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Abstract

Single-molecule �uorescence permits super-resolution imaging of the molecular-scale inside

living systems. In this thesis I investigate the analysis techniques that provide useful insights

into such single-molecule data sets with the goal of improving both the scope and the quality

of the analysis. Traditional algorithms for localizing isolated �uorescent emitters assume

stationary point light sources. Chapter 2 proposes two �tting functions that achieve similar

nanometer-scale localization precision as the traditional symmetric Gaussian function, while

allowing, and explicitly accounting for, directed motion. The precision of these methods is

investigated through Fisher information analysis, simulation and experiments, and the new

�tting functions are then used to measure, for the �rst time, the instantaneous velocity and

direction of motion of live bacteria cells. These new methods increase the information content

of single-molecule images of fast-moving molecules without sacri�cing localization precision,

thus permitting slower imaging speeds, and my new �tting function promise to improve

single-particle tracking (SPT) algorithms by calculating velocity and direction during each

image acquisition. Chapter 2 demonstrates a method for increasing the scope of single-

molecule data analysis by introducing an additional measurable variable�the distance a

point light source traverses while it undergoes straight, directed motion during the image

capture.

xi



By following single �uorescent molecules in a microscope, SPT can measure di�usion

and binding on the nanometer and millisecond scale. Still, although SPT can at its limits

characterize the fastest biomolecules as they interact with subcellular environments, this

measurement may require advanced illumination techniques such as stroboscopic illumina-

tion. In Chapter 3, I address the challenge of measuring fast subcellular motion by instead

analyzing single-molecule data with spatio-temporal image correlation spectroscopy (STICS)

with a focus on measurements of con�ned motion. My SPT and STICS analysis of simula-

tions of the fast di�usion of con�ned molecules shows that image blur a�ects both STICS

and SPT, and I �nd biased di�usion rate measurements for STICS analysis in the limits of

fast di�usion and tight con�nement due to �tting STICS correlation functions to a Gaussian

approximation. However, I determine that with STICS, it is possible to correctly interpret

the motion that blurs single-molecule images without advanced illumination techniques or

fast cameras. In particular, I present a method to overcome the bias due to image blur by

properly estimating the width of the correlation function by directly calculating the correla-

tion function variance instead of using the typical Gaussian �tting procedure. My simulation

results are validated by applying the STICS method to experimental measurements of fast,

con�ned motion: I measure the di�usion of cytosolic mMaple3 in living Escherichia coli cells

at 25 frames per second under continuous illumination to illustrate the utility of STICS in

an experimental parameter regime for which in-frame motion prevents single-particle track-

ing and tight con�nement of fast di�usion precludes stroboscopic illumination. Overall, my

application of STICS to freely di�using cytosolic protein in small cells extends the utility

of single-molecule experiments to the regime of fast con�ned di�usion without requiring

advanced microscopy techniques.

Di�usion in these biological systems is rarely simple�over the course of each individual

xii



particle track, that particle can undergo multiple modes of motion, including for instance

motion that is fast and slow, con�ned and uncon�ned, or anomalous and normal. To increase

the signal-to-noise ratio from single-trajectory analysis, this heterogeneous motion can be

e�ectively quanti�ed by �tting the cumulative probability distribution (CPD) of the total

collection of squared step sizes. In the most commonly used CPD data analysis algorithms,

however, a two-step �tting process allows degenerate �tting parameters to vary indepen-

dently. Such over-complicated �tting models are prone to over�tting, or �tting to noise.

Here I combine this two-step process into a single least-squares minimization step; this new

method vastly reduces the total number of �tting parameters and thus the degrees of freedom

to increase the precision with which di�usion coe�cients and di�usive population weights

may be measured, even when signi�cant heterogeneities exist. I demonstrate this global �t

approach on a simulated two-component system with varying amounts of localization preci-

sion to show an improvement in �tting robustness as well as a 2- to 3-fold improvement of

precision compared to the traditional local �t algorithm. Finally, I measure the di�usion of a

mixture of 80 nm and 200 nm gold spheres to yield 3-fold precision improvements in this real

system. Chapter 4 of this thesis seeks to improve the quality of an existing single-molecule

super-resolution data analysis method by combining the multiple �tting steps required for

CPD analysis into a single step. Together with the improvements in scope in Chapter 2, and

quality in Chapter 3, this third endeavor of my thesis helps to maximize the information

content of single-molecule super-resolution data.
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CHAPTER I

Introduction

1.1 Fluorescence imaging of bacteria

Bacteria are very small; at 1 micrometer in length, 100 of them stacked end to end are about

as wide as a human hair. They are so small that until Jones et al. in 2001 described bacterial

actin homologs that establish an internal cytoskeleton, the commonly held view was that

bacteria exhibited no long-range internal structure. [1] Since then, investigations into the

intracellular structure of bacterial molecular systems has become an active area of research.

[2, 3] Once samples are �xed, frozen, or desiccated, electron microscopy [4, 5] can promise

the extraordinary resolution capable of discerning the subcellular structures due to the short

wavelength of the electron illumination, but those methods are quite destructive because

of sample sectioning, the vacuum required, and chemical �xation and, as a result, cannot

monitor the time-resolved changes in structure that often play integral roles in interesting

bacterial phenotypes. Life occurs in a time-resolved manner that is abolished by these harsh

observation conditions and so there exist many questions that would bene�t from imaging

technologies that both have molecular resolution and non-destructive sample preparations.

For example, common super-resolution �uorescence imaging techniques can be shown to
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allow normal cell division even after the conclusion of the experiment.

Live cell �uorescence super resolution imaging is capable of capitalizing on the advances

in the past 20 years [6, 7] in the �elds of photoswitchable, photoactivatable, and blinking

organic dyes and genetically encodable proteins that can be used to observe intracellular

position information with high temporal (∼10 ms) and high spatial (∼20 nm) resolution

while simultaneously allowing the cells to continue their typical homeostatic operations.

To surpass the di�raction limit, single-molecule super resolution microscopy captures

an image of a point source as a distribution of photons with a known shape, i.e. an Airy

Disk. The image is subsequently �t to a Gaussian (which is a close approximation to the

functionally much more complex Airy Disk) to locate the center of the point source to a

resolution of around 20 nm as shown in Figure 1.1.1.

Photoswitching, photoactivation, or experimentally controllable blinking allowes conven-

tional light microscopy and wide-�eld �uorescence (imaging of bulk labeling of structures

with many overlapping �uorophores) to capture images of spatially or temporally separated

individual �uorescently labeled molecules. The centers of these individual molecular images

can be estimated to ∼20 nm resolution�thereby defeating the Abbe di�raction limit that

classically limited the closest distance two structures could be separated and still be di�eren-

tiable by light microscopy and bulk �uorescence imaging. [10] In other words, the minimum

distance between to �uorescent spots, d, is d = λ
2NA

, where λ is the wavelength of the light

emitted by the �uorophore, and NA is the numerical aperture of the microscopes objective.

Our setup, shown in Figure 1.1.2 and designed for the use of the commonly used �uorophore

PA-mCherry which emits at 680 nm, uses an objective with a NA of 1.4, so d ≈ 240 nm.

Single-molecule super-resolution microscopy has developed into a rich ecosystem of re-
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Figure 1.1.1: A) The Airy disk is the expected distribution of photons emitted from a point
source emitter as imaged with a typical microscope, but is well approximated by a symmetric
2D Gaussian function. B) The image of a �uorophore (left) is �t to a Gaussian function
(right) to locate the center position of the �uorophore. C) Shown in red is the di�raction
limited spot of a �uorophore inside a typical bacterium. The interaction distances associated
with physiological processes require localization precision that is below this 300 nm spot size,
and this is the chief impetus for single molecule super resolution localization microscopy
employed in B). Figure adapted from Haas et al. [8] and Tuson et al. [9]

lated techniques that each intend to beat the di�raction limit of light, such as photoactivat-

able localization microscopy (PALM), [11] and �uorescence photoactivation localization mi-

croscopy (FPALM), [12] which use photoactivatable or photoswitchable �uorescent proteins,

and stochastic optical reconstruction microscopy [13] (STORM) and direct-STORM13 [14]

(dSTORM) which use synthetic �uorophores. All of these related methods seek to separate

individual �uorescent molecules in either space or time such that in any given �uorescence

image each �uorescent molecule is separated by at least several widths of the PSF of the mi-

croscope. By separating the �uorescent molecules (whether they are quantum dots, organic

dyes, or genetically encodable �uorescent proteins) in time (photactivatable, photoswitch-
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Figure 1.1.2: Schematic of the system used for super-resolution �uorescence imaging using
photoactivatable or photoswitchable �uorophores. The sample is �rst bleached with the 561
nm excitation laser, then a small subset of �uorophores in the sample are activated by a short
pulse of 405 nm light and subsequently imaged until bleaching with 561 nm light. Figure
taken from Haas et al. [8]
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able, or controlled blinking) or space (low concentration), the image of the �uorescence

intensity of single �uorophores may be seen as a close approximation to a single symmetric

Gaussian spot on a dark background. Knowing this, the images of individual molecules

may be localized to ∼20 nm resolution [15] every ∼10 ms by �tting to a Gaussian function

with parameters such as the location, width, and amplitude of the �uorescent spot. Other

techniques that can estimate similar properties include center of mass [16] and maximum

likelihood estimation [17]. Center of mass methods capitalize on the speed of computation of

a discrete weighted average of the pixel intensities of a di�raction limited spot, but can su�er

from bias due to region of interest ROI selection. Maximum likelihood methods, however,

achieve the Cramer-Rao lower bound on the estimation precision, [18] but su�er from slow

computational speeds and more stringent theoretical requirements to be met.

Current camera technology that can successfully capture the dim �uorescence of individ-

ual molecules is limited by the signal to noise ratio (SNR) of the camera as well as the limited

photon budgets of the �uorescent molecules. Temporal resolutions below 10 ms require the

number of photons and the �delity of their capture to reach the lower limit of SNR required

by the super-resolution image analysis algorithms. But because scienti�c cameras are ap-

proaching 100% quantum e�ciency, faster integration times might simply require brighter

or more stable �uorescent molecules.

The single-molecule super-resolution microscopy paradigm allows researchers to probe the

previously ignored subcellular structure and live-cell dynamics of bacteria in a less destructive

way than electron microscopic methods. The molecule or structure in question is labeled

genetically with a �uorescent protein and can be shown to maintain functionality. The

minimally perturbed cell can then grow relatively unperturbed albeit with a �uorescent

marker tracing the live-cell dynamics of the labeled structure. There is a simple and easily
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used paradigm for super resolution imaging that uses wide-�eld excitation with low power

diode lasers, circular polarizers, dichroic �lters, a typical inverted microscope, and an electron

multiplying charge coupled device (EMCCD) camera (see Figure 1.1.2 and reviews). [6, 9]

Alternative to this simple design, there are several imaging modalities that o�er improve-

ments in the ratio of signal to noise in the images. Confocal imaging [19] (a pinhole and

scanning mirrors work in concert to capture �uorescence from a grid of locations on the

sample on a single-pixel photodetector), light sheet microscopy [20] (�uorescence excitation

of only a thin plane of the sample thereby eliminating background �uorescence), strobo-

scopic illumination (a method to further decrease the �uorophore excitation time beneath

the minimum camera exposure time), and 4pi imaging [21] (�uorescence imaging that uses

two objectives to capture twice as many of the photons emitted from the excited �uorophore)

improve upon this basic paradigm but my work concerns improvements to the commonly

used methods and does not seek to reach the absolute best setup for a given experiment.

Instead, I ask what is the best analysis that can be done given the type of data that we can

already acquire? Also, typical academic laboratories are rarely able to purchase the newest

and best system for each new experiment and so versatility is important. And this versatility

is made possible by theoretical extensions such as those discussed. It is an added bonus that

the improvements discussed in this dissertation can also be readily applied to many of the

techniques mentioned above.
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1.2 Point spread function (PSF) modi�cations

1.2.1 Engineered PSFs

The pattern of �uorescence emission from emitters (�uorescent proteins or dyes) as captured

by a camera contains information about the location, local environment, and motion of the

emitters. The image of the �uorescent molecule can be modi�ed by optical components

such as in astigmatic optics, [22, 23] or spatial light modulators [24] to increase the amount

of useful information that can be gathered by altering the classical symmetric PSF of a

�uorescent molecule to be for instance an asymmetric Gaussian or double helix point spread

function DH-PSF. Figures 1.2.1 and 1.2.2 are schematics of these two methods, which both

enable localization along the imaging axis. Also notable is the improved sensitivity near the

focal plane of the DH-PSF due to its shape and subsequent increased Fisher Information.

In other words, the shape of the DH-PSF contains more information about the position of

the molecule than the original unperturbed PSF.

1.2.2 Experimentally altered PSFs

Additionally, the image of a �uorescent molecule can be modi�ed by the local environment or

by qualities of the molecule itself. Isotropic di�usion on short time scales acts to broaden the

PSF monotonically with increasing di�usion coe�cient, allowing for single-image readouts of

the di�usion coe�cient, D, of a di�using particle [25,26] according to the following equation

D =
s2x,y − s20

(2Ax,y + 0.0643)t
(1.2.1)
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Figure 1.2.1: For astigmatic three-dimensional imaging, a cylindrical lens is placed in the
optical path between the objective and the camera that causes the focal point of the x and y
(in-plane) dimensions to be at di�erent sample depths. The ratio of PSF widths determines
the z (axial) location of the molecule. Figure taken from Huang et al. [22]

where sx,y is the standard deviation of the Gaussian �t to the single image of a di�using

�uorophore, s0 is the standard deviation of a Gaussian �t to an immobile �uorophore, and

t is the exposure time of the camera. Both Ax,y and the 0.0643 number are empirically

determined coe�cients found by simulation or separate calibration experiments. Directional

motion also modi�es the image of a �uorescent molecule. Systems consisting of largely

one-dimensional motion such as motion along DNA curtains [27] or di�usion along one-

dimensional microchannels in nanocrystals [28] restricts the in-frame displacements to a

straight line, causing the images to be skewed in a single direction. If the nature of these

deviations from the PSF of an immobile point light source is understood, the �tting function

used for localization can elucidate much more than just the molecular location and trajecto-

ries through time. In Chapter 2, I expand the toolbox of modi�ed PSF �tting functions to

include one that explicitly accounts for directed in-frame motion that allows the estimation

of instantaneous particle velocity. [29]
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Figure 1.2.2: To create a double helix point spread function, a spatial light modulator (SLM)
is placed in the Fourier plane of the �uorescence signal between the objective and the camera.
The SLM causes the axial position of a �uorophore with respect to the focal plane of the
objective to manifest as an angle between the lobes and the horizontal. Figure taken from
Pavani et al. [24]
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1.3 Image correlation spectroscopy

Alternatively, the motion of �uorescent molecules can be analyzed by the two-dimensional

correlation of image pairs from a time series of images of the di�using molecules. Image

correlation, simpli�ed and illustrated in Figure 1.3.1 as the correlation of two one-dimensional

functions, compares the di�erences between two functions. The cross-correlation of the top-

hat and triangle shapes results in a function with a center of mass displaced to the right,

which can be understood as a readout of the fact that the peak of the triangle is to the

right of its center of mass. Similarly, if the two functions are Gaussian PSFs of a di�using

molecule, their correlation will be a third Gaussian displaced from the origin by the distance

that the molecule moved from one image to the other. Isotropic di�usion will result in

cross-correlations that are displaced with equal probability around the origin. To utilize

spatiotemporal image correlation spectroscopy (STICS), the cross-correlations corresponding

to identical time-lags are averaged, resulting in a time-lag series of correlation functions that

broaden as time-lag increases. This broadening is caused by the fact that longer time-lags

allow more time for the di�using particle to move farther from its previous location. [30]

Apart from STICS, �uorescence �uctuation spectroscopy methods such as two-color im-

age cross-correlation spectroscopy [31] (which allows separate imaging systems to be ac-

curately cross-correlated), k-space ICS [32] (which accounts for the complex photophysics

of real �uorophores) and raster ICS [33] (which accurately formulates the cross-correlation

procedure for a scanning microscope) further generalize the methods to a wide range of bio-

physical systems. Chief among the bene�ts of these spectroscopic methods is the relaxing

of the requirement for particle immobility that Gaussian localization relies upon. Without

the requirement that the imaged �uorophores be stationary enough to be approximately
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Figure 1.3.1: The cross-correlation of two functions, f and g. Adapted from Wikipedia
Commons.

symmetric, the maximum frame rate of the microscopes camera plays less of a role in de-

termining maximum measurable velocities. With these various ICS techniques, blurring due

to slow camera frame-rate or fast di�usion does not distort the quality or quantity of data

recovery. By including all pixels of the image of a quickly di�usion molecule, ICS methods

are less prone to the false negatives that are common in localization-based analyses because

of their inherent selection bias of the brightest, most Gaussian-shaped images. In Chapter 3,

I apply spatiotemporal ICS to single molecule �uorescence inside bacteria for the �rst time

and explore its uses and drawbacks that arise from fast di�usion and tight con�nement�two

di�culties that make it particularly hard to image molecules in bacteria cells. [34]
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1.4 Di�usion analysis via cumulative probability distri-

butions and mean squared step sizes

Localization of the centers of the PSFs of di�using molecules, however, e�ectively enhances

the signal to noise ratio for experimental readouts of the system such as di�usion coe�cients

and radius of gyration, or the width of the region inside of which a molecule di�uses. This

localization step potentially improves on image correlation techniques because the localiza-

tion algorithm ignores large sections of the total region of interest in favor of the pixels

immediately surrounding the signal. By con�ning the possible locations of a molecule to

a small area, only pixels with high information content are included in the analysis. Also,

there are many opportunities to reduce the probability of falsely identifying noise as �uores-

cent molecules by using thresholds to prune the bulk output of the localization algorithm to

only include particle localizations that conform to physically relevant parameter regimes. If

localization of di�using molecules is possible, meaning that within a single camera exposure,

the molecule di�uses less than approximately the width of its PSF (commonly less than 10

m2s−1), the set of locations may be associated into trajectories with single particle track-

ing (SPT). [35] From the trajectories of mobile particles the mean squared displacements

(MSD) as a function of time-lag can be used to estimate the di�usive properties of the parti-

cle. [36�39] These studies are limited to homogeneously di�using systems, as well as�albeit

to a lesser degree�heterogeneous systems. The limitation to homogeneous systems is largely

due to the fact that to address the di�usion of multiple species from a set of trajectories, an

empirical threshold must be used to separate the individual MSDs (one for each trajectory)

into subsets representing the di�erent populations.

Another, more promising method of addressing data that contain trajectories of molecules
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that di�use at di�erent speeds is to make use of the trajectories cumulative probability

distributions (CPD) of squared step sizes. [40,41] The CPDs (one for each time-lag) are �rst

used to estimate the MSD vs. time-lag for each population that are then used to estimate

the di�usive properties of each population, such as di�usion coe�cients, di�usive population

amplitudes, or velocity of drift. For example, given a collection of particle trajectories, the

mean squared displacement for a given time-lag is estimated from the CPD of squared step

sizes for that time lag. One mean squared displacement is estimated from each CPD, and

the MSD vs time lag curve is then �t to a di�usion model (for uncon�ned 2D isotropic

di�usion: MSD(τ) = 4Dτ + 4σ2, where D is the di�usion, τ is the time-lag, and σ is the

localization precision). In Chapter 4, I simplify this algorithm that estimates the di�usion

coe�cients and population amplitudes of heterogeneous di�usion from SPT data and report

its improved precision and robustness through simulation and experiment.

1.5 Thesis outline

In this Thesis, I aimed to improve the quantity and quality of the analysis of single-molecule

super-resolution data by rethinking the �tting functions used for localization of mobile �u-

orescent molecules. I applied and analyzed the measurement biases of image correlation

spectroscopy to fast con�ned di�usion inside bacteria. By combining a multi-step analysis

algorithm into a single-step procedure, I designed and analyzed a more robust and more pre-

cise SPT analysis method. These investigations into di�erent analyses techniques all focus

on the analysis of the same single molecule super resolution data sets and can potentially

be used in tandem to greatly strengthen the types of conclusions that may be made from a

single experiment.
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In Chapter 2, I considered a method for measuring instantaneous directed motion of single

molecules by altering the �tting function used to estimate the shape of the intensity pro�le

of moving �uorophores./citeRowland2014 Simulation, experiment, and Fisher information

analysis were used to investigate two methods for measuring in-frame directed motion. We

found that these methods directly increased the information content of single-molecule im-

ages of fast-moving molecules without sacri�cing localization precision.

In Chapter 3, I investigated STICS as a method for measuring the blurry motion of

a bacterial cytosolic protein that moves too quickly to be localized with Gaussian �t-

ting./citerowland2016 With simulation we found that, while STICS subverts the biases in-

herent in SPT of fast molecules, STICS imposes other biases due to con�nement and fast

di�usion. In addition, we present a method to overcome these previously undescribed biases

with a look-up table and present for the �rst time the measurement of fast con�ned di�usion

inside bacteria.

In Chapter 4, I reexamined the commonly used CPD/MSD method for measuring pa-

rameters related to the di�usion of molecules and �nd that using a single two-domain �tting

procedure instead of many separate one-domain �ts reduces the number of free parameters

to such a degree that the measurement precision of the di�usion coe�cient is greatly im-

proved. Simulation of a two-population system as well as the di�usion of large and small gold

nanospheres in glycerol solution were used to validate the method as a direct improvement

to the classical CPD algorithm in both precision and robustness to noise.

Chapter 5 contains the conclusions regarding the scope of this work and future directions.

I describe how from a single type of data, single-molecule super-resolution image sequences,

there are a variety of analysis methods. In-frame directed motion can be directly observed

and future work may include the analytical of in-frame di�usion. I showed in this work that
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STICS may be performed on live bacteria albeit with the caveat of previously undescribed

biases and then I present possible modi�cations to the method to avoid these biases. Finally, I

discuss the direct improvements that can be gained by combining multi-step �tting processes

into single-step processes in order to reduce the number of degrees of freedom and how such

a concept may also be extended to STICS in the future.
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CHAPTER II

Fitting functions for directed motion

The work presented in this chapter has been published in the following paper:

Rowland, D. J. & Biteen, J. S. Top-Hat and Asymmetric Gaussian-Based Fitting Functions
for Quantifying Directional Single-Molecule Motion. ChemPhysChem 15, 712-720 (2014).

2.1 Introduction

Single-molecule �uorescence permits super-resolution imaging, but traditional algorithms for

localizing these isolated �uorescent emitters assume stationary point light sources. Proposed

here are two �tting functions that achieve similar nanometer-scale localization precision as

the traditional symmetric Gaussian function, while allowing, and explicitly accounting for,

directed motion. The precision of these methods is investigated through Fisher information

analysis, simulation and experiments, and the new �tting functions are then used to measure,

for the �rst time, the instantaneous velocity and direction of motion of live bacteria cells.

These new methods increase the information content of single-molecule images of fast-moving

molecules without sacri�cing localization precision, thus permitting slower imaging speeds,
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and our new �tting functions promise to improve tracking algorithms by calculating velocity

and direction during each image acquisition.

