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ABSTRACT 

50 years since the landmark 1964 Surgeon General’s report on smoking and health, 

cigarette smoking remains the leading preventable cause of death and disability in the United 

States. The success of epidemiology and public health in the study of cigarette smoking, both as 

an exposure as well as a health outcome, has offered rich datasets and mechanistic discoveries that 

provide opportunities for the evolution of epidemiologic methods. Specifically, advancing 

computational science approaches allow for novel applications of methodologies, such as agent-

based modeling or networks theory, in the epidemiological sciences to expand on existing 

knowledge. In this dissertation, we utilize approaches from epidemiology, statistics, computer 

science, and the philosophy of science to explore a range of hypothesized dynamics of smoking 

behavior that could contribute to changes in population-level smoking prevalence.  

We begin with a computational model that weighs the magnitude of the potential harms 

and benefits of electronic cigarette (e-cigarette or vaping) use from an adult smoking prevalence 

standpoint. We find that e-cigarettes can exert a much larger influence on smoking prevalence 

through routes of smoking cessation, as opposed to smoking initiation, if e-cigarette use remains 

primarily concentrated among current smokers. Conversely, e-cigarettes would need to behave as 

extremely effective gateways for smoking initiation, and never smokers would need to become e-

cigarette users at substantially higher levels than currently observed, for these products to 

independently generate increases in population-level smoking prevalence.  

Next, we explore how contextual and individual network factors and demographic 

covariates change the effect of peer influence on smoking behavior in the National Longitudinal 

Study of Adolescent to Adult Health (Add Health). Using stratified mixed effects models, we find 

that the magnitude of friendship influence on smoking initiation differs by school social network 

density. We additionally find that the contextual factors, rather than peer influence, may be 

stronger predictors of smoking cessation. The effect estimates of these factors on smoking 

cessation of also differ by network density. 
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Extending these results, we conclude with an abstract simulation of the hypothesized 

mechanisms that contribute to the outcomes of the stratified mixed effects model described 

previously. We find that network structure and peer influence are sufficient in combination to 

generate substantial differences in smoking prevalence by urbanicity, sex, and race, among US 

adolescents. These results provide evidence that support the potential for effect modification by 

network density on the hypothesized pathway between friendship influence and smoking behavior. 

While the field of tobacco control has been traditionally amenable to computational 

modeling approaches, few studies use computational modeling within an epidemiologic 

framework to provide support for hypothesized causal pathways that contribute to smoking 

behavior outcomes. Such perspectives are critical as the tobacco landscape continues to change 

with the introduction of new products, and as we gain a better understanding of the role that social 

networks play in the propagation of health behaviors. Through the integration of statistics, 

computational modeling, and epidemiologic methods, this dissertation seeks to provide insights 

into the potential causal pathways between various risk factors and smoking behavior outcomes. 

The results and discussions of this dissertation present potential avenues through which 

computational modeling can contribute added value to epidemiologic methods, in addition to our 

understanding of smoking behavior, beyond those of projection and evaluation.  
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CHAPTER 1 

 

Introduction 

 

The Health, Social, and Economic Impacts of Smoking 

50 years since the landmark 1964 Surgeon General’s report on smoking and health,1 

cigarette smoking remains the leading preventable cause of death and disability in the United 

States. Despite substantial evidence of the enormous public health burden of smoking behavior, 

more than 42 million Americans today continue to smoke, with 5.6 million adolescents under the 

age of 18  projected to die prematurely if smoking trends were to continue at 2014 rates.2 Although 

consistent declines in US smoking prevalence have been observed throughout the past two decades, 

these reductions have been inadequate, in aggregate, to achieve the Health People 2020 goal of 

12% smoking prevalence. Instead, experts estimate a more probable goal of 14% smoking 

prevalence.2,3 From an individual health perspective, researchers have established strong 

relationships between cigarette smoking and a variety of chronic diseases, including cancer, 

cardiovascular disease, and respiratory disease.2 With smoking behavior concentrated among those 

that are disabled, uninsured, and live below the poverty line, the social and economic costs of 

smoking are also immense.4 A 2015 study estimates that 170 billion dollars of annual healthcare 

spending in the US is attributed to illnesses associated with cigarette smoking, with approximately 

60% of the attributable spending paid for by publically funded programs, such as Medicare, 

Medicaid, and Veterans Affairs.5 

 

Tobacco Control Overview 

Continued health, social, and economic detriments of cigarette smoking behavior in the US 

has prompted numerous proposals since the 1960s to further decrease the public health burden of 

smoking. Addictive adult smoking behavior is known to begin with adolescent experimentation, 

with nearly 90% of adult smokers reporting experimenting with cigarettes before age 18, and 99% 

of adult smokers reporting experimenting with cigarettes before age 26.6 A recent Centers for
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Disease Control and Prevention (CDC) report indicates that adult smoking cessation rates have 

remained low for decades, with fewer than one in ten smokers reporting quit success in the past 

year.7 This figure is slightly lower than the 12% of smokers who report continued abstinence from 

smoking for two years in a 1997 study.8 With adolescent smoking experimentation predicting 

addictive adult smoking behavior and low adult smoking cessation rates, policies narrowly targeted 

to discourage adolescent initiation of smoking have proven to be most effective at decreasing the 

public health burden of smoking. Historically, the most effective tobacco control policy has been 

to increase the cost of cigarettes, 6,9–11 which provides a two pronged benefit of discouraging 

adolescent smoking initiation, and encouraging smoking cessation among current smokers.12 Other 

effective methods targeting smoking initiation have included banning point-of-sale advertising and 

implementing school-based intervention programs.9 However, despite reports of historical lows in 

adolescent smoking initiation, the elimination of smoking experimentation among adolescents 

remains elusive.13 With the large body of evidence supporting the progression of smoking 

experimentation in adolescence to addictive smoking in adulthood, concerted efforts to understand 

the interacting risk factors of smoking initiation in adolescents remains paramount.  

Interventions tailored for individuals have also demonstrated success in encouraging 

smoking cessation. For instance, managed care coverage of behavioral counseling and the use of 

pharmacotherapy methods such as nicotine patches, gums, and inhalers have been shown to 

increase the likelihood of smoking cessation.14 These efforts are additionally supported by 

population-based policies such as media campaigns, cigarette price increases, and smoke free 

indoor air policies.2,15 Yet while a number of studies report low population-level smoking cessation 

rates,15,16 there is groing evidence suggesting that cessation rates have increased since the 1990s,17 

and have increased among younger cohorts since then.18  

The various risk factors associated with adolescent smoking behavior range from personal, 

social, and environmental factors that interact to produce complex feedback systems.6,19–22 Central 

to the understanding of smoking initiation in adolescence are the effects of friendship selection 

and peer influence,23–26 the latter of which has been demonstrated to have greater effects in 

adolescence than in adulthood.27 Given that social factors function within a broader context of 

regional tobacco control policy differences,28 their potential interaction with other contextual and 

individual risk factors29,30 requires a multifaceted and coordinated approach to understand how to 

best address continued smoking experimentation in adolescence. Additionally, the evolving 
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tobacco product landscape creates new uncertainties and complexities in tobacco control policy 

and research. Recent governmental funding cuts that threaten to eliminate effective tobacco 

prevention programs at the CDC31 have resulted in an renewed urgency to develop more and 

narrowly focused endgame strategies, particularly targeted towards youth, in order to sustain 

continuing declines in adult smoking prevalence now and into the future.  

 

Electronic Cigarettes 

A potentially detrimental barrier for adolescent-focused prevention strategies has been the 

introduction of electronic cigarettes (e-cigarettes) to the US tobacco market. These products are a 

diverse product class, although they typically contain a battery-operated vaporizing device that 

produces inhalable nicotine vapors, along with a range of other additives that differ depending on 

the brand of e-cigarette.32 One study in January 2014 counted 466 brands in 7,764 unique flavors 

of e-cigarette products,33 with approximately 30-50% of e-cigarette sales occurring through online 

retail.34 Although e-cigarettes are currently regulated by the Food and Drug Administration (FDA) 

through age accessibility, marketing, distribution, and manufacturing restrictions, they are not as 

stringently regulated as traditional cigarettes.32 The relatively recent introduction of e-cigarettes 

means that its long-term effects remain unknown.  However, the contentious nature of introducing 

cigarette-like products with addictive properties to the market has prompted numerous studies 

exploring the potential short-term effects of e-cigarette use on smoking behavior and health.  

Important to the topics of this dissertation, inconsistent results have been found regarding 

whether e-cigarettes can act as harm reduction products,35–38 which help current smokers stop 

smoking, or if they may induce more harm by allowing current smokers sustain nicotine addiction 

or act as a gateway that encourages traditional smoking initiation among individuals that would 

have otherwise remained non-smokers.39–41 One key point of agreement across most published 

studies exploring e-cigarette use patterns has been that their prevalence and incidence are 

concentrated among current cigarette smokers and adolescents.42–45 Between the years 2011-2015, 

e-cigarette use is reported to have increased 900% among high school students.32 Concerns related 

to the potential for e-cigarettes to encourage adolescents to begin smoking through nicotine 

addiction pathways has fueled a rancorous debate within the tobacco control community weighing 

in on the merits of an expanding body of research studying the health impacts of e-cigarette use.  
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Computational Models in Tobacco Control  

Changing landscapes of nicotine delivery product use patterns, such as the boom in e-

cigarette use prevalence, have created additional dimensions of complexity for tobacco control 

researchers and experts. In recent decades, advancing computational power provides new avenues 

to better disentangle the cultural, social, and policy factors that contribute to sustained smoking 

behavior. Dynamical systems and simulation modeling play an important role in the development 

of tobacco control policy across a broad range of applications. These models traditionally include 

quantitative assessments of current and new tobacco control policies, along with smoking 

prevalence and incidence prediction models.2 Utilizing computational modeling methods allows 

researchers to incorporate the dynamic and multifaceted complexities associated with smoking 

behavior, while additionally considering feedback mechanisms.46 Various smoking models are 

widely cited and utilized in the development of effective tobacco control policy, given their utility 

to predict, project, and describe the complex phenomena associated with smoking behavior.46–48 

They are particularly useful when data is incomplete or missing and expensive to obtain.49 

Among the most notable example within tobacco models is the Mendez-Warner Model.50 

Published first in 1998, the model simulated adult smoking prevalence using data from the 

National Health Interview Survey (NHIS) and acted both as an exploratory model of the 

mechanisms contributing to observed adult smoking prevalence, and as a projection model of 

future smoking prevalence. It suggested that the perceived plateau in smoking prevalence declines 

in the early 1990s were likely due to measurement error rather than a stall, and that smoking 

prevalence would likely decrease into the future because of continually decreasing initiation rates 

relative to the stable cessation rates that had been historically observed. Mendez and Warner 

validated this 1998 model in a 2004 paper,51 demonstrating that the original model provided 

accurate future predictions of smoking prevalence declines, and reiterated the importance of 

addressing slowing decreases in smoking prevalence.  

The Sim Smoke Model52–55 is also commonly used as a framework to determine the 

potential long-term outcomes of various policy initiatives focused on decreasing smoking initiation 

and prevalence. This model simulates the outcomes of a range of tobacco control policies, such as 

taxation, smoke-free air laws, strategies to reduce youth access to cigarettes, mass media policies, 

among others. For each policy module, researchers can modify parameters associated with the 

magnitude and direction of the expected effect change on smoking initiation and prevalence, and 
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project the long-term smoking initiation and cessation outcomes of these policies.2 An additional 

model, the smoking Control Dynamic Model56 takes a different perspective on tobacco control, 

and focuses primarily on the prediction of smoking cessation behavior. Finally, the National 

Cancer Institute supports the Cancer Intervention and Surveillance Modeling Network (CISNET), 

which has developed a range of computational models addressing a variety of smoking focused 

research questions. These models estimate the attributable decreases in US lung cancer mortality57 

and overall mortality57,58 associated with population declines in smoking, and also provide 

estimations of birth-cohort specific smoking histories.18 Other smoking models have focused on 

the diffusion of adolescent smoking behavior in social networks,59 and the dynamics of pro- and 

anti- tobacco policy forces on the patterns of tobacco use.2 However, most of these models ignore 

the complex effects of social networks and population feedbacks on the dissemination of smoking 

behaviors, which can contribute to substantial differences in the patterning of smoking across 

population groups.  

A primary benefit in the application of computational modeling and simulation is the ability 

to modify parameters of the model to determine a range of possible outcomes. The flexibility of 

modeling allows researchers to explore counterfactual scenarios and examine how and to what 

extent the projections of smoking behavior and smoking prevalence can change over time in 

dynamic populations (e.g., accounting for death and birth). Thus, the challenges of tobacco control 

creates an environment that is, and has been, especially amenable to computational modeling 

methods. An overarching theme emerges in a broad overview of prior tobacco control models, 

which is a focus on quantifying the impact of smoking behavior in various contexts, as measured 

by smoking prevalence, morbidity, mortality, and economic impacts.49 Additionally, modeling 

studies in the tobacco control literature generally seek to capitalize on data that can provide reliable 

and representative measures of a population.46 Various data-driven statistical analysis techniques 

are often used within the frameworks of simulation models, such as choosing parameters that 

minimize the sum squared differences between the model estimates with empirical data, or other 

goodness of fit statistics.2,18,50 Advancing computational power, bigger and better data, and new 

statistical modeling techniques for parameter estimation has allowed tobacco control modeling to 

solidify its place in prediction and projection models of smoking behavior that account for a variety 

of topics, including policy, intervention, and demographic changes. However, the tendency for 

tobacco control models to focus on the benefits of modeling for outcome prediction and estimation 
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overshadows the additional benefits of modeling. These benefits include the ability of 

computational models to test the theoretical mechanisms posited by data-driven methods to better 

understand the pathways connecting complex risk factors with smoking behavior.  

 

Towards an Interdisciplinary Approach 

The success of epidemiology and public health in the study of cigarette smoking has 

presented a unique opportunity in the evolution of epidemiologic methods and understanding of 

pathways between the risk factors and health outcomes of smoking behavior, particularly when 

accounting for new technology and methodologies capable of handling large amounts of data and 

computation. That is, in the context of such rich literature over decades of focused energy on 

tobacco control, we can quantitatively test hypothesized causal mechanisms contributing to 

various facets of smoking behavior that contribute to adult smoking addiction and population level 

smoking prevalence. The intersection of statistical methods, computational modeling, and 

epidemiologic principles and theory provide a unique and valuable addition to existing models in 

tobacco research. When combined, these methods provide the resources to identify and disentangle 

the behavioral, environmental, and social structures that perpetuate smoking initiation, encourage 

smoking cessation, modulate response to policies and conversely to tobacco industry marketing, 

and generate changes to population-level smoking patterns. This dissertation seeks to connect the 

existing tobacco control literature with computational models that add theoretical value beyond 

prediction and counterfactual effect estimation.  

 

Dissertation Overview 

In a 2008 paper, Josh Epstein suggests 16 reasons other than prediction to build models.60 

This dissertation applies a subset of these reasons towards a better understanding of smoking 

behavior, specifically, to 1) bound outcomes of plausible ranges; 2) illuminate core uncertainties; 

3) illuminate core dynamics; and 4) challenge the robustness of prevailing theory through 

perturbations. The second chapter of this dissertation presents a computational model that weighs 

the magnitude of the potential harms and benefits of e-cigarette use from an adult smoking 

prevalence standpoint, bounded by the possibilities of current population demographics. The 

recent introduction of e-cigarettes to the US marketplace also offers an opportunity to illuminate 

the core uncertainties that remain in the e-cigarette literature, and what these uncertainties can 
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mean for future adult smoking prevalence more generally. Chapter 2 concludes by discussing how 

computational models that have predictive capabilities can also illuminate the core dynamics that 

generate observed patterns of smoking prevalence. These results emphasize the mechanisms of the 

model, rather than the absolute magnitude of model outcomes, which pave the path for further 

mechanistic explorations in the third and fourth chapters of my dissertation.  

Chapters 3 and 4 tie together existing epidemiologic analysis methods with computational 

models to suggest a new way to substantiate hypothesized causal pathways of social influence on 

smoking behavior. Chapter 3 uses mixed effects and stratified analyses to identify potential effect 

modification by network density on the hypothesized causal pathway between adolescent peer 

influence and future adult smoking behavior. The results from Chapter 3 provide a causal 

hypothesis that we test in Chapter 4 using an agent-based model (ABM). There, we build a 

sufficient cause framework for the contextually patterned effects of social influence on smoking 

behavior. In the concluding chapter, we summarize our findings from Chapters 2 through 4 to 

suggest a different role for which simulation models, along with data-driven statistical counterparts, 

can coalesce to contribute added value to the epidemiologic methods literature.   

 

Discussion 

The content of this dissertation rests at the interface of epidemiologic methods, statistical 

methods, computational modeling approaches, and the philosophy of science, seeking to generate 

new insights into a range of hypothesized causal processes contributing to smoking behavior, while 

additionally providing approaches that seek to answer how best to dampen smoking initiation and 

promote smoking cessation in the US. Specifically, the goal of these dissertation chapters is not 

necessarily to add to the existing (large) body of population- or individual- level prediction models 

of smoking incidence and prevalence, but rather, to illuminate the mechanisms that drive the 

outcomes of the existing models of smoking behavior. In contrast to data-driven models, where 

associations can be confounded by theoretically infinite factors, computational models are closed-

solution, where all possible outcomes of the model are a result of the explicitly programmed 

assumptions. However, this doesn’t suggest that outcomes of computational models are known a 

priori. Complexity of a system can emerge from simple mechanisms and model assumptions. The 

outcomes of these models can vary widely depending on the model parameter values, and must 

also depend on statistical models to identify the best ways to apply scientific theory of causal 
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pathways to public health practice. This work additionally seeks to highlight the benefits of 

systems science modeling in epidemiology, and explicitly demonstrates ways in which carefully 

crafted computational models can support existing epidemiologic theories and frameworks, and 

reveal abstract, yet testable, pathways between risk factors and smoking behavior that can be 

obfuscated in the scientific process of data-driven analysis.  

Given the social, cultural, environmental, and economic aspects of smoking epidemiology, 

adolescent smoking behavior and adult smoking behavior are inexorably intertwined, both in the 

present and in the future. Interventions should not only focus on adolescents and other specific risk 

groups, but also find ways to target these risk groups while addressing broader social and policy 

environments that encourage feedbacks to influence other population groups. In other words, 

understanding and revealing the mechanisms that contribute to the complex landscape of cigarette 

smoking within certain risk groups can result in broader changes to smoking behavior beyond that 

risk group. Identifying and understanding how these mechanisms work will not only guide future 

empirical research, but also provide insights for policymakers seeking to develop effective tobacco 

control measures that are narrowly focused towards population subsets that can subsequently 

benefit broader population health through mechanisms of behavioral diffusion.
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CHAPTER 2 

 

Electronic Cigarettes: Modeling the Implications for Future Adult Smoking Prevalence 

 

Background 

Agent-based models (ABMs) have been used across a wide variety of disciplines to explore 

the ways in which macro-level phenomena can be driven by micro-level interactions between 

individuals and their environment. They are especially well suited for modeling individual-to-

individual or individual-to-environment feedback mechanisms and adaptation given their bottom-

up framework. Many have emphasized the utility of ABMs in the practice of epidemiology and 

public health when examining causal inference.1–4 A recent Institute of Medicine (IOM) report 

highlighting the value of ABMs in tobacco research concluded that the use of ABMs has not been 

fully explored in the tobacco regulatory space,5 despite their more common application in other 

public health areas (e.g., obesity6–8 and infectious disease9).  

ABMs differ philosophically and programmatically from traditional compartmental 

models often used in epidemiological research. Philosophically speaking, ABMs seek to explain 

outcomes from an individual-level and generative perspective (e.g., feedbacks, adaptations, 

evolution), while compartmental models explain outcomes from an aggregate (i.e., group) 

perspective. Thus, ABMs can be more amenable to research questions that focus on individual 

level behavior, particularly when identifying the important mechanisms of individual behavior that 

generate the patterns of population outcomes. In this chapter, we develop an ABM of traditional 

cigarette smoking (smoking) and e-cigarette use to examine how, and to what extent, different 

levels of e-cigarette effects on adult smoking behaviors (i.e., smoking initiation and cessation) 

generate changes to population-level smoking patterns under a range of hypothetical scenarios. 

