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ABSTRACT 

 

A Role for Sirtuins in Maintaining Mammalian Lifespan and Healthspan 
 
 
 

by 
 

William J. Giblin, Jr. 
 

Epigenetic alterations are a conserved feature of biological aging in diverse organisms, 

and have been designated as a “hallmark of aging”.  Chromatin organization – in 

particular, diminished heterochromatinization of repetitive regions – is progressively lost 

during cellular and organismal aging.  Experimentally, work in S. cerevisiae has 

revealed an age-associated loss of chromatin structure, and elucidated its deleterious 

impacts on gene expression and genomic stability.  The first example of age-associated 

heterochromatin perturbation in mammals was identified in a seminal study 25 years 

ago.  This work focused on the Major Satellite Repeats (MSRs), pericentromeric repeats 

in the mouse that ensure proper chromosomal segregation and maintenance of 

euploidy.  This study showed that MSR repression is lost during aging specifically in 

mouse myocardium. The mechanistic basis for this effect has never been elucidated. 

 

I have found that MSR derepression is not associated with decreases in levels of the 

canonical repressive marks – DNA methylation, H3K9me3, or H3K56me3 – at the 
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MSRs.  Instead, levels of the activating marks, acH3K9 and acH4K16, targets of the 

SIRT1 deacetylase, increase during aging in the heart.  These findings have led to the 

hypothesis that loss of SIRT1 activity contributes to derepression of MSR loci in aged 

myocardium.  Consistent with this hypothesis, I have found that Sirt1 deletion results in 

increased MSR expression in heart tissue.  I then present data that suggests that SIRT1 

activity maintains chromatin structure and transcriptional silencing at the MSRs, using 

aged muscle-specific SIRT1 overexpressors. 

 

Melanoma is the most lethal skin cancer, with an estimated 73,870 new melanoma 

cases occurring in the US in 2015.  I have found that SIRT5 is critical in melanoma cell 

survival.  SIRT5 removes succinyl, malonyl, and glutaryl modifications from lysines on 

diverse protein targets, primarily in the mitochondrial matrix, thereby regulating multiple 

metabolic pathways.  In 10/10 human melanoma cell lines tested, SIRT5 knockdown 

resulted in rapid loss of proliferative potential and cell death.  Likewise, I have found that 

SIRT5 loss impeded melanoma xenograft formation in mice, and SIRT5 knockdown 

results in increased apoptotic cell death, which can be partially rescued by 

overexpressing anti-apoptotic BCL2.  Lastly, via metabolomics, SIRT5 regulates 

glucose and glutamine metabolism in melanoma.   
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CHAPTER 1 
 
 

Sirtuins as Guardians of Mammalian Lifespan and Healthspan 
 

 
Abstract 

 

The seven mammalian sirtuins (SIRT1-SIRT7) are NAD+-dependent enzymes involved 

in a broad range of cellular pathways relevant to energy metabolism, cellular stress 

responses, genomic stability, and tumorigenesis.  While SIRT1 has been at the forefront 

of sirtuin research, functional insights regarding SIRT2-SIRT7 are rapidly accumulating.  

There is now a large literature demonstrating that mammalian sirtuins suppress a 

variety of age-associated pathologies to promote healthspan.  Also, new evidence 

reveals that increased expression of SIRT1 or SIRT6 extends mouse lifespan.  

Pharmacologic targeting of sirtuins – either directly with specific activators, or indirectly 

with interventions to boost cellular NAD+ levels – has been proposed as one means of 

treating or preventing age-associated disease.  In this chapter, I summarize the 

interactions between sirtuins and the common diseases of aging, such as 

cardiovascular disease and cancer. 

 

Introduction 
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Until recently, a common point of view emerging from evolutionary biology was that 

aging was much too complex a phenomenon to be amenable to simple genetic or 

pharmacologic intervention.  Proof that eukaryotes possess regulatory pathways that 

profoundly influence lifespan emerged when it was shown, initially in C. elegans but 

then in other invertebrates and subsequently in mice, that single gene alterations can 

dramatically extend lifespan (Guarente and Kenyon, 2000).  A large body of evidence 

generated in model organisms has now conclusively shown that modulation of specific 

signaling pathways – e.g. insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS), 

mechanistic target of rapamycin (mTOR), and sirtuins – can extend lifespan in a manner 

that is conserved across distantly-related organisms (Lopez-Otin et al., 2013).  In 

mammals, the aging process can be slowed by interventions that concomitantly reduce 

the onset and pace of degenerative, neoplastic, metabolic and other age-related 

diseases (Lombard and Miller, 2014).  Thus, these interventions not only extend 

lifespan, but more importantly, prolong healthspan, defined as the period of life free 

from major disease (Gems, 2011).  Therefore, a deep understanding of these pathways 

and how they regulate the aging process may permit development of therapeutics with 

beneficial effects against a wide spectrum of age-associated degenerative diseases. 

 

This chapter focuses on the evolutionarily conserved sirtuin genes, and discusses their 

ability to affect mammalian healthspan and lifespan.  As a consequence of their NAD+  
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dependence, sirtuins have evolved as sensors and responders to environmental 

stressors to modulate diverse cellular processes such as genome maintenance, cell 

proliferation, and energy expenditure and storage (Figure 1.1). 

 

Sirtuin-driven Lifespan Extension in Invertebrates 

 

SIR2 was first identified in yeast as a gene whose loss-of-function conferred meiotic 

sterility, due to loss of transcriptional repression of the silent mating-type loci (Klar et al., 

1979).  Subsequent screens in yeast also identified SIR2 and other phenotypically 

similar mutants, which have come to define the four yeast SIR genes (Haber and 

NMN
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NAMPT
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Figure 1.1  Sirtuins are NAD+ dependent enzymes.  The salvage pathway uses ATP to 
convert NMN back to NAD+ via the catalytic activity of nicotinamide mononucleotide 
adenylyltransferases (NMNATs).  Sirtuin activity consumes nicotinamide adenine 
dinucleotide (NAD+) and produces downstream effectors that are involved in diverse 
cellular pathways.  Products of the deacetylase (or deacylase) reaction are indicated.  
Nicotinamide (NAM) is a by-product of the reaction and is a non-competitive sirtuin 
inhibitor.  Nicotinamide phosphoribosyltransferase (NAMPT) converts NAM into the NAD+ 
precursor nicotinamide mononucleotide (NMN).  NR, nicotinamide riboside; ADP-ribose, 
adenosine diphosphate ribose; PTM, post-translational modification. 
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George, 1979; Rine and Herskowitz, 1987; Rine et al., 1979; Shore et al., 1984).  These 

enzymes comprise the SIR complex that maintains transcriptional silencing at the 

mating-type loci, telomeres, and the ribosomal DNA (rDNA) arrays (Kueng et al., 2013).  

Sir2p, an NAD+-dependent histone deacetylase (HDAC) (Imai et al., 2000), is the only 

yeast Sir protein whose activity is required for silencing at all three of these loci, while 

the other SIR genes are critical for silencing only at mating-type loci and telomeres.  

 

Initial studies revealed that a specific mutation in one of the S. cerevisiae SIR genes, 

Sir4-4.2, increases replicative lifespan, defined as the number of times an individual 

yeast mother cell divides (Kennedy et al., 1995).  Later work showed that this mutation 

allows relocalization of the SIR complex (containing SIR2, SIR3, and SIR4) from 

telomeres to the nucleolar rDNA (Kennedy et al., 1997).  This focused attention on the 

only evolutionarily conserved member of this complex, SIR2.  Modest SIR2 

overexpression on its own increases replicative lifespan in yeast by 30%, whereas sir2 

deletion shortens it by 50% (Kaeberlein et al., 1999).  Initial investigation into the 

mechanism of this pro-longevity effect revealed that Sir2p protects yeast cells from a 

toxic accumulation of self-replicating extrachromosomal rDNA circles (ERCs) 

(Kaeberlein et al., 1999; Sinclair and Guarente, 1997).  Deleting the gene encoding the 

replication fork-blocking protein, Fob1p, enhances replicative lifespan by attenuating 

recombination at the rDNA arrays (Defossez et al., 1999; Kaeberlein et al., 1999).  This 

rescues the shortened lifespan of Sir2p-deficient yeast cells.   
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Data from subsequent studies suggest that additional distinct mechanisms by which 

Sir2p contributes to yeast replicative lifespan may exist.  For example, Sir2p facilitates 

asymmetrical partitioning of oxidized proteins, misfolded protein aggregates, and 

dysfunctional mitochondria by maintaining the polarity machinery responsible for 

retention of damaged macromolecules in mother cells (Higuchi et al., 2013; Liu et al., 

2010).  Sir2p may also promote yeast replicative lifespan through an epigenetic 

mechanism involving the heterochromatic regions adjacent to telomeres.  At the 

telomere-euchromatin boundary, Sir2p opposes the activity of the Sas2p histone 

acetyltransferase to maintain silencing, by regulating histone H4 lysine 16 acetylation 

(H4K16Ac) (Suka et al., 2002).  Derepression of subtelomeric silencing via a mutation 

mimicking constitutive H4K16 acetylation reduces yeast lifespan (Dang et al., 2009).  

Indeed, Sir2p expression levels steadily decline over the yeast lifespan, concomitant 

with an increase in H4K16Ac.  Altogether, these studies have cast Sir2p in multiple, 

distinct roles in promoting yeast replicative lifespan: first, by stabilizing the rDNA array; 

second, by protecting daughter cells from inheriting damaged proteins and dysfunctional 

mitochondria; and third, by maintaining transcriptional silencing at subtelomeric regions.   

 

Chromatin organization – in particular, diminished heterochromatinization of repetitive 

regions – is progressively lost during cellular and organismal aging.  Experimentally, 

work in S. cerevisiae has revealed an age-associated loss of chromatin structure, and 

elucidated its deleterious impacts on gene expression and genomic stability.  These 

studies prompted investigations into whether SIR2-like genes exist and show analogous 

functions in higher eukaryotes.  For example, in mice, pericentromeric heterochromatin, 
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comprising of major satellite repeat (MSR) sequences that help to ensure proper 

chromosomal segregation and maintenance of euploidy, remains transcriptionally silent.  

Mammalian SIRT1 and H1K26ac, a SIRT1 target, has been implicated in maintaining 

MSR silencing (Oberdoerffer et al., 2008).  According to this model, tested in mouse 

stem cells, increased DNA damage causes SIRT1 to relocalize from MSR loci to the 

damaged sites to facilitate repair, which allows transcription within the MSR regions.  

Over 25 years ago, a seminal study, focused on MSRs silencing, identified the first 

example of age-associated heterochromatin perturbation in mammals (Gaubatz and 

Cutler, 1990).  This study showed that MSR repression is lost during aging specifically 

in mouse myocardium.  The mechanistic basis for this effect has never been elucidated.   

 

SIR2 homologues have been identified in diverse species, and are present in both 

eukaryotes and prokaryotes.  Collectively, these Sir2p-like proteins are termed sirtuins, 

and are of ancient evolutionary origin (Frye, 2000).  Caenorhabditis elegans and 

Drosophila melanogaster have been used as experimental tools to elucidate the roles 

sirtuins may play in promoting longevity and to some extent disease susceptibility in 

multicellular organisms.  The C. elegans genome encodes four sirtuin genes, SIR-2.1 

though SIR-2.4, that are homologous to mammalian SIRT1 (SIR-2.1), SIRT4 (SIR-

2.2/2.3) and SIRT6/SIRT7 (SIR-2.4) (Frye, 2000).  Overexpression of the SIRT1 

homologue, SIR-2.1, modestly extends mean lifespan in worms (by 10-15%), an effect 

that is dependent upon DAF-16.  DAF-16 is the single worm forkhead box O (FOXO) 

transcription factor homologue, a major target of the IIS cascade (Berdichevsky et al., 

2006; Mouchiroud et al., 2013; Rizki et al., 2011; Tissenbaum and Guarente, 2001, 
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2002; Viswanathan and Guarente, 2011).  Independent of IIS signaling through DAF-16, 

pure synthetic ascaroside administration increases worm lifespan and stress resistance 

in a SIR-2.1-dependent manner.  C. elegans ascarosides are secreted molecules that 

control developmental timing and various social behaviors in this organism.  Inhibition of 

sensory neurons abolishes this phenotype, linking sensing of endogenous small 

molecules to sirtuin-dependent longevity and stress resistance (Ludewig et al., 2013).  

Also, studies of the C. elegans SIRT6/SIRT7 homologue SIR-2.4 have revealed that this 

protein promotes DAF-16 function in response to stress, and is required for resistance 

to cellular dysfunction induced by expression of a poly-glutamine tract-containing 

protein (Chiang et al., 2012).  

 

The Drosophila melanogaster genome encodes five sirtuins, corresponding to 

mammalian SIRT1 (dSir2), SIRT2, SIRT4 SIRT6, and SIRT7 (Frye, 2000).  

Overexpression of dSIR2, in the nervous system, the fat body or whole organism 

increases longevity (Banerjee et al., 2012; Hoffmann et al., 2013; Rogina and Helfand, 

2004).  Importantly, one prominent report could not reproduce the pro-longevity effects 

of either C. elegans or D. melanogaster sirtuins (Burnett et al., 2011).  Differing 

husbandry conditions and/or genetic backgrounds may explain the discrepancies 

between laboratories. 

 

Sirtuin Enzymatic Activity 
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Mammalian sirtuins have varied enzymatic activities, working as NAD+-dependent 

deacetylases/deacylases (SIRT1, SIRT2, SIRT3, SIRT5, SIRT6, SIRT7), and ADP-

ribosyltransferases (SIRT4, SIRT6) (Figure 1.1).  They function as cellular stress 

sensors to modify histones and a plethora of other proteins – including transcription 

factors – to modulate diverse cellular processes (Imai et al., 2000; Jiang et al., 2013; Lin 

et al., 2009).  Although the seven mammalian sirtuins share a fairly conserved NAD+-

binding catalytic domain, the amino and carboxy regions that flank this domain are 

highly divergent.  Sirtuins differ in expression pattern, catalytic activity, biological 

function and subcellular localization (Figure 1.2, Table 1.1), residing predominantly in 

the nucleus (SIRT1, SIRT6, and SIRT7), cytosol (SIRT2), or mitochondrial matrix 

(SIRT3, SIRT4, and SIRT5) (Canto et al., 2013).  Among the mammalian sirtuins, only 

SIRT6 and SIRT7 are homologous to one another across their entire coding sequences 

(Frye, 2000).  In this section we briefly review the salient enzymatic features of each 

sirtuin and the subcellular context in which they reside. 

 

The best-characterized sirtuin, SIRT1, deacetylates a variety of proteins to modulate 

many cellular processes such as metabolism and cellular stress responses (Rahman 

and Islam, 2011).  SIRT1 also possesses deacylase activity in vitro, though the in vivo 

significance of this activity is not known (Feldman et al., 2013).  SIRT1 possesses two 

nuclear export and two nuclear localization signals, allowing it to translocate to the 

cytosol in certain transformed cell lines (Byles et al., 2010; Jin et al., 2007), adult 

cardiomyocytes (Tanno et al., 2007) and neurons (Hisahara et al., 2008; Li et al., 2008); 

however, the biological relevance of this shuttling is not fully understood 
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.Cytosolic SIRT2 deacetylates α-tubulin and has been found in the nucleus during the 

mitotic G2/M transition, where it localizes to chromatin and deacetylates H4K16Ac 

(Vaquero et al., 2006).  In this regard, SIRT2 has been identified as a regulator of 

mitotic exit in mammalian cells (Harting and Knoll, 2010).  Also, SIRT2 deacetylase 

activity regulates chromatin dynamics and gene expression, by opposing 

autoacetylation of the histone acetyltransferase p300 in vivo (Black et al., 2008).  SIRT2 

also activates the NADPH-generating enzyme, glucose-6-phosphate dehydrogenase 

(G6PD) by deacetylating lysine 403, which lies within its NADP+ binding domain (Wang 

et al., 2014).   

Table 1.1  Sirtuin subcellular localization, enzymatic activities and known histone 
substrates.  Also, examples of major non-histone interacting partners or substrates are 
indicated:  
 

Sirtuin
Subcellular 

localization
Enzymatic Acitivity

Confirmed Histone 

Substrates

Examples of Major Nonhistone Interactors and 

Substrates

1 Nuclear / Cytoplasmic Deacetylase
H1K26, H3K9, H3K14, 

H4K16

p300, SUV39H1, EZH2, p53, FOXOs, NF-kB, c-Fos, c-

Jun, c-MYC, HIF-1a, Ku70, NBS1, PARP1, PGC-1a, 

many others

2 Nuclear / Cytosolic Deacetylase H3K56, H4K16
TUBA, PEPCK1, FOXOs, PAR3, p300, p53, p65, NF-

kB, c-MYC, CDH1, CDC20, PGC-1a

3 Mitochondrial Deacetylase --
LCAD, HMGCS2, SOD2, IDH2, p53, Ku70, ACS2, 

ALDH2, NDUFA9 SDHA, GDH, many others

4 Mitochondrial Deacetylase / ADP-ribosyltransferase -- MCD, GDH, IDE, ANT2, ANT3 

5
Mitochondrial 

/Cytosolic

Deacetylase (?) / Demalonylase / 

Desuccinylase / Deglutarylase
-- CPS1, HMGCS2, SOD1, PDC, SDH, many others

6
Nuclear Chromatin / 

Cytoplasmic

Deacetylase / Deacylase / ADP-

ribosyltransferase
H3K9, H3K56

c-MYC, CtIP, GCN5, c-Jun, DNA-PK, PARP, HIF-1a, 

TNFa

7 Nucleolar Deacetylase H3K18 c-MYC, p53, GABPb1
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The SIRT2-G6PD interaction is further enhanced upon oxidative stress, and results in 

activation of the pentose phosphate pathway, which supplies the cell with increased 

NADPH levels to maintain redox homeostasis.  

 

SIRT3 is the principle mitochondrial deacetylase that plays essential roles in 

mitochondrial functions: ATP production, reactive oxygen species (ROS) management, 

SIRT1

SIRT6

SIRT2

SIRT3

SIRT4

SIRT5

SIRT7

SIRT1

SIRT2

SIRT6

SIRT5

SIRT7

SIRT5

Figure 1.2  Sirtuin subcellular localization.  SIRT1 is localized to the nucleus and can 
shuttle to the cytoplasm under certain conditions.  SIRT2 is a cytosolic protein present in 
the nucleus during the G2/M transition of the cell cycle.  SIRT3, SIRT4 and SIRT5 are 
primarily mitochondrial sirtuins.  SIRT5 has been detected outside the mitochondria 
where it deacylates specific targets.  SIRT6 is chromatin-bound in the nucleus, but has 
been found associated with cytoplasmic stress granules.  SIRT7 is nucleolar and 
associates with ribosomal DNA, but also regulates extra-nucleolar nuclear processes. 
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β-oxidation, ketogenesis and cell death among other processes (Brenmoehl and 

Hoeflich, 2013; Lombard et al., 2007; Lombard and Zwaans, 2014).   

 

SIRT4 and SIRT5 are also present mainly in the mitochondrial matrix; a recent 

proteomic analysis identified a number of extra-mitochondrial SIRT5 targets, as well as 

an extra-mitochondrial fraction of SIRT5 (Park et al., 2013).  Initially, SIRT4 was found 

to be an ADP-ribosyltransferase (Haigis et al., 2006); however Laurent et al. recently 

reported that SIRT4 deacetylates and inhibits malonyl-CoA decarboxylase (MCD), an 

enzyme that generates acetyl-CoA from malonyl-CoA to regulate fatty acid synthesis 

(Laurent et al., 2013).  Likewise, initial characterization of SIRT5 found that it 

deacetylates and activates carbamoyl phosphate synthetase 1 (CPS1), to promote urea 

cycle function.  Subsequent mass spectrometry-based analyses have revealed that the 

major biochemical function of SIRT5 is to remove newly-discovered, negatively-charged 

PTMs (i.e. succinyl, malonyl, and glutaryl moieties) from lysine residues, including those 

on CPS1 (Du et al., 2011; Nakagawa et al., 2009; Park et al., 2013; Peng et al., 2011; 

Rardin et al., 2013; Tan et al., 2014).   

 

Nuclear SIRT6 deacetylates H3K9Ac and H3K56Ac (Michishita et al., 2008; Michishita 

et al., 2009; Yang et al., 2009), the DNA repair factor CtIP (Kaidi et al., 2010), and the 

acetyltransferase GCN5 (Dominy et al., 2012).  The presence of long-chain fatty acids 

stimulates SIRT6 function (Feldman et al., 2013), hinting at a distinct means of coupling 

SIRT6 function to nutrient status independent of NAD+ levels. SIRT6 also activates 

poly[ADP-ribose] polymerase 1 (PARP1) via mono-ADP-ribosylation (Mao et al., 
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2011b), and promotes secretion of the pro-inflammatory cytokine tumor necrosis factor 

alpha (TNFα) via deacylation (Jiang et al., 2013).  SIRT6 and its invertebrate 

homologue SIR-2.4 promote formation of cytoplasmic stress granules, and associate 

with these structures (Jedrusik-Bode et al., 2013; Michishita et al., 2005; Simeoni et al., 

2013).  SIRT6 regulates hepatic circadian gene expression by directly interacting with 

the circadian control proteins, CLOCK (circadian locomotor output cycles kaput) and 

BMAL (or ARNTL for aryl hydrocarbon receptor nuclear translocator-like) to modulate 

their recruitment to chromatin.  SIRT6 also restricts sterol regulatory element binding 

protein 1 (SREBP-1)-mediated transcription of target genes, thereby controlling 

circadian-dependent metabolism, including fatty acid synthesis and β-oxidation (Masri et 

al., 2014).  

 

SIRT7 is mainly localized to the nucleolus, where it associates with RNA polymerase I 

and nucleolar transcription activator upstream-binding factor 1, and occupies the 

promoters of ribosomal DNA (rDNA) loci (Ford et al., 2006).  The c-MYC transcription 

factor interacts with and targets SIRT7 to the rDNA promoters.  By reducing ribosomal 

protein expression, SIRT7 mitigates ER stress brought about by the unfolded protein 

response (Shin et al., 2013).  By interacting with the transcription factor ELK4, SIRT7 

suppresses transcription of target genes by deacetylating H3K18Ac at specific gene 

promoters (Barber et al., 2012).  SIRT7 is also responsible for the reduction in genome-

wide H3K18 acetylation associated with oncogenic transformation.  SIRT7 protects the 

testicular receptor 4 (TR4) transcription factor from ubiquitin-mediated degradation by 

binding to components of the E3 ubiquitin ligase complex (Yoshizawa et al., 2014).  
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SIRT7 also localizes outside the nucleolus.  In vivo and mass spectrometry analyses 

have demonstrated that SIRT7 can directly deacetylate GA repeat binding protein, beta 

1 (GABPβ1) on three lysine resides, K69, K340 and K369.  GABPβ1 along with its 

alpha subunit (GABPα) comprises a heterotetrameric complex that stimulates 

transcription of target mitochondrial genes.  Deacetylation of these residues is required 

for GABPα/GABPβ complex formation and subsequent transcriptional activation.  This 

complex governs mitochondrial function, and SIRT7, through GABPβ1 signaling, is a 

nuclear regulator of mitochondrial activity (Ryu et al., 2014).  Therefore, SIRT7 may be 

a clinically relevant target in treating or preventing mitochondrial disease. 

 

Sirtuin enzymatic activity requires and consumes NAD+, synthesized de novo or 

regenerated through the salvage pathway, to produce the noncompetitive feedback 

inhibitor nicotinamide (NAM), 2’-O-acetyl-ADP-ribose (or the corresponding acyl 

derivative), and the modified substrate (Tanner et al., 2000) (Figure 1.1).  Thus, the 

requirement of sirtuins for NAD+ distinguishes them from other classes of mammalian 

deacetylases, linking their enzymatic activity to the cellular nutritional and redox milieu 

and metabolic state of the organism (Bordone and Guarente, 2005). 

 

Sirtuins and Mammalian Longevity 

 

Several groups have generated sirtuin knockout and overexpressor mouse models 

(Finkel et al., 2009).  In this section, we review currently existing data showing that 

overexpression of two mammalian sirtuins, SIRT1 and SIRT6, can extend mammalian 
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lifespan.  SIRT2 overexpression also extends longevity in the context of a mutant with 

defective chromosomal segregation. 

 

SIRT1 

The closest mammalian homologue of yeast Sir2p is SIRT1.  Multiple groups have 

investigated whether elevated SIRT1 expression can increase mammalian lifespan.  

Initial characterization of transgenic mice overexpressing SIRT1 in multiple tissues from 

an ectopic promoter revealed improvements in several metabolic parameters, 

somewhat resembling the benefits of calorie restriction (reduced caloric intake without 

malnutrition) (Bordone et al., 2007).  Subsequent characterization of transgenic mouse 

strains modestly overexpressing SIRT1 – from a bacterial artificial chromosome 

containing the SIRT1 genomic locus and its putative regulatory elements – revealed that 

SIRT1 protects against hepatosteatosis and preserves hepatic insulin sensitivity in a 

diabetic mouse model and in mice fed a high-fat diet (HFD) (Banks et al., 2008; Pfluger 

et al., 2008).  Overexpressing SIRT1 in the brain rescues the age-related decline in 

circadian rhythm adaptation by regulating expression of the central circadian clock 

genes, BMAL1 and PER2 (period circadian protein homolog 2) in the suprachiasmatic 

nucleus (SCN) (Chang and Guarente, 2013).  Given that mutations in genes controlling 

the circadian rhythm are associated with features of premature aging, and SIRT1, 

BMAL1 and PER2 expression all decrease in the SCN with age, it will be important to 

determine if maintaining SIRT1 expression in this region of the brain is critical for 

promoting longevity in mammals (Chang and Guarente, 2013; Masri and Sassone-

Corsi, 2014).   
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Later studies demonstrated that SIRT1 overexpression in most tissues does not extend 

mouse lifespan (Herranz et al., 2010; Jeong et al., 2012).  However, Herranz, et al. 

reported that Sirt1 transgenic mice were healthier in some respects than littermate 

controls.  Improved maintenance of glucose homeostasis, wound healing, and 

neuromuscular function, as well as delayed bone loss, and a reduced incidence of 

carcinomas and sarcomas, were observed in SIRT1 overexpressing mice (Herranz et 

al., 2010).  The inability of global SIRT1 overexpression to extend longevity has been 

ascribed to its failure to protect against age-associated lymphoma, a major cause of 

death in many inbred mouse strains (Herranz et al., 2010).  

