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ABSTRACT 

 
This dissertation describes a protective effect on autoimmune diabetes in 

NOD.scid recipients following injections of splenocytes from diabetic NOD donors in 

addition to purified CD19+ cells taken from pre-diabetic 6-week-old NOD female donors, 

compared to NOD.scid recipients receiving injections of splenocytes from diabetic NOD 

donors alone. Delayed progression of T1D was associated with a remarkable reduction 

in IL-1β plasma levels, a reduction in the severity of insulitis, and increased levels of 

CD19+ precursor B cells (compared to controls) likely exhibiting regulatory function upon 

activation and interaction with pathogenic T cells.  The protective effect conferred by 

CD19+ cells was age specific as co-transfers of CD19+ cells from 6-week-old NOD mice 

exhibited a suppressive effect halting and/or significantly delaying the progression of 

diabetes and insulitis, while those from greater than 15-week-old NOD donors did not 

confer the same protective effect. Administration of a monoclonal antibody against IL-1β 

in NOD.scid recipients following injection of diabetic NOD splenocytes significantly 

delayed diabetes onset, unlike the administration of an isotype-matched antibody.  In 

conclusion, progression to overt disease correlates with the pathogenic T cell’s escape 

from CD19+ cell–mediated regulation.  These data provide evidence for a novel 

suppressive function of the regulatory B cell compartment in autoimmune diabetes.  The 

expansion of regulatory CD19+ B cells may have therapeutic potential for T1D. 
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CHAPTER I 

The Importance of Type 1 Diabetes 

A. Introduction 

Type 1 diabetes (T1D) is a chronic autoimmune disease whereupon insulin 

production is severely limited and even lost as a result of immune-mediated destruction 

of pancreatic β cells responsible for generating the insulin protein (Atkinson, 2012; 

Bluestone, Herold, & Eisenbarth, 2010; Eisenbarth, 1986; Todd, 2010).  While T1D was 

traditionally referred to as juvenile diabetes due its classical presentation in children and 

young adults, recent discoveries of patients with late adult-onset diabetes (LADA) and 

no longer is a defining characteristic of T1D (Gale, 2005; Leslie, 2010).  Patients with 

T1D commonly present with symptoms of polydipsia, polyphagia, and polyuria, and 

along with overt hyperglycemia, represent the diagnostic hallmarks of a new-onset T1 

diabetic (Atkinson, Eisenbarth, & Michels, 2014; Siafarikas & O'Connell, 2010).  Clinical 

diagnosis of T1D typically includes patients with a fasting blood glucose higher than 7 

mmol/L, a normal glucose level higher than 11.1 mmol/L, and typically the presence of 

autoantibodies against insulin or another T1D autoantigen (Knip, 2011; A. Michels et al., 

2015).  Patients who suffer from T1D have pressing needs for insulin replacement, and 

are consigned to a lifelong need for continued exogenous insulin treatment (Little et al., 

2014).  This need is due to the insulin’s central role in controlling metabolic homeostasis 
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and maintaining circulating blood glucose, vital for the health and well-being of 

everyone. 

Population patterns for T1D incidence also vary around the world, and although 

T1D can now be diagnosed at any age, it is considered by the scientific community as 

one of the most common chronic autoimmune diseases seen in children (Harjutsalo, 

Sjoberg, & Tuomilehto, 2008).  Unlike other autoimmune diseases that 

disproportionately affect women, T1D is found just as often in men (Ostman et al., 

2008).  Globally, patterns of T1D incidence emerge amid varied populations (Maahs, 

West, Lawrence, & Mayer-Davis, 2010).  For example, the highest recorded number of 

cases are found in populations living in Finland and Sardinia, with between 40-60 cases 

per 100,000 residents being newly diagnosed each year (Patterson, Dahlquist, Gyurus, 

Green, & Soltesz, 2009).  However, the opposite is seen in countries such as China, 

India, Latin America, or sub-saharan Africa with a very low estimate of 0.1 recorded 

cases per 100,000 residents diagnosed annually (Gong et al., 2015).  The differences 

between these populations are thought to hinge upon a number of issues including, but 

not limited to, environmental stimuli that may or may not trigger autoimmune activation 

(Maclaren & Atkinson, 1992), gut microbiota and corresponding diets (Boerner & 

Sarvetnick, 2011; Knip, Virtanen, & Akerblom, 2010), viral activation of autoimmune 

cells or direct destruction of β cells (Stene & Rewers, 2012; Yeung, Rawlinson, & Craig, 

2011), and genetic susceptibility (Morran, Vonberg, Khadra, & Pietropaolo, 2015). 

A main culprit to the heightened incidence of T1D is due to its strong genetic 

component.  T1D familiar aggregation has been described due to the increased risk of 

developing T1D among United States Caucasian siblings who had either parents, 
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siblings, or offspring with diagnosed T1D (Allen, Palta, & D'Alessio, 1986; Wagener, 

Sacks, LaPorte, & Macgregor, 1982).  This increased risk ranges from 1% to 15% 

depending on the select subgroup, as compared to a less than 1% chance for 

individuals without any relatives with T1D, and an even smaller 1.2/1,000 when 

compared to the general population (Libman & LaPorte, 2005; Warram, Krolewski, 

Gottlieb, & Kahn, 1984).  However, even with this increased risk susceptibility, over 80% 

of T1D occurrences happen in patients with no family history of T1D, with the remaining 

20% amassing within families (Redondo & Eisenbarth, 2002).  As a result of many 

studies, it has been projected that the overall risk of developing lifelong T1D is 

increased in first degree relatives of individuals with T1D.  The average risk is increased 

by 6% in offspring of T1D patients, 5% increase in siblings, and a massive 50% 

increase in risk for developing T1D in the identical twin of a T1D patient (Redondo et al., 

1999).  For example, genes for increased diabetes susceptibility among the antigen-

presenting Human Leukocyte Antigen (HLA) are believed to follow the laws of simple 

Mendelian transmission from parents to offspring.  Therefore, offspring of parents with 

similar high-risk HLA alleles have the greatest risk of developing autoimmune T1D, with 

a risk as great as 70% for developing long-term diabetes (Aly et al., 2006; Kaprio et al., 

1992). 
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B. The Genetic Susceptibility of the HLA Complex 

 Human chromosome 6 (6p21) contains a 3.5 megabase gene segment 

containing the vital immune genes that are described as the major histocompatibility 

complex (MHC) (Wucherpfennig & Eisenbarth, 2001).  These localized gene sequences 

encode HLAs, which are made up of two cell surface glycoproteins with different 

structures, functions, and tissue distribution (Pos, Sethi, & Wucherpfennig, 2013).  

While the MHC class I molecules are generated and have surface expression on nearly 

all nucleated cells, MHC class II molecules are only found expressed topically on 

antigen-presenting cells, such as dendritic cells, B cells, macrophages, and on activated 

T cells (Drozina, Kohoutek, Jabrane-Ferrat, & Peterlin, 2005).  The main function of 

both the MHC class I and II glycoproteins are to act as cell-surface presenters of small 

peptide sequences called antigens that can be recognized by immune-causing T cells 

(Pietropaolo, Surhigh, Nelson, & Eisenbarth, 2008).  The difference and need for MHC 

class I and II is due to the fact that, MHC class I present peptide antigens that are 

recognized by cytotoxic CD8+ T cells, while helper/inducer CD4+ T cells recognize 

antigenic peptides in the context of MHC class II presenting cells (Neefjes, Jongsma, 

Paul, & Bakke, 2011). 

T1D, while a traditional organ-specific disease whereupon targeted destruction of 

insulin-producing β cells is the root cause of clinical diagnosis, is labeled as primarily a 

CD4+ T-cell mediated autoimmune disease.  The importance of class II molecules and 

the antigens they present becomes vital and plays a key role in susceptibility to T1D.  

Class II proteins depend on the structured amino-acid compositions of their alpha and 

beta chains to properly present different antigens.  Mutations and substitutions at even 
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one or two critical areas causes conformational changes leading to either increased or 

decreased binding of important autoantigens that lead to activation of auto-reactive T 

cells (Khalil et al., 1990; Rowe, Leech, Nepom, & McCulloch, 1994).  A classic example 

in T1D exists whereupon over 90% of all patients currently diagnosed with T1D express 

HLA-DR3-DQ2 (HLA-DR3,DQB1*0201), or HLA-DR4-DQ8 (HLA-DR4,DQB1*0302), 

while only 40% of non-diabetic control patients have either one or the other haplotype 

(Tisch & McDevitt, 1996).  What’s even more important, is that nearly 30% of all 

diagnosed T1D have both haplotypes (DR3/DR4 heterozygotes), which has been 

shown to impart the highest risk to developing T1D.  These patients heterozygous for 

DR3/DR4 versus homozygotes with either DR3 or DR4, have increased risk 

hypothesized to be due to the interaction with the trans-complementing DQ 

heterodimers that are seen only in the DR3/DR4 heterozygotes (Erlich et al., 2008).  

Further genetic susceptibility studies using the DR3/DR4 HLA heterodimers 

demonstrate that the presence of the heterozygous alleles imparts increased risk to 

progression towards T1D, upwards of 20-40% in first degree relatives (Aly et al., 2006).  

Interestingly, similar changes in HLA of DR and DQ have been seen in differing 

populations to impart increased risk of developing T1D in patients around the globe, 

showing the importance of HLA and MHC class II molecules to activate a T cell-

mediated autoimmune response (Cucca et al., 2001; Katahira, Segawa, Maeda, & 

Yasuda, 2010; Redondo & Eisenbarth, 2002; She, 1996; Varney et al., 2010).  



6 
		

 

Figure 1: Schematic representation of the HLA complex contained on 
chromosome 6 of the human genome.   
Within the MHC class II gene segment (HLA DP/DQ/DR), the genes that can capably encode a protein product are 
indicated using the grey color.  The genes encoding non-functional or uncharacterized products remain white. 
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Within the non-obese diabetic (NOD) mouse model, the importance of MHC 

class II molecules in the pathogenesis of T1D becomes even clearer as the main 

activator of T cell mediated insulitis (Fig. 2).  The expression of the mouse I-A β chain 

transgene, which finds an equivalent in the high susceptibility human class II DQB1 

gene locus, with a mutation at position 57 of asparagine in lieu of serine, protects NOD 

mice from developing T1D (Miyazaki et al., 1990; Slattery et al., 1990).  Similar 

mutations around the same loci, with proline 56 replacing the commonly found histidine 

56 also had the same effect of preventing diabetes from occurring in NOD mice (Lund et 

al., 1990).  Another important finding showing the importance of the class II molecules 

was seen in the expression of certain mutations in I-E transgenes, which mimic the 

human HLA-DR locus, led to protection from diabetes onset in NOD mice (Nishimoto, 

Kikutani, Yamamura, & Kishimoto, 1987).  These results, when combined with early 

data showing the block of the MHC class II complex using a class II specific monoclonal 

antibody in NOD mice prevented them from developing diabetes, strengthen the case 

that T1D progression is aided immensely by the presence of specific HLA-DR/DQ 

molecules in human T1D (Boitard, Bendelac, Richard, Carnaud, & Bach, 1988).  As a 

result of these and other similar studies, current research into the ability of differing 

therapies to block the formation of the synapse between the MHC class II molecule 

presenting cogent antigen and the T cell receptor (TCR), is currently underway with 

some limited success in the T1D mouse models (A. W. Michels, 2013; L. Zhang et al., 

2014). 