We simulate the potential population-level outcomes generated from individual-level e-cigarette 

use under combinations of the following scenarios: 1) e-cigarettes inhibit smoking cessation; 2) e-

cigarettes support smoking cessation; 3) e-cigarettes encourage smoking initiation; and 
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4) e-cigarettes discourage smoking initiation. There are two objectives for this chapter, one focuses 

on the development of a practical model to address a scientific question, and the other focuses on 

the mechanisms that generates model outcomes. First, practically, the model building process and  

exploration presented in this chapter seek to determine to what extent e-cigarette effects on 

traditional smoking behavior can change cigarette smoking prevalence outcomes under a variety 

of potential scenarios. Second, methodologically, this model is built with complex mechanistic 

assumptions, which is disentangled in the results of the model, along with the sensitivity analyses, 

to better understand our model outcomes.  

 

Introduction 

E-cigarette use has increased substantially in recent years, from 1.0% of U.S. adults 

reporting ever using e-cigarettes in 2009 to 13% in 2013.10,11 The prevalence of current e-cigarette 

use among U.S. adults has also grown from 0.3% in 2010 to 6.8% in 2013.10 To date, almost all 

research examining e-cigarette use by smoking status has shown that current smokers are more 

likely to currently use, initiate use of, and experiment with e-cigarettes.11–15 While the majority of 

current e-cigarette users are also current cigarette smokers, nearly a third are former or never 

smokers.10,16 The rapid increase in e-cigarette use is of growing concern to public health authorities 

as e-cigarettes are being marketed as smoking cessation aids and safe alternatives to traditional 

cigarettes17, without consistent scientific evidence supporting these claims. Some experts believe 

that e-cigarettes have the potential to reduce the toll of cigarette smoking on population health,18 

while others are concerned that e-cigarettes may weaken tobacco control efforts by renormalizing 

smoking behavior and serving as a gateway for cigarette smoking initiation among young adults.19  

While public health surveillance efforts continue to monitor rates of e-cigarette trial and 

experimentation, particularly among youth20, longitudinal data evaluating the long-term effects of 

continued or current e-cigarette use on traditional cigarette smoking cessation or initiation in youth 

and adult populations are not yet available. Two small randomized controlled studies, both lasting 

less than two years, suggest that e-cigarette use among cigarette smokers increases smoking 

cessation relative to placebo e-cigarettes, with efficacy comparable to other cessation aids.21,22 

Conversely, one recent longitudinal study found an association between ever use of e-cigarettes 

and initiation of cigarette smoking among high school students in Los Angeles, suggesting that 
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gateway effects may indeed exist.23 However, most evidence of e-cigarette initiation and cessation 

relies on self-reported smoking behaviors and convenience samples with known limitations.11,24  

In the absence of robust, longitudinal empirical data, computational models can support 

decision-making by investigating a range of possible outcomes under different scenarios,25 and 

exploring the underlying properties of a system that contribute to the model results. An ABM 

approach is particularly amenable to questions of smoking and e-cigarette use given the potential 

for behavioral feedback dynamics to occur as individuals experiment with new products. The 

likelihood of e-cigarette initiation differs by individual characteristics such as smoking status and 

propensity to try e-cigarettes as the product becomes more popular, which can drive changes to e-

cigarette use prevalence and incidence at the population level.  

 

Methods 

This model is developed using an ABM framework that simulates cigarette smoking as 

well as e-cigarette use. We used data from the National Health Interview (NHIS)26, the U.S. 

Census27, the CDC20,28, the Cancer Intervention and Surveillance Modeling Network 

(CISNET)29,30, in addition to epidemiological, clinical, and modeling studies.10,11,16,31–33 This 

model simulates a population of U.S. adults, aged 18 to 85, and their smoking and e-cigarette use 

status starting in the year 1997 and ending in 2070. The model has four binary (yes/no) nicotine-

use states: 1) exclusive e-cigarette user (e-cigarette user), 2) exclusive cigarette smoker (smoker), 

3) dual user of both e-cigarettes and cigarettes (dual user), and 4) never user of either product 

(never user). A model diagram illustrating all possible nicotine use states and transitions is 

presented in Figure 2.1.  

Individuals’ smoking status affects their transitions between nicotine-use states and their 

probability of death each year. Reflecting our input data sources, we define current e-cigarette use 

in this model as any individual using e-cigarettes every day or some days. We define current 

smoking as having smoked at least 100 cigarettes in one’s lifetime and currently smoking every 

day or some days. E-cigarette use is assumed to emulate smoking status, with transitions from 

never user to current user, to former user. Age-specific smoking cessation rates in the model are 

based on CISNET estimates, which assume that individuals have quit for at least two years with 

no relapse. We assume no relapse back to e-cigarette use once an individual quits e-cigarette use. 

Individuals in the model do not initiate smoking after age 30, consistent with evidence showing 
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almost no smoking initiation beyond that age.34 It is also assumed no e-cigarette initiation beyond 

age 30, given dramatically higher rates of e-cigarette initiation and current use among young adults 

(age ≤ 25) compared to older adults.10,11,35 This assumption places a conservative bound on the 

magnitude of decline to population-level smoking prevalence due to positive e-cigarette effects on 

smoking cessation. The annual probability of quitting e-cigarettes is set to 0.026, reflecting annual 

population smoking cessation rate estimates in 2009.36 Consistent with observed patterns of e-

cigarette use, never and former smokers in this model are 15 and 6 times less likely than current 

smokers, respectively, to initiate e-cigarette use, which closely approximates data on reported e-

cigarette prevalence.10,16 We performed additional sensitivity analyses around our assumption of 

these values, with the outcomes presented in Appendix A4.2. Finally, this chapter focuses on the 

impact of e-cigarettes on estimated adult smoking prevalence, so no further negative health effects 

due to e-cigarette use independent of their effects on cigarette smoking behavior are assumed, 

despite a growing body of literature suggesting that e-cigarettes may be independently less harmful 

than smoking.37  

Figure 2.1 Model diagram illustrating all possible nicotine use states (i.e., excludes age, which is 
considered a separate state), transition pathways, and descriptive transition rates between states. Our 
model assumes that death rates change only by smoking behavior, and not by e-cigarette use (see model 
assumptions subsection in the methods section of this chapter). 
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At each time step, every simulated person ages by one year and either stays in the current 

nicotine-use state, moves to a different state (e.g., a never smoker starting to smoke), or dies. 

Movement between nicotine-use states are probabilistic and determined by a combination of: 

individual age, empirical data on the risk of transition from one state to another (e.g., the annual 

probability that a 22 year-old non-smoker, current e-cigarette user, initiates smoking), and model 

parameters representing e-cigarette effects. Every year, new 18 year-olds enter the population 

through a “birth rate” that reflects the 1997 birth rate as reported by the CDC.28 In order to account 

for early youth initiation of e-cigarettes,10,20 approximately 14% of 18 year-olds enter the 

population as current e-cigarette users, regardless of smoking status, beginning in 2009. Table 2.1 

presents model parameter descriptions used in this chapter, along with the range of values for these 

parameters that this model explored. The model scenario that generates the lowest smoking 

prevalence would simulate a 200% increase in smoking cessation rates with a 100% decrease to 

smoking initiation due to e-cigarettes (i.e., 3 times greater cessation and no smoking initiation). In 

contrast, the scenario that would generate the highest smoking prevalence would simulate a 100% 

decrease in smoking cessation rates with a 200% increase in smoking initiation (i.e., no smoking 

cessation and 3 times greater smoking initiation). Please refer to Appendix A for a complete model 

description, pseudo-code, as well as a list of all model parameters, equations, and citations for the 

assumptions and rules governing the model.  

To achieve baseline estimates of future smoking prevalence, we calibrated a “smoking only 

model” to historical and projected smoking estimates in the U.S. using data from NHIS and 

CISNET.29,30 For the years 1997-2013, smoking prevalence estimates from this model were within 

the 95% confidence intervals for smoking prevalence as reported by NHIS for all years except in 

2002. Next, to calibrate e-cigarette use prevalence by smoking status to the current literature, we 

incorporated e-cigarettes in a “baseline” model. The baseline model simulates e-cigarette initiation 

and cessation using a time-based sigmoidal function representing the rapid uptake of e-cigarettes 

in the population and eventual plateau due to saturation, analogous to the diffusion of innovations 

theory often used in systems science research.38 Using this sigmoid function, the e-cigarette 

initiation rate among current smokers is low in 2009, two years after the first introduction of e-

cigarettes into the U.S. market, and when empirical research of e-cigarette use first begins to 

emerge.39 This initiation rate then grows exponentially until 2016, when the initiation rate plateaus 

to a maximum level that is then held constant until the end of our simulations in 2070 (the timing 
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and level of the plateau are tunable model parameters). The baseline model assumes no e-cigarette 

effects on smoking behavior to serve as a platform for experiments examining the independent e-

cigarette effects on smoking prevalence. Appendix A also presents full calibration outcomes, 

discussion of these outcomes, detailed parameter descriptions and values, and additional 

information about the sigmoidal function referenced in this section.  

 
Table 2.1 Subset of primary model parameters and descriptions. 

Parameters† Description 
Smoking Cessation Rate Yearly age-specific smoking cessation rates [1997-2070]28 
Smoking Initiation Rate◊ Yearly age-specific smoking initiation rates [1997-2070] 

E-Cigarette Smoking Cessation Effect* 

E-cigarette effect on smoking cessation [-100% to 200%]. Effects represent the 
percentage change relative to baseline, where values less than 0% are decreases 
in smoking cessation rates (e.g. -50% effect is equal to a reduction of the 
baseline smoking cessation rate by half); values greater than 0 are increases in 
smoking cessation rates (e.g. 200% effect is equivalent to 3x the baseline 
cessation rate) 

E-Cigarette Smoking Initiation Effect* 

E-cigarette effect on smoking initiation [-100% to 200%]. Effects represent the 
percentage change relative to baseline, where values less than 0 are decreases 
in smoking initiation rates (e.g., -50% effect is equal to a reduction of the 
baseline smoking initiation rate by half); values greater than 0 are increases in 
smoking initiation rates (e.g., 200% effect is equivalent to 3x the baseline 
initiation rate) 

E-Cigarette Initiation Sigmoid Function◊ E-cigarette initiation rate is derived from a time-based sigmoidal function to 
mimic the rapid uptake of e-cigarettes with growing use (theory of innovations) 

E-cigarette Quit Rate◊ Rate at which e-cigarette users quit using e-cigarettes 
Maximum Age of E-Cigarette Initiation◊ Maximum age that an individual can initiate e-cigarette use 
Maximum Age of Cigarette Initiation Maximum age that an individual can initiate traditional smoking behavior33 

Death Rate◊ Death rates based on smoking status (i.e., relative risk of mortality among 
former smokers, never smokers, and current smokers)  

†All parameter descriptions, citations, and parameter values can be found in the supplementary material  
*Experimental parameters 
◊Evidence and assumptions derived from a combination of recent peer-reviewed studies 

 

After establishing the baseline model, we performed experiments allowing e-cigarette use 

to alter the rate of smoking initiation, smoking cessation, or both, to assess the outcomes of the 

potential harm-inducing and harm-reducing effects of e-cigarettes. While holding the parameters 

that determine e-cigarette use prevalence by smoking status constant, we modify e-cigarette effects 

on smoking initiation and cessation with increases of 0% to 200%, or decreases of 0% to 100%, 

relative to baseline (i.e., no effect) rates. E-cigarette use effects below 100% result in decreases to 

annual baseline estimates of smoking initiation and cessation, while e-cigarette effects above 100% 

result in increases to annual baseline estimates of smoking initiation and cessation. For example, 
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with an e-cigarette cessation effect of 200%, a 30-year-old smoker would increase their annual 

probability of quitting traditional cigarettes from a baseline of 0.02629 to 0.078.  

To assess the robustness of our results and to examine unexpected changes to the model 

resulting from the interaction of parameters, we performed sensitivity analyses exploring how the 

parameters governing the operationalization of our model assumptions changes the model 

outcomes. We additionally investigated the potential effects of e-cigarettes on adolescent smoking 

outcomes, and the subsequent implications for adult smoking prevalence. Sensitivity of the model 

outcomes to parameter settings were explored in scenarios with and without e-cigarettes to identify 

any potential interaction abnormalities: 1) maximum age at e-cigarette initiation, 2) rate which e-

cigarette initiation rates increase over time, 3) maximum probability of e-cigarette initiation, 4) 

amount of time from e-cigarette introduction to maximum e-cigarette initiation, and 5) smoking 

cessation rates by birth cohort.   

 

Results 

Figure 2.2 shows projected population e-cigarette prevalence by smoking status from 2010 

to 2070 using the baseline smoking model (i.e., e-cigarettes have no effect on smoking initiation 

or cessation), which is fit to match past and present data, projected into the future.26,31 E-cigarette 

use outcomes from 2010-2014 are fit to existing e-cigarette use literature by smoking status,10,16 

whereas future projections of e-cigarette use are based on the e-cigarette initiation and cessation 

parameters generated from the process of model fitting and the assumptions described previously. 

For all groups, e-cigarette prevalence increases steadily over time except among current smokers 

whose e-cigarette use prevalence plateaus. Rising population e-cigarette prevalence in the baseline 

model is primarily driven by current smokers in earlier years and then by former and never smokers 

in later years. While most e-cigarette users remain former and current smokers, the baseline model 

also projects a continued rise in e-cigarette use prevalence among never smokers.  

Figure 2.3 shows smoking prevalence outcomes resulting from seven hypothetical 

scenarios of e-cigarette effects on smoking behavior, assuming e-cigarette use patterns described 

in Figure 2.2. This includes the baseline scenario that assumes no e-cigarette effects on smoking 

behavior and hypothetical scenarios of e-cigarette effects to the baseline scenario. A 20% decrease 

in smoking cessation due to the introduction of e-cigarette use (i.e., addiction-sustaining effects), 

increases smoking prevalence in 2060 by approximately 7.5% compared to baseline smoking 
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prevalence estimates, bringing smoking prevalence from an initial baseline projection of 13.4% to 

14.4%. In the case that e-cigarettes increase smoking initiation by 20% (i.e., addiction inducing 

“gateway” effects), smoking prevalence would increase by 0.8% in 2060 compared to baseline 

(13.4% to 13.5%). Under the assumption that e-cigarettes aid smoking cessation, a 20% increase 

in smoking cessation due to e-cigarettes generates a 6% reduction in smoking prevalence compared 

to the baseline scenario (13.4% to 12.6%). 

 
Figure 2.2 E-cigarette use prevalence by smoking status (extended baseline model). Includes e-cigarette 
initiation and cessation, with no e-cigarette effects on smoking. 
 

In contrast, e-cigarettes would have to increase smoking initiation by over 200% in the absence of 

any effect on smoking cessation to generate a 6% increase to baseline smoking prevalence. Overall, 

we observe that e-cigarette effects on smoking cessation, by either increasing or decreasing 

cessation, generate substantially larger changes to population-level smoking prevalence by 2070 

than e-cigarette effects on smoking initiation in this model. Figure 2.4 shows smoking prevalence 

projections in 2030 and 2060 relative to baseline model outcomes under varying e-cigarette effects 

on smoking cessation (horizontal dimension) and smoking initiation (vertical dimension). Values 

above 1.0 (i.e., 100%) are increases to smoking prevalence relative to the baseline scenario, and 

values below 1.0 are reductions to smoking prevalence relative to baseline. The baseline scenario 

estimates 14.3% and 13.4% smoking prevalence for the years 2030 and 2060, respectively. There 
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is an absence of major variation by e-cigarette effects on smoking initiation (along the vertical 

axis), suggesting that population smoking prevalence is driven primarily by e-cigarette effects on 

smoking cessation.  

Figure 2.3 Baseline smoking projections and select model scenarios of e-cigarette effects on smoking, 
2010 to 2070. 
 

For instance, if e-cigarettes increase both smoking initiation and cessation by 50%, we 

estimate smoking prevalence to be approximately 90% of baseline estimates in 2060. In other 

words, despite equal effects on smoking initiation and cessation, e-cigarettes would generate lower 

smoking prevalence in 2060. If e-cigarettes increase smoking cessation by 100% (i.e. double the 

likelihood of cessation), assuming baseline smoking initiation values, the smoking prevalence 

would reduce by 23% relative to baseline. A similar change in e-cigarettes effects on smoking 

initiation (i.e. they increase smoking initiation by 100%) increases baseline smoking prevalence 

by 1.03 times, or 3%, when assuming baseline cessation values. The figure also shows greater 

variation in smoking prevalence in 2060 than in 2030. These patterns emerge because e-cigarette 

prevalence among never smokers, current smokers, and former smokers changes over time, 

resulting in changes to the size of exposure groups (i.e., those who are e-cigarette users). 
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Additionally, projected smoking prevalence declines from 2030 to 2060, thus modifying the 

relative share of the population that are eligible to quit smoking (smokers) and start smoking (never 

smokers).  

 
Figure 2.4 Smoking prevalence projections relative to baseline prevalence by e-cigarette effects on 
smoking initiation and cessation, 2030 and 2060. 

 

Figure 2.5 shows smoking prevalence in 2060 relative to baseline scenario by prevalence 

of e-cigarette use among never smokers (y-axis) and e-cigarette cessation effects (x-axis). The 

panels assume 10%, 50%, 100%, and 200% increases to individual smoking initiation rates due to 

e-cigarette use (i.e. addiction inducing “gateway” effects). Assuming e-cigarette exposure 

increases the likelihood of smoking initiation, the changing color gradient in the vertical dimension 

for Figures 2.5A-2.5D shows that projected smoking prevalence is higher relative to baseline with 

increasing e-cigarette use among never smokers. The panels illustrate that unless e-cigarettes 

increase smoking initiation by more than 100% (i.e., 2 times baseline smoking initiation), they 

have almost no noticeable effect on smoking prevalence, even if e-cigarettes prevalence reaches 

60% in never smokers. In the case that e-cigarettes increase initiation rates by 200% (Figure 2.5D), 

approximately 50% of never-smokers would need to use e-cigarettes to increase smoking 

prevalence by 15% compared to baseline. In this same scenario, if e-cigarette use prevalence is 
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less than 20% among never smokers, smoking prevalence increases by approximately 4%-6% 

relative to baseline regardless of the smoking cessation effects of e-cigarettes. E-cigarette effects 

on smoking cessation (horizontal gradient) become more noticeable in this extreme scenario at 

higher levels of e-cigarette use prevalence in never smokers, suggesting a feedback between 

smoking initiation and smoking cessation effects of e-cigarettes, where e-cigarettes can lead to 

smoking initiation first, and then also to higher rates of smoking cessation.  

Figure 2.5 Smoking prevalence projections relative to baseline prevalence by e-cigarette prevalence 
among never smokers and effects on smoking cessation, 2060. Panels A-D show relative changes to 
smoking prevalence assuming e-cigarettes increase smoking initiation rates by 10%, 50%, 100%, and 
200%. 
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Results from sensitivity analyses across a range of parameters and parameter values 

suggest that our model assumptions do not substantially change our main results. Given concerns 

that e-cigarettes behave may act as a gateway for adolescents to begin smoking combustible 

cigarettes, we ran additional analyses to investigate the range of possible smoking outcomes 

resulting from e-cigarette use among adolescents before age 18. If we assume that youth e-cigarette 

use increases the likelihood of smoking initiation before age 18 by 200% (i.e., relative risk of 3.0), 

compared with never users of e-cigarettes, while having no effect on smoking cessation in the 

population, our model estimates that adult smoking prevalence would reach 16.6% in 2060. This 

is a 23.8% increase from the corresponding estimate in our baseline model (13.4%), which assumes 

no e-cigarette effects on initiation or cessation. Our original adults-only model shows that if e-

cigarette use increases the likelihood of smoking initiation by 200% with no impact on cessation, 

smoking prevalence would reach 14.1% by 2060—a much smaller increase of 4.7% relative to 

baseline. However, our primary objective was to evaluate population-level outcomes that consider 

e-cigarette effects on both smoking initiation and cessation. If e-cigarette use increases smoking 

cessation by 200% among adults, while also increasing smoking initiation by 200% among both 

adolescents and adults, our model estimates that smoking prevalence would drop to 10.3% by 

2060—a 23.1% decrease compared with baseline. Thus, even when the model accounts for large 

initiation effects whereby youth and adult smoking initiation rates escalate due to e-cigarettes, the 

cessation effects of e-cigarettes on adult smoking offset these undesirable “gateway” effects. This 

is consistent with the results of the portion of this study that study focuses primarily on adults.  

