ (s)) = 1. Therefore, Ω |=G ϕ.

(⇒) Suppose that Ω |=G ϕ. Then there exists a BDO O such that: 1) Ω ∈ O;

and 2) ∀z ∈ QOZ : ϕ(I(z)) = 1. Specifically, O is obtained by: QOY = {y ∈ Y : ∃s ∈

L(G) s.t. y = IYΩ (s)}, QOZ = {z ∈ Z : ∃s ∈ L(G) s.t. z = IZΩ (s)} and ∀y ∈ QOY ,∀θ ∈

Θ : [~OY Z(y, θ)!] ⇔ [∃s ∈ L(G) : y = IYΩ (s) ∧ θ = Ω(s)]. Now let us assume that Ω is

not allowed by the MPO. Then we know that ∃s ∈ L(G) : ~MPO
Y Z (IYΩ (s),Ω(s)) is not

defined. However, this implies that the union of O andMPOϕ is strictly larger than

MPOϕ, since Ω(s) is defined at IYΩ (s) in O but not in MPOϕ. This contradicts to

the fact the MPO is the largest BDO satisfying Equation (5.17).

Algorithm 1 provides a procedure for the construction of the MPO. The steps of

Algorithm 1 follow direction from the definition of the MPO. First, we search through

the state space of Y -states and Z-states until a Z-state that violates the IS-based

property ϕ is encountered. This step is done by Procedure DoDFS, which is simply

a depth-first search. However, this may lead to the situation where there is a Y -state

that has no successors. Recall that this situation is illegal by the definition of the

BDO. Therefore, we need to go back to prune such a Y -state and the corresponding

Z-states that lead to this state, until the structure converge. This step is done by

the while loop, which will stop in a finite number of steps. The worst-case time

complexity of the construction of the MPO is exponential in both |X| and |Σs|.

Example 5.4.3. We return to system G in Figure 5.1 and IS-based property ϕ defined

by Equation (5.9). The corresponding MPO is shown in Figure 5.3. At initial Y -state

{1}, if we make sensing decision {o}, then Y -state {3, 6} will be reached upon the

occurrence of monitored event o (see the dashed lines). However, at state {3, 6}, no

matter what sensing decision we make, a Z-state that contains both state 3 and 6

will be reached, which violates the IS-based property ϕ. Therefore, we need to go back

142

Algorithm 8: The construction of the MPO

Data: G and ϕ
Result: MPOϕ

1 QMPO
Y ← y0 = {x0} and QMPO

Z ← ∅;
2 DoDFS(y0,MPOϕ, ϕ);
3 while ∃y ∈ QMPO

Y : 6 ∃θ ∈ Θ s.t. ~MPO
Y Z (y, θ)! do

4 QMPO
Y ← QMPO

Y \ {y};
5 remove all Z-states z ∈ QMPO

Z such that ~MPO
ZY (z, σ) = y for some σ ∈ Σ;

6 take the accessible part of MPOϕ;

procedure DoDFS(y,MPOϕ, ϕ);
7 for θ ∈ Θ do
8 z ← ~Y Z(y, θ);
9 if ϕ(I(z)) = 1 then

10 add transition y
θ−→ z to ~MPO

Y Z ;
11 if z 6∈ QMPO

Z then
12 QMPO

Z ← QMPO
Z ∪ {z};

13 for σ ∈ Σ s.t. ~ZY (z, σ)! do
14 y′ ← ~ZY (z, σ);

15 add transition z
σ−→ y′ to ~MPO

ZY ;
16 if y′ 6∈ QMPO

Y then
17 QMPO

Y ← QMPO
Y ∪ {y′};

18 DoDFS(y′,MPOϕ, ϕ);

143

to prune Y -state {3, 6} and its predecessor Z-state ({1, 2, 4, 5}, {o}). This is why we

cannot make sensing decision {o} at the initial state.

Remark 5.4.1. In Figure 5.3, we can also make sensing decision {o, σ1, σ2} at the initial

Y -state. However, σ2 cannot be observed before the next sensing decision is issued,

which will occur when either o or σ1 is observed. Therefore, σ2 is a “redundant” event

in the sensing decision, since it has no effect on future states in the MPO. In this

chapter, we adopt the following convention. We remove all redundant events from

sensing decisions in the MPO when solving the minimal sensor activation problem.

Similarly, we include all redundant events to the sensing decisions in the MPO when

solving the maximal sensor activation problem. Clearly, these conventions will not

affect the properties of the MPO.

5.5 Synthesis of Optimal Sensor Activation Policies

In this section, we show how to synthesize from the MPO an optimal sensor

activation policy Ω that solves Problem 5. Specifically, we require that Ω satisfy

the minimality criterion (ii) of Problem 5 (or the maximality criterion for the dual

version of Problem 5). Moreover, we shall also require that Ω be defined over a finite

domain, so that it can be effectively implemented. As was mentioned earlier, a sensor

activation policy allowed by the MPO need not be finitely realizable, since we can

select different sensing decisions upon different visits to the same Y -state. Therefore,

we define a special class of sensor activation policies that are represented by subgraphs

of the MPO and thus have finite realizations.

Definition 5.5.1. (IS-based Sensor Activation Policy). A sensor activation policy Ω

is said to be Information-State-based (or IS-based) if

∀s, t ∈ L(G) : IYΩ (s) = IYΩ (t)⇒ Ω(s) = Ω(t) (5.18)

144

Clearly, if Ω is IS-based, then Ω can always be represented by a deterministic

BDO that is a subgraph of the MPO.

Definition 5.5.2. (Greedy Optimal Sensor Activation Policy). Suppose that Ω is a

sensor activation policy such that Ω |=G ϕ. We say that Ω is greedy minimal if

∀s ∈ L(G),∀θ ∈ Θ : ~MPO
Y Z (IYΩ (s), θ)!⇒ θ 6⊂ Ω(s) (5.19)

The notion of greedy maximality is defined analogously.

The following theorem says that a greedy minimal (respectively, maximal) solution

is a minimal (respectively, maximal) solution.

Theorem V.1. Let Ω be a sensor activation policy such that Ω |=G ϕ. Then Ω is

minimal (respectively, maximal) if it is greedy minimal (respectively, greedy maximal).

Proof. We prove minimality by contradiction; maximality can be proved analogously.

Suppose that Ω is greedy minimal and assume that it is not minimal. This implies

that there exists another Ω′ such that Ω′ < Ω and Ω′ |=G ϕ. Then we know that

there exists a string t ∈ L(G) such that: 1) Ω′(t) ⊂ Ω(t); and 2) ∀t′ ∈ {t} \ {t} :

Ω′(t′) = Ω(t′). Then we know that IYΩ′(t) = IYΩ (t) and we call this Y -state y. Since

Ω′ |=G ϕ, by Theorem V.1, we know that Ω′ is also allowed by the MPO, which means

that ~MPO
Y Z (y,Ω′(s))!. However, by the fact that Ω is greedy minimal, we know that

[∀θ ∈ Θ : ~MPO
Y Z (y, θ)!]θ 6⊂ Ω(s). This contradicts Ω′(t) ⊂ Ω(t).

By Theorem V.1, it is clear that if we synthesize an IS-based greedy optimal

sensor activation policy, then we will have obtained a solution to Problem 5, which

was our objective. (Of course, not all solutions to Problem 5 need be IS-based or

greedy.) An IS-based greedy optimal sensor activation policy can be obtained by a

depth-first search over the state space of the MPO that picks one greedy optimal

sensing decision at each Y -state and then picks all observations for each Z-state.

145

The resulting structure will be a deterministic BDO that represents the solution. We

illustrate this synthesis procedure by an example.

Example 5.5.1. We return to the MPO shown in Figure 5.3. To synthesize a min-

imal sensor activation policy for ϕ, we can pick decision {o, σ1}, which is greedy

minimal, at the initial Y -state. Then, upon the occurrence of monitored event σ1,

the new Y -state {4} is reached. At that state, we pick the unique greedy minimal

decision {o}, and so forth. These choices result in deterministic BDO O1 shown

in Figure 5.2(a) that allows the unique sensor activation policy ΩO1, which is prov-

ably minimal. We see that ΩO1 is, in fact, the sensor activation policy Ω defined by

Equation (5.4.1).

Remark 5.5.1. In the synthesis step in the previous example, we could have select-

ed sensing decision {o, σ2} at the initial Y -state, which yields the minimal solution

shown in Figure 5.2(b). Interestingly, we see that the intersection of the two valid

decisions {o, σ1} and {o, σ2}, i.e, {o} is not a valid decision, since {o} is not defined

at Y -state {1} in the MPO. This illustrates the earlier claim that Problem 1 may

not have an infimal (respectively, supremal) solution in general, but instead several

incomparable minimal (respectively maximal) solutions. This phenomenon is similar

to the supervisory control problem under partial observation studied in Chapters II

and III, in which supremal solutions do not exist in general and only locally maximal

solutions exist.

5.6 Applications of the Generalized MPO

5.6.1 Application to Control and Diagnosis

Observability and diagnosability are two key properties of interest in control and

diagnosis of DES. It is shown in [102] that the problem of sensor activation for observ-

ability can be formulated as a state-disambiguation problem. Similarly, it is shown

146

in [22] that the problem of sensor activation for K-diagnosability can be formulated as

a state-disambiguation problem. Therefore, as was discussed in Remark 5.3.1, both of

these sensor activation problems can be solved by the generalized MPO approach that

we have presented. In fact, the most permissive observer for K-diagnosability [16,22]

is a special case of the MPO defined in this chapter. On the other hand, the no-

tion of an MPO for the property of observability has never been considered in the

literature. The generalized MPO therefore provides a new approach for solving sen-

sor activation for enforcement of observability. The reader is referred to [22, 102] to

see how observability and K-diagnosability can be formulated as IS-based properties.

Another property of interest in sensor activation is detectability [89]; it relates to

state reconstruction. By using the same approach that is used for the reformulation

of K-diagnosability in [22], we can show that strong K-detectability can also be for-

mulated as an IS-based property and thereby our solution procedure also applies to

that property.

5.6.2 Application to Fault Prediction

As a specific example of how the methodology presented in this chapter can be used

to solve problems that have not yet been addressed in the literature, we consider the

problem of sensor activation for the enforcement of predictability, a notion introduced

in [29]. Let ed ∈ Σ be the fault event to be predicted. Recall that Ψ(ed) := {sed ∈

L(G) : s ∈ Σ∗} is the set of strings that end with ed and we write ed ∈ s if s∩Ψ(ed) 6=

∅. We recall the definition of predictability from [29].

Definition 5.6.1. (Predictability). A live language L(G) is said to be predictable

w.r.t. ed ∈ Σ and Ω if

(∀s ∈ Ψ(ed))(∃t ∈ {s} : ed /∈ t)(∀u ∈ L(G) : ed /∈ u ∧ PΩ(u) = PΩ(t))

(∃n ∈ N)(∀v ∈ L(G)/u)[|v| ≥ n⇒ ed ∈ v] (5.20)

147

The above definition requires that the fault event ed should be predicted unam-

biguously before its the occurrence. Note that the liveness assumption here is w.l.o.g.,

since we can always add unobservable self-loops at terminal states in G.

To proceed further, we assume that state space of G is partitioned into two disjoint

sets X = XY ∪̇XN , such that

• ∀s ∈ L(G) : δ(x0, s) ∈ XY ⇒ ed ∈ s; and

• ∀s ∈ L(G) : δ(x0, s) ∈ XN ⇒ ed 6∈ s.

That is, XY is the set of faulty states and XN is the set of non-faulty states. This

assumption is also w.l.o.g., since we can always refine the state space of G by taking

the parallel composition of G with an automaton with two states that captures the

occurrence of ed. Next, similarly to the notions of boundary strings and indicator

strings in [47], we define the two following sets:

• Boundary states, ∂X = {x ∈ X : δ(q, ed)!}; and

• Non-indicator states, NX ={x∈XN : ∀n∈N,∃s∈L(G, x) s.t. |s| > n∧ ed 6∈ s}.

A boundary state is a state from which the fault event can occur and a non-indicator

state is a state from which an arbitrary long non-faulty string can occur. Note that

∂X and NX need not be disjoint in general.

With the above notions, we define the IS-based property ϕpre : 2X → {0, 1} by:

∀i ∈ 2X : [ϕpre(i)=0]⇔ [∃x, x′ ∈ i : x ∈ ∂X ∧ x′ ∈ NX] (5.21)

The following result says that predictability is equivalent to the IS-based property

ϕpre.

Theorem V.1. Let ϕpre be the IS-based property defined by Equation (5.21). For

any sensor activation policy Ω, L(G) is predictable w.r.t. ed and Ω if and only if

Ω |=G ϕpre.

148

Proof. (⇒) By contrapositive. Suppose that Ω 6|=G ϕpre. We know that ∃s, t∈L(G) :

PΩ(s) =PΩ(t) ∧ δ(x0, s)∈∂Q ∧ δ(x0, t)∈NQ. Considering the above s and t, we also

know that (∀v ∈ {s})(∃u ∈ {t})[PΩ(v) =PΩ(u)]. By definition, δ(x0, t)∈NQ implies

that ∀u ∈ {t} : δ(x0, u)∈NQ. Then we have (∃sed ∈ Ψ(ed))(∀v ∈ {s} : ed 6∈ v)(∃u ∈

L(G) : ed 6∈ u ∧ PΩ(v) = PΩ(u))(∀n ∈ N)(∃w ∈ L(G)/u)[|w| ≥ n ∧ ed 6∈ w]. Thus,

L(G) is not predictable.

(⇐) By contrapositive. Suppose that L(G) is not predictable. By Definition 5.6.1,

we know that (∃sed ∈ Ψ(ed))(∀t ∈ {s} : ed 6∈ t)(∃u ∈ L(G) : ed 6∈ u ∧ PΩ(u) =

PΩ(t))(∀n ∈ N)(∃v ∈ L(G)/u)[|v| ≥ n ∧ ed 6∈ v]. For the above s, let us consider the

string α ∈ {s} such that ed 6∈ α and αed ∈ {s}, i.e., α is the longest non-faulty prefix

of s. By definition, we know that δ(x0, α) ∈ ∂Q. Also, we know that ∃u ∈ L(G)

such that PΩ(u) = PΩ(α) and δ(x0, α) ∈ NQ. This implies that ∃α ∈ L(G),∃x, x′ ∈

EGΩ (α) : x ∈ ∂Q ∧ x′ ∈ NQ. Therefore, Ω 6|=G ϕpre.

