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ABSTRACT

Motivic Analogues of MO and MSO

by

Dondi Ellis

Chair: Igor Kriz

Abstract: This thesis makes progress in computing the coefficients of Algebraic Her-

mitian Cobordism (MGLR), a motivic C2-equivariant spectrum constructed by P. Hu,

I. Kriz, and K. Ormsby. In the process of my research, I realized it would be possible

to construct motivic analogues of unoriented and oriented cobordism, which I refer

to as MGLO and MSLO respectively. In chapters 2-3 of my thesis, I construct MGLO

and MLSO and give a concrete description of the homotopy groups of each of them.

In particular, my work on MGLO gives an answer to a question of Jack Morava. Using

the tools of Tate cohomology and my computation of the coefficients of MGLO, the

thesis ends with a computation of a localization of the homotopy groups of MGLR.
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CHAPTER I

Introduction

My thesis is an extension of the work of P. Hu, I. Kriz, and K. Ormsby [HKO11].

In [HKO11], the authors construct a C2-equivariant E∞-ring spectrum MGLR. This is

the algebraic version of Landweber’s topological real cobordism MR [Lan67, Lan68].

Recall that MR is a C2-equivariant analogue of complex cobordism MU. By taking the

geometric fixed points of MR (i.e. ΦC2(MR)) one obtains the unoriented cobordism

ring MO of Milnor and Thom. Motivically there is an étale geometric fixed points

functor ΦC2
et satisfying ΦC2

et (MGLR) = MGLO. The topological realization of MGLO

over k = C is MO, and so MGLO should be thought of as a motivic analogue of MO.

We will describe the cobordism spectrum MGLO fully in this thesis for k any field of

characteristic 0. The answer is very beautiful, and the proofs bear great similarity

to the classical case. My construction and computation of the unoriented cobordism

spectrum MGLO answer a question of Jack Morava.

After having completed my work on MGLO, it became clear to me that I could

construct a motivic analogue of unoriented cobordism MSO. I call this MSLO, and

its construction follows the construction of its topological counterpart MSO. The key

observation is that the determinant function is algebraic, and therefore the gener-

alized orthogonal groups On used to construct MGLO can be used to define special

orthogonal groups SOn. After restricting to a ground field k of characteristic 0 for
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which −1 is a square in k, and completing at p an odd prime, MSLO splits as a wedge

sum of suspensions of BPGL, the motivic Brown-Peterson spectrum. After restricting

to a ground field k of characteristic 0 for which −1 is a square in k, and completing

at the prime p = 2, MSLO splits as a wedge sum of suspensions of motivic HZ and

HZ/2.

In chapter 4, using computations relating to MGLO coupled with the tools of

C2-equivariant homotopy theory, I give a computation of the motivic C2-equivariant

spectrum MGLR (completed at 2) after inverting a twist λ of degree 1−σ+σα−α and

a twist θ of degree 1−α. Chapters 2 and 3 pertain to MGLO and MSLO respectively.

The remainder of the current chapter will serve as a reference as well as a means to

establishing notation for the material which will follow. We divide Chapter 1 into two

parts. Part 1 will give the non-equivariant story and Part 2 will give the equivariant

story.

1.1 Motivic homotopy theory

Informally, Motivic homotopy theory is an answer to the question “How does one

do homotopy theory in the category of smooth schemes over some field k?” Just as

the category of smooth manifolds is too small to do classical homotopy theory, the

category of smooth schemes over k is too small to do motivic homotopy theory. To fix

this, we enlarge to the category ∆opPre((Sm/k)Nis) of simplicial Nisnievich presheaves.

This allows us to do simplicial constructions as well as to impose a homotopy theoretic

construction in which the affine line A1 plays the role of the unit interval. This theory

was first constructed by Morel and Voedvosky in [MV99].

Our site is (Sm/k)Nis. Here Sm/k denotes smooth separated schemes over the field

k. We give Sm/k the Nisnievich topology; covers are étale covers such that over each

point (possibly not closed) there is a point with the same residue field. The motivation

behind using the Nisnevich topology, as opposed to say the Zariski topology, is that
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the Nisnevich cohomology is often the same as in the Zariski topology, but it can be

computed using Čech cohomology.

For any object X in a site C, we have a representable presheaf C(·, X). For each

Y ∈ C this presheaf takes the value of the hom-set of morphisms in C from Y to X.

Definition 1.1. We say that a site C is subcanonical if each representable presheaf

of sets on C is a sheaf.

It turns out that the site of smooth schemes over k with the Nisnevich topology

is subcanonical. Thus, we have an embedding Sm/k ↪→ Pre(Sm/k). To allow for

simplicial constructions, we actually consider ∆opPre(Sm/k).

Definition 1.2. The category of k-spaces is

Spc(k) := ∆opPre(Sm/k).

The site Sm/k has enough points, and so we are able to form stalks in Spc(k).

Noting that the stalks are simplicial sets, we put a model structure on Spc(k) called

the local model structure as follows:

Weak equivalences are maps of simplicial presheaves inducing equivalences of sim-

plicial sets on all stalks

Cofibrations are the monomorphisms.

Fibrations Satisfy the right lifting property with respect to acyclic cofibrations.

It is a theorem of Jardine [Jar87] that this produces a proper closed simplicial model

structure on Spc(k).

We define an object Z in ∆op(Pre(Sm/k)Nis) to be A1-local if for every projection

map X × A1 π−→ X , the induced map Hom(X ,Z )
Hom(π,Z )−−−−−→ Hom(X × A1,Z ) is an

isomorphism. We then say that a morphism P
f−→ Q is a local A1 weak equivalence
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if the induced map Hom(Q ,Z )
Hom(f,Z )−−−−−→ Hom(P,Z ) is an isomorphism for each A1

local Z. Using Bousfield localization, we form a new model category, called the A1

homotopy category, which we abbreviate as H(k).

LetX, Y ∈ Spc(k) and hom(X, Y ) be the simplicial set with n-simplices consisting

of maps of simplicial presheaves X ×∆n → Y .

In the A1 homotopy category we can form pushouts and pullbacks, and so we are

able to form wedge sums and smash products of pointed k-spaces.

1.1.1 The bigraded family of spheres

One of the important features of motivic homotopy theory is that it admits a

bigraded family of spheres. There are two circles in the homotopy category, S1 and

Sα. The circle S1 can be formed as A1/0 ∼ 1 or as ∆1/∂∆1. As such, S1 is best

thought of as a topological circle. The circle Sα can be formed as A1 r 0, which is

equivalent to Gm := Spec(k[z, z−1]). We refer to Sα as the geometric circle. We can

form an n+mα dimensional sphere as the smash product of n type S1 circles and m

type Sα circles. It is well known that S1 ∧ Sα ' P1.

In our notation, 1 and α correspond to the more standard notation 1 = (1, 0) and

α = (1, 1).

1.1.2 The stable motivic homotopy category

Definition 1.3. A motivic prespectrum X is a sequence of based k-spaces X0, X1,

X2, ..., along with structure maps S1+α ∧ XN
σ−→ XN+1 satisfying the appropriate

commutative diagrams. Each of the maps σ is adjoint to a map XN
σ̃−→ Ω1+αXN+1.

If each of these maps is an equivalence, then we say that X is a spectrum. Any

prespectrum can be promoted to a spectrum in a canonical way.

Definition 1.4. Let U ∈ Sm/k and X be a motivic prespectrum. Then we define an
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inductive sequence

[Sm+nα ∧ U+, X0]→ [Sm+nα+(1+α) ∧ U+, X1]→ [Sm+nα+2(1+α) ∧ U+, X2]→ ...

We define πn+mαX(U) to be the colimit of the above sequence.

The following is a theorem of D. Dugger and D. Isaksen proved in [DI05].

Theorem 1.5. Consider the family of bigraded functors πn+mα(−) : Spt(k) → Gp

defined by πn+mαX := πn+mαX(Spec(k)). In the category of cellular k spectra these

functors detect equivalences. For the definition of cellular, see definition 2.4.

Motivic spectra also produce (co)homology theories on smooth k-schemes is a way

familiar to topologists.

Definition 1.6. Given a k-spectrum E and U ∈ Sm/k, we define the E-cohomology

of U by

En+mα(U) := [U+,Σ
n+mαE].

We define the E homology of U by

En+mα(U) := [Sn+mα,E ∧ U+].

By abuse of notation, we will write En+mα and En+mα whenever we mean En+mα(Spec k)

and En+mα(Spec k) respectively.

1.2 G-equivariant motivic homotopy theory

Following [HKO11], let (Sm/k)NisG denote the site of G-equivariant smooth sepa-

rated schemes over k with the Nisnievich topology, for G a finite group. In our def-

inition, the covers in the G-equivariant Nisnievich topology are G-equivariant étale

maps f in which for each point x (in the scheme-theoretical sense) with isotropy
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group H ⊆ G, there exists a point in f−1(x) with the same residue field and the same

isotropy group. By the category of based G-equivariant k-spaces we shall mean the

category ∆opPre((Sm/k)NisG) of pointed simplicial presheaves on the site (Sm/k)NisG .

1.2.1 The family of C2 spheres

In C2-equivariant motivic homotopy theory we have four motivic circles. We have

the two nonequivariant circles, S1 and Sα, by giving them the trivial action. We also

have two C2-equivariant circles Sσ and Sσα. The circle Sσ can defined as ∆1/∂∆1 with

the action z 7→ −z. The circle Sσα will also be called G1/z
m , defined as Spec(k[z, z−1])

equipped with an action z 7→ z−1. We can form p + qα + rσ + sσα spheres by

smashing p copies of S1 with q copies of Sα with r copies of Sσ with s copies of Sσα.

In particular, Sσ ∧ Sσα ' P1 with involution given by z 7→ −z−1. We denote this

space by P1
−. We form the C2-equivariant stable category by stabilizing with respect

to P1 ∧ P1
−. We will sometimes denote P1 ∧ P1

− by TG.

As an aside, I would like to point out that the authors of [HKO11] use the greek

letter γ instead of σ. The reason for this difference is an aesthetic one, although σ is

also used in [HVØ16] in place of γ. However, in [HVØ16] the authors use a Voevodsky

type grading. I prefer the grading convention of [HKO11].

1.2.2 Two kinds of classifying spaces

Recall that topologically, the classifying space BG for a group G is constructed

by taking the quotient of a G-free contractable G-CW-complex EG by the group G.

Topologically, all such constructions are equivalent. However, this is not the case

motivically. Motivically, there are two different constructions of the classifying space

BG; there is the usual simplical construction, and there is a geometric classifying

space construction which can be found in [MV99, Tot99]. I will denote the usual sim-

plicial model of the free contractible G space by EG, and I will denote the geometric
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construction by EetG. We will concern ourselves explicitly with the group G = C2,

and so I give an explicit model for EetC2.

Definition 1.7. Consider the spaces An r 0 pointed at 1 with a C2 action given by

z 7→ −z. We have natural inclusions

An r 0 ⊆ An+1 r 0

for each n. Therefore, we can form a space A∞ r 0, which we call EetC2, in the

obvious way. We can also form a space BetC2 by forming the quotient An r 0/C2 for

each n and then taking the direct limit of the spaces with respect to inclusion.

In [Voe03], V. Voevodsky computes the motivic Z/2 cohomology of BetC2.

Proposition 1.8. The algebra structure of the motivic Z/2 cohomology of BetC2 is

H?(BetC2;Z/2) ∼= H?[a, b]/(a2 − τb).

Here τ is the tate twist of degree α− 1, a the cohomology class of degree α, and b the

cohomology class of degree 1 + α.