The largest variation in smoking prevalence outcomes due to e-cigarettes occur when using 

birth cohorts earlier than the one used in the baseline model (1970). These cohorts were observed 

to have much lower rates of smoking cessation30, and thus generated smoking prevalence trends 

much higher than current and future predictions.31,34,40 The sensitivity analyses generated similar 

(relative) results to our main model results when exploring a range of values for parameters 

governing the maximum age at e-cigarette initiation, rates of adoption of e-cigarettes, the period 

over which e-cigarette adoption occurs, and the amount of time from e-cigarette introduction to 

maximum e-cigarette initiation. We also tested the sensitivity of our model to the assumption of 

decreasing age-specific initiation over time. We began by setting age-specific smoking initiation 

rates static to 1997 values. Then, we performed parameter sweeps across a range of e-cigarette 

effects on smoking initiation and smoking cessation. We observed that, relative to decreasing 
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initiation rates, static and high initiation values could be responsible for a greater range of smoking 

prevalence values by 2060 due to e-cigarette effects on smoking behavior (Figure A3). However, 

we continue to observe larger cessation effects of e-cigarettes relative to e-cigarette initiation 

effects on population smoking prevalence over time. From this figure, we also observe that a higher 

static initiation rate also results in larger changes to the initiation effects of e-cigarettes. These 

patterns were dampened when assuming decreasing smoking initiation rates over time (i.e., in the 

vertical axis of the heatmap). Additional discussion of sensitivity analyses and their results are 

available in the Appendix A and Figures A3-A10 of this dissertation. 

 

Discussion 

Under a variety of hypothetical scenarios of the possible effects of e-cigarettes on smoking 

behavior, our model shows that smoking prevalence is far more sensitive to e-cigarette effects on 

smoking cessation than on smoking initiation. Additionally, given current values of population 

smoking initiation and cessation and the relative prevalence of e-cigarette use between never, 

current and former smokers, if e-cigarettes induce smoking in never smokers, even small increases 

in smoking cessation due to e-cigarettes would counteract the potential negative impact on overall 

population smoking prevalence. Finally, if e-cigarettes decrease smoking cessation by allowing 

current smokers to continue smoking, population smoking prevalence could increase considerably.  

The results from our model are largely due to three main mechanistic factors that arise from 

our assumptions. First, we assumed relatively high rates of e-cigarette initiation among current 

smokers compared to never smokers in light of current evidence from the literature.10,16 

Accordingly, there are more smokers than never smokers using e-cigarettes in the simulated 

population, which means that there are more smokers susceptible to benefit from potential smoking 

cessation effects of e-cigarettes compared to the number of never smokers that could be affected 

by their potential effects on smoking initiation. Second, declining smoking initiation rates in the 

baseline scenario5,12,29 generate small effect outcomes of e-cigarettes on smoking initiation rates 

among never smokers. That is, we multiply e-cigarette effects in the model by the underlying 

smoking initiation and cessation rates (e.g. 1.5 times initiation rate). Given declining smoking 

initiation rates, even a 200% increase in smoking initiation results in relatively small absolute 

changes to annual age-specific smoking initiation probabilities. Third, smoking prevalence is more 

sensitive in the short-term to changing smoking cessation rates because there are greater time 



	 27 

delays between an increase in smoking initiation rates and their eventual impact on the number of 

smokers in the population. Thus, e-cigarettes would have to act as an extremely effective gateway 

to cigarette smoking to increase smoking prevalence substantially, and never smokers would have 

to use e-cigarettes much more than the current evidence suggests.  

Complex feedbacks occur when investigating e-cigarette effects on smoking behavior, as 

presented in our results. If e-cigarettes solely undermine smoking cessation efforts, our results 

suggest that we may experience a substantial increase in smoking prevalence as more never 

smokers use e-cigarettes, regardless of e-cigarette effects on smoking initiation. That is, if these 

never smokers eventually become smokers, they would be less likely to quit smoking due to their 

e-cigarette use, thus raising population smoking prevalence. However, if e-cigarettes both increase 

smoking initiation and smoking cessation, the effects on smoking initiation would have to be 

extremely large (i.e., increase over 200%) to offset even small cessation effects on smoking 

(Figures 2.5A- 2.5D).  

The results and discussion of this study should be considered with several limitations in 

mind. First, our results and interpretation emphasize the general patterns produced by the model, 

and not the actual values, due to the challenges of quantifying e-cigarette effects, and uncertainty 

surrounding the sparse longitudinal data that currently exist. Values presented in this paper are 

outcomes relative to our baseline model and represent model- and parameter- specific relative 

estimates. Therefore, these results serve only as an educated guess of the potential impact of e-

cigarettes on future adult smoking prevalence. Second, our model used a variety of data sources 

that provide estimates of e-cigarette initiation and cessation values that can range widely across 

various reports and are challenging to measure accurately. Third, our model does not explore any 

potential direct and independent health effects of e-cigarette use. Fourth, our results are largely 

dependent on the low and decreasing smoking initiation rate in the U.S. Our outcomes are not 

applicable to countries or settings with relatively high, stable, or increasing smoking prevalence. 

Finally, we made simplifying assumptions about e-cigarette use behavior and smoking behavior 

to account for high variability in the e-cigarette data, and improve interpretability of our model 

and its outcomes. While these assumptions do not meaningfully change our primary conclusions, 

future work should continue to explore and refine these assumptions as further data become 

available.   
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Our study contributes to a growing literature that examines systems-level feedbacks and 

interactions relevant to smoking behavior that could not otherwise be explored using conventional 

statistical modeling research methods.26,29–31 In light of the recent IOM report specifically 

emphasizing the utility of ABMs for decision-making related to tobacco policies,5 the results of 

this model may be of interest to those considering how simultaneous e-cigarettes and alternative 

tobacco product effects for individuals might translate into broader changes to population cigarette 

smoking patterns. These study results can also provide useful insights given the uncertain 

regulatory environment surrounding e-cigarettes. The U.S. Food and Drug Administration (FDA) 

has extended its regulatory authority over additional tobacco products including e-cigarettes41 to 

subject their distribution to Tobacco Control Act provisions, including sale restrictions to minors, 

label requirements to include nicotine warnings, and finally, prohibitions on vending machines 

sales, except in establishments that never admits minors (e.g., casinos).42 In the context of our 

results, these new regulations should further decrease the use of e-cigarettes among never smokers, 

thereby diminishing the impact that any “gateway” influence that e-cigarettes may have on 

traditional smoking behavior and also population level smoking prevalence.  

In exploring the possible net effects of e-cigarettes on the population by simulating such 

risks and benefits with respect to smoking status, this model provides useful insights into how the 

distribution of e-cigarette use behavior can change population smoking prevalence outcomes due 

to e-cigarette effects on smoking behavior at the individual level. This study also may provide 

useful information for future tobacco regulation. However, to precisely determine the eventual net 

impact of e-cigarettes on smoking prevalence, researchers must continue to empirically evaluate 

the effects of e-cigarettes on smoking initiation and cessation. Robust longitudinal23 studies that 

assess the consequences of e-cigarette use for smoking behaviors remain paramount. As these data 

become available, modeling can serve as a framework to assess the potential impact of e-cigarettes 

under varying scenarios of use prevalence and their effects on smoking patterns. Given the 

potential for e-cigarettes to sustain addiction by promoting dual use with cigarettes, the continued 

pattern of high e-cigarette use among current smokers remains a major public health concern. In 

this instance, we find that under current patterns of e-cigarette use by smoking status and a range 

of hypothesized e-cigarette effects on smoking behavior, it is unlikely that the potential gateway 

effects of e-cigarettes will substantially increase smoking prevalence, unless they also reduce 

smoking cessation rates.  



	 29 

 

Conclusions 

 The primary outcome of this study demonstrates two uses of computational modeling in 

the study of smoking epidemiology. First, the outcomes of our model quantify the potential effects 

of e-cigarettes across a spectrum of hypothetical scenarios. These outcomes are generated by 

interacting mechanisms that contribute to the second focus of the study, which is to illuminate core 

dynamics of e-cigarette influence on smoking behavior. We find that the patterning of e-cigarette 

use by smoking status will contribute substantially to their potential effects on smoking prevalence, 

although our results are skewed towards cessation effects in the most likely scenarios (i.e., given 

historical trends of smoking prevalence and e-cigarette initiation). Computational modeling to 

explore a range of potential outcomes of interventions is common in the public health literature. 

Less common, however, is using observed empirical patterns to hypothesize how assumptions and 

mechanisms can interact to generate feasible model outcomes. Given the lack of empirical data on 

e-cigarette initiation and cessation across smoking states, we use aggregate population estimates, 

drawn from previous studies, as parameter settings in the model. In following chapters, we use 

empirical data on an adolescent US population to further explore the ways in which computational 

models can integrate with traditional statistical methods in epidemiologic research to build causal 

hypotheses.   
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Appendix A: Supplemental Material for Chapter 2 

 

A1 Summary of Appendix A 

A1.1 Content Overview 

This appendix is divided into five sections: A1) Summary of the material presented in this 

appendix; A2) Modeling methodology; A3) Model parameterization; A4) Model Outcomes; and 

A5) Programming. Section A1 describes the purpose of the supplementary material and provides 

an overview of its content. Section A2 discusses the use of agent-based modeling (ABM) in our 

study and how the potential effects of e-cigarettes on smoking behavior present a research problem 

amenable to an ABM approach. Section A3 details the parameters used to operationalize mortality, 

smoking initiation, smoking cessation, e-cigarette initiation, e-cigarette cessation, and other 

processes in the model. Section A4 describes model outcomes, specifically as they relate to 

validating model output against empirical data, and discusses the results of our sensitivity analyses. 

Section A5 presents model pseudo code, and additional notes about programming the model. The 

content presented here is referenced throughout the main text of the dissertation with the 

appropriate numbered header for each subsection.   

 

A1.2 Purpose 

This appendix is written with three main goals in mind: 1) To provide additional 

information regarding both the modeling methodology and the validation of the model presented 

in Chapter 2 of the this dissertation; 2) To further discuss the modeling approach, and detail the 

specifics of model validation not presented in the main text of the chapter; and 3) To provide 

technical programming guidance and model process equations so that readers are able to reproduce 

the model and its outcomes as they are presented in the chapter. 
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A2 Methodology Discussion 

A2.1 Why ABM?  

An ABM approach is utilized in this chapter for 3 main reasons: 

1) The generative and modular nature of this ABM leaves room for further model 

development examining dynamics at the individual level as more data about e-cigarettes become 

available. The purpose of this initial model was to demonstrate the variety of possible outcomes 

dependent upon the effects that e-cigarettes may have on traditional smoking behavior. This model 

can be extended to incorporate other tobacco products, like smokeless tobacco, snuff, snus, social 

network and environmental effects on e-cigarette use;  

2) The simplicity of a bottom-up approach from an object-oriented perspective provides 

greater model clarity and modularity. While a traditional compartmental model would have 

generated similar results, the structural approach typically used in dynamical systems models 

would involve programming the set of individual-traits and their various levels of heterogeneity, 

leading to enormous numbers of explicit model states.1 From a practical standpoint, ABMs are 

also an aggregate of N compartmental models operating in parallel, where N represents the number 

of individuals. Specifically, our agent-specific traits, unique to every individual in our model 

includes: a) smoking status (former, never, current); b) e-cigarette status (former, never, current); 

c) dual user (former, current); d) never user of e-cigarettes and cigarettes; e) age (18-85); f) 

probability of smoking initiation; and g) probability of e-cigarette initiation. The object-oriented 

programming approach in the backend of the ABM method allows us to store these traits and trait 

histories to follow any model individual’s experience trajectory, giving us more insights into the 

mechanistic assumptions that generate our outcomes;  

3) Our goal was to explore how individual-level e-cigarette use changes population-level 

smoking prevalence. Smoking status, probability of smoking initiation, and probability of e-

cigarette initiation are either dynamic and/or heterogeneous outcomes/states across the individuals 

in our model, a problem well-suited for ABMs.  

 

A3 Model Parameterization 

A3.1 E-Cigarette Initiation and Cessation Rate 

We assume that the probability of e-cigarette initiation among never, former, and current 

smokers follows a diffusion of innovations sigmoid function.2 This function is also described in 
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detail in Tables A1 and A2, and more broadly in Chapter 2. Parameters for the slope of the curve 

(ecigNetSlope), the maximum probability of initiation among smokers (eCigProbMax), years until 

maximum e-cigarette initiation probability is reached (timeToMaxECigInit), and years until e-

cigarettes are introduced in the model (modelBurnIn), are used in by the sigmoid function to 

generate e-cigarette incidence by smoking status (i.e., never, current, and former smoker). This is 

done in order to approximate current e-cigarette use by smoking status as reported in recent 

literature.3–5 

Figure A1 shows the e-cigarette initiation sigmoid curve for former, never, and current 

smoker initiation rates by year using baseline parameter values. After the year 2016, the probability 

of e-cigarette initiation by smoking status remains constant through the end of the model in 2070. 

Current smokers have the highest probability of e-cigarette initiation and serve as the reference 

group for e-cigarette initiation among former smokers and never smokers. For each time point on 

the sigmoid curve, if an individual is a never smoker, the probability of initiating e-cigarette use 

for that individual is the e-cigarette initiation rate on the curve divided by the parameter 

divECigNeverSmoker (equal to 15 in our baseline model). This divisor may be an overestimate  

given recent data showing never smokers are approximately 30 times less likely to use e-cigarettes 

than current smokers.4 Nonetheless, in the context of our results, this assumption is conservative 

(i.e., allows for larger negative effects of e-cigarettes on smoking initiation relative to baseline). 

Similarly, current e-cigarette prevalence among former smokers was reported as 6 times less than 

that of current smokers – if an individual is a former smoker, the probability of initiating e-cigarette 

use is the e-cigarette initiation rate for smokers, divided by the parameter: divECigFormerSmoker. 

For simplicity and because of scarce data on e-cigarette cessation patterns, we assumed e-cigarette 

cessation rates to emulate traditional smoking cessation rates (e.g., 0.026 at baseline, Table A1). 
 

A3.2 Smoking Cessation and Initiation Rates 

We calibrated the model using smoking cessation data from the 1970 birth cohort, the most 

recent cohort with all of the data available through the Cancer Intervention and Surveillance 

Modeling Network (CISNET) website.6 Though we relied on 1970 birth cohort quit rates for the 

main analysis, we also assess CISNET estimates of age-specific (ages 18-85) smoking cessation 

rates for those born in the years 1940, 1950, 1960, and 1970, corresponding to the parameter 

smokeQuitCohort. The year 1940 corresponds with smokeQuitCohort = 1, 1950 with 



	 37 

smokeQuitCohort = 2, etc. Earlier birth cohorts generally have lower smoking cessation rates, so 

we performed additional simulations to examine smoking prevalence outcomes resulting from 

these lower smoking cessation rates as part of our sensitivity analyses. We found that the 1970 

cohort had cessation rates that generated smoking prevalence levels for 2013-2070 that most 

closely resembled available projected adult smoking prevalence data.7–9 Using cessation rates from 

birth cohorts earlier than 1970 combined with recent smoking initiation estimates generated higher 

than expected smoking prevalence values than those reported by NHIS10 and other studies7–9. The 

lower panels in Figures A4 – A9 present sensitivity analyses of birth cohort effects on smoking 

prevalence (i.e., the parameter “smokeQuitCohort”).  

We used survival analysis (i.e., the cumulative hazard function) to calculate smoking 

initiation rates based on reported NHIS smoking prevalence among 18-24 year olds from 1997 to 

2013. Our calculation assumes that the smoking initiation rate for those ages 0-12 years old is zero. 

This is consistent with research indicating that smoking uptake can occur as early as age 12, with 

most initiation occurring by age 18.11–13 The survival and hazard equations are as follows: 

 

𝑆 𝑡 = 𝑒%& ' , where 𝐻 𝑡 = 	 𝜆 𝑢 𝑑𝑢'
- , and 𝑡 denotes age 

ℎ 𝑡 = 	−
𝑆0 𝑡
𝑆 𝑡  

We assume a smoking initiation of 0 from age 0 to 12, and a constant rate from that age forward 

(λ) until age 30, when smoking initiation is disallowed, such that: 

𝐻 𝑡 = 	𝜆 𝑡 − 12  

𝑆 𝑡 = 𝑒%3 '%45  

Therefore: 

𝜆 =
− log S t
𝑡 − 12  

 

We then performed simple linear regression on these values to project smoking initiation 

rates into the year 2027 (30 years after model initialization), after which initiation rates remain 

constant through 2070. These decisions were made to best approximate historical estimates and 

future projections6,8,14 of smoking prevalence in the US. Figure A2 presents the regression line, 
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along with the corresponding slope and intercept values used to project future smoking initiation 

rates.  

 

A3.3 Death and “Birth” Rates 

Mortality rates for smokers and former smokers are determined by using reported values 

of relative risk of death among current (smokerDeathRiskRelative) and former smokers 

(formerSmokerDeathRiskRelative) compared to never smokers. We used data from the US 

Census, the Human Mortality Database, and the Lee-Carter method to calculate age- and year- 

specific death rates among never smokers15–18. In order to achieve population equilibrium and to 

approximate observed prevalence for current and former smoking, we used an annual birth rate of 

14.2 per 1,000 persons19 (i.e., replacement of 18 year olds in the model) and examined a range of 

values for relative risks of all-cause mortality for current and former smokers. We determined the 

relative risk for all-cause mortality to be 2.9 for current smokers and 1.5 for former smokers. For 

example, in our model, a 19 year never smoker in 1998 has a 0.000895 probability of death. For a 

19-year-old never smoker, this probability of death is 0.0025955.15 These values are within 95% 

confidence bounds of all-cause mortality for smokers and former smokers reported by Freedman 

et al.20, and Lynch et. al.21, respectively.   

 

A3.4 E-Cigarette Effects 

The magnitude of the effect of e-cigarettes on smoking cessation and smoking initiation 

are driven by parameter values dualUseQuitMultiplier and ecigSmokeInitInc which range from 

0.0 to 3.0. These values are multipliers applied to baseline annual probabilities of smoking 

cessation or initiation. Values above 1 increase smoking initiation or smoking cessation 

probabilities relative to baseline values. Likewise, values below 1 decrease smoking initiation or 

smoking cessation probabilities relative to baseline. Baseline probabilities were taken directly 

from CISNET data by cohort.22 These values are presented as percentages in the main paper for 

simplicity (i.e. 100% decrease in value to 200% increase in value). For example, a value of 1 is 

equivalent no decrease or increase to smoking initiation or cessation, a value of 1.5 is equivalent 

to a 50% increase to smoking initiation or cessation, and a value of 0.85 is a 15% decrease to 

smoking initiation or cessation. Finally, Table A2 presents all parameters described in Appendix 

Section A3, and includes details of how these parameters are operationalized in our model.   
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A4 Model Outcomes 

A4.1 Model Validation 

Our study objective was to estimate the effects of e-cigarettes on smoking prevalence 

relative to baseline projections of smoking prevalence in the absence of e-cigarettes. All aspects 

of this model are approximations of potential effects given the current state of knowledge on 

smoking and e-cigarette use. We reviewed a range of studies on patterns of e-cigarette use and 

validated model outcomes against e-cigarette prevalence estimates between 2010 and 2014. A 

large proportion of our estimates fell within 95% confidence intervals reported in one or more 

studies.3,4,23,24 Table A3 provides model generated outcomes compared to data sources available 

at the time of model creation. Most our baseline smoking estimates are within the 95% confidence 

intervals for NHIS reported smoking prevalence from 1997 to 2013, except for 2002. Our model 

prevalence estimates for 2002 were slightly lower than that reported by NHIS. We speculate that 

this lower estimate is primarily due to increases in tobacco product marketing occurring between 

2001 and 2002 that this model does not account for. However, our smoking prevalence estimates 

return to the NHIS 95% confidence interval bounds after 2002. We projected a smoking prevalence 

of 12.8% by 2070—consistent with an upper level projection of a recent IOM report on raising the 

minimum age of cigarette smoking17, and comparable to projected smoking prevalence by 2050 as 

estimated by Vugrin et. al.8 

To illustrate the extreme worst- and best-case scenarios of e-cigarette use effects on 

smoking prevalence, we projected estimates of e-cigarette use prevalence such that baseline 

estimates of e-cigarette effects (harm-reducing or harm-inducing) are likely overestimates (Figure 

2.2). Pending additional observational data, e-cigarette use may increase beyond the scenario 

extremes examined in our study, though they may also fall short of our e-cigarette prevalence 

estimates. Given the possible overestimation of e-cigarette prevalence, we explored how e-

cigarette use prevalence could ultimately affect our outcomes (Figure 2.5). In addition, we mapped 

initiation effects of e-cigarettes on smoking behavior against the prevalence of e-cigarette use 

among never smokers in the Results section of Chapter 2.   

