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ABSTRACT

One-dimensional Differential Newtonian Analysis for Applications in Saliva
Rheology

by

Louise Lu McCarroll

Co-Chairs: William W Schultz and Michael J Solomon

Oral and systemic health starts with healthy saliva. Saliva’s functionality is affected

by its rheology. Thus, alterations in saliva rheology may cause or indicate unhealthy

biological function. “Sticky saliva”, a subjective pathological description used by

health professionals to indicate abnormal saliva mechanics, is linked to oral health

issues, like cavities and xerostomia, and may indicate systemic health conditions,

such as multiple sclerosis and HIV. Therefore, quantifying saliva’s “stickiness” or its

non-Newtonian behavior with physical science based metrics (i.e. viscosity, surface

tension, elasticity) is critical for understanding the relationship between its mechanics

and health outcomes.

Elongational flow is the main kinematic feature that distinguishes the coupling

between the oral cavity and saliva mechanics. Therefore, our effort to quantify saliva

stickiness pays special attention to its response to elongation. Capillary break-up

rheometry (CBR) is a common technique for characterizing extensional flow proper-

ties. CBR is ideal for quantifying low-viscosity fluids, like saliva, because it does not

require a force measurement. Instead, extensional flow properties are determined by

xii



monitoring the resulting midfilament evolution after an approximate axial step-strain

is imposed on a fluid sample. The standard CBR analysis requires several approxima-

tions and corrections to maintain a purely kinematic approach. We have re-examined

CBR foundations with a differential 1D Newtonian model to eliminate the large cor-

rection factors required when only measuring the midfilament thinning rate. Our

analysis indicates filament free surface curvature gradients are the key measurement

quantities required to accurately determine extensional properties when axial force is

not measured. Thus, we present the development of a 1D differential Newtonian anal-

ysis that requires measurements of the fluid filament curvature and its gradients to

determine the surface tension to viscosity ratio α. We evaluate the performance of our

1D differential analysis with experimental CBR data and numerical data generated

by a 1D Newtonian model.

We also explore methods to expand the measurement capabilities of current CBR

set-ups with the 1D differential analysis. We simulate viscoelastic filament dynam-

ics with a 1D Oldroyd-B model and evaluate the performance of the 1D differential

method during the early viscous phase. We begin with the traditional but unrealistic

CBR assumptions of long, unstable filaments with zero initial polymer stresses at

the end of stretch (start of CBR measurement). The results suggest the 1D differ-

ential approach coupled with the standard viscoelastic CBR analysis can facilitate

measurements of multiple rheological parameters from a single sample.

Finally, we investigate the performance of the 1D differential analysis during the

stretching process. We first model the filament evolution during the axial step-strain

to demonstrate the stretch history must be considered in the CBR analysis for vis-

coelastic fluids. We also model a stretch history that avoids filament break-up to

extend the lower limit of the standard CBR method’s viscosity range.
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CHAPTER I

Introduction

1.1 Introduction and Motivation

Oral and systemic health start with healthy saliva. It is important for maintaining

pH, antibacterial activity, and dentition, lubricating the hard and soft oral tissues,

healing, tasting, chewing, and swallowing. The effectiveness of these functions is

affected by saliva’s rheological properties, such as viscosity, elasticity, and surface

tension (Kaplan & Baum 1993; Christersson et al. 2000; Stokes & Davies 2007; Zuss-

man et al. 2007; Carpenter 2012; Kazakov et al. 2009). For example, saliva viscosity

affects lubrication between hard and soft surfaces in the oral cavity and can affect

the tasting, chewing, and swallowing processes. Saliva also exhibits shear-thinning

(decrease in viscosity with increasing strain-rate), enabling proper flow and cleans-

ing action in the oral cavity. Furthermore, salivary elasticity helps form a protective

layer on enamel to prevent acid attacks after food and beverage consumption (Car-

penter 2013; Preetha & Banerjee 2005). Therefore, alterations in saliva rheology may

indicate or cause unhealthy biological function (Haward et al. 2011).

“Sticky saliva” is a term used by health professionals to indicate abnormal saliva

mechanics. It is linked to many oral health issues including dental carries, oral lesions

and infections, gingivitis, dysphagia, aspiration pneumonia, weight loss, and speech

difficulties (Akkas et al. 2013; Garcia et al. 2013; Van Tornout et al. 2013; Smith et al.
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2013; Ogama & Ogama 2013; Mittal et al. 2013). Oral health is intimately linked

to systemic health and thus sticky saliva is problematic among the malnourished,

head and neck cancer patients who have received radiation therapy, medicine-induced

xerostomia patients, and those with multiple sclerosis, Myasthenia Gravis, HIV and

Parkinson’s disease (Langmore et al. 1998; Terpenning et al. 2001). Saliva substitutes

are available to alleviate the discomfort of those with salivary dysfunctions but are

unsatisfactory because of their limited duration and unnatural feel. These issues may

be addressed by better matching the physical properties of these products to those

of healthy saliva (Levine et al. 1987).

Saliva’s rheological behavior is determined by its constituents and may be useful

for non-invasive health diagnostics. Although saliva is more than 99% water, its pro-

tein and ion content (∼0.3%) gives rise to its non-Newtonian behavior (Carpenter

2013; Proctor et al. 2005). The protein content is comprised of high molecular weight

mucins, various enzymes, antibodies, antibacterial proteins, proline-rich proteins, and

peptides (Sarkar et al. 2009; Humphrey & Williamson 2001). Many of these proteins

are biomarkers for oral and systemic diseases (Lima et al. 2010; Liu & Duan 2012).

The presence of specific proteins may be reflected in saliva’s rheological response. For

instance, Zussman et al. (2007) characterizes the viscoelastic behavior of saliva sam-

ples from the three major salivary glands with measurements of polymer relaxation

time λ in extension. The polymer relaxation time represents the delay in a non-

Newtonian fluid’s response to motion and is a common measure of viscoelasticity. In

the context of saliva, λ may be considered a measure of “stickiness.” Zussman et al.

(2007) reports that mucin-rich salivas from the sublingual and submandibular glands

have larger relaxation times (indicating stronger viscoelasticity or “stickiness”) than

mucin-free saliva from the parotid gland. Therefore, saliva rheology may be a useful

tool for detecting the presence of specific proteins (or biomarkers) associated with

pathological function.
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The main kinematic feature that distinguishes the coupling between the oral cavity

and saliva mechanics is its response in elongational flow, particularly for mastication

and breaking down food materials (de Bruijne et al. 1993). There are indications that

saliva in shear (as between two grinding molars) is an effective lubricant (Bongaerts

et al. 2007) but this likely involves interaction with biofilms (such as plaque) that is

beyond the scope of this work. In fact, saliva in standard shear rheometry behaves

similarly to water (figure 1.1). This is unsurprising since saliva is mostly water.

However, saliva in extension evolves into a beads-on-a-string (BOAS) morphology

(figure 1.2) and has a filament lifetime that is uncharacteristic of a low-viscosity

Newtonian fluid (Bhat et al. 2010). In particular the viscoelastic bulk flow behavior

is attributed to MUC 5B, a gel-forming mucin considered the primary biopolymer in

saliva based on its high molecular weight (2-40 MDa) and relatively high concentration

(∼30-500 µg/mL in whole human saliva) (Sarkar et al. 2009; Haward et al. 2011;

Schipper et al. 2007).

Saliva rheology has been widely characterized in shear as shown by an extensive list

in table 1 of Foglio-Bonda et al. (2014). However, only a few studies have investigated

saliva in extension. Zussman et al. (2007) investigated variations in λ of saliva samples

from a group of young adults (∼20 years-old) and elderly individuals (∼75 years old)

to understand the underlying causes for age-related differences in oral health issues

observed between the two age groups. Wagner (2015) measured the temporal change

in λ to explain why saliva samples (stored at room temperature) become watery

with increasing time since the sampling. Turcanu et al. (2015) measured λ for saliva

samples produced by mechanical and acidic simulation, a study analogous to the work

presented by Stokes & Davies (2007) for saliva shear rheometry. Unlike the other

extensional saliva studies, Haward et al. (2011) observed the extensional viscosity of

centrifuged saliva samples from two healthy individuals grew rapidly with increasing

strain-rate but decreased after reaching a maximum at 1200 s−1. Haward et al.

3



Honey-thick dairy 20 °C

Nectar-thick dairy 20 °C

Unfiltered saliva 
  20 °C   37 °C

 20 °C   37 °C
Filtered saliva 

Water 20 °C

Figure 1.1: Measurements of shear viscosity µ plotted with shear stress for water at
20◦C, filtered and unfiltered salivas at 20◦C and 37◦C (body tempera-
ture), and two thickened products commercially available for dysphagia
patients also at 20◦C. Measurements were performed in a cone-and-plate
rheometer. Viscosities of water and saliva are very similar.

(2011) listed inertial effects and breakages in the inter-mucin bonds or mucin chains

as potential causes for the sudden drop in the extensional viscosity for strain-rates

larger than 1200 s−1. Although these studies have added to the scarce literature on

saliva extensional rheology, generally only one extensional flow parameter is quantified

in each investigation. However, saliva functionality is linked to multiple rheological

properties and thus it is desirable to develop a technique capable of multiple parameter

characterizations.

1.2 Extensional Flow Kinematics

Ideally, extensional flow properties should be characterized from pure extensional

flows. The defining characteristic of pure extensional (shear-free) flow kinematics is

the diagonal velocity gradient tensor vi,j resulting in a diagonal strain-rate tensor γ̇ij =

1
2
(vi,j+vj,i), a diagonal extra stress tensor τij, and zero vorticity ωij = 1

2
(vj,i−vi,j) = 0.

Additionally, pure elongational flows are spatially homogeneous when vi,j is only

4



Figure 1.2: An elongated saliva filament after an imposed axial step-strain in a cap-
illary break-up rheometry experiment forms a thin filament with beads-
on-a-string.

dependent on time, as in general cases of uniaxial and biaxial stretching, and thus γ̇ij

and τij are also independent of spatial position (Petrie 1979).

1.3 Extensional Rheometry for Low-Viscosity Fluids

Pure extensional flows are difficult to generate, particularly for low-viscosity flu-

ids. However, saliva in extension has been characterized by at least two techniques

(Haward et al. 2011; Zussman et al. 2007; Wagner 2015; Turcanu et al. 2015) described

in the following sections.

1.3.1 Extensional flow oscillatory rheometer

Haward et al. (2011) performed investigations on saliva extensional viscosity using

a modified extensional flow oscillatory rheometer EFOR, an opto-microfluidic cross-

slot device that creates a strong planar flow with a stagnation point. The device

consists of two pairs of opposing channels (each 200 µm wide and 1.2 cm long) all

in the same plane. A schematic is shown in figure 1.3. The strain and strain-rate

of the flow is controlled by the micro-pumps located at the end of each channel.

Pressure transducers are also located at an inlet and outlet of the flow to determine

5



Fluid injected directly into cross-slot

Figure 1.3: Schematic of the extensional flow oscillatory rheometer (EFOR) (Haward
et al. 2011), a micro-fluidic cross-slot device that generates planar exten-
sional flow to characterize extensional flow properties.

measurements of the apparent extensional viscosity. The stagnation point is produced

when the fluid pumped into one pair of opposing channels collides and is pumped

out of the other two opposing channels. Although the flow velocity is zero at the

stagnation point, the strain-rate is finite and may be large.

One advantage of the EFOR is the ability to impose various deformation histo-

ries on the flow, such as oscillatory motion or constant flow rate, by programming

the micro-pumps. Additionally, this technique is advantageous for trapping macro-

molecules at the stagnation point where they can accumulate strain. However, the

small size of the EFOR device limits the range of imposed strain-rates, measurable

pressure drop, and inertial effects it can resolve. Furthermore, a small amount of

shear is introduced into the planar extensional flow especially near the boundaries

(Galindo-Rosales et al. 2013).

1.3.2 Capillary break-up rheometry

The majority of extensional saliva studies (Zussman et al. 2007; Wagner 2015;

Turcanu et al. 2015) are performed in capillary break-up rheometry (CBR) device,

known commercially as the Capillary Breakup Extensional Rheometer (CaBERTM).

A CBR device is a type of filament stretching device that imposes an approximate ax-
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ial step-strain on a fluid sample. Following the cessation of the imposed deformation,

the time evolution of the filament’s minimum radius due to capillarity is monitored

to determine extensional flow properties. Unlike other filament stretching devices

such as the filament stretching extensional rheometer (FiSERTM), imposing a known

deformation profile is not necessary in a CBR experiment. Additionally, the tensile

force in the filament is not required to determine extensional properties in CBR. This

is a particularly advantageous feature for characterizing low-viscosity fluids where

small forces are difficult to measure accurately (McKinley & Tripathi 2000; McKinley

& Sridhar 2002; Galindo-Rosales et al. 2013).

CBR is ideal for investigating saliva rheology. One advantage is that CBR mea-

surements are performed in a two-phase (saliva-air) environment. The oral cavity

also contains saliva and air, although air may be in the form of trapped bubbles.

Additional phases are also often present, such as a food bolus mixed with and coated

in saliva (Brasseur 1987). CBR is also ideal for studying small samples. The mea-

surement volumes of 3 - 150 µL accommodated by our CBR devices (described in

chapter II and appendix B) are easily produced by healthly individuals and those

with salivary dysfunction (Carpenter 2012). The ability to measure small samples

(< 10µL) is also advantageous for characterizing saliva from specific glands or other

oral sampling locations.

A CBR device consists of two parallel plates of radius Rp initially separated by

a small gap L0. The fluid sample is constrained between the plates and forms a

squat cylinder with an initial aspect ratio Λ0 = L0/Rp < 1. A nearly uniaxial step-

strain is typically imposed on the filament as the plates are rapidly moved apart

and come to rest at a final separation length Lf that exceeds the Plateau stability

limit (Plateau 1863). The standard CBR measurement begins at the cessation of the

stretching pocess. The stretched filament begins to evolve due to capillary, viscous,

inertial, elastic, and gravitational forces and the flow far away from the plates is
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Figure 1.4: Schematic of a capillary break-up rheometry (CBR) device. A small fluid
sample is initially constrained between two plates separated by a small
gap L0. The plates are rapidly separated to a final separation length Lf
to impose a near uniaxial step-strain. The midfilament evolution is then
monitored after the stretching process ceases to determine the extensional
properties of the fluid filament.

one-dimensional (1D) and nearly pure extensional flow (Galindo-Rosales et al. 2013).

The filament’s midpoint evolution after the cessation of stretching is monitored by a

camera or a laser micrometer. A schematic of a CBR experiment is shown in figure

1.4.

Rodd et al. (2005) shows the operating range of CBR is currently limited to

characterizing viscosities and polymer relaxation times greater than 70 mPa·s and

1 ms, respectively. These limitations are primarily due to the small but finite time

required to move the plates apart for the imposed deformation. In particular, the fluid

filament ruptures before the start of the CBR measurement regime if the viscous time

scale of a fluid sample is smaller than the time required to impose the deformation

history. Thus we consider deformation histories that avoid filament break-up (chapter

IV) to expand the measurement regime of traditional CBR.

The CBR analyses are originally developed for Newtonian and non-Newtonian flu-

ids described by the Oldroyd-B constitutive theory (Bazilevsky et al. 1990; McKinley

& Tripathi 2000). The standard CBR analysis is based on a 1D force balance applied

at the filament “waist” where the filament radius R is at its minimum (Rz = 0). The

analysis neglects gravity and inertia and therefore the axial force F throughout the
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filment is constant. The uniform axial force at the filament waist is

F = (−p+ τ zz)R2 + 2πσR, where Rz = 0 (1.1)

where p is the pressure, τ zz is the axial component of the extra deviatoric stress, σ

is the surface tension coefficient, and R is the filament free surface profile. Although

the pressure is unknown, it can be eliminated from (1.1) by the normal free surface

boundary condition, −p+ τ rr = −σκ, to give

F = (−σκ+ τ zz − τ rr)R2 + 2πσR, where Rz = 0, (1.2)

where τ rr is the radial component of the extra deviatoric stress and κ is twice the

mean curvature of the filament free surface.

For a Newtonian fluid, the extra stress τij is linearly related to the strain-rate

tensor γ̇ij. However, for non-Newtonian fluids, the relationship between τij and γ̇ij is

more complicated. As discussed in chapter III, viscoelastic constitutive theories often

represent the extra stress as a sum of a Newtonian solvent stress τ sij and the polymer

stress τ pij. Thus a common expression for the non-Newtonian stress difference in (1.1)

is τ zz − τ rr = (τ s,zz − τ s,rr) + (τ p,zz − τ p,rr).

Bazilevsky et al. (1990) makes several simplifying assumptions to develop a purely

kinematic measurement from the local midfilament force balance (1.2). First, F is

neglected because the filament is connected to quasistatic reservoirs attached to rigid

end plates. Additionally, the curvature is approximated as κ = 1/R or that of a

cylinder. Finally, the second term in (1.1) representing the surface tension acting

over the perimeter is not considered. After applying these simplifying assumptions,

the original analysis by Bazilevsky et al. (1990) predict the midpoint decay rates Rt
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for Newtonian and non-Newtonian filaments are

Rt = −σ/6µ, (1.3a)

Rt ∼ exp(−t/3λ). (1.3b)

Therefore, the original CBR analysis (Bazilevsky et al. 1990) indicates material pa-

rameters such as µ, σ and λ, three properties related to saliva functionality, may be

determined from measurements of the midfilament evolution after an imposed defor-

mation.

Investigations on Newtonian fluids (Liang & Mackley 1994; Kolte & Szabo 1999)

show (1.3a) underpredicts the midfilament decay and have therefore prompted re-

examinations of the underlying assumptions regarding F and the missing surface

tension perimeter term. Corrections to the original theory (1.3) have since been de-

veloped for Newtonian and non-Newtonian fluids (McKinley & Tripathi 2000; Clasen

et al. 2006a). In particular, McKinley & Tripathi (2000) suggests an alternate ap-

proximation for F to maintain a purely kinematic approach and develops corrections

based on similarity solutions for viscous and inviscid Newtonian flows (Papageorgiou

1995; Eggers 1993; Brenner et al. 1996). However, in chapter II we develop a kine-

matic approach based on the differential form of the governing equations for mass

and momentum that does not require additional assumptions beyond 1D rectilinear

flow. Thus, this work is focused on the development of a 1D differential analysis and

evaluating its performance for characterizing Newtonian and non-Newtonian fluids.

We begin our examination of CBR foundations with a Newtonian model because it

is the simplest constitutive theory and incorporates the effects of viscosity and surface

tension. We then expand our analysis to non-Newtonian behavior to quantify saliva’s

viscoelastic nature. We model saliva’s non-Newtonian behavior with an Oldroyd-B

theory because it is the simplest viscoelastic theory for dilute polymer solutions that
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predicts BOAS formation, a distinct feature of elongated saliva filaments (Bhat et al.

2010).

1.4 Scope of this work

In chapter II, we develop a 1D differential Newtonian analysis for CBR. Our local

differential analysis does not require specific assumptions for the axial force to pre-

clude its measurement. Our analysis indicates that measuring gradients in filament

curvature is necessary to accurately determine fluid properties when axial force is not

measured. We evaluate the performance of the 1D differential approach with exper-

imental CBR data for viscous Newtonian silicone oils and numerical data generated

by a 1D model for a viscous Newtonian filament and compare its performance with

the standard integral method from literature.

In chapter III, we investigate surfactants and viscoelastic effects in filament dy-

namics to determine the applicability of our 1D differential approach for characterizing

non-Newtonian filaments. We perform a simple experiment with a soap-and-water

mixture to examine the role of surfactants in low-viscosity filament dynamics. We

also study viscoelastic filament evolution with a 1D model and follow the typical de-

velopment for CBR analyses which assumes a long, unstable filament with zero initial

viscoelastic stresses. This assumption may not accurately represent the physical state

of a non-Newtonian filament after an imposed deformation since viscoelastic fluids

have memory. However, this assumption simplifies the 1D model and is still useful for

investigating trends in viscoelastic filament dynamics and evaluating the performance

of the 1D differential analysis.

In chapter IV, we study filament dynamics throughout the deformation process

with a 1D model to evaluate the performance of the 1D differential analysis outside the

traditional CBR measurement regime. We consider cases when zero initial viscoelastic

stresses are an appropriate assumption, such as for the stable, cylindrical fluid sample

11



in a CBR experiment prior to the imposed stretch. We first model the approximate

axial step-strain to demonstrate viscoelastic stresses become important before the

start of the conventional CBR measurement regime. We also model the filament

evolution driven by oscillating boundaries to investigate a deformation history that

avoids filament break-up and facilitates measurements of low-viscosity filaments.

Finally, we summarize the state of the current work regarding the 1D differential

analysis in chapter V and provide recommendations for its application. Addition-

ally, we discuss future work to further expand the operating range and validate the

performance of the 1D differential method.

In appendix A, we discuss the results of our probative saliva experiments. The

purpose of these preliminary experiments is to inform the experimental design for a

larger scale investigation on saliva.

Additional details about the experimental set-up and numerical methods for the

work presented in chapters II - IV are given in appendices B and C.
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CHAPTER II

One-dimensional Differential Newtonian Analysis

2.1 Introduction

Capillary break-up rheometry (CBR) is commonly applied to measure extensional

flow properties. CBR provides a single-point, kinematic measurement of the exten-

sional properties that applies to liquids that form a filament or bridge. The exten-

sional properties are determined from the time evolution of the filament’s minimum

radius due to capillarity after imposing an approximate step-strain. CBR is simpler

and less expensive than previous filament rheometers (Matta & Tytus 1990; Tirtaat-

madja & Sridhar 1993; Spiegelberg et al. 1996) because it does not impose a known

deformation profile on the filament nor does it require a force measurement. This lat-

ter feature is particularly useful for low-viscosity fluids where small forces are difficult

to measure accurately.

The standard CBR analysis proceeds by a 1D force balance applied at the “waist”

where the filament radius R is at its minimum (Rz = 0). The analysis neglects gravity

and inertia. For a Newtonian filament, the uniform axial force F is balanced by the

total normal stress on the cross-sectional surface and a surface tension term acting

over the perimeter. The normal free surface boundary condition determines pressure

and the force balance where Rz = 0 becomes
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F = (−σκ+ 3µwz)πR
2 + 2πRσ, (2.1)

where σ is the surface tension coefficient, κ is twice the mean curvature of the free

surface, w is the axial velocity, µ is the viscosity, R is the free surface radius, z is the

axial location, t is time and subscripts with independent variables indicate partial

differentiation. The viscous term in (2.1) is the Trouton viscosity for axisymmetric

extensional flow. Equation (2.1) is combined with the continuity equation integrated

over the filament cross-section,

(R2)t + (wR2)z = 0, (2.2)

to determine the surface tension to viscosity ratio α

α =
σ

6µ
=
−Rt/R− F/(6µπR2)

κ− 2/R
, where Rz = 0. (2.3)

Equation (2.3) is a local analysis that is exact in the 1D limit, but F is deter-

mined from a global analysis (Renardy 1994) or measured experimentally. However,

F is difficult to measure for low-viscosity fluids. We review methods where F is

approximated to obviate its measurement. Bazilevsky et al. (1990) neglects F be-

cause of large quasi-static reservoirs at the endplates and also approximates κ as

1/R. Bazilevsky et al. (1990) also neglects the surface tension perimeter term, re-

ducing (2.3) to α = −Rt. This simple relationship significantly underpredicts α in

investigations on Newtonian fluids (Liang & Mackley 1994; Kolte & Szabo 1999).

McKinley & Tripathi (2000) simplify (2.3) with two approximations to develop a

simple single-point analysis without a force measurement. First, κ is approximated by

1/R because the filament becomes increasingly cylindrical near break-up (Rz(z)→ 0).

Then, a limiting argument of F (t) → 2πσR(t) as R(t) → 0 is applied. A new

dimensionless variable X = F/2πσR is introduced and replaces these terms in (2.1).
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If X is a constant, these approximations reduce (2.3) to

α =
−Rt

(2X − 1)
, where Rz = 0. (2.4)

Introducing X removes the requirement for a force measurement. Values of X are

determined from local analyses of global solutions describing the break-up of New-

tonian filaments (Eggers 1993, 1997; Brenner et al. 1996; Papageorgiou 1995). The

limiting argument implies X should approach unity as R → 0. However, McKinley

& Tripathi (2000) show that X varies with time and asymptotically approaches X ≈

0.7127. This is consistent with the value of X determined from a similarity solution

for viscous filaments (Papageorgiou 1995).