  

  



8 
		

 

FIGURE 2: Tri-molecular Complex. 
Image showing the formation of the tri-molecular complex between a CD4+ helper T cell and an antigen-presenting 
cell expressing MHC class II presenting the T cell’s cognate antigen.  Expression of co-stimulatory molecules CD28, 
and activation of T cell proliferation cytokine IL-2 by the APC are also shown. 
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However, while there is understanding that the presence of certain class II 

molecules confers heightened risk of developing T1D, there are a number of differing 

hypotheses on how that conference occurs.  The crystalline structure of class II 

molecules characterized in 1993 has led to the hypothesis that the binding site of the 

DQ dimer has critical residues at position 52 and 57, which are located at the opposite 

end of the alpha chain, and are vital to the binding potential of the DQ molecule (Brown 

et al., 1993).  This hypothesis is supported by the previously described mutation 

experiments in the NOD mouse using mutations at position 57 to prevent diabetes 

(Lund et al., 1990).  The alternative hypothesis is that substitutions at either or both of 

these residues leads to a conformational change within the antigen binding site of the 

class II molecule, thereby increasing the affinity for T1D inducing peptide binding and 

presentation to auto-reactive T cells.  Further substantiating this hypothesis is the 

understanding that position 57 and 76 of the DR molecule are important for hydrogen 

and salt binding, and that potential mutations at either of these two sites would likely 

alter the antigen-binding site of the class II molecule and either decrease or increase 

affinity for diabetes-inducing peptides . 
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C. Genetic Susceptibility of Non-MHC Genes 

 As seen in the Type 1 Diabetes Genetics Consortium (T1DGC), there are a 

number of different genes encoding risk for T1D, with the presence of specific HLA 

haplotypes described above being the greatest (Barrett et al., 2009; Concannon, Rich, 

& Nepom, 2009; Cooper et al., 2012; Howson et al., 2012; Todd et al., 2007).  These 

genome-wide association studies have so far found 55 non-MHC susceptibility loci, 

including insulin, the cytotoxic T lymphocyte associated antigen 4 (CTLA4), PTPN22, 

and others.  The most important non-MHC gene discovered has been, not surprisingly, 

the insulin gene (INS), which is found on chromosome 11p15 (Bell, Karam, & Rutter, 

1981; Owerbach & Nerup, 1982), and distinction as the main product of β cells, the 

targets of autoimmune destruction in T1D.  Early on, genetic links between the 

presence of specific insulin genes (IDDM2) within populations of T1D and their families 

were proven (Bain et al., 1992; Julier et al., 1991).  Following these studies, sequence 

analysis of the INS gene discovered a specific polymorphic locus containing a variable 

number of tandem repeats (VNTRs) adjacent to the insulin gene coding sequence, 

where the presence of specific VNTR alleles leads to either protection or increased risk 

of developing T1D (Bennett et al., 1995; Durinovic-Bello et al., 2014; Kennedy, German, 

& Rutter, 1995; Lucassen et al., 1995). 

   The CTLA4 gene, which encodes a key cell-surface molecule (CTLA4), is a key 

regulator of T cell activation.  CTLA4, which is presented on activated and inactivated T 

cells, binds to the CD80/86 molecule on the antigen-presenting cell during MHC/TCR 

formation, and sends an inhibitory signal to prevent/stop T cell activation (Gough, 

Walker, & Sansom, 2005).  CTLA4 acts in direct competition to CD28 on T cells, which 
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works as “signal 2” to activate a T cell that has seen its cogent antigen (Boden, Tang, 

Bour-Jordan, & Bluestone, 2003; Noel, Boise, & Thompson, 1996).  The interplay 

between CTLA4 and CD28 work to control the off/on switches of T cell activation during 

antigen presentation.  The chromosomal region of CTLA4, region 2q33, also contains 

the CD28 gene, and was seen to be associated with risk for developing T1D in a 

number of different studies (Kavvoura & Ioannidis, 2005). 

 A third non-MHC gene that conveyed higher risk for developing T1D was 

PTPN22, which encodes a lymphoid tyrosine phosphatase (Lyp), which is important in 

its ability to downregulate T cell receptor signaling that leads to activation and the 

generation of an immune response (Bottini & Peterson, 2014; Fousteri, Liossis, & 

Battaglia, 2013).  PTPN22, which is encoded on chromosome 1p13, appears to have an 

important polymorphism at arginine 620 that changes it to tryptophan, and blocks Lyp 

from binding to c-src tyrosine kinase (Csk), thereby preventing the downregulation of 

the activation signal from the TCR (Bottini et al., 2004; Vang et al., 2005).  Interestingly, 

this mutation in PTPN22 has also been observed and associated with other 

autoimmune disorders, including rheumatoid arthritis and systemic lupus 

erythrematosus (Chung & Criswell, 2007; Y. H. Lee, Bae, Choi, Ji, & Song, 2012). 
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CHAPTER II 

Cellular Immunity in Type 1 Diabetes 

A. Background Importance 

Over the last 30 years, there have been numerous studies that have performed 

extensive histological analysis to determine the autoimmune nature of T1D (Bottazzo, 

Florin-Christensen, & Doniach, 1974; Conrad et al., 1994; Foulis, Liddle, Farquharson, 

Richmond, & Weir, 1986; Gianani et al., 2010; Pugliese et al., 2014).  Patients with T1D 

who had died presented with β cell islets with significant lymphoid infiltration that led to 

cytokine destruction of β cell mass (Conrad et al., 1994; Gianani et al., 2010).  Early 

studies initially described large numbers of activated CD8+ T cells in infiltrated islets 

also up-regulating MHC class I molecules (Bottazzo et al., 1985).  More recent studies 

have also show a preponderance of macrophages and B cells within the islets of 

patients who had been diagnosed with T1D before death (Conrad et al., 1994).  In T1D, 

the autoimmune response is controlled by a balance between pathogenic and 

regulatory T cells (Bluestone & Tang, 2005), even in the presence of numerous 

autoantibodies generated by antibody-producing B cells (Pietropaolo & Eisenbarth, 

2001). 
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 Antigen peptides, as described above, are presented by MHC class I and II 

molecules presented on the cell surfaces of antigen-presenting cells that are, in the 

presence of CD28, activate and mobilize effector CD4+ and cytotoxic CD8+ T cells 

(Haskins, Portas, Bradley, Wegmann, & Lafferty, 1988; Mallone et al., 2007).  T cells 

form their MHC/TCR synapse in order to recognize specific antigen peptide sequences 

(Basu & Huse, 2016)w.  After recognition of their specific antigen, T cells traffic to 

specific sites and begin an immune response. 

 

B. CD4+ T Cells 

 CD4+ T cells are vital during the cellular immune response, playing major roles in 

activating both CD8+ T cells and B cells.  It has been shown that human patients with 

T1D have CD4+ T cells that, when taken from the nearby pancreatic lymph nodes, have 

TCRs that specifically respond to amino acids 1-15 of the insulin α-chain (Mannering et 

al., 2009).  These patients containing autoreactive CD4+ T cells responding to insulin 

are believed to have escaped methods of positive and negative thymic selection during 

T cell education (Kurd & Robey, 2016; von Boehmer, 2004).  Also, CD4+ T cells upon 

activation undergo production of specific transcription factors that differentiate them to 

secrete different cytokines, as described below.  Important in T1D, CD4+ T cells can 

differentiate into helper Th1, Th2, Th17, or regulatory T cells (Tregs). 

 Th1 cells differentiate upon stimulation of the IL-12 receptor during activation 

leading to STAT4 stimulation and production of the T-bet transcription factor.  Th1 cells 

control cell-mediated immunity and phagocyte-dependent protective response through 
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activation and signaling the migration of CD8+ cytotoxic T cells and macrophages.  Th1 

cells aid in the destruction of β cells within the islets by producing IFN-γ (a pro-

inflammatory cytokine) and Interleukin-2 (proliferation signaling cytokine) (Crane & 

Forrester, 2005; Lan, Selmi, & Gershwin, 2008; Nelson, 2002). 

 Th2 cells, which are commonly believed to have the opposite effect as Th1 cells, 

which work to exacerbate an immune response, while Th2 cell cytokines protect against 

T1D.  Specifically, Th2 cells secrete the cytokines IL-4 and IL-10, which have been 

shown to be control antibody production, eosinophil activation, and prevent macrophage 

function (M. S. Lin et al., 2011; Romagnani, 1999).  This leads to the idea that Th2 cells 

mediate humoral and allergic immune response (Zhang, Zhang, Gu, & Sun, 2014).  

Interestingly, the activation and proliferation of Th2 cells has been shown in the NOD 

mouse to help prevent T1D onset (Ruffner & Robbins, 2010; Sharif, Arreaza, Zucker, & 

Delovitch, 2002).  IL-4 expression within pancreatic islets of transgenic NOD mice were 

protected from T1D pathogenesis as well.  IL-10 is an anti-inflammatory cytokine that 

has been shown to be important in establishing immune tolerance in NOD mice and 

preventing diabetes onset (Tai et al., 2011). 

 Th17 cells are a subset of CD4+ helper T cells that have, as their distinction, the 

ability to secrete IL-17 to induce an immune response.  While Th17 cells have been 

shown to be important in similar autoimmune disease models, such as rheumatoid 

arthritis and multiple sclerosis, they have not been shown as important in T1D as yet 

(Crome, Wang, & Levings, 2010; Marwaha et al., 2010; C. K. Wong et al., 2008).  

However, recent reports have observed that anti-IL-17 therapeutic compounds can 

somewhat regulate T1D progression in NOD mice, suggesting a role for IL-17 in 
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diabetes progression (I. F. Lee et al., 2013; M. Wang et al., 2011).  Also, transfer of IL-

17 differentiated NOD T cells in vitro led to diabetes progression in NOD.scid 

immunocompromised recipient mice, further validating the potential importance of Th17 

cells in T1D pathogenesis (Honkanen et al., 2010). 

 

C. Regulatory T Cells (Tregs)  

Tregs are CD4+ T cell subsets that act as suppressors of antigen-activated 

immunological responses to antigens (Kilshaw, Brent, & Pinto, 1975; Petzold et al., 

2013).  Tregs suppress excessive immune responses and preventing autoimmune 

activation by secreting cytokines such as IL-10, TGF-β, and IL-35 (Haseda, Imagawa, 

Murase-Mishiba, Terasaki, & Hanafusa, 2013; Sakaguchi, Yamaguchi, Nomura, & Ono, 

2008).  Requiring the unique transcription factor forkhead box P3 (FoxP3) to 

differentiate, Tregs can either be induced in the periphery upon sensing cognate antigen 

and activating (inducible Tregs), or derived during thymic development specifically as 

immune regulators (natural Tregs) (X. Lin et al., 2013).  Within T1D, recent work has 

shown that new onset patients have been found to have increased apoptosis and 

decreased functionality of Tregs (Glisic et al., 2010; Rajagopalan et al., 2006; Tonkin & 

Haskins, 2009).  Also, autologous Treg infusions in newly diagnosed children led to a 

delay in diabetes progression (Marek-Trzonkowska, Mysliwec, Siebert, & Trzonkowski, 

2013). 
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D. CD8+ T Cells 

 Cytotoxic CD8+ T cells recognize antigenic peptides presented by MHC class I 

molecules and become activated.  They are capable inducers of apoptosis through 

either perforin and granzyme release that induces a terminal caspase cascade, or 

through upregulation of the FasL receptor, which binds to Fas receptors on the target 

cell and induces cellular apoptosis (Bulek et al., 2012; Kreuwel & Sherman, 2001; 

Rasche, Busick, & Quinn, 2009; Smyth et al., 2001).  The presence of CD8+ T cells 

within the islets of T1D patients happens because β cells can present MHC class I 

molecules on their surfaces, but not MHC class II (Katz, Benoist, & Mathis, 1993; B. 

Wang, Gonzalez, Benoist, & Mathis, 1996).  Also, NOD mice genetically modified to not 

generate capable class I presentation were protected from T1D progression 

(Fierabracci, 2011; Rasche et al., 2009).  These studies demonstrate that CD8+ 

cytotoxic T cells are an important component of cell-mediated destruction of β cells 

during the autoimmune response. 
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CHAPTER III 

Islet Autoantigens and B cell Autoimmunity 

A. Autoantibodies in T1D 

Autoantibodies generated by B cells that are reactive with multiple islet autoantigens 

have been detected by assay from the serum of patients with T1D and those with high 

risk for developing diabetes (Cox & Silveira, 2009; Hampe, 2012; F. S. Wong et al., 

2004).  Autoantibodies are typically able to be found before onset of diabetes, with anti-

insulin autoantibodies being detected in 90% of patients 5 years of age or less who 

have developed T1D (Bingley, 2010).  Due to their nature as early predictors, and the 

use of these humoral immunological markers to increase the predictive value for 

progression to T1D, the use of autoantibodies is important in discovering new islet 

protein autoantigens, as well as disease-inducing epitopes (Pietropaolo, Towns, & 

Eisenbarth, 2012).  Specific autoantibodies against numerous antigens include insulin, 

glutamic acid decarboxylase 65 (GAD65), insulinoma-associated antigen 2 (IA-2), islet 

cell autoantigen 69 kDA (ICA69), zinc transporter 8, islet-specific glucose-6-

phosphatase catalytic subunit-related protein (IGRP), and chromogranin A (ChgA) to 

name but a few (Pietropaolo et al., 1993; Stadinski et al., 2010).  Detection assays to 
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find these and other newly described epitopes present a unique chance to develop 

biomarkers capable of more accurately predicting the risk to developing diabetes.  

Within the NOD mouse model of T1D, anti-insulin autoantibodies have been detected, 

and can be detected from the earliest stages of insulitis (Arvan, Pietropaolo, Ostrov, & 

Rhodes, 2012; Lampasona & Liberati, 2016). 