1.3 G-equivariant stable motivic homotopy theory

Classically, the tools of stable G-equivariant stable homotopy theory are contained

in a paper by Greenlees and May [GM95]. Those tools involve a cofibration sequence

called the tate diagram, a certain adams isomorphism saying that fixed points and

qoutients behave well after smashing with a free contractible space EG, and a certain

geometric fixed point functor ΦG. The geometric fixed point functor ΦG is supposed

to be the naive notion of taking the fixed points of a spectrum E which is implemented

by taking fixed points at the prespectrum level. We can do the same construction

motivically.
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Definition 1.9. Let E be a G equivariant motivic spectrum defined at the prespec-

trum level by a sequence of spaces X0, X1, X2, ... . Then we can define a nonequivari-

ant motivic spectrum ΦG
et(E). The prespectrum is formed by the sequence of spaces

Yn := (Xn)G. The structure maps are then defined by taking G fixed points on

the structure maps TG ∧ Xn
σ−→ Xn+1. Since (TG)G = P1, we obtain structure maps

P1 ∧ Yn
σfixed−−−→ Yn+1.

Another important tool of equivariant homotopy theory is the Tate diagram. Clas-

sically this is given by a cofibration sequence EG+ → S0 → ẼG where EG :=

|B(G,G, ∗)|. Smashing this with a G equivariant spectrum E we can form an equiv-

ariant cofibration

EG+ ∧ E→ E→ ẼG ∧ E. (1.1)

Taking G fixed points we obtain a diagram

EG+ ∧G E→ EG → ΦG(E).

Classically, an equivalent approach involves considering the reduced regular sus-

pension V of the group G. Set S(nV ) := V ⊕n r 0. We may then form cofibration

sequences

S(nV )+ → S0 → SnV .

Taking the colimit, we obtain an equivariant cofibration

S(∞V )+ → S0 → S∞V .

Smashing the Tate diagram with a G-equivariant spectrum E, we can form a G-
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equivariant cofibration sequence

S(∞V )+ ∧ E→ E→ S∞V ∧ E. (1.2)

Topologically, eq. (1.1) and eq. (1.2) are equivalent constructions. Unfortunately

this is not the case motivically. In the motivic universe, (S∞V ∧ E)G = ΦG(E).

Unfortunately, it is not true that (ẼG∧E)G = (S∞V ∧E)G in general. This is easy to

see in the case G = C2. Since in this case S∞V = S∞σ+∞σα, smashing it with E kills

both of the equivariant suspensions σ and σα, which we would expect to happen.

However, |B(C2, C2, ∗)| is a model for S∞σ, and so we only kill the σ suspensions but

not the σα suspensions whenever we smash with E.

Motivically, the following two cofiber sequences of pointed C2 k-spaces are useful

for computational purposes,

C2+ → S0 → Sσ,

(A(nσ) r 0)+ → S0 → Snσ+nσα.

Here A(nσ) denotes the affine n-space An with C2 action z 7→ −z. These two

cofiber sequences induces the cofiber sequences

EC2+ → S0 → ẼC2

and

EetC2+ → S0 → ẼetC2

respectively. ẼetC2 is a model for S∞σ+∞σα, and so it follows that

(X ∧ ẼetC2)C2 ∼= ΦC2
et (X).
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Equivariant stable motivic homotopy theory was first introduced in [HKO11] as a

tool for solving Thomason’s homotopy limit problem for algebraic Hermitian K-theory.

The authors of that paper constructed the C2-equivariant motivic spectrum MGLR,

called algebraic Hermitian cobordism. In the process, they also proposed the spectrum

ΦC2(MGLR) as a motivic analogue of the (topological) unoriented cobordism spectrum

MO. In the present thesis, I modify this definition by putting MGLO = ΦC2
et (MGLR).

One of my main results is calculating the coefficients of MGLO. In particular, I prove:

Theorem 1.10. MGLO is a wedge of suspensions of HZ/2Mot. In particular, the

coefficients of MGLO are direct sums of Bloch Chow groups of the ground field with

coefficients Z/2.

A more precise statement is given in theorem 2.17 below. In chapter III, I also

extend these results to a motivic analogue of oriented cobordism, and in chapter IV,

I calculate the coefficients of a certain localization of MGLR.
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CHAPTER II

A motivic analogue of MO

In section 1 of this chapter, we give a detailed account of how to construct the

motivic spectrum MGLO. In section 2, we give a full computation of the coefficients

of this spectrum up to knowledge of the coefficients of motivic HZ/2. In particular,

our computation gives an explicit description of the Z/2-algebra structure of the

coefficients of MGLO over the fields R and C. Moreover, the topological realization

of MGLO over the field C is MO.

2.1 The construction of MGLO

The idea behind our definition of MGLO is that, just as the geometric fixed points

of MO is MR, the geometric fixed points of MGLR should be MGLO. The definition

presented here is different than the definition given in [HKO11]. Using simplicial

EC2, the authors of [HKO11] define,

MGLO := (ẼC2 ∧MGLR)C2 . (2.1)

However, this definition does not satisfy a crucial property. Topologically, given a

G-equivariant spectrum E, the functor ΦG(−) := (− ∧ ẼG)G applied to E produces

a nonequivariant spectrum ΦG(E) which is equivalent to forgetting E to the prespec-
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trum level and then simultaneously taking G-fixed points of the spaces making up

the prespectrum of E and the connecting maps to form a nonequivariant prespec-

trum. One can then promote this to a nonequivariant spectrum in the usual way.

Similarly, in our definition, MGLO is defined by forgetting MGLR to the level of pre-

spectra and then taking C2-fixed points of the spaces and connecting maps to form a

nonequivariant prespectrum. Promoting this to a spectrum defines MGLO.

This alternative definition of MGLO turns out to be different than eq. (2.1). The

reason being that simplicial ẼC2 is a model for S∞σ. This only takes into account

the σ-grading. However, we need to also take into account the σα grading. In other

words, our ẼC2 should really be a model of S∞σ+∞σα. It turns out that the 1-point

compactification of geometric EC2 serves as a model, and we have that,

MGLO ' (MGLR ∧ S∞σ+∞σα)C2 .

2.1.1 Quadratic forms

Following [HKO11, Section 6.1], we consider the hyperbolic quadratic form on k2n:

q(x1, ..., x2n) = x1x2 + ...+ x2n−1x2n.

The associated symmetric bilinear form is

b((x1, ..., x2n), (y1, ..., y2n)) =
n∑
i=1

x2iy2i−1 + x2i−1y2i.

The b-adjoint of a matrix A = (ai,j)
2n
i,j=0 is a 2n× 2n matrix ATb such that

b(Ax, y) = b(x,ATby). (2.2)
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Explicitly, putting ATb = (b2n
i,j=1), one has

b2i,2j = a2j−1,2i−1

b2i−1,2j−1 = a2j,2i

b2i,2j−1 = a2j,2i−1

b2i−1,2j = a2j−1,2i

Notice that there is a C2 action on the quadric

Qn := V(x, y | b(x, y) = 1)

where V(xi | E) (sometimes abbreviated to V(E)) denotes the locus of the equations

E in the variables xi, given by

x↔ y.

Taking C2 fixed points of the quadric under this action, we have:

(Qn)C2 = V(x, y | b(x, y) = 1, x = y) = V(
n∑
i=1

x2iy2i−1 + x2i−1y2i − 1, x = y) (2.3)

The projection from eq. (2.3) onto the x coordinate scaled by a factor of 2 gives

an equivalence to Q2n−1 := V(x ∈ k2n | x1x2 + x3x4 + ...+ x2n−1x2n − 1). But the

projection from eq. (2.3) onto the x-axis gives the same thing as projecting Qn onto

the x-axis. So long as x 6= 0 there exists a y such that b(x, y) = 1. But this means

that the image of the projection map is A2n r 0. It is a standard result that A2n r 0

has the homotopy type of S2n−1,n = Sn−1+nα. Now returning to eq. (2.2) we will define
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the even dimensional orthogonal groups by

O2n := {A ∈ GL2n(k) | AATb = I}.

The group O2n acts on the quadric Q2n−1 in a natural way. We can write Q2n−1 as

V
(b(x, x)

2
− 1
)
.

The action on Q2n−1 is given element-wise by A · x = Ax. Notice that

b(Ax,Ax) = b(x,ATbAx) = b(x, x).

Therefore we have defined an O2n action on Q2n−1. We define O2n−1 to be

O2n−1 := {A ∈ O2n | A〈1, 1, 0, ..., 0〉 = 〈1, 1, 0, ..., 0〉}.

For brevity we will write x0 in place of 〈1, 1, 0, ..., 0〉. It is not out of place to ask if

our definition for O2n−1 is a good one. If we would have defined O2n−1 to be matrices

A ∈ O2n such that Ae1 = e1 then it is clear that a1j = aj1 = δij if one writes down

what is going on. This gives the only restrictions on O2n−1 other than those induced

from the ambient group O2n, and so O2n−1 would have a natural inclusion into O2n.

For the vector 〈1, 1, 0, ..., 0〉 things are not so clear, but we do know that there is a

transition matrix (though not necessarily unique) from the point 〈1, 1, 0, ..., 0〉 to e1.

Therefore, the subgroup of matrices fixing the point 〈1, 1, 0, ..., 0〉 is isomorphic to the

subgroup of matrices fixing e1. So it makes sense to identify O2n−1 as we have above.

Lemma 2.1. O2n acts transitively on Q2n−1 and the fixed point subgroup of

〈1, 1, 0, ..., 0〉 is O2n−1.

Proof. For the transitivity claim we need to show that for x, y ∈ Q2n−1 there is
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some A ∈ O2n such that Ax = y. Note that it is enough to show that for any

x ∈ Q2n−1 there exists a matrix A ∈ O2n such that Ax = x0. For if Ax = x0

and By = x0, we have that B−1Ax = y. Consider the orthonormal basis B1

given by {
√

2
2
x0,

√
2

2
〈1,−1, 0, ..., 0〉, e3, ..., e2n}, and an orthonormal basis B2 given by

{ x
||x|| , v2, ..., v2n}. Then there exists a change of basis matrix P from B2 to B1 which,

in particular, sends x
||x|| to

√
2

2
x0. This then implies that Px = λx0 for some λ ∈ k.

But if x ∈ Q2n−1, then b(x,x)
2

= b(Px,Px)
2

= b(λx0,λx0)
2

= λ2 b(x
0,x0)
2

= λ2 = 1. Therefore

λ = ±1. Suppose that λ = −1. Then Px = −x0 ⇒ (−P )x = x0. But −P ∈ O2n. This

proves the transitivity claim. The claim about O2n−1 is true by definition.

We define,

Q2n−2 := V(x ∈ k2n | b(x, x0), b(x, x) + 1)

= {x ∈ k2n | x1x2 + ...+ x2n−1x2n + 1 = x1 + x2 = 0}.
(2.4)

We would like to make analogous statements to lemma 2.1 for O2n−1 and Q2n−2. First,

however, I will show that Q2n−2 is homotopy equivalent to a familiar space.

Lemma 2.2. Q2n−2 is homotopy equivalent to S2n−1,n−1 = Sn−1+(n−1)α.

Proof. We have that

Q2n−2 = V(x ∈ k2n | x1x2 + ...+ x2n−1x2n + 1, x1 + x2). (2.5)

We note that this space is homotopy equivalent to

V((y, x3, x4, ..., x2n) ∈ k2n−1 | − y2 + x3x4 + ...+ x2n−1x2n + 1). (2.6)

But this is easily seen to equivalent to

Spec(k[y, x3, x4, ..., x2n−1, x2n]/((1− y)(1 + y) + x3x4 + ...+ x2n−1x2n)).
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Now, by [ADF14, Theorem 2], we notice that

Sn−1+(n−1)α ' Spec(k[z, a3, a4, ..., a2n−1, a2n]/(a3a4 + ...+ a2n−1a2n − z(1 + z)).