This limiting argument of McKinley & Tripathi (2000) implies that the first term

on the right-hand side in (2.1) vanishes faster than the second term as R → 0.

However, X does not approach unity because κ and the axial strain rate wz are

O(1/R), indicating all terms in (2.1) are O(R). The standard CBR method uses (2.4)

to measure α. In the next section we present a differential approach to determine α

that does not require approximations to eliminate F .

2.2 Differential Analysis

We derive a differential equation for α from the 1D governing equation (Eggers

1997)

(3µwzR
2)z − σκzR2 − ρgR2 = ρR2(wt + wwz), (2.5)

where ρ is the fluid density and g is the gravitational acceleration. Twice the mean

curvature κ of an axisymmetric free surface R is

κ =
1

R(1 +R2
z)

1/2
− Rzz

(1 +R2
z)

3/2
. (2.6)
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A formal 1D analysis approximates κ as 1/R (Schultz & Davis 1982), but we model

full curvature to be consistent with static filaments and more complex morphologies

such as “beads-on-a-string” where higher-order axial curvature terms are important.

The inclusion of the axial curvature also aids numerical stability (Eggers 1997).

Integrating (2.5) with respect to z yields (2.3) where F is the time-dependent

constant of integration. Hence, methods that include F are integral approaches.

Equation (2.5) is valid wherever extensional flow is rectilinear (wr = 0, where r is

the radial coordinate) whereas (2.3) is limited to the waist. Equation (2.5) indicates

that the gradient of curvature drives the capillary flow. Without an axial change in

the free surface curvature, the capillary pressure would not increase locally to drive

the flow away from the filament waist. Therefore, resolving the filament free surface

profile R(z, t) is necessary to characterize extensional properties without measuring

or inferring force.

A simple geometric analysis to determine α by measuring only R(z, t) is desir-

able. As in previous studies, velocity measurements may be avoided if the problem

is symmetric about the filament waist. Then R and w are even and odd functions of

z, respectively, with the origin at the waist. Equations (2.2) and (2.5) maintain this

symmetry only by ignoring gravity and by having symmetric boundary (and initial)

conditions. The gradient of curvature, κz, for a symmetric filament is zero at the

waist, however κzz is non-zero. Therefore, an additional z - derivative of the axial

momentum equation is required to account for the gradient of curvature’s role in

the filament dynamics and results in κzz. An explicit expression for α is then deter-

mined after taking one z - derivative of (2.5), two z - derivatives of (2.2), and one t -

derivative of (2.2) to give

α =
σ

6µ
=

3RtRzz −RRzzt

κzzR2
− 1

3νκzzR2
(3R2

t −RRtt), where Rz = 0 (2.7)
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and where ν is the kinematic viscosity. When inertial effects are small, the term with

ν may be neglected. We show below that inertia is negligible for the results presented

here.

Equation (2.7) indicates that Rzz and the necking rate Rt are needed to determine

α without a force measurement. The presence of κzz in (2.7) also introduces Rzzzz

through the second term in (2.6). The central role of the gradient of curvature (rather

than the curvature itself) is a key development; it suggests that its measurement

avoids the approximations and correction factors required to apply (2.3). However,

this approach requires measurements of the local filament profile and its curvature

gradients. Next, we conduct CBR experiments to demonstrate measurements of the

required gradients of curvature and perform a numerical simulation of the filament

evolution to compare methods (2.7) and (2.4).

2.3 Experimental Methods

We construct a CBR to determine α from the evolution of the fluid filament profile

R(z, t) after an imposed axial strain. These measurements evaluate and compare the

performances of the differential formulation (2.7) and the standard integral method

(2.4) for Newtonian fluids. The device consists of two parallel, circular plates of radius

Rp initially separated by a distance L0. The fluid sample volume is approximated

by πL0R
2
p and forms a squat cylinder constrained by the initial gap geometry. The

top plate is held fixed while the bottom plate falls due to gravity until a final plate

separation of Lf imposes an approximate step-strain. The bottom plate is attached

to a stem with two collars to guide the vertical motion. The upper collar also acts

as a stop for the moving assembly and may be adjusted to vary Lf and consequently

the strain Lf/L0.

Five Newtonian silicone oils (GE Momentive, Brookfield) with viscosities 0.35 Pa-

s<µ<10 Pa-s are tested at Rp = 3 mm, initial aspect ratio Λ0 = L0/Rp = 0.733, and
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Lf/L0 = 3. Viscosities and surface tension coefficients at 20◦C are independently mea-

sured by a cone-and-plate rheometer (ARES - G2) and by a force balance technique

(Padday et al. 1975) with a 12.7 mm diameter disk and a milligram balance (Ohaus

AP310) to determine reference values. All silicone oils have similar densities and

surface tension coefficients ranging between ρ = 970 and 990 kg/m3 and σ = 20 and

20.4 mN/m, respectively. The properties (µ, ρ, σ) are measured three times for each

silicone oil and reported errors are twice the standard deviation of the replications

(0.02 to 0.6 Pa-s, 10 to 30 kg/m3, and 0.3 to 0.8 mN/m, respectively). Measurements

for µ, ρ, and σ are within 7% of the values reported by the manufacturers at 25◦C.

The operating range of the differential analysis is further investigated by evalu-

ating three sample volumes and three strains with a Newtonian silicone oil of µ =

1.0 Pa-s. The sample volumes are varied by Rp = 2, 3, and 4 mm while keeping

Λ0 = 0.733 and Lf/L0 = 3. The three strains, Lf/L0 = 2, 3 and 4.5, are achieved by

varying Lf while keeping Λ0 = 0.733 and Rp = 3 mm.

The evolving fluid filaments are backlit with a fiber optic lightsource and captured

by a Phantom v210 high-speed camera (Vision Research, 1280 x 800 pixels) through

a microscope objective to increase the spatial resolution, particularly in the radial

direction. Increasing the magnification limits the field-of-view and consequently the

entire free surface profile is not visible, especially before and during the stretching

process. Frame rates vary from 40 fps for the most viscous silicone oil to 1000 fps for

the least viscous oil. A 10x Nikon microscope objective (numerical aperture NA =

0.30, magnification M = 14, 1.2 µm/pixel) aids Rp = 2 mm experiments while a 4x

Nikon objective (NA =0.13, M = 4.4, 3.2 µm/pixel) is used for Rp = 3 mm and 4

mm experiments. The step-strain procedure is performed at least five times for each

µ, Rp, and Lf/L0 case.
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2.4 Image and Data Analysis

Images of the filament evolution are analyzed in MATLAB to determine R(z)

at each time step. The time evolution of the filament is traced by an edge detection

scheme (Canny 1986). The distance between the right and left edges of the free surface

(indicated in white in figure 2.1a) defines the local value of 2R(z), relatively indepen-

dent of the filament orientation with respect to the camera frame. The resolution of

the edge detection scheme is one pixel and results in a piecewise constant description

of the free surface as shown in the enlarged view in figure 2.1a. A polynomial least-

squares fit in space is applied to describe the filament radius R(z) =
∑N

n=0Rnz
n at

each time step. A 4th-order polynomial fit is the lowest order fit required to measure

Rzzzz with a least-squares regression approach. We apply a 6th-order polynomial fit

(N=6) because we consider a larger domain size to address limitations in the radial

spatial resolution. The domain size for these experiments is 20% of the final sepa-

ration length Lf . The domain avoids the reservoirs and is centered about the waist

by requiring the lowest-order odd coefficient in the polynomial fit of R(z) be 0. This

constraint ensures the analysis is at a minimum (or maximum) of R. The coefficients

of the higher-order odd terms are measures of filament asymmetry about the waist.

A non-inertial coordinate system moves with Rz = 0 to achieve local symmetry after

an asymmetric stretching process. The coordinate system acceleration is 10% or less

of the gravitational acceleration g. We investigated the effect of a non-inertial coor-

dinate system by performing an alternative experiment where the top plate is raised

instead of dropping the bottom plate. The values of α determined by either (2.7)

or (2.4) for either experimental alternative differ by less than 3%, indicating that

the effects of inertia and a non-inertial coordinate are negligible. We also observed

that the filament radius in both alternative experiments are larger near the bottom

plate (as in figure 2.1a). If gravity were negligible, the filament would be fuller near

the stationary plate due to inertia. Hence our observations show that gravity is the
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main source of axial asymmetry. The local Bond number, Bo(t) = 4ρgR(0, t)2/σ,

quantifies gravitational effects and decreases as the filament evolves toward break-

up (R(0, t) → 0). Gravitational effects are considered negligible when Bo(t) < 0.1

(McKinley & Tripathi 2000).

Time-varying spatial derivatives of R required for (2.7) are determined from

derivatives of the polynomial least-squares fit. The least-squares approach suppresses

noise due to spatial discretization of the imaged free surface profile as seen in figure

2.1a for a Newtonian silicone oil filament (µ = 1.0 Pa-s) in a CBR experiment at Rp

= 3 mm and Lf/L0 = 3. However, the least-squares results for R, its spatial deriva-

tives, and consequently κzz evaluated at the filament are still noisy as illustrated by

the black curves for Rzz and κzz in figure 2.1b. A triangular center-weighted running

average (typically 15 points) is applied to R and its derivatives to reduce temporal

fluctuations introduced by the time series of least-squares fits in space (gray curves in

figure 2.1b). The uncertainties in R, its spatial derivatives, and κzz are determined by

propagating the standard error on the least-squares coefficients. Temporal derivatives,

Rt(t) and Rzzt(t), are then determined from derivatives of a running least-squares fit

in time also applied to 15 points from the triangular center-weighted results for R(t)

and Rzz(t). As seen in figure 2.1c, a local temporal least-squares fit (gray curves)

produces comparable but less noisy results than a central differencing scheme (black

curves). The uncertainties in the time derivatives are determined from the standard

error in the temporal least-squares coefficients. The spatial and temporal derivatives

of R determine α(t) by the differential method (2.7) for each trial. Finally, five repli-

cate trials are ensemble averaged for each experimental condition to determine ᾱ(t)

(figure 2.1d). We also determine values of α(t) by (2.4) with a time-varying necking

rate Rt(t), then average over five replicate trials to determine ᾱ(t). The uncertainties

in ᾱ(t) are the standard error of five trials.

The uncertainties for all terms in (2.7) are monitored, particularly for Rzzzz(t),
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Figure 2.1: (a) A Newtonian silicone oil filament (µ = 1.0 Pa-s) in a CBR experi-
ment 600 ms before break-up. The edge detection scheme applied within
a domain that excludes the reservoirs results in a piecewise constant de-
scription of the free surface (white). A 6th order least-squares polynomial
(black, zoomed in view) applied to the detected edge yields subpixel res-
olution. (b) The least-squares fits in space is still noisy in time (black)
as shown here for Rzz and κzz evaluated at the filament waist. Results
are processed with a triangular center-weighted running average (gray)
to minimize the temporal fluctuations. (c) Temporal derivatives, Rt and
Rzzt, are determined from a running least-squares fit in time (gray). This
approach is comparable but less noisy than time derivatives determined by
a central differencing scheme (black). (d) Ensemble averaged surface ten-
sion to viscosity ratios ᾱ(t) determined by the differential analysis (2.7).
Error bars represent the standard error of five replicate trials. The ref-
erence value αref and its uncertainty are represented by the dashed black
line and the gray band, respectively. The results reach the expected value
at late times due to filament asymmetry and is discussed in section 2.6.
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which has the largest error. Measurements are discarded when the signal-to-noise

ratio SNR for Rzzzz(t) drops below unity, usually close to break-up. An individual

trial is discarded when the SNR for Rzzzz(t) is less than unity for all time.

The accuracy and errors for terms in (2.7) and subsequently in α(t) are sensitive

to the least-squares domain size. A sufficiently large domain is desirable to achieve

subpixel resolution for the interpolated profile by fitting a relatively low-order polyno-

mial (6th-order) to hundreds of data points. However, the domain must be sufficiently

small to be a local analysis for (2.7). The domain size was varied between 0.15Lf and

0.25Lf to minimize errors in α(t). Errors in α(t) can be greater than 20% for domains

smaller than 0.2Lf because of inadequate radial dynamic range. The selected domain

size is 0.2Lf because it is the domain that minimizes errors in α(t) near break-up (as

Bo(t)→ 0 or R(0, t)→ 0).

We evaluated three sets of increasingly unfocused (blurry) image sequences to

determine the impact of image sharpness on the detection and fit of the interface.

Unfocused image sequences are created by applying a Gaussian filter to the image

sequence from one experimental trial. Increasingly unfocused image sequences are

obtained by increasing the standard deviation of the filter (σgauss = 1, 3, 5). Values

of α determined from these out-of-focus image sequences differ from the original

determination by less than 3% for all σgauss. The outcome of this sensitivity analysis

indicates that our technique is robust to imperfect images.

2.5 Numerical Model

We simulate the evolution of a viscous Newtonian fluid filament by numerically

solving the 1D model, (2.2) and (2.5), with Runge-Kutta 4th-order temporal integra-

tion and a 2nd-order central finite difference scheme on a spatial mesh. The mesh

size for the 1D model results shown in figure 2.2 is 513 nodes. The scales for (2.2)

and (2.5) are Rp, σ, and µ. The scaled bulk continuity equation is the same as (2.2)
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and the scaled axial momentum equation is

(3wzR
2)z − κzR2 −BoR2 = Re(wt + wwz)R

2, (2.8)

where Bo = ρgR2
p/σ is the Bond number and Re = ρσRp/µ

2 is the Reynolds number.

The differential analysis (2.7) requires symmetry about the filament waist, as is

the case when gravity and inertia are negligible. Thus, we consider the case when

Re=0 and Bo=0. The initial condition for R(z) at t = t1, when the stretching process

ends, is a symmetric, 6th-order polynomial constructed to have the same mass as an

initially squat circular fluid cylinder with an initial aspect ratio Λ0 = 0.733 and with

a final strain Lf/L0 = 3. The axial domain ranges from −Lf/2Rp ≤ z ≤ Lf/2Rp.

The interface remains pinned to the plate edges, represented by R(z = −Lf/2Rp, t) =

R(z = Lf/2Rp, t) = 1. The no-slip condition at the plates is w(z = −Lf/2Rp, t) =

w(z = Lf/2Rp, t) = 0. The inertia-free limit of equations (2.2) and (2.8) contain only

an evolution equation for R(z). Therefore, the numerical procedure is as follows: for

every R(z), the corresponding w(z) is solved from (2.8) and then R(z) for the next

time step is determined. The dimensionless time step is ∆t = 10−4. The simulation

is halted when R(0)/Rp=0.003.

We determine spatial and temporal derivatives of R from the numerical data

according to the same procedures for the experimental results (c.f. section 2.4). These

spatial and temporal derivatives are combined to determine dimensionless surface

tension to viscosity ratios α∗(t) by (2.7). Values of α∗(t) for the standard integral

method (2.4) are evaluated by the necking rate determined from the 1D model.

We considered two additional symmetric initial conditions for R(z), including the

lubrication solution in (Spiegelberg et al. 1996). All initial conditions have the same

mass as an initially squat fluid cylinder with Λ0 = 0.733 and Lf/L0 = 3. The three

initial conditions yield similar results for α(t) determined by (2.7) and (2.4). This

indicates (2.7) and (2.4) are insensitive to the initial conditions when the filament is
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symmetric.

2.6 Results and Discussion

We experimentally evaluate the differential method (2.7) and the standard inte-

gral method (2.4) with five Newtonian silicone oils (0.35 Pa-s<µ<10 Pa-s). We also

evaluate (2.7) and (2.4) with numerical data from a preliminary 1D model for an

evolving symmetric filament. The 1D model with a symmetric initial condition and

negligible gravity and inertia satisfies axial symmetry about the filament waist, as

required by (2.7). The initial and final aspect ratios in the 1D model are consistent

with the experiments. The performances of (2.7) and (2.4) are compared in figure 2.2

where the scaled time-dependent surface tension to viscosity ratio α∗(t) ≡ ᾱ(t)/αref

is plotted versus Bo(t). The reference values αref are determined by independent

measurements of surface tension σ and viscosity µ at 20◦C (section 2.3). The uncer-

tainties in αref are determined by the errors in independent measurements of σ and

µ. The uncertainties in the experimental α∗(t) are determined from the standard

error in ᾱ(t). Finally, the uncertainty in the expected value, α∗=1, is ±5% and is

determined from the error in αref .

The results in figure 2.2 are plotted against Bo(t) to facilitate comparisons with

McKinley & Tripathi (2000). The Bo(t) is experimentally relevant because gravity

makes the filament profile asymmetric, violating a required assumption for (2.7).

Non-negligible gravitational effects are also problematic for (2.4) because it disrupts

the assumption that F is constant in space. However, Bo(t) is not suitable for the

1D model because gravity is not considered in the development of (2.7) nor (2.4).

Even so, we present the 1D model results as a function of Bo(t) determined by

g = 9.81m/s2 (instead of g = 0) to compare with experimental results. We discuss

alternate approaches to rescaling our problem below.

In figure 2.2, the experimental results determined by (2.7) are scattered and noisy
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Figure 2.2: Experimental results for dimensionless surface tension to viscosity ratios
α∗(t) for five Newtonian silicone oils (µ=0.35 Pa-s: , µ=0.51 Pa-s:�,
µ=1.0 Pa-s:N, µ=4.8 Pa-s:u, µ=10 Pa-s:H) versus the local Bond number,
Bo(t). Differential method results (2.7) and standard integral method
results (2.4) are shown in filled and open markers, respectively. Every
third data point is plotted for clarity. Results determined by applying
(2.7) and (2.4) to the 1D model data for a symmetric filament are shown
by solid and dashed lines, respectively, with the solid line appearing as
α∗ = 1 to graphical accuracy. Error bars are not shown for clarity. The
gray band indicates the expected value, α∗ = 1, and its error.

shortly after the stretch (Bo(t) > 0.3). The scatter and noise decrease as Bo(t)

decreases until Bo(t) < 0.2 when the results become independent of the viscosity

range considered. The differential method results for α∗(t) are 30 to 40% below the

expected value of unity for Bo(t) < 0.2 but approach unity as Bo(t) further decreases,

reaching the expected value for Bo(t) < 0.04. Uncertainties in α∗(t) for Bo(t) < 0.3

are typically less than 10%. The result evaluated by applying (2.7) to the 1D model

data is constant with Bo(t) and deviates less than 0.5% from α∗ = 1. The result

for α∗ using the 1D model data is essentially error free because the 1D model and

(2.7) share the same assumptions (axial symmetry about the waist, rectilinear flow,

gravity- and inertia-free). Deviations in the experimental results from α∗ = 1 may

also be caused by small viscoelastic and surfactant effects in the silicone oils that are

not captured by the 1D model or (2.7). However, the deviations from α∗ = 1 are

caused by filament asymmetry in the CBR experiments, as discussed below.

The experimental differential method results presented here are determined by

25



(2.7) without the inertial terms. The results for α∗(t) change the largest Re silicone

oil (µ=0.35 Pa-s) by less than 5% and only near break-up (Bo(t) < 0.04) when such

inertial terms are included. Therefore, inertial effects are small for the test fluids

considered in this study and are not considered in (2.7) for the rest of this paper.

The experimental results determined by (2.4) in figure 2.2 overlap for all Bo(t)

shown and indicate that this method is independent of µ within the range tested.

As Bo(t) decreases α∗(t) first grows to a maximum then decreases again toward but

does not reach unity. The 3% uncertainties in the experimental results determined

by (2.4) are smaller than the 10% uncertainties in (2.7). The larger uncertainties in

the differential method results stem from measurements of higher-order derivatives

of R(z, t) (discussed in figure 1). The result determined by applying (2.4) to the 1D

model data when Bo(t) > 0.0005 follows a similar trend as the experimental results.

However, α∗(t) determined from the 1D model data has larger deviations from α∗ = 1

than the experimental results. Furthermore, the minimum and maximum values

predicted from the 1D model are shifted horizontally relative to the experimental

results.

The differences between the experimental and 1D model results are related to

gravitational effects on the necking rate Rt(t) because the experiments are subjected

to gravity while the 1D model results are not. These differences suggest that gravity

increases |Rt| at early times but decreases |Rt| at longer times. Our findings are

consistent with the numerical results with and without gravity in McKinley & Tripathi

(2000). The variation in α∗(t) throughout earlier times, corresponding to high Bo(t),

in the filament evolution is due to force and curvature approximations. It also shows

that |Rt| is not constant and that a time-dependent correction factor is required in

this regime. The 1D model result for α∗ determined by (2.4) reaches a constant value

of unity for Bo(t) < 0.0005. This indicates that the filament waist evolution does

follow the similarity solution of Papageorgiou (1995) when Bo(t) < 0.0005 because
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applying X = 0.7127 in (2.4) yields the correct result.

McKinley & Tripathi (2000) recommends that (2.4) be applied when Bo(t) <

0.1. However, experimental and 1D model results determined by (2.4) in figure 2.2

show that a smaller, stricter Bo(t) criterion is necessary to improve the accuracy of

measurements performed at the sample volume and strain conditions studied here.

As mentioned by McKinley & Tripathi (2000), the time required to reach the self-

similar regime described by Papageorgiou (1995) depends on multiple parameters

including sample volume and strain. Therefore the Bo(t) criterion to indicate when

the filament evolution has reached the self-similar regime will also vary with sample

volume and strain. For the conditions considered here, which correspond to those

studied by McKinley & Tripathi (2000), the Bo(t) criterion needs to be much stricter

than Bo(t) < 0.1.

In addition to varying µ, we experimentally investigate the operating range of

the differential method (2.7) with three sample volumes represented by plate radius

Rp=2 mm, 3 mm and 4 mm, and three strains, Lf/L0=2, 3 and 4.5. The largest

strain case has the flattest (least curved) filament profile, indicated by small Rzz and

Rzzzz. Despite our use of microscope objectives to resolve the filament, the profile for

the largest strain case typically varies by less than 10 pixels in the radial direction.

The radial variation in all other filament profiles are resolved with 2 to 4 times more

pixels. The SNR for Rzzzz(t) is below unity throughout the Lf/L0 = 4.5 trials and

therefore this condition has been excluded from our analysis.

The time-dependent experimental differential method results for varying µ, Rp,

and Lf/L0 are summarized in figure 2.3. The results are plotted as a function of

two different time-varying parameters to determine a suitable dimensionless variable

to characterize the filament evolution: Bo(t) and dimensionless radius at the waist

scaled by the local free surface curvature, Rzz. Time increases from right to left in

each of the plots in figure 2.3. The results for all experimental conditions shown have
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large deviations from α∗=1 at early times, corresponding to large dimensionless pa-

rameter values. The results generally approach and reach α∗ = 1 as the dimensionless

parameters decrease corresponding to late times. The only exception is the smallest

strain case which increases to α∗ = 0.85. The results plotted against Bo(t) generally

collapse while α∗(RRzz) do not when the sample volume or strain are varied. A uni-

versal curve is not expected for α∗(RRzz) because Rzz(t) is affected by sample volume

and strain.

Dimensionless CBR results are commonly presented according to time scaled by

a visco-capillary or inertio-capillary time, R(t)/Rp, and Bo(t) (McKinley & Tripathi

2000; Papageorgiou 1995; Anna & McKinley 2001; Bhat et al. 2010). A dimensionless

time is problematic because it requires an arbitrarily defined reference time such as

the time at break-up or the time when the plates come to rest. In addition, R(t)/Rp is

not suitable because (2.7) and (2.4) are local analyses and Rp is an external dimension

relevant to the reservoir and not the fluid filament. Scaling the radius at the waist with

a local length scale such as Rzz(t), the free surface curvature at the waist, is a more

meaningful approach to represent dimensionless radius in our local analysis (2.7). But

the lack of a universal curve for α∗(RRzz) (shown in figure 2.3b) makes it difficult

to develop a criterion to indicate when to apply (2.7) based on this parameter. For

practical purposes we therefore suggest a criterion based on Bo(t) to indicate when

the differential method (2.7) is valid. Theoretically Bo(t) is not a relevant parameter

because gravity is neglected in the differential method (2.7) to enforce axial symmetry

and ultimately avoid an axial fluid velocity measurement at the waist. Gravity (and

inertia) is also neglected in (2.4) to avoid a spatially varying axial force. Even when

gravitational effects are included, (2.7) is not explicit in g because it does not appear

in the differentiated equations after being evaluated at the filament waist. Instead

the effect of gravity is detected in the filament shape because it disrupts the axial

symmetry required by (2.7).
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Figure 2.3: Experimental results for dimensionless surface tension to viscosity ra-
tios α∗(t) determined by (2.7) plotted against two dimensionless time-
dependent parameters. Results are shown for five Newtonian silicone oils
(µ=0.35 Pa-s: , µ=0.51 Pa-s:�, µ=1.0 Pa-s:N, µ=4.8 Pa-s:u, µ=10 Pa-
s:H), three sample volumes (Rp = 2 mm: u, Rp = 3 mm: N, Rp = 4 mm:
�), and two strains (Lf/L0 = 2: N , Lf/L0 = 3: N). Error bars are the
standard error of five replicated trials. Every 2nd data point is shown
for clarity and error bars are shown for every 4th point. The gray band
indicates the expected value, α∗ = 1, and its error.