Fluorescence microscopy is traditionally limited to several hundred nanometers by the

di�raction of light. However, centroid �tting of isolated molecule �uorescent emission enables

the locations of single molecules to be determined with very high precision. [42, 43] The

ability to accurately locate individual molecules a�orded by single-molecule �uorescence

(SMF) microscopy can address fundamental questions in biology and chemistry that cannot

be approached with bulk measurements or kinetics. Since SMF microscopy can be applied

even to mobile molecules, it has been used to directly observe motions as diverse as molecular

motors, proteins in live bacterial cells, DNA dynamics, and nanocargo translocation. [44�47]

Here, SMF experiments record images of isolated �uorescent emitters, and the position of

each emitter is considered to be the center of that emitters image (point spread function;

PSF). This position determination can be achieved by calculating the center-of-mass, [48]

by least-squares �tting to a Gaussian function, [39] or by maximum likelihood estimation

(MLE). [49] If the emitter is small enough to be considered a point source, if the �uorophore

emits isotropically, [50] and if the objects motion is negligible during the imaging frame,

then these PSF-�tting methods provide reasonable estimates for the emitter position.

For point light sources that are stationary and in-focus during �uorescent imaging, the

resulting PSF is an Airy disk that can be reasonably approximated by a symmetric Gaus-

sian function with standard deviation, σ, which depends on the numerical aperture of the

microscope objective and the wavelength of light. Thompson et al. reported closed-form

expressions for the localization precision of immobile �uorescent molecules �t with this sym-

metric Gaussian �tting function. [15] Later, the theoretical limits of PSF �tting were de-

termined from a more rigorous and general treatment of these �tting methods and their
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statistics based on Fisher information theory, [51] and using the true image of a di�racted

immobile point light source corrupted by noise. [18] Furthermore, this MLE-based method

was implemented as a fast, iterative algorithm. [52] The simple symmetric Gaussian �tting

function has been adapted for many applications, including three-dimensional imaging, [53]

and Wang and co-workers added precision estimates for localization along the vertical axis

by making use of the relation of standard deviation of the molecule image to the molecules

distance from the objective focal plane. [54]

Furthermore, in many situations, even mobile molecules can be described by �ts to the

symmetric Gaussian function, as a su�ciently fast imaging speed can compensate for molecu-

lar motion. However, fast-moving molecules can no longer be considered essentially immobile

since fast motion will blur the PSF extensively. Since the accuracy of the position determina-

tion depends on the quality of the �tting function, a �tting function that accounts explicitly

for molecular motion is desirable. For the case of di�usive motion, no net direction of motion

is expected: the molecule PSF will be blurred in all directions, and the convolution of the

normal distribution of di�usive motion with the Gaussian-approximated photon distribu-

tion function of an immobile molecule results simply in another symmetric Gaussian with a

larger standard deviation. This broadened σ has been related to the di�usion coe�cient by

empirical calibration [25] and by assuming the blurring to be represented by a path distribu-

tion function characterized by a normal distribution with a standard deviation that can be

related directly to the molecular di�usion coe�cient. [26] Error propagation and the results

from these earlier works allow the error in the di�usion coe�cient estimate to be predicted.

Though di�usion is ubiquitous, many biological processes are characterized by directed

motion. For instance, bacterial chemotaxis and particle �ow in a current. Rather than

producing isotropic PSF widening, such directional motion causes the image PSF to be
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blurred in the direction of motion, x. In this case, a �tting function that is derived considering

molecular mobility will have the added bene�t of providing information about the speed and

directionality of the motion. To quantify directional motion, we have developed two methods

that explicitly account for motion at a �xed velocity. The �rst method more exactly models

a moving molecule PSF as the convolution of a stationary molecule PSF (approximated by

a symmetric Gaussian function) and motion at a �xed speed and direction (represented by

a top-hat function). The second method applies the asymmetric Gaussian, which has been

previously used for three-dimensional imaging through an astigmatic lens [22], to a moving

molecule; here the long axis of the asymmetric Gaussian corresponds to the direction of

motion. Though Yüce et al. recently treated moving single-molecule �uorophores with a

maximum likelihood approach, [55] the two �tting functions presented here have the bene�t

of being easily incorporated into established data processing routines.

In this chapter, we use Fisher information theory to analytically evaluate the precision

(Section 2.3.1), and we �t experimental measurements of scattering from gold nanoparticles

moving at a constant velocity to experimentally measure the precision (Section 2.3.3) for each

of the �tting functions, qSErf and qAG, introduced above. We then apply the mobile single-

molecule asymmetric Gaussian and SErf functions to �uorescently labeled Vibrio cholerae

cells swimming in the imaging plane of a microscope in Section 2.3.4.
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2.2 Theory and Experimental

2.2.1 Sum of Error functions (SErf) Fitting Function

The distribution of photons emitted from a �uorophore moving at a constant in-plane velocity

during an imaging frame is approximated by the analytical 2D convolution (Eq. 2.2.1) of a

top-hat function, h, with a symmetric Gaussian function, g :

h(x, y) = δ(y)×


0 : x < D

2

1 : −D
2
< x < D

2

0 : x > D
2

g(x, y) = exp

(
−(x− x0)

2 + (y − y0)
2

2
(
σ′

a

)2
)

qSErf = h⊗ g (2.2.1)

Here, δ(y) is a Dirac delta function, D is the displacement (along the x axis), σ′ is the

point spread function (PSF) standard deviation in nm, and the magni�cation factor, a, which

depends on the dimensions of the image sensor and magni�cation of the microscope, is in the

range of 50-200 nm pixel−1 for single-molecule �uorescence experiments. The center position

of the molecule during the imaging frame is (x0, y0). We consider 2D motion restricted to

the xy plane, where the axes are free to rotate through an angle, ϕ, such that the Cartesian

coordinates x′ and y′ become

x = x′ cos(ϕ)̂i− y′ sin(ϕ)̂j; y = x′ sin(ϕ)̂i+ y′ cos(ϕ)̂j (2.2.2)
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where î and ĵ are the Cartesian unit vectors. All quantities x, y, x0, y0, D, and (σ′/a are in

units of pixels. Throughout the remainder of this discussion, the variable (σ′/a is simpli�ed

to σ, the standard deviation in units of pixels, i.e. the number of pixels in one standard

deviation of the PSF of the microscope. A higher σ means the PSF is spread across more

pixels.

The distributive property of the derivative of convolutions is used to convolve a top-hat

function, h, with a symmetric Gaussian function, g, as in Equation 2.2.1.

∂

∂x
qSErf (x, y) =

[
δ(y)

(
δ

(
x+

D

2

)
− δ

(
x− D

2

))]
⊗ exp

(
−(x− x0)

2 + (y − y0)
2

2σ2

)
(2.2.3)

Equation 2.2.3 is convolved, integrated over all space and normalized to produce the SErf

function:

qSErf (x, y) =
N

Dσ
√
8π

exp

(
−(y − y0)

2

2σ2

)(
erf

x− x0 +D/2

σ
√
2

− erf
x− x0 −D/2

σ
√
2

)
+ b.

(2.2.4)

Equation 2.2.4 has been normalized to include the photon count, N , and the function

is o�set by a background level, b. Figure 2.2.1(a) shows g and h for typical single-molecule

imaging conditions. Figure 2.2.1(b) and (c) show the results of this convolution for D = 2

pixels, and D = 8 pixels, respectively, with N = 105 photons, b = 200 photons pixels−1,

and σ = 2 pixels. In this chapter, noise is modeled as a Poisson distribution with mean and

variance equal to b2. The traces below and to the left of Figure 2.2.1(b) and (c) show the

integrals of the respective PSF images over dy and dx, respectively. The PSF widening is

nearly imperceptible in Figure 2.2.1(b), and becomes more obvious in Figure 2.2.1(c).
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D = 2 D = 8

c)b)

x

y D

a)

Figure 2.2.1: a) Graphical representation of the mathematical convolution of a top-hat
function of width D (in-frame displacement length) in the x direction (direction of motion)
and a symmetric Gaussian function that gives rise to the SErf function. b,c) Simulated SErf
functions for D = 2 pixels (b) and D = 8 pixels (c). The integral of the images over dy and
dx are shown below and to the left, respectively, of each image. Here, N = 105 photons,
b = 200 photons pixel−1 , and s = 2 pixels.

2.2.2 Asymmetric Gaussian Fitting Function

As an alternative to the SErf function introduced in Section 2.1.1, we consider the asymmetric

Gaussian function, qAG:

qAG(x, y) =
N

2πσxσy

exp

(
−(y − y0)

2

2σ2
y

− (x− x0)
2

2σ2
x

)
+ b (2.2.5)

Here, σx and σy are the the standard deviations (in units of pixels) along the direction

of motion and perpendicular to it, respectively, and x and y are again free to rotate in the

xy plane about an angle ϕ according to Equation 2.2.2. The asymmetric Gaussian function,

qAG becomes the conventional symmetric Gaussian function, qSG when σx = σy = σ.
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The adaptation to the asymmetric Gaussian function that allows for the measurement of

instantaneous directed motion requires the introduction of a calibration curve that relates the

ratio of the standard deviations parallel and perpendicular to the direction of motion, that

is, σx/σy, to D. The curve is populated by simulated data (see Section 2.2.4) with varying

in-frame displacement, D, and the ratio σx/σy is obtained from an asymmetric Gaussian �t.

The simulated data had N = 105 photons, b = 200 photons pixel−1, σy = 2 pixels, and 1000

simulated data sets were �t for each D. This calibration curve is �t by a parabola,

σx

σy

= cD2 + 1 (2.2.6)

The parabolic �t serves both as a look-up table for estimating displacement, D, from �t-

ting parameters σx(D) and σy(D), as well as the method of estimating, by error propagation,

the precision of D.

2.2.3 Fisher Information

Exact solutions for the asymmetric Gaussian function Fisher information integrals, Equation

2.3.1, were found by splitting these integrals into high- and low-noise regimes (b > q and

b < q, respectively). For the less analytically tractable SErf function, further simpli�cation

was required and Taylor expansions at D = 0 were used. Because numerical integration

showed ∆y to be independent of D at high photon count, the integral for y was further

simpli�ed by taking

lim
D→0

{
1

b2 + q

(
∂q

∂y

)2
}
.
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Because the variance of each parameter is reciprocal to its Fisher information, the square

roots of the results in Table 2.1 give the RMS error. The Fisher information for the two

functions was numerically integrated in Mathematica for comparison to the closed-form

solutions. Error propagation,

(∆D)2 =

(
∂D (σx, σy)

∂σx

)2

(∆σx)
2 +

(
∂D (σx, σy)

∂σy

)2

(∆σy)
2 (2.2.7)

and the calibration curve in Equation 2.2.6, was used to �nd the precision of D as estimated

by the asymmetric Gaussian function. This treatment was not necessary when evaluating∆D

for the SErf function because D is explicitly included in the function. Values of parameters

for the results in this section were as follows: D = 5.1, σ = 2, b = 200 for the SErf integrals,

and: σx = 2.54, σy = 2, b = 200 for the asymmetric Gaussian integrals. This value of σx was

calculated from Equation 2.2.6 using the calibration constant from simulation, c = 0.0104,

D = 5.1, and σy = 2.

Pixelation, which adds noise due to the �nite size of a, is ignored in our solutions to the

Fisher information (i.e. Figure 2.3.1 a), and b) and Table 2.1) because our results for RMS

error were found to depend only weakly on pixel size within parameter regimes relevant to

single-molecule experiments. For the SErf function and the asymmetric Gaussian function,

pixelation can be accounted for by adding the variance of a top-hat distribution with width

a, (∆a)2 = a2/12, to the variance of the point spread function, that is, σ2 or σ2
x and σ2

y .

2.2.4 Simulated Data

Simulated images of point-source emitters were generated by weighting random numbers

(generated by the Matlab routine rand) by a distribution function given by the numerical
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convolution of a top-hat function and an Airy disk. The convolution was done at high resolu-

tion, 1000x1000 pixels, and the distributions were then down-sampled by linear interpolation

to 25x25 pixels. The number of photons for each simulated image was chosen from a Poisson

distribution with mean equal to the desired photon count. Poissonian noise with standard

deviation of 200 counts per pixel was added to the simulated image. The computed preci-

sion in Figure 2.3.1 c), and d) was determined by �tting simulated data with the asymmetric

Gaussian and SErf functions with the built-in bounded non-linear least squares minimization

Matlab routine lsqcurve�t. The variance of the parameter estimations was calculated based

on �tting 1000 simulated data sets for each value of N and D.

2.2.5 Controlled Nanoparticle Motion Imaging

Glass microscope coverslips were cleaned using an oxygen plasma etch (10 min at 200 mTorr;

Plasma Etch, Inc. PE-50). Gold nanoparticle substrates were prepared on the cleaned cov-

erslips using a spin-assisted layer-by-layer technique [56] based on polyelectrolyte �lms of

positively charged poly(diallyldimethyl ammonium chloride) solution (PDADMAC, Sigma

Aldrich) and negatively charged poly(sodium 4-styrene) solution (PSS, Sigma Aldrich). 26

nm diameter spherical gold nanoparticles (Nanopartz, Inc.) were used as received. Polyelec-

trolyte solutions (20% by weight in water) were diluted in distilled deionized (DDI) water. 20

mm PDADMAC (calculated using monomeric weights) was spun onto coverslips (300 mL, 15

s, 4000 rpm), then washed three times with DDI water (300 mL, 15 s, 4000 rpm). A mixture

of nanoparticles and 20 mm PSS was then spun onto the PDADMAC-coated coverslips (100

mL NPs, 200 mL PSS, 15 s, 4000 rpm), followed by three washes with DI water.

The resulting sparse gold nanoparticle samples were imaged using with a 60x 1.49-NA oil-
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immersion objective (APON60XOTIRFM) in an Olympus IX81 inverted microscope. Wide-

�eld epi�uorescence single-molecule microscopy was performed using 532 nm light (Crysta-

laser CL532-150mW-L) as an excitation source via �ber input. Scattered light was imaged

on a 512x512 pixel EMCCD (Andor iXon 897) at a frame rate of 2 Hz for 3 min. This setup

had a magni�cation factor a = 50 nm pixel−1. The samples were translated during imag-

ing at a constant velocity of 0.5 mm s−1 with a capacitive piezoelectric xyz stage (Physik

Instrumente).

2.2.6 Controlled Motion Analysis

Movies of translating gold nanoparticles were �t by the Matlab routine lsqcurve�t to the

asymmetric Gaussian and SErf functions, yielding instantaneous values for all �t parameters

for each localized nanoparticle in each imaging frame. To determine the ∆x and ∆y as a

function of photons detected in Figure 2.3.6, particle tracks were separated into �ve-frame

segments. The average center-to-center displacement/frame for each segment was calculated

then subtracted from the position measurements, producing �ve stationary images. Then

the measured x, y, and D values were binned by N and the variance of the parameter

estimations were calculated for each bin.

2.2.7 Cellular Motion Imaging

Cells of the Vibrio cholerae classical strain O395 were grown in LB rich medium at 37 ◦C,

then grown to turbidity (OD 0.3) at 30 ◦C in M9 minimal medium. V. cholerae cells were

incubated �rst with intact whole-cell anti-V. cholerae polyclonal rabbit primary antibodies

(1/2000, Abcam) for 30 min at RT, rinsed 3 times in M9, then incubated with Alexa-488 goat
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anti-rabbit secondary antibodies (1/1000, Life Technologies) for 30 min at RT, and again

rinsed three times in M9. This produced cells with 0-3 �uorescent labels on their surface.

2.0 mL of cells in M9 media were sandwiched between a 1.5% agarose in M9 pad and a glass

coverslip. The agarose pad was wet enough to allow for two-dimensional motion within the

focal plane.

The labeled V. cholerae cells were imaged using with a 100x 1.40 NA oil-immersion ob-

jective in an Olympus IX71 inverted microscope. Wide-�eld epi�uorescence single-molecule

microscopy was performed, using 488 nm light (Sapphire 488-50) as an excitation source

with excitation powers of 100-500 mW. Scattered light was eliminated with a dichroic and a

long-pass �lter (Semrock Di01-R488 and Semrock BLP01-488), emitted signal was magni�ed

by a 3.3x beam expander to a �nal magni�cation of a = 49 nm pixel−1, and the emission

was recorded on a 512x512 pixel EMCCD (Photometrics Evolve EMCCD) at a frame rate

of 10 Hz for 5 min.

2.2.8 Cellular Motion Analysis

Swimming cells with a single visible �uorophore were identi�ed for analysis, and the �uores-

cent label was �t in each imaging frame with the SErf and asymmetric Gaussian functions.

Each �t yielded a measured instantaneous D and ϕ for each imaging frame, i, and these

values were compared to an estimate for D and ϕ determined from the trajectory between

the center positions of that �uorophore in frames i− 1 and i+ 1.
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2.3 Results and Discussion

2.3.1 Analytical Precision

The smallest possible variance, or Cramér-Rao lower bound, of a �tting parameter, θi, is

equal to the inverse of the Fisher information matrix of the �tting function, I(θ). Here, for

both qSErf and qAG, it is the 7× 7 square matrix:

[I (θ)]i,j =

∫
1

b2 + q

∂q

∂θi

∂q

∂θj
dxdy (2.3.1)

In Equation 2.3.1, q is the image function qSErf or qAG (Eq. 2.2.4 or Eq. 2.2.5), here

used as a likelihood function. b2 is the mean of the Poissonian noise currpting the image, in

photons per pixel. Cross-terms of [I]i,j are neglected because symmetry causes them to be

near-zero or identically zero. The derivatives of qSErf and qAG are taken with respect to each

�t parameter: x, y,D, σ, ϕ,N, b for qSErf and x, y, σx, σy, ϕ,N, b for qAG. For the diagonal

elements of [I]i,j, each derivative is squared, divided by the original function plus a noise

term, (b2+q), and then integrated over all space per Equation 2.3.1. The inverse square root

of this quantity is the standard deviation (RMS error), ∆θi, of the corresponding parameter,

θi.

Equation 2.3.1 is applied to determine the variances (∆x)2, (∆y)2, and (∆D)2 of x, y,

and D, respectively, for the asymmetric Gaussian and SErf functions, and the results are

given in Table 2.1 below. As described in above, solutions for the asymmetric Gaussian

function are exact except for an initial separation of the integrals into high- and low-noise

regeimes (a simpli�cation used for all solutions). To �nd ∆D for the asymmetric Gaussian

function, the calibration �t (Eq. 2.2.6) is used in the error propagation according to Equation
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Gaussian SErf

(∆x)2 8b2πσ3
xσy

N2 + σ2
x

N
2b2D2πσ2

N2
(
1−exp− D2

4σ2

) + 24σ2

N(24σ2−D2)

(∆y)2
8b2πσ3

yσx

N2 +
σ2
y

N
192b2πσ6

N2(24σ2−D2)
+ σ2

N

(∆D)2
4b2πσx(1+σ2

x)
3cN2(σx−σy)

+ 1+σ2
x

8cNσy(σx−σy)
768b2πσ6

N2D2 + 72σ4

ND2

Table 2.1: Closed-form analytical solutions to the Fisher information for three parameters
of the asymmetric Gaussian and SErf �tting functions. Each solution is given as the sum of
the solution in the high-noise regime and the solution in the low-noise regime, and Taylor
series expansions are used for some of the SErf results, as described in the text.

2.2.6. Furthermore, for the SErf function, Taylor expansions around D = 0 were required

to determine (∆D)2 (high- and low-noise limits), (∆y)2 (high-noise limit only), and (∆x)2

(low-noise limit only); those solutions in Table 2.1 are therefore best when displacements

are small. The variance in the estimation of the displacement does not noticeably di�er

between numberical and closed-form evaluations of the integrals. Plotted in Figure 2.3.1a),

and b) are the RMS errors (∆x, ∆y, ∆D) found by numerical integration of the Fisher

information of x, y, and D (solid lines), and the RMS errors from the closed form solutions

from Table 2.1 below (dotted lines), for the asymmetric Gaussian function (Figure 2.3.1a)

and the SErf function (Figure 2.3.1b), as a function of the number of detected photons, N .

These Cramér-Rau lower bounds depend on D, b, and σ in addition to N . Here, D = 5.1

pixels, b = 200 photons pixel−1, ϕ = 0, and σ = 2 pixels.

As expected, all the errors decrease monotonically with increasing N , and we �nd consis-

tently that ∆D ≫ ∆x ≥ ∆y. Importantly, ∆y is identical (in the high-photon-count regime)

to errors in the position estimators, ∆x and ∆y, for �tting immobile molecules with a sym-

metric Gaussian. Figure 2.3.1a), and b) show only slight discrepancies in the errors of the

two �tting functions, so we expect the two functions to perform similarly. Good agreement is
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Figure 2.3.1: Precision for x, y, and D. a,b) Precision computed using Fisher information
theory. Solid lines: numerical solutions to the integrals in Equation 2.3.1; dotted lines:
approximate closed-form analytical solutions from Table 2.1. c,d) Precision calculated from
variance of �ts to 1000 simulated images. Here, D = 5.1 pixels, b = 200 photons pixel−1,
ϕ = 0 and σ = 2 pixels.

observed between closed-form and numerical solutions, so one may use the analytical expres-

sions for the error in Table 2.1 to design and troubleshoot experiments. In Figure 2.3.1b),

there is a signi�cant discrepancy between the closed-form and numerical solution for ∆D in

the SErf function; this discrepancy arises from the limit of small D imposed by the Taylor

expansions, and the deviation grows with D (Figure 2.3.2). For both �tting functions, as the

displacement is increased, ∆x increases while ∆y stays fairly constant, and ∆D decreases.

At the D = 5.1 pixels case considered in Figure 2.3.1a) and b), ∆x and ∆y have already

diverged.

Though D cannot be determined from a �t to a conventional symmetric Gaussian func-

tion, the theoretical localization error for the symmetric Gaussian function can be found
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Figure 2.3.2: Precision for x, y, and D computed using Fisher information theory for the
Gaussian (a) and SErf (b) functions. Solid lines: numerical solutions to the integrals in
Equation 2.3.1; circles: approximate closed-form analytical solutions from Table 2.1. Here,
N = 105 pixels, b = 200 photons pixel−1, ϕ = 0 and σ = 2 pixels.

by considering the closed-form solutions for ∆x and ∆y for the asymmetric Gaussian func-

tion in Table 2.1 under the condition σx = σy = σ. The error for the symmetric Gaussian

function is thus (∆x)2 = (∆y)2 = 8b2πσ4/N2 + σ2/N , as was found by Thompson et al. in

their consideration of the symmetric Gaussian �tting function. The theoretical localization

precisions of the symmetric and asymmetric Gaussian functions are therefore identical when

measuring stationary sources (Figure 2.3.3).