Using the change of variables z 7→ −1
2
(1 + y), ai 7→ 1

2
xi, we have that

Spec(k[z, a3, a4, ..., a2n−1, a2n]/(a3a4 + ...+ a2n−1a2n − z(1 + z))

' Spec(k[y, x3, x4, ..., x2n−1, x2n]/(1
4
(x3x4 + ...+ x2n−1x2n + (1− y)(1 + y)))

' Spec(k[y, x3, x4, ..., x2n−1, x2n]/(x3x4 + ...+ x2n−1x2n + (1− y)(1 + y))).

The O2n action on Q2n−1 induces an O2n−1 action on Q2n−2. Recall that O2n−1

acts point-wise on the quadric Q2n−2 by A · x 7→ Ax. Notice that Q2n−2 is induced

from the form b2n(x, y). x ∈ Q2n−2 implies that b2n(x,x)
2

= −1. Since

b(Ax,Ax) = b(x,ATbAx) = b(x, x),

it only remains to show that if x1 = −x2 and y = (y1, y2, ..., y2n) is the image of x,

then y1 = −y2. But notice that for x ∈ Q2n−2 we have that b(x, 〈1, 1, 0, ..., 0〉) = 0.

Let A ∈ O2n−1 and let y = 〈y1, y2, ..., y2n〉 be the image of x. Then,

y1 + y2 = b(y, 〈1, 1, 0, ..., 0〉) = b(Ax, 〈1, 1, 0, ..., 0〉) = b(x,ATb〈1, 1, 0, ..., 0〉)

= b(x, 〈1, 1, 0, ..., 0〉) = x1 + x2 = 0.

This proves that O2n−1 acts on the quadric Q2n−2.

Lemma 2.3. O2n−1 acts transitively on Q2n−2 and the fixed point subgroup of

y0 = 〈1,−1, 0, ..., 0〉 can be naturally identified with O2n−2.

Proof. We prove the transitivity claim in a similar manner to lemma 2.1. It will
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be enough to show that for any x ∈ Q2n−2 there is a matrix A ∈ O2n−1 such that

Ax = y0.

Notice that technically our O2n−1 lives inside of O2n. We choose an orthonormal

basis B1 = { x0

||x0|| ,
y0

||y0|| , e3, ..., e2n}, and B2 = { x0

||x0|| ,
x
||x|| , v3, ..., v2n}. Then there exists

a change of basis matrix P from B2 to B1 which sends x0 to x0 and x to y0

||y0|| . This

implies that for x ∈ Q2n−2 we have that Px = λy0. We have that

−1 =
b(x, x)

2
=
b(Px, Px)

2
=
b(λy0, λy0)

2
=
λ2b(y0, y0)

2
= −λ2 ⇒ λ = ±1.

If λ = 1 then we are done. If λ = −1 then we have that (−P )x = y0. This proves

the transitivity claim.

The subgroup of O2n−1 which fixes the point y0 = 〈1,−1, 0, ..., 0〉 ∈ k2n is,

{A ∈ O2n | Ax0 = x0 and Ay0 = y0} = {A ∈ O2n−1 | Ae1 = e1 and Ae2 = e2}.

But this is just matrices A ∈ O2n of the form:

A =



1 0 0 . . . 0

0 1 0 . . . 0

0 0 x3,3 . . . x3,2n

...
...

...
. . .

...

0 0 x2n,3 . . . x2n,2n


.

This shows that O2n−2 can be naturally identified with the subgroup of O2n−1 which

fixes the point y0.

2.1.2 Cellularity

The following definition is due to [DI05, Definition 2.1].

Let M be a pointed model category, and let A be a set of objects in M.
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Definition 2.4. The class of A-cellular objects is the smallest class of objects ofM

such that

1. every object of A is A-cellular;

2. if X is weakly equivalent to an A-cellular object, then X is cellular;

3. if D : I →M is a diagram such that D is A-cellular, then so is hocolim D.

Choosing M to be the stable motivic homotopy category, and choosing A to be

the motivic sphere spectrum, we obtain the cellular stable motivic homotopy category.

Adapting the proof of [DI05, Proposition 4.1], I will prove the following.

Proposition 2.5. The variety On is stably cellular for every n ≥ 1.

Proof. We first suppose that n = 2k. Let x = 〈1, 1, 0, ..., 0〉. Now consider the fiber

bundle On → Pn−1 given by

On
mx−−→ An → An/An r 0 ' Pn−1.

Here mx denotes the map A 7→ Ax. Notice that mx induces a transitive action of

On on the motivic sphere Qn−1. The fiber over the point [1, 0, 0, ..., 0] consists of all

A ∈ On such that a11 6= 1, and aj1 = 0 for j ≥ 2. Recall that

On−1
∼= {A ∈ On | A〈1, 0, 0, ...〉 = 〈1, 0, 0, ...〉}.

But this is just {A ∈ m−1
x ([1, 0, 0, ...]) | a11 = 1}. Since det(AAT ) = det(A) det(AT ) =

det(A)2 = 1, it follows that a11 = ±1, and so m−1
x ([1, 0, 0, ...]) = On−1 × {±1}. As a

scheme, but not as a group, this is isomorphic to

{±1} × An−1 ×On−1,
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which is stably cellular by induction and [DI05, Lemma 3.4]. The usual cover of Pn by

affines is a completely trivializing cover for the bundle, so [DI05, Lemma 3.8] applies.

2.1.3 Two-sided bar construction

Recall that we have the following equivalences,

Qn '

 Sk+kα if n = 2k

Sk−1+kα if n = 2k − 1.

The groups On act on the quadrics Qn−1, allowing us to form the two-sided bar

construction, which we now discuss.

Let G be a finite group and X and Y motivic spaces. If X ×G→ X is a right G

action and G×Y → Y is a left G action, then we form the two sided bar construction

B(X,G, Y ) as the left derived functor of the coequalizer of X ×G× Y ⇒ X × Y. We

denote the geometric realization of B(X,G, Y ) by |B(X,G, Y )|.

Definition 2.6. In the special case X = Y = ∗, we define BG := |B(∗, G, ∗)|.

Lemma 2.7. |B(On, On−1, ∗)| ' Qn−1.

Proof. It is well known for H ↪→ G an inclusion of groups that the left coset G/H is

isomorphic to |B(G,H, ∗)|. Taking G = On and H = On−1, this gives

On/On−1
∼= |B(On, On−1, ∗)|.

Notice that by the above discussion, On acts on Qn−1, and the stabilizer of a point is

On−1. This induces an isomorphism between On/On−1 and Qn−1, proving that

Qn−1
∼= |B(On, On−1, ∗)|.
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Lemma 2.8. |B(G,G, ∗)| ' ∗. In particular, we have |B(On, On, ∗)| ' ∗.

Proof. ∗ ∼= G/G ∼= |B(G,G, ∗)|.

Proposition 2.9. |B(∗, On, Qn−1)| ' BOn−1.

Proof. We have that |B(∗, On, Qn−1)| ' |B(∗, On, |B(On, On−1, ∗)|)| '

|B(|B(∗, On, On)|, On−1, ∗)| ' |B(∗, On−1, ∗)|.

2.1.4 The prespectrum for MGLO

The identifications from Theorem proposition 2.9 imply that we have a map

BOn−1
π−→ BOn (2.7)

which is built from gluing together face maps which are projections,

On ×On × ...×On︸ ︷︷ ︸
m times

×Qn−1 → On ×On × ...×On︸ ︷︷ ︸
m times

.

Therefore, we can think of eq. (2.7) as a sphere bundle. This allows us to define Thom

space like objects as the homotopy cofiber of π. That is, the Thom space of BOn,

denoted Thom(BOn), is defined by the homotopy pushout;

BOn−1

��

// BOn

��
* // Thom(BOn)

The spaces Thom(BO2n) will form the spaces for the prespectrum of MGLO. Now

we discuss how to define the connecting maps.
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Definition 2.10. Notice that the natural inclusions On−1×Om−1 ⊂ On×Om induce

maps B(On−1 ×Om−1)→ B(On ×Om). We define

Thom(B(On ×Om)) := B(On ×Om)/B(On−1 ×Om−1).

It is clear that Thom(B(O2r ×O2s)) ' Thom(BO2r) ∧ Thom(BO2s).

The even dimensional thom spaces Thom(BO2n) form the terms of the prespec-

trum. Since Gm ' SO2 ⊂ O2 by proposition 3.1, we get the canonical map

P1 ' ΣGm → BO2.

We can then define the structure maps by

P1 ∧ Thom(BO2n)→ Thom(BO2) ∧ Thom(BO2n)
'−→ Thom(B(O2 ×O2n))

→ Thom(BO2n+2).

Thus we have defined a prespectrum and so we can promote it to a spectrum in the

usual way. This defines the spectrum MGLO.

Notice that since the orthogonal groups are stably cellular by proposition 2.5,

it follows that the classifying spaces BOn is also stably cellular. Since each of the

thom spaces Thom(BOn) are constructed as the homotopy cofiber of the inclusion

BOn−1 → BOn, it follows that the spaces Thom(BOn) are also cellular. Since these

are the spaces defining the prespectrum of MGLO, it follows that MGLO is cellular.

21



2.2 Computing the coefficients of MGLO

Combining proposition 2.9 with a Mayer-Vietoris argument as in [MS16] gives us

the following Thom isomorphisms in motivic HZ/2 (co)homology.

H?(BOn+) ∼= H?+ωn(Thom(BOn))

H?(BOn+) ∼= H?+ωn(Thom(BOn))

Here ω2k := k + kα and ω2k+1 := k + 1 + kα.

For each space BOn, we get a unique Thom class Thom(BOn)
wn−→ ΣωnHZ/2.

Composing wn with the homotopy cofiber of the map BOn−1+ → BOn+, we get a

class wn ∈ Hωn(BOn+). The following theorem has essentially been proved by A.

Smirnov and A. Vishik in [SV14] using different language from the present paper.

The biggest difference between [SV14] and the theorem presented here is that [SV14]

only applies to fields of characteristic 0 for which
√
−1 ∈ k, whereas the present

theorem holds for any field k of characteristic 0.

Theorem 2.11. There are a unique set of classes w1, w2, ..., wn belonging to motivic

Z/2 cohomology for which,

H?(BOn+) ∼= H?[w1, ..., wn].

Here deg(w2i) = i+ iα and deg(w2i+1) = i+ 1 + iα.

Proof. Notice that the cofibration BOn−1+ → BOn+ → Thom(BOn) induces a long

exact sequence in cohomology given by

...→ H?(Thom(BOn))→ H?(BOn+)→ H?(BOn−1+)→ H?+1(Thom(BOn))→ ...

Using the Thom isomorphism H?(BOn+)
∼=−→ H?+ωn(Thom(BOn)) we get the long
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exact sequence

...→ H?(BOn+)
f∗n−→ H?+ωn(BOn+)

g∗n−→ H?+ωn(BOn−1+)
h∗n−→ H?+1(BOn+)→ ...

Notice that f ∗n is multiplication by some nonzero class wn. By induction, H?(BOn−1+)

= H?[w1, ..., wn−1]. Since BOn is cellular, we have that Hp+qα(BOn+) = 0 for q < 0.

It is also clear that the map f ∗n is injective on Z/2 ∼= H0(BOn+). We can start

with the case n = 0 by identifying BO0 with |B(∗, O1, Q0)| which is contractible.

Therefore, we have that h∗n(wi) = 0 for i = 0, ..., n− 1. It follows that each of the wi

can be uniquely lifted to H?(BOn+). Moreover, since h∗n(wi) = 0 for i = 0, ..., n− 1,

it follows that h∗n = 0. Thus, the long exact exact sequence splits and we get the short

exact sequence

0→ H?(BOn)
f∗n−→ H?+ωn(BOn)

g∗n−→ H?+ωn(BOn−1)→ 0.