 Antibodies, including autoantibodies, are generated by B cells in order to aid in 

antigen uptake by antigen presenting cells.  Antibodies form complexes with specific 

antigens and are taken up by Fc receptors present on antigen presenting cells including 

B cells and monocytes consisting largely of dendritic cells (Amigorena & Bonnerot, 

1999).  Due to antibody binding, antigen uptake and presentation is nearly 100 fold 

more efficient than pinocytosis and more capable of processing and presenting bound 

antigen to T cells (Celis, Zurawski, & Chang, 1984; Lanzavecchia, 1985; Takai, 2002, 

2005).  As a result, the ability of B cells to generate autoantibodies is very important to 

antigen recognition and uptake by antigen presenting cells. 

 

B. B Cell Development 

 B cell development begins in the bone marrow, where stem cells present in the 

bone marrow will receive stimuli to generate a B cell.  B cell are derived from a common 

early lymphoid progenitor, which can differentiate into either a natural killer (NK) cell, 

dendritic cell, or common lymphoid-2 progenitor (LCA-2) which is considered the first 

stage of an immature B cell (Treml, Hao, Stadanlick, & Cancro, 2009).  B cell lineage 

development is beholden to bone marrow stromal cells which mainly secrete IL-7, the 
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prime cytokine in driving B cell pathways (Clark, Mandal, Ochiai, & Singh, 2014).  

However, bone marrow stromal cells also produce a number of other molecules 

important in B cell development including Fms-like tyrosine kinase 3 (Flt3-L), and 

transcription factors such as PU.1, IKAROS, E2A, EBF (Early B cell factor 1), PAX5, 

and IRF8 (interferon regulatory factor 8) (Fuxa & Skok, 2007; LeBien & Tedder, 2008).  

During this period B cells undergo sequential heavy chain and light chain gene 

rearrangements or V(D)J recombination, generation of a B cell receptor (BCR) which is 

also an Immunoglobulin (Ig) molecule, and then undergo central tolerance (Oltz, 2001). 

 Immunoglobulin molecules are made up of 2 identical 50 kDa heavy chains and 2 

identical 25 kDa light chains (Chaplin, 2010).  The genes that make up the heavy chain 

chain repeats are a series of variable (V) genes, then diversity (D) segments, followed 

by a constant (c) region.  The light chain contains only the V and J regions.  The V 

portion of the heavy chain and light chain are in “juxtaposition,” and each pair make up 

a hypervariable binding site for potential antigens.  The heavy chain constant region 

forms the Fc domain and the heavy chain encodes for the 9 different immunoglobulins 

that can be generated by the B cell: IgM, IgD, IgG1-4, IgA1-2, and IgE (Huston, 1997; 

Kracker & Durandy, 2011). 

During central tolerance within the bone marrow, B cells that have high affinity for 

specific self-antigens presented within the bone marrow and become activated are 

deleted or undergo another round of V(D)J recombination to generate a viable B cell 

(Gupta & Louis, 2013).  Other B cells that did not generate BCRs that recognize antigen 

are deleted due to unusable heavy and light chain rearrangements.  Those B cells that 

pass selection traffic from the bone marrow to the spleen and pass through two more 
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states of B cells as either transitional 1 (T1) as they traffic to the spleen, or transitional 2 

(T2) B cells as they migrate into the spleen (Palanichamy et al., 2009).  The transition 

from T1 to T2 B cells requires the presence of BAFF-R and TNF receptor family and B 

cells that transition from T1 to T2 reside within the follicles of the spleen (Schiemann et 

al., 2001).  T2 B cells continue to transition toward either the marginal zones or germinal 

centers of the spleen, and there they continue to develop and differentiate into either 

marginal zone (MZ) B cells or follicular (FO) B cells.  Currently, different surface 

markers are established in the literature to help identify these different subsets of 

developing and differentiated B cells (Table 1). 

Developing B cells are placed within the red pulp MZ of the spleen whereby they 

can sample many blood-borne antigens and rapidly differentiate into antibody-producing 

cells.  B cells that have encountered antigen move to the border of the cortex to present 

that antigen to waiting T cells that express CD40L.  Upon T cell recognition, CD40L on 

the T cell binds to CD40 receptor on the B cell, thereby activating the B cell to undergo 

proliferation and differentiation in the germinal center, where further somatic 

hypermutation can occur (Aversa, Punnonen, Carballido, Cocks, & de Vries, 1994; 

Klaus, Berberich, Shu, & Clark, 1994).  Within the germinal center, there is a “dark 

zone” of rapidly dividing B cells and a “light zone” where B cell selection is occurring by 

BCR-bound antigenic interactions with primed follicular helper CD4+ T cells (Craft, 

2012).  Long lived plasma cells generated in the germinal center traffic out and are 

retained within the bone marrow under the care of IL-6, B cell activating factor (BAFF), 

and a proliferation-inducing ligand (APRIL) (Hart, Wang, Hogquist, & Jameson, 2011; 

Hoek et al., 2010).   
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TABLE 1: Mouse B cell subsets 

Mouse B cell subset Distinguishing Surface Marker Expression 

Marginal zone precursor cells CD19+IgMhiCD21hiCD23-CD1dhi 

Marginal zone B cells CD19+IgMhiCD21hiCD23lowCD1dhi 

Transitional 1 cells CD19+CD93+IgMhiCD21-CD23- 

Transitional 2 cells CD19+CD93+IgMhiCD21hiCD23hi 

B1 B cells CD19+CD11b+CD5+ 

Follicular B cells CD19+IgDhiIgMlowCD21+CD23hiCD1dlow 

Plasma cells CD19low/-CD138+CD93+ 

Plasmablasts CD19low/-CD138+CD93+MHCII+Ki67+ 

 

Table 1: Mouse B cell subsets. 
Table showing currently described B cell subsets found within the NOD mouse and the corresponding surface marker 
expression patterns used to distinguish them (Lundy, 2009; Shen & Fillatreau, 2015). 
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CHAPTER IV 

B Cells in Type 1 Diabetes 

A. Importance of B Cells in Diabetes Progression 

B cells are one of the major cell types to infiltrate the pancreatic islets in NOD mice 

(Fox & Danska, 1998; Pearson, Wong, & Wen, 2016; Willcox, Richardson, Bone, Foulis, 

& Morgan, 2009).  The importance of B cell functions in the pathogenesis of T1D was 

first shown using the NOD mouse model of diabetes (Henry & Kendall, 2010; Kendall, 

Yu, Woodward, & Thomas, 2007; Silveira & Grey, 2006).  In an elegant study, 

transgenic IgM null NOD mice, which due to the importance of IgM as the first stage of 

BCR formation a lack of IgM causes the deletion of all B cells, were completely resistant 

to T1D development (Serreze et al., 1996).  However, upon successful reconstitution of 

the polyclonal B cell compartment, these same IgM null NOD mice went on to develop 

over diabetes (Vong et al., 2011).  In order to understand the effects of different B cell 

functions on T1D progression, B cell deficient IgM null NOD mice were injected with 

purified antibodies from a diabetic NOD donor, but did not develop diabetes (Serreze et 

al., 1998).  The opposite experiment generating an IgM-bound B cell transgenic mouse 

unable to undergo class switching showed that preserved antigen presentation 
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capabilities led to robust diabetes (F. S. Wong et al., 2004).  Even using an anti-IgM 

antibody to deplete the B cell pool was effective at blocking diabetes onset in NOD mice 

(Noorchashm et al., 1997).  Another study found that biasing the B cell repertoire with a 

higher frequency of insulin-specific BCR formations by only a small percentage (1-3%) 

was capable of rapidly increasing the time to diabetes onset in NOD mice (Hulbert, 

Riseili, Rojas, & Thomas, 2001).  However, biasing the BCR repertoire away from 

insulin-specificity and toward the innocuous hen egg lysozyme (HEL) had the opposite 

effect of significantly delaying diabetes onset (Silveira et al., 2002).  B cells play two 

distinct roles in disease progression, and these experiments showed that it was through 

receptor presentation of autoantigens that B cells were having an effect on the 

pathogenesis of diabetes, and not through autoantibody production.  More recently, 

experiments measuring the presence of T cell activating co-stimulatory molecules 

present on antigen presenting cells showed that MZ B cells have higher percentages of 

co-stimulatory molecules, thus making them even more capable presenters (Falcone, 

Lee, Patstone, Yeung, & Sarvetnick, 1998; Marino et al., 2008). 

 Recently, using surface staining CD markers described in Table 1, we were able 

to show that there is an increase in the number of MZ and MZ Precursor B cells in 6-

week-old NOD female mice as compared to control strains.  The control strains chosen 

were the outbred C57Bl/6, the inbred Balb/c mice which are the backbone strain for the 

NOD mutation, and the NOR mouse, which has approximately 95% gene homology with 

the NOD female, but due to gene splicing with C57Bl/6, are insulitis resistant and 

diabetes free (Fig. 3). 
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Figure 3. NOD mice have higher percentage of Marginal Zone and Precursor B 
Cells. 
Flow cytometry results from single cell suspensions of splenocytes taken from different mouse strains.  Cells stained 
with fluorescently labeled antibodies against CD19, IgM, CD21/35, and CD23.  (A) Splenocytes from 6 week old 
NOD, Balb/c, C57Bl/6, and NOR female mice initially gated on CD19+, then separated into IgMhi and IgMint.  IgMhi 
cells were further gated on levels of CD21/35 and CD23 to determine percentage of population that is Marginal Zone 
(MZB), Marginal Zone Precursor (MZP), Follicular II (FO II), Transitional 2 (T2), and Transitional 1 (T1).    
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B. B Cell Depletion Strategies 

 Due to the overwhelming evidence that B cells are capable antigen presenters 

able to effectively activate T cells and induce cellular immune responses against β cells 

within the pancreatic islets, recent work to develop and test B cell depleting antibodies 

were performed.  Initial targets were the B cell surface proteins CD20 and CD22, which 

are found starting at the late-pre B cell stage of maturation within the bone marrow and 

maintained at high levels on all older B cells in the periphery (Cyster & Goodnow, 1997; 

Nitschke, 2005; Poe, Hasegawa, & Tedder, 2001).  These surface proteins were also 

chosen because they are highly conserved between mice and humans (Tedder & 

Engel, 1994).  The generation of the anti-CD20 monoclonal antibody capable of 

depleting was used in the NOD mouse, and was able to reverse disease in two-thirds of 

new-onset diabetic mice (Hu et al., 2007; Xiu et al., 2008).  The use of the anti-CD22/cal 

monoclonal antibody was somewhat capable of reversing diabetes in newly diagnosed 

NOD mice, although the results showed that earlier depletion on Day 3 was more 

effective than treatment even on Day 5 after onset of hyperglycemia (Fiorina et al., 

2008).  The proposed mechanisms for why these B cell depleting antibodies worked in 

the NOD mouse was two-fold.  Firstly, it was suggested that this was due to the 

decreased antigen presentation capacity as a result of losing the B cell repertoire.  All of 

the studies performed using anti-CD20 and anti-CD22/cal in NOD mice showed 

resultant decreases in self-reactive CD4+ T cell responses, and even in CD8+ T cells.  

These results lend credit to the proposal that B cells not only support CD4+ T cell 

activation, but that they are also important for CD8+ T cell survival (Marino et al., 2009).  

The treatments also showed increases in circulating Treg levels after B cell depletion, 
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leading to the second method of preventing further diabetes progression by activating 

Tregs capable of secreting IL-10 and downregulating activated autoimmune CD4+ and 

CD8+ T cell responses.  However, depletion with either antibody did not confer long-

term disease protection when given before onset had even occurred, leading to the idea 

that B cell involvement is different before onset than stages of chronic hyperglycemia 

and manifestation of disease.  Another caveat of these studies was that the treatments 

were more short term, with circulating B cell numbers being restored within 7-10 weeks 

of the completion of treatment. 

 Based on these results in the NOD mouse, the anti-CD20 monoclonal antibody 

Rituximab© had been tested in clinical trials to treat T1D in patients with new onset 

diabetes (Pescovitz et al., 2009).  From the results of the trials, anti-CD20 had an acute 

effect on diabetes, allowing some patients with T1D to slow the disease, although long-

term efficacy was unobtainable using anti-CD20 alone (Herold et al., 2011; Yu et al., 

2011).  Patients on anti-CD20 therapy presented with slowed decline in β cell function 

and arresting the continued loss of C-peptide.  However, upon completion of treatment, 

patients saw reconstitution of the B cell compartments within a year (Pescovitz et al., 

2014). 

 

C. Regulatory B Cells in T1D 

  Initial work to characterize regulatory B cells (Bregs) in the NOD mouse was 

performed using LPS-stimulated in vitro cultures of purified B cells (Tian et al., 2001).  

Upon stimulation these Bregs secreted anti-inflammtory TGF-β, and when placed in 
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culture with diabetogenic T cells were able to induce T cell apoptosis (Spender et al., 

2009; Yang, Rui, Wang, & Lu, 2013).  More recently, IL-10 secreting Bregs that express 

CD5+ and grown in culture with tolerizing dendritic cells were shown to be able to 

reverse new-onset T1D in NOD mice (Di Caro et al., 2014; Yanaba et al., 2008).  