 

However, more recently, using a brain-specific SIRT1 overexpressing mouse line 

(BRASTO mice), Satoh et al. demonstrated a median lifespan extension of 11%, and a 

delay in the incidence of cancer-related death in both sexes (Satoh et al., 2013).  

Increased SIRT1 expression specifically in the dorsomedial and lateral hypothalamic 

nuclei (DMH/LH) extends lifespan of both male and female mice by upregulating 

expression of the orexin type 2 receptor, through deacetylation of the transcription factor 

Nk2 homeobox 1 (Figure 1.3).  DMH/LH SIRT1 overexpression increases physical 

activity and whole-body oxygen consumption, maintains healthy mitochondrial 

morphology in skeletal muscle of aged animals, and promotes body temperature 

maintenance.  Based  
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on characterization of a second independently derived BRASTO transgenic line in which 

no lifespan extension was observed, Satoh et al. hypothesize that relative differences in 

SIRT1 overexpression levels in specific regions of the brain may be required for 

increased longevity.  In this regard, dose-dependent effects of sirtuin expression have 

been previously documented, both in invertebrates and in mammals.  For example, in 

the mouse heart, a 7.5-fold increase in SIRT1 expression protects against cardiac 

Figure 1.3  Lifespan extension in brain-specific Sirt1 transgenic mice.  When 
overexpressed in the dorsomedial and lateral hypothalamic nuclei of mice (DMH/LH), 
SIRT1 extends lifespan of both male and female mice by upregulating expression of 
Hcrtr2, the gene encoding the orexin type 2 receptor (OX2R), through deacetylation and 
activation of the Nk2 homeobox 1 transcription factor (NKX2-1).  Increased neural 
activation results in better quality of sleep, and preservation of youthful mitochondrial 
morphology and function. 
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dysfunction, apoptosis and oxidative stress, but an approximately 12.5-fold increase in 

SIRT1 levels causes hypertrophy and impairs cardiac function (Alcendor et al., 2007).   

 

Notably, Zhang et al. have reported a progressive age-dependent hypothalamic 

activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), 

associated with an increase in expression of pro-inflammatory markers in the aging 

brain (Zhang et al., 2013).  Suppression of hypothalamic NF-κB activity extends mouse 

lifespan.  Given that SIRT1 is an inhibitor of NF-κB transcriptional output (Yeung et al., 

2004), it is possible that the pro-longevity function of hypothalamic SIRT1 may occur in 

part via suppression of NF-κB signaling.  

 

Global deletion of Sirt1 in inbred 129/Sv mice causes late prenatal or early postnatal 

lethality.  Homozygous null embryos are developmentally delayed, with a subset 

displaying exencephaly (Cheng et al., 2003; McBurney et al., 2003).  However, in a 

genetically outbred strain, or an FVB background, SIRT1 nullizygosity is compatible with 

adult viability (McBurney et al., 2003; Satoh et al., 2010).  Sirt1 knockout mice are 

runted, sterile and show a significantly reduced lifespan (Boily et al., 2009; Li et al., 

2008; Mercken et al., 2014a).  Together these results highlight the importance of SIRT1 

activity for normal mammalian development and physiologic homeostasis. 

 

SIRT2 

BUBR1 is a protein kinase involved in the spindle assembly checkpoint, and ensures 

proper chromosomal segregation by inhibiting anaphase until correct alignment of sister 
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chromosomes occurs (Bolanos-Garcia and Blundell, 2011; Elowe, 2011).  BUBR1 

protein levels decline as a function of age, and mice carrying hypomorphic alleles 

(designated BubR1H/H) are predisposed to aneuploidy and display premature aging 

phenotypes, such as postnatal developmental delay, impaired would healing, cataracts 

and shortened lifespan (Baker et al., 2004; Hartman et al., 2007; Matsumoto et al., 

2007).  Transgenic overexpression of BUBR1 rescues these progeroid phenotypes, 

maintains genomic integrity, and extends lifespan in wild-type mice (Baker et al., 2013).   

 

Using biochemical and mass spectrometry approaches, North et al. demonstrated that 

lysine 668 (K668) in BUBR1 is a SIRT2 target.  By acetylating K668, the 

acetyltransferase cyclic-AMP response element binding protein (CREB) binding protein 

(CBP) promotes BUBR1 ubiquitylation and subsequent degradation.  SIRT2 stabilizes 

BUBR1 protein by counteracting CBP-mediated K668 acetylation; conversely inhibiting 

SIRT2 activity or reducing its levels diminishes BUBR1 protein levels. 

 

Crossing Sirt2 transgenic mice (Sirt2tg) to BubR1H/H animals on the C57BL/6J 

background resulted in a 58% increase in median lifespan and a 21% increase in 

maximal lifespan compared to BubR1H/H mice in analyses of combined sexes (North et 

al., 2014).  When sexes were analyzed independently, SIRT2 increased male median 

lifespan by 123% but showed no effect in females.  In Sirt2tg-BubR1H/H tissues, BUBR1 

protein levels were restored, demonstrating that SIRT2 can promote BUBR1 stability in 

vivo.  BubR1H/H mice die of cardiac dysfunction, while SIRT2 overexpression 

ameliorates their cardiac phenotypes.  Also, in vivo supplementation with the NAD+ 
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precursor NMN rescues the age-dependent decline of NAD+ in heart tissue, and 

elevates BUBR1 protein levels in testes from aged wild-type mice to the level observed 

in young mice.   

 

The phenotypes associated with BubR1H/H mice are not reported to be sex specific 

(Baker et al, 2004). However male mice in general may be more susceptible to cardiac 

pathology than females (Du, 2004), which may partly account for the observed sex bias 

for SIRT2-dependent lifespan extension. These results are clinically relevant since 

mutations in BUB1B, the human ortholog of BubR1, are associated with Mosaic 

variegated aneuploidy (MVA), a syndrome characterized by progeria-like phenotypes, 

short stature and shortened lifespan (Callier et al., 2005; Garcia-Castillo et al., 2008; 

Wijshake et al., 2012).  Given that BUBR1 protein levels decrease with age, and SIRT2 

overexpression is able to mitigate this defect, SIRT2 overexpression might be predicted 

to extend lifespan in wild-type mice, and merits closer examination as a potential 

therapeutic for human disease. 

 

SIRT6 

In two independent Sirt6 transgenic mouse strains, whole-body SIRT6 overexpression 

extends median lifespan of males by 14.5% and 9.9% respectively (Figure 1.4) (Kanfi et 

al., 2012).  In contrast, no significant increase in lifespan is observed in female 

transgenics.  Sexually dimorphic effects of pro-longevity interventions have commonly  
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been observed in studies of lifespan extension by small molecules in mice (e.g. 

(Harrison et al., 2009; Strong et al., 2008)).  In the case of SIRT6, these differences 

may result from discrepant effects of SIRT6 overexpression on IIS.  In male Sirt6 

transgenic mice, lower serum IGF-1 levels and reduced downstream signaling are 

present, an effect associated with longevity in many other model organisms (Fontana et 

IGF-1
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Figure 1.4  Global SIRT6 overexpression increases the lifespan of male mice.  In 
male mice, global SIRT6 overexpression increases lifespan by inhibition of the insulin-like 
growth factor 1 (IGF-1) signaling cascade.  Phosphorylation of downstream IGF-1 
signaling effectors are affected as indicated: phosphorylated AKT, (pAKT), 
phosphorylated forkhead box protein O1 and O3A (pFOXO1 and pFOXO3A), and 
phosphorylated S6 kinase (pS6).  IGFBP1 (IGF-1 binding protein 1) binds to IGF-1 to limit 
the amount available to bind to receptor molecules.  Relative protection against lung 
cancer was observed in male SIRT6 transgenics, potentially due to reduced IGF-1 
signaling. 
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al., 2010).  Further analyses by Kanfi et al. reveal that male Sirt6 transgenics are 

relatively protected against lung tumors, and show a trend towards maintenance of 

glucose tolerance with age.  Protection against other phenotypic characteristics of aging 

such as osteopenia and adrenal cortical hyperplasia was not observed upon detailed 

pathological analysis (Kanfi et al., 2012).  

 

Germline deletion of Sirt6 in inbred 129/Sv-strain mice causes severe growth 

retardation, along with progressive, lethal hypoglycemia (Mostoslavsky et al., 2006).  

SIRT6-deficient mice display a degenerative phenotype, lymphopenia, and genomic 

instability; although a subset of germline knockout mice on an outbred 129/Sv-C57BL/6 

genetic background can survive up to 1 year if supplemented with glucose early in life 

(Xiao et al., 2010).  SIRT6 inhibits expression of GLUT1, which is responsible for 

transporting glucose across the plasma membrane in mammalian cells.  In Sirt6 

knockout mouse retinas, GLUT1 is upregulated, several glutamate receptor genes are 

downregulated, and an increase in apoptosis occurs.  Sirt6 knockout retinas are less 

responsive to photostimulation, indicating that SIRT6 is required for normal retinal 

function (Silberman et al., 2014).   

 

These initial results reveal that specific mammalian sirtuins can exert pro-longevity 

effects, similar to their invertebrate homologues.  One important caveat is that disease-

specific interventions can extend lifespan, if those diseases are a prevalent cause of 

death in the population (Lombard and Miller, 2014).  In this regard, the generality of the 

positive effects of SIRT1 and SIRT6 on lifespan needs to be assessed in other mouse 
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genetic backgrounds.  SIRT1 and SIRT6 expression may indeed slow aging in 

mammals, however in order to conclusively demonstrate that these sirtuins are bona 

fide anti-aging factors, many more studies are required to comprehensively assess the 

impact of increased levels of these and other sirtuins on longevity and diverse age-

sensitive traits.  

 

Sirtuins as Modulators of Responses to Caloric Restriction  

 

Dietary or caloric restriction (CR) is the only known environmental intervention that 

robustly and reliably extends lifespan across phyla, including mammals.  CR can extend 

rodent lifespan up to 50%, while suppressing diverse age-associated conditions such as 

cancer, autoimmune disease, T2D, neurodegeneration, and many others (Speakman 

and Mitchell, 2011).  Mechanisms underlying this effect are still unclear.  Since most 

individuals find that a long-term reduction in caloric intake is difficult to maintain, a great 

deal of current aging research focuses on elucidating the mechanisms of the pro-health 

effects of CR, using yeast, flies, worms and rodent models.  Several physiological 

pathways have been proposed to regulate CR-dependent lifespan extension and 

healthspan maintenance, including IIS, mTOR signaling, AMPK signaling, and sirtuins 

(Guarente, 2013).  Given that sirtuin catalytic activity is NAD+-dependent, and NAD+ 

levels rise upon nutrient stress in certain tissues, upregulation of specific sirtuin 

functions has been proposed to represent a means to reap some beneficial effects of 

CR (Guarente, 2013).   
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Little direct evidence linking CR to sirtuin activation exists in the context of invertebrate 

models.  Also, conflicting results have been obtained regarding roles for these proteins 

in the response to CR.  Reduction of glucose in growth medium extends the replicative 

lifespan of S. cerevisiae in a strain-specific manner, though there is controversy as to 

whether this phenotype is Sir2p-dependent.  The use of inconsistent glucose 

concentrations by different laboratories has further complicated the interpretation of 

discrepant results in this area (Kaeberlein and Powers, 2007; Lamming et al., 2005; Lin 

et al., 2000).  Longo and Kennedy have detailed the controversies surrounding the 

involvement of yeast sirtuins in the CR response (Longo and Kennedy, 2006). 

  

In C. elegans, one group has reported that the SIRT1 homologue SIR-2.1 is required for 

increased longevity in response to CR (Wang and Tissenbaum, 2006) whereas several 

other labs have found that SIR-2.1 is dispensable for this effect (Greer and Brunet, 

2009; Hansen et al., 2007; Kaeberlein et al., 2006; Lee et al., 2006; Mair et al., 2009).  

In D. melanogaster, an initial report found that dSIR2 is required for CR-induced 

longevity (Rogina and Helfand, 2004), a result not replicated by a subsequent study 

(Burnett et al., 2011).  However subsequent work using RNAi-mediated dSIR2 

knockdown in specific tissues or the whole organism supported the initial finding 

(Banerjee et al., 2012; Bauer et al., 2009; Pallos et al., 2008).  It is likely that CR and 

dSIR2 act at least in part through distinct pathways in flies, since gene expression 

pattern changes associated with dSIR2 overexpression differ from those induced during 

CR (Hoffmann et al., 2013).   
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More recent studies in the fly have revealed that lifespan in this species responds to the 

relative amounts of protein and carbohydrate in the diet, rather than to an overall 

reduction in calories per se.  A complete lack of specific amino acids such as arginine, 

methionine or isoleucine is detrimental to lifespan, while an intermediate amount of 

dietary methionine results in a significant extension (Tatar et al., 2014).  This mirrors 

findings in rodents, where methionine restriction can also extend lifespan (Miller et al., 

2005; Perrone et al., 2013; Richie et al., 1994).  Little is known about the potential role 

of sirtuins in responding to specific dietary components in the context of lifespan. 

 

SIRT1 

Several reports support the hypothesis that SIRT1 is a mediator of aspects of the CR 

response in mammals, in a tissue-specific manner.  For example, SIRT1 protein levels 

increase in white adipose tissue (WAT), skeletal muscle and hypothalamus in response 

to CR in mice, however SIRT1 protein expression and NAD+ levels decrease in the liver 

(Chen et al., 2008; Cohen et al., 2004; Satoh et al., 2010).  Similarly, tissue-specific 

changes in SIRT1 activity occur during CR, likely due to changes in NAD+ levels (Chen 

et al., 2008).  Transgenic mice overexpressing SIRT1 in WAT, brown adipose tissue 

(BAT) and the brain show metabolic phenotypes somewhat reminiscent of those that 

result from a CR diet (Bordone et al., 2007).  Although SIRT1 expression is not 

increased in the liver or skeletal muscle of these transgenics, they are more glucose 

tolerant, and show reduced blood cholesterol, glucose and insulin levels, and less WAT 

accumulation.  Consistent with these findings, deletion of Sirt1 in skeletal muscle 

abrogates increased insulin sensitivity associated with CR; in contrast no apparent 
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defect in the response to CR is observed when Sirt1 is deleted specifically in the liver 

(Chen et al., 2008; Schenk et al., 2011).  Sirt1 deletion in the CNS and peripheral 

neurons also impairs insulin sensitivity in response to CR (Cohen et al., 2009).  

Surprisingly however, Sirt1 deletion in CNS neurons alone enhances insulin sensitivity 

and glucose tolerance compared to controls (Lu et al., 2013).  Findings from global Sirt1 

knockout and brain-specific SIRT1 transgenic mouse models demonstrate that SIRT1 

supports maintenance of body temperature and neuronal activity in hypothalamic nuclei 

during CR (Satoh et al., 2010).  SIRT1 also protects against age-related decline in renal 

function in mice fed a CR diet (Kume et al., 2010).  Overall, SIRT1 is required for both 

increased physical activity and certain metabolic responses observed in response to CR 

(Boily et al., 2008; Chen et al., 2008; Chen et al., 2005; Imai, 2009; Satoh et al., 2013). 

 

SIRT2 

Little is known about the potential role of SIRT2 in response to a CR diet.  One study 

found that SIRT2 expression is induced in the kidney and WAT of mice fed a CR diet.  

The authors demonstrate that SIRT2 interacts with and deacetylates FOXO3A in cell 

culture, resulting in the increased expression of several downstream targets such as 

mitochondrial superoxide dismutase 2 (SOD2) and the pro-apoptotic factor, BIM.  

Through this mechanism, SIRT2 is able to reduce cellular ROS levels through SOD2 

activation, and promote apoptosis via BIM activity, when oxidative damage is too 

extensive to repair (Wang et al., 2007).  The interpretation that SIRT2 responds to CR 

and oxidative stress via the FOXO signaling cascade requires testing in Sirt2 knockout 

animals, to determine if SIRT2 regulates physiologic aspects of the CR response. 
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SIRT3 

SIRT3 expression increases in liver, skeletal muscle, and adipose tissue during CR, 

suggesting that SIRT3 may play a role in regulating mitochondrial functions under these 

conditions (Hallows et al., 2011; Hirschey et al., 2010; Nakagawa et al., 2009; Palacios 

et al., 2009; Schwer et al., 2009; Shi et al., 2005; Someya et al., 2010).  Although 

overall hepatic mitochondrial protein acetylation increases during CR (Schwer et al., 

2009) deacetylation of specific mitochondrial target proteins occurs in this setting 

(Hebert et al., 2013), resulting from increased SIRT3 expression.  As noted previously, 

SIRT3 plays a major role in suppressing ROS levels.  Indeed, SIRT3 is required for 

reducing cellular ROS levels during CR (Qiu et al., 2010; Someya et al., 2010).  As a 

consequence of this activity, SIRT3 is required for the protection against age-associated 

hearing loss conferred by CR, via preservation of cochlear cells against age-associated 

attrition (Someya et al., 2010).  CR decreases hepatic acetyl-CoA, serum insulin and 

triglyceride levels in a SIRT3-dependent manner (Hebert et al., 2013; Someya et al., 

2010).  SIRT3 deacetylates and activates the urea cycle enzyme ornithine 

transcarbamoylase (OTC) in murine liver mitochondria in response to CR (Hallows et 

al., 2011).  OTC deficiency results in an accumulation of orotic acid due to urea cycle 

dysfunction.  Sirt3-null mice fed either a normal or CR diet exhibit increased OTC 

acetylation and higher levels of urinary orotic acid compared to wild-type mice fed a CR 

diet.  Also, mass spectrometry analysis of blood from fasted Sirt3-null mice revealed a 

decrease in the urea cycle metabolite, citrulline, which is a direct product of OTC 

activity.  Clearly SIRT3 is necessary for multiple metabolic responses to CR.  Given 
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SIRT3’s function as a tumor suppressor, it will be of interest to determine whether 

SIRT3 is required for improved cancer suppression induced by CR, or indeed if SIRT3 

is required for longevity induced by this intervention. 

 

SIRT4 

SIRT4 protein levels decline in liver (Haigis et al., 2006; Schwer et al., 2009) but not 

pancreatic β cells during CR (Haigis et al., 2006).  SIRT4 suppresses β cell insulin 

secretion in response to glucose or amino acids (Ahuja et al., 2007; Haigis et al., 2006).  

During CR, reduced β cell SIRT4 activity – occurring through mechanisms that are as 

yet unclear – may permit increased coupling of insulin secretion to amino acid 

metabolism (Haigis et al., 2006).  This effect makes physiologic sense, in that amino 

acids are used as a metabolic fuel to a greater degree during CR than under normal 

feeding conditions. 

 

SIRT5 

Little is currently known regarding roles for SIRT5 during CR. Overall levels of lysine 

succinylation, a SIRT5 target modification, increase in liver during fasting (Park et al., 

2013); the impact of chronic CR on succinylation, malonylation, or glutarylation has not 

been reported.  Hepatic SIRT5 protein levels are unchanged during CR (Schwer et al., 

2009), though nothing is known regarding SIRT5 biochemical activity in this context.  

SIRT5 has been shown to promote ketogenesis under fasting conditions (Rardin et al., 

2013), suggesting that SIRT5 could potentially play a role in use of this alternative fuel 

during CR. Alternatively, SIRT5 suppresses mitochondrial respiration through specific 
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mitochondrial complexes (Park et al., 2013), suggesting that a decrease in SIRT5 

function during CR might contribute to increased mitochondrial metabolism in response 

to this intervention.  Characterization of Sirt5 knockout mice under CR conditions will be 

required to elucidate the roles, if any, for SIRT5 during CR. 

 

SIRT6 

A role for SIRT6 in response to CR has not yet been assessed, though increased SIRT6 

expression (Kim et al., 2010b) and protein stability (Kanfi et al., 2008) in response to 

this intervention have been described in several tissues in rodents.  Fasting regimens 

induce metabolic reprogramming by initially upregulating gluconeogenesis to maintain 

blood glucose levels.  Several reports indicate that SIRT6 is a negative regulator of 

hepatic gluconeogenesis, inhibits expression of genes involved in glycolysis (Dominy et 

al., 2012; Kim et al., 2010b; Xiong et al., 2013) and negatively affects lipogenesis by 

repressing the SREBPs, transcription factors important for lipogenesis and cholesterol 

biogenesis (Elhanati et al., 2013; Tao et al., 2013). Increased SIRT6 expression in 

response to nutrient deprivation in cell culture models was found to be SIRT1-

dependent (Kim et al., 2010b), and expression of Sirt1 mRNA itself increases in 

response to CR in rat brain, WAT, kidney and liver (Cohen et al., 2004).  Given that both 

of these sirtuins interact with several factors and pathways relevant to the CR response 

(reviewed in (Guarente, 2013)), it is tempting to speculate that metabolic 

reprogramming during CR involves a complex relationship between SIRT1 and SIRT6.  

However, currently no evidence directly links SIRT6 activity to the induction of lifespan 

or healthspan benefits of a CR diet. 
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Roles for Sirtuins in Diverse Disease States 

 

Substantial evidence now exists demonstrating that activation of sirtuin activity in 

different contexts can confer health benefits in mammals, and in some cases can 

extend lifespan, as discussed previously.  While the evidence directly linking sirtuins to 

increased longevity in mammals has emerged only recently, a large body of work exists 

demonstrating that sirtuins ameliorate numerous age-associated pathological 
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Figure 1.5  Summary of sirtuin involvement in inhibiting age-related pathology.  
Outline of sirtuin effects on the indicated age-associated diseases.  Where indicated, 
both tumor suppressor and oncogenic properties have been reported, and are context-
specific.  Brain-specific SIRT1 or whole-body SIRT6 overexpression extends lifespan in 
mice. 
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conditions.  In this section, we discuss recent findings relevant to sirtuin functions as 

promoters of mammalian healthspan, with a focus on several age-associated diseases 

(Figure 1.5). 

 

Cancer 

 

A large body of research has elucidated complex, and often seemingly conflicting roles 

for sirtuins in cancer.  The following section highlights recent evidence, largely from cell 

culture and mouse models, that demonstrate sirtuins modulate tumorigenesis in a cell- 

and context-specific manner. 

 

SIRT1 

SIRT1 acts as both a tumor suppressor and oncoprotein via interaction with and 

modification of dozens of distinct substrates relevant to cancer proliferation and survival, 

including the c-MYC oncoprotein and the tumor suppressor p53 (Yuan et al., 2013).  

Elevated SIRT1 expression has been detected in many human malignancies, including 

breast, prostate, lung, colon, liver, pancreatic, lymphoma, leukemia and some ovarian 

and cervical cancers (Yuan et al., 2013).   

 

Conversely, tumor suppressor functions of SIRT1 have been observed in mouse 

models, wherein SIRT1 promotes the maintenance of genome stability (Yuan et al., 

2009), and inhibition of cell growth via survivin (an inhibitor of apoptosis), β-catenin, and 

other pathways (Lim et al., 2010; Srisuttee et al., 2012). Global SIRT1 overexpression 
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at moderate levels reduces the incidence of spontaneous carcinomas and sarcomas 

(Herranz et al., 2010).  Similarly, increased expression of SIRT1 in the APC+/min mouse 

model of intestinal polyposis decreases tumorigenesis (Firestein et al., 2008).  

Paradoxically, however, global or enterocyte-specific deletion of Sirt1 reduces the size 

and number of intestinal polyps formed in this model (Boily et al., 2009; Leko et al., 

2013).  Sirt1 deletion results in increased apoptosis in polyps arising in APC+/min mice, 

implying that SIRT1 can play a pro-survival role during tumor progression (Leko et al., 

2013).   

 

SIRT1 directly binds to and deacetylates hypoxia-inducible factor 1 alpha (HIF-1α), a 

transcription factor that regulates gene expression in response to reduced oxygen 

tension or increased ROS levels, to mediate metabolic reprogramming in cancer cells or 

other rapidly proliferating cell types (Lim et al., 2010).  Whether SIRT1-dependent 

deacetylation promotes HIF-1α activity or attenuates its ability to promote expression of 

its target genes is a matter of debate.  One study demonstrated that SIRT1 knockdown 

in vivo impairs transcriptional output of HIF-1α target genes in hepatocellular carcinoma 

cells (Laemmle et al., 2012).  Others have shown that SIRT1-dependent deacetylation 

of HIF-1α inhibits transcriptional co-activator binding to HIF-1α target gene promoters, 

thereby negatively regulating tumor growth and angiogenesis in tumor xenograft models 

(Lim et al., 2010).  SIRT1 also interacts with the oncoprotein c-MYC, though the 

functional outcome of this interaction is controversial (Mao et al., 2011a; Menssen et al., 

2012; Yuan et al., 2009).  Overexpression of c-MYC and SIRT1 is present in several 

cancer types, and is often associated with higher tumor grade (Yuan et al., 2013).  
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Although SIRT1 expression is stimulated by c-MYC, deacetylated c-MYC is more 

susceptible to degradation, and therefore SIRT1 indirectly inhibits c-MYC function (Mao 

et al., 2011a; Yuan et al., 2009).   

 

However, others have found that deacetylation stabilizes c-MYC, and enhances SIRT1 

activity by promoting NAD+ synthesis, establishing a positive feedback loop that may 

reinforce cellular malignant transformation (Menssen et al., 2012).  Thus, while SIRT1 

expression may inhibit oncogenesis in some contexts (e.g. primary cells), increased 

SIRT1 expression may confer a growth advantage in cells that have already undergone 

oncogenic alterations.  Future research focusing on the relationship between SIRT1 and 

its substrates, in particular HIF-1α and c-MYC, in various tissue- and cell-type specific 

contexts may further delineate the multiple means by which SIRT1 affects neoplasia. 