The key point is that f ∗n is multiplication by the cohomology class wn ∈ Hωn(BOn).

In other words f ∗n =^ wn.

From this the claim follows. We have

H?(BOn) ∼= H?[w1, ..., wn−1]⊕H?[w1, ..., wn−1] ^ wn ∼= H?[w1, ..., wn].

If we define BO := colimj>0(BOj ⊂ BOj+1), then H?(BO) = lim←−H
?(BOn+).

A quick word is in order. We have a Thom isomorphism in (co)homology. I

have computed the cohomology of BOn, but their is a motivic universal coefficient

theorem, and so the (co)homology are essentially the same and their is a duality

between the (co)homology classes. Motivically, this is not always the case. However,

MGLO ∧ HZ/2 is a wedge sum of suspensions of HZ/2 of dimensions p + qα with
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p ≥ q and so we can show that the (co)homology classes are dual to one another

[Hoy15]. This gives us the following theorem.

Theorem 2.12. There are a unique set of classes w1, w2, ..., wn belonging to motivic

Z/2 homology for which,

H?(BOn+) ∼= H?[w1, ..., wn].

Here deg(w2i) = i+ iα and deg(w2i+1) = i+ 1 + iα.

Since HZ/2 is an E∞ ring spectrum, we have a universal coefficients theorem.

Therefore, the HZ/2 cohomology classes in MGLO give dual homology classes in the

coefficients of MGLO ∧ HZ/2, and so we have that H?(MGLO) is a free polynomial

ring over generators uk with deg(u2i) = i+ iα and deg(u2i+1) = i+ 1 + iα.

We now take a slight detour to discuss the Motivic Steenrod algebra.

2.2.1 Dual Motivic Steenrod Algebra

We can define the Dual Motivic Steenrod Algebra A∨Mot to be HZ/2 ∧HZ/2. As

an H? algebra, the coefficients of A∨Mot are given by

H?[τi, ξi+1]i≥0/(τ
2
i − τξi+1 − ρτi+1 − ρτ0ξi+1) (2.8)

where |ξi+1| = (2i+1 − 1)(1 + α) and |τi| = (2i − 1)(1 + α) + 1. Let ξ(r1, r2, ..., rn) :=

ξr1ξr2 ...ξrn for ri ∈ Z≥0 and τ(i0, i1, ..., im) := τ ε0i0 τ
ε1
i1
...τ εmim for 0 ≤ i0 < i1 < ... < im

and εj ∈ {0, 1}. It is clear from eq. (2.8) that a basis for A∨Mot? is given by products

of the form ξ(r1, r2, ..., rn)τ(i0, i1, ..., im).

By comparing the H? module basis for the coefficients of MGLO∧H and A∨Mot, we

see that MGLO∧H is a wedge sum of suspensions of A∨Mot. Consider the submodule

M of H?(MGLO) obtained by deleting all generators of degree(ξi+1) and squaring all

24



generators of degree(τi). Let M be an H? module basis for this submodule. Then,

MGLO ∧HZ/2 '
∨

mi∈M

Σ|mi|A∨Mot.

2.2.2 2 = η = 0 in MGLO?

Consider the stable cofibration induced by multiplication by 2,

S0 2−→ S0 → M(2).

The cofiber M(2) is called the mod 2 Moore spectrum, and HZ ∧ M(2) ' HZ/2.

Recall that classically 2 = 0 in the coefficients of MO. The analogous statement will

be shown to be true for MGLO.

Consider the Hopf map given by the projection h : A2 r 0 → P1. Recall that

A2 r 0 ' S1+2α and that P1 ' S1+α. It follows that h induces a stable map η :

ΣαS0 → S0. We denote the cokernel of this map by S0/η. For a general spectrum E,

we denote the cokernel of the map η ∧ E by E/η.

Let E denote a cellular spectrum. We will say that E is k-connected if πn+∗α(E) = 0

for n < k. Analogously to the topological case, one can easily show that πn+∗α(Z/2) ∼=

πn+1+∗α(BC2). Notice that π0(Z/2) ∼= Z/2.

Proposition 2.13. 2 = 0 in the coefficients of MGLO.

The unit map S0 → MGLO can be decomposed as

S0 → Σ−1BC2 → Σ−1Thom(BC2)→ MGLO.

Notice that Z/2 ∼= π1(BZ/2) ∼= π0(Σ−1BZ/2). Since the unit map of MGLO factors

through the map representing the generator of π0(Σ−1BC2), it follows that 2 = 0.

Proposition 2.14. η = 0 in the coefficients of MGLO.
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Proof. It is well known that η = 0 in the coefficients of MGL. Therefore, it will be

enough to produce a map from MGL to MGLO. We accomplish this by producing a

surjective map GLn → O2n. This map is given by A 7→ A ⊕ (ATb)−1. This in turn

induces a map MGL→ MGLO as desired.

2.2.3 Comodule structure of MGLO

If E is a motivic spectrum, and H denotes the mod 2 Moore spectrum, then

H?(E) has the structure of a left comodule over A?. In particular, we can apply this

to E = MGLO, giving us a coproduct:

H?(MGLO)
∆−→ A? ⊗H? H?(MGLO).

If we were to follow the classical argument, we would want to show that there exists

a projection map H?(MGLO)
π−→ C, for some H?-module C, such that

H?(MGLO)
∆−→ A? ⊗H? H?(MGLO)

1×π−−→ A? ⊗H? C

is an isomorphism of left A?-comodule algebras. Unfortunately this cannot be true.

Notice that there is only one element of degree 1 in H?(MGLO). Call this element

u1. Since H?(MGLO) is an H?-polynomial algebra on infinitely many generators, one

of which is u1, it follows that u2
1 must represent the single H?-module basis element

of H?(MGLO) in degree 2. However, as an H?-module, A? has no basis element of

degree 2. It follows that (1× π) ◦∆(u1) = τ0 and (1× π) ◦∆(u2
1) ∈ C. However, this

contradicts the formula (1× π) ◦∆(u2
1) = ((1× π) ◦∆(u1))((1× π) ◦∆(u1)).

One notices that while H?(MGLO) is not equal to A? ⊗H? C as an H?-algebra,

it is as an H?-module. This is accomplished by simply comparing the H?-module

basis of H?(MGLO) to the H?-module basis of A?, and then observing that as an
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H?-module, H?(MGLO) is a direct sum of A?. Recalling that A ' H ∧H, it follows

that H ∧MGLO ' H ∧ (
∨
i∈S

ΣaiH). One then only has to construct a map between

MGLO and
∨
i∈S

ΣaiH which is an isomorphism on HZ/2 homology. The point is that

for each i ∈ S, there exists a cohomology basis element ai ∈ Hai(MGLO) representing

the map MGLO→ ΣaiH. Piecing these cohomology classes together, this gives a map

MGLO
f−→
∨
i∈S

ΣaiH. Since (co)homology classes of MGLO are dual to one another, it

follows that the map f induces an equivalence on homology.

2.2.4 Applying the Motivic Hurewicz Theorem

We will use a modified version of the Motivic Hurewicz Theorem of [Bac15].

We recall what it means to be (n− 1)-connected in the motivic sense.

Definition 2.15. We say that a motivic spectrum E is (n−1)-connected if πk+∗α(E) =

0 whenever 0 < k < n. We also require that πk+mα(E) = 0 for all but at most finitely

many m ∈ Z.

Theorem 2.16. Let k have characteristic 0, and suppose that E is an (n−1)-connected

cellular stable motivic spectrum for which 2 and η are 0. Then

Hn+∗α(E;Z/2) ∼= πn+∗α(E).

Consider the basis elements vi ∈M ⊂ H?(MGLO). Then each of the vi is dual to

a cohomology class ci ∈ H?(MGLO), and so there exists a map

MGLO
f−→
∨

mi∈M

Σ|mi|HZ/2

which induces an equivalence on homology. Taking the cofiber of the map f we obtain

a cofibration

MGLO
f−→
∨

mi∈M

Σ|mi|HZ/2→ F
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The idea is that we know that F is cellular, and the coefficients of F∧HZ/2 are 0

by construction. Since 2 and η are 0 in
∨

mi∈M

Σ|mi|HZ/2, it follows that 22 and η2 are

0 in F and so the Motivic Hurewicz Theorem combined with the Nakayama lemma

implies that F = 0 and so f is an equivalence.

2.2.5 MGLO? and a comparison with MO∗

Combining everything, we have that

Theorem 2.17. As an H? algebra,

MGLO?
∼= H?[un+nα, un+1+nα, u(2i−1)(1+α)+2 | n, i ∈ Z≥0, n 6= 2i − 1].

Let tC denote the complex topological realization functor. Then

tC(S1) = S1,

tC(Sα) = S1,

tC(HZ/2Mot) = HZ/2.

From this it follows that tC(MGLO) = MO. Over k = C, we have that

MGLO? = HZ/2Mot?[x2, x2+2α, x3+2α, u4+2α, u4+4α, u5+4α, x5+5α, ...]

= Z/2[θ][u2, u2+2α, x3+2α, u4+2α, u4+4α, u5+4α, u5+5α, ...]

= Z/2[θ, u2, u2+2α, u3+2α, u4+2α, u4+4α, u5+4α, u5+5α, ...].

Recall that

MO∗ = Z/2[a2, a4, a5, a6, a8, a9, a10, ...].

So the generators of MO∗ correspond to generators in MGLO? twisted by powers of θ.
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2.2.6 The topological realization of MGLO over R

The following results about topological realization functors can be found in [HK11,

HVØ16]. The application discussed herein is an observation of the current author.

There is a topological realization functor from the motivic stable homotopy category

to the C2-equivariant stable homotopy category, and from the C2-equivariant motivic

stable homotopy category to the C2 × C2-equivariant stable homotopy category. Let

us start off with the realization functor tRC2
which lands in SHC2 . At the level of

schemes, the functor tRC2
sends real algebraic varieties to the C points of X, which we

denote X(C). This gives a complex manifold, and since X is a real algebraic variety,

we have a group action Gal(C/R) ∼= C2. This gives us the desired functor. On the

other hand, the real algebraic variety X may have already been equipped with some

sort of C2 action. We could combine these two C2 actions to get a functor tRC2×C2

landing in the C2 × C2 stable homotopy category.

In particular, the functor tRC2×C2
sends MGLR to MRZ/2. We can use this to figure

out where tRC2×C2
sends MGLO. MRZ/2 is a 4-graded ring spectrum, and the grading

is 1,α, σ, σα.

We denote the nonzero elements (1, 0), (0, 1), and (1, 1) of C2 × C2 by gα, gσ, and

gσα respectively. We write α for the C2×C2 representation which is defined by letting

gα act by −1 and gσ act by the identity. We write σ for the C2 × C2 representation

which is defined by letting gσ act by −1 and gα act by the identity. We write σα for

the C2×C2 representation gσα = gσ ⊗ gα which is defined by letting gσ and gα act by

−1.

The effect of the topological realization functor on the spheres is as follows.
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Lemma 2.18. We have

tRC2×C2
(S1) ' S1, tRC2×C2

(Sσ) ' Sσ,

tRC2×C2
(Sα) ' Sα, tRC2×C2

(Sσα) ' Sσα.

Now, by the periodicities of MRZ/2, it follows that

tRC2×C2
(MGLO) = tRC2×C2

(ΦC2
et (MGLR)) = (S∞α+∞σ ∧ tRC2×C2

(MGLR))C2{gσα}

= (S∞α+∞σ ∧MRZ/2)C2{gσα}.

