
Evaluation and Utilization of Photo-Activatable Unnatural Amino Acids for 
the Study of Protein-Protein Interactions 

 

by 
 

Cassandra Marie Joiner 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Chemistry) 

in the University of Michigan 
2017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Doctoral Committee: 
 
 Professor Anna K. Mapp, Chair 
 Professor Carol A. Fierke 
 Assistant Professor Amanda L. Garner 
 Professor Nils G. Walter 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cassandra Marie Joiner 

cmjoiner@umich.edu 

ORCID iD: 0000-0003-0476-9418 

 

© Cassandra Marie Joiner 2017 

 
 
 
 
  



 

ii 
 

Acknowledgements 
 

Completing my doctoral degree has been the most challenging thing I have ever 

done in my short lifetime, and it would be an understatement to say that it took a village 

of amazing people to get me to the end of this five year journey. First and foremost, I 

must thank my advisor, Professor Anna Mapp, without whom I could not have 

completed my degree. Her guidance over the past five years has taught be how to truly 

think as an independent scientist and researcher. The most valuable lesson she has 

taught me was when to take a step back from a project when experiments are 

continually failing and come back with a clear head to fix the problem. This has truly 

helped me persevere through projects when they have hit a wall or when I have gone 

too deep down the rabbit hole trying to fix the problems. She has patiently helped me 

overcome my persistent self-doubt and pushed me to accomplish bigger goals than I 

thought I was capable of. Her mentorship has made me a more confident and 

competent scientist, and I am truly grateful that she has patiently spent the time to train 

me for my future careers and life after graduate school. Anna has been the best mentor 

and role model I could have ever asked for.  

I am also truly grateful for the continual support and guidance from my committee 

members, Professors Carol Fierke, Nils Walter, David Engelke, and Amanda Garner. I 

want to thank Nils for taking a chance on me and allowing me to join his lab the summer 

before orientation. This experience helped me prepare for my first year in graduate 

school and become a more confident student. As one of my first instructors and Chairs 

of the Chemistry Department, Carol inspired in the classroom and out and has been a 

tremendous role model and mentor that continually pushed me to think critically about 

my research and move my work forward. Both David and Amanda has provided 

continual support and optimism during my time at Michigan, providing insightful 

questions to help push my research forward. I will always appreciate the honesty with 



 

iii 
 

which they all evaluated my work and I know their detailed critiques and insightful 

questions have made me a better scientist.  

While our research is the main focus during our doctoral work, it can be emotionally 

and mentally draining. I am eternally grateful for the amazing Mapp Lab members that 

make coming into work every day a joyful experience, especially on the days when my 

research makes me want to stay home. You each have played an instrumental role in 

shaping me personally and scientifically and I am so happy to call you my friends. I’d 

first like to thank, Dr. Amanda Dugan, who took me under her wing and taught me 

everything I know about yeast biochemistry. Amanda worked patiently with me as I 

made mistakes and asked a million questions while learning to be technically proficient 

in lab. She was an amazing mentor and role model as I learned to be a competent 

scientist. To the past Mapp Lab members, Dr. Chinmay Majmudar, Dr. Ningkun Wang, 

Dr. JP Carolan, and Dr. Paul Bruno, thank you for the great guidance and support 

during my first couple years that helped me figure out my place in the lab. To Dr. James 

Clayton and Dr. Meghan Breen, thank you so much for making the unnatural project 

possible and patiently working with me when my experiments failed and must ask you 

for more compounds and when I tried learning organic synthesis. I am so happy we got 

to work together and I wouldn’t have been able to complete my PhD without either of 

you. You are both amazing chemists and I have learned so much from both of you, 

thank you so much for being my friend and taking me under your wings. To Dr. Rachel 

Pricer, I am very grateful to have such an amazing friend to work on the yeast project 

with. You have made this project much more fun and tolerable when it felt very isolating. 

To Jean Lodge, Dr. Steve Sturlis, Dr. Stephen Joy, Dr. Laura Cesa, and the rest of the 

Mapp Lab, thank you for your humor and making the Mapp Lab such a great 

environment to work in. I know you will all do amazing things. 

I want to thank my amazing undergraduate students, Alex Carley, Uma Jasty, 

Samantha DeSalle, and Morgan Davis, who have truly made me a better scientist and 

educator. Each of you have helped me become a more patient person and your 

excitement and curiosity constantly reminded why I fell in love with science and that I 

chose the right career path. I have been so lucky to work with each of you and thankful 

for everything I have learned from you during our time together. You are all going to do 



 

iv 
 

so many amazing things and I am so proud of each of you. Sam, my lab little sister, it 

was such an amazing experience seeing you grow as a confident scientist during your 

REU program and you are constantly growing each and every day. You have such a 

bright future ahead of you and you are going to thrive as a Mapp Lab member. 

The friends I have made during graduate school have truly been a blessing to me. 

While my Chemistry cohort is extremely large and everyone sequesters off into their 

own labs and clusters after the first year, I am so thankful that I have such a close nit 

group of friends. Paige, Jon, Matt, and Kevin, I am so happy that we have stuck 

together since our first year and I cannot put into words how much your friendship has 

meant to me. From tailgating and game nights to the annual Bennion Thanksgiving and 

Phrismas, you have all been such an amazing support system and have made graduate 

school more bearable.  

To my friends that I have made during my time at Madonna University, Travis, 

Louissa, and Ethan. I know we don’t get to see each other as much as we would like, 

but I am so grateful that we have stayed so close over the years. Travis and Louissa, I 

am so happy that we went through the Stanley years together and that we have become 

such amazing friends. I love our dinners together and your love and support has made 

graduate school much more tolerable.  Ethan, even though you only thought of me as 

an acquaintance for the first year of Madonna and then decided to leave for the Air 

Force, I am truly grateful to not only call you my friend, but also my family. Over the last 

nine years, your support and friendship has helped me power through the frustrations of 

school and work.  

My family has been my biggest support system throughout my entire life. Being a 

first-generation student has made it challenging to navigate the exact steps needed 

during the journey through my undergraduate studies to my doctoral degree, but my 

parents, Terry and Lori, have always supported my decisions along the way. They have 

always pushed me to be the best version of myself. I am eternally grateful for their love 

and support throughout this journey and could not have completing my doctoral degree 

without them by my side. I also want to thank my brother, Eli, who continually surprises 

me by his strength and courage to preserve through life against all odds. I am so proud 

to be your older sister and have someone so amazingly strong in my corner throughout 



 

v 
  

this journey. I cannot put into words how much their support means to me and could 

never thank them enough for everything they have done to get me where I am today. I 

love you all so much. 

Finally, to my best friend and fiancé, Kyle, who has constantly been my rock during 

the past five years. I am so thankful that we met during orientation and made it through 

our first year together, even though you fell asleep during every class. Your constant 

love and support (even when I’m being difficult) has helped me overcome all the 

frustrations and obstacles that have come up during graduate school. I am so grateful to 

have such an amazing person to come home to and make me laugh even on the 

hardest days. Your goofy jokes and songs make each day brighter and always puts a 

smile on my face. You are my best friend and I am so excited to move to Boston and 

take on this new adventure and all life’s adventures with you by my side. You continue 

to amaze and inspire me. Your unconditional love and support pushes me to be the best 

person I can be. I love you and I like you. 

 



 

vi 
 

Table of Contents 
 

Acknowledgments 
 

ii 

List of Figures 
 

viii 

List of Tables 
 

xi 

Abstract 
 

xii 

  
CHAPTER 
 

 

1. Introduction to characterizing transcriptional protein-protein 
interaction networks 
 

1 

1.1 Introduction to protein-protein interaction networks 
 

1 

1.2 Transcriptional PPIs: activators and their elusive binding partners 
 

3 

1.3 Challenges faced when characterizing activator-coactivator 
interactions 

 

6 

           1.4 Covalent chemical capture 
 

15 

           1.5 Dissertation overview 
 

17 

           1.6 References 
 

19 

2.  Elucidation of SNF1 recruitment by Hcm1 through in vivo covalent 
chemical capture 
 

32 

            2.1 Introduction 
 

32 

            2.2 Capturing transcriptional activator-coactivator interactions 
 

33 

 2.3 The yeast SNF1 complex regulates cellular metabolism through 
activator interactions 

 

40 

 2.4 Functional interrogation of the Hcm1 activator for UAA incorporation 43 



 

vii 
 

 
            2.5 Examination of the Hcm1-SNF1 interaction network in yeast 
 

50 

            2.6 Conclusions and Future Directions 
 

53 

            2.7 Materials and Methods 
 

54 

            2.8 References 
 

65 

3.  Effects of sequence context and electron-withdrawing groups on pBpa 
reactivity 
 

75 

            3.1 Introduction 
 

75 

 3.2 Sequence context and crosslinking mechanism are crucial to 
crosslinking success 

 

76 

            3.3 Photo-activatable unnatural amino acids with enhanced reactivity 
 

84 

            3.4 Conclusions and Future Directions 
 

91 

            3.5 Materials and Methods 
 

93 

            3.6 References 
 

103 

4. A bifunctional amino acids to address the challenges of isolating in 
vivo crosslinked products 
 

113 

            4.1 Introduction 
 

113 

 4.2 Bifunctional UAAs for the isolation of in vivo crosslinked products 
 

115 

            4.3 Conclusions and Future Directions 
 

121 

            4.4 Material and Methods 
 

122 

            4.5 References 
 

126 

5.  Conclusions and Future Directions 
 

133 

            5.1 Conclusions 
 

133 

            5.2 Future Directions 
 

136 

            5.3 References 143 
 



 

viii 
 

List of Figures 
 

Figure 
 
 

 

1.1 PPIs from a variety of cellular processes can be categorized by binding 
affinity and surface area 
 

2 

1.2 Transcriptional initiation scheme 
 

4 

1.3 Transcriptional activator PPI networks are dynamic and transient in 
nature 
 

6 

1.4 Chromatin immunoprecipitation (ChIP) experimental scheme 
 

8 

1.5 Experimental schemes of current in vitro methods used to detect and 
characterize PPIs 
 

10 

1.6 Experimental schemes of current in vivo methods used to detect and 
characterize PPIs 
 

13 

1.7 Amber nonsense suppression and in vivo covalent chemical capture 
schemes 
 

16 

1.8 Reaction mechanisms of three common photo-crosslinking amino acids 
 

18 

2.1 Transcriptional initiation schematic 
 

34 

2.2 Transcriptional PPIs can be categorized based on their binding affinity of 
the interaction and the surface area of the binding interface 
 

35 

2.3 Ordered transcriptional recruitment by the model Gal4 activator 36 
 

2.4 In vivo covalent chemical capture schematic using pBpa 
 

38 

2.5 Amber nonsense suppression 40 
 

2.6 SNF1 regulation under nutrient stress 41 
 

2.7 SNF1 regulation of the GAL1 promoter under glucose-limiting conditions 
 

42 



 

ix 
 

2.8 LexA+Hcm1 TAD constructs used to determine a minimal TAD sequence 
 

45 

2.9 In vivo characterization of LexA+Hcm1 TAD constructs 46 
 

2.10 LexA+Hcm1 (201-300) sequence analysis 48 
 

2.11 In vivo incorporation and transcriptional activation of LexA+Hcm1 (201-
300) TAG mutants 
 

49 

2.12 In vivo photo-crosslinking profiles of LexA+Hcm1 (201-300) TAG 
mutants 
 

50 

2.13 Interrogation of Hcm1 interaction with the SNF1 complex 52 

3.1 In vivo incorporation and crosslinking of LexA+Gal4 TAG mutants 77 

3.2 Prototypical Gal4 transcriptional model system 79 

3.3 Photo-crosslinking reaction mechanisms of pBpa and pAzpa 81 

3.4 The effects of alanine mutants on the expression and activity of 
LexA+Gal4 F856Bpa and LexA+Gal4 F856Azpa 
 

82 

3.5 The effects of alanine mutants on the crosslinking of LexA+Gal4 
F856Bpa and LexA+Gal4 F856Azpa 
 

83 

3.6 Suite of electron withdrawing group (EWG)-containing pBpa analogs 85 

3.7 In vivo incorporation of EWG-containing pBpa analogs into LexA+Gal4 
849 using the pBpa specific E. coli tRNA/tRNA synthetase pair 
 

86 

3.8 In vitro Med25-VP16 (441-448) F442UAA binding curves 88 

3.9 Med25-VP16 F442UAA in vitro crosslinking 89 

3.10 LexA+Gal4 849UAA in vivo crosslinking 91 

4.1 Experimental scheme of bifunctional UAA crosslinking and 
bioconjugation by CuAAC 
 

114 

4.2 Analysis of bifunctional UAAs incorporation in the LexA+Gal4 849TAG-
Flag protein 
 

117 

4.3 Analysis of BPKyne crosslinking in the LexA+Gal4 849TAG-Flag and 
Gal80 245TAG-Myc tagged proteins 
 

119 



 

x 
  

4.4 Analysis of BPKyne bioconjugation by CuAAC 120 

5.1 Hcm1 recruits several coactivators and the transcriptional machinery to 
DNA to express nutrient stress response genes 
 

137 

5.2 Interrogation of SAGA-activator interactions 139 

5.3 Mass spectrometry screen of crosslinked activator interactions using 
pBpa analogs 
 

142 

  



 

xi 
 

List of Tables 
 

Table 
 
 

 

2.1 Plasmids used in Chapter 2 
 

54 

2.2 Primers used in Chapter 2 
 

57 

3.1 Plasmids used in Chapter 3 
 

93 

3.2 Primers used in Chapter 3 
 

94 

3.3 Peptides used in Chapter 3 
 

95 

3.4 Extinction coefficients for each pBpa analog used in Chapter 3 
 

98 

4.1 Plasmids used in Chapter 4 
 
 

122 

  



 

xii 
 

Abstract 
 

Protein-protein interactions (PPIs) regulate cellular processes through intricate 

networks that transfer signals throughout the cell. The interactions possess a range of 

affinities, lifetimes, and interface areas. In transcriptional regulation networks, activators 

form strong, concise binding interactions with their masking proteins and transient, 

moderate affinity interactions with the coactivator complexes and transcriptional 

machinery. It has been a longstanding goal to fully identify and characterize the protein 

pairings within transcriptional networks, but the necessarily transient nature of the 

activator-coactivator interactions essential for the recruitment and assembly of the 

transcriptional machinery has frustrated efforts to identify the specific pairings using 

available methods. Due to the limitations in current methods, there is a critical need for 

additional strategies for capturing transient PPIs in the native environment. Our lab has 

previously optimized an in vivo covalent chemical capture strategy using the photo-

activatable unnatural amino acid (UAA), pBpa, to interrogate the interactions of 

prototypical transcriptional activators, such as Gal4. However, these experiments are 

technically challenging due to low yields of pBpa crosslinking and difficulties in isolating 

the resulting adducts and have not yet been applied to interrogate new transcriptional 

PPI networks. This thesis seeks to expand the applications of covalent chemical capture 

to new transcriptional systems and optimize the pBpa framework for enhanced reactivity 

and functionality. 

Using the current crosslinking methodology, the metabolic interactions between the 

novel Hcm1 activator and the heterotrimeric SNF1 signaling complex were examined 

under nutrient stress in Saccharomyces cerevisiae. To this end, a minimal 

transcriptional activation domain (TAD) sequence of Hcm1 regulated by nutrient 

conditions was identified and optimized for pBpa incorporation and crosslinking. 

Additionally, the direct interactions between Hcm1 and the Snf1 kinase and Gal83 

scaffolding subunits of the SNF1 complex were captured using two pBpa incorporation 
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sites within the identified TAD. Thus, demonstrating the modularity of the Hcm1 

activator and its ability to regulate the expression of glucose-repressed genes through 

interactions with dynamic coactivator complexes. Moreover, we identified a novel 

binding interaction between Hcm1 and Gal83 and demonstrated the strength of in vivo 

covalent chemical capture to interrogate PPIs between activators and dynamic 

coactivator complexes.   

While the exploration of Hcm1 demonstrates the utility of pBpa in novel 

transcriptional systems, the methods limitations remain. We therefore developed a suite 

of modified pBpa analogs with enhanced functionality that address the current 

difficulties faced during the covalent capture of challenging PPIs in cells.  We designed 

a suite of pBpa analogs, substituted with various electron withdrawing groups (F, Cl, 

CF3, and Br), that demonstrated up to a three-fold increase in crosslinking yield of in 

vitro activator-coactivator interactions. Furthermore, when incorporated into live yeast, 

these analogs captured cellular activator-coactivator interactions. Preliminary data 

demonstrated a visible increase in crosslinking yield for the 4-F Bpa derivative 

compared to its parent molecule. Upon further optimization, the extent of increase of in 

vivo covalent capture for each analog will be quantifiable. Finally, we created a 

bifunctional pBpa analogue which possesses a bioorthogonal alkyne handle and 

facilitates more precise isolation of crosslinked partners for more accurate network 

analysis. The work presented in this thesis outlines key guidelines for the successful 

use of in vivo covalent chemical capture to identify novel PPIs and extends the utility of 

the benzophenone crosslinker, thus expanding the current toolbox of chemical probes 

for mapping PPIs in their native cellular environment. 



 1 

CHAPTER 1 
Introduction to characterizing transcriptional protein-protein interaction networks 
 
1.1 Introduction to protein-protein interaction networks 
Protein-protein interactions (PPIs) are essential for all cellular processes; PPIs 

modulate and mediate protein function through sequential and perfectly timed binding 

events to direct cellular signals to the proper location in the cell. These interactions 

connect all aspects of the cell through elaborate PPI networks. Misregulation of both 

PPIs and their networks is detrimental to cellular health, and has been implicated in a 

range of diseases, including cancer.1-8 For example, the transcriptional activator and 

tumor suppressor p53 participates in hundreds of PPIs required for the regulation of 

apoptosis, and loss of function mutations within this activator have been shown to be 

the main contributor to more than 50% of human cancers.9-14 Due to their fundamental 

importance in cellular homeostasis, PPIs and their interaction networks are logical 

targets for extensive characterization and eventual therapeutic intervention. 

Within the cell there are a variety of PPIs which are typically defined by their cellular 

function (i.e. transcriptional regulation, signal transduction, protein folding, etc.).15-16 

However, they can be further categorized based on their binding affinity and the surface 

area of the binding interface as shown in the quadrant diagram in Figure 1.1A.17-22 Many 

of the most well-characterized interactions participate in moderate to high affinity 

binding events that have small, defined interfaces resembling ligand-protein 

interactions, such as kinases with their substrate or a transcription factor with its 

masking protein (upper left quadrant, Figure 1.1A). These interactions are the most 

well-defined in terms of function and mechanism of action which have led to the 

development of many small molecule probes which facilitate additional 

characterization.23-25 For example, several small molecule classes, such as nutlins, 

sulfonamides, and benzodiazepinediones, have been developed to target the interaction 

between p53 and its masking protein MDM2.26-32  
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Figure 1.1 PPIs from a variety of cellular processes can be categorized by binding affinity and surface 
area. A.) Analysis of PPIs using these two variables leads to four main quadrants: strong and concise 
(dark blue, top left), strong and broad (dark yellow, top right), weak and concise (light blue, bottom left), 
and weak and broad (light yellow, bottom right). B.) PPIs with known inhibitors were gathered from the 
2P2IDB and TIMBAL databases and categorized based on the four quadrants of interactions. The colors 
on the graph correspond to the matching color quadrant in part A.17  
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Conversely, lower affinity interactions of both small and large surface areas remain 

poorly understood (see lower quadrants, Figure 1.1A). Due to their weak binding and/or 

broad undefined binding interface, they have been difficult to capture and characterize 

with traditional biochemical methods, including affinity purification.2, 18, 33-36 This lack of 

basic structural and functional information has made small molecule probe development 

ineffective. While more than 60% of all reported chemical probes developed to modulate 

PPIs target strong and concise interactions, less than 10% target the weak affinity 

interactions seen in the bottom two quadrants (Figure 1.1B).17, 19-20 

While cellular processes that rely heavily on PPIs within the top two quadrants have 

been highly characterized, those cellular processes that rely on transient, moderate 

affinity interactions seen in the lower quadrants, such as transcription, have been an 

elusive target to this point.5, 37-39 During transcriptional initiation, there are many 

moderate to weak affinity, dynamic PPIs ranging in surface areas that must occur to 

assemble the transcriptional machinery at a specific gene.40 This complicated network 

of interactions between transcriptional activators, repressor complexes, coactivators, 

and the pre-initiation complex required to properly turn on or turn off gene expression 

has been a long-term target of study. However, a complete map of the interactions 

required for proper gene expression remains a challenge due to the limitations in 

current tools.38, 41 

 

1.2 Transcriptional PPIs: activators and their elusive binding partners 
1.2.1 Transcriptional activators 

Transcriptional activators play a key role in orchestrating the initiation of the highly 

regulated transfer of genetic information from double-stranded DNA to the single 

stranded mRNA needed for the production of the cellular proteome. These modular 

proteins minimally consist of a (1) DNA-binding domain (DBD), which localizes the 

protein to a specific sequence within a gene promoter, and (2) a transcriptional 

activation domain (TAD), which engages in dynamic PPIs with a variety of coactivator 

complexes and general transcriptional factors.40, 42 These interactions lead to the proper 

assembly of the pre-initiation complex (PIC), including RNA Polymerase II, at the DNA 

in a signal responsive manner (Figure 1.2). This network of interactions ranges in 
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binding affinities and surface areas depending on a specific interaction. In the case of 

the prototypical Gal4 yeast activator, under normal glucose levels its TAD participates in 

a high-affinity (picomolar Kd) interaction with its masking protein Gal80 which inhibits 

expression of glucose-repressed genes.25, 43-44 However, under nutrient stress, Gal4’s 

TAD is liberated allowing several transient, moderate to low affinity interactions with 

coactivator complexes of widely ranging binding interfaces. These interactions 

subsequently turn on the expression of glucose-repressed genes, such as GAL1.43-50  

 

 
Figure 1.2 Transcriptional initiation scheme. Activators dissociate from their masking protein after a 
cellular signal and bind to specific DNA sequences through their DNA binding domain (DBD). Upon DNA 
binding, they recruit several enzymatic coactivator complexes, through a variety of PPIs with their 
transcriptional activator domain (TAD), to open the DNA for the assembly and binding of the 
transcriptional machinery, including RNA Polymerase II, for active gene expression. 
 

As noted above, misregulation of activator-associated PPIs has been implicated in 

several diseases, making activators and their coactivator binding partners desirable 

targets for therapeutic intervention. However, the transient nature of these interactions 

makes them difficult to characterize and has limited the development of chemical 

probes causing them to be termed “undruggable”.5, 38, 51 Additionally, while DBDs have 

defined structures and biochemical data available52-53, many activator TADs are 

intrinsically disordered.54-59 The most well-studied activators have amphipathic TADs 

consisting of acidic and polar residues interspersed with hydrophobic residues 

throughout the amino acid sequence.60-64 Both the intrinsically disordered nature and 

hydrophobicity of these activator sequences make them promiscuous in vitro.65 This 

makes it difficult to determine relevant binding partners in vivo based on initial in vitro 
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data. Additionally, while activators such as Gal4 and VP16 often have amphipathic 

sequences but minimal sequence homology, they still interact with several of the same 

coactivator complexes at similar binding sites.66-67 This redundancy and conserved 

nature of activator-coactivator interactions makes them difficult to selectively target with 

chemical probes for further characterization.  

 

1.2.2 Transcriptional coactivator complexes: the elusive binding partners of activators 

As discussed above, transcriptional activators recruit large, multi-subunit complexes, 

called coactivators, to prepare the DNA promoter for the assembly of the PIC and RNA 

Polymerase II for active gene expression (Figure 1.3).40, 68 During transcriptional 

initiation, activators bind the specific sequences within the DNA and recruit the 

chromatin modifying and chromatin remodeling complexes, SAGA and SWI/SNF, 

respectively, to open and free the DNA from nucleosomes.46, 69-72 Next, the Mediator 

coactivator complex bridges activators to the rest of the PIC that consists of the general 

transcription factors, the TATA-binding protein (TBP), and RNA Polymerase II 

assembled at genes promoters.50, 66, 73-81 Each one of these multi-subunit complexes 

are required for transcriptional initiation and are recruited to the DNA by activators. For 

example, the amphipathic activators Gal4 and VP16, have been shown to recruit and 

interact with each of the above-mentioned coactivator complexes in Figure 1.3, 

demonstrating the redundancy and highly conserved nature of activator-coactivator 

interactions.43, 70, 82-83 It is believed that activators have unique subunits within each 

coactivator complex with which they preferentially interact with. However, the identity of 

the preferred subunit for individual activators within these complexes remains unclear.   
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Figure 1.3 Transcriptional activator PPI networks are dynamic and transient in nature. Amphipathic 
activators, such as Gal4 and VP16, have no sequence homology, but interact with the multisubunit 
coactivator complexes Swi/Snf, Mediator, SAGA, and the transcriptional machinery to activate gene 
expression. The exact subunits within these complexes that specifically recognize and bind the diverse 
amphipathic TAD sequences are still elusive targets of study. 
 

1.3 Challenges faced when characterizing activator-coactivator interactions 
During transcriptional initiation, there are more than 65 proteins that must be properly 

recruited and assembled at the DNA by activators for active gene transcription. This 

assembly relies on the interactions occur between activators, coactivators, and the 

transcriptional machinery that vary in stability, binding affinity, and surface area of the 

interface. The precise timing and order of assembly has been a target of study for 

several years using different types of detection methods, including genetic and 

biochemical techniques to decipher the exact binding interactions required for activator 

specific regulation. However, the mechanistic question of how these coactivator 
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complexes and activators specifically recognize and bind each other to selectively 

initiate transcription of activator specific genes persists. A variety of methods developed 

to interrogate this question are discussed below.33, 41, 84-85 

 

1.3.1 Current genetic and ChIP methods applied to transcriptional PPIs 

As discussed above, activators recruit several coactivator complexes to the DNA to 

help prepare the promoter for RNA Polymerase II binding and active transcription. 