The above theorem implies that to synthesize a minimal sensor activation policy

for the purpose of prediction, it suffices to solve Problem 5 by taking ϕpre into account.

We illustrate this result by the following example.

Example 5.6.1. Let us return to the system G in Figure 5.1. Suppose that f is the

fault event that we want to predict. G already satisfies the state partition assumption

X = XY ∪̇XN , where XN = {1, 2, 3, 4, 5, 6} and XY = {7}. Also, we know that state

3 is the only boundary state and states 1, 4, 5 and 6 are non-indicator states. For

example, from state 6, the arbitrary long non-faulty behavior en, n ∈ N, can occur.

However, states 2 and 3 are not non-indicator states, since from either of these two

states, we know for sure that the fault event will occur in a finite number of steps.

Therefore, we have ∂X = {3} and NX = {1, 4, 5, 6}. In fact, we see that the IS-based

property defined by Equation (5.9) that we considered in the previous examples is

indeed the IS-based property ϕpre for this example. Therefore, the solutions O1 and

O2 shown in Figure 5.2 that we obtained previously are two (incomparable) minimal

149

sensor activation policies that guarantee predictability.

5.6.3 Application to Cyber-Security

As was discussed earlier in Remark 5.3.2, in some cases, the system may also

be monitored by an external observer that is potentially malicious. Therefore, for

security purposes, one may want the information mapping not to release some crucial

information to this external observer. We recall an important security property called

opacity.

Definition 5.6.2. Secret XS ⊆ X is current-state opaque w.r.t. G and Ω if ∀s ∈

L(G) : EGΩ (s) 6⊆ XS.

In the above definition, the secret of the system is defined in terms of the current-

state estimator. Some other notions of opacity, e.g., initial-state opacity and language-

based opacity, have also been studied in the literature. However, since all of these

notions can be mapped to one another (see [107]), the study of current-state opacity

here is without essential loss of generality. Current-state opacity is clearly an IS-

based property. Therefore, the most permissive dynamic mask studied in [15] is also a

special case of the generalized MPO and the problem of synthesizing a maximal sensor

activation policy (or dynamic mask) can also be solved by the approach presented in

this chapter.

Moreover, the same approach can be applied to other user defined properties. For

example, consider the IS-based property ϕ : 2X → {0, 1} defined by

∀i ∈ 2X : ϕ(i) = 0⇔ |i| = 1 (5.22)

This property is related to 1-anonymity studied in the computer security literature

[84,90]. Intuitively, it requires that the observer should never determine the current-

state of the system precisely. We can also synthesize a sensor activation policy for it

150

by applying the generalized MPO approach.

5.7 Conclusion

In this chapter, we presented a new approach to the problem of synthesizing

an optimal sensor activation policy that guarantees some observation property in

problems of control, diagnosis, prediction, or other types in the context of partially-

observed discrete event systems. To this end, we defined a novel information structure

called the generalized Most Permissive Observer that is applicable to a wide class of

properties called information-state-based properties. The generalized MPO embeds

all valid sensor activation policies in its structure. We presented an algorithm for the

construction of the MPO and a procedure for synthesizing an optimal sensor activation

policy based on the MPO. Our approach generalizes the previous works on the MPO,

which pertain to specific properties such as opacity or K-diagnosability. Our approach

is applicable to a wide class of user-defined properties. In particular, we showed how

the problem of optimal sensor activation for the purpose of fault prediction, not

previously considered in the literature, can be solved by the generalized MPO.

151

CHAPTER VI

Sensor Activation in Decentralized Decision

Making

6.1 Introduction

In this chapter, we investigate the problem of decentralized decision making in

DES that operates under dynamic observations. In this context, the system is mon-

itored by a set of agents that act as a team to make global decisions. Each agent

makes observations online through its sensors; these sensors can be turned on/off

online dynamically during the evolution of the system according to a sensor activa-

tion policy that depends on the agent’s observations. Due to energy, bandwidth, or

security constraints, sensors activations are “costly”. Therefore, in order to reduce

sensor-related costs, it is of interest to minimize, in some technical sense, the sensor

activations of each agent while maintaining some desired observational property.

However, for the decentralized sensor activation problem, there are very few results

in the literature. In [101], the problem of dynamic sensor activation for decentralized

diagnosis is studied. Specifically, a “window-based partition” approach is proposed in

order to obtain a solution. The main drawback of this approach is that the solution

obtained is only optimal with respect to a finite (restricted) solution space and may

not be language-based optimal in general. In other words, by enlarging the solution

152

space by refining the state space of the system model, better solutions could be

obtained in principle. Similarly, in [104], the problem of dynamic sensor activation

for decentralized control is also studied, where the solution obtained is again optimal

w.r.t. a finite solution space. To the best of our knowledge, the problem of language-

based sensor optimization for decentralized diagnosis or control has remained an open

problem, as is mentioned in the recent survey [82].

One important reason for the lack of results for the decentralized sensor activation

problem is that decentralized multi-player decision problems are conceptually much

more difficult to solve than their corresponding centralized versions. In general, these

types of problems have been discussed in the framework of team decision theory [32].

In the DES literature, it is well-known that many problems that are decidable in the

centralized setting become undecidable (e.g., the problem of synthesizing safe and

non-blocking supervisors [98]) or open (e.g., the problem of synthesizing maximally

permissive safe supervisors [59]) in the decentralized case, even when only two agents

are involved.

In this chapter, we propose a new approach to tackle the problem of dynamic

sensor activation for the purpose of decentralized decision-making. The main contri-

butions of this chapter are as follows. First, we formulate a general class of decentral-

ized decision-making problems called the decentralized state disambiguation problem.

We propose the notion of decentralized distinguishability, which covers coobservabil-

ity, K-codiagnosability and coprognosability. Second, to solve the dynamic sensor

activation problem, we adopt a person-by-person approach (see, e.g., [100] and the

references therein) to decompose the decentralized minimization problem to two con-

secutive centralized minimization problems. We first minimize the sensor activation

policy for Agent 1 by keeping the policy of Agent 2 fixed. Then, we fix Agent 1’s

sensor activation policy to the one obtained and solve the same minimization prob-

lem but for Agent 2. Essentially, we solve two centralized constrained minimization

153

problems, since we need to take the other agent’s information into account when we

minimize the decisions of an agent. A novel approach is also proposed to reduce

each centralized constrained minimization problem to a problem that we solved in

Chapter V.. Moreover, we prove that the solution obtained by our procedure is min-

imal with respect to the system language (i.e., over an infinite set in general), in

contrast to the works reviewed above where minimality was with respect to a finite

solution space. As special cases of the proposed framework, language-based sensor

optimizations for decentralized diagnosis and decentralized control, which were pre-

viously open, are solved. Finally, we show that the proposed framework is applicable

to both the disjunctive architecture and the conjunctive architecture.

In general, a person-by-person approach in team decision problems may not ter-

minate in a finite number of steps, since we may need to iterate between the two

constrained minimization problems. However, we show that for the problem under

consideration in this chapter, such iterations are not required due to a certain type

of monotonicity that arises. Moreover, we prove that the solution obtained by our

procedure is minimal w.r.t. the system language (i.e., over an infinite set in general),

in contrast to the works reviewed above where minimality was with respect to a finite

solution space. In the DES literature, the person-by-person approach has also been

applied to the decentralized control problem [59] and to the decentralized commu-

nication problem [7, 66, 75]. However, to the best of our knowledge, it has not been

applied so far to decentralized sensor activation.

The remainder of this chapter is organized as follows. Section 6.2 we formulate

the decentralized state disambiguation problem and the decentralized minimization

problem that we solve in this chapter. In Section 6.3, shows how to solve the central-

ized constrained minimization problem by reducing it to a fully centralized problem.

In Section 6.4, we present our algorithm for synthesizing a minimal decentralized

solution. In Section 6.5, we show how specific problems, e.g., sensor activation for

154

decentralized diagnosis/control/prognosis can be solved by the proposed framework.

We also extend our results to the conjunctive architecture in Section 6.6. Finally, we

conclude this chapter in Section 6.7.

6.2 Problem Formulation and Solution Overview

6.2.1 Decentralized Distinguishability

In the decentralized decision-making problem, at each instant, each local agent

sends highly compressed information, i.e., a local decision, to the coordinator based

on its local (dynamic) observation. Then the coordinator makes a global decision

based on the information received from each local agent. Let I be the index set of

local agents. For each agent i ∈ I, we denote by Ωi its sensor activation policy and

by Σo,i the set of events that can be monitored in Ωi. For the sake of simplicity, we

develop all results hereafter for the case of two agents, i.e., I = {1, 2}. The principle

can be extended to an arbitrary number of agents. We define the pair of sensor

activation policies as Ω̄ = [Ω1,Ω2].

In order to formulate the decentralized decision-making problem, we need to spec-

ify the following three ingredients:

• What requirement the global decision has to fulfill?

• What information each local agent can send to the coordinator?

• What rule the coordinator uses to calculate a global decision based on the local

decisions?

Hereafter, we refer to the first ingredient as the specification of the decentralized

decision-making problem. The last two ingredients are referred to as the architecture

of the decentralized decision-making problem.

155

Several different specifications have been studied separately in the literature for

decentralized decision-making problems, e.g., to diagnose every occurrence of fault

events [24,62], to predict every occurrence of fault events [47] or to control the system

[69,128]. In this chapter, we do not study a specific specification. Instead, we define

a general class of specifications called decentralized state disambiguation. We show

will later in Section 6.5 that many existing decentralized decision-making problems

are special cases of the decentralized disambiguation problem. Formally, we define a

specification as a pair of state sets

T = XT
A ×XT

B ⊆ X ×X (6.1)

Intuitively, specification T is used to capture the following requirement. State set XT
A

represents the set of states at which the global system must take some desired action

associated to T and state set XT
B represents the set of states at which the global

system should not take such an action. Then the system must be able to distinguish

between states in XT
A and states in XT

B (under certain decentralized architecture,

which will be specified later) when a state in XT
A is reached; otherwise, the desired

action associated to T cannot be taken safely.

Regarding the architecture of the decentralized decision-making problem, here we

consider the following mechanism, which is widely used in the literature for many

different problems [24, 47, 62, 69, 128]. We assume that communication between each

agent and the coordinator is costly and only a binary decision is allowed for each

agent at each instant. That is, each local agent can only send to the coordinator a

highly compressed decision “1” or “0”, which correspond to “take the action” and

“do not take the action”, respectively. Then, the coordinator has two possible fusion

rules to obtain a global decision from local decisions:

- the disjunctive rule: issues “1” globally, if and only if, one local agent issues “1”.

156

- the conjunctive rule: issues “1” globally, if and only if, all local agents issue “1”.

Hereafter, we will develop the main results based on the disjunctive rule. We will

discuss how to extend our results to the conjunctive case in Section 6.6.

In general, the system may have multiple distinct objectives, i.e., it needs to

distinguish different states pairs for different purposes. For the sake of generality, we

consider m specifications and denote by T = {T1, . . . , Tm} the set of specifications,

where Tk = XTk
A × X

Tk
B ⊆ X × X,Tk ∈ T. Also, for the sake of generality, for each

Tk ∈ T, we define ITk ⊆ I as the non-empty set of agents that can contribute to the

decision associated to Tk. If ITk is a singleton, then the global decision will be “1”

if the unique agent in ITk issues “1”. However, in the case that |ITk | > 1, since we

consider the disjunctive architecture, the global decision will be “1” if one agent in

ITk issues “1”. Therefore, an agent must be able to distinguish any states pair in Tk

unambiguously when it issues “1”; otherwise a wrong global decision may be made.

This observation leads to the following definition of decentralized distinguishability.

Definition 6.2.1. (Decentralized Distinguishability). Let G be the system, T =

{T1, . . . , Tm} be a set of specifications and Ω̄ = [Ω1,Ω2] be a pair of sensor activation

policies. We say that G is decentralized distinguishable w.r.t. Ω̄ and T if

(∀Tk∈T)(∀s∈L(G) :δ(s)∈XTk
A)(∃i∈ITk)[EGΩi

(s)∩XTk
B =∅] (6.2)

Intuitively, the above definition says the following. For any specification Tk ∈ T,

for any string that goes to a state in XTk
A , i.e., a state at which we must take the

action associated to Tk, there must exist at least one local agent in ITk that knows

for sure that we can take such an action. Note that, in our setting, only XTk
B are the

set of states at which we cannot take the action associated to Tk. In other words,

there is no harm in taking the action if the system is in X \ (XTk
A ∪ X

Tk
B). This is

why we require EGΩi
(s) ∩ XTk

B = ∅ rather than EGΩi
(s) ⊆ XTk

A . We will show later

157

1

5 4

6

2 3

𝑓1

7

𝑓2

𝑜 𝑜

𝑜

𝑏

𝑏 𝑎

𝑎

𝑜

, -

- 1 , - 1

3 , - 1 , 0

4 , 0 , - 1

5 , - 1 , 1

7 , - 1

𝑓1

𝑜

𝑎

𝑜 2 ,

1 , - 1 6 ,

𝑓2

𝑜

𝑜

𝑏

𝑏

1 , - 1 1

, 1

𝑎

(a) System G

1 Σ
*𝑏, 𝑜+

2 3
𝑜 𝑎

1
*𝑜+ *𝑎+ ∅

(2,4,7 , 2)

(7 , 1)

𝑜

𝑎

𝑏

𝑏

(5 , 1)

(6 , 3)

(1,2,3,4,6 , 1) (1,3,5,7 , 1)

2
𝑏

1
*𝑏+ ∅

𝛴\𝑜 𝛴\𝑎 𝛴 𝛴\𝑏 𝛴

(b) Ω1

1 𝑏

*𝑏+

2 3
𝑜 𝑎

1
*𝑜+ *𝑎+ ∅

(2,4,7 , 2)

(7 , 1)

𝑜

𝑎

𝑏

𝑏

(5 , 1)

(6 , 3)

(1,2,3,4,6 , 1) (1,3,5,7 , 1)

2
𝑏

1
*𝑏+ ∅

(c) ObsΩ1
(G)

1 Σ
*𝑏, 𝑜+

2 3
𝑜 𝑎

1
*𝑜+ *𝑎+ ∅

(2,4,7 , 2)

(7 , 1)

𝑜

𝑎

𝑏

𝑏

(5 , 1)

(6 , 3)

(1,2,3,4,6 , 1) (1,3,5,7 , 1)

2
𝑏

1
*𝑏+ ∅

𝛴\𝑜 𝛴\𝑎 𝛴 𝛴\𝑏 𝛴

(d) Ω2

1 Σ
*𝑏, 𝑜+

2 3
𝑜 𝑎

1
*𝑜+ *𝑎+ ∅

(2,4,7 , 2)

𝑜

𝑎

𝑏

𝑏

(5 , 1)

(6 , 3)

(1,3 , 1) (1,3,5,7 , 1)

2
𝑏

1
*𝑏+ ∅

𝛴\𝑜 𝛴\𝑎 𝛴 𝛴\𝑏 𝛴

(2,4,6 , 1)

𝑜

𝑜

(7 , 1) 𝑜

(e) ObsΩ2
(G)

Figure 6.1: Examples of sensor activation policies and observers

in Section 6.5 that K-codiagnosability, coobservability and coprognosability are all

instances of decentralized distinguishability. Note that, if XTk
A ∩ X

Tk
B 6= ∅ for some

Tk ∈ T, then G will not be decentralized distinguishable for any sensor activation

policies Ω̄. This phenomenon may occur in the fault prognosis problem as we will

discuss later in Section 6.5.3.