 

A4.2 Sensitivity Analyses 

In Figures A4 – A9, we show sensitivity analyses for different e-cigarette initiation and 

cessation effect levels varying the following parameters: maximum age of e-cigarette initiation 
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(ageStopECigInit), years until maximum e-cigarette initiation is reached (timeToMaxECigInit), 

annual probability of e-cigarette cessation (eCigProbMax), the slope of the sigmoid function for 

e-cigarette initiation (ecigNetSlope), e-cigarette initiation rate divisor for never smokers relative 

to current smokers (divECigNeverSmoker), and smoking cessation rates across different birth 

cohorts (smokeQuitCohort). The colored bar legend represents smoking prevalence, and axes are 

labeled according to the parameters used within the model (See Table A1). The largest differences 

in smoking prevalence are generated by experiments examining age- and year- specific smoking 

cessation probabilities by birth cohort. This property is discussed further in Chapter 2. The 

remaining differences in smoking prevalence generated from the entire set of sensitivity analyses 

range from a 0.01 to 0.6 absolute difference in smoking prevalence. Due to the comparative nature 

of the model (i.e., e-cigarette effects on smoking behavior compared to the baseline model), the 

differences in absolute smoking prevalence from these sensitivity analyses are negligible in the 

context of our study, and do not affect our conclusions. In short, we are more concerned with the 

directionality and magnitude of the relative outcomes, and not the absolute differences of these 

outcomes.  

To better understand the range of outcomes that our model generates resulting from our 

assumptions, we explore the sensitivity of smoking prevalence in our model at the extreme values 

of all combinations of the following model parameters (Figure A10): ecigNetSlope, 

timeToMaxECigInit, eCigProbMax, and their interaction with the maximum age of e-cigarette 

initiation allowed in the model on the horizontal axis (ageStopECigInit). From this analysis, we 

find that extreme variations and combinations of our parameters do not change the smoking 

prevalence values substantially by ageStopECigInit at baseline or when e-cigarettes only increase 

smoking initiation rates. However, we observe a slight downward trend in smoking prevalence by 

ageStopECigInit, and greater minimum and maximum smoking prevalence differences when e-

cigarettes result in greater smoking cessation rates. The results of this analysis suggest that our 

baseline model outcomes and results are conservative estimates of the relative advantage of e-

cigarette cessation effects over e-cigarette initiation effects. In other words, the downward trend 

by ageStopECigInit indicates that we would observe even lower smoking prevalence (even at the 

extreme values of other parameters) than we report in our results when allowing individuals over 

the age of 30 to initiate e-cigarettes. Although we believe it is likely that older adults over the age 

of 30 could use e-cigarettes as a smoking cessation aid, the results from this sensitivity analysis 
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indicate that allowing individuals in our model to initiate e-cigarettes after the age of 30 would 

further reinforce our findings of the relative strength of e-cigarette cessation effects compared to 

e-cigarette initiation effects on smoking behavior.  

 

A5 Programming 

A5.1 Programming Notes 

o Model was programmed using Python 

o Model output was analyzed using Python-Pandas and R 

o Primary assumptions: No relapse of smoking or e-cigarette use after quitting  

o No smoking initiation after age 30 

o No e-cigarette initiation after age 30  

o Variable names used here are described in the Table A1 and Table A2 

 

A5.2 Model Pseudo Code 
OBJECT agent; 

       age; 

       current_smoking_status; 

       smoking_history; 

       current_electronic_cigarette_status; 

       electronic_cigarette_history; 

       alive_or_dead; 

PROGRAM smoking_model; 

     initialize agents to 1997 US population age and smoking status demographics; 

     for every year from 1997 to 2075:   

        repeat for all agents in the model: 

                if (age >= 85) or probability of death by age, smoking status, history: 

                   die; 

                if smoker: 

                   if not e-cigarette user: 

                       start e-cigarettes at P(ecigInitSmoker); 

                       quit smoking at P(smokingCess);                   

                    if e-cigarette user: 

                         quit smoking at P(smokingCess) * dualUseQuitMultiplier; 

                         quit e-cigarettes at P(ecigQuitProb); 

                if former smoker: 

                    if e-cigarette user: 

                         quit e-cigarettes at P(ecigQuitProb); 
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                    if not e-cigarette user: 

                        start e-cigarettes at P(ecigInitSmoker)/divECigFormerSmoker;  

                if never smoker: 

                    if e-cigarette user: 

                        start smoking at P(somkingInit)*ecigSmokeInitInc; 

                        quit e-cigarettes at P(ecigQuitProb);  

                    if not e-cigarette user: 

                        start e-cigarettes at P(ecigInitSmoker)/divECigNeverSmoker;                       

             increment age; 

        birth new 18 year olds at set birth rate to maintain stable population counts; 

        calculate model and agent statistics; 

        write model and agent statistics to outputs; 

        clear model and agent statistics for this step; 
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Table A1 Baseline Model Parameters.* 

Parameters Values Description 
ecigNetSlope 0.20 Slope of sigmoid function governing e-cigarette initiation 

dualUseQuitMultiplier 1.0 

Multiplier applied to baseline smoking quit rates for dual users. 
While this is set to 1.0 (i.e., no effect) in the baseline model, this is 
an experimental parameter that takes a range of values. Figure 2.4, 
Figure 2.5, and Section A4.2 of this appendix provide results for 
these experiments. 

smokerDeathRiskRelative 2.9 Relative risk of mortality for smokers compared to never smokers 

formerSmokerDeathRiskRelative 1.5 Relative risk of mortality for former smokers compared to never 
smokers 

eCigProbMax 0.23 Maximum probability of e-cigarette initiation of current smokers 
modelBurnIn 12.0 Number of years until e-cigarettes are introduced (1997-2009) 
ecigQuitProb 0.026 Annual probability of e-cigarette cessation 

ecigSmokeInitInc 1.0 

Multiplier on baseline smoking initiation rates among e-cigarette 
users. While this is set to 1.0 (i.e., no effect) in the baseline model, 
this is an experimental parameter that takes a range of values. 
Figure 2.4, Figure 2.5, and Section A4.2 of this supplement provide 
results for these experiments. 

smokeQuitCohort 4.0 CISNET smoking cessation rates based on cohort.† Here, cohort 
4.0 is equivalent to the 1970 birth cohort 

divECigNeverSmoker 15.0 E-cigarette initiation rate divisor for never smokers 
divECigFormerSmoker 6.0 E-cigarette initiation rate divisor for former smokers 

timeToMaxECigInit 7.0 Time (in years) to maximum e-cigarette initiation rate after their 
introduction 

ageStopECigInit 30.0 Maximum age of e-cigarette initiation 
*Parameter values are those used in the baseline model calibrated to e-cigarette use prevalence among never, 
former, and current sokers in 2010 and 2013, and adult smoking prevalence from 1997 to 2013. Note: We use 
parameter variable names in the model pseudo code. 
†See Section A3.2 Smoking Cessation and Initiation Rates for additional information		
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Table A2 Model equations and parameters.* 

*Model parameters are used within equations that govern transition probabilities between nicotine use states and life-
cycle states (i.e., age, alive/dead). Note: These equation variable names are also used in the pseudo code; some 
equation variables are generated from parameter values. 
 
 

 

	
	
	
	
	
	
	
	
	
	
 

Figure A1 Sigmoid functions determining the probability of e-cigarette initiation by smoking status.  

Variable and 
Calculation Method Function Description 

smokingInit -0.0006*MIN(time,25) + 0.024 
The probability of becoming a 
smoker dependent on the model 
time step (year) 

Survival rates by prevalence (calculated from historical prevalence and then fitted to linear function) 

smokingCess Table 
The probability of quitting 
dependent on the model time step 
(year) 

CISNET annual smoking cessation probabilities from the 1970 male and female cohort (averaged)6,14 
 

deathRate Table The probability of death dependent 
on the model time step (year) 

US death rates table (past, present, and future projections) using Census data16, the Human Mortality Database15, 
and the Lee-Carter method17,18 
birthrate 14.2 per 1000 persons Stable birth rate in the model 
Reported by the CDC in 199719 

smokingPrevAtInit Table 

Age-specific population level 
smoking prevalence in 1997 -- 
Model individuals are initialized at 
these age-specific levels 

NHIS smoking prevalence values by age groups 18-24, 25-44, 45-64, and 65+ 10 

ecigInitSmoker 

;<=>?@ABCDE
4F; GHIJKLMN∗KPIQRKHSNTUK   

             where: 

timeVal = time − modelBurnIn ∗
5-

a=b;cACDEd<=>ef=a
− 10  

The probability of a current smoker 
becoming an e-cigarette user 
dependent on the model time step 
(year) 

Sigmoidal function from the theory of innovations, based in time2 
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Figure A2 Smoking initiation probabilities generated by the cumulative hazard function, using linear 
regression to project initiation rates by year. 

 
Table A3 Model generated outcomes compared to data sources.*  

*McMillen et al. and Schmidt et al. define current use as “everyday” or “someday” use of e-cigarettes. Zhu et al. 
define current use as “use of e-cigarettes in the past 30 days.”  
 
*Note: For Figures A5-A9, colored bars indicate population-level smoking prevalence, with corresponding estimates 
for the range of colors provided to the right of every figure.   

Current E-Cigarette Use Prevalence by Smoking Status (%) 
Year 2010 2011 2012 2013 

Model Population Prevalence  0.8 1.5 2.4 3.4 
McMillen et al. Population Prevalence4 0.3 0.8 2.6 6.8 
Schmidt et al. Population Prevalence3 NA NA NA 1.3 
Zhu et al. Population Prevalence23 NA NA 1.4 NA 

Model Current Smokers 0.1 0.1 8.7 12.6 
McMillen et al. Current Smokers 1.4 5.0 10.8 30.3 
Zhu et al. Current Smokers NA NA 6.3 NA 

Model Former Smokers 0.1 0.2 0.3 1.0 
McMillen et al. Former Smokers 0.3 0.1 1.1 5.4 
Zhu et al. Long Term Former Smokers NA NA 0.2 NA 
Zhu et al. Recent Former Smokers NA NA 6.1 NA 
Model Never Smokers 0.5 1.0 1.5 2.0 
McMillen et al. Never Smokers 0.1 0.1 0.1 1.4 
Zhu et al. Never Smokers NA NA 0.04 NA 

Adult Smoking Prevalence (%) 

Year 1997 2002 2007 2012 
Model Smoking Prevalence 24.2 21.1 19.1 17.6 
NHIS Smoking Prevalence 
NHIS (95% CI) 

24.7 
(24.1,25.3) 

22.5  
(21.9, 23.1) 

19.7  
(19.0, 20.6) 

18.1  
(17.5, 18.7) 
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Figure A3 Smoking prevalence outcomes in 2060 by e-cigarette effects on smoking initiation and 
cessation. Panel A illustrates model outcomes of the baseline model with decreasing smoking initiation. 
Panel B illustrates model outcomes of a sensitivity analysis with static smoking initiation at 1997 rates.  
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Figure A4 Smoking prevalence outcomes in 2030: e-cigarette use results in a 20% increase to individual-
level smoking initiation probability and does not affect smoking cessation, relative to baseline. 
 

Figure A5 Smoking prevalence outcomes in 2030: e-cigarette use results in a 20% increase to individual-
level smoking cessation probability and does not affect smoking initiation, relative to baseline. 
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Figure A6 Smoking prevalence outcomes in 2030: e-cigarette use results in a 20% increase to both 
individual-level smoking cessation probability and individual-level smoking initiation probability, 
relative to baseline. 

Figure A7 Smoking prevalence outcomes in 2060: e-cigarette use results in a 20% increase to individual-
level smoking initiation probability, and does not affect smoking cessation, relative to baseline. 
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Figure A8 Smoking prevalence outcomes in 2060: e-cigarette use results in a 20% increase to both 
individual-level smoking cessation probability and smoking initiation probability, relative to baseline. 
	

Figure A9 Smoking prevalence outcomes in 2060: e-cigarette use results in a 20% increase to individual-
level smoking cessation probability and does not affect smoking initiation, relative to baseline. 
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Figure A10 Smoking prevalence outcomes in 2030 and 2060 using extreme ranges of all parameters by a 
range of maximum age at e-cigarette initiation values (x-axes). Upper Left: Baseline Model. Upper Right: 
e-cigarette use results in a 20% increase to individual-level smoking initiation probability and does not 
affect smoking cessation. Bottom Left: e-cigarette use results in a 20% increase to individual-level smoking 
cessation probability and does not affect smoking initiation. Bottom Right: e-cigarette use results in a 20% 
increase to both individual-level smoking cessation and individual-level smoking initiation probabilities.  
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CHAPTER 3 

 

Contextualizing Social Influence on Adolescent Smoking Behavior 

 

Background 

Social influence has long been hypothesized play a role in both harmful and beneficial 

adolescent behavior.1,2 Among the first authors to bring interpersonal behavioral feedback to the 

foreground of adolescent social science is Travis Hirschi, who utilizes control theory to better 

understand the causes of delinquency.3 In his seminal chapter “A Control Theory of Delinquency,” 

Hirschi suggests that all humans would be delinquents, if only we dared.1 Hirschi goes on to 

propose that because delinquency is intrinsic to human nature, explaining why humans conform 

to norms in social circles may be a more salient question.4 In recent decades, the growing evidence 

supporting the association between peer influence and health behaviors has revealed the 

importance of understanding interpersonal dynamics across a range public health priorities such 

as obesity,5 diabetes management,6 and relevant to this dissertation, smoking behavior.2,7–13  

In this study, we hypothesize that the role of social influence on smoking behavior differs 

by school network density, a contextual variable that some adolescent psychologists and social 

network experts propose can sway the nature of peer influence.13,14 From these studies, we believe 

that the observed differences in social influence on behavioral outcomes by network density could 

be due to the interdependencies of macrosocial network properties (i.e., school or community 

networks characteristics) with local friendship networks (i.e., directly nominated friends) and the 

availability, and subsequent strength, of individual social ties. This chapter serves as an application 

of general epidemiologic methods as a first step in the development of a causal framework that 

explains adolescent smoking behavior from the perspective of peer influence in broader contexts, 

such as school-level network characteristics, and urbanicity.
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Introduction 

Despite reports of historic lows in adolescent smoking prevalence, recent studies suggest 

that adolescent smoking prevalence declines have slowed.15 Moreover, even if smoking prevalence 

were to persist at 2014 rates, 5.6 million Americans adolescents are projected to die early from 

smoking-related illnesses.16 The epidemiology of tobacco use suggests that effective prevention 

strategies must target young populations, with nearly nine out of ten adult smokers reporting first 

trying cigarettes before age 18.16 In reflection of this science, tobacco control measures have 

developed narrowly focused endgame strategies to continue reducing smoking initiation among 

adolescents.17 For example, renewed efforts to increase the minimum legal age for purchasing 

tobacco products from 18 to 21 years old have materialized at both local and state levels.18,19 With 

adolescent populations experiencing greater susceptibility to peer influence than adults,20,21 and 

with the changing tobacco use landscape via electronic cigarettes,22 the development of narrowly 

tailored policy to suppress smoking initiation in youth remains paramount. A better understanding 

of the dynamics and mechanisms of the social pathways that connect broader contexts to smoking 

and other substance use behavior among adolescents can thus help in the development of policies 

that effectively decrease future adult smoking prevalence and its associated health burdens.  

Prior studies have proposed the importance of social influence and context when 

considering various complex and behavior-driven public health priorities such as obesity,5,23–25 

violence,26–28 and substance use.11,29,30 Additional explorations in sociology14,31,32 and network 

science33–35 have also shown how friendship networks are developed within the features of rich 

social contexts, wherein individual behavior can be influenced by interpersonal and group 

dynamics. While public health researchers have found large and independent associations between 

primary friendship network characteristics with substance use behaviors among 

adolescents,11,29,30,36,37 there exists a relative dearth of public health studies exploring the 

relationship between broader network structures with local friendship networks of individuals, and 

how these factors can interact to change the effects of social influence on behavioral outcomes.  

Social influence on adolescent smoking behavior has been extensively explored in a large 

body of prior research. 38,39 Many studies focus on the concept of popularity8,10,28–30  with some 

studies find that popularity is positively associated with smoking initiation when adjusting for the 

number of friends that smoke.8 However, not only do measures of popularity vary greatly across 

studies, measures of the number of friends that smoke may be confounded by popularity, due to 
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popular adolescents being more likely to be friends with a greater number of smokers than less 

popular adolescents. Among analyses that adjust for friendship smoking influence as a proportion 

or percentage of friends, popularity is not found to be independently associated with smoking 

initiation.12 Many studies also demonstrate associations between social connectedness and 

influence with contextual factors such as urbanicity and school size.7,40 However, studies exploring 

social influence on individual smoking behavior often exclude contextual factors from their 

analyses.10,12,13 Finally, while two studies have examined the importance of considering network 

density when determining the association between social influence and smoking behavior,7,14 these 

studies do not thoroughly explore the potential effect modification by network density on the 

association between peer influence and smoking behavior.  

The main objective of this study is to conduct a comprehensive analysis to identify whether 

network density changes the relationship between friendship influence and adolescent smoking 

behavior while adjusting for broader contextual factors commonly associated with smoking 

behavior, such as school-level smoking prevalence, urbanicity, and relevant individual 

characteristics. This allows us to identify potential non-linear relationships of social influence on 

smoking initiation and cessation across density strata, providing insights into critical factors that 

could be the target of network-based tobacco control policy in adolescents. We additionally 

investigate the extent of the difference in pathways through which social and environmental factors 

influence smoking initiation versus smoking cessation among adolescents.  

 

Methods 

Data Overview 

We use data from the National Longitudinal Study of Adolescent Health (Add Health), a 

school-based longitudinal study of a nationally representative sample of adolescents in the United 

States attending grades 7-12 in 1994.41 High schools were systematically selected in the first wave 

of Add Health to be representative of US schools with respect to region in the country, urbanicity, 

size, type, and ethnic composition. In-school questionnaires were administered to all consenting 

students in each participating school. A subset of participants from each school was selected to 

complete an in-home questionnaire. These adolescents were then followed over time across five 

waves of interviews, although for the purposes of this study, we only explore up through wave 4. 

We drop from our sample schools that are missing administrator surveys, that do not include 
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grades, or that are designated as specialized schools. To provide accurate network measures that 

are representative of a full school-level measure, Add Health only calculated network-level 

characteristics for individuals attending schools with at least 50% participation in the in-school 

questionnaire.41 Thus, we only consider schools with greater than 50% participation, and include 

only observations with complete data for our network measures of interest. Observations with 

missing values for other independent variables, sample weights, and self-report of smoking in the 

past 30 days are also dropped. In this study, we use data from waves 1, 2, 3, and 4, conducted in 

1994-1995, 1996, 2001-2002, and 2008, respectively. All measures that are not outcome measures 

in this study are obtained from wave 1 of the in-school or in-home interview. The primary outcome 

of interest in this study is smoking prevalence at wave 3, based on the self-reported number of 

days smoked in the past 30 days during the wave 3 in-home interview. A value of 0 denotes self-

report of never smoking or of smoking 0 days in the past 30 days (i.e., non-smokers), while a value 

of 1 represents self-report of smoking 1 or more days in the past 30 days (i.e., current smokers).  

 

Individual Characteristics 

Sociodemographic individual characteristics include: self-report of race/ethnicity, age, sex, 

and frequency of feeling depressed in the past month. Adolescents self-reported as either white, 

black or African American, Asian or Pacific Islander, American Indian or Native American, or 

other during the in-school Add Health interviews. A separate ethnicity question determined 

whether an individual was of Hispanic or Spanish origin. For this study, individuals who selected 

only white or non-hispanic black are categorized as such, while mixed race, and all other races and 

ethnicities are categorized into an “other” category. Age is calculated by subtracting self-reported 

birthdate from the month and year of the in-home interview date at wave 1, and centered on the 

average age of all observations in wave 1. Sex is categorized as male or female. Finally, the 

frequency of feeling depressed in the past month was asked as “in the past month, how often did 

you feel depressed or blue?” Responses were categorized in the Add Health questionnaire as: 

“never,” “rarely,” “occasionally,” “often,” and “every day”. We retain these categories in our study 

as categorical variables. We additionally include a binary (yes/no) measure of whether cigarettes 

are easily available at home, which is obtained from wave 1 of the in-home interview. Observations 

for any category with multiple responses are dropped.  

 



	 57 

Individual Network Measures 

The variable “in connections” is a summary count measure of the number of other 

individuals that select an adolescent of interest as a friend, while the variable “out connections” is 

defined as the number of other individuals that an adolescent of interest nominates as their friend. 