From this, it follows by [HK01, page 9] that

tRC2×C2
(MGLO) =

∨
n∈Z

Σn(1+σα)BU+ ∧MR,

where U is the infinite unitary group with C2-action given by complex conjugation.
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CHAPTER III

A motivic analogue of MSO

Recall that the classical oriented cobordism spectrum MSO is closely related to

MO. Similarly to MO, the spectrum MSO can be constructed from the thom spaces

of the classifying spaces of SOn, which we denote by BSOn. Recall that the group

SOn is defined as {A ∈ On | det(A) = 1}.

Although many results found in this chapter can be generalized to more general

fields, many of the proofs will rely on the coefficients of the motivic Z/p cohomology

of the mod p Eilenberg-Maclane spectrum being equal to Z/2[τ ], where τ denotes the

tate twist of degree α− 1. Therefore, for the entirety of Chapter 3, the reader should

always assume that
√
−1 ∈ k, and that k is a field of characteristic 0.

3.1 Computing the coefficients of MSLO

Having constructed a motivic analogue of MO, it became apparent that it would

be possible to construct a motivic analogue of MSO by mimicking the construction

of MGLO. The simple observation is that we can again consider the quadratic form,

q(x1, x2, ..., x2n) = x1x2 + x3x4 + ...+ x2n−1x2n.
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To this we can associate a unique orthogonal group O2n. Since the determinant func-

tion is algebraic, we can define the 2n-dimensional special orthogonal groups as,

SO2n := {A ∈ O2n | detA = 1}.

Again, for n ≥ 1 we get a transitive group action of SO2n on

Q2n−1 := V(x ∈ k2n | q(x)− 1) ' Sn−1+nα.

Letting x0 = 〈1, 1.0, ..., 0〉, the stabilizer of x0 with respect to the group action of

SO2n on Qn−1 is defined to be SO2n−1. One easily sees that this is exactly equal to

{A ∈ O2n−1 | det(A) = 1}. Defining as before

Q2n−2 := V(x ∈ k2n | q(x) + 1, x1 + x2) ' Sn−1+(n−1)α,

we get a group action of SO2n−1 on Q2n−2. This action is transitive, and defining

y0 ∈ k2n to be 〈1,−1, 0, ..., 0〉, we can show that the stabilizer of y0 is SO2n−2.

In the lower dimensional cases, we note that SO2 ' Gm, and SO1 ' ∗. The later

equivalence is obvious. For the former, we have to do a bit of work.

Proposition 3.1. SO2 ' Gm.

Proof. We consider the symmetric bilinear form b((x1, x2), (y1, y2)) to see how A is

related to AT . Recall that AT is defined to be the unique matrix A ∈ GL2(k) for

which b(Ax, y) = b(x,ATy). We write

A =

 a b

c d

 , AT =

 a′ b′

c′ d′

 , x = 〈x1, x2〉, y = 〈y1, y2〉.
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Recall that b(x, y) = x1y2 + x2y1. Therefore,

b(Ax, y) = ax1y2 + bx2y2 + cx1y1 + dx2y1

and

b(x,ATy) = c′x1y1 + d′x1y2 + a′x2y1 + b′x2y2

Comparing, we see that

AT =

d b

c a


Now notice that we have the further relations det(A) = 1 and AAT = I. Explicitly

multiplying the matrices, we see that

AAT =

ad+ bc 2ab

2cd ad+ bc

 .
Since det(A) = ad − bc = 1, we have that ad + bc = (ad − bc) + 2bc = 1 + 2bc.

Therefore, we get the relations 2bc = 2ab = 2cd = 0. It follows, from these relations

alone, that either a = c = 0, b = c = 0, or b = d = 0. But we also have the relation

ad− bc = 1. Therefore, it must be the case that b = c = 0. Therefore,

SO2 = {(a, b, c, d) ∈ k4 | b = c = 0, ad = 1} ' {(v, w) ∈ k2 | vw = 1} ' Gm.

Using a two sided bar construction as before, we have

|B(SOn, SOn−1, ∗)| ' Qn−1.
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Moreover, we are able to show that

|B(∗, SOn, Qn−1)| ' BSOn−1.

We are able to define the thom spaces for prespectrum of MSLO in the same way

as before as the homotopy cofiber of

BSOn−1+ → BSOn+.

Notice that in particular we have,

Lemma 3.2. P∞ ' BGm ' BSO2 ' Thom(BSO2).

Proof. Since SO1 ' ∗, we have BSO1 ' ∗. By definition of Thom(BSO2), the

statement follows.

3.1.1 Calculating the Z/2 cohomology of MSLO

The goal of this section is to calculate the motivic Z/2 cohomology of MSLO. To

do this, we first note that On acts on the unit sphere S0 ' {±1} by A ·g 7→ (det(A))g

for A ∈ On, g ∈ {±1}. This action is easily seen to be transitive, and the stabilizer of

1 ∈ S0 is {A ∈ On | det(A) = 1} = SOn. It follows that |B(∗, On, S
0)| ' BSOn. As

before, we get a thom isomorphism

H?(BOn+) ∼= H̃?+1(BOn/BSOn).

We can use this to get a Gysin sequence. We consider the long exact sequence

...→ H?(BOn/BSOn)→ H?(BOn+)→ H?(BSOn+)→ H?+1(BOn/BSOn)→ ...
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Substituting in the thom isomorphism gives us,

...→ H?−1(BOn+)→ H?(BOn+)→ H?(BSOn+)→ H?(BOn+)→

H?+1(BOn+)→ ...

Proposition 3.3. There exists a surjective map,

H?(BOn+)→ H?(BSOn+)

with kernel generated by w1 as an H? module. Hence, H?(BSOn+) ∼= H?[w2, w3, ..., wn]

with |w2i| = i+ iα, and |w2i+1| = i+ 1 + iα.

Proof. Form x ∈ H1(BOn+) as the composition of the thom class u ∈ H1(BOn/BSOn)

with the homotopy cofiber of the the map

BSOn+ → BOn+.

This gives a nonzero class x ∈ H1(BOn+). Since there is only one nonzero class

H?(BOn+) of degree 1, it is clear that x is the same class as w1 ∈ H1(BOn+) from

Theorem theorem 2.11.

Thus, we can write

...→ H?(BOn+)→ H?(BSOn+)→ H?(BOn+)
^w1−−−→ H?+1(BOn+)→ ...

Since H?(BOn+) = H?[w1, ..., wn], the map ^ w1 is injective in all dimensions, and

so the Gysin sequence breaks up into short exact sequences

0→ Hr+sα−1(BOn+)
^w1−−−→ Hr+sα(BOn+)→ Hr+sα(BSOn+)→ 0.

The conclusion follows.
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3.1.2 H?(HZ) comodule structure of MSLO

Classically, Pengelley gives a description of the HZ/2-homology of MSO [Pen82]

to be H?(HZ) ⊗F2 F2[xk | k 6= 2, k 6= 2i − 1]. We can give a similar description of

MSLO as an H?-module, although this will not be the approach we will end up taking

in proving our main results. Nevertheless, the description is interesting. One realizes

that since MSLO is cellular, HZ/2 ∧ MSLO must be equivalent to a wedge sum of

suspensions of motivic HZ/2. Moreover, HZ is known to be cellular, which means

that HZ/2 ∧ HZ must be a wedge sum of suspensions of motivic HZ/2. One then

notices by inspection that H ∧ MSLO is equivalent to a wedge sum of suspensions

of H ∧ HZ. While we cannot give a nice algebra description of H ∧ MSLO in this

manner, we may give a nice description of the H?-module structure of H ∧ MSLO.

Let π?(MGLO) = H?[uk | k 6= 2i − 1]. Then, as an H?-module, we have that

H?(MSLO) ∼= H?(HZ)⊗H? H?[uk | k 6= 2, k 6= 2i − 1].

3.1.3 Calculating the Z/p cohomology of MSLO for p an odd prime

Definition 3.4. The Euler class xn ∈ Hωn(BSOn+) is defined to be the composition

of the thom class c ∈ Hωn(Thom(BSOn)) with the homotopy cofiber f of

BSOn−1+ → BSOn+
f−→ Thom(BSOn).

Theorem 3.5. H?(BSOn+;Z/p) is the polynomial ring HZ/p?[x2
1, ..., x

2
k] for n =

2k + 1 and HZ/p?[x2
1, ..., x

2
k−1, xk] for n = 2k.

Proof. The sphere bundle S(n − 1) → BSOn−1 → BSOn induces a Gysin sequence
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with Z/p coefficients.

...→ H i(BSOn+)
^xn−−→ H i+ωn(BSOn+)

g∗n−→ H i+ωn(BSOn−1+)
h∗n−→

H i+1(BSOn+)→ ...

Now, if n = 2k, then by induction we have that H?(BSOn−1+) ∼= H?[x2
1, ..., x

2
k−1].

Recall that by [MVW11], HZ/pm+nα
? (BOn+ = 0 for n < 0. Using the fact that

^ xn is an isomorphism on H0(BSOn+) ∼= Z/p, we see that h∗n = 0 and so g∗n is

surjective and the map breaks into short exact sequences. The proof then follows

that of Theorem theorem 2.11.

If n = 2k + 1, then xn is zero in Hωn(BSOn+) since it has order 2. To see that

xn has order 2, we note that xn is the element corresponding to xn ^ xn under the

thom isomorphism. Therefore, xn ^ xn = −xn ^ xn by the commutativity relation

of the cup product. It follows that ^ xn = 0 and so the Gysin sequence splits into

short exact sequences

0→ H i+ωn(BSOn+)
g∗n−→ H i+ωn(BSOn−1+)

h∗n−→ H i+1(BSOn+)→ 0.

Therefore g∗n injects H?(BSOn+) as a subring of H?(BSOn−1+) ∼=

H?[w2
1, ..., w

2
k−1, wk]. The subring Im(g∗n) contains H?[x2

1, ..., x
2
k], and we can show it

equals this ring by comparing ranks in each dimension.

3.1.4 Calculating the coefficients of MSLOp for p an odd prime

Recall that the computation of MSO at an odd prime is more of less the same as

the computation of complex cobordism MU. Similarly, the computation of MSLO will

be no harder than the computation of MGL.

We denote the Milnor primitives by Qi ∈ A?, |Qi| = pi(1 + α)− α. Recall that if

p is odd, then the mod p motivic cohomology of MSLO is generated by classes xi of
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degree 2(1 + α)i as a free H?-module.

The following proof is based off the proof of a similar result due to S. Borghesi

[Bor03, Proposition 6].

Theorem 3.6. Let p be an odd prime. The mod p cohomology of MSLO takes the

form

H?(MSLO) = (A?/(Q0, Q1, ...))[mi | i 6= pn − 1]

as an A?-module where |mi| = 2i(1 + α).

Proof. For c a cohomology class of degree p + qα, we define ||c|| := p − q. We will

call the number ||c|| the invariance of the cohomology class c. Now note that the

motivic steenrod algebra A? acts on the cohomology of MSLO. Let Qi denote the

Milnor primitives in degree 2i(1 + α) − α. Notice that ||Qi|| = 1. Recall that as an

H? module, the cohomology of MSLO has a basis in monomials whose invariance is

equal to 0. Call this basis M. Therefore, ||Qic|| = 1 imples that Qic = 0. The reason

is because for and x ∈ H?, ||x|| ≤ 0. Putting this together, we have that if m ∈ M,

and that y is a basis element of A? as an H? module, then the action of y on m sends

m to a sum of elements in M with coefficients in Z/2. Now, since Qic = 0 for all

c ∈M, it follows that the action of A? on H?(MSLO) factors through A?/(Q0, Q1, ...).

By discussion of A? on the cohomology of MSLO, it now follows that that the action

produces an H? linear map in which there is no interplay between the H? coefficients.