Chromatin immunoprecipitation (ChIP) techniques have helped determine which 

coactivator complexes are recruited to specific gene promoters by activators, such as 

Gal4.45-46, 80, 86-87 This method uses formaldehyde to quickly and non-specifically 

crosslink DNA-protein and protein-protein interactions in cells (or in vitro), immobilizing 

the assembled PIC to gene promoters at specific times during transcriptional initiation 

(Figure 1.4).88 The chromatin is then sheared and the samples are immunoprecipitated 

for a protein of interest, such as the activator or hypothesized coactivator subunit, to 

isolate the protein-DNA and protein-protein crosslinked adduct. The protein-DNA 

adducts are analyzed by reversal of the formaldehyde crosslinked and DNA 

amplification using promoter specific primers to detect the binding location of the 

activator and/or coactivator. The protein-protein adducts can be analyzed either by 

western blotting or mass spectrometry to identify potential binding partners. These 

results give a detailed picture of the activator-dependent assembly process at specific 

gene promoters. For example, Ptashne and coworkers used a fast-mixing ChIP method 

to determine the exact order of Gal4 transcriptional recruitment to the GAL1 promoter 

under nutrient stress. Upon galactose induction, the SAGA chromatin-modifying 

complex is recruited to the promoter, followed by the Mediator complex, and finally the 

general transcription factors, TFIIE, TFIIH, TFIIF, and TBP, together with RNA 

Polymerase II, which then alone actively transcribes the gene.82 
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Figure 1.4 Chromatin immunoprecipitation (ChIP) experimental scheme. Cells are grown and 
formaldehyde crosslinked to freeze all DNA-protein and protein-protein interactions. The cells are lysed 
and sonicated to shear the chromatin. The lysate is immunoprecipitated with a protein specific antibody to 
isolate the specific protein-DNA adducts. The formaldehyde crosslinks are reversed and the DNA is 
amplified using a promoter specific primer and analyzed by agarose gel to determine if the specific 
protein is bound at that promoter.  
 

Additionally, genetic studies have contributed to understanding the complex assembly 

through point mutations and deletion of either whole proteins or domains within specific 

complexes to determine their effect on recruitment, assembly, and function.89-92 When 

the Spt20 subunit required for structural stability of the SAGA complex was deleted, 

Ptashne and coworkers saw complete disruption of transcriptional initiation and loss of 

RNA Polymerase II binding to the GAL1 promoter, demonstrating the functional 

importance of this SAGA complex and the Spt20 subunit for functional gene expression. 

Conversely, when the nonessential Med15 subunit of the Mediator complex was 

deleted, the SAGA complex and RNA Polymerase II were recruited to the DNA similarly 

to wild-type cells.82  

While ChIP has laid the groundwork for identifying the exact coactivator complexes 

required for transcriptional initiation, the non-specific nature of formaldehyde 

crosslinking prevents these experiments from differentiating between direct and indirect 

interactions between these complexes and transcriptional activators. Therefore, the 

exact subunits within these complexes that act as activator targets in vivo, along with 

the activator binding site within these subunits, remains unclear. Additionally, genetic 
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studies have been difficult to interpret due to pleiotropic effects seen from knocking out 

transcriptional genes that are required for several protein interaction networks and 

regulation of almost all genes.93 Due to these limitations, these methods have left 

significant gaps regarding the identities of direct activator binding partners within these 

complexes.  

 

1.3.2 Current in vitro methods applied to activator-coactivator PPIs 

To further characterize and identify activator binding partners in vitro biochemical 

techniques, such as affinity purification, have been used. This technique takes 

advantage of the selective binding of genetically encoded epitope tags, such as 

glutathione-S-transferase (GST) or a polyhistidine sequence, that can be appended to a 

protein of interest.94-97 The purified epitope-tagged protein (Bait) is bound to an 

immobilized affinity ligand specific for the epitope tag and incubated with cell lysate to 

capture any binding partners (Prey). The protein of interest and its binding partners are 

then eluted from the affinity ligand and analyzed through western blot, probing for a 

hypothesized binding partner, or by mass spectrometry to identify an unknown 

interaction (Figure 1.5A). This technique has been extensively used to find coactivator 

binding partners of the model amphipathic activators Gal4 and VP16.81, 98-101 Using 

GST-tethered VP16 and Gal4 TAD peptides, Melcher and colleagues identified TBP as 

a direct binding partner for both activators.47, 65 Additionally, using point-mutations with 

the TADs they found that the strength of the binding interaction was correlated with the 

activators transcriptional activation; as the binding affinity decreased and becomes 

tighter, the transcriptional activity increased. Furthermore, several binding studies found 

several direct binding partners specific for Gal4 and VP16 within each of the 

transcriptional coactivators discussed above in Figure 1.3.81, 98-101 

 Although these binding studies helped elucidate several activator specific binding 

partners within these coactivator complexes, this technique is biased towards high 

affinity interactions with slow kinetics of dissociation.33 Due to the transient nature and 

moderate binding affinity seen with many activator-coactivator interactions, these 

interactions tend to be lost during the wash steps.95 Additionally, affinity purification 

studies can be contaminated by high abundance proteins, such as chaperones or 



 10 

ribosomal proteins, that can drown out low abundance binding partners traditionally 

seen with transcriptional proteins.102 Thus, missing some of the weaker interactions and 

leaving gaps within the activator-coactivator interaction network. 

 
Figure 1.5 Experimental schemes of current in vitro methods used to detect and characterize PPIs. A.) 
Affinity purification of binding partners of the grey immobilized protein of interest. B.) Covalent capture of 
proteins using chemical crosslinking reagents, such as the N-hydroxysuccinimide, maleimide, hydrazide, 
and aryl azide reactive groups.  
 

Another approach to capturing activator-coactivator interactions is covalent capture 

using chemical crosslinking reagents (Figure 1.5B). This technique utilizes chemical 

crosslinkers containing two reactive groups, such as maleimides or primary amines, 
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connected by a linker region to capture protein partners.103-106 These crosslinkers are 

typically added to cell lysates and chemical attachment between amino acids, such as 

lysines or cysteines, on two different proteins results in a covalent adduct that stabilizes 

the PPI so that the interaction can then be easily isolated from the rest of the lysate and 

analyzed through western blotting or mass spectrometry to identify the binding partners. 

Homobifunctional chemical reagents, such as di-N-hydroxysuccinimide (NHS) esters, 

were first used to crosslink proteins through lysines and map large multisubunit 

complexes, such as the ribosome.33 Additionally, photo-reactivity crosslinkers have 

been used to allow more controllable crosslinking. Recently, this strategy has been 

used to capture several activator-coactivator partners within the SAGA and Mediator 

complexes.45, 107 Reeves and Hahn used the 125I-PEAS photo-crosslinker to identify the 

coactivator subunits, Taf12, Gal11(Med15), and Tra1, as direct binding partners of the 

Gal4 activator.45 While this approach enables the covalent capture of moderate affinity 

PPIs that might be lost in affinity purification studies, the crosslinking reagents used are 

generally less selective and allow crosslinking independent of the sequence of the 

binding interface. While these biochemical techniques have helped decipher some of 

the direct activator-coactivator interactions in vitro, many of these interactions are too 

weak or dynamic to be characterized outside of their native environment. Thus, in vivo 

methods are required to gain a better understanding of the transient activator-

coactivator interactions required for regulated transcription.  

 

1.3.3 Current in vivo methods applied to transient PPIs 

While in vitro biochemical techniques can give initial information about stable, 

moderate to high affinity interactions, in vivo methods allow for transient interactions to 

be captured and characterized in their native cellular environment. Co-

immunoprecipitation is a popular method for identifying physiologically relevant PPIs in 

the cell and utilize target-specific antibodies to capture proteins that are bound to the 

specific target protein (Figure 1.6A).108-112  For a co-immunoprecipitation experiment, 

whole cell lysate is incubated with an antibody specific for the protein of interest to 

capture both the protein and its binding partners. The samples are typically immobilized 

to Protein A or Protein G covalently attached to sepharose or magnetic beads, washed 
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to get rid of any nonspecific binding partners, and then eluted to obtain the antibody-

bound protein of interest and its binding partners. The proteins are then analyzed either 

by western blot probing with an antibody specific for a hypothesized binding partner or 

through mass spectrometry to identify novel binding partners. These antibodies can be 

specific for endogenous proteins or for epitope tags, such as a polyhistidine or Flag tag, 

that are genetically encoded into a protein of interest. This technique allows for the 

capture and identification of PPIs in their native cellular environment and enables post-

translational modifications that might be essential for the interaction that would not be 

present in purified proteins used in in vitro affinity purification techniques.  However, this 

method tends to have high background from nonspecific binding of the antibody to other 

proteins within the lysate or from nonspecific binding of proteins to the target protein 

that were not successfully washed away. These proteins are typically high abundance 

proteins, such as ribosomal proteins, that can drown out low abundance proteins, such 

as coactivator complexes. Additionally, to lower nonspecific background binding harsher 

wash conditions are needed and lead to the loss of transient, weak affinity interactions, 

such as those between activators and coactivators.33, 51 Furthermore, this technique 

relies on protein specific antibodies, that might not be commercially available, or 

genetically encoded epitope tags that could negatively affect the structure and/or 

function of the protein being studied.41, 113  

The yeast-two hybrid (Y2H) system is another common technique used for detection 

and verification of in vivo PPIs, and it has been used to detect more than 50% of all 

reported interactions in the literature (Figure 1.6B).85, 114-115 This system relies on the 

fact that transcription factors have two modular domains, a DBD and TAD, that can be 

expressed separately from each other.40 In principle, the DBD can bind to DNA on its 

own but cannot activate transcription until fused to a TAD. Similarly, the TAD can 

interact with the rest of the transcriptional machinery required for gene activation, but 

cannot activate transcription until fused to a DBD. The Y2H system takes advantage of 

these principles to screen for possible PPIs. 
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Figure 1.6 Experimental schemes of current in vivo methods used to detect and characterize PPIs. A.) 
Co-immunoprecipitation of binding partners using antibodies and/or genetically incorporated epitope tags. 
B.) Yeast Two-Hybrid method of screening for binary binding partners. C.) Fluorescent and luminescent 
visualization of binary in vivo interactions. 
 

For these experiments, a plasmid expressing the specific protein of interest (Bait) 

fused to the DBD of some transcriptional activator, such as Gal4, and a plasmid 

expressing a possible binding partner (Prey) fused to the activator’s TAD are expressed 

in live yeast. The yeast strain has a genomically encoded reporter gene, such as the b-

galactosidase LacZ gene, with DNA binding sites specific for the DBD encoded within 

the promoter. If the Prey protein is a direct binding partner of the Bait protein, the 

interaction will bridge the DBD and TAD forming an active transcription factor able to 

activate transcription of the reporter gene and give a measurable colorimetric readout. 

Conversely, if the Prey and Bait proteins do not interact, there will be no transcription 

and no measurable readout. This is an advantageous method for studying transient, 

moderate-weak affinity interactions in vivo since the reporter gene results in signal 

amplification and the interactions do not need to be isolated from cells. However, only 
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binary interactions can be studied in this system and there is a significantly high false-

positive rate for this method; approximately 50% of identified interactions are not 

reliable and must be validated through other methods.116 Additionally, the identification 

of PPIs required for normal transcriptional regulation has been challenging using the 

Y2H strategy. Many proteins normally required for transcription, such as coactivator 

subunits, can recruit the rest of the PIC and RNA Polymerase II when fused to a DBD, 

thus activating transcription without the need for an activator TAD. For example, 

Ptashne and coworkers demonstrated approximately identical activated LacZ gene 

expression to the model activator LexA+Gal4 using a chimeric transcription factor 

containing the LexA DBD fused to the Gal11 (Med15) Mediator subunit.117 Additionally, 

several other chimeric transcription factors using coactivator subunits as the “TAD” 

showed similar activation of the LacZ gene when fused to the LexA DBD. Thus, 

illustrating the limitations of using the Y2H system for identifying activator-coactivator 

interactions in vivo.  

Other widely used techniques, such as bimolecular fluorescence complementation 

(BiFC)118-121, forster resonance energy transfer (FRET)122-125, and bioluminescence 

resonance energy transfer (BRET)126-128 have been used to detect and visualize PPIs in 

vivo (Figure 1.6C). These techniques rely on the association of fluorescent protein 

fragments or energy transfer giving a measurable readout upon protein binding for BiFC 

or BRET and FRET, respectively. For example, Bhaumik and coworkers used a FRET 

screen to determine which subunits within the SAGA chromatin-modifying complex were 

direct binding partners of the Gal4 activator. Using a cyan fluorescent protein (CFP)-

fused Gal4 activator construct and several yellow fluorescent protein (YFP)-fused SAGA 

subunits, they identified the Tra1 subunit as a direct binding target of Gal4 required for 

transcriptional activation.129 While these techniques can identify the transient, weak 

affinity interactions between activators and coactivators in cells, they required genetic 

incorporation of large protein complexes to activators and coactivators that could affect 

their overall function in the cell, potentially changing their binding interactions. 

Additionally, these techniques require extensive instrumentation that might not be 

available for high-throughput screens of in vivo PPIs.85  
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1.3.4 Difficulties in making functional predictions from PPI studies 

While the current PPI detection techniques discussed above have deciphered some 

cellular interaction networks, many of these interactions are between stable complexes 

with moderate to high binding affinities (low micromolar to nanomolar binding 

constants). The more transient, moderate affinity interactions seen between 

transcriptional activators and coactivators have been harder to characterize using the 

traditional methods, and this has led to conflicting data within the field regarding the 

identities of activator specific direct and indirect binding partners. For example, ChIP 

reports propose that the prototypical VP16 transcriptional activator binds indirectly to 

TBP through a bridged interaction with the SAGA chromatin-modifying complex, while 

biochemical in vitro binding studies have identified TBP as a direct binding partner of 

VP16.65, 98, 130-132  Additionally, while Melcher and coworkers were able to identify a 

direct binding between the Gal4 and VP16 activators and TBP that positively correlated 

with transcriptional activity using a GST-pulldown, they also identified lysozyme, a 

nontranscriptional relevant protein, as a direct binding partner of these TADs with a 

similar relationship between binding and activity.65 Due to these controversies and 

limitations seen in the current methods, there is a dire need for additional tools to 

capture activator-coactivator interactions in their native cellular environment.  

 

1.4 Covalent chemical capture 
Covalent chemical capture utilizing photo-activatable unnatural amino acids (UAA), 

such as p-benzoyl-L-phenylalanine (pBpa), enables the capture of transient, moderate 

affinity interactions in live cells.133-136 Using the nonsense suppression method 

developed by Peter Schultz, pBpa can be site-specifically incorporated into a protein of 

interest at a residue replaced by the amber stop codon, TAG (Figure 1.7A).137-141  
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Figure 1.7 A.) Amber nonsense suppression enables the site-specific incorporation of unnatural amino 
acids (UAAs) into a protein of interest at the mutated amber stop codon (TAG) using a bioorthogonal 
tRNA/tRNA synthetase pair. B.) In vivo covalent chemical capture enables the capture and 
characterization of the direct binding partners of our UAA-incorporated protein of interest.  
 

Upon irradiation, a covalent adduct is created between the UAA-incorporated protein 

and it’s endogenous binding partner(s), capturing a snapshot of a cellular process at the 

time of irradiation. These covalently-linked interactions can then be isolated from cells 

using standard immunological techniques and resolved either through western blot or 

mass spectrometry analysis to characterize the specific interactions (Figure 1.7B).141-142  

Currently, there are three photo-crosslinking moieties, benzophenone, aryl-azide, 

and diazarine, commonly used in the field to capture challenging PPIs. Each of these 

crosslinkers have very different crosslinking mechanisms that are critical for successful 

capture of PPIs and must be carefully considered for the system being studied (Figure 

1.8).143  While the fast reactivity of both the aryl-azide and the diazarine moiety is 
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advantageous for transient interactions, the benzophenone’s reversibility and resistance 

to water enables more selective capture of solvent exposed PPIs that are commonly 

seen with these transient systems. Due to the large undefined surface area and solvent 

exposure normally seen between transcriptional activators and their coactivator binding 

partners, our lab has optimized a covalent chemical capture system using pBpa to 

create a detailed map of these complex interaction networks.144-149 

Initially, Dr. Chinmay Majmudar and former Mapp Lab members examined the 

impact pBpa incorporation had on the function of the Gal4 transcriptional activator and 

its binding interaction with its masking protein, Gal80.147 Using ten sites of pBpa 

incorporation, they found that UAA incorporation had little impact on the proteins 

function and that the Gal4-Gal80 binding interface extended beyond the residues within 

the Gal4 TAD initially reported in the literature.150 Additionally, while bulkier more 

hydrophobic residues, such as phenylalanine and tryptophan, are ideal for pBpa 

incorporation, incorporation can also be extended to polar residues, such as aspartic 

acid and threonine, with minimal impact on protein function.  While this initial study 

demonstrated the utility of in vivo covalent chemical capture to examine high affinity 

interactions between a transcriptional activator and its masking protein (low nanomolar 

binding affinity), our group has extended this strategy towards transient, moderate 

affinity interactions between the model activators Gal4 and VP16 and several 

coactivator complexes, including TBP149, the SWI/SNF chromatin remodeling 

complex144, the Mediator complex144, and the SNF1 complex145. 

 

1.5 Dissertation Overview  
In the remaining chapters of this thesis, I demonstrate the utility of pBpa to capture the 

transient, moderate affinity interactions of a novel transcriptional activator in 

Saccharomyces cerevisiae and evaluate the crosslinking capabilities of a suite of pBpa 

analogs with enhanced functionality to capture PPIs in live yeast. In Chapter 2, the PPI 

network between the Hcm1 forkhead box transcriptional activator and the SNF1 

complex is interrogated under nutrient stress using pBpa photo-crosslinking. During this 

study, I have identified a minimal TAD sequence for Hcm1 and captured its interaction 

with two subunits of the SNF1 complex, Snf1 and Gal83, which further demonstrates 
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the strength of in vivo covalent chemical capture to interrogate the PPIs between 

activators and dynamic, interchangeable coactivators. Additionally, these data have laid 

the ground work for further interrogation of Hcm1’s larger transcriptional PPI network in 

yeast. 

 
Figure 1.8 Reaction mechanisms for A.) p-benzoyl-L-phenylalanine (pBpa), B.) p-azido-L-phenylalanine 
(pAzpa), and C.) p-trifluoromethyl-diazo-L-phenylalanine (pDiAz) 
 

While we have shown the strength of pBpa photo-crosslinking for the capture of 

transient activator-coactivator interactions, there are still limitations with this covalent 

chemical capture strategy, including the slow reactivity of the molecule and the 

difficulties seen when isolating crosslinked products. In the second half of my thesis, 

these limitations are addressed and a suite of pBpa analogs with enhanced 
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functionalities are described and evaluated for their ability to tackle the current 

limitations in the crosslinking technology. In Chapter 3, I examine the effects of 

sequence context and reaction mechanism on the success of covalent chemical capture 

of in vivo PPIs. Additionally, I present a suite of electron-withdrawing group (EWG) 

containing-pBpa analogs hypothesized to have enhanced reactivity and characterize 

their overall ability to capture in vitro and in vivo activator-coactivator interactions. In 

Chapter 4, I have developed a strategy to isolate in vivo crosslinking PPIs using a 

bifunctional pBpa analog, BPKyne, which contains a bioorthogonal alkyne handle that 

facilitates isolation of crosslinked adducts upon functionalization with a biotin-azide 

probe. The pBpa analogs developed in this thesis extend the utility of the 

benzophenone crosslinker and expands our toolbox of chemical probes for mapping 

PPIs in their native cellular environment. 
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CHAPTER 21 
Elucidation of SNF1 recruitment by Hcm1 through in vivo covalent chemical 

capture 
 
2.1 Introduction 
Transient, moderate affinity protein-protein interactions (PPIs) play critical roles in all 

cellular processes, including transcription.1 During transcriptional initiation, activators 

bind to specific DNA sequences and recruit several coactivator complexes and the 

transcriptional machinery, including RNA Polymerase II, to specific gene promoters 

through several perfectly timed and executed PPIs.2 These activator-coactivator 

interactions are tightly choreographed and misregulation has been implemented in 

several diseases, including cancer, making them a logical target for characterization 

and eventual therapeutic intervention.3-9 Possessing a range of binding affinities and 

surface areas, these interactions have traditionally been difficult to capture and 

characterize and has led to contradictory and incomplete maps of transcriptional PPI 

networks.1, 10-12 For example, reports propose that the prototypical VP16 transcriptional 

activator binds indirectly to the TATA-binding protein, TBP, through a bridged interaction 

with the SAGA chromatin-modifying complex, while other studies have identified TBP as 

a direct binding partner of VP16.13-17  This lack of consensus demonstrates the limits of 

the current methods to capture and characterize activator-coactivator interactions. In 

our hands, in vivo covalent chemical capture utilizing photo-activatable unnatural amino 

acids (UAAs) enables the direct capture and characterization of activator-coactivator 

interactions in their native cellular environment. For example, using the covalent 

chemical capture strategy we have captured the VP16-TBP interaction at the GAL1 
                                            
1 The majority of the chapter is not yet published. The individual contributions to the data presented in 
this chapter is as follows: Cassandra Joiner made and tested the expression and transcriptional activity of 
all LexA+Hcm1 TAD constructs. Cassandra Joiner made all the LexA+Hcm1 (201-300) TAG constructs 
and along with Uma Jasty and Samantha DeSalle examined the expression and transcriptional activity of 
each mutant. Cassandra Joiner ran all crosslinking experiments between Hcm1 and the SNF1 complex, 
along with Samantha DeSalle.  
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promoter, indicating a direct interaction between the two proteins during transcriptional 

initiation.18 Additionally, our lab has utilized this strategy to further characterize 

activator-coactivator interactions in Saccharomyces cerevisiae, such as the interactions 

between VP16 and the SWI/SNF chromatin remodeling complex and the interactions 

between Gal4 and the SNF1 complex.19-20  Nevertheless, the current activators used in 

these covalent capture experiments are well characterized with extensive biochemical 

data that help determine the best sites for UAA incorporation.  

In this chapter, the in vivo covalent chemical capture method using the photo-

activatable UAA p-benzoyl-L-phenylalanine (pBpa) is extended to the less characterized 

yeast forkhead box transcriptional activator, Hcm1. This activator has been reported as 

a stress regulator during carbon, nitrogen, and oxidation stress.21-22 Under low glucose 

conditions, Hcm1 is shuttled into the nucleus where it has been proposed to interact 

with several coactivator complexes, including the SNF1/AMPK complex, to regulate 

glucose-repressed genes.22-24 In an in vitro study, Hcm1 was found to be directly 

phosphorylated by the Snf1 kinase.22 Thus, we hypothesized that Hcm1 directly interact 

with the SNF1 complex under glucose limiting conditions and sought to determine the 

mechanism by which this interaction occurs. In this chapter, we identify a minimal Hcm1 

transcriptional activation domain (TAD) that is transcriptionally active and regulated by 

carbon signaling when fused to the bacterial LexA DNA binding domain (DBD). Using 

this LexA+Hcm1 chimeric activator we capture its interaction with the SNF1 complex 

through the Snf1 kinase and Gal83 b-scaffolding subunits.  These findings demonstrate 

the strength of in vivo covalent chemical capture to interrogate the PPIs between 

activators and dynamic coactivator complexes that are regulated by the cellular 

environment. Additionally, these findings demonstrate Hcm1’s ability to function as a 

modular minimal TAD to regulate nutrient stress response genes. 

 

2.2 Capturing transcriptional activator – coactivator interactions  
2.2.1 Transcriptional activator – coactivator interactions 

Transcriptional gene activation is an immense multi-step process orchestrated by a 

vast web of PPIs between transcriptional activators and coactivators required for the 

proper assembly and recruitment of the pre-initiation complex (PIC), including RNA 
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Polymerase II, at a specific gene promoter to initiate expression.2, 9, 25-26 Transcriptional 

activators are modular proteins that minimally consist of a DNA binding domain (DBD) 

that binds to specific sequences of DNA within a gene promoter and a transcriptional 

activation domain (TAD) that participates in various PPIs to recruit the transcriptional 

machinery to the gene promoter for active transcription (Figure 2.1).  

 

 
Figure 2.1 Transcriptional initiation schematic. Upon a cellular signal, transcriptional activators dissociate 
from their masking proteins and bind specific DNA sequences. Through several direct and indirect 
interactions, they recruit several enzymatic coactivator complexes to prepare the DNA for the assembly of 
the transcriptional machinery, including RNA Polymerase II, and active transcription. 
 