 

SIRT2 

SIRT2 regulates chromatin assembly and promotes chromosomal stability during 

mitosis, thereby functioning as a tumor suppressor (Inoue et al., 2007; Inoue et al., 

2009; Vaquero et al., 2006).  SIRT2 deacetylates α-tubulin, controls the early 

metaphase checkpoint, and affects cell cycle progression by mediating 

monomethylation of H4K20 through its interaction with the histone methyltransferase 

PR-Set7 (Dryden et al., 2003; North et al., 2003; North and Verdin, 2007; Pandithage et 

al., 2008; Serrano et al., 2013).   
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Evidence from Sirt2 knockout mice supports a tumor suppressor role for SIRT2 in vivo.  

Sirt2-null male mice develop liver and intestinal cancer, while females develop 

mammary tumors, associated with centrosome amplification, mitotic catastrophe and 

eventual cellular transformation (Kim et al., 2011b).  Accordingly, SIRT2 expression is 

reduced in human breast and hepatocellular carcinoma samples compared to healthy 

human tissue when analyzed by tissue microarray.  Two independent studies have also 

demonstrated a tumor suppressor role for SIRT2 in mouse skin (Ming et al., 2014; 

Serrano et al., 2013).   

 

However, like SIRT1, SIRT2 also has seemingly contradictory roles in cancer.  Several 

studies demonstrate that SIRT2 knockdown actually induces apoptosis in glioma and 

HeLa cervical carcinoma cell lines, and SIRT2 expression is increased in 

neuroblastoma and pancreatic cancer cells (Yuan et al., 2013).  Tenovins, a class of 

small molecules that increase p53 acetylation and activation in tumor cells (McCarthy et 

al., 2012), can inhibit SIRT1 and SIRT2 activity, induce apoptosis in transformed cell 

lines, and impede tumor growth in vivo (Lain et al., 2008; McCarthy et al., 2010).  Given 

that SIRT1 and SIRT2 have been shown to deacetylate p53 to inhibit its transcriptional 

activity and promote its ubiquitin-mediated degradation (Langley et al., 2002; Luo et al., 

2004; Luo et al., 2001; van Leeuwen et al., 2013; Vaziri et al., 2001), an effect lost upon 

tenovin treatment (van Leeuwen et al., 2013), tenovins may be therapeutically useful in 

treating cancers with reduced p53 activity due to elevated SIRT1 and/or SIRT2 

expression. 
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SIRT3 

SIRT3 has also been implicated as both a tumor suppressor and oncogene in various 

contexts.  The SIRT3 gene is deleted in up to 20% of all human cancers, and in 40% of 

breast and ovarian cancers specifically (Finley et al., 2011).  Consistent with this finding, 

SIRT3 mRNA expression is reduced in diverse human cancers, including testicular, 

prostate, and hepatocellular tumors, compared to non-malignant tissue (Kim et al., 

2010a).  An increased incidence of mammary cancer occurs in mice lacking SIRT3, and 

SIRT3 protein levels are lower in human breast tumors when compared to healthy 

breast tissue (Finley et al., 2011; Kim et al., 2010a).  By immunohistochemistry, SIRT3 

protein expression is greatly reduced in a large fraction of human breast cancers, and 

low SIRT3 expression is associated with poor prognosis and decreased patient survival 

(Desouki et al., 2014).  

 

Mechanistically, one major function of SIRT3 in the context of tumor suppression is to 

suppress ROS-mediated damage.  Elevated ROS levels promote tumorigenesis by 

inducing DNA mutations and genomic instability, and activating pathways regulating 

metabolism, cell survival, and proliferation (Liou and Storz, 2010).  SIRT3 deacetylates 

and activates mitochondrial SOD2 and isocitrate dehydrogenase 2 (IDH2); 

deacetylation of IDH2 in turn allows regeneration of the antioxidant glutathione (Qiu et 

al., 2010; Someya et al., 2010; Tao et al., 2010).  Sirt3 deletion increases ROS and 

stabilizes HIF-1α, which results in pro-tumorigenic metabolic reprogramming (Bell et al., 

2011; Finley et al., 2011; Kim et al., 2010a).  In addition, deletion of Sirt3 in mouse 

embryonic fibroblasts increases intracellular superoxide levels and aneuploidy in 
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response to genotoxic stressors, suggesting that SIRT3 guards against chromosomal 

instability and tumorigenesis by maintaining genomic integrity (Kim et al., 2010a).  

Overall, suppression of ROS levels is likely a principal means by which SIRT3 inhibits 

tumorigenesis.   

 

Recently, SIRT3 has also been shown to activate mitochondrial respiration via the 

pyruvate dehydrogenase complex (PDC) (Fan et al., 2014; Jing et al., 2013).  Cancer 

cell metabolic reprogramming frequently involves reversible inactivation of PDC (e.g. 

(Kaplon et al., 2013)); therefore the activity of SIRT3 towards PDC represents a distinct 

mechanism by which SIRT3 suppresses neoplasia. 

 

However, data also exist supporting an oncogenic role for SIRT3.  Li-Fraumeni 

Syndrome (LFS) is characterized by a predisposition to a wide spectrum of cancers, 

and frequently results from mutations in the TP53 gene.  In a study of a family with LFS 

and no apparent TP53 mutation, a genomic duplication of the entire genomic region 

containing the SIRT3 locus was identified, leading to increased SIRT3 mRNA 

expression (Aury-Landas et al., 2013).  The authors directly evaluated the potential 

contribution of SIRT3 to tumorigenesis in these patients, and demonstrated that SIRT3 

overexpression in a glioma cell line inhibits apoptosis, deregulates cell cycle 

progression and results in CpG island hypermethylation, features typically associated 

with cancer (Hanahan and Weinberg, 2011).  Furthermore, SIRT3 has been reported to 

inhibit p53-induced growth arrest in human bladder cancer cells (Li et al., 2010).  

Elevated SIRT3 expression has been detected in node-positive breast cancer (Ashraf et 
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al., 2006) and oral squamous cell cancer (OSCC).  In OSCC, SIRT3 knockdown inhibits 

proliferation and sensitizes cells to radiation and chemotherapeutic treatments in vitro 

(Alhazzazi et al., 2011).  A conflicting report claims that SIRT3 enzymatic activity is 

reduced in OSCCs, and that upregulation of SIRT3 expression inhibits proliferation of 

OSCC cell lines (Chen et al., 2013).  Thus, as with SIRT1 and SIRT2, the oncogenic 

and tumor suppressor activities of SIRT3 are likely highly context specific. 

 

SIRT4 

SIRT4 functions as a tumor suppressor by suppressing glutamine metabolism and 

promoting genomic stability through distinct mechanisms (Csibi et al., 2013; Jeong et 

al., 2014; Jeong et al., 2013).  SIRT4 inhibits cells from metabolizing glutamine to 

replenish tricarboxylic acid (TCA) cycle intermediates (anaplerosis).  Jeong et al. 

showed that SIRT4 represses glutamine anaplerosis in response to DNA damage, and 

that consequently Sirt4 knockout MEFs do not reduce their glutamine uptake after UV 

exposure (Jeong et al., 2013).  In response to DNA damage, SIRT4 levels increase, and 

repress mitochondrial glutamine metabolism.  Since glutamine is critical for G1 to S cell 

cycle progression (Colombo et al., 2011), SIRT4 indirectly regulates the cell cycle, 

allowing for proper DNA repair and maintenance of genomic stability.  In vivo, SIRT4 

deficiency results in growth of larger tumors in a nude mice allograft model.  

Correspondingly, two independently derived strains of Sirt4-null mice show an 

increased incidence of spontaneous lung tumors (Jeong et al., 2013).  SIRT4 deletion 

hastens lymphomagenesis and death in a mouse model of Burkitt lymphoma (Jeong et 

al., 2014), whereas SIRT4 overexpression reduces glutamine consumption and 
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glutamine-dependent growth in MYC-driven human Burkitt lymphoma cells, and 

sensitizes these cells to glucose depletion.   

 

An independent study found that the mechanistic target of rapamycin complex 1 

(mTORC1) pathway regulates glutamine anaplerosis by promoting the activity of 

glutamate dehydrogenase (GDH), a SIRT4 target (Csibi et al., 2013; Haigis et al., 

2006).  SIRT4 ADP-ribosylates and inactivates GDH to inhibit glutamine metabolism.  

SIRT4 overexpression in MEFs lacking the negative regulator of mTORC1, TSC2, 

shows attenuated transformation, proliferation and tumor development in a xenograft 

assay (Csibi et al., 2013).  Overall, SIRT4 inhibits glutamine metabolism, thereby 

promoting genome stability and repressing tumorigenesis.  Increasing SIRT4 activity 

may have therapeutic benefit specifically in MYC-driven cancers.   

 

SIRT5 

Like SIRT3 and SIRT4, SIRT5 localizes primarily to the mitochondrial matrix.  However, 

a recent study identified a substantial fraction of active SIRT5 present outside the 

mitochondrion in both mouse liver and human cells (Park et al., 2013).  As previously 

noted, SIRT5 possesses minimal lysine deacetylase function, while showing strong 

activity towards non-canonical PTMs: succinyl, malonyl, and glutaryl moieties (Du et al., 

2011; Park et al., 2013; Peng et al., 2011; Rardin et al., 2013; Tan et al., 2014).  Two 

recent large-scale mass spectrometry analyses of mouse liver have identified 

thousands of SIRT5 desuccinylation sites on hundreds of protein targets (Park et al., 

2013; Rardin et al., 2013), many of which are distinct from acetylation sites.  Among 
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sites whose succinylation could be quantified, succinylation increased on >90% of these 

in the context of SIRT5 deficiency (Park et al., 2013). These studies have revealed that 

SIRT5 is a major regulator of cellular succinylation, analogous to the major role SIRT3 

plays in regulating mitochondrial acetylation. 

 

Somewhat surprisingly, analysis of Sirt5-null mice undertaken to date has generally 

revealed a lack of striking phenotypes (Lombard et al., 2007), though very mild 

resistance to HFD has been noted (Yu et al., 2013).  SIRT5 has been reported to 

deacetylate (Nakagawa et al., 2009; Ogura et al., 2010), desuccinylate (Du et al., 2011), 

and deglutarylate (Tan et al., 2014) carbamoyl phosphate synthetase 1 (CPS1), thereby 

activating this enzyme to detoxify ammonia via the urea cycle for subsequent renal 

excretion. Consequently, Sirt5 knockout mice display elevated blood ammonia after a 

prolonged fast (Nakagawa et al., 2009). SIRT5 represses PDC and succinate 

dehydrogenase activities; consequently, SIRT5-deficient cells and mitochondria show 

elevated respiration (Park et al., 2013).  SIRT5 promotes HMGCS2 activity and ketone 

body formation; Sirt5-null mice show a modest reduction in ketone levels during fasting 

(Rardin et al., 2013).  An increase in medium- and long-chain acylcarnitines was 

reported in liver and skeletal muscle of Sirt5-null mice, suggesting that SIRT5 deficiency 

confers a defect in fatty acid oxidation.  Other reported SIRT5 targets include SOD1, a 

key cellular antioxidant enzyme.  Mutating the SIRT5 target site in SOD1 inhibits lung 

tumor cell growth, potentially implicating SIRT5 as a mediator of cancer proliferation via 

SOD1 activation and cellular ROS protection (Lin et al., 2013).  
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In light of these targets, perhaps a major physiologic function of SIRT5 might be to 

suppress the use of glucose (via repression of PDC); while promoting the use of 

alternative fuel sources, such as amino acids (and hence, detoxification of their 

metabolic by-products via CPS1 activation), and ketone bodies (via HMGCS2). 

 

One defining feature of cancer cells is the ability to perform aerobic glycolysis to 

generate ATP, commonly known as the Warburg effect.  In the 1920’s, Otto Warburg 

observed that highly proliferative tumor cells consumed glucose to generate large 

amounts of lactate instead of oxidizing it to produce ATP via oxidative phosphorylation 

(Warburg, 1956).  He then proposed that this was the result reduced oxidative 

phosphorylation.  It has been subsequently demonstrated that many tumor cell lines do 

not have defective oxidative phosphorylation capacity (Moreno-Sanchez et al., 2007).  

Two enzymes that play key roles in the TCA cycle, whose intermediates contribute to 

biosynthetic pathways that produce nucleotide precursors, amino acids and lipids, 

among others, are PDC and SDH.  As discussed above, SIRT5 regulates the activities 

of these enzymes, thereby impacting many aspects of cellular metabolism.  In future 

studies, it will be of great interest to test SIRT5’s roles in response other metabolic 

stressors, and, analogous to published work on SIRT3, assess potential SIRT5 roles in 

cancer cell metabolic reprogramming. 

 

Cardiovascular Dysfunction 
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Cardiovascular disease (CVD), including coronary heart disease and peripheral arterial 

disease, account for roughly one-third of all deaths in the United States, (Go et al., 

2014) and the risk of developing clinically evident CVD increases dramatically in older 

individuals (Lakatta and Levy, 2003).  With advancing age, endothelial cells are 

increasingly unable to efficiently proliferate to heal vasculature injury or ischemia 

(Brandes et al., 2005; Ungvari et al., 2010).  Aging is associated with atherosclerotic 

disease and vascular stiffening, predisposing older individuals to hypertension and 

ischemic injury.   

 

SIRT1 

Several studies demonstrate that SIRT1 is essential for vasorelaxation (Mattagajasingh 

et al., 2007), vasoprotection (Csiszar et al., 2008), endothelial ischemic recovery, and 

cholesterol metabolism (Potente and Dimmeler, 2008).  SIRT1 knockdown ex vivo and 

Sirt1 genetic deletion specifically in the endothelial lineage in vivo inhibits endothelial 

cell migration and angiogenesis (Potente et al., 2007).  In vivo studies in mouse and 

zebrafish models have identified SIRT1 as a key mediator of endothelial function and 

vascular growth.  In zebrafish, SIRT1 is required for endothelial sprout formation and 

vessel migration.  However, endothelial cell-specific Sirt1 knockout mice are 

developmentally unremarkable, though they are unable to revascularize tissue in 

response to ischemia-induced injury (Guarani et al., 2011) 

 

The pro-angiogenic and vascularization functions of SIRT1 can be rationalized 

mechanistically through SIRT1’s interaction with the FOXO family transcription factors 
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and the NOTCH signaling pathway (Oellerich and Potente, 2012). FOXO transcription 

factors, particularly FOXO1, are potent negative regulators of angiogenesis (Paik, 2006; 

Paik et al., 2007; Potente et al., 2005).  SIRT1 deacetylates FOXO1 in endothelial cells, 

reducing its transcriptional activity and anti-angiogenic function (Potente et al., 2007).  

NOTCH signaling orchestrates postnatal vascular morphogenesis in a dose-dependent 

manner.  In endothelial stalk cells, NOTCH signaling is inversely correlated with vessel 

sprouting behavior (Phng and Gerhardt, 2009).  SIRT1 deacetylates and destabilizes 

the NOTCH1 intracellular domain (NICD), promoting its proteasomal degradation and 

inhibiting NOTCH effector responses (Guarani et al., 2011).  Consequently, endothelial 

cells lacking SIRT1 activity have increased NOTCH signaling, impaired vessel growth 

and defective sprout elongation.  In vivo, SIRT1 ablation in zebrafish and mice reduces 

vascular branching and density due to enhanced NOTCH signaling.  Therefore, 

activation of SIRT1 in endothelial cells may be a useful means to protect endothelial 

tissue from age-related functional decline, particularly after injury.   

 

Circulating blood flow in the mammalian cardiovascular system induces mechanical 

stress on the vascular endothelial cells lining the vessel walls.  Atheroprotective flow 

results from undisturbed, steady pulsatile flow in straight sections of the artery, and 

promotes downregulation of pro-inflammatory pathways (Chien, 2008).  When 

undirected or branched flow patterns occur, for example, at bends in the arterial tree, 

pro-inflammatory and proliferative pathways are activated.  Pulsatile shear (PS) stress 

thus promotes endothelial homeostasis and benefits vascular physiology via 

antioxidative and anti-inflammatory effects on vascular endothelial cells.  Endothelial 
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homeostasis in response to PS stress is enhanced by SIRT1.  PS stress induces 

expression of anti-inflammatory and antioxidant genes such as Sod1 and Sod2, an 

effect that is lost upon knockdown of CaMKKβ (Ca2+/calmodulin-dependent protein 

kinase kinase).  CaMKKβ is an AMPK kinase that phosphorylates and stabilizes SIRT1, 

and together these two proteins suppress oxidative stress and inflammation.  In a 

sensitized genetic background and in response to an atherogenic diet, increased 

atherosclerotic lesions are observed in mice lacking either CaMKKβ or SIRT1, indicating 

that these proteins could conceivably represent clinically relevant targets for intervention 

to treat age-associated CVD (Wen et al., 2013). 

 

Pathological cardiac hypertrophy (CH) is a response to chronic hypertension or other 

sources of cardiac injury.  Cardiomyocyte metabolism shifts from fatty acid oxidation to 

glycolysis during CH, likely due to repression of fatty acid oxidation and oxidative 

phosphorylation genes (Kolwicz and Tian, 2011).  SIRT1 interacts with and activates 

PPARα to inhibit this metabolic switch and the development of hypertrophy via 

inactivation of NF-κB.  Treating mice with the sirtuin activator, resveratrol, attenuates 

markers of induced CH in wild-type, but not PPARα-null mice (Planavila et al., 2011).  

Thus, SIRT1 is able to orchestrate metabolic reprogramming and inflammatory 

responses to protect against development of CH.  However, overexpression of both 

PPARα and SIRT1 in mice impairs mitochondrial function and promotes heart failure 

during CH, by downregulating genes involved in mitochondrial respiration, oxidative 

stress and cardiac contractility (Oka et al., 2011).  The impact of SIRT1 on CH is highly 

dose-dependent.  As noted previously, SIRT1 transgenic mice are protected from CH 
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and age-dependent loss of cardiac function when SIRT1 overexpression is relatively 

modest (up to 7.5-fold higher than basal), but higher levels of SIRT1 overexpression 

produce deleterious effects on myocardium (Alcendor et al., 2007).   

 

However, another study arrived at conflicting results, and found that Sirt1-null mice 

showed resistance to the development of exercise- or agonist-induced CH (Sundaresan 

et al., 2011).  In this regard, in response to growth factor stimulation, SIRT1 

deacetylates and activates AKT and 3-phosphoinositide dependent protein kinase-1 

(PDK1), a kinase that activates AKT.  AKT is a serine-threonine kinase that is a central 

player in a network of diverse cellular processes, such as cell proliferation, apoptosis, 

glucose metabolism, and angiogenesis (Manning and Cantley, 2007).  In myocardium, 

the end result of persistent hyperactive IGF-AKT signaling is hypertrophy and eventual 

heart failure (Condorelli et al., 2002; Shiojima et al., 2002).  SIRT1-deficient hearts are 

proportionally smaller than those of wild-type mice, and show hyperacetylated 

hypoactive AKT (Sundaresan et al., 2011).  In transgenic CD1 mice, a 4-fold 

overexpression of SIRT1 specifically in the heart increases AKT activation and results in 

AKT-dependent hypertrophy, indicating that SIRT1 and AKT activation can induce CH in 

this strain.   

 

Other sirtuins 

Both SIRT3 and SIRT6 negatively regulate CH in part by inhibiting the IGF-AKT 

signaling cascade.  Overexpressing SIRT3 in cultured cardiomyocytes and transgenic 

mouse lines, or supplementing mice with exogenous NAD+ precursors, represses the 
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hallmarks of agonist-induced CH (Pillai et al., 2010; Sundaresan et al., 2009).  SIRT3 

protects against CH by inducing expression of the antioxidant proteins SOD2 and 

catalase.  The SIRT3-mediated reduction in ROS levels inhibits AKT signaling and 

downstream gene expression associated with induction of CH (Sundaresan et al., 

2009).   

 

In failing human and hypertrophic mouse hearts, SIRT6 protein expression is reduced 

compared to controls.  Sirt6 gene deletion, specifically in the mouse heart or globally, 

results in CH, whereas cardiac-specific SIRT6 overexpression protects mice from 

induction of CH.  Mechanistically, SIRT6 negatively regulates CH by co-repressing c-

Jun-dependent transcription at the chromatin level, thereby inhibiting downstream IGF-

AKT signaling.  Importantly, in vivo inhibition of IGF signaling in whole-body and 

cardiac-specific Sirt6 knockout mice inhibits the hypertrophic response (Sundaresan et 

al., 2012).   

 

SIRT7 also plays a role in protecting against the development of CH.  Mice harboring a 

Sirt7 germline deletion develop extensive fibrosis and succumb to CH (Vakhrusheva et 

al., 2008).  The authors propose that SIRT7 deacetylates p53 in the myocardium to 

suppress p53-driven apoptosis; loss of SIRT7 leads to diminished stress responses and 

hypertrophy.  It is currently unknown whether increased SIRT7 activity might play a 

cardioprotective role.   
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SIRT3, SIRT6, SIRT7 and potentially moderate amounts of SIRT1 protect against CH in 

cell culture and mouse models, through overlapping and distinct mechanisms.  It will be 

of great interest to assess the therapeutic potential of sirtuin activation in patients with 

CH.  

 

Sirtuin Activating Compounds 

 

High-throughput screens have been conducted to identify small molecule sirtuin-

activating compounds (STACs).  These studies initially identified resveratrol (RSV) and 

other polyphenols as SIRT1 activators (Howitz et al., 2003); subsequent studies have 

identified a large series of artificial, higher potency STACs.  Concerns have been raised 

as to whether these polyphenols actually directly activate SIRT1 (Baur and Sinclair, 

2006; Kaeberlein et al., 2005; Pacholec et al., 2010; Park et al., 2012).  STACs have 

been reported to interact with a specific region on the SIRT1 protein (Hubbard et al., 

2013).  In this regard, a specific amino acid in SIRT1 required for STAC-mediated 

activation has recently been identified.  Cells bearing a SIRT1 mutant at this site do not 

show the increased mitochondrial copy number and ATP content normally induced by 

STAC treatment (Hubbard et al., 2013).  RSV has been reported to extend longevity in 

yeast, worms, flies, and short-lived fish (Baur, 2010b); in mammals, RSV 

supplementation rescues the shortened lifespan of mice on a HFD (Baur et al., 2006).  

RSV supplementation shifts the gene expression pattern observed in mice on a HFD 

towards a profile associated with a standard diet.  This shift occurs in parallel with 

improved overall health, insulin sensitivity, increased mitochondrial content and 
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maintenance of motor function (Barger et al., 2008a; Barger et al., 2008b; Pearson et 

al., 2008).  However, RSV treatment does not extend longevity in mice fed a standard 

diet (Miller et al., 2011; Pearson et al., 2008).  

 

Despite substantial recent progress (reviewed in (Hubbard and Sinclair, 2014), many 

key questions remain in this area.  For example, which RSV effects occur through 

SIRT1, and which are due to effects on other targets?  Whether RSV and other STACs 

actually activate mammalian SIRT1 or its paralogs in vivo, and if so whether they 

function via direct mechanisms, or through upstream mediators such as AMPK, has 

been hotly debated (Baur and Sinclair, 2006; Kaeberlein et al., 2005; Pacholec et al., 

2010).  In mice, RSV treatment stimulates mitochondrial function, activates AMPK and 

increases NAD+ levels.  These RSV-induced phenotypes are SIRT1-dependent, though 

at a higher dose RSV does not require functional SIRT1 to activate AMPK (Price et al., 

2012).  In response to moderate RSV doses, SIRT1 activates AMPK in the skeletal 

muscle, which results in an increase in NAD+ levels through an unknown mechanism to 

generate a positive feedback loop to maintain mitochondrial function in energetically 

active tissues.  This study places SIRT1 upstream of AMPK activation and proposes a 

model of sustained sirtuin activation via RSV treatment that results in a net 

accumulation of NAD+. 

 

Despite the apparent beneficial effects of RSV and other STACs in multiple systems, in 

human patients with non-alcoholic fatty liver disease, RSV treatment appeared to exert 

toxic effects on hepatocytes, and did not ameliorate liver steatosis or insulin resistance 
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(Chachay et al., 2014).  However this study was limited, in that only male participants 

were included and no assessment of RSV metabolites was reported. 

 

One difficulty with the use of RSV in vivo is that it has significant off-target effects (Baur, 

2010a).  To elucidate the effects of SIRT1 activation more specifically, structurally 

unrelated synthetic STACs have been evaluated, though off-target effects, if any, of 

these molecules have not yet been determined.  One STAC, SRT1720, extends mean 

mouse lifespan in response to a HFD by 18% (Minor et al., 2011) and by 8.8% in mice 

fed a standard diet (Mitchell et al., 2014).  Lifelong SRT2104 supplementation, 

beginning at 6 months of age, extends mean lifespan of male C57BL/6J mice fed a 

standard diet by 9.7% and increases the maximal lifespan by 4.9% (Mercken et al., 

2014b).  Although no difference in body weight, caloric intake or physical activity was 

observed, SRT2104-supplemented mice exhibit a lower percentage of fat mass, 

decreased fasting blood glucose and insulin levels, and increased skeletal muscle 

endurance.  Microarray analysis revealed that SRT2104 likely has anti-inflammatory 

properties in skeletal muscle tissue, evidenced by a decrease in expression of NF-κB 

target genes.  SRT2104 protects against experimentally induced muscle atrophy in wild-

type mice, and muscle-specific Sirt1 knockdown in vivo accelerates muscle loss.  Also, 

SIRT1-dependent stimulation of osteogenic differentiation by SRT2104 treatment was 

reported using myoblast cell cultures, suggesting SRT2104 activates SIRT1 to protect 

against age-related muscle loss and osteoporosis. 
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Non-allosteric methods to activate sirtuins have also received intense scrutiny as an 

alternative to STACs.  Pharmacologically increasing cellular NAD+ levels by 

supplementation with NAD+ precursors such as NR and NMN, or inducing expression of 

NAMPT to convert NAM to NAD+ more efficiently, have recently provided alternative 

means of promoting sirtuin function (Canto et al., 2012; Yoshino et al., 2011) (Figure 

1.6).  For example, in a mouse model of T2D, NMN supplementation mitigates negative 

metabolic effects – insulin insensitivity, glucose intolerance and inflammation – of age-

related or diet-induced diabetes, potentially due to the activation of SIRT1 and other 

sirtuins, and their downstream target pathways (Yoshino et al., 2011).  Also, mice 

lacking the NAD+-consuming enzyme CD38 have increased cellular NAD+ and SIRT1 

activity in several metabolically active tissues (Barbosa et al., 2007).  These mice are 

highly resistant to weight gain in response to a HFD relative to controls.  One caveat in 

interpreting any findings involving NAD+ modulation is that increased NAD+ levels may 

activate not only sirtuins, but also additional NAD+-dependent enzymes, such as 

PARP1.  In the context of CD38-deficient mice, protection against weight gain was lost 

when animals were treated with a sirtuin inhibitor, implicating sirtuin activation in this 

effect.  Phenotypes resulting from increased NAD+ levels must be rigorously elucidated 

in model organisms before use of these non-allosteric approaches can be attempted in 

humans. 