Figure 2.3a shows that differential method results are accurate for Bo(t) < 0.04.

The experimental results are summarized in figure 2.4 where time-averaged differential

method results 〈α∗〉 are plotted against viscosity µ except for the Lf/L0 = 2 case

because the series terminates early owing to limited temporal resolution. The results

in figure 2.4 are determined by averaging all values of α∗(t) for Bo(t) < 0.04. The

uncertainties in 〈α∗〉 are one standard deviation for values of α∗(t) when Bo(t) < 0.04.

Values of 〈α∗〉 determined by (2.7) for the five Newtonian silicone oils agree with

the expected value. These time-averaged results are relatively constant with respect

to viscosity and are independent of sample volume (with an outlier at Rp = 4 mm).

Uncertainties in 〈α∗〉 for all cases in figure 2.4 are less than 4%.

Figures 2.2 and 2.3 indicate the appropriate range to analyze differential method

results is at late times corresponding to Bo(t) < 0.04. We examine the assumptions

made in deriving (2.7) to identify the cause for deviations from α∗ = 1 at earlier

times (larger Bo(t)). The symmetry condition required by (2.7) is mainly disrupted

by gravitational effects (larger sample volumes) for the experimental conditions in-
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Figure 2.4: Experimental results for time-averaged dimensionless surface tension to
viscosity ratios 〈α∗〉 determined by the differential method (2.7) versus
viscosity, µ. Results are shown for five Newtonian silicone oils (0.35 Pa-
s<µ<10 Pa-s: ) and three sample volumes (Rp=2 mm:3, Rp=3 mm: ,
Rp=4 mm:�). Results are determined by averaging over Bo(t) < 0.04
and error bars represent one standard deviation. The Lf/L0 = 2 result
does not generate a time-averaged value because the data set does not
extend past Bo(t) < 0.04. The gray band indicates the expected value,
α∗ = 1, and its error.

vestigated here. When the filament is asymmetric, two additional terms requiring

a velocity measurement at the waist, wRzzz/κzzR and wwzz/6νκzz, would need to

be included in (2.7) to determine α. To maintain a purely geometric approach, we

measure the asymmetry about the waist to determine when the two additional terms

may be considered negligble. We define an asymmetry measure

Ω(t) =
|Rzzz(t)|

R2
zz(t) + |Rzzzz(t)|2/3

. (2.9)

This definition compares the relative magnitudes of Rzzz(t), a measure of filament

asymmetry about the waist, to the gradients of curvature that drive the filament

evolution.

The differential method results for α∗(t) versus asymmetry Ω(t) for varying µ,

Rp, and Lf/L0 are plotted in figure 2.5 for Bo(t) < 0.3. Excluded results for larger

Bo(t) are noisy with uncertainties greater than 10% (see figure 2.2). Values of α∗(t)

generally follow the same behavior. At short times Ω(t) increases toward its maximum

and α∗ is underestimated, typically by 30%. For the viscosity range considered, α∗(t)
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Figure 2.5: Experimental results for dimensionless surface tension to viscosity ratios
α∗(t) determined by (2.7) versus asymmetry Ω(t) (2.9) for Bo(t) < 0.3.
Results are shown for five Newtonian silicone oils (µ=0.35 Pa-s: , µ=0.51
Pa-s:�, µ=1.0 Pa-s:N, µ=4.8 Pa-s:u, µ=10 Pa-s:H), three sample volumes
(Rp = 2 mm: u, Rp = 3 mm: N, Rp = 4 mm: �), and two strains
(Lf/L0 = 2: N , Lf/L0 = 3: N).Unfilled markers represent values when
Bo(t) < 0.04. Error bars are the standard error of five replicated trials
and are shown on every 3rd data point for clarity. The gray band indicates
the expected value, α∗ = 1, and its error.

grows gradually as Ω(t) approaches its maximum. In contrast, Ω(t) grows gradually

compared to the increase in α∗(t) for Rp = 2 mm and Lf/L0 = 2. Unlike other results,

Ω(t) generally decreases when Bo(t) < 0.3 for the Rp = 4 mm case.

The differential method results approach α∗ = 1 from below as asymmetry de-

creases. Generally, α∗(t) reaches unity near break-up (Bo(t) < 0.04) as Ω(t) rapidly

decreases, with the exception of noisy α∗(t) when asymmetry becomes small. In ad-

dition, the overall asymmetry decreases with growing Rp despite our expectations

that a larger sample volume would have greater asymmetry, especially before stretch-

ing. The errors in α∗(t) also grow with increasing Rp. This behavior indicates that

measurements for the larger samples are more challenging because of smaller axial

curvatures caused by larger gravitational effects. Methods to reduce noise in measur-

ing R and its derivatives are part of continuing work.

Figure 2.5 shows that axial symmetry is a key requirement to develop a geometric

differential analysis (2.7). The negligible error in comparing (2.7) to the 1D sym-

metric model demonstrates that most of the experimental error is due to asymmetry.
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Discrepancies in α∗(t) determined by (2.7) is attributed to the missing velocity terms

that diminish as the asymmetry decreases near break-up.

Figure 2.5 also shows no universal curve, as expected, for α∗(Ω) because fila-

ment asymmetry is affected by the initial Bond number (sample volume) and the

strain as well as the initial aspect ratio, initial asymmetry and strain rate. Further-

more, filament asymmetry is indicated by deviations of R(z) and w(z) from purely

even and odd functions, respectively, and hence our definition of Ω(t) (2.9) is in-

complete. All curves in figure 2.5 demonstrate that the differential analysis (2.7)

accurately determines α∗ when asymmetry is sufficiently small and dα∗/dΩ → 0 (or

dα∗/dBo(t)→ 0). The asymmetry should be assessed as sufficiently small compared

to the initial asymmetry. We are not yet able to evaluate the asymmetry before and

during the stretching process because microscope objectives improve radial resolution

but limit the field-of-view. In the future a cylindrical lens will enable measurements

of the entire filament evolution while increasing the radial resolution. As a proxy, suf-

ficiently small asymmetry for accurate determination of α∗ occurs when Bo(t) < 0.04

and dα∗/dBo(t)→ 0.

2.7 Conclusions

Capillary break-up rheometry is an established technique for measuring flow prop-

erties such as surface tension and viscosity in the context of elongational flows when

rheological differences and surface rheology are emphasized. We have demonstrated a

1D, Newtonian differential analysis (2.7) that requires gradients of filament curvature

to determine the surface tension to viscosity ratio α when axial force measurements

are not taken for capillary breakup rheometry. Our differential approach for Newto-

nian fluids (2.7) requires fewer assumptions than the standard integral method (2.4)

and is the first step for characterizing extensional flows from the shape of the free

surface profile. We recommend the differential method when measured values must
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be accurate to within 10%.

Axial symmetry about the filament waist (where Rz = 0) is a major requirement

for (2.7) to maintain a purely geometric approach (i.e. when no velocities are mea-

sured). The differential method evaluated by data from a 1D model for a symmetric

filament without gravity or inertia is well within 0.5% of α∗ = 1, the expected value,

throughout the simulation. The experimental results for five silicone oils (0.35 Pa-

s<µ<10 Pa-s), three sample volumes, and two strains also agree with α∗ = 1 when

the asymmetry is sufficiently small near filament break-up. Deviations from α∗ = 1

in the experiments occur at early times when asymmetry Ω is large.

We recommend applying (2.7) when the asymmetry is sufficiently small relative to

the initial asymmetry and dα∗/dΩ→ 0. Alternatively, Bo(t) < 0.04 and dα∗/dBo→

0 may be used as a proxy for the asymmetry evaluation. The error for all terms

in (2.7) should be monitored, particularly for Rzzzz(t). Measurements should be

discarded when the signal-to-noise ratio for Rzzzz(t) is below unity.

We acknowledge that measurements near filament break-up are challenging due

to the spatial and temporal limitations of the imaging set-up. Inertial, viscoelastic,

and surfactant effects may also begin to dominate near break-up. These challenges

may be avoided by enforcing symmetry in the filament to apply (2.7) at earlier times.

Filament symmetry may be achieved by testing smaller sample volumes and/or mov-

ing both plates in equal and opposite directions. Alternate deformation profiles that

maintain symmetry but avoid break-up are also recommended.

Ongoing efforts will focus on improving the accuracy and error in the differential

analysis by optimizing the least-squares polynomial fits of the filament free surface.

These efforts include increasing the radial resolution and subsequently the degrees of

freedom for the least-squares regression with a cylindrical lens and an edge detection

scheme that uses grayscale more effectively. The domain size and the degree of the

polynomial fit will also be further investigated to minimize error in the differential
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approach (2.7). We are also developing additional differential methodologies based on

the 1D model to quantify individual flow properties from a single elongated filament.
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CHAPTER III

One-dimensional non-Newtonian Analyses without

Stretching

3.1 Introduction

In the previous chapter we developed a 1D differential approach (2.7) to charac-

terize material properties, specifically the surface tension to viscosity ratio α, from

an evolving Newtonian filament. We now expand our 1D differential methods to

characterize non-Newtonian fluids.

The “tackiness” or “stickiness” of a (saliva) filament may be attributed to exten-

sional viscoelastic properties of long-chained molecules (such as mucins) or by sur-

factants (such as in soap films). Saliva viscoelasticity and its implications on health

diagnosis are commonly studied both in shear and extension (Stokes & Davies 2007;

Zussman et al. 2007; Haward et al. 2011; Turcanu et al. 2015; Wagner 2015). Less is

known about surfactant effects on saliva filament dynamics but Kazakov et al. (2009)

shows significant differences in the dynamic surface tension measurements for saliva

in children with cavities and without cavities. Therefore, there is some evidence that

characterizing saliva’s surface activity may be useful for health diagnosis.

In this chapter, we first study the role of surfactants in low-viscosity filament

dynamics with a simple experiment. We also investigate 1D viscoelastic filament
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dynamics with a numerical model to assess the validity of the differential Newtonian

analysis (2.7) for characterizing the initial viscous regime in the filament evolution.

In particular, we evaluate the performance of (2.7) for viscous and inviscid fluids with

varying viscoelastic effects.

Since we now examine fluids with memory (where the extra stress is nonlinearly

related to the strain-rate), the deformation (stretch) history should be included. How-

ever, the typical development of CBR analyses (Bazilevsky et al. 1990; Entov & Hinch

1997; Bousfield et al. 1986; Renardy 1994; Clasen et al. 2006a) assumes a long, unsta-

ble filament with zero initial polymer stresses at the start of the CBR measurement.

Additionally, the fluid is modeled with freely moving contact lines at the solid plates

with constant 90 degrees contact angles, represented by Neumann boundary condi-

tions for R(z). These assumptions do not accurately represent the physical state of

a non-Newtonian filament at the start of the CBR measurement (Anna & McKinley

2001). Nevertheless, these assumptions simplify the 1D analysis and are still useful for

investigating trends in viscoelastic filament dynamics. We will delay a more accurate

CBR model to chapter IV, where the stretching phase will be included.

3.2 Surfactants

Previously we investigated Newtonian filament dynamics under the assumption

of constant surface tension. However, the presence of surface active constituents or

surfactants (Kazakov et al. 2009; Proctor et al. 2005; Carpenter 2013) may result in

spatially- and temporally-varying surface tension. Therefore, we investigate the role

of surfactants on filament dynamics.

Surfactants are present in many commercial and industrial applications, such as

pharmaceutical products, detergents, and ink-jet printing. They are frequently uti-

lized to manipulate the break-up dynamics of droplets and jets. At low concentra-

tions, surfactants adsorb to interfaces and alter the surface tension σ. Variations in
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surfactant concentration on the interface lead to surface tension gradients and conse-

quently impose a shear stress on the free surface. This tangential stress, termed the

Marangoni stress, drives the flow toward regions of higher surface tension and may

help or hinder capillary-driven instabilities (Rosen & Kunjappu 2012).

We are particularly interested in the effect of Marangoni flows on low-viscosity

fluid filament dynamics because saliva’s viscosity is similar to that of water (Bhat

et al. 2010; Carpenter 2013; Zussman et al. 2007). The linear stability analysis by

Timmermans & Lister (2002) shows insoluble surfactants do not significantly reduce

the maximum growth rate for a disturbance in a low-viscosity fluid or affect the wave-

length where the maximum growth rate kmax occurs. In contrast, the linear stability

analysis for a viscous fluid shows increasing surfactant strength dramatically reduces

the maximum growth rate and shifts kmax to longer wavelengths. Ambravaneswaran

& Basaran (1999) and Liao et al. (2006) each show an insoluble surfactant has little

impact on increasing the limiting length of a low-viscosity filament during stretching.

Additionally, Ambravaneswaran & Basaran (1999) and Liao et al. (2006) also show

the filament limiting length increases with viscosity. These studies indicate surfac-

tant effects depend on viscosity for two reasons. First, Marangoni flows cannot persist

without a restorative force provided by viscosity. Additionally, the effects of surface

tension gradients on the free surface are not transmitted to the bulk flow without vis-

cosity (Timmermans & Lister 2002; Liao et al. 2006). Furthermore, surfactants are

swept away from the filament waist near break-up and thus its evolution is similar to

that of filament without surfactant (Craster et al. 2002; Timmermans & Lister 2002).

We performed a set of qualitative experiments with a homemade bubble solution

to investigate surfactant effects on low-viscosity fluid filament dynamics. The simplest

bubble solution may be created with dish soap and water. The ratio of dish soap to

water in bubble recipes found online varies widely, from 1:24 to 1:1 (Agee 2014; Sci

2011). A soap bubble is a spherical film that consists of a thin water layer between
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two layers of soap molecules. Each soap molecule has a hydrophilic head and a

hydrophobic tail. Due to interactions with the water molecules, the hydrophobic tails

are forced to stick out of the water at the surface, into the air (Gennes & Brochard-

Wyart 2004).

Bubbles created from a soap-water mixture are short-lived. Many bubble solutions

also add glycerin (a.k.a. glycerol or glycerine) to the dish soap and water mixture.

The ratio of glycerin to water also varies across these formulations, from as low as

1:192 to 1:1. Glycerin extends the lifetime of soap films and bubbles by slowing the

evaporation of water and increasing the viscosity of the mixture to delay the draining

(Gennes & Brochard-Wyart 2004; Isenberg 1978). Corn syrup is a suitable and more

readily available alternative to glycerin in bubble solutions.

Our bubble solution was prepared with a 1:24 dish soap (Kirkland Signature

Evironmentally Friendly Ultra Liquid Dish Soap) to water ratio and a 1:86 glycerin

(Sigma-Aldrich) to water ratio. We used a small amount of glycerin to maintain a

viscosity similar to water. The mixture was exposed to ambient conditions for at

least 12 hours to allow any alcohols in the dish soap to evaporate.

The qualitative extensional behavior of this simple surfactant solution was evalu-

ated by stretching a small drop (∼1 mm3) between forefinger and thumb. We experi-

enced unexpected difficulties forming a filament with the bubble mixture. The fluid

sample ruptured before a filament could be observed. In fact, the bubble solution’s

filament forming capabilities were not noticeably different from that of a similarly

sized water droplet. In contrast, the bubble solution easily formed a relatively long-

lived film as observed by extracting a ring from the mixture. The results of our

qualitative experiments are consistent with the previous findings (Timmermans &

Lister 2002; Ambravaneswaran & Basaran 1999; Liao et al. 2006) that surfactants do

not significantly impact the filament formation and dynamics of low-viscosity fluids.

Therefore, we conclude that surfactants do not play a significant role in the bulk
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flow of saliva filament dynamics. Proctor et al. (2005) does show that saliva’s surface

active constituents such as statherin, a protein, and calcium ions do affect the rheo-

logical properties of saliva films and have implications for maintaining moist tissues

and providing lubrication between surfaces in the oral cavity. However, the study of

saliva surface rheology is beyond the scope of this work.

3.3 Viscoelastic Models

We investigate viscoelastic effects on filament dynamics because saliva’s viscoelas-

tic nature has been demonstrated in shear and extension. Saliva exhibits shear-

thinning (Schwarz 1987; van der Reijden et al. 1993; Stokes & Davies 2007) and the

formation of beads-on-a-string BOAS in elongation (Bhat et al. 2010). Therefore, a

suitable viscoelastic model to study saliva must contain these features. We begin our

selection process with the Maxwell, Oldroyd-B, and FENE-P models because they are

well studied and commonly considered in investigations related to saliva viscoelastic-

ity (Stokes & Davies 2007; Zussman et al. 2007; Bhat et al. 2010; Bazilevsky et al.

2011; Wagner et al. 2015; Clasen et al. 2006a).

3.3.1 Maxwell, Oldroyd-B and FENE-P models

The Maxwell model is the simplest linear viscoelastic continuum mechanics the-

ory. It combines the constitutive theories for a Newtonian fluid and Hookean solid to

describe a material with viscous and elastic properties. A useful mechanical represen-

tation of the Maxwell model is a dashpot (Newtonian fluid) and infinitely extensible

linear spring (Hookean solid) in series. The Maxwell model forms the basis of many

viscoelastic constitutive theories and therefore we discuss some of its characteristics

here. The most general differential expression for the Maxwell model is
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τij + λ

(
Dτij
Dt
− a[τikγ̇kj + γ̇ikτkj]

)
= 2µ0γ̇ij, (3.1)

where τij is the total deviatoric stress tensor, λ is the polymer relaxation time, and

µ0 is the total zero-shear viscosity. The symmetric strain-rate tensor is defined as

γ̇ij = 1
2
(ui,j + uj,i). The Jaumann (or co-rotational) derivative is a type of frame

invariant time derivative and is given as

D(·)
Dt

=
D(·)
Dt

+ ωik(·)kj − (·)ikωkj, (3.2)

where D(·)/Dt is the material derivative and the antisymmetric strain-rate tensor (or

vorticity tensor) is defined as ωij = 1
2
(uj,i−ui,j). The upper-convected time derivative,

O

(·) =
D(·)
Dt
− (γ̇ik(·)kj + (·)ikγ̇kj)

=
D(·)
Dt
− (ui,k(·)kj + (·)ikuj,k),

(3.3)

is another frame invariant time derivative commonly encountered in fluid rheology.

Equation (3.1) encompasses several variations of the Maxwell model. These vari-

ations depend on the type of frame invariant time derivative considered and are ob-

tained by adjusting the value of a. Although the Maxwell model (3.1) is a continuum

mechanics theory, the parameter a can be interpreted to represent the amount of slip

between molecules. The parameter a may vary from −1 ≤ a ≤ 1 but values in the

range 0 ≤ a ≤ 1 are the most relevant to polymer rheology studies (Petrie 1979). The

co-rotational Maxwell (CRM) model or the upper-convected Maxwell (UCM) model

is obtained for a = 0 or a = 1, respectively.

The CRM model qualitatively describes shear thinning. In contrast, the UCM

model qualitatively describes extension thickening but not shear thinning (Bird et al.

1987a; Larson 1988). A model combining the responses in shear and extension of the
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CRM and UCM models selects 0 < a < 1. Furthermore, a non-zero value of a can

relieve the singularity in the extensional viscosity predicted by the UCM model that

occurs at finite extension rates (Petrie 1979). This singularity is a result of modeling

the Hookean solid as an infinitely extensible spring.

The Oldroyd-B model for the total deviatoric stress is the viscoelastic model as-

sociated with the original CBR analysis (Bazilevsky et al. 1990; McKinley & Tripathi

2000) and the basic model for dilute polymer solutions, like saliva (Bhat et al. 2010).

The Oldroyd-B model represents a suspension of polymer chains as non-interacting,

infinitely extensible Hookean dumbbells (Clasen et al. 2006a; Bird et al. 1987a). A

common representation of the Oldroyd-B model expresses the total deviatoric stress

as the sum of a Newtonian solvent stress τ sij = 2µsγ̇ij and a non-Newtonian polymer

stress τ pij. Superscripts ‘s’ and ‘p’ are employed as labels for the stresses to avoid

confusion with tensor notation. The polymer stress is modeled by the UCM theory,

obtained by setting a = 1 and µ0 = µp in (3.1) (Larson 1988; Bird et al. 1987a; Petrie

1979). The solvent and polymer shear viscosities (at zero-shear) are represented by

µs and µp, respectively, and are related to the total viscosity µ0 = µs + µp.

Decomposing the total stress tensor into contributions from the solvent and the

polymer is commonly seen in kinetic theories. In fact, the Oldroyd-B model also has

a kinetic theory representation for the polymer stress

τ pij =
µp
λ

(f(R)Aij − δij) , (3.4)

where Aij is the dimensionless conformation tensor describing the orientation and

extension of the polymers, δij is the identity tensor, and f(R) is a model for the

spring force law. It will be shortly shown that f(R) = 1 in the Oldroyd-B model.

The evolution of Aij is governed by

O
Aij = −1

λ
(f(R)Aij − δij). (3.5)
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The continuum mechanics Oldroyd-B representation for τ pij may be determined

from the kinetic theory representation (3.4) without a closure approximation (Oliveira

2009). The derivation is simple and begins by applying the upper-convected derivative

(3.3) to (3.4), assuming µp and λ are constants

O

τ pij =
µp
λ

(
O
Aij −

O
δij

)
. (3.6)

This result is then combined with
O
δij = −2γ̇ij, (3.4) and (3.5) to give

τ pij + λ
O

τ pij = 2µpγ̇ij. (3.7)

Comparing (3.7) with (3.1) when a = 1 confirms the Oldroyd-B polymer stress derived

from kinetic theory is equivalent to the continuum mechanics model, specifically τ pij

modeled by the UCM theory.

The Oldroyd-B model exhibits extension thickening and predicts an infinite ex-

tensional viscosity at finite strain-rates (Bird et al. 1987a). This is unsurprising given

that the polymer stress is modeled by the UCM model which exhibits the same char-

acteristics. Renardy (1994) also shows that an Oldroyd-B fluid thread never breaks

up. However, the Oldroyd-B model is the simplest viscoelastic model able to predict

BOAS for polymer solutions (Bhat et al. 2010; Ardekani et al. 2010).

The unphysical singularity in the UCM and (consequently) Oldroyd-B theories

is addressed by modeling the polymer chains as Hookean dumbbells with finitely

extensible non-linear elastic (FENE) spring forces. There are several variations of the

FENE model and each propose a different description for the non-linear spring force.

The FENE-P model is a closed formed theory for τ pij (Herrchen & Öttinger 1997;

Oliveira 2009; Bird et al. 1987b). The closure is provided by Peterlin’s approximation

to replace a ratio of two quadratic terms with a ratio of spatially averaged squared

terms. More details on the development of FENE models may be found in Bird et al.

42



(1987b); Herrchen & Öttinger (1997); Keunings (1997).

The FENE-P polymer stress may be expressed by the same kinetic theory repre-

sentation as the Oldroyd-B model (3.4). However, in the FENE-P model the spring

force law is f(R) = 1
1−R/L2 where R is the trace of Aij or R = Azz + 2Arr. Addi-

tionally, the finite extensibility parameter L is now introduced and defined as a ratio

of the fully extended length of the dumbbell to its equilibrium length (Bird et al.

1987b). For an infinitely extensible spring, as in the Oldroyd-B model, L → ∞ and

therefore f(R)→ 1.

The FENE-P describes shear thinning and bounded extensional thickening (Her-

rchen & Öttinger 1997; Fontelos & Li 2004; McKinley 2005). In addition it has

characterized saliva viscoelasticity in experimental studies (Stelter et al. 2000; Stokes

& Davies 2007; Zussman et al. 2007). However, the FENE-P model so far does not

predict BOAS (Oliveira & McKinley 2005; Wagner et al. 2005; Oliveira et al. 2006).