The interactions between activators and other transcriptional proteins can range 

drastically in binding affinity and surface area (Figure 2.2). For instance, the interaction 

between an activator and its masking protein typically has a small surface area and very 

tight binding (nanomolar dissociate constants) making them the easiest to capture with 

traditional methods, such as affinity purifcation.9, 12, 27-28 However, the interactions 

between an activator and the coactivator complexes are relatively weak affinity and 

range in binding interfaces from small, defined binding sites to large, poorly defined 

surfaces. 13, 29-31 Additionally, these interactions are short lived, making them very 

challenging to characterize using traditional biochemical methods that are more 

effective for stable binding events. 
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Figure 2.2 Transcriptional PPIs can be categorized based on the binding affinity of the interaction and the 
surface area of the binding interface. This analysis can lead to roughly four quadrants: strong and 
concise, strong and broad, weak and concise, and weak and broad. Interactions between activators and 
their repressor proteins fall under the strong and concise category. Activator dimers or multimers fall 
under weak and concise interactions and activator-coactivator interactions are weak binding events that 
range in concise and broad surface areas.32 
 

2.2.2 Difficulties capturing activator-coactivator interactions 

While in vivo transcriptional PPI studies such as chromatin immunoprecipitation 

(ChIP) have determined the specific coactivator complexes that are recruited by 

activators to gene promoters during transcriptional initiation, the direct binding partners 

within those large multi-subunit complexes have not been clearly defined.33-35 Using 

ChIP, Ptashne and coworkers have determined the timing by which coactivator 

complexes, including the SAGA complex, Mediator complex, TBP, and RNA 

Polymerase II, are recruited to the GAL1 promoter by the prototypical activator Gal4 

during transcriptional initiation (Figure 2.3).33 However, Gal4’s direct binding partners 

within these complexes are still debated within the field.36-42 Additionally, each of these 

coactivator complexes are recruited to almost all gene promoters within the cell by 

multiple activators during transcriptional initiation resulting in redundancies in activator-

coactivator interactions.13, 43-45  
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Figure 2.3 Ordered transcriptional recruitment by the model Gal4 activator. The three-step timed 
recruitment and assembly of the pre-initiation complex (PIC) by the Gal4 activator was determined 
through fast-mixing ChIP experiments using representative subunits from each complex. Under normal 
glucose conditions, Gal80 binds to the Gal4 TAD inhibiting interactions with the PIC. However, upon 
galactose induction, Gal4 recruits the (Step 1) SAGA complex (Spt20) to the promoter, followed by the 
(Step 2) Mediator complex (Gal11 and Srb4). Finally, TBP, TFIIE(Tfa2), TFIIH (Tfb3), TFIIF (Tfg1), and 
RNA Polymerase II (Rpb1) arrive at the promoter simultaneously (Step 3). After assembly, RNA 
Polymerase II moves into the gene along and quickly begins transcription.33 
 

Although in vitro assays have determined several coactivator binding partners for 

different activators within these complexes, in vivo interaction studies have not yet 
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confirmed which of those proposed partners are relevant in cells.15, 29, 46-47 Due to their 

intrinsically disordered and hydrophobic nature, the TADs of activators have been 

reported to be promiscuous binders, particularly in vitro. In an in vitro GST-binding study 

using several amphipathic TADs, including the prototypical Gal4 and VP16 activators, 

several direct binding partners within these coactivators and the transcriptional 

machinery were identified, including TBP.13 Moreover, there was a correlation seen 

between in vitro binding and in vivo transcriptional activity. As the binding affinity 

decreased between an activator and coactivator, the transcriptional activity increased 

demonstrating the relevance of each interaction. However, this approach also identified 

the nontranscriptional and cellularly irrelevant lysozyme protein as a direct binding 

partner for these TADs. These findings illustrate the limitations of current methods to 

distinguish and correlate direct interactions to relevant functions within the cell. 

Therefore, there is a critical need for in vivo techniques that can capture the direct 

activator-coactivator interaction in their cellular environment.  

 

2.2.3 Covalent chemical capture in cells 

Covalent chemical capture utilizing photo-activatable UAAs has become a powerful 

tool for capturing and characterizing PPIs in their native cellular environment.48-50 With 

the advancement of amber nonsense suppression by the Schultz group, photo-

crosslinking amino acids, such as pBpa, can be site-specifically incorporated into a 

protein of interest and upon UV irradiation direct binding partners can be captured 

through radical mechanisms that create a covalent adduct between the two binding 

partners (Figure 2.4).48-49, 51-53 The site-specific incorporation of these UAAs is 

accomplished using a tRNA and tRNA synthetase pair that was engineered to 

selectively recognize the UAA of interest. This UAA is incorporated at an amber stop 

codon in the mRNA sequence.  
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Figure 2.4 In vivo covalent chemical capture schematic using pBpa. A.) pBpa is incorporated into the 
TAD of a transcriptional activator using nonsense suppression. The yeast cells are irradiated with 365 nm 
UV light to activate pBpa, resulting in the capture of the direct binding partners of the activator. The cells 
are lysed and the crosslinked products are isolated through a variety of immunological techniques. The 
crosslinked products can then be resolved either through hypothesis-driven western blot analysis or 
discovery-driven mass spectrometry analysis to identify the activator’s binding partner(s). B.) pBpa 
reaction mechanism. pBpa is activated by 365nm UV light and upon irradiation a diradical ketyl species is 
formed. This electrophilic diradical reacts with weak C-H bonds through H-abstraction, followed by a 
radical recombination with the alkyl radical to form the crosslinked adduct.54-55 
 

For example, for the precise incorporation of pBpa into the open reading frame of a 

protein of interest a pBpa specific tRNA synthetase is used. This synthetase is derived 

to selectively charge the tyrosyl tRNA variant that contains the anti-codon loop region 
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that recognizes the amber stop codon (UAG) mutated into the mRNA of the protein. 

Additionally, the tRNA/tRNA synthetase system is designed to react bioorthogonally in 

the host organism such that the tRNA synthetase does not recognize any of the 

endogenous amino acids or charge the host tRNAs with pBpa and vice versa (Figure 

2.5).56  

 

2.2.4 In vivo photo-crosslinking of activator-coactivator interactions in yeast 

After decades of tRNA/tRNA synthetase design and optimization, the incorporation 

of UAAs through nonsense suppression can be used in several model organisms, 

including S. cerevisiae.48, 56-60 The first reported incorporation of pBpa in yeast was 

originally demonstrated by the Schultz group utilizing the Escherichia coli tyrosyl tRNA/ 

tRNA synthetase system (tRNATyr
CUA-TyrRS).53 Using this system, they reported high 

expression yields for incorporation of pBpa into the highly abundant superoxidase 

dismutase, a protein that can be highly overexpressed in yeast; however, when this 

system was applied to the Gal4 transcriptional activator by former members of the Mapp 

Lab, little to no incorporation or expression of this modestly expressed protein was 

seen.25, 61 A collaboration with Lei Wang at the Salk Institute produced a more effective 

expression system for the tRNA, ultimately leading to levels of pBpa-containing Gal4 

expressed at 5-20% levels of the wild-type protein.58  

Over the past ten years, our group has further optimized this strategy for the capture 

and characterization of activator-coactivator interactions in live yeast using pBpa.18-20, 25, 

61 pBpa is advantageous for the interrogation of in vivo PPIs as it is activated at the 

longer 365 nm wavelength that in not harmful or damaging to DNA and proteins 

compared to the shorter wavelengths needed for other crosslinkers.11 Photo-activation 

of pBpa leads to the covalent capture of direct binding partners of the UAA-incorporated 

activator which then can be isolated from live yeast upon lysis and analyzed by 

traditional immunological techniques, such as western blotting, or by mass spectrometry 

methods (Figure 2.4).  

While the current application of this in vivo covalent chemical capture strategy 

toward understanding activator-coactivator interactions has been used with prototypical 

activators with extensive biochemical data, in this chapter we sought to extend this 
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method to examine the interactions between the less characterized Hcm1 yeast nutrient 

response activator and the SNF1 complex under nutrient stress.  

 

 
Figure 2.5 Amber nonsense suppression. Nonsense suppression allows the incorporation of an unnatural 
amino acids (UAAs) into protein or peptide chains. Successful incorporation requires a bioorthogonal 
tRNA/tRNA synthetase pair (red and dark brown, respectively) that recognizes the purple amber stop 
codon (UAG) that is site-specifically mutated into the mRNA sequence during translation.  
 

2.3 The yeast SNF1 complex regulates cellular metabolism through activator 
interactions 

2.3.1 The yeast SNF1 complex 

The yeast SNF1 protein complex is the founding member of the SNF1/AMPK family 

of enzymes and is required for the yeast adaptation to alternative carbon sources when 

glucose is limited. Analogous to the mammalian AMPK complex, SNF1 is a 

heterotrimeric protein consisting of an enzymatic subunit, Snf1, that phosphorylates 
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several proteins under nutrient stress, a regulatory subunit, Snf4, that binds and 

regulates Snf1 activity, and interchangeable b-scaffolding subunits that determines the 

cellular location and function of the complex (Sip1, Sip2, or Gal83).62-63 This enzymatic 

complex is highly regulated by cellular nutrient levels. During normal to high glucose 

levels, the Snf1 enzymatic subunit is negatively regulated by the Reg1-Glc7 protein 

phosphatase 1, along with being auto-inhibited by the Snf4 subunit.64-66  

 
Figure 2.6 SNF1 regulation under nutrient stress. The Snf1 catalytic subunit is activated through 
phosphorylation by either Sak1, Elm1, or Tos1 kinases under glucose limitation and forms three different 
complexes with its β-scaffolding subunits, Gal83, Sip2, and Sip1. These scaffolding proteins control the 
cellular localization and the function of the complex. Under low glucose levels, the Snf1 subunit forms a 
complex with the Gal83 β-scaffolding subunit, which controls its translocation into the nucleus to activate 
the gene expression of glucose-repressed genes.63 
 

However, under glucose limiting conditions, the Snf1 enzyme is activated through 

phosphorylation of residue T210 on the activation loop by one of the upstream kinases 

Sak1, Tos3, or Elm1.67-69 Upon activation, one of the b-scaffolding subunits bind to the 

SNF1 complex and directs the complex to its specific subcellular location (Figure 2.6).62  

For instance, Sip1 relocalizes to the vacuolar membrane, while Gal83 localized to the 

nucleus and Sip2 remains cytoplasmic.62, 70-71 While all three of these scaffolding 

subunits are equally active and have overlapping actions, Gal83 has been reported as 

the major contributor to SNF1’s response to glucose limitations and has been shown to 

mediate the interactions between SNF1 and transcriptional activators and the 



 42 

transcriptional machinery.72-76 For example, Gal83 directly interacts with the Sip4 

transcriptional activator and facilitates the Snf1-dependent phosphorylation of Sip4 

under glucose limiting conditions, while Sip1 and Sip2 show no evidence of interaction 

with Sip4.77 Thus, demonstrating Gal83’s importance in SNF1’s transcriptional 

regulation and stress response activity during glucose limitation. 

 

2.3.2 The SNF1 complex regulates GAL1 expression under galactose stress 

As discussed above, the SNF1 complex has been implicated in the regulation of 

glucose-repressed stress response genes in the cell. During normal glucose levels, the 

SNF1 complex is inactive and sequestered in the cytoplasm. Subsequently, the Mig1 

transcriptional repressor protein localizes to the nucleus, where it can recruit the Cyc8-

Tup1 inhibitor complex to the DNA and inhibit the GAL1 glucose-repressed gene. 

Conversely, when glucose is limiting and galactose is present, the Snf1 kinase is 

activated and the SNF1 complex can translocate into the nucleus using the Gal83 

nuclear localization signal and phosphorylate the Mig1 protein. Thus, causing Mig1 to 

be shuttled into the cytoplasm releasing the DNA for RNA Polymerase II recruitment 

and transcriptional activation of GAL1 (Figure 2.7).78-82 Additionally, recent reports have 

shown that the SNF1 complex interacts with several members of the transcriptional PIC, 

including the Mediator complex, during glucose limiting conditions. 74-76 

 
Figure 2.7 SNF1 regulation of the GAL1 promoter under glucose-limiting conditions. Under normal 
glucose levels Mig binding to the Gal1 promoter and recruits the Tup1 inhibitor complex. However, under 
galactose induction, the SNF1 complex phosphorylates the Mig1 protein releasing it from the DNA, 
inducing nuclear translocation and activation of the GAL1 gene. 
 

Furthermore, the Snf1 kinase and Gal83 scaffolding subunit of the SNF1 complex 

were captured in a recent proteomics study from our lab examining novel enzymatic 
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targets of the LexA+Gal4 transcriptional activator.20 In this study, in vivo covalent 

chemical capture using pBpa was combined with shot-gun mass spectrometry 

proteomics analysis to determine the native binding partners of the LexA+Gal4 activator 

in an unbiased fashion. Further verification of these experimental hits determined that 

the Snf1 and Gal83 subunits of the SNF1 complex were direct binding partners of Gal4. 

Additionally, using tandem reversible formaldehyde crosslinking and irreversible photo-

crosslinking (TRIC), they discovered that the interaction between Snf1 and Gal4 

occurred at the GAL1 promoter under glucose-limiting conditions, demonstrating the 

role the SNF1 complex plays in galactose regulation. Concurrently, they also examined 

the interaction between the LexA+VP16 model activator and the SNF1 complex at the 

GAL1 promoter. Using identical experimental conditions, they verified that the Snf1 

kinase directly interacted with both subdomains of the VP16 TAD, while Gal83 only 

interacts with the C-terminal subdomain of VP16. Similarly, the Snf1-VP16 interaction 

was located at the GAL1 promoter when TRIC experiments were used. These findings 

demonstrate that Snf1 and Gal83 are shared targets of amphipathic activators in yeast. 

 

2.4  Functional interrogation of the Hcm1 activator for UAA incorporation 
2.4.1 The Hcm1 forkhead box transcriptional activator 

Hcm1, a forkhead box transcriptional activator, has been reported as a yeast 

homolog for both the mammalian FoxM1 and FoxO3 transcription factors. Similarly to 

FoxM1, Hcm1 was first reported as a cell cycle regulator of late S-phase genes involved 

in chromosome segregation, spindle dynamics, and budding.83-84 This activator is 

periodically expressed during late G1 and early S phase and is highly regulated by the 

cyclin-dependent kinase, Cdk1, which maintains genome stability during cell cycle 

progression.84 Through post-translational modifications to either the N-terminus or C-

terminus of Hcm1, Cdk1 can regulate its degradation or transcriptional activation, 

respectively.85-87 This allows for both the precise activation and expression of Hcm1 

during a finite window of time which facilitates the productive progression through the 

cell cycle.  

Recently, Hcm1 has recently been shown to regulate environmental stress, such as 

carbon, nitrogen, and oxidative stress, and longevity in yeast analogous to the 
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mammalian forkhead box FoxO stress regulators.21-22, 87 Both forkhead transcriptional 

activators exhibit subcellular translocation upon cellular stimuli to activate stress 

response genes.88-90 For example, under oxidative stress Hcm1, like FoxO, is shuttled 

into the nucleus following direct interaction with and deacetylation by the histone 

deacetylase Sir2 (the ortholog of mammalian Sirt1) to turn on genes required for 

oxidative stress resistance and mitochondrial metabolism.21, 91-92  

More importantly, under carbon stress, Hcm1 and FoxO3a are shuttled into the 

nucleus, following post-translational modifications, to turn on glucose-repressed 

genes.22, 88, 93-95 During this process, it has been shown that both Hcm1 and FoxO3a are 

phosphorylated by the SNF1/AMPK complex, making them a substrate for the metabolic 

regulator.22, 96-97 Rodriguez-Coleman and coworkers have shown that under glucose-

limiting conditions Hcm1 is shuttled into the nucleus, however, in a Snf1 knockout strain, 

Hcm1 accumulated in the cytoplasm. Additionally, in an in vitro study, Hcm1 was 

directly phosphorylated by the Snf1 catalytic subunit of the SNF1 complex, but 

phosphorylation was lost when a Snf1 kinase dead mutant was used under identical 

conditions,22 thus demonstrating the conserved regulation of Hcm1/FoxO3 under carbon 

stress by the energy sensing SNF1/AMPK complex.  

While Hcm1 has been reported as a substrate in vitro, the existence of one or more 

SNF1/AMPK-Hcm1 PPIs at gene promoters has not been assessed. Therefore, we 

sought to examine the interaction between Hcm1 and the SNF1 complex in living cells. 

The SNF1 complex interacts with both prototypical Gal4 and VP16 activators through its 

Snf1 and Gal83 subunits in live yeast under glucose limiting conditions. Unlike Hcm1, 

neither of these model activators have been reported as substrates of the Snf1 subunit. 

We also sought to determine whether the Hcm1-SNF1 interaction mechanism is 

different from the non-substrate activator proteins, Gal4 and VP16, using in vivo 

covalent chemical capture. 
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Figure 2.8 LexA+Hcm1 TAD constructs used to determine a minimal TAD sequence. Yeast expression 
plasmids containing several Hcm1 TAD sequences between residues 139-564 fused to the bacterial LexA 
DBD and a flag tag for detection were constructed to screen for a minimal TAD sequence that would be 
regulated by glucose signaling.  
 

2.4.2 Identification of a Hcm1 minimal TAD regulated by nutrient signaling 

To extend the covalent chemical capture strategy to Hcm1, we first wanted to define 

a minimal TAD sequence that would recapitulate both transcriptional activity and 

glucose regulation. Hcm1 is a 564 amino acid protein with a defined forkhead box DBD 

domain that resides in the N-terminus of the protein (residues 100-200) which takes on 

a winged helix-turn-helix fold, but, the C-terminus of the protein is less defined with no 

clear TAD sequence based on homology models.98 Zhu and coworkers showed that 

Hcm1 (139-511) can act as a strong transcriptional activator when fused to the Gal4 

DBD.98 The SNF1 complex is a key member of the nutrient sensing pathway and we 

hypothesized regions of Hcm1 regulated by changes in nutrient conditions would 

interact with the SNF1 complex under nutrient stress. So, we sought to identify regions 

of Hcm1 that were regulated by changes in nutrient conditions within the C-terminal 

139-511 region.  

Through standard mutagenesis techniques, thirteen Hcm1 TAD constructs fused to 

the bacterial LexA DBD were made based on known phosphorylation sites (Figure 2.8). 

Each LexA+Hcm1 TAD construct was expressed in live yeast and their expression and 
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transcriptional activity under varied nutrient conditions were examined using a 

genomically incorporated GAL1-LacZ reporter containing two LexA DNA binding sites 

(Figure 2.9A and B).  

Figure 2.9 In vivo characterization of LexA+Hcm1 TAD constructs. A.) Expression of LexA+Hcm1 TADs 
in live yeast analyzed by western blot with a-Flag. B.) The activation potential of each LexA+Hcm1 TAD 
construct was measured by liquid b-Galactosidase assay. In the yeast strain, b-galactosidase expression 
is controlled by a GAL1-LacZ promoter containing two LexA binding sites from LexA+Hcm1 binding.  
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When expressed in yeast, each activator construct’s transcriptional activity varied. As 

the constructs were shortened, the activity decreased slightly until residues 380-440 

were deleted and activity was ablated. While an obvious requirement for a 

transcriptional activator is that they activate transcription, the nutrient regulation of these 

Hcm1 regions simulate more of its endogenous function. When analyzing the Hcm1 

constructs’ transcriptional function there was little difference in absolute transcriptional 

activity between LexA+Hcm1 (201-511) and LexA+Hcm1 (301-511), however, there 

was a noticeable difference seen in nutrient regulation between the two constructs, with 

LexA+Hcm1 (301-511) being inhibited by normal glucose levels more than the (201-

511) construct. Thus, we hypothesized that a LexA+Hcm1 (201-300) construct would 

transcriptionally undergo nutrient signaling similar to the reported wild-type protein. 

When LexA+Hcm1 (201-300) was expressed in yeast, the chimeric protein was 

activated under galactose stress conditions, but was inhibited under normal glucose 

conditions. 

While this construct exhibits nutrient regulated transcription like the wild-type protein, 

there is little biochemical data on the Hcm1 activator, and we sought to determine how 

its primary and secondary sequence compared to the model amphipathic activators, 

Gal4 and VP16. Normally, amphipathic activators are intrinsically disordered and take 

on a random coil structure until binding to a coactivator partner where they form an 

alpha helical structure.9, 29, 99-103 After further examination of the Hcm1 (201-300) 

sequence, there was strong amphipathic characteristics with two coactivator binding 

motifs (fXXf, where f are hydrophobic residues, usually leucine, and X are nonspecific) 

at residues 219-221 and 286-289.104 Furthermore, secondary structure predictions 

showed three sites of alpha helicity within the sequence around residues 205-211, 218-

227 and 283-291 (Figure 2.10). From these characteristics, we decided to use the 

LexA+Hcm1 (201-300) chimeric transcription factor to examine the Hcm1-SNF1 

interaction using in vivo covalent chemical capture.  
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Figure 2.10 LexA+Hcm1 (201-300) sequence analysis. A.) LexA+Hcm1 (201-300) amino acid sequence. 
Hcm1 (201-300) is amphipathic in nature with the majority of the sequence consisting of hydrophobic and 
acidic residues (blue and red, respectively) and intrinsically disordered with three predicted alpha helical 
regions (residues designed with black underline). Additionally, the two coactivator binding motifs are 
designated by fXXf, where f are hydrophobic residues, usually leucine, and X are nonspecific  B.) 
Secondary structure prediction of Hcm1 (201-300) by PSIPRED server.105-106  
 

2.4.3 pBpa incorporation into the Hcm1 (201-300) TAD 

Before the Hcm1-SNF1 interaction could be characterized, the impact of pBpa 

incorporation on the protein’s expression and activity were examined. Using the 

secondary structure prediction of Hcm1 (201-300) (Figure 2.10), incorporation sites 

were chosen at residues around the three predicted regions of alpha helicity on the N- 

and C-terminus of the sequence that have been shown to allow UAA incorporation with 

minimal impact on protein function.25 Using site-directed mutagenesis to incorporate the 

amber stop codon, TAG, in place of the original residue, eight LexA+Hcm1 TAG 

constructs were made and the expression and transcriptional activity was examined 

(Figure 2.11). For proper expression, when pBpa is present the full-length protein 

should be expressed at similar levels to the wild-type protein, but, when pBpa is left out 

of the culture media, the host translation machinery should recognize the amber stop 

codon and cleave the protein at that site, resulting in truncated protein. As seen in 

Figure 2.11B, each full-length LexA+Hcm1 TAG construct is expressed only in the 

presence of the UAA. However, when the transcriptional activity of each construct was 
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examined, during glucose-limiting conditions only LexA+Hcm1 T218TAG and 

Lexa+Hcm1 T272TAG showed activity levels similar to the wild-type LexA+Hcm1 (201-

300) protein (Figure 2.11C).  

 
Figure 2.11 In vivo incorporation and transcriptional activation of LexA+Hcm1 (201-300) TAG mutants. 
A.) A plasmid encoding the bacterial LexA DBD fused to Hcm1 (201-300) and a flag tag for detection. 
Position at which pBpa mutagenesis was carried out are indicated in red. The proposed alpha helical 
regions are indicated by a black underline. B.) In vivo incorporation of pBpa into LexA+Hcm1 (201-300) in 
live yeast using the pBpa specific E. coli tyrosyl tRNA/tRNA synthetase pair in the presence or absence of 
1 mM pBpa. C.) b-galactosidase assessment of activation potential of each mutant in LexA+Hcm1 (201-
300).  
 

Alongside the activity assays, we examined the crosslinking profiles for each of the 

TAG mutants and found that each construct had a multi-protein binding profile with 



 50 

several crosslinked products detected by western blot (Figure 2.12). The decreased 

crosslinking profile seen for the M286Bpa and M289Bpa constructs are due to the 

proximal methionine near the pBpa incorporation sites that slightly quench the 

crosslinking activity. This reactivity phenomenon is discussed in Chapter 3. 

Nevertheless, based on the expression and activity data, both the LexA+Hcm1 

T218Bpa and LexA+Hcm1 T272Bpa chimeric proteins were chosen as the best 

constructs to move forward with to interrogate the Hcm1-SNF1 interaction under 

nutrient stress conditions.  

 

Figure 2.12 In vivo photo-crosslinking profiles of LexA+Hcm1 (201-300) TAG mutants. Live yeast 
expressing the pBpa incorporated LexA+Hcm1 (201-300) TAG mutants were irradiated at 365 nm for 30 
minutes on ice to capture Hcm1’s endogenous binding partners. The yeast cells were lysed and 
immunoprecipitated with a-LexA to isolate the activator crosslinked products. The crosslinked products 
are visualized by western blot probing with a-Flag.  
 

2.5 Examination of the Hcm1-SNF1 interaction network in yeast 
While our lab has captured the shared interaction between the Snf1 and Gal83 subunits 

and the chimeric amphipathic activators LexA+Gal4 and LexA+VP16 using in vivo 

covalent chemical capture, these activators are not known substrates of Snf1.20 

However, Hcm1 is a known substrate of the SNF1 complex and phosphorylation of the 

wild-type protein by the Snf1 catalytic subunit has been reported under glucose-limiting 

conditions.22 We hypothesized that the LexA+Hcm1 (201-300) chimeric protein would 

directly interact with the SNF1 complex. However, which subunits Hcm1 interacts with 

and if Hcm1 interacts with the SNF1 complex similarly to the Gal4 and VP16 activators 
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is still unclear. Thus, we examined Hcm1’s interactions with the Snf1 catalytic subunit 

and the Gal83 b-scaffolding subunit using covalent chemical capture in live yeast.  

 

2.5.1 Capturing a LexA+Hcm1 – Snf1 interaction 

First, the interaction between Hcm1 and the Snf1 catalytic subunit was assessed 

under galactose stress conditions. These conditions should shuttle both the SNF1 

complex and Hcm1 proteins into the nucleus and activate transcription of the GAL1 

gene. Initially an overexpressed Myc-tagged Snf1 construct was used to examine this 

interaction. For these experiment, live yeast expressing either the LexA+Hcm1 218Bpa-

Flag or LexA+Hcm1 272Bpa-Flag proteins and Myc-tagged Snf1 were irradiated at 365 

nm UV light to capture the Hcm1-Snf1 interaction. Upon lysis, immunoprecipitation for 

the LexA-Hcm1 protein, and western blot analysis probing for the myc-tagged Snf1 

subunit, the Hcm1-Snf1 interaction was seen for both Hcm1 218Bpa and Hcm1 272Bpa 

(Figure 2.13A).  

While encouraging, the experiments shown above were run using an overexpressed 

Snf1 variant which could be forcing the interaction to occur under these conditions. 

Thus, we next examined the Hcm1 interaction with endogenously expressed Snf1. For 

these experiments, yeast expressing with LexA+Hcm1 218Bpa-Flag or LexA+Hcm1 

272Bpa-Flag were irradiated and lysed. Following immunoprecipitation for the 

endogenous Snf1 protein, and western blot analysis probing for the Hcm1 protein, the 

Hcm1 interaction with Snf1 was again seen for both Hcm1 constructs (Figure 2.13 B). 