 

Conclusion 
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Sirtuin proteins comprise a group of nutrient- and stress-responsive factors that regulate 

diverse cellular processes to promote healthspan, and in the case of two sirtuins, SIRT1 

and SIRT6, lifespan extension when overexpressed in otherwise wild-type mice.  While 

increased dosage of the prototypical sirtuin, SIR2, was reported to extend replicative 

lifespan of yeast over a decade ago, the first hints that sirtuins might increase 

mammalian longevity have emerged only recently.  Greater attention will now focus on 

tissue-and cell-type specific roles for sirtuins, as well as their regulation under varied 

dietary conditions.  Such work, using sophisticated mouse models with tissue- and 

temporal-specific sirtuin overexpression or ablation, is already well underway. 

  

One obvious question arising from even a casual review of the sirtuin literature is why 

so many discrepant results have been reported.  Generally speaking, strain differences 

(both in invertebrates and in mice), and differences in experimental protocols may 

account for many of these differences.  However, the specific biology of sirtuin proteins 

offers another potential explanation for these discrepancies.  Sirtuins require NAD+ for 

activity, levels of which are regulated by cellular nutrient status, organismal diet, stress 

conditions, and even organismal age.  Thus, sirtuin activity is likely to be highly sensitive 

to laboratory environmental conditions, potentially leading to different experimental 

results from different labs.  In all likelihood, sirtuins did not evolve to promote longevity 

per se, but rather to maintain metabolic homeostasis in the face of varied nutrient intake  
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and other environmental stressors, a task that requires co-regulation of numerous 

substrates in several pathways.   

 

A consequence of sirtuin NAD+-dependence is that a chronic decline in NAD+ levels 

would be predicted to impair sirtuin activity, resulting in metabolic decline, progressive 

loss of homeostatic maintenance, and ultimately facilitate the onset of disease states 

resembling those described in sirtuin loss-of-function models.  This may be relevant 

during organismal aging.  Notably, an age-related decrease in NAD+ levels have been 

reported in C. elegans (Mouchiroud et al., 2013), in several tissues of mice and rats 

[NAD+/NADH] Sirtuin Activity

Lifespan

Healthspan

PARPs

CD38

Inhibitor

Activators

(e.g. Resveratrol, SRT1720)

Caloric Excess

Physical Activity Sedentary

NMN / NR / CR

Aging

Figure 1.6  Means of sirtuin activation.  Allosteric sirtuin activation with small 
molecules, with the goal of promoting healthspan and longevity, has been an area of 
intense investigation.  An increase in the cellular NAD+/NADH ratio will increase sirtuin 
activity.  NMN, nicotinamide riboside (NR) supplementation, calorie restriction (CR) or 
physical activity increases cellular NAD+ levels.  Inhibition of NAD+- consuming enzymes, 
poly[ADP-ribose] polymerases (PARPs) or CD38, also enlarges the cellular NAD+ pool.  
Reduced NAD+ levels induced by advanced age, caloric excess, or a sedentary lifestyle 
would impair activity of sirtuins and other NAD+-dependent cellular processes. 
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(Braidy et al., 2011; Braidy et al., 2014; Mouchiroud et al., 2013; North et al., 2014; 

Ramsey et al., 2008), and in the skin of elderly humans (Massudi et al., 2012).  In this 

context, supplementation with NAD+ would be predicted to mitigate some age-

associated phenotypes, and could promote longevity by maintaining sirtuin-mediated 

homeostatic control in older organisms.  Restoration of cellular NAD+ levels via 

supplementation with NAD+ precursors NR or NMN has been reported in heart and 

testes from old mice (North et al., 2014), and can protect against diet-induced obesity 

(Canto et al., 2012), restore the decline in mitochondrial function in aged mice (Gomes 

et al., 2013), rescue the age-related depletion of the neural stem/progenitor cell pool 

(Stein and Imai, 2014), and extend lifespan of C. elegans (Hashimoto et al., 2010; 

Mouchiroud et al., 2013; Schmeisser et al., 2013).  It will be of great interest to test 

sirtuin function and longevity in mouse strains with chronically elevated NAD+ levels; 

however, the desirability and safety of sustained sirtuin hyperactivity are still somewhat 

unclear. 

 

Much attention has been given to effects of sirtuin overexpression; in this regard, it is 

clear from work both in invertebrates (Whitaker et al., 2013) and mice (Alcendor et al., 

2007) that the effects of sirtuin overexpression are exquisitely sensitive to expression 

levels, as might be predicted with pleiotropic regulators that modify a host of 

downstream proteins.  Tissue-specific effects of sirtuins are also highly relevant in this 

regard.  For example, in the BRASTO mouse lines high levels of SIRT1 overexpression 

in other hypothalamic nuclei were associated with loss of the beneficial effects of DMH- 
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and LH-specific overexpression.  This may imply that SIRT1 exerts opposing, region-

specific pro- and anti-longevity effects in the hypothalamus (Satoh et al., 2013).   

 

A great deal of interest exists in the potential for manipulating sirtuin activities as a 

treatment for various pathologic conditions, including cancer, neurodegeneration, 

metabolic dysfunction, and others.  One means of achieving this is through modulating 

levels of NAD+, the critical co-factor for sirtuin activity (Figure 1.6).  For example, NAD+ 

concentrations and SIRT1 activity increase in skeletal muscle in response to CR, fasting 

and exercise, whereas a decrease in the NAD+/NADH ratio is observed in mice 

challenged with excess caloric intake (Canto et al., 2010; Chen et al., 2008; Kim et al., 

2011a).  Altered NAD+ would theoretically affect activities of all sirtuins, though this has 

yet to be thoroughly tested.  However, mitochondrial NAD+ levels can be regulated 

independently of those in other compartments (Yang et al., 2007) implying that it might 

be possible to target mitochondrial versus non-mitochondrial sirtuins differentially. 

 

In response to DNA damage, activated PARPs deplete intracellular NAD+ through the 

transfer of ADP-ribose from NAD+ to its substrates.  Activation of SIRT1 upon genetic 

deletion or pharmacologic inhibition of PARP in skeletal muscle or brown adipose tissue 

in mice results in higher energy expenditure, increased mitochondrial content and 

protection from metabolic dysfunction (Bai et al., 2011a; Bai et al., 2011b).  By contrast, 

nuclear PARP1 deficiency does not enhance SIRT2 or SIRT3 activity, implying that 

therapies directed at enhancing NAD+ levels might have unexpected sirtuin-specific 

effects.  This may indicate that mammalian sirtuins differ with respect to their affinities 
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for NAD+ in vivo.  Similarly, CD38 is a cell surface receptor on lymphocytes that 

catalyzes the synthesis and hydrolysis of cyclic ADP-ribose using NAD+ as the 

precursor.  In cells lacking CD38, NAD+ levels rise and SIRT1 activity increases, 

conferring protection against diet-induced obesity and glucose tolerance in response to 

high fat intake (Barbosa et al., 2007).  In light of all of these findings, a new avenue of 

sirtuin activation via modulation of cellular NAD+ levels has emerged (Figure 1.6).  It will 

be critical to assess the safety and efficacy of these interventions, and whether they are 

able to specifically activate nuclear sirtuins, or act more broadly. 

 

Although the known repertoire of sirtuin functions continues to expand, little research to 

date has focused on functional interactions between the seven sirtuins, in the context of 

redundancy or antagonism.  Several key cellular proteins (e.g. c-MYC, p53, HIF-1α, 

CPS1, GDH, and many others) are targets of multiple sirtuins.  In some cases, sirtuins 

act in opposition to one another (e.g. SIRT3 and SIRT5 on SDH, SIRT3 and SIRT4 on 

GDH).  How this functional opposition is achieved in vivo -- and its physiological 

significance -- when all sirtuins are NAD+-responsive remains somewhat mysterious.  

Other means of sirtuin regulation may be relevant in this regard, occurring through 

protein-protein interactions, regulation of sirtuin expression levels, post-translational 

modifications, levels of metabolites such as free fatty acids, and other mechanisms.  

Future studies will explore these issues, for example via analysis of compound sirtuin 

mutant mouse models.  
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Furthermore, sirtuins do not act in isolation to promote vertebrate healthspan and 

lifespan.  mTOR signaling and IIS regulate lifespan in evolutionarily distant organisms 

(Lopez-Otin et al., 2013).  These pathways overlap with sirtuin function in multiple 

contexts.  For example, SIRT1 regulates insulin secretion and insulin signaling at 

numerous levels, and several reports point to roles for SIRT6 in suppressing IIS and 

mTORC1 signaling (Hong et al., 2014; Kanfi et al., 2012; Sundaresan et al., 2012; Xiao 

et al., 2010).  To further complicate matters, some sirtuins have redundant functions 

that may need to be targeted simultaneously in order to elicit biological effects.  Both 

SIRT1 and SIRT2 regulate mTORC1 signaling, for instance, at the level of S6 kinase 

(Hong et al., 2014).  

 

In the past 15 years, a large body of research has illuminated complex relationships 

between mammalian sirtuins, healthspan, and even longevity.  It is clear that these 

proteins can exert beneficial effects in the context of important diseases of aging, and 

may therefore represent therapeutic targets in this context.  However, a mechanistic 

understanding of these effects is still incomplete; no doubt this work will provide fruitful 

avenues for the next 15 years of sirtuin research. 

 

In this thesis, I explore the roles for sirtuins in maintaining mammalian lifespan and 

healthspan, specifically SIRT1 and SIRT5.  In chapter 2, I focus on SIRT1 and its role in 

maintaining pericentromeric heterochromatin, a structure essential for proper 

chromosomal function and segregation.  I use a naturally aged mouse model to 

implicate SIRT1 as a cause of age-associated epigenetic decline, and suggest a means 
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of preventing such a dysfunction by SIRT1 overexpression.  In chapter 3, I describe the 

mitochondrially localized SIRT5 as a pro-survival factor for human melanoma.  As 

indicated above, SIRT5 has received little attention, in contrast to SIRT1, in terms of its 

role in modulating oncogenesis.  Data in this chapter will serve as an important scaffold 

for future research regarding SIRT5 as a therapeutic target in melanoma.  Finally, in 

chapter 4, I give an overview, discuss potential future directions and summarize my 

findings.   
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CHAPTER 2 
 
 

Age-Associated Epigenetic Dysregulation in Mouse Heart 
 
 
Abstract 

 

Epigenetic alterations are a conserved feature of biological aging in diverse organisms, 

and have been designated as a “hallmark of aging”.  Chromatin organization – in 

particular, diminished heterochromatinization of repetitive regions – is progressively lost 

during cellular and organismal aging.  Experimentally, work in S. cerevisiae has 

revealed an age-associated loss of chromatin structure, and elucidated its deleterious 

impacts on gene expression and genomic stability.  The first example of age-associated 

heterochromatin perturbation in mammals was identified in a seminal study over 25 

years ago by Gaubatz and Cutler, JBC, 1990.  This work focused on the Major Satellite 

Repeats (MSRs), pericentromeric repeats in the mouse that help to ensure proper 

chromosomal segregation and maintenance of euploidy.  This study showed that MSR 

repression is lost during aging specifically in mouse myocardium.  The mechanistic 

basis for this effect has never been elucidated. 

 

In this chapter, we demonstrate that MSR derepression is not associated with 

decreases in levels of the canonical repressive marks – DNA methylation, H3K9me3, or 

H3K56me3 – at the MSRs.  Instead, levels of the activating marks, H3K9ac and 
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H4K16ac, targets of the SIRT1 deacetylase, increase during aging in the heart.  These 

findings have led to the hypothesis that loss of SIRT1 activity contributes to 

derepression of MSR loci in aged myocardium.  Consistent with this hypothesis, we 

have found that Sirt1 deletion results in increased MSR expression in heart tissue.  We 

also find that the pro-longevity intervention calorie restriction (CR) attenuates MSR 

derepression in aged mice.  We then present data that suggests that SIRT1 activity 

maintains chromatin structure and transcriptional silencing at the MSRs, in part using 

aged muscle-specific SIRT1 overexpressors. 

 

Introduction 

 

Epigenetic alterations are a conserved feature of biological aging in diverse organisms, 

and have been designated as a “hallmark of aging” (Lopez-Otin et al., 2013).  Many 

laboratories have catalogued changes in levels of epigenetic marks on both DNA and 

histones that occur during aging.  Experimental manipulation of epigenetic regulators 

can produce marked improvements in health- and lifespan.  Epigenetic changes may 

represent attractive targets for restorative therapies aimed at slowing or even reversing 

aspects of the aging process, since epigenetic damage is at least in principle amenable 

to repair (Rando and Chang, 2012). 

 

Maintenance of heterochromatin – tightly packaged chromatin with low levels of 

transcriptional activity – represents an important aspect of overall epigenetic fidelity. 

Heterochromatin has been postulated to represent a major target of age-associated 
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epigenetic deterioration (Imai and Kitano, 1998; Villeponteau, 1997).  The first example 

of age-associated heterochromatin perturbation in vivo was identified in a seminal study 

25 years ago (Gaubatz and Cutler, 1990).  This work focused on the Major Satellite 

Repeats (MSRs), pericentromeric repeats in the mouse that play roles in ensuring 

proper chromosomal segregation and maintenance of chromosomal number.  This 

study showed that MSR repression is lost during aging specifically in mouse 

myocardium (Gaubatz and Cutler, 1990).  The mechanistic basis for this effect has 

never been elucidated, despite current intensive research interest in links between 

epigenetics and aging.   

 

More recently, it has been reported that expression of several classes of repetitive 

elements, i.e. MSRs and long and short interspersed nuclear elements (LINEs and 

SINEs), rises in aged mouse liver and skeletal muscle, an increase that is attenuated by 

calorie restriction (De Cecco et al., 2013b).  Histone H3K9 trimethylation mediated by 

the Su(var)3-9 methyltransferases homologs 1 and 2 (Suv39H1/2) plays a major role in 

MSR silencing (Lehnertz et al., 2003b).  In Suv39H1/2 knockout mouse embryonic 

fibroblasts, loss of MSR transcriptional silencing occurs, along with increased 

chromosomal missegregation and aneuploidy (Lehnertz et al., 2003b; Peters et al., 

2001).   

 

The work presented in this chapter provides mechanistic insight into this long-standing 

observation in aging biology.  Using northern blot analysis, we have found that age-

associated MSR depression is mostly restricted to myocardium.  Surprisingly, this 
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phenomenon is not associated with decreases in levels of the canonical repressive 

marks: DNA methylation or histone H3 lysine 9 trimethylation (H3K9me3).  Instead, 

levels of the activating marks, acetylation of histone H3 lysine 9 (H3K9ac) and H4 lysine 

16 (H4K16ac), increase during aging in the heart.  This suggests that loss of activity of 

the NAD+-dependent deacetylase SIRT1 may contribute to age-associated MSR 

derepression.  We have assayed heart tissue from mouse strains individually deficient 

in several nuclear sirtuins, and find that SIRT1-deficient mice, but not the other strains, 

show premature MSR derepression, phenocopying the effects of aging.   

 

Moreover, we have found that the pro-longevity intervention calorie restriction 

attenuates MSR derepression in aged mice.  CR has been shown to increase levels of 

the sirtuin co-substrate, NAD+, in some contexts.  We then test the hypothesis that 

increased NAD+ levels achieved by genetic and pharmacological means will augment 

SIRT1 activity and suppression of MSR expression in aged mice 

 

Roles for epigenetic changes in age-associated cellular dysfunction represent a major 

current focus of biogerontology research.  These studies have provided new 

mechanistic insight into the first example of age-associated heterochromatin 

perturbation identified, loss of MSR repression in myocardium.  It has recently been 

shown that enhanced ploidy maintenance in myocardium is associated with improved 

cardiac performance in older animals (Baker et al., 2012).  Advancing age is a major 

risk factor for many forms of cardiovascular disease, the single greatest cause of overall 

worldwide mortality (Barquera et al., 2015).  This work provides insight into potential 
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means of enhancing myocardial heterochromatin maintenance and cardiac function in 

older individuals. 

 

Results  

 

Major Satellite Repeat Expression Increases in the Aged Myocardium 

 

Major Satellite Repeats (MSRs) are transcriptionally inert, heterochromatinized regions 

flanking the centromeric minor satellite repeats present in every mouse chromosome 

(Figure 2.1 A.).  This is a major type of repetitive element, as it is comprised of 234bp 

monomers, accounting for ~10% of the mouse genome (Garagna et al., 2002; Pardue 

and Gall, 1970; Prashad and Cutler, 1976; Vissel and Choo, 1989; Waring and Britten, 

1966).  Using RNA extracted from aged mouse tissue, Gaubatz and Cutler, in 1990, 

reported a progressive loss of silencing of the MSR, beginning at around 1 year of age 

and persisting to 32 months of age (Figure 2.1 B.) (Gaubatz and Cutler, 1990).  

Interestingly, this report demonstrated that expression of MSR RNA is undetectable at 

any age tested in the brain and liver of these aged mice.  Using a similar approach, we 

sought to expand upon this finding to begin to delineate the mechanistic basis of MSR 

silencing failure.  As the MSR monomers are repeated upwards of 10,000 times, 

transcription initiation within these regions would then generate variable length 

transcripts (Figure 2.2 A.).  Genetic deletion of the SUV39H1 and H2 homologs in 

mouse embryonic fibroblasts (MEFs) results in an increase in MSR expression 

(Lehnertz et al., 2003b; Peters et al., 2001).  Using RNA extracts from these cell lines 
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as a positive control, we assessed the induction of MSR expression in C57BL/6 male 

mouse heart tissue.  We dissected mice of three different age groups: Young (2-3-

month-old), Middle Aged (12-14-month-old), and Old (22-24-month-old), and subjected 

DNA-free RNAs to northern blotting using a radiolabeled probe complementary to the 

MSR sequence.  As expected and previously reported, SUV39H double-knockout 

(DKO) MEFs and old mouse heart samples have  

adapted from Gaubatz and Cutler, JBC 1990

(reproduced in accordance with JBC Copyright Permission Policy)

Minor Satellites

TelomereTelomere

Major Satellites ~10,000 copies

234bp monomers

A.

B.

Figure 2.1  MSR silencing is lost during aging in cardiac tissue.  A. Schematic of 
repetitive elements in the mouse genome.  Minor satellites compose the centromeric 
region (red), while pericentromeric constitutive heterochromatin consisting of the major 
satellites are in yellow.  Interspersed repetitive elements and telomeric sequences are 
illustrated in gray.  B. Slot blotting of aged mouse tissues follow by hybridization of a 
radioactive MSR probe as reported by Gaubatz and Cutler, 1990, suggest that loss of 
pericentromeric heterochromatin specifically in heart tissue occurs with age. B, brain; L, 
liver; H, heart. (right panel).  Quantification of MSR transcript at each age is graphed in 
the left panel. 



 62 

 

Y M O Y M O Y M O 

1 2 3 

18S 

MSR  
Probe 

5 

2 
3 

1 

kb 

WT KO 

SUV39H 
MEFs 

18S 

MSR  
Probe 

5 

2 
3 

1 

Muscle Kidney Liver Heart 

Y M O Y M O Y M O Y M O 

kb

Brain 

Y M O 

EtBr EtBr

A.

B.

C.

Young: 2-3mo.

Middle aged: 12-14mo

Old: 22-24 mo.

C57BL/6 Males

MSRs

Figure 2.2  MSR expression is increased specifically in the aged myocardium.  A. 
Northern blotting of MSR expression generates RNAs of heterogeneous length.  B. DNA-
depleted RNA extracted from young (Y), middle aged (M), or old (O) mouse heart (left 
panel) and other tissues (right panel) was northern blotted with a radiolabeled riboprobe 
hybridizing to the sense strand of the MSR transcript.  Upper panel, northern blot; lower 
panel, ethidium bromide stained gel of 18S rRNA.  MSR, major satellite repeat; EtBr, 
ethidium bromide.  RNA extracted from various tissues is indicated.  Positive controls 
wild-type (WT) or SUV39H1/2 double-null (SUV39H KO) immortalized MEFs are 
indicated.  C. Quantification of MSR expression (B.), normalized to 18S rRNA. 
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Figure 2.3  MSR expression is restricted to the heart in 30-month-old mice.  A. 
Northern blot analysis of MSR expression in various tissues, as indicated, in very old (30-
month-old) mice compared to young (2-3-month-old) BALB/cBy mice.  Positive controls: 
Y, young and, O, old C57BL/6 mice as indicated.  B. Quantification of MSR expression 
normalized to 18S rRNA in young versus very old mice using a riboprobe complementary 
to the sense MSR strand (left panel) and using a riboprobe complementary to the anti-
sense (“reverse”) MSR strand (right panel).  Upper panel, northern blot; lower panel, EtBr 
stained gel of 18S rRNA.  MSR, major satellite repeat. 

A.

B.
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an increased concentration of MSR transcript (Figure 2.2 B.).  Also noted is the 

expected “smear,” representing MSR transcripts of variable size, typically ranging from 

0.5 to greater than 5kb in length.  To further investigate this phenotype, RNAs extracted 

from skeletal muscle, liver, kidney and the brain were subjected to MSR northern 

blotting (Figure 2.2 B.).  The most robust age-associated MSR expression, when 

normalized to the 18S ribosomal RNA (rRNA), was detected in the mouse heart, again 

as predicted (Figure 2.2 C.).  Although, an increase in MSR expression in other tissues, 

such as brain, liver and skeletal muscle has been reported (De Cecco et al., 2013a; 

Oberdoerffer et al., 2008), these studies rely on qRTPCR-based methods, which have 

proved unreliable in our hands.  Hence, these data focused our attention on the use of 

northern blotting and the heart as a model for age-associated epigenetic decline.   

Although at 22-24 months of age, the mouse heart presents with the most striking 

increase in MSR expression among tissues tested, we asked if one reason for the 

discrepancy between these results and those published is one of biological age.  That 

is:  Do different tissues age at different rates in terms of MSR derepression?  If so, then 

one might expect an increase in MSR expression at latter stages of life in other tissues.  

To test this hypothesis, we procured 30-month-old BALB/c mice from the NIA and 

subjected their tissues to MSR northern blotting.  The percent survival of this strain of 

mice at the 30-month-old timepoint is 25%, compared to the 75% survival rate of 24-

month-old animal (https://www.nia.nih.gov), indicating the advanced geriatric state of 

these animals.  A significant (p<0.01) increase in MSR expression, as observed in the  

C57BL/6 strain, was detected specifically in the heart, and not in the brain, liver or 

skeletal muscle (Figure 2.3 A.).  Furthermore, the magnitude of MSR expression (a 4-6 
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fold increase), as normalized to the 18S rRNA, is consistent with that observed in 

C57BL/6 male mice (Figure 2.2 C., compare young versus old).  The use of qRTPCR  

to determine MSR expression levels would detect MSR RNA emanating from either 

DNA strand in the genome.  To confirm that an increase of MSR RNA originates from 

only one strand, northern blotting of the same young and old heart RNA samples was 

done using a radiolabeled probe complementary to the reverse MSR strand (Figure 2.3 

B., “reverse MSR probe”).  No change in “reverse” MSR transcript abundance was 

apparent in aged samples.  Thus, taken together, these data demonstrate that MSR 

transcription produces variable length transcripts emanating from one strand of the 

DNA, and is robustly induced specifically in the myocardium of at least two different 

strains of aged mice. 

 

Age-Associated MSR Expression is Mechanistically Distinct from SUV39H Loss 

 

Given that MSR expression increases in SUV39H DKO cell and specifically in aged 

heart tissue (Figure 2.4 A.), we reasoned that post-translational modifications (PTMs) of 

histones in the aged heart tissue would parallel those detected in a SUV39H DKO 

context.  Via western blotting analysis of PTMs of histones associated with 

heterochromatin in aged heart tissue, this phenomenon is not associated with 

decreases in levels of the canonical repressive marks: histone H3 lysine 9 trimethylation 

(H3K9me3) and H3 lysine 56 trimethylation (H3K9me56), as described in SUV39H DKO 
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samples.  Instead, levels of the activating marks, acetylation of histone H3 lysine 9 

(H3K9ac) and H4 lysine 16 (H4K16ac), which are targets of the NAD+-dependent SIRT1 

deacetylase, increase during aging in the heart (Figure 2.4 B.).   

 

A reduction of DNA methylation within the MSR regions of SUV39H DKO MEFs has 

been reported (Lehnertz et al., 2003b), which prompted the hypothesis that DNA 

Figure 2.4  Loss of SUV39H-mediated MSR silencing is molecularly distinct from 
age-associated MSR derepression.  A. Northern blotting for MSR expression in wild-
type (WT) and SUV39H1/2 double knockout (DKO) MEFs (left panel) and aged heart 
tissue, as indicated (right panel) reveals increased MSR expression in SUV39H DKO 
MEF and aged heart samples.  B. Immunoblotting analysis of samples indicated in (A.) 
for histone PTMs associated with heterochromatin.  Membranes were probed for the 
indicated antibodies.  H3K9me3, Histone H3 lysine 9 trimethylation; H3K56me3, Histone 
H3 lysine 56 trimethylation; H3K9ac, Histone H3 lysine 9 acetylation; H4K16ac, Histone 
H4 lysine 16 acetylation.  Ponceau S indicates equivalent amounts of histones in the 
loaded whole-cell lysates. 