Further work showing a progenitor B cell population expressing a number of B cell 

surface markers (c-kitlow Sca-1low CD127+ B220+ CD19+ IgM- CD1dint CD43+) had a 

similar ability to suppress diabetes progression after diagnosis.  These cells went on to 

become B cells, but with the ability to suppress activated T cells by reducing IL-21 and 

inducing apoptosis (Montandon et al., 2013).  Another study showed that activated 

Bregs were capable of differentiating T cells down a Th2 pathway instead of the 

canonical Th1 pathway needed for T1D progression (Hussain & Delovitch, 2007).  The 

above study also showed that taking Bregs from NOD-IL-10-/- transgenic mice led to 

neither increases nor decreases in diabetes progression in recipient NODs, thus 

highlighting the importance of IL-10 as a required cytokine in the ability of Bregs to 

control disease.  In our own hands, we’ve observed increased levels of 

CD19+CD5hiCD1dlo B cells, which are often described as “classical” Bregs, in 6-week-

old pre-diabetic NOD female mice as compared to control strains including age matched 

C57Bl/6 and Balb/c female mice (Fig. 4). 
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Figure 4. Increase in CD19+CD5hiCD1dlo Regulatory B cells. 
Flow cytometric results of bead purified CD19+ B cells isolated from the splenocyte pool of 6-week-old NOD, C57Bl/6, 
or Balb/c female mice.  Sorted CD19+ cells were stained with CD5 and CD1d to isolate classically described Bregs 
expressing CD19+CD5hiCD1dlo surface marker levels.  
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 While little is known about human Bregs, recent work to characterize them has 

succeeded in other autoimmune diseases such as systemic lupus erythrematosus 

(Bouaziz et al., 2010), rheumatoid arthritis (Lundy, 2009), and multiple sclerosis (Iwata 

et al., 2011).  Bregs with a CD19+CD24hiCD38hi phenotype in healthy controls showed 

robust IL-10 production upon stimulation with CD40L, as opposed to patients with long 

term SLE who had depleted IL-10 production (Blair et al., 2010).  Work in RA showed 

that Bregs can be activated to secrete IL-10 and upregulate FasL expression in the 

presence of the stimulating IL-5 cytokine (Klinker, Reed, Fox, & Lundy, 2013).  Recently 

in the field of MS, B cell depletion with anti-CD20 after disease onset showed slowing of 

relapsing symptoms, though this was shown to lose efficacy as the B cell compartment 

reconstituted (Hauser et al., 2008).  There is also the concern that depletion of B cells 

may hinder the ability of Bregs to delay disease onset if given too early.  For example, 

depletion of B cells exacerbates some diseases such as ulcerative colitis, and if given 

too early in MS patients, has no efficacy on reducing future symptoms (Goetz, Atreya, 

Ghalibafian, Galle, & Neurath, 2007).  These data taken together lead to the hypothesis 

that Bregs may be playing a role in delaying disease onset in a number of diseases, but 

that once onset begins, that antigen presenting B cells are expanding the autoreactive T 

cell pool instead of allowing Bregs to slow autoimmune attack.   
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CHAPTER V 

Age-Dependent Effects of Adoptively Transferred CD19+ Cells on Suppression of 

Autoimmune Diabetes through Interleukin-1β Regulation 

 

A. INTRODUCTION 

 

Strong evidence indicates that an imbalance between autoreactive and 

regulatory T cells (Tregs) plays a key role in pathogenesis of Type 1 diabetes (T1D) in 

animal models (D'Alise et al., 2008; Penaranda, Tang, & Bluestone, 2011; Shevach, 

2009) as well as in humans (Bluestone, Buckner, et al., 2015; Bluestone, Trotta, & Xu, 

2015; Daifotis, Koenig, Chatenoud, & Herold, 2013). The initiation of disease is 

dependent on the activity of both CD4+ and CD8+ T cells (Atkinson et al., 2014; 

Crawford et al., 2011; Eisenbarth, 1986; F. S. Wong & Janeway, 1999), and Tregs can 

regulate the onset of diabetes in both NOD mice and humans (Bresson et al., 2006; 

Brusko & Bluestone, 2008; You et al., 2005).  While it is clear that T cells are the 

primary effectors of pathogenesis in T1D (Pietropaolo et al., 2008; Roep, 2003), solid 

evidence also supports an important role for B cells in disease development, both as 

autoantibody producers and antigen-presenters (Hinman & Cambier, 2014; Marino et 
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al., 2008; Morran et al., 2015; Ziegler & Nepom, 2010).  In addition to a protective effect 

of ATG/G-CSF in NOD mice, T1D patients receiving low dose ATG/G-CSF treatment 

had preserved C-peptide levels after treatment, preservation of Tregs over autoreactive 

T cells, and significantly increased numbers of CD19+ cells (Gitelman et al., 2013; Haller 

et al., 2016; Haller et al., 2015; Parker et al., 2009).   

B cells play a fundamental role in autoimmune disorders. Antibodies specific for 

insulin and other pancreatic autoantigens are well-documented hallmarks of T1D 

(Pietropaolo & Eisenbarth, 2001).  NOD mice that are deficient in B cells from birth or 

due to transient depletion are resistant to developing T1D, whether or not pancreatic 

autoantibodies are present (Noorchashm et al., 1997; Serreze et al., 1998).  In humans, 

depletion of B cells with anti-CD20 therapy soon after onset of T1D slowed the decline 

of islet beta cell function and arrested the loss of C-peptide, although long term effects 

were less (Pescovitz et al., 2009; Yu et al., 2011).  Thus, evidence of the contribution of 

B cells to T1D is clear, although their specific mechanisms of promoting disease 

pathogenesis require further investigation.  As is the case in the T cell compartment, 

some B lymphocyte subsets exhibit immune suppressive functions and previous reports 

have shown that adoptively transferred B cells from pre-diabetic NOD mice were 

capable of regulating the development of T1D in recipient NOD mice (Kleffel et al., 

2015; Montandon et al., 2013).  One issue that remains unclear is how T1D develops 

despite the presence of regulatory B and T lymphocytes. 

In the present study, we investigated age-related differences in the ability of B 

cells to control diabetes development in NOD mice, and potential mechanisms for these 

effects.  Adoptive transfer experiments using splenocytes from diabetic NOD female 
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donors (Christianson, Shultz, & Leiter, 1993; Leiter, 2001) into immunodeficient 

syngeneic recipients, NOD.scid mice, were performed to assess whether diabetes 

progression was affected by the presence or absence of CD19+ cells (Sarikonda et al., 

2013).  We provide evidence for an age-specific effect of CD19+ cells in blocking 

pathogenic immune responses leading to overt diabetes. 
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B. METHODS 

 

Mouse Models:  NOD (Cat. #00196), NOD.scid (Cat. #001303), NOR (Cat. #002050), 

C57Bl/6 (Cat. #000664), and Balb/c (Cat. #000651) mice were purchased from Jackson 

Laboratories© or bred in-house in pathogen free cages using breeding pairs originally 

purchased from Jackson Laboratories©.  Some diabetic NOD female cell donors were 

generously provided from the labs of Drs. Matthew Bettini and Maria Bettini (Baylor 

College of Medicine).  Six-week-old NOD.scid female mice containing gene mutations 

resulting in an inability to generate mature T cells and B cells, thereby having no 

adaptive immune system, were used as immuno-compromised recipients for all 

adoptive transfer experiments described below. 

 

Monitoring for Diabetes: All aging NOD donor mice and NOD.scid recipients receiving 

adoptive transfers of splenocytes were tested 2-3 times a week  (starting one week after 

adoptive transfer or upon reaching 10 weeks of age) for increases in blood glucose 

levels.  A single drop of blood would be collected from the tail through a small nick at 

the distal end and collected by capillary action into an Accu-Chek© Aviva Blood Glucose 

Monitor.  Mice were considered diabetic after two consecutive blood glucose 

measurements above 300 mg/dL. 
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Cell Harvest and Preparation:  Spleens were harvested from different strains of 

euthanized female mice at 6 weeks of age or > 15 weeks of age.  Single cell 

suspensions were prepared using cell strainers and ACKS lysis buffer to remove red 

blood cells, and then suspended in phosphate-buffered saline (PBS) to be counted 

before being placed in culture or undergoing immediate analysis by flow cytometry.  

Cells being collected for adoptive transfer are described below. 

 

Adoptive Transfer Experiments:  NOD.scid female mice 6-8 weeks of age (Jackson 

Laboratories©) were used as splenocyte recipients across all treatment groups.  To 

induce diabetes, NOD.scid females were intravenously injected with 5x106 splenocytes 

from diabetic female NOD mice through a tail vein injection.  For the co-transfer 

experiments, NOD.scid females received 5x106 splenocytes from diabetic NOD female 

donor mice in addition to 5x106 CD19+ cells taken from 6-week-old or >15-week-old 

NOD female donors.  Donor CD19+ cells were purified using the Miltenyi© CD19+ 

microbead system (Cat. #130-052-201) in a MACS LS magnetic sorting column 

(Miltenyi Biotech©).   

On day 6 after initial adoptive transfer injections, a second intravenous injection 

of freshly purified CD19+ cells obtained from the spleens of 6-week-old or >15-week-old 

NOD females was performed in co-transfer NOD.scid recipients using 5x106 cell 

concentration in sterile PBS.  On day 12 post-transfer, another boost of freshly purified 

splenic CD19+ cells was transferred by intravenous injection to maintain a larger B cell 

pool within the co-transfer recipient NOD.scid.  NOD.scid recipients were followed for 
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diabetes onset or until day 60 post-transfer of diabetic splenocytes, and euthanized 

upon meeting either endpoint requirement (Fig. 5).  
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FIGURE 5: Timeline of Adoptive Co-transfer Experiments.   
Diagram of adoptive co-transfer experiments including intial transfer of diabetic splenocytes from a diabetic NOD 
donor, and purification and co-transfer of 6-week-old CD19+ B cells from NOD female donors.  Follow-up boosts of 
purified CD19+ B cells on Days 6 and 12 post-AT are also described. 
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Anti-IL-1β Antibodies: A subgroup of NOD.scid female recipients receiving 5x106 

splenocytes isolated from a diabetic female donor also received 100 ug of sterile LEAF® 

purified anti-mouse IL-1β antibody (BioLegend© Cat. #503504) in sterile PBS by 

intraperitoneal injection – see results (Cantwell, Bubeck, & Dube, 2010; Lu, Sadri, & 

Schneider, 2006).  NOD.scid control mice for this antibody received whole splenocytes 

from the same diabetic donor, followed by a 100 ug per 100 uL intraperitoneal injection 

of an Armenian hamster IgG control antibody (BioLegend© Cat. #400933).  NOD.scid 

recipients received the initial injection of anti-IL-1β or isotype control IgG antibodies on 

day 1 following adoptive transfer of splenocytes from a diabetic donor, and 

intraperitoneal injections on day 5 and every 5 days thereafter until day 40, and the 

blood glucose levels of all NOD.scid recipients was tested 2-3 times a week for 

diagnosing diabetes as described above.  NOD.scid recipients were again euthanized 

upon either developing confirmed diabetes (>300 mg/dL blood glucose) or upon 

reaching day 60 post-transfer (Fig. 6). 
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FIGURE 6: Adoptive transfer of diabetes with corresponding antibody injections. 
Diagram of adoptive transfer experiments showing transfer of diabetic splenocytes from an NOD female donor into a 
NOD.scid recipient, followed by treatment with an anti-IL-1β monoclonal blocking antibody administered by 
intraperitoneal injection on a recurring regimen.  This was also done with the matching IgG isotype control antibody in 
the same 100 mg dosing strategy in control NOD.scid recipients who also had splenocytes from a diabetic NOD 
donor intravenously injected. 
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Tissue Processing, Histology, and Insulitis Scoring:  After NOD.scid recipients 

developed diabetes, they were euthanized and the pancreas was collected, fixed in 

10% formalin for future Hematoxylin and Eosin Y staining to determine cellular 

structures.  Individual islets were scored across multiple sections for each mouse for the 

presence of infiltrating lymphocytes to determine the level of insulitis.  Individual islets 

were given a score of 1-4 depending on the severity of islet infiltration according to 

established protocols (Stumpf, Zhou, & Bluestone, 2013): a score of 1 equating to little 

or no insulitis, 2 being for mild insulitis covering less than 20% of the total islet, a score 

of 3 relating to an islet with between 20-50% moderate insulitis, and a score of 4 

describing an islet with severe infiltration covering >50% of the islet.  All islets were 

scored on an Olympus© light microscope and statistically analyzed in GraphPad© Prism 

6.0 using a 2x2 contingency table with Chi-Square analysis to determine differences 

between treatments. 