Example 6.2.1. We consider the system G in Figure 6.1(a) and Σs,1 = {o, a},Σs,2 =

{o, b} and Σo,1 = Σo,2 = ∅ are two sets of observable events. We assume that the

observations are static, i.e., Ω1 = ΩΣs,1 and Ω2 = ΩΣs,2. Let us consider the following

set of specifications T = {T1, T2}, where

T1 = XT1
A ×X

T1
B = {6} × {1, 2, 3, 5, 7}

T2 = XT2
A ×X

T2
B = {5, 7} × {1, 2, 4, 6}

and IT1 = IT2 = {1, 2}. We can verify that G is decentralized distinguishable w.r.t.

{T1, T2} and [ΩΣs,1 ,ΩΣs,2]. For example, for specification T1 and string of1a such that

δ(of1a) = 6 ∈ XT1
A , we have 1 ∈ IT1 and EGΩΣs,1

(of1a)∩XT1
B = {6}∩{1, 2, 3, 5, 7} = ∅.

However, if we add another specification T3 = {4} × {1, 2} to {T1, T2}, then G will

not be decentralized distinguishable. For example, for δ(of1) = 4 ∈ XT3
A , we have

EGΩΣs,1
(of1) ∩XT3

B = {2, 4} ∩ {1, 2} 6= ∅ and EGΩΣs,2
(of1) ∩XT3

B = {2, 4, 6} ∩ {1, 2} 6= ∅,

i.e., none of the agents can distinguish specification T3.

Remark 6.2.1. The state disambiguation problem and its sensor activation have been

158

studied in the literature in the centralized setting; see, e.g., [22, 81, 102]. Compared

to its centralized counterpart, the decentralized disambiguation problem has the fol-

lowing important difference. In the centralized setting, specification XA × XB and

specification XB ×XA are equivalent in the sense that if the system can distinguish

state x1 from state x2, the it can also distinguish x2 from x1. However, it is not the

case in the decentralized setting and we cannot swap XA and XB arbitrarily. One

can easily verify that G is decentralized distinguishable w.r.t. XA × XB does not

necessarily imply that it is decentralized distinguishable w.r.t. XB ×XA. Moreover,

our procedure for solving the sensor activation problem in the decentralized setting

is completely different from those in the centralized case.

6.2.2 Problem Formulation and Solution Overview

Let T be the set of specifications. Then the goal of the sensor activation problem is

to find an optimal pair of sensor activation policies Ω̄ = [Ω1,Ω2] such that the system

is decentralized distinguishable w.r.t. Ω̄ and T. In this chapter, we consider the logical

optimal criterion that is widely used in the literature [82, 101, 104]. Specifically, for

any Ω̄ = [Ω1,Ω2] and Ω̄′ = [Ω′1,Ω
′
2], the inclusion Ω̄′ ⊆ Ω̄ means that

∀i ∈ I : Ω′i ⊆ Ωi (6.3)

and the strict inclusion Ω̄′ ⊂ Ω̄ means that

[Ω̄′ ⊆ Ω̄] ∧ [∃i ∈ I : Ω′i ⊂ Ωi] (6.4)

We are now ready to formulate the problem of minimal sensor activation for

decentralized state disambiguation.

Problem 6. Let G be the system and T = {T1, . . . , Tm} be a set of specifications.

For each agent i ∈ {1, 2}, let Σo,i ⊆ Σ be the set of observable events. Find sensor

159

activation policies Ω̄∗ = [Ω∗1,Ω
∗
2] such that:

C1. G is decentralized distinguishable w.r.t. Ω̄∗ and T.

C2. Ω̄∗ is minimal, i.e., there does not exist another Ω̄′ ⊂ Ω̄∗ that satisfies (C1).

Remark 6.2.2. In [101, 104], “sub-optimal” solutions to two special cases of Problem

1, the decentralized control problem and the decentralized diagnosis problem, are

provided, in the sense that the solutions found therein are minimal among all solutions

over given finite restricted solution spaces. In principle, the solutions found in [101,

104] could be improved by employing finer partitions and repeating the optimization

procedure. In this chapter, we are aiming for a language-based minimal solution, in

the sense that the notion of strict inclusion of sensor activation policies is defined in

terms of the strings in L(G) (see Equations (5.4) and (6.4)). In other words, we do not

impose, a priori, any constraints on the solution space of each Ωi. Hence, no better

solution can be obtained by refining the state space of G and repeating the solution

procedure. To the best of our knowledge, such a language-based optimal solution to

the decentralized sensor activation problem has never been reported in the literature.

Moreover, Problem 1 is more general than the problems studied in [101,104].

Before we formally tackle Problem 6, let us first provide a brief overview of our so-

lution approach. We adopt the person-by-person approach that has been widely used

in decentralized optimization problems. Specifically, we decompose the decentralized

minimization problem to a set of centralized constrained minimization problems and

for each such problem, we only attempt to minimize one agent’s sensor activation

policy while the other one is fixed. However, the following questions arise. First,

by taking the person-by-person approach, iterations involving minimization for each

agent may be required in general, and such iterations may not terminate in a finite

number of steps. We will show that in our particular problem such iterations are not

required. This is due of the so-called monotonicity property that arises in dynamic

160

sensor activation problems. The second question of interest is how to minimize the

sensor activation policy of one agent when the policy of the other agent is fixed. This

problem is different from the fully centralized minimization problem, since we should

not only consider the information of the agent whose sensor activation policy we are

minimizing, but we must also take into account the information available to the other

agent, whose sensor activation policy is fixed. Therefore, the true information state

for this minimization problem consist of (i) the knowledge of the agent whose sen-

sor activation policy is being minimized; and (ii) this agent’s inference of the other

agent’s potential knowledge of the system based on that agent’s own information. To

resolve this information dependency, we develop a novel approach by which we encode

the second agent’s knowledge into the system model. This is discussed in the next

section.

6.3 Constrained Minimization Problem

In this section, we tackle problem of minimizing the sensor activation policy for one

agent when the sensor activation policy of the other one is fixed. This problem is also

referred to as the centralized constrained minimization problem herafter. Throughout

this section, i ∈ {1, 2} denotes the agent whose sensor activation policy is being

minimized while j ∈ {1, 2}, j 6= i denotes the other agent whose sensor activation

policy is fixed.

6.3.1 Constrained Minimization Problem

Problem 7. (Centralized Constrained Minimization Problem). Let G be the system

and T = {T1, . . . , Tm} be a set of specifications. Let i, j ∈ {1, 2}, i 6= j be two agents.

Suppose that the sensor activation policy Ωj for Agent j is fixed. Find a sensor

activation policy Ωi for Agent i such that:

C1. G is decentralized distinguishable w.r.t. [Ω1,Ω2] and T.

161

C2. For any Ω′i satisfying (C1), we have Ω′i 6⊂ Ωi.

The above problem is different from both the centralized and decentralized min-

imization problems. In the centralized minimization problem, where only one agent

is involved, to maintain distinguishability, we need to require that

∀Tk ∈ T,∀s ∈ L(G) : (EGΩ (s)× EGΩ (s)) ∩ Tk = ∅

where Ω is the centralized sensor activation policy. In other words, the agent should

always be able to distinguish states in XTk
A from states in XTk

B for any Tk ∈ T.

However, in the decentralized disambiguation problem, it is possible that there exists

a string s ∈ L(G), δ(s) ∈ XTk
A such that EGΩi

(s) ∩ XTk
B 6= ∅, but EGΩj

(s) ∩ XTk
B = ∅,

where j ∈ ITk . Therefore, Agent j may “help” Agent i to resolve the ambiguity. In

other words, to solve the constrained minimization problem for one agent, we must

take the other agent’s sensor activation policy into account.

6.3.2 Problem Reduction

Recall that, in Chapter IV, we have solved a general class of fully centralized

sensor activation problems. Therefore, if we can reduce Problem 7 to Problem 5,

then it means that Problem 7 can also be solved effectively and the solution will be

finitely realizable. We now show that such a reduction is possible by using automata

V and Ṽ, which are defined next.

Let G be the system and Ωj be the fixed sensor activation policy, where Ωj =

(Rj, Lj) and Rj = (Xj
R,Σ, δ

j
R, x

j
0,R). We define a new automaton

V = (XV , δV ,ΣV , x0,V) (6.5)

where

162

• XV ⊆ X ×Xj
R ×X ×X

j
R is the set of states;

• ΣV = (Σ ∪ {ε})× (Σ ∪ {ε}) is the set of events;

• x0,V = (x0, x
j
0,R, x0, x

j
0,R) is the initial state;

The transition function δV : XV × ΣV → XV is defined by: for any (x1, x
R
1 , x2, x

R
2)

and σ ∈ Σ, the following transitions are defined:

• If σ ∈ Lj(xR1) and σ ∈ Lj(xR2), then

δV ((x1, x
R
1 , x2, x

R
2), (σ, σ)) = (δ(x1, σ), δjR(xR1 , σ), δ(x2, σ), δjR(xR2 , σ))

• If σ ∈ Lj(xR1) and σ /∈ Lj(xR2), then

δV ((x1, x
R
1 , x2, x

R
2), (ε, σ)) = (x1, x

R
1 , δ(x2, σ), δjR(xR2 , σ))

• If σ /∈ Lj(xR1) and σ ∈ Lj(xR2), then

δV ((x1, x
R
1 , x2, x

R
2), (σ, ε)) = (δ(x1, σ), δjR(xR1 , σ), x2, x

R
2)

• If σ /∈ Lj(xR1) and σ /∈ Lj(xR2), then

δV ((x1, x
R
1 , x2, x

R
2), (σ, ε)) = (δ(x1, σ), δjR(xR1 , σ), x2, x

R
2)

δV ((x1, x
R
1 , x2, x

R
2), (ε, σ)) = (x1, x

R
1 , δ(x2, σ), δjR(xR2 , σ))

The above construction follows the well-known M-machine (or twin-plant) con-

struction that was originally used for the verification of (co)observability [33, 67, 99];

but we generalize it to the dynamic observation setting. Essentially, V tracks a

pair of strings that look the same for Agent j under Ωj. Specifically, the first two

163

components are used to track a string in the original system and the last two com-

ponents are used to track a string that looks the same as the first string. Since we

are considering the dynamic observation setting, we also need to track states in the

sensor activation policy in order to determine the set of monitored events; this is

why the second (respectively, fourth) component always moves together with the first

(respectively, third) component. Therefore, for any (s1, s2) ∈ L(V), we have that

PΩj
(s1) = PΩj

(s2). Similarly, for any t, w ∈ L(G) such that PΩj
(t) = PΩj

(w), there

exists (s1, s2) ∈ L(V) such that s1 = t and s2 = w, i.e., state (δ(t), δjR(t), δ(w), δjR(w))

is reachable in V.

Next, we modify V as follows. For each transition in V,

• if the event is in the form of (σ, σ) or (σ, ε), then we replace the event by σ;

• if the event is in the form of (ε, σ), then we replace the event by ε.

We denote by Ṽ = (QṼ , δṼ ,ΣṼ , x0,Ṽ) the modified automaton. Similar modification

was also used in [127, 131] in the static observation setting for different purpose.

Intuitively, Ṽ only keeps the first component of the event of each transition in V ,

since this part corresponds to the transition in the real system. Note that Ṽ is a

non-deterministic automaton, since ε-transition is allowed. Therefore, δṼ (s) is the set

of states that can be reached from x0,Ṽ via s.

The modified automaton Ṽ has the following properties. First, we have that

L(Ṽ) = L(G). Clearly, L(Ṽ) ⊆ L(G) since a transition in Ṽ is defined only when

the corresponding transition in G is defined. Also, for any string s ∈ L(G), we know

that (s, s) ∈ L(V), which implies that s ∈ L(Ṽ). Second, for any s ∈ L(Ṽ) = L(G),

we know that

δṼ (s) ={(δ(s), δjR(s), δ(t), δjR(t))∈XṼ : (s, t) ∈ L(V)} (6.6)

={(δ(s), δjR(s), δ(t), δjR(t))∈XṼ : t∈L(G)∧PΩj
(s)=PΩj

(t)}

164

1

5 4

6

2 3

𝑓1

7

𝑓2

𝑜 𝑜

𝑜

𝑏

𝑏 𝑎

𝑎

𝑜

, -

- 1 , - 1

3 , - 1 , 0

4 , 0 , - 1

5 , - 1 , 1

7 , - 1

𝑓1

𝑜

𝑎

𝑜 2 ,

1 , - 1 6 ,

𝑓2

𝑜

𝑜

𝑏

𝑏

1 , - 1 1

, 1

𝑎

(4,1,2,1) (2,1,4,1)

(4,1,4,1)

(6,1,4,1) (4,1,6,1)

(6,1,6,1)

(6,1,2,1) (2,1,6,1)

(3,1,1,1) (1,1,3,1)

(3,1,3,1)

(5,1,5,1)

(7,1,7,1)

𝑓2
 𝜖

𝑓2
 𝜖

𝑜

𝑏

𝑏

𝑜

𝑜
𝑎, 𝜖 (1,1,1,1)

𝑜

𝑓1

𝑎

𝜖

𝜖

𝑓1

𝑎

𝜖

𝜖

𝜖 𝑓1

𝑎 𝜖

(2,1,2,1)

Figure 6.2: Automaton Ṽ.