These results confirm that under glucose-limiting conditions LexA+Hcm1 (201-300) 

directly interacts with the Snf1 catalytic subunit.  
 

2.5.2 Capturing a LexA+Hcm1-Gal83 interaction 

While we identified the Snf1 catalytic subunit as a binding partner of LexA+Hcm1 

(201-300) during nutrient stress conditions, we wanted to determine whether other 

subunits within the SNF1 complex are Hcm1 binding partners. Under galactose 

conditions, the Gal83 b-scaffolding subunit binds to the SNF1 complex and shuttles it 

into the nucleus to regulate transcription of nutrient stress response genes, such as 

GAL1.63 As discussed above, Gal83 directly interacts with both Gal4 and VP16 in yeast 
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at the GAL1 promoter and we sought to determine whether this interaction is shared 

with Hcm1.  

 
 
Figure 2.13 Interrogation of Hcm1 interactions with the SNF1 complex. A.) Hcm1 interacts with Myc-
tagged Snf1 when pBpa is incorporated at either position 218 or 272. Crosslinking of LexA+Hcm1 and 
Myc-tagged Snf1 was analyzed by western blot of cell lysates with a-Myc. B.) Hcm1 interacts with 
endogenous Snf1 when pBpa is incorporated at either position 218 or 272. Crosslinking of LexA+Hcm1 
and endogenous Snf1 was analyzed by western blot with a-Flag antibody of cell lysates 
immunoprecipitated with a-Snf1. C.) Hcm1 interacts with Myc-tagged Gal83 when pBpa is incorporated at 
either position 218 or 272. Crosslinking of LexA+Hcm1 and Myc-tagged Gal83 was analyzed by western 
blot of cell lysates with a-Myc. 
 

To examine the interaction between the Gal83 scaffolding subunit and our LexA-Hcm1 

(201-300) chimeric protein a Myc-tagged Gal83 construct was used due to Gal83 

antibody limitations. Nevertheless, yeast expressing either the LexA+Hcm1 218Bpa-
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Flag or LexA+Hcm1 272Bpa-Flag proteins and Myc-tagged Gal83 were irradiated, 

lysed, and immunoprecipitated for the Hcm1 protein. Following western blot analysis 

probing for the Myc-tagged Gal83 protein, the Hcm1-Gal83 interaction was captured for 

both Hcm1 constructs demonstrating a direct interaction between these two proteins 

and a shared interaction network among diverse amphipathic activators (Figure 2.13C). 

These data show that the LexA+Hcm1 (201-300) minimal TAD directly interacts with the 

SNF1 complex through the Snf1 catalytic subunit and the Gal83 b-scaffolding subunit. 

Thus, demonstrating the conservation of the Hcm1/FOXO3a-SNF1/AMPK interaction 

and SNF1’s recruitment by amphipathic activators. Additionally, this study demonstrates 

the strength of in vivo covalent chemical capture to interrogate PPIs between activators 

and dynamic interchangeable coactivator complexes.  

 

2.6 Conclusions and Future Directions 
In this chapter, we determined a minimal TAD sequence for Hcm1 that is regulated by 

carbon source in a manner similar to the wild type activator. Furthermore, these data 

show that the mechanism by which the SNF1 complex interacts with LexA+Hcm1 under 

nutrient stress is similar to the other yeast stress response activators, such as Gal4. 

These data also indicate that the Snf1 and Gal83 subunits of the SNF1 complex are 

shared binding partners of many amphipathic activators in yeast. However, the 

experiments discussed in this chapter between SNF1 and Hcm1, Gal4, and VP16 are 

all located at the GAL1 promoter raising the question as to whether these interactions 

are promoter specific or activator specific. While multi-subunit coactivators, such as the 

Mediator and SAGA complexes, are required for transcriptional initiation, it has been 

proposed in the literature that specific gene promoters determine the protein complexes 

that are required for expression.107-113 However, it has also been shown that while the 

interaction between transcriptional activators and coactivators are highly redundant, 

specific TADs of transcriptional activators either interact with different subunits within 

these coactivator complexes or in different confirmations with a similar coactivator 

subunit.13, 43, 45, 114 For example, while our lab has captured the direct interaction 

between VP16 and the Snf1 kinase of the SNF1 complex with both subdomains, only 

one subdomain interacts with the Gal83 scaffolding subunit.20 Additionally, a study 
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interrogating VP16’s recruitment of the SWI/SNF chromatin remodeling complex 

showed the subdomains work cooperatively to recruit SWI/SNF with VP16N directly 

binding to the Snf5 and Snf6 subunits and VP16C binding to the Snf2 within the 

complex.19 Thus, demonstrating some sequence specificity within the activator TADs 

that are required for individual activator-coactivator interactions. 

To determine whether the Hcm1-SNF1 interactions are protein specific or promoter 

specific, a Hcm1 (1-564) full-length construct has been made. Using the 218 and 272 

incorporation sites, the Hcm1-SNF1 interactions will be examined using in vivo covalent 

chemical capture under nutrient stress. Additionally, to further assess whether these 

activator-SNF1 interactions are dependent on the GAL1 promoter, a variety of different 

DBDs, such as the Gal4 (1-147) or Hcm1 (100-200), could be used to examine the 

similarities and differences in SNF1 recruitment at different promoters. These studies 

could help clarify whether these artificial chimeric activators commonly used for 

interrogating transcriptional PPI networks are capturing activator specific or promoter 

specific interactions in the cell.  

 

2.7 Materials and Methods 
 LS41 [JPY9::pZZ41, Matα his3Δ200 leu2Δ1 trp1Δ63 ura3-52 lys2Δ385 gal4 

URA::pZZ41] yeast was used for all experiments. pBpa was purchased from Chem-

Impex International (Wood Dale, IL). All plasmids described below were constructed 

using standard molecular biology techniques and the sequences of all isolated plasmids 

were validated by sequencing at the University of Michigan Core Facility (Ann Arbor, 

MI). 
	

Table 2.1 Plasmids used in Chapter 2 

Plasmid Name Function 

pLexA-1X Flag Expresses LexA(1-202)+1X Flag 

pLexA+Hcm1(139-511)-

1X Flag 

Expresses LexA(1-202)+Hcm1(139-511)-1X Flag 

pLexA+Hcm1(201-511)-

1X Flag 

Expresses LexA(1-202)+Hcm1(201-511)-1X Flag 
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pLexA+Hcm1(301-511)-

1X Flag 

Expresses LexA(1-202)+Hcm1(301-511)-1X Flag 

pLexA+Hcm1(341-511)-

1X Flag 

Expresses LexA(1-202)+Hcm1(341-511)-1X Flag 

pLexA+Hcm1(380-511)-

1X Flag 

Expresses LexA(1-202)+Hcm1(380-511)-1X Flag 

pLexA+Hcm1(440-511)-

1X Flag 

Expresses LexA(1-202)+Hcm1(440-511)-1X Flag 

pLexA+Hcm1(450-511)-

1X Flag 

Expresses LexA(1-202)+Hcm1(450-511)-1X Flag 

pLexA+Hcm1(301-564)-

1X Flag 

Expresses LexA(1-202)+Hcm1(301-564)-1X Flag 

pLexA+Hcm1(139-300)-

1X Flag 

Expresses LexA(1-202)+Hcm1(139-300)-1X Flag 

pLexA+Hcm1(201-300)-

1X Flag 

Expresses LexA(1-202)+Hcm1(201-300)-1X Flag 

pLexA+Hcm1(301-440)-

1X Flag 

Expresses LexA(1-202)+Hcm1(301-440)-1X Flag 

pLexA+Hcm1(380-440)-

1X Flag 

Expresses LexA(1-202)+Hcm1(380-440)-1X Flag 

pLexA+Hcm1 F201TAG-

1X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+1X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 D208TAG-

1X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+1X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 Y212TAG-

1X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+1X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 F213TAG-

1X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+1X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 T218TAG-

1X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+1X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 
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pLexA+Hcm1 T272TAG-

1X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+1X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 

M286TAG-1X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+1X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 

M289TAG-1X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+1X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 F201TAG-

4X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+4X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 D208TAG-

4X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+4X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 Y212TAG-

4X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+4X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 F213TAG-

4X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+4X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 T218TAG-

4X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+4X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 T272TAG-

4X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+4X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 

M286TAG-4X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+4X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pLexA+Hcm1 

M289TAG-4X Flag 

Expresses LexA(1-202)+Hcm1(201-300)+4X Flag tag with 

a TAG codon replacing the codon of the existing amino acid 

pSNRtRNA-pBpaRS 
Expressed tRNA under the control of the SNR52 promoter 

and contains synthetase specific for pBpa 

pSnf1-6XMyc 
Expresses full-length Snf1+6X c-Myc tag on the C-terminus 

of the protein 

pGal83-6XMyc 
Expresses full-length Gal83+6X c-Myc tag on the C-

terminus of the protein 
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Table 2.2 Primers used in Chapter 2 

Primer 

ID 

Sequence Description 

P1 5’ GGCTGGAATTCCCGGAAGGATCCGTCGACGACT 

ACAAGGACGACGATGACAAGTAACTGCAGCCAAGC

TAATTCCGGG 3’ 

SDM pLexA-Flag 

For 

P2 5’ CCCGGAATTAGCTTGGCTGCAGTTACTTGTCAT 

CGTCGTCCTTGTAGTCGTCGACGGATCCTTCCGGG

AATTCCAGCC 3’ 

SDM pLexA-Flag 

Rev 

P3 5’ GGACACGGATCCATCCACGTTCACTTCCCTTATT 

ACAAGCAG 3’ 

BamH1-Hcm1 

139 For 

P4 5’ GGACACGGATCCTTTGTAAAGGACTCCTTACAA 

GACATTGGG 3’ 

BamH1-Hcm1 

201 For 

P5 5’ GGACACGGATCCGAACCTCCTTATGTCATGAAG 

AAATATC 3’ 

BamH1-Hcm1 

301 For 

P6 5’ GGACACGGATCCAATACACTCCCTATAACTAG 

GCAAAGTCTCC 3’ 

BamH1-Hcm1 

341 For 

P7 5’ GGACACGGATCCAATACACTCCCTATAACTAGC 

GCAAAGTCTCC 3’ 

BamH1-Hcm1 

380 For 

P8 5’ GGACACGGATCCACCCCATCGCGGTTGATAAGC 

ACACCTAAG 3’ 

BamH1-Hcm1 

440 For 

P9 5’ GGACACGGATCCGACGGTAACTCGATTTTGAGG 

AAATGGCAG 3’ 

BamH1-Hcm1 

450 For 

P10 5’ CCGAGCGTCGACATTCGTTGCGCTTGTGAGGA 

CATCGGGTGC 3’ 

Sal1-Hcm1 511 

Rev 

P11 5’ CCGAGCGTCGACCTTTTCATTACCGCTATCGTT 

GGAAGGGTG 3’ 

Sal1-Hcm1 564 

Rev 

P12 5’ CCGAGCGTCGACCAAGGAATCTATATTGTTGA 

CATCGTTTTC 3’ 

Sal1-Hcm1 300 

Rev 

P13 5’ CCGAGCGTCGACGGTTTTCTCTAAGCCATCGG Sal1-Hcm1 440 
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AATGCCTC 3’ Rev 

P14 5’CTGGAATTCCCGGAAGGATCCTAGGTAAAGGACT

CCTTACAAGAC 3’ 

SDM Hcm1 WT 

F201TAG For 

P15 5’ GTCTTGTAAGGAGTCCTTTACCTAGGATCCTT 

CCGGGAATTCCAG 3’ 

SDM Hcm1 WT 

F201TAG Rev 

P16 5’ CCTTTGTAAAGGACTCCTTACAATAGATTGGGA 

AGTATTTTGAAATAG 3’ 

SDM Hcm1 WT 

TAG D208TAG 

For 

P17 5’ CTATTTCAAAATACTTCCCAATCTATTGTAAGG 

AGTCCTTTACAAAGG 3’ 

SDM Hcm1 WT 

D208TAG Rev 

P18 5’ CTCCTTACAAGACATTGGGAAGTAGTTTGAAATA 

GATTCTACACTTG 3’ 

SDM Hcm1 WT 

Y212TAG For 

P19 5’ CAAGTGTAGAATCTATTTCAAACTACTTCCCAA 

TGTCTTGTAAGGAG 3’ 

SDM Hcm1 WT 

Y212TAG Rev 

P20 5’ CTTACAAGACATTGGGAAGTATTAGGAAATAGA 

TTCTACACTTGATG 3’ 

SDM Hcm1 WT 

F213TAG For 

P21 5’ CATCAAGTGTAGAATCTATTTCCTAATACTTCCC 

AATGTCTTGTAAG 3’ 

SDM Hcm1 WT 

F213TAG Rev 

P22 5’ GACATTGGGAAGTATTTTGAAATATAGTCTACA 

CTTGATGAATTAGAAC 3’ 

SDM Hcm1 WT 

T218TAG For 

P23 5’ GTTCTAATTCATCAAGTGTAGACTATATTTCAAA 

ATACTTCCCAATGTC 3’ 

SDM Hcm1 WT 

T218TAG Rev 

P24 5’ CATCACATACCGCAATTGAAATAGGACAACAGT 

GTACTGAACCCTC 3’ 

SDM Hcm1 WT 

T272TAG For 

P25 5’ GAGGGTTCAGTACACTGTTGTCCTATTTCAATT 

GCGGTATGTGATG 3’ 

SDM Hcm1 WT 

T272TAG Rev 

P26 5’ CCTCACGAAAACCTAGAATCGTAGCGGAACAT 

GATAGAAAACGATGTC 3’ 

SDM Hcm1 WT 

M286TAG For 

P27 5’ GACATCGTTTTCTATCATGTTCCGCTACGATTC 

TAGGTTTTCGTGAGG 3’ 

SDM Hcm1 WT 

M286TAG Rev 
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P28 5’ GAAAACCTAGAATCGATGCGGAACTAGATAGAA 

AACGATGTCAACAATATAG 3’  

SDM Hcm1 WT 

M289TAG For 

P29 5’ CTATATTGTTGACATCGTTTTCTATCTAGTTCCGC 

ATCGATTCTAGGTTTTC 3’ 

SDM Hcm1 WT 

M289TAG Rev 

P30 5’ CAATATAGATTCCTTGGTCGACGACTACAAGGAC 

GACGATGACAAGGACTACAAGGACGACGATGAC 3’ 

SDM 1X Flag 

addition For 

P31 5’ GTCATCGTCGTCCTTGTAGTCCTTGTCATCGTC 

GTCCTTGTAGTCGTCGACCAAGGAATCTATATTG 3’ 

SDM 1X Flag 

addition Rev 
	

Construction of plasmids 

1. pLexA-1X Flag 

A high copy plasmid expressing LexA (1-202)-1X Flag tag under the control of the 

ADH1 promoter was derived from pLexA. Using site directed mutagenesis, a Flag 

tag was added at the carboxy terminus of the pLexA plasmid. PCR primers were 

designed to have ~15-20 base pairs of homology on either side of the Flag tag 

sequence. Primers P1 and P2 were used to amplify in the Flag tag sequence using 

the pLexA parent plasmid as the template. The amplified PCR product was digested 

with Dpn1 restriction enzyme to produce the new plasmid.  

 

2. pLexA+Hcm1 TAD-1X Flag mutants 

High copy plasmids containing various Hcm1 minimal TAD sequences fused to the 

LexA DBD under the control of the ADH1 promoter were created from pLexA-1X 

Flag containing BamH1 and Sal1 restriction sites. Primers for each minimal TAD 

construct were used to amplify Hcm1 using LS41 genomic yeast DNA as a template. 

The amplified PCR products were digested with BamH1 and Sal1 restriction 

enzymes and ligated into BamH1 and Sal1 digested pLexA-1X Flag using T4 DNA 

ligase to produce the LexA+Hcm1-1X Flag constructs.  
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3. pLexA+Hcm1 (201-300)-1X Flag TAG mutants (F201TAG, D208TAG, Y212TAG, 

F213TAG, T218TAG, T272TAG, M286TAG, M289TAG)  

Plasmids containing various amber mutations within the Hcm1 minimal TAD were 

derived from the pLexA+Hcm1 (201-300)-1X flag parent plasmid. Using site directed 

mutagenesis, single point mutations were made by replacing an existing amino acid 

in the Hcm1 TAD with the TAG codon. PCR primers were designed to have ~15-20 

base pairs of homology on either side of the TAG mutation. Each set of primers were 

used to amplify the Hcm1 amber mutations using pLexA+Hcm1 (201-300)-1X Flag 

as the template. The amplified PCR product was digested with Dpn1 restriction 

enzyme to product the new mutated plasmid.  

 

4. pLexA+Hcm1 (201-300)-4X Flag 

A high copy plasmid expressing LexA+Hcm1 (201-300)-4X Flag tag under the 

control of the ADH1 promoter was derived from pLexA+Hcm1 (201-300)-1X Flag. 

Using site directed mutagenesis, 3 Flag tags was added at the carboxy terminus of 

the pLexA+Hcm1 (201-300)-1X Flag plasmid. PCR primers were designed to have 

~15-20 base pairs of homology on either side of the Flag tag sequence. Primers P30 

and P31 were used in three sequential PCR reactions to amplify in the three Flag 

tags using the pLexA+Hcm1 (201-300)-1X Flag parent plasmid as the template. The 

amplified PCR product was digested with Dpn1 restriction enzyme to product the 

new plasmid.  

 

5. pLexA+Hcm1 (201-300)-4X Flag TAG mutants (F201TAG, D208TAG, Y212TAG, 

F213TAG, T218TAG, T272TAG, M286TAG, M289TAG)  

Plasmids containing various amber mutations within the Hcm1 minimal TAD were 

derived from the pLexA+Hcm1 (201-300)-4X flag parent plasmid. Using site directed 

mutagenesis, single point mutations were made by replacing an existing amino acid 

in the Hcm1 TAD with the TAG codon. PCR primers were designed to have ~15-20 

base pairs of homology on either side of the TAG mutation. Each set of primers were 

used to amplify the Hcm1 amber mutations using pLexA+Hcm1 (201-300)-4X Flag 
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as the template. The amplified PCR product was digested with Dpn1 restriction 

enzyme to product the new mutated plasmid.  

 

Expression assay of LexA+Hcm1 TAD+1X Flag constructs 

LS41 yeast was transformed with pLexA-1X Flag or one of the pLexA-Hcm1 TAD-1X 

Flag constructs. Individual colonies were grown in 5 mL SC media containing 2% 

raffinose, but lacking histidine and uracil for selection. The cultures were incubated at 

30 °C with 250 rpm agitation.  Following incubation, these cultures were used to 

inoculate 5 mL cultures of SC media containing 2% raffinose and 2% galactose and the 

cultures were incubated at 30 oC with agitation to an OD660 of 1.0. Three ODs were 

isolated, washed with sterile water, and stored at -20 °C. The samples were lysed in 10 

μL 4X NuPAGE LDS Sample loading buffer (Invitrogen), 10 μL 1X lysis buffer (50 mM 

tris-acetate pH 7.9, 100 mM potassium acetate, 20% glycerol, 0.2% Tween-20, 2 mM β-

mercaptoethanol, and 2 mM magnesium acetate), and 10 μL 1 M DTT by boiling at 95 

°C for 10 min. The samples were run on a 3-8% tris-acetate SDS-PAGE gel and 

analyzed by western blot with the anti-Flag (M2) antibody (Sigma Aldrich).  

 

b-Galactosidase assay 

For the LexA+Hcm1 TAD constructs, LS41 yeast was transformed with either pLexA-1X 

Flag or one of the pLexA+Hcm1 TAD-1X Flag plasmids. Individual colonies were grown 

in 5mL SC media containing 2% raffinose, but lacking histidine and uracil for selection. 

The cultures were incubated at 30 °C with 250 rpm agitation. Following incubation, 

these cultures were used to inoculate 5 mL cultures of SC media containing either 2% 

glucose or 2% Raffinose and 2% galactose which were subsequently incubated at 30 °C 

with agitation to an OD660 of 1.0 and harvested. The activity of each construct was 

assessed using b-Galactosidase assay as previously described.25 

 

For the LexA+Hcm1 (201-300)-1X Flag TAG mutant constructs, LS41 yeast was 

transformed with either pLexA-Hcm1 (201-300)-1X Flag or one of the pLexA+Hcm1 

TAG-1X Flag plasmids and the PSNRtRNA-pBpaRS plasmid. Individual colonies were 

grown in 5mL SC media containing 2% raffinose, but lacking histidine, tryptophan, and 
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uracil for selection. The cultures were incubated at 30 °C with 250 rpm agitation. 

Following incubation, these cultures were used to inoculate 5 mL cultures of SC media 

containing either 2% glucose or 2% Raffinose and 2% galactose, with or without 1 mM 

pBpa (dissolved in 1 M NaOH), and 1 M HCl, which were subsequently incubated at 30 

°C with agitation to an OD660 of 1.0 and harvested. The activity of each construct was 

assessed using b-Galactosidase assay as previously described.25  

 

UAA incorporation and expression 

LS41 yeast was transformed with pLexA+Hcm1WT-1X Flag or one of the pLexA+Hcm1 

TAG mutant-1X Flag constructs and pSNRtRNA-pBpaRS plasmids. Individual colonies 

were grown in 5 mL SC media containing 2% raffinose, but lacking histidine, tryptophan, 

and uracil for selection. The cultures were incubated at 30 °C with 250 rpm agitation. 

Following incubation, these cultures were used to inoculate 5 mL cultures of SC media 

containing 2% raffinose and 2% galactose, with or without 1 mM pBpa (dissolved in 1 M 

NaOH), and 1 M HCl. The cultures were incubated at 30 °C with agitation to an OD660 of 

1.0. Three ODs were isolated, washed with sterile water, and stored at -20 °C. The 

samples were lysed in 10 μL 4X NuPAGE LDS Sample loading buffer (Invitrogen), 10 

μL 1X lysis buffer (50 mM tris-acetate pH 7.9, 100 mM potassium acetate, 20% glycerol, 

0.2% Tween-20, 2 mM β-mercaptoethanol, and 2 mM magnesium acetate), and 10 μL 1 

M DTT by boiling at 95 °C for 10 min. The samples were run on a 3-8% tris-acetate 

SDS-PAGE gel and analyzed by western blot with the anti-Flag (M2) antibody (Sigma 

Aldrich).  

 

In vivo photo-crosslinking to capture endogenous Hcm1 binding partners 

For in vivo photo-crosslinking, a colony of one of the LexA+Hcm1 TAG-4X Flag 

constructs was grown in 5 mL SC media containing 2% raffinose, but lacking histidine, 

tryptophan, and uracil for selection. The cultures were incubated at 30 °C with 250 rpm 

agitation. Following incubation, these cultures were used to inoculate 100 mL cultures of 

SC media containing 2% raffinose and 2% galactose, with 1 mM pBpa (dissolved in 1 M 

NaOH), and 1 M HCl. The cultures were incubated at 30 °C with agitation to an OD660 of 

1.0. For each culture, the cells were isolated by centrifugation and washed with the SC 
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media lacking histidine, tryptophan, and uracil. The cell pellets were resuspended in 2 

mL SC media containing 2% raffinose and galactose and then transferred to small 

culture dishes and subjected to UV irradiated at 365 nm light (Eurosolar 15W UV lamp) 

with cooling for 30 minutes. The cells were isolated by centrifugation and stored at -20 

°C until lysis.  The control samples were washed with 1 mL SC media containing 2% 

raffinose and 2% galactose, isolated by centrifugation, and stored at -20 °C until lysis.  

 

For lysis, cells were resuspended in 600 μL lysis buffer (50 mM HEPES – KOH pH 7.5, 

140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-Deoxycholate and 2X Complete 

Mini, EDTA Free Protease Inhibitor (Roche)) and lysed using glass beads by vortexing 

at 4 °C. Subsequently, the lysate was pelleted and the supernatant immunoprecipitated 

with anti-LexA antibody (sc-1725, Santa Cruz Biotechnologies) for 2 hours at 4 °C. The 

proteins bound to the antibody were isolated by incubation for 1 hour with 40 μL pre-

washed protein G Magnetic Dyna beads (Life Technologies) at 4 °C. After incubation, 

the beads were washed six times with 1 mL Wash Buffer (10 mM Tris-HCl pH 8.0, 250 

mM LiCl, 0.5% NP-40, 0.1% Na-Deoxycholate, and 1 mM EDTA) and stored at -20 °C 

until elution. The samples were eluted from the beads by heating at 95 °C for 10 

minutes in 10 μL NuPAGE 4X LDS Sample Loading Buffer (Invitrogen), 10 μL water, 

and 10 μL 1M DTT. The samples were run on a 3-8% tris-acetate SDS-PAGE gel and 

analyzed by western blot using anti-Flag (M2) antibody (Sigma Aldrich).  

 

In vivo photo-crosslinking to Snf1 and Gal83 

For in vivo photo-crosslinking with Snf1- and Gal83-6xMyc, a colony of either 

LexA+Hcm1 T218Bpa-4X Flag: Snf1/Gal83-6xMyc or LexA+Hcm1 T272Bpa-4X Flag: 

Snf1/Gal83-6xMyc constructs was grown in 5 mL SC media containing 2% raffinose, but 

lacking histidine, leucine, tryptophan, and uracil for selection. The cultures were 

incubated at 30 °C with 250 rpm agitation. Following incubation, these cultures were 

used to inoculate 100 mL cultures of SC media containing 2% raffinose and 2% 

galactose, with 1 mM pBpa (dissolved in 1 M NaOH), and 1 M HCl. The cultures were 

incubated at 30 °C with agitation to an OD660 of 1.0. For each culture, the cells were 

isolated by centrifugation and washed with the SC media lacking histidine, tryptophan, 
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and uracil. The cell pellets were resuspended in 2 mL SC media containing 2% raffinose 

and 2% galactose and then transferred to small culture dishes and subjected to UV 

irradiated at 365nm light (Eurosolar 15W UV lamp) with cooling for 30 minutes. The 

cells were isolated by centrifugation and stored at -20 °C until lysis.  The control 

samples were washed with 1 mL SC media containing 2% raffinose and 2% galactose, 

isolated by centrifugation, and stored at -20 °C until lysis. For crosslinking studies with 

endogenous Snf1, the procedure was identical except that cells were grown in SC 

media lacking histidine, tryptophan, and uracil.  