Therefore, any dependencies must be topologically induces. But topologically, there

are no dependencies, and so the theorem is proved.

Corollary 3.7. Let p be an odd prime. The mod p cohomology of MSLO takes the

form

H?(MSLO) = H?(BPGL)[mi | i 6= pn − 1]

as an A?-module where |mi| = 2i(1 + α).
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For the remainder of this subsection, we will be over the field k = C. By [Sta16],

we know that over C, the motivic Z/p cohomology of a point is equal to Z/p[τ ], where

|τ | = α − 1. Dually, the motivic Z/p homology of a point is equal to Z/p[θ] where

|θ| = 1− α. Furthermore, we have that A? ∼= Atop
? ⊗Z/p Z/p[θ].

Definition 3.8. Let E(n), 0 ≤ n <∞, denote the qoutient Hopf algebroid

E(n) := A?//(ξ1, ξ2, ..., τn+1, τn+2, ...) = H?[τ0, ..., τn]/(τ 2
i | 0 ≤ i ≤ n).

If n =∞, let

E(∞) := A?//(ξ1, ξ2, ...) = H?[τ0, τ1, ...]/(τ
2
i | 0 ≤ i).

There is a way of switching between A∗ structures on cohomology and A∗ struc-

tures on homology. In our case we have the following.

Proposition 3.9. As an A?-comodule algebra, H∗BPGL = A∗�E(∞)H∗.

Using a change of rings isomorphism, we have

ExtA?(H?, H?(BPGL)) ∼= ExtA?(H?,A?�E(∞)H?) ∼= ExtE(∞)(H?, H?).

If we let E(∞)top and Htop
? denote the topological analogues of E(∞) and H? respec-

tively, then it follows that over k = C,

ExtE(∞)(H?, H?) ∼= ExtE(∞)top(Htop
? , Htop

? )⊗Z/p Z/p[θ].

From here the proof proceeds classically, and so we have the following theorem.

Theorem 3.10. After completing at an odd prime p, the coefficients of MSLO are

given by

π?(MSLO p̂ ) ∼= Z(p)[θ, x1, x2, x3, ...],
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where |xi| = 2i(1 + α).

3.1.5 HZ/2?-algebra structure of H?(HZ;Z/2).

By [Voe03], the map

ψ∗ : A? → A? ⊗H? A?

is given by

ψ∗(ξk) =
k∑
i=0

ξ2i

k−i ⊗ ξi,

ψ∗(τk) =
k∑
i=0

ξ2i

k−i ⊗ τi + τk ⊗ 1.

As in [Mil58], we define the conjugate of ξi and τi inductively as

k∑
i=0

ξ2i

k−i ⊗ c(ξi) = 0,

k∑
i=0

ξ2i

k−i ⊗ c(τi) + τk ⊗ 1 = 0

respectively.

This gives us

c(ξk) = −ξk − c(ξ1)ξ2
k−1...− c(ξk−1)ξ2k−1

1 ,

c(τk) = −τk − c(τ0)ξk − c(τ1)ξ2
k−1 − ...− c(τk−1)ξ2k−1

1

respectively.

As in topology, motivically we have a cofibration

HZ 2−→ HZ mod 2−−−→ HZ/2
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induced from the short exact sequence

0→ Z 2−→ Z mod 2−−−→ Z/2→ 0.

Taking motivic HZ/2 homology of HZ, we get a long exact sequence

...→ H?(HZ)
2−→ H?(HZ)

mod 2−−−→ H?(HZ/2)
∂−→ ...

This gives us an exact couple and so induces a bockstein spectral sequence. In

particular, we get the following,

H?(HZ) H?(HZ) H?(HZ)

H?(HZ/2) H?(HZ/2)

β

mod 2

β

mod 2∂
d

∂

Notice that 2 = 0 in H?(HZ), and so we have that

H?(HZ/2)
mod 2−−−→ H?(HZ/2)

is injective, and so we have a short exact sequence

0→ H?(HZ)
mod 2−−−→ H?(HZ/2)

d−→ H?(HZ/2)→ 0.

Here d is the dual of the steenrod operation Sq1. Notice that H?(HZ) = ker(d).

Lemma 3.11. The motivic cohomology of H?(HZ) over k = C is isomorphic to

Z/2[θ, τ1, τ2, ..., ξ1, ξ2, ...]/(τ
2
i − θξi+1).

Proof. First one observes that d(τ0) = 1 and d(τi) = ξi for i ∈ Z>0. Next, one
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observes that since d commutes with the tate twist θ, and since τ 2
i = θξi+1, we have

0 = 2τid(τi) = d(τ 2
i ) = θd(ξi+1).

Therefore d(ξi+1) = 0. Now, as a Z/2[θ]-algebra, the classes {ξi}∞i=1, and the classes

{c(ξi)}∞i=1 both generate the same algebra. Looking now at the inductive formula for

the conjugate of τi, and aknowledging that 2=0 in the coefficients, we have

c(τk) = τk + c(τ0)ξk + c(τ1)ξ2
k−1 + ...+ c(τk−1)ξ2k−1

1 .

First we notice that c(τ0) = τ0, and so d(c(τ0)) = 1. I claim that d(c(τi)) = 0 for

i ∈ Z>0. For τ1, we have that c(τ1) = τ1 + τ0ξ1. Taking the differential of each side,

we have that

d(c(τ1)) = d(τ1) + τ0d(ξ1) + ξ1d(τ0) = d(τ1) + ξ1 = ξ1 + ξ1 = 0.

Now, by induction we can assume d(c(τn−1)) = 0. Therefore,

d(c(τn)) = d(τn) + d(c(τ0)ξn) + d(c(τ1)ξ2
n−1) + ...+ d(c(τn−1)ξ2n−1

1 ) =

d(τn) + d(c(τ0)ξn) = d(τn) + ξn = ξn + ξn = 0.

Thus, ker(d) = Z/2[θ, c(τ1), c(τ2), ..., c(ξ1), c(ξ2), ...]. One can show that c(τi)
2 =

θc(ξi+1). This proves the claim.

3.1.6 The Sq1 cohomology

Notice that the motivic steenrod operation Sq1 has the property that Sq1◦Sq1 = 0.

Therefore, we can think of Sq1 as a differential of H?(MSLO). I will use the notation
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H?(M ; Sq1) to denote the cohomology of the A? module M with respect to the

differential M .

Let I = (ε0, s1, ε1, s2, ..., sk, εk) be a sequence where εi ∈ {0, 1} and si are non-

negative integers. Denote by P I the product

P I = βε0P s1 ...P skβεk .

A sequence I is called admissible if si ≥ 2si+1 + εi. Monomials P I corresponding to

admissible sequences are called admissible monomials. Here β = Sq1.

Lemma 3.12. Admissible monomials generate A? as a left H?-module.

Proof. See [Voe03].

Lemma 3.13. Suppose I = (0, s1, ..., sk, 0) and J = (0, t1, ..., tr, 0) with s1, sk, t1, tr ∈

Z>0. Then βP I 6= P Jβ. Also, βP s 6= P tβ for s, t ∈ Z>0.

Proof. This follows immediately from Lemma lemma 3.12.

Lemma 3.14. H?(A?; Sq1) = 0 and H?(A?/A?Sq1; Sq1) = H?.

Proof. To prove the first statement, we notice im(Sq1) = Sq1A? = ker(Sq1) =

Sq1A?. For the second statement, we notice that im(Sq1) = Sq1A?/A?Sq1. Since

Sq1A?/A?Sq1 is clearly in both the kernel and image of Sq1, and using Lemma

lemma 3.13, we know that if I = (0, s1, ..., sk, 0) with s1, sk ∈ Z>0 or I = (s), s ∈ Z>0,

then Sq1P I /∈ A?Sq1. We have shown what happens to admissible monomials. We

only have to look at what happens to elements of H?. Clearly these elements get sent

to zero since they commute with the Sq1 operation. Since elements of H? are clearly

not in the image of Sq1, it follows that H?(A?/A?Sq1) = H?.

We will need the following result. But first, from [SV14] we have the following

proposition.
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Proposition 3.15. Recall that H?(BOn+) ∼= H?[w1, ..., wn] as an H?-module. If -1

is a square in k, then

Sqk(wm) =
k∑
j=0

(
m− k
j

)
wk−jwm+j.

The Cartan formula over k = C gives the following.

Proposition 3.16. Let τ be the tate twist of degree α−1 in H?, and let H?(BOn+) ∼=

H?[w1, ..., wn]. We define

εi,j =

 1 k is even and i, j are odd.

0 otherwise.

If -1 is a square in k, then

Sqk(wrws) =
∑
i+j=k

τ εi,jSqi(wr)Sqj(ws).

Proof. This follows from the formulas given in [Voe03], along with relations between

the geometric and simplicial classifying spaces of On found in [SV14].

Lemma 3.17. Sq1tn = 0 where tn ∈ H?(Thom(BSOn)) is the thom class.

Proof. Let H?(BOn+) = H?[w1, ..., wn]. Recall that by proposition 3.3, H?(BSOn+)

can be identified with H?[w2, w3, ..., wn] ⊂ H?(BOn+). Recall also that there is a

thom isomorphism

H?(BSOn+) ^ wn ∼= H?(Thom(BSOn+). (3.1)

Therefore, Sq1(tn) can be identified with Sq1(wn) under eq. (3.1) and so we can work

out the steenrod operation on H?(Thom(BSOn)) by comparison with H?(BOn+). In

particular, Sq1(wn) = wnw1. Since w1 = 0 in H?(BSOn+), the claim follows.
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Since H?(MSLO) is an A? module, we can compute its Sq1 cohomology.

Proposition 3.18. H?(H?(MSLO); Sq1) = H?[u2
2, u

2
4, u

2
6, ...].

Proof. By Lemma lemma 3.17, Sq1 commutes with the thom isomorphism. There-

fore it is enough to show that H?(H?(BSO); Sq1) = H?[w2
2, w

2
4, w

2
6, ...]. We note that

Sq1(w2n) = w2n+1. From this it follows that H?[u3, u5, u7, ...] ⊂ im(Sq1). This im-

plies that the only elements which can be in the kernel but not in the image of Sq1

are H?[w2
2, w

2
4, w

2
6, ...] ⊂ H?(BSO). Noting that Sq1(w2

2n) = 0 for all n, the claim

follows.

3.1.7 A motivic version of Wall’s Theorem

Lemma 3.19. The morphism of A?-modules,

A? → H?(MSLO)

given by a 7→ a · 1 where 1 denotes the thom class t0 ∈ H0,0(MSLO) has kernel

J = A?Sq1.

Proof. To simplify notation, we write A?/β := A?/A?Sq1.

First, it is clear that Sqi(wj) = 0 if i > j by proposition 3.15. If i ≤ j, then

Sq1(wj) is a sum of monomials wkwl with k, l < 2j. The monomials Sqin ...Sqi1 with

in ≥ 2in−1 and i1 > 1 form an H?-module basis for A?/β. Therefore, it is enough

to show that the polynomials Sqin ...Sqi1(t) are linearly independent in H?(MSLO).

Let I = (ik, ..., i1) with is ≥ 2is−1 and i1 > 1. We will order the monomials wI =

wikwik−1 ...wi1 lexicographically. For example, w8w4 is of higher order than w4w2 and

w8w2, but lower order than w8w4w2 and w10w2. By induction, we will assume that

Sqin−1 ...Sqi1(t) = win−1 ...wi1t+ lower order terms.

Now suppose that wjn−1 ...wj1t ∈ H?(MSLO) is such that jn−1 ≥ jn−1 ≥ ... ≥ j1. If

i ≥ 2jn−1, then we will show Sqi(wjn−1 ...wj1t) = wiwjn−1 ...wj1t + lower order terms.
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Using the Cartan formula, we have

Sqi(wjn−1 ...wj1t) = Sqi(t) · wjn−1 ...wj1 + lower order terms

= wiwjn−1 ...wj1t+ lower order terms.