The dependent variable of interest in this study is an individual-level measure of the percentage of 

nominated friends (i.e., “out connections”) that self-report smoking in the past 12 months in the 

in-school interview. Participants at the baseline in-school interview at wave 1 were asked to select 

five of their closest male friends and five of their closest female friends. Every participant was 

limited to nominating a maximum of ten friends. Of these friends, only those that participated in 

the in-school questionnaire in wave 1 are included in the denominator of the percentage of friends 

that smoke calculation for this study. Individual network measures include influence domain and 

age heterogeneity. Influence domain, which can be understood as popularity, is an individual-level 

summary measure of network centrality, and quantifies popularity by measuring the number of 

other adolescents (i.e., “alters”) can reach the adolescent of interest (i.e., “ego”). To account for 

the potential effects of older peers providing access to adolescents younger than the legal age of 

cigarette purchase, we include age heterogeneity as an individual-level summary measure to 

quantify the amount of variability in age of an adolescent’s social network. Here, the age 

heterogeneity calculation includes both in and out connections.  

 

School Characteristics 

At the school level, demographic characteristics include: urbanicity, size, type, and 

regional location. Urbanicity (suburban, rural or urban) and regional location (west, midwest, 

south, and northeast) were determined by Quality Education Data, with school administrators 

reporting on school size (small: 1-400 students, medium: 401-1000 students, large: 1001-4000 

students) and type (public or private). We calculate a school-level smoking prevalence measure 

using individual self-report of smoking in the past 12 months in the baseline in-school 

questionnaire for each school.  

 

School Network Measure 

To investigate macro-level social influence factors, we include school-level relative 

network density (density) in our analyses. This measure is calculated by dividing the number of 
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ties in the global network by the number of possible ties in the total friendship network, relative to 

the nomination limit of friendships (i.e., 10 total). A summary glossary of school and individual-

level network terms is available for reference in Table 3.1. School-level smoking prevalence, 

relative density, age heterogeneity, and influence domain are categorized based on their percentile 

distribution (below the 25th percentile, 25th-50th percentile, 50th-75th percentile, and above the 75th 

percentile) for ease of interpretation. 

 

Table 3.1 Summary glossary of network terms used throughout this chapter. 

 
Analyses 

To better understand the rates of adolescent smoking behavior changes between waves, we 

subset our observations by smoking status (i.e., non-smoker and smoker) in waves 1, 2, and 3. 

Then, for each future wave, we determine the weighted proportion of individuals that remain in 

the same smoking state, or change their smoking state relative to the wave that is considered as 

baseline. For example, when considering wave 1 as baseline, we determine the proportion of 

individuals transitioning between smoking states from wave 1 to wave 2, wave 1 to wave 3, and 

wave 1 to wave 4. Similar calculations are performed when considering wave 2 or wave 3 as the 

baseline wave.  

Weighted descriptive statistics are estimated for all variables. We then determine the 

univariate associations between smoking initiation and smoking cessation with school urbanicity, 

school smoking prevalence, child age heterogeneity, child popularity, and percentage of friends 

that smoke. Next, we examine the association between the percentage of friends that smoke (i.e., 

peer influence) with smoking initiation by wave 3 in an unstratified mixed-effects regression 

model, adjusting for all variables explored in the univariate analysis, in addition to age, sex, 

race/ethnicity, self-report of depression, school size, and the availability of cigarettes at home. In 

models with smoking initiation as the outcome, we subset our data to only include non-smokers in 

Network Term Definition

Ego The focal adolescent of interest
Alter Adolescents in the network that are not the focal adolescent of interest
Tie Representation of a relationship, specifically represents friendships in this study
Out Connection A directed tie that runs from the ego to a nominated alter
In Connection A directed tie that runs from an alter to the ego (i.e., the alter nominated the ego)
Network Density The total number of connections divided by the the total number of possible connections in a network
Individual Centrality A broad reference measure of an ego's position in the network relative to alters
Individual	Influence	Domain A summary measure of the number of alters that can reach the ego through undirected friendship ties

School	Relative	Density
The number of actual ties between adolescents in a school divided by the the maximum possible connections 
in the school, normalized by the maximum possible out connection nominations (i.e., 10 in this study)
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wave 1. We perform analogous analyses of smoking cessation using only adolescents that report 

current smoking in wave 1. Mixed effects regression is used to account for the hierarchical nature 

of the data and to examine the association of school-level characteristics on individual-level 

smoking outcomes. Next, we stratify our initiation and cessation models by network density, first 

for the univariate analysis, and then with the adjusted models. We additionally perform stratified 

analyses by sex to identify potential differences in peer influence effects by this factor. A modified 

Poisson approach is used to estimate the risk ratio (RR).42 All analyses are multi-level weighted 

and performed using PROC GLIMMIX in SAS v9.4 

 

Results 

In total, we retain 5,404 adolescents that participated in the in-school and in-home 

questionnaires from wave 1 and in wave 3. Overall, the exclusion of observations does not 

substantially change the distribution of the covariates of interest in our analyzed sample relative 

to the complete Add Health population. Flow charts of the data exclusion process (Figure B1), a 

conceptual model of the associations that are tested in this study (Figure B2), and mean 

comparisons between the data used in this study relative to the full data of the Add Health study 

(Table B1), are presented in Appendix B. In this chapter, we focus primarily on the potential 

differences of peer influence by network density in our stratified models. However, we also find 

statistical associations between network density with urbanicity (Table B2). Rural schools 

(RR=1.03, 95% CI: 0.84, 1.26) in the Add Health dataset report higher density levels than suburban 

(reference) and urban schools (RR=0.78, 95% CI: 0.64, 0.97) on average. The details and 

implications of these outcomes will be discussed in Chapter 4, although some contrasts by 

urbanicity are presented here to emphasize the importance of context when exploring the potential 

effects of peer influence on smoking behavior.  

Stratified weighted descriptive statistics of our study population are presented in Table 3.2. 

A greater proportion of smokers attending schools in the highest quartile of network density (i.e., 

75th percentile) also report the highest quartile of age heterogeneity and percentage of friends that 

smoke relative to adolescents attending schools in the lowest quartile of network density. 

Additionally, we observe that the proportion of white smokers increases relative to other races as 

network density increases. Adolescents in the 4th quartile of popularity are primarily concentrated 

in schools below the 75th percentile of network density. Among adolescents in the 4th quartile of 
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popularity (i.e., “influence domain”) attending schools below the 75th percentile of network 

density, a greater proportion are non-smokers than current smokers. Above the 75th percentile of 

network density, a slightly greater percentage comprise of smokers than non-smokers. We 

additionally observe a large percentage of rural schools concentrated in the 4th quartile of network 

density, as compared to suburban and urban schools, which comprise of all schools in the 1st 

quartile of network density.  

Table 3.3 presents weighted transition percentages of non-smoker to smokers and vice-

versa between four waves of Add Health in-home interviews. This table includes transition 

percentages for the study population and stratified transition percentages by network density. For 

the entire study population, we observe that adolescents tend to maintain smoking states between 

wave 3 and wave 4, compared to larger percentages of state transitions (i.e., from non-smoker to 

smoker or from smoker to non-smoker) between wave 1, 2, and 3. Lower rates of transitions 

between smoking states from wave 3 to wave 4 indicate that sustained smoking behavior solidified 

before interviews were administered in wave 4. In contrast, wave 2 data were collected one year 

after wave 1 interviews, which may produce skewed outcomes due to measurements reflecting 

short-term smoking experimentation. Thus, our models use wave 1 risk factors to predict smoking 

outcome measurements in wave 3.  

From the stratified transition table, we observe that greater percentage of current smokers 

remain current smokers (66.49%, 95% CI: 60.36%, 72.63%) between wave 1 and wave 3 in the 

4th quartile of network density (Q4), than current smokers in other schools (Q1, Q2, and Q3). We 

additionally observe that a greater percentage of non-smokers remain non-smokers in Q1 (80.12%, 

95% CI: 76.30%, 83.93%) and Q4 (75.20%, 95% CI: 71.72%, 78.69%) relative to Q2 (69.92%, 

95% CI: 66.25%, 73.59%) and Q3 (72.40, 95% CI: 68.79%, 76.00%) between waves 1 and 3.  

To further examine how smoking transitions may differ by context, we explore smoking 

transitions stratified by urbanicity in Table 3.4. Here, we also observe differences in smoking 

trends by urbanicity, where a large proportion of the population maintains smoking states between 

wave 3 and wave 4 relative to transitions from earlier waves to wave 3 and wave 4. We additionally 

observe higher rates of non-smokers remaining non-smokers in rural (76.17%, 95% CI: 72.37%, 

79.96%) areas compared to suburban (72.79%, 95% CI: 70.26%, 75.33%) and urban (74.20%, 

95% CI: 70.51%, 77.90%) areas between wave 1 and wave 3. The percentage of smokers that 
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remain smokers is also higher in rural areas (71.02%, 95% CI: 64.77%, 77.27%) than in suburban 

(65.40%, 95% CI: 60.87%, 69.93%) and urban (57.76%, 95% CI: 48.86%, 66.65%) areas.   

Table 3.6 reports adjusted risk ratios of risk factors related to smoking cessation in wave 3 

among current smokers in wave 1. Like Table 3.5, this table reports two unstratified models, one 

adjusting for, and another excluding school network density, and presents stratified model results 

by school network density. For current smokers at wave 1, we observe an inverse association 

between school smoking prevalence and smoking cessation (RR=0.80, 95% CI: 0.69, 0.92) in the 

full network density adjusted model. This inverse association increases slightly when removing 

network density from the model (RR= 0.83, 95% CI: 0.72, 0.95). The magnitude of the association 

between school smoking prevalence and smoking cessation in the model that adjusts for network 

density is much larger than that of the percentage of friends that smoke (RR=0.98, 95% CI: 0.94, 

1.02) in the same model. Although the estimates do not reach significance, the magnitude and 

direction of the associations between school smoking prevalence and smoking cessation found in 

both unstratified models persist across all levels of school network density, except in the 3rd 

quartile (RR=1.08, 95% CI: 0.64, 1.82). Stratified analyses indicate urbanicity is also associated 

with smoking cessation in certain contexts, with adolescent smokers attending rural (RR=0.51, 

95% CI: 0.29, 0.89) and urban schools (RR=0.42, 95% CI:0.21, 0.84) in the 4th quartile of network 

density being much less likely to quit than their suburban counterparts. Conversely, we observe 

that adolescents attending rural schools are more likely to quit if they attend schools in the 2nd 

(RR=1.37, 95% CI: 0.84, 2.25) or 3rd (RR=1.06, 95% CI: 0.75, 1.51) quartile of network density, 

though these estimates are not statistically significant.  

We observe an inverse association between the percentage of friends that smoke with the 

likelihood of smoking cessation in both unstratified models, with a higher percentage of friends 

being negatively associated with cessation across all density strata. However, this association only 

reaches statistical significance in the 4th quartile of network density (RR=0.90, 95% CI: 0.83, 0.97). 

Finally, we observe that adolescents in the 2nd quartile of popularity are also less likely to quit 

smoking if they attend schools in the 1st (RR=0.22, 95% CI: 0.09, 0.51) and 4th (RR=0.34, 95% 

CI: 0.16, 0.73) quartile of network density relative to the least popular adolescents. Unadjusted 

risk ratios of smoking initiation and smoking cessation by network density for the variables of 

interest are also discussed in Appendix B and presented in Table B3. Results presenting all 

variables adjusted for in the network density stratified models exploring their estimated effects on 
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smoking initiation and cessation can be found in Table B4. Table B5 presents smoking initiation 

and smoking cessation relative risk estimates stratified by sex. We observe substantially larger 

effect in the percentage of friends that smoke for smoking initiation among females (RR=1.10, 

95% CI: 1.04, 1.16) than in males (RR=1.05, 95% CI: 0.99, 0.11). Multiplicative statistical 

interaction between sex and the percentage of friends that smoke in predicting smoking initiation 

is also found to be significant, and higher in females than in males (RR=1.01, 95% CI: 1.00, 1.01). 

Finally, we find that males are less likely to stop smoking with increasing school smoking 

prevalence (RR=0.71, 95% CI: 0.51, 0.98) compared to females (RR=0.92, 95% CI: 0.74, 1.13).  

Given the evidence of non-linear effect modification by network density on the relationship 

between peer influence and smoking initiation, we test for quadratic statistical interaction of this 

relationship. We find that the effect estimate of the quadratic interaction term is statistically 

significant (RR=1.23, 95% CI: 1.08, 1.40) in predicting smoking initiation. We additionally assess 

the presence of statistical interaction between other potential effect modifiers and percentage of 

friends that smoke for smoking cessation, and do not observe significance on the interaction term 

for sex or network density. Figures B3 and B4 illustrate the observed heterogeneous effects of 

network density and sex, respectively, on the relationship between peer influence and smoking 

initiation.  

 

Discussion 

While social network and contextual factors have been commonly identified as 

determinants of smoking behavior among adolescents, the mechanisms driving the associations 

between smoking and social factors remain largely unexplained when considering the contextual 

aspects that give rise to individual social networks. To our knowledge, this is the first study that 

explores in depth the effects of social network density on the effect of peer influence on smoking 

initiation and cessation. In providing insights into the mechanisms of contextual factors on the 

pathway between social influence and smoking behavior, our results suggest properties of schools 

that may be amenable for social network-based tobacco control intervention, such as empowering 

the opinions of non-smokers in socially dense schools through media campaigns and school-based 

programs.43  

The inclusion of a broad range of confounders in our adjusted and unstratified models does 

not dramatically change the univariate effect estimates of the percentage of friends that smoke on 



	 63 

smoking initiation and smoking cessation. However, we observe differences regarding the 

potential social pathways between adolescents that initiate versus quit smoking. We find that 

primary friendship networks are a stronger predictor than school smoking prevalence for smoking 

initiation, whereas school smoking prevalence is a stronger predictor than primary friendship 

networks for smoking cessation. Consistent with existing research, these results suggest that 

smoking initiation among adolescents has a strong individual social component,7,9,11 especially 

among females and adolescents attending schools in the 4th quartile of network density, while the 

decision to quit may be more highly associated with individual traits and contextual factors,44,45 

rather than through close friendship influence. 

Additionally, we find that school network density acts as an effect modifier on primary 

friendship network influence on smoking behavior. In the stratified models, we observe that 

primary friendship influence on smoking initiation is highest at schools in the 1st and 4th quartile 

of network density. Notably, rural adolescents attending schools in the 4th quartile of network 

density are less likely to initiate smoking and more likely to quit smoking than urban adolescents 

with comparable school network densities. Our interaction analysis additionally shows that there 

is evidence for non-linear heterogeneity in the effect of the percentage of friends that smoke and 

smoking initiation as a function of network density.  

Although consistent with other studies suggesting that rural schools have higher smoking 

prevalence than urban or suburban schools,39 weighted transition tables between wave 1 and wave 

3 show that a greater percentage of non-smokers in rural schools remain non-smokers, and current 

smokers are less likely to quit, compared to urban and suburban schools. This suggests that 

smoking uptake may occur at younger ages in rural areas, given high smoking prevalence at 

baseline. Additionally, low rates of cessation once an adolescent begins smoking in rural areas 

may contribute to disparate smoking prevalence patterns by urbanicity. Given the association 

between urban designation of schools and network density,46,47 these results suggest potential 

mechanistic differences in smoking behavior between adolescents by urbanicity that may be 

explained by network factors.  

The results presented in this chapter corroborate existing theories in adolescent psychology 

of differences in friendship influence by contextual factors that affect network characteristics. 

Social bonds have long been hypothesized to contribute to conforming behavior,3,4,14 with recent 

network theory suggesting that stronger social bonds can be quantified through measures of 
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centrality, such as “triadic closure,” such that stronger social ties exist when an adolescent’s friends 

are also friends with each other.48 These explanations primarily seek to explain the emergence of 

homiphily by race, sex, and behavior (e.g., sexual, substance use) in adolescent friendship 

networks, with a large body of literature suggesting that friendship influence can differ in varying 

contexts by which the friendship manifests. In other words, friendships occur within rich and 

complex social (e.g., availability of friendship) and physical (e.g., urbanicity) constructs that may 

contribute to differences in the strength of friendship influence on friendship behavior. Moreover, 

prior studies in sociology and psychology have suggested that network structures and the 

subsequent strength of friendship ties differ substantially by race, and these factors can also differ 

in terms of the distribution of race from the community context, such as urbanicity.49,50  

Here, the results indicate that the impact of the percentage of friends that smoke on future 

smoking behavior is context dependent, and the magnitude of this effect varies between socially 

dense settings (e.g., dense schools in rural settings, where all the students are closely connected to 

one another) and less dense settings (e.g., urban schools, where disconnected cliques are more 

likely to form). These factors may be further exacerbated by differences in network characteristics 

by race, particularly when accounting for disparities in racial distribution by urbanicity. The 

observed interaction between the impact of friendship influence and network density on smoking 

behavior may be due to a variety of factors, such as how contextual factors affect the meaning of 

friendships. For instance, differences in strength of ties may be responsible for differences in the 

influence that friends might have on smoking behaviors across contextual dimensions. That is, the 

strength of friendship ties may be largely associated with the availability of schoolmates from 

which to choose friends (e.g., indirectly measured by network density). If friendship tie strength 

is consistent across adolescents within school networks, but different across school networks, they 

may be responsible for generating the observed differences in peer influence on smoking behavior 

by network density. 

The main strength of these analyses is inherent to the Add Health study, which is 

longitudinal and population representative, allowing us to present generalizable and time-

dependent results. Additionally, the rich dataset provides sufficient power to find statistical 

significance when performing stratified analyses. The data also allows us to match friend 

identifiers with self-reports of smoking by the friends themselves, as compared to measures of 

perceived friend smoking behavior used in other literature. The main weakness of this study is also 



	 65 

inherent to the data. Wave 1 of data collection in the Add Health study began in 1994, when 

smoking incidence and prevalence among adolescents was much higher than it has been in recent 

years. Importantly, electronic cigarette use has increased rapidly among adolescents, with 30-day 

use prevalence exceeding that of traditional cigarette use prevalence in 2014.22,51 With the onset 

of new products, continued declines to and reports of historic lows in adolescent smoking 

prevalence,45 the results of this study may not be generalizable to adolescents today. Additionally, 

the differences by density on associations between risk factors and adolescent smoking behavior 

may be largely explained by parent and household factors such as SES and parental smoking, 

which we exclude in this model to preserve power, although we use the availability of cigarettes 

at home to account for these factors indirectly. Given that the differences in friendship observed 

by network density are potential reflections of differences in the conceptualization of friendship in 

different contexts, more detailed measures of friendship and closeness may be required to gain a 

better understanding of specific nature of friendship influence on smoking behavior.  

Our results bring new insights into youth tobacco usage patterns and social epidemiology 

right as we are on the cusp of additional legislation that limits access to tobacco (i.e., increasing 

the minimum age of purchase from 18 to 21 years-old).52 The findings presented here suggest that 

tailoring tobacco control measures based on higher-level factors, such as network density of 

schools, can be effective and efficient at curtailing adolescent smoking initiation, and encouraging 

smoking cessation among current adolescent smokers. The results of this study also provide 

potential mechanistic insights into the social influences of smoking behavior that could also 

translate into other substance use behavior.14,29 Finally, this study seeks to present a potential 

causal framework for which higher-level network structures social influence can function through 

contextual pathways to affect smoking behavior. While many studies have explored social 

influence and context as independent risk factors for smoking behavior,7,8,38,39 this is the first study 

to our knowledge that presents an epidemiologic framework connecting these concepts.  

 

Conclusion 

In this chapter, we use mixed effects models to assess how the pathway of peer influence 

on smoking behavior changes based on school network density in US adolescents. After 

adjustment for school level (smoking prevalence, urbanicity), individual (age, gender, race, 

depression history), and other network covariates, we found that with every 10% increase in the 
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percentage of close friends that smoke, adolescents are 1.07 (95% CI: 1.03, 1.13) times more likely 

to initiate smoking in the future. This association differs in magnitude by levels of school network 

density. Adolescents attending schools in the 4th quartile of network density are more likely to 

initiate smoking by 1.15 (95% CI: 1.07, 1.24) times for every 10% increase in the percentage of 

nominated friends that smoke. Among current smokers, future smoking cessation is inversely 

associated with percentage of close friends that smoke in wave 1, with adolescent smokers 

attending schools in the 4th quartile of network density being 0.90 (95% CI: 0.83, 0.97) times less 

likely to stop smoking for every 10% increase in percentage of friends that smoke. Given the 

potential for network structures to modify the association between peer influence and smoking 

behavior, we develop a computational model using Add Health data to examine how much of these 

differences can be explained by network structure alone. In the next chapter, we present additional 

mixed effects analyses by urbanicity, and apply a computational model as a tool to validate the 

conceptual model of the pathways between contexts (i.e., urbanicity and school network density), 

social influence, and smoking behavior that is presented here.  



	 67 

Table 3.2 Weighted school- and individual-level characteristic distribution of current smokers and non-smokers stratified by quartiles of school 
relative network density, Add Health, 2001-2002. 