2.3.2 Numerical Precision

The analytical treatment in Section 2.3.1 gives the lower bounds for RMS error in x, y, and

D based only on the choise of �tting function. To provide an estimate of the RMS errors in

the localization and displacement estimation for realistic experimental conditions, simulated

data was created to span a reasonable range of photon count, N , and displacement, D. For

each condition, 1000 simulated images were �t by least-squares minimization to each of the

�t functions, qSErf , and qAG, and the variance in the �t parameters was measured. Figure
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Figure 2.3.3: Comparison of symmetric, asymmetric and SErf �tting functions (blue, green
and red lines, respectively) for �tting a mobile particle. As in-frame displacement, D, in-
creases, the asymmetric Gaussian and SErf functions (qAG and qSErf , respectively), begin to
outperform the symmetric Gaussian (qSG).

2.3.1c), and d) show ∆x, ∆y, and ∆D for a typical displacement, D = 5.1 pixels. The

precision of all parameters improves with higher photon count, N , and when D > 0, ∆x and

∆y diverge and we consistently �nd ∆D ≫ ∆x ≥ ∆y.

At the limit of D = 0, the localization precision of the new �tting functions, qSErf and

qAG, are the same as that of the traditional symmetric Gaussian function, qSG. Furthermore,

even as D becomes �nite, the localization errors are still nearly identical (Figure 2.3.4).

Finally, as in-frame displacement, D, increases, qSErf and qAG begin to outperform qSG

in terms of localization accuracy (Figure 2.3.3). Since the traditinoal symmetric Gaussian

function, qSG cannot measure D, the new functions have the added bene�t of providing an

instantaneous measure of velocity.

The errors ∆x and ∆y agree between the two �tting functions, but we �nd in the low
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Figure 2.3.4: Comparison of precision in y (perpendicular to the direction of motion) calcu-
lated from Fisher information, based on using the symmetric Gaussian, asymmetric Gaussian
and SErf �tting functions (dotted green, blue and red lines, respectively) for estimating the
position of an immobile particle. The three functions all have the same performance. Solid
black line: localization precision in y for �tting a mobile molecule (D = 5 pixels) with
the SErf function; ∆y for mobile particles converges at high photon count with ∆y for the
immobile particles.
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N regime that ∆D is smaller for the SErf function, i.e. the SErf function performs better

than the asymmetric Gaussian function for estimating D. For the b = 200 photons pixel−1

level considered here, which is e�ectively low photon count, neither �tting function is able

to distinguish the particle from background noise, giving rise to random guesses within the

imaged area. The data in Figure 2.3.1c), and d) is therefore limited to the N > 6000 regime

in which the parameter variances depend on N .

Because the �tting functions proposed in this chapter are not perfect estimators of the

PSF, there exists a bias in the estimation of D, in part because qSErf and qAG cannot

distinguish between forward and reverse motion and is therefore always taken to be positive.

We computed this bias from �ts to simulated data by averaging over 1000 simulated data sets

for each condition. Figure 2.3.5 a), and b) compare the estimated displacement, Dfit from

�ts to the asymmetric Gaussian and SErf functions, respectively, to the actual displacement,

D, Here the solid lines are the average Dfit as a function of D, and the shaded region

shows ±∆Dfit. For both �tting functions, the correspondence is worst (large bias in D) at

low D, and this bias decreases as D increases, �nally disappearing altogether for D > 3.

The bias in the asymmetric Gaussian �t, Figure 2.3.5 a), is attributed to errors in the

c = 0.0104 value from the �t tot he calibration curve, Equation 2.2.6. This parabolic

function is mathematically simple, but gives rise to a large bias at small D. This bias could

be removed with a more elaborate calibration curve. On the other hand, Figure 2.3.5 b)

shows that for the SErf function at small D the bias depends on D with a slope of -1.

This bias in the estimation of D arises because least-squares �tting to the SErf function

never returns a Dfit value smaller than some minimum value (-2 pixels), while the true

displacement may be as small as 0. Displacement estimations below that value are no longer

dependent on the real displacement, and instaed always return the same value on average.
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Figure 2.3.5: E�ect of changes in the actual simulated displacement, D, on �t parameters
computed based on �ts to simulated data. a,b) Fit displacement, Dfit, vs. actual dis-
placement, D. c,d) Precision for x, y, and D computed from �ts to simulated data. Here,
N = 1105 photons, b = 200 photons pixel−1, ϕ = 0 and s = 2 pixels.

Overall, Figure 2.3.5 a), and b) show that the two �tting functions have very similar biases

in D.

Figure 2.3.5 c), and d) show the errors, ∆x, ∆y, ∆D for the asymmetric Gaussian and

SErf functions, respectively, as a function ofD. For both functions, ∆y is mostly independent

of D, and indeed this relationship, ∆y ̸= f(D), is used in Section 2.3.1 to derive the closed-

form precision for y in the high photon count regime. ∆x and ∆y are nearly identical for

the two �tting functions, so the localization preicision is una�ected by choice of function.

Furthermore, though D was found to be biased at small dispalcements, no bias in x, y, or ϕ

was identi�ed (data not shown). The asymmetric Gaussian and SErf functions can therefore

both make accurate estimatinos of position, (x, y), and angle, ϕ, at all values of D.
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2.3.3 Controlled Motion

Scattering from 26 nm gold nanoparticles immobilized on a coverslip was imaged under 532

nm laser excitation and translated at a constant velocity across the microscope viewing

area with a piezo scanner. Figure 2.3.6 a), and b) show the precision in x, y, and D from

�tting the recorded movies to the asymmetric Gaussian and SErf functions, respectively.

Though the actual experimental velocity was in principle known, the piezo stage motion was

very non-uniform over the course of the experiment. These signi�cant variations in speed

introduced some additional systematic error to the experiment. To minimize this error in

D, the estimated D from the �ts were compared to the average velocity of the stage over

segments of only �ve consecutive frames. Those average values were then subtracted from

the position measurements to measure the variance in the localzation estimates.

As was found analyticall and numerically, at all N , the errors followed the trend ∆D ≫

∆x ≥ ∆y, and the di�erences in the localization precision for both ∆x and ∆y between the

two methods were subtle. The asymmetric Gaussian function, however, gave greater errors

in D. This additional ∆D may be due to the fact that D is not a �t parameter in qAG but

rather related to the ratio of two �t parameters and dependent on another parameter in the

calibration curve, Equation 2.2.6. Furthermore, for both �tting functions, ∆D depends only

weakly on N . This may be related to the fact that D can only be well estimated if ϕ is

accurately determined beforehand.

The results from this experiment are similar to the results from simulation (Figure 2.3.1

c), and d)), and only slightly worse than the lower bounds suggested by Fisher information

analysis (Figure 2.3.1 a), b)). The shallower slopes of error vs. N in Figure 2.3.6 can be

attributed to the background, which is no longer constant as it was in Figure 2.3.1, rather,
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Figure 2.3.6: Experimental precision for x, y, and D measured by translating immobilized
gold nanoparticles on a motorized stage. a,b) Precision using asymmetric Gaussian and SErf
�ts, respectively. b > 100 photons pixel−1, c = 0.0104. (c). d) Example data at low photon
counts (N = 4.56 × 104) and at high photon counts (N = 5.13 × 105), respectively. Left
panels: experimental data, center panels: SErf �ts, right panels: asymmetric Gaussian �ts.

in these experiments, there is a non-negligible increase in b as N increases.

Figure 2.3.6 c), and d) show typical experimental data from the low photon-count (N =

4.56×104) and high-photon-count (N = 5.13×105) regimes of this experiment, respectively,

as well as the �ts of each data set to the asymmetric Gaussian and SErf functions. The

asymmetric Gaussian �ts are too sharply peaked at their center, whereas the SErf function

�ts with smaller residuals.
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2.3.4 Cellular Motion

The �t functions qSerf and qAG proposed in this chapter can be used to characterize direc-

tional motion of small objects such as bacterial cells. Here, we excited �uorescent markers

on the surface of V. cholerae cells with a 488 nm laser and record images as the cells move in

two dimensions within a thin layer of media between a coverslip and an agarose pad. Figure

2.3.7 a) presents the results of one typical trajectory. Here, a cell marked with a single

Alexa-488/antibody label is tracked for 65 imaging frames, during which time it di�uses

randomly (frames 1-7), then moves consistently at an angle of ϕ ≈ 135◦ from the horizontal

(frames 8-41), and then �nally resumes di�usive motion (frames 42-65). Though the average

displacement, D, and angle, ϕ, can be estimated from the trajectories, �ts to qSErf and qAG

allowed for instantaneous measurements of the velocity and directionality.

During the intermediate frames, the cell moved fast enough that �ts to the SErf function

and the asymmetric Gaussian function yielded meaningful data. Here, we expect that the

instantaneous D estimated from the �t to be reasonable; unfortunately, the average displace-

ment calculated from the average of changes in position was a bad approximation and so the

comparison between instanteous D and average D was poor (Figure 2.3.8). Fortunately, the

average angle of motion, ϕ, was more accurately esimated from the center-to-center average

position over three-frame segments, and a comparison of the instantaneous angle from �ts to

qAG and qSErf to the average angle from frame-to-frame movements is presented in Figure

2.3.7 a), and b), respectively. Here, the dashed lines show perfect correspondence, the color

scale indicates the instantaneous displacement from the �t, and the size of the points is in-

versely related to the square of the 95% con�dence interval for the �tted value of the angle,

ϕ. For both functions, there is good agreement between instantaneous and frame-to-frame
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Figure 2.3.7: Analysis of experimental images of a V. cholerae cell in motion in the 2D
plane. a,b) Comparison of instantaneous direction of motion, ϕ, from a �t to the asymmet-
ric Gaussian function (a) and the SErf function (b), to average direction of motion from
the center-to-center average angle over three-frame segments. The dashed lines (a) show
perfect correspondence, the color scale indicates the instantaneous displacement for each
measurement from the �t, and the size of the points is inversely related to the square of the
95% con�dence interval for the �t to the angle, ϕ. c) Representative image of a �uorophore
undergoing directed motion (frame 40). Scale bar: 500 nm. d) Representative image of a
�uorophore undergoing di�usive motion (frame 56)
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Figure 2.3.8: Analysis of experimental images of a Vibrio cholerae cell in motion. Compar-
ison of instantaneous displacement, D, from a �t to (a) the asymmetric Gaussian function
(c = 0.0104) and (b) the SErf function, to average direction of motion, from the center-
to-center average displacement over three-frame segments. The dashed lines show perfect
correspondence, the color scale indicates the frame number, and the size of the points is
inversely related to the square of the 95% con�dence interval for the �t to the angle, ϕ.

angle measurements for the directed motion at ϕ ≈ ±135◦, where D is large. As expected, in

the small-D case (random cellular di�usion), isotropic blurring dominates and the methods

described here produce incorrect instantaneous angle measurements. Accordingly, Figure

2.3.7 a), b) show no correspondence for the �ts where D is small.

Figure 2.3.7 c) shows the �uorescent image of the cell during the directional motion

portion of its trajectory. The �uorescent label on the cell appears to be asymmetric and

elongated in the direction of motion (135◦ from the horizontal), and the displacement and

angle can both be estimated from �ts to qAG and qSErf . Figure 2.3.7 d) shows the �uorescent

image of the cell during the random portion of its trajectory. Here, the asymmetry vanishes

and the resulting PSF is a symmetric Gaussian with increased standard deviation. The

directional motion �tting functions, qAG and qSErf cannot accurately determine D or ϕ here.
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2.4 Conclusions

In this chapter, we have introduced two new �t functions, the asymmetric Gaussian function

and the Sum of Error Functions (SErf) function, that can each measure the instantaneous

position, directionality and velocity (in-frame displacement) from a �t to the �uorescent

image of a single molecule undergoing directional motion. Both functions have the bene�t of

being easily integrated into standard single-molecule �uorescence microscopy �tting routines.

The results from Fisher information analysis provide a lower bound to the precision of each

parameter in the �tting function. Though deriving the closed-form solutions in Table 2.1

required several simpli�cations, the true precision of each parameter was easily attained

in Section 2.3.2 by numerically solving the Fisher information integrals. Overall, we �nd

that the two �tting functions perform very similarly, and that the errors consistently follow

the trend ∆D ≫ ∆x ≥ ∆y, where x is the direction of motion. Here, the errors in the

position estimator for the y direction (perpendicular to the motion) are identical to those

derived for �tting stationary molecules to a symmetric Gaussian function, indicating that

no localization precision is lost with the new functions relative to standard single-molecule

�tting algorithms.

The simulations in Section 2.3.2 show that the two �tting functions perform similarly in

nonlinear least squares minimization, though in the low photon count regime, the SErf func-

tion provides more precise estimates of position and displacement. Unfortunately, though

estimations of position and angle are unbiased, we have found a systematic bias when esti-

mating in-frame displacement by �tting to either function for small D. This regime could be

avoided in applications by choosing experimental conditions that result in D>3 pixels/imag-

ing frame and by carefully calibrating the asymmetric Gaussian function. The results from
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simulations are similar to the Cramér-Rao lower bounds, and the slight increase in error in

the simulations can be attributed to our use of nonlinear least squares minimization, which

is superior to maximum likelihood estimation (MLE) in speed and simplicity, but inferior

to MLE in precision. Though these simulations were done with very bright objects in a

very noisy background, applications to lower photon count and noise cases does not alter

the results qualitatively. Results for this regime, which was recently considered by Yüce et

al., [55] are presented in Figures 2.4.1 and 2.4.2.

The application of the �tting functions to the motion of gold nanoparticles in Section

2.3.3 veri�ed our method in the context of a controlled experiment, and indeed, we �nd that

the new �tting method provides the velocity and directionality of each nanoparticle in each

image without degrading the localization precision relative to the symmetric Gaussian �tting

function. Though these nanoparticle tracking experiments are not perfect controls due to

variations in the stage velocity, the experiments validate our analytical framework, yielding

experimental errors similar to the errors in simulations, and only slightly worse than the

Cramér-Rao lower bounds.

In Section 2.3.4, we applied our new �tting functions to the motion of a live V. cholerae

cell moving in the imaging plane of a microscope. To the best of our knowledge, this is

the �rst example of instantaneous direction and velocity measurement of a freely moving

bacteria cell. We observed both random, di�usive motion and steadily directional motion,

and found that the instantaneous displacement and angle were only well measured by the

�tting functions in the case of directional motion, yet the localization precision was not

compromised in any case. The mobile single-molecule �tting functions proposed in this

chapter are therefore appropriate for any situation where there is directional motion for

some part of a trajectory.
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Figure 2.4.1: Extension of the SErf �tting function analysis to the low photon count, low
noise regime. (a) Precision for x, y, and D computed using numerical solutions to the Fisher
information integrals. (b) Bias in estimation of x, y, and D from �tting simulated data. (c)
Precision for x, y, and D from variance of �ts to 1000 simulated images. Here, b = 4 photons
pixel−1, N = 750 photons, and σ = 1.2 pixels.
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Figure 2.4.2: Extension of the SErf �tting function analysis to the low photon count, low
noise regime. (a) Precision for x, y, and D computed using numerical solutions to the Fisher
information integrals. (b) Bias in estimation of x, y, and D from �tting simulated data. (c)
Precision for x, y, and D from variance of �ts to 1000 simulated images. Here, b increases
linearly with N from 3 to 12 photons pixel−1, σ = 1.2 pixels, and D = 7 pixels.
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In conclusion, presented here are two methods for measuring positions and in-frame

velocities of single point light sources. By explicitly accounting for the motion of the �u-

orophore, these �tting functions permit even mobile single molecules to be �t in standard

post-processing routines. These methods promise to improve single-molecule tracking as

fewer data sets must be rejected, and tracking algorithms can also be re�ned to use the

instantaneous displacement and directionality as a predictor for the next data point. In a

crowded environment, these two factors will make tracking algorithms less ambiguous. These

methods do not require unique experimental design, and can even be applied to pre-existing

data to recover information previously unnoticed. The precision of the two new �tting func-

tions is nearly identical under all of the conditions we have considered, though least-squares

�tting with the SErf function is 4.5% slower than least-squares �tting with the asymmetric

Gaussian function.

The directional-motion �tting functions presented in this chapter have the potential to

inform on the dynamics of living, functioning cells. In addition, we envision that these

methods can enable single-molecule imaging of bio-molecules within live, moving cells, since

cellular imaging with the new �tting functions, like in Section 2.3.4, can provide a moving

frame of reference for concurrent intracellular single-molecule imaging. This is particularly

promising for studies of cellular chemotaxis and signaling, though it can be applied in any

situation where directional motion is expected.
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CHAPTER III

Resolving Fast, Con�ned Di�usion in Bacteria with

Image Correlation Spectroscopy

The work presented in this chapter has been published in the following paper:

Rowland, D. J., Tuson, H.H., and Biteen, J. S. Resolving Fast, Con�ned Di�usion in Bacteria
with Image Correlation Spectroscopy. Biophys. J. 110, 2241-2251 (2016).

3.1 Introduction

Microscopy has long been a staple technique in biological research. In particular, based on the

development of techniques for selectively labeling speci�c cellular components, �uorescence

microscopy has enormous value for elucidating intracellular biology. [57] More recently, the

ability to visualize a single molecule at a time has improved the localization precision below

the standard di�raction limit of light. [11�13] In live cells, the function of a protein in a

biological process can be inferred from its rate of di�usion under di�erent chemical or genetic

conditions. [8, 58�61] Traditionally, optical measurements of subcellular di�usion have been
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done using �uorescence recovery after photobleaching (FRAP), [62�64] but single-molecule

imaging techniques like single-particle tracking (SPT) are being increasingly used to precisely

evaluate the motion of a di�using biomolecule. [65�67] SPT is achieved by connecting a series

of single-molecule positions over time. In an optimal SPT experiment, the camera integration

time is fast enough that within one frame, the target di�using molecule does not produce

blur by moving far compared to the di�raction limit of light. Acquiring long trajectories

improves the statistical signi�cance, but unfortunately, there is a tradeo� due to the �nite

�uorescence yield of a single-molecule probe: increasing the illumination intensity to enable

single-molecule detection in a shorter imaging frame time will shorten the trajectory lengths.

This is a particular problem for the most common �uorescent labels in live-cell intracellular

imaging, �uorescent proteins. [57, 68] These two con�icting requirements of fast imaging

and long tracks limit the total range of measurable di�usion rates; this range limit is an

important issue when heterogeneities yield a range of di�usion coe�cients that are measured

simultaneously. If a pulsed illumination source is available, stroboscopic illumination can be

applied to decrease the amount of blur without increasing the frame rate or decreasing the

trajectory lengths. [69] However, con�ning di�usion to a small volume-for instance, within

a cell or organelle-introduces a further constraint: the data acquisition rate must be faster

than the time it takes for the di�using molecule to explore the entire con�nement volume.

Stroboscopic illumination does not increase the data acquisition rate, and so the max-

imum measureable di�usion coe�cient for a molecule in a con�ned volume is still limited

by the maximum camera frame rate. Additionally, in all cases, because SPT relies on a

tracking algorithm to construct trajectories for single di�using molecules, these trajectories

should not overlap. Overall, SPT is best suited for characterizing a collection of sparse and

homogeneously di�using molecules in uncon�ned environments.
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Alternatives that can overcome some limitations of the localization-based SPT analysis

include spatiotemporal image correlation spectroscopy (STICS), [30,70�72] which has previ-

ously been used both in vitro [72] and in live cells, [73] and the related methods of k-space

image correlation spectroscopy [32, 74] and superresolution optical �uctuation imaging. [75]

All of these methods compute the correlation function of an entire �uorescence imaging movie

instead of relying on localization and tracking, and like �uorescence correlation spectroscopy,

these powerful image correlation approaches can be extended to measure 2D maps of hetero-

geneous di�usion [70,76] and very fast di�usion. [77] Particle image correlation spectroscopy

measures di�usion dynamics by computing a similar correlation function from data that have

already been processed with the Gaussian localization used in SPT and other methods. [78]

In STICS, the spatial cross-correlation at some time lag, τ , is the average of the spatial

cross-correlations of all pairs of images separated by this τ and has a width (termed the

image-meansquared displacement (iMSD)) that increases with t. The iMSD-vs.-τ function

can be �t to calculate the di�usive characteristics of a collection of �uorescent molecules.

In this chapter, we use STICS to resolve fast, con�ned motion in a wide�eld imaging

microscope. If a confocal microscope is available, extremely fast di�usion (>100 mm2/s)

can be measured with raster image correlation spectroscopy, which uses a scanning mirror

to eliminate image blur. [77] Here, we instead focus on developing STICS to extend the

capabilities of a single-molecule imaging microscope beyond the limits of SPT (maximum

measurable di�usion coe�cient, ∼ 10 mm2s−1 [79]) to an order-of-magnitude-faster motion.

Unlike SPT, STICS does not require accurate position determinations for delocalized, fast-

moving molecules. Rather, we show here that STICS analysis can explicitly account for in-

frame motion blur based on a modi�cation to the mathematical formulation. Conventionally,

STICS assumes that molecular di�usion is described by a Gaussian distribution of step sizes,
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but both in-frame motion and tight con�nement will alter the shape of this distribution. In-

frame motion corrupts the distribution because the time lag between two frames becomes

poorly de�ned when the integration time or the di�usion rate is large. Tight con�nement

further distorts the distribution, because this boundary condition excludes the largest step

sizes. The artifacts introduced by con�nement and in-frame motion were not encountered in

previous applications of image correlation spectroscopy, because those experiments focused

on slow motion [76,80�83], or else minimized pixel dwell time, as in raster image correlation

spectroscopy [77]. On the other hand, here in the regime of fast, con�ned motion, the

two independent e�ects of blur and con�nement manifest themselves as two independent

di�usion-coe�cient measurement biases.

Here, we use STICS to measure the rapid subcellular dynamics of a freely di�using

protein in the highly con�ned interior of a bacterial cell for the �rst time, to our knowl-

edge. We describe the measurement biases that arise from con�nement and fast motion

by simulating uncon�ned di�usion and di�usion con�ned to bacteria-sized cylinders, both

with and without in-frame blur. We develop a method to correct these di�usion-coe�cient

measurement biases when molecules di�using up to 15 µm2s−1 are con�ned inside bacterial

cells as small as 1 µm in length. We �nd that in-frame motion adds a positive bias to the

di�usion-coe�cient estimation and that con�nement adds an independent, nonmonotonically

varying bias. We show how both biases can be removed by directly computing the variances

of the STICS correlation function. Finally, we apply STICS to experimental �uorescence

microscopy movies of freely di�using mMaple3 �uorescent protein in the Escherichia coli cy-

toplasm, and we �nd a di�usion coe�cient, D = 9.6± 1.0 µm2s−1, for these molecules. This

value agrees well with previous �uorescence recovery after photobleaching measurements of

�uorescent proteinmobility in the E. coli cytoplasm (D = 6.1 − 14.1 µm2s−1 [66]), as well
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as with SPT measurements with very short camera integration times (0.75-4 ms, D = 7.3

µm2s−1 [79]). In this last case, a shortened camera integration time minimized the data

loss due to in-frame motion [79]. In this work, we instead analyze data taken with typical

camera imaging rates (25-100 frames s−1) by modifying the STICS protocol to explicitly

account for con�nement and in-frame motion. Overall, this relaxation of the experimental

constraints enables direct, single-molecule-based di�usionmeasurements in a conventional

wide-�eld single-molecule imaging setup [84] of samples that necessarily contain densely

packed �uorophores, systems that contain multiple interacting di�usive populations, and

systems that exhibit fast con�ned di�usion in cellular and subcellular compartments and

nanomaterials [28].