 

For lysis, cells were resuspended in 600 μL lysis buffer (50 mM HEPES – KOH pH 7.5, 

140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-Deoxycholate and 2X Complete 

Mini, EDTA Free Protease Inhibitor (Roche)) and lysed using glass beads by vortexing 

at 4 °C. Subsequently, the lysate was pelleted and the supernatant immunoprecipitated 

with anti-LexA antibody (sc-1725, Santa Cruz Biotechnologies) for the Myc-tagged 

constructs or anti-Snf1 (sc-15621, Santa Cruz Biotechnologies) for endogenous Snf1 for 

2 hours at 4 °C. The proteins bound to the antibody were isolated by incubation for 1 

hour with 40 μL pre-washed protein G magnetic Dyna beads (Life Technologies) at 4 

°C. After incubation, the beads were washed six times with 1 mL Wash Buffer (10 mM 

Tris-HCl pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.1% Na-Deoxycholate, and 1 mM EDTA) 

and stored at -20 °C until elution. The samples were eluted from the beads by heating at 

95 °C for 10 minutes in 10 μL NuPAGE 4X LDS Sample Loading Buffer (Invitrogen), 10 

μL water, and 10 μL 1M DTT. The samples were run on a 3-8% tris-acetate SDS-PAGE 

gel and analyzed by western blot using either anti-cMyc antibody (sc-40, Santa Cruz 

Biotechnologies) for the Myc-tagged proteins or anti-Flag (M2) antibody (Sigma Aldrich) 

for endogenous Snf1 experiments.  
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CHAPTER 31 
Effects of sequence context and electron-withdrawing groups on pBpa reactivity 

 
3.1 Introduction 
Protein-protein interactions (PPIs) between transcriptional activators and coactivators 

are necessary for the initiation of gene expression, and misregulation of these 

interactions has been implicated in an array of human diseases.1-5 Therefore, there is 

great interest in identifying methods to capture and characterize these interactions. 

However, PPIs which regulate transcription often are transient in nature and typically 

have moderate to weak affinities which makes them difficult to study by traditional 

biochemical techniques.6-11 Historically, photo-crosslinkers, especially benzophenone, 

have been used to covalently capture and characterize known PPIs of protein 

complexes that bind with moderate to high affinity and have small defined binding 

interfaces.12-21 Recently, with the advancement of amber nonsense suppression, photo-

labile unnatural amino acids (UAAs), such as the benzophenone derivative p-benzoyl-L-

phenylalanine (pBpa), have been incorporated into proteins of interest and used to 

capture the more transient PPIs in their native cellular environment.22-39 For example, 

Hahn and coworkers have used pBpa to map the transcriptional interactions between 

the TATA-binding protein (TBP) and several coactivator complexes in vitro and in vivo, 

including the SAGA chromatin modifying complex and the TFIIA general transcription 

factor.40 Additionally, our lab has previously captured the interaction between TBP and 

                                            
1 Portions of this chapter are from the following publication: Lancia, J. K.; Nwokoye, A.; Dugan, A.; 
Joiner, C.; Pricer, R.; Mapp A. K. Biopolymers 2013, 101(4): 391-397 
 
The individual contributions to the data presented in this chapter is as follows: Cassandra Joiner and Dr. 
Amanda Dugan designed and created the LexA+Gal4 856TAG alanine mutants, and along with Dr. 
Rachel Pricer, tested the incorporation, activity, and crosslinking of pBpa and pAzpa mutants. Dr. Meghan 
E. Breen synthesized the mono-substituted electron-withdrawing pBpa analogs. Cassandra Joiner 
designed and synthesized the biotinylated-VP16 peptides and tested the incorporation and the in vitro 
and in vivo crosslinking of the pBpa analogs. 
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the Gal4 and VP16 transcriptional activators in Saccharomyces cerevisiae using 

pBpa.41  

Nevertheless, the successful application of covalent chemical capture remains highly 

dependent on the affinity and lifetime of the protein complex of interest, the environment 

of the PPI interface, and the reactivity preference of the photo-crosslinker. With every 

crosslinking experiment, there are several considerations to be made to insure the 

effective capture of a specific PPI. These include the reaction mechanism of the photo-

crosslinker, the sequence environment surrounding the incorporation site, and the 

solvent exposure at the PPI interface. Currently, the benzophenone scaffold is widely 

used in the field for covalent capture of in vivo PPIs because of its stability and minimal 

reactivity with water.42 However, the benzophenone crosslinking group is the least 

reactive and requires more irradiation time to capture certain interactions.32 43 In the first 

half of this chapter, we examine the effects by which the sequence environment of the 

Gal4 transcriptional activation domain (TAD) and the crosslinking mechanism of the 

photo-crosslinker have on the capture of the Gal4-Gal80 interaction. In the second half 

of the chapter, we report a suite of pBpa analogs containing electron-withdrawing 

substituents within the benzophenone scaffold that are hypothesized to have enhanced 

reactivity. Additionally, conditions for the incorporation and characterization of this suite 

of mono-substituted pBpa analogs were developed and implemented to fully 

characterize the change in crosslinking reactivity and yield seen in both in vitro and in 

vivo covalent chemical capture experiments.  

 

3.2 Sequence context and crosslinking mechanism are crucial to 
crosslinking success 
While our lab and others have successfully used in vivo covalent chemical capture to 

characterize cellular PPIs, there are considerations that need to made for each photo-

crosslinker being used in a specific system, such as the sequence context in which the 

crosslinker is being incorporated.28-29, 41, 44 
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Figure 3.1 In vivo incorporation and crosslinking of LexA+Gal4 TAG mutants A.) A plasmid encoding the 
bacterial LexA DNA binding domain fused to the Gal4 (840-880) transcriptional activation domain (TAD) 
and a flag tag for detection. Position at which pBpa mutagenesis was carried out are indicated in red. B.) 
In vivo incorporation of pBpa into LexA+Gal4 TAD in live yeast using the pBpa-specific E. coli tyrosyl 
tRNA/tRNA synthetase pair in the presence or absence of 2 mM pBpa. C.) In vivo crosslinking of 
LexA+Gal4 pBpa incorporated protein in live yeast. Yeast expressing LexA+Gal4 mutants in media 
containing 2 mM pBpa were irradiated at 365 nm UV light, lysed, immunoprecipitated with a-LexA, and 
analyzed by western blot probing for the Flag-tagged activator. The loss of pBpa crosslinking at position 
856 is indicated in the red box. Adapted with permission from 29. Copyright 2009 American Chemical 
Society.  
 

For example, in one study where the benzophenone crosslinker was used to interrogate 

the endogenous interactions of the prototypical Gal4 transcriptional activator and the 

interaction with its masking protein Gal80 was not captured despite ample evidence that 
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it was in effect.29 Under normal glucose levels, the Gal80 protein binds to Gal4’s TAD, 

inhibiting its activity. In this study pBpa was incorporated in several positions across the 

TAD of Gal4 to examine the expression and crosslinking profile at each position in live 

yeast (Figure 3.1). When pBpa was incorporated at position F856, there was a 

reduction in total crosslinking and the Gal4-Gal80 product around 80 kDa was not 

observed (Figure 3.1C, red box). However, the Gal4 F856pBpa mutant was fully 

expressed and remained repressed by Gal80 under normal glucose conditions 

indicating that the functional complex formed but was unable to be successfully 

captured by pBpa (Figure 3.1B). Thus, it was clear that there was some additional factor 

preventing effective Gal4-Gal80 crosslinking. 

 

3.2.1 The Gal4-Gal80 interaction 

Gal4 regulates genes responsible for galactose catabolism under conditions of 

limited glucose availability, subsequently acting as a nutrient sensor.41, 44-48 This 

activator is highly regulated by its masking protein, Gal80, which binds to Gal4’s TAD at 

low picomolar binding constant under normal glucose environmental conditions. When 

glucose is limited and galactose is present there is a conformational change at the 

binding interface which releases Gal4’s TAD to recruit coactivator complexes and the 

transcriptional machinery to the DNA promoter to activate the expression of glucose-

repressed genes (Figure 3.2). The Gal4-Gal80 interaction has been comprehensively 

studied, and several structural and functional studies have mapped the key residues 

responsible for this interaction.49-52 Position 856 has been shown to be a key residue 

required for the direct interaction between Gal4 and Gal80, and point mutations at this 

position have been shown to be significantly less sensitive to Gal80’s inhibition and 

drastically inhibit the binding of this complex.48 Therefore, this position was 

hypothesized to be a strong site for covalent chemical capture. However, when pBpa 

was incorporated at position 856 within the Gal4 TAD, the interaction between Gal4 and 

its masking protein Gal80 was not captured.  
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Figure 3.2 Prototypical Gal4 transcriptional model system. Under normal glucose conditions, Gal80 binds 
to the Gal4 TAD and inhibits GAL1 transcription. However, under glucose limiting conditions and in the 
presence of galactose, Gal80 changes confirmation releasing Gal4’s TAD to recruit the pre-initiation 
complex (PIC), including RNA Polymerase II, to the GAL1 promoter through a variety of  transient PPIs 
needed to activate transcription. 
 

3.2.2 Different crosslinking mechanisms between pBpa and pAzpa 

Several lines of evidence indicate that benzophenones react preferentially with 

methionines over the other nineteen amino acids.42, 53-58   After further examination of 

the F856 incorporation site, it was noticed that there were two methionines nearby at 

position 855 and 861. Based on the crosslinking mechanism of pBpa, we hypothesized 

that these nearby methionines (M855 and M861) within the Gal4 TAD could interfere 

with the crosslinking reactivity of pBpa for Gal80. Upon irradiation with 365 nm light, the 

benzophenone core in pBpa forms a diradical that reacts with activated C-H bonds via 

initial H• abstraction by an oxygen diradical and subsequent recombination to yield a 

carbon-carbon bond between pBpa and either the backbone or side chains of nearby 

amino acids (Figure 3.3A). When there are no binding partners nearby, then the 

activated pBpa molecule relaxes back to the ground state and is available for 

subsequent reactivation.32, 53 The C-H bonds adjacent to the methionine thioester are 

particularly reactive towards the pBpa diradical, likely because of the stabilizing 

influence of the sulfur on the initial radiation following C-H abstraction. It has been 

experimentally observed that pBpa’s crosslinking efficiency and reactivity constraints 

can be drastically altered by the proximity of methionines. Previous studies have shown 

that pBpa can react with methionines beyond its usual distance limit of 3.1 A.54-55, 59 In a 

recent report, when individual methionines were placed at unique sites within a PPI 

interface, pBpa was preferentially drawn to the inserted methionine, shifting the site of 
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crosslinking. This has been termed the “Methionine-magnet effect”.54 Therefore, due to 

the two methionines in close proximity to the pBpa incorporation site, we hypothesized 

that these methionines were “quenching” the reactivity of the pBpa molecule. Thus, 

causing the neighboring methionine residues within the Gal4 TAD to out-compete the 

residues within the Gal4 binding site on the Gal80 protein. To test this hypothesis, we 

sought to examine pBpa’s ability to capture Gal80 when both the M855 and M861 

residues where mutated to alanine.  

To complement the pBpa crosslinking results in this study we used the p-azido-L-

phenylalanine (pAzpa) UAA, which was also site-specifically incorporated into the Gal4 

TAD at position 856. Like pBpa, aryl-azides are reactive to C-H and heteroatom-H 

bonds, but the amino acid reactivity is less defined due to the more complicated 

reaction mechanism. Upon irradiation with 254 nm light, the aryl-azide loses a 

dinitrogen group forming a nitrene which reacts with neighboring C-H and heteroatom-H 

bonds to form a new covalent adduct. However, if there are no X-H atoms available 

within 10-4 seconds of activation, the nitrene will convert to the more stable ketenimine, 

which only reacts with nucleophiles, including the surrounding solvent (Figure 3.3B). 

This subsequently reduces the crosslinking yield and increases nonspecific crosslinking 

reactions.32, 60 Although the differences in crosslinking mechanisms between the two 

crosslinkers have been known, a direct comparison of the effects of the different 

reactivities on crosslinking success has yet to be demonstrated. We further compared 

the effects of these mechanisms on the ability of the crosslinkers to capture the Gal4-

Gal80 interaction when incorporated at position 856 within the Gal4 TAD. Additionally, 

there have been no reports of amino acid preference for the pAzpa crosslinker 

compared to “Methionine-magnet effect” seen with pBpa, making it a strong control for 

the alanine replacement experiments. 

 

3.2.3 LexA+Gal4 856UAA alanine mutants show little impact on protein function 

To examine the possibility of M855 and M861 acting as “methionine magnets” and 

artificially quenching pBpa at the Gal4-Gal80 interface, we made methionine to alanine 

point mutations at both positions using site-directed mutagenesis and examined the 

expression levels and transcriptional activity of each mutation. When pBpa was present 
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each mutant had expression levels similar to the wild-type protein.  Additionally, each 

mutant was properly inhibited by Gal80 under normal glucose levels with only mild 

deficiencies seen in activated transcription of GAL1 under galactose conditions for the 

M861A and M855A/M861A constructs (Figure 3.4A and B). Similarly to pBpa, the 

expression and activity for each mutant when pAzpa was present were minimally 

perturbed (Figure 3.4C and D).  

 
Figure 3.3 Photo-crosslinking reaction mechanisms of A.) p-benzoyl-L-phenylalanine (pBpa) and B.) p-
azido-L-phenylalanine (pAzpa) 
 

3.2.4 Site of incorporation and crosslinking mechanism are key to successful covalent 

capture 

To determine if pBpa’s reactivity preference for methionines was the cause of the 

loss of Gal4-Gal80 covalent capture, we first examined the effect of each alanine 

mutation on pBpa’s crosslinking ability. In these experiments, live yeast expressing 

LexA+Gal4 856Bpa WT or one of the three alanine mutants and Myc-tagged Gal80 

were grown in glucose and irradiated at 365 nm to capture the Gal4-Gal80 interaction. 

Upon lysis and western blot analysis probing for the Myc-tagged Gal80-Gal4 interaction, 
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the crosslinked product was only captured when one or both methionines were mutated 

to an alanine (Figure 3.5A). 

 

 
Figure 3.4 The effects of alanine mutants on the expression and activity of LexA+Gal4 F856Bpa and 
LexA+Gal4 F856Azpa. A.) Expression of LexA+Gal4 F856Bpa analyzed by western blot with a-Flag. B.) 
The activation potential of each mutant in LexA+Gal4 F856Bpa was measured by liquid b-galactosidase 
assay. In the yeast strain tested, b-galactosidase expression was controlled by a GAL1 promoter 
containing two LexA binding sites for LexA+Gal4 binding. C.) Expression of LexA+Gal4 F856Azpa 
analyzed by western blot with a-Flag. D.) b-galactosidase assessment of activation potential for each 
mutant in LexA+Gal4 F856Azpa. Adapted with permission from 61. Copyright 2014 John Wiley and Sons. 
 

As seen in the western blot, less quenching of pBpa was observed when position 855 is 

mutated to an alanine due to being located directly next to the incorporation site. This 

demonstrates that the intramolecular interaction between the methionine and pBpa out 

competes the intermolecular interaction between pBpa and the binding interface of 
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Gal80. Therefore, careful consideration of UAA incorporation site within a protein of 

interest is key to the successful application of the covalent chemical capture strategy.   

 
Figure 3.5 The effects of alanine mutants on the crosslinking of LexA+Gal4 F856Bpa and LexA+Gal4 
F856Azpa. A.) Crosslinking of LexA+Gal4 F856Bpa to Myc-tagged Gal80 as shown by western blot of cell 
lysates with a-cMyc antibody. B.) Crosslinking of LexA+Gal4 F856Azpa to Myc-tagged Gal80 as shown 
by western blot of cell lysates with a-cMyc antibody. 
 

To compliment the experiments above and further explain why a negative 

crosslinking result was seen when pBpa was incorporated at position 856, we used the 

pAzpa crosslinker, which has a different crosslinking mechanism from pBpa, to capture 

the Gal4-Gal80 interaction. Using identical conditions, live yeast expressing LexA+Gal4 

856pAzpa WT or one of the three alanine mutants and Myc-tagged Gal80 were grown 

in glucose and irradiated. Upon lysis and western blot analysis, each one of the 

constructs captured the Myc-tagged Gal80-Gal4 interaction without incident (Figure 

3.5B). As expected, introduction of an alanine at positions 855 and 861 yielded no 

changes in pAzpa crosslinking, consistent with the reactivity profile of this amino acid. 

These data illustrate that differences in crosslinking mechanism also plays a critical role 

in the outcome of covalent chemical capture experiments. In other words, relevant 

binding partners could be missed in an unbiased study due to the presence of 

methionines in the UAA-containing protein or absence of methionines in potential 

binding partners. Therefore, it is critical to carry out crosslinking experiment with more 

than one UAA mutant and more than one UAA to avoid false positives and/or negatives, 

such as the one discussed above. As illustrated here, a small change in position and 

crosslinker can have a dramatic effect on successful covalent capture.  
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3.3 Photo-activatable unnatural amino acids with enhanced reactivity 
While sequence context of the PPI interface is important for the success of a 

crosslinking experiment, the success of covalent chemical capture of an in vivo PPI also 

depends on the innate reactivity of the crosslinker. For example, pBpa reacts through a 

di-radical mechanism that allows the excited molecule to relax to the ground state and 

be reactivated if no protein is captured, but this slow reactivity can limit the amount of 

transient interactions pBpa can capture during a set period of time. Additionally, while 

pAzpa has a faster crosslinking reactivity than pBpa, once the molecule is activated if 

no protein is captured, the nitrene will convert to the more stable ketenimine, reducing 

its crosslinking reactivity to nucleophiles and the surrounding solvent, ultimately 

increasing nonspecific  crosslinking reactions. 32, 53 Our lab has previously used pBpa to 

characterize the low affinity interaction between the Mediator subunit, Med15, and the 

transcriptional activator, Gcn4, in vitro.62-63 However, when this study was transitioned to 

cells this interaction could not be observed under any conditions examined, pointing to a 

critical limitation of pBpa’s reactivity. Therefore, we sought to improve the reaction rates 

of the benzophenone scaffold. Upon irradiation, the unbound n electrons belonging to 

the carbonyl oxygen are excited to the p* orbital, leading to the n-p* transition.  Several 

studies have looked at the effects substituents had on the reactivity of the 

benzophenone scaffold.42, 64-65 While electron withdrawing groups (EWGs) appended 

around the benzophenone rings increases the energy of the occupied n orbital (HOMO) 

and decreases the energy of the unoccupied p* optimal (LUMO) of the carbonyl oxygen, 

decreasing the transition gap for the oxygen electrons and increasing the reactivity for 

H-abstraction, electron donating groups (EDGs) do the opposite.66 Accordingly, we 

hypothesized that a suite of mono-substituted pBpa analogs containing electron 

withdrawing substituents (F, Cl, Br, and CF3) at positions around the benzophenone 

scaffold would increase the efficiency of H-abstraction, leading to increased reactivity 

and crosslinking yields. This increase in reactivity would be advantageous in studying 

the transient PPIs that might be missed by the parent pBpa molecule during the allotted 

experimental time, such as the Gcn4-Med15 interaction discussed above. Dr. Meghan 

Breen, a post-doctoral fellow in the Mapp Lab, has synthesized seven mono-substituted 

pBpa analogs that contain EWGs (Cl, F, Br, and CF3) at either the meta or para 
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positions of the benzophenone ring through an air-tolerant carbonylative Suzuki-

Miyaura coupling with mono-substituted boronic acids and 4-iodo-L-phenylalanine 

(Figure 3.6).67 

 

 
Figure 3.6 Suite of electron withdrawing group (EWG)-containing pBpa analogs 

 

3.3.1 Incorporation of pBpa analogs into live yeast using amber nonsense suppression 

With the synthesized analogs in hand, we sought to incorporate them into the model 

Gal4 activator using amber nonsense suppression and test their crosslinking activity. 

Recently, it has been shown that bioorthogonal tRNA synthetases developed for 

specific UAAs can incorporate analogs of the cognate UAA without any further 

mutagenesis to the active site.68-72 Using the Escherichia coli tyrosyl tRNA/tRNA 

synthetase system (tRNATyr
CUA-TyrRS), I have identified conditions to test the 

incorporation of each of the analogs into the Gal4 TAD at position 849 in live yeast. This 

position has been well characterized for UAA incorporation and was used for further 

characterization of these pBpa analogs. As shown in Figure 3.7, five of the seven 

analogs were incorporated into LexA+Gal4 at position 849 without any alterations to the 

synthetase (3-F Bpa, 4-F Bpa, 4-Cl Bpa, 4-CF3 Bpa, and 4-Br Bpa).  

After examination of the crystal structure of the E. coli tyrosyl tRNA synthetase, 

larger EWG groups, such as Cl and CF3, at the meta position would interfere with the 

backbone of the active site residues and not allow proper docking of the benzophenone 

core within the synthetase active site. Thus, abolishing synthetase charging of the pBpa 
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specific tRNA and ultimately inhibiting incorporation of these analogs into the Gal4 TAD 

by the bioorthogonal tRNA.73 This observation explains why the levels of 3-Cl Bpa 

incorporation is approximately 50% of pBpa’s and why the 3-CF3 Bpa analog completely 

failed to be incorporated. Due to the failure of the synthetase to incorporate the 3-CF3 

Bpa analog, we did not synthesize the 3-Br Bpa analog, which has a similar van der 

Waals radius. While the crosslinking reactivity of the seven pBpa analogs will be 

characterized in vitro, only the five that were successfully incorporated into the Gal4 

TAD will be further characterized in vivo for their ability to increase crosslinking yields of 

Gal4’s endogenous binding partners. 

 
Figure 3.7 In vivo incorporation of EWG-containing pBpa analogs into LexA+Gal4 849TAG using the 
pBpa specific E. coli tyrosyl tRNA/tRNA synthetase pair. A.) Incorporation of 3-F and 4-F Bpa into 
LexA+Gal4 849TAG in the presence or absence of 1 mM UAA. B.) Incorporation of 3-Cl and 4-Cl Bpa into 
LexA+Gal4 849TAG in the presence or absence of 1 mM UAA. C.) Incorporation of 3-CF3 and 4-CF3 Bpa 
into LexA+Gal4 849TAG in the presence or absence of 1 mM UAA. D.) Incorporation of 4-Br Bpa into 
LexA+Gal4 849TAG in the presence or absence of 1 mM UAA. 
 

3.3.2 VP16-Med25 model system  

First, we examined each analogs ability to increase crosslinking yields in an in vitro 

setting. For these experiments, the model interaction between the well characterized 

VP16 activator and the activator interacting domain (AcID, residues 394-543) of the 
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Med25 coactivator subunit was used. The VP16 transcriptional activator is responsible 

for the activation of early viral genes during infection, however, its amphipathic TAD 

(residues 413-490) has been extensively used as a model to examine transcriptional 

activation.74-85 VP16 participates in several PPIs between coactivator complexes, such 

as the Mediator complex, through its TAD.14, 86-97 The multi-subunit Mediator complex 

has been reported to be a critical bridge between transcriptional activators and the pre-

initiation complex (PIC) during transcriptional initiation. 98-103 Through its Med25 AcID 

domain, the Mediator complex interacts with several transcriptional activators including 

VP16.95, 104-105 Both the Cramer and Wagner groups reported NMR structures of this 

interaction between Med25 AcID and the VP16 N- and C-terminal TADs.106-107 

 

3.3.3 EWGs increase crosslinking yield of the pBpa scaffold in vitro 

It has been shown previously that a minimal peptide sequence of eight key residues 

(DFDLDMLG) within the amino terminal half of VP16 is sufficient for transcriptional 

activation and participation in interactions with transcriptional coactivator subunits, 

including Med25.62, 108-110 Using this minimal TAD, N-terminally biotinylated VP16 

peptides were made with position F442 mutated to either pBpa or one of the pBpa 

analogs in Figure 3.6. Their binding affinities to Med25 were measured using an 

enzyme-linked immunosorbent assay (ELISA) (Figure 3.8). Position F442 has been 

shown to be critical for the VP16-Med25 interaction and VP16 transcriptional activation. 

Thus, larger phenylalanine derivatives still allow binding. However, the bulk added to 

each derivative would protrude into the binding interface minimally weakening the 

interaction as seen in our binding assays with the EWG containing pBpa analogs.94, 107  

Once the binding affinities of each biotinylated VP16 analogs to Med25 AcID were 

examined, a quantitative in vitro plate assay was developed to measure the crosslinking 

yields of each analog. For each experiment, the VP16 analogs were incubated on 

Med25 coated plates and irradiated with 365 nm UV light to capture the Med25-VP16 

interaction. Following incubation with streptavidin-HRP and tetramethylbenzidine (TMB) 

substrate, the plates were read at 450 nm and the values of crosslinked and non-

crosslinked samples were subtracted to give a crosslinking yield (Figure 3.9A).  
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Figure 3.8 In vitro Med25-VP16 (441-448) F442UAA binding curves. Med25-coated polystyrene plates 
are incubated with biotinylated VP16 (441-448) with pBpa or one of the EWG-containing pBpa analogs at 
position F442 for 2 hours. The plates are incubated with streptavidin-HRP and reacted with TMB 
substrate to give a visible read-out that can be read at 450 nm absorbance. The binding constants were 
calculated using the following equation: 𝒀 = 𝑩𝒎𝒂𝒙	×	𝑿

𝑲𝒅,𝑿
+ 𝑵𝑺×𝑿 + 𝑩𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅  

 

As discussed above, EWGs decrease the excitation energy gap for the n-p* 
transition of the carbonyl oxygen’s electrons, making the benzophenone core more 

reactive and ultimately increasing the crosslinking yield of the molecule. We 

hypothesized that this suite of EWG-containing pBpa analogs would increase the 

capture and crosslinking yield of the Med25-VP16 interaction. As seen in Figure 3.9B 

and C, there is approximately a three-fold increase in crosslinking yield of the Med25 
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AcID-VP16 interaction for each of the EWG-containing pBpa analogs compared to 

pBpa. These results support the predicted effect of appending EWGs onto the pBpa 

framework; through decreasing the energy needed for excitation of the oxygen radical, 

crosslinking efficacy increased for each analog versus the unaltered pBpa. 