We proceed with the Oldroyd-B model because it is the simplest viscoelastic model

that describes BOAS formation. Issues with the singularity will be addressed by

avoiding break-up.

3.3.2 Current 1D viscoelastic CBR analysis

The details for the viscoelastic CBR analysis introduced by Bazilevsky et al. (1990)

are later given by Entov & Hinch (1997) in the context of a 1D multi-mode FENE-CR

model. The original analysis is based on a filament where initial polymer stresses are

zero. Although not explicitly stated by Entov & Hinch (1997), it is most likely for a

cylindrical filament with a small radial profile perturbation.

The derivation of the original CBR viscoelastic analysis also begins with the local

force balance at the filament mid-plane (1.1). When τij is decomposed into Newtonian

solvent and polymer stresses, the resulting force balance is similar to (2.1) and includes

the elastic (polymer) stresses acting over the cross-sectional area
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F = (−σκ+ 3µswz + τ p,zz − τ p,rr)πR2 + 2πσR, where Rz = 0. (3.8)

In the FENE-CR model, the polymer stresses are τ p,zz = µp
λ

(fAzz−1) and τ p,rr =

µp
λ

(fArr − 1), respectively. The 1D representations for the evolution of Azz and Arr

are

fAzz + λ(Azzt + wAzzz − 2wzA
zz) = 1 (3.9a)

fArr + λ(Arrt + wArrz + wzA
rr) = 1. (3.9b)

In the early stage of evolution, the stress is attributed to the solvent viscosity

since the initial elastic (polymer) stresses in the filament are assumed to be zero.

Furthermore, the elastic stresses only enter when the deformation is large. This regime

is often referred to as the early viscous phase because the filament evolves due to

viscous and capillary forces. When elastic stresses are negligible, (3.8) simplifies to the

Newtonian force balance (2.1). The filament midpoint is observed to decrease linearly

in this phase. The original analysis (Bazilevsky et al. 1990; Entov & Hinch 1997) and

the subsequent correction (McKinley & Tripathi 2000) indicate material parameters,

specifically the surface tension to viscosity ratio α, may be determined directly from

the necking rate Rt at the filament waist. However, we show the limitations of this

technique in chapter II.

The filament evolution enters a second regime once the elastic stresses have grown

to the same order as the capillary and viscous stresses. The viscous stress then

decreases with the strain-rate such that the capillary pressure balances the elastic

stresses. The axial deformation is considered large relative to the radial deformation

and thus τ p,zz >> τ p,rr. Additionally, the axial deformation is still small relative to

the finite extension limit and therefore the Oldroyd-B model is valid in this phase.

The axial stress evolution at the waist is derived by evaluating the continuity
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equation (2.2) at Rz = 0 to determine the axial strain rate wz = −2Rt/R. Equation

(3.9a) is also evaluated at Rz = 0 and the constant on the right-hand-side is neglected

to ease one integration in time. The resulting expression combined with wz at the

filament midpoint gives

Azz =

(
R(tE)

R(t)

)4

exp(−t/λ), at Rz = 0 for t > tE. (3.10)

Here it is noted that tE marks the start of the second regime, often termed the elasto-

capillary regime. An expression for the filament midpoint evolution is determined

by neglecting the viscous and radial stress contributions in (3.8). After applying the

same three approximations regarding F , the surface tension perimeter term, and κ

made in the Newtonian force balance (c.f. section 2.1), the simplified force balance is

combined with (3.10) to give

R(t) = R(tE)

(
R(tE)µp
λσ

)1/3

exp(−t/3λ), at Rz = 0 for t > tE. (3.11)

The exponential decrease in the filament midpoint predicted by (3.11) is the most

recognizable feature of a thinning viscoelastic fluid thread. A prefactor of 2−1/3 (not

include here) was later introduced in (3.11) by Clasen et al. (2006a) to account for the

missing surface tension term in the original theory (Bazilevsky et al. 1990; Entov &

Hinch 1997). However, the correction does not affect the rate of exponential thinning.

Furthermore, combining (3.10) and (3.11) indicates τ p,zz(t) ∼ exp(t/3λ) in the elasto-

capillary phase.

In the final regime, the polymer chains become fully elongated and therefore the

effects of finite extensibility can no longer be ignored. The elastic stress due to the

polymer is unable to balance the capillary pressure. Additionally, the radial deforma-

tion is also significant and therefore τ p,rr cannot be ignored. The filament midpoint

once again thins linearly in time like a Newtonian fluid with a large, anisotropic vis-
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cosity (Clasen et al. 2006b; Anna & McKinley 2001). The linear decay of the midpoint

has been observed experimentally in the final stages of viscoelastic filament evolution

(Liang & Mackley 1994).

The largest polymer relaxation time is commonly determined by applying (3.11)

during the exponentially thinning regime. This approach works reasonably well for

polymer solutions with various concentrations and molecular weights (Bazilevsky

et al. 1990; Anna & McKinley 2001; Clasen et al. 2006b). The operating range for

(3.11) is discussed in Rodd et al. (2005).

We focus our efforts on the initial phase of the filament evolution since the method

(3.11) for characterizing λ works well. In particular, we investigate the possibility of

determining α with the differential Newtonian analysis (2.7) developed in chapter II

with numerical data generated by a 1D model for an evolving viscoelastic filament.

3.3.3 1D viscoelastic model and simulation

We model the 1D evolution of a viscoelastic filament in the absence of gravity with

a single-mode (single relaxation time) Oldroyd-B model for simplicity, since we are

interested in characterizing material parameters from early regimes when the effects of

finite extensibility are negligible. The original 1D model discussed by Entov & Hinch

(1997) considers viscoelastic contributions from a discrete spectrum of relaxation

times representing a suspension of dumbbells with varying spring constants. However,

experiments (Spiegelberg et al. 1996; Anna & McKinley 2001) and analysis (Clasen

et al. 2006a) show the filament evolution is dominated by the largest relaxation time.

Therefore, a single-mode model is a simple and reasonable approximation.

It is important to emphasize the typical development of CBR analyses (Bazilevsky

et al. 1990; Entov & Hinch 1997; Bousfield et al. 1986; Renardy 1994; Clasen et al.

2006a) assumes a long, unstable filament with zero initial polymer stresses at the

start of the CBR measurement. These assumptions may not accurately represent
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the physical state of a non-Newtonian fluid after an imposed deformation (Anna

& McKinley 2001). Nevertheless, these assumptions simplify the 1D analysis and

are still useful for investigating trends in viscoelastic filament dynamics arising from

various parameters such as Oh,De and S.

We consider the form of the Oldroyd-B constitutive theory that distinguishes the

stress contributions from the Newtonian solvent and the non-Newtonian polymer.

The set of 1D governing equations for mass and momentum and the stress evolution

equations given by the Oldroyd-B model are scaled by Rp, σ, and an inertio-capillary

time scale tc =
√
ρR3

p/σ and yields

(R2)t + (wR2)z = 0 (3.12a)

(wt + wwz)R
2 = −κzR2 + 3OhS(wzR

2)z + ((τ p,zz − τ p,rr)R2)z (3.12b)

τ p,zz +De(τ p,zzt + wτ p,zzz − 2wzτ
p,zz) = 2Oh(1− S)wz (3.12c)

τ p,rr +De(τ p,rrt + wτ p,rrz + wzτ
p,rr) = −Oh(1− S)wz. (3.12d)

Equation (3.12b) is similar to the axial momentum equation for Newtonian flow (2.5)

but includes an extra term to account for contributions from the polymer. As in the

previous chapter (c.f. section 2.2), κ is twice the mean curvature of the filament free

surface

κ =
1

R(1 +R2
z)

1/2
− Rzz

(1 +R2
z)

3/2
. (3.13)

The form of the 1D viscoelastic equations (3.12) are derived by Bechtel et al.

(1988) and are ubiquitous in extensional viscoelastic flow literature (Fontelos & Li

2004; Tembely et al. 2012; Anna & McKinley 2001; Clasen et al. 2006a; Ardekani et al.

2010). The evolution equations for the polymer stresses (3.12c-d) only contain one

convective term. However, Schultz (1987) shows both convective terms are of the same

order with a formal asymptotic expansion. For example, uτ p,zzr should be included
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in the second term on the left in (3.12c). Unfortunately, the missing convective

terms, uτ p,zzr and uτ p,rrr , introduces r as an independent variable and would make

the problem two-dimensional. Thankfully, the analysis of the CBR is very nearly

pure elongation, especially at the midpoint of viscoelastic threads. Hence, the 1D

approximation (Bechtel et al. 1988) may be more suitable here.

The scaled 1D viscoelastic model (3.12) includes three dimensionless parameters

to characterize the contributions of λ, µs and µp: the Deborah number De = λ/tc;

the Ohnesorge number Oh = µ0/
√
ρσR0, a comparison of viscous to inertial forces

similar to a Reynolds number; and S = µs/µ0. A Newtonian limit of the 1D Oldroyd-

B model (3.12) is recovered when De → 0. For healthy saliva in conventional CBR

experiments, De ∼ 10−1 − 102 and Oh ∼ 10−3 − 10−2 (Zussman et al. 2007; Turcanu

et al. 2015; Wagner 2015). Values of S representative of healthy saliva characterized

by shear rheometry (Stokes & Davies 2007) and extensional rheometry (Wagner 2015)

range from ∼ 0.005− 0.66.

We consider the same 1D model as Clasen et al. (2006a) to verify our numerical

approach. The 1D model (3.12) is solved numerically with a pseudospectral approach

incorporating backward Euler temporal integration and a Chebyshev spatial scheme

with N=129 nodes. Each dependent variable is represented by a linear combination

of N polynomials, as shown for R

R(x) =
N∑
n=0

r̂nTn(x), (3.14)

where Tn(x) = cos(nθ) is the nth Chebyshev polynomial of the first kind and is of

degree n for n ≥ 0. Chebyshev polynomials are defined on a domain x = cos(θ) ∈

[−1, 1] where θ ∈ [0, 2π]. The Chebyshev domain x ∈ [−1, 1] may be mapped to

another domain with a simple linear transformation. Equation (3.14) may also be

represented by a sum of N cosine functions with n = N modes
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R(θ) =
N∑
n=0

r̂ncos(nθ). (3.15)

The magnitude of the Chebyshev coefficients, r̂n for R(z) (3.14 - 3.15), indicates

the relative importance of the contribution from the nth mode. More details about

Chebyshev polynomials and spectral methods may be found in references by Trefethen

(2000), Boyd (2001), and Shen et al. (2011).

Our implicit Euler - Chebyshev numerical scheme is the same approach we ap-

ply to model the Newtonian filament dynamics throughout the deformation process

presented later in chapter IV. Despite its lower-order accuracy, an implicit temporal

integration scheme is necessary for modeling the deformation process to overcome

challenges with numerical instabilities (sawtooth instabilities) that develop with a

higher-order explicit temporal scheme such as 4th-order Runge-Kutta. The Cheby-

shev spatial scheme is employed to determine derivatives with spectral accuracy, to

give the flexibility of enforcing non-periodic boundary conditions (c.f. chapter IV),

and to provide finer resolution near the boundaries where sawtooth instabilities orig-

inate. Additional details regarding the numerical methods employed are discussed in

appendix C.

As in Clasen et al. (2006a), the filament is initially a long cylinder with a small

perturbation spanning the axial domain −2π ≤ z ≤ 2π. The initial filament free

surface is symmetric and described by R(z, 0) = 1 + 0.05cos(z/2). We begin with a

quiescent fluid filament such that w(z, 0) = τ p,zz(z, 0) = τ p,rr(z, 0) = 0. We also apply

periodic-like boundary conditions for R(z) and w(z), Rz(−2π, t/tc) = Rz(2π, t/tc) = 0

and w(−2π, t/tc) = w(2π, t/tc) = 0, respectively.

The 1D Oldroyd-B model for the polymer stresses (3.12c-d) contains one z-

derivative of τ pij, indicating only one boundary condition is required for each stress

component. However, this requires knowledge of the fluid deformation history at a

particular location for all times. It is also unclear to which of the two boundaries the

49



boundary condition should be applied for the problem of capillarity-induced filament

dynamics. Insight regarding the appropriate boundary conditions for the polymer

stresses may be developed by considering various Newtonian limits of the 1D model

(3.12) when the fluid contact line is pinned (R = 1 and w = 0 at the plates), as dis-

cussed in chapter IV. However, we summarize our rational here. The 1D Oldroyd-B

model considered here (3.12) contains three Newtonian limits: De → 0, S → 1, and

small deformations. When the fluid is pinned at the boundaries, wz must also be

zero to satisfy the no-slip boundary condition and continuity (3.12a). This implies

τ p,zz = τ p,rr = 0 at the wall. As shown below, τ p,zz = τ p,rr = 0 is a solution to

(3.12c-d) when S → 1 and therefore the correct boundary conditions for the poly-

mer stresses are naturally satisfied. However, τ p,zz and τ p,rr are non-trivial in the

other two Newtonian limits, De→ 0 and small deformations, and therefore may not

naturally satisfy homogeneous Dirchlet boundary conditions. It is desirable to avoid

enforcing special boundary conditions for various limits of the 1D model (3.12). For-

tunately, wz = 0 is naturally satisfied at the plates and therefore we do not prescribe

any boundary conditions on the polymer stresses. We also note that when the fluid

contact angle rather than its contact line is prescribed, as is the case considered in this

chapter, wz must be non-zero at the plates to satisfy (3.12a). Thus, in the Newtonian

limits of (3.12), τ p,zz and τ p,rr at the boundaries must vary with wz in time. Hence,

we also do not enforce boundary conditions on the polymer stresses when the fluid

contact angle is fixed. Several previous studies (Yao et al. 1998; Yildirim & Basaran

2001; Vadillo et al. 2012; Tembely et al. 2012) also do not apply boundary conditions

to the polymer stress evolution equations. In particular, Vadillo et al. (2012) and

Tembely et al. (2012) justify this approach because both studies consider only weakly

viscoelastic fluids (De < 5).

The 1D model (3.12) contains four evolution equations for R,w, τ p,zz and τ p,rr.

The backward Euler temporal integration scheme is implemented by first linearizing
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the evolution equations (3.12). This yields a 4N×4N system of equations at each time

step that is solved iteratively until the solution changes by less than 10−6 between

two iterations. Spatial derivatives are determined spectrally by recurrence relations

applied to the Chebyshev coefficients (Trefethen 2000; Boyd 2001; Shen et al. 2011).

The Chebyshev coefficients are determined by applying a discrete cosine transform to

to each dependent variable, R(z), w(z), τ p,zz(z) and τ p,rr(z), at each time step. The

dimensionless time step is ∆t = 0.005. The spatial and temporal meshes were refined

until changes in R(z) were less than 0.5%. This corresponds to changes in α∗ of less

than 0.001%.

The numerical schemes in Clasen et al. (2006a) (based on the numerical methods

of Eggers & Dupont (1994)) use adaptive spatial and temporal meshes to resolve a

larger range of time and length scales than is typically observed in Newtonian flow

simulations. Clasen et al. (2006a) indicates these adaptive schemes are critical for

investigating the elasto-capillary regime. Therefore, we monitor the quality of our 1D

model (3.12) results to determine when our numerical simulation breaks down since

it does not adaptively adjust the temporal and spatial meshes.

Sawtooth instabilities in the free surface profile R(z) indicate that our numerical

simulation is beginning to fail. These instabilities essentially add high-frequency noise

to R(z) and may be detected by monitoring the growth of Chebyshev coefficients

associated with higher modes. We examine results for two simulations produced by

our numerical scheme to develop a metric for evaluating when the simulation begins

to fail.

Figure 3.1a shows the filament midpoint evolution R/Rp of a viscous viscoelastic

fluid with Oh = 3.16, De = 100 and S = 94.9 determined by our numerical approach

applied to the 1D model (3.12). These parameter values are taken from figures 3 and 4

in Clasen et al. (2006a). The result is plotted with time scaled by an inertio-capillary

time scale to facilitate comparisons with Clasen et al. (2006a) although it is more
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appropriate to consider a viscous time scale for Oh = 3.16. The result predicted by

our numerical scheme, shown in a semilogarithmic plot, reproduces the midfilament

evolution shown in figure 4 of Clasen et al. (2006a), also shown in a semilogarithmic

plot. The initial viscous phase is identified qualitatively as an “inverted parabola.”

The following middle elastic regime when the filament midpoint decays exponentially

appears as a linear decay in the semilogarithmic frame. The transition between the

visco-capillary and elasto-capillary phases occurs between 20 < t/tc < 30.

Free surface profiles R(z) throughout the simulation are shown in figure 3.1b. The

profiles are chosen to demonstrate the filament shapes during the initial viscous phase

and middle elastic regime. The profile at t/tc = 31.6 is specifically selected to further

demonstrate that our numerical scheme reproduces the results shown in figure 3b in

Clasen et al. (2006a). At t/tc = 20, in the visco-capillary regime, R(z) is qualitatively

described by an hourglass shape. At later times in the elasto-capillary regime, axial

variations in R(z) between the two reservoirs decay as shown for t/tc = 31.6 and

t/tc = 80.

Figure 3.1c shows the magnitude of even Chebyshev coefficients for R(z) at times

corresponding to the profiles shown in figure 3.1b. The results are shown in a semilog-

arithmic plot. Odd modes are effectively zero because R(z) is symmetric and therefore

are omitted for clarity. The filament free surface profile is initially resolved by fewer

than 20 modes and r̂n decays rapidly as the mode n increases. The number of non-zero

modes (coefficients) roughly doubles at t/tc = 10 and quadruples at t/tc = 20. Rapid

growth in |r̂n|, particularly for n > N/2, occurs between 20 < t/tc < 30 and then the

spectrum stays roughly constant through the end of the simulation at t/tc = 80. In

general, |r̂n| decays more gradually with increasing n as time increases.

The substantial growth in |r̂n|, specifically for n > N/2, corresponds to the cross-

over between the initial viscous and middle elastic regimes. Despite the large growth

in |r̂n| at higher modes, sawtooth instabilities are not detectable in the free surface
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profiles at t/tc = 31.6 and t/tc = 80. Thus we examine a second example to develop

a criterion to indicate when our numerical scheme becomes problematic.

Figure 3.2a presents the filament midpoint evolution for a viscoelastic filament

with Oh = 3.16, De = 94.9 and S = 0 predicted by the 1D model (3.12). The result

for R/Rp at the midpoint determined by our numerical scheme applied to (3.12) is

presented in a semilogarithmic plot. The dashed line near the end of the simulation

indicates when our numerical approach begins to fail and will be discussed shortly.

The midfilament evolution decays as expected during the early viscous regime but a

region of exponential decay is not observed. Instead, R/Rp passes through a minimum

around t/tc = 13 and then increases, indicating local growth.

Figure 3.2b presents selected free surface profiles throughout the evolution of a

viscoelastic filament with Oh = 3.16, De = 94.9 and S = 0. The profile shown

during the initial viscous phase at t/tc = 9 has an hourglass shape similar to R(z)

at t/tc = 20 in figure 3.1b. Around the end of the initial viscous phase at t/tc = 11

R(z) near the midpoint becomes slightly convex because the filament decays faster

near the reservoirs than at the midpoint. As time increases, a bead forms at the

filament midpoint due to local growth (figure 3.2a) and is shown in detail by R(z) for

t/tc ≥ 14. The sawtooth instabilities in R(z) at t/tc = 14.4 indicates our numerical

scheme is starting to fail.

Figure 3.2c shows the spectrum of |r̂n| for even modes corresponding to the fila-

ment profiles in figure 3.2b. Once again r̂n associated with odd modes are effectively

zero and therefore not shown for clarity. Values of |r̂n| increase with time. For

t/tc ≤ 11 |r̂n| decreases as n increases and the decay becomes more gradual with

time. At t/tc = 14 |r̂n| decreases slightly until n ∼ 80 and then becomes relatively

constant. When sawtooth instabilities are visible in R(z) at t/tc = 14.4 (figure 3.2c),

|r̂n| decreases gradually until n ∼ 45 and then increases.

A comparison of the results shown in figure 3.1 and figure 3.2 demonstrates that

53



our numerical approach applied to the 1D model gives reasonable results when |r̂n|

decreases with increasing n. Sawtooth instabilities are detected from the spectrum

of Chebyshev coefficients when the magnitude of coefficients at higher modes, par-

ticularly n > N/2, are greater than those at lower modes. Therefore we apply a

linear fit to |r̂n| for n > N/2 at each time step and identify problematic regions of

our simulation when the slope of the fit is larger than zero, indicating increasing |r̂n|

with increasing n. We represent these problematic regions in our results by dashed

lines, as shown in the midfilament evolution for t/tc > 12.5 (figure 3.2a).

In the next sections we investigate the validity of our 1D differential Newtonian

analysis (2.7) during the early viscous phase of viscoelastic filament evolution for

various regions of the Oh−De− S space with data generated by the 1D Oldroyd-B

model (3.12).

3.3.4 Characterizing the early viscous regime – high-viscosity (large Oh)

We model the filament dynamics of viscous (Oh = 3.16) viscoelastic fluid threads

with a range of relaxation times (0 ≤ De ≤ 100) and viscous polymer contributions

(0 ≤ S ≤ 1) to evaluate the performance of our 1D Newtonian analysis (2.7) during

the early viscous phase of filament evolution.

Figure 3.3a shows the midfilament evolution R/Rp predicted by the 1D Oldroyd-

B model (3.12) for Oh = 3.16, S = 0.25 and 0 ≤ De ≤ 100 plotted against t/tc.

The results are presented in a semilogarithmic plot. The transition between the

visco-capillary to elasto-capillary phases shifts to earlier times as De increases and

to smaller values of R at the waist. As De→ 0, a Newtonian limit of the 1D model

(3.12), the exponential decay (elasto-capillary regime) becomes difficult to identify.

Figure 3.3b presents the same results as figure 3.3a, but rescales time by λ. In

nearly uniaxial extensional flow (i.e. as in a CBR experiment) λ is the time scale

representing viscoelastic stress growth (Eggers 1997; Rodd et al. 2005). Therefore we
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t/tc = 0
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t/tc = 0 t/tc = 20

t/tc = 31.6

t/tc = 80

(a)

(b)

(c)

t/tc = 20
t/tc = 31.6

t/tc 

Figure 3.1: (a) Dimensionless filament midpoint evolution R/Rp for a viscous vis-
coelastic filament with Oh = 3.16, De = 94.9 and S = 0.25 as a function
of dimensionless time t/tc. The result is shown in a semilogarithmic (base
10) plot to facilitate comparisons with figure 4 in Clasen et al. (2006a);
(b) Dimensionless free surface profiles R(z) at select times throughout
the filament evolution to illustrate the filament shapes during the early
viscous regime and middle elastic phase; (c) Magnitude of even Cheby-
shev coefficients |r̂n| at times corresponding to those shown in (b). Odd
modes are effectively zero because R(z) is symmetric and therefore are
not shown.
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t/tc = 0

t/tc = 14.4

t/tc = 11t/tc = 9

t/tc = 14

t/tc = 0
t/tc = 9 t/tc = 11

t/tc = 14.4

t/tc = 14

(a)

(b)

(c)

t/tc

Figure 3.2: (a) Dimensionless filament midpoint evolution R/Rp for a viscous vis-
coelastic filament with Oh = 3.16, De = 94.9 and S = 0 as a function
of dimensionless time t/tc. The dashed line for t/tc > 14 represents
the results when our numerical scheme begins to fail; (b) Dimensionless
free surface profiles R(z) at select times to illustrate the filament shapes
throughout the filament evolution. Sawtooth instabilities are visible in
R(z) at t/tc = 14.4; (c) Magnitude of even Chebyshev coefficients |r̂n| at
times corresponding to R(z) shown in (b). Odd modes are effectively zero
because R(z) is symmetric and therefore are not shown. When sawtooth
instabilities are visible in R(z) at t/tc = 14.4, |r̂n| gradually decreases un-
til n ∼ 45 and then increases indicating contributions from higher modes
(noise) are greater than those from lower modes.
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expect the transition from the visco-capillary phase to the elasto-capillary regime to

scale with λ. However, the transition from the initial viscous phase to the middle

elastic period also shifts to earlier times as De increases when time is scaled by λ. This

indicates the cross-over time from the visco-capillary regime to the elasto-capillary

regime is a function of multiple parameters including λ.