 

A. B.
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methylation at MSR loci is lost in aged myocardium.  Using methyl-sensitive restriction 

DNA endonucleases, followed by Southern blotting with a radiolabeled MSR DNA 

probe, we have found that MSR DNA is not hypomethylated in aged tissue (Figure 2.5 

B.).  DNA demethylation is thought to be mediated by the TET dioxygenases that 

convert 5-methylcytosine to cytosine via several intermediates, such as 5-

hydroxymethylcytosine (Huang and Rao, 2014).  It has been proposed that 5-hmC is a 

stable mark that has a role in modulating gene expression (Guibert and Weber, 2013).  

We therefore tested the hypothesis that these intermediates are enriched in DNA 

extracted from aged heart tissue (Figure 2.5 A.).  Dot blotting of 2-fold serial dilutions of 

genomic DNA extracted from young, middle-aged and old mouse hearts, followed by 

incubation with antibodies specific to 5-hydroxymethylcytosine (5-hmC), reveals a 

significant (p<0.05) increase in 5-hmC levels in aged tissue.  Loss of the chromatin-

bound sirtuin, SIRT6, in mouse embryonic stem cells results in an increase in 5-hmC 

(Etchegaray et al., 2015), and was used as a positive control.  Thus, via PTM and DNA 

methylation analysis, MSR derepression in age mouse heart does not parallel 

previously reported perturbations that occur upon SUV39H inhibition.  These findings 

led to the hypothesis that loss of SIRT1 activity contributes to derepression of MSR loci 

observed in the aged myocardium. 

 

SIRT1 Loss Accelerates Age-Associated MSR Derepression 

 

It has been proposed that accumulation of low-level chronic genotoxic stress induces 

SIRT1 relocalization from MSRs and other loci to sites of DNA damage, thereby 
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progressively derepressing MSR expression in the mouse cortex (Oberdoerffer et al., 

2008).  Since histone targets of SIRT1 accumulate at the bulk level in the mouse upon 

aging (Figure 2.4 B.), we reasoned that loss of SIRT1, specifically in the muscle, would 

predispose this tissue to MSR derepression and result in increased MSR expression.  

To test this hypothesis, we analyzed by MSR northern blotting, MSR expression in 

SIRT1-deficient heart tissue.  A recent report has also implicated SIRT2 in facilitating 

MSR silencing, by H4K16ac deacetylation and recruitment of the PR-Set7 

methyltransferase (Serrano et al., 2013).  In light of these findings, we included germline 

knockout samples of several of the sirtuins known to localize to the nucleus: SIRT2, 

SIRT6, and SIRT7 (Figure 2.6 B.).  Loss of SIRT1, but not the other nuclear sirtuins 

resulted in robust MSR expression in the mouse heart; however, a slight increase in 

MSR signal is noted in one of the SIRT7 knockout samples.  To further investigate this 

finding, we tested expression by immunoblot of these sirtuins in aged mice, and found 

that SIRT2, SIRT6 and SIRT7 protein levels do not change with age when normalized to 

GAPDH in the mouse heart (Figure 2.6 A.).  These data imply that SIRT1 is a key 

mediator in MSR silencing, which prompted the question: Do SIRT1 protein levels or 

activity decrease with age?  To begin to answer this question we tested, again by 

immunoblot, the steady state levels of SIRT1 in young versus aged heart tissue, and 

found that total SIRT1 protein remains constant with age (Figure 2.7, bottom panel).  

Crucially, SUV39H protein levels also remain constant with age, highlighting the distinct 

nature of age-associated MSR derepression from SUV39H deficiency (Figure 2.7, top 

panel).   
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Figure 2.5  5-Hydroxymethylcytosine is increased in aged heart tissue.  A. Two-fold 
serial dilutions of genomic DNA extracted from young (Y) or old (O) mouse heart were 
probed with anti-5hmC and subjected to chemiluminescent immunoblotting.  Equal DNA 
loading was confirmed using the SYBR Gold fluorescent nucleic acid stain.  Antibody 
specificity was determined using unmodified (U), 5-methylcytosine (5mC), and 5-
hydroxymethylcytosine (5hmC) oligonucleotides as indicated (left panel).  The ratio of 
5hmC to total DNA is plotted in the top graph, while the percent of 5hmC levels in old vs 
young is plotted in the bottom graph (right panel).  Quantification was performed with 
ImageJ, *p<0.05, **p<0.01.  B. Genomic DNA extracted from young (Y), middle aged (M), 
old (O) mouse heart, and WT and SUV39H-deficient MEF cell lines was digested with the 
methyl-sensitive restriction enzyme, MaeII.  Equal amounts of DNA were separated on a 
1% agarose gel, and transferred to a membrane for Southern blot analysis using a 
radiolabeled MSR probe, as indicated. 
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Modulation of MSR Expression Via NAD+ Enhancement 

 

NAD+ is a required co-substrate for sirtuin activity (Figure 1.1).  Intense research into 

modulating NAD+ to promote mammalian lifespan and healthspan has resulted in a 

growing body of evidence suggesting that NAD+ levels decline in mammalian tissues 

during aging (Imai and Guarente, 2014), including the heart (North et al., 2014).  This 

reduction in NAD+ predisposes organisms to phenotypes associated with sirtuin loss-of-

function.  In this regard, aged hearts show biochemical evidence of impaired SIRT1 and 

SIRT3 function (Hafner et al., 2010; Porter et al., 2014).  Administration of the NAD+ 

precursors nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN) 

reconstitutes cellular NAD+ levels and protects against diet-induced obesity and 

reduced mitochondrial function in aged mice (Canto et al., 2012; Gomes et al., 2013).  

 

The ability to modulate sirtuin function via NAD+ fluctuation allows us to test the ability of 

increased NAD+ to activate SIRT1, thereby mitigating the effects of age on MSR 

derepression.  To test this model, we first used the well-established pro-longevity 

intervention, calorie restriction (CR).  CR without malnutrition is a robust and reliable 

method to extend lifespan in all species tested (Guarente, 2013; Vaquero and Reinberg, 

2009).  CR has been reported to increase cellular NAD+ levels and maintain genomic 

stability through the maintenance of chromatin, potentially though the activity of SIRT1 

and other sirtuins (Figure 2.8).  Upon MSR northern blotting analysis of mice fed a 

calorie-restricted diet (60% of the ad libitum cohort), MSR expression, though variable, 

is strikingly decreased at both 12-14 months of age (M) and at 22-24 months of age (O) 
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(Figure 2.8, right panel).  While the cellular NAD+ concentration is unknown in these 

mice, these data are consistent with the hypothesis that increased SIRT1 activity upon 

CR promotes MSR silencing. 

 

A.

B.

EtBr

Figure 2.6  Loss of SIRT1, but not other nuclear sirtuins, promotes MSR 
expression.  A. Nuclear sirtuin expression in young (Y) and old (O) mouse heart is 
analyzed by immunoblotting using antibodies against mouse SIRT2, SIRT6, SIRT7 and 
GAPDH as indicated.  Positive controls: WT and germline KO heart lysate of the 
indicated sirtuin (left panel).  Quantification of sirtuin expression in aged heart, 
normalized to GAPDH reveals a non-significant change in protein levels (right panel).  B.  
MSR northern blotting of total RNA extracted from hearts of SIRT1, SIRT2, SIRT6 or 
SIRT7 WT and KO pairs highlights that loss of SIRT1 promotes MSR expression. 
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To further investigate the role of increased NAD+ in modulating age-associated MSR 

expression, we used a previously described mouse model of NAMPT overexpression 

(Frederick et al., 2015).  NAMPT catalyzes the rate-limiting step in converting the 

sirtuin-inhibitor NAM to the sirtuin activator NAD+ (Figure 1.1, Figure 2.10 B.).  Increased 

NAMPT expression in the heart is associated with a ~20% increase in NAD+ levels 

(Frederick et al., 2015).  Therefore, we reasoned that in aged mice, overexpression of 

NAMPT would activate SIRT1 via NAD+ enhancement, and therefore, reduce MSR 

expression.  MSR northern blot analysis of Nampt transgenic and control 17-month-old 

mice revealed a non-significant change in MSR transcript levels in the hearts of these 

Figure 2.7  SIRT1 and SUV39H1 protein levels remain constant with age.  Upper 
panel: Immunoblot analysis of Young and Old heart protein lysates, as indicated, for 
SUV39H1 protein levels (*lower band).  Positive controls: SUV39H WT and DKO MEF 
lysates.  Lower panel: Immunoblot analysis of (Y)oung, (M)iddle-aged, and (O)ld heart 
protein lysates, as indicated, for SIRT1 protein levels.  Tubulin is used as the loading 
control.  Quantification of SIRT1 and SUV39H1 expression in aged heart, normalized to 
tubulin reveals a non-significant (N.S.) change in protein levels (right panel). 
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mice.  This result prompted us to ask if a ~20% increase in NAD+ would result in SIRT1 

activation, as evidenced by a reduction of its target histone PTMs by immunoblot.  

Immunoblot analysis shows variable, but equivalent amounts of H3K9ac and H4K16ac 

in Nampt transgenic and control 17-month-old mice (Figure 2.9 B.), indicating that in this 

mouse model NAD+ levels are not sufficient to activate SIRT1-dependent MSR 

silencing. 

 

In a second model of NAD+ enhancement, mice, which have been supplemented with 

the NAD+ precursor, NMN, to increase systemic NAD+ levels, were analyzed by MSR 

northern blotting.  Mice that received 300mg/kg/day of NMN in the drinking water, 

beginning at 5 months of age until euthanized at 17 months of age, displayed easily 

detectable MSR expression in their heart tissue (Figure 3.10 A.).  Mock-treated mice 

showed a non-significant change in MSR transcript levels.  A second route of NMN 

administration has been described to increase NAD+ levels by ~40-60% in the heart and 

other tissues (North et al., 2014).  In short, young (2-3-month-old) and old (22-24-

month-old) mice were injected intraperitoneally at a dose of 500mg/kg once a day for 7 

consecutive days with PBS (vehicle) or NMN (Sigma) resuspended in PBS, prior to the 

dark cycle.  Upon dissection, hearts and livers were immediately processed for RNA for 

MSR expression analysis and NAD+ measurement by mass spectrometry.  Northern 

blot analysis reveals the expected increase in MSR expression in age mice (Figure 2.10 

B., Young:PBS versus Old:PBS).  Once again, NAD+ supplementation failed rescue 

MSR expression in aged mice (Figure 2.10 B., Old:PBS versus Old:NMN).  Mass 

spectrometry analysis demonstrates an increase the NAD+ concentration upon NMN 
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supplementation in the liver, but not the heart (Figure 2.10 C.).  Considering these data, 

we cannot yet conclude that a change in NAD+ levels in the heart will mitigate the age-

associated MSR phenotype, and requires further experimentation, specifically 

confirming increased SIRT1 activity upon genetic or pharmaceutical enhancement of 

NAD+ in aged mouse heart. 
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Figure 2.8  Calorie restriction suppresses MSR expression in aged heart.  A. Calorie 
restriction increases cellular NAD+, activating SIRT1 deacetylase activity.  B. MSR 
northern blot of RNA extracted from two sets, as indicated, of middle-aged (M) and old 
(O) male B6D2F1 mice fed ad libitum (AL) or a calorie-restricted diet (CR, 60% of AL 
diet) for 20 days (right panel).  Loading control, EtBr stain of the 18S rRNA.  Positive 
controls, young (Y) and old (O) mouse heart samples are indicated. 
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A.

B.

Figure 2.9  NAMPT overexpression does not alleviate MSR derepression.  A. Right 
Panel: Twenty-four-month-old NAMPT WT or OE mice were analyzed for MSR 
expression in mouse heart tissue.  Young (Y) and old mice (O), and SUV39H1/2 WT and 
KO RNAs serve as positive controls, as indicated.  Left Panel: EtBr stained agarose gel 
demonstrate equal RNA loading.  18S and 28S rRNAs are indicated.  B. Left Panel: 
western blot analysis of whole-cell lysates (WCL) extracted from NAMPT WT and OE 
mouse heart tissue.  Membranes were probed for the indicated antibodies.  H3K9ac, 
Histone H3 lysine 9 acetylation; H4K16ac, Histone H4 lysine 16 acetylation; H3, Histone 
3.  Right Panel: a model of NAD+-mediated deacetylation of SIRT1 histone targets. 
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A.

B.

C.

Figure 2.10  NMN supplementation does not silence MSR expression.  A. MSR 
northern blotting of RNAs extracted from hearts from 17-month-old C57BL/6 mice 
supplemented with NMN or vehicle (Mock) at a dose of 300mg/kg/day in the drinking 
water.  Positive control: young (Y), old (O), SIRT1 WT and KO heart samples, as 
indicated.  EtBr-stained agarose gel is used to demonstrate equal loading (left panel).  
Quantification of MSR expression, normalized to 18S rRNA reveals a non-significant 
change in MSR transcript upon NMN-supplementation. (right panel).  B. MSR northern 
blotting of RNAs extracted from hearts from young (Y) and old (O) C57BL/6 mice 
supplemented with NMN or vehicle (PBS) at a dose of 500mg/kg/day for 7 days via IP 
injection.  Positive controls: young (Y) and old (O) mouse heart samples.  Loading 
control, EtBr stain of the 18S rRNA.  NMN catalyzes the rate-limiting step in the 
conversion of NAM to the sirtuin co-substrate, NAD+ (right panel schematic).  C. NAD+ 
measurements by mass spectrometry of heart and liver samples dissected from mice 
used in (B.) were quantified and graphed. 
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SIRT1 Overexpression Partially Rescues Age-Associated MSR Derepression 

 

If indeed SIRT1 is required to rescue defects in age-associated MSR silencing, then 

simply increasing the amount of SIRT1 protein would be expected to prevent induction 

of MSR expression observed upon aging.  To test this model, we used a previously 

described mouse model of muscle-specific SIRT1 overexpression (White et al., 2014).  

MSR analysis of Sirt1 transgenic mice at the age of 20 months revealed a significant 

(p<0.02) attenuation of MSR expression when compared to wild-type controls of the 

same age (Figure 2.11 B.).  These mice experience robust lifelong SIRT1 expression 

(Figure 2.11 B. bottom panel).   

 

For comparison, muscle-specific genetic Sirt1 knockout mice at the age of 12-14 

months exhibit an approximately 20-fold (p<0.001) increase in MSR expression 

compared to their wild-type counterparts, emphasizing the importance for SIRT1 in 

silencing MSR elements (Figure 2.11 A.).  Interestingly, SIRT1 appears dispensable for 

preventing MSR expression at 2-3 months of age (Figure 2.11 A.).  The SIRT1 knockout 

model, produces a catalytically-dead SIRT1 protein, which is detectable by immunoblot 

(Cheng et al., 2003) (Figure 2.11 A., bottom panel).  While we cannot mechanistically 

define the effect of increased NAD+ on SIRT1 activity and MSR expression, these data 

are consistent with the hypothesis that upregulation of SIRT1 activity in the aged mouse 

heart mitigates the effects of age on MSR silencing.   
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Alterations in Global Histone PTMs in Age Mouse Heart 

 

While this work seeks to address the role of SIRT1 in modulating histone PTMs 

implicated in the activation of MSR transcription, we decided take an unbiased 

approach to investigate global histone PTM changes in aged mouse heart using 

previously described high-regulation mass spectrometry of purified histone preparations 

(Lin and Garcia, 2012).  Histones extracted from three young and three old C57BL/6 

mice were analyzed by this method.  Significant (p<0.05) changes in histone peptide  
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Figure 2.11  SIRT1 overexpression partially rescues MSR derepression in aged 
heart  A. RNA extracted from wild-type (WT) or muscle-specific SIRT1 knockout (mKO) 
mice at 12-14 months of age were subjected to northern blotting using an MSR probe.  
Loading control, 18S rRNA EtBr stain.  Left Panel: Quantification of MSR expression in 
WT vs mKO, normalized to 18S rRNA.  B. RNA extracted from wild-type (WT) or muscle-
specific SIRT1 transgenic overexpressor (OE) mice at 20 months of age were subjected 
to northern blotting using an MSR probe.  Loading control, 18S rRNA EtBr stain.  Left 
Panel: Quantification of MSR expression in WT vs OE, normalized to 18S rRNA.  Loading 
control, 18S rRNA EtBr stain.  Representative western blotting of each genotype for 
SIRT1 is depicted below. 



 79 

 

 

 

0 1 2 3 4 5 10 20 30 40 50

H4 (4-17) Unmodified
H4 (4-17) K8acK12acK16ac
H4 (4-17) K5acK8acK16ac
H4 (4-17) K5acK8acK12ac

H4 (4-17) K5acK8ac
H4 (4-17) K5acK12ac

H4 (4-17) K16ac
H4 (4-17) K12acK16ac

H3.3 (27-40) K27me3K36me2
H3.3 (27-40) K27me2K36me2

H3 (9-17) K9me3K14ac
H3 (9-17) K9me3

H3 (9-17) K9me2K14ac
H3 (9-17) K9me2

H3 (27-40) K27me3K36me2
H3 (27-40) K27me2K36me2
H3 (27-40) K27me1K36me3

H3 (18-26) K23ac
H3 (18-26) K18me1
H2AZ (1-19) K15ac

H2AZ (1-19) Unmodified
H2AZ (1-19) K7ac
H2AZ (1-19) K4ac

H2AZ (1-19) K11ac
H2AX (4-11) K5acK9ac

H2AV (1-19) Unmodified
H2AV (1-19) K7ac
H2AV (1-19) K4ac

H2AV (1-19) K15ac
H2AV (1-19) K11ac

H2A3 (12-17) Unmodified
H2A3 (12-17) S16ac

H2A1 (12-17) Unmodified
H2A1 (12-17) K15ac

H1.5 (33-53) Unmodified
H1.5 (33-53) K33me3

H1.4 (25-32) Unmodified
H1.4 (25-32) K25me1

H1.4 (1-35) Unmodified
H1.3 (1-35) Unmodified

Fold Change

P
T

M

Young

Old

Figure 2.12  Analysis of global histone PTMs in aged mouse myocardium.  Acid-
extracted histones were purified from nuclei prepared from heart homogenates extracted, 
as described in Lin, S. & Garcia, B. A. Methods Enzymol (2012) (Lin and Garcia, 2012), 
from three young and three old mice.  Relative quantification of histone variants and 
PTMs were calculated using high-resolution mass spectrometry in collaboration with the 
Garcia lab.  Graphed are significant (p≤0.05) fold changes in histone PTMs of old mice 
compared to young.  Numbers in parentheses indicate the polypeptide of the 
corresponding histone analyzed. 
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modifications are graphed relative to young (Figure 2.12).  Surprisingly, SIRT1 targets, 

H3K9ac and H4K16ac, were not significantly enriched in aged mouse samples, as 

previously detected by immunoblot.  In addition to H3K9ac and H4K16ac, SIRT1 also 

stabilizes facultative heterochromatin by facilitating recruitment of linker histone H1 

(Vaquero et al., 2004).  Interestingly, among to most highly altered modifications in this 

dataset are associated with H2A.X, H3K27 or H3K36 methylation, and several H1 

variants.  Furthermore, exogenous expression of MSR in cultured cells induces genomic 

instability evidenced, in part, by an increase in γH2A.X foci, a marker of DNA damage 

that can result from aberrant mitotic segregation (Janssen et al., 2011; Zhu et al., 

2011b).  Also, H3K36me3 has been reported to be associated with longevity and 

transcriptional fidelity in S. cerevisiae and C. elegans (Sen et al., 2015).  Thus, there are 

clearly epigenetic alterations that occur with age, though which changes are the result 

of SIRT1 activity loss and how are MSR loci, and heterochromatin in general, are 

impacted are still open questions.   

 

Discussion 

 

The Heterochromatin Island Hypothesis postulates that chromatin organization – in 

particular, diminished heterochromatinization of repetitive regions – is progressively lost 

during cellular and organismal aging (Imai and Kitano, 1998).  Experimentally, work in 

the budding yeast S. cerevisiae has demonstrated an age-associated loss of chromatin 

structure, in particular at repetitive DNA sequences, and elucidated its deleterious 

impacts on gene expression and genomic stability (Saka et al., 2013; Sinclair and 
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Guarente, 1997).  In mice, MSRs comprise the pericentromeric DNA. MSRs are 234bp 

repeats present on all mouse chromosomes except the Y, together accounting for ~10% 

of the mouse genome (Garagna et al., 2002; Pardue and Gall, 1970; Prashad and 

Cutler, 1976; Vissel and Choo, 1989; Waring and Britten, 1966).  MSR DNA is 

heterochromatinized by transcription factors, histone methyltransferases and 

deacetylases, chromatin remodeling complexes, and associated factors (Bulut-

Karslioglu et al., 2012; David et al., 2003; Lehnertz et al., 2003a; Peters et al., 2001; 

Postepska-Igielska et al., 2013).  

 

More recently, it has been reported that expression of several classes of repetitive 

elements, i.e. Major Satellite Repeats (MSRs) and long and short interspersed nuclear 

elements (LINEs and SINEs), rises in aged mouse liver and skeletal muscle, an 

increase that is attenuated by calorie restriction (CR) (De Cecco et al., 2013b). Histone 

H3K9 trimethylation mediated by the Su(var)3-9 methyltransferases homologs 1 and 2 

(SUV39H1/2) plays a major role in MSR silencing (Lehnertz et al., 2003b).  In 

SUV39H1/2 knockout mouse embryonic fibroblasts (MEFs), loss of MSR transcriptional 

silencing occurs, along with increased chromosomal missegregation and aneuploidy 

(Lehnertz et al., 2003b; Peters et al., 2001).  Previous reports place SIRT1 at MSR loci 

in mouse embryonic stem cells, and indicate that upon genotoxic stress, SIRT1 

relocalizes from the sites of MSR heterochromatin to the sites of DNA damage in order 

to facilitate repair (Oberdoerffer et al., 2008).  A concomitant increase in MSR RNA was 

also detected, suggesting a role for SIRT1 in maintaining MSR silencing.  This report 

also demonstrates, via ChIP analysis, that the SIRT1 target Histone H1 lysine 26 
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acetylation is increased at MSR loci.  Although SIRT1 is known to regulate SUV39H1, 

MSR derepression in an aging context lacks the features of SUV39H1 deficiency.  

Indeed, SUV39H1 protein expression is unchanged in the mouse myocardium upon 

aging, and histone PTMs associated with loss of SUV39H1 activity are unaltered.  

Although it is possible that though the bulk levels of these histone PTMs are unaltered 

with age, a redistribution of SUV93H1-mediated repressive marks away from MSRs 

may occur, resulting in an increase in MSR expression.  While the steady state levels of 

SIRT1 remain unchanged in aged heart tissue, it is also possible that SIRT1 is 

redistributed upon aging.  If SIRT1 abundance or activity is unaltered with age, but its 

localization is altered, modulating its activity via NAD+ supplementation may fail to 

rescue the age-associated MSR phenotypes observed, consistent with data presented 

in the chapter (Figure 2.9 A. and Figure 2.10 A.).  If NAD+ levels are maintained with 

age in the heart to support sirtuin activity, then overexpression of SIRT1 would be 

predicted to allow for more molecules to reside at the MSR loci to preserve its structure, 

again in agreement with data presented in the chapter (Figure 2.11 B.).  Surprisingly, 

SIRT1 loss in young mice has no effect on MSR expression, indicating SIRT1 may 

belong to a silencing complex that becomes progressively unstable with age.   

 

Perturbed MSR heterochromatinization is associated with chromosomal 

missegregation, aneuploidy, and an elevated cancer incidence (David et al., 2006; 

Peters et al., 2001; Vaquero et al., 2007; Wang et al., 2008).  Enforced satellite 

sequence expression can on its own induce aneuploidy (Zhu et al., 2011a).  The very 

first example of attenuated heterochromatin maintenance with age in mammals in vivo 
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involved the MSRs (Gaubatz and Cutler, 1990).  Via northern hybridization, Gaubatz 

and Cutler showed that MSR RNA expression was undetectable in hearts of young 

mice, but progressively increased in this tissue in mice one year of age and older.  They 

observed no age-associated MSR induction in brain, liver, or kidney.   

 

During aging, progressive aneuploidization occurs in several mouse tissues, including 

heart, skeletal muscle, kidney and lung (Baker et al., 2013).  Overexpression of BubR1, 

a mitotic checkpoint protein, improves ploidy maintenance during aging, and is 

protective against age-related cardiac dysfunction (Baker et al., 2013).  Whether an 

age-related increase in MSR expression contributes to age-associated genomic 

instability is unclear.  Also, the ability to delay age-associated genomic instability, for 

example though overexpression or upregulation of SIRT1 activity, which results in 

attenuated MSR expression, has yet to be determined.  Consistent with this idea, 

ectopic expression of human or mouse satellite DNA induces genomic instability in 

cultured cells, marked by mitotic catastrophe and an increase in γH2A.X foci, a marker 

of DNA damage that can result from aberrant mitotic segregation (Janssen et al., 2011; 

Zhu et al., 2011b).  Several studies suggest that pro-longevity interventions like CR may 

potentiate lifespan extension in part by preserving chromatin structure and function in 

higher eukaryotes (Guarente, 2000; Heydari et al., 2007; Vaquero and Reinberg, 2009).  

Although, the possibility that increased NAD+ as a result of CR allows for increased 

SIRT1 activity, a second possibility is that CR results in less DNA damage (Heydari et 

al., 2007), which in turn preserves SIRT1 concentrations at MSR loci, facilitating MSR 

silencing.  It is still unknown whether the effect CR has on MSR expression is SIRT1 
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dependent, and what effect SIRT1 loss would have on genomic stability and CR-

mediated lifespan extension is an open question. 

 

Work presented in this chapter addresses an age-related epigenetic defect that was first 

described 25 years ago; the molecular basis for age-associated MSR depression in 

myocardium.  Though this was the first example of age-associated heterochromatin 

dysfunction in vivo described in mammals, the mechanistic basis of this phenomenon 

has never been determined.  Our studies suggest impaired SIRT1 function at MSR loci, 

perhaps due to diminished NAD+ levels or relocalization, as playing a role in this effect.  