 
Figure 3.9 Med25-VP16 F442UAA in vitro crosslinking. A.) In vitro crosslinking experimental scheme. 
Med25-coated polystyrene plates are incubated with biotinylated VP16 (441-448) with pBpa or one of the 
EWG-containing pBpa analogs at position F442 for 30 minutes, following irradiation with 365 nm UV light 
for 10 minutes on ice to capture the Med25-VP16 interaction. The plates are incubated with streptavidin-
HRP and reacted with TMB substrate to give a visible read-out that can be read at 450 nm absorbance. 
B.) Med25-VP16 F442UAA in vitro crosslinking yields. The crosslinking yield of each EWG-containing 
analog was calculated by subtracting the absorbance’s from the irradiated (+UV) and non-irradiated (-UV) 
plates to yield a crosslinking yield. C.) Med25-VP16 F442UAA in vitro crosslinking yield fold changes 
compared to the parent pBpa molecule. All EWG-containing pBpa analogs have approximately 3 fold 
increase in crosslinking yield of the Med25-VP16 interaction. 
 

3.3.4 EWG Bpa analogs capture the Gal4-Gal80 interaction in live yeast 

While the in vitro crosslinking data showed a statistically significant increase for each 

analog using the simplified VP16-Med25 system, we sought to determine the effects of 

the EWG substituents on the crosslinking when incorporated into the Gal4 activator in 

live yeast cells.  For these experiments, live yeast expressing LexA+Gal4 849TAG: 

Myc-Gal80 with either pBpa or one of the five EWG analogs (3-F Bpa, 4-F Bpa, 4-Cl 

Bpa, 4-CF3 Bpa, and 4-Br Bpa) were grown in glucose and irradiated to capture all of 
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Gal4’s binding partners. Upon lysis, the samples were immunoprecipitated for the LexA 

DNA binding domain to isolate all LexA+Gal4 protein interactions and analyzed by 

western blot. To fully characterize the crosslinking abilities of the UAAs, I developed a 

duplex western blotting methods such that both the binding profile of Gal4 and its direct 

interaction with Gal80 could be seen on the same western blot (Figure 3.10). Briefly, the 

membrane containing the crosslinked samples is simultaneously probed with a Flag-

specific antibody for the LexA+Gal4-5x Flag specific interactions and a Myc-specific 

antibody for the Gal80-6x Myc specific interactions. Near-IR secondary antibodies are 

conjugated to their respective primary antibody for visualization and quantification of 

each analogs crosslinking yield. 

As seen in Figure 3.10, the protein bands in red are free LexA+Gal4-5X Flag and its 

endogenous binding partners, while the protein bands in green are free Gal80-6X myc 

and its interaction with Gal4.  In this duplex western blot, each of the five EWG-

containing pBpa analogs capture Gal4’s endogenous binding partners (red) in live 

yeast. While the expression levels of LexA+Gal4 are varied between the different 

analogs, each analog captured the Gal4-Gal80 interaction in yellow. The decrease in 

activator expression levels containing 3-F Bpa and 4-CF3 Bpa could be due to low 

incorporation of the UAAs into the Gal4 TAD, although each UAA used in these 

experiments previously demonstrated similar expression levels to pBpa in Figure 3.7. 

While no conclusions can be made without further optimization, this preliminary blot 

shows that the 4-F Bpa analog has a visible increase in crosslinking yields compared to 

the parent pBpa molecule for both the Gal4-Gal80 interaction and the other Gal4 

crosslinked adducts. These initial findings support our guiding hypothesis that adding 

electron-withdrawing substituents would increase the reactivity of the benzophenone 

scaffold, subsequently increasing the crosslinking yields. While this experiment requires 

further optimization to ensure that the variation in Gal4 expression levels is not due to 

incorporation issue and to further validate these analogs, the initial data shows the 4-F 

Bpa analog as a strong candidate for further analysis of weaker binding interactions that 

might have eluted the parent pBpa molecule, such as the Gcn5-Med15 interaction.  
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Figure 3.10 LexA+Gal4 849UAA in vivo crosslinking. Live yeast cells expressing UAA-containing 
LexA+Gal4-5X Flag and Gal80-6x Myc are irradiation, lysed and immunoprecipitated with a-LexA to 
isolate all LexA+Gal4 binding partners. The samples were run on a SDS-PAGE gel and analyzed by 
western blot simultaneously probing with a Flag-specific antibody for the LexA+Gal4-5x Flag interactions 
and a Myc-specific antibody for the Gal80-6x Myc interactions. The 680nm (red) and 800nm (green) near-
IR fluorescent secondary antibodies were conjugated to the Flag- and Myc-specific antibodies for 
visualization, respectively. The membrane was visualized using the c600 Azure imager to give the duplex 
image. Each Bpa analog captured Gal4’s endogenous partners (red), including the Gal4-Gal80 interaction 
(yellow). 
 

3.4 Conclusions and Future Directions 
In vivo covalent chemical capture using the photo-activatable UAA pBpa is a powerful 

technique for capturing well characterized transient in vivo PPIs. However, the present 

and future applications of in vivo covalent chemical capture are to discover previously 

unknown PPIs. The results in the first half of this chapter illustrate that not only is 

optimization of UAA incorporation a key factor in successful application of the covalent 

chemical capture strategy, but careful consideration of the innate reactivity of the 

chosen UAA utilize is also critical. While the longer lifetime and lower reactivity toward 

solvent makes pBpa an attractive choice for the study of PPIs that occur through 

shallow, exposed binding sites, seen between activators and coactivators, the marked 

preference of pBpa for methionines raises some concerns that crosslinking results could 

be influenced by the presence of methionine in the UAA-containing protein, as shown in 

the data above, or by a lack of methionines in potential binding partners.111 This 



 92 

methionine magnet effect could cause relevant binding partners to be missed in an 

unbiased study due to either of these factors. To avoid false negatives, it is critical to 

carry out crosslinking with more than a single UAA mutant and/or with more than one 

UAA, as seen is the data in the first half of this chapter. In the case of Gal4-Gal80, a 

small change in position and crosslinking mechanism can have a dramatic effect on 

crosslinking.  

Although pBpa has a marked preference for methionines, its stability and minimal 

reactivity to solvent makes it a strong tool for the covalent capture of transient in vivo 

PPIs. However, its crosslinking reactivity is rather slow compared to the aryl azides and 

diazarines used in the field. To overcome this limitation, it has been hypothesized that 

substituting EWGs around the benzophenone scaffold would increase the reactivity of 

the oxygen radical of the activated molecule and increase crosslinking yields. In the 

second half of this chapter, we developed a suite of EWG-containing pBpa analogs that 

support the predicted effect. Through decreasing the energy needed for excitation of the 

oxygen radical, crosslinking efficacy increased approximately three-fold for each analog 

versus the unaltered pBpa when capturing the in vitro interaction between VP16 and 

Med25. Additionally, I have identified conditions for the incorporation of all seven of the 

Bpa analogs into the yeast Gal4 TAD using amber nonsense suppression. Upon 

incorporation, I found that five out of seven analogs were incorporated into the Gal4 

TAD without requiring alterations to the tRNA synthetase, demonstrating the first 

reported incorporation of 3-F Bpa, 4-Cl Bpa, 4-CF3 Bpa, and 4-Br Bpa into live cells. 

Furthermore, upon irradiation of live yeast cells expressing UAA-containing LexA+Gal4, 

each of the five incorporated analogs captured Gal4’s endogenous binding partners, 

including its masking protein Gal80, with 4-F Bpa illustrating a marked increase in 

crosslinking yield of the Gal4 crosslinked adducts. These finding further support the 

predicted effect of appending EWGs onto the pBpa framework and expands our toolbox 

of chemical probes for capturing challenging PPIs in their native cellular environment. 

Furthermore, utilizing the pBpa analogs developed and applying the considerations 

presented in this chapter will facilitate the successful implementation of in vivo covalent 

capture for studying PPIs involved in a variety of biological processes.  
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3.5 Materials and Methods 
LS41 [JPY9::pZZ41, Matα his3Δ200 leu2Δ1 trp1Δ63 ura3-52 lys2Δ385 gal4 

URA::pZZ41] yeast was used for all in vivo experiments. pBpa was purchased from 

Chem-Impex International (Wood Dale, IL). pAzpa was purchased from Bachem and 

Chem-Impex International (Torrance, CA). The EWG pBpa analogs were synthesized 

by Dr. Meghan E. Breen through an air-tolerant carbonylative Suzuki-Miyaura 

coupling.67 All plasmids described below were constructed using standard molecular 

biology techniques and the sequences of all isolated plasmids were validated by 

sequencing at the University of Michigan Core Facility (Ann Arbor, MI). 

 

Table 3.1 Plasmids used in Chapter 3 

Plasmid Name Function 

pLexA+Gal4 F856TAG-

1X Flag 

Expresses LexA(1-202)+Gal4(840-881)+1X Flag tag with a 

TAG codon replacing the codon of the existing amino acid 

pLexA+Gal4 F856TAG 

M855A-1X Flag 

Expresses LexA(1-202)+Gal4(840-881)+1X Flag tag with a 

TAG codon replacing the codon of the existing amino acid 

and a methionine to alanine mutation at position 855 

pLexA+Gal4 F856TAG 

M861A-1X Flag 

Expresses LexA(1-202)+Gal4(840-881)+1X Flag tag with a 

TAG codon replacing the codon of the existing amino acid 

and a methionine to alanine mutation at position 861 

pLexA+Gal4 F856TAG 

M855A M861A-1X Flag 

Expresses LexA(1-202)+Gal4(840-881)+1X Flag tag with a 

TAG codon replacing the codon of the existing amino acid 

and a methionine to alanine mutation at position 855 and 

861 

pLexA+Gal4WT-5X Flag Expresses LexA(1-202)+Gal4(840-881)+5X Flag tag 

pLexA+Gal4 F849TAG-

5X Flag 

Expresses LexA(1-202)+Gal4(840-881)+5X Flag tag with a 

TAG codon replacing the codon of the existing amino acid 

pSNRtRNA-pBpaRS 
Expressed tRNA under the control of the SNR52 promoter 

and contains synthetase specific for pBpa 

pSNRtRNA-pAzpaRS 
Expressed tRNA under the control of the SNR52 promoter 

and contains synthetase specific for pAzpa 
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p1XMyc Gal80 Expresses full-length 1X c-Myc tag+Gal80 

pGal80-6X myc Expresses full-length Gal80+6X c-Myc tag 

pMed25 AcID-6X Myc Expresses Med25(394-543)+6X His tag 

 

Table 3.2 Primers used in Chapter 3 

Primer 

ID 

Sequence Description 

P1 5’ GTTTGGAATCACTACAGGGGCTTAGAATACC 

ACTACAATGG 3’ 

SDM pLexA+Gal4 

856TAG-1X Flag 

M855A For 

P2 5’ CCATTGTAGTGGTATTCTAAGCCCCTGTAGTG 

ATTCCAAAC 3’ 

SDM pLexA+Gal4 

856TAG-1X Flag 

M855A Rev 

P3 5’ GGGATGTAGAATACCACTACAGCTGATGATG 

TATATAACTATC 3’ 

SDM pLexA+Gal4 

856TAG-1X Flag 

M861A For 

P4 5’ GATAGTTATATACATCATCAGCTGTAGTGGTA 

TTCTACATCCC 3’ 

SDM pLexA+Gal4 

856TAG-1X Flag 

M861A Rev 

P5 5’ CGTTGGAATCACTACAGGGCTTAGAATACCA 

CTACAGCTCATCATCTATATAACTATC 3’ 

SDM pLexA+Gal4 

856TAG-1X Flag 

M855A M861A For 

P6 5’ GATAGTTATATACATCATCAGCTGTAGTGGTA 

TTCTAAGCCCCTGTAGTGATTCAAACG 3’ 

SDM pLexA+Gal4 

856TAG-1X Flag 

M855A M861A Rev 

P7 5’ GGACACCTCGAGATGGACTACAACAAGAGAT 

CTTC 3’ 

Xho1-Gal80 For 

P8 5’ CCGAGCCATATGTAAACTATAATGCGAGATAT 

TGC 3’ 

Nde1-Gal80 Rev 
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Table 3.3 Peptides used in Chapter 3 
Name Amino acid sequence 

VP16 F442Bpa Biotin-miniPEG-NH-DBpaDLDMLG-CONH2 

VP16 F442 3-Cl-Bpa Biotin-miniPEG-NH-D3-Cl-BpaDLDMLG-CONH2 

VP16 F442 4-Cl-Bpa Biotin-miniPEG-NH-D4-Cl-BpaDLDMLG-CONH2 

VP16 F442 3-F-Bpa Biotin-miniPEG-NH-D3-F-BpaDLDMLG-CONH2 

VP16 F442 4-F-Bpa Biotin-miniPEG-NH-D4-F-BpaDLDMLG-CONH2 

VP16 F442 3-CF3-Bpa Biotin-miniPEG-NH-D3-CF3-BpaDLDMLG-CONH2 

VP16 F442 4-CF3-Bpa Biotin-miniPEG-NH-D4-CF3-BpaDLDMLG-CONH2 

VP16 F442 4-Br-Bpa Biotin-miniPEG-NH-D4-Br-BpaDLDMLG-CONH2 

 
Construction of plasmids: 

1. pLexA+Gal4 856TAG M855A-1X Flag, pLexa+Gal4 856TAG M861A-1X Flag, and 

pLexA+Gal4 856TAG M855A M861A-1X Flag 

Plasmids containing various alanine mutations within the Gal4 TAD were derived 

from the pLexA+Gal4 856TAG-1X flag parent plasmid. Using site directed 

mutagenesis, single point mutations were made by replacing an existing amino acid 

in the Gal4 TAD with the GCT codon. PCR primers were designed to have ~15-20 

base pairs of homology on either side of the GCT mutation. Each set of primers 

were used to amplify the Gal4 alanine mutations using pLexA+Gal4 856TAG-1X 

Flag as the template. The amplified PCR product was digested with Dpn1 restriction 

enzyme to produce the new mutated plasmid.  

 

2. pGal80-6x Myc 

A high copy plasmid expressing full length Gal80-6x Myc under the control of the 

ADH1 promoter was created from pGADT7 containing Xho1 and Nde1 restriction 

sites. Primers P7 and P8 were used to amplify Gal80 using LS41 yeast genomic 

DNA as the template. The amplified PCR product was digested with Xho1 and Nde1 

restrictions enzymes and inserted into Xho1 and Nde1 digested pGADT7 using T4 

DNA ligase to create pGal80-6X Myc. 
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Incorporation of pBpa or pAzpa into LexA+Gal4 856TAG-1xFlag 

LS41 yeast was transformed with pLexA+Gal4 856TAG-1X Flag or pLexA+Gal4WT-1X 

Flag and either pSNRtRNA-pBpaRS or pSNRtRNA-pAzpaRS plasmids. Individual 

colonies were grown in 5 mL SC media containing 2% raffinose, but lacking histidine, 

tryptophan, and uracil for selection. The cultures were incubated at 30 °C with 250 rpm 

agitation. Following incubation, these cultures were used to inoculate 5 mL cultures of 

SC media containing 2% raffinose and 2% galactose, with or without 1 mM pBpa / 1 mM 

pAzpa (dissolved in 1 M NaOH), and 1 M HCl. The cultures were incubated at 30 °C 

with agitation to an OD660 of 1.0. Three ODs were isolated, washed with sterile water, 

and stored at -20 °C. The samples were lysed in 10 μL 4X NuPAGE LDS Sample 

Loading Buffer (Invitrogen), 10 μL 1X lysis buffer (50 mM tris-acetate pH 7.9, 100 mM 

potassium acetate, 20% glycerol, 0.2% Tween-20, 2 mM β-mercaptoethanol, and 2 mM 

magnesium acetate), and 10 μL 1 M DTT by boiling at 95 °C for 10 min. The samples 

were run on a 3-8% tris-acetate SDS-PAGE gel and analyzed by western blot with the 

anti-Flag (M2) antibody (Sigma Aldrich).  

 

b-Galactosidase assays 

LS41 yeast were transformed with pLexA+Gal4 WT-Flag or one of the pLexA+Gal4 

856TAG-1X Flag alanine mutant constructs and either pSNRtRNA-pBpaRS or 

pSNRtRNA-pAzpaRS plasmids. Individual colonies were grown in 5mL SC media 

containing 2% raffinose, but lacking histidine, tryptophan, and uracil for selection. The 

cultures were incubated at 30 °C with 250 rpm agitation. Following incubation, these 

cultures were used to inoculate 5 mL cultures of SC media containing either 2% glucose 

or 2% Raffinose and 2% galactose with or without 1 mM pBpa / 1 mM pAzpa (dissolved 

in 1 M NaOH), and 1 M HCl which were subsequently incubated at 30 °C with agitation 

to an OD660 of 1.0 and harvested. The activity of each construct was assessed using b-

Galactosidase assay as previously described.29  
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In vivo crosslinking analysis of  LexA+Gal4 856Bpa/Azpa-1X Flag:1x myc-Gal80 alanine 

mutations 

For in vivo photo-crosslinking, a colony of either LexA+Gal4 856 TAG-1X Flag:1x Myc 

Gal80, LexA+Gal4 856 TAG M855A-1X Flag:1x Myc Gal80, LexA+Gal4 856 TAG 

M861A-1X Flag:1x Myc Gal80, or LexA+Gal4 856 TAG M855A M861A-1X Flag:1x Myc 

Gal80was grown in 5 mL SC media containing 2% glucose, but lacking histidine, 

tryptophan, leucine and uracil for selection. The cultures were incubated at 30 °C with 

250 rpm agitation. Following incubation, these cultures were used to inoculate 100 mL 

cultures of SC media containing 2% glucose, with 1 mM pBpa or 1 mM pAzpa analog 

(dissolved in 1 M NaOH), and 1 M HCl. The cultures were incubated at 30 °C with 

agitation to an OD660 of 1.0. For each culture, the cells were isolated by centrifugation 

and washed with the SC media lacking histidine, tryptophan, and uracil. The cell pellets 

were resuspended in 2 mL SC media containing 2% glucose and then transferred to 

small culture dishes and subjected to UV irradiated at 365nm light (Eurosolar 15W UV 

lamp) with cooling for 30 minutes. The cells were isolated by centrifugation and stored 

at -20 °C until lysis.  The control samples were washed with 1 mL SC media containing 

2% glucose, isolated by centrifugation, and stored at -20 °C until lysis.  

 

For lysis, cells were resuspended in 600 μL lysis buffer (50 mM HEPES – KOH pH 7.5, 

140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-Deoxycholate and 2X Complete 

Mini, EDTA Free Protease Inhibitor (Roche)) and lysed using glass beads by vortexing 

at 4 °C. Subsequently, the lysate was pelleted and the supernatant immunoprecipitated 

with anti-LexA antibody (sc-1725, Santa Cruz Biotechnologies) for 2 hours at 4 °C. The 

proteins bound to the antibody were isolated by incubation for 1 hour with 40 μL pre-

washed Dynabeadsâ protein G magnetic beads (ThermoFisher) at 4 °C. After 

incubation, the beads were washed six times with 1 mL Wash Buffer (10 mM Tris-HCl 

pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.1% Na-Deoxycholate, and 1 mM EDTA) and 

stored at -20 °C until elution. 

 

The samples were eluted from the beads by heating at 95 °C for 10 minutes in 10 μL 

NuPAGE 4X LDS Sample Loading Buffer (Invitrogen), 10 μL water, and 10 μL 1M DTT. 
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The samples were run on a 3-8% tris-Acetate SDS-PAGE gel and analyzed by western 

blot with the anti-Flag (M2) antibody (Sigma Aldrich).  

 

Extinction coefficient calculation of EWG pBpa analogs 

Each amino acid analog was dissolved in 1M NaOH to a final concentration of 100 µM. 

Serial dilutions were made and the absorbance was measured for each concentration 

on the NanoDrop 1000 Spectrophotometer (ThermoFisher) at 280 nm. Concentration 

vs. absorbance was plotted and the extinction coefficient was determined following 

Beer’s Law and the following equation: Absorbance = eLc where L is 1 cm and the slope 

of the line is the extinction coefficient, e.  

 

Table 3.4 Extinction coefficients for each pBpa analog used in Chapter 3 

pBpa analog Extinction Coefficient Wavelength 

pBpa 12083 M-1cm-1 280 nm 

3-Cl Bpa 10698 M-1cm-1 280 nm 

4-Cl Bpa 17559 M-1cm-1 280 nm 

3-F Bpa 12058 M-1cm-1 280 nm 

4-F Bpa 13528 M-1cm-1 280 nm 

3-CF3 Bpa 12280 M-1cm-1 280 nm 

4-CF3 Bpa 14966 M-1cm-1 280 nm 

4-Br Bpa 14569 M-1cm-1 280 nm 

 

Peptide synthesis 

All peptides were synthesized using RINK amide AM resin (Acros Organics) using 

standard HBTU/HOBT/DIEA solid-phase peptide synthesis protocols as previously 

described.112 FMOC-Bpa was purchases from Chem-Impex International and the 

FMOC-Bpa EWG analogs were synthesized by Dr. Meghan Breen. The peptides were 

cleaved using 92.5% trifluoroacetic acid, 2.5% triisopropylsilane, 2.5% 1,2-ethanedithiol, 

and 2.5% water and subsequently precipitated with chilled diethyl ether. The products 

were purified to homogeneity using reverse-phase HPLC on a C18 column with a 

gradient solvent system (Buffer A: 20 mM ammonium acetate, Buffer B: acetonitrile) and 
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stored at -20 oC. Concentrations for each peptide was determined using the extinction 

coefficients calculated above.  

 

Med25 AcID-6xHis expression and purification 

Expression of Med25 AcID-6xHis was carried out in BL21ai E. coli cells. 25 mL starter 

cultures from a single colony were grown overnight at 37 oC (250 rpm) in LB broth 

supplemented with ampicillin (100 µg/mL) and streptomycin (100 µg/mL) before addition 

to 1 L of Terrific Broth (1.2% (w/v) tryptone, 2.4% (w/v) yeast extract, 4% (v/v) glycerol, 

and 1X phosphate buffer (17 mM KH2PO4, 72 mM K2HPO4)) supplemented with 

ampicillin (100 µg/mL) and streptomycin (100 µg/mL). After an OD600 of 0.7 was 

reached, the cultures were cooled to 22 oC for 1 hour, and expression was induced with 

IPTG (final concentration 0.5 mM) and 0.02% arabinose overnight at 22 oC. The cells 

were pelleted by centrifugation at 6000 rpm for 20 minutes and stored at -80 oC until 

lysis.  

 

The cell pellet was resuspended in lysis buffer (50 mM sodium phosphate pH 7.2, 300 

mM NaCl, 10 mM imidazole, b-mercaptoethanol, and 2X Complete Mini EDTA Free 

Protease Inhibitor (Roche)) and lysed using sonication. The His-tagged protein was 

isolated using a Ni-NTA 5 mL HiTrapä HP column (GE Life Sciences) with a gradient 

solvent system (Buffer A: 50 mM sodium phosphate, 300 mM NaCl, 30 mM imidazole, 

pH 7.2, Buffer B: 50 mM sodium phosphate, 300 mM NaCl, 400 mM imidazole, pH 7.2).  

The fractions were pooled and the Med25 protein was isolated through cation-exchange 

chromatography using a 5 mL HiTrap SP HP (GE Life Sciences) column with a gradient 

solvent system (Buffer A: 50 mM sodium phosphate, pH 7.2, Buffer B: 50 mM sodium 

phosphate, 1 M NaCl, pH 7.2). 

 

The resulting fractions’ identity were verified by SDS-PAGE with appropriate molecular 

weight standards. Fractions containing Med25 AcID-6xHis were combined and placed in 

dialysis tubing (Pierce) and buffer exchanged to storage buffer (10 mM sodium 

phosphate pH 6.8, 100 mM  NaCl, 10% glycerol, and 1 mM DTT) overnight at 4 oC. The 

purified protein was concentrated using a 3K centrifugal filter device (Millapore) and the 
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concentration was measured using absorbance at 280 nm. The molecular weight was 

verified by QTOF-MS.  

 

In vitro binding assay 

0.4 mg/mL of purified Med25 AcID-6xHis diluted in 50 mM MES buffer, pH 5.2 was 

bound to a clear, flat bottom, polystyrene, 96-well plate (Fisherbrand) overnight at 37 
oC. The plate was washed three times with PBS-T (10 mM Na2HPO4•7H2O, 1.7 mM 

KH2PO4, 140 mM NaCl, 3 mM KCl, 0.05% Tween-20, pH 7.4) for 5 minutes each. 