The blue lines in figure 3.3b represent the rate of exponential thinning predicted

by the original theory (Entov & Hinch 1997) in the elasto-capillary regime. The 1D

model results for the midfilament evolution during the elasto-capillary regime agree

reasonably well with the evolution predicted by (3.11) for the larger De shown here.

However, it is unclear from the 1D model results for De = 1 if the elasto-capillary

regime has been reached. Therefore we cannot definitively validate (or invalidate) the

original theory’s applicability to the elasto-capillary regime for smaller De.

We now turn our attention to characterizing the early viscous regime. The differ-

ential Newtonian analysis (2.7) scaled by Rp, σ and tc is

α∗ = 1 = 6

(
Oh

(3RtRzz −RRzzt)

κzzR2
− (3R2

t −RRtt)

3κzzR2

)
, at Rz = 0. (3.16)

The results for α∗ determined by (3.16) applied to the early viscous regime are

shown in figure 3.4 for viscous viscoelastic filaments (Oh = 3.16, S = 0.25) with

0 ≤ De ≤ 100. The differential method predicts α∗ = 1 in the Newtonian limit

(De → 0), as expected, and indicates µ0 is accurately characterized. Values of α∗

determined by (3.16) for De > 0 are generally overpredicted and deviations increase

with De. The differential method results for α∗ increase sharply from an initial value

of α∗ = 1 for De > 0. The results for De = 1 and De = 10 then decline rapidly,

become relatively constant for a brief period and then decrease sharply again. In

contrast, α∗ for De = 100 decreases gradually before a final rapid decline. Values

of α∗ determined by (3.16) for De > 0 fall below zero (giving unphysical results)
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t/tc
(a) (b)
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De = 100 De = 0
De = 10

De = 100

De = 1

Figure 3.3: Dimensionless filament midpoint evolution R/Rp for Oh = 3.16, S = 0.25
and De = 0, 1, 10, and 100 as a function of time scaled by (a) an inertio-
capillary time t/tc; and (b) the polymer relaxation time t/λ. The results
are shown in a semilogarithmic plot. The blue lines in (b) represent the
exponential decay rate predicted by the original viscoelastic CBR anal-
ysis (3.11) (Entov & Hinch 1997). The early viscous phase corresponds
to the region crudely described as an “inverted” parabola. The middle
elastic phase is identified by the region of exponential thinning that ap-
pears as a linearly decreasing function in the semilogarithmic frame. An
exponentially decaying filament is not observed in the Newtonian limit
(De→ 0).

58



De = 0De = 1
De = 10

De = 100

Figure 3.4: Dimensionless surface tension to viscosity ratios α∗ determined by the
differential method (3.16) for Oh = 3.16, S = 0.25 and De = 0, 1, 10, and
100 plotted with dimensionless time t/tc. The time period shown here
corresponds to the initial viscous regime.

near the end of the initial viscous phase as shown by comparing figures 3.3a and 3.4.

The end of the visco-capillary phase for De = 1 is easier to identify by α∗ < 0 in

figure 3.4 since the region of exponential thinning is difficult to distinguish for the

corresponding curve in 3.3a.

Figure 3.5 shows the dimensionless capillary, viscous solvent, and elastic terms

in the midfilament force balance (3.8) plotted with t/tc for Oh = 3.16, S = 0.25

and 0 ≤ De ≤ 100. The capillary terms are initially the largest terms. The temporal

evolutions of the capillary terms resemble the corresponding results for R/Rp in figure

3.3a because the largest contribution to the capillary term in (3.8) is R. The viscous

solvent terms generally increase rapidly from zero at very early times and then grow

more modestly to a peak value. The maximum values of the viscous solvent terms

shift to earlier times and larger values with increasing De. The elastic terms also

increase from zero but their initial growth lags behind the corresponding viscous

solvent terms. The initial growth rates for the elastic terms also becomes smaller as

De increases. Peak values for the elastic terms also increase and shift to earlier times

as De increases. Maximum values for the viscous solvent terms occur slightly earlier
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than the peak values for the corresponding elastic terms when De > 0.

The evolutions of the elastic terms for De ≤ 1 are qualitatively similar to the

corresponding viscous solvent terms because the viscous contribution from the poly-

mer is stronger than its non-Newtonian contribution near or in the Newtonian limit

De→ 0. The elastic terms are larger than the viscous solvent contributions for small

De because S = 0.25 indicating the viscous polymer contribution to µ0 is larger than

the solvent contribution. For small De, capillary terms remain larger than the viscous

solvent and elastic terms throughout the evolution shown.

The temporal behavior of the viscous solvent and elastic terms becoming increas-

ing dissimilar with increasing De. The elastic contribution increases with De such

that it exceeds the capillary term at intermediate times in the period shown when

De = 100. Additionally, the elastic terms decay at the same rate as R/Rp and the

capillary terms at larger De.

The behavior of the differential method results for α∗ in figure 3.4 for De > 0

may be explained by the evolution of the individual terms in the midfilament force

balance (3.8). The early “bump” observed in values of α∗ (3.16), especially distinct

for De = 1 and De = 10, is related to the lag in growth between the viscous solvent

and elastic terms. Following the initial overshoot, values of α∗ for De > 0 plateau

when the elastic terms grow at a relatively constant rate. Finally, the sharp decrease

in the differential method results leading to unphysical values of α∗ occurs when the

viscous solvent terms decay and are exceeded by the growing elastic terms. At longer

times, capillary and elastic terms dominate in the midfilament force balance (3.8).

Figure 3.6 compares R(z) for De = 0 and De = 100 at specific times corresponding

to features in the differential method results for α∗ and the force terms for De = 100

(figures 3.4 and 3.5, respectively). The filament profiles for De = 0 when t/tc ≤

31 qualitatively resemble hourglasses with increasingly pronounced waists as time

progresses. The filament profile near the midpoint begins to flatten out at longer times
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De = 0
De = 100

De = 0

De = 100

De = 0

De = 100

Figure 3.5: Evolutions of dimensionless (a) capillary −κπR2 + 2πR; (b) viscous sol-
vent 3OhSwzπR

2; and (c) elastic (τ p,zz − τ p,rr)πR2 terms in the mid-
filament force balance (3.8) as functions of dimensionless time t/tc for
Oh = 3.16, S = 0.25 and De = 0, 1, 10, and 100.

(t/tc = 80). The filament profiles for De = 100 also initially resemble hourglasses.

However, as the elastic term grows and the viscous solvent term decays significantly

at the end of the visco-capillary phase, axial variations in R(z) between the reservoirs

decay rapidly. Although not shown, values of α∗ for De > 0 approach zero during the

middle elastic regime because of decreasing axial variations in R(z) due to elasticity.

In particular, the dominant terms in the numerator and denominator in (3.16) are

Rzz and Rzzzz (contained in κzz), respectively. As the free surface profile become

increasingly flat with time, Rzz decays faster than Rzzzz.

We also evaluate the impact of S on the differential method (3.16) for charac-
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(a) (b)

t/tc = 15
t/tc = 15

t/tc = 80 t/tc = 80

Figure 3.6: Dimensionless filament free surface profiles R(z) predicted by the 1D vis-
coelastic model (3.12) for Oh = 3.16, S = 0.25 and (a) De = 0 (a New-
tonian limit with µ = µ0); and (b) De = 100. Profiles are shown for
t/tc = 15, 25, 31, and 80. These specific profiles are selected to match key
features in the results for α∗ and the stresses shown in figure 3.5. The
initial filament evolution for De = 0 is slow compared to the evolution
for De = 100.

terizing the early viscous regime. Figure 3.7a presents the filament midpoint evolu-

tion plotted with t/tc in a semilogarithmic frame for evolving viscoelastic filaments

(Oh = 3.16, De = 94.9) with 0 ≤ S ≤ 1 predicted by the 1D model (3.12). The

transition between the initial viscous phase and middle elastic regime shifts to earlier

times as the viscous solvent contribution decreases (decreasing S). This is similar to

the trend observed in figure 3.3 for increasing De and confirms the transition time

between the initial viscous and middle elastic regimes is not a simple function of λ.

Unlike the results for varying De, the cross-over between the two phases occurs at

larger values of R/Rp at the filament waist as S decreases. This is likely because the

filament evolution (deformation) driven by capillarity is less hindered as the viscous

solvent contribution diminishes and thus enables elastic stresses to grow faster. This

trend in S is consistent with Wagner et al. (2015). Additionally, the filament mid-

points all decay at a similar exponential rate for 0 < S < 1, as expected since De is

fixed. The midfilament evolution for S = 1 does not exhibit a period of exponential

decay but resembles the evolution seen in the Newtonian limit De → 0 (figure 3.3).
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The result for S = 0 is limited to a short period of time because of challenges with

our numerical methods as described in the previous section.

The results for α∗ determined by (3.16) applied to the visco-capillary regime for

0 ≤ S ≤ 1 are shown in figure 3.7b. The differential method (3.16) accurately

predicts α∗ = 1 for S = 1, indicating that τ pij = 0 is a solution to (3.12c-d) when

there is no viscous polymer contribution (µp = 0). This result also indicates S → 1 is

another Newtonian limit of the 1D viscoelastic model (3.12) and therefore the filament

midpoint is not expected to decay exponentially. The case when S → 1 corresponds

to a Newtonian fluid with a shear viscosity µ = µs. The results determined by (3.16)

for S < 1 deviate rapidly from an initial (and expected) value α∗ = 1. The deviations

increase with decreasing S. Following a rapid rise, values of α∗ for 0 < S < 1 are

relatively constant before a sharp decline leading to α∗ < 0. A region of relatively

constant α∗ is not observed in the result for S = 0; instead, the initial rise in α∗ is

followed by a rapid decrease.

Figure 3.8 shows the evolution of the dimensionless capillary, viscous solvent,

and elastic terms in the local force balance at the fluid midpoint (3.8) throughout the

initial viscous regime and into the elasto-capillary phase for Oh = 3.16, De = 100 and

0 ≤ S ≤ 1. Like the results for variable De (figure 3.5), the capillary terms generally

resemble the corresponding midfilament evolutions shown in figure 3.7a and are the

largest terms throughout the initial viscous regime. The viscous solvent terms for

S > 0 exhibit rapid growth at early times before transitioning to a modest growth rate.

The initial (large) growth rate in the viscous solvent terms decreases as the viscous

polymer contribution grows (decreasing S). Like the varying De results (figure 3.5),

the peak values of the viscous solvent terms also shift to earlier times as the polymer

contribution increases. A delay between the initial growth in the viscous solvent

terms and the corresponding elastic terms is observed for 0 < S < 1. The initial

growth rate in the elastic terms decreases as S increases. The elastic contributions
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for S = 0.75 and S = 0.95 in figure 3.8c do not show a clear maximum due to the

limited time period shown. However the growth rates for these two cases decreases

near the end of the period considered and suggests the elastic terms are approaching

local maximums. The overall growth in the elastic terms decrease with growing S.

Maximum values of the viscous solvent terms also occur before the corresponding

elastic terms approach their peak values.

Figure 3.8 confirms τ pij = 0 when S → 1. Additionally, the viscous solvent and

capillary terms resemble the corresponding results in the Newtonian limit De → 0

(figure 3.4). Therefore, the differential method (3.16) accurately determines α∗ for

S → 1. The initial deviations from the expected value α∗ = 1 for S < 1 are also

related to the delay in growth between the viscous solvent and elastic contributions.

The subsequent plateau in α∗ for 0 < S < 1 is due to relatively constant growth in

the elastic terms. For S = 0 there is no viscous solvent contribution and no relatively

constant growth rate is observed in the early evolution of the elastic contributions.

Therefore, deviations from the expected value α∗ are related to the onset of non-

linear elastic effects before the initial unsteady effects in the polymer contribution

decay. The rapid decrease in the differential method results leading to α∗ < 0 is

generally related to the decay in the viscous solvent terms and growth of the elastic

contributions resulting in the balance of elastic and capillary terms at longer times.

3.3.5 Characterizing the early viscous regime – low-viscosity (small Oh)

We also evaluate the accuracy of the differential analysis (3.16) in the initial phase

of filament evolution for low-viscosity viscoelastic fluids. We consider values of De, S

and Oh representative of healthy saliva. As in the previous section, we investigate the

impact of De and S on the accuracy of (3.16) in the low Oh regime. Our simulations

for Oh = 0.002, 0 ≤ De ≤ 100 and 0 ≤ S ≤ 1 are limited to a short initial period

because the numerical simulations in this parameter space break down when R/Rp
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Figure 3.7: Dimensionless (a) midfilament evolution R/Rp; and (b) differential
method results for α∗ (3.16) for S = 0, 0.25, 0.75, 0.95 and 1 (Oh =
3.16, De = 94.9). The results are plotted as a function of dimension-
less time t/tc throughout the initial viscous phase.

at the waist is approximately half its initial value. Increasing the spatial and/or

temporal resolution do not delay the numerical instabilities to later times. Since

we are primarily interested in evaluating the performance of the differential analysis

(3.16) in the initial period, we proceed to analyze the results generated by the 1D

model (3.12) before our numerical scheme breaks down.

The 1D model results for Oh = 0.002, S = 0.98 and 0 ≤ De ≤ 100 are summa-

rized in figure 3.9 where the filament midpoint evolutions R/Rp and results for α∗

determined by (3.16) are plotted with dimensionless time t/tc. The predicted curves

for R/Rp and α∗ are indistinguishable indicating the filament dynamics in the low

Oh regime are independent of the De range considered here. The curves for R/Rp in

figure 3.9a are qualitatively similar to those observed during the early viscous regime

for larger Oh (figure 3.3). However, the filament midpoints decay faster at low Oh

(R/Rp = 0.55 for low Oh and R/Rp = 0.85 for Oh = 3.16, S = 0.25, De = 100 at

t/tc = 10). The filament midpoint evolutions for low Oh appear to slow near the

end of the period shown, resembling the transition to the elasto-capillary regime for
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S = 1S = 0

S = 1

S = 0

S = 0

S = 1

Figure 3.8: Evolutions of dimensionless (a) capillary −κπR2 + 2πR; (b) viscous sol-
vent 3OhSwzπR

2; and (c) elastic (τ p,zz − τ p,rr)πR2 terms in the mid-
filament force balance (3.8) as functions of dimensionless time t/tc for
Oh = 3.16, De = 100 and S = 0, 0.25, 0.75, 0.95 and 1. Dashed lines
near the end of the results for S = 0 and S = 0.95 indicate regions when
our implicit Euler-Chebyshev numerical scheme is beginning to fail. The
elastic contribution is zero in the Newtonian limit S → 1. The viscous
solvent term is zero for S = 0.
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Figure 3.9: Dimensionless (a) midfilament evolution R/Rp; and (b) differential
method results for α∗ (3.16) for Oh = 0.002, S = 0.98 and De = 0, 1, 10,
and 100. The results are plotted as a function of dimensionless time t/tc.
The results for varying De are indistinguishable from the Newtonian limit
De→ 0.

De > 0 and high Oh. However, since this result is independent of De, this transition

is most likely due to inertial effects in this nearly inviscid regime.

The differential method results in figure 3.9b deviate from α∗ = 1 by less than

0.1% before a singularity occurs around t/tc = 10. Values of α∗ determined by (3.16)

are also accurately predicted to within 0.1% between discontinuities.

Figure 3.10 shows the dimensionless time-varying capillary, viscous solvent, and

elastic terms in the local force balance at the filament waist (3.8) for Oh = 0.002, S =

0.98 and 0 ≤ De ≤ 100. The capillary and viscous solvent terms for all De are

indistinguishable. The effects of De are only discernible in the results for the elastic

contributions. The early growth rate in the elastic terms generally follows the same

trend of decreasing with increasing De as observed for high-viscosity filaments (fig-

ure 3.5). However, elastic terms in addition to viscous solvent terms are relatively

insignificant compared with the capillary contributions throughout the period shown.

The cause for the discontinuities observed in α∗ is related to the temporal evolu-
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De = 0

De = 100

Figure 3.10: Evolutions of dimensionless (a) capillary −κπR2 + 2πR; (b) viscous sol-
vent 3OhSwzπR

2; and (c) elastic (τ p,zz − τ p,rr)πR2 terms in the mid-
filament force balance (3.8) as functions of dimensionless time t/tc for
Oh = 0.002, S = 0.98 and De = 0, 1, 10, and 100. Capillary and vis-
cous solvent contributions are relatively insensitive to changes in De.
The effect of varying De is only obvious in the relatively small elastic
contributions.
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Figure 3.11: Dimensionless filament free surface profiles R(z) for Oh = 0.002, S =
0.98, and De = 0 at t/tc = 4, 8, 9, 10.2, 11, and 11.2 corresponding to
features in the differential method results for α∗ shown in figure 3.9.

tion of R(z) and consequently κzz at the midpoint. Figure 3.11 shows R(z) for the

Newtonian limit (De → 0) at several times throughout the evolution. The shape

of the filament free surface for t/tc < 9 qualitatively resembles an hourglass with

an increasingly pronounced waist as t/tc increases. For t/tc ≥ 9, the filament waist

becomes less distinct as R(z) near the midpoint begins to flatten out. By t/tc = 10.2,

R(z) may essentially be represented as a straight line from −π/2 < z < π/2 and

thus κzz = 0. The value of κzz changes sign due to the formation of a large bead in

the filament at t/tc > 11. The bead develops due to two pinch points forming near

the reservoirs. The bead becomes more distinct as R at the pinch points continues

to decrease. The filament midpoint also decreases (also seen figure 3.9a) as the bead

becomes more pronounced. This is different from bead formation due to growth at

the midpoint for more viscous viscoelastic fluids (see figure 3 in Bhat et al. (2010)

and figure 3.1a).

Figure 3.12 presents the 1D model results for Oh = 0.002, De = 100, and 0 ≤ S ≤

1. The results for the midfilament evolution and values of α∗ determined by (3.16)

are very similar to the results for varying De (figure 3.9). The 1D model for low Oh

shows slightly more sensitivity to varying S (compared to variable De), best seen by
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Figure 3.12: Dimensionless (a) midfilament evolution R/Rp; and (b) differential
method results for α∗ (3.16) for Oh = 0.002, De = 100 and S =
0, 0.25, 0.75, 0.98, and 1. The results are plotted as a function of di-
mensionless time t/tc. The results for varying S are generally indistin-
guishable from the Newtonian limit S → 1.

the separation of the differential method results for α∗ just before t/tc = 10. Like the

variable De results, values of α∗ determined by (3.16) for 0 ≤ S ≤ 1 deviate from

the expected value α∗ = 1 by less than 0.1% for t/tc < 9 and after the discontinuity

around t/tc = 10. Deviations from unity are smallest for S → 1 (a Newtonian limit).

The discontinuity also occurs due to the formation of a bead (from pinching near the

reservoirs).

The dimensionless time-varying capillary, viscous solvent, and elastic terms in

the midfilament force balance (3.8) for Oh = 0.002, De = 100 and 0 ≤ S ≤ 1 are

shown in figure 3.13. The spike in the results at the end of the period shown is

related to the failure of our numerical scheme. The capillary terms remain the largest

contribution of the three terms considered. Variations in S are not discernible in

the capillary contributions but more obvious in the viscous solvent and elastic terms.

Unlike the results for high Oh (figure 3.8), peak values in the viscous solvent terms

do not shift to earlier times as S decreases. However, the overall viscous solvent and
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elastic contributions do decrease and increase, respectively, as the viscous polymer

contribution increases (decreasing S). These are consistent with the trends observed

for high Oh. Even still, the viscous solvent and elastic contributions remain relatively

inconsequential compared with the capillary terms.

3.3.6 Discussion

We investigate the impact of viscoelasticity in high- and low-viscosity filament

dynamics with a single-mode 1D Oldroyd-B model to evaluate the performance of

our 1D differential analysis (2.7) during the early viscous phase of non-Newtonian

filament evolution. Figures 3.4, 3.7b, 3.9b and 3.12b show the differential method

(3.16) accurately predicts α∗ = 1, and therefore µ0, in the Newtonian limits of the 1D

viscoelastic model (3.12), De → 0 or S → 1. Furthermore, the differential method

(3.16) initially predicts α∗ = 1 for De > 0 and S < 1 indicating that µ0 is accurately

characterized in the limit of small deformations, another Newtonian limit.

The filament dynamics and consequently the differential method results for α∗

are sensitive to variations in the polymer relaxation time (De) and viscous polymer

contribution (S) for high-viscosity viscoelastic filaments (figures 3.3, 3.4, and 3.7). In

particular, deviations from the expected value α∗ = 1 grow with increasing viscoelastic

effects such as increasing De and decreasing S. The deviations in α∗ from unity for

De > 0 and S < 1 are related to the initial elastic contribution relative to the viscous

solvent contribution. At early times in the viscous regime for De > 0 or S < 1, the

viscous solvent terms grow faster than the elastic terms and lead to overpredicted

values of α∗ determined by (3.16). The initial elastic growth rate decreases with

increasing De and thus the early plateaus in the differential method results shift

slightly to later times when De increases. In comparison, the initial elastic growth

rate increases as S declines and therefore shifts the start of the plateau to earlier

times as viscous polymer contributions increase. For both De and S, values of α∗
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S = 1

S = 0

S = 1

S = 0

Figure 3.13: Evolutions of dimensionless (a) capillary −κπR2 + 2πR; (b) viscous sol-
vent 3OhSwzπR

2; and (c) elastic (τ p,zz − τ p,rr)πR2 terms in the mid-
filament force balance (3.8) as functions of dimensionless time t/tc for
Oh = 0.002, De = 100 and S = 0, 0.25, 0.75, 0.98 and 1. Capillary terms
are relatively insensitive to changes in S. Viscous solvent terms grow
and elastic terms decrease with increasing S. However, both viscous
solvent and elastic terms are negligible compared with capillary terms.
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determined by (3.16) are relatively constant when the elastic terms grow at a relatively

steady rate after the initial unsteady effects decay. The differential method results

decline sharply and become unphysical once the viscous solvent terms decay and the

elastic terms grow to balance the capillary terms. Although the differential method

results for varying De and S are similar, the effect of De is distinguishable by a

sharp rise and decline in α∗ observed at early times during the visco-capillary phase,

particularly for smaller De.

The same trends in the capillary, viscous solvent, and elastic terms are generally

observed in the low-viscosity results (figures 3.10 and 3.13) when De and S are var-

ied. However, the viscous solvent and elastic contributions are relatively insignificant

compared to the capillary term in this nearly inviscid regime. Therefore, the filament

dynamics and differential method results for α∗ are also relatively insensitive to De

and S (figures 3.9 and 3.12). Values of α∗ (3.16) are accurately predicted to within

0.1%, implying µ0 is accurately characterized even after the formation of a bead at

later times. However, this also implies no information regarding the viscoelastic na-

ture (or lack thereof) of the filament may be discerned from the differential method

(3.16) applied to the early viscous phase for nearly inviscid fluids.

Viscosity, the polymer relaxation time, and the viscous polymer contribution (Oh,

De, and S, respectively) all affect the filament dynamics, specifically the initial growth

in the elastic terms. Hence, α∗ determined by the differential analysis (3.16) during

the early viscous phase cannot be expected to scale according to a single parameter.

Therefore, no universal curve for α∗ is expected and a family of curves is beyond the

scope of this study.

3.4 Conclusions

Saliva’s non-Newtonian behavior is attributed to its surface active and protein

content. Therefore we have investigated the role of surfactants and viscoelasticity
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in 1D filament dynamics to evaluate the performance of the 1D differential method

developed in chapter II for characterizing non-Newtonian fluids. Our simple experi-

ments with a soap-and-water mixture indicate surfactants do not significantly improve

filament forming capabilities in low-viscosity fluids like saliva. Saliva’s surface active

components do contribute to biofilms that perform protective functions in the oral

cavity. However, the surface rheology of saliva is beyond the scope of this work.

We have studied 1D high- and low-viscosity viscoelastic filament dynamics with

a 1D Oldroyd-B model and the typical problem formulation for the development of

CBR analyses. Specifically, we have assumed a long, unstable fluid filament with

zero initial polymer stresses. We apply the 1D differential analysis (3.16) to the early

viscous regime predicted by the 1D model (3.12) because the established method for

determining the polymer relaxation time (3.11) works well.

The differential method results suggest additional material parameters beyond the

commonly characterized polymer relaxation time may be measured from the early evo-

lution of a viscoelastic filament. Our results show the differential method accurately

characterizes µ0 in the Newtonian limits of the 1D model (3.12) (De → 0, S → 1,

and small deformations) for high- and low-viscosity filaments.