We further propose that impaired MSR heterochromatinization plays a causal role in 

age-associated myocardial aneuploidy (Baker et al., 2012).  These studies will provide 

new insight into a longstanding question in epigenetics and aging, and into mechanisms 

of cardiac genome stability.  Cardiovascular disease (CVD) represents the single 

greatest cause of worldwide mortality (Barquera et al., 2015), and advancing age is a 

dominant risk factor for CVD (Bell et al., 2015).  Therapies to attenuate age-associated 

heterochromatin changes in the heart may provide novel therapeutic avenues to 

promote cardiac health in the elderly. 

 

Materials and Methods 

 

Cell Culture 
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SUV39H1/2 double-knockout and wild-type mouse embryonic fibroblasts (Lehnertz et 

al., 2003b) were cultured in DMEM (Gibco) containing 4.5g/L glucose, 110mg/L sodium 

pyruvate, 4mM L-glutamine, 1% non-essential amino acids, 10units/mL penicillin, 

10µg/mL streptomycin and 20% heat-inactivated FBS, and were grown in a humidified 

chamber at 37°C containing 5% CO2. 

 

Mice 

 

All aged mice, including calorie-restricted and those fed ad libitum (AL), were procured 

from the NIA Aging Rodent Colony (https://ros.nia.nih.gov).  Unless otherwise indicated, 

all experiments were done with tissues harvested from young (2-3-month-old), middle-

aged (12-14-month-old) and old (22-24-month-old) C57BL/6 male mice.  Middle-aged 

and old male B6D2F1 mice fed AL or a calorie-restricted diet (CR, 60% of AL diet) for 

20 days.  All mice were housed at the Biomedical Science Research Building (UM).  

Experiments were approved by and performed in accordance with the regulations of the 

University Committee on Use and Care of Animals. 

 

NMN treatment 

 

Nicotinamide mononucleotide (NMN) treatment was done as previously described 

(North et al., 2014).  Briefly, young (2-3-month-old) and old (22-24-month-old) mice 

were injected intraperitoneally at a dose of 500mg/kg once a day for 7 consecutive days 

with PBS (vehicle) or NMN (Sigma) resuspended in PBS, prior to the dark cycle.  A 
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second set of heart tissues dissected from NMN-supplemented mice were a gift of Dr. 

Shin-ichiro Imai (Washington University, St. Louis).  These mice were NMN-

supplemented at as dose of 300mg/kg/day in the drinking water, beginning at 5 months 

of age until euthanized at 17 months of age.  NAD+ measurements were done by mass 

spectrometry analysis in collaboration with Dr. Charles Evans (UM). 

 

Northern Blotting for MSRs 

 

Total RNA was extracted using TRIzol reagent (Invitrogen), according to the 

manufacturer’s instructions.  Precipitated RNA was resuspended in 500µl of RNAse-free 

H2O and incubated at 56ºC for 10 minutes and returned to room temperature. To 

remove contaminating genomic DNA, RNA was incubated with 100 units of RNAse-free 

DNAse I (Roche) at 37ºC for 3 hours in the presence of 40 units of RNAse inhibitor 

(Roche).  RNA was precipitated with two rounds of phenol (pH 5.2):chloroform 

extraction, followed by a final extraction chloroform.  RNA was then ethanol precipitated 

in the presence of 0.3 M sodium acetate pH 5.2 overnight at -20ºC, spun down and 

washed twice with 500µl of 70% ethanol.  RNA was resuspended in RNAse-free H2O.  

RNA integrity was confirmed by gel electrophoresis. 

 

An equal volume of NorthernMax-Gly Sample Loading Dye (Ambion) was added to 5 µg 

of total RNA and incubated for 1 hour at 56ºC.  Samples were resolved on a 1% Bis-

Tris-PIPES-EDTA agarose gel at 5 V/cm (as measured between electrodes).  Resolved 

RNA was transferred overnight onto a pre-wet Zeta Probe membrane (Bio Rad) by 
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upward capillary action using 10X SSC as the solvent.  Once transferred, the 

membrane was briefly rinsed in 2X SSC and UV crosslinked in a Stratalinker 

(Stratagene).  The membrane was prehybridized for 1 hour at 68ºC in ULTRAhyb 

Hybridization Buffer (Ambion).  During prehybridization, 1 µg of the MSR dsDNA 

template (cloned from pγsat plasmid; Addgene) containing the T7 promoter was used to 

generate a radiolabelled riboprobe using the T7 MAXIscript Kit (Ambion) and 

isotopically labeled UTP, [α-32P] (Perkin Elmer), according to manufacturer’s 

instructions.  The labeled probe was purified in a MicroSpin G-25 column (GE 

Healthcare).  The prehybridized membrane was incubated with the probe overnight at 

68ºC and washed for 30 minutes at 68ºC twice in 2X SSC, twice in 2X SSC, 0.1% SDS 

and twice in 0.1X SSC, 0.1%SDS.  The membrane was imaged by autoradiography.  

Quantification was performed by ImageJ software analysis. 

 

Immunobloting 

 

Whole-cell protein extracts were prepared from cell pellets or flash-frozen mouse 

tissues that were pulverized in Laemmli sample buffer (62.5mM Tris pH 6.8, 2% SDS, 

10% glycerol), supplemented with 710mM β-mercaptoethanol.  Lysates were sonicated 

for 30 seconds using a Branson Sonifier set to output “2.”  Lysates were then clarified 

by centrifugation at 15 000rcf for 30 minutes at 4ºC.  Protein concentrations were 

determined using the DC Protein Assay (Bio Rad).  Equivalent amounts (10-25µg) of 

total protein were fractionated by SDS-PAGE on a 10% or 12% polyacrylamide gel, 

electrophoretically transferred to PVDF, and probed with antibodies diluted in 5% nonfat 
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milk in 1XTBS-0.1% Tween-20 as indicated in Table 2.1.  Probed membranes were 

imaged on an ImageQuant LAS 4000 Scanner (GE Healthcare) after application of 

Immobilon Western HRP Substrate (Millipore). 

 

Antibody Company Clone/Cat# Dilution ~kDa 

SIRT1 Cell Signaling D1D7 1:2K 110 

SIRT2 Cell Signaling D4O5O 1:2K 39, 43 

SIRT6 Cell Signaling D8D12 1:2K 36, 42 

SIRT7 Cell Signaling D3K5A 1:2K 45 

GAPDH Santa Cruz 6C5 1:5-10K 37 

α-Tubulin Santa Cruz B-5-1-2 1:5-10K 55 

Histone H3 Abcam ab1791 1:25K 17 

H3K9ac Abcam ab4441 1:5K 17 

H3K9me3 Abcam ab8898 1:5K 17 

H3K56me3 -- -- 1:1K 17 

H4K16ac Cell Signaling E2B8W 1:1K 11 

5-hmC Epigentek A-1018 1:1K N/A 

     

Table 2.1 Antibodies used in this chapter 

 

Dot Blotting for Methylated DNA 

 

Genomic DNA samples were prepared with twofold (400ng to 50ng) serial dilutions in 

TE buffer and then denatured in 0.4 M NaOH/10 mM EDTA at 95ºC for 10 min and 

placed on ice.  Denatured DNA samples were spotted on a Zeta Probe membrane 

prewet in H2O for 5 minutes then in 10XSSC in an assembled Dot Blot apparatus 

(BioRad).  The membrane was briefly rinsed with 2XSSC buffer and ultraviolet-

crosslinked in a Stratalinker using the autocrosslink setting, twice.  Then the membrane 

was blocked with 5% non-fat milk for 1 hour and incubated with anti-5hmC (Epigentek) 
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in 5% BSA/0.1% Tween-20 overnight for HRP-conjugated secondary antibodies and 

enhanced chemiluminescence detection.  The membrane was subsequently stained 

with SYBR gold (Invitrogen) total DNA stain to confirm corresponding amounts of DNA 

for each sample.  Quantification was performed by ImageJ software analysis. 

 

Histone Extraction for Post-Translational Modification Mass Spectrometry Analysis 

 

Histones were prepared as described (Lin and Garcia, 2012).  Briefly, flash-frozen heart 

tissues were pulverized in liquid nitrogen.  NIB-250 (15mM Tris-HCL pH 7.5, 60mM KCl, 

15mM NaCl, 5mM MgCl2, 1mM CaCl2, 250mM sucrose, 0.3% NP-40, 1mM DTT, 

protease and deacetylates inhibitors) was added to a final ratio of 10:1 (10mL of buffer 

to 1mL equivalent of tissue).  The mixture was dounce homogenized and incubated on 

ice for 5 minutes.  Nuclei were washed 10:1 NIB-250 (without NP-40 detergent), and 

centrifuged at 4ºC for 5 minutes at 600rcf. 

 

To the isolated nuclei, 0.4N H2SO4 to a 5:1 final ratio (v/v) was added while vortexing, 

then incubated on ice for 1 hour and centrifuged at 4ºC for 5 minutes at 3400rcf.  The 

supernatant was transferred to a new 15ml conical tube.  To the remaining pellet, 0.4N 

H2SO4 to a 5:1 final ratio (v/v) was added while vortexing, then incubated on ice for 1 

hour and centrifuged at 4ºC for 5 minutes at 3400rcf.  Supernatants were combined.  To 

the supernatant, trichloroacetic acid was added to a final concentration of 20% and 

allowed to precipitate overnight at 4ºC.  Histones were pelleted at 4ºC for 5 minutes at 
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3400rcf.  The pellet was washed in acetone/0.1% HCl, and then washed twice with 

100% acetone.  The final pellet was air dried and resuspended in 50µl H2O.  
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CHAPTER 3 
 
 

SIRT5 is a Pro-Survival Factor in Human Melanoma 
 

 

Abstract 

 

Melanoma is the most lethal skin cancer, with an estimated 73,870 new melanoma 

cases and 9,940 melanoma-related deaths occurring in the US in 2015.  There is an 

urgent need for development of novel strategies to treat metastatic melanoma, which 

causes great morbidity and mortality, despite the advent of immune- and kinase-

directed therapies.  Unfortunately, even with the best current therapies, the majority of 

patients with disseminated melanoma will still eventually succumb to this disease.  In 

melanoma and other cancer types, metabolism is reconfigured to meet the anabolic 

demands of uncontrolled cellular proliferation.  Reversal of this metabolic 

reprogramming can induce senescence and cell death in melanoma.   

 

We have found that SIRT5 is critical in melanoma cell survival.  SIRT5 removes 

succinyl, malonyl, and glutaryl modifications from lysines on diverse protein targets, 

primarily in the mitochondrial matrix, thereby regulating multiple metabolic pathways.  In 

10/10 human melanoma cell lines tested, SIRT5 knockdown resulted in rapid loss of 

proliferative potential and cell death.  Likewise, we have found that SIRT5 loss impeded 
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melanoma xenograft formation in mice, and SIRT5 knockdown results in increased 

apoptotic cell death, which can be partially rescued by overexpressing anti-apoptotic 

BCL2.  Lastly, via metabolomics, SIRT5 regulates glucose and glutamine metabolism in 

melanoma.   

 

Introduction 

 

Sirtuin NAD+-dependent protein deacylases regulate metabolism and other diverse 

aspects of cell biology (see Chapter 1).  Of the three mitochondrial sirtuins, SIRT5, an 

inefficient deacetylase, is the only one with demonstrated desuccinyl, demalonyl, and 

deglutaryl activity (Du et al., 2011; Park et al., 2013; Peng et al., 2011b; Rardin et al., 

2013; Tan et al., 2014a).  Until recently, the major known function of SIRT5 was to 

regulate the hepatic urea cycle, via activation of carbamoyl phosphate synthase I 

(CPS1), the rate-limiting enzyme in this process (Nakagawa et al., 2009; Nakamura et 

al., 2012; Ogura et al., 2010).  By activating CPS1, SIRT5 inhibits cellular ammonia 

generation and autophagy (Polletta et al., 2015).   

 

Most sirtuins are now linked to neoplasia, either as tumor suppressors and/or 

oncogenes (see Chapter 1).  Tumor cell metabolism has emerged as a common target 

for sirtuin-mediated regulation (Zwaans and Lombard, 2014).  For example, SIRT3 

functions as a tumor suppressor via promotion of mitochondrial respiration and 

suppression of ROS levels.  In SIRT3-deficient cells, increased ROS activate HIF1, 

promoting Warburg metabolism and genomic instability, and also lead to defects in 
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intracellular iron metabolism (Bell et al., 2011; Finley et al., 2011; Jeong et al., 2014; 

Kim et al., 2010).  SIRT3 also activates PDC and promotes oxidative metabolism to 

suppress tumorigenesis (Fan et al., 2014).  SIRT4 acts as a tumor suppressor by 

suppressing glutamine metabolism, particularly under conditions of genotoxic stress 

(Csibi et al., 2013; Haigis et al., 2006; Jeong et al., 2013).  Among the seven 

mammalian sirtuins, SIRT5 is the only one not yet definitely implicated in malignancy.  A 

recent report showed that SIRT5 promotes chemoresistance in non-small cell lung 

carcinoma via enhancement of NRF2 activity, though the mechanistic details of this 

interaction remain unclear (Lu et al., 2014).  Another report indicated that SIRT5 

desuccinylates SOD1 to activate its function, suppressing ROS and promoting growth of 

lung cancer cells (Lin et al., 2013).  Previous efforts from our lab have identified 2565 

succinylation sites on 779 proteins, most of which (~90%) were SIRT5 targets.  This 

revealed potential impacts of succinylation on enzymes involved in mitochondrial 

metabolism: amino acid degradation, TCA cycle, and fatty acid metabolism.  We have 

described SIRT5-dependent regulation of two substrates, PDC and Succinate 

Dehydrogenase (SDH).  SIRT5 inhibited biochemical activities of both complexes, and 

suppressed overall mitochondrial respiration (Park et al., 2013). 

 

Melanoma is the most lethal skin cancer, with an estimated 73,870 new melanoma 

cases and 9,940 melanoma-related deaths occurring in the US in 2015 (Siegel et al., 

2015).  There is an urgent need for development of novel strategies to treat clinically 

advanced melanoma, which still causes great morbidity and mortality, despite the 

advent of immune- and kinase-directed therapies.  In melanoma and other cancer 
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types, metabolism is reconfigured to meet the anabolic demands of uncontrolled cellular 

proliferation (Theodosakis et al., 2014).  Reversal of this metabolic reprogramming can 

induce senescence and cell death in melanoma (Kaplon et al., 2013); however, no 

therapies have taken advantage of this vulnerability.   

 

The data presented in this chapter reveal a major requirement for SIRT5 in melanoma 

cell survival, through suppression of apoptosis and potentially through the regulation of 

metabolism.  We have found that in 10/10 human melanoma cell lines we have tested, 

with varied genetic drivers, SIRT5 knockdown resulted in rapid loss of proliferative 

potential and cell death.  Likewise, we have found that SIRT5 loss greatly impeded 

melanoma xenograft formation in mice.  Overexpression of anti-apoptotic BCL2 thwarts 

the cell death phenotype induced upon SIRT5 depletion.  Via metabolomics and 

respirometry, we have found that SIRT5 regulates glucose and glutamine metabolism in 

melanoma to promote metabolic reprogramming.   
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Results 

 

Bioinformatic analysis reveals striking SIRT5 amplification in human melanoma 

 

Human melanoma is often typified by genetic alterations in either NRAS (chr 1) or 

BRAF (chr 7) (Hodis et al., 2012).  Yet, amplification human chromosome 6p is often 
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Figure 3.1  SIRT5 is amplified in human melanoma.  A. Sirtuin gene copy number 
(CN) in human melanoma samples, as assayed by high density SNP array (n=139).  B. 
SIRT5 (6p23) and centromere (Cen) 6p amplification (amp) or co-amplification (Co-amp) 
in melanoma (n=32).  C. SIRT5 mRNA expression levels correlate with Clark’s depth of 
the melanoma lesion (p=0.0044, linear regression; p=0.037, ANOVA).  D. SIRT5 protein 
levels are increased in melanoma relative to benign melanocytic lesions (p=0.0333, Chi-
squared; n=14 nevi, n=87 melanoma). 
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correlated with cancer progression, including melanoma (Santos et al., 2007).  Given 

that SNP array analysis reveals that SIRT5 copy number gain is associated with human 

clinical melanomas (Figure 3.1 A. and B.), we asked if SIRT5 RNA expression is 

increased in human melanoma samples.  We found that compared to benign nevi, 

BRAF 51%

NRAS 31%

SIRT1 63%

SIRT2 36%

SIRT3 42%

SIRT4 32%

SIRT5 63%

SIRT6 42%

SIRT7 48%
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Logrank Test p-value: 0.0395

Figure 3.2  Reduced survival when SIRT5 is amplified in human melanoma.  A.  
SIRT5 shows amplification and/or increased expression in melanoma.  BRAF and NRAS 
alterations are shown for comparison (n=278; data from TCGA, Provisional, analyzed on 
cBioPortal). Negative cases have been omitted for clarity.  B.  Kaplan–Meier analysis of 
survival in melanoma patients with alterations in SIRT5. 
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SIRT5 expression is increased in more aggressive melanocytic lesions, reported as 

Clark’s depth. (Figure 3.1 C. and D.).  Mining the TCGA database, SIRT5 copy number 

gain is shown to be present in many melanoma cases – strikingly, more frequent than 

alterations in other sirtuins and mutations in the canonical NRAS and BRAF melanocytic 

genetic drivers (Figure 3.2 A.).  Consistent with the hypothesis that SIRT5 expression 

correlates with melanoma growth and survival, Kaplan-Meier analysis indicates that 

melanoma patients with a SIRT5 amplification have lower mortality rates than patients 

without a SIRT5 alteration (p=0.0395; Figure 3.2 B.).  These data indicate that SIRT5 

promotes melanoma growth and survival.  To test the role for SIRT5 in promoting 

melanoma survival, we used a panel of cell lines harboring the well-described mutations 

in either NRAS or BRAF (Figure 3.3, Table 3.1).  As shown in Figure 3.3, SIRT5 protein 

is present in varying abundance in both NRAS and BRAF mutant cell lines.  Taken  

together, these data suggest that SIRT5 serves as a potential pro-survival factor for 

human melanoma. 

 

Loss of SIRT5 inhibits NRASQ61R and BRAFV600E driven melanoma cell growth 

 

Since SIRT5 is readily detected by immunoblot in all cell lines tested (Figure 3.3, Table 

3.1), and given that melanoma with a SIRT5 amplification results in a lower patient 

survival rate, we tested the hypothesis that SIRT5 is required for melanoma cellular 

proliferation and survival.  To do this we generated cells lines lacking SIRT5 using a 

lentiviral shRNA system, targeting SIRT5 in one of two regions of the mRNA (KD1 or 

KD2).  Compared to cells harboring a non-targeting (NT, or non-silencing control) 
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shRNA, we observe that both SIRT5 shRNA lentiviruses inhibited melanoma survival as 

measured by a WST-1 tetrazolium salt cleavage system (Figure 3.4 A, B).  We find that 

7 days post-infection, KD1 and KD2 significantly reduce cell numbers as measured by 

ABS450nm in 10/10 cell lines, and this phenotype is independent of the genetic mutations 

typically found in melanomas, NRASQ61R or BRAFV600E (Figure 3.2A, 3.4 B).  Thus, 

regardless or genetic driver, targeting SIRT5 with an shRNA reduces cellular 

proliferation and/or survival in all melanoma cells tested in a cell culture system.  As a 

qualitative measure of melanoma cell growth, we imaged two NRASQ61R mutant (SK-

MEL-103 and VMM917) and two BRAFV600E mutant (A2058 and VMM15) cell lines 96 

37
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Figure 3.3  SIRT5 is expressed in melanoma cell lines.  SIRT5 protein is readily 
detectable in whole cell extracts by immunoblot in various NRAS Q61R mutant or BRAF 
V600E mutant melanoma cell lines.  Tubulin serves as the total protein loading control. 
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hours post-infection (48 hours post-puromycin selection).  Brightfield micrographs of 

representative fields reveal fewer cells in both SIRT5 knockdown samples (Figure 3.5, 

KD1 and KD2 compared to NT, control).  Thus, consistent with the results from the 

colorimetric WST-1 assay, targeting SIRT5 with either KD1 or KD2 lentivirus reduces 

cell number when compared to the non-targeting control.  

 

To confirm that treatment with shRNAs, KD1 and KD2, do indeed result in loss of the 

SIRT5 protein, we generated whole-cell lysates from A2058 and SK-MEL-103 cells that 

have been infected with a non-targeting control (C), SIRT5 knockdown 1 (KD1), or 

SIRT5 knockdown 2 lentivirus.  At 72 and 96 hours post-infection, the level of SIRT5 

protein is markedly reduced, but not undetectable by immunoblotting (Figure 3.6 A).  At 

both timepoints, complete cell death has not occurred (Figure 3.4, see A2058 and SK-

MEL-103 panels, Day 2 and Day 3; Figure 3.5).  In order to begin to delineate a SIRT5- 

mediated inhibition of proliferation from activation of apoptosis we chose these 

timepoints to ask if A2058 and SK-MEL-103 cells have increased cleaved caspase 3.  

Caspase 3, a protease that is cleaved to initiate the apoptotic signaling cascade 

(Elmore, 2007), can be easily detected by the appearance of two smaller molecular 

weight species on an immunoblot.  Figure 3.6 A, second panel, shows the appearance 

of these caspase 3 cleavage produces in the melanoma samples where SIRT5 is 

reduced (C vs KD1 and KD1).  Therefore, reduced SIRT5 protein in a BRAFV600E mutant 

cell line, A2058 and an NRASQ61R mutant cell line, SK-MEL-103 correlates with reduced 

cell number and increased pro-apoptotic caspase 3 cleavage.   
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Figure 3.4  SIRT5 knockdown reduces cell survival in various melanoma cell lines.  
A. Schematic of WST-1 viability assay.  Equivalent cells are plated on experimental day 
1. Cells are then infected with a non-targeting shRNA or one of two SIRT5 shRNAs (KD1 
or KD2).  Cells are plated into 5 96-well plates in the presence of puromycin 48 hours 
post-infection.  Each day, WST-1 is added and ABS(450nm) is read two hours later.  B. 
Average results (n=6/timepoint) are graphed.  Error bars represent standard deviation.  
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Figure 3.5  SIRT5 knockdown reduces cellular density in cell culture.  
Representative qualitative micrographs of decreased cellular density upon SIRT5 
knockdown were taken 96 hrs. post-infection with a lentivirus expressing a non-targeting 
(control) or SIRT5-targeting (KD1 or KD2) shRNA.  BRAFV600E mutant cell lines, A2058 
and VMM15 and NRASQ61R mutant cell lines, SK-MEL-103 and VMM917 are depicted 
above.  Equivalent cell numbers were plated 24hrs. prior to lentiviral transduction.  
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Does loss of SIRT5 protein result in the hallmarks of loss of SIRT5 catalytic activity?  A 

major biochemical function of SIRT5 is to remove succinyl, malonyl, and glutaryl 

moieties from lysine residues (Du et al., 2011; Nakagawa et al., 2009; Park et al., 2013; 

Peng et al., 2011a; Rardin et al., 2013; Tan et al., 2014b).  Genetic knockout of Sirt5 in 

mice results in an accumulation of succinyllysine residues in the heart and other tissues 

(Park et al., 2013; Sadhukhan et al., 2016; Yu et al., 2013).  We analyzed the status of 

total succinyllysine by immunoblot in melanoma cells after SIRT5 knockdown, using 

SIRT5 WT and KO mouse heart lysates as a control.  As expected, increased 

succinyllysine is present in the mouse SIRT5 KO samples compared to the WT 

samples, evidenced by a darker “smear” on the membrane (Figure 3.6 B.). 

 

Surprisingly, probing melanoma lysates with the pan-succinyllysine antibody revealed 

near equivalent levels of succinyllysine in both knockdowns compared to control (KD1 

and KD2 vs NT) at both timepoints (Figure 3.6 B.).  Overall, the levels of succinyllysine 

are lower in human melanoma than in WT mouse heart tissue.  Thus, SIRT5 is 

dispensable in maintaining the level of succinyllysine in whole cell protein extracts in 

A2058 and SK-MEL-103 cells.   
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Figure 3.6  SIRT5 knockdown induces caspase 3 cleavage, but maintains cellular 
succinyllysine levels.  A. Immunoblot analysis of SIRT5 protein levels 72 and 96 hrs. 
post-infection with control (C) or one of two shRNAs targeting SIRT5 (KD1/KD2) in A2058 
and SK-MEL-103 cell lines.  Induction of cleaved caspase 3 is observed at both 
timepoints.  Tubulin serves as the total protein loading control.  B. Pan-succinyllysine 
analysis of total cellular protein after SIRT5 knockdown via immunoblot was done at 72 
and 96 hrs. post-infection as in (A.).  Mouse SIRT5 (mSIRT5) wild-type (WT) and 
knockout (KO) heart lysate serve as a positive control.  GAPDH serves as the total 
protein loading control. 
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The ex vivo and in vivo effects of SIRT5-depletion on melanoma growth 

 

One hallmark of cancer is sustaining cell growth, or “replicative immortality” (Hanahan 

and Weinberg, 2011).  We, therefore, asked if modulation of SIRT5 could impact the 

ability of melanoma cells to grow in a colony, mimicking tumor growth in 2 dimensions, 

under the challenge of limited dilution in cell culture.  In order to test the hypothesis that 

SIRT5-depletion would result in fewer colonies in a clonogenic formation assay, we 

plated A2058 and SK-MEL-103 cells in 6-well plates.  Cells were infected with a 

lentivirus expressing SIRT5 KD1 or SIRT5 KD2 or an NT control, as done previously.  

After 12 days of culture, under puromycin selection, colonies were stained with crystal 

violet and counted (Figure 3.7 A. and B.).  As expected, significantly (p<0.0001) fewer 

colonies were observed in both SIRT5 knockdown samples compared the control 

(approximately 6-fold fewer in SK-MEL-103 and 13-fold fewer in A2058; Figure 3.7 A.).  

