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ABSTRACT 

 

Hippocampal Network Mechanisms Underlying Sleep-Dependent Memory 
Consolidation  

by 

Nicolette Nevena Ognjanovski 

 
Chair: Sara J. Aton 
 

 
Sleep is thought to play a critical role in promoting various forms of learning and 

memory, and is also thought to regulate plasticity in brain circuits in vivo.  In many 
human neuropathologies (e.g. Alzheimer’s disease, schizophrenia, and epilepsy) there 
exist both cognitive deficits as well as disrupted sleep patterns, suggesting that sleep is 
critically linked to cognitive function. However, the mechanisms underlying this 
relationship are poorly understood.   

 
The focus of this dissertation is to explore how sleep-associated effects on neural 

network activity affect the consolidation of contextual fear memory (CFM) in mice. In a 
contextual fear conditioning (CFC) paradigm, a single training trial pairs exposure to a 
novel environment with a foot shock.  Proper consolidation of CFM (a sleep-dependent 
process) leads to long-lasting fear memory exemplified as stereotyped freezing 
behavior when a mouse is put back into the same context 24 hours later.  Using a 
combination of behavioral analysis, electrophysiological recordings, new computational 
methods, and pharmacogenetic and optogenetic tools, I have investigated the role of 
sleep-associated CA1 network dynamics in promoting CFM. 

 
To characterize how activity patterns in CA1 during rapid eye movement (REM) 

sleep and non-REM (NREM) sleep might promote memory, I first recorded ongoing 
neuronal and network activity in CA1 during CFM consolidation.  I found that during this 
time, there are multiple changes occurring in the network: increases in neuronal firing 
rate, increases in delta (0.5-4 Hz), theta (4-12 Hz), and sharp-wave ripple (SPWR, 150-
250 Hz) oscillations, and increasingly stable functional communication patterns between 
neurons during NREM sleep. Because I also observed that fast-spiking (FS) 
interneurons show greater firing coherence with CA1 network oscillations during CFM 
consolidation, I next aimed to test whether these specific cells play a critical role in 
controlling sleep-specific oscillations and memory formation.  Using pharmacogenetics 
to transiently inhibit parvalbumin-expressing (PV+) FS-interneurons after learning, I 
found that these neurons are critical for the changes in CA1 associated with CFM 
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consolidation. Mice treated in this way show an absence of CFM. This effect is 
associated with loss of three network changes associated with normal consolidation: 1) 
augmented sleep-associated delta, theta, and SPWR oscillations, 2) long-lasting 
stabilization of CA1 neurons’ functional connectivity patterns and, 3) consistent NREM 
specific reactivation of ensembles of neurons in CA1.   

To further clarify the state-specific role of PV+ interneurons in CFM consolidation, 
I employed targeted optogenetic manipulations in CA1 following learning. I found that 
theta-frequency optogenetic stimulation of PV+ interneurons drives frequency-specific, 
rhythmic activity in the CA1 LFP associated with enhanced neuronal spike-field 
coherence. Optogentically induced coherent firing stabilized functional communication 
between CA1 neurons. Critically, rhythmic stimulation of CA1 PV+ interneurons is 
sufficient to rescue CFM from deficits caused by sleep deprivation. To test whether PV+ 
interneuron-mediated oscillations during sleep are specifically required for CFM, I 
optogenetically silenced these cells in a state-specific manner.  I found that PV+ 
interneuron activity during NREM sleep, but not wake or REM sleep, is critical for CFM 
consolidation.  This suggests that PV+ interneurons amplify NREM sleep-associated 
CA1 network oscillations to regulate spike timing in a manner that could promote 
systems-level memory consolidation.  

Together, this work sheds light on how sleep contributes to long-term memory 
formation, which has been a long-standing mystery in neuroscience. An understanding 
of these mechanisms may lead to targeted interventions for the multitude of 
neuropathologies where sleep quality and cognitive function are impaired. 

 

 