Therefore, for any string s ∈ L(G) = L(Ṽ), if (x1, x
R
1 , x2, x

R
2) ∈ δṼ (s), then it implies

that δ(s) = x1 and state x2 cannot be distinguished from x1 under Ωj. For any

q ∈ 2XṼ , we denote by I1(q) = {x1 ∈ X : (x1, x
R
1 , x2, x

R
2) ∈ q} the set of states in the

first component of q. Then, for any sensor activation policy Ω, by Equation (6.6), we

have EGΩ (s) = I1(EṼΩ (s)) for any s ∈ L(G).

Example 6.3.1. Let us still consider the system G shown in Figure 6.1(a). Suppose

that the fixed Ωj is the sensor activation policy Ω2 shown in Figure 6.1(d), i.e., Ωj

always monitors o and b. Then automaton Ṽ constructed from G and Ωj is shown

in Figure 6.2. Clearly, we see that L(Ṽ) = L(G). For string of1a ∈ L(Ṽ) =

L(G), we have that δṼ (of1a) = {(6, 1, 2, 1), (6, 1, 4, 1), (6, 1, 6, 1)} and I1(E ṼΩj
(of1a)) =

I1({(2, 1, 2, 1), (4, 1, 2, 1), (6, 1, 2, 1), (2, 1, 4, 1), (4, 1, 4, 1), (2, 1, 6, 1), (4, 1, 6, 1),

(6, 1, 6, 1)}) = {2, 4, 6} = EGΩj
(of1a).

Now, let us show how to use Ṽ to reduce the constraint minimization problem,

i.e., Problem 7, to a fully centralized minimization problem, i.e., Problem 5. First, we

define the distinguishability function DF : 2XṼ → {0, 1} as follows: for each q ∈ 2XṼ ,

DF (q)=

 1, if ∀Tk ∈ T : (c-i) or (c-ii) holds

0, otherwise
(6.7)

165

where conditions (c-i) and (c-ii) are defined by:

(c-i) i ∈ ITk and (I1(q)× I1(q)) ∩ Tk = ∅.

(c-ii) j ∈ ITk and ∀x1 ∈ I1(q) ∩XTk
A ,∀(x1, x

R
1 , x2, x

R
2) ∈ q : (x1, x2) /∈ Tk.

Let us explain the intuition of the above two conditions in function DF . Suppose

that Ωi is the sensor activation policy to be synthesized for Agent i. Let s ∈ L(G) be a

string such that δ(s) ∈ XTk
A , i.e., the coordinator must take the action associated to Tk

when s is executed. Then EṼΩi
(s) is the state estimate w.r.t. the state space of Ṽ under

Ωi. Essentially, function DF evaluates whether or not decentralized distinguishability

is fulfilled by checking whether or not q := EṼΩi
(s) satisfies conditions (c-i) and (c-ii),

which can be interpreted as follows.

- If (c-i) holds, then we know that Agent i can contribute to the global decision

associated to Tk, since i ∈ ITk . Moreover, it can contribute the right decision

since it knows for sure that the action associated to Tk has to be taken, since

(EGΩi
(s) ∩ EGΩi

(s)) ∩ Tk = ∅. Therefore, the disambiguation requirement is fulfilled

even without looking at Agent j.

- If (c-i) does not hold, then we know that either Agent i cannot contribute to to

the global decision associated to Tk or Agent i cannot make a right decision due to

states ambiguity, i.e., ∃x1, x2 ∈ EGΩi
(s) = I1(EṼΩi

(s)) : (x1, x2) ∈ Tk. In order to issue

the right global decision, Agent j must be able to help Agent i to distinguish those

ambiguous strings, i.e., condition (c-ii) needs to hold. First, Agent j should be able

to contribute to the global decision associated to Tk, i.e., j ∈ ITk . Then, for any

string t that looks the same as s for Agent i and leads to a state in XTk
A , there should

not exist another string w that looks the same as t for Agent j and leads to a state in

XTk
B . Recall that Ṽ is constructed by tracking all states that cannot be distinguished

from x1 by Agent j. Therefore, Agent i can infer which states Agent j cannot

166

distinguish by using Ṽ. Specifically, if for any (x1, x
R
1 , x2, x

R
2) ∈ q : (x1, x2) /∈ Tk,

then we know that there is no such a string w that can confuse Agent j for some

string t, i.e., Agent j can make a right decision associated to Tk.

Finally, we would like to remark that, although specification T is defined over the

state space of G, the distinguishability function DF is defined over the state space

of Ṽ, i.e., we need to solve Problem 3 for the modified system Ṽ. However, this is

not a problem, since the first component of a state Ṽ exactly carries the same state

information in G, i.e., I1(EṼΩi
(s)) = EGΩi

(s) for any Ωi. Moreover, since L(Ṽ) = L(G),

we know that Ṽ and G have the same observable behavior under any sensor activation

policy. Therefore, we can first use Ṽ to synthesize a sensor activation policy and then

use it to monitor G.

We summarize the above discussions by the following theorem.

Theorem VI.1. Let G be the system and T = {T1, . . . , Tm} be a set of specifica-

tions. Let Ṽ be the automaton constructed based on Ωj. Then, G is decentralized

distinguishable w.r.t. [Ω1,Ω2] and T if and only if

∀s ∈ L(G) : DF (E ṼΩi
(s)) = 1 (6.8)

Proof. (⇐) By contraposition. Suppose that L(G) is not decentralized distinguish-

able. Then we know that, there exists Tk ∈ T, such that

(∃s∈L(G) :δ(s)∈XTk
A)(∀p∈ITk)[EGΩp

(s) ∩XTk
B 6=∅] (6.9)

Let us consider the following three cases for ITk .

Case 1: ITk = {i}.

Let us consider (c-i), since (c-ii) is violated directly. By Equation (6.9), since δ(s) ∈

167

XTk
A ∩ EGΩi

(s) and XTk
B ∩ EGΩi

(s) 6= ∅, we know that

(I1(EṼΩi
(s))×I1(EṼΩi

(s)))∩Tk=(EGΩi
(s)×EGΩi

(s))∩Tk 6=∅

Therefore, (c-i) is also violated and DF (EṼΩi
(s)) = 0.

Case 2: ITk = {j}.

Let us consider (c-ii), since (c-i) is violated directly. We still consider string s in

Equation (6.9). We have δ(s) ∈ EGΩi
(s)∩XTk

A = I1(EṼΩi
(s))∩XTk

A . Since EGΩj
(s)∩XTk

B 6=

∅, we know that there exists a string t ∈ L(G) such that PΩj
(s) = PΩj

(t) and

δ(t) ∈ XTk
B . This implies that (δ(s), δ(t)) ∈ Tk. Since PΩj

(s) = PΩj
(t), by the

construction of Ṽ, we know that (δ(s), δjR(s), δ(t), δjR(t)) ∈ δṼ (s) ⊆ EṼΩi
(s). Therefore,

we know that (c-ii) is also violated and DF (EṼΩi
(s)) = 0.

Case 3: ITk = {1, 2}.

For string s in Equation (6.9), since EGΩi
(s)∩XTk

B 6=∅, by the same argument in Case 1,

we know that (c-i) does not hold. Also, since EGΩj
(s)∩XTk

B 6= ∅, by the same argument

in Case 2, we know that (c-ii) also does not hold. Therefore, DF (EṼΩi
(s)) = 1.

Overall, for each case, ∃s ∈ L(G) : DF (EṼΩi
(s)) = 1, which completes the contra-

positive proof.

(⇒) Still by contrapositive. Suppose that ∃s ∈ L(G) : DF (EṼΩi
(s)) = 0. Then

we know that, there exists Tk ∈T such that none of (c-i) and (c-ii) holds for EṼΩi
(s).

Next, we still consider the following three cases for ITk .

Case 1: ITk = {i}.

Since (c-i) does not hold, we know that (EGΩi
(s)×EGΩi

(s))∩Tk=(I1(EṼΩi
(s))×I1(EṼΩi

(s)))∩

Tk 6= ∅. This implies that ∃w ∈ L(G) such that δ(w) ∈ XTk
A , PΩi

(s) = PΩi
(w) and

EGΩi
(w) ∩XTk

B = EGΩi
(s) ∩XTk

B 6= ∅. Therefore, for Tk ∈ T, we have (∃w∈L(G) :δ(t)∈

XTk
A)[EGΩi

(w) ∩XTk
B 6=∅], i.e., G is not decentralized distinguishable.

Case 2: ITk = {j}.

168

Since (c-ii) does not hold, we know that

∃x1∈EGΩi
(s) ∩XTk

A ,∃(x1, x
R
1 , x2, x

R
2)∈EṼΩi

(s) : (x1, x2) ∈ Tk

Since (x1, x
R
1 , x2, x

R
2) ∈ EṼΩi

(s), we know that there exists a string t ∈ L(Ṽ) = L(G),

such that PΩi
(s) = PΩi

(t) and (x1, x
R
1 , x2, x

R
2) ∈ δṼ (t), which further implies that

x1 = δ(t) and there exists w ∈ L(G) such that x2 = δ(w) and PΩj
(t) = PΩj

(w).

Therefore, {x1, x2} ⊆ EGΩj
(t) = EGΩj

(w). Since (x1, x2) ∈ Tk, we know that x1 ∈ XTk
A

and x2 ∈ XTk
B . Overall, for Tk ∈ T, we have (∃t∈L(G) :δ(t)∈XTk

A)[EGΩj
(t) ∩XTk

B 6=∅],

i.e., G is not decentralized distinguishable.

Case 3: ITk = {1, 2}.

Since (c-ii) does not hold, by the same argument in Case 2, we know that there exists

∃t∈L(G) such that PΩi
(s) = PΩi

(t), δ(t)∈XTk
A and EGΩj

(t)∩XTk
B 6=∅. Since (c-i) does

not hold, by the same argument in Case 1, we know that EGΩi
(s) ∩ XTk

B 6= ∅. Since

PΩi
(s) = PΩi

(t), we have EGΩi
(t) ∩XTk

B 6=∅. Therefore, we know that

(∃t∈L(G) :δ(t)∈XTk
A)(∀p ∈ ITk)[EGΩp

(t) ∩XTk
B 6=∅]

i.e., G is not decentralized distinguishable.

Overall, G is not decentralized distinguishable for each case. This completes the

contrapositive proof.

In the above development, the essence of using Ṽ is that we can encode Agen-

t j’s information, i.e., Ωj, into the system model in order to reduce the constrained

minimization problem for Agent i to a fully centralized minimization problem. That

is, Ṽ is a non-deterministic refinement of G that carries both the original state in-

formation in G and some useful information of Ωj. Once Ṽ is constructed, we will

not use Ωj anymore, since all useful information, i.e., which pairs of states Agent j

cannot distinguish, has been encoded in Ṽ. Finally, using Theorem VI.1, we have the

169

following result.

Theorem VI.2. Problem 7 can be effectively solved.

Proof. By Theorem VI.1, it is clear that Problem 7 is a special case of Problem 5 by

considering system Ṽ and setting ϕ to be DF : 2XṼ → {0, 1}. Since Problem 5 can

be effectively solved, Problem 7 can also be effectively solved.

Example 6.3.2. We return to the system G in Figure 6.1(a) with Σs,1 = {o, a} and

Σs,2 = {o, b}. We still consider specifications T = {T1, T2} defined in Example 6.2.1.

We assume that sensor activation policy Ω2 shown in Figure 6.1(d) is fixed for Agent 2

and the corresponding automaton Ṽ has been shown in Figure 6.2. Now, we want to

synthesize sensor activation policy Ω1 such that G is decentralized distinguishable. By

defining function DF for Ṽ and applying the synthesis algorithm in [112], we obtain

a minimal sensor activation policy Ω∗1 shown in Figure 6.3(a).

For example, for specification T1, we consider string of1a such that δ(of1a) =

6 ∈ XTk
A . Then we have q = E ṼΩ∗1(of1a) = {(6, 1, 6, 1)}, i.e., I1(q) = {6}. There-

fore, condition (c-i) holds for q and we have DF (q) = 1. For specification T2, let

us consider string f2b such that δ(f2b) = 5 ∈ XT2
A . Then we have q = E ṼΩ∗1(f2b) =

{(1, 1, 1, 1), (3, 1, 1, 1,), (1, 1, 3, 1), (3, 1, 3, 1), (5, 1, 5, 1), (7, 1, 7, 1)}, i.e., I1(q) = {1, 3, 5, 7}.

For this case, condition (c-i) does not hold for q since 1 ∈ I1(q) ∩XT2
B . However, for

5 ∈ I1(q) ∩XT2
A = {5, 7}, (5, 1, 5, 1) is the only state in q whose first component is 5

and (5, 5) /∈ T2. Similarly, for 7 ∈ I1(q)∩XT2
A , (7, 1, 7, 1) is the only state in q whose

first component is 7 and (7, 7) /∈ T2. Therefore, condition (c-ii) holds and we still

have DF (q) = 1.

6.4 Synthesis Algorithm

In this section, we first present an algorithm that solves the decentralized sensor

activation problem by using the results we developed so far. Then we prove the

170

Algorithm 9: D-MIN-ACT

input : G,T,Σs,1,Σo,1,Σs,2,Σo,2

output: Ω̄∗

1 Ω∗1 ← ΩΣo,1∪Σs,1 and Ω∗2 ← ΩΣo,2∪Σs,2

2 for i ∈ {1, 2} do
3 j ∈ {1, 2} \ {i}
4 Fix Ω∗j . Construct automaton Ṽ w.r.t. Ω∗j and define function DF .

5 Obtain minimal Ω′i by solving Problem 5 w.r.t. system Ṽ and function
DF .

6 Ω∗i ← Ω′i.

7 Ω̄∗ ← [Ω∗1,Ω
∗
2]

correctness of the algorithm.

Our synthesis algorithm is formally presented in Algorithm D-MIN-ACT. Essen-

tially, Algorithm D-MIN-ACT solves two centralized constrained minimization prob-

lems. First, we set Agent 2’s sensor activation policy to be ΩΣo,2 ∪Σs,2, i.e., the most

conservative one, and solve the constrained minimization problem for Agent 1. Then

we fix the obtained sensor activation policy for Agent 1 and solve the constrained

minimization problem for Agent 2. However, the following question arises: “After the

above procedure, do we need to fix Agent 2’s new sensor activation policy and go back

to minimize Agent 1’s sensor activation policy again?” In other words, we need to

answer whether or not iterations between two centralized constrained minimization

problems are required in order to obtain a decentralized minimal solution. Here-

after, we show that such iterations are not necessary for our problem and Algorithm

D-MIN-ACT indeed yields a decentralized minimal solution in the above two steps.

This is because of the following monotonicity property.