Varying concentrations of the corresponding VP16 peptide diluted in binding buffer (25 

mM HEPES, 40 mM KCl, 8 mM MgCl2, 100 mM NaCl, 0.01% Tween-20, pH 7.4) was 

incubated on Med25-coated plate while rocking for 2 hours at room temperature. The 

plate was washed three times with PBS-T for 5 minutes each, followed by blocking for 5 

minutes with SuperBlockä (PBS) Blocking Buffer (ThermoFisher). The plate was 

incubated with 1:2,000 streptavidin-HRP (Abcam, ab7403) in SuperBlockä (PBS) 

Blocking Buffer for 1 hour at room temperature on benchtop. The plate was washed 

three times with PBS-T for 5 minutes each, followed by incubation with TMB substrate 

(Cell Signaling) for 1 minute until solutions turned blue. The reaction was quenched with 

1 M HCl and the plate was read at OD450 on the Spectramax M5 microplate reader 

(Molecular Devices).The binding constant (Kd) was calculated using the following 

equation:   𝒀 = 𝑩𝒎𝒂𝒙	×	𝑿
𝑲𝒅,𝑿

+ 𝑵𝑺×𝑿 + 𝑩𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅  

Bmax - the maximum specific binding in the same units as Y 

NS - the slope of nonspecific binding in Y units divded by X in units 

Background – the amount of nonspecific binding with no added ligand 
 

In vitro crosslinking assay 

0.4 mg/mL of purified Med25 AcID-6xHis diluted in 50 mM MES buffer, pH 5.2 was 

bound to two clear, flat bottom, polystyrene, 96-well plates (Fisherbrand) overnight at 37 
oC. Both plates were washed three times with PBS-T (10 mM Na2HPO4•7H2O, 1.7 mM 

KH2PO4, 140 mM NaCl, 3 mM KCl, 0.05% Tween-20, pH 7.4) for 5 minutes each. 12.5 

µM of the corresponding VP16 peptide diluted in binding buffer (25 mM HEPES, 40 mM 

KCl, 8 mM MgCl2, 100 mM NaCl, 0.01% Tween-20, pH 7.4) was incubated on the 
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Med25-coated plates while rocking for 30 minutes at room temperature. One plate (+UV 

plate) was crosslinked at 365 nm (Eurosolar 15W UV lamp) with cooling for 10 minutes 

and washed three times with PBS-T for 5 minutes each. The (-UV) plate was also 

washed three times with PBS-T for 5 minutes each. The plates were blocked for 5 

minutes with SuperBlockä (PBS) Blocking Buffer (ThermoFisher), followed by 

incubation with 1:2,000 streptavidin-HRP (Abcam, ab7403) in SuperBlockä (PBS) 

Blocking Buffer for 1 hour at room temperature on benchtop. The plates were washed 

three times with PBS-T for 5 minutes each, followed by incubation with TMB substrate 

(Cell Signaling) for 1 minute until solutions turned blue. The reaction was quenched with 

1 M HCl and the plates were read at OD450 on the Spectramax M5 microplate reader 

(Molecular Devices).  

 

In vivo crosslinking analysis of LexA+Gal4 849Bpa/EWG Bpa analogs-5X Flag: Gal80-

6x Myc 

For in vivo photo-crosslinking, a colony of LexA+Gal4 849 TAG-5X Flag: Gal80-6x Myc 

was grown in 5 mL SC media containing 2% glucose, but lacking histidine, tryptophan, 

leucine, and uracil for selection. The cultures were incubated at 30 °C with 250 rpm 

agitation. Following incubation, these cultures were used to inoculate 100 mL cultures of 

SC media containing 2% glucose, with 1 mM pBpa or 1 mM EWG pBpa analog 

(dissolved in 1 M NaOH), and 1 M HCl. The cultures were incubated at 30 °C with 

agitation to an OD660 of 1.0. For each culture, the cells were isolated by centrifugation 

and washed with the SC media lacking histidine, tryptophan, leucine, and uracil. The 

cell pellets were resuspended in 2 mL SC media containing 2% glucose and then 

transferred to small culture dishes and subjected to UV irradiated at 365nm light 

(Eurosolar 15W UV lamp) with cooling for 30 minutes. The cells were isolated by 

centrifugation and stored at -20 °C until lysis.  The control samples were washed with 1 

mL SC media containing 2% glucose, isolated by centrifugation, and stored at -20 °C 

until lysis.  

 

For lysis, cells were resuspended in 600 μL lysis buffer (50 mM HEPES – KOH pH 7.5, 

140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-Deoxycholate and 2X Complete 
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Mini, EDTA Free Protease Inhibitor (Roche)) and lysed using glass beads by vortexing 

at 4 °C. Subsequently, the lysate was pelleted and the supernatant was 

immunoprecipitated with anti-LexA antibody (sc-1725, Santa Cruz Biotechnologies) for 

2 hours at 4 °C. The proteins bound to the antibody were isolated by incubation for 1 

hour with 40 μL pre-washed Dynabeadsâ protein G magnetic beads (ThermoFisher) at 

4 °C. After incubation, the beads were washed six times with 1 mL Wash Buffer (10 mM 

Tris-HCl pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.1% Na-Deoxycholate, and 1 mM EDTA) 

and stored at -20 °C until elution. 

 

The samples were eluted from the beads by heating at 95 °C for 10 minutes in 10 μL 

NuPAGE 4X LDS Sample Loading Buffer (Invitrogen), 10 μL water, and 10 μL 1M DTT. 

The samples were run on a 4-15% Mini-PROTEANâ TGXä pre-cast SDS-PAGE gel 

(Bio-Rad). The gel was transferred to immobilin PDVF membrane (Millapore) and 

blocked for 1 hour at room temperature using SuperBlockä (PBS) Blocking Buffer 

(ThermoFisher). The membrane was incubated with both mouse anti-Flag (M2) (Sigma 

Aldrich, F1804) and rabbit anti-cMyc (Sigma Aldrich, C3956) primary antibodies for 1 

hour at room temperature. The membrane was washed three times for 10 minutes each 

with PBS-T (10 mM Na2HPO4•7H2O, 1.7 mM KH2PO4, 140 mM NaCl, 3 mM KCl, 0.05% 

Tween-20, pH 7.4), followed by incubation with anti-mouse 680nm (LI-COR, 926-68072) 

and anti-rabbit 800nm (LI-COR, 926-32211) secondary antibodies for 1 hour at room 

temperature. The membrane was washed three times for 10 minutes each with PBS-T, 

5 minutes with PBS (10 mM Na2HPO4•7H2O, 1.7 mM KH2PO4, 140 mM NaCl, 3 mM 

KCl, pH 7.4), and visualized using the Azure c600 western blot imager (Azure 

Biosystems). Crosslinking yields were quantified using ImageJ and the relative amount 

of Gal4-Gal80 crosslinked product for each experiment was expressed as follows ((Gal4 

Bpa analog-Gal80 crosslinked product/Gal4 Bpa-Gal80 crosslinked product)*100).  
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CHAPTER 41 
A bifunctional amino acids to address the challenges of isolating in vivo 

crosslinked products 
 
4.1  Introduction  
Transient and moderate affinity protein-protein interactions (PPIs) play crucial roles 

across cellular processes, but they are often intractable to characterize in their native 

environments.1-6 In the case of transcriptional initiation, the complexes formed between 

transcriptional activators and coactivators are instrumental in the proper assembly of the 

transcriptional machinery, yet the necessarily transient interactions have frustrated 

efforts to identify specific protein pairings.7-12 A breakthrough was realized with genetic 

code expansion via amber nonsense suppression, enabling the site specific 

incorporation of photo-activatable amino acids into protein partners in living cells for 

covalent capture experiments.13-20 Over the last several years our lab has demonstrated 

that the photo-activatable unnatural amino acid (UAA) p-benzoyl-L-phenylalanine (pBpa) 

effectively captures even the modest affinity interactions between DNA-bound 

transcriptional activators and their binding partners in vivo, allowing the creation of a 

detailed map of the key PPIs that define transcriptional activation.21-24 Nonetheless, 

these experiments are technically challenging and require several steps of isolation and 

purification post-crosslinking. This is typically accomplished through 

immunoprecipitation and/or affinity purification of the protein of interest or its binding 

                                            
1 The majority of this chapter is from the following publication: Joiner, C. J.; Breen, M. E.; Clayton, J.; 
Mapp, A. K. A bifunctional amino acid enables both covalent chemical capture and isolation of in vivo 
protein-protein interactions. ChemBioChem 2017, 18 (2), 181-184 
 
The individual contributions to the data presented in this chapter is as follows: Cassandra M. Joiner 
created the pGal80-6x Myc plasmid and was responsible for the full in vivo characterization of the 
bifunctional UAAs, BPKyne and POpBpa, which included incorporation, crosslinking, and click labeling of 
the UAA-incorporated proteins. Dr. Meghan E. Breen synthesized BPKyne and was responsible for the 
complete characterization of BPKyne and its intermediates, including mass spectrometry and NMR 
analysis. For full synthetic protocols and organic analysis please reference the supplemental information 
of the manuscript above. Dr. James Clayton synthesized and characterized POpBpa.  
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partners and can vary significantly in efficiency, especially for low abundance proteins. 

Further, immunoprecipitation requires effective antibodies and/or the genetic 

incorporation of epitope tags into the protein of interest.11, 25-26 Therefore, there is a real 

need for additional methods for isolation of in vivo crosslinked proteins.  

 

 
Figure 4.1 A.) Experimental scheme of bifunctional UAA crosslinking and bioconjugation by CuAAC. B.) 
Photo-labile UAAs. p-benzoyl-L-phenylalanine (pBpa), 4-ethynyl-p-benzoyl-L-phenylalanine (BPKyne), 
and 4-propargyloxy-p-benzoyl-L-phenylalanine (POpBpa) 
 

To address this, we hypothesized that a bifunctional UAA containing both a photo-

activatable group and a moiety that enables post-crosslinking derivatization would 

facilitate detection, isolation, and/or identification of PPIs in the context of the native 

cellular environment. To test this, we have developed two bifunctional pBpa derivatives, 

4-ethynyl-p-benzoyl-L-phenylalanine (BPKyne) and 4-propargyloxy-p-benzoyl-L-

phenylalanine (POpBpa) which both contain an alkynyl moiety that can be 

functionalized post-crosslinking using the copper-mediated azide-alkyne Huisgen 

cycloaddition (CuAAC) (Figure 4.1).27-31 In this chapter, we sought to incorporate these 

bifunctional amino acids into proteins in live yeast using nonsense suppression, and 
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functionalization of the alkyne handle post-crosslinking would enable isolation and 

visualization of crosslinked products. Here we fully characterize both bifunctional amino 

acids for their ability to be incorporated into the prototypical yeast Gal4 transcriptional 

activator and capture the Gal4-Gal80 transcriptional complex discussed in Chapter 3.21, 

32-36 We further demonstrate that alkyne functionalization enables isolation and 

purification of the in vivo crosslinked products from live yeast cells. 

 
4.2  Bifunctional UAAs for the isolation of in vivo crosslinked products 
UAA incorporation has become a strong tool for the integration of new chemistries 

within proteins in the cell.20, 37-41 For example, photo-labile UAAs, such as pBpa, allows 

C-C bond formation between binding partners in the presence of UV irradiation13, 42-43, 

while azido-containing UAAs, such as p-azido-L-phenylalanine (pAzpa) can either be 

irradiated by UV light to form C-C bonds or can be coupled with a functional handle to 

label a protein of interest through the CuAAC or Staudinger ligation reactions.44-49 

However, current methods only allow for one UAA and ultimately one new functionality 

to be productively incorporated into a protein of interest at a time. There have been a 

few reports of simultaneous double incorporation of UAAs that allows for different 

chemical groups and labels to be added to the protein, however, these methods are not 

trivial and protein expression yields are extremely low.50-54 Recently, bifunctional UAAs 

have been developed to allow for two novel functionalities to be integrated into a protein 

at one site.18, 55 For example, Yamaguchi and coworkers developed a Z-lysine derivative 

that contained amino and azido groups that enabled the creation of different protein 

conjugates in live cells.18 However, these current bifunctional amino acids contain a 

nonspecific amino group that can react with the native cellular environment and only 

one bioorthogonal group.  

Due to the limitation in the current methods, we sought to develop a bifunctional 

amino acid containing both a photo-reactive group for the capture of in vivo protein 

partners and a bioorthogonal reactive group that would enable derivatization with 

functional handles, such as biotin, for the isolation of the crosslinked products. This 

capture and tag strategy has been used in photo-affinity labeling (PAL) for several 

years. Multiple reports have utilized the benzophenone and alkynyl reactive groups in 
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small molecule activity-based probes for proteomic screening of drug targets.56-61 

Briefly, the small molecule binds to a protein of interest, and upon UV irradiation the 

benzophenone crosslinker covalently tethers the small molecule to the protein. The 

alkynyl group can subsequently be functionalized with a biotinylated azide probe using 

CuAAC to enable isolation of the small molecule-protein complex. We hypothesized that 

a bifunctional pBpa analog containing an alkynyl group would similarly enable the 

capture of PPIs when incorporated into a protein of interest and isolation of the complex 

following appendage of a biotin handle. To test this, we developed two bifunctional 

pBpa analogs, BPKyne and POpBpa. BPKyne which has originally been reported for 

use in synthetic peptides and in vitro crosslinking by the Ernst group has a terminal 

alkyne directly appended to the benzophenone ring, while POpBpa has a more reactive 

propargyl group that we hypothesized would be more effective during labeling of the 

crosslinked product.28, 62 Both molecules were characterized based on their ability to be 

incorporated into the LexA+Gal4 protein using the Escherichia coli tyrosyl 

tRNA/synthetase pair (tRNATyr
CUA-TyrRS) and its ability to capture Gal4’s binding 

partners and isolate these crosslinked products from yeast cells.  

 

4.2.1 BPKyne can be incorporated into LexA+Gal4 849TAG using amber nonsense 

suppression 

Previously, our lab has used the well-established E. coli tyrosyl tRNA/synthetase 

pair (tRNATyr
CUA-TyrRS) to incorporate pBpa into proteins in their native cellular 

environment using nonsense suppression.21-24 As discussed in Chapter 3, it has 

recently been shown that the bioorthogonal tRNA synthetases can incorporate analogs 

of the cognate UAA without any further alterations in some cases.15, 63-67 An 

examination of the crystal structure of the E. coli tyrosyl tRNA synthetase suggested 

that due to the small van der Waals radius of the alkynyl moiety, BPKyne should fit in 

the active site and be incorporated without any modifications to the synthetase, 

however, the propargyl group of POpBpa might be too large for the active site.15 To test 

this, we compared the expression levels of the chimeric transcriptional activator 

LexA+Gal4 when pBpa, BPKyne, or POpBpa was incorporated at position 849 within 

the Gal4 transcriptional activation domain (TAD) (Figure 4.2A).  
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Figure 4.2 Analysis of bifunctional UAAs incorporation in the LexA+Gal4 849TAG-Flag protein. A.) A 
plasmid encoding the LexA DNA binding domain (DBD) fused to the Gal4 transcriptional activation 
domain (TAD) and a Flag tag was constructed. Position 849 (in red) was mutated to the amber stop 
codon for pBpa, BPKyne, and POpBpa incorporation. B.) BPKyne incorporation was compared to that of 
pBpa at position 849 of Gal4 by using E. coli tRNATyr

CUA-TyrRS in the presence or absence of 1 mM pBpa 
or BPKyne. C.) POpBpa incorporation was compared to that of pBpa at position 849 of Gal4 by using E. 
coli tRNATyr

CUA-TyrRS in the presence or absence of 1 mM pBpa or POpBpa. Expression levels of 
LexA+Gal4 849UAA mutants relative to LexA+Gal4 WT were quantified by using ImageJ.68 D.) b-
Galactosidase assays were performed using yeast cells expressing the LexA+Gal4 849TAG-5x Flag and 
pSNRtRNA-pBpaRS plasmids to assess the ability of LexA+Gal4 849Bpa and LexA+Gal4 849BPKyne to 
upregulate transcription of an integrated pGal1-LacZ reporter gene in Saccharomyces cerevisiae. Under 
identical conditions, there is no significant difference in activity between pBpa or BPKyne incorporated 
LexA+Gal4 protein when analyzed by student’s t-test with p<0.05. 

 

Using identical conditions, the expression level of BPKyne incorporated LexA+Gal4 

was found to be within 10% of that observed with pBpa (Figure 4.2B). Additionally, 

incorporation of BPKyne did not alter LexA+Gal4-mediated transcriptional activation 

(Figure 4.2D). However, when POpBpa was introduced to the media, the tRNA/tRNARS 
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system was unable to incorporate the unnatural into the LexA+Gal4 protein resulting in 

no production of the full length protein (Figure 4.3C). These data illustrate the substrate 

flexibility of the tRNA/synthetase pair for small, rigid changes to pBpa seen in BPKyne, 

but not for more drastic, flexible changes seen in POpBpa. The rest of the chapter will 

focus on the in vivo characterization of BPKyne. 

 

4.2.2 BPKyne captures the Gal4-Gal80 interaction in live yeast 

Next, we evaluated the effect of the alkynyl moiety on the photochemical reactivity of 

the benzophenone through in vivo photo-crosslinking experiments using the LexA+Gal4 

transcriptional activator (Figure 4.3A). Live yeast expressing LexA+Gal4 with either 

pBpa or BPKyne incorporated at position 849 were irradiated with 365 nm light to 

capture Gal4’s endogenous binding partners. Upon lysis and western blot analysis 

probing for the Flag-tagged LexA+Gal4 activator, several crosslinked products were 

captured by both photo-crosslinkers. Both molecules captured a distinct product around 

80 kDa, consistent with the Gal4-Gal80 complex (Figure 4.3B).21  

To confirm this, a 6x-Myc-tagged Gal80 construct was transformed into live yeast 

with the UAA-incorporated LexA+Gal4 fusion protein. After irradiation, lysis, and 

western blot analysis probing for the Myc-tagged Gal80 protein, both pBpa and BPKyne 

captured a Gal4-Gal80 crosslinked product (Figure 4.3C). When comparing the amount 

of crosslinked Gal4-Gal80, BPKyne’s crosslinking efficiency is approximately 65% of the 

parent molecule, pBpa, at least in this context. This small decrease was expected due 

to the addition of an electron-donating moiety, which was predicted to slightly decrease 

the reactivity of the molecule.69 However, despite this decrease BPKyne still captures 

the same biologically relevant interactions as pBpa (Figure 4.3B and C).  
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Figure 4.3 Analysis of BPKyne crosslinking in the LexA+Gal4 849TAG-Flag and Gal80 245TAG-Myc 
tagged proteins. A.) Experimental scheme of LexA+Gal4 849UAA – Gal80 crosslinking. Live yeast 
expression LexA+Gal4 with either pBpa or BPKyne incorporated at position 849 are irradiated at 365 nm 
live to capture Gal4’s binding partners through a covalent bond.  B.) BPKyne captures several of Gal4’s 
endogenous protein partners including Gal80 at approximately 80 kDa. C.) BPKyne captures the Myc-
Gal80 interaction with Gal4 to confirm the Gal80 crosslinked band at 80 kDa. D.) BPKyne captures the 
Gal80-Gal4 interaction when BPKyne is incorporated in Gal80 at position 245. The crosslinking yield of 
LexA+Gal4 849BPKyne-Gal80 relative to LexA+Gal4 849pBpa-Gal80 was quantified by using ImageJ.68  
 

4.2.3 BPKyne incorporated proteins are directly functionalized post-crosslinking 

Once incorporation and crosslinking were confirmed, the bioconjugation capability of 

BPKyne was characterized post-crosslinking and compared to traditional immunological 

methods for the isolation of crosslinked products. Towards this end, the UAA was 

incorporated into a Gal80 construct at position 245 mutated through amber nonsense 
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suppression. This site is located at the outer edge of the Gal4 binding interface. Thus, 

when this construct was irradiated only the Gal80-Gal4 complex was captured, allowing 

for a single interaction to be visualized (Figure 4.3D).21  To demonstrate that the 

bioorthogonal alkyne handle of BPKyne could be functionalized post-crosslinking, live 

yeast expressing Flag-tagged LexA+Gal4 and Myc-tagged Gal80 with pBpa or BPKyne 

incorporated at position 245 were grown under glucose conditions and irradiated to 

capture the Gal4-Gal80 binding event. After lysis, biotin-PEG3-azide was conjugated to 

the BPKyne incorporated Gal80 species via a Huisgen cycloaddition in whole cell lysate 

using copper (II) sulfate, tris-(3-hydroxypropyltriazoylmethyl)amine (THPTA), and 

sodium ascorbate at 37oC (Figure 4.4A).27-28  

 
Figure 4.4 Analysis of BPKyne bioconjugation by CuAAC. A.) Experimental workflow for isolation of 
Gal80 245BPKyne – Gal4 crosslinked products from yeast cells. B.) Biotinylation of Gal4-Gal80 
crosslinked product through CuAAC cycloaddition. The BPKyne-incorporated Gal80-Gal4 crosslinked 
product was isolated from solution using CuAAC and Neutravidin magnetic beads and analyzed by 
western blot (a-Myc). The Gal4-Gal80 crosslinked product is only isolated in the presence of BPKyne and 
UV irradiation when conjugated to the biotin probe.  
 

After 2 hours, the biotin-conjugated proteins were isolated using neutravadin 

magnetic beads and analyzed by western blot probing for Myc-tagged Gal80 species 

(Figure 4.4B). With this strategy, the LexA+Gal4-Gal80 complex was only observed for 

BPKyne incorporated proteins that had been irradiated and functionalized with the 
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biotin-azide probe demonstrating the ability of the bioorthogonal alkyne handle to be 

specifically labeled. As a comparison, traditional immunological techniques were used 

to isolate the UAA-containing Gal80-Gal4 crosslinked complex and visualized by 

western blot analysis (Figure 4.3D). Importantly, when visualized by western blot using 

the cMyc-HRP antibody, less background was seen when BPKyne containing samples 

isolated through CuAAC and neutravadin pull-down were compared to UAA containing 

proteins immunoprecipitated with a-Myc, which results in nonspecific isolation of all 

proteins containing an endogenous Myc epitope (Figure 4.4B and 4.3D). These 

experiments illustrate the advantages of the bifunctional BPKyne molecule, which 

captures specific PPIs upon irradiation and allows for isolation of these interactions from 

their cellular environment post-functionalization. 

 

4.3  Conclusions and Future Directions 
Here we have demonstrated the first incorporation of the bifunctional UAA, BPKyne, into 

live yeast cells using the E. coli tyrosyl tRNA/synthetase system and have illustrated the 

utility of BPKyne for the isolation of crosslinked products from their native environment. 

Utilizing the Gal4 and Gal80 yeast proteins we have shown that BPKyne is incorporated 

with similar expression yields compared to pBpa without requiring further mutagenesis.  

Along with the similar crosslinking reactivity compared to pBpa, we have illustrated that 

BPKyne incorporated protein can be isolated from whole cell lysate after 

functionalization with a biotinylated azide probe. While we used western blotting for 

visualization in this proof of principle study, mass spectrometry could also be used for 

characterization of isolated crosslinked adducts. This strategy also enables the capture 

and isolation of PPIs for which antibodies are not efficient or available and/or when 

genetically encoded epitope tags, such as Myc or Flag, cannot be appended without 

impairment of protein structure or function. The bioorthogonal alkyne handle enables 

the direct labeling of crosslinked PPIs of interest, which will be particularly 

advantageous in the discovery of novel PPIs.  
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4.4  Materials and Methods 
LS41 [JPY9::pZZ41, Matα his3Δ200 leu2Δ1 trp1Δ63 ura3-52 lys2Δ385 gal4 

URA::pZZ41] yeast was used for all experiments. pBpa was purchased from Chem-

Impex International (Wood Dale, IL). All plasmids described below were constructed 

using standard molecular biology techniques and the sequences of all isolated plasmids 

were validated by sequencing at the University of Michigan Core Facility (Ann Arbor, 

MI). 

 

Table 4.1 Plasmids used in Chapter 4 

Plasmid Name Function 

pLexA+Gal4WT-5X Flag Expresses LexA(1-202)+Gal4(840-881)+5X Flag tag 

pLexA+Gal4849TAG-5X 

Flag 

Expresses LexA(1-202)+Gal4(840-881)+5X Flag tag with a 

TAG codon replacing the codon of the existing amino acid 

pSNRtRNA-pBpaRS 
Expressed tRNA under the control of the SNR52 promoter 

and contains synthetase specific for pBpa 

pGal80-6X Myc Expresses full-length Gal80+6X c-Myc tag 

pLexA-Gal4WT-1X Flag Expresses LexA(1-202)+Gal4(840-881)+1X Flag tag 

pMyc Gal80 245TAG 
Expresses full-length 1X Myc+Gal80 with a TAG codon 

replacing the codon of the existing amino acid 

 

UAA incorporation and expression 

LS41 yeast was transformed with pLexA+Gal4 849 TAG-5X Flag, pLexA+Gal4WT-5X 

Flag, or Myc-Gal80 245TAG and pSNRtRNA-pBpaRS plasmids. Individual colonies 

were grown in 5 mL SC media containing 2% raffinose, but lacking histidine, tryptophan, 

and uracil for selection of LexA+Gal4 or but lacking histidine, tryptophan, leucine and 

uracil for selection of Myc-Gal80. The cultures were incubated at 30 °C with 250 rpm 

agitation. Following incubation, these cultures were used to inoculate 5 mL cultures of 

SC media containing 2% raffinose and 2% galactose, with or without 1 mM pBpa / 1 mM 

BPKyne (dissolved in 1 M NaOH), and 1 M HCl. The cultures were incubated at 30 °C 

with agitation to an OD660 of 1.0. Three ODs were isolated, washed with sterile water, 

and stored at -20 °C. The samples were lysed in 10 μL 4X NuPAGE LDS Sample 
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Loading Buffer (Invitrogen), 10 μL 1X lysis buffer (50 mM tris-acetate pH 7.9, 100 mM 

potassium acetate, 20% glycerol, 0.2% Tween-20, 2 mM β-mercaptoethanol, and 2 mM 

magnesium acetate), and 10 μL 1 M DTT by boiling at 95 °C for 10 min. The samples 

were run on a 3-8% tris-acetate SDS-PAGE gel and analyzed by western blot with the 

anti-Flag (M2) antibody (Sigma Aldrich) for the pLexA-Gal4 expression samples and 

anti-cMyc-HRP (9E10) antibody (Santa Cruz) for the Myc-Gal80 expression samples. 

Expression levels were quantified using ImageJ and relative levels of LexA-Gal4 protein 

for each experiment were expressed as follows ((experimental/WT LexA-Gal4) *100).  