3.2 Theory and Experimental

3.2.1 Simulations

Three-dimensional di�usion was simulated by generating step sizes from a zero-mean normal

distribution with variance of 200 nm2 in each of the three dimensions independently. This

variance produces a root mean-square (RMS) displacement that is <10% of the waist of

the smallest microscope point-spread function (σPSF) considered, enabling us to simulate

smooth motion blurring. For simulations of di�usion con�ned to a cylinder, candidate steps

that fell outside of the cylinder boundary were elastically re�ected. The cell boundary is

expected to act as an impermeable wall that does not interact with cytoplasmic proteins like

the mMaple3 �uorescent protein used here. These 3D trajectories were projected onto the

xy plane to simulate two-dimensional (2D) imaging.

50



The pixel brightness value in each subframe was calculated using a symmetric Gaussian

function centered at the position of the di�using molecule. For one-dimensional (1D) motion,

the step-size distribution variance is 2Dtframe, where D is the di�usion coe�cient and the

camera integration time is tframe. Motion with any desired D was therefore simulated by

combining the appropriate number of simulation subframes; i.e., any D and tframe can be

simulated by taking the average of n = 2Dtframe/200 nm2 subframes. The pixel width

was set to 49 nm for all simulations for consistency with experiments. The 2D probability

distribution of step sizes from one frame to the next is a normal distribution with zero mean

and a variance of 4Dtframe:

p = N (0, 4Dtframe) (3.2.1)

The squared step sizes and correlation functions were calculated for the SPT and STICS

methods, respectively, as described below. For the bias estimation simulations (see Figs.

3.3.2 and 3.3.4), incremental iterations were used to more precisely compute the STICS

correlation function (see STICS analysis, below, for details). Once ∼ 50,000 total image

frames were simulated, D was estimated with STICS and we computed the bias on this

value, (θ/θ0)−1, from the ratio of the estimated value, θ, to the true value, θ0. For the error

estimation simulations (see Fig. 3.3.6), both STICS and SPT were performed on identical

simulated raw data to which zero-mean white noise had been added with the Matlab built-

in function randn to achieve a signal/noise ratio (SNR) of 6 for immobile molecules. The

e�ective SNR, however, is reduced by motion blur and will be <6. The simulated data set

used in this study consisted of 1200 frames of contiguous motion.
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3.2.2 SPT analysis

Candidate molecular locations were found in simulated single-molecule movies by following

a band-pass �lter in the Fourier domain with a watershed algorithm. These positions were

re�ned to the local center of mass within a 15 pixel x 15 pixel window. The re�ned locations

were then used as the initial guess for a least-squares �t of the raw image of the molecule by

a seven-parameter generalized bivariate Gaussian function using Matlabs built-in function

lsqcurve�t. The center of this �t was taken to be the position of the di�using molecule.

Because only a single molecule was present in our simulations at any time, the time series

of localizations was used as the single-particle trajectory, with no need for a more advanced

tracking algorithm. Infrequently, the analysis of a single-molecule image incorrectly indicated

more than one molecule, in which case all putative molecules from that image were ignored.

The MSDs for the �rst 15 possible time lags, τ , were then computed and these results were

�t to a model for 1D con�ned di�usion inside an in�nite square well [65]:

MSD(τ) =
L2

6

(
1− 96

π4

∑
n odd

1

n2
exp

[
−
(nπ
L

)2
Dτ

])
+B. (3.2.2)

Here, L is the con�nement length and B is a constant o�set equal to the measurement

variance of the position of an immobile molecule. Only the MSD curve computed in the

direction of the cylinder long axis was considered because with the di�usion coe�cients

considered here, the di�using molecule may explore the entire short axis of the cell in a

single frame. 1D motion was recovered from 2D position data by projection onto the long

axis of the cell.
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3.2.3 STICS analysis

For both simulated and experimental data, the full time-space correlation functions were

computed using the Fourier transform method for convolutions, as described previously

[69, 81]. The width of the correlation function increases with time lag, and Gaussian �tting

can estimate these widths. The time lag series of widths is called the iMSD, which for our

model of square con�ned di�usion [65] has the functional form

iMSD(τ) =
L2

6

(
1− 96

π4

∑
n odd

1

n2
exp

[
−
(nπ
L

)2
Dτ

])
+ C. (3.2.3)

Here, C is a constant o�set proportional to the diameter of the image of the di�using

molecule. The sum was truncated after the change in the function value dropped below 1010,

a condition which was always satis�ed with fewer than 10 terms. Only the iMSD curve

computed from the cell long axis was considered, because for the fast di�usion coe�cients

considered here, the di�using molecule explores the entire short axis of the cell in a single

image frame. For the experimental bacterial cell data analysis, one iMSD curve was calcu-

lated for each of 87 movies, which had ∼ 4000 imaging frames each. The function iMSD(t)

was �t to Eq. 3.3.9 for the �rst 15 values of τ (with the Matlab function lsqcurve�t) to

estimate the di�usion coe�cient, D.

Each frame of the simulated movies was symmetrically padded to double the original

width with a padding value of zero because the data were generated with zero intensity

o�set. For the experimental data, the phase contrast image of the bacterial cell was used to

automatically compute, with a valley �lter, a selection mask that describes the position of

each bacterium. Pixels that fell outside of this mask were replaced with the mean intensity

value inside the selection mask. Because the absolute o�set of the real bacterial cell image
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is ill-de�ned or weakly measureable, the experimental bacterial cell data were padded with

the average intensity value inside the cell.

3.2.4 Bacterial strains and growth conditions

DH5α E. coli cells containing a pBAD plasmid encoding the �uorescent protein mMaple3

under the arabinose promoter [28] were struck out from a freezer stock on a 1.5% Luria

Bertani (LB) agar plate containing 50 mg mL−1 ampicillin and incubated overnight at 37

◦C. A single colony from the plate was used to inoculate 2 mL LB containing 50 mg mL−1

ampicillin. This culture was incubated overnight (∼ 16 h) at 37 ◦C with shaking. Following

incubation, the culture was diluted 1:50 into M9 minimal medium containing 0.4% glycerol

as the carbon source. The culture was incubated at 37 ◦C with shaking to an optical density

at 595 nm of ∼ 0.35, at which time mMaple3 expression was induced by adding arabinose

to a �nal concentration of 0.01%. After induction, the culture was incubated at 37 ◦C with

shaking for an additional 2 h. Cells were pipetted onto a 2% agarose/M9/arabinose pad and

inverted onto a plasma-etched coverslip for imaging, as previously described [85].

Alternatively, longer cells were grown by using cephalexin, a β-lactam antibiotic that

blocks cell division but allows cell growth [85]. Here, the overnight culture was diluted 1:100

into LB and incubated at 37 ◦C with shaking to an optical density at 595 nm of ∼ 0.5. The

culture was then centrifuged for 5 min at 5000 g, the supernatant was decanted, and the

cell pellet was resuspended in an equal volume of M9 medium containing 0.4% glycerol and

0.01% arabinose. Cephalexin was added to a �nal concentration of 60 mg mL−1. The culture

was then incubated at 37 ◦C with shaking for an additional 30 min. Cells were pipetted onto

a 2% agarose/M9/arabinose pad (which also contained 60 mg mL−1 cephalexin) and inverted
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onto a plasma-etched coverslip for imaging.

3.2.5 Imaging conditions

Bacterial samples were imaged at room temperature using wide-�eld epi�uorescence mi-

croscopy in an Olympus IX71 inverted microscope with a 100x, 1.40 NA oil immersion ob-

jective (in Immersol 518F immersion oil, Carl Zeiss, Oberkochen, Germany) and appropriate

excitation, emission, and dichroic �lters (LL01-561, BLP01-561, and Di01-R561, respectively,

Semrock, Rochester, NY). After a 3x beam expander, a Photometrics (Tucson, AZ) Evolve

EMCCD camera with >90% quantum e�ciency captured the images at 25-100 frames s−1.

Each camera pixel corresponds to a 49 nm x 49 nm area of the sample. Fluorescence of

mMaple3 in the cells was photoswitched from green to red photon emission using a 406 nm

laser (Cube 406-100, Coherent, Santa Clara, CA), coaligned with the 561 nm �uorescence

excitation laser (Sapphire 560-50, Coherent). The samples were illuminated with low laser

power densities (0.07 mW mm−2 and 0.01 mW mm−2 for the 406 nm illumination and the

561 nm illumination, respectively). Both laser beams were circularly polarized with a quar-

ter waveplate (AO15Z 1/4 556 and AO15Z 1/4 408, respectively, Tower Optical, Boynton

Beach, FL). During imaging, the cells were given a 1- to 10-ms dose of 406 nm light every

∼ 30 s. Movie acquisitions lasted 2-5 min each.

Due to the small (∼ 1 mm) cell thickness, a low background noise is maintained even when

single-molecule imaging in bacteria cells is done with a wide-�eld microscopy con�guration

[86]. Thus, this work describes the analysis of wide-�eld microscopy, though these methods

could be readily applied to total internal �uorescence microscopy.
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3.2.6 Characteristic motion, MC: a unit-free parameter describing

the amount of in-frame motion and the extent of con�nement

Because of the high dimensionality of the simulation parameter space, which includes, e.g.,

camera integration time, pixel size, and magni�cation, it is desirable to have an invariant

description of the degree of in-frame motion. To this end, we renormalize the di�usion rate,

D, to produce a unit-free characteristic motion parameter, MC. This MC simpli�es the

presentation of the simulation results and can highlight consistencies among parameter sets.

MC is proportional to the squared distance, Dtframe; traveled in each captured image and

inversely proportional to the variance of the point-spread function of the di�using molecule

(σ2
PSF). For consistency among dimensionalities, the factor 2/d is applied, where d = 2 for

2D image data:

MC,unconfined =
2Dtframe

dσ2
PSF

(3.2.4)

For con�ned di�usion, doubling the con�nement length, L, is equivalent to halving the

RMS in-frame displacement value. In the case of con�ned di�usion, the uncon�ned char-

acteristic motion, MC,uncon�ned, is therefore modi�ed by a scaling factor that describes the

degree of con�nement, the unit-free factor L2/L2:

MC,confined =
2Dtframe

dσ2
PSF

L2
0

L2
(3.2.5)

where L0 is a reference con�nement length chosen here to be the average cell length, 3 mm.

In Figs. 3.3.2, 3.3.4, and 3.3.10, we rescale D based on the simulation parameters (Figure

3.3.3) according to these de�nitions of MC. The overlap seen in these �gures demonstrates

the validity of Eqs. 3.2.4 and 3.2.5.
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3.2.7 The e�ect of in-frame motion on STICS

In STICS, the correlation function, G, is the convolution of the step-size probability distri-

bution, p, with WPSF, the approximately Gaussian microscope point-spread function [30]:

G(ξ, χ, τ) =
γ

N
p(ξ, χ, τ)⊗WPSF(ξ, chi) (3.2.6)

Here, ξ and χ are displacements in x and y, respectively, for each time lag τ . N is the

average number of molecules present in each frame and γ is a geometric factor that accounts

for an underrepresentation of intensity �uctuations due to the illumination beam shape. The

2D step-size distribution, p, of uncon�ned Brownian di�usion is traditionally assumed to be

normally distributed:

Var(p) = 2dDτ, (3.2.7)

where d is the dimensionality and D is the di�usion coe�cient. When Eq. 3.2.7 applies, G

in Eq. 3.2.6 will be a Gaussian distribution, because it is the convolution of two Gaussians.

However, when there is signi�cant in-frame motion, the di�using molecule will have moved a

nonnegligible distance during the imaging integration time, tframe. In this case of signi�cant

inframe motion, the step-size distribution, p, is not only a function of the average time lag,

τ0; p also depends on a range of e�ective time lags, τeff , in the range of τ0 − tframe < τeff <

τ0 + tframe. This mixture of step lengths from nonidentical time lags causes p to become the

sum of nonidentical normal distributions, and importantly, this p is not a normal distribution.

When such in-frame motion is present, the correlation function, Gblur, is the convolution of
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the point-spread function with a weighted average of Gaussians:

Gblur =
γ

N

[(∫ τ0+tframe

τ0−tframe

g(τeff)dτeff

)−1

×
∫ τ0+tframe

τ0−tframe

g(τeff)N(0, 4Dτeff)dτeff

]
⊗WPSF(ξ, χ).

(3.2.8)

Here, N(0, 4Dτeff) is a zero-mean normal distribution with variance, 4Dτeff , and weighting

factor, g(τeff). The point spread function, WPSF, is an Airy Disk, which we approximate here

by a Gaussian function [15].

3.2.8 The e�ect of con�nement on STICS

To simulate con�nement, we imposed re�ective boundary conditions on the step size dis-

tribution, p. In the limit of fast di�usion and small con�nement, p approaches a uniform

distribution. In general, if zero-�ux boundary conditions are imposed on ξ and χ in the

distribution, p(ξ, χ, τ), which is a symmetric function centered on zero, then the correlation

function, G, is modi�ed:

Gconf =
γ

N

[
2
∑
n,int.

p(ξ + nL, χ+ nL, τ)

]
⊗W (ξ, χ),−L

2
≤ ξ, χ ≤ L

2
(3.2.9)

Overall, the e�ect of Eqs. 3.2.8 and 3.2.9 is a deviation of the Gaussian function in Eq.

3.2.6 to a degree that depends directly on the amount of in-frame motion or con�nement.
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3.2.9 Estimation of the di�usion coe�cient by direct calculation of

the variance

According to Eq. 3.2.7, D is proportional to the variance of the step size distribution, p.

If p describes ideal free di�usion, then p is Gaussian-shaped. The correlation function, G,

computed by STICS for this type of data would then also be Gaussian. However, G is

not generally Gaussian due to in-frame motion and con�nement, as described above. In its

traditional implementation, STICS estimates the correlation function variance, iMSD, as

being the variance parameter of a least-squares �t of G to a Gaussian function. If G is not

Gaussian, then �tting G to a Gaussian will not accurately measure the variance. In this

case, the inaccuracy can be removed by directly computing the variance according to its

de�nition:

iMSDx = V ar(Gξ) =
∑
i

ξ2iGξ (3.2.10)

iMSDy = V ar(Gχ) =
∑
i

χ2
iGχ (3.2.11)

Here we consider in-plane di�usion in each of the two dimensions, x and y, separately. The

marginal distributions Gξ and Gχ for displacements in x and y, respectively, are computed

from the 2D correlation function, G, by discrete summation.

Gχ =
∑
ξ

G(ξ, χ, τ) (3.2.12)

Gξ =
∑
χ

G(ξ, χ, τ) (3.2.13)

This separation allows di�usion along the long and short axes of bacterial cells to be
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treated independently. We �xed the orientation of the cylindrical boundary in the simulations

to lie parallel to the x axis and directly calculated the variance for the simulated data. This

direct variance calculation method was not used to estimate the iMSD of the experimental

data because the measurement precision was too low to be useful for this analysis, especially

after the interpolation involved in image rotation.

It should be noted that this method for �nding the variance requires the distribution, G,

to be normalized at every value of τ . In general, however, the integral of G with respect to ξ

and χ is not unity for each time lag. In principle this integral can be normalized by dividing

it by the discrete integral of G or by dividing it by the known prefactor γ
N
in Eq. 3.2.6. In

our simulations, we ensured a priori that G was normalized at every τ by �xing γ
N

= 1.

3.3 Results and Discussion

3.3.1 E�ect of in-frame motion on single-particle tracking

We simulated di�usion with 10 di�erent values of D in 3 µm long cylinders with re�ective

boundary conditions. These movies were processed by single-particle tracking (SPT), and the

di�usion coe�cient, D, for each trajectory was estimated from the MSDs. Each measured

D was scaled to the corresponding unit-free characteristic motion, MC, according to Eq.

3.2.5. Because not all single-molecule images could be �t in our regime of �nite signal

to noise, trajectories were truncated. We computed for each MC the percent recovered

displacements, n1/(nT − 1), where n1 is the number of measured displacements which have

a time lag of 1 frame and is the total number of frames in the simulated movie. The

percent recovered displacements decreases as MC increases, and the number of recovered
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Figure 3.3.1: Motion blur degrades the single-particle tracking (SPT) signal as characteristic
motion, MC, increases. Di�usion con�ned in a cylinder was simulated and analyzed with
SPT. MC is de�ned according to Eq. 3.2.5. (A) Percent recovered data decreases with
increasing MC. Pixel width: 49 nm, con�nement length, L = 3 µm, integration time,
tframe = 50 ms, and PSF standard deviation, σPSF = 98 nm. (B) Representative simulated
images of a di�using molecule with three of the subframes (left panel) or all of the subframes
(right panel) included in the image. The actual trajectory (black curve) is the same in both
panels.

displacements approaches zero for large MC (Figure 3.3.1).

In general, MC is proportional to D and tframe, and increasing either of these parameters

increases the degree of in-frame motion of the di�using molecule. Accordingly, Figure 3.3.1A

indicates that increasing in-frame motion leads to decreased data recovery. Figure 3.3.1B

compares simulations of the same trajectory (black line) with di�erent amounts of in-frame

motion. On the left side, the trajectory is sampled instantaneously at three distinct time

points, producing three ideal point spread functions (punctate yellow spots); the molecular

positions at those time points can be determined from a Gaussian �tting algorithm. On the

other hand, the right side shows the case when the trajectory is sampled continuously. Such
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in-frame motion can blur and distort the molecule image. Thus, when in-frame motion is

dominant, this distortion prevents a Gaussian �tting algorithm from identifying molecular

positions. Because SPT creates a trajectory from a series of single-molecule �ts, such a failed

�t decreases the percent recovered displacements. SPT, then, is a method that tolerates only

subtle in-frame motion. In Figure 3.3.1A, fewer than 50% of the 1 frame displacements were

recoverable when MC is larger than 20, even though 20 is a reasonable value for subcellular

di�usion in a typical single-molecule microscope [9]. For instance, MC = 20 could correspond

to a molecule di�using with a rate of 2.88 µm2s−1 measured with a microscope that has a

point spread function standard deviation of 98 nm, a camera integration time of 50 ms and

pixel width of 49 nm in the object plane. Experimentally, in-frame motion can be minimized

for even extremely fast di�users with stroboscopic illumination (e.g., pulsed sample illumi-

nation with pulse widths that are shorter than tframe; left side of Figure 3.3.1B) [69] or very

high imaging frame rates [79].

3.3.2 E�ect of in-frame motion on spatio-temporal image correla-

tion spectroscopy (STICS)

STICS has the potential to estimate the di�usion coe�cient in the regime of large MC

(i.e., signi�cant image blurring) that precludes SPT analysis. However, a description of the

accuracy and precision of this method are required to validate its use in this regime. To in-

vestigate the accuracy of STICS in di�erent di�usion regimes, we �rst simulated uncon�ned,

single-molecule di�usion with ten di�usion coe�cients between 0.1 µm2s−1 and 20 µm2s−1

(Figure 3.3.2). Each di�usion coe�cient was considered for tframe = 10 ms and 50 ms and for

point spread function standard deviations, σPSF = 49 nm, 98 nm, and 147 nm. No noise was
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included in this set of simulations. Per Eq. 3.2.4, di�erent combinations of these parameters

can lead to the same degree of in-frame motion, so each measured di�usion coe�cient, D,

was converted to the corresponding value of the unit-free parameter MC. Simulated movies

were analyzed by STICS, and the di�usion coe�cient measurement bias, (Dmeasured−D0)/D0

, is plotted as function of MC in Figure 3.3.2A. According to Figure 3.3.2A, STICS very ac-

curately estimates D at low MC , but overestimates the di�usion coe�cient as MC increases.

This positive measurement bias increases monotonically with increasing in-frame motion,

with a bias of about 10% when MC = 100. The measurement bias for each set of parameters

(tframe, σPSF) is assigned a unique color in Figure 3.3.2A (3.3.3). The di�erent color sets

overlap and show the same trend, demonstrating that the characteristic motion, MC in Eq.

3.2.4, is indeed the right variable for considering di�usion at di�erent rates under di�erent

experimental conditions.

We generated the images of a di�using �uorescent molecule with in-frame motion analyzed

in Figure 3.3.2A from a series of images of a stationary molecule that di�uses between

subframes (right panel in Figure 3.3.1B). We hypothesized that the measurement bias in

Figure 3.3.2A can be attributed to in-frame motion because this bias disappears when MC is

small. To examine the role of in-frame motion, we excluded this motion from the simulation

by excluding all subframes but the �rst in each image (left panel in Figure 3.3.1B). We

repeated STICS analysis on this stroboscopic data set, which is free of in-frame motion

(Figure 3.3.2B), and found that the measurement bias is removed when no in-frame motion

is allowed. Thus, the bias in Figure 3.3.2A is attributed to in-frame motion.

For the conventional STICS analysis in Figures 3.3.2A and 3.3.2B, the correlation function

variance is estimated as the variance parameter of a �t to a Gaussian function [70]. While

curve �tting to the correlation function is a powerful method of increasing the di�usion
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Figure 3.3.2: Di�usion coe�cient measurement bias estimated from simulations of uncon�ned
di�usion of a �uorescent molecule with no noise. Colors indicate the set of parameters (tframe,
σPSF) (3.3.3) and MC is de�ned according to Eq. 3.2.4. (A) STICS analysis by Gaussian
�tting of simulations that contain in-frame motion (IFM). Signi�cant bias is measured for
MC > 1. (B) STICS analysis by Gaussian �tting of simulated movies that exclude in-
frame motion. (C) and (D) The results of analyzing the same data in (A) and (B), but
determining the step size distribution variance in the STICS protocol by directly calculating
the variance rather than by �tting the correlations to Gaussians functions. Both the removal
of in-frame motion in (B) and the direct calculation of variance in (C) and (D) eliminate the
measurement bias.

coe�cient measurement precision, as described in the Theory section, in the case of in-frame

motion, the step sizes will not be normally distributed. Therefore, we hypothesized that the

di�usion coe�cient measurement bias in Figure 3.3.2A comes from �tting a non-Gaussian

correlation function to a Gaussian �tting function. We therefore calculated the correlation

function variances directly instead of by a �t to a Gaussian (Eqs. 3.2.10, 3.2.11). The

measurement biases from this method are shown in Figures 3.3.2C and 3.3.2D for simulated

data with and without in frame motion, respectively. This direct variance calculation allows

for bias-free measurements of the di�usion coe�cient even when in-frame motion is included
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Figure 3.3.3: Line colors for the simulated data in Figures 3.3.2, 3.3.4, 3.3.10 and 3.3.5.

in the simulated movies (compare Figure 3.3.2C to Figure 3.3.2A). The bias due to in-frame

motion in Figure 3.3.2A is therefore the result of �tting STICS correlation functions to a �t

function which incorrectly assumes an absence of in-frame motion, and the discrepancy in

shape between the actual correlation function and this assumed Gaussian function increases

with increasing in-frame motion.