 

Flow Cytometry:  Cells collected either directly from spleens, or after undergoing 

CD19+ microbead purification, were placed into 96-well-plates (sterile flat-bottomed) at a 

preferred concentration of 5x105 cells per well.  Cells were washed with FACS buffer 

(PBS, 10% fetal calf serum (heat attenuated), and 0.5% sodium azide (NaN3)), non-

specific immunoglobulin binding was blocked with Fc-Block (BD Bioscience© Cat. 

#553142), and then cells were incubated with the corresponding fluorophore-conjugated 

antibodies (BD Bioscience©) listed below.  Cells were stained with one or more of the 

following antibodies: CD3, CD4, CD8, CD11c, CD16/32, CD19, CD21/35, CD23, CD25, 

F4/80, FoxP3, IFN-γ, IL-10, IL-17, IgM, or Mac-1.  After incubation with fluorescent 
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antibodies, cells were washed and analyzed on either a BD Accuri™ C6 or BD LSR™ II 

flow cytometer.  Propidium iodide staining was performed to exclude dead cells from 

subsequent analysis.  All resulting data were analyzed using Tree Star© FlowJo 

software. 

 

ELISA: Serum from NOD.scid recipients and supernatant from cultured CD19+ cells 

were collected for cytokine analysis.  Sandwich ELISAs were performed on these 

collected supernatants using the BD Bioscience© kit for the following secreted 

cytokines: IL-1β, IL-4, IL-10, IL-17, IFN-γ, and TNF-α.  All washes were done using tris-

buffered saline (TBS) with 0.5% Tween20 added (TBS-T).  After addition of primary 

antibody and biotin-conjugated secondary antibody, plates were incubated with biotin-

binding streptavidin-HRP to generate enzymatic activity for the blue colorization of the 

BD Bioscience© Tetramethylbenzidine (TMB) substrate, followed by addition of a 

sulfuric acid Stop Solution to halt the enzymatic activity.  Finally, plates were read on a 

Wallach© 1420 plate reader for light absorbance and calculated against control protein 

concentrations to determine the light absorbance to protein concentration ratio.  All data 

were analyzed and graphically represented using GraphPad© Prism 6.0. 

 

Statistical Analysis:  Kaplan-Meier plots were derived to estimate the cumulative risk 

of developing insulin-dependent diabetes. Kaplan-Meier plots were compared using the 

log-rank test and computed using an exact procedure and conducted as one-sided tests 

(Peto & Peto, 1972).  
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  Fisher’s exact test and chi square analysis were used to compare proportions 

and evaluate statistically significant associations between categorical variables. The 

Mann Whitney t test for independent samples was used to compare continuous 

variables between two groups. Flow cytometry and ELISA comparative analyses of 

populations were performed using nonparametric t tests with Welch’s correction.    All 

statistical analyses were performed using GraphPad© Prism 6.0.  P-values < 0.05 were 

considered statistically significant. 

 

Animal Protocol Approval:  All protocols involving mice were approved by the Animal 

Care Safety Review boards at both University of Michigan (Ann Arbor, MI) and Baylor 

College of Medicine (Houston, TX). 
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C. RESULTS 

Diabetes is significantly delayed in an adoptive transfer model following 

injections of MHC compatible CD19+ cells from young donor mice.  

An adoptive transfer model in which splenocytes obtained from major 

histocompatibility complex (MHC) compatible diabetic NOD mice were injected into 

NOD.scid recipients was used to induce diabetes (Fig. 7A).  Splenocytes isolated from 

diabetic female NOD mice were intravenously injected into 6-week-old NOD.scid 

recipient female mice.  NOD.scid recipients receiving single transfers of diabetic 

splenocytes started to develop T1D at day 20 post-transfer.  Co-transfer experiments 

were performed using CD19+ cells purified from 6-week-old pre-diabetic female NOD 

mice to create a boosted B cell pool during the young pre-diabetes phase of the NOD 

donor.  We observed a highly significant delay in progression to autoimmune diabetes in 

NOD.scid recipients when purified splenic CD19+ cells from 6-week-old NOD mice were 

co-transferred (Fig. 7A).  Remarkably, by day 40 post-transfer, 100% of the NOD.scid 

recipients receiving diabetic splenocytes alone had progressed to overt diabetes, while 

100% of NOD.scid CD19+ co-transfer recipients were still normoglycemic (Fig. 7A; p < 

0.0001).  CD4+ and CD8+ T cell populations (gated initially on CD3+CD19-) were not 

significantly different after the reconstitution process in either diabetic splenocyte only 

NOD.scid recipients or in mice receiving CD19+ cell co-transfers (Fig. 7B). 
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Because of the observed delay in diabetes onset in the NOD mouse model, 

whereby occurrence of diabetes commonly manifests in mice older than 10 weeks of 

age, we hypothesized that the age of the co-transferred CD19+ cell pool could play a 

role in their ability to delay diabetes progression.  To test this hypothesis using similar 

protocols previously reported by Chatenoud et al. (You et al., 2005), we carried out 

adoptive co-transfer experiments injecting CD19+ cells collected from either 6-week-old 

or aged >15-week-old NOD female donors in NOD.scid recipients also receiving 

splenocytes from NOD diabetic donors.  While a similar delay in onset as the previous 

experiment was observed when CD19+ cells from young donors were co-transferred, 

NOD.scid recipients of CD19+ cells from >15-week-old NOD donors had a similar rate of 

diabetes progression compared to those recipients of splenocytes alone obtained from 

NOD diabetic donors (Fig. 7C).     

In the next set of experiments, splenocytes from 6-week-old non-diabetic NOD 

donors were transferred into NOD.scid recipients, and the development of overt 

diabetes was significantly delayed as compared to NOD.scid mice receiving 

splenocytes from diabetic NOD donors (Fig. 7D; p <0.0001).  In contrast, NOD.scid 

recipients of splenocytes from non-diabetic >15-week-old NOD donors had progression 

rates nearly identical to that of NOD.scid recipients of splenocytes from diabetic NOD 

donors. These observations reinforced our findings indicating that there is a CD19+ 

cellular compartment within young NOD mice that may well exhibit a robust suppressive 

effect towards diabetes development. 
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Figure 7. Adoptive transfer of diabetes is significantly delayed in the presence of 
6-week-old purified CD19+ cell co-transfers. 
(A) Survival curve for comparison between female NOD.scid mice (N=44) receiving splenocytes taken from a diabetic 
NOD female donor (N=22, dashed line), or the same splenocytes plus bead-purified CD19+ cells from 6-week-old pre-
diabetic NOD female mice (N=22, solid line.  Results analyzed using the Mantel-Cox Log Rank test for survivability 
(*** = p < 0.0001).  (B) Representative staining of reconstitution experiments with CD3 and CD19 on splenocytes 
from NOD.scid transfer recipients.  Cells initially gated on CD3+CD19- to illustrate differences in CD4 and CD8 
specific T cell populations.  (C) Survival curve comparing female NOD.scid mice (N=26) receiving splenocytes from a 
diabetic NOD female donor (N=9, dashed line), splenocytes and purified CD19+ cells from 6-week-old NOD female 
donors (N=9, solid line), and splenocytes plus purified CD19+ cells from female NOD donors older than 15 weeks 
(N=8, dotted line).  Group comparisons performed using the Mantel-Cox Log Rank test for survivability (p-values: DM 
NOD vs. 6-wk-old CD19+ = 0.0002, DM NOD vs. >15-wk-old CD19+ = 0.0976 n.s., and 6-wk-old CD19+ vs. >15-wk-
old CD19+ = <0.0001).  (D) Survival curve from transfers of either 6-week-old NOD F splenocyte donors, >15-week-
old pre-diabetic NOD F, or >15-week-old diabetic NOD F splenocyte donors (>300 mg/dL blood glucose).  *** 
denotes p-value < 0.0001. 
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Concurrent with the development of T1D, insulitis was significantly reduced 

following co-transfer of CD19+ cells as compared to diabetic control transfers.  The 

administration of splenocytes from an NOD diabetic donor in addition to CD19+ cells 

from 6-week-old NOD donors resulted in decreased severity of insulitis as compared to 

adoptive transfers involving splenocytes alone from an NOD diabetic donor (Fig. 8A-E). 

Insulitis scoring analysis showed that there were major differences between recipient 

groups observed at the ends of the scoring scale (scores of 1 versus 4), with the mice 

receiving CD19+ cells from 6-week-old donors having significantly more islets with little 

to no insulitis as compared to the other treatment options, and fewer statistically 

significant islets scoring a 4 with greater than 50% islet infiltration (Table 2). 

 

CD19+ cell co-transfers led to a decrease in IL-1β levels. 

 We measured serum cytokine levels including IL-1β, TNF-α, IFN-γ, IL-17, IL-4, 

and IL-10 (Figs. 9A-F) (Rabinovitch & Suarez-Pinzon, 2003). NOD.scid recipients 

receiving MHC compatible splenocytes and CD19+ cells from a 6-week old NOD donor 

had no measureable IL-1β level, with strong statistical differences (p < 0.001) as 

compared to any other transfer group (Fig. 9A).  In contrast, we found no significant 

differences in circulating IL-1β in NOD.scid recipients of >15-week-old CD19+ cells 

compared to mice that received MHC compatible splenocytes only.  
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Figure 8.  CD19+ cells co-transferred from 6-week-old NOD donors into NOD.scid 
recipients leads to decreased islet infiltration.   
Representative islets for each group after staining with hematoxylin and eosin.  Images captured at 40x 
magnification.  (A) Untreated 10-week-old NOD.scid female.  (B) Diabetic NOD.scid recipient receiving only 
splenocytes from a diabetic NOD female donor.  (C) Diabetic NOD.scid recipient receiving co-transfers of diabetic 
splenocytes and CD19+ cells purified from a 6-week-old pre-diabetic NOD female.  (D) Diabetic NOD.scid recipient 
receiving co-transferred diabetic splenocytes and CD19+ cells from a NOD female mouse older than 15-weeks of 
age.  (E) Insulitis scoring results from pancreatic sections stained with hematoxylin and eosin of NOD.scid recipients 
received either diabetic splenocytes (N=9 mice), splenocytes co-transferred with bead-purified CD19+ cells from 6-
week-old NOD donors (N=9 mice), or splenocytes co-transferred with CD19+ cells purified from >15-week-old NOD 
female donors (N=8 mice).  Islets individually scored on a 1-4 scale of increasing insulitis severity, and the 
percentage of each score as a part of the whole was graphically represented. 
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Figure 9. Adoptive co-transfer of CD19+ cells purified from 6-week-old NOD 
donors inhibits IL-1β secretion without increasing regulatory T cells or reducing 
macrophage populations. 
Serum was collected from NOD.scid recipients receiving either splenocytes from a diabetic NOD donor, diabetic 
splenocytes and CD19+ cells from 6-wk-old NOD donors, or splenocytes from a diabetic NOD donor with CD19+ cells 
from >15-wk-old NOD donors.  The presence of (A) IL-1β.  (B) TNF-α.  (C) IFN-γ.  (D) IL-17.  (E) IL-4.  (F) IL-10 was 
analyzed by ELISA (www** = 0.0004).   
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Co-transfer of CD19+ cells from young mice did not affect regulatory T cell or M1 

macrophage levels.  

We next determined if co-transfer experiments of MHC compatible spleen cells from 

NOD diabetic donors and CD19+ cells from 6-week-old NOD donors were capable of 

inducing Treg expansion, and possibly affect diabetes onset through Tregs.  We 

performed flow cytometry analyses to look for the presence of CD3+CD4+CD25+FoxP3+ 

natural and inducible Tregs (Fig. 10A and B) and found no significant differences in 

terms of the total number of Tregs present between any of the treatment groups (Fig. 

10B). 