 

Sex
Male 2290 45.72 49.53 46.49, 52.57 43.56 41.39, 45.74 47.41 39.08, 55.74 43.41 38.7, 48.12 49.48 43.56, 55.40 41.19 37.03, 45.36 48.40 42.83, 53.97 45.21 40.95, 49.48 51.82 46.31, 57.32 44.52 40.21, 48.82
Female 3114 54.28 50.47 47.43, 53.52 56.44 54.26, 58.61 52.59 44.26, 60.92 56.59 51.88, 61.30 50.52 44.6, 56.44 58.81 54.64, 62.97 51.60 46.03, 57.17 54.79 50.52, 59.05 48.18 42.68, 53.69 55.48 51.18, 59.79

Race
Non-Hispanic Black 996 12.90 6.05  4.76, 7.34 16.78 15.31, 18.24 15.00 9.06, 20.93 27.16 23.15, 31.16 4.92 2.94, 6.90 21.09 18.03, 24.16 5.76 3.59, 7.92 11.77 9.35, 14.19 3.17 1.47, 4.88 9.42 7.26, 11.58
White 3218 70.37 77.53 75.05, 80.01 66.33 64.35, 68.30 56.45 48.36, 64.53 41.75 37.02, 46.47 74.61 69.41, 79.82 62.50 58.55, 66.45 80.26 76.17, 84.35 72.31 68.73, 75.88 88.09 84.60, 91.59 83.00 80.00, 85.99
Other 1190 16.73 16.42 14.17, 18.67 16.9 15.32, 18.48 28.55 21.54, 35.57 31.10 26.87, 35.32 20.47 15.45, 25.49 16.41 13.25, 19.57 13.98 10.36, 17.6 15.92 13, 18.85 8.73 5.60, 11.87 7.58 5.34, 9.83

Self-Report of Depressive Feelings
Never 1878 35.63 33.1 30.18, 36.03 37.06 34.96, 39.17 35.50 27.31, 43.69 40.96 36.32, 45.60 35.86 30.11, 41.62 38.07 34.00, 42.14 31.24 25.97, 36.51 34.47 30.41, 38.52 30.96 25.75, 36.17 35.72 31.57, 39.87
Rarely 1640 30.42 30.03 27.25, 32.81 30.64 28.64, 32.63 22.85 16.1, 29.59 30.71 26.4, 35.02 31.57 26.05, 37.09 29.76 25.94, 33.57 30.29 25.17, 35.4 31.20 27.26, 35.13 31.64 26.54, 36.74 30.95 27.00, 34.89
Occasionally 1014 17.92 17.72 15.49, 19.96 18.04 16.40, 19.68 16.31 10.26, 22.36 14.48 11.2, 17.76 16.41 12.17, 20.65 18.70 15.47, 21.93 18.62 14.52, 22.72 18.93 15.65, 22.22 18.86 14.67, 23.06 19.09 15.86, 22.32
Often 595 10.61 11.84 9.94, 13.74 9.92 8.61, 11.22 16.75 11.07, 22.44 9.42 6.71, 12.13 11.48 7.86, 15.11 9.58 7.06, 12.09 12.12 8.46, 15.78 10.83 8.2, 13.45 9.51 6.38, 12.64 9.71 7.15, 12.27
Everyday 277 5.41 7.31  5.74, 8.87 4.35  3.43, 5.26 8.59 3.94, 13.24 4.42 2.66, 6.19 4.68 2.26, 7.09 3.89 2.14, 5.65 7.73 4.8, 10.67 4.58 2.62, 6.53 9.03 5.76, 12.30 4.54 2.80, 6.28

Age
11-15 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
16-20 1487 35.53 36.63 33.61, 39.65 34.91 32.78, 37.04 38.22 30.04, 46.4 33.43 28.84, 38.02 49.71 43.79, 55.64 45.88 41.66, 50.10 30.99 25.62, 36.37 29.53 25.46, 33.6 27.84 22.71, 32.98 29.79 25.81, 33.77
21-25 3912 64.35 63.17 60.14, 66.19 65.02 62.89, 67.16 61.78 53.6, 69.96 66.57 61.98, 71.16 49.90 43.98, 55.82 54.09 49.87, 58.31 68.69 63.31, 74.08 70.27 66.19, 74.34 72.16 67.02, 77.29 70.21 66.23, 74.19
26-30 5 0.12 0.21  0.00, 0.50 0.06 0.00, 0.17 --- --- --- --- 0.39 0.00, 1.16 0.03 0.00, 0.10 0.31 0.00, 0.93 0.20 0.00, 0.58 --- --- --- ---
31-35 --- --- --- --- --- --- --- --- --- ---

Age Heterogeneity
1st	Quartile	[0,	0.40] 1337 24.28 21.97 19.44, 24.50 25.59 23.68, 27.51 33.33 25.33, 41.34 30.30 25.88, 34.73 26.66 21.41, 31.9 29.95 26.19, 33.72 16.64 12.52, 20.76 21.48 17.87, 25.1 17.04 13.06, 21.02 21.57 17.95, 25.20
2nd	Quartile	[0.40,	0.50] 1240 24.88 25.07 22.36, 27.79 24.77 22.86, 26.67 29.13 21.45, 36.81 20.92 17.09, 24.75 28.37 22.83, 33.9 28.07 24.19, 31.95 23.60 18.75, 28.45 23.96 20.31, 27.61 21.12 16.57, 25.67 24.96 21.23, 28.68
3rd	Quartile	[0.50,	0.61] 1473 27.54 27.86 25.14, 30.58 27.36 25.43, 29.29 17.27 11.61, 22.94 27.32 23.2, 31.44 25.71 20.66, 30.77 24.84 21.21, 28.47 33.75 28.44, 39.05 28.95 25.12, 32.78 29.11 23.93, 34.28 28.45 24.55, 32.35
4th	Quartile	[0.61,	0.84] 1354 23.30 25.1 22.55, 27.65 22.29 20.54, 24.03 20.26 13.83, 26.70 21.46 17.72, 25.19 19.27 14.78, 23.75 17.14 14.05, 20.23 26.01 21.29, 30.73 25.61 21.97, 29.25 32.73 27.63, 37.84 25.02 21.50, 28.54

Percentage of Out Friends Smoke
1st	Quartile	[0,	0] 1339 21.81 16.29 14.03, 18.54 24.94 23.10, 26.78 26.67 19.21, 34.13 35.94 31.50, 40.37 21.83 16.92, 26.73 29.65 25.89, 33.41 12.96 9.25, 16.68 18.59 15.24, 21.94 8.79 5.92, 11.66 18.11 14.93, 21.29
2nd	Quartile	[10,16.7] 1192 20.95 18.75 16.37, 21.13 22.2 20.43, 23.97 22.79 16.24, 29.34 24.96 20.99, 28.92 21.27 16.4, 26.14 22.68 19.22, 26.14 18.99 14.42, 23.57 21.65 18.14, 25.15 13.82 10.19, 17.45 20.14 16.83, 23.44
3rd	Quartile	[20,	30] 1331 25.72 24.57 21.97, 27.17 26.38 24.44, 28.32 20.38 13.86, 26.89 20.94 17.05, 24.83 24.58 19.52, 29.64 26.70 22.85, 30.54 26.22 21.35, 31.09 26.66 23, 30.32 24.86 20.09, 29.64 29.89 25.89, 33.90
4th	Quartile	[30,	100] 1542 31.51 40.39 37.41, 43.38 26.79 24.54, 28.43 30.17 22.35, 37.98 18.17 14.33, 22.00 32.32 26.78, 37.86 20.98 17.58, 24.38 41.83 36.37, 47.28 33.10 29.04, 37.16 52.52 47.02, 58.02 31.86 27.84, 35.88

Influence Domain
1st	Quartile	[1,	292] 1339 29.47 30.83 27.98, 33.69 28.7 26.71, 30.69 37.04 28.95, 45.13 33.55 28.94, 38.15 37.02 31.17, 42.87 33.96 29.9, 38.02 21.26 16.91, 25.6 16.12 13.03, 19.21 31.34 26.12, 36.56 32.57 28.59, 36.55
2nd	Quartile	[292,	534] 1317 28.50 29.44 26.64, 32.25 27.97 26.01, 29.93 22.54 15.76, 29.32 20.30 16.55, 24.05 32.72 27.05, 38.38 28.88 25.01, 32.76 35.53 30.1, 40.95 35.42 31.32, 39.52 22.88 18.44, 27.32 24.96 21.36, 28.57
3rd	Quartile	[534,	762] 1392 24.81 25.11 22.55, 27.66 24.65 22.79, 26.50 15.41 9.79, 21.02 18.79 15.19, 22.38 12.85 9.11, 16.58 10.75 8.24, 13.26 25.98 21.28, 30.69 29.07 25.33, 32.82 42.04 36.58, 47.50 39.60 35.36, 43.83
4th	Quartile	[793,	1705] 1356 17.21 14.62 12.50, 16.73 18.68 17.04, 20.32 25.01 17.74, 32.28 27.37 23.40, 31.34 17.42 13.49, 21.34 26.40 22.91, 29.9 17.23 12.81, 21.66 19.39 15.87, 22.91 3.74 1.63, 5.84 2.87 1.52, 4.21

School Urbanicity
Suburban 2861 58.7 59.5 56.58, 62.43 58.25 46.14, 60.37 57.61 49.54, 65.67 53.23 48.54, 57.91 71.13 66.07, 76.19 62.8 58.83, 66.78 75.46 70.89, 80.03 74.16 70.65, 77.68 31.07 25.83, 36.31 40.29 36.05, 44.53
Urban 1282 19.43 16.79 14.66, 18.92 20.92 19.23, 22.62 42.39 34.33, 50.46 46.77 42.09, 51.46 21.35 16.7, 25.99 25.99 22.33, 29.64 7.49 5.14, 9.84 7.82 6.09, 9.54 9.22 6.55, 11.89 9.48 7.35, 11.61
Rural 1261 21.86 23.71 21.21, 26.20 20.82 19.09, 22.56 --- --- --- --- 7.53 5, 10.05 11.21 8.9, 13.52 17.05 12.9, 21.21 18.02 14.8, 21.24 59.71 54.3, 65.12 50.23 45.95, 54.50

Region
Midwest 944 11.63 9.69 8.04, 11.34 12.73 11.42, 14.04 30.78 22.96, 38.60 24.59 20.21, 28.97 35.35 29.54, 41.17 26.77 22.96, 30.59 27.14 22.05, 32.22 24.99 21.25, 28.74 44.98 39.37, 50.6 40.22 35.85, 44.59
Northeast 1519 31.35 34.98 31.99, 37.98 29.3 27.23, 31.37 9.32 5.00, 13.65 8.12 5.55, 10.7 11.72 8.14, 15.3 12.54 9.65, 15.44 17.21 12.97, 21.45 14.16 11.18, 17.13 20.74 16.79, 24.70 23.48 20.13, 26.83
South 801 15.12 15.5 13.45, 17.55 14.91 13.40, 16.42 22.98 15.55, 30.42 32.06 27.72, 36.4 41.98 36.15, 47.81 45.60 41.44, 49.77 50.71 45.15, 56.28 54.79 50.56, 59.02 34.28 29.21, 39.34 36.30 32.33, 40.27
West 2140 41.89 39.84 36.87, 42.80 43.06 40.92, 45.20 36.91 29.17, 44.66 35.23 30.91, 39.54 10.95 7.59, 14.32 15.09 12.26, 17.91 4.94 3.08, 6.80 6.06 4.46, 7.65 --- --- --- ---

Size
Large 970 20.68 21.75 19.16, 24.34 20.08 18.34, 21.82 49.10 40.84, 57.36 54.24 49.51, 58.96 18.30 14.27, 22.33 26.50 23, 30 27.59 22.57, 32.62 26.04 22.22, 29.86 30.93 25.53, 36.34 22.80 18.89, 26.72
Medium 2281 49.24 49.56 46.53, 52.60 49.06 46.89, 51.23 40.71 32.47, 48.95 35.80 31.13, 40.47 49.22 43.30, 55.14 44.80 40.61, 48.99 61.28 55.88, 66.68 63.13 59.06, 67.20 41.83 36.55, 47.12 48.97 44.71, 53.23
Small 2153 30.08 28.69 25.96, 31.42 30.86 28.87, 32.85 10.18 5.05, 15.32 9.96 7.14, 12.79 32.48 26.72, 38.25 28.70 24.81, 32.59 11.13 7.89, 14.36 10.83 8.57, 13.09 27.23 22.21, 32.26 28.23 24.34, 32.11

School Smoking Prevalence
1st	Quartile	[0.05,0.26] 1349 26.76 23.44 20.73, 26.16 28.63 26.66, 30.60 41.29 33.05, 49.54 45.31 40.63, 49.99 48.91 42.98, 54.85 53.00 48.83, 57.17 3.60 1.41, 5.79 5.71 3.75, 7.66 8.53 5.47, 11.58 13.56 10.69, 16.43
2nd	Quartile	[0.26,	0.33] 1309 19.55 19.47 17.10, 21.84 19.59 17.90, 21.28 18.86 13.37, 24.36 19.86 16.48, 23.25 1.51 0.47, 2.55 3.50 2.27, 4.74 33.28 27.96, 38.61 31.18 27.27, 35.1 24.30 19.41, 29.19 24.64 20.83, 28.46
3rd	Quartile	[0.33,	0.41] 1352 26.68 26.23 23.48, 28.78 27 25.08, 28.91 29.34 22.12, 36.57 27.50 23.26, 31.74 36.70 30.98, 42.42 30.35 26.44, 34.25 27.46 22.56, 32.35 31.24 27.29, 35.19 11.85 8.59, 15.11 18.46 15.53, 21.39
4th	Quartile	[0.41,	0.54] 1394 27.01 30.96 28.21, 33.71 24.78 22.89, 26.68 10.50 4.00, 16.99 7.32 4.52, 10.12 12.88 9.7, 16.06 13.15 10.57, 15.73 35.66 30.37, 40.95 31.87 27.88, 35.86 55.33 49.84, 60.82 43.34 39.06, 47.61

Cigarettes Easily Accessible at Home
No 1640 31.14 37.45 34.52, 40.37 27.58 25.63, 29.53 61.39 53.23, 69.56 76.61 72.58, 80.64 67.81 62.32, 73.29 73.70 70, 77.39 62.36 56.98, 67.74 69.66 65.71, 73.6 57.71 52.3, 63.12 70.74 66.84, 74.63

Yes 3764 68.86 62.55 59.63, 65.48 72.42 70.47, 74.37 38.61 30.44, 46.77 23.39 19.36, 27.42 32.19 26.71, 37.68 26.30 22.61, 30.00 37.64 32.26, 43.02 30.34 26.4, 34.29 42.29 36.88, 47.70 29.26 25.37, 33.16

School	Relative	Density
1st	Quartile	[0.19,	0.38] 1330 17.40 13.56 11.48, 15.64 19.57 19.90, 21.23
2nd	Quartile	[0.38,	0.47] 1373 28.45 29.51 26.64, 32.37 27.85 25.88, 29.82
3rd	Quartile	[0.47,	0.52] 1323 27.87 29.32 26.57, 32.07 27.04 25.09, 28.99
4th	Quartile	[0.52,	0.83] 1378 26.29 27.61 24.97, 30.25 25.54 23.65, 27.43

Network Density Q1 [Range: 0.19, 0.38] Network Density Q2 [Range: 0.38, 0.47] Network Density Q3 [Range: 0.47, 0.52] Network Density Q4 [Range: 0.52, 0.83]

Proportion 
Smokers 
(N=532)

Proportion 
Smokers 
(N=305)

Proportion 
Smokers 
(N=428)

Proportion 
Smokers 
(N=460)

Proportion 
Non-

Smokers 
(N=1025)

Proportion 
Non-

Smokers 
(N=945)

Proportion 
Non-

Smokers 
(N=863)

Proportion 
Non-Smokers 

(N=846)
95% CI95% CI95% CI95% CI95% CI95% CI95% CI95% CI95% CI

Proportion 
Non-

Smokers 
(N=3679)

Total Population

N Weighted % 95% CI
Proportion 
Smokers 
(N=1725)
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Table 3.3 Weighted transition probabilities of smoking status between waves, stratified by school relative network density, Add Health, 1994-
2008. 95% confidence intervals of transition probabilities are described between square brackets.  

 

N
Weighted 

Prevalence
95% CI

Full Study Population Non Smoker Current Smoker Non Smoker Current Smoker Non Smoker Current Smoker
Wave I

Non Smoker 6825 72.64 71.37, 73.91 79.97 [78.42,81.53] 20.03 [18.48,21.58] 73.69 [71.84, 75.53] 26.31 [24.47, 28.16] 71.59 [ 69.57, 73.61] 28.41 [ 26.40, 30.43]
Current 2345 27.36 26.09, 28.63 23.09 [20.35,25.84] 76.91 [74.16,79.65] 33.98 [30.59,37.37] 66.02 [ 62.63, 69.41] 35.90 [ 32.28, 39.52] 64.10 [ 60.48, 67.72]

Wave II
Non Smoker 4519 65.27 63.70, 66.84  -- 78.96 [77.15, 80.78] 21.04 [19.22, 22.85] 74.70 [ 72.60, 76.80] 25.30 [ 23.20,27.40]

Current 2081 34.73 33.16, 36.30  -- 34.55 [31.66, 37.44] 65.45 [62.56, 68.34] 39.80 [36.63, 42.98] 60.20 [57.02, 63.37]
Wave III

Non Smoker 3679 63.89 62.16, 65.61  --  --  -- 84.26 [ 82.50, 86.03] 15.74 [ 13.97, 17.51]
Current 1725 36.12 34.39, 37.84  --  --  -- 24.93 [ 22.19, 27.66] 75.02 [ 72.34, 77.81]

Wave IV
Non Smoker 3182 62.72 60.88, 64.57  --  --  --  --  --  --

Current 1578 37.38 35.43, 39.12  --  --  --  --  --  --
School Relative Density Q1

Wave I
Non Smoker 1815 76.19 73.27, 79.12 85.30 [82.21, 88.38] 14.7 [11.62, 17.79] 80.12 [76.30, 83.93] 19.88 [16.07, 23.70] 73.62 [69.03, 78.21] 26.38 [21.79, 30.97]

Current 455 23.81 20.88, 26.73 30.71 [23.41, 38.01] 69.29 [61.99, 76.79] 41.46 [32.40, 50.52] 58.54 [49.48, 67.60] 34.15 [24.81, 43.49] 65.85 [56.51, 75.19]
Wave II

Non Smoker 1265 72.98 69.61, 76.34  --  -- 83.77 [80.08, 87.46] 16.23 [12.54, 19.92] 75.59 [70.91, 80.27] 24.41 [19.73, 29.09]
Current 385 27.02 23.66, 30.39  --  -- 38.42 [30.64, 46.20] 61.58 [53.80, 69.36] 35.75 [27.57, 43.94] 64.25 [56.06, 72.43]

Wave III
Non Smoker 1025 71.85 68.01, 75.68  --  --  --  -- 80.71 [76.36, 85.06] 19.29 [14.94, 23.64]

Current 305 28.15 24.32, 31.99  --  --  --  -- 25.52 [17.96, 33.07] 74.48 [66.93, 82.04]
Wave IV

Non Smoker 808 64.74 60.40, 69.08  --  --  --  --  --  --
Current 319 35.22 30.92, 39.60  --  --  --  --  --  --

School Relative Density Q2
Wave I

Non Smoker 1690 74.82 72.29, 77.34 81.01 [78.18, 83.83] 18.99 [16.17, 21.82] 69.92 [66.25, 73.59] 30.08 [26.41, 33.75] 68.38 [64.44, 72.33] 31.61 [27.67, 35.56]
Current 494 25.18 22.66, 27.71 22.32 [16.50, 28.15] 77.68 [71.85, 83.50] 35.02 [27.87, 42.17] 64.98 [57.83, 72.13] 36.78 [29.22, 44.34] 63.22 [55.66, 70.78]

Wave II
Non Smoker 1143 67.45 64.44, 70.45  --  -- 76.93 [73.27, 80.58] 23.07 [19.42, 26.73] 72.08 [67.92, 76.24] 27.92 [23.76, 32.08]

Current 493 32.55 29.55, 35.56  --  -- 32.02 [26.50, 37.54] 67.98 [62.46, 73.50] 39.60 [33.35, 45.85] 60.40 [54.15, 66.65]
Wave III

Non Smoker 945 62.54 59.15, 65.93  --  --  --  -- 85.14 [81.79, 88.49] 14.86 [11.51, 18.21]
Current 428 37.46 34.07, 40.85  --  --  --  -- 22.03 [16.99, 27.08] 77.97 [72.92, 83.01]