3.3.3 E�ect of con�nement on STICS

In addition to the artifacts that arise from �tting fast di�usion to the wrong function in

the STICS method (Figure 3.3.2A), we hypothesized that con�nement also gives rise to a

di�usion coe�cient measurement bias in the case of fast di�using molecules (high MC). We

considered the di�usion of a �uorescent molecule in the cytoplasm of a bacterial cell by

simulating di�usion of a molecule in cylinders of diameter 1 µm and lengths L = 2, 3 and

4 µm with ten di�usion coe�cients between 0.1 µm2s−1 and 20 µm2s−1. We considered

tframe = 10 and 50 ms, and σPSF was 98 nm. No noise was included in this set of simulations.

In Figure 3.3.4, each set of parameters is scaled to the unit-free parameter MC as described

in Eq. 3.2.5.
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Figure 3.3.4: Di�usion coe�cient measurement bias estimated from simulations without
noise of a �uorescent molecule con�ned to a cylinder. Colors indicate the set of param-
eters (tframe, σPSF) (3.3.3) and MC is de�ned according to Eq. 3.2.5. (A) STICS anal-
ysis by Gaussian �tting of simulations that contain in-frame motion (IFM). Signi�cant,
non-monotonically varying bias occurs for fast characteristic motion, MC > 1. (B) STICS
analysis by Gaussian �tting of simulated movies that exclude in-frame motion. The non-
monotonically varying bias from (A) is still present at all values of MC considered, though
the bias due to in-frame motion is removed. (C) and (D) The results of analyzing the same
data in (A) and (B), but determining the step size distribution variance in the STICS proto-
col by directly calculating the variance rather than by �tting the correlations to Gaussians
functions. The combination of direct variance calculation and removal of in-frame motion in
(D) removes the bias completely.
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Conventional STICS analysis of these simulations of con�ned motion (Figure 3.3.4A

revealed a large, non-monotonically varying bias when MC > 1, with biases as large as

50% for MC = 100. This e�ect persists even when in-frame motion is eliminated from

the simulations (Figure 3.3.4B) by excluding all subframes but the �rst in each image as

described in Figure 3.3.2B. Comparing Figures 3.3.4A and 3.3.4B (see 3.3.3) indicates that

in-frame motion does contribute slightly to the bias in Figure 3.3.4A, but the persistence

of a signi�cant bias in Figure 3.3.4B indicates that the e�ect of in-frame motion is minimal

relative to the e�ect of con�nement on the measurement bias.

We hypothesized that this con�nement artifact arose from using an incorrect �t function

to determine the correlation function variance. To circumvent this �t function, the corre-

lation function variances were calculated directly as for Figures 3.3.2C and 3.3.2D. Again,

the direct variance calculation allows a bias-free measurement of D: directly calculating the

variance in this manner removed nearly all of the measurement bias for simulated data even

with in-frame motion (Figure 3.3.4C). The fact that direct variance calculation can remove

the large biases in estimation of D indicates that, as was true for in-frame motion (Figure

3.3.2A), con�nement leads to a large discrepancy between the assumed normal step size dis-

tribution (Eq. 3.2.1) and the actual observed distribution. As con�nement (and therefore

MC) increases, a Gaussian �tting function no longer correctly describes the STICS corre-

lation function, and the resulting bias increases with increasing MC (Figure 3.3.5B). There

remains in Figure 3.3.4C a large positive bias at large MC that is caused by in-frame motion

and is removed upon excluding in-frame motion (Figure 3.3.4D).
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Figure 3.3.5: (A) Figures 3.3.4A and 3.3.4B showed the bias in determination by Gaussian
�tting STICS of the di�usion coe�cient, D, in the presence and absence of in-frame motion,
respectively. Here, the di�erence between these two biases shows that removing in-frame
motion does decrease the bias, especially at MC > 10. (B) Figures 3.3.4A and 3.3.4C showed
the bias in determination of the di�usion coe�cient, D, by Gaussian �tting STICS and by
STICS with direct computation of the variance, respectively. Here, the di�erence between
these two biases highlights the large magnitude of the con�nement artifact in Gaussian �tting
STICS, which overwhelms the in-frame motion artifact in magnitude. Colors indicate the
set of parameters (tframe, σPSF) (3.3.3) and MC is de�ned according to Eq. 3.2.5.
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3.3.4 Comparing the precision of STICS and single-particle track-

ing

Given the protocol established above to remove measurement bias artifacts from STICS

analysis through direct calculation of the variance, we next considered the measurement

errors incurred in estimating single-molecule di�usion coe�cients by either STICS or SPT

in the presence of realistic noise and experimental parameters. We examined the ability of

STICS to precisely determine D in simulated 1200-frame movies of a �uorescent molecule

di�using inside a cylinder of diameter 1 µm and L = 3 µm with SNR = 6, σPSF = 98

nm, tframe = 50 ms, and ten di�usion coe�cients between 0.1 µm2s−1 and 20 µm2s−1. In

Figure 3.3.6, the percent error in the determination of the di�usion coe�cient is plotted as

a function of MC (as de�ned in Eq. 3.2.5). STICS and SPT analysis are performed on two

identical data sets: movies simulated with and without in-frame motion. For minimal in-

frame motion and minimal con�nement (small MC), the precision of SPT is higher than that

of STICS. Yet, when MC > 50 (arrow in Figure 3.3.6), in-frame motion causes SPT (yellow

curve) to be signi�cantly less precise than STICS (blue curve). This is consistent with the

data loss during tracking (Figure 3.3.1A). However, in the absence of in-frame motion, SPT

outperforms STICS under all experimental conditions considered in this work. The error in

determining D for both methods increases with increasing MC because the e�ective SNR

of each simulated image decreases with increasing MC as is the case when the number of

photons emitted by a molecule is kept constant but these are spread over more pixels due to

image blur.

By directly considering the correlation function variance rather than assuming a Gaus-

sian functional form for this distribution, the di�usion of even fast moving, highly con�ned
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Figure 3.3.6: Simulated movies (see text for parameters) of con�ned di�usion with and
without in-frame motion (IFM) were analyzed with the SPT and STICS methods to compare
the precision of the two methods. The di�usion coe�cient determination by STICS was done
by direct calculation of the variance. SPT has higher precision at slow speeds, but becomes
less precise for fast characteristic motion. The inclusion of in-frame motion causes the
precision of SPT to become worse than that of STICS at MC ∼ 30 (arrow), which, for this
parameter set, corresponds to a di�usion coe�cient of 5.76 µm2s−1. The tenth data point
of the yellow curve (SPT with in-frame motion) was in�nite due to data loss described in
Figure 3.3.1A; this singularity is indicated by a dashed vertical line beginning at the ninth
data point.

molecules can be estimated with STICS. Indeed, because of in-frame motion, whenMC > 50,

one can no longer track di�using molecules at all with SPT (yellow curve in Figure 3.3.6),

whereas STICS can still determine the di�usion coe�cient with < 1 % error. Overall, Fig-

ure 3.3.6 can indicate the appropriate analytical method for a given single-molecule di�usion

measurement based on the experimental parameters.

3.3.5 Cytosolic mMaple3 di�usion in E. coli

Though single-molecule imaging has successfully answered a host of questions in cell bi-

ology [9, 87�89], one current challenge is a limited ability to characterize the dynamics of
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the fastest molecules�especially when con�nement precludes stroboscopic illumination-for

instance freely di�using proteins in the bacterial cytoplasm [85]. We imaged E. coli cells

expressing the photoswitchable �uorescent protein mMaple3, which is switched from a green

state to a red state upon activation with 406-nm light [90]. Before activation, the cells were

non-�uorescent (Figure 3.3.7B). We exposed the cells to 406-nm laser pulses to photoswitch

one mMaple3 molecule at a time (Figure 3.3.7C), and we sequentially imaged dozens of

mMaple3 molecules in each of 87 di�erent cells. The cells were imaged in the red channel

(imaging wavelength: 561 nm) with tframe = 40 ms, σPSF = 98 nm, and pixel width = 49 nm

(Figure 3.3.7). We measured the cell lengths, which varied from 1 - 10 µm. Single-molecule

photoswitching was evident as the average �uorescence intensity of the cell increased after

each photoswitching pulse and decreased a short time later due to photobleaching, but the

large degree of in-frame motion due to the fast di�usion prevented single molecules from

being visualized as punctate �uorescent spots and localized with Gaussian �tting in the

majority of the images. This is consistent with the low data recovery rate for simulations

of molecules with high MC in Figure 3.3.1A. The di�usion of free mMaple3 under these

conditions could therefore not be analyzed by SPT. Though the method of direct variance

determination removes the systematic error (compare Figures 3.3.2C and 3.3.4C to Figures

3.3.2A and 3.3.4A) and explains the source of the bias, this method has extremely low pre-

cision (light blue and green curves in Figure 3.3.8). This approach is therefore not used to

analyze the experimental results that follow.

Figure 3.3.9 illustrates our implementation of Gaussian-�tting STICS for one represen-

tative cell (L = 3.1 µm). A phase contrast image of the cell (Figure 3.3.9A) provided the

boundaries for a cell mask (Figure 3.3.9B), and a single iMSD curve was compiled for each

cells axial dimension based on Gaussian �ts to the correlation function within this mask
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Figure 3.3.7: (A) Time-averaged �uorescence image obtained from summing a time series
of �uorescence images of mMaple3 di�usion inside an E. coli cell. (B) A single image
(tframe = 40 ms) from that time series shows a cell after the mMaple3 molecule has bleached.
(C) An image of the same E. coli cell in (B) two frames earlier, showing a typical mMaple3
molecule di�using so rapidly that it is di�use over nearly the entire bacterium. Scale bars:
0.5 µm.

(Figure 3.3.9C). Each iMSD was �t to the square-con�ned di�usion model in Eq. 3.3.9

to estimate the coe�cient of di�usion of mMaple3 in that cell (Figure 3.3.9D). Gaussian

�tting was used to calculate the iMSD with increased precision in our experimental regime

of relatively noisy data. Also, because transverse and longitudinal di�usion must be consid-

ered independently, here due to the di�erent con�nement lengths in the two directions, the

correlation function variances cannot be calculated directly without interpolating the raw

data onto a rotated pixel array which would impose additional errors.

We analyzed 87 unique bacterial cells, and used the small molecule cephalexin to generate

cells with L = 1 − 10 µm. The e�ect of cephalexin on the di�usion of mMaple3 in the

cytoplasm of E. coli is expected to be minimal [64]. The simulations described in Figure

3.3.4A indicate the biases that are expected, and the expected bias from Figure 3.3.4A can

be used to convert biased experimental di�usion measurement made with Gaussian-�tting

STICS to the corresponding unbiased value (Figure 3.3.10A). For instance, in the example

of the representative cell in Figure 3.3.9, Gaussian-�tting STICS measured D = 5.20 µm2s−1
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Figure 3.3.8: Measurement variance of STICS with the two methods of variance computation.
Dark blue, red, yellow, and purple curves as in Figure 3.3.6. The green and light blue
lines give the percent error when STICS is used to analyze data with and without in-frame
motion (IFM), when the Gaussian-�tting step is replaced by direct variance computation.
The missing points in the light blue and green curves (direct variance method, vSTICS)
represent a complete failure to estimate the value, and even when the analysis algorithm
had su�cient data to succeed the percent error was never below 1000%. The MC is de�ned
according to Eq. 3.2.5.
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Figure 3.3.9: Analysis procedure for estimating by STICS the di�usion coe�cient of free
cytosolic mMaple3 inside a single E. coli cell. (A) A phase contrast image of the E. coli cell
provides (B) a mask of the cell location and orientation. (C) The STICS correlation function
is computed and then �t to a Gaussian function, G. The phase mask in (B) includes only the
correlation amplitudes that correspond to displacements inside the cell. (D) The long-axis
variances of the Gaussian �ts to the correlation functions (iMSD) were plotted as a function
of time lag, τ (dots), and this iMSD curve was �t to a model for square-con�ned di�usion
(Eq. ; red curve) to obtain a single di�usion coe�cient measurement for each cell.
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in a cell with L = 2.41 µm. This measurement was taken with σPSF = 98 nm, tframe = 40

ms, and pixel width = 49 nm, so Eq. 3.2.5 gives MC = 33.6, for which value Figure 3.3.4A

predicts a bias of -0.01 (arrow in Figure 3.3.10A). Interestingly, for the representative cell in

Figure 3.3.9, (MC = 33.6), the measured D (5.20 µm2s−1) is converted to an unbiased D of

5.15 µm2s−1; i.e., Gaussian-�tting STICS produces a nearly unbiased estimate of D for the

amount of in-frame motion and con�nement in this regime.

Based on the interpolated curve in Figure 3.3.10A, all D measurements were converted

to unbiased D, and Figure 3.3.10B shows a histogram of the average di�usion coe�cient

estimates for single mMaple3 molecules in each of the 87 di�erent E. coli cells. The unbiased

mean di�usion coe�cient of 9.6± 1.0 µm2s−1 agrees with the range of free protein di�usion

inside the cytoplasm of E. coli reported elsewhere [66, 80], indicating that Gaussian-�tting

STICS is an appropriate analysis method for obtaining the average D of a cytoplasmic

�uorescent protein in E. coli. We found no correlation between the measured D and L,

indicating that the degree of con�nement did not strongly a�ect our measurements (Figure

3.3.11). Overall, these experiments demonstrate that the di�usion of �uorescent molecules

in small volumes with a signi�cant amount of in-frame motion that precludes SPT can be

characterized by the STICS method.

3.4 Conclusion

In this chapter, we have extended STICS to the regime of rapidly moving molecules in highly

con�ned environments by considering the motion of freely di�using �uorescent proteins in-

side living E. coli bacterial cells. In this regime, such fast, con�ned motion can still be

characterized with negligible bias, though we have also identi�ed regimes where fast, con-
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Figure 3.3.10: Analysis of the di�usion coe�cients of mMaple3 in 87 E. coli cells measured
with STICS. (A) Measured MC may be converted to unbiased MC based on the simulations
in Figure 3.3.4A, which are used here to create a look-up table. The overlapping colored
lines represent the same experimental parameter sets as in Figure 3.3.4A (Figure 3.3.3). The
black line indicates 1:1 correspondence (no bias). (B) Histogram of the unbiased average
mMaple3 di�usion coe�cient measured in each of 87 di�erent E. coli cells as estimated by
the STICS method. 5 - 15 mMaple3 �uorescent proteins are photoswitched one-at-a-time in
each cell, and the biased measurements were corrected by cubic interpolation of the curve in
panel (A).
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Figure 3.3.11: Di�usion coe�cients vs E. coli cell length. The measured di�usion coe�-
cient for mMaple3 molecules in each E. coli cell did not strongly depend on the cell length
calculated from the phase contrast image of that cell.
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�ned motion results in a signi�cant bias in di�usion coe�cient measurement by STICS.

Simulations of this bias indicate that it stems from a STICS correlation function that is not

well approximated by a Gaussian function (Figures 3.3.2A and 3.3.2A); this bias increases

with increasing di�usion coe�cient, D, and increasing con�nement, L−2, as described here

by the unit-free parameter characteristic motion (MC). Thus, when MC becomes large due

to in-frame motion or con�nement, Gaussian-�tting STICS is a biased method for estimat-

ing the di�usion coe�cient. Interestingly, this bias can be removed by directly calculating

the variances of the correlation function rather than estimating the variance by Gaussian

�tting (Figures 3.3.2C and 3.3.4C), and we provide an analytical description of this process.

Furthermore, because this unbiased direct calculation of the correlation function variances

is less precise than Gaussian �tting and therefore not desirable for the treatment of noisy

experimental data, the simulations in this chapter provide a way to remove the bias when

Gaussian-�tting STICS is used. In particular, the plot of measured MC vs. unbiased MC

in Figure 3.3.10A, together with the de�nition of MC in Eq. 3.2.5B, provides a look-up

table for all experimental parameter sets in future experiments where in-frame motion and

con�nement causes Gaussian-�tting STICS to measure a biased value of MC. In this way,

some of the precision of Gaussian-�tting STICS is preserved while the measurement bias

is eliminated. Still, in the future, it would be desirable to solve Eqs. 3.2.8 and 3.2.9 and

replace the Gaussian �t function entirely with a more accurate description of a correlation

function computed from a movie of a highly con�ned di�using �uorescent molecule that

exhibits in-frame motion; this is beyond the scope of the current work.

Overall, Figure 3.3.6 illustrates one of the primary strengths of STICS: whenMC > 50, in-

frame motion dominates and SPT fails entirely to estimate the di�usion coe�cient because of

data loss as shown in Figure 3.3.1A. Thus, though the experimental data in Figures 3.3.9 and
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3.3.10 were not analyzable by SPT, di�usion coe�cients were still recovered by STICS. Based

on this chapter, independent researchers in single-molecule �elds should be able to determine

the value of characteristic motion in their experiments and decide which analysis method

(STICS or SPT) produces the most precise or least biased estimate of the di�usion coe�cient

for the relevant experimental regime. This decision can be made based on performance or

pragmatism: for instance, the timing and optics of stroboscopic illumination can be di�cult

to implement, especially in commercial single-molecule instruments, and current EMCCD

camera technology requires a very small imaging area for the highest accessible frame rates.

The relative precision of STICS compared to SPT at large MC makes STICS a promising

and facile method for the estimation of di�usion coe�cients in experimental measurements

of fast di�usion that is con�ned within small cells and organelles, within nanomaterials, and

in any other highly con�ned system where the imaging camera frame rate is longer than the

time that the molecule takes to explore the con�nement volume.
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CHAPTER IV

Global �tting of single-particle tracking data improves

estimation precision and �tting robustness

The work presented in this chapter has been submitted to the journal Nano Letters:

Rowland, D. J. and Biteen, J. S. Global �tting of single-particle tracking data improves
estimation precision and �tting robustness. Submitted.

4.1 Introduction

Subcellular dynamics vary in time and over small size scales due to spatial and temporal

variations such as transient interactions with molecular partners, [8] crowding by the nucleoid

in bacteria, [79] or the presence of di�erent lipid domains in membranes. [91] To measure

the motions of biological molecules such as proteins and lipids in the face of this complicated

local environment, single-molecule super-resolution �uorescence microscopy data must be

analyzed with a method that systematically accounts for heterogeneity. One approach to

single-particle tracking (SPT) derives the apparent di�usion coe�cient from each individual
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trajectory from the mean square displacement (MSD) vs. time lag curve. [65, 92, 93] With

this MSD approach, heterogeneous di�usion is described by dividing the collection of MSD

curves into di�usive populations; the number of trajectories in each population of curves

may be taken as an estimate of the relative proportions of these di�usive populations. [36,40]

However, heterogeneous di�usion can be observed even over the course of the trajectory of

a single molecule, and this single-track MSD analysis speci�cally disallows the case where

a single molecular trajectory experiences multiple di�usive modes by providing only the

average di�usion coe�cient for each track.

An approach that accounts explicitly for such heterogeneous motion considers the entire

collection of single-molecule steps instead of dividing these steps into individual tracks. This

collection of step data can then be quanti�ed based on the cumulative probability distribution

(CPD) of the total collection of squared step sizes to explicitly account for heterogeneous

motion and increase the signal-to-noise ratio. Single-step analysis with CPD is therefore

a di�usion estimation technique that has had impact in numerous disparate �elds such

as arti�cial membranes, leukocytes, bacterial membranes, neurons and arti�cial materials.

[37, 41,94�104]

Alternatively, a number of Bayesian [87,105�107] and machine learning [108] algorithms

can be used to estimate the number of di�usive components and measure their properties, but

the complexity of these methods poses a signi�cant barrier to intuitive understanding of the

underlying modes of heterogeneous motion. Fluorescence correlation spectroscopy (FCS) and

the related methods of spatiotemporal image correlation spectroscopy (STICS), raster image

correlation spectroscopy (RICS), or particle image correlation spectroscopy (PICS) can also

be used here; these approaches all employ spatial or temporal correlation functions which can

also be �t to multi-component di�usion models, [30,32,70,75,76] but it is rare for the signal-
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to-noise to be high enough for the analysis of complex heterogeneous motion in bacterial

systems. [34] The ability of single-particle tracking to isolate high quality trajectories from

noisy single molecule data can present a more attractive conduit for analysis.

Despite its advantages, the commonly employed CPD analysis method requires a two-

step �tting process where the CPD and MSD curves are �t sequentially. [94,96] We present

here a method that combines this two-step �tting into a single-step multi-domain global �t

algorithm. We analyze simulated trajectories of multiple di�usive components to measure

the improvements in the di�usion coe�cient estimation error and �nd that global �tting

is superior to the traditional local �tting CPD analysis algorithm. We then consider the

di�usion of 80 nm and 200 nm gold spheres in glycerol water solution to show that global

�tting outperforms local �tting in a real system. We report improvements in precision,

robustness, and simplicity of use.

4.2 Theory and Experimental

4.2.1 Imaging and tracking

Slides were imaged at room temperature using wide-�eld epi�uorescence microscopy in an

Olympus IX71 inverted microscope with a 100×, 1.40 NA oil immersion objective (in Zeiss

Immersol 518F immersion oil) and appropriate excitation, emission, and dichroic �lters (Sem-

rock LL01-488, Semrock BLP01-488 and Semrock Di01-R488, respectively). After a 3× beam

expander, a Photometrics Evolve EMCCD camera with > 90% quantum e�ciency captured

the images at 100 frames per second. Each camera pixel corresponds to a 49 nm × 49

nm area of the sample. The gold spheres were illuminated with a 488 nm laser (Coherent
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Sapphire 488-50), which was circularly polarized with a quarter waveplate (Tower Opti-

cal AO15Z 1/4). Single molecule positions were associated into tracks with the Hungarian

algorithm [109] according to an exponential merit function. [35]

4.2.2 Di�usion of gold spheres in glycerol

Gold nanoparticles with diameters 80 and 200 nm (BBI Solutions) were dispersed in 50%

glycerol. 5 L of the mixture was sandwiched between two glass coverslips. The second

through �fth time lags were used for both the global and local �tting algorithms to reduce

the magnitude of the �tting residuals. Unweighted least squares �tting was performed with

the Matlab built-in function lsqnonlin.

4.2.3 Simulations

Di�usion was simulated by generating 103 steps from a zero-mean normal distribution with

variance equal to 2Dtframe, where D is the desired di�usion coe�cient and tframe is the sim-

ulated camera exposure time which was set to 0.04 seconds. Localization precision was

simulated by adding zero-mean Gaussian-distributed random numbers to the simulated tra-

jectories; the localization precision, or the standard deviation of the random numbers, was

varied from 4.9 nm to 73.5 nm. Each simulation was repeated 104 times. The �rst 10 time

lags were used for both the global and local �tting algorithms and unweighted least squares

was performed with the Matlab built-in function lsqnonlin.

83



4.2.4 Bootstrapping

For the analysis of the tracks of gold spheres, histograms of estimated di�usion coe�cients

and population weights were produced by bootstrapping the �tting procedure. The total set

of 13232 squared step sizes was sampled with replacement 300 times to produce 300 unique

data sets each with as many values as the original data set. These bootstrapped data sets

were then �t with either the global or local �tting method.