We then assessed the presence of macrophages, which are the main source of 

inflammatory IL-1β secreted during the immune response (Ortis et al., 2012), to 

determine whether the loss of IL-1β was due to a reduced macrophage pool.  M1 

macrophages, which are important for islet destruction during the autoimmune attack 

were gated as CD11c-CD16/32+Mac-1+F4/80+ (Fig. 10C).  The percentages across the 

different treatment groups were converted to total cell number by normalizing to the 

overall splenocyte counts and compared against one another.  We found no statistically 

significant difference in the resulting M1 macrophage pool whether NOD.scid recipients 

had received 6-week-old donor CD19+ cells or CD19+ cells from >15-week-old NOD 

mice or no additional CD19+ cells (Fig. 10D).  These data suggest that the loss of IL-1β 

is not due to a lack of available macrophages in the 6-week-old CD19+ cell co-transfer 

recipients. 
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Figure 10. Analysis of regulatory T cells and M1 macrophages in NOD.scid 
recipient mice after transfers. 
(A) Regulatory T cells were analyzed from splenocytes of NOD.scid recipients.  Representative staining protocol for 
analyzing Tregs showing primary gating for CD3+CD25+ cells, then gating on the CD4+FoxP3+ population within the 
CD3+CD25+ gate.  (B) CD3+CD4+CD25+FoxP3+ Tregs were quantified from 26 NOD.scid recipients receiving one of 
three stated treatment options.  Total splenocytes were calculated using the percentage subgroup populations and 
non-significant p-values calculated as a non-parametric t-test with Welch’s correction.  (C) Representative staining for 
macrophages with cells initially gated on CD11c-CD16/32+, and then sub-gated on the Mac-1+F4/80+ group (upper 
right quadrant) of M1 macrophages.  (D) CD11c-CD16/32+Mac-1+F4/80+ M1 macrophages were analyzed in 26 
NOD.scid recipients, and total M1 macrophages were calculated using the percentage subgroup populations with 
non-significant p-values calculated using a non-parametric t-test with Welch’s correlation. 
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Blocking IL-1β delays diabetes progression in NOD.scid recipients. 

 In order to further study the effects of blocking IL-1β in the model, adoptive 

transfers of NOD splenocytes from diabetic donors into 6-week-old NOD.scid recipients 

were evaluated following intraperitoneal injections of either an anti-IL-1β blocking 

monoclonal antibody (mAb) or its IgG-matched isotype control antibody (Ab).  Mice 

were followed for onset of diabetes by blood glucose measurement and underwent the 

same endpoint analyses as during the other co-transfer experiments.  We observed that 

anti-IL-1β treatment resulted in a significant delay in diabetes onset in NOD.scid mice 

that received splenocytes from a diabetic NOD donor (Fig. 11A).  In contrast, 

administration of an isotype-matched antibody did not result in any delay in diabetes 

progression, as shown in more detail in the statistical analysis between different 

treatments (Table 3). 

Moreover, anti-IL-1β mAb recipients had less severity of insulitis as compared to 

that of the isotype-matched Ab treated group (Fig. 11B-D), with statistically significant 

differences in number of islets observed having scores of 1 and 4 (Table 4). 

We performed ELISAs to detect serum IL-1β and other cytokine levels in all four 

treatment groups (splenocyte transfers only, CD19+ cell co-transfers, anti-IL-1β mAb 

injections, and IgG isotype-matched control Ab treatment) and observed that the mice 

receiving either the CD19+ cell co-transfers from the 6-week-old NOD donors, or the 

depleting anti-IL-1β mAb, had no detectable levels of IL-1β, while the splenocytes only 

transfer group and the IgG-matched control Ab group had normal levels of circulating IL-

1β (Fig. 11E).  However, there were no significant differences in other pro-inflammatory 

cytokines described in Fig. 9.     
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 We then evaluated the levels of M1 macrophages to determine if the anti-IL-1β 

mAb injections were impacting the M1 macrophage population after treatment with the 

antibody (Fig. 11F).  We found no differences between any of the four treatment groups 

for the presence of CD11c-CD16/32+Mac-1+F4/80+ M1 macrophages capable of 

secreting IL-1β during the immune response. 

 

Diabetes protection following injections of MHC-compatible CD19+ cell co-

transfers is associated with increased MZ Precursor cell populations. 

 To determine if the treatment effects were correlated with expansion by specific 

B cell subsets, we analyzed spleen cells of NOD.scid recipients following injections of 

MHC compatible spleen cells from diabetic NOD donors alone or in combination with 

additional CD19+ cells.  We gated on CD19+IgMhiCD21/35hiCD23hi B cell splenocytes to 

distinguish the marginal zone (MZ), MZ precursor, and IgMhi follicular B cell populations 

from other B cell subsets (Fig. 12A).  We observed that NOD.scid mice receiving 6-

week-old CD19+ cell co-transfers had a significantly greater MZ precursor cells (p-value 

< 0.0001) as compared to NOD.scid recipients of splenocytes from a diabetic donor only 

transfers or mice receiving co-transfers of CD19+ cells harvested from >15-week-old 

non-diabetic NOD donors (Fig. 12B).  

Finally, we performed the same B cell subset analysis in mice receiving either the 

anti-IL-1β mAb or the IgG isotype matched control treatment.  Anti-IL-1β mAb treatment 

did not affect the MZ precursor pool, and neither did the administration of the isotype-

matched control Ab (Fig. 12C).  Only in the presence of co-transferred CD19+ cells 
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obtained from 6-week-old NOD donors were we able to significantly increase the MZ 

precursor cell population. 
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Figure 11. Blocking IL-1β using a monoclonal antibody or performing CD19+ cell 
co-transfers from 6-wk-old NOD donors result in similar diabetes protection. 
(A) Survival curve for group comparison between female NOD.scid mice receiving diabetic splenocytes (N=22, 
dashed line), splenocytes plus CD19+ cells from 6-week-old NOD donors (N=22, solid line), splenocytes plus anti-IL-
1β blocking monoclonal antibody injections (N=18, dot-dashed line), and splenocytes plus IgG-matched Isotype 
Control antibody injections (N=12, dotted line).  The population table represents number of diabetes-free mice at 
each time-point. (B) Pancreatic sections scored for levels of insulitis and graphically represented as a percentage of 
total isles scored.  (C) Representative hematoxylin and eosin staining of an islet from a NOD.scid recipient receiving 
diabetic splenocytes and anti-IL-1β blocking monoclonal antibody injections.  (D) Staining of a representative islet 
from a diabetic NOD.scid after receiving splenocytes and injections of IgG isotype-matched control antibody.  (E) 
Serum collected during endpoint analysis and measured by ELISA for the presence of secreted IL-1β (**= 0.0004, 
and ***< 0.0001).  Comparisons between mice receiving either diabetic splenocytes only, splenocytes plus CD19+ 
cells from 6-week-old NOD donors, and splenocytes with either anti-IL-1β blocking monoclonal antibody or isotype 
matched control antibody injections.  (F) CD11c-CD16/32+Mac-1+F4/80+ M1 macrophages were analyzed in 
NOD.scid recipients (N=9 per group), and total macrophages were calculated using the percentage subgroup 
populations with non-significant p-values calculated using a non-parametric t-test with Welch’s correlation. 
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Figure 12. Adoptive co-transfer of CD19+ cells from 6-week-old NOD donors leads 
to significantly increased pool of MZ Precursor B cells. 
(A) Representative staining for CD19, IgM, CD21/35, and CD23 markers in NOD.scid mice receiving either 
splenocytes only or co-transferred CD19+ cells from 6-wk-old NOD mice.  Splenocytes were gated on CD19+, and 
separated into IgMhi and IgMlow subsets.  IgMhi cells were further gated on levels of CD21/35 and CD23 to determine 
the percentages of total population that are Marginal Zone (MZB), Marginal Zone Precursor (MZP), Follicular, or 
Transitional B cells as shown.  (B) MZ Precursor population analysis from splenocytes of NOD.scid recipients 
following adoptive transfer of diabetes with either diabetic splenocytes only, splenocytes with CD19+ cell co-transfers, 
or splenocytes with CD19+ cell co-transfers from >15-wks-old NOD donors.  (C) MZ Precursor cell populations 
compared between splenocytes only NOD.scid recipients, CD19+ cell co-transfers, or injections of either anti-IL-1β 
mAb or IgG isotype-matched control Ab.  Statistical analysis performed using a non-parametric t-test with Welch’s 
correction (*** = p < 0.0001). 
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CHAPTER VI 

DISCUSSION 

Accumulating evidence suggests that B cells play a role in the pathogenesis 

of autoimmune disorders including T1D (Hinman & Cambier, 2014). This autoimmune 

disease is characterized by the generation of autoantibodies against self-antigens 

(Arvan et al., 2012; Fousteri, Ippolito, Ahmed, & Hamad, 2016), and the elimination of 

autoreactive T cells involved in the pathological immune response is a logical approach 

for effective therapy (Krishnamurthy, Selck, Chee, Jhala, & Kay, 2016; Vudattu & 

Herold, 2014; You & Chatenoud, 2016). 

Our results show that diabetes is significantly delayed in an adoptive transfer 

model of diabetes following injections of MHC compatible CD19+ cells harvested from 

young NOD female donors. Interestingly, the protective effect conferred by these cells 

appears to be age specific in that CD19+ cells from 6-week-old pre-diabetic NOD mice 

may well have regulatory components acting to block diabetes development and 

insulitis, while CD19+ cells from older mice were ineffective at protection.  These B cells 

from 6-week-old pre-diabetic NOD mice may perhaps be in a honeymoon phase of the 

disease process, where the number of follicular B cells is decreased, but there is a 

relatively protected number of MZ and MZ Precursor cells in young NOD mice, but that 
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the number of follicular B cells increases as the mouse ages.  This increased presence 

of MZ Precursors as a percent of the total number of B cells that an autoreactive T cell 

would encounter could be the missing part in understanding how using 6-week-old 

CD19+ cells delays onset of diabetes, while using older B cell NOD donors does not 

slow pathogenicity.  Following these observations, it would be important to look at the 

effects of Notch ligand stimulation on our CD19+ B cell pool following reconstitution 

within the lymphopenic spaces of the NOD.scid recipients.  Recently, it was shown that 

developing pro-B cells rely upon Delta-like ligand 1 (DLL1), which binds to Notch 2 and 

induces the expression of the transcription factor Fos, to stimulate the further 

development of pro-B cells into MZ Precursor and MZ B cells (Iwahashi et al., 2012).  It 

was also shown that deletion of Fos increases follicular B cell development and 

prevents MZ B cells from being produced.  Also, up-regulation of Fos (or increased 

activation of Notch 2) directly increased the resulting MZ B cell pool.  It has also been 

shown that the stroma within the bone marrow of mice has strong surface expression of 

delta-like ligands including DLL1 (Chung et al., 2014).  One hypothesis is that delta-like 

ligands may interact with Notch receptors (e.g. Notch 2) of B cells reconstituting the 

bone marrow/spleen of the NOD.scid recipients and, in turn, lead to increased MZ and 

MZ Precursor production.  In a future experiment we will determine whether DLL1 

expression on the stroma is affecting the injected B cell pool. We will use a Notch 2 

neutralizing antibody at the same time as the adoptive co-transfer experiments. This 

may prevent DLL1 on stroma cells from inducing regulatory B cell up-regulation and/or 

expansion through Notch 2 signaling (Tran et al., 2013) and possibly dampen or lose 

their regulatory effect in our adoptive transfer model.  The results of these neutralizing 
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experiments will determine if any changes occur within the B cell pool following adoptive 

co-transfers specifically from DLL1 activation of Notch 2. This may result in changes in 

the functionality of the cell population being adoptively co-transferred (from the 6-week-

old NOD donor pool) that includes higher numbers/percentages of MZ Precursor B cells 

(Fig. 12). 

Moreover, it would be helpful to look at the relative number of MZ B cells and MZ 

Precursors in the PBMCs of T1D, first-degree relatives (FDR) who are diabetes free 

with one autoantibody (low-risk subjects), and an unrelated non-diabetic control, 

although admittedly the yield of cells for analysis may be low in some subjects.  If there 

were fewer of these MZ Precursor cells in the new-onset diabetic, or the FDR of a T1D, 

then this would strengthen our argument that the levels of MZ Precursor cells could 

correlate with increased risk to developing T1D.  Furthermore, if the lack of MZ 

Precursors as a percent of the total B cell pool is associated with high risk of developing 

T1D, this finding could lead to a new biomarker whereupon the levels of MZ Precursor 

cells within collected PBMCs of patients could identify subjects with high risk of T1D 

progression.   

Previous studies in the NOD mouse using in vitro stimulated IL-10 secreting B 

cells from older NOD donors showed that culture stimulated Bregs could delay diabetes 

onset in NOD.scid recipients through enhancing secretory IL-10 and expanding 

regulatory T cells (Hussain & Delovitch, 2007; Morin et al., 2003).  However, our results 

demonstrate that the ability of 6-week-old purified CD19+ cells to significantly delay 

diabetes progression was not dependent on in vitro activation, but through increasing 

numbers of available CD19+ cells.  These results suggest that the age at which CD19+ 
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cells are used as immune-modulatory therapies may play a pivotal role in their efficacy 

to exert their suppressive effect.  Also along these lines, the importance of IL-10 

secreting regulatory B cells in our system hasn’t been fully elucidated.  With a number 

of previously described papers in T1D and other autoimmune systems showing an 

importance for IL-10 secretion in controlling disease pathogenesis, it would be important 

to determine if recently described IL-10 promoter binding transcription factor Foxd3, 

which binds and inhibits IL-10 production in normal B cells and is actively down-

regulated in Bregs, is either increased or decreased in CD19+ cells (Zhang et al., 2017).  