This proves the theorem.

Theorem 3.20. H?(MSLO) is a wedge sum of suspensions of A? and A?/A?Sq1.

Proof. To simplify notation, we write M := H?(MSLO), and A?/β := A?/A?Sq1.

Notice that Sq1 acts on any A?-module as a differential. This is immediate from

the fact that Sq1Sq1 = 0. Therefore, for any A?-module P we can define the Sq1

cohomology H?(P ; Sq1) of P . We will be working with H?-modules, and so this

cohomology theory will have coefficients in H?. As we have already shown in Lemma

lemma 3.14, H?(A?; Sq1) = 0, and H?(A?/β; Sq1) = H?.

We will now use this cohomology theory to define a map from a wedge sum of

suspensions of A?/β to M which will induce an isomorphism in Sq1 cohomology.

Choose classes {xα}α∈I ∈ M whose images in H?(M ; Sq1) form a basis. By

Proposition proposition 3.18, we can choose the classes u2
2, u

2
4, ... ∈ H?(MSLO) ∼=

H?[u2, u3, u4, ...]. The xα are killed by Sq1 and so we can define a map

φ1 :
⊕
α∈I

A?/β[−deg(xα)]→M.

Next, we define

A? := {admissible monomials x ∈ A? | |x| > 0}.
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Using this definition, we define

M := M/A?M.

Notice that
⊕
α∈I

A?/β[−deg(xα)] ∼= A?/β ⊗H? C for C = H?[u2
2, u

2
4, ...]. We consider

the projection map

M
π−→M.

We then choose an H?-submodule Z ⊂M such that π|Z is injective, and

M ∼= π(φ1(A?/β ⊗ C))⊕ π(Z).

Set

N = A?/β ⊗ C ⊕A? ⊗ Z.

The natural map

φ2 : A? ⊗ Z →M

gives a map

Φ := φ1 ⊕ φ2 : N →M.

Writing N = A?/β⊗C ⊕A?⊗Z, we let Ni denote the A?-submodule of N given

by N = A?/β ⊗ Ci ⊕ A? ⊗ Zi. Here Ci and Zi denotes all elements in C and Z

respectively of total degree i. We say the class x with degree n+mα has total degree

n + m. We define Mi to be the image of Ni under the map Φ. We then define N (n)

and M (n) to be ⊕i≤nNi and ⊕i≤nΦ(Ni) respectively.

We will show by induction that the map Φ : N (n) → M (n) is an isomorphism.

Starting with n = 0, N (0) = A?/β and M (0) = A? · t, where t is the thom class.

By Lemma lemma 3.19 this map is an isomorphism. Suppose we have proved Φ :

N (n−1) → M (n−1) is an isomorphism and let λ : N/N (n−1) → M/M (n−1) be the map
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induced by Φ. We will show λ|
(N(n)/N(n−1))

is injective. Let P ⊂ N be the subspace

generated by elements of the form c, z, Sq1(z) for c ∈ Cn, z ∈ Zn. We can regard P

as an H?-submodule of N/N (n−1).

We will first prove that λ|P is injective. Notice that since H?(A?; Sq1) = 0, the

map

Φ∗ : H?(N ; Sq1)→ H?(M ; Sq1)

is still an isomorphism. Since

Φ : N (n−1) →M (n−1)

is an isomorphism by induction, it follows that

λ∗ : H?(N/N (n−1); Sq1)→ H?(M/M (n−1); Sq1)

is also an isomorphism.

Suppose v ∈ P and λ(v) = 0. Notice that the total dimension of v is n or n + 1.

We will consider the two cases separately. If the total dimension of v is n; then

v = c + z for c ∈ Cn, z ∈ Zn. λ(v) = 0 implies Φ(c + z) ∈ M (n−1)
n . By choice of Z,

z = 0. Then, v = c, and so λ(c) = 0. Since λ∗ is an isomorphism, it follows that

Sq1(c) = 0, and c = Sq1(c′) for some c′ ∈ (N/N (n−1))n−1. But (N/N (n−1))n−1 = 0,

and so c′ = 0, which implies c = 0.

Now, suppose that the total dimension of v is n + 1: then v = Sq1(z), some

z ∈ Zn. If λ(v) = 0, then Sq1(λ(z)) = 0. But, this means λ(z) = λ(c) + Sq1(z′)

for some z′ ∈ (M/M (n−1))n−1. But, this means z′ = 0. Therefore we reduce to the

previous case.

Now, returning to the induction step, we have that the multiplication map

µ : MSLO ∧MSLO→ MSLO
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induces a coproduct map

µ∗ : H?(MSLO)→ H?(MSLO)⊗H? H?(MSLO).

We define a projection map

p : M →M/M (n−1).

Let u ∈ Cn ⊕ Zn. Then µ∗Φ(u) = 1⊗H? Φ(u) modulo M ⊗H? M (n−1). Therefore, for

any v ∈ P we have

(1⊗H? p)µ∗Φ(v) = 1⊗H? λ(v).

Now choose a basis c1, c2, ..., cr for Cn, z1, z2, ..., zs for Zn. Then we can give P a basis

{vi} = {c1, ..., cr, z1, z2, ..., zs, Sq1(z1), Sq1(z2), ..., Sq1(zs)}. Any v ∈ N (n)/N (n−1) then

has a unique expression in the form v =
∑

i aivi for ai ∈ A?\A?Sq1∪{0}. Now, we let

m denote the maximum total dimension of all of the ai. Next, we let {ai1 , ai2 , ..., aiv}

denote all of the aj of total dimension m.

Notice that if λ(v) = 0, then Φ(v) ∈M (n−1) and hence

0 = (1⊗H? p)µ∗Φ(v) =
∑

aij · t⊗H? λ(vij) +
∑

bk · t⊗H? mk,

some mk ∈ M , bk ∈ A? with dimbk < m. However, we showed that λ|P is injective,

and so the λ(vij) are linearly independent. and hence aij ·t = 0 for all j. But, aij ·t = 0

implies aij ∈ A?Sq1. This is a contradiction, and so λ(v) = 0 implies v = 0.

Corollary 3.21. Over the field k = C,

H?(MSLO) ∼= H?(HZ/2)⊗Z/2[θ] C ⊕A? ⊗Z/2[θ] Z.
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Here C is the algebra Z/2[θ, x4, x8, ...] where the x4i are generators of degree 2(1+α)i.

Z is a Z/2[θ] polynomial algebra.

3.1.8 The homotopy type of MSLO

Once we know that the motivic Z/2 homology of MSLO is a wedge sum of sus-

pensions of A? and A?/A?Sq1, we can again construct a map

MSLO→
∨
i∈I

HZ/2[ri]
⊕∨

j∈J

HZ[sj]

which is an equivalence on motivic Z/2 homology. Then, by applying the Nakayama

lemma and the motivic Hurewicz theorem [Bac15] to show that the map is a homotopy

equivalence.

3.1.9 The dimension of the HZ/2 suspensions

Let N be an H?-module with basis N. Assume N =
⋃
n,m≥0 Nn+mα, where Nn+mα

is a finite set consisting of all basis elements in degree n + mα. Call the motivic

spectrum E special if it satisfies these assumptions.

If E is special, then we can define a polynomial f ∈ Z[[x, y]] by considering the

formal sum
∑

n+m=j rn+mα. We then map this to a polynomial in f ∈ Z[[x, y]] by

sending rn+mα 7→ xnym. In this way, for E special, we can define |N| := f .

In considering MSLO, it is clear where the HZ suspensions must live; they consist

of suspensions of degrees corresponding to all monomials in the variables x1, x2, ...

where xi has degree 2i(1 +α). The tricky part is to see where all the HZ suspensions

must live.

The way we will figure this out is through a combinatorial counting argument. To

explain the idea behind the counting argument, I will first give a simple example.

Example 3.22. Suppose we wanted to know where the HZ/2 suspensions are in the
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dual motivic steenrod algebra A?. Notice that as an H?-module,

A? ∼= H?[τ0, τ1, ..., ξ1, ξ2, ...]/(τ
2
i | 0 ≤ i).

In other words, we can sort of pretend that τ 2
i = 0 in A? since we only care about

the HZ/2 module structure. We also only care about how many suspensions we have

in each degree. Letting the monomial xnym represent suspension by n+mα, we can

consider the formal sum of all monomials in A? of the form τ ε1i1 τ
ε2
i2
...τ εnin ξ

r1
j1
ξr2j2 ...ξ

rm
jm

where εi ∈ {0, 1} and ri ∈ Z≥0 modulo their degree. For example, we represent τ1ξ1

by x2y1 · xy = x3y2. Therefore, we obtain the formal sum

|A?| =

∏
i≥0

(1− x2i+1

y2i+1−2)∏
i≥0

(1− x2i+1−1y2i+1−1)
∏
i≥0

(1− x2iy2i−1)
.

Here formal sum refers to the taylor series expansion about the origin (0, 0). Using a

computer software program such as matlab, or by expanding by hand, one can deduce

where the suspensions of HZ/2 live. Similarly, we can deduce,

|A?/A?Sq1| =

∏
i>0

(1− x2i+1

y2i+1−2)∏
i≥0

(1− x2i+1−1y2i+1−1)
∏
i>0

(1− x2iy2i−1)
.

We end up with the following formula.

Proposition 3.23. Consider the taylor series expansion around the point (x, y) =

(0, 0) of the following rational binomial polynomial:

1− x∏
n6=2i−1,i>0

(1− xnyn)
∏
n6=2i

(1− xn+1yn)
∏
n=2i

(1− x2n+2y2n)
− 1

(1 + x)
∏

n6=2i−1

(1− x2ny2n)
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Its coefficients tells us how many suspensions of HZ/2 we have in a given degree.

For example, the term cxnym means that we have c suspensions of HZ/2 in degree

n+mα.

Proof. First we notice that

|H?(MSLO)| = 1∏
i≥0

(1− xiyi)
∏
i>0

(1− xi+1yi)
.

We also have that the degree suspensions of the HZ is equal to |H?[x1, x2, ..]| where

|xi| = 2i(1 + α). It follows that

|MSLO?| =
1

|A?|
(|H?(MSLO)| − |H?[x1, x2, ...]|).

The claim follows.
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CHAPTER IV

A motivic analogue of MR

4.1 MGLR, an analogue of MR

There is a C2-equivariant spectrum belonging to classical topology which was

constructed by Landweber. The coefficients of this spectrum were computed by P.

Hu and I. Kriz in [HK01]. The coefficients of this spectrum are bigraded. While

the bigrading given in [HK01] is MR∗+∗′α, we will use σ grading instead of α. The

reason for this is that the authors of [HK01] used the α to signify the relationship

between motivic homotopy theory and classical C2-equivariant homotopy theory. The

topological realization functor over R sends motivic α grading to the C2 grading.

However, in the present case, we want to stress the relationship between C2 motivic

homotopy theory and C2 classical homotopy theory using the topological realization

over C.

In this chapter we discuss a C2-equivariant motivic spectrum MGLR which was

constructed by P. Hu and I. Kriz in [HKO11]. There is a complex topological real-

ization functor tCC2
for C2-equivariant motivic spectra, and tCC2

(MGLR) = MR.

One should think of MGLR as a motivic analogue of MR. Roughly speaking, the

spectrum MR can be thought of as complex cobordism MU endowed with a C2 action.