4.2.5 Local CPD �tting

To probe heterogeneous di�usion, the cumulative probability distribution (CPD) of squared

step sizes (∆r2) was calculated from the tracks of di�using molecules at each time lag (τ)

between frames in the trajectory. There is one CPD curve, CPDi, for each time lag con-

sidered, and each CPDi was �t to the multi-term exponential �t [94] with the appropriate

number of terms (three terms shown here for instance):

CPDi = 1− α1 × exp

(
−∆r2i
MSD1,i

)
− α2 × exp

(
−∆r2i
MSD2,i

)
− (1− α1 − α2)× exp

(
−∆r2i
MSD3,i

)
(4.2.1)

This series of �ts, where i, runs from 1 to the number of time lags considered, Nτ ,

estimates three mean squared displacements, MSD1, MSD2, and MSD3, as a function of

time lag for ND = 3 di�usive populations with weights α1, α2, and (1−α1−α2), respectively.

Each of the three MSD curves is then �t to a model�here of 2D uncon�ned di�usion�to

extract the di�usion coe�cient of the respective population of molecules. For example, for
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population α1, the second-step �tting function is:

MSD1 = 4D1τ + 4σ2
1, (4.2.2)

where D1 is the di�usion coe�cient of population α1, τ is the domain of time lags and σ1

is the localization precision for population α1. If one uses the �rst 5 time lags to estimate

the di�usion coe�cients of three populations, the total number of �tting parameters in this

local CPD �tting approach is: 5×Nτ + 2×ND = 31 here with Nτ = 5, and ND = 3.

4.2.6 Global CPD �tting

Instead of �tting in separate steps, the set of empirical CPDs may be �t all at once by

incorporating the MSD functions (Equation 4.2.2 into Equation 4.2.1). Conceptually, this

can be understood as the sharing of redundant parameters, such as the weight of population

1, α1. The free parameters in the combined �tting function now include only ND di�usion

coe�cients (one for each population), a single localization precision, σ, shared among all

populations, and all but one of the population weights because one is estimated using the

others. For instance, if one wishes to estimate the di�usion coe�cients of three populations,

the total number of �tting parameters is 6 (three di�usion coe�cients, one localization preci-

sion parameter, and two population weight parameters). This number of �tting parameters

in the global �tting algorithm is hugely improved from the 31 parameters necessary for local

�tting.

We implemented Global Fit with a Matlab-speci�c formulation that exchanges several

nonlinear least squares problems for a single larger nonlinear least squares problem. See

Appendix B for complete code.
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4.3 Results

To illustrate the power of the method, we implemented the CPD global �t algorithm in

Matlab (Methods) and applied this analysis to simulated di�usive 2D trajectories (Figure

4.3.1A) with a combination of di�usion coe�cients (D1 = 1 µm2s−1 and D1 = 0.01 µm2s−1).

For each trajectory, the collection of squared displacements given a certain time lag are

used to compute the empirical cumulative probability distribution for that time lag. Figure

4.3.1B compares the global �tting method to the traditional local �tting method. In both

methods, the CPD of squared step sizes is computed at each of the �rst 10 time lags (black

and grey curves). The local �tting method (green arrows) �rst �ts each of the CPD curves

independently to estimate the mean squared displacements (MSDs) of the two di�usive

populations for each curve as well as to provide an average estimate of the population weights,

α1 and (1− α1). The two resultant MSD vs. time lag curves (blue and orange) are then �t

in a second step to estimate the di�usion coe�cients of each of the two populations. Global

�tting, on the other hand, combines all of these �tting operations into a single least squares

minimization step (blue arrow). This global �t process greatly reduces the total number

of �tting parameters. In Figure 1B, the local �tting procedure requires 3 free parameters

(MSD1,i, MSD2,i and α1,i) for each CPD curve �t and 2 for each MSD curve (D and the

localization precision, σ) for a total of 34 parameters. The global �tting method, which does

not separate the CPD and MSD �ts, in this case requires only 4 �t parameters (D1, D2, α1,

and σ).

Based on the analysis of simulations of uncon�ned 2D di�usion of two di�usive popu-

lations as in Figure 4.3.1A, Figure 4.3.2 describes the expected behavior of the global and

local �tting methods. At each condition, 104 trajectories of 103 steps were randomly gener-
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Figure 4.3.1: Schematic diagram of Local and Global �tting algorithms. (A) An example
pair of di�usive 2D trajectories with 103 steps each and di�usion coe�cients of 1 µm2s−1

and 0.01 µm2s−1 (blue and orange trajectories, respectively). The cumulative probability
distribution (CPD) approach analyzes data from trajectories like these to extract the di�u-
sion coe�cients, D1 and D2, and relative weights, α1 and α2 = (1 − α1), of each di�usive
population. (B) The CPD of squared step sizes is computed at each of the �rst 10 time
lags. The resulting curves are plotted here with decreasing intensity from the �rst time lag
(black) to the tenth (light gray). For local �tting (green arrows), �rst each CPD is �t to a
two-population model yielding two series of mean squared displacement (MSD) values and
a population weighting factor, α1, that is the average from all the �ts. The color of the each
resultant MSD vs. time lag curve (bottom left) corresponds to the color of the corresponding
trajectory in (A). Next, the two MSD curves are �t separately to yield D1 and D2. Alterna-
tively, for global �tting (blue arrow), all 10 CPD curves are �t at once to yield α1, D1 and
D2. Local �tting here has a total of 34 �tting parameters whereas global �tting has only 4
(two di�usion coe�cients, a population weight, and a localization precision).
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ated with localization precision, σ (Methods). Figure 4.3.2A shows the standard deviation

(S.D.) of the di�usion coe�cient estimates for trajectories simulated with σ that varies from

4.9 nm to 73.5 nm. At all values of σ, global �tting (solid lines) outperforms local �tting

(dotted lines) for both di�usive components (blue and orange). Notably, once σ approaches

70 nm (black arrow in Figure 4.3.2A), local �tting completely fails to estimate the di�usion

coe�cient of the faster di�usive population. This breakdown is caused when numerical insta-

bility due to poor data quality produces mostly meaningless di�usion coe�cient estimates.

The increased numerical stability of the global �t algorithm enables a precise and unbiased

estimation of the di�usion coe�cients even in the presence of 4 di�usive population; the

local �tting algorithm fails completely to measure motion in this situation (Figure 4.3.3).

Overall, by constraining all CPD curves to the same di�usion model parameters, the global

�tting algorithm is more robust to increased complexity and decreased data quality. The

histograms in Figures 4.3.2B and 4.3.2C present the results of the simulations used in Figure

4.3.2A at σ = 4.9 nm and 38 nm. For this two-population simulation, at both low and high

levels of localization precision, the di�usion coe�cients of both populations are measured

without bias by both �tting methods. However, the decreased standard deviations for dif-

fusion coe�cient estimations indicate that the results from global �tting (solid curves) are

more rigidly centered on their mean value. In other words, sampling error is less likely to

skew the result of the global �tting when a two-term CPD model was used.

The global �t algorithm also shows improved performance in applications to experimental

measurements where the ground truth is not known. We imaged suspensions of spherical

gold nanoparticles of diameter 80 nm or 200 nm dispersed in 50% glycerol (Methods) and

tracked the particles. Figure 4.3.4A reports the bootstrapped results of global and local

�tting of a one-population di�usion model to movies of samples containing only 200 nm
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Figure 4.3.2: (A) Standard deviation of di�usion coe�cient estimations for simulations of
uncon�ned 2D di�usion of two di�usive populations. Trajectories were simulated as in Figure
4.3.1A with 103 time steps for each of two di�usion coe�cients, 0.1 µm2s−1 and 0.01 µm2s−1,
and white noise was added to simulate a range of localization precisions. The trajectories of
both di�usive populations at each noise level were combined then analyzed with the global
(blue) and local (orange) CPD �tting methods using a two-population model (Equation 4.2.1
with only the �rst two terms). 104 trajectories were randomly generated, each was analyzed;
the standard deviations of the estimated di�usion coe�cients, D1 and D2, are shown. The
black arrow corresponds to the point at which numerical instability due to poor data quality
causes the local �tting algorithm to fail to estimate the faster of the two di�usion coe�cients.
(B) and (C) Histograms of the estimated di�usion coe�cients in (A) at localization precisions
of 4.9 nm and 38 nm, respectively.

89



Figure 4.3.3: A) Sample simulated trajectories with four di�erent di�usion coe�cients as
given in the legend at the bottom left. B) Histograms of di�usion coe�cients estimated
with the global CPD algorithm from 104 simulated trajectories, each consisting of 103 steps
belonging to each di�usive population. C) Histograms of di�usion coe�cients estimated
with the local CPD algorithm for the same data used in B). D) and E) Estimated population
weights for the di�usive populations using the global and local CPD algorithms, respectively.
The nominal values here for the weights are α1 = α2 = α3 = α4 = 0.25.
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gold spheres. Global �tting results in a histogram of di�usion coe�cient estimates with

mean 0.24 µm2s−1 and standard deviation 0.0061 µm2s−1, whereas local �tting of the same

data set estimates a larger di�usion coe�cient of 0.27 µm2s−1 and a smaller standard devi-

ation of 0.0055 µm2s−1. Figure 4.3.4B shows the estimated di�usion coe�cients of 80 nm

gold spheres in 50% glycerol. Again, the mean di�usion coe�cient estimate increases and

standard deviation decreases when the local �tting method is used instead of global �tting.

Here, the di�usion coe�cient increases from 0.74 µm2s−1 to 0.82 µm2s−1 and the standard

deviation decreases from 0.026 µm2s−1 to 0.022 µm2s−1 when comparing the global and local

�tting methods, respectively. In this case of single-component di�usion, we found that local

�tting resulted in a more precise measurement of the di�usion coe�cient. This result is

likely due to the increased number of �tting parameters in local �tting causing the �tting

residuals to be smaller. This increased precision should not be taken to imply an increase in

accuracy, however, because there are no guarantees that the minima found in least squares

minimization is the global minimum.

Single-particle tracks within mixtures of both nanoparticle sizes require a two-population

di�usion model. Here, global �tting more precisely estimates the di�usion coe�cients. Fig-

ure 4.3.4C shows histograms of the di�usion coe�cient estimates for this scenario, where

global �tting estimates the two di�usion coe�cients to be 0.33 µm2s−1 ± 0.0074 µm2s−1

and 0.76 µm2s−1 ± 0.047 µm2s−1 corresponding to the 80 nm and 200 nm gold spheres,

respectively. Local �tting, on the other hand, estimates the di�usion coe�cients to be

0.37 µm2s−1±0.021 µm2s−1 and 0.98 µm2s−1±0.15 µm2s−1. In this scenario where multiple

di�usive populations are present, the improved parameter rigidity of global �tting is read-

ily apparent. As the complexity of the model increases, global �tting o�ers a more robust

method for estimating di�usion coe�cients. It should be noted, however, that both global
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Figure 4.3.4: (A), (B), (C) 40 tracks of 200 nm gold spheres, 13 tracks of 80 nm gold spheres,
and 28 tracks of a mixture of both sizes of gold spheres, all di�using in 50% glycerol, respec-
tively. (D) Histograms of the estimated di�usion coe�cient for 200 nm gold spheres in 50%
glycerol in water solution from �ts to a one-component model with the Global Fit (solid line)
and Local Fit (dashed line) methods. (E) Histograms of the estimated di�usion coe�cient
for 80 nm gold spheres under the same conditions. (F) Estimated di�usion coe�cients of a
mixture of 200 nm and 80 nm gold spheres in a 50% glycerol in water solution �t using a
two-component model by Global Fit (solid lines) and Local Fit (dashed lines). The blue and
orange line colors correspond to the sphere sizes in panels D and E, respectively.
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and local algorithms performed equally well in the estimation of the population weights, α1

and (1− α1) (Figure 4.3.5).

Figure 4.3.5: Population weights for the global and local CPD algorithm for the mixture of
di�using 80 nm and 200 nm gold spheres. Although the two algorithms estimate di�erent
values and precisions for the mean di�usion coe�cients (see Figure 4.3.4, they both estimate
the ratio of steps taken by the 80 nm spheres to the steps taken by the 200 nm spheres to be
1 : 3. Both algorithms similarly estimate the population proportions to equivalent precision.

Alternatively, we investigated the di�usion of single DiI �uorescent molecules in supported

lipid bilayers (Figure 4.3.6; see caption for methods), and uncovered sample inhomogeneities

that are outside of the scope of this work. Figure 4.3.7 compares local and global �tting

methods with one and two-term �ts to trajectories of and demonstrates the presence of two

di�usive populations. DiI molecules in a homogeneous lipid environment should di�use at
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Global Local
D1 (µm2s−1) 2.5± 0.09 2.6± 0.2
D2 (µm2s−1) 0.46± 0.04 0.41± 0.05
α1 (%) 50± 1 48± 2
α2 (%) 50± 1 52± 2

Table 4.2: Di�usion coe�cients and population amplitudes from the data presented in Figure
4.3.8: DiI di�using in a POPC bilayer. Both Global and Local �tting estimated similar dif-
fusion coe�cients and population amplitudes, but the standard deviations were considerably
smaller for Global �tting.

around 2 µm2s−1, and indeed, the faster population has D1 = 2.5 µm2s−1, which is near to

this value (Figure 4.3.8). However, the analysis also reveals a slower di�usive population

(D2 = 0.4 µm2s−1; Table 4.2), due to sample inhomogeneities. Regardless of the origin of

these inhomogeneities that gave rise to the surprising second di�usive populations, global

�tting outperformed local �tting in terms of di�usion coe�cient estimation precision.

Figure 4.3.6: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti) and the lipid
dye DiI C12 (ThermoFisher) were mixed together in chloroform at �nal concentrations of
5 mg mL−1 and 1 : 4 × 10−5 from stock concentration, respectively. 1.5 wt% agarose and
then 30 µL of lipid/dye solution were spin coated onto a coverslip at 5000 rpm. 30 µL
PBS was then placed on top of the dried lipids and a top coverslip was then added. The
sparse DiI was imaged with a 561 nm �uorescence excitation laser (Coherent Sapphire 560-
50) with a power density of 0.01 mW µm−2. The sample was imaged on a Photometrics
Evolve EMCCD camera and the di�using DiI was then localized and tracked. Shown here
are the 336 trajectories used in the analysis shown in Figures 4.3.7 and 4.3.8.
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Figure 4.3.7: A) and B) Fitting results of the Local and Global �tting algorithms applied
to the trajectories of DiI shown in Figure 4.3.6. The data (solid lines, time lags τ = 0.01 s,
0.02 s, 0.03 s, and 0.04 s) are overlain with the dashed �tting results according to the legend.
The red dashed lines (�ts using two di�usive terms) conform tightly to the data, while a
single term does not �t well. C) and D) Residuals from the �ts in A) and B). For both the
local and global algorithms, the results of the �tting are very similar and it is clear from the
residuals that two di�usive terms are required to explain the data.
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Figure 4.3.8: A) Distributions of di�usion coe�cients of DiI di�using on a POPC bilayer.
The Local �tting algorithm (dashed lines) resulted in less precise estimations of two di�usive
populations, corresponding to the relative populations of fast and slow modes of DiI di�usion.
B) and C) Population weights of the �rst and second di�usive populations, respectively,
measured with the Global and Local CPD algorithms. All methods resulted in similarly
precise estimations of a 50% distribution of fast and slow DiI. Table 4.2 shows the mean and
standard deviations of the di�usion coe�cients and population amplitudes.
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4.4 Conclusions

In this work, we introduced global CPD �tting, a straightforward method to enhance the

precision and simplicity of a commonly used di�usion coe�cient estimation technique by

combining redundant parameters. Instead of estimating the mean squared displacements

of di�using particles only to then �t those results in a second curve �tting step (Figure

4.3.1B), we presented a multi-domain �t that accomplishes both steps at once. The resulting

reduction in degrees of freedom of the �tting operation increases the estimation precision

and robustness by increasing the rigidity of the �tting parameters. The enhanced precision

and robustness of global �tting introduced here enables precise, quantitative investigations

of systems with increased complexity, for instance motion that includes more than one or

two di�usive components. This global �tting method is not restricted to freely di�using

molecules, and can be extended to any type of di�usion such as con�ned di�usion, di�usion

with �ow, or anomalous di�usion.
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CHAPTER V

Conclusions and Future Directions

In preceding chapters, I dissected the commonly used biophysical analysis techniques to in-

novate methods of improving the quantity and quality of analytical results produced by those

techniques. In this chapter, I will review the rami�cations of these foundational improve-

ments and propose possible extensions. First, we showed how re�nements to the analytical

interpretation of point spread functions (PSFs) can simplify data analysis of directed motion

of point light sources (Chapter 2). [29] Further work could investigate directed motion that

incorporates in-frame di�usion along that directed path. Second, even though we showed

for the �rst time that STICS could be used to measure di�usion of single molecules inside

bacteria (Chapter 3), [34] the Gaussian �tting function in the spatiotemporal image corre-

lation spectroscopy (STICS) analysis protocol inaccurately describe the motion of quickly

di�using molecules con�ned to small volumes. Future work for this project could include

modi�cations to the Gaussian �tting function used in STICS so that in-frame motion and

con�nement does not introduce biases. Third, we combined the multi-step �tting procedure

required by the commonly used cumulative probability distribution (CPD) method of esti-

mating the di�usion coe�cients into a single �tting step (Chapter 4). This consolidation

increases the robustness and precision of the di�usion coe�cient estimates because of the
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reduced number of �tting parameters. Further work for this project could involve applying

the global �tting method to the STICS algorithm, that also makes use of a multi-step �tting

process and could similarly bene�t from a reduction in the number of free �tting parameters.

5.1 Maximizing the information content of point spread

functions

Successful implementation of single-molecule super-resolution microscopy requires several

important assumptions including particle immobility during the integration time of the cam-

era. [34] By imposing these assumptions, information about the system is lost; this concept

was impetus for the work reported in Chapter 2. There, I exploited a more accurate de-

scription of the point spread function of a point light source undergoing directed motion as

a way to glean information directly from individual image frames that otherwise must be

calculated as an average value from multiple image frames.

This new �tting function produced only a marginal improvement over the asymmetric

Gaussian method of estimating directed in-frame motion reported in Yüce et al. [55] Their

method, however, requires an empirical calibration curve and this increases the complexity

of the experiment. In addition, any errors present in the calibration curve will degrade

the performance of the algorithm. By instead appropriately modifying the �tting function

used for the localization of the molecules, we found that the in-frame displacement can be

estimated directly without requiring a separate calibration step.

The modi�ed PSF, Sum of Error functions (SErf), accounts for in-frame directed motion

but not di�usion. Interesting further work might include using the work done by Schuster et
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al. [25] that analyzed the isotropic broadening of the PSF of di�usive molecules to calculate

di�usion coe�cients from single images. The path taken by a molecule undergoing directed

motion might also include di�usion that would broaden the PSF. If one were to calibrate

PSF broadening as a function of di�usion coe�cient, the transverse width �tting parameter

of the SErf PSF �tting function could be used in conjunction with the displacement �tting

parameter to estimate both the di�usion coe�cient and the velocity of motion in each image

frame.

5.2 Maximizing the information content of �uorescence

data

Localizing particles with PSF �tting restricts the data to be analyzed to include only regions

with high SNR. By selecting only the ∼500 nm region around the location of a point light

source, vast regions of imaging data empty of meaningful signal are excluded completely

from the analysis. This selection process is a double-edged sword, however, because the

selection process either requires image analysis algorithms or human selection that priori-

tizes the brightest or most obvious molecules. Chapter 3 investigated spatiotemporal image

correlation spectroscopy [30] (STICS) as a potential method for unbiased measurement of

di�usion inside bacteria because STICS does not preferentially select regions of interest.

Localization-based algorithms, in contrast, preferentially select regions of interest around

molecules that do not move much during the image capture�thereby excluding images of

the molecule when it takes larger than average steps. STICS removes this selection bias and

further work may uncover a more appropriate �tting function that also does not su�er from

in-frame motion and con�nement artifacts.
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In the end, we found in Chapter 3 that STICS produced two biases, and we further

discovered that these biases are caused independently by in-frame motion and con�nement.

Both of these biases could be removed by using a modi�ed STICS �tting function that

explicitly accounts for the two situations.

The �rst bias, due to in-frame motion, is caused by the �nite image capture time of the

EMCCD camera. STICS assumes that all of the collected photons were emitted at the same

time, e.g., at the single time-point recorded for that particular image. We know, however,

that the molecule moved around during a range of times that span the camera integration

time. Therefore, when the correlation function of a pair of images separated by a time-lag of

two frames, the result is a correlation function that includes a range of time-lags instead of

a single time-lag of two frames (see Figure 5.2.1). The result of this is a correlation function

calculated from data including in-frame di�usion and so will include a linear combination of

Gaussian correlation functions that correspond to a range of time-lags. In the case where the

molecule is di�using slowly, the in-frame trajectory can be approximated as a single point,

which obviates the fact that the photons were collected during a range of times and the

correlation function will assume the expected Gaussian shape. If there is in-frame motion,

however, the step size distributions from a range of time-lags are included in the correlation

function for a single time-lag. Equation 5.2.1 describes this idea by the integration of step-

size distributions over the range of time lags brought on by the �nite camera integration

time. A future investigator could investigate this equation further and perhaps account for

the in-frame motion bias apparent when using STICS to estimate the di�usion coe�cient of
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a molecule di�using so quickly so as to become blurred in a single image (see Figure 5.2.2).

Gblur =
γ

N

[(∫ τ0+tframe

τ0−tframe

g(τeff)dτeff

)−1

×
∫ τ0+tframe

τ0−tframe

g(τeff)N(0, 4Dτeff)dτeff

]
⊗WPSF(ξ, χ).

(5.2.1)

Con�nement to the small volume of a bacterium also leads to a second bias in the es-

timation of the di�usion coe�cient by STICS. Even without in-frame motion, con�nement

was found to cause bias and the likely reason for this is shown in Figure 5.2.3 to be the e�ect

that re�ective boundary conditions have on the actual distribution of step sizes. Further

work on this subject would entail solving Equation 5.2.2

Gconf =
γ

N

[
2
∑
n,int.

p(ξ + nL, χ+ nL, τ)

]
⊗W (ξ, χ),−L

2
≤ ξ, χ ≤ L

2
(5.2.2)

to �nd a modi�ed �tting function for the correlation functions (Equation 5.2.3)

G(ξ, χ, τ) =
γ

N
p(ξ, χ, τ)⊗WPSF(ξ, χ) (5.2.3)

calculated by STICS. For instance, the derivation of the STICS analysis procedure assumes

that the step size distribution is Gaussian. [70] However, because the steps taken inside a

small bacterium are curtailed by the boundaries of the cell, the Gaussian approximation no

longer holds (see Figure 5.2.3). With the solution described here, the STICS correlation

functions may be �t with the correct �tting function and the bias due to tight con�nement

might be eliminated.
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Figure 5.2.1: Top, a di�usive trajectory that spans two imaging frames with 10 sub-steps
shown, although this argument can be made with any number of sub-steps. The correlation
function for the actual motion includes correlations with a time lag of not only tframe, but
also smaller time lags (such as from time point 1b to 2a) and larger time lags (such as
from time point 1a to 2b) The step size distribution of normal di�usion given a time lag of
tframe − 9ϵ, which corresponds to the sub-frame motion from the �nal time step in the �rst
frame to the �rst time step in the second frame occurs least frequently and so should not
contribute as much to the �nal correlation function.
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Figure 5.2.2: (A) Time-averaged �uorescence image obtained from summing a time series
of �uorescence images of mMaple3 di�usion inside an E. coli cell. (B) A single image
(tframe = 40 ms) from that time series shows a cell after the mMaple3 molecule has bleached.
(C) An image of the same E. coli cell in (B) two frames earlier, showing a typical mMaple3
molecule di�using so rapidly that it is di�use over nearly the entire bacterium. Scale bars:
0.5 µm. [34]

5.3 Maximizing the precision of existing analysis meth-

ods

Chapter 4 analyzed the e�ect of combining the multiple steps used to estimate di�usion

coe�cients from single particle trajectories in the cumulative probability distribution (CPD)

�tting method into a single �tting step. By �tting all of the CPDs at once, the total number

of �tting parameters can be reduced from dozens to fewer than ten. This reduction in

the degrees of freedom in the �tting procedure was shown to both increase the estimation

precision and the numerical stability of the �t. In other words, di�usion parameters could be

estimated more precisely and the �tting algorithm was less likely to estimate non-physical

values.