Theorem VI.1. (Monotonicity Property). Let G be the system, T be a set of spec-

ifications and Ω̄ = [Ω1,Ω2] and Ω̄′ = [Ω′1,Ω
′
2] be two sensor activation policies such

that Ω̄′ ⊆ Ω̄. Then G decentralized distinguishable w.r.t. Ω̄′ and T implies that G is

decentralized distinguishable w.r.t. Ω̄ and T.

171

Proof. By contradition. Assume that G is not decentralized distinguishable w.r.t. Ω̄,

i.e., ∃Tk ∈ T,∃s ∈ L(G) : δ(s)∈XTk
A such that ∀i∈{1, 2} : EGΩi

(s) ∩XTk
B 6= ∅. Since

Ω̄′ ⊆ Ω̄, we know that ∀i∈{1, 2} : Ω′i ⊆ Ωi, which implies that EGΩi
(s) ⊆ EGΩ′i(s) for any

s ∈ L(G). Therefore, for the same Tk and s, we also have that ∀i∈{1, 2} : EGΩ′i(s) ∩

XTk
B 6= ∅. However, this contradicts the fact that G is decentralized distinguishable

w.r.t. Ω̄′. Therefore, G must be decentralized distinguishable w.r.t. Ω̄.

We are now ready to prove the correctness of Algorithm D-MIN-ACT.

Theorem VI.2. Let Ω̄∗ be the output of Algorithm D-MIN-ACT. Then Ω̄∗ solves

Problem 6.

Proof. It is clear that G is decentralized distinguishable w.r.t. Ω̄∗ and T, since decen-

tralized distinguishability is guaranteed in each centralized constrained minimization

problem. It remains to show that Ω̄∗ is minimal; we proceed by contradiction. Let

us assume that there exists another sensor activation policy Ω̄′ = [Ω′1,Ω
′
2] such that

G is decentralized distinguishable w.r.t. Ω̄′ and T; and (ii) Ω̄′ ⊂ Ω̄∗. The second

condition means that ∃i, j ∈ {1, 2}, i 6= j such that (iii) Ω′i ⊂ Ω∗i ; and (iv) Ω′j ⊆ Ω∗j .

Suppose that i = 1 and j = 2. Then we know that Ω∗1 is obtained by fixing Agent

2’s sensor activation policy to be ΩΣo,2∪Σs,2 , where Ω′2 ⊆ Ω∗2 ⊆ ΩΣo,2∪Σs,2 . By Theo-

rem VI.1, we know that G is decentralized distinguishable w.r.t. [Ω′1,Ω
′
2] implies that

G is decentralized distinguishable w.r.t. [Ω′1,ΩΣo,2∪Σs,2]. However, since Ω′1 ⊂ Ω∗1, this

contradicts to the fact that Ω∗1 is a solution to Problem 7. Similarly, suppose that i=2

and j = 1. Then we know that Ω∗2 is obtained by fixing Agent 1’s sensor activation

policy to be Ω∗1, where Ω′1 ⊆ Ω∗1. By Theorem VI.1, we know that G is decentralized

distinguishable w.r.t. [Ω′1,Ω
′
2] implies that G is decentralized distinguishable w.r.t.

[Ω∗1,Ω
′
2]. However, since Ω′2 ⊂ Ω∗2, it again contradicts the fact that Ω∗2 is a solution

to Problem 7.

We illustrate Algorithm D-MIN-ACT by an example.

172

1 Σ
*𝑏, 𝑜+

2 3
𝑜 𝑎

1
*𝑜+ *𝑎+ ∅

(2,4,7 , 2)

𝑜

𝑎

𝑏

𝑏

(5 , 1)

(6 , 3)

(1,3 , 1) (1,3,5,7 , 1)

2
𝑏

1
*𝑏+ ∅

𝛴\𝑜 𝛴\𝑎 𝛴 𝛴\𝑏 𝛴

(2,4,6 , 1)

𝑜

𝑜

(7 , 1) 𝑜

(a) Ω∗1

1 Σ
*𝑏, 𝑜+

2 3
𝑜 𝑎

1
*𝑜+ *𝑎+ ∅

(2,4,7 , 2)

𝑜

𝑎

𝑏

𝑏

(5 , 1)

(6 , 3)

(1,3 , 1) (1,3,5,7 , 1)

2
𝑏

1
*𝑏+ ∅

𝛴\𝑜 𝛴\𝑎 𝛴 𝛴\𝑏 𝛴

(2,4,6 , 1)

𝑜

𝑜

(7 , 1) 𝑜

(b) Ω∗2

Figure 6.3: Decentralized minimal solutions

Example 6.4.1. Again, consider the system G in Figure 6.1(a) and specifications

T = {T1, T2} defined in Example 6.2.1. Let Σs,1 = {o, a} and Σs,2 = {s, b}, re-

spectively, be the set of observable events for Agent 1 and Agent 2. Initially, we set

Ω2 = ΩΣs,2 and solve the constrained minimization problem for Agent 1; this has been

solved in Example 6.3.2 and we obtained Ω∗1 shown in Figure 6.3(a). Next, we fix

Ω∗1 for Agent 1 and solve the constrained minimization problem for Agent 2. Then

we obtain the sensor activation policy Ω∗2 as shown in Figure 6.3(b). We see that Ω∗2

turns all sensors off after b is observed, since once b occurs, Agent 2 will know for sure

that the system is in state 5 or 7 and there is no need to monitor any event. There-

fore, [Ω∗1,Ω
∗
2] is a minimal pair of sensor activation policies that ensure decentralized

distinguishability.

Remark 6.4.1. In general, the minimal solution to Problem 6 is not unique due to

the following reasons. First, for each centralized constraint minimization problem in-

volved in Algorithm D-MIN-ACT, the minimal solution is not unique in general [112].

There may exist two incomparable centralized minimal solutions to Problem 2 or 3.

Second, the decentralized minimal solution obtained by Algorithm D-MIN-ACT also

depends on the order of the centralized constraint minimization problems. In general,

fixing Agent 1 first and fixing Agent 2 first may result in different minimal solutions.

However, in any case, solution Ω̄∗ returned by Algorithm D-MIN-ACT is guaranteed

to be minimal in the sense that other minimal solutions must be incomparable with

Ω̄∗.

Remark 6.4.2. We conclude this section by discussing the complexity of synthesis

173

algorithm. Suppose that we first fix Agent 2. Initially, Ω2 = ΩΣs,2∪Σo,2 and its

automaton only contains a single state. To solve the constraint optimization problem

when Ω2 is fixed, first, we need to construct Ṽ, which is polynomial in the size of G and

Ω2. However, since an observer-like constructed is exploited, the algorithm in [112]

requires exponential complexity w.r.t the size of the system, i.e., Ṽ, and the size of the

solution Ω∗1 is also exponential in the size of Ṽ. Again, constructing Ṽ when Agent 1

is fixed only requires polynomial complexity w.r.t. Ω∗1, but synthesizing Ω∗2 requires

exponential complexity again. Therefore, the overall complexity is doubly-exponential

w.r.t. the size of G. Such a doubly-exponential complexity arises in many synthesis

problems where two incomparable observations are involved; see, e.g., [26, 59].

6.5 Application of the Decentralized State Disambiguation

Problem

In this section, we show that the notions of K-codiagnosability, coobservability

and coprognosability are instances of decentralized distinguishability. Therefore, the

proposed framework is applicable for solving the dynamic sensor activation problems

for the purposes of decentralized fault diagnosis, decentralized control and decentral-

ized fault prognosis.

6.5.1 Decentralized Fault Diagnosis

In the decentralized fault diagnosis problem, the local agents need to work as a

team such that any fault be diagnosed within a bounded number of steps. Formally,

we denote by ΣF ⊆ Σuo the set of fault events. We assume that ΣF is partitioned

into m fault types : ΣF = ΣF1∪̇ . . . ∪̇ΣFm ; we denote by Π the partition and by

F = {1, . . . ,m} the index set of the fault types. For any k ∈ F , we define Ψ(EFk
) =

{sf ∈ L(G) : f ∈ EFk
} to be the set of strings that end with a fault event of type

174

k. We write EFk
∈ s, if {s} ∩ Ψ(EFk

) 6= ∅. The notion of K-codiagnosability was

proposed in the literature to capture whether or not any fault can be diagnosed within

K steps [24, 62].

Definition 6.5.1. (K-Codiagnosability). Let K ∈ N. We say that live language

L(G) is K-codiagnosable w.r.t. Ω̄, ΣF and Π if

(∀k ∈ F)(∀s ∈ Ψ(ΣFk
))(∀t ∈ L(G)/s : |t| ≥ K) (6.10)

(∃i ∈ {1, 2})(∀w ∈ L(G))[PΩi
(w)=PΩi

(st)⇒ ΣFk
∈ w].

To show that K-codiagnosability can be formulated as decentralized distinguisha-

bility, following similar constructions in [22, 111], we first refine the state space of G

by defining a new automaton G̃ = (X̃,Σ, δ̃, x̃0), where X̃ ⊆ X × {−1, 0, 1 . . . , K}m,

x̃0 = (x0,−1, . . . ,−1) and the partial transition function δ̃ : X̃ × Σ → X̃ is defined

by: for any (x, n1, . . . , nm) ∈ X̃ and σ ∈ Σ, we have

δ̃((x, n1, . . . , nm), σ) = (δ(x, σ), n1 + ∆1, . . . , nm + ∆m)

where for each i ∈ {1, . . . ,m}, ∆i is defined by

∆i =

 0, if [ni = K] or [ni = −1 ∧ σ 6∈ ΣFi
]

1 if [0 ≤ ni < K] or [ni = −1 ∧ σ ∈ ΣFi
]

Intuitively, G̃ simply unfolds G by “counting” the number of steps since each type

of fault has occurred. Since L(G̃) = L(G), we can synthesize a sensor activation

policy for G based on G̃. For any state x̃ = (x, n1, . . . , nm) ∈ G̃, we denote by [x̃]i

its (i+ 1)th component, i.e., ni.

Based on G̃, we define a set of specifications Tdiag = {T1, T2, . . . , Tm} as follows:

175

for each Tk ∈ T, we have

XTk
A = {x∈X̃ : [x]k=K} and XTk

B = {x∈X̃ : [x]k=−1}

The following result reveals that, to enforce K-codiagnosability, it suffices to enforce

decentralized distinguishability for Tdiag.

Theorem VI.1. A live language L(G) is K-codiagnosable w.r.t. Ω̄, ΣF and Π, if

and only if, G̃ is decentralized distinguishable w.r.t. Ω̄ and Tdiag.

Proof. (⇒) By contraposition. Suppose that G̃ is not decentralized distinguishable.

Then we know that there exist k ∈ {1, . . . ,m} and a string s ∈ L(G) such that

x := δ̃(s) ∈ XTk
A and for each i ∈ {1, 2}, there exists xi ∈ EG̃Ωi

(s) such that xi ∈ XTk
B .

Then we know that, for each i ∈ {1, 2}, there exists a string si ∈ L(G) such that

δ̃(si) = xi and PΩi
(s) = PΩi

(si). By the definition of Tk, x ∈ XTk
A implies that

[x]k = K. According to the construction of G̃, δ̃(s) = x implies that we can write

s = uv such that u ∈ Ψ(ΣFk
) and |v| ≥ K. For each i ∈ {1, 2}, since xi ∈ XTk

B , we

know that [xi]k = −1, which implies that ΣFk
/∈ si. Overall, we know that

(∃k∈F)(∃u∈Ψ(ΣFk
))(∃v∈L(G)/u : |v|≥K)

(∀i∈{1, 2})(∃si∈L(G))[PΩi
(uv)=PΩi

(si)∧ΣFi
6∈si] (6.11)

i.e., L(G) is not K-codiagnosable.

(⇒) Still by contraposition. Suppose that G̃ is not K-codiagnosable, i.e., Equa-

tion (6.11) holds. Let x := δ̃(uv), x1 := δ̃(s1) and x2 := δ̃(s2). Then, according to

the definition of G̃, we know that [x]k = K, [x1]k = [x2]k = −1, which implies that

x ∈ XTk
A and x1, x2 ∈ XTk

B . Moreover, since for each i = 1, 2, PΩi
(uv) = PΩi

(si), we

know that xi ∈ EG̃Ωi
(si) = EG̃Ωi

(uv), i.e., EG̃Ωi
(uv) ∩ XTk

B 6= ∅. Overall, we know that

(∃Tk ∈ T)(∃uv ∈ L(G̃) : δ̃(uv) ∈XTk
A)(∀i ∈ {1, 2})[EG̃Ωi

(uv) ∩ XTk
B 6= ∅], i.e., G̃ is not

176

1

5 4

6

2 3

𝑓1

7

𝑓2

𝑜 𝑜

𝑜

𝑏

𝑏 𝑎

𝑎

𝑜

, -

- 1 , - 1

3 , - 1 , 0

4 , 0 , - 1

5 , - 1 , 1

7 , - 1

𝑓1

𝑜

𝑎

𝑜 2 ,

1 , - 1 6 ,

𝑓2

𝑜

𝑜

𝑏

𝑏

1 , - 1 1

, 1

𝑎

Figure 6.4: Augmented system G̃

decentralized distinguishable w.r.t. Tdiag.

Example 6.5.1. Let us consider again system G shown in Figure 6.1(a). Suppose

that ΣF = ΣF1∪̇ΣF2 = {f1}∪̇{f2}. Let us consider K = 1. Then the refined au-

tomaton G̃ is shown in Figure 6.4. For example, state x = (6, 1,−1) means that:

(i) the system is at state 6 in G; (ii) f1 has occurred for more than one step (since

[x]1 = K); and (iii) f2 has not occurred (since [x]2 = −1). Then Tdiag = {T1, T2} is

defined by T1 = {(6, 1,−1)}×{(1,−1,−1), (2,−1,−1), (3,−1, 0), (5,−1, 1), (7,−1, 1)}

and T2 = {(5,−1, 1), (7,−1, 1)} × {(1,−1,−1), (2,−1,−1), (4, 0,−1), (6, 1,−1)}. S-

ince G̃ and G are isomorphic for this specific example, we see that Tdiag is indeed the

same specification T defined in Example 6.2.1. Therefore, the solution we obtained in

Example 6.4.1 has solved the sensor activation problem for 1-codiagnosability.