Values of α∗ determined by (3.16) are overpredicted when De > 0 and S < 1 for

high-viscosity viscoelastic filaments. The deviations are related to slow and unsteady

initial growth in the elastic contribution at early times in the viscous phase. The

differential method results when De > 0 and S < 1 plateau at a value α∗ > 1

when relatively constant growth in the elastic contributions is observed. The value

of α∗ during the plateau is sensitive to variations in De and S and may be useful for

characterizing the individual parameters.

The relationships between the initial elastic behavior with De and S are also gen-

erally true for low-viscosity filaments. However, the elastic and viscous solvent contri-

butions for the low Oh cases considered here are 3-4 orders of magnitude smaller than
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the capillary contributions. Therefore, the filament dynamics at Oh = 0.002, De > 0

and S < 1 are not distinguishable from a nearly inviscid Newtonian fluid. Hence, the

differential method results are also insensitive to non-zero viscoelastic effects.

We recommend characterizing µ0 from the differential methods results for α∗ at

the start of the filament evolution when deformations are small. Furthermore, the

sensitivity of the differential method results to Oh,De, and S, suggests the effects of

De and S may be distinguishable, particularly for high-viscosity filaments. Therefore,

future work should map the performance of the differential method (3.16) within the

Oh−De−S space to facilitate multiple parameter characterizations from the evolution

of a viscoelastic filament during the early viscous phase.

It is important to re-emphasize the viscoelastic filament dynamics studied here

are based on slender filaments with zero initial polymer stresses. This assumptions

simplifies the 1D viscoelastic analysis, enabling trends in the filament evolution caused

by varying viscoelastic parameters to be determined. However, this assumption may

not accurately represent physical viscoelastic filaments after an imposed deformation.

Therefore we investigate viscoelastic filament dynamics during deformation in the

next chapter.
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CHAPTER IV

Expanding the CBR Method

4.1 Introduction

The 1D CBR analyses presented by Entov & Hinch (1997) and in the previous

two chapters are based on long, slender fluid filaments where the initial stresses are

assumed to be negligible. This assumption does not affect Newtonian fluids where the

material properties are independent of the deformation history, although the filament

shape at the end of stretch (start of conventional CBR measurement) depends on the

deformation history as capillarity acts before the stretching is finished. However, the

assumption of zero stresses at the end of the stretching process is problematic for

non-Newtonian filaments where the extra stress is nonlinearly related to the strain-

rate. Anna & McKinley (2001) shows non-zero initial conditions for the polymer

stresses at the start of the conventional CBR measurement regime is important for

accurately modeling the midfilament evolution of a viscoelastic fluid. Additionally,

the numerical and experimental results in Anna & McKinley (2001) show the polymer

stresses may become significant during the initial deformation such that the early

viscous dominated phase is past before the plates come to rest. The initial viscous

phase is therefore not observed during the standard CBR measurement regime and

thus difficult to characterize.

In our preliminary CBR experiments with saliva, we observe the presence (or
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absence) of an initial viscous regime after stretching is affected by small variations

in the imposed deformation. Figure 4.1 shows saliva midfilament evolutions for two

different imposed strains, Lf/L0 = 2.66 and Lf/L0 = 2.33, in a semilogarithmic

frame. Results are shown for the typical CBR measurement regime where t = 0

corresponds to the end of stretch and therefore ln(R/Rp) is initially non-zero. Prior

to the stretching process, each saliva sample is constrained between two circular plates

(radius Rp = 1 mm) separated by a small gap L0 = 0.75 to form a squat cylinder

with an initial aspect ratio Λ0 = L0/Rp. Each strain is imposed in 0.25 s. An initial

region of rapid decay characteristic of the early viscous regime is absent in the saliva

midfilament evolution for the larger strain Lf/L0 = 2.66. This may be due to the

limited recording rate of the imaging set-up (60 frames/s). However, the exponential

decay indicative of the elasto-capillary regime is observed for approximately 35 ms

after the plates come to rest at t = 0. In contrast, a long viscous regime is observed for

107 s followed by a short phase of exponential decay (< 2 s) when the imposed strain is

reduced to Lf/L0 = 2.33. These preliminary results indicate the elastic stress growth

(and thus the onset of the elastic phase) may be controlled by varying the imposed

strain. Delaying the onset of the elastic phase will enable measurements during

an early viscous regime. This may be particularly useful for facilitating multiple

parameter characterization from a single sample and is therefore one way of expanding

the measurement capabilities of the traditional CBR implementation.

In this chapter we investigate methods to extend the measurement range of tra-

ditional capillary break-up rheometry. In particular, we study 1D filament dynamics

with a 1D Oldroyd-B model to evaluate the performance of the differential analysis

(2.7) during the deformation process. We consider cases when the fluid sample is

initially at rest and therefore zero polymer stresses are an appropriate initial condi-

tion. We first consider a deformation history similar to the approximate step-strain

imposed in conventional CBR set-ups. We also model the filament dynamics due to
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Figure 4.1: Dimensionless filament midpoint evolutions R/Rp for saliva filaments af-
ter imposed strains of Lf/L0 = 2.33 and Lf/L0 = 2.66 (inset). The
results are shown as a function of dimensional time t in a semilogarithmic
plot. An initial viscous regime is difficult to observe from the midfilament
evolution for Lf/L0 = 2.66, however, the following middle elastic regime
is easily identified by the exponential decay in R/Rp for 35 ms. A sig-
nificantly longer (107 s) initial viscous regime is observed when a smaller
strain Lf/L0 = 2.33 is imposed. However, the period of exponential decay
in R/Rp is shorter for Lf/L0 = 2.33 (< 2 s) than Lf/L0 = 2.66.

oscillating boundary motion to investigate a deformation profile that avoids filament

break-up. Low-viscosity fluids (µ < 70 mPa·s) are currently difficult to characterize

with a standard CBR set-up because the filament ruptures before the plates come to

rest (Rodd et al. 2005). Thus, a deformation history that avoids break-up would be

advantageous for extending the viscosity range of traditional CBR.

4.2 1D Model and Simulation

We model various deformation histories imposed on a viscoelastic filament with a

single-mode (single relaxation time) 1D Oldroyd-B constitutive model to evaluate the

performance of the differential Newtonian analysis (2.7) in the early regime before

the onset of elastic effects and finite extensibility. This is the same model considered

in chapter III and also considered by Tembely et al. (2012) to model stretching for

a weakly elastic low-viscosity fluid. The 1D model scaled by the plate radius Rp,
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the surface tension σ and an inertio-capillary time tc =
√
ρR3

p/σ where ρ is the fluid

density, are repeated here for convenience

(R2)t + (wR2)z = 0 (4.1a)

(wt + wwz)R
2 = −κzR2 + 3OhS(wzR

2)z + ((τ p,zz − τ p,rr)R2)z (4.1b)

τ p,zz +De(τ p,zzt + wτ p,zzz − 2wzτ
p,zz) = 2Oh(1− S)wz (4.1c)

τ p,rr +De(τ p,rrt + wτ p,rrz + wzτ
p,rr) = −Oh(1− S)wz (4.1d)

κ =
1

R(1 +R2
z)

1/2
− Rzz

(1 +R2
z)

3/2
, (4.1e)

where κ is twice the mean curvature of the filament free surface R(z). The scaled

1D viscoelastic model (4.1) contains three dimensionless parameters, the Deborah

number De = λ/tc, the Ohnesorge number Oh = µ0/
√
ρσRp, and S = µs/µ0, to

characterize the contributions of the polymer relaxation time λ, the solvent viscosity

µs, and the polymer viscosity µp. We note here that another time scale, such as the

average strain-rate or the stretching time ts may be more appropriate for studying

filament dynamics driven by plate motion.

The 1D viscoelastic model (4.1) is solved by a pseudospectral approach consisting

of an implicit backward Euler temporal integration scheme and a Chebyshev spa-

tial mesh also employed in chapter III. In addition, we implement the arbitrary

Lagrangian-Eulerian (ALE) technique to model the time-dependent length L(t/ts) of

the spatial domain. The ALE technique enables the spatial nodes to move with a ve-

locity vn proportional to the prescribed plate velocity Vp(t/ts). All partial derivatives

in time are then expressed as ∂
∂t

= d
dt
− vn ∂

∂z
(Donea et al. 1982; Vadillo et al. 2012).

The filament is initially a static cylinder spanning the axial domain −L(0)/2 ≤

z ≤ L(0)/2 and is described by R(z, 0) = 1 and w(z, 0) = τ p,zz(z, 0) = τ p,rr(z, 0) = 0.

Unlike the 1D model considered in chapter III, the filament is pinned at the boundaries
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such that R(−L/2, t/ts) = R(−L/2, t/ts) = 1. Dirchlet boundary conditions also

apply to w such that w(−L/2, t/ts) = −Vp(t/ts) and w(−L/2, t/ts) = Vp(t/ts). The

Chebyshev spatial scheme is particularly advantageous here for enforcing these non-

periodic boundary conditions.

Determining the appropriate boundary conditions to impose on τ p,zz and τ p,rr

remains a challenge for the 1D viscoelastic model (4.1). As discussed in chapter III,

boundary conditions for τ p,zz and τ p,rr require knowledge of the fluid deformation his-

tory at all times. Therefore, we examine the various Newtonian limits of (4.1) where

we understand the behavior of τ pij to inform our choice of boundary conditions. The

1D viscoelastic model (4.1) contains several Newtonian limits: S → 1 corresponding

to a fluid with µ = µs, De→ 0 corresponding to a fluid with viscosity µ = µs+µp, and

small deformations. When the fluid is pinned (R = 1 at the boundaries), the no-slip

condition requires wz = 0 to satisfy the no-slip boundary condition and continuity

(4.1a). For De→ 0 and small deformations, (4.1c-d) reduces to τ p,zz = 2Oh(1−S)wz

and τ p,rr = −Oh(1 − S)wz and therefore τ p,zz = 0 and τ p,rr = 0 should be applied

at the boundaries to satisfy (4.1a). For S → 1, τ p,zz = 0 and τ p,rr = 0 are solutions

to (4.1c-d) (figures 3.8 and 3.12) and therefore naturally satisfy the no-slip condition

and (4.1a). We seek a general approach to the boundary conditions for the polymer

stresses rather than enforcing specific boundary conditions for individual limits of

the 1D viscoelastic model (4.1). Fortunately, wz = 0 is naturally satisfied at the

plates. Therefore, we do not apply boundary conditions to the polymer stresses be-

cause τ p,zz = 0 and τ p,rr = 0 are also naturally satisfied at the plates and gives the

correct solutions for all Newtonian limits of (4.1).

The procedure for solving the 1D model (4.1) at every time step is the same

as described in section 3.3.3 with an additional step to determine the velocities at

every node. A smaller dimensionless time step (typically ∆t = 0.0005) is required to

converge due to the transient boundary motion. However, the spatial mesh remains
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the same as in chapter III (N = 129 nodes corresponding to n = N modes). The

spatial and temporal mesh are refined until changes in R(z) are less than 0.5%.

As in chapter III, the quality of the results generated by our numerical scheme

applied to (4.1) is monitored through the temporal evolution of r̂n, the Chebyshev

coefficients for R(z). In particular, we track the growth of |r̂n| in time and with

increasing n. The simulation is considered to be failing when |r̂n| increases at large

n.

We first model low-viscosity viscoelastic filament evolution driven by an approxi-

mate axial step-strain to compare the results determined by our numerical approach

applied to (4.1) with the experimental and 1D model results presented in Tembely

et al. (2012). Symmetry about the filament waist (where Rz = 0) is enforced by ne-

glecting gravity and moving the top and bottom plates apart with equal but opposite

piecewise continuous velocities given by

Vp

(
t

ts

)
=


(Lf−L0)

2ts

(
1− cos

(
2πt
ts

))
, 0 < t/ts < 1

0, t/ts > 1
(4.2)

where ts is the stretching time. Equation (4.2) corresponds to a piecewise continuous

time-varying plate separation length (and thus the piecewise continuous time-varying

length of the spatial domain) given by

L

(
t

ts

)
=


(Lf−L0)t

ts
− (Lf−L0)

2π
sin
(

2πt
ts

)
+ L0, 0 < t/ts < 1

Lf , t/ts > 1
(4.3)

where the initial and final plate separations are L0 and Lf , respectively, resulting in

an imposed strain Lf/L0. The velocity profile (4.2) is qualitatively similar to the one

used in Tembely et al. (2012) and is specifically constructed to gradually accelerate

and decelerate at the beginning and end of the stretching process. Additionally, (4.3)

is similar to the piston position profile modeled by a hyperbolic tangent function in
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Tembely et al. (2012). The plate velocity and separation length profiles are shown in

figure 4.2.

0.00 0.25 0.50 0.75 1.00

t/ts
(a)

0

Vmax

V p
(t/

t s
)

0.00 0.25 0.50 0.75 1.00

t/ts
(b)

L0

Lf

L(
t/t

s)

Figure 4.2: (a) Dimensionless velocity Vp (4.2) applied at the boundaries to model an
approximate step-strain; and (b) the corresponding dimensionless spatial
domain length L (4.3) plotted with dimensionless time t/ts. The maxi-
mum velocity Vmax is determined by the initial and final plate separations,
L0 and Lf , respectively, and the stretching time ts

We model the same fluid investigated in Tembely et al. (2012), a weakly elastic low-

viscosity solution of monodisperse polystyrene (PS110) at 2.5 weight percent dissolved

in Newtonian diethyl phthalate (DEP). The dimensionless parameters for this fluid

are Oh = 0.2, De = 0.47 and S = 0.44. We match the stretching time, initial aspect

ratio, and imposed strain (ts = 5.4 ms, Λ0 = 1, Lf/L0 = 2.3, respectively, where

Rp = 0.6 mm) used in the experiments and 1D modeling in Tembely et al. (2012). We

apply our piecewise continuous velocity profile (4.2) to the boundaries. Additionally,

we consider two initial free surface profiles, R(z, 0) = 1 and R(z, 0) = 1− cos(πz/L0),

corresponding to an initially cylindrical fluid sample and a cylindrical sample with

a 5% perturbation at the midpoint, respectively. The latter profile is similar to

the nearly cylindrical fluid sample with a slighty concave profile prescribed in the

experiments and 1D model in Tembely et al. (2012). It is important to note the

exact initial condition for R prescribed by Tembely et al. (2012) is not given. It is

also unclear if the velocity profile in Tembely et al. (2012), described by a hyperbolic
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trigonometric function, is terminated at the cessation of stretch like our piecewise

continuous description (4.2) or if the velocities are so small the plate movement is

imperceptible for t > ts. This may affect the 1D model results at longer times after

stretch.

The dimensional midfilament diameter evolutions predicted by our implicit Euler-

Chebyshev numerical scheme applied to the 1D Oldroyd-B model (4.1) for initially

cylindrical and nearly cylindrical R profiles are shown in figure 4.3a. Dimensional

results are shown to facilitate comparisons with experimental and 1D model results

for the same fluid in Tembely et al. (2012) (figure 4.3b). The 1D Oldroyd-B model

(4.1) in Tembely et al. (2012) is solved numerically by a commercial finite element

package (COMSOL). The midfilament evolutions predicted by our numerical scheme

applied to (4.1) are comparable to the experimental and 1D model results in Tem-

bely et al. (2012) only during the stretching process. At the cessation of stretching,

R/Rp for the initially cylindrical and nearly cylindrical R profiles are 6% larger and

7% smaller, respectively, than that observed experimentally and numerically in Tem-

bely et al. (2012). These discrepancies are likely due to small differences between

the initial conditions and prescribed boundary velocity profile. After the stretching

process, the decays in R/Rp predicted by our numerical method applied to (4.1) for

both initial conditions are significantly smaller than the experiments and 1D model

results of Tembely et al. (2012), particularly for the initially cylindrical fluid sample.

Large differences are observed between our 1D model results for each initial filament

configuration after stretch. This suggests the 1D model (4.1) solved by our numerical

approach is fairly sensitive to small changes in the initial condition. Additionally,

when a nearly cylindrical initial condition for R is considered, like Tembely et al.

(2012), our 1D model results for R/Rp decay faster and is more realistic. This in-

dicates the initial condition must be carefully characterized to improve the accuracy

of the 1D modeling. We note the 1D model results in Tembely et al. (2012) also
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do not adequately match the experimental results after stretching and suggests a

single-mode 1D Oldroyd-B model may not accurately describe the filament evolution

at longer times after stretch.

The comparison with Tembely et al. (2012) suggest our numerical method applied

to (4.1) correctly models the filament dynamics during the initial stretching process

but breaks down at longer times. We observed similar difficulties in chapter III for the

low Oh simulations. This is an indication that our numerical scheme is not robust

for low Oh regimes, especially when elastic effects become important. This model

break down is a matter of continuing research. Our preliminary efforts (not shown)

indicate the prescribed boundary motion (and its piecewise nature) and imposed

strains in addition to the initial conditions (figure 4.3a) may affect the accuracy

of the 1D model (4.1) at longer times after stretch. Further investigations must

also consider the challenges associated with the stress boundary conditions and may

require modifications to our numerical approach.

We proceed to investigate viscoelastic filament evolution throughout the stretching

process since we have shown our numerical scheme applied to (4.1) works well in this

regime. We model the fluid dynamics driven by two different plate motions to evaluate

the performance of our 1D differential analysis (2.7) during the deformation process.
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Figure 4.3: Dimensional midfilament diameter evolution during and after an approxi-
mate axial step-strain for a low-viscosity weakly elastic solution (2.5 wt.%
PS110 in DEP, Oh = 0.2, De = 0.47, S = 0.44) (a) predicted by our im-
plicit Euler-Chebyshev numerical scheme applied to the 1D Oldroyd-B
model (4.1) when two different initial fluid sample configurations are con-
sidered: a cylindrical sample ( ) and a nearly cylindrical sample ( ); and
(b) experimental (�) and 1D Oldroyd-B model (4.1) ( ) results in Tembely
et al. (2012). Vertical lines in (a) and (b) indicate the end of stretching.
The implicit Euler-Chebyshev scheme applied to (4.1) correctly models
the stretching process but R/Rp does not decay at longer times.

4.3 Approximate Axial Step-strain

We first investigate the impact of varying De and S on viscoelastic filament evo-

lution throughout an approximate step-strain. We select values of L0 = 0.733 and

Lf = 2.6 to match or produce comparable initial and final aspect ratios, Λ0 = L0/Rp

and Λf = Lf/Rp, respectively, as those of our Newtonian silicone oil experiments
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(c.f. chapter II). Yao & McKinley (1998) shows radial variations in τ p,zz become

increasingly important when Λ0 decreases below unity. However, the initial aspect

ratio varies from 0.71 ≤ Λ0 ≤ 1 in previous investigations (Kolte & Szabo 1999; Anna

& McKinley 2001; Tembely et al. 2012; Vadillo et al. 2012).

The prescribed stretching time is ts = 4 ms. For context, the stretching process

in the Newtonian silicone oil experiments (c.f. chapter II) varies from 30 - 50 ms and

is similar to other CBR studies (Rodd et al. 2005; Anna & McKinley 2001; Wagner

2015). The stretching time in Tembely et al. (2012), ts = 5.4 ms, is considerably

faster than most CBR studies because the fluid sample’s viscous time scale must be

larger than the stretching time to avoid break-up before the end of stretch (Rodd

et al. 2005). Thus, ts must be much smaller for low-viscosity fluids than for the

higher-viscosity fluids considered in our Newtonian experiments in chapter II and

previous studies (Rodd et al. 2005; Anna & McKinley 2001; Wagner 2015).

The differential Newtonian analysis (2.7) scaled by tc, Rp, and σ is

α∗ = 1 = 6

(
Oh

(3RtRzz −RRzzt)

κzzR2
− (3R2

t −RRtt)

3κzzR2

)
, at Rz = 0. (4.4)

Figure 4.4a shows the dimensionless midfilament evolution R/Rp predicted by

the 1D viscoelastic model (4.1) throughout the stretching process for Oh = 0.2 with

varying De and S. The results are presented as functions of t/ts in a semilogarithmic

plot. Values for R/Rp at S = 0.98 for De = 1 and De = 100 are indistinguishable

throughout the stretching process. The decay in R/Rp for both cases at S = 0.98

generally resembles the inverted shape of L(t/ts) in figure 4.2. The initial evolution

for S = 0.25 and De = 100 is very similar to the results for S = 0.98 but diverges

and decays at a faster rate around t/ts = 0.5. This deviation in R/Rp observed

for S = 0.25 suggests elastic contributions are becoming significant and altering the

filament evolution that is otherwise driven by the external forcing at the boundaries.

The differential method results for α∗ (4.4) plotted with t/ts for Oh = 0.2 with
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varying De and S are shown in figure 4.4b. All results are generally noisy at the

start of stretch due to the initial cylindrical filament profile and thus small κzz. Prior

to the end of stretch, values of α∗ (4.4) for S = 0.98 are relatively constant after

the initial noise and deviate by roughly 2% from the expected value α∗ = 1. The

De = 1 result decreases very modestly with increasing time whereas the De = 100

result grows modestly with time. The result for α∗ when S = 0.25 and De = 100

increases rapidly early in the stretching process after the noise associated with the

initial filament configuration. After the overshoot, values of α∗ (4.1) are relatively

constant for 0.20 < t/ts < 0.75 and then increase briefly near the end of the stretching

process.

The evolution of the dimensionless capillary, viscous solvent, and elastic terms in

the midfilament force balance (3.8) are plotted with t/ts in figure 4.5. The capillary

and viscous solvent contributions are generally the largest and second largest terms,

respectively, throughout the stretching process and are qualitatively similar for the

three cases. Additionally, the viscous solvent contributions grow faster than the

elastic contributions initially. The capillary and viscous solvent terms at S = 0.98 for

De = 1 and De = 100 are almost identical. The capillary term is initially non-zero

and increases to a maximum around t/ts = 0.27. The viscous solvent term initially

increases from zero and passes through a maximum around t/ts = 0.27. The two

cases at S = 0.98 are distinguishable by their elastic contributions. The elastic term

is larger for De = 1 and generally grows at a relatively constant rate. The elastic term

is roughly 13% of the final viscous solvent contribution at the end of stretch. Although

difficult to see on the scale shown in figure 4.5c, the elastic term for De = 100 grows

with time and is therefore a small, non-zero value roughly 0.2% of the viscous solvent

term at the end of stretch.

The capillary term for S = 0.25 and De = 100 grows to a larger maximum value

around t/ts = 0.27. At longer times during the stretching process the capillary term
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for S = 0.25 decreases at a faster rate than the corresponding result at S = 0.98.

The viscous solvent term for S = 0.25 is up to four times smaller than the result for

S = 0.98. Finally, the elastic term for S = 0.25 and De = 100 grows rapidly from

zero and is of the same order as the viscous solvent term at the end of the stretching

process. It is 43% of the final viscous solvent contribution.

The trends in the capillary, viscous solvent, and elastic terms with respect to De

and S during the initial deformation are generally the same as the results shown

in chapter III for low-viscosity fluids. In particular, increasing the viscous polymer

contribution (decreasing S) does not shift the peak viscous solvent term to earlier

times but does reduce its overall contribution to the midfilament force balance (3.8).

Additionally, the overall elastic contributions grow and its peak values shift to earlier

times with decreasing S. The initial elastic growth rate decreases and peak values are

smaller and shift to later times when De increases. However, no noticeable changes

in the viscous solvent contributions are observed for increasing De when S = 0.98.

4.4 Oscillatory Boundary Motion

We also model the filament dynamics when the plates oscillate in time to evaluate

the performance of the differential method (4.4) for an imposed deformation that

avoids break-up. This deformation history may be particularly advantageous for

characterizing low-viscosities fluids. Rodd et al. (2005) reports the standard CBR

implementation with an axial step-strain is limited to viscosities greater than 70

mPa·s corresponding to Oh > 0.1. Therefore we model the filament evolution for two

values of Oh above and below this critical limit of the standard CBR approach.