Slightly more colonies were observed in SK-MEL-103 KD2 samples compared to KD1, 

which correlates with increased level of SIRT5 protein in KD2 vs KD1 (Figure 3.6 A.) 

that we consistently observe with this lentivirus system.  Thus, reduction of SIRT5 

reduces the number of colonies in a 2 dimensional clonogenic growth assay. 

 

To further investigate the ability of SIRT5 to support melanoma growth, we took 

advantage of a xenograft mouse model to test the hypothesis that SIRT5 knockdown 

will mitigate tumor growth in vivo.  The well characterized NOD.Cg-PrkdcscidHrhr/NCrHsd 
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(NOD/SCID) mouse strain was used to follow melanoma cell-driven tumorigenesis in 

vivo.  A2058 and SK-MEL-103 cells were once again infected with NT (control), SIRT5 

KD1, or SIRT5 KD2 and harvested 72 hours post-infection for subcutaneous injection 

into the flanks of 5 NOD/SCID mice per group (i.e. 5 mice received NT and KD1, and 5 

mice received NT and KD2; Figure 3.8 A.).  One million live cells of each condition, as 

determined by trypan blue exclusion, were resuspended in Matrigel basement 

membrane matrix, and injected into female NOD/SCID mice.  As expected, flanks that 

received SIRT5 KD1 or KD2 SK-MEL-103 (Figure 3.8 A.) or A2058 (Figure 3,8 B.) 
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Figure 3.7  SIRT5 knockdown reduces clonogenic colony formation potential in cell 
culture.  A. SIRT5 knockdown results in significantly (p<0.0001) fewer crystal violet-
positive colonies in A2058 and SK-MEL-103 cells 12 days post-infection.  Graphed are 
averages of n=4 wells per condition.  Error bars represent standard deviation.  B. 
Representative crystal violet-stained wells depict fewer colonies in both SIRT5 
knockdowns (KD1 and KD2) compared to non-targeting (control) in both cell lines. 
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produced smaller tumors compared to the flanks that received cells infected with a non-

targeting shRNA control virus.  As illustrated in Figure 3.8 A. and B., fewer and smaller 

tumors resulted in vivo from SIRT5 knockdown in the xenograft model. 

Figure 3.8  SIRT5 knockdown inhibits in vivo tumor growth in a xenograft mouse 
model.  Non-targeting (Control) or SIRT5 knockdown (KD1 or KD2) cells were injected 
into the right or left flanks, respectively, of immunocompromised mice, as indicated.  Loss 
of SIRT5 in SK-MEL-103 (A.) or A2058 (B.) resulted in attenuated tumor growth.  Scale 
bar below dissected tumors represents 2cm.  Mice were sacrificed and tumors were 
dissected 28 days (for A2058) or 35 days (for SK-MEL-103) after initial injection. 
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Quantitative analysis of in vivo tumor growth was performed by measuring tumor 

volume, using Vernier calipers, on the days indicated (Figure 3.8 C.).  Subcutaneous 

tumor growth was initially visible approximately 13 days after injecting A2058 cells and 

approximately 18 days after injection of SK-MEL-103 cells.  The non-targeting control 

cells of both lines quickly formed tumors, while SIRT5 KD1 and KD2 cells exhibited 

markedly reduced tumor growth.  Despite 4/5 tumors engrafting for each group (Figure 

3.8 A. and B.), control tumor growth was still significantly (p<0.05) higher than both 

SIRT5 knockdown samples in both cell lines (Figure 3.8 D.).  Mice receiving A2058 cells 

were analyzed at 28 days after injection, which revealed a greater than 10-fold increase 

in endpoint control tumor size, compared to KD1 and KD2.  Similarly, 35 days post-

injection, tumors derived from SK-MEL-103 cells exhibited a greater than 20-fold 

increase in the non-targeting control tumor volume compared to KD1 and KD2 (Figure 

3.8 D, lower bar graph).  Thus, both qualitative and quantitative analyses demonstrate 

that SIRT5 reduction in A2058 and SK-MEL103 consistently and reliably inhibit 

xenograft tumor formation in NOD/SCID mice, recapitulating the phenotype observed in 

the colony formation assay (Figure 3.7). 

 

Exogenous SIRT5 overexpression does not rescue SIRT5-mediated cell death 
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Figure 3.8  SIRT5 knockdown inhibits in vivo tumor growth in a xenograft mouse 
model.  C. Quantification of tumor growth was initiated on day 13 after initial injection of 
cells.  Tumor sizes were recorded with Vernier calipers on the days indicated.  Each point 
represents the average measurements of n=5 mice for each condition (Control, KD1, or 
KD2).  Error bars represent standard deviation.  D. Pairwise representation of endpoint 
tumor size in each mouse within each group is graphed.  Average tumor volume 
measurements in mm3 at day 28 for A2058 and day 35 for SK-MEL-103 are represented 
in the lower panel.   
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Reduced cell viability in 10/10 human melanoma cell lines and a reduced tumorigenic 

potential upon SIRT5-depletion prompted us test whether we can rescue the SIRT5 

knockdown phenotype by expressing shRNA-resistant SIRT5 in cells.  To do this, we 

lentivirally generated SK-MEL-103 and A2058 cells lines that stably overexpress SIRT5.   

There are 4 known transcripts that express 4 unique SIRT5 isoforms.  Isoform 1 and 

isoform 2 are generated from alternative splicing and have been reported to localize to 

distinct subcellular compartments: Isoform1 to the nucleus, cytoplasm and 

mitochondria, and Isoform 2 predominately to the mitochondria (Matsushita et al., 

2011).  We, therefore generated isoform 1 and isoform 2 overexpressing A2058 and 

SK-MEL-103 cell lines (Iso1 or Iso2).  We also mutated amino acid H159 to tyrosine 

(labeled H159Y, or HY) to generate catalytically inactive SIRT5 protein.  This conserved 

histidine is critical for SIRT5 catalytic activity and mutation to tyrosine ablates SIRT5-

mediated catalysis (Nakagawa et al., 2009).  SIRT5 isoform 1 contains silent mutations 

to confer resistance to SIRT5 KD1 shRNA, but not KD2.  Successful overexpression of 

SIRT5 isoform 1 and 2 in SK-MEL-103 was confirmed by immunoblot (Figure 3.9 A.).  

Isoform 2 is lower in molecular weight as evidenced by a smaller band on the 

immunoblot (Iso 2 arrow, Figure 3.9 A.).  Using isoform 2-overexpressing SK-MEL-103 

cells, we tested the ability of SIRT5 shRNA to target SIRT5.  Figure 3.9 B. illustrates 

successful knockdown of SIRT5 in the vector-control cell lines (compare “Vector” lanes 

in control, KD1 and KD2 panels), while KD1 does not reduce the level of shRNA-

resistant isoform 2 (Figure 3.9 B, middle panel, KD1).  As expected, endogenous 

isoform 1 is equally reduced in each sample being targeted by SIRT5 KD1 shRNA.   
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If SIRT5 is required for cell viability, knockdown of endogenous SIRT5, but not 

lentivirally expressed resistant isoform 1 or 2 is expected to maintain cell growth.  To 

test this, we targeted SIRT5 using KD1 and KD2 in SIRT5 isoform 1 and 2 

overexpressing cells.  Surprisingly, neither SIRT5 isoform 1 nor isoform 2 was able to  
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Figure 3.9  Isoform-specific SIRT5 overexpression in SK-MEL-103 cells.  A. SIRT5 
isoform 1 and isoform 2 are overexpressed in SK-MEL-103 cells using a lentiviral-based 
system (Vector, control virus).  Isoform 2 is lower molecular weight than isoform 1, as 
illustrated by arrows.  Histidine at amino acid 158 in the SIRT5 protein was mutated to 
tyrosine (H158Y) to generate the previously described catalytically-dead SIRT5 enzyme.  
Exogenously-expressed SIRT5 Isoform 1 and 2 are resistant to shRNA KD1, but 
sensitive to KD2.  B. Knockdown of endogenous SIRT5 in SK-MEL-103 reveals 
equivalent SIRT5 protein levels, expressed from the transduced SIRT5 cDNA (compare 
Vector lanes in each panel).  KD2-sensistive isoform 2 is reduced upon KD2 infection.  
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rescue cell growth in the WST-1 viability timecourse (Figure 3.10).  If SIRT5 catalytic 

activity is required for melanoma proliferation, we reasoned that introduction of the 

catalytically-dead mutation H158Y would promote cell death upon knockdown of 

endogenous WT SIRT5.  Since both SIRT5 KD1 and KD2 resulted in SK-MEL-103 cell 

death in all samples (both isoforms, WT and H158Y), it is still unclear whether SIRT5 

maintains human melanoma survival via its catalytic functions.  Thus, reintroduction of 

an shRNA resistant SIRT5 does not rescue the lethality observed upon introduction of 

lentiviral shRNAs. 

 

To confirm previous reports (Matsushita et al., 2011; Park et al., 2013) that SIRT5 

resides in nuclear, cytoplasmic and mitochondrial cellular compartments, we tested by 

immunoblotting the ability of overexpressed SIRT5 isoform 1 and isoform 2 to localize to 

these cellular structures.  Upon subcellular fractionation of A2058 SIRT5 

overexpressing cells, an increase in SIRT5 isoform 1 protein abundance was observed 

in the nucleus, cytoplasm and mitochondria compared the vector-only control.  The 

lower molecular weight isoform 2 was present in the nucleus and mitochondria, as 

expected (Figure 3.11, top panel).  To assess the purity of these subcellular fractions, 

we immunoblotted for PDH E1α, a mitochondrial marker and Histone H3, a nuclear 

marker (Figure 3.11, lower panels).  While this analysis revealed slight  

crosscontamination of the fractions, we conclude that SIRT5 isoform 1 and 2 are 

overexpressed and localize as expected.  To further support this finding,  
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Figure 3.10  Overexpression of shRNA-resistant SIRT5 results in SK-MEL-103 cell 
death upon SIRT5 knockdown.  WST-1 viability assays (as done in Figure 3.4) 
demonstrate that reconstitution of SIRT5 protein from a lentivirally-transduced cDNA 
does not promote cellular growth and viability upon SIRT5 knockdown.  pbabe, vector 
control; Iso1, SIRT5 Isoform 1 WT; Iso2, SIRT5 Isoform 2 WT.  HY indicates H158Y 
mutant SIRT5.  Iso1, Iso1 HY, Iso2, and Iso2 HY are resistant to KD1 shRNA, but 
sensitive to KD2 shRNA. 
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immunofluorescence staining for SIRT5 reveals a SIRT5 signal (green) in the nucleus 

and co-localization with the mitochondrial stain, mitotracker (Figure 3.12).  Loss of the 

immunofluorescent SIRT5 signal (green) in cells infected with SIRT5 KD1 and KD2 

shRNAs confirms the specificity of the SIRT5 signal in the non-targeting control cells 

(Figure 3.12, top panel). 

 

Loss of SIRT5 induces apoptosis in melanoma cells 

 

The induction of cleaved caspase 3 (Figure 3.6) upon SIRT5 loss prompted us to gain a 

better mechanistic understanding into the death phenotype of melanoma cell lines upon 

SIRT5 knockdown.  We, therefore, asked if cell death was the result of apoptosis.  In 

order to test this, we analyzed by flow cytometry cells stained with Annexin V and 

propidium iodide (PI).  Cells undergoing early or late apoptosis will stain positively for 

Annexin V.  Cells that have lost membrane integrity will be positive for PI by flow 

cytometry, affording the ability to distinguish between apoptotic (Annexin V+) and 

necrotic (Annexin V-/PI+) cell death.  We lentivirally infected A2058 and SK-MEL-103 

cell lines with a non-targeting control, SIRT5 KD1, or SIRT5 KD2 shRNA virus.  Ninety-

six hours after infection a significant (at least p<0.05) increase in the number of Annexin 

V-positive cells was observed in both knockdowns in both A2058 and SK-MEL103 cell 

lines (Figure 3.13 A. and B.).  Summing Q2: Annexin V+/PI+ and Q3: Annexin V+/PI-, 

there is a 2-3.5 fold increase in the percentage of Annexin V+ cells in A2058 and a 5-10 

fold increase in the percentage of Annexin V+ cells in SK-MEL-103 upon SIRT5 

knockdown (Figure 3.13 B.).  These data indicate that loss of SIRT5 in melanoma cells   
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Figure 3.11  SIRT5 is localized to the nucleus and mitochondria in A2058 cells.  A. 
Subcellular fractionation of SIRT5 from pbabe (mock)-infected control cells or cells 
overexpressing Isoform 1, Isoform 2 or the associated H159Y-mutant confirms SIRT5 
isoform 1 and 2 overexpression and reveal that SIRT5 is resident in the nucleus (N), 
cytoplasm (C) and mitochondria (M).  Immunoblot for PDH E1a (mitochondrial) and 
Histone H3 (nuclear) are used to assess purity of the associated fractions.  Ponceau S 
total protein stain is illustrated below.  
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results in an increase in apoptosis.  As a positive control, A2058 and SK-MEL-102 cells 

were treated or mock-treated with the pro-apoptotic agent staurospoirne (1µm for 30 

minutes).  A 4-5 fold increase in Annexin V+ cells was observed in treated cells when 

compared to cells treated with vehicle Figure 3.13 C.), indicating reliability of the assay. 

 

To further investigate the role for SIRT5 in suppressing apoptosis in melanoma cells, we 

used RNAseq to determine global gene expression changes in A2058, SK-MEL-103 

and A375 cells upon SIRT5 knockdown, with a focus on select genes encoding pro- or 

Control

DAPI MITOTRACKER SIRT5 MERGE

KD1

KD2

A2058

Figure 3.12  Immunofluorescent analysis of SIRT5 localization.  Immunofluorescent 
analysis of A2058 cells 96 hours after SIRT5 shRNA-mediated knockdown reveals loss of 
SIRT5 antibody staining (compare Control to KD1 and KD2).  SIRT5 (green) co-localizes 
with mitotracker-stained mitochondria (red) as well as to extra-mitochondrial cellular 
compartments.   
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anti-apoptotic proteins.  Heatmaps of FPKM values, shown in Figure 3.14 A., B. and C., 

highlight perturbations in both the pro- and anti-apoptotic regulatory pathways.  

Interestingly, decreases in expression of several genes important for the anti-apoptotic 

response were noted (Figure 3.14, top panel).  Surprisingly, RNAseq analysis reveals 

only a small number of genes, common to A2058, A375 and SK-MEL103 cells, are 

significantly (p<0.05) downregulated or upregulated 96 hours after SIRT5 depletion 

(Figure 3.14 D.).  The pathways in which these genes act and their potential in 

modulating melanoma cell death requires further investigation.  Upon closer 

examination, several of the anti-apoptotic BCL2 family members were often significantly 

(p<0.05) downregulated in both KD1 and KD2 in each cell lines (Figure 3.15 A.).  

Consistent with these data, expression of several pro-apoptotic genes is increased, 

though several inconsistencies between cell lines are noted (Figure 3.15 B.).  Based on 

these data, we then proposed the model that SIRT5 impacts the anti-apoptotic response 

in part by downregulating BCL2 upon SIRT5 loss, leading to melanoma cell death. 

 

To test this hypothesis, we generated A2058 cells that stably overexpress BCL2 (BCL2 

OE), using an empty vector as a control (Vector) (Figure 3.16 A.).  BCL2 is readily 

detected and increased in abundance compared to the vector control.  As expected, 

upon SIRT5 knockdown, a reduction in the pro-apoptotic marker, caspase 3 cleavage is 

reduced.  Using the WST-1 viability assay, A2058 cells lacking SIRT5, but overexpress 

BCL2, were found to have enhanced growth over those that did not overexpress BCL2 

(Figure 3.16 B.).  Importantly, BCL2 itself does not promote human melanoma cell 

growth in the presence of SIRT5 (Figure 3.16 B., Vector vs. BCL2 OE; Day 5 control).  
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Thus, expression of anti-apoptotic BCL2 is sufficient to partially rescue SIRT5-mediated 

cell death in A2058 cells.   
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Figure 3.13  SIRT5 knockdown induces apoptosis in melanoma cell lines.  A. Flow 
cytometric analysis of A2058 and SK-MEL103 cells show an increased percentage of 
Annexin V-stained cells 96 hours after SIRT5 knockdown.  Representative plots are 
shown.  B. Quantification of each quadrant in n=4 samples reveals a statistically 
significant increase in Annexin V+ staining (Q2 and Q3) in both KD1 and KD2 in both cell 
lines.  *p<0.05, **p<0.01, ***p<0.001 C. Staurosporine treatment induces apoptosis as 
measured by Annexin V staining in A2058 and SK-MEL103 cells lines, used as a positive 
control.   
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Figure 3.14  Apoptotic gene expression is altered upon SIRT5 knockdown.  
Heatmap of FPKM values calculated from RNAseq data of A. A2058, B. A375 and C. SK-
MEL-103 cells.  Expression profiles of selected pro- and anti-apoptotic genes are 
illustrated.  Values for each non-targeting (NT) control sample are set to 1, relative 
differences for each knockdown are illustrated in red (increased expression) or green 
(decreased expression).  Statistical significance is not calculated (see Figure 3.15).  D. 
Venn diagrams of numbers of significantly (p<0.05) downregulated or upregulated gene 
expression changes from RNAseq analysis unique or common to the indicated cell lines 
upon SIRT5 knockdown (comparing NT control to changes common to both 
knockdowns). 
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Figure 3.15  Significant pro- and anti-apoptotic gene expression changes upon 
SIRT5 knockdown.  Relative FPKM values of selected anti-apoptotic (A.) and pro-
apoptotic (B.) genes in non-targeting control (NT) compared to KD1 and KD2 in A2058, 
A375 and SK-MEL-103 cells lines, 96 hours post-lentiviral transduction.  *p<0.05, 
**p<0.01, ***p<0.001, n=3 
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Figure 3.16  BCL-2 overexpression partially rescues SIRT5-dependent cell death in 
A2058 cells.  A. Immunoblotting of A2058 cells overexpressing the anti-apoptotic BCL-2 
(vector vs. BCL-2 OE) have reduced levels of cleaved caspase 3 upon SIRT5 knockdown 
(C, control, compared to KD1 and KD2).  B. WST-1 viability assay (as done in Figure 3.4) 
demonstrates that BCL-2 overexpression (BCL-2 OE) from a lentivirally-transduced 
cDNA partially rescues cellular growth and viability upon SIRT5 knockdown. 
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Metabolic alterations in SIRT5-deficient melanoma cells 

 

Tumor cells are known to reconfigure metabolism in order to meet the anabolic 

demands of uncontrolled cellular proliferation (Ward and Thompson, 2012).  Melanoma 

and other cancer cells perform robust aerobic glycolysis, described as Warburg 
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Rotenone Antimycin A Oligomycin FCCP
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C. D.

Figure 3.17  Loss of SIRT5 decreases glutamine-dependent metabolite labeling and 
glucose-dependent respiration.  Fractionally-labeled, A. glucose-derived or B. 
glutamine-derived metabolite levels are quantified upon SIRT5 loss in A2058 cells.  C. 
Schematic of the electron transport chain in mammalian mitochondria and the inhibitors 
of the associated complexes.  The mitochondrial oxidative phosphorylation uncoupler, 
FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone, disrupts ATP synthesis by 
allowing protons to cross the mitochondrial membrane, as indicated.  D.  Glucose-
dependent oxygen-consumption rate (OCR), the measure of mitochondrial respiration, is 
decreased upon SIRT5 knockdown.   
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metabolism (Warburg, 1956), and glutamine-driven tricarboxylic acid (TCA) cycle filling 

(Filipp et al., 2012a; Filipp et al., 2012b; Ratnikov et al., 2015; Scott et al., 2011).  

Reports that inhibiting glycolysis or glutamine metabolism sensitizes melanoma cells to 

induction of cell death prompted us to further investigate the role of SIRT5 in promoting 

melanoma survival (Qin et al., 2010a, b).  Therefore, considering the striking sensitivity 

of melanoma cells to SIRT5 depletion, we asked if a reduction of SIRT5 in melanoma 

would result in metabolic alterations.  Culturing A2058 cells in medium containing stable 

isotopes of [13C6]-glucose or [13C5]-glutamine in the presence of SIRT5 knockdown, we 

are able to accurately quantify glucose and glutamine-derived metabolites using mass 

spectrometry.  Upon SIRT5 knockdown, glucose-dependent metabolites were generally 

increased compared to controls (Figure 3.17 A.), indicating an increased contribution of 

[13C6]-glucose-derived carbon to the TCA cycle.  Similarly, in control cells, glutamine is 

converted into each of the glutamine-derived metabolites evaluated: glutamate, proline, 

aspartate, asparagine, and the TCA cycle metabolites alpha-ketoglutarate, citrate, 

fumarate, and malate (Figure 3.17 B.).  However, SIRT5 loss reduced the levels of 

these metabolites in A2058 cells.  Importantly, the level of glutamine in both knockdown 

samples is equivalent to the non-targeting control sample (Figure 3.17 B.), suggesting a 

SIRT5-dependent defect in glutamine metabolism.   

 

Previous reports indicate that SIRT5, predominantly localized to the mitochondrial 

matrix, suppresses mitochondrial respiration through specific mitochondrial complexes 

(Park et al., 2013).  SIRT5 regulates the TCA cycle, in part by desuccinylating and 

inactivating succinate dehydrogenase (a member of the electron transport chain, 
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complex II, Figure 3.17 C.), and the pyruvate dehydrogenase complex that converts 

pyruvate generated in glycolysis into acetyl-CoA.  We, therefore, used an XFe96 

extracellular flux analyzer to determine the effect of SIRT5 knockdown on mitochondrial 

respiration through oxygen consumption rate (OCR) measurements of melanoma cells.  

We found that upon exposure of A2058 cells to oligomycin (inhibitor of complex V), 

FCCP (uncouples electron transport and phosphorylation reactions) or antimycin 

A/rotenone (complex I/III inhibitors) decreased OCR was observed, as well as a 

significantly (p<0.005) reduced basal respiration rates upon SIRT5 knockdown 

compared to SIRT5-proficient control cells (Figure 3.17 C. and D.).  Thus, loss of SIRT5 

in melanoma cells results in metabolic perturbations, including increased glucose and 

decreased glutamine metabolism, and decreased mitochondrial respiration as 

evidenced by a reduction in the oxygen consumption rate.  

 

Discussion 

 

Most sirtuins have been described as either tumor suppressors or oncogenes, or in 

some contexts both.  Surprisingly, despite recent reports that SIRT5 promotes 

chemoresistance in non-small cell lung carcinoma (Lu et al., 2014), and suppresses 

ROS to promote growth of lung cancer cells (Lin et al., 2013), SIRT5 has yet to be 

clearly implicated in cancer.  SIRT5, a lysine deacylase with desuccinyl, demalonyl, and 

deglutaryl activities, impacts the enzymatic functions regulating mitochondrial 

metabolism: amino acid degradation, TCA cycle, and fatty acid metabolism.  We have 

previously described SIRT5-dependent regulation of two substrates, PDC and 
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Succinate Dehydrogenase (SDH).  SIRT5 inhibits biochemical activities of both 

complexes, and suppressed overall mitochondrial respiration (Park et al., 2013).  

 

In melanoma and other cancer types, metabolism is reconfigured to meet the anabolic 

demands of uncontrolled cellular proliferation (Theodosakis et al., 2014).  Reversal of 

this metabolic reprogramming can induce senescence and cell death in melanoma 

(Kaplon et al., 2013); however, little research has focused on developing clinically-

relevant therapeutics in this regard.  These findings combined with the attention cancer 

metabolism as a potential therapeutic target has received (Zwaans and Lombard, 

2014), we propose that SIRT5 may represent a useful means to modulate oncogenesis. 

 

In this chapter, we define a role for SIRT5 in maintaining melanoma cell survival and in 

vivo tumor growth, through suppression of apoptosis and potentially through the 

regulation of metabolism.  In 10/10 human melanoma cell lines, either harboring BRAF 

or NRAS mutations, SIRT5 knockdown results in rapid loss of proliferative potential and 

cell death.  Surprisingly, reintroduction of RNAi-resistant SIRT5 does not rescue the cell 

death phenotype.  One possibility for this is that exogenously expressed SIRT5 is not 

localized to the cellular compartment required for melanoma survival.  Another 

explanation is that the SIRT5 cDNA sequence used to generate the exogenously 

expression protein does not match that required for survival of melanoma cell lines.   

 

Overexpression of anti-apoptotic BCL2 thwarts the cell death phenotype induced upon 

SIRT5 depletion.  Although our original hypothesis focused on regulation of metabolic 
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reprogramming in melanoma, these data point toward a role for SIRT5 in modulating 

apoptosis.  It is not clear if overexpression of BCL2 is simply overriding the pro-

apoptotic signal occurring upon SIRT5 loss.  Whether SIRT5 directly interacts with and 

regulates the activity of apoptotic proteins or whether this is a secondary effect of 

metabolic derangement or other phenotypes is still unclear.   

 

Furthermore, targeted metabolomics and respirometry demonstrates that SIRT5 

regulates glucose and glutamine metabolism in melanoma to promote metabolic 

reprogramming.  Although the impact of this reprogramming on melanoma survival has 

yet to be clearly described, and requires more careful examination (see Future 

Directions). 