6.5.2 Decentralized Supervisory Control

Another important decentralized decision-making problem is the decentralized

supervisory control problem [69, 128]. In this problem, each local agent i ∈ I can

disable events in Σc,i ⊆ Σ dynamically based on its local observation Ωi. We define

Σc = ∪i∈IΣc,i as the set of all controllable events and for each σ ∈ Σc, we define

Ic(σ) = {i ∈ I : σ ∈ Σc,i} as the set of agents that can disable σ. The control

objective is to make sure that the closed-loop system achieves a desired language

177

L(H) ⊆ L(G). The key property regarding the decentralized information in this

problem is the notion of coobservability ; it together with the notion of controllability

provide the necessary and sufficient conditions for exactly achieving a given specifi-

cation language. We recall its definition from [69].

Definition 6.5.2. (Coobservability). We say that L(G) is coobservable w.r.t. L(H),

Σc,1,Σc,2 and Ω̄ if

(∀s ∈ L(H))(∀σ ∈ Σc : sσ ∈ L(G) \ L(H))(∃i ∈ Ic(σk))[P−1
Ωi

(PΩi
(s)){σ} ∩ L(H) = ∅]

Hereafter, we assume w.o.l.g. thatH = (XH ,Σ, δH , x0,H) is a strict sub-automaton

of G. Now, suppose that Σc = {σ1, . . . , σm} is the set of controllable events. We define

a set of specifications Tcont = {T1, T2, . . . , Tm} as follows: for each Tk ∈ T, we have

XTk
A ={x ∈ XH : δ(q, σk)! ∧ δH(q, σk)¬!}

XTk
B ={x ∈ XH : δH(q, σk)!}

with ITk = Ic(σk), where “¬!” means “is not defined”.

Intuitively, for each controllable event σk ∈ Σc, X
Tk
A is the set of states at which

σk must be disabled for safety purposes, while XTk
A is the set of states at which σk

must be enabled to achieve L(H). The following result reveals that coobservability

is also a special case of decentralized distinguishability with Tcont.

Theorem VI.2. Let G be the system and H be the specification automaton. Then

L(G) is coobservable w.r.t. L(H), Σc,1,Σc,2 and Ω̄, if and only if, G is decentralized

distinguishable w.r.t. Ω̄ and Tcont.

Proof. (⇒) By contraposition. Suppose that G is not decentralized distinguishable.

Then we know that there exist Tk ∈ T, s ∈ L(G) : δ(s) ∈ XTk
A such that for each

i ∈ ITk , there exists ti ∈ L(G) such that PΩi
(s) = PΩi

(ti) and δ(ti) ∈ XTk
B . Let

178

σk ∈ Σc be the controllable event associated to Tk. Then δ(s) ∈ XTk
A implies that

s ∈ L(H), sσk ∈ L(G) \ L(H) and δ(ti) ∈ XTk
B implies that tiσk ∈ L(H). Moreover,

ITk = Ic(σk). Overall, we know that ∃s ∈ L(H), σk ∈ Σc such that sσk ∈ L(G)\L(H)

and for each i ∈ Ic(σk), tiσk ∈ P−1
Ωi

(PΩi
(s)){σk} ∩ L(H) 6= ∅, i.e., L(G) is not

coobservable.

(⇔) By contraposition. Suppose that L(G) is not coobservable. Then we know

that ∃s ∈ L(H), σk ∈ Σc : sσk ∈ L(G) \ L(H) such that for each i ∈ Ic(σk), there

exists ti ∈ L(G) such that tiσk ∈ L(H) and PΩi
(s) = PΩi

(ti). For the above s and

ti, we know that δ(s) ∈ XTk
A and δ(ti) ∈ XTk

B . Therefore, for s and σk, we know that

for each i ∈ ITk = Ic(σk), δ(ti) ∈ EGΩi
(ti) ∩ XTk

B = EGΩi
(s) ∩ XTk

B 6= ∅, i.e., G is not

decentralized distinguishable.

6.5.3 Decentralized Fault Prediction

In some safety-critical systems, we may not only want to diagnose any fault after

its occurrence, but also want to predict any fault before it occurs [29]. In [47], the no-

tion of coprognosability was proposed to capture whether or not any fault occurrence

can be predicted in a decentralized system. The definition is reviewed as follows.

Definition 6.5.3. (Coprognosability). We say that language L(G) is coprognosable

w.r.t. Ω̄ and ΣF if

(∀s ∈ Ψ(ΣF))(∃t ∈ {s} : ΣF 6∈ t)(∃i ∈ {1, 2})(∀u ∈ P−1
Ωi

(PΩi
(t)) : ΣF /∈ u)

(∃K ∈ N)(∀v ∈ L(G)/u)[|v| ≥ K ⇒ ΣF ∈ uv]

Still, we assume that the state space of G is partitioned as X = XN ∪̇XF such

that ∀s ∈ L(G) : δ(s) ∈ XN ⇔ ΣF 6∈ s; and ∀s ∈ L(G) : δ(s) ∈ XF ⇔ ΣF ∈ s. And

we still denote by NX and ∂X the set of non-indicator states and the set of boundary

states, respectively.

179

With these notions, we define a simple specification Tpre := {T1}, where XT1
A =

∂X and XT1
B = NX with IT1 = I. The following result reveals that, to enforce

coprognosability, it suffices to enforce decentralized distinguishability with Tpre.

Theorem VI.3. L(G) is coprognosable w.r.t. Ω̄ and ΣF , if and only if, G is decen-

tralized distinguishable w.r.t. Ω̄ and Tpre.

Proof. (⇒) By contraposition. Suppose that G is not decentralized distinguishable.

Then we know that there exists s ∈ L(G) such that x := δ(s) ∈ ∂X and for each

i ∈ {1, 2}, there exists xi ∈ EGΩi
(s) such that xi ∈ NX , i.e., there exists a string

si ∈ L(G) such that ΣF /∈ si, δ(si) = xi and PΩi
(s) = PΩi

(si). Since x ∈ ∂X , we

know that ∃f ∈ ΣF : sf ∈ Ψ(ΣF). Let t ∈ {s} be an arbitrary prefix of s such that

ΣF /∈ t. Then for each i ∈ {1, 2}, since PΩi
(s) = PΩi

(si), we know that

∀t ∈ {s}, ∃ti ∈ {si} : PΩi
(t) = PΩi

(ti) ∧ ΣF /∈ ti (6.12)

Moreover, since xi ∈ NX which is reachable from δ(ti), we know that, for any K ∈ N,

there exists a string wi such that tiwi ∈ L(G), ΣF /∈ tiwi and |wi| ≥ K. Overall, we

know that

(∃sf ∈ Ψ(ΣF))(∀t ∈ {sf} : ΣF 6∈ t)(∀i ∈ {1, 2})(∃ti ∈ P−1
Ωi

(PΩi
(t)) : ΣF /∈ ti) (6.13)

(∀K ∈ N)(∃wi ∈ L(G)/ti)[|wi| ≥ K ∧ ΣF 6∈ tiwi]

i.e., G is not coprognosable w.r.t. Ω̄ and ΣF .

(⇐) Suppose that G is not coprognosable, i.e., Equation (6.13) holds. Let sf be

a string satisfying Equation (6.13). Let t a prefix of s such that ΣF /∈ t and tf ′ ∈ {s}

for some f ′ ∈ ΣF . Then we know that x := δ(t) ∈ ∂X . According to Equation (6.13)

, we know that, for each agent i ∈ {1, 2}, there exists a string ti ∈ L(G) such

that 1) ΣF /∈ ti; and 2) (∀K ∈ N)(∃wi ∈ L(G)/ti)[|wi| ≥ K ∧ ΣF 6∈ tiwi]; and 3)

180

PΩi
(ti) = PΩi

(t). The first two conditions imply that xi := δ(ti) ∈ NX . Moreover, the

last condition implies that {x, xi} ⊆ EGΩi
(t). Overall, we know that (∃t∈L(G) : δ(t)∈

∂X)(∀i∈{1, 2})[EGΩi
(t) ∩NX = ∅], i.e., G is not decentralized distinguishable.

Remark 6.5.1. Note that ∂X and NX need not be disjoint. By the above theorem, the

system will not be coprognosable under any sensor activation policies if ∂X ∩NX 6= ∅.

6.6 Extension to the Conjunctive Architecture

In Section 6.5, we have shown that K-codiagnosability, coobservability and co-

prognosability are special cases of decentralized distinguishability. As we mentioned

earlier, all results in this chapter are developed based on the disjunctive architecture,

i.e., the coordinator issues “1” globally, if and only if, one local agent issues “1”.

Alternatively, one may also use the conjunctive rule to obtain a global decision, i.e.,

the coordinator issues “0” globally, if and only if, one local agent issues “0”. In this

case, suppose that a string leading to a state in XTk
B is executed and a global decision

“0” has to be made. Then, a local agent must know that the system is not in XTk
A

unambiguously when it issues “0”; otherwise a wrong global decision may be made

at some state in XTk
A . Therefore, we need to require that

(∀s ∈ L(G) : δ(s)∈XTk
B)(∃i ∈ ITk)[EGΩi

(s)∩XTk
A =∅]

By comparing the above requirement with decentralized distinguishability, which is

defined in terms of the disjunctive architecture, we see that this requirement is indeed

the same as decentralized distinguishability by swapping XTk
A and XTk

B . Therefore,

there is no need to define a conjunctive version of decentralized distinguishability; it

is just a matter of how the specification Tk is defined.

For example, in [128], the notion of D&A-coobservability was proposed as a com-

181

plement of coobservability1. We recall its definition.

Definition 6.6.1. (D&A-Coobservability). We say that L(G) is D&A-coobservable

w.r.t. L(H), Σc,1,Σc,2 and Ω̄ if

(∀s ∈ L(H))(∀σ ∈ Σc : sσ ∈ L(H))(∃i ∈ Ic(σk))[P−1
Ωi

(PΩi
(s)){σ} ∩ L(G) ⊆ L(H)]

Intuitively, D&A-coobservability requires that for any string for which σ has to

be enabled, there exists at least one agent that knows for sure that σ should not be

disabled. We can also formulate D&A-coobservability as an instance of decentralized

distinguishability by defining TCJcont = {TCJ1 , TCJ2 , . . . , TCJm }, where for each TCJk ∈ T,

we have

X
TCJ
k

A ={x∈ XH : δH(q, σk)!}

X
TCJ
k

B ={x ∈ XH : δ(q, σk)! ∧ δH(q, σk)¬!}

with ITk = Ic(σk). The proof of the correctness of TCJcont is omitted since it is similar

to the proof of Theorem VI.2.

Similarly, one can also show that conjunctive K-codiagnosability [105, 108] and

conjunctive coprognosability [40,126] are instances of decentralized distinguishabiity;

we just need to define new specifications TCJdiag and TCJpre by swapping each XTk
A and

XTk
B in Tdiag and Tpre, respectively.

1Here, “D&A” stands for “Disjunctive & Anti-permissive”. Also, coobservability in Defini-
tion 6.5.2 is referred to as C&P-coobservability, where “C&A” standards for “Conjunctive & Permis-
sive”. The reason why C&P-coobservability corresponds to decentralized distinguishability in the
disjunctive architecture is that, [69] considers the conjunction of enablements, while Tcont captures
the disjunction of disablements; they are essentially equivalent.

182

6.7 Conclusion

We presented a novel approach for solving the problem of decentralized sensor

activation for a class of properties. We proposed the notion of decentralized distin-

guishability, which covers coobservability, K-codiagnosability and coprognosability.

To enforce decentralized distinguishability, we first adopted a person-by-person ap-

proach to decompose the decentralized minimization problem to two consecutive cen-

tralized constrained minimization problems. Then, a novel approach was proposed

to reduce each centralized constrained minimization problem to a fully centralized

sensor activation that is solved effectively in the literature. Finally, we showed that

the decentralized solution obtained by our methodology is language-based minimal.

183

CHAPTER VII

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we developed novel approaches for solving the control prob-

lem and the sensor activation problem for the purpose of property enforcement in

Cyber-Physical Systems that are modeled as Discrete Event Systems. The results

developed in this dissertation provide new theoretical foundations and computational

algorithms for synthesizing higher-level control logic in cyber-physical systems that

is provably correct in terms of a set of qualitative requirements. Moreover, the novel

approaches developed can also significantly reduce the system integration, verification

and validation cycle (and therefore time-to-market) for important classes of societal

systems.

More specifically, for the supervisory control problem, a uniform framework for

supervisory control under partial observation was developed. The uniform framework

is based on the newly proposed structures called All Enforcement Structure (AES) and

Non-blocking All Enforcement Structure (NB-AES). Based on the AES and the NB-

AES, algorithms for synthesizing maximally-permissive non-blocking supervisors for

the enforcement of a large class of properties were proposed. The proposed framework

not only handles the enforcement of many important properties in the DES literature

in a uniform manner, but it also can handle the issue of non-blockingness. As a special

184

case of the general framework, the problem of synthesizing a maximally-permissive

safe and non-blocking supervisor, that had remained open for more than 25 years,

was solved. An algorithm was also proposed to solve the range control problem for

the case of prefix-closed specifications. This results in a safe and locally maximal

supervisor that provably contains a given desired behavior.

For the dynamic sensor activation problem, a uniform framework for synthesiz-

ing sensor activation policies for a wide class of properties was also developed. A

generalized version of the Most Permissive Observer (MPO) was defined to solve the

synthesis problem. Based on the MPO, we presented an algorithm for the synthesis

of optimal sensor activation policies under a logical performance objective. We al-

so investigated the problem of minimizing sensor activations for decentralized fault

diagnosis. A person-by-person approach together with the centralized uniform frame-

work were used to solve decentralized minimization problem. This provided the first

algorithm that solves the language-based sensor optimization for decentralized DES.

7.2 Future Work

The framework developed in this dissertation opens several future research direc-

tions. First, in Chapter II, the non-blockingness condition considered requires that

the system is always able to reach a marked state. However, this does not guarantee

that a marked state is eventually reached. One interesting future direction is to con-

sider a stronger version of non-blockingness, which requires that a marked state can

always eventually be reached. In some applications, different markings may represent

different types of targets and one may be interested in synthesizing a supervisor such

that different marked states can be reached in a certain order. This problem has

been studied in the fully-observed setting in the context of multitasking superviso-

ry control [63]. Generalizing the multitasking supervisory control framework to the

partially-observed setting is also an interesting future direction.

185

In the range control problem studied in Chapter IV, we only considered prefix-

closed safety specifications, i.e., the issue of non-blockingness is not considered. One

important future direction is to generalize the results in Chapter IV to include the

non-blockingness requirement, given any IS-based property. Also, in Chapters II, III

and IV, we only investigated the centralized supervisory control problem. One future

direction is to study the supervisor synthesis problem in the decentralized setting

[69,128]. It has been shown in [95,98] that the problem of synthesizing a decentralized

non-blocking supervisor is undecidable. However, to the best of our knowledge, how

to synthesize a locally maximal decentralized supervisor is still an open problem.