At its heart, MU is built from the classifying spaces BUn, where Un denotes the n-

dimensional unitary group. We get an involution on this group given by A ↔ ĀT .
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The groups Un equipped with this involution action determine the construction of

MR. If one wanted to mimic this construction motivically, he would immediately

be faced with a problem; complex conjugation is not algebraic. A priori this means

that the groups Un are not definable; however, it turns out that over the complex

numbers, Un ∼= GLn(C). In fact, the motivic analogue of MU is the well known

algebraic cobordism MGL.

In analogy with MR, MGLR should be thought of as algebraic cobordism MGL

endowed with a C2 action. Consider the symmetric bilinear form

b((x1, ..., x2n), (y1, ..., y2n)) =
n∑
i=1

x2iy2i−1 + x2i−1y2i.

Then for any A ∈ GL2n(k), there exists a unique matrix ATb for which b(Ax, y) =

b(x,ATby) for all x, y ∈ k2n. The C2 action of MGLR is induced from the involution

action A↔ (ATb)−1.

4.1.1 The λ twist

In [HK01], the authors show that MR completed at 2 splits as a wedge sum

of suspensions of a spectrum BPR whose suspensions are in degrees mi(1 + σ) for

mi 6= 2i+1 − 1, ΦC2(BPR) = HZ/2, and nonequivariantly BPR = BP. This splitting

comes from applying the Quillen idempotent to the formal group law on MR∗(1+σ).

From this, it follows that MR? is freely generated by generators xn of degree n(1 +σ)

for n 6= 2i+1 − 1 as a BPR? algebra. One could ask whether MGLR splits as a

wedge sum of suspensions of BPGLR, with ΦC2(BPGLR) = HZ/2 and BPGLR =

BPGL nonequivariantly, in such a way that MGLR? is free as a BPGLR? algebra.

Unfortunately, there does not appear to be any way to construct such a splitting.

However, there exists an element λ ∈ π1−σ+σα−α(MGLR). If we invert this element,

then we get a formal group law and we can use the Quillen idempotent construction
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to get a splitting. First, let us elaborate on this mysterious element λ.

In the topological setting there is the notion of real-oriented spectra and it turns

out that MR is universal among real-oriented spectra. There is also a notion of real-

orientation found in [HKO11]. Following notation in [HKO11], we define X̃ to be the

functorial fibrant replacement of X, the reduced suspension of X.

Definition 4.1. A C2-equivariant ring spectrum E is real-oriented if the following two

conditions are satisfied. Here MGLR(1) will denote the first term of the prespectrum

defining MGLR.

1. The unit in E?(S1+σα+σ+α) restricts to the unit φE of E?(MGLR(1)).

2. The map S2+2σα ' G̃1/z
m ∧ G̃1/z

m → G̃1/z
m × G̃1/z

m → B(G1/z
m ×G1/z

m ) → BGL2 →

MGLR(1) with representative ω ∈ π2+2σα composes with φE to give a unit λE.

Whenever this is satisfied we get many results analogous to those found in [HK01].

Theorem 4.2. If the C2-equivariant ring spectrum E is real-oriented, then

E?(BG1/z
m ) = E?[u] where deg(u) = −(1 + σα).

Unfortunately, it is not clear whether or not MGLR satisfies definition 4.1. Clearly

MGLR satisifies condition 1 of definition 4.1. However, it is not clear that λMGLR is

invertible. Using the methods of [EKMM07] we can “invert” λMGLR to construct a

spectrum λ−1MGLR satisfying the conditions of definition 4.1. The formal group law

of theorem 4.2 then gives a canonical map

L→ λ−1MGLR∗(1+σα).

Here L denotes the Lazard ring.

Notice that the topological realization functor over C, which we denote by tC, is

a symmetric monoidal functor, and so applied to the spectrum MGLR, we get a ring
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homomorphism

MGLR? → MR?.

One can show that λMGLR is sent to the unit 1 under this ring homomorphism, and

so we get a ring homomorphism

λ−1MGLR? → MR?. (4.1)

Since the homomorphism tC sends 1 + σα grading to 1 + σ grading, and since

λ−1MGLR∗(1+σα) ⊂ λ−1MGLR? and MR∗(1+σ) ⊂ MR? are commutative rings, we have

the following result.

Lemma 4.3. The restriction of the ring homomorphism eq. (4.1) to λ−1MGLR∗(1+σα)

induced by the topological realization functor tC sends the formal group law on

λ−1MGLR? to the formal group law on MR?.

Proof. This is clear since tC(BG1/z
m ) = BSσ.

Since MGLR is an E∞-ring spectrum, we may apply constructions as in [EKMM07].

In particular, we may “kill” or “invert” the image of any sequence of elements of L in

the spectrum λ−1MGLR. The ring MGL∗(1+α) = MU2∗ is the universal formal group

law and so the generator xi of degree i(1+α) is sent to an element of degree i(1+σα).

Theorem 4.4. ΦC2(λ−1MGLR) = θ−1MGLO.

Proof. Recall that λ is the map

S2+2σα ' G̃1/z
m ∧ G̃1/z

m → G̃1/z
m × G̃1/z

m → B(G1/z
m ×G1/z

m )→ BGL2 → MGLR(1)

→ Σ1+σ+σα+αMGLR. (4.2)

56



After taking geometric fixed points, this becomes a map,

S2 ' S1 ∧ S1 → S1 × S1 → B(Z/2× Z/2)→ BO2 → MGLO(1)→ Σ1+αMGLO.

This map is nonzero, and it realizes as an element of degree 1−α in π?(MGLO). Notice

that there exists exactly one element in π?(MGLO) of degree 1 − α, the tate twist.

Therefore, the coefficients of ΦC2(λ−1MGLR) is π?(θ
−1MGLO) ∼= π∗(MO)[θ±1].

Corollary 4.5. MGLR 6' λ−1MGLR.

Proof. Since MGLR and λ−1MGLR are not equal on geometric fixed points, they can-

not possibly be equal equivariantly.

It is interesting to note that while inverting λ has the effect of inverting the tate

twist θ under the geometric fixed points map, it is not the case that θ is inverted under

the forgetful map MGLR→ MGL which thinks of the structure nonequivariantly. The

reason for this is the forgetful map sends σ and σα grading to 1 and α respectively.

Therefore, λ gets sent to the unit under this map. In more detail,

Theorem 4.6. Nonequivariantly, λ−1MGLR ' MGL.

Proof. Notice that nonequivariantly, λ realizes as

S2+2α ' ΣGm ∧ ΣGm → ΣGm × ΣGm → B(Gm ×Gm)→ BGL2 → MGL(1)

→ Σ2+2αMGL. (4.3)

Notice that this map is clearly nonzero, and represents an element in π?(MGL) of

degree 0. Notice that the only nonzero element in π?(MGL) of degree 0 is the identity

element. Therefore, λ−1MGLR is nonequivariantly equivalent to MGL.
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Theorem 4.7. Localizing at p = 2, we have that

MGL =
∨
mi

Σmi(1+α)BPGL

for integers mi. There exists a spectrum BPGLR such that

MGLR =
∨
mi

Σmi(1+σα)BPGLR

Furthermore, ΦC2(BPGLR) = θ−1HZ/2.

4.2 Calculating the coefficients of θ−1λ−1MGLR

Proposition 4.8. There exists an element of order 1 − α in the Borel cohomology

and the Tate cohomology of λ−1MGLR. We will call this element θ.

Proof. Using simplicial EC2, we can set up a Borel Cohomology Spectral Sequence

for λ−1MGLR as follows. First we note that since we have inverted λ, we can choose to

ignore all σα grading, and instead only consider the grading ∗+∗′σ+∗′′α.Moreover, we

will filter by α twists. In other words, we will consider the grading ∗+∗′σ+kα for fixed

k. Now for each k ≤ 0, we have a bijection between the motivic Borel Cohomology

Spectral Sequence of λ−1MGLR and the classical Borel Cohomology Spectral Sequence

of MR. This is true since λ−1MGLR is nonequivariantly MGL, and over C, there

is a bijection between π∗+kα(MGL) and π∗(MU). It follows that the motivic Borel

Cohomology Spectral Sequence associated to λ−1MGLR∗+∗′σ+∗′′α, where ∗, ∗′ ∈ Z and

∗′′ ∈ Z≤0, converges to π∗+∗′σ+∗′′α(F (EC2+, λ
−1MGLR)) ∼= π?(MR)[θ]. It follows that

θ ∈ λ−1MGLR. The same argument works for the Tate cohomology of λ−1MGLR.

Corollary 4.9. There exists an element of degree 1−α in the coefficients of λ−1MGLR.

We again call this element θ.
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Proof. This follows by considering the following square originating from the Tate

diagram,

λ−1MGLR S∞σ ∧ λ−1MGLR

F (EC2+, λ
−1MGLR) S∞σ ∧ F (EC2+, λ

−1MGLR).

It is easy to see that the element θ ∈ π?(F (EC2+, λ
−1MGLR)) is sent to θ ∈

π?(S
∞σ ∧ F (EC2+, λ

−1MGLR)). This is true since the topological realization of θ is

just 1, and since the Borel and Tate cohomology spectral sequences of λ−1MGLR and

MR are isomorphisms for fixed alpha twist kα, k ≤ 0. Now, notice that there is an

easily described twist in π?(S
∞σ ∧ λ−1MGLR) of degree 1 − α, which we also call

θ. If s is the euler class s ∈ π−σ(MGLR), and t is the euler class t ∈ π−σα(MGLR),

the θ ∈ π1−α(S∞σ ∧ λ−1MGLR) is given by λs−1t. By comparison with topology,

and in view of the fact that the topological realization of θ is 1, it follows that θ ∈

π1−α(S∞σ∧λ−1MGLR) is sent to θ ∈ π1−α(S∞σ∧F (EC2+, λ
−1MGLR). Therefore, the

element named θ commutes in the bottom row and rightmost column of the diagram

corollary 4.9. Since the commutative square corollary 4.9 is a pullback, there must

exist an element θ ∈ π?(λ−1MGLR) which is sent to θ ∈ π?(F (EC2+, λ
−1MGLR)).

Now, as we inverted λ ∈ π1−σ+σα−α(MGLR), so too can we invert θ ∈ π1−α(MGLR).

This gives us a spectrum θ−1λ−1MGLR. In its coefficients, the element λ−1θ has degree

σ − σα and is invertible.

Proposition 4.10. (S∞σ+∞σα ∧ θ−1λ−1MGLR)C2 ' (S∞σ ∧ θ−1λ−1MGLR)C2 .

Proof. To simplify notation, we write

E := S∞σ ∧ θ−1λ−1MGLR, F := S∞σ+∞σα ∧ θ−1λ−1MGLR.

Notice that Σσα−σE ' E since θλ−1 ∈ πσ−σα(E) is invertible. Also, it is clear that

ΣσE ' E. Putting this together, we have that ΣσαE ' E. Therefore, it follows that
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F = Σ∞σαE ' E.

Theorem 4.11. π?(θ
−1BPGLR) = π?(BPR)[λ±1, θ±1]. Here, π?(BPR) =

Z(2)[vn,l, a | n ≥ 0, l ∈ Z]
/


v0,0 = 2,

a2n+1−1vn,l = 0,

for n ≤ m : vm,k · vn,l2m−n = vm,k+l · vn,0

 ,

|a| = −σ, |vn,l| = (2n − 1)(1 + σ) + l2n+1(σ − 1).

Proof. The claim is clear by comparison with topology [HK01]. In more detail, con-

sidering the commutative square of corollary 4.9, the C2 fixed points of the top right

corner is easily seen to be equal to π∗(MO)[θ±1]. The bottom right corner is calculated

by comparing the Tate cohomology spectral sequence for θ−1λ−1MGLR to topology.

One deduces from the calculation that the C2 fixed points of the the top and bottom

right hand column are equal. From this it follows that θ−1λ−1MGLR is equal to its

Borel cohomology. By comparing with topology, the claim follows.
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