The velocity applied to both plates is

Vp

(
t

tc

)
=
πf(Lf − L0)

2
sin

(
2πft

tc

)
, (4.5)
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S = 0.98,
De = 1, 100

S = 0.25,
De = 100

S = 0.25, De = 100

S = 0.98,
De = 1, 100

Figure 4.4: Dimensionless (a) filament midpoint evolutions R/Rp; and (b) differential
method results for α∗ determined by (4.4) as functions of dimensionless
time t/ts for Oh = 0.2 and various De and S during an approximate axial
step-strain. The midfilament evolution is shown in a semilogarithmic
plot. The results for S = 0.98 when De = 1 and De = 100 are generally
indistinguishable.

where f is the dimensionless frequency scaled by tc. The initial and final plate sepa-

rations are L0 = 0.733 and Lf = 2, respectively.

The 1D model (4.1) results for a low-viscosity Newtonian filament (Oh = 0.05, De =

0) evolving due to oscillatory boundary motion are summarized in figure 4.6. The

boundaries oscillate at f = 0.5 which corresponds to a physical frequency of 125 Hz

for an initially cylindrical fluid sample (Rp = 1 mm) with a density and surface ten-

sion similar to water. The plates oscillate for ten cycles (0 ≤ t/tc ≤ 20) although only

five cycles are shown for clarity. The temporal evolutions of R/Rp, α
∗, and κzz show

the results have reached stable limit cycles. The plate separation L resulting from the

prescribed plate velocity (4.5) is shown with the midfilament evolution in figure 4.6a

and both are plotted with ft/tc or cycles. The local minimums (maximums) in R/Rp

do not match the local maximums (minimums) in L because the filament midpoint

continues to thin (thicken) due to inertia just after the plates reverse directions. The
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S = 0.98
De = 1, 100

S = 0.25, De = 100

S = 0.98
De = 1, 100

S = 0.25, De = 100

S = 0.98, De = 1

S = 0.25, De = 100

S = 0.98, De = 100

Figure 4.5: Evolution of dimensionless (a) capillary −κπR2+2πR; (b) viscous solvent
3OhSwzπR

2; and (c) elastic (τ p,zz− τ p,rr)πR2 force terms at the filament
midpoint (3.8) as functions of dimensionless time t/ts for Oh = 0.2 and
various De and S during the stretching process. Results at S = 0.98 for
De = 1 and De = 100 have very similar capillary and viscous solvent con-
tributions but are distinguishable by their relatively insignificant elastic
contributions.
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delay between the local minimums in R/Rp and the maximums in L are ∆1 = 0.02

and are larger than the delay between the local maximums in R/Rp and minimums

L (∆2 = 0.004).

The differential method results for α∗ (4.4) as a function of ft/tc are shown in

figure 4.6b. Equation (4.4) accurately predicts α∗ to within 0.1% during the initial

portion of each cycle. Several discontinuities in α∗ are observed at later times in each

cycle but the differential analysis (4.4) accurately predicts α∗ between discontinuities.

The cause for discontinuities is related to the filament shape and manifests in the

temporal evolution of κzz evaluated at the midpoint as shown in figure 4.6c. Values

of κzz are initially negative at the beginning of each cycle but grow and oscillate

above and below zero at later times. Each discontinuity for α∗ observed in figure

4.6b occurs when the value of κzz changes sign. Typically sign changes in κzz are

associated with alterations in the concavity of R(z) at the filament waist as in the

case when a bead forms in the filament (i.e. figure 3.11). However, κzz also passes

through zero when the terms that define it, consisting of higher-order derivatives of

the free surface Rzz and Rzzzz, grow at different rates and coincidently cancel out.

This is the case when κzz passes through zero in the middle of a cycle. However, as

the plates return to their initial positions, variations in the sign of κzz are related to

changes in the concavity of the free surface.

We also model the filament dynamics at Oh = 0.05 and De = 0 for f = 1.

The results for R/Rp, α
∗, and κzz are noisier when the frequency is doubled but

qualitatively similar to the lower frequency results (figure 4.6) and are therefore not

shown. The minimum values of R/Rp are 14% smaller than in f = 0.5. Values of

∆1 and ∆2 are 5 and 2.5 times larger, respectively, than those observed for f = 0.5.

These results are caused by increased inertial effects due to higher accelerations when

the frequency is increased. Additionally, the accuracy of the differential method (4.4)

is slightly diminished compared to f = 0.5 but the results for α∗ are still accurate to
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Figure 4.6: Dimensionless results for (a) the midfilament evolution R/Rp ( ) and
the plate separation L ( ); (b) values of α∗ determined by (4.4); and
(c) κzz evaluated at the filament midpoint for a low-viscosity Newtonian
filament (Oh = 0.05, De = 0) evolving due to boundaries oscillating at a
dimensionless frequency f = 0.5. Results are plotted with dimensionless
time ft/tc or cycles. Only five of the ten cycles are shown for clarity. A
delay ∆1 between the local minimums in R/Rp and the local maximums
in L is small but visible in (a). The delay between local maximums in
R/Rp and local minimums in L is too small to be seen.
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within 0.5%.

Figure 4.7 shows the same results as figure 4.6 for a more viscous Newtonian

fluid (Oh = 1, De = 0). The boundaries also oscillate at f = 0.5 for ten cycles

although only five cycles are shown. The results are also repeatable over multiple

cycles. The minimum values of R/Rp are larger than those for Oh = 0.05 indicating

a viscous filament thins slower as expected. Values of ∆1 and ∆2 are larger than the

corresponding values for Oh = 0.05 and f = 0.5 but smaller than those for Oh = 0.05

and f = 1. The differential method results for α∗ are less noisy than the results for

Oh = 0.05 and also predict values within 0.1% of the expected value α∗ = 1. The

discontinuities observed in α∗ for Oh = 1 is also caused when κzz at the midpoint

passes through zero. Discontinuities observed in the middle of the cycle are related to

the growth rates in Rzz and Rzzzz whereas the discontinuities when the plates return

to their initial positions are related to changes in the concavity of R(z) at the filament

midpoint.

4.5 Discussion

We model 1D filament dynamics driven by boundary motion with a single-mode

Oldroyd-B model (4.1) to evaluate the performance of the differential method (4.4)

during stretch where standard CBR analyses (2.4 and 3.11) are not typically applied.

We first consider an approximate axial step-strain like the one imposed in traditional

CBR experiments. Figure 4.4b shows determinations of α∗ by (4.4) are more accurate

near the Newtonian limit S → 1 of the 1D model (4.1) during the stretching process.

Additionally, the performance of the differential analysis (4.4) is relatively insensitive

to the polymer relaxation time (De) near the Newtonian limit S → 1. The differential

method results do not increase from α∗ = 1 at the start of stretch but are noisy

due to the initial condition for the free surface profile R = 1 and relatively slow

early evolution around the filament midpoint. Thus terms in the numerator and
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Figure 4.7: Dimensionless results for (a) the midfilament evolution R/Rp ( ) and the
plate separation L ( ); (b) values of α∗ determined by (4.4); and (c)
κzz evaluated at the filament midpoint for a higher viscosity Newtonian
filament (Oh = 1, De = 0) evolving due to boundaries oscillating at a
dimensionless frequency f = 0.5. Results are plotted with dimensionless
time ft/tc or cycles. Only five of the ten cycles are shown for clarity. The
delay ∆1 between the local minimums in R/Rp and the local maximums
in L observed in (a) are larger than ∆1 for low-viscosity results shown
in figure 4.6a. The delay between local maximums in R/Rp and local
minimums in L is too small to be seen.
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denominator of (4.4) are small, resulting in noisy and indeterminate values at the

start of stretch. Following a brief noisy period, values of α∗ are overpredicted with

increasing viscoelastic effects, as best shown here for decreasing S. In particular, an

early overshoot followed by a plateau is observed in the differential method results

for α∗ at S = 0.25 and De = 100 during the stretching process.

The overshoot in α∗ (4.4) at S = 0.25 and De = 100 is caused by faster growth

in the viscous solvent contribution than the polymer contribution at early times.

This delay between the viscous solvent and polymer contributions also occurs in

the S = 0.98 cases but leads to a smaller overshoot in α∗ determined by (4.4) due

to relatively small elastic effects compared with capillary and viscous solvent terms.

Differential method results at S = 0.98 during the stretching process are also relatively

insensitive to De because of small elastic effects. Finally, the results for α∗ plateau

during the deformation process when the elastic contributions grow at a relatively

constant rate. This is best demonstrated by comparing the differential method results

for S = 0.25 and De = 100 in figure 4.4b with the corresponding elastic contributions

in figure 4.5c when 0.20 < t/ts < 0.75.

One small difference between the low-viscosity results in chapter III and the results

shown here is observed in the initial growth and decay of the viscous solvent terms.

The magnitude of the initial growth rate is larger than the magnitude of the decay rate

for the viscous solvent terms when the stretching process is considered. In contrast,

the initial growth in the the viscous solvent contributions for low Oh in chapter III

is more gradual than the subsequent decay. This small but notable difference may

cause the slight increase in α∗ from its plateau. This is best seen in the results for

S = 0.25 and De = 100 near the end of stretch t/ts = 1.

In addition to modeling the axial step-strain, we also consider Newtonian fila-

ment evolution driven by oscillatory plate motion. The results in figures 4.6b and

4.7b demonstrate that the differential method (2.7) accurately characterizes material
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parameters for low- and high-viscosity Newtonian filaments evolving due to oscillating

boundary motion. This deformation is particularly advantageous for characterizing

low-viscosity filaments because it avoids break-up. The result shown in figure 4.6b

corresponds to a filament with a viscosity below the lower limit of the conventional

CBR set-up (Rodd et al. 2005). Therefore the differential analysis (2.7) coupled

with filament evolution driven by oscillating boundary motion can extend the mea-

surement capabilities of standard CBR to lower viscosities. Values of α∗ (4.4) for

low-viscosity filament dynamics driven by oscillating boundary motion are noisier

and slightly less accurate due to inertial effects when the frequency of the external

forcing increases. Therefore, we suggest characterizing low-viscosities fluids at smaller

frequencies f < 0.5 to improve the accuracy and quality of the measurement.

4.6 Conclusions & Future Work

We investigate 1D filament dynamics of initially squat fluid cylinders driven by

boundary motion with a single-mode, 1D Oldroyd-B model (4.1). Unlike the typical

development of CBR analyses and the work presented in chapter III, zero polymer

stresses are realistic initial conditions representative of the original state of the phys-

ical fluid sample here. We apply the differential analysis (4.4) to the 1D model (4.1)

results to evaluate its performance throughout the deformation process.

We first model an approximate axial step-strain similar to the deformation im-

posed on a fluid sample in a conventional CBR experiment. The differential method

results for α∗ (4.4) are relatively constant after an early overshoot during the stretch-

ing process when De > 0 and S < 1. Deviations from the expected value α∗ = 1 in the

differential method results during the early plateau increase with growing viscoelastic

effects, best demonstrated here by larger viscous polymer contributions (decreasing

S). The overshoot in the results for α∗ (4.4) occur due to slower initial growth in the

elastic polymer contributions relative to the viscous solvent contributions. Addition-
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ally, the differential method results plateau when the elastic contributions increase

at relatively constant rate. The sensitivity of the differential method results during

the early plateau to changes in the viscoelastic parameters may be useful for charac-

terizing De and S. These results are consistent with the trends observed in chapter

III. Furthermore, our results show the polymer stresses are non-zero and important

relative to viscous solvent stresses at the end of the imposed deformation and start of

the traditional CBR measurement regime. Therefore, we recommend applying the 1D

differential analysis (4.4) throughout the deformation process to characterize material

parameters from the early viscous phase.

Comparisons with experimental and numerical results for a weakly elastic low-

viscosity fluid in Tembely et al. (2012) indicate our numerical approach applied to

the 1D model (4.1) captures the filament dynamics during stretching reasonably well.

However, our 1D model (4.1) predicts unrealistic results for R/Rp compared with the

results in Tembely et al. (2012) following the end of the axial step-strain. Our prelimi-

nary efforts indicate the prescribed deformation profiles, strains, and initial conditions

affects the accuracy of our 1D model results at longer times after stretch. We experi-

enced similar difficulties in modeling low-viscosity filament evolution at longer times,

particularly when elastic effects become important, in chapter III. Thus, future work

will consider numerical modifications for addressing the viscoelastic filament evolution

for low-viscosity fluids.

We also model the 1D filament evolution driven by oscillating boundaries for New-

tonian fluids with viscosities above and below the lowest viscosity currently resolved

by the standard CBR implementation (Rodd et al. 2005). The results for α∗ demon-

strate the differential analysis (4.4) coupled with a deformation history that avoids

break-up can extend the range of the conventional CBR technique to lower viscosities.

However, the differential method results become noisier for low-viscosity filaments.

Additionally, values of α∗ for the low-viscosity filament become noisier and slightly
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less accurate with increased frequency of the external boundary motion. For now, we

recommend characterizing low-viscosity Newtonian fluids by (4.4) when the bound-

aries oscillate at small frequencies f < 0.5. Continuing work will also consider other

means of reducing noise in the differential method results for low-viscosity fluids such

as imposing smaller strains and beginning with non-cylindrical filament samples to

avoid the discontinuity observed in α∗ when the boundaries return to their initial

positions.

Ongoing work will also evaluate the performance of the 1D differential analysis

(4.4) applied to 1D viscoelastic filament evolution driven by oscillatory boundary

motion. Large amplitude oscillatory extension (LAOE) measurements have previ-

ously been demonstrated in a filament stretching device (Bejenariu et al. 2010) and

a cross-slot device (Zhou & Schroeder 2016). However, the filament stretching device

requires a force measurement that is difficult for low-viscosity fluids and the cross-

slot device imparts shear into the planar extensional flow due to the channel walls

(Galindo-Rosales et al. 2013). Therefore, we seek to characterize viscoelastic material

parameters from the filament evolution driven by oscillatory boundary motion with

a 1D differential approach in our future work.
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CHAPTER V

Conclusions & Future Work

5.1 Summary and Key Findings

The primary motivation for our work is to develop a suitable technique for char-

acterizing extensional saliva rheology for potential health applications. Since saliva

is a low-viscosity, non-Newtonian fluid, we have focused on re-examining an exist-

ing rheometric method, capillary break-up rheometry, because it does not require a

force measurement to characterize fluid samples. This is an advantageous feature for

low-viscosity fluids where forces are difficult to measure accurately. Whereas stan-

dard 1D CBR analyses (Bazilevsky et al. 1990; Entov & Hinch 1997; McKinley &

Tripathi 2000) apply additional approximations to preclude a force measurement, the

objective of our work is to develop an alternative analysis that does not require any

additional assumptions beyond the 1D, rectilinear flow description. We also seek to

expand the operating range of conventional CBR to facilitate the characterization of

multiple rheological parameters from a single sample.

Chapter II developed a 1D differential Newtonian analysis (2.7) for CBR to de-

termine the surface tension to viscosity ratio α. Our analysis is based on the 1D

differential forms of the governing equations for mass and momentum. Our local

differential analysis did not require specific assumptions for the axial force F to pre-

clude its measurement. Our analysis indicated that measuring gradients in filament
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curvature is necessary to accurately determine α when F is not measured. From

our experimental and numerical results for viscous Newtonian filament evolution, we

found axial symmetry about the midfilament (where Rz = 0) is a major require-

ment to maintain an accurate and purely geometric approach (i.e. avoiding velocity

measurements) for determining α∗ by the differential analysis (2.7) (figure 2.2). We

have therefore constructed a time-varying asymmetry measure Ω(t) (2.9). We recom-

mend applying the differential analysis (2.7) when Ω(t) is small relative to the initial

asymmetry and dα∗/dΩ→ 0 (figure 2.5).

In chapter III, we investigated the role of surfactants and viscoelasticity on 1D fil-

ament dynamics. Our experiments with a simple soap-and-water mixture supported

our conjecture that saliva’s surface active constituents do not play a significant role in

its ability form filaments. There is evidence that saliva’s surface active constituents

play an important role in forming protective films on soft tissues and teeth in the

oral cavity, however this is beyond the scope of this work. Thus we investigated

viscoelastic effects on 1D filament evolution with a 1D Oldroyd-B model for high-

and low-viscosity fluids. We followed the typical development of CBR analyses that

assume the viscoelastic filaments are initially long and unstable with zero polymer

stresses. This is an unrealistic representation of the physical fluid sample after the

imposed deformation process (start of CBR measurement) because viscoelastic fil-

aments have memory and are therefore affected by the stretch history. However,

this assumption used by almost all previous studies (Bazilevsky et al. 1990; Entov &

Hinch 1997; Bousfield et al. 1986; Renardy 1994; Clasen et al. 2006a) simplified the

analysis and is useful for investigating trends in the filament evolution due to varying

viscoelastic parameters.

We emphasize applying the (dimensionless) differential method (3.16) to the early

viscous phase of 1D viscoelastic filament evolution because the current CBR approach

(3.11) for characterizing the polymer relaxation time λ from the middle elastic regime

100



works well. For high- and low-viscosity filaments (Oh = 3.16 and Oh = 0.002, re-

spectively), the differential analysis (3.16) accurately determined α∗ in the Newtonian

limits of the 1D model (3.12): De → 0, S → 1, or small deformations (figures 3.4,

3.7b, 3.9b and 3.12b). For high-viscosity filaments when De > 0 and S < 1, α∗ = 1

initially (for gradual startups) but rapidly increased and then plateaued. The initial

overshoot is caused by slow, unsteady growth in the elastic contribution at early times

in the viscous regime. Following the initial unsteady growth, elastic contributions in-

creased at a relatively constant rate for a brief period corresponding to the plateaus

observed in the results for α∗ (3.16) (figures 3.5c and 3.8c). The differential method

results during the plateau deviated from the expected value α∗ = 1 and deviations

increased with growing viscoelastic effects (increasing De, decreasing S).

Varying De and S for the low-viscosity case considered here produced similar

trends in the growth of the elastic contributions. However, both elastic and viscous

solvent contributions were relatively insignificant compared with the capillary contri-

butions during the initial viscous phase (figures 3.10 and 3.13). Thus the filament

dynamics during the early viscous regime when viscoelastic effects are non-zero were

indistinguishable from a nearly inviscid Newtonian fluid at Oh = 0.002 (i.e. water).

Consequently, the differential method results (3.16) were also relatively insensitive to

variations in De and S and predicted α∗ = 1 (figures 3.9 and 3.12).

Based on the model results for high- and low-viscosity viscoelastic fluids, we rec-

ommend characterizing the total viscosity µ0 of the fluid sample from the differential

method results for α∗ when deformations are small at the start of the measurement.

The sensitivity of the differential method results (3.16) during the early plateau to

variations in Oh,De and S, particularly for high-viscosity fluids, suggests the effects

of De and S may also be separately characterized.

In chapter IV we studied 1D filament evolution driven by boundary motion with

a single-mode, 1D Oldroyd-B model (4.1). We considered cases of initially stable
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fluid samples at rest. Thus, zero polymer stresses were appropriate initial conditions

here. The first deformation history we modeled is an approximate axial step-strain

to represent the typical deformation imposed in a CBR experiment. Results for α∗

determined by (4.4) and the capillary, viscous solvent and elastic contributions to

the midfilament force balance (3.8) generally followed the same trends for De and

S observed in chapter III. In particular, an initial overshoot followed by a plateau

was also observed in the differential method results during the stretching process for

the low-viscosity fluid considered (Oh = 0.2). The initial overshoot and following

plateau corresponded to slow, initial growth in the elastic contribution followed by a

period of relatively constant growth (figures 4.4 and 4.5). Furthermore, values of α∗

(4.4) during the early plateau deviated from the expected value α∗ = 1 with increasing

viscoelastic effects. The results of the 1D model (4.1) with the approximate step-strain

also showed the polymer stresses and viscous solvent stresses were comparable at the

end of the imposed deformation and start of the traditional CBR measurement regime.

Therefore, we recommend applying the 1D differential analysis (4.4) to characterize

material parameters such as µ0 during the initial deformation process before the onset

of elastic effects.

We also modeled the 1D filament dynamics due to oscillatory boundary motion

for low- and high-viscosity Newtonian filaments to consider a deformation history

that avoids filament break-up. In particular, we modeled Newtonian filaments with

viscosities above and below the lowest viscosity currently resolved by the standard

CBR set-up (Rodd et al. 2005). The results for α∗ (4.4) for the low-viscosity filament

(figure 4.6) showed the differential analysis (4.4) coupled with a deformation history

that avoids break-up can extend the range of the conventional CBR technique to lower

viscosities. However, the differential method results were noisier for low-viscosity

filaments compared to high-viscosity filaments (figures 4.6 and 4.7). Additionally, the

differential method results for the low-viscosity filament were adversely affected when
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the frequency of the oscillating boundaries increased. Thus, we suggest characterizing

low-viscosity filaments by the differential method (4.4) with a low-frequency (f < 0.5)

oscillatory deformation profile.

We verified our implicit Euler-Chebyshev numerical scheme applied to the 1D

Oldroyd-B model (3.12) with literature (Clasen et al. 2006a) for high-viscosity vis-

coelastic fluids. We also verified our 1D modeling for low-viscosity viscoelastic fluids

only during the stretching process by comparing with experimental and 1D model

results in Tembely et al. (2012). However, modeling low-viscosity viscoelastic fluids

at longer times, especially when elastic effects became significant relative to viscous

solvent stresses, was a consistent challenge in chapters III and IV. Fortunately, this

did not affect our analysis of the initial viscous phase but is an area of continuing

research.

We must first evaluate the validity of the 1D approximation for low-viscosity fluids.

Schultz & Davis (1982) shows adding inertia disrupts the 1D approximation. However,

a 1D linear stability analysis predicts the maximum growth rate for a disturbance in

a nearly inviscid fluid occurs at a wavenumber kmax that is within 2% of the value

determined by Rayleigh (1879) and the 3D linear stability analysis by Chandrasekhar

(1961). Therefore, it is currently uncertain if a 1D approximation is appropriate even

when considering a modest amount of inertia.

Additionally, comparisons with other viscoelastic literature (Clasen et al. 2006a;

Tembely et al. 2012) suggest we may need to consider modifications to our numerical

approach, such as adaptive temporal and/or spatial schemes, to resolve the larger

range of scales in low-viscosity viscoelastic fluid evolution. Our preliminary work

also shows the 1D model results for low-viscosity viscoelastic fluids after the stretch

are sensitive to the initial fluid sample configuration, imposed strain, and the pre-

scribed deformation profile. Therefore, these parameters must be accurately modeled

in ongoing efforts.
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Overall we have demonstrated the performance of our 1D differential analysis (2.7)

for characterizing Newtonian filaments and the early viscous phase of non-Newtonian

filament evolution. Measurements of multiple rheological properties from a single

fluid sample may be obtained by combining the differential analysis (2.7) during the

early viscous regime with the current CBR method for determining the polymer relax-

ation time λ (3.11) during the middle elastic phase. This is advantageous for saliva

studies, particularly when investigating patients with reduced salivary production.

Additionally, we have demonstrated the differential method (2.7) is robust during the

deformation process and may be used with stretch histories that avoid break-up to

extend the measurement range of traditional CBR.

5.2 Future Work

The work presented in this dissertation demonstrates the potential of the 1D differ-

ential analysis (2.7) to expand the measurement capabilities of the current CBR tech-

nique. However, additional efforts are required to refine the 1D differential method

before it can be used widely to characterize fluid samples. In the first two subsec-

tions, we discuss additional tasks necessary to improve the 1D differential method

(2.7). In the final two subsections, we recommend investigations to further expand

the capabilities of the 1D differential method.

5.2.1 Experiments

A set of complementary experiments for non-Newtonian filaments with varying

viscoelastic effects must be performed to verify the trends observed in chapters III

and IV. This will require a CBR device capable of prescribing the desired deformation

histories. The latest version of our CBR device described in appendix B is limited

to four deformation histories: a step-strain, triangular wave oscillations, ramp-strain,

and sinusoidal oscillations. However, none of these deformations work particularly
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well. This may be caused by the stepper motor providing accurate positioning but

not smooth time-varying velocity at the boundaries. Therefore minor modifications

to our current CBR device are required.

Additional efforts must also focus on optimizing the post-processing routine to

analyze experimental images of the filament evolution. In particular, the accuracy

and error in the differential analysis will improve by optimizing the least-squares

polynomial fits of the filament free surface. Improving the radial resolution by de-

veloping an edge detection scheme that uses grayscale more effectively will aid the

optimization of the the least-squares polynomial fits. Additionally, the domain size

and the degree of the polynomial fit must also be optimized to minimize error in the

differential approach (2.7).

5.2.2 1D modeling

We must first address the challenges encountered in modeling low-viscosity vis-

coelastic filament evolution, particularly when elastic contributions become compa-

rable to viscous solvent contributions, to facilitate comparisons with experiments.