Investigating the decidability of this problem is an interesting future direction.

In this dissertation, only qualitative requirements were considered in the control

synthesis problem. It would be of interest to develop theoretical foundations and

computational algorithms for synthesizing higher-level control logic in cyber-physical

systems that is provably correct in terms of a set of qualitative requirements (in the

form of safety and liveness properties) and, at the same time, satisfies a set of quan-

titative energy or resource constraints imposed on the system. More specifically, one

interesting future direction is to investigate how to guarantee that the accumulated

cost of any execution of the controlled system is non-negative. This essentially re-

quires to solve an energy game over the AES or the MPO structure. Another future

direction is to investigate how to minimize the average cost in addition to the accu-

mulated cost. For this direction, we may need to solve a mean-payoff game over the

AES or the MPO structure.

Also, in this dissertation, the supervisor synthesis problem and the sensor acti-

vation policy synthesis problem were addressed separately. One interesting future

direction is to investigate the joint synthesis of supervisory control strategies and

sensor activation strategies and associated design trade-offs. To this end, we may

need to define a new transition structure that combines the AES and the MPO. The

186

development of this new structure would allow the study the dependency between the

control strategy and the sensing strategy in this joint synthesis problem.

Regarding the decentralized sensor activation problem investigated in Chapter VI,

we only considered so-called “non-conditional” decision fusion architectures. We may

also wish to extend the results in Chapter VI to the conditional architectures de-

fined in [105, 130], the inference architecture of [45, 46], and the intersection-based

architecture recently investigated in [115].

Finally, to further mitigate the computational challenges associated with the

growth of the number of states in the system, it would be of interest to use symbolic

methods to improve the scalability of the approaches developed in this dissertation.

In this regard, it wold be of interest to investigate how to symbolically represent the

BTS/MPO structures and their associated operators. Symbolic methods have been

recently applied to the basic supervisor synthesis problem in the theory of superviso-

ry control; see [28, 39, 55–57, 65]. However, to the best of our knowledge, all existing

works focus on the full observation case. The case of partially-observed systems has

not been addressed yet; neither has the problem of synthesizing sensor activation

policies.

It is our thesis that the novel methodologies developed in this dissertation provide

sound theoretical foundations and adaptable algorithmic procedures for investigating

the above-discussed problems.

187

BIBLIOGRAPHY

188

BIBLIOGRAPHY

[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers
with partial observation. Theoretical Computer Science, 303(1):7–34, 2003.

[2] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Darondeau.
Concurrent secrets. Discrete Event Dynamic Systems: Theory & Applications,
17(4):425–446, 2007.

[3] G. Barrett and S. Lafortune. On the separation of estimation and control in
discrete-event systems. In Proceedings of the 39th IEEE Conference on Decision
and Control, pages 2258–2259, 2000.

[4] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin. Centralized and distributed
algorithms for on-line synthesis of maximal control policies under partial obser-
vation. Discrete Event Dynamic Systems: Theory & Applications, 6(4):379–427,
1996.

[5] M. Ben-Kalefa and F. Lin. Supervisory control for opacity of discrete event sys-
tems. In 49th IEEE Annual Allerton Conference on Communication, Control,
and Computing, pages 1113–1119, 2011.

[6] G. Benattar, F. Cassez, D. Lime, and O.H. Roux. Control and synthesis of
non-interferent timed systems. International Journal of Control, 88(2):217–
236, 2015.

[7] R. Boel and J.H. van Schuppen. Decentralized failure diagnosis for discrete-
event systems with costly communication between diagnosers. In Proc. 6th
International Workshop on Discrete Event Systems, pages 175–181, 2002.

[8] R.D. Brandt, V. Garg, R. Kumar, F. Lin, S.I. Marcus, and W.M. Wonham. For-
mulas for calculating supremal controllable and normal sublanguages. Systems
& Control Letters, 15(2):111–117, 1990.

[9] Y. Brave and M. Heymann. Stabilization of discrete-event processes. Interna-
tional Journal of Control, 51(5):1101–1117, 1990.

[10] J.W. Bryans, M. Koutny, L. Mazaré, and P. Y. Ryan. Opacity generalised to
transition systems. International Journal of Information Security, 7(6):421–
435, 2008.

189

[11] K. Cai, R. Zhang, and W.M. Wonham. Relative observability of discrete-event
systems and its supremal sublanguages. IEEE Transactions on Automatic Con-
trol, 60(3):659–670, 2015.

[12] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Springer, 2nd edition, 2008.

[13] F. Cassez. Dynamic observers for fault diagnosis of timed systems. In 49th
IEEE Conf. Decision and Control, pages 4359–4364, 2010.

[14] F. Cassez. The complexity of codiagnosability for discrete event and timed
systems. IEEE Transactions on Automatic Control, 57(7):1752–1764, 2012.

[15] F. Cassez, J. Dubreil, and H. Marchand. Synthesis of opaque systems with
static and dynamic masks. Formal Methods in System Design, 40(1):88–115,
2012.

[16] F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers.
Fundamenta Informaticae, 88(4):497–540, 2008.

[17] K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Algorithms for
omega-regular games with imperfect information. In Computer Science Logic,
pages 287–302. Springer, 2006.

[18] H. Cho and S.I. Marcus. On supremal languages of classes of sublanguages that
arise in supervisor synthesis problems with partial observation. Mathematics of
Control, Signals, and Systems, 2(1):47–69, 1989.

[19] H. Cho and S.I. Marcus. Supremal and maximal sublanguages arising in su-
pervisor synthesis problems with partial observations. Mathematical Systems
Theory, 22(1):177–211, 1989.

[20] R. Cieslak, C. Desclaux, A.S. Fawaz, and P. Varaiya. Supervisory control of
discrete-event processes with partial observations. IEEE Transactions on Au-
tomatic Control, 33(3):249–260, 1988.

[21] E.M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[22] E. Dallal and S. Lafortune. On most permissive observers in dynamic sensor
activation problems. IEEE Transactions on Automatic Control, 59(4):966–981,
2014.

[23] P. Darondeau, H. Marchand, and L. Ricker. Enforcing opacity of regular pred-
icates on modal transition systems. Discrete Event Dynamic Systems: Theory
& Applications, 2014.

[24] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized pro-
tocols for failure diagnosis of discrete event systems. Discrete Event Dynamic
Systems: Theory & Applications, 10(1-2):33–86, 2000.

190

[25] R. Debouk, S. Lafortune, and D. Teneketzis. On an optimization problem in
sensor selection. Discrete Event Dynamic Systems: Theory & Applications,
12(4):417–445, 2002.

[26] J. Dubreil, P. Darondeau, and H. Marchand. Supervisory control for opacity.
IEEE Transactions on Automatic Control, 55(5):1089–1100, 2010.

[27] J. Fa, X. Yang, and Y. Zheng. Formulas for a class of controllable and observable
sublanguages larger than the supremal controllable and normal sublanguage.
Systems & Control Letters, 20(1):11–18, 1993.

[28] Z. Fei, S. Reveliotis, S. Miremadi, and K. Åkesson. A bdd-based approach
for designing maximally permissive deadlock avoidance policies for complex
resource allocation systems. IEEE Transactions on Automation Science and
Engineering, 12(3):990–1006, 2015.

[29] S. Genc and S. Lafortune. Predictability of event occurrences in partially-
observed discrete-event systems. Automatica, 45(2):301–311, 2009.

[30] A. Haji-Valizadeh and K. Loparo. Minimizing the cardinality of an events set
for supervisors of discrete-event dynamical systems. IEEE Transactions on
Automatic Control, 41(11):1579–1593, 1996.

[31] M. Heymann and F. Lin. On-line control of partially observed discrete event
systems. Discrete Event Dynamic Systems: Theory & Applications, 4(3):221–
236, 1994.

[32] Y.-C. Ho. Team decision theory and information structures. Proceedings of the
IEEE, 68(6):644–654, 1980.

[33] Y. Huang, K. Rudie, and F. Lin. Decentralized control of discrete-event systems
when supervisors observe particular event occurrences. IEEE Trans. Autom.
Contr., 53(1):384–388, 2008.

[34] K. Inan. Nondeterministic supervision under partial observations. In 11th
International Conference on Analysis and Optimization of Systems: Discrete
Event Systems, pages 39–48. Springer, 1994.

[35] M. Iordache and P.J. Antsaklis. Supervisory control of concurrent systems: a
Petri net structural approach. Springer Science & Business Media, 2007.

[36] R. Jacob, J.-J. Lesage, and J.-M. Faure. Overview of discrete event systems
opacity: Models, validation, and quantification. Annual Reviews in Control,
41:135–146, 2016.

[37] S. Jiang, R. Kumar, and H. Garcia. Optimal sensor selection for discrete-event
systems with partial observation. IEEE Transactions on Automatic Control,
48(3):369–381, 2003.

191

[38] S. Jiang, R. Kumar, S. Takai, and W. Qiu. Decentralized control of discrete-
event systems with multiple local specifications. IEEE Transactions on Autom.
Sci. Eng., 7(3):512–522, 2010.

[39] G. Kalyon, T. Le Gall, H. Marchand, and T. Massart. Symbolic supervisory
control of distributed systems with communications. IEEE Transactions on
Automatic Control, 59(2):396–408, 2014.

[40] A. Khoumsi and H. Chakib. Conjunctive and disjunctive architectures for de-
centralized prognosis of failures in discrete-event systems. IEEE Trans. Autom.
Sci. Eng., 9(2):412–417, 2012.

[41] J. Komenda and J.H. van Schuppen. Control of discrete-event systems with
partial observations using coalgebra and coinduction. Disctre Event Dynamic
Systems.: Theory & Application, 15(3):257–315, 2005.

[42] R. Kumar and V.K. Garg. Modeling and control of logical discrete event sys-
tems. Kluwer, 1995.

[43] R. Kumar, S. Jiang, C. Zhou, and W. Qiu. Polynomial synthesis of supervisor
for partially observed discrete-event systems by allowing nondeterminism in
control. IEEE Transactions on Automatic Control, 50(4):463–475, 2005.

[44] R. Kumar and M. Shayman. Formulae relating controllability, observability,
and co-observability. Automatica, 34(2):211–215, 1998.

[45] R. Kumar and S. Takai. Inference-based ambiguity management in decentral-
ized decision-making: Decentralized control of discrete event systems. IEEE
Transactions on Automatic Control, 52(10):1783–1794, 2007.

[46] R. Kumar and S. Takai. Inference-based ambiguity management in decentral-
ized decision-making: Decentralized diagnosis of discrete-event systems. IEEE
Transactions on Automation Science and Engineering, 6(3):479–491, 2009.

[47] R. Kumar and S. Takai. Decentralized prognosis of failures in discrete event
systems. IEEE Transactions on Automatic Control, 55(1):48–59, 2010.

[48] O. Kupferman and M. Vardi. Synthesis with incomplete informatio. In Ad-
vances in Temporal Logic, pages 109–127. Springer, 2000.

[49] Z. Li, M. Zhou, and N. Wu. A survey and comparison of petri net-based
deadlock prevention policies for flexible manufacturing systems. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
38(2):173–188, 2008.

[50] H. Liao, S. Lafortune, S. Reveliotis, Y. Wang, and S. Mahlke. Optimal liveness-
enforcing control for a class of petri nets arising in multithreaded software.
IEEE Transactions on Automatic Control, 58(5):1123–1138, 2013.

192

[51] F. Lin. Opacity of discrete event systems and its applications. Automatica,
47(3):496–503, 2011.

[52] F. Lin and W.M. Wonham. On observability of discrete-event systems. Inform.
Sciences, 44(3):173–198, 1988.

[53] F. Lin and W.M. Wonham. Decentralized control and coordination of discrete-
event systems with partial observation. IEEE Transactions on Automatic Con-
trol, 35(12):1330–1337, 1990.

[54] F. Lin and W.M. Wonham. Supervisory control of timed discrete-event sys-
tems under partial observation. IEEE Transactions on Automatic Control,
40(3):558–562, 1995.

[55] C. Ma and W.M. Wonham. Nonblocking supervisory control of state tree struc-
tures. IEEE Transactions on Automatic Control, 51(5):782–793, 2006.

[56] S. Miremadi, Z. Fei, K. Åkesson, and B. Lennartson. Symbolic supervisory con-
trol of timed discrete event systems. IEEE Trans. Control Systems Technology,
23(2):584–597, 2015.

[57] S. Miremadi, B. Lennartson, and K. Akesson. A BDD-based approach for mod-
eling plant and supervisor by extended finite automata. IEEE Trans. Control
Systems Technology, 20(6):1421–1435, 2012.

[58] T. Moor and K.W. Schmidt. Fault-tolerant control of discrete-event systems
with lower-bound specifications. In 5th International Workshop on Dependable
Control of Discrete Systems, pages 161–166, 2015.

[59] A. Overkamp and J.H. van Schuppen. Maximal solutions in decentralized su-
pervisory control. SIAM Journal on Control and Optimization, 39(2):492–511,
2000.

[60] C.M. Özveren, A.S. Willsky, and P.J. Antsaklis. Stability and stabilizability of
discrete event dynamic systems. Journal of the ACM, 38(3):729–751, 1991.

[61] S. Pinchinat and S. Riedweg. You can always compute maximally permissive
controllers under partial observation when they exist. In American Control
Conference, pages 2287–2292, 2005.

[62] W. Qiu and R. Kumar. Decentralized failure diagnosis of discrete event systems.
IEEE Transactions on Systems, Man and Cybernetics, Part A, 36(2):384–395,
2006.

[63] M.H. Queiroz, J.E.R. Cury, and W.M. Wonham. Multitasking supervisory
control of discrete-event systems. Discrete Event Dyn. Sys.: Theory & Appl.,
15(4):375–395, 2005.

193

[64] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization, 25(1):206–230,
1987.

[65] B.C. Rawlings. Discrete Dynamics in Chemical Process Control and Automa-
tion. PhD thesis, Carnegie Mellon University, 2016.

[66] K. Rudie, S. Lafortune, and F. Lin. Minimal communication in a distributed
discrete-event system. IEEE Transactions on Automatic Control, 48(6):957–
975, 2003.

[67] K. Rudie and J.C. Willems. The computational complexity of decentralized
discrete-event control problems. IEEE Transactions on Automatic Control,
40(7):1313–1319, 1995.