It is generally known in the scienti�c community that, given enough �tting parameters,

one may be able to successfully �t an elephant. By removing redundant �tting parameters,

more accurate, robust, and physically meaningful results are expected because the parameter
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Figure 5.2.3: The e�ect of a re�ective boundary at the end of the long axis of a bacterial
cell on the actual distribution of step sizes taken by di�using particles. The blue line is the
normal (Gaussian) distribution of step sizes. When steps at the tail of the blue line attempt
to pass the re�ective boundary at 1 on the x axis, the steps are re�ected as shown by the
red line. These retrograde steps are indistinguishable from the smaller steps present in the
normal distribution of steps, and so the blue and red lines add to become the yellow line.
This yellow distribution is the e�ective step size distribution of step sizes given a re�ective
boundary at 1 on the x axis. It is for this reason that the step size distributions estimated
by STICS are non-Gaussian in shape.
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space of possible local minima will be restricted to a smaller hypervolume. For instance,

this global �tting method could also be applied to the �tting procedure used in STICS. To

estimate di�usion coe�cients and di�usive population weights, STICS uses a two-step �tting

process where �rst the correlation functions are �t to Gaussians and then the widths of the

Gaussians are �t to a particular model of di�usion, such as a linear relationship between

mean squared displacement and time lag for uncon�ned di�usion. Along the same lines as

the global �tting method used in Chapter 4, the collection of Gaussians may be �t in a single

step. This will reduce the number of �tting parameters and will likely increase the �tting

precision and will certainly increase the robustness of the �t in the same way as for the CPD

analysis.

5.4 Future Directions

This dissertation has focused on improvements of data analysis methods that have already

been utilized in simpli�ed forms. These improvements lead to important questions that span

the scienti�c community. The design and implementation of obscure analysis algorithms will

always be able to be improved, but as complexity increases, the size of the population of

experts with general working knowledge will decrease. Will computer automation lead to

dozens of analysis software packages that are treated more or less as black boxes into which

data is injected and out of which come results that merely use cited sources as proof of

validity? Additionally, as the precision of analysis methods increase, previously unconsidered

anomalies will inevitable come to light, and this presents many interesting new areas of

research. For example, di�usion in the crowded environment [110] may push the results of

the current state of di�usion coe�cient estimation to the limits of interpretability.
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Those using techniques described in this thesis should recognize some notable caveats.

Firstly, experimental design must be carefully optimized in order to use the �tting function

for directed motion described in Chapter 2. The derivation of the �tting function assumes

that the path taken by the �uorescent molecule is straight and that the velocity is constant

during the image acquisition. The camera frame rate may be reduced to lessen the likelihood

that the molecule deviates appreciably from a straight path, or increased to improve the

precision of the displacement estimation, for example.

Further caveats include the loss of position information when using the STICS and CPD

analysis methods. STICS completely obscures the original location of pixel intensities. A

data set consisting of large images may be split into many regions and analyzed independently

thereby retaining coarse-grained spatial information, but the edge e�ects associated with such

Fourier methods dictate a strong correlation between region size and signal-to-noise ratio.

CPD analysis also obscures position information by reducing all molecule trajectories to a

single list of step sizes. To assign a di�usion population identity to a particular step in a

trajectory is an intriguing problem. It could be very useful to know when a molecule is

di�using according to its fast or slow di�usive state, for example.

The work in this thesis makes exclusive use of a single non-linear least-squares mini-

mization algorithm provided with Matlab, but the reader should recognize that there are

methods that directly compete and cab serve as drop-in improvements while sacri�cing only

computational speed (maximum likelihood estimation [18] is one). Furthermore, one should

be curious about the commonly implemented Gaussian approximation of the Airy disk point

spread function. This approximation a�ects SPT and STICS di�erently, however. Both

Gaussian and Airy disk functions are symmetric, so particle localization will be unbiased

regardless of the localization �tting function used. The di�erence in peak width between the
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two functions could conceivably a�ect the precision of localization, but I think the signal-to-

noise ratios typically seen in single-molecule �uorescence data are much too low for this to

be noticable. STICS, on the other hand, directly relies on the peak width of correlation func-

tions that are a�ected by the shape of the microscope point spread function. It is therefore

likely that the Gaussian approximation used in the derivation of STICS negatively a�ects

the method's estimation precision.

Finally, one might also ask whether the future developments in the �eld of single-molecule

super-resolution microscopy will lie on the data acquisition or data analysis side. There was

an explosion of analysis methods in this �eld over the past 10 years and this collection needs

to be combined and simpli�ed. The �uorophores used are a severe limitation inherent to this

�eld because they dictate a �nite information budget that corresponds to the number of pho-

tons that can be emitted by a single �uorophore. Imaging systems are approaching perfect

photon sensitivity and so the greatest improvements will be found mostly on the analysis

side from more accurate and holistic algorithms. When analyzing data, the experimental

parameters should be speci�ed�not the analysis method.
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APPENDIX A

Code for Chapter 3: bpassDJR, dataGen, dataParse,

gaussFit

%

% NAME:

% bpassDJR

% PURPOSE:

% Implements a real-space bandpass filter that suppresses

% pixel noise and long-wavelength image variations while

% retaining information of a characteristic size.

%

% CATEGORY:

% Image Processing

% CALLING SEQUENCE:

% res = bpass( image_array, lnoise, lobject, threshold, lzero )

% INPUTS:

% image: The two-dimensional array to be filtered.

% lnoise: Characteristic lengthscale of noise in pixels.

% Additive noise averaged over this length should

% vanish. May assume any positive floating value.

% May be set to 0 or false, in which case only the

% highpass "background subtraction" operation is

% performed.

% lobject: (optional) Integer length in pixels somewhat

% larger than a typical object. Can also be set to

% 0 or false, in which case only the lowpass

% "blurring" operation defined by lnoise is done,

% without the background subtraction defined by

% lobject. Defaults to false.

% threshold: (optional) By default, after the convolution,

% any negative pixels are reset to 0. Threshold

% changes the threshhold for setting pixels to

% 0. Positive values may be useful for removing
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% stray noise or small particles. Alternatively, can

% be set to -Inf so that no threshholding is

% performed at all.

%

% OUTPUTS:

% res: filtered image.

% PROCEDURE:

% simple convolution yields spatial bandpass filtering.

% NOTES:

% Performs a bandpass by convolving with an appropriate kernel. You can

% think of this as a two part process. First, a lowpassed image is

% produced by convolving the original with a gaussian. Next, a second

% lowpassed image is produced by convolving the original with a boxcar

% function. By subtracting the boxcar version from the gaussian version, we

% are using the boxcar version to perform a highpass.

%

% original - lowpassed version of original => highpassed version of the

% original

%

% Performing a lowpass and a highpass results in a bandpassed image.

%

% Converts input to double. Be advised that commands like 'image' display

% double precision arrays differently from UINT8 arrays.

% MODIFICATION HISTORY:

% Written by David G. Grier, The University of Chicago, 2/93.

%

% Greatly revised version DGG 5/95.

%

% Added /field keyword JCC 12/95.

%

% Memory optimizations and fixed normalization, DGG 8/99.

% Converted to Matlab by D.Blair 4/2004-ish

%

% Fixed some bugs with conv2 to make sure the edges are

% removed D.B. 6/05

%

% Removed inadvertent image shift ERD 6/05

%

% Added threshold to output. Now sets all pixels with

% negative values equal to zero. Gets rid of ringing which

% was destroying sub-pixel accuracy, unless window size in
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% cntrd was picked perfectly. Now centrd gets sub-pixel

% accuracy much more robustly ERD 8/24/05

%

% Refactored for clarity and converted all convolutions to

% use column vector kernels for speed. Running on my

% macbook, the old version took ~1.3 seconds to do

% bpass(image_array,1,19) on a 1024 x 1024 image; this

% version takes roughly half that. JWM 6/07

%

% This code 'bpass.pro' is copyright 1997, John C. Crocker and

% David G. Grier. It should be considered 'freeware'- and may be

% distributed freely in its original form when properly attributed.

%

%

% 2016 edits by David J. Rowland, The University of Michigan:

% added lzero to the input list instead of just declaring it inside the function.

if nargin < 3, lobject = false; end

if nargin < 4, threshold = 0; end

normalize = @(x) x/sum(x);

image_array = double(image_array);

if lnoise == 0

gaussian_kernel = 1;

else

gaussian_kernel = normalize(...

exp(-((-ceil(5*lnoise):ceil(5*lnoise))/(2*lnoise)).^2));

end

if lobject

boxcar_kernel = normalize(...

ones(1,length(-round(lobject):round(lobject))));

end

% JWM: Do a 2D convolution with the kernels in two steps each. It is

% possible to do the convolution in only one step per kernel with

%

% gconv = conv2(gaussian_kernel',gaussian_kernel,image_array,'same');

% bconv = conv2(boxcar_kernel', boxcar_kernel,image_array,'same');

%
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% but for some reason, this is slow. The whole operation could be reduced

% to a single step using the associative and distributive properties of

% convolution:

%

% filtered = conv2(image_array,...

% gaussian_kernel'*gaussian_kernel - boxcar_kernel'*boxcar_kernel,...

% 'same');

%

% But this is also comparatively slow (though inexplicably faster than the

% above). It turns out that convolving with a column vector is faster than

% convolving with a row vector, so instead of transposing the kernel, the

% image is transposed twice.

gconv = conv2(image_array',gaussian_kernel','same');

gconv = conv2(gconv',gaussian_kernel','same');

if lobject

bconv = conv2(image_array',boxcar_kernel','same');

bconv = conv2(bconv',boxcar_kernel','same');

filtered = gconv - bconv;

else

filtered = gconv;

end

% commented out because why do it in the first place?

% % Zero out the values on the edges to signal that they're not useful.

% lzero = max(lobject,ceil(5*lnoise));

% lzero=0;

filtered(1:(round(lzero)),:) = 0;

filtered((end - lzero + 1):end,:) = 0;

filtered(:,1:(round(lzero))) = 0;

filtered(:,(end - lzero + 1):end) = 0;

% JWM: I question the value of zeroing out negative pixels. It's a

% nonlinear operation which could potentially mess up our expectations

% about statistics. Is there data on 'Now centroid gets subpixel accuracy

% much more robustly'? To choose which approach to take, uncomment one of

% the following two lines.

% ERD: The negative values shift the peak if the center of the cntrd mask

% is not centered on the particle.
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% res = filtered;

filtered(filtered < threshold) = 0;

res = filtered;
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function [v, simProps] = dataGen(varargin)

%

% NAME:

% dataGen

% PURPOSE:

% Generates space and time resolved single-molecule imaging data of a

% single diffuser.

% CATEGORY:

% Data Simulation

% CALLING SEQUENCE:

% [v, simProps] = dataGen(boundaryCondition, blurFlag);

% INPUTS:

% varargin: use paired inputs to set the property (input 1) to the

% value (input 2) desired.

%

% Properties: Descriptions:

%

% D diffusion coefficient in microns^2/s

%

% tFrame image frame integration time in seconds

%

% pixSize Pixel size in micrometers

%

% psfSize standard deviation (width) of the microscope's

% point spread function in micrometers. i.e.

% FWHM = sqrt(2*log(2)) * psfSize

%

% celSize 1x2 vector: [width (diameter), height

% (length)] of the bounding box (cylinder)

% depending on the confinement condition

%

% nFrames number of frames to be simulated

%

% SNR signal to noise ratio (ratio of maximum

% signal amplitude to standard deviation of

% background noise)

%

% confBool 1 for confined to the interior of a

% cylinder, and 0 for free diffusion.

%

% blurFlag 1 for blurry motion, 0 for 'stroboscopic
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% illumination'

%

% OUTPUTS:

% v: simulated image time sequence

% simProps: properties of the simulation in the Matlab structure

format

% PROCEDURE:

% 1. Simulate molecular trajectory

% 2. Evaluate pixel intensities

% 3. Add noise

% MODIFICATION HISTORY:

% Written by David J. Rowland, The University of Michigan, 3/16.

% NOTES:

% This code 'dataGen.m' should be considered 'freeware'- and may be

% distributed freely in its original form when properly attributed.

%

% For testing purposes, this line makes a movie of confined, blurry

% diffusion.

%

% v=dataGen('confined', 1)

%% Default simulation parameters

D = .01; % diffusion coefficient in microns^2/s

tFrame = .05; % frame integration time in seconds

pixSize = .049; % width of pixels in microns

psfSize = .098; % s.d. of the psf in microns

celSize = [1,3]; % [width, length] of confinement cylinder in microns

nFrames = 1e3; % number of frames in the simulated movie

SNR = 20; % signal to noise ratio for added white noise (0:inf)

confBool = 1; % 'confined' or 'unconfined'

blurFlag = 1; % include blur subframes or not

% algorithmically-determined image size designed to disallow edge effects

imSize = ceil(celSize/pixSize+4*ceil(psfSize/pixSize));

% check variable size

if prod([imSize(1:2),nFrames])*8/1e9>1

warning('video is over a GB. manually pass this block if you wish to continue')

end

% minimum increment of speed in units of microns^2/subframe
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dtRef = 0.0001;

% initialize simulation properties structure

simProps.D = D;

simProps.tFrame = tFrame;

simProps.pixSize = pixSize;

simProps.psfSize = psfSize;

simProps.celSize = celSize;

simProps.nFrames = nFrames;

simProps.SNR = SNR;

simProps.blurFlag = blurFlag;

simProps.nSubs = [];

simProps.dtRef = dtRef;

simProps.confBool = confBool;

% if any sim parameters are included as inputs, change the simulation

% parameters mentioned

if ~rem(nargin,2)

fNames=fieldnames(simProps);

for ii=1:2:nargin

whichField = strcmp(fNames,varargin{ii});

if all(~whichField)

warning('Check spelling. Parameter change may have not occurred')

end

eval([fNames{whichField} ' = varargin{ii+1}'])

eval(['simProps.' fNames{whichField} ' = ' fNames{whichField},';'])

end

elseif ~rem(nargin,1)

warning('use paired inputs')

v=[];

return

end

% number of subframes required

nSubs = ceil(D*tFrame/dtRef);

% update the value of the diffusion coefficient since rounding may change it.

D = nSubs*dtRef/tFrame;
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%% Trajectory generation

if confBool

% confined particle trajectory

mLocs = zeros(3, nFrames);

for ii = 1 : nFrames*nSubs-1 % this loop can be compiled to mex64 to increase

its speed

% three 1d steps pulled from normal distribution with variance 2*dtRef

step = sqrt(2*dtRef) * randn(3,1);

candPos = mLocs(:,ii) + step;

prevPos = mLocs(:,ii);

% the ordering in the celSize vector matters because of this line:

r = celSize(1)/2;

% if the candidate position is outside of the cylinder in the x/z

dimensions, reflect the step

% against the inside of the cylinder. path length is preserved.

if sqrt(sum(candPos([1,3]).^2)) > celSize(1)/2

m = (candPos(3)-prevPos(3)) / (candPos(1)-prevPos(1));

b = candPos(3)-m*candPos(1);

xi=[(-m*b+sqrt(-b^2+r^2+m^2*r^2))/(1+m^2),...

(-m*b-sqrt(-b^2+r^2+m^2*r^2))/(1+m^2)];

yi=m*xi+b;

% there are two solutions. the one closest to the candidate position is

chosen. the farther

% one is on the other side of the cell.

whichone = (xi-candPos(1)).^2 + (yi-candPos(3)).^2 + (xi-prevPos(1)).^2

+ (yi-prevPos(3)).^2;

xip = [xi(find(whichone == min(whichone))),yi(find(whichone ==

min(whichone)))];

normv = -xip/sqrt(sum(xip.^2));

l = sqrt(sum((candPos([1,3])'-xip).^2));

pf = 2*sum((prevPos([1,3])'-xip).*normv)*normv-(prevPos([1,3])'-xip);

pf = pf/sqrt(sum(pf.^2))*l+xip;

% replace x/z components of the position with the reflected x/z

components

out=candPos;
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out([1,3])=pf;

candPos=out;

end

% if the candidate position is outside of the cylinder in the y dimension

(cell's long axis)

if candPos(2) < -celSize(2)/2

candPos(2) = 2*-celSize(2)/2 - candPos(2);

end

if candPos(2) > celSize(2)/2

candPos(2) = 2*celSize(2)/2 - candPos(2);

end

mLocs(:, ii+1) = candPos;

end

else

% unconfined particle trajectory

mLocs=cumsum(sqrt(2*dtRef) * randn(3,nFrames*nSubs),2);

end

%% movie generation

if blurFlag

% arrange tracks for subframe averaging

tr_x = zeros(nSubs, nFrames);

tr_y = zeros(nSubs, nFrames);

for ii = 1:nFrames

tr_x(:, ii) = mLocs(1, 1+(ii-1)*nSubs : ii*nSubs);

tr_y(:, ii) = mLocs(2, 1+(ii-1)*nSubs : ii*nSubs);

end

else

% just use the first subframe from each frame

tr_x = mLocs(1, 1:nSubs:end);

tr_y = mLocs(2, 1:nSubs:end);

end

% shift to positive values

tr_x=tr_x+celSize(1)/2;

tr_y=tr_y+celSize(2)/2;
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% noiseless pixel intensities

v=zeros([imSize(1:2),nFrames]); cx = 0; cy = 0;

for ii=-2*psfSize:pixSize:celSize(1)+2*psfSize % x pixel locations with padding

cx = cx+1;

for jj=-2*psfSize:pixSize:celSize(2)+2*psfSize % y pixel locations with padding

cy = cy+1;

% symmeteric gaussian function approximation of Airy Disk

v(cx,cy,:) = mean(exp(-((ii-tr_x).^2+(jj-tr_y).^2)/2/psfSize^2),1);

end

cy = 0;

end

% add white noise

v = v + 1/SNR*randn(size(v));

simProps.D = D;

simProps.tFrame = tFrame;

simProps.pixSize = pixSize;

simProps.psfSize = psfSize;

simProps.celSize = celSize;

simProps.nFrames = nFrames;

simProps.SNR = SNR;

simProps.blurFlag = blurFlag;

simProps.nSubs = nSubs;

simProps.dtRef = dtRef;

simProps.confBool = confBool;

end
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function resStruct = dataParse(data, mask)

%

% NAME:

% dataParse

% PURPOSE:

% Analyze single-molecule imaging data with tracking or STICS

% CATEGORY:

% Image Processing

% CALLING SEQUENCE:

% resStruct = dataParse(data,flag);

% INPUTS:

% data: x by y by t movie of fluorescence data

% mask: (optional) 2d binary roi selection mask

% OUTPUTS:

% resStruct: fitting result 'structure'

% PROCEDURE:

% 1. Peak fitting, then MSD calculation a la single molecule analysis

% 2. Correlation function calculation and width estimation

% 3. Diffusion coefficient estimation by MSD fitting

% MODIFICATION HISTORY:

% Written by David J. Rowland, The University of Michigan, 3/16.

% NOTES:

% This code 'dataParse.m' should be considered 'freeware'- and may be

% distributed freely in its original form when properly attributed.

%

% For testing purposes, run this script:

%

% [v,sP]=dataGen('D',.1,'tFrame',.05,'nFrames',500);

% r = dataParse(v)

% plot(r.iMSDs); hold all

% plot(r.MSDs)

% plot(r.MSDd); hold off

%% analysis parameters

tFrame = 0.05; % camera integration time in seconds

nTau = 5; % number of smallest time lag values to use (excluding 0)

pixelSize = .049; % pixel size in microns

nFrames = size(data,3); % number of frames in the data

yesOverlap = 1; % use overlapping time lags?

isConfined = 1; % use confined MSD curve fit?
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padStyle = 1; % padding style for STICS analysis

% 1 : pad zeros, 2: pad mean, 3: pad mean outside mask

%% single molecule tracking analysis

% spot fitting.

fitP = zeros(nFrames, 6);

parfor ii = 1:nFrames

% this loop may be parallelized by simply replaceing 'for' with 'parfor'

% and starting a parallel pool before running the code.

fitP(ii,:) = gaussFit(data(:,:,ii));

end

% 'tracking'. missed spots will register as nans.

tr = fitP(:,1:2) * pixelSize;

% calculate mean squared displacements, one for each time lag value

MSDs=zeros(nTau,2);

for ii=1:nTau

if yesOverlap % overlapping frame pairs

indvec1=ii+1:nFrames;

indvec2=1:nFrames-ii;

elseif ~yesOverlap % nonoverlapping frame pairs

indvec2=1:ii:nFrames;

indvec1=indvec2(1:end-1);

indvec2=indvec2(2:end);

end

% mean squared displacements vs time lag

MSDs(ii,:)=nanmean((tr(indvec2,:)-tr(indvec1,:)).^2,1);

end

%% STICS analysis

% pad images

switch padStyle

case 1

data = padZeros(data);

case 2

data = padMean(data);

case 3

data = padMask(data,mask);
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end

% time-space correlation function calculation

if yesOverlap % overlapping frame pairs

famps=abs(fft(fft(fft(data,[],1),[],2),[],3)).^2;

STCorr = fftshift(fftshift(real(ifft(ifft(ifft(famps...

,[],1),[],2),[],3)),1),2)/numel(famps)/mean(data(:))^2-1;

STCorr = STCorr(:,:,2:nTau+1);

elseif ~yesOverlap % nonoverlapping frame pairs

vFft=fft2(data);

STCorr=zeros(size(vFft,1),size(vFft,2),nTau+1);

STCorr(:,:,1)=mean(bsxfun(@times,real(fftshift(fftshift(...

ifft2(vFft.*conj(vFft)),1),2)),1./(mean(mean(data)).^2)),3);

for kk=1:nTau

ind1 = 1:kk:vidsize(3);

ind2 = ind1(2:end);

ind1 = ind1(1:end-1);

STCorr(:,:,kk+1) = mean(bsxfun(@times,real(fftshift(fftshift( ...

ifft2(vFft(:,:,ind2).*conj(vFft(:,:,ind1))),1),2)), ...