 

b-Galactosidase assays 

LS41 yeast was transformed with pLexA+Gal4 849 TAG-5X Flag or pLexA+Gal4WT-5X 

Flag and pSNRtRNA-pBpaRS plasmids. Individual colonies were grown in 5mL SC 

media containing 2% raffinose, but lacking histidine, tryptophan, and uracil for selection. 

The cultures were incubated at 30 °C with 250 rpm agitation. Following incubation, 

these cultures were used to inoculate 5 mL cultures of SC media containing either 2% 

glucose or 2% Raffinose and 2% galactose with or without 1 mM pBpa / 1 mM BPKyne 

(dissolved in 1 M NaOH), and 1M HCl which were subsequently incubated at 30 °C with 

agitation to an OD660 of 1.0 and harvested. The activity of each construct was 

assessed using B-Galactosidase assay as previously described.21 

 

LexA+Gal4 849TAG-5X Flag in vivo photo-crosslinking 

For in vivo photo-crosslinking, a colony of LexA+Gal4 849 TAG-5X Flag was grown in 5 

mL SC media containing 2% raffinose, but lacking histidine, tryptophan, and uracil for 

selection. The cultures were incubated at 30 °C with 250 rpm agitation. Following 

incubation, these cultures were used to inoculate 10 mL cultures of SC media 

containing 2% glucose, with 1 mM pBpa or 1 mM BPKyne (dissolved in 1 M NaOH), and 

1 M HCl. The cultures were incubated at 30 °C with agitation to an OD660 of 1.0. For 

each culture, the cells were isolated by centrifugation and washed with the SC media 

lacking histidine, tryptophan, and uracil. The cell pellets were resuspended in 2 mL SC 

media containing 2% glucose and then transferred to small culture dishes and subjected 

to UV irradiated at 365nm light (Eurosolar 15W UV lamp) with cooling for 30 minutes. 
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The cells were isolated by centrifugation and stored at -20 °C until lysis.  The control 

samples were washed with 1 mL SC media containing 2% glucose, isolated by 

centrifugation, and stored at -20 °C until lysis.  

 

For crosslinking studies with Myc-Gal80, the procedure was identical except that cells 

were grown in SC media lacking histidine, leucine, tryptophan, and uracil. For lysis, cells 

were resuspended in 350 μL lysis buffer (50 mM HEPES – KOH pH 7.5, 140 mM NaCl, 

1 mM EDTA, 1% Triton X-100, 0.1% Na-Deoxycholate and 2X Complete Mini, EDTA 

Free Protease Inhibitor (Roche)) and lysed using glass beads by vortexing at 4 °C. 

Subsequently, the lysate was pelleted and the supernatant was immunoprecipitated 

with anti-LexA antibody (sc-1725, Santa Cruz Biotechnologies) for 2 hours at 4 °C. The 

proteins bound to the antibody were isolated by incubation for 1 hour with 8 μL pre-

washed protein G magnetic beads (Millapore) at 4 °C. After incubation, the beads were 

washed six times with 1 mL Wash Buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 0.5% 

NP-40, 0.1% Na-Deoxycholate, and 1 mM EDTA) and stored at -20 °C until elution. 

 

The samples were eluted from the beads by heating at 95 °C for 10 minutes in 10 μL 

NuPAGE 4X LDS Sample Loading Buffer (Invitrogen), 10 μL water, and 10 μL 1M DTT. 

The samples were run on a 3-8% tris-acetate SDS-PAGE gel and analyzed by western 

blot using either anti-Flag (M2) antibody (Sigma Aldrich) for endogenous crosslinking 

profile or anti-cMyc antibody (SC-40, Santa Cruz Biotechnology) for Myc-Gal80 

crosslinking. Crosslinking yields were quantified using ImageJ and the relative amount 

of Gal4-Gal80 crosslinked product for each experiment was expressed as follows ((Gal4 

BPKyne-Gal80 crosslinked product/Gal4 Bpa-Gal80 crosslinked product) *100).  

 

LexA+Gal4 WT-1X Flag:1X myc-Gal80 245TAG whole cell lysate preparation 

A colony of LexA+Gal4 WT-1X Flag:1X myc-Gal80 245TAG was grown in 5 mL SC 

media containing 2% raffinose, but lacking histidine, tryptophan, leucine and uracil for 

selection. The cultures were incubated at 30 °C with 250rpm agitation. Following 

incubation, these cultures were used to inoculate 100 mL cultures of SC media 

containing 2% glucose, with 1 mM pBpa or 1 mM BPKyne (dissolved in 1 M NaOH), and 
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1 M HCl which were subsequently incubated at 30 °C with agitation to an OD660 of 2.0. 

For each culture, the cells were isolated by centrifugation and washed with the SC 

media lacking histidine, tryptophan, leucine, and uracil. The cell pellets were 

resuspended in 2 mL SC media containing 2% glucose and then transferred to small 

culture dishes and subjected to UV irradiated at 365 nm light (Eurosolar 15W UV lamp) 

with cooling for 45 min. The cells were isolated by centrifugation and stored at -80 °C 

until lysis.  The control samples were washed with 1 mL SC media containing 2% 

glucose, isolated by centrifugation, and stored at -80 °C until lysis. For lysis, cells were 

resuspended in 600 μL lysis buffer (50 mM HEPES – KOH pH 7.5, 140 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 0.1% Na-Deoxycholate and 2X Complete Mini, EDTA Free 

Protease Inhibitor (Roche)) and lysed using glass beads by vortexing at 4 °C. The 

supernatant was split into 2 mg protein aliquots and stored at -80 °C until CuAAC 

labeling. 

 

Traditional immunoprecipitation of LexA+Gal4 WT-1X Flag: 1X myc-Gal80 245pBpa 

crosslinked products 

Whole cell lysate was incubated at 4 °C for 2 hours with either 10 μL anti-LexA (sc-

1725, Santa Cruz Biotechnologies) or anti-cMyc (9E10) (SC 40, Santa Cruz 

Biotechnologies) antibody. The proteins bound to the antibody were isolated by 

incubation for 1 hour with 40 μL pre-washed Dynabeads® protein G magnetic beads 

(ThermoFisher) at 4 °C. After incubation, the beads were washed six time with 1 mL 

Wash Buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.1% Na-

Deoxycholate, and 1 mM EDTA) and stored at -20 °C until elution. The crosslinked 

samples were eluted from the beads by heating at 95 °C for 10 minutes in 10 μL 

NuPAGE 4X LDS Sample Loading Buffer (Invitrogen), 10 μL water, and 10 μL 1M DTT. 

The samples were run on a 3-8% Tris-acetate SDS-PAGE gel and analyzed by western 

blot using anti-cMyc-HRP antibody (SC-40, Santa Cruz Biotechnology) for Gal80-

containing crosslinked products.  
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Copper-catalyzed alkyne-azide cycloaddition (CuAAC) labeling of LexA+Gal4 WT-1X 

Flag: 1X myc-Gal80 245BPKyne crosslinked products 

2 mg/mL proteome was combined with 500 μM biotin-PEG3-azide (Sigma-Aldrich), 1% 

sodium dodecyl sulfate, 5 mM Tris(3-hydroxypropyltriazolylmethyl) amine (THPTA, 

Sigma-Aldrich), 1 mM CuSO4 in water, and 5 mM sodium ascorbate in water at 37 °C 

with 250rpm agitation. After 2 hours, the samples were purified through acetone 

precipitation overnight at -20 °C followed by resuspension in 1X PBS pH 7.4 

(ThermoFisher) and 0.5% SDS. Samples were combined with 50 μL GE Sera-Mag™ 

SpeedBeeds™ Neutravidin Particles and incubated at room temperature with rocking 

for 1.5 hours. After pulldown, the beads were washed six times with 1 mL Wash Buffer 

(10 mM Tris-HCl pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.1% Na-Deoxycholate, and 1 mM 

EDTA) and stored at -80 °C until elution. The click samples were eluted from the beads 

by heating at 95 °C for 10 minutes in 10 μL NuPAGE 4X LDS Sample Loading Buffer 

(Invitrogen), 10 μL water, and 10 μL 1 M DTT. The samples were run on a 3-8% tris-

acetate SDS PAGE gel and analyzed by western blot using anti-cMyc-HRP antibody 

(SC-40, Santa Cruz Biotechnology) for Myc-Gal80 crosslinking. 
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CHAPTER 5 
Conclusions and Future Directions 

 
5.1 Conclusions 
Protein-protein interaction (PPI) networks direct all cellular processes, including cell 

cycle regulation, protein folding, and transcription.1 These networks consist of hundreds 

of protein contacts that range in affinities, surface areas, and lifetimes. For instance, 

transient, moderate affinity interactions that make up many regulatory processes, 

including transcription, enable several different protein contacts at a single binding site 

on a core protein.2-3 Transcriptional activators act as core proteins recruiting several 

multisubunit complexes to specific gene promoters through transient interactions with 

their transcriptional activation domains (TADs).4 These perfectly timed interactions 

range in surface areas and affinities to orchestrate the assembly of the transcriptional 

machinery, including RNA polymerase II, to genes to activate expression. Misregulation 

of transcriptional PPI networks has been implicated in many diseases, making these 

networks logical targets for interrogation and modulation by chemical probes and 

eventually therapeutic interventions.5-6 However, the transient nature of these 

interactions makes them challenging to capture with traditional methods, such as affinity 

purification and/or chromatin immunoprecipitation (ChIP).7-9 While ChIP studies have 

determined the timed recruitment of the large coactivator complexes, including SAGA, 

Mediator, the general transcriptional factors, and RNA Polymerase II by the prototypical 

Gal4 activator at the GAL1 promoter in yeast, the direct activator binding partners within 

these complexes are still unclear.10 While the interactions between transcriptional 

activators and coactivators have been sought-after targets for small molecule 

manipulation for years, however, the detailed map of these interactions have been 

intractable due to the limitations of the current methods available.  

Recently, in vivo covalent chemical capture using photo-activatable unnatural amino 

acids (UAAs), such as p-benzoyl-L-phenylalanine (pBpa), has been a powerful tool for 
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characterizing transient PPIs. Our lab has optimized pBpa crosslinking to identify the 

direct binding partners of the prototypical activators, Gal4 and VP16, within coactivator 

complexes in Saccharomyces cerevisiae.11-15 However, this strategy has been used 

with model activators and proteins with ample biochemical data to help determine key 

incorporation sites and there have been limitations observed with the benzophenone 

scaffold and characterizing the crosslinked adducts captured. As demonstrated in 

Chapter 2, this pBpa covalent chemical capture strategy can be extended to novel 

activator-coactivator interactions with minimal to no biochemical data to help guide a 

hypothesis-driven investigation. Additionally, the suite of pBpa analogs with enhanced 

functionality characterized in Chapter 3 and 4 begin to address the limitations seen with 

the parent benzophenone scaffold, such as slow crosslinking reactivity, and the current 

crosslinking strategy, such as limited methods for the isolation of the crosslinked 

adducts, respectively. Ultimately, the work performed in this dissertation not only 

extends the current pBpa crosslinking technology to a less characterized activator 

system, but it also expands the toolbox of chemical probes and methods for completing 

the transcriptional interaction network of activators as well as the PPI networks required 

for the regulation of cellular homeostasis.   

 

5.1.1 In vivo covalent capture is a strong tool for the capture of activator-coactivator 

interactions 

A key finding in this work is that covalent chemical capture, using genetically 

incorporated pBpa, is a powerful tool to interrogate the challenging PPIs between 

activators and the dynamic, interchangeable coactivator complexes that regulate 

transcription. In Chapter 2, the utility of this methodology is extended to interrogate the 

interactions of the less characterized yeast forkhead box transcriptional activator, Hcm1, 

under nutrient stress. In this chapter, we identified a minimal TAD region of Hcm1 that is 

regulated by nutrient signaling and actives transcription when fused to the bacterial 

LexA DNA binding domain (DBD). Additionally, using two sites for pBpa incorporation, 

we covalently captured Hcm1’s interactions with the SNF1 signaling complex through 

the Snf1 kinase subunits and the Gal83 interchangeable b-scaffolding subunit under 

glucose-limiting conditions. These finding demonstrate the modularity of the Hcm1 
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activator and its ability to regulate the expression of glucose-repressed genes through 

interactions with dynamic coactivator complexes.  

Additionally, while Chapter 2 demonstrates that in vivo covalent chemical capture 

using pBpa enables the interrogation of transient, moderate affinity interactions within 

the transcriptional PPI network, Chapter 3 demonstrates that a negative result must be 

interpreted cautiously. The affinity and lifetime of the protein complex, the environment 

of the PPI interface, and the reactivity of the photo-crosslinker could all play a role in the 

lack of a crosslinking product. Therefore, the site of UAA incorporation and the photo-

crosslinker’s innate reactivity is critical to the success of an in vivo crosslinking 

experiment and must be given careful consideration.  

 

5.1.2 Electron withdrawing groups increase crosslinking reactivity of pBpa  

Although sequence context of the PPI interface is critical for the successful covalent 

chemical capture, the crosslinking reactivity of the crosslinker is also important for the 

capture of challenging PPIs. As discussed in Chapter 3, pBpa’s reversibility and minimal 

reactivity to the surrounding solvent is advantageous for the capture of transient PPIs 

seen between transcriptional activator and their coactivator partners. However, its slow 

reactivity compared to the diazarine and aryl-azide crosslinkers could miss weaker 

affinity interactions causing critical interaction gaps within the transcriptional PPI 

network. To overcome this limitation, a suite of mono-substituted pBpa analogs 

containing electron withdrawing groups (EWGs - F, Cl, CF3, Br) appended to the 

benzophenone scaffold were developed and their crosslinking reactivities were 

characterized both in vitro and in vivo. As demonstrated in the in vitro studies in Chapter 

3, the decrease in the energy needed for excitation of the radical by the EWGs 

increased the crosslinking efficiency of the Med25-VP16 interaction of each analog by 

approximately three-fold versus the unaltered pBpa molecule. Additionally, preliminary 

results show that each analog is able to be incorporated into the LexA+Gal4 TAD using 

amber nonsense suppression and can capture the Gal4-Gal80 interaction in live yeast. 

Additionally, the 4-F Bpa analog showed a marked increase in crosslinking yield of the 

Gal4 crosslinked adducts, making it a strong candidate for further analysis of weaker 

binding interactions that might have eluted the pBpa molecule. While further 



 136 

optimization is needed to determine the full effect of these EWGs on pBpa’s crosslinking 

reactivity in live cells, these findings demonstrates the positive effect of appending 

EWGs onto the pBpa framework and expands our toolbox of chemical probes for 

capturing transient, weak-affinity PPIs in their native cellular environment. 

 

5.1.3  Bifunctional UAA enables the isolation of crosslinked adducts from live cells 

While Chapter 2 has shown that in vivo covalent chemical capture holds promise in 

elucidating many uncharacterized PPIs that might have eluted traditional biochemical 

techniques, current covalent capture methods often require several steps of isolation 

and purification post-crosslinking. This is typically accomplished by immunoprecipitation 

or affinity purification that can vary in purification efficiency depending on the antibody 

or endogenous tag used. To address this limitation, we hypothesized that a bifunctional 

UAA that contained a photo-labile group and a bioorthogonal moiety that would enable 

post-crosslinking functionalization would facilitate detection and isolation of in vivo PPIs. 

The bifunctional pBpa derivative, BPKyne, contains a bioorthogonal alkyne capable of 

functionalization with a variety of azide-probes using Huisgen cyclization to facilitate the 

isolation of crosslinked products from live cells. In Chapter 4 using the model 

LexA+Gal4 activator, I demonstrate the first reported incorporation of BPKyne into live 

yeast via amber nonsense suppression and isolation of crosslinked partners of the 

BPKyne incorporated Gal4 protein. This strategy enables the direct labeling of 

crosslinked interaction using a bioorthogonal alkyne handle, which will be particularly 

advantageous for the discovery of novel PPIs.  

 
5.2 Future Directions 
5.2.1 Interrogation of the full Hcm1-transcriptional PPI network during nutrient stress 

In Chapter 2, the interactions between the Hcm1 activator and the SNF1 signaling 

complex were captured using in vivo covalent chemical capture. While this study has 

laid the groundwork for interrogating Hcm1’s full transcriptional PPI network using the 

covalent capture strategy, it used an artificial chimeric LexA+Hcm1 activator. To fully 

characterize the Hcm1 interaction network with the SNF1 complex and confirm the 

interactions between SNF1 and Hcm1’s minimal TAD, the full length Hcm1 protein 
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should be examined. Using the Hcm1 T218 and T272 incorporation sites optimized in 

Chapter 2, the interactions between Hcm1 and the SNF1 complex will be assessed 

under normal glucose conditioned and galactose stress conditions. Additionally, using 

the tandem reversible and irreversible crosslinking (TRIC) technique developed by 

former lab members, the interaction can be analyzed at Hcm1 specific genes giving 

insight into the mechanism by which Hcm1 regulates glucose repressed genes.15 

 

 
Figure 5.1 Hcm1 recruits several coactivators, such as the SNF1/AMPK, Mediator, and SAGA 
complexes, and the transcriptional machinery the DNA to express nutrient stress response genes. 
Several genetic and physical interaction studies proposed binding partners within these multisubunit 
complex (designated in red boxes). The proposed binding partners are as follows: Mediator complex – 
Med916 and Med11 subunits17, SAGA – Spt7 and Gcn518, SNF1/AMPK – Snf1 kinase19, RNA Polymerase 
II – Rpb316, and TFIID – Taf120.  
 

While Chapter 2 looks at Hcm1’s interactions within the SNF1 coactivator complex, 

reports have proposed several binding partners within the coactivator complexes in 

Figure 5.1.16-18, 21 However, there is little known about the mechanism by which Hcm1 

recruits these complexes to the promoter or whether these interactions are direct or 

indirect binding events. To initially verify the proposed binding partners of Hcm1 within 

these coactivator complexes, in vivo covalent chemical capture can be used with pBpa 
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incorporated into the full-length Hcm1 protein. Once the initial subunits are verified as 

direct binding partners, a full mass-spectrometry (MS) proteomic study should be run to 

identify other direct binding partners within these multi-subunit complexes. Our lab has 

recently used tandem in vivo covalent capture MS proteomics to identify cellular targets 

of the Gal4 activator under nutrient stress.12 This study captured several novel 

endogenous binding partners of Gal4 partners, including the SNF1 complex. Using the 

crosslinking protocol optimized by former lab members, the cellular targets of Hcm1 can 

be captured and identified through a variety of MS proteomic methods creating a map of 

Hcm1’s transcriptional PPI network during nutrient stress. 

 

5.2.2 Examination of chimeric transcriptional activator interaction specificity 

Our lab has demonstrated the strength of the in vivo covalent chemical strategy for 

capturing the transient, moderate affinity interactions between transcriptional activators 

and coactivators. In an effort to create a complete map of specific activator interactions 

during transcriptional initiation, we have identified several direct coactivator binding 

partners for the Gal4, VP16, Gcn4, and Hcm1 amphipathic activators in live yeast. 

While encouraging, these experiments used artificial chimeric LexA DBD+TAD 

constructs that were localized to the GAL1 promoter which raises the question of 

whether these activator-coactivator interactions are promoter specific or activator 

specific. While many of these coactivator complexes, such as the Mediator and SAGA 

complexes, are required for transcriptional initiation, reports have shown that specific 

genes determine the exact protein complexes needed for expression.22-24 Conversely, it 

has also been shown that while the interactions between transcriptional activators and 

coactivators are highly redundant, specific activators interact with different subunits 

within the large coactivator complexes or through a different confirmation and/or binding 

site within a similar coactivator subunit.25-27  
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Figure 5.2 Interrogation of SAGA activator interactions. Live yeast expressing pBpa incorporated Flag 
tagged LexA+TAD activators (LexA+Gal4, LexA+VP16, and LexA+Hcm1) and Myc-tagged SAGA 
subunits (Spt20, Gcn5, Tra1, and Taf12) were irradiated, lysed, and immunoprecipitated with a-LexA to 
capture the activator specific interactions. Samples were analyzed by western blot probing for the myc-
tagged SAGA subunits. Based on the western blots, the SAGA-activator interactions are as follows: Gcn5 
interacts with all three activator TADs, Spt20 only interacts with Hcm1, Tra1 interacts with Gal4 and 
HCm1, and Taf12 interacts with VP16 and Hcm1.  
 

While using LexA+TAD chimeras at the GAL1 promoter to interrogate the activator-

coactivator interaction network, we have seen some specificity between activator TADs 
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using in vivo covalent chemical capture.  For example, while Gal4 and both VP16 

subdomains interact with the Snf1 kinase domain of the SNF1 signaling complex, Gal4 

and only one subdomain of VP16 interact with the Gal83 b-scaffolding subunit.12 

Additionally when examining activator interactions with the SAGA complex, we found 

that Gal4, VP16 and Hcm1 interact with the Gcn5 acetyltransferase domain, while only 

Hcm1 and Gal4 interact with the Tra1 activator interacting domain (Figure 5.2). These 

findings demonstrate some specificity programmed within the activator TAD sequences. 

However, in these studies only one incorporation site was used for each artificial 

activator which might affect covalent capture as described in Chapter 3.  To fully 

examine the specificity of each TAD sequence, chimeric activators can be designed 

with different DNA binding domains changing the promoter localization. For example, 

Gal4 (1-147) or Hcm1 (100-200) could be used to localize each activator to Gal4 or 

Hcm1 specific genes to assess whether these interactions are determined by the 

promoter or the specific TAD sequence. Additionally, full-length activators could be used 

to fully characterize each TAD’s interaction network and determine whether these 

artificial transcription factors are good models to study activator-coactivator interactions 

in their cellular environment. 

 

5.2.3 Mass Spectrometry proteomic screen of activator interaction network using pBpa 

analogs with enhanced functionality 

While our lab has captured several direct binding partners of amphipathic activators 

in live yeast, these experiments have been more hypothesis-driven; only examining one 

activator-coactivator interaction at a time using traditional immunological techniques and 

western blot analysis. To fully interrogate the interactions between an activator and a 

whole complex through these methods would be very tedious and time-consuming. 

However with the advancement in MS proteomic techniques, the endogenous 

interacting partners of a transcriptional activator can be examined through one 

experimental screen, and affinity purification coupled with quantitative MS has become 

a leading method for characterizing in vivo PPI networks. Additionally, using in vivo 

covalent chemical capture our lab has captured the endogenous binding partners of the 

LexA+Gal4 activator and identified several direct enzymatic binding partners through 
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quantitative MUDPIT mass spectrometry, including the Snf1 and Gal83 subunits of the 

SNF1 signaling complex.12  

This proteomic screen demonstrates the strength of coupling crosslinking and 

quantitative proteomics to quickly identify multiple binding partners of transcriptional 

activators. However, there are still critical limitations seen with the current protocol that 

must be optimized to analyze the different activator PPI networks. First, while the in vivo 

covalent chemical capture method is routine, several steps of isolation and purification 

are required to obtain the crosslinked products for MS analysis. This is typically carried 

out through immunological techniques that rely on commercially available antibodies 

that vary in availability and specificity for a given target. Additionally, genetically 

incorporated epitope tags are required when protein-specific antibodies are not 

available which could negatively affect the function and structure of the proteins of 

interest or capture nonspecific proteins containing the epitope tag within their 

endogenous amino acid sequence. For example, in the Gal4 crosslinking proteomic 

screen the Snf1 kinase was initially ruled out as a target for Gal4 due to its high spectral 

count in both the –UV and +UV samples. However, after further examination of the Snf1 

amino acid sequence, an endogenous polyhistidine tag was found causing the protein 

to be pulled out of lysate during the nickel affinity purification step in the –UV samples. 

To overcome this limitation, the BPKyne bifunctional amino acid developed in Chapter 4 

could be used to capture and facilitate the isolation of the crosslinked adducts from cell 

lysate through its bioorthogonal alkyne handle, decreasing the large amount of 

nonspecific background proteins pulled out from epitope tags and the need for protein-

specific antibodies (Figure 5.3).  

While BPKyne could improve the purification and isolation of crosslinked products 

for MS analysis, the 4-Br Bpa analog developed in Chapter 3 could enable quantitative 

proteomic analysis without the need for expensive isotopic labeling systems, such as 

stable isotope labeling using amino acids in cell culture (SILAC) systems.28-29 

Compared to proteogenic elements that only exist in one predominant isotope, bromine 

exists naturally as two stable isotopes, 79Br and 81Br, that are equally abundant.30  
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Figure 5.3 Mass Spectrometry screen of crosslinked activator interactions using pBpa analogs. (Left) 
Using BPKyne, the crosslinked products can be labeled with a biotin-azide through CuAAC and isolated 
from cell lysate using Neutravidin magnetic beads. Upon mass spectrometry analysis, the activator 
interacting partners can be identified through elevated spectral counts in +UV samples compared to –UV 
samples. (Right) Using 4-Br Bpa, the crosslinked products are isolated and purified through affinity 
purification using antibodies specific to the activator of interest. Upon mass spectrometry analysis, the 
activator interacting partners can be quantitatively identified by the mass differences in Br isotopes found 
in the crosslinker.  
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When 4-Br Bpa is incorporated into an activator of interest, the endogenous binding 

partners can be captured and upon MS analysis, the protein targets can be quantified 

between samples to accurately identify interaction partners with minimal bias between 

experimental replicates (Figure 5.3). Due to bromine’s distinct isotopic signature, using 

4-Br Bpa enables the capture and identification of activator interacting partners that may 

be drowned out by high abundance proteins.31 While several novel binding partners of 

Gal4 were identified in the crosslinking proteomics screen, no transcriptionally relevant 

complexes were observed, mainly due to their low abundance in the cell (<500 copies). 

Using 4-Br Bpa or BPKyne, rather than the parent pBpa crosslinker, could possibly 

enable to capture and identification of the low abundance proteins required for 

transcriptional initiation that have eluted the current strategy. 
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