Do our MZ Precursor cells act like typical Bregs in that they locally secrete IL-10, or are 

they actively upregulating other apoptotic surface molecules such as FasL, which binds 

to Fas receptors on target cells and induces the caspase cascade to cause cellular 

apoptosis (Lundy, Klinker, and Fox, 2015)?  The answer, whether ablation of IL-10 

actively prevents regulation, or if it induces other forms of regulatory B cell responses, 

would further validate the use of these 6-week-old CD19+ cells in controlling diabetes 

progression. 

 Our findings also indicate that one differential effect of the transfer of CD19+ cells 

from young mice was to suppress the in vivo production of IL-1β. The blockade of 

secreted IL-1β during adoptive transfer of diabetes was sufficient to cause a significant 

delay in diabetes onset in this model system. This suppressive effect of CD19+ cells on 

IL-1β was lost as the donor mice aged, and was even evident prior to the onset of 

diabetes in the donor mice. These results suggest that control of IL-1β by CD19+ cells 

may be a critical factor in delaying or preventing T1D development, and the 

mechanisms by which this occurs warrant further investigation (Cyster, 2010; Tedder, 
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2009).  We speculate that the primary method of IL-1β depletion is done by the B cells 

through blocking the CD4+ T cell-mediated response by infiltrating macrophages during 

the normal pathogenesis of diabetes.  IL-1β is secreted by macrophages in conjunction 

with TNF-α during immune-mediated destruction of pancreatic islets, and the 

inactivation of the recruitment helper T cells thereby would lead to decreased 

macrophage activation, even in the presence of increased macrophage infiltration, and 

cause a noticeable lack of secreted IL-1β found in the peripheral blood.  Further studies 

to determine whether the prevention of IL-1β is done before the internal cleavage 

product of IL-1β from pro-IL-1β by Caspase-1 within the golgi of trafficking 

macrophages, or either during secretion or afterwards are warranted to understand at 

what stage IL-1β is being lost during the immune response once our CD19+ cells are 

introduced (Lopez-Castejon and Brough, 2011). 	

The importance of IL-1β in the destruction of β cells has been elucidated from in 

vitro observations and clinical trials in T1D (Moran et al., 2013).  It has been reported 

that β cell destruction by IL-1β works in the NOD mouse through its induction of 

increased activity of NFκB, an important transcription factor that plays a crucial role in 

cellular apoptosis (Ortis et al., 2012).  IL-1β has been observed as an important up-

regulated serum cytokine in patients with active T1D β cell destruction (Perez et al., 

2004).  Clinical trials have attempted to control the effects of IL-1β through either using 

an IL-1β receptor antagonist (Anakinra©) or through binding and depleting IL-1β directly 

(Canakinumab©). Although Canakinumab and Anakinra were safe they were not 

effective as single immunomodulatory drugs in recent-onset T1D. Interleukin-1 blockade 

might be more effective in combination with treatments that target adaptive immunity 
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T1D (Cabrera et al., 2016; Moran et al., 2013).  Additional observations in the NOD 

mouse using a combination of anti-CD3 and anti-IL-1β noted are required for such 

treatment to be effective (Ablamunits et al., 2012; Herold et al., 2002), and future work 

using such immune therapies should focus on elucidating the effects of early age B cell 

immunomodulation towards restoring self-tolerance and yet preserving functional β cell 

mass in T1D.  These results using anti-CD3, anti-IL-1β, and adding MZ Precursor B cell 

therapy, could work as a combined immunotherapy system whereupon depleting T cell 

activation, inhibiting a primary disease causing cytokine, and introducing a regulatory 

component that prevents full macrophage activation and trafficking, as evidenced by 

reduced insulitis in all mice receiving co-transfers of 6-week-old CD19+ cells, could 

become strong combined therapy approach. 

 The results of our NOD mouse experiments highlight the importance of using 

CD19+ regulatory B cells, including antigen-presenting MZ precursor B cells, when 

analyzing cell-based therapies for treating T1D.   The encouraging results of our study 

warrant further exploration of targeting β cell-specific T cell-mediated autoimmune 

destruction of insulin-producing β cells using regulatory B cells. In conclusion, our 

observations suggest that there is subpopulation of CD19+ cells in the B cell 

compartment of young NOD mice that exhibits a robust suppressive effect, and may 

have therapeutic implications in controlling autoimmune diabetes progression. 
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CHAPTER VII 

FUTURE DIRECTIONS 

 From the data presented above, the importance of pre-diabetic CD19+ cells on 

influencing and delaying insulitis and onset of diabetes in the NOD mouse has strong 

therapeutic potential.  The ability of these CD19+ cells to ablate the secretion of IL-1β, 

delay insulitis, and slow the progression to disease with only minimal cell therapy 

treatments performed at early time points after adoptive transfer of diabetes lends itself 

to increased studies looking at increasing the amount of cell therapy and the number of 

boosts being performed.  A strong first response experiment would be to understand if 

the continued weekly or bi-monthly transfer of purified CD19+ cells from 6-week-old 

NOD female donors could delay onset indefinitely in our adoptive transfer model, or if 

there is a limit to their capacity to prevent diabetes from occurring. 

 An initial follow-up experiment that is currently underway to be used in future 

publications would be to further sort the CD19+ cells, knowing that a further sorting by 

IgM+ would increase the purity of the MZ and MZP B cell pool for transfer, while 

eliminating activated follicular B cells.  By eliminating this pool using a dual-sorting 

protocol, sorting for CD19+ and then sorting the collected population by IgM, we could 
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purify the B cell pool to include antigen-presenters and eliminate class-switched 

antibody producers.  Due to the importance of B cells as APCs for controlling T1D 

progression being well-established in the literature (Marino et al., 2008; Serreze et al., 

1998), we would hypothesize that the CD19+IgM+ dual-sorted cells would delay diabetes 

onset at least as well as the CD19+ sorted cell transfers, if not more robustly than that 

conferred by naturally occurring IgM (Lobo, 2016).  We would also hypothesize that co-

transferring CD19+IgM- cells would eliminate most of the protective effect seen in the 

co-transfer recipient NOD.scid mice, due to the elimination of most of the strong 

regulatory antigen-presenting B cells, which would include MZ B cells, MZP cells, and  

other regulatory B cells. Our preliminary data seem to confirm this hypothesis. Along 

these lines, it would also be important to evaluate trafficking patterns in the spleen and 

pancreatic islets of the different groups by comparing cells that are CD19+IgM+ versus 

trafficking patterns of CD19+IgM- co-transfers.   

Since there are currently no B cell labeled green fluorescent protein or red 

fluorescent proteins to separate the IgM expressers and non-expressers, we could 

employ currently used CFSE/CFDA-SE and/or PKH26 (red) labeling over the course of 

a shorter timeline to analyze where the B cells traffic and home.  This could further be 

enhanced by cross-breeding a UBI-GFP or UBI-RPF mouse (available from Jackson 

Laboratories) with an NOD mouse to develop an NOD B cell donor expressing GFP or 

RFP long-term, though such mice do not currently exist for purchase.  Finally, using 

new CRISPR-Cas9 targeted gene insertions, it might be possible to insert a GFP and 

tag it to be expressed in the presence of IgM, then compare co-transfers using these 
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cells versus mice with lower IgM to compare trafficking and ability to mediate the 

immune response (Lackner et al., 2015). 

 Evidence suggests a role of IL-10 secreting regulatory B cells in 

controlling T1D progression (Hussain & Delovitch, 2007; Kleffel et al., 2015; Lundy, 

2009).  Because of the important understanding of IL-10 secreting Bregs in controlling 

T1D, it would be helpful to more deeply investigate the role of IL-10 in our co-transfer 

system.  We hypothesize that our CD19+ co-transfers are acting directly during 

autoimmune T cell recruitment and activation.  Using an IL-10-/- NOD female donor pool 

would allow us to transfer in CD19+ cells incapable of secreting IL-10 in our NOD.scid 

recipients at the time of diabetes transfer, and changes in diabetes progression, 

insulitis, cytokine production, and other factors could be evaluated (Rajagopalan et al., 

2006).  Furthermore, changing IL-10 levels using in vitro stimulated CD19+ cells from 

NOD female donors capable or incapable of secreting IL-10 would further validate the 

importance of IL-10 in our system (Klinker et al., 2013).  If the role of IL-10 is critical in 

our co-transfer system, discovering new small molecules or proteins that could increase 

the IL-10 secretory potential of our CD19+ cells would be useful.  Recent work by Dr. 

Steve Lundy has shed light on a new method for stimulating B cells to produce excess 

levels of IL-10 using IL-5 receptor stimulation. Future studies will be carried out using IL-

5 stimulated CD19+ B cells in culture conditions containing IL-5 and mCD40L 

expressing 3T3 NIH fibroblasts and incubated for five days to induce IL-10 production. 

We hypothesize that adoptive transfer of stimulated IL-10 secreting B cells from NOD 

mice into NOD.scid mice may result in a more significant delay of disease onset and a 
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strong protective effect.  Enhancing and activating the regulatory B cell pool using IL-5 

may be a novel therapeutic strategy for T1D.   
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APPENDIX I 

Supplementary Tables from Results 

 

 

 

Table 2. Supplementary Contingency Table P-values calculated using insulitis 
scores from CD19+ cell co-transfer experiments described in Figure 8. 
The Mantel-Cox Log Rank test was performed for each subgroup comparison described in Fig. 2E and resulting p-
values shown in the Group Comparison Table.  Table depicts the three different 2x2 group comparisons analyzed.  
Statistics were performed using 2x2 contingency tables and the Chi-Square test for each group at each level of 
insulitis score. 
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Table 3. Supplementary Survival Analysis calculated P-values from anti-IL-1β 
mAb treatment experiments in Figure 11A. 
The Mantel-Cox Log Rank test for survivability differences in Figure 5A was performed for each subgroup comparison 
and resulting p-values shown in the Group Comparison Table.  The Group n shows the number of mice in each 
treatment group used to compare for statistical analysis. 
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Table 4. Supplementary Contingency Table P-values calculated using insulitis 
scores from anti-IL-1β mAb treatment experiments in Figure 11. 
The Mantel-Cox Log Rank test was performed for each subgroup comparison described in Fig. 5C and resulting p-
values shown in the Group Comparison Table.  Table depicts the six different 2x2 group comparisons analyzed.  
Statistics were performed using 2x2 contingency tables and the Chi-Square test for each group at each level of 
insulitis score. 
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APPENDIX II 

STATISTICAL ANALYSES FOR POWER 

Summary of Experimental Design and Group Analysis 

 

In this section I will describe how I separated each experiment within the CD19+ 

B cell co-transfer model for regulating diabetes progression. As suggested by the 

committee, these individual analyses will allow me to more effectively and thoroughly 

interpret the results I have observed.  In order to have the cleanest outputs possible 

before analysis, I decided to separate my experiments into the 5 power Groups (A-E) 

that were shown in the power calculations above.  I will also submit individual Excel 

Files for each Group (A-E) to show when I diagnosed diabetes so that the committee 

can see the dates used in the Log Rank tests performed and graphically represented.   

 

• GROUP A: DM SPLENOCYTES vs. CD19+ B CELLS    

My initial hypothesis was that CD19+ B cells were capable of regulating the 

pathogenesis of diabetes, and so the experiments are designed to show how adoptively 

transferring diabetes can be delayed or halted by co-transferring a number of purified 

CD19+ B cells into a NOD.scid recipient.  To validate the reproducibility of the co-

transfer model, I performed the experiment four separate times with no other variables 

introduced and measured each experiment individually.  The raw data output showing 
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the number of days after transfer that the NOD.scid was diagnosed as diabetic (blood 

glucose measurements > 300 mg/dL) and the value seen on the glucometer on that 

date.  The combined Figure 5 shows the pooled values from the four previous 

experiments generate an overall figure for publication purposes.   

• GROUP B: DM SPLENOCYTES vs. anti-IL-1β   

This initial experiment was developed in response to our serum ELISA data 

showing negligible levels of IL-1β in CD19+ B cell co-transferred mice.  I performed a 3 

group experiment using DM splenocytes versus CD19+ B cell co-transfers versus DM 

splenocytes with intraperitoneal injections of anti-IL-1β monoclonal antibody every 5 

days after initial transfer until Day 40.  When performing the analysis for this 

experiment, I separated the groups into 3 different 2 group pairing for cross-sectional 

analysis.  This allows me to test each group against one another and calculate its own 

Log Rank p-value for each pairing.   