1./mean(mean(data(:,:,ind1)))./mean(mean(data(:,:,ind2)))),3);

end

STCorr=STCorr/numel(vFft(:,:,1))-1;

end

% estimate the widths of the correlation function

iMSDs=zeros(nTau,2); MSDd=iMSDs;

[x,y]=ndgrid(1:size(STCorr,1),1:size(STCorr,2));

for ii = 1:nTau

fitP = gaussFit(STCorr(:,:,ii),'widthGuess',5,'nPixels',...

min(size(STCorr(:,:,1))),'findTheSpot',0);

iMSDs(ii,:) = fitP(3:4).^2 * pixelSize^2;

% discrete variance calculation for x dimension

pmf=sum(STCorr(:,:,ii)/sum(sum(STCorr(:,:,ii))),2);

MSDd(ii,1) = sum(pmf.*(x(:,1)-mean(x(:))).^2) * pixelSize^2;

% discrete variance calculation for x dimension

pmf=sum(STCorr(:,:,ii)/sum(sum(STCorr(:,:,ii))),1);

MSDd(ii,2) = sum(pmf.*(y(1,:)-mean(y(:))).^2) * pixelSize^2;
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end

%% MSD Fitting

% choose fitting function

if isConfined

f=@(p,X)sqconfMSD1D(p,X);

pStart = [.1, .1, 0];

lb = [0, 0, -inf];

ub = [inf, inf, inf];

else

f=@(p,X) 2*p(2)*X+p(1);

pStart = [0, .1];

lb = [-inf, 0];

ub = [inf, inf];

end

% time lag domain vector

tau = (1:nTau)'*tFrame;

% D from tracking

pT(:,1)=lsqcurvefit(f,pStart,tau,MSDs(:,1),lb,ub);

pT(:,2)=lsqcurvefit(f,pStart,tau,MSDs(:,2),lb,ub);

% D from STICS

pS(:,1)=lsqcurvefit(f,pStart,tau,iMSDs(:,1),lb,ub);

pS(:,2)=lsqcurvefit(f,pStart,tau,iMSDs(:,2),lb,ub);

% D from 'discrete variance'

pD(:,1)=lsqcurvefit(f,pStart,tau,MSDd(:,1),lb,ub);

pD(:,2)=lsqcurvefit(f,pStart,tau,MSDd(:,2),lb,ub);

resStruct.Dtracking = pT(2,:);

resStruct.Dstics = pS(2,:);

resStruct.Dvar = pD(2,:);

resStruct.MSDs = MSDs;

resStruct.iMSDs = iMSDs;

resStruct.MSDd = MSDd;

end

function zi=sqconfMSD1D(p,X)
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l=p(1);

d=exp(p(2));

ns=p(3);

tau=X;

summedTerm=@(t,d,l,n)1/n^4*exp(-(n*pi/l).^2*d*t);

temp=eps*ones(size(tau));

for ii=1:2:2*400-1

s=summedTerm(tau,d,l,ii);

if sum(s./temp)<1e-10

break

end

temp=temp+s;

end

zi=l^2/6*(1-96/pi^4*temp)+ns;

zi(isnan(zi))=eps;

zi(isinf(zi))=eps;

end

function imStack=padMask(imStack,mask)

% replace pixels outside the mask with the average value inside the mask in

% each frame

imsize=size(imStack);

mMean=mean(reshape(imStack(mask(:,:,ones(1,imsize(3)))),[],imsize(3)));

imStack(~mask(:,:,ones(1,imsize(3))))=mMean(ones(1,sum(~mask(:))),:);

end

function imstack=padMean(imstack)

% pad the first two dimensions to double size with the mean of each image

imstack=mat2cell(imstack,size(imstack,1),size(imstack,2),ones(1,size(imstack,3)));

imm=cellfun(@(x)mean(mean(x(mask))),imstack,'uniformoutput',false);

imstack=cellfun(@(x,y)padarray(x,floor(size(x)/2),y),imstack,imm,...

'uniformoutput',false);

imstack=cat(3,imstack{:});

end

function imstack=padZeros(imstack)

% pad the first two dimensions to double size with zeros

imstack=mat2cell(imstack,size(imstack,1),size(imstack,2),ones(1,size(imstack,3)));
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imstack=cellfun(@(x,y)padarray(x,floor(size(x)/2),y),...

imstack,repmat({0},1,1,size(imstack,3)),'uniformoutput',false);

imstack=cat(3,imstack{:});

end
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function [fitPars, conf95]=gaussFit(img, varargin)

%

% NAME:

% gaussFit

% PURPOSE:

% Fits a generalized gaussian function to 2d imaging data. This code

% produces results in units of pixels for the center position and

% widths.

% CATEGORY:

% Image Processing

% CALLING SEQUENCE:

% [fitPars, conf95] = gaussFit(img,findTheSpot);

% INPUTS:

% img: The two-dimensional array to be fit to a gaussian

%

% varargin: use paired inputs to set the property (input 1) to the

% value (input 2) desired.

%

% Properties: Descriptions:

%

% findTheSpot: 1 or 0. Default behavior is to fit an

% ROI in the center of the image. If the spot is not near the

% center or the image is very large, findTheSpot enables the code

% to first roughly locate the spot and then use that location as

% the ROI center.

%

% plottingFlag: 1 or 0. show plotting output. default is 0.

%

% widthGuess: set the starting value for the width of the

% Gaussian in units of pixels.

%

% nPixels pixel width of ROI to be selected from img. default

% is 11. the value should be odd.

%

% OUTPUTS:

% fitPars: fitting coefficient vector, all units are pixels.

% fitCI: 95% confidence interval of fitting coefficients at

% end of fitting

% PROCEDURE:

% 1. Peak guessing and/or data ROI selection of local area inside img

% 2. Non-linear least squares minimization for 7 (or 6) - parameter
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% Gaussian function on the ROI selected.

% MODIFICATION HISTORY:

% Written by David J. Rowland, The University of Michigan, 3/16.

% NOTES:

% This code 'gaussFit.m' should be considered 'freeware'- and may be

% distributed freely in its original form when properly attributed.

%

% For testing purposes, run this script:

%

% img = exp(-x.^2/2/2^2-y.^2/2/3^2)+.02*randn(size(x));

% p = gaussFit(img,'widthGuess',2);

% if any sim parameters are included as inputs, change the simulation

% parameters mentioned

if nargin>1

fNames={'findTheSpot', 'plottingFlag', 'widthGuess', 'nPixels'};

for ii=1:2:nargin-1

whichField = strcmp(fNames,varargin{ii});

if all(~whichField)

warning('Check spelling. Parameter change may have not occurred.')

end

eval([fNames{whichField} ' = varargin{ii+1};'])

end

elseif rem(nargin,1)

warning('use paired inputs if using varargin.')

% empty output. size must change if the gaussian fitting function is changed.

fitPars = nan(1,6);

conf95 = nan(1,6);

return

end

%% declaring fitting predicates

if ~exist('findTheSpot','var')

findTheSpot = 1;

end

if ~exist('plottingFlag','var')

plottingFlag = 0;
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end

if ~exist('widthGuess','var')

widthGuess = 2;

end

if ~exist('nPixels','var')

nPixels = 11;

end

% freely rotating bivariate gaussian function for least squares minimization

% parameters: [xCenter, yCenter, angle, xSD, ySD, amplitude, offset]

% xR=@(x,y,xc,yc,th)(x-xc)*cos(th)-(y-yc)*sin(th);

% yR=@(x,y,xc,yc,th)(x-xc)*sin(th)+(y-yc)*cos(th);

% f=@(p,X) exp( -xR(X(:,1), X(:,2), p(1), p(2), p(3)).^2/2/p(4)^2 + ...

% -yR( X(:,1), X(:,2), p(1), p(2), p(3)).^2/2/p(5)^2 ) *p(6) + p(7);

% fixed angle fit

% parameters: [xCenter, yCenter, xSD, ySD, amplitude, offset]

th=0;

xR=@(x,y,xc,yc)(x-xc)*cos(th)-(y-yc)*sin(th);

yR=@(x,y,xc,yc)(x-xc)*sin(th)+(y-yc)*cos(th);

f=@(p,X) exp( -xR(X(:,1), X(:,2), p(1), p(2)).^2/2/p(3)^2 + ...

-yR( X(:,1), X(:,2), p(1), p(2)).^2/2/p(4)^2 ) *p(5) + p(6);

% bounds

lb=[-inf, -inf, 0, 0, -inf, -inf];

ub=[inf, inf, inf, inf, inf, inf];

%% data selection

if findTheSpot

% select the local area around a bright spot in a larger image

% bandpass and threshold

LP=1; % low pass value

HP=10; % high pass value

intThresh=0.1; % intensity threshold. set to zero and then check by inspection

hMax=0.1; % larger if the dynamic range of your data is larger

lzero=4; % this squelches a 5 pixel boundary around the filtered image

bIm=bpassDJR(img, LP, HP, intThresh, lzero);
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% watershed algorithm

extImg=imextendedmax(bIm,hMax);

% failed watershed algorithm can result in all ones

if all(extImg(:))

extImg=extImg-1;

end

% shrink to a point. this is the estimated location of the spot

sIm=bwmorph(extImg,'shrink',inf);

% the index of the one pixel is a good guess for the particle location

[locInds(:,1),locInds(:,2)]=find(sIm);

% temporally coincdident guesses are not treated with this code.

if size(locInds(:,1))~=1

fitPars=nan(1,6);

conf95=nan(1,6);

return

end

else

% otherwise, assume the spot is in near the center of the image

locInds=round(size(img)/2);

end

% pad the img(s) with nans (removed later).

padsize=[nPixels,nPixels];

padVal=nan;

direction='both';

img=padarray(img,padsize,padVal,direction);

locInds=locInds+nPixels;

% find the selection domain

[sDom1,sDom2]=ndgrid(locInds(1)-(nPixels-1)/2:locInds(1)+(nPixels-1)/2, ...

locInds(2)-(nPixels-1)/2:locInds(2)+(nPixels-1)/2);

inds=sub2ind(size(img),sDom1(:),sDom2(:));

% select the data

truImg=reshape(img(inds),[nPixels,nPixels]);

%% starting parameter selection for 6-parameter Gaussian Fit
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% x, y centers starting guess

pStart(1)=0;

pStart(2)=0;

% xSD, ySD in units of pixels

pStart(3)=widthGuess;

pStart(4)=widthGuess;

% amplitude, offset

mVals=[max(truImg(:)),min(truImg(:))];

pStart(5)=mVals(1)-mVals(2);

pStart(6)=mVals(2);

%% fitting the data

[x,y]=ndgrid(1:nPixels,1:nPixels);

X=cat(2,x(:),y(:)) - nPixels/2;

[fitPars, ~, residual, ~, ~, ~,jacobian] = ...

lsqcurvefit(f,pStart,X(~isnan(truImg(:)),:),truImg(~isnan(truImg(:))),...

lb,ub);

% confidence intervals

conf95 = nlparci(fitPars, residual,'jacobian',jacobian);

%% plot the output

if plottingFlag

fVals=reshape(f(fitPars,X),[nPixels,nPixels]);

dVals=truImg;

sVals=reshape(f(pStart,X),[nPixels,nPixels]);

subplot(221)

title('Data')

pcolor(kron(dVals,ones(10)))

shading flat; axis image; colorbar

subplot(222)

title('starting values')

pcolor(kron(sVals,ones(10)))

shading flat; axis image; colorbar

subplot(223)

title('fit result')
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pcolor(kron(fVals,ones(10)))

shading flat; axis image; colorbar

subplot(224)

title('residuals')

pcolor(kron(dVals - fVals,ones(10)))

shading flat; axis image; colorbar

end

% shift center back to lab frame

fitPars([1,2])=fitPars(1:2)+locInds-nPixels;

end
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APPENDIX B
Code for Chapter 4: simpleDi�usion, cpdFunFinder,

cpdGlobal

For the most up-to-date version of the following code, please visit

https://github.com/BiteenLab/SingleMoleculeDataAnalysis

function tr =

simpleDiffusion(diffusionCoefficient,integrationTime,numberOfFrames,micronsPerPixel)

% diffusionCoefficient in microns per second^2

% integration time in seconds

tr = cumsum(cat(1,[0,0],sqrt(2*diffusionCoefficient*integrationTime)*...

randn(numberOfFrames-1,2)),1);

tr(:,4:5) = tr(:,1:2)/micronsPerPixel;

tr(:,1) = 1;

tr(:,2) = 1:numberOfFrames;

tr(:,3) = nan;

end
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function outStruct = cpdFunFinder(nMobile)

%

% NAME:

% cpdFunFinder

% PURPOSE:

% Based on the number of diffusive terms, determine the fitting

% function structure required for use in the CPDGlobal. code.

% CATEGORY:

% Data fitting

% CALLING SEQUENCE:

% outStruct = cpdFunFinder(nMobile);

% INPUTS:

% nMobile: Integer number of expected diffusive components

%

% OUTPUTS:

% outStruct: Matlab structure used inside CPDGlobal to construct

% the required fitting function.

% MODIFICATION HISTORY:

% Written by David J. Rowland, The University of Michigan, 11/16.

% NOTES:

% This code 'cpdFunFinder.m' should be considered 'freeware'- and may be

% distributed freely in its original form when properly attributed.

% partial 2d cpd function

c2=@(x,y,p)p*exp(-x./y);

% 2d confined msd function

m2=@(t,p)4*p(1)*t+p(2);

% starting values

pStart = [.9,0,.1, .01, .0025, .00001, .2, .2, .2, .2];

% bounds for the fit

LB=-inf(1,numel(pStart));

LB(7:10) = 0;

UB=inf(1,numel(pStart));

UB(7:10) = 1;

switch nMobile
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case 1

msdFun=@(tau,p) ...

m2(tau,p([1,2]));

cpdFun=@(x,y,p)1-...

c2(x,y(1),1);

pID = 1:2;

case 2

msdFun=@(tau,p)cat(2,...

m2(tau,p([1,2])),...

m2(tau,p([3,2])));

cpdFun=@(x,y,p)1-...

c2(x,y(1),p(4))-...

c2(x,y(2),1-p(4));

pID = [1:3,7];

case 3

msdFun=@(tau,p)cat(2,...

m2(tau,p([1,2])),...

m2(tau,p([3,2])),...

m2(tau,p([4,2])));

cpdFun=@(x,y,p)1-...

c2(x,y(1),p(5))-...

c2(x,y(2),p(6))-...

c2(x,y(3),1-p(5)-p(6));

pID = [1:4,7:8];

case 4

msdFun=@(tau,p)cat(2,...

m2(tau,p([1,2])),...

m2(tau,p([3,2])),...

m2(tau,p([4,2])),...

m2(tau,p([5,2])));

cpdFun=@(x,y,p)1-...

c2(x,y(1),p(6))-...

c2(x,y(2),p(7))-...

c2(x,y(3),p(8))-...

c2(x,y(4),1-p(6)-p(7)-p(8));

pID = [1:5,7:9];

case 5

msdFun=@(tau,p)cat(2,...
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m2(tau,p([1,2])),...

m2(tau,p([3,2])),...

m2(tau,p([4,2])),...

m2(tau,p([5,2])),...

m2(tau,p([6,2])));

cpdFun=@(x,y,p)1-...

c2(x,y(1),p(7))-...

c2(x,y(2),p(8))-...

c2(x,y(3),p(9))-...

c2(x,y(4),p(10))-...

c2(x,y(5),1-p(7)-p(8)-p(9)-p(10));

pID = [1:10];

end

pStart={pStart(pID)};

bounds=[{LB(pID)},{UB(pID)}];

dID = find(ismember(pID,[1,3:6]));

aID = find(ismember(pID,7:10));

outStruct.cpdFun = cpdFun;

outStruct.msdFun = msdFun;

outStruct.pStart = pStart;

outStruct.bounds = bounds;

outStruct.dID = dID;

outStruct.aID = aID;

end
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function out = CPDGlobal(tr)

%

% NAME:

% CPDGlobal

% PURPOSE:

% Given trajectories of diffusing molecules fit all Cumulative

% probability distributions (CPDs) of step sizes given a particular model of

% diffusion all at once. This is a multi-domain fit, where several of

% the domains are the squared step size domains of the CPDs, and the

% other is the time lag domain typically used in MSD fits to the

% model of diffusion.

% CATEGORY:

% Data fitting

% CALLING SEQUENCE:

% outStruct = CPDGlobal(tr);

% INPUTS:

% tr: is a cell array with each element being n X 4,

% where n is the number of frames. The first column

% is the trajectory id number (integers), the second

% column is the time step id (integers), and the 3rd

% and 4th columns are the x and y positions of the

% trajectory

%

% OUTPUTS:

% out: Matlab structure used inside CPDGlobal to construct

% the required fitting function.

% USAGE:

% Configure the analysis parameters below to correspond to your

% particular experimental setup.

% MODIFICATION HISTORY:

% Written by David J. Rowland, The University of Michigan, 11/16.

% NOTES:

% This code 'CPDGlobal.m' should be considered 'freeware'- and may be

% distributed freely in its original form when properly attributed.

%% Default analysis parameters

anProp.nMobile = 1; % number of diffusive populations

anProp.tFrame = .0104; % camera integration time in seconds

anProp.pixSize = .049; % pixel size in microns

anProp.minTau = 1; % minimum time lag in frames

anProp.maxTau = 5; % maximum time lag in frames
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anProp.overBool = 0; % use overlapping or non-overlapping displacements?

anProp.bootNum = 300; % number of bootstraps

% partial 2d cpd function

c2=@(x,y,p)p*exp(-x./y);

% 2d confined msd function

m2=@(t,p)4*p(1)*t+p(2);

% linearized cell arrays of similar dimension

linCell=@(x)cat(1,x{:});

% disable fitting routine textual output

opts = optimset('Display','off');

%% calculate and collect all the squared step sizes for each time lag considered

for kk=1:numel(tr)

if isempty(tr{kk})

continue

end

trackNums = unique(tr{kk}(:,1))';

if ~isempty(trackNums)

for ii = trackNums

tracks = tr{kk}(tr{kk}(:,1)==ii,[2,3,4]);

% fill in the time holes with nans

fixedTrack = nan(max(tracks(:,1)),size(tracks,2));

fixedTrack(tracks(:,1),:) = tracks;

% remove leading nans

fixedTrack(1:find(all(isnan(fixedTrack),2)==0,1,'first')-1,:) = [];

nLocs = size(fixedTrack,1);

for jj=1:anProp.maxTau

if anProp.overBool % overlapping displacements

indvec1=jj+1:nLocs;

indvec2=1:nLocs-jj;

elseif ~anProp.overBool % non-overlapping displacements

indvec2=1:jj:nLocs;

indvec1=indvec2(1:end-1);

indvec2=indvec2(2:end);
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end

% calculate squared step sizes

allSqSteps{kk,ii,jj}=nansum( (fixedTrack(indvec1,[2,3]) - ...

fixedTrack(indvec2,[2,3])).^2, 2);

end

end

end

end

%% compile the cumulative probability distributions for each time lag

sqSteps=cell(anProp.maxTau,1);

for ii=1:anProp.maxTau

wSteps = cat(1,allSqSteps{:,:,ii});

sqSteps{ii}=sort(wSteps(wSteps > eps)); % nansum puts zeros where there were

nans

end

oRanks=cellfun(@(x)linspace(0,1,numel(x))',sqSteps,'uniformoutput',0);

sqSteps = cellfun(@(x)x*anProp.pixSize.^2,sqSteps,'uniformoutput',0);

nSteps = cellfun(@numel,sqSteps,'uniformoutput',0);

%% fitting function selection

funFinds = cpdFunFinder(anProp.nMobile);

cpdFun = funFinds.cpdFun;

msdFun = funFinds.msdFun;

pStart = funFinds.pStart;

bounds = funFinds.bounds;

dID = funFinds.dID;

aID = funFinds.aID;

% uninformed amplitude guesses

pStart{1}(aID) = 1/(numel(aID)+1);

%% GLOBAL FITTING

fHandle=@(p,tau,sqSteps,ranks)linCell(...

cellfun(@(x,y)x-y,...

cellfun(@(x,y)cpdFun(x,y,p),...

sqSteps,num2cell(msdFun(tau,p),2),'uniformoutput',0),...

ranks,'uniformoutput',0));

eHandle=@(p,tau,sqSteps)cellfun(@(x,y)cpdFun(x,y,p),...

sqSteps,num2cell(msdFun(tau,p),2),'uniformoutput',0);
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% fit to original data

y=sqSteps;

r=oRanks;

% time lag domain in seconds

tau = (1:anProp.maxTau)'*anProp.tFrame;

% fitting to the original data

[fP_nB,~,r_nB] = lsqnonlin(@(p)fHandle(...

p,tau(anProp.minTau:end),y(anProp.minTau:end),r(anProp.minTau:end)),...

pStart{1},bounds{1},bounds{2},opts);

% split up the residuals into into 1 for each cpd curve

rTemp = r_nB;

for ii = anProp.minTau:anProp.maxTau

residCell{ii} = rTemp(1:nSteps{ii});

rTemp(1:nSteps{ii}) = [];

end

% bootstrap

fP_B = zeros(anProp.bootNum,numel(pStart{1}));

parfor kk = 1:anProp.bootNum

% resamples with replacement

y1 =

cellfun(@(x,y)sort(x(randsample(y,y,1))),sqSteps,nSteps,'uniformoutput',0);

r1 = oRanks;

% fitting to the bootstrapped data

fP_B(kk,:) = lsqnonlin(@(p)fHandle(...

p,tau(anProp.minTau:end),y1(anProp.minTau:end),r1(anProp.minTau:end)),...

pStart{1},bounds{1},bounds{2},opts);

end

%% plot results

c = colormap('lines');

c = c(1:7,:);

if anProp.nMobile > 1

nPlots = 3;

else

nPlots = 2;

end

140



subplot(nPlots,1,1)

for ii = 1:numel(dID)

h=histogram(fP_B(:,dID(ii)),'normalization','probability','displaystyle','stairs');

set(h,'edgecolor',c(ii,:))

hold on

end

title('Bootstrapped diffusion coefficients')

set(gca,'xscale','log'); hold off

subplot(nPlots,1,2)

for ii = anProp.minTau:anProp.maxTau

plot(sqSteps{ii},residCell{ii}); hold all

end

title('Original data CPD residuals');

hold off

if anProp.nMobile > 1

subplot(nPlots,1,3)

lastAmp = ones(anProp.bootNum,1);

for ii = 1:numel(aID)

h=histogram(fP_B(:,aID(ii)),'normalization','probability','displaystyle','stairs');

set(h,'edgecolor',c(ii,:))

hold on

lastAmp = lastAmp-fP_B(:,aID(ii));

end

h=histogram(lastAmp,'normalization','probability','displaystyle','stairs');

title('Bootstrapped population amplitudes')

hold off

end

% output files

out.fittedParameters_nB = fP_nB;

out.cpdResiduals = residCell;

out.sqSteps = sqSteps;

out.dID = dID;

out.aID = aID;

end
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