[68] K. Rudie and W.M. Wonham. The infimal prefix-closed and observable super-
languange of a given language. Syst. Control Letters, 15(5):361–371, 1990.

[69] K. Rudie and W.M. Wonham. Think globally, act locally: Decentralized super-
visory control. IEEE Transactions on Automatic Control, 37(11):1692–1708,
1992.

[70] A. Saboori and C.N. Hadjicostis. Notions of security and opacity in discrete
event systems. In 46th IEEE Conference on Decision and Control, pages 5056–
5061, 2007.

[71] A. Saboori and C.N. Hadjicostis. Verification of k-step opacity and analysis
of its complexity. IEEE Transactions on Automation Science and Engineering,
8(3):549–559, 2011.

[72] A. Saboori and C.N. Hadjicostis. Opacity-enforcing supervisory strategies vi-
a state estimator constructions. IEEE Transactions on Automatic Control,
57(5):1155–1165, 2012.

[73] A. Saboori and C.N. Hadjicostis. Verification of infinite-step opacity and com-
plexity considerations. IEEE Transactions on Automatic Control, 57(5):1265–
1269, 2012.

[74] A. Saboori and C.N. Hadjicostis. Verification of initial-state opacity in security
applications of discrete event systems. Information Sciences, 246:115–132, 2013.

[75] W. Sadid, S.L. Ricker, and S. Hashtrudi-Zad. Nash equilibrium for communi-
cation protocols in decentralized discrete-event systems. In American Control
Conference, pages 3384–3389, 2010.

[76] M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event
systems. IEEE Transactions on Automatic Control, 43(7):908–929, 1998.

194

[77] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneket-
zis. Diagnosability of discrete-event systems. IEEE Transactions on Automatic
Control, 40(9):1555–1575, 1995.

[78] K.W. Schmidt and C. Breindl. A framework for state attraction of discrete
event systems under partial observation. Information Sciences, 281(10):265–
280, 2014.

[79] D. Sears and K. Rudie. Computing sensor activation decisions from state equiv-
alence classes in discrete-event systems. In 52nd IEEE Conference on Decision
and Control, pages 6972–6977, 2013.

[80] D. Sears and K. Rudie. Efficient computation of sensor activation decisions
in discrete-event systems. In 52nd IEEE Conference on Decision and Control,
pages 6966–6971, 2013.

[81] D. Sears and K. Rudie. On computing indistinguishable states of nondetermin-
istic finite automata with partially observable transitions. In 53rd IEEE Conf.
Decision and Control, pages 6731–6736, 2014.

[82] D. Sears and K. Rudie. Minimal sensor activation and minimal communica-
tion in discrete-event systems. Disctre Event Dynamic Systems.: Theory &
Application, 26(2):295–349, 2016.

[83] C. Seatzu, M. Silva, and J.H. Van Schuppen. Control of Discrete-Event Sys-
tems. Automata and Petri net Perspectives. Springer London, 2013.

[84] K. Shin, X. Ju, Z. Chen, and X. Hu. Privacy protection for users of location-
based services. IEEE Wireless Communications, 19(1):30–39, 2012.

[85] S. Shu, Z. Huang, and F. Lin. Online sensor activation for detectability of
discrete event systems. IEEE Transactions on Automation Science and Engi-
neering, 10(2):457–461, 2013.

[86] S. Shu and F. Lin. Detectability of discrete event systems with dynamic event
observation. Systems & Control Letters, 59(1):9–17, 2010.

[87] S. Shu and F. Lin. Enforcing detectability in controlled discrete event systems.
IEEE Transactions on Automatic Control, 58(8):2125–2130, 2013.

[88] S. Shu and F. Lin. I-detectability of discrete-event systems. IEEE Transactions
on Automation Science and Engineering, 10(1):187–196, 2013.

[89] S. Shu, F. Lin, and H. Ying. Detectability of discrete event systems. IEEE
Transactions on Automatic Control, 52(12):2356–2359, 2007.

[90] L. Sweeney. K-anonymity: A model for protecting privacy. International Jour-
nal of Uncertainty, Fuzziness & Knowledge-Based Systems, 10(05):557–570,
2002.

195

[91] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, 2009.

[92] S. Takai and Y. Oka. A formula for the supremal controllable and opaque sub-
language arising in supervisory control. SICE Journal of Control, Measurement,
and System Integration, 1(4):307–311, 2008.

[93] S. Takai and T. Ushio. Effective computation of an Lm(G)-closed, controllable,
and observable sublanguage arising in supervisory control. Systems & Control
Letters, 49(3):191–200, 2003.

[94] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
J. Math., 5(2):285–309, 1955.

[95] J.G. Thistle. Undecidability in decentralized supervision. Systems & Control
Letters, 54(5):503–509, 2005.

[96] J.G. Thistle and H.M. Lamouchi. Effective control synthesis for partially ob-
served discrete-event systems. SIAM Journal on Control and Optimization,
48(3):1858–1887, 2009.

[97] D. Thorsley and D. Teneketzis. Active acquisition of information for diagno-
sis and supervisory control of discrete event systems. Disctre Event Dynamic
Systems.: Theory & Application, 17(4):531–583, 2007.

[98] S. Tripakis. Undecidable problems of decentralized observation and control on
regular languages. Information Processing Letters, 90(1):21–28, 2004.

[99] J.N. Tsitsiklis. On the control of discrete-event dynamical systems. Mathemat-
ics of Control, Signals, and Systems, 2(2):95–107, 1989.

[100] J.H. van Schuppen. Control of distributed stochastic systems-introduction,
problems, and approaches. In Proc. 18th IFAC World Congress, volume 2011,
2011.

[101] W. Wang, S. Lafortune, A.R. Girard, and F. Lin. Optimal sensor activation for
diagnosing discrete event systems. Automatica, 46(7):1165–1175, 2010.

[102] W. Wang, S. Lafortune, and F. Lin. An algorithm for calculating indistin-
guishable states and clusters in finite-state automata with partially observable
transitions. Systems & Control Letters, 56(9):656–661, 2007.

[103] W. Wang, S. Lafortune, F. Lin, and A.R. Girard. An online algorithm for
minimal sensor activation in discrete event systems. In 48th IEEE Conference
on Decision and Control, pages 2242–2247, 2009.

[104] W. Wang, S. Lafortune, F. Lin, and A.R. Girard. Minimization of dynamic
sensor activation in discrete event systems for the purpose of control. IEEE
Transactions on Automatic Control, 55(11):2447–2461, 2010.

196

[105] Y. Wang, T.-S. Yoo, and S. Lafortune. Diagnosis of discrete event systems
using decentralized architectures. Discrete Event Dynamic Systems: Theory &
Applications, 17(2):233–263, 2007.

[106] W. M. Wonham. Supervisory control of discrete-event systems. Systems Control
Group, ECE Dept, University of Toronto, 2014.

[107] Y.-C. Wu and S. Lafortune. Comparative analysis of related notions of opacity
in centralized and coordinated architectures. Discrete Event Dynamic Systems,
23(3):307–339, 2013.

[108] T. Yamamoto and S. Takai. Conjunctive decentralized diagnosis of discrete
event systems. In 4th IFAC Workshop on Dependable Control of Discrete Sys-
tems, pages 67–72, 2013.

[109] X. Yin and S. Lafortune. A general approach for synthesis of supervisors
for partially-observed discrete-event systems. In Proceedings of the 19th IFAC
World Congress, pages 2422–2428, 2014.

[110] X. Yin and S. Lafortune. Synthesis of maximally permissive non-blocking su-
pervisors for partially observed discrete event systems. In Proceedings of 53rd
IEEE Conference on Decision and Control, pages 5156–5162, 2014.

[111] X. Yin and S. Lafortune. Codiagnosability and coobservability under dynamic
observations: Transformation and verification. Automatica, 61:241–252, 2015.

[112] X. Yin and S. Lafortune. A general approach for solving dynamic sensor ac-
tivation problems for a class of properties. In Proceedings of the 54th IEEE
Conference on Decision and Control, pages 3610–3615, 2015.

[113] X. Yin and S. Lafortune. Minimization of sensor activation in decentralized
fault diagnosis of discrete event systems. In Proceedings of the 54th IEEE
Conference on Decision and Control, pages 1014–1019, 2015.

[114] X. Yin and S. Lafortune. A new approach for synthesizing opacity-enforcing
supervisors for partially-observed discrete-event systems. In Proceedings of the
2015 American Control Conference, pages 377–383, 2015.

[115] X. Yin and S. Lafortune. Decentralized supervisory control with intersection-
based architecture. IEEE Transactions on Automatic Control, 61(11):3644–
3650, 2016.

[116] X. Yin and S. Lafortune. A general approach for optimizing dynamic sensor
activations for discrete event systems. Automatica, 2016. in preparation.

[117] X. Yin and S. Lafortune. On maximal permissiveness in partially-observed dis-
crete event systems: Verification and synthesis. In 13th International Workshop
on Discrete Event Systems, pages 1–7, 2016.

197

[118] X. Yin and S. Lafortune. On the maximally-permissive range control problem
in partially-observed discrete event systems. In Proceedings of the 55th IEEE
Conference on Decision and Control, pages 3923–3928, 2016.

[119] X. Yin and S. Lafortune. On two-way observer and its application to the
verification of infinite-step and K-step opacity. In 13th International Workshop
on Discrete Event Systems, pages 361–366, 2016.

[120] X. Yin and S. Lafortune. Synthesis of maximally permissive supervisors for
partially observed discrete event systems. IEEE Transactions on Automatic
Control, 61(5):1239–1254, 2016.

[121] X. Yin and S. Lafortune. A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems. IEEE
Transactions on Automatic Control, 61(8):2140–2154, 2016.

[122] X. Yin and S. Lafortune. DPO-SYNT: Discrete control synthesis for partially-
observed systems. In 20th IFAC World Congress, 2017. accepted.

[123] X. Yin and S. Lafortune. Minimization of sensor activation in decentralized
discrete event systems. IEEE Transactions on Automatic Control, 2017. under
review.

[124] X. Yin and S. Lafortune. A new approach for the verification of infinite-step
and k-step opacity using two-way observers. Automatica, 2017. In Print, DOI:
10.1016/j.automatica.2017.02.037.

[125] X. Yin and S. Lafortune. Synthesis of maximally-permissive supervisors for the
range control problem. IEEE Transactions on Automatic Control, 2017. In
Print, DOI: 10.1109/TAC.2016.2644867.

[126] X. Yin and Z.-J. Li. Decentralized fault prognosis of discrete event systems
with guaranteed performance bound. Automatica, 69:375–379, 2016.

[127] S. Yokota, T. Yamamoto, and S. Takai. Computation of the delay bounds and
synthesis of diagnosers for decentralized diagnosis with conditional decisions.
Discrete Event Dyn. Sys.: Theory & Appl., 21(1):45–84, 2017.

[128] T.-S. Yoo and S. Lafortune. A general architecture for decentralized supervisory
control of discrete-event systems. Disctre Event Dynamic Systems.: Theory &
Application, 12(3):335–377, 2002.

[129] T.-S. Yoo and S. Lafortune. NP-completeness of sensor selection problems
arising in partially observed discrete-event systems. IEEE Transactions on
Automatic Control, 47(9):1495–1499, 2002.

[130] T.-S. Yoo and S. Lafortune. Decentralized supervisory control with condition-
al decisions: Supervisor existence. IEEE Transactions on Automatic Control,
49(11):1886–1904, 2004.

198

[131] T.-S. Yoo and S. Lafortune. Decentralized supervisory control with conditional
decisions: Supervisor realization. IEEE Transactions on Automatic Control,
50(8):1205, 2005.

[132] T.-S. Yoo and S. Lafortune. Solvability of centralized supervisory control under
partial observation. Discrete Event Dynamic Systems: Theory & Applications,
16(4):527–553, 2006.

[133] J. Zaytoon and S. Lafortune. Overview of fault diagnosis methods for discrete
event systems. Annual Reviews in Control, 37(2):308–320, 2013.

199

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Literature Review
	Property Enforcement via Supervisory Control
	Property Enforcement via Sensor Activation

	Organization and Main Contributions

	A Uniform Approach for Property Enforcement via Supervisory Control
	Introduction
	Preliminary
	Problem Formulation
	Bipartite Transition System
	A Uniform Approach for Enforcing Properties
	All Enforcement Structure for a Given Property
	Construction of the AES

	Synthesis of Maximally Permissive Supervisors
	General Case
	Case of co
	The Issue of Liveness

	Applications of the Uniform Approach
	Enforcement of Safety
	Enforcement of Current-State Opacity
	Enforcement of K-Diagnosability
	Enforcement of Strong Detectability
	Enforcement of Anonymity
	Enforcement of Attractability

	Conclusion

	Synthesis of Non-blocking Supervisors for IS-Based Properties
	Introduction
	Problem Formulation
	Non-blocking All Enforcement Structure
	Definition of the NB-AES
	Properties and Construction Algorithm

	Synthesis of Non-blocking Supervisors
	Synthesis Algorithm
	Correctness of the Synthesis Algorithm
	Discussion

	Illustrative Example
	Conclusion
	Appendix
	Implementation of the Algorithms
	Complexity Analysis

	The Range Control Problem
	Introduction
	Problem Formulation
	Synthesis of the Infimal Supervisor
	The Role of Strict Sub-automaton
	Synthesis Algorithm

	Control Simulation Relation
	Difficulty in Handling the Lower Bound
	Definition of the CSR
	Properties of the CSR

	Synthesis of a Maximally-Permissive Supervisor
	Synthesis Algorithm
	Correctness of the Algorithm

	Conclusion
	Appendix

	A Uniform Approach for Centralized Sensor Activation
	Introduction
	Preliminary
	Information Mapping
	The Observer

	Problem Formulation
	A General Most Permissive Observer
	Information State Dynamics
	Bipartite Dynamic Observer
	Generalized MPO and its Properties

	Synthesis of Optimal Sensor Activation Policies
	Applications of the Generalized MPO
	Application to Control and Diagnosis
	Application to Fault Prediction
	Application to Cyber-Security

	Conclusion

	Sensor Activation in Decentralized Decision Making
	Introduction
	Problem Formulation and Solution Overview
	Decentralized Distinguishability
	Problem Formulation and Solution Overview

	Constrained Minimization Problem
	Constrained Minimization Problem
	Problem Reduction

	Synthesis Algorithm
	Application of the Decentralized State Disambiguation Problem
	Decentralized Fault Diagnosis
	Decentralized Supervisory Control
	Decentralized Fault Prediction

	Extension to the Conjunctive Architecture
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	BIBLIOGRAPHY