A complete description of low-viscosity filament evolution predicted by a 1D model

will be useful for investigating quantities that are difficult to measure experimentally,

such as the axial velocity and individual stresses. Therefore, alternative numerical

approaches must be considered to improve the current state of the 1D modeling. This

may require implementing adaptive spatial and temporal meshes to resolve the large

range of scales in viscoelastic filament dynamics. Additionally, we will also re-examine

the appropriate boundary conditions for the polymer stresses.

After challenges with the numerical methods are addressed, other constitutive

theories such as the generalized convected Jeffreys and FENE-P models may be con-

sidered. These models contain methods to avoid issues with the singularity at higher

strain-rates and therefore will produce more physical results at longer times.

105



5.2.3 Characterizing the Oh−De− S space

In chapters III and IV we showed the differential method results for α∗ reach a

plateau during the early viscous regime. Values of α∗ during the plateau are sensitive

to variations in Oh,De and S and thus may be useful for quantifying individual pa-

rameters. Therefore we recommend investigating the Oh−De−S space to determine

correlations to enable characterizations of additional material parameters from the

early viscous regime.

5.2.4 Oscillatory boundary motion

In chapter IV we demonstrated the differential analysis (4.4) coupled with an

oscillatory deformation profile yields accurate but noisy results for α∗. In addition

to reducing the prescribed oscillation frequency, we propose investigating the impact

of strain and the initial fluid sample free surface on reducing noise in low-viscosity

results determined by (4.4).

Finally, we recommend investigating 1D viscoelastic filament evolution driven by

oscillatory boundary motion to develop a 1D analysis for low-viscosity elastic fluids.

Additionally, 1D viscoelastic multi-mode models should be considered to determine if

multiple relaxation times may be characterized with oscillatory deformation profiles of

varying frequencies in extension. In this regard, the experiments and analysis can be

performed without break-up and its associative challenges. Then, this revised method

should change its name from capillary break-up rheometry to capillarity rheometry.
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APPENDIX A

Probative Saliva Experiments

The purpose of these preliminary experiments is to inform the experimental de-

sign for larger scale investigations of saliva. We qualitatively investigated the impact

of pH, salinity, dilution, and filtering on saliva filament dynamics. In particular, we

observed the length and longevity of the saliva filament compared with an unadulter-

ated sample. Saliva samples were collected from two healthy individuals, one female

and one male both ∼30 years-old. We considered acids, bases, and salts commonly

found in our diet, such as vinegar (acetic acid), lemon juice, baking soda, NaCl (table

salt), and KCl. Additionally, we considered the impact of dilution (i.e. when we

drink liquids) and filtering saliva.

Methods

Samples were collected by asking participants to expectorate into a cup until

∼10 - 15 mL (2 - 3 teaspoons) were collected. Resting saliva samples from both

participants were collected without stimulation for 30 - 45 minutes. Additionally,

stimulated saliva samples were produced by applying a lemon wedge to the female

participant’s tongue for 15 minutes. Samples were then divided into 2.5 mL (1/2
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teaspoon) increments. The following were then added to individual “clean” samples

of resting and/or stimulated salivas:

• ∼1 µL drop distilled white vinegar (Meijer, 5% acetic acid) (resting and stim-

ulated salivas)

• ∼1 µL drop lemon juice (resting and stimulated salivas)

• ∼1/16 teaspoon baking soda (resting saliva)

• ∼1/16 teaspoon NaCl (resting and stimulated salivas)

• ∼1/16 teaspoon KCl (resting saliva)

Additionally, an individual sample of resting saliva was filtered (AeroPress coffee

filter) and another was diluted with water at a 1:1 ratio.

The pH of unadulterated and altered samples were measured with pH indicator

strips (Whatman Panpeha).

Finally, a ∼1 mm3 drop of each sample was stretched between forefinger and

thumb to observe the length (measured by a millimeter scale) and longevity of the

filament. This procedure was performed three times with a fresh drop each time for

all samples.

Results

The results of our qualitative study are summarized in table A.1. All compar-

isons are made with respect to the length and longevity of unadulterated resting and

stimulated salivas samples. Unadulterated stimulated saliva filaments were compara-

ble to resting saliva. Adding vinegar or lemon juice generally increased the filament

length and lifetime although a larger difference was observed when acids were added

to resting saliva. Shorter filaments with smaller lifetimes were observed when baking
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soda was added to resting saliva. This was also observed when NaCl was added to

resting and stimulated salivas. Filament formation was not affected by adding KCl

to resting saliva. Finally, filaments were difficult to form with filtered (resting) saliva

whereas filament formation was not affected by dilution.

Discussion

Zussman et al. (2007) shows saliva samples stimulated with an acid have larger

polymer relaxation times than resting saliva samples and hypothesizes this is caused

by increased salivary protein concentration. Our filtered saliva result is consistent

with Zussman et al. (2007). However, our pH manipulation is generally performed

outside the oral cavity unlike Zussman et al. (2007). Therefore, our results for ex-

vivo saliva pH manipulation suggests increased viscoelasticity may also be due to

conformational changes in the saliva proteins.

Since the results are similar for the two different acids, this suggests the type of

acid is not important. However, our qualitative results for salts suggests the type of

salt does matter. We recommend further studies on the impact of in-vivo and ex-vivo

pH manipulation on saliva filament dynamics. In addition, we suggest a study to

determine the effects of various salts on saliva filament dynamics.
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Table A.1: Qualitative results for investigation of pH, salinity, filtering, and dilution
on saliva filament formation

Promotes
formation

Neutral Hinders
formation

salts
NaCl X

KCl X

pH
∼ 3.5

lemon
juice or
vinegar

X

∼ 8.5
baking
soda

X

filtering X

1:1
dilution

X
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APPENDIX B

Experimental Apparatus

General Experimental Set-Up and Procedure

The experimental set-up consists of a CBR device, a camera with appropriate

optics, a computer, and a lighting source. As described in chapter II, the CBR device

has two parallel, circular plates of radius Rp initially separated by a distance L0. The

fluid sample is constrained by the initial gap geometry and forms a squat cylinder.

For both versions of the CBR device developed throughout this work (discussed in

the next couple sections), the top plate is held fixed while the bottom plate is free

to move and its motion imposes the approximate axial step-strain (or alternate de-

formation history) on the fluid sample. The filament evolution is backlit with either

simple flashlight or fiberoptic lightsource and then captured by a camera through a

microscope objective to increase the spatial resolution near the filament midpoint.

Typically a 10x Nikon microscope objective (numerical aperture NA = 0.30, magni-

fication M = 14, 1.2 µm/pixel) is used when Rp ≤ 2 and a 4x Nikon objective (NA

=0.13, M = 4.4, 3.2 µm/pixel) is used for Rp ≥ 3.
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CBR Device “Alpha” Model

The first version of the CBR device, the “alpha” model, was used to perform the

Newtonian silicone oil experiments in chapter II. It is constructed with optomechan-

ical posts and plates typically used for mounting laser optics. The circular plates are

polylactic acid (PLA) plastic and created using a 3D printer. Three different plate

sizes are available (Rp = 2, 3 and 4 mm) to vary the fluid sample size. The alpha

model is limited to imposing one deformation history: the approximate step-strain.

The top plate is held fixed while the bottom plate falls due to gravity until a final

plate separation of Lf . The bottom plate is attached to a stem with two collars to

guide the vertical motion. The upper collar acts as a stop for the moving assembly

and may be adjusted to vary Lf and consequently the strain Lf/L0.

CBR Device “Beta” Model

A second version of the CBR device, the “beta” model, was constructed by a

undergraduate senior design team and has not been used extensively in experiments

yet. Several updates and useful features have been added in the “beta” model. The

top plate still remains fixed while the lower plate position is driven by a stepper

motor. The rotary motion of the stepper motor is converted to linear motion with a

lead screw and nut. The downward motion of the lower plate is limited by a “hard-

stop rail” to prevent the motor from driving the nut into itself. A contact switch

is mounted to the hard-stop rail and is used to recalibrate the distance between the

plates. An Arduino Uno controls the motion of the stepper motor and four different

stretch histories have been programmed: a step-strain, triangular wave oscillations,

ramp-strain, and sinusoidal oscillations.

The interchangeable plates (Rp = 1, 2 and 3 mm) are also constructed from alu-

minum. The top and bottom plates are mounted to pin alignment blocks. The top
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pin alignment block has two thru holes and the bottom pin alignment block has two

blind holes. The top plate and its pin alignment block are attached to a translation

stage and mounted to the frame of the new CBR device. The bottom plate and its

pin alignment block are attached to the stepper motor. The plates are aligned by

adjusting the position of the top plate with the translation stage until two dowel pins

can easily pass through the two thru holes in the top pin alignment block and fit

easily in the corresponding blind holes in the bottom pin alignment block.
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APPENDIX C

Numerical Methods

The purpose of this appendix is to describe the temporal and spatial schemes

implemented to solve the 1D Newtonian and Oldroyd-B models in chapters II - IV.

These numerical schemes are implemented in Python. The 1D models are repeated

here for convenience and to enable a discussion about common features.

The dimensionless continuity equation integrated over the filament cross-section

is the same for both the Newtonian and Oldroyd-B models despite different scalings

(R2)t + (wR2)z = 0. (C.1)

The axial momentum equation scaled by a capillary velocity scale σ/µ and the

plate radius Rp is

Re(wt + wwz)R
2 = (3wzR

2)z − κzR2 −BoR2. (C.2)

Equations (C.1) and (C.2) form the viscous 1D Newtonian model.

The axial momentum equation scaled by Rp, σ, and an inertio-capillary time scale

tc =
√
ρR3

p/σ is
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(wt + wwz)R
2 = −κzR2 + 3OhS(wzR

2)z + ((τ p,zz − τ p,rr)R2)z (C.3a)

τ p,zz +De(τ p,zzt + wτ p,zzz − 2wzτ
p,zz) = 2Oh(1− S)wz (C.3b)

τ p,rr +De(τ p,rrt + wτ p,rrz + wzτ
p,rr) = −Oh(1− S)wz. (C.3c)

Equations (C.1) and (C.3) form the 1D Oldroyd-B model.

The dimensionless mean curvature for both models is

κ =
1

R(1 +R2
z)

1/2
− Rzz

(1 +R2
z)

3/2
. (C.4)

The axial momentum equation (C.2 or C.3b) requires one spatial derivative of κ

κz =
−Rz

R2(1 +R2
z)

1/2
− RzRzz

R(1 +R2
z)

3/2
− Rzzz

(1 +R2
z)

3/2
+

3RzR
2
zz

(1 +R2
z)

5/2
. (C.5)

1D Newtonian Model (without Stretch)

The symmetric and viscous (Re = 0, Bo = 0) 1D Newtonian model (C.1 and

C.2) without stretch (c.f. chapter II) is solved with a 4th-order Runge-Kutta (R-K)

temporal integration scheme and a 2nd-order centered finite difference scheme. The

4th-order R-K method is an explicit temporal integration scheme and is applied to

the following evolution equation for R (derived from (C.1)) at every time step

Rt =
−wzR

2
− wRz = f(R,w, t). (C.6)

The 4th-order R-K solution procedure to determine the solution to (C.6) at the

next time step m+ 1 from the solution at the current time step m is

Rm+1 = Rm +
1

6
k1 +

1

3
(k2 + k3) +

1

6
k4, (C.7)
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where ∆t is the time step and

k1 = ∆tf(Rm, wm, tm) (C.8a)

k2 = ∆tf(Rm +
1

2
k1, w

m, tm +
∆t

2
) (C.8b)

k3 = ∆tf(Rm +
1

2
k2, w

m, tm +
∆t

2
) (C.8c)

k4 = ∆tf(Rm + k3, w
m, tm + ∆t). (C.8d)

The symmetric and viscous 1D Newtonian model in chapter II considers N = 513

nodes on a uniform spatial mesh. Spatial derivatives determined by the 2nd-order

finite difference stencils are applied to all interior nodes i = 1...N − 1. Dirchlet

boundary conditions for R and w are applied to the boundary nodes, i = 0 and

i = N − 1. For any dependent variable f , the first and second derivative at all

interior nodes is determined according to the following stencils

f iz =
f i+1 − f i−1

2∆z
, for i = 1...N − 2, (C.9)

and

f izz =
f i+1 − 2f i + f i−1

(∆z)2
, for i = 1...N − 2, (C.10)

where ∆z is the spatial step. The third derivative stencil requires two nodes on either

side of the i-th node. Therefore, a lopsided stencil must be applied to the two nodes

immediately adjacent to the boundary nodes
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f i=1
zzz =

f 3 − 3f 2 + 3f 1 − f 0

(∆z)3
(C.11a)

f i=N−2
zzz =

fN−1 − 3fN−2 + 3fN−3 − fN−4

(∆z)3
. (C.11b)

The third derivative stencil for all other interior nodes is

f izzz =
f i+2 − 2f i+1 + 2f i−1 − f i−2

2(∆z)3
, for i = 2...N − 3. (C.12)

1D Newtonian and Oldroyd-B models (with and without Stretch)

The 1D Oldroyd-B model (C.1 and C.3) in chapters III and IV are solved with

an implicit backward Euler temporal scheme and Chebyshev spatial scheme. In addi-

tion, an arbitrary Lagrangian-Eulerian (ALE) scheme is employed to prescribe node

velocities vn proportional to the boundary velocity. All partial time derivatives in the

1D models (C.1, C.2, and C.3) are replaced by

∂

∂t
=

d

dt
− vn

∂

∂z
, (C.13)

where vn = xVp(t/ts). Additionally, z ∈ [−L/2, L/2] is mapped to the Chebyshev

domain x ∈ [−1, 1] with a linear scaling x = 2
L
z. Thus, the 1st, 2nd, and 3rd

derivatives in z are

∂

∂z
=
∂x

∂z

∂

∂x
=

2

L

∂

∂x
(C.14a)

∂2

∂z2
=

(
∂x

∂z

)2
∂2

∂x2
=

4

L2

∂2

∂x2
(C.14b)

∂3

∂z3
=

(
∂x

∂z

)3
∂3

∂x3
=

16

L3

∂3

∂x3
. (C.14c)
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We demonstrate the equations for the Newtonian limit S → 1 of the 1D Oldroyd-

B model, when τ p,zz = τ p,rr = 0, to simplify the example. Equations (C.6 and C.3a)

rewritten according to (C.13) and (C.14) and rearranged in the form of evolution

equations are

dR

dt
=
−wxR
L
− 2

L
wRx

= f(R,Rx, w, wx),

(C.15)

dw

dt
= − 2

L
(w − vn)wx − κz +

12

R2L
OhS

(
wxR

2
)
x

= g(R,Rx, Rxx, Rxxx, w, wx, wxx).

(C.16)

The evolution equations for R and w (C.15-C.16) must first be linearized according

to a Taylor-series expansion where all dependent variables and their spatial derivatives

are treated as individual variables. Additionally, the temporal derivatives dR
dt

and dw
dt

are discretized to give

Rm,k + δR−Rm

∆t
=

f |m,k+ ∂f

∂R

∣∣∣m,kδR +
∂f

∂Rx

∣∣∣m,kδRx +
∂f

∂w

∣∣∣m,kδw +
∂f

∂wx

∣∣∣m,kδwx, (C.17)

wm,k + δw − wm

∆t
=

g|m,k+ ∂g

∂R

∣∣∣m,kδR +
∂g

∂Rx

∣∣∣m,kδRx +
∂g

∂Rxx

∣∣∣m,kδRxx +
∂g

∂Rxxx

∣∣∣m,kδRxxx

+
∂g

∂w

∣∣∣m,kδw +
∂g

∂wx

∣∣∣m,kδwx +
∂g

∂wxx

∣∣∣m,kδwxx,
(C.18)
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where k refers to the current iteration. The new iteration Rm,k+1 (wm,k+1) is the sum

of the current iteration Rm,k (wm,k) and some small change δR (δw). Please note Rm

(wm ) refers to the solution at the current time step, not the current iteration!

Once the spatial scheme is applied, equations (C.17) and (C.18) form a 2N × 2N

system of equations. The system of equations can be rewritten as a partial differential

equation for δx (containing δR and δw) in the form δF (δx;xm,k) = −F (xm,k, xm),

where xm,k contains Rm,k and wm,k at the current iteration and xm contains Rm and

wm at the current time step

F =
Rm,k −Rm

∆t
− f |m,k +

wm,k − wm

∆t
− g|m,k (C.19)

δF =
δR

∆t
−
(
∂f

∂R

∣∣∣m,kδR +
∂f

∂Rx

∣∣∣m,kδRx +
∂f

∂w

∣∣∣m,kδw +
∂f

∂wx

∣∣∣m,kδwx)
δw

∆t
−
(
∂g

∂R

∣∣∣m,kδR +
∂g

∂Rx

∣∣∣m,kδRx +
∂g

∂Rxx

∣∣∣m,kδRxx +
∂g

∂Rxxx

∣∣∣m,kδRxxx

)
+

(
∂g

∂w

∣∣∣m,kδw +
∂g

∂wx

∣∣∣m,kδwx +
∂g

∂wxx

∣∣∣m,kδwxx) .
(C.20)

The spatial derivatives of R and w in F and δF are determined by recurrence

relations applied to Chebyshev coefficients (discussed in chapter III). These recur-

rence relations are easily found in references such as Shen et al. (2011). The terms

δRx, δRxx, δRxxx, δwx and δwxx may be rewritten with δR and δw with Chebyshev

differentiation matrices (Trefethen 2000). Please note these differentiation matrices

are different from the recurrence relations. For example, D1, D2, and D3 are the

Chebyshev differentiation matrices to determine the 1st, 2nd, and 3rd derivatives,

respectively. The terms δRx, δRxx, and δRxxx are re-expressed as D1, D2, and D3

operating on δR or δw.

Dirchlet boundary conditions are imposed by replacing the rows corresponding to

the boundary nodes (0-th, (N -1)-th, N -th and (2N − 1)-th rows) in R and w in δF
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with an array of zeros and then placing a 1 in the following (row, column) of δF :

(0,0), (N − 1, N − 1), (N , N), and (2N − 1, 2N − 1). The 0-th, N -1-th, N -th and

(2N − 1)-th elements in F must be replaced with zeros.

Neumann boundary conditions for R are applied by replacing the rows correspond-

ing to the boundary nodes (0-th, (N -1)-th rows) in δF with an array of zeros. Then,

the first row of the Chebyshev differentiation matrices D1 is placed in the 0-th row

(and 0 - N−1 columns) of δF . Similarly, the last row of D1 is placed in the (N−1)-th

row (and 0 - N − 1 columns) of δF . The 0-th and N -1-th elements in F must also

be replaced with zeros.

After applying the boundary conditions, the system δF = −F is solved iteratively

until |δx| is less than some convergence criteria, typically 10−6.
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jets: von Kármán flow geometry and elliptical cross-section. Journal of Fluid Me-
chanics 196 (-1), 241.

Bejenariu, A. G., Rasmussen, H. K., Skov, A. L., Hassager, O. &
Frankaer, S. M. 2010 Large amplitude oscillatory extension of soft polymeric
networks. Rheologica Acta 49 (8), 807–814.

Bhat, P. P., Appathurai, S., Harris, M. T., Pasquali, M., McKinley,
G. H. & Basaran, O. A. 2010 Formation of beads-on-a-string structures during
break-up of viscoelastic filaments. Nature Physics 6 (8), 625–631.

123



Bird, R., Armstrong, R. & Hassager, O. 1987a Dynamics of Polymeric Liq-
uids, Volume 1: Fluid Mechanics . New York: Wiley.

Bird, R., Armstrong, R. & Hassager, O. 1987b Dynamics of Polymeric Liq-
uids, Volume 2: Kinetic Theory . New York: Wiley.

Bongaerts, J. H. H., Rossetti, D. & Stokes, J. R. 2007 The Lubricating
Properties of Human Whole Saliva. Tribology Letters 27 (3), 277–287.

Bousfield, D., Keunings, R., Marrucci, G. & Denn, M. 1986 Nonlinear
analysis of the surface tension driven breakup of viscoelastic filaments. Journal of
Non-Newtonian Fluid Mechanics 21 (1), 79–97.

Boyd, J. 2001 Chebyshev and Fourier spectral methods , 2nd edn. New York: Dover
Publications.

Brasseur, J. G. 1987 A fluid mechanical perspective on esophageal bolus transport.
Dysphagia 2 (1), 32–39.

Brenner, M. P., Lister, J. R. & Stone, H. A. 1996 Pinching threads, singu-
larities and the number 0.0304... Physics of Fluids 8 (11), 2827–2836.

de Bruijne, D., Hendrickx, H., Anderliesten, L. & de Looff, J. 1993
Mouthfeel of foods. In Food colloids Society, polymers: stability and mechanical
properties (ed. E Dickinson & P Walstra), pp. 204–13. Sawston: Woodhead Pub-
lishing Limited.

Canny, J. 1986 A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-8 (6), 679–698.

Carpenter, G. 2012 Role of Saliva in the Oral Processing of Food. In Food Oral
Processing: Fundamentals of Eating and Sensory Perception (ed. Jianshe Chen &
Lina Engelen), pp. 45–60. Oxford, UK: Wiley-Blackwell.

Carpenter, G. H. 2013 The Secretion, Components, and Properties of Saliva.
Annual Review of Food Science and Technology 4 (1), 267–276.

Chandrasekhar, S. 1961 Hydrodynamic And Hydromagnetic Stability . Oxford:
Clarendon Press.

Christersson, C. E., Lindh, L. & Arnebrant, T. 2000 Film-forming properties
and viscosities of saliva substitutes and human whole saliva. European Journal of
Oral Sciences 108 (5), 418–425.

Clasen, C., Eggers, J., Fontelos, M. A., Li, J. & McKinley, G. H. 2006a
The beads-on-string structure of viscoelastic threads. Journal of Fluid Mechanics
556, 283, arXiv: 0307611.

124



Clasen, C., Plog, J. P., Kulicke, W.-M., Owens, M., Macosko, C.,
Scriven, L. E., Verani, M. & McKinley, G. H. 2006b How dilute are dilute
solutions in extensional flows? Journal of Rheology 50 (6), 849.

Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2002 Pinchoff and
satellite formation in surfactant covered viscous threads. Physics of Fluids 14 (4),
1364.

Donea, J., Giuliani, S. & Halleux, J. 1982 An arbitrary lagrangian-eulerian
finite element method for transient dynamic fluid-structure interactions. Computer
Methods in Applied Mechanics and Engineering 33 (1-3), 689–723.

Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Physical
review letters 71 (21), 3458–3460.

Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Reviews of
Modern Physics 69 (3), 865–930.

Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approxi-
mation of the NavierStokes equation. Journal of Fluid Mechanics 262 (-1), 205.

Entov, V. & Hinch, E. 1997 Effect of a spectrum of relaxation times on the
capillary thinning of a filament of elastic liquid. Journal of Non-Newtonian Fluid
Mechanics 72 (1), 31–53.

Foglio-Bonda, A., Pattarino, F. & Foglio-Bonda, P. L. 2014 Kinematic
viscosity of unstimulated whole saliva in healthy young adults. European Review
for Medical and Pharmacological Sciences 18 (20), 2988–2994.

Fontelos, M. A. & Li, J. 2004 On the evolution and rupture of filaments in
Giesekus and FENE models. Journal of Non-Newtonian Fluid Mechanics 118 (1),
1–16.

Galindo-Rosales, F. J., Alves, M. A. & Oliveira, M. S. N. 2013 Microde-
vices for extensional rheometry of low viscosity elastic liquids: a review. Microflu-
idics and Nanofluidics 14 (1-2), 1–19.

Garcia, C. J., Castro-Combs, J., Dias, A., Alfaro, R., Vasallo, J., Ma-
jewski, M., Jaworski, T., Wallner, G. & Sarosiek, J. 2013 Impairment of
salivary mucin production resulting in declined salivary viscosity during naproxen
administration as a potential link to upper alimentary tract mucosal injury. Clinical
and translational gastroenterology 4, e40.

Gennes, P. & Brochard-Wyart, F. 2004 Capillarity and Wetting Phenomena:
Drops, Bubbles, Pearls, Waves . New York: Springer.

Haward, S. J., Odell, J. a., Berry, M. & Hall, T. 2011 Extensional rheology
of human saliva. Rheologica Acta 50 (11-12), 869–879.

125
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