 

Based on these data, and our ability to identify SIRT5 inhibitors, our current goal is to 

elucidate roles for SIRT5 in regulating melanoma cellular metabolism, and to develop, 

optimize, and evaluate SIRT5 inhibitors.  It is unclear if targeting SIRT5 in other cancers 

that depend on similar oncogenes or oncogenic pathway would result in the same 

sensitivity as described for melanoma; though, SIRT5 depletion is compatible with 

normal growth in many other cell types, such as 293T and MEFs, among others.  Also, 

Sirt5 knockout mice are grossly unremarkable, fertile, and healthy, with minimal 

metabolic phenotypes elicited in response to prolonged fasting. These mild phenotypes 

in normal cells and tissues, coupled with the dramatic, rapid lethality we observe upon 

SIRT5 depletion in melanoma, raise key questions about SIRT5 function in the 

melanocytic lineage. 
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Materials and Methods 

 

Analysis of SIRT5 gene amplification, mRNA and protein expression in melanoma 

 

Copy number analysis of melanoma cell lines was performed by high density SNP array 

of 8 primary, 72 stage III, 51 stage IV and 8 stage III/IV (‘metastatic’ disease) melanoma 

cell lines, as previously described (Stark et al and Dutton-Regester et al).  Data was 

analyzed using Nexus Copy Number (BioDiscovery) for copy gain, copy loss and loss of 

heterozygosity of genes and chromosomal regions.  Data from the TCGA was used via 

cBioPortal to further investigate SIRT5 in melanoma (n=278; Cancer Genome Atlas 

Network), including copy number (by GISTIC 2.0) and expression data (by RNAseq) 

and the correlation with clinical attribute, including the Clark Level at diagnosis of the 

melanoma.  Analysis of mRNA expression data from a publically available dataset 

(Talantov et al; GEO accession ID: GDS1375) was carried out to investigate the 

potential correlation between SIRT5 mRNA expression and melanoma, benign nevi and 

normal skin samples.  These expression data were ascertained using the Human 

Genome U133A Array (Affymetrix), which analyzes expression using a number of 

probes that make up a ‘Probe Set’.  There is only one fully informative Probe Set in 

which all the individual probes bind to the SIRT5 mRNA (219185_at), which was 

therefore used for the analysis. 

 

Cell Culture 
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Melanoma cell lines harboring mutations in either NRAS or BRAF (Table 3.1): A375, 

A2058, SK-MEL-2, SK-MEL-28, VMM15, and VMM917 were purchased from ATCC; 

SK-MEL-19 and SK-MEL103 were generously provided by Dr. Monique Verhaegen; 

C8161were generously provided by Dr. Zaneta Nikolovska-Coleska; and SK-MEL-293 

were generously provided by Dr. Emily Bernstein.  Unless otherwise noted, A375, 

A2058, SK-MEL-19 and SK-MEL-103 cell lines were grown in DMEM (Gibco) containing 

4.5g/L glucose, 110mg/L sodium pyruvate, 4mM L-glutamine, 10units/mL penicillin, 

10µg/mL streptomycin and 10% heat-inactivated FBS.  SK-MEL-2 and SK-MEL-28 cell 

lines were grown in EMEM (ATCC) containing 4.5g/L glucose, 110mg/L sodium 

pyruvate, 4mM L-glutamine, 10units/mL penicillin, 10µg/mL streptomycin and 10% heat-

inactivated FBS.  VMM15, VMM917, and SK-MEL-293 cell lines were grown in RPMI 

(Gibco) containing 4.5g/L glucose, 110mg/L sodium pyruvate, 4mM L-glutamine, 

10units/mL penicillin, 10µg/mL streptomycin and 10% heat-inactivated FBS.  The C8161 

cell line was grown in DMEM/F12 (1:1) (Gibco) containing 1.2mM L-glutamine, 1% non-

essential amino acids, 10units/mL penicillin, 10µg/mL streptomycin and 5% heat-

inactivated FBS.  All cell lines were routinely confirmed to be free of mycoplasma 

contamination and were grown in a humidified chamber at 37°C containing 5% CO2. 
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Lentiviral Transduction for SIRT5 Knockdown 

 

Lentiviral plasmids containing a non-silencing shRNA (Control) (Addgene) or one of two 

shRNAs targeting human SIRT5 (KD1: Dharmacon Clone TRCN0000018546, KD2: 

TRCN0000018547) in the pLKO.1 backbone, encoding puromycin N-acetyl-transferase, 

were used to generate lentiviral particles (UM Vector Core).  Lentiviral transduction was 

carried out in the presence of 8µg/ml polybrene in complete growth medium for 24 

hours, after which, virus-containing medium was replaced with fresh complete growth 

medium.  Unless otherwise noted, 1µg/ml puromycin was added 48 hours post-infection 

to select for positive transductants.  Successful SIRT5 knockdown was routinely 

confirmed by western blotting 48-96 hours post-infection. 

 

Immunobloting 

Cell Line Catalog Number BRAF NRAS CDKN2A p53
Tumor in 

Mice?
Age Sex

Basal Growth 

Medium

A375 ATCC CRL-1619 V600E WT E61*, E69* WT Yes 54 F DMEM

A2058 ATCC CRL-11147 V600E WT WT V274F Yes 43 M DMEM

SK-MEL-28 ATCC HTB-72 V600E WT WT L145R Yes 51 M EMEM

SK-MEL-19 V600E WT R58* WT DMEM

VMM15 ATCC CRL-3227 V600E WT WT WT 39 M RPMI

SK-MEL-239 V600E RPMI

SK-MEL-2 ATCC HTB-68 WT Q61R WT Yes 60 M EMEM

VMM917 ATCC CRL-3232 WT
Q61L 

Q61R
R80 57 M RPMI

SK-MEL-103 WT Q61R P114L WT Yes 66 M DMEM

C8161 WT Q61R Yes DMEM:F12

Table 3.1 Cell lines used in this chapter

Table 3.1 Cell lines used in this chapter 
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Whole-cell protein extracts were prepared in Laemmli sample buffer (62.5mM Tris pH 

6.8, 2% SDS, 10% glycerol), supplemented with 710mM β-mercaptoethanol.  Lysates 

were sonicated for 30 seconds using a Branson Sonifier set to output “2.”  Lysates were 

then clarified by centrifugation at 15 000rcf for 30 minutes at 4ºC.  Protein 

concentrations were determined using the DC Protein Assay (Bio Rad).  Equivalent 

amounts (10-100µg) of total protein were fractionated by SDS-PAGE on a 10% or 12% 

polyacrylamide gel, electrophoretically transferred to PVDF, and probed with antibodies 

diluted in 5% nonfat milk in 1XTBS-0.1% Tween-20 as indicated in Table 3.1.  Probed 

membranes were imaged on an ImageQuant LAS 4000 Scanner (GE Healthcare) after 

application of Immobilon Western HRP Substrate (Millipore). 

 

Antibody Company Clone/Cat# Dilution ~kDa 

α-Tubulin Santa Cruz B-5-1-2 1:5-10K 55 

Cleaved Caspase 3 Cell Signaling 9664L 1:2K 17, 19 

GAPDH Santa Cruz 6C5 1:5-10K 37 

PDH E1α Abcam ab67592 1:2K 43 

BCL-2 Cell Signaling 4223 1:1K 26 

β-Actin Sigma A5441 1:1K 42 

SIRT5 (IF) Sigma HPA022002 1µg/ml -- 

SIRT5 (western) Cell Signaling D8C3 1:2K 30 

Pan-succinyllysine PTM Biolabs PTM-401 1:1K Various 

MCL1 Thermofisher RC13 1:500 40 

     

Table 3.2 Antibodies used in this chapter 

 

Flow Cytometry  
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A2058 and SK-MEL-103 cells were plated at a density of 0.5x106 per well of two six-well 

plates per cell line.  Four wells of each cell line were transduced with either a lentivirus 

expressing a non-silencing shRNA (control) or one of two shRNAs targeting SIRT5 

(KD1 or KD2).  Ninety-six hours after transduction, puromycin-unselected cells were 

harvested and stained for 30 minutes at room temperature with Annexin V (BD 

Biosciences) and propidium iodide (Sigma), according to BD Biosciences staining 

protocol.  Cells were analyzed by flow cytometry using a BD FACSCalibur and results 

were graphed using FlowJo 10.2 analysis software. 

 

Colony Formation 

 

Two million A2058 or SK-MEL-103 melanoma cell lines were lentivirally transduced in a 

10-cm dish with a non-silencing shRNA or one of two shRNAs targeting human SIRT5.  

Forty-eight hours post-infection 5 x 104 cells were plated into each of four wells of a six-

well dish as previously described.  Twelve days after transduction, puromycin-selected 

cells were stained with 0.25% (w/v) crystal violet (Sigma) in 20% ethanol for 30 minutes 

according to standard protocols.  Visible colonies were counted and graphed. 

 

Cellular Proliferation  

 

Forty-eight hours after lentiviral transduction, 5 x 103 cells were plated into 96-well 

plates in the presence of 1µg/ml puromycin.  Twenty-four hours after plating, relative 
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cell mass was assessed using WST-1 Cell Proliferation Reagent (Clontech) per 

manufacturer’s instruction.  After addition of WST-1, plates were incubated at 37ºC for 2 

hours before being reading the optical density at 450nm.  OD450nm was assessed every 

24 hours as indicated and graphed.  In parallel, representative brightfield micrographs 

were obtained 96 hours post-infection using an inverted Olympus light microscope. 

 

Xenograft Models 

 

A2058 and SK-MEL-103 puromycin-unselected cells were harvested 72 hours post-

transduction with pLKO control, pLKO SIRT5 KD1, or pLKO SIRT5 KD2.  Subcutaneous 

tumor growth was initiated by injection of 1x106 cells of each cell line, resuspended in 

1:1 DMEM:Matrigel Matrix (Corning), into the flanks of 11-13 week old NOD.Cg-

PrkdcscidHrhr/NCrHsd female mice (Envigo).  Each experimental group contained 5 mice.  

Tumor size was measured in millimeters (mm) using Vernier calipers at the timepoints 

indicated.  Tumor volume was calculated according to the formula: 

𝑉 =
𝑋(𝑌2)

2
 

where V is tumor volume in mm3, X is the longest length of the tumor, and Y is the 

shorted length of the tumor, perpendicular to X.  All mice were euthanized when a tumor 

ulcerated or reached 2000mm3.  All mice were housed at the Biomedical Science 

Research Building (UM).  Experiments were approved by and performed in accordance 

with the regulations of the University Committee on Use and Care of Animals. 

 

RNAseq 
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A2058, A375 and SK-MEL-103 cells were plated at a density of 0.5x106 per well of two 

six-well plates per cell line.  Four wells of each cell line were transduced with either a 

lentivirus expressing a non-silencing shRNA (control) or one of two shRNAs targeting 

SIRT5 (KD1 or KD2).  Total RNA was TRIzol (Invitrogen) extracted 96 hours post-

infection from three wells, and treated with RNAse-free DNAse I (Roche) for 1 hour at 

37ºC, according to manufacturer’s instructions.  RNAs (n=3 for each of 3 cell lines for 

each knockdown condition, totaling 27 samples) were submitted to the University of 

Michigan Sequencing Core for sample processing and Illumina HiSeq-4000 50nt paired-

end sequencing.  The remaining well was harvested for protein to confirm by 

immunoblot SIRT5 knockdown.  Differential sequencing analysis (DEseq) and 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM) calculations 

were done by Dr. Miguel Rivera and Sowmya Iyer of Harvard Medical School.  DEseq 

analysis of gene expression changes, comparing control to changes common to both 

knockdowns, was used to generate the Venn diagrams in Figure 3.14.  Calculated p-

values after adjusting for multiple comparisons less than 0.05 were considered 

significant.  

 

 [13C6] Glucose and [13C5] Glutamine Labelling for Metabolic Flux  

 

[13C6] Glucose and [13C5] Glutamine labelling was carried out as described in Scott et 

al., JBC, 2011 (Scott et al., 2011).  Briefly, 72 hours after transduction with pLKO 

control, pLKO SIRT5 KD1, or pLKO SIRT5 KD2, cells were trypsinized and plated in 
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triplicate in 6-well dishes at a density of 1 x 106 cells per well.  Culture medium was 

replaced with [13C6] Glucose or [13C5] Glutamine labelling medium for 6 hours.  Glucose 

labeling medium consisted of: MEM (Invitrogen 11090-081: 1 g/L glucose) 

supplemented with 1 g/L [U-13C6] glucose (Sigma-Aldrich), 10% v/v fetal bovine serum, 

2 mM L-glutamine, 1% v/v pen/strep solution, and 1% MEM non-essential amino acids.  

Glutamine labeling medium was prepared as the glucose labeling medium, except an 

additional 1 g/L of unlabeled glucose, 1 mM unlabeled, and 1 mM [U-13C5] glutamine 

(Sigma-Aldrich) was added.  After 6 hours, cells were washed with cold PBS, then 0.45 

ml of  50% methanol:50% water containing the internal standard, 20 µM L-norvaline 

(Sigma N7627) was added to each well.  Plates were frozen on dry ice for 30 minutes, 

and thawed on ice for 10 minutes. The cell suspension was transferred to a microfuge 

tube followed by the addition of 0.225 ml chloroform.  Samples were vortexed 

centrifuged for 5 min at 20,000 rcf at 4°C.  The top layer was transferred to a fresh tube 

and dried in a speedvac.  Samples were then sent to the Sanford-Burnham Medical 

Research Institute for GC/MS-based metabolic profiling.   

 

Immunofluorescence 

 

A2058 were plated at a density of 0.5x106 per well of six-well plates contained glass 

coverslips.  Twenty-four hours later, cells were transduced with either a lentivirus 

expressing a non-silencing shRNA (control) or one of two shRNAs targeting SIRT5 

(KD1 or KD2).  Ninety-six hours after transduction, puromycin-selected cells were 

incubated with 100mM Mitotracker (BD Biosciences) for 30 minutes at 37ºC, washed 
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with PBS, and fixed in 3.7% formaldehyde.  After permeabilization in 0.3% Triton X-100 

for 10 minutes at room temperature, cells were blocked with 5% normal goat serum in 

0.2% Triton X-100 in PBS for one hour.  Cells were incubated in SIRT5 (Sigma) primary 

antibody diluted to 1µg/ml in 5% bovine serum albumin in 0.2% Triton X-100 in PBS 

overnight at 4ºC.  Cells were then washed 3 times in 1X PBS and incubated in Alexa 

488 anti-rabbit (Invitrogen) diluted 1:1000 in 5% bovine serum albumin in 0.2% Triton X-

100 in PBS for 1 hour at room temperature.  Cells were wash washed 2 times in 1X 

PBS, and 1X with PBS supplemented with 0.01µg/ml DAPI.  Cells were mounted with 

prolong gold antifade reagent (Thermo Fisher) and imaged on an Olympus FV 500 

Confocal microscope. 

 

Generation of SIRT5 and BCL-2 Overexpressing Cell Lines 

 

A2058 or SK-MEL-103 cells were transduced with a vector-only control lentivirus or a 

lentivirus expressing either full-length SIRT5 isoform 1 (NM_012241.4; NP_036373.1) 

or full-length SIRT5 isoform 2 (NM_031244.3; NP_112534.1).  Stable transductants 

were hygromycin selected in 100µg/ml hygromycin for 12 days.  BCL-2 overexpressing 

cell lines were generated via transduction with a vector-only control lentivirus or a 

lentivirus expressing full-length BCL-2.  Stable transductants were puromycin selected 

in 1µg/ml puromycin until complete cell death of the mock-infected cells was observed.  

Lentiviral particles were generated at the UM Vector Core, using plasmids pbabe-hygro 

(Addgene), SIRT5 isoform 1 or 2 cDNA cloned into pbabe-hygro, pCDH-puro and 

pCDH-puro-BCL2 (Addgene).  Lentiviral transduction was carried out in the presence of 
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8µg/ml polybrene in complete growth medium for 24 hours, after which, virus-containing 

medium was replaced with fresh complete growth medium. 

 

Oxygen Consumption Rate Measurement 

 

The oxygen consumption rate [OCR (pmol/min)] in A2058 cells were measured using 

the Seahorse XF96 Extracellular Flux Analyzer (Seahorse Bioscience, Billerica, MA).  

Briefly, forty thousand A2058 cells (control, KD1 and KD2) were plated into each well of 

a 96-well plate and centrifuged at 200g for 1 minute. Cells were then incubated in 5% 

CO2 at 37oC for 6 hours.  After incubation, cells were washed and analyzed in XF 

Running Buffer (XF base medium, supplemented with 25mM glucose and 1mM sodium 

pyruvate), pH 7.4 at 37oC per the manufacturer’s instructions to obtain real-time 

measurements of OCR. Where indicated, OCR was analyzed in response to 2 μM 

oligomycin, 1μM fluoro-carbonyl cyanide phenylhydrazone (FCCP) and 0.5 μM rotenone 

plus 0.5 μM antimycin A (all Sigma-Aldrich). 

 

Statistical Analysis 

 

All statistical analyses were performed using Prism 7 graphing software.  Unless 

otherwise noted, p<0.05 produced from an unpaired student’s t-test was considered 

significant.   
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CHAPTER 4 
 
 

Future Directions 
 
 
Overview 

 

In this thesis, I have investigated the roles for SIRT1 and SIRT5 in maintaining 

mammalian lifespan and healthspan, specifically maintenance of chromatin integrity and 

modulation of melanoma survival.  In Chapter 1, I provide a comprehensive review of 

the current knowledge of sirtuin biology, including a historical narrative regarding the 

first description of sirtuin-mediated lifespan extension.  I then focus on the current state 

of the field regarding sirtuin-mediated lifespan extension, and then describe the roles for 

each sirtuin in promoting variable aspects of mammalian healthspan.  I then conclude 

with a discussion of efforts to regulate sirtuin activity in hopes of extending human 

healthspan.  In Chapter 2, I present a 25-year-old observation of age-associated 

epigenetic dysfunction and undertake an investigation of its molecular underpinnings 

and implicate SIRT1 as the cause, in part, of this observation.  Chapter 3 describes a 

striking phenotype wherein SIRT5 loss efficiently and reliably kills human melanoma 

cells in culture and inhibits in vivo tumor growth.  While the exact mechanism is not 

known, these initial studies set the framework for future investigation, with a focus on 

regulation of apoptosis and metabolic reprograming.  In this chapter I discuss the future 

directions associated with each of the previous two chapters. 
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Future Directions 

 

In Chapter 2, I demonstrate that MSR expression is increased in aged mouse heart.  If 

these regions are progressively becoming less heterochromatinized in an age-

dependent fashion to allow access to the DNA by the cellular transcription machinery, 

then an assessment of chromatin structure at pericentromeric regions in aged mouse 

tissues is warranted.  Digestion by micrococcal nuclease, followed by MSR Southern 

blot, would liberate nucleosomes positioned within MSR loci of purified nuclei at a 

greater rate in aged mouse tissues compared to young.  In a complementary analysis, 

ATAC-seq, Assay for Transposase-Accessible Chromatin with high throughput 

sequencing, will be used to assess the accessibility of chromatin genome-wide to gain 

insight into the extent of age-associated loss of heterochromatin. 

 

Data presented in this chapter generally focuses on global changes in histone PTMs 

and DNA methylation; however, nothing is known about the epigenetic state specifically 

at the MSR loci.  In order to fully determine the effect of age-associated epigenetic 

decline at the MSRs, methylated DNA immunoprecipitation and chromatin 

immunoprecipitation must be performed for SIRT1 and its histone targets, H3K9ac and 

H4K16ac.  Although the repressive H3K9me3 and H3K56me3 PTMs are not altered at 

the global level in heart tissue, it is possible that a redistribution of these marks away 

from the MSR loci occurs with age, allowing for an increase in MSR expression.  

Similarly, SIRT1 expression is unchanged between young and old mouse hearts, 
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indicating that either SIRT1 activity or localization at the MSRs is altered with age.  

Chromatin immunoprecipitation for each of the described activating and repressive 

PTMs as well as SIRT1 would be informative in this regard.  One caveat to this 

approach is that some cells within the same tissue sample may be enriched for 

activating marks while others will have intact repressive marks – a phenomenon known 

as cellular mosaicism.  To address this, a comparison of the distribution of histone 

PTMs in young and old heart tissues will then be done via immunofluorescence.  The 

hypothesis that the SIRT1 expression pattern within the heart tissue changes as a 

function of age will be similarly tested. 

 

Genetic or pharmacologic enhancement of NAD+ levels should be more carefully 

assessed to rescue MSR derepression during aging.  If SIRT1 activity indeed declines 

with age, augmentation of cellular NAD+ levels in aged mice ought to suppress MSR 

expression.  We have yet to reconstitute NAD+ levels in aged mice to rigorously test this 

hypothesis.  Treatment with NMN or another NAD+ precursor, nicotinamide riboside, 

with a higher dose for a longer timecourse ought to bolster NAD+ in the mouse heart.  It 

should be noted that an increase in NAD+ pools would presumably activate all NAD+-

dependent enzymes, particularly the other sirtuins.  Given then loss of SIRT2, SIRT6 

and SIRT7 in mouse hearts does not have an appreciable effect on MSR expression, 

this impact is not expected to confound this analysis.  The impact of these rescue 

strategies on MSR structure and expression will be tested using northern blot, ChIP, 

and micrococcal nuclease studies.  It is of great interest to confirm several of the 

histone PTM alterations discovered by mass spectrometry.  In particular, assessment of 
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the role of H3K36me3 in modulating MSR transcription, and PTM changes on H2A.X, 

which would suggest a DNA damage model. 

 

In Chapter 3, I demonstrate that SIRT5 depletion in melanoma cells results in rapid cell 

death, irrespective of genetic driver.  It is unknown whether SIRT5 protein is 

overexpressed in melanoma cell lines compared to healthy melanocytes.  To address 

this, immunoblotting for SIRT5 in these cell lines will be done.  Given the variability in 

SIRT5 expression in melanoma cells, there is likely a threshold for SIRT5 expression 

required for melanomagenesis.  Interestingly, melanoma cells with low SIRT5 protein 

expression exhibit a longer latency in an in vivo xenograft tumor formation assay 

compared to cells with a higher SIRT5 content.  How well healthy melanocytes can 

tolerate SIRT5 loss has yet to be rigorously tested:  This is critical for implicating SIRT5 

as a pro-survival factor in cancer.  While Sirt5 germline knockout mice are fertile and 

generally healthy until at least 18 months of age (Lombard et al., 2007), though present 

with mild cardiac defects upon aging (Sadhukhan et al., 2016), a close examination of 

the impact of SIRT5 loss in healthy human melanocytes must be done.  This can be 

accomplished using the same shRNA system described in this chapter in human 

melanocytes.  Also, testing the ability of SIRT5 to transform pre-malignant melanocytes 

to metastatic melanoma, using both in vivo and ex vivo models, would strengthen the 

argument that SIRT5 is required for melanoma growth.  In this regard, we are using a 

previously described melanoma mouse model developed by the Bosenberg group 

(Yale) (Dankort et al., 2009) to genetically modulate SIRT5 protein expression and 

ascertain melanoma formation and aggressiveness in this context.  This model will also 
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be useful in testing and designing SIRT5 inhibitors to begin to define clinically relevant 

interventions for melanoma treatment.   

 

Furthermore, since reintroduction of SIRT5 into the shRNA knockdown system failed to 

rescue cell death, it is important to verify the SIRT5 transcript sequence.  If melanoma 

cells harbor mutations in SIRT5, reconstitution of the wild-type sequence would not be 

expected to rescue the phenotype presented in the chapter.  To this end, we are 

preparing cDNA libraries in an effort to sequence the entire “SIRT5 transcriptome” in 

healthy human melanocytes and in a panel of melanoma cell lines.  A second possibility 

is that exogenously expressed SIRT5 does not recapitulate the SIRT5 subcellular 

localization of the cell lines we have tested.  To this end, we will alter the mitochondrial 

localization signal to allow for maximal efficiency in targeting SIRT5 to the mitochondrial 

matrix.  Also, an orthogonal approach for deleting SIRT5 in melanoma (i.e. CRISPR) is 

critical in addressing the issue of potential off-targets effects of the shRNA lentiviral 

system. 

 

If indeed SIRT5 loss induces apoptosis specifically in melanoma cells, pretreatment with 

inhibitors of apoptosis are expected to rescue cell death and recapitulate the BCL2 

overexpression phenotype (Figure 3.16).  Modulation of other anti-apoptosis related 

proteins, as informed by RNAseq data, genetically and pharmacologically will be an 

important next step to clarify the mechanism of SIRT5-mediated cell death.  Also, a 

careful pathway analysis of the RNAseq data will be done, which may reveal previously 

undescribed SIRT5-mediated pathways important for modulating melanoma cell 



 142 

survival.  Data for A375 (BRAF mutant), A2058 (BRAF mutant), and SK-MEL-103 

(NRAS mutant) cell lines have been collected (Figure 3.14), and a fourth cell line SK-

MEL-2 (NRAS mutant) is currently being analyzed.  Once collected, pathway analyses 

will be performed on all datasets. 

 

Metabolic alterations are observed upon SIRT5 knockdown.  We have focused 

specifically on glucose- and glutamine derived species at one timepoint, using a stable 

isotope labeling approach.  It would be interesting to understand the broad metabolic 

changes that occur over time upon SIRT5 depletion, which would inform future cell-

death rescue strategies and therapeutic development.  Using an untargeted mass 

spectrometry approach in collaboration with the Lyssiotis group (UM), we are interested 

in visualizing, among several timepoints, SIRT5-dependent changes in potential key 

metabolites that may be critical for melanoma growth.   

 

Summary 

 

This thesis contributes to the growing body of knowledge regarding sirtuin biology as it 

relates to extending the number of years a person can live disease-free, known as 

healthspan.  Sirtuins are NAD+-dependent lysine deacylates that modulate many 

aspects of human health and disease, and in the case of two, SIRT1 and SIRT6, 

prolong lifespan.  Little research has focused on the molecular mechanisms of SIRT1-

mediated lifespan extension; one report focuses on regulating hypothalamic function to 

modulate this phenotype.  The work presented in this thesis suggests the hypothesis 
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that SIRT1 regulates genome stability in an age-dependent manner.  It is tempting to 

speculate that regulation of SIRT1 activity or localization would preserve genome 

stability and promote mammalian healthspan.   

 

This thesis also focuses on the mitochondrial sirtuin, SIRT5, and its role in promoting 

melanoma cell survival.  SIRT5 regulates various aspects of mitochondrial metabolism, 

and represents an attractive target for metabolic-directed therapies.  Unexpectedly, we 

found that SIRT5 loss correlates with reductions in anti-apoptotic gene expression, 

suggesting a novel role for SIRT5 in allowing cancer cells to evade apoptosis.  

Metabolic alterations that occur in melanoma cells upon SIRT5 loss may potentiate this 

phenotype.  While we have yet to discern the exact mechanism, these data highlight the 

importance of a previously underappreciated sirtuin in modulating human healthspan. 
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