• GROUP C: DM SPLENOCYTES vs. OLD CD19+ B CELLS  

This experiment answers the importance of an age variable in the capacity of the 

B cells to be regulatory.  This would also influence any potential clinical applications that 

might come from the research.  These mice were also separated and individual Log 

Rank p-values calculated for cross-sectional analysis of groups. 

• GROUP D: DM SPLENOCYTES vs. IgG ISOTYPE   

The experiments in Group D and E were designed as follow-up to Group B after 

a major issue was rightly raised by the committee that I was not controlling for any non-

specific influence of the blocking antibody on disease progression.  To perform the 
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control experiment, we added the matching IgG Isotype control antibody group as the 

negative control, and attempt to show it cannot influence diabetes progression over the 

DM splenocyte only transfer group. The two groups were compared to validate any 

differences using the suggested Mantel-Cox Log Rank test.   

• GROUP E: IgG ISOTYPE vs. anti-IL-1β   

The experiment in Group E was designed to coordinate with Group D and show 

that there is a difference between the IgG Isotype antibody and the blocking anti-IL-1β 

mAb.  This Group experiment has four different treatments for the NOD.scid recipients 

to validate differences between all four: DM splenocytes, CD19+ B cell co-transfers, 

anti-IL-1β mAb, and IgG Isotype Ab.  I performed 6 different paired analyses to 

determine the different Log Rank p-values for each. 
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DATA ANALYSIS AND POWER/SAMPLE SIZE 

 

Analysis of the incidence of adoptively transferred diabetes.  To determine the 

incidence of adoptively transferred diabetes, female NOD.scid recipients across all 

Groups were bled twice a week starting one-week post-splenocyte transfer.  Diabetes 

was diagnosed if mice had a glycemic value >300 mg/dL, according to the literature 

(Christianson et al., 1993; Leiter, 2001).  The different groups of mice (Group A-E; see 

below) were evaluated prospectively to assess diabetes development.    

Survival Analysis of adoptive transfer experiments. Survival analysis was applied 

to estimate the cumulative risk of diabetes onset (Odd O. Aalen, 2008).  The approach 

that I used toward the survival analysis is similar to that previously published by our 

group (Pietropaolo et al., 2002).  All experiments were analyzed on GraphPad Prism 6.0 

and p-values were calculated using the Mantel-Cox Log Rank Test for Survival.  

Survival curves were compared using the log-rank test (see also below).  Resulting 

survival curves were illustrated in GraphPad Prism 6.0 and Follow Up life table were 

constructed using Microsoft Excel with data generated in Prism. Data was also analyzed 

using the Statistical Analysis System Software on Windows operating system (Release 

6.12; SAS Institute Inc., Cary, N.C.) and SPSS software (SPSS Inc. Chicago, IL).    

Sample size, log-rank test power analyses As a general rule, large samples to 

give more reliable results and small samples often leave the null hypothesis 
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unchallenged. Large samples may be justified and appropriate when the difference 

sought is small and the population variance large. Established statistical procedures 

help ensure appropriate sample sizes so that we reject the null hypothesis not only 

because of statistical significance, but also because of practical importance. These 

procedures must consider the size of the type I and type II errors as well as the 

population variance and the size of the effect. The probability of committing a type I 

error is the same as our level of significance, commonly, 0.05 or 0.01, called α, and 

represents the willingness of rejecting a true null hypothesis. We applied both α 0.05 

and 0.01 in our power calculations (see tables below). Power analysis can be used to 

calculate the minimum sample size required so that one can be reasonably likely to 

detect an effect of a given size. We have applied power sample size calculations using 

the log-rank test. The log-rank test is one the most popular tests for comparing two 

survival distributions. This test compares survival across the whole spectrum of time, 

not just at one or two points. This module allows the sample size and power of the log-

rank test to be analyzed under general conditions. Log-rank test power analyses for the 

planned survival analyses were determined using the Lachin and Foulkes method using 

the PASS 14 software (Lachin & Foulkes, 1986; Peto & Peto, 1972). Table 1 (Group A-

E) presents the projected power to detect differences of proportions of diabetes free 

mice between the following groups:  1) The control group was estimated as a group of 

NOD.scid mice that received only splenocytes from diabetic NOD mice, in which the 

proportion surviving at 40 days of follow-up was estimated at 0%; We consistently see 

100% of diabetes in NOD.scid mice, following adoptive transfer of splenocytes from 

NOD diabetic mice. 2) The treated group was defined as a group of NOD mice 
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subjected to a number of treatments detailed below. The proportion surviving at 40 days 

of follow-up was estimated below for different groups of mice.  We then performed a 

power analysis considering different case scenarios with regard to diabetes incidence 

for the following groups:   

Group A: 50-70%, Group B: 50-70%, Group C:  0-20%, Group D:  0-20%, and Group E: 

50-70%.   
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TABLE 5: GROUP A: DM Splenocytes vs. CD19+ B cells w/ DM Splenocytes 

• HYPOTHESIS: Purified CD19+ B cells from pre-diabetic NOD female donors delay 

the onset of diabetes in an adoptive transfer model of diabetes. 

 
Power 
 

 
Sample Size 

 

Follow-up 
time 
(days) 

 
Proportion 

Diabetes- Free 
 

 
 
 

α  
 
 
 

Splenocytes 
from DM 

NOD mice 
and CD19+  

B cells 
(young NOD 

mice) 

Splenocytes 
from DM 

NOD mice 
alone 

Splenocytes 
from DM 

NOD mice 
and CD19+  

B cells 
(young NOD 

mice) 

Splenocytes 
from DM 

NOD mice 
alone 

0.9251 15 15 40 0.7 0 0.01 

0.9831 15 15 40 0.7 0 0.05 

0.9079 15 15 40 0.6 0 0.01 

0.9778 15 15 40 0.6 0 0.05 

0.8778 15 15 40 0.5 0 0.01 

0.9675 15 15 40 0.5 0 0.05 

 

Table 5. Log-rank test power to detect a difference in diabetes incidence between NOD.scid mice treated with 
splenocytes from diabetic NOD mice and CD19+ B cells (young NOD mice) vs splenocytes from diabetic NOD mice 
alone. 

 

Power analysis: Based on the power analysis presented in Table 1A, we have 

sufficient power and number of mice to test our hypothesis. 
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TABLE 6: GROUP B: DM Splenocytes vs. anti-IL-1β 

• HYPOTHESIS: IL-1β secretion will be blocked using a commercially available anti-IL-1β 

mAb and it will delay diabetes onset in an adoptive transfer model of diabetes. 

 
Power 
 

 
Sample Size 

 

Follow-up 
time 

(days) 

 
Proportion 

Diabetes- Free 
 

 
 
 

α  
 
 
 

Splenocytes 
from DM 

NOD mice 
and 

Anti-IL-1β 
mAb 

Splenocytes 
from DM 

NOD mice 
alone 

Splenocytes 
from DM 

NOD mice 
and 

Anti-IL-1β 
mAb 

Splenocytes 
from DM 

NOD mice 
alone 

0.8157 11 11 40 0.7 0 0.01 

0.9430 11 11 40 0.7 0 0.05 

0.7890 11 11 40 0.6 0 0.01 

0.9312 11 11 40 0.6 0 0.05 

0.7463 11 11 40 0.5 0 0.01 

0.9106 11 11 40 0.5 0 0.05 

 

Table 6. Log-rank test power to detect a difference in diabetes incidence between NOD.scid mice treated with 
splenocytes from diabetic NOD mice and anti-IL-1β mAb vs splenocytes from diabetic NOD mice alone. 

 

Power analysis: Based on the power analysis presented in Table 1B, we have sufficient power 

and number of mice to test our hypothesis.  

	

	

	

	

	

	



76 
	

	

TABLE 7: GROUP C: DM Splenocytes vs. Old CD19+ B cells (>15 weeks of age) 

• HYPOTHESIS: Purified CD19+ B cells from older (>15 week old) NOD female 

donors loses its protective effect and does not delay the onset of diabetes in an 

adoptive transfer model of diabetes. 

 
Power 
 

 
Sample Size 

 

Follow-up 
time 

(days) 

 
Proportion 

Diabetes- Free 
 

 
 
 

α  
 
 
 

Splenocytes 
from DM 

NOD mice 
and CD19+  

B cells (old 
NOD mice) 

Splenocytes 
from DM 

NOD mice 
alone 

Splenocytes 
from DM 

NOD mice 
and CD19+  

B cells (old 
NOD mice) 

Splenocytes 
from DM 

NOD mice 
alone 

0.0100 4 4 40 0 0 0.01 

0.0500 4 4 40 0 0 0.05 

0.0867 4 4 40 0.1 0 0.01 

0.2484 4 4 40 0.1 0 0.05 

0.1565 4 4 40 0.2 0 0.01 

0.3717 4 4 40 0.2 0 0.05 

 

Table 7. Log-rank test power to detect a difference in diabetes incidence between NOD.scid mice treated with 
splenocytes from diabetic NOD mice and CD19+ B cells (old NOD mice) vs splenocytes from diabetic NOD mice 
alone. 

 

Power analysis: Based on the power analysis shown in Table 1C, the effect of 

treatment (diabetic NOD mice alone vs splenocytes from diabetic NOD mice and CD19+ 

B cells from older NOD mice) supports the null hypothesis.  
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TABLE 8: GROUP D: DM Splenocytes vs. IgG Isotype Control 

• HYPOTHESIS: The presence of a non-specific IgG Isotype control antibody after 

adoptive transfer of diabetes will not interact with progression to disease or delay the 

onset of diabetes. 

 
Power 
 

 
Sample Size 

 

Follow-up 
time 

(days) 

 
Proportion 

Diabetes- Free 
 

 
 
 

α  
 
 
 

Splenocytes 
from DM 

NOD mice 
and 

IgG Isotype 
Control Ab 

Splenocytes 
from DM 

NOD mice 
alone 

Splenocytes 
from DM 

NOD mice 
and 

IgG Isotype 
Control Ab 

Splenocytes 
from DM 

NOD mice 
alone 

0.0100 11 11 40 0 0 0.01 

0.0500 11 11 40 0 0 0.05 

0.2340 11 11 40 0.1 0 0.01 

0.4824 11 11 40 0.1 0 0.05 

0.4438 11 11 40 0.2 0 0.01 

0.7054 11 11 40 0.2 0 0.05 

 
Table 8. Log-rank test power to detect a difference in diabetes incidence between NOD.scid mice treated with 
splenocytes from diabetic NOD mice and IgG isotype Control Ab vs splenocytes from diabetic NOD mice alone. 
	

Power analysis: Based on the power analysis presented in Table 1D, the effect of 

treatment (diabetic NOD mice and IgG Isotype Control Ab) vs a group of mice 

adoptively transferred with splenocytes alone obtained from diabetic NOD mice, 

supports the null hypothesis.  
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TABLE 9: GROUP E: IgG Isotype Control vs. anti-IL-1β 

• HYPOTHESIS: The use of the anti-IL-1β blocking antibody is specific to preventing 

IL-1β interactions in the transfer model of diabetes and has a significant effect on the 

progression of disease when compared to the control IgG Isotype antibody. 

 
Power 
 

 
Sample Size 

 

Follow-up 
time 

(days) 

 
Proportion 

Diabetes- Free 
 

 
 
 

α  
 
 
 

Splenocytes 
from DM 

NOD mice 
and 

Anti-IL-1β 
mAb 

Splenocytes 
from DM 

NOD mice 
and 

IgG Isotype 
Control Ab 

Splenocytes 
from DM 

NOD mice 
and 

Anti-IL-1β 
mAb 

Splenocytes 
from DM 

NOD mice 
and 

IgG Isotype 
Control Ab 

0.8157 11 11 40 0.7 0 0.01 

0.9430 11 11 40 0.7 0 0.05 

0.5099 11 11 40 0.6 0.1 0.01 

0.7600 11 11 40 0.6 0.1 0.05 

0.1904 11 11 40 0.5 0.2 0.01 

0.4227 11 11 40 0.5 0.2 0.05 

 
Table 9. Log-rank test power to detect a difference in diabetes incidence between NOD.scid mice treated with 
splenocytes from diabetic NOD mice and IgG isotype control Ab vs splenocytes from diabetic NOD mice and anti-IL-
1β mAb. 
 

Power analysis: Based on the power analysis presented in Table 1E, we have 

sufficient power (82% and 94% power with α of 0.01 and 0.05 respectively) and a 

sufficient number of mice to test our hypothesis if the incidence of diabetes is 100% in 

the group treated with splenocytes from diabetic NOD mice and IgG isotype matched 

Ab vs splenocytes from diabetic NOD mice and anti-IL-1β mAb. In the first two rows of 

Table 1E, we predict 30% (70% diabetes-free) of diabetes incidence in the latter group 

vs 100% incidence in the former group. We also calculated the power considering 

different case scenarios with regard to diabetes incidence regarding these two groups. 
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