Wave IV
Non Smoker 820 61.87 58.27, 65.46  --  --  --  --  --  --

Current 408 38.13 34.54, 41.73  --  --  --  --  --  --
School Relative Density Q3

Wave I
Non Smoker 1718 72.56 70.21, 74.91 77.13 [74.04, 80.22] 22.87 [19.78, 25.96] 72.40 [68.79, 76.00] 27.60 [24.00, 31.21] 72.66 [68.92, 76.40] 27.34 [23.60, 31.08]

Current 637 27.44 25.09, 29.79 21.33 [16.54, 26.13] 78.67 [73.87, 83.46] 33.51 [27.37, 39.64] 66.49 [60.36, 72.63] 32.60 [26.33, 38.88] 67.40 [61.12, 73.67]
Wave II

Non Smoker 1065 62.63 59.63, 65.63  --  -- 76.61 [72.88, 80.34] 23.39 [19.66, 27.12] 76.02 [72.08, 79.95] 23.98 [20.05, 27.92]
Current 553 37.37 34.37, 40.37  --  -- 38.12 [32.77, 43.47] 61.89 [56.53, 67.23] 40.18 [34.52, 45.83] 59.82 [54.17, 65.48]

Wave III
Non Smoker 863 62.00 58.70, 65.29  --  --  --  -- 84.92 [81.65, 88.19] 15.08 [11.81, 18.35]

Current 460 38.00 34.71, 41.30  --  --  --  -- 26.39 [21.35, 31.43] 73.61 [68.57, 78.65]
Wave IV

Non Smoker 783 61.84 58.40, 65.27  --  --  --  --  --  --
Current 426 38.16 34.73, 41.60  --  --  --  --  --  --

School Relative Density Q4
Wave I

Non Smoker 1602 68.82 66.38, 71.25 78.23 [74.95, 81.51] 21.77 [18.49, 25.05] 75.20 [71.72, 78.69] 24.80 [21.31, 28.28] 72.94 [69.04, 76.85] 27.06 [23.15, 30.96]
Current 759 31.19 28.75, 33.62 21.69 [16.82, 26.55] 78.31 [73.45, 83.18] 30.06 [24.07, 36.04] 69.94 [63.96, 75.93] 39.51 [32.73, 46.28] 60.49 [53.72, 67.27]

Wave II
Non Smoker 1046 60.85 57.76, 63.95  --  -- 80.12 [76.85, 83.39] 19.88 [16.61, 23.15] 76.03 [72.07, 79.99] 23.97 [20.01, 27.93]

Current 650 39.15 36.05, 42.24  --  -- 31.55 [26.21, 36.89] 68.45 [63.11, 73.79] 42.03 [35.93, 48.14] 57.97 [51.86, 64.07]
Wave III

Non Smoker 846 62.07 58.78, 65.35  --  --  --  -- 85.13 [81.77, 88.49] 14.87 [11.51, 18.23]
Current 532 37.93 34.65, 41.22  --  --  --  -- 25.88 [20.70, 31.05] 74.12 [68.95, 79.30]

Wave IV
Non Smoker 771 63.31 59.78, 6.85  --  --  --  --  --  --

Current 425 36.69 33.15, 40.22  --  --  --  --  --  --

Wave II Wave III Wave IV
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Table 3.4 Weighted transition probabilities of smoking status between waves, stratified by school urbanicity, Add Health, 1994-2008. 95% 
confidence intervals of transition probabilities are described between square brackets.  

 

N Weighted Prevalence 95% CI

Urban Non Smoker Current Smoker Non Smoker Current Smoker Non Smoker Current Smoker
Wave I

Non Smoker 1799 79.01 76.68, 81.34 84.41 [81.62, 87.21] 15.59 [12.79, 18.38] 74.20 [70.51, 77.90] 25.80 [22.10, 29.49] 70.88 [66.66, 75.10] 29.12 [24.90, 33.34]
 Current Smoker 447 20.99 18.66, 23.32 27.01 [20.34, 33.68] 72.99 [66.32, 79.66] 42.24 [33.35, 51.14] 57.76 [48.86, 66.65] 38.86 [29.59, 48.14] 61.34 [51.86, 70.41]

Wave II
Non Smoker 1200 73.91 70.95, 76.88  --  -- 81.80 [78.43, 85.17] 18.20 [14.83, 21.57] 75.73 [71.42, 80.03] 24.27 [19.97, 28.58]

 Current Smoker 383 26.09 23.12, 29.05  --  -- 31.91 [25.15, 38.67] 68.09 [61.33, 74.85] 35.57 [27.86, 43.28] 64.43 [56.72, 72.14]
Wave III

Non Smoker 932 68.79 65.29, 72.30  --  --  --  -- 81.73 [77.77, 85.68] 18.27 [14.32, 22.23]
 Current Smoker 350 31.21 27.70, 34.71  --  --  --  -- 28.16 [21.35, 34.96] 71.84 [65.04, 78.65]

Wave IV
Non Smoker 786 65.35 61.39, 69.31  --  --  --  --  --  --

 Current Smoker 326 34.65 30.69, 38.61  --  --  --  --  --  --
Suburban

Wave I
Non Smoker 3736 72.68 71.00, 74.37 79.05 [76.97, 81.13] 20.95 [18.87, 23.03] 72.79 [70.26, 75.33] 27.21 [24.67, 29.74] 71.85 [69.14, 74.55] 28.15 [25.45, 30.86]

 Current Smoker 1269 27.32 25.63, 29.00 22.03 [18.48, 25.57] 77.97 [74.43, 81.52] 34.60 [30.07, 39.13] 65.40 [60.87, 69.93] 36.68 [31.80, 41.56] 63.32 [58.44, 68.20]
Wave II

Non Smoker 2420 64.49 62.40, 66.59  --  -- 78.20 [75.67, 80.84] 21.80 [19.26, 24.33] 75.03 [72.19, 77.86] 24.97 [22.14, 27.81]
 Current Smoker 1122 35.51 33.41, 37.60  --  -- 35.72 [31.89, 39.54] 64.28 [60.46, 68.11] 41.24 [37.04, 45.44] 58.79 [54.56, 62.96]

Wave III
Non Smoker 1969 63.39 61.06, 65.73  --  --  --  -- 85.64 [83.36, 87.91] 14.36 [12.09, 16.64]

 Current Smoker 892 36.61 34.27, 38.94  --  --  --  -- 24.31 [20.70, 27.91] 75.69 [72.09, 79.30]
Wave IV

Non Smoker 1700 63.15 60.69, 65.62  --  --  --  --  --  --
 Current Smoker 818 36.85 34.38, 39.31  --  --  --  --  --  --

Rural
Wave I

Non Smoker 1290 66.77 63.83, 69.70 78.35 [74.66, 82.04] 21.65 [17.96, 25.34] 76.17 [72.37, 79.96] 23.83 [20.04, 27.63] 72.12 [67.80, 76.44] 27.88 [23.56, 32.20]
 Current Smoker 629 33.23 30.30, 36.17 23.55 [17.97, 29.14] 76.45 [70.86, 82.03] 28.98 [22.73, 35.23] 71.02 [64.77, 77.27] 32.98 [26.30, 39.66] 67.02 [60.34, 73.70]

Wave II
Non Smoker 899 59.99 56.52, 63.46  --  -- 78.13 [74.31, 81.94] 21.87 [18.06, 25.69] 72.73 [68.25, 77.22] 27.27 [22.78, 31.75]

 Current Smoker 576 40.01 36.54, 43.48  --  -- 33.67 [27.85, 39.49] 66.33 [60.51, 72.15] 39.30 [33.03, 45.57] 60.70 [54.43, 66.97]
Wave III

Non Smoker 778 60.84 57.25, 64.43  --  --  --  -- 82.94 [78.99, 86.89] 17.06 [13.11, 21.01]
 Current Smoker 483 39.16 35.57, 42.75  --  --  --  -- 24.59 [19.21, 29.78] 75.41 [70.02, 80.79]

Wave IV
Non Smoker 696 59.14 55.29, 62.99  --  --  --  --  --  --

 Current Smoker 434 40.86 37.01, 44.71  --  --  --  --  --  --

Wave II Wave III Wave IV
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Table 3.5 Adjusted risk ratios for smoking initiation by selected risk factors, stratified by school relative network density, Add Health, 2001-2002. 

	
 
Table 3.6 Adjusted risk ratios for smoking cessation by selected risk factors, stratified by school relative network density, Add Health, 2001-2002. 

Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI
Smoking Initiation
Region South (REF)

Midwest 1.24 0.95 1.62 1.19 0.90 1.59 3.73† 1.56 8.92 1.25 0.55 2.83 1.05 0.82 1.35 2.08† 1.31 3.31
Northeast 1.05 0.79 1.41 1.03 0.75 1.41 1.98 0.78 5.01 0.98 0.53 1.81 0.98 0.66 1.45 1.16 0.85 1.58
West* 0.86 0.61 1.23 0.89 0.65 1.21 1.95 0.89 4.26 0.58 0.27 1.26 1.06 0.74 1.51

Urbanicity Suburban (REF)
Rural* 0.90 0.71 1.14 0.87 0.70 1.09 1.00 1.00 1.00 0.98 0.60 1.58 0.82 0.57 1.18 1.99† 1.22 3.25
Urban 1.01 0.78 1.29 1.04 0.81 1.33 0.48† 0.29 0.80 1.25 0.62 2.51 0.77 0.50 1.16 2.34† 1.53 3.59

Percentage of Nominated Friends that Smoke ‡ 1.07† 1.03 1.13 1.07† 1.03 1.12 1.12 0.98 1.27 1.07 0.97 1.18 1.01 0.95 1.08 1.15† 1.07 1.24

School Smoking Prevalence‡ 1.05 0.94 1.18 1.05 0.93 1.17 0.78 0.47 1.27 1.02 0.83 1.25 1.01 0.84 1.23 1.05 0.87 1.27
Influence Domain (i.e., "popularity") 1st Quartile (REF)

2nd Quartile 1.02 0.75 1.39 1.02 0.75 1.38 1.39 0.86 2.24 1.01 0.38 2.64 1.05 0.59 1.88 1.48 0.87 2.53
3rd Quartile 0.93 0.65 1.32 0.93 0.65 1.33 0.71 0.40 1.23 1.02 0.39 2.63 0.98 0.55 1.73 1.09 0.63 1.88
4th Quartile 0.51 0.19 1.38 0.53 0.20 1.42 0.38 0.09 1.50 0.05† 0.01 0.18 0.54† 0.35 0.86 7.01† 3.02 16.27

Age Heterogeneity 1st Quartile (REF)
2nd Quartile 1.16 0.93 1.45 1.16 0.94 1.45 1.66† 1.11 2.49 0.92 0.70 1.21 1.11 0.73 1.69 1.18 0.64 2.18
3rd Quartile 1.23 0.97 1.56 1.23 0.97 1.55 1.00 0.60 1.66 1.15 0.90 1.47 1.23 0.87 1.75 1.31 0.66 2.58
4th Quartile 1.09 0.83 1.43 1.09 0.83 1.43 1.49 0.75 2.96 0.90 0.59 1.38 1.05 0.66 1.66 1.22 0.66 2.28

School Relative Density* 1st Quartile (REF)
2nd Quartile 1.15 0.80 1.64
3rd Quartile 1.03 0.68 1.56
4th Quartile 0.91 0.61 1.35

* There are no rural schools in the 1st quartile of relative density, therefore, the 2nd quartile is used as the referent in that stratum. There are also no schools located in the western region of the US in the 4th quartile of relative density
† p < 0.05
‡ Estimate is related to a 10% increase in the predictor
All models adjust for age, sex, race/ethnicity, self-report of depression frequency, school size, and the availability of cigarettes at home. Full models including estimates not presented here are shown in Table 3B

4th Quartile (N=1,378)
School Relative Density

Full Model (N=5,404) No Density Model (N=5,404) 1st Quartile (N=1,330) 2nd Quartile (N=1,373) 3rd Quartile (N=1,323)

Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI
Smoking Cessation
Region South (REF)

Midwest 0.75 0.53 1.05 0.74 0.53 1.05 0.55 0.17 1.82 0.44† 0.21 0.92 0.73 0.44 1.19 0.93 0.32 2.69
Northeast 0.70 0.48 1.01 0.71 0.50 1.00 1.11 0.28 4.40 0.64 0.27 1.53 0.75 0.31 1.78 0.50 0.27 0.94
West* 1.25 0.82 1.90 1.25 0.83 1.88 1.15 0.40 3.28 1.47 0.82 2.66 1.14 0.65 2.00 1.00

Urbanicity Suburban (REF)
Rural* 0.76 0.51 1.12 0.78 0.56 1.10 --- --- --- 1.37 0.84 2.25 1.06 0.75 1.51 0.51† 0.29 0.89
Urban 1.18 0.87 1.61 1.14 0.84 1.54 0.85 0.32 2.27 1.13 0.75 1.69 1.18 0.63 2.21 0.42† 0.21 0.84

Percentage of Nominated Friends that Smoke‡ 0.98 0.94 1.02 0.98 0.94 1.02 1.01 0.90 1.12 0.98 0.90 1.08 1.04 0.95 1.14 0.90† 0.83 0.97

School Smoking Prevalence‡ 0.80† 0.69 0.92 0.83† 0.72 0.95 0.74 0.52 1.04 0.86 0.69 1.07 1.08 0.64 1.82 0.75 0.50 1.14
Influence Domain (i.e., "popularity") 1st Quartile (REF)

2nd Quartile 0.66 0.42 1.02 0.67 0.42 1.05 0.22† 0.09 0.51 0.90 0.48 1.69 1.88 0.88 4.01 0.34† 0.16 0.73
3rd Quartile 1.28 0.78 2.08 1.28 0.77 2.12 0.78 0.24 2.49 1.30 0.54 3.11 2.20 1.08 4.48 1.57 0.57 4.31
4th Quartile 1.16 0.66 2.04 1.18 0.66 2.09 1.03 0.55 1.95 3.69 0.66 20.71 1.37 0.25 7.45 1.29 0.16 10.58

Age Heterogeneity 1st Quartile (REF)
2nd Quartile 0.85 0.63 1.15 0.86 0.63 1.16 0.86 0.54 1.37 0.89 0.44 1.80 0.70 0.46 1.05 0.97 0.54 1.77
3rd Quartile 0.99 0.74 1.32 1.00 0.75 1.34 1.20 0.85 1.70 1.03 0.53 1.98 0.60 0.36 1.02 1.44 1.03 2.02
4th Quartile 0.66† 0.50 0.88 0.67† 0.51 0.89 0.51 0.20 1.31 0.64 0.38 1.07 0.56† 0.35 0.89 0.80 0.49 1.31

School Relative Density* 1st Quartile (REF)
2nd Quartile 1.12 0.72 1.74
3rd Quartile 1.24 0.76 2.02
4th Quartile 1.20 0.65 2.20

* There are no rural schools in the 1st quartile of relative density, therefore, the 2nd quartile is used as the referent in that stratum. There are also no schools located in the western region of the US in the 4th quartile of relative density
† p < 0.05
‡ Estimate is related to a 10% increase in the predictor
All models adjust for age, sex, race/ethnicity, self-report of depression frequency, school size, and the availability of cigarettes at home. Full models including estimates not presented here are shown in Table 3B

4th Quartile (N=1,378)
School Relative Density

Full Model (N=5,404) No Density Model (N=5,404) 1st Quartile (N=1,330) 2nd Quartile (N=1,373) 3rd Quartile (N=1,323)
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Appendix B: Supplemental Material for Chapter 3 

	

 

Figure B1 Observation selection process from in-school interviews in wave 1 to in-home interviews in 
wave 4. 

 

Figure B2 Conceptual Model Diagram of school network (relative) density acting as a modifier on the 
relationship between percentage of friends that smoke and smoking behavior outcomes.
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Table B1 Mean comparisons between retained observations (cleaned in-home data) and observations 
from population representative data (raw in-home data), Add Health, 1994-1995.  

 
 

Table B2 Unadjusted associations between urbanicity and network density as a continuous measure. 
 

Raw In-Home Data Cleaned In-Home Data
Child Age 15.31 15.29
Child Sex (%)

Female 50.25 54.28
Male 49.75 45.72

Child Race (%)
Black 15.99 12.90
Other 17.97 16.73
White 66.04 70.37

Child Depression (%)
Everyday 5.49 5.41
Often 11.06 10.61
Occasionally 18.30 17.92
Rarely 29.13 30.42
Never 36.02 35.63

Child Age Heterogeneity 0.47 0.49
Child Influence Domain 488.30 535.85
School Urbanicity (%)

Rural 21.86 21.86
Suburban 58.70 19.43
Urban 19.43 58.70

School Region (%)
Midwest 29.49 30.71
Northeast 15.73 15.46
South 42.36 42.70
West 12.42 11.13

School Size (%)
Large 33.24 31.92
Medium 48.79 48.66
Small 17.97 19.42

Availability of Cigarettes at Home (%)
No 67.85 67.89
Yes 32.15 32.11

Percentage of Friends that Smoke 24.17 25.18
School Relative Density 0.45 0.46
School Smoking Prevalence (%) 35.00 35.00

Estimate Lower 95% CI Upper 95% CI
Intercept 0.49 0.41 0.59
Urbanicity Suburban (REF) 1.00 1.00 1.00

Rural 1.03 0.84 1.26
Urban 0.78 0.64 0.97

Variable



	77 

Table B3 Unadjusted risk ratios for smoking initiation and cessation by selected risk factors, stratified by school network density, Add Health, 
2001-2002.	

 
	

Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI
Smoking Initiation
Region

South (REF)
Midwest 1.46† 1.11 1.93 3.39† 1.60 7.19 1.66 0.87 3.16 1.05 0.72 1.53 1.23 0.86 1.77
Northeast 1.26 0.90 1.76 1.84 0.95 3.59 1.75† 1.00 3.06 1.31 0.91 1.88 0.85 0.62 1.15
West* 0.90 0.59 1.35 2.66† 1.28 5.53 0.75 0.33 1.68 0.86 0.68 1.09

Urbanicity
Suburban (REF)
Rural* 0.88 0.63 1.24 0.73 0.28 1.91 0.83 0.59 1.18 0.94 0.61 1.43
Urban 0.97 0.69 1.36 1.01 0.49 2.07 1.33 0.78 2.25 0.89 0.62 1.27 1.03 0.65 1.63

Percentage of Nominated Friends that Smoke‡ 1.08† 1.03 1.13 1.15† 1.02 1.29 1.07 0.98 1.18 1.01 0.95 1.07 1.14† 1.04 1.26
School Smoking Prevalence‡ 1.02 0.88 1.19 1.02 0.88 1.19 0.76 0.50 1.15 1.11 0.84 1.48 0.97 0.83 1.13
Influence Domain (i.e., "popularity") 1st Quartile (REF)

2nd Quartile 1.05 0.81 1.35 1.21 0.84 1.74 1.06 0.61 1.82 1.08 0.65 1.80 0.84 0.55 1.26
3rd Quartile 0.89 0.61 1.28 0.55 0.29 1.06 1.32 0.50 3.47 1.10 0.60 1.99 0.71 0.47 1.08
4th Quartile 0.47 0.22 1.00 0.41 0.13 1.29 0.16 0.01 2.29 0.71 0.46 1.09 1.55† 1.13 2.12

Age Heterogeneity 1st Quartile (REF)
2nd Quartile 1.17 0.93 1.46 1.69† 1.10 2.59 0.97 0.71 1.31 1.12 0.75 1.69 1.21 0.64 2.29
3rd Quartile 1.23 0.96 1.59 0.96 0.56 1.65 1.11 0.83 1.49 1.23 0.87 1.75 1.49 0.67 3.31
4th Quartile 1.02 0.78 1.33 1.44 0.74 2.80 0.88 0.57 1.36 0.92 0.58 1.45 1.12 0.59 2.14

School Relative Density* 1st Quartile (REF)
2nd Quartile 1.32 0.85 2.07 --- --- --- --- --- --- --- --- --- --- --- ---
3rd Quartile 1.34 0.94 1.93 --- --- --- --- --- --- --- --- --- --- --- ---
4th Quartile 1.43 0.94 2.16 --- --- --- --- --- --- --- --- --- --- --- ---

Smoking Cessation
Region

South (REF)
Midwest 0.94 0.56 1.60 0.99 0.34 2.92 0.34† 0.19 0.63 0.81 0.46 1.44 2.12 0.93 4.87
Northeast 0.99 0.52 1.89 0.58 0.07 4.49 1.16 0.55 2.45 0.98 0.68 1.42 0.99 0.50 1.95
West* 1.12 0.76 1.67 0.73 0.26 2.01 1.04 0.52 2.07 1.01 0.71 1.45 --- --- ---

Urbanicity
Suburban (REF)
Rural* 0.69 0.47 1.02 --- --- --- 1.18 0.41 3.40 0.87 0.59 1.27 0.53 0.25 1.15
Urban 1.31 0.82 2.10 0.84 0.30 2.34 2.22† 1.14 4.30 1.42† 1.02 1.99 0.68 0.27 1.73

Percentage of Nominated Friends that Smoke ‡ 0.97 0.93 1.02 1.03 0.93 1.15 0.97 0.88 1.07 0.98 0.92 1.04 0.93 0.85 1.01
School Smoking Prevalence‡ 0.74† 0.64 0.85 0.64† 0.45 0.91 0.74† 0.56 0.97 0.87 0.65 1.17 0.73 0.48 1.10
Influence Domain (i.e., "popularity") 1st Quartile (REF)

2nd Quartile 0.73 0.47 1.15 0.51 0.21 1.28 1.22 0.46 3.27 1.68† 1.02 2.77 0.44 0.17 1.13
3rd Quartile 1.10 0.74 1.62 0.59 0.24 1.46 1.18 0.58 2.41 1.73† 1.14 2.64 1.15 0.62 2.13
4th Quartile 1.07 0.67 1.72 1.04 0.55 1.97 1.65 0.71 3.84 1.37 0.59 3.22 0.52† 0.36 0.75

Age Heterogeneity 1st Quartile (REF)
2nd Quartile 0.83 0.63 1.11 0.98 0.59 1.62 0.80 0.39 1.63 0.69 0.47 1.00 0.80 0.50 1.26
3rd Quartile 0.96 0.72 1.27 1.29 0.85 1.95 0.94 0.49 1.83 0.59† 0.36 0.96 1.30 0.83 2.04
4th Quartile 0.62† 0.48 0.81 0.74 0.31 1.76 0.54† 0.32 0.92 0.51† 0.35 0.74 0.70 0.41 1.22

School Relative Density* 1st Quartile (REF)
2nd Quartile 0.93 0.51 1.68 --- --- --- --- --- --- --- --- --- --- --- ---
3rd Quartile 0.77 0.47 1.25 --- --- --- --- --- --- --- --- --- --- --- ---
4th Quartile 0.76 0.38 1.50 --- --- --- --- --- --- --- --- --- --- --- ---

* There were no rural schools in the 1st quartile of relative density, therefore, the 2nd quartile is used as the referent in that stratum. There are also no schools located in the western region of the US in the 4th quartile of relative density
† p < 0.05
‡ Estimate is related to a 10% increase in the predictor

4th Quartile
School Relative Density

Unadjusted Non-Stratified 1st Quartile 2nd Quartile 3rd Quartile
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Table B4 Full model results of adjusted risk ratios for smoking initiation and cessation by selected risk factors, stratified by school network 
density, Add Health, 2001-2002.	

Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI
Smoking Initiation
Intercept 0.16† 0.09 0.30 0.17† 0.09 0.31 0.24† 0.09 0.63 0.28† 0.08 1.00 0.26† 0.09 0.80 0.05† 0.02 0.15
Age 0.86† 0.79 0.93 0.86† 0.79 0.93 1.00 0.80 1.25 0.91 0.81 1.03 0.90 0.80 1.01 0.72† 0.63 0.84
Sex Male (REF)

Female 0.71† 0.61 0.81 0.70† 0.61 0.81 0.83 0.59 1.17 0.58† 0.47 0.71 0.73† 0.56 0.94 0.73† 0.54 0.98
Race White (REF)

Black 0.52† 0.35 0.78 0.53† 0.35 0.78 0.57 0.26 1.25 0.32† 0.15 0.66 0.72 0.49 1.07 0.47 0.20 1.11
Other 0.92 0.75 1.15 0.93 0.75 1.15 0.85 0.56 1.30 1.07 0.74 1.55 0.67 0.43 1.06 0.92 0.66 1.27

Depression Never (REF)
Everyday 1.13 0.78 1.65 1.14 0.79 1.65 1.41 0.59 3.37 0.76 0.29 1.97 1.19 0.64 2.20 1.18 0.61 2.28
Often 1.16 0.88 1.52 1.16 0.88 1.52 1.62 0.92 2.85 1.05 0.55 2.00 1.13 0.71 1.80 1.05 0.62 1.79
Occasionally 1.10 0.87 1.39 1.10 0.87 1.39 0.90 0.47 1.72 0.97 0.67 1.39 1.25 0.74 2.14 1.20 0.83 1.74
Rarely 1.02 0.87 1.19 1.02 0.87 1.19 0.83 0.55 1.24 1.05 0.84 1.33 1.23 0.87 1.74 0.94 0.68 1.30

Availability of Cigarettes at Home No (REF)
Yes 1.19† 1.00 1.43 1.19 0.99 1.42 1.55 0.88 2.71 1.01 0.71 1.43 1.17 0.89 1.53 1.26 0.92 1.71

School Size Small (REF)
Medium 1.03 0.58 1.83 1.02 0.58 1.79 0.92 0.34 2.50 10.50† 3.36 32.81 1.44 0.80 2.57 0.48† 0.26 0.88
Large 1.11 0.80 1.55 1.11 0.78 1.58 0.69 0.40 1.20 1.31 0.43 4.03 0.85 0.51 1.42 1.15 0.78 1.70

Region South (REF)
Midwest 1.24 0.95 1.62 1.19 0.90 1.59 3.73† 1.56 8.92 1.25 0.55 2.83 1.05 0.82 1.35 2.08† 1.31 3.31
Northeast 1.05 0.79 1.41 1.03 0.75 1.41 1.98 0.78 5.01 0.98 0.53 1.81 0.98 0.66 1.45 1.16 0.85 1.58
West 0.86 0.61 1.23 0.89 0.65 1.21 1.95 0.89 4.26 0.58 0.27 1.26 1.06 0.74 1.51

Urbanicity Suburban (REF)
Rural 0.90 0.71 1.14 0.87 0.70 1.09 --- --- --- 0.98 0.60 1.58 0.82 0.57 1.18 1.99† 1.22 3.25
Urban 1.01† 0.78 1.29 1.04 0.81 1.33 0.48† 0.29 0.80 1.25 0.62 2.51 0.77 0.50 1.16 2.34† 1.53 3.59

Percentage of Nominated Friends that Smoke 1.07† 1.03 1.13 1.07† 1.03 1.12 1.12 0.98 1.27 1.07 0.97 1.18 1.01 0.95 1.08 1.15† 1.07 1.24
School Smoking Prevalence 1.05 0.94 1.18 1.05 0.93 1.17 0.78 0.47 1.27 1.02 0.83 1.25 1.01 0.84 1.23 1.05 0.87 1.27
Influence Domain (i.e., "popularity") 1st Quartile (REF)

2nd Quartile 1.02 0.75 1.39 1.02 0.75 1.38 1.39 0.86 2.24 1.01 0.38 2.64 1.05 0.59 1.88 1.48 0.87 2.53
3rd Quartile 0.93 0.65 1.32 0.93 0.65 1.33 0.71 0.40 1.23 1.02 0.39 2.63 0.98 0.55 1.73 1.09 0.63 1.88
4th Quartile 0.51 0.19 1.38 0.53 0.20 1.42 0.38 0.09 1.50 0.05† 0.01 0.18 0.54† 0.35 0.86 7.01† 3.02 16.27

Age Heterogeneity 1st Quartile (REF)
2nd Quartile 1.16 0.93 1.45 1.16 0.94 1.45 1.66† 1.11 2.49 0.92 0.70 1.21 1.11 0.73 1.69 1.18 0.64 2.18
3rd Quartile 1.23 0.97 1.56 1.23 0.97 1.55 1.00 0.60 1.66 1.15 0.90 1.47 1.23 0.87 1.75 1.31 0.66 2.58
4th Quartile 1.09 0.83 1.43 1.09 0.83 1.43 1.49 0.75 2.96 0.90 0.59 1.38 1.05 0.66 1.66 1.22 0.66 2.28

School Relative Density* 1st Quartile (REF)
2nd Quartile 1.15 0.80 1.64
3rd Quartile 1.03 0.68 1.56
4th Quartile 0.91 0.61 1.35

Smoking Cessation
Intercept 1.12 0.54 2.30 1.14 0.58 2.23 3.74 0.91 15.42 0.99 0.26 3.78 0.29 0.03 2.48 2.77 0.38 20.44
Age 0.99 0.90 1.09 0.99 0.90 1.08 1.23 0.91 1.66 0.91 0.71 1.17 0.88 0.75 1.04 1.13 0.96 1.34
Sex Male (REF)

Female 0.99 0.80 1.23 0.99 0.80 1.23 1.49 0.77 2.87 1.00 0.61 1.64 0.74 0.54 1.02 1.48 0.94 2.32
Race White (REF)

Black 1.23 0.83 1.81 1.21 0.82 1.78 1.02 0.40 2.58 1.50 0.87 2.59 1.68 0.97 2.90 0.46 0.02 9.08
Other 0.79 0.57 1.09 0.78 0.57 1.08 0.91 0.46 1.79 0.70 0.38 1.28 0.78 0.41 1.48 0.77 0.31 1.88

Depression Never (REF)
Everyday 0.64 0.41 1.00 0.64 0.41 1.00 0.44 0.16 1.21 0.87 0.44 1.72 0.54 0.16 1.81 0.58 0.26 1.31
Often 1.00 0.72 1.38 1.00 0.72 1.38 0.55 0.23 1.28 1.00 0.45 2.25 1.47† 1.00 2.16 0.77 0.49 1.20
Occasionally 1.00 0.79 1.28 1.00 0.79 1.28 0.50† 0.31 0.82 0.97 0.56 1.67 1.33 0.92 1.92 1.13 0.73 1.76
Rarely 0.85 0.65 1.10 0.85 0.65 1.10 0.84 0.49 1.46 0.75 0.43 1.31 1.07 0.64 1.78 0.64 0.41 1.01

Availability of Cigarettes at Home No (REF)
Yes 0.76† 0.63 0.93 0.76† 0.63 0.93 0.52† 0.36 0.75 0.79 0.51 1.24 0.95 0.72 1.24 0.55† 0.37 0.82

School Size Small (REF)
Medium 0.84 0.46 1.51 0.79 0.42 1.48 0.38 0.11 1.35 0.31 0.04 2.42 0.89 0.17 4.69 1.26 0.27 5.76
Large 1.06 0.69 1.64 1.05 0.66 1.67 0.84 0.32 2.22 0.96 0.45 2.06 0.70 0.29 1.71 1.14 0.63 2.06

Region South (REF)
Midwest 0.75 0.53 1.05 0.74 0.53 1.05 0.55 0.17 1.82 0.44† 0.21 0.92 0.73 0.44 1.19 0.93 0.32 2.69
Northeast 0.70 0.48 1.01 0.71 0.50 1.00 1.11 0.28 4.40 0.64 0.27 1.53 0.75 0.31 1.78 0.50† 0.27 0.94
West 1.25 0.82 1.90 1.25 0.83 1.88 1.15 0.40 3.28 1.47 0.82 2.66 1.14 0.65 2.00

Urbanicity Suburban (REF)
Rural 0.76 0.51 1.12 0.78 0.56 1.10 1.37 0.84 2.25 1.06 0.75 1.51 0.51† 0.29 0.89
Urban 1.18 0.87 1.61 1.14 0.84 1.54 0.85 0.32 2.27 1.13 0.75 1.69 1.18 0.63 2.21 0.42† 0.21 0.84

Percentage of Nominated Friends that Smoke 0.98 0.94 1.02 0.98 0.94 1.02 1.01 0.90 1.12 0.98 0.90 1.08 1.04 0.95 1.14 0.90† 0.83 0.97
School Smoking Prevalence 0.80† 0.69 0.92 0.83† 0.72 0.95 0.74 0.52 1.04 0.86 0.69 1.07 1.08 0.64 1.82 0.75 0.50 1.14
Influence Domain (i.e., "popularity") 1st Quartile (REF)

2nd Quartile 0.66 0.42 1.02 0.67 0.42 1.05 0.22† 0.09 0.51 0.90 0.48 1.69 1.88 0.88 4.01 0.34† 0.16 0.73
3rd Quartile 1.28 0.78 2.08 1.28 0.77 2.12 0.78 0.24 2.49 1.30 0.54 3.11 2.20† 1.08 4.48 1.57 0.57 4.31
4th Quartile 1.16 0.66 2.04 1.18 0.66 2.09 1.03 0.55 1.95 3.69 0.66 20.71 1.37 0.25 7.45 1.29 0.16 10.58

Age Heterogeneity 1st Quartile (REF)
2nd Quartile 0.85 0.63 1.15 0.86 0.63 1.16 0.86 0.54 1.37 0.89 0.44 1.80 0.70 0.46 1.05 0.97 0.54 1.77
3rd Quartile 0.99 0.74 1.32 1.00 0.75 1.34 1.20 0.85 1.70 1.03 0.53 1.98 0.60 0.36 1.02 1.44† 1.03 2.02
4th Quartile 0.66† 0.50 0.88 0.67† 0.51 0.89 0.51 0.20 1.31 0.64 0.38 1.07 0.56† 0.35 0.89 0.80 0.49 1.31

School Relative Density* 1st Quartile (REF)
2nd Quartile 1.12 0.72 1.74
3rd Quartile 1.24 0.76 2.02
4th Quartile 1.20 0.65 2.20

* There are no rural schools in the 1st quartile of relative density, therefore, the 2nd quartile is used as the referent in that stratum. There are also no schools located in the western region of the US in the 4th quartile of relative density
† p < 0.05
‡ Estimate is related to a 10% increase in the predictor

4th Quartile (N=1,378)
School Relative Density

Full Model (N=5,404) No Density Model (N=5,404) 1st Quartile (N=1,330) 2nd Quartile (N=1,373) 3rd Quartile (N=1,323)
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Table B5 Full model results of adjusted risk ratios for smoking initiation and cessation by selected risk 
factors, stratified by sex, Add Health, 2001-2002.  

	 	

Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI
Initiation
Intercept 0.10† 0.05 0.21 0.15† 0.06 0.37
Age 0.86† 0.77 0.95 0.85† 0.77 0.94
Race White (REF)

Black 0.40† 0.25 0.63 0.64 0.38 1.08
Other 0.88 0.64 1.22 0.98 0.75 1.28

Depression Never (REF)
Everyday 1.35 0.80 2.27 1.22 0.72 2.08
Often 1.24 0.85 1.83 0.96 0.60 1.55
Occasionally 1.30 0.93 1.81 0.90 0.62 1.29
Rarely 0.90 0.66 1.22 1.11 0.89 1.38

Availability of Cigarettes at Home No (REF)
Yes 1.18 0.97 1.45 1.19 0.90 1.57

School Size Small (REF)
Medium 1.28 0.80 2.05 1.06 0.70 1.62
Large 1.28 0.56 2.96 0.91 0.49 1.67

Region South (REF)
Midwest 1.34† 1.00 1.81 1.13 0.78 1.64
Northeast 1.20 0.85 1.68 0.95 0.66 1.37
West 0.69 0.43 1.10 0.86 0.53 1.41

Urbanicity Suburban (REF)
Rural 0.86 0.64 1.15 1.07 0.80 1.45
Urban 0.84 0.61 1.15 1.23 0.87 1.73

Percentage of Nominated Friends that Smoke‡ 1.10† 1.04 1.16 1.05 0.99 1.11
School Smoking Prevalence‡ 1.19† 1.03 1.37 0.94 0.82 1.07
Influence Domain (i.e., "popularity") 1st Quartile (REF)

2nd Quartile 0.76 0.44 1.30 1.22 0.82 1.82
3rd Quartile 0.61 0.36 1.03 1.34 0.87 2.06
4th Quartile 0.40 0.12 1.36 0.72 0.37 1.40

Age Heterogeneity 1st Quartile (REF)
2nd Quartile 1.20 0.82 1.74 1.11 0.87 1.41
3rd Quartile 1.31 0.90 1.89 1.17 0.90 1.52
4th Quartile 1.04 0.73 1.47 1.06 0.78 1.44

School Relative Density* 1st Quartile (REF)
2nd Quartile 0.88 0.54 1.44 1.60 0.99 2.61
3rd Quartile 0.77 0.44 1.34 1.45 0.84 2.51
4th Quartile 0.66 0.37 1.19 1.25 0.74 2.10

Cessation
Effect

Intercept 0.71 0.24 2.12 1.40 0.42 4.71
Age 0.92 0.80 1.06 1.07 0.91 1.25
Race White (REF)

Black 1.66† 1.06 2.60 0.59 0.27 1.31
Other 0.83 0.54 1.28 0.66 0.43 1.02

Depression Never (REF)
Everyday 0.61† 0.37 0.99 0.53 0.20 1.43
Often 1.12 0.73 1.72 0.62 0.29 1.32
Occasionally 1.03 0.67 1.58 0.98 0.64 1.51
Rarely 1.03 0.66 1.60 0.67† 0.47 0.96

Availability of Cigarettes at Home No (REF)
Yes 0.67† 0.53 0.84 0.91 0.66 1.25

School Size Small (REF)
Medium 1.15 0.67 1.96 0.95 0.42 2.13
Large 0.88 0.34 2.30 0.85 0.29 2.48

Region South (REF)
Midwest 0.62 0.37 1.06 0.67 0.38 1.18
Northeast 0.69 0.44 1.09 0.32† 0.12 0.87
West 1.11 0.57 2.15 0.98 0.39 2.43

Urbanicity Suburban (REF)
Rural 0.68 0.38 1.21 0.70 0.35 1.40
Urban 1.12 0.73 1.72 1.20 0.64 2.26

Percentage of Nominated Friends that Smoke‡ 0.98 0.93 1.04 0.98 0.92 1.04
School Smoking Prevalence‡ 0.92 0.74 1.13 0.71 0.51 0.98
Influence Domain (i.e., "popularity") 1st Quartile (REF)

2nd Quartile 0.64 0.34 1.20 0.66 0.25 1.74
3rd Quartile 1.33 0.76 2.33 1.73 0.71 4.22
4th Quartile 0.89 0.32 2.51 1.23 0.43 3.49

Age Heterogeneity 1st Quartile (REF)
2nd Quartile 0.79 0.50 1.24 0.75 0.44 1.27
3rd Quartile 0.95 0.67 1.36 1.03 0.65 1.63
4th Quartile 0.70 0.49 1.00 0.62 0.36 1.07

School Relative Density* 1st Quartile (REF)
2nd Quartile 0.95 0.51 1.75 1.45 0.59 3.58
3rd Quartile 0.96 0.48 1.95 2.02 0.74 5.55
4th Quartile 0.96 0.38 2.42 1.69 0.61 4.72

† p < 0.05
‡ Estimate is related to a 10% increase in the predictor

Female (N=3,114) Male (N=2,290)
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Figure B3 Relative risk of smoking initiation for a 10% increase in percentage of friends that smoke by 
school relative density. This figure assumes quadratic statistical interaction (i.e., non-linear effect 
modification) by school network density with the percentage of friends that smoke on the probability of 
smoking initiation. 

 
Figure B4 Relative risk of smoking initiation for a 10% increase in percentage of friends that smoke by 
sex. This figure assumes multiplicative statistical interaction by sex with the percentage of friends that 
smoke on the probability of smoking initiation. 	

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

School Relative Density

R
e

la
tiv

e
 R

is
k 

o
f 
S

m
o

ki
n

g
 I
n

iti
a
tio

n
 

b
y 

%
 o

f 
F

ri
e
n

d
s 

th
a

t 
S

m
o

ke
 (

Q
u
a

d
ra

tic
 I
n
te

ra
ct

io
n

)

Male Female

Sex

R
el

at
iv

e 
R

is
k 

of
 S

m
ok

in
g 

In
iti

at
io

n 
by

 %
 o

f F
rie

nd
s 

th
at

 S
m

ok
e 

(M
ul

tip
lic

at
iv

e 
In

te
ra

ct
io

n)

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

1.
14



	 81 

CHAPTER 4 

 

Connecting Statistical Analyses to Mechanistic Models: Pathway Validation 

 

Background 

As demonstrated in the previous chapter, and in prior research, a portion of adolescent 

smoking behavior could be attributed to peer influence.1–5 Additionally, differences in peer 

influence by network density have been demonstrated for other substance use and delinquency 

more broadly.6–8 However, the nature of data-driven statistical methods, such as those utilized in 

Chapter 3 of this dissertation, provide only associations and evidence supporting the causal 

frameworks used to justify the inclusion of covariates in the statistical model. That is, while 

statistical regression methods can provide supporting evidence for causal frameworks by revealing 

associations, these methods are not suited to reveal the underlying mechanisms that produce these 

associations without additional assumptions and modifications. Previous simulation models of 

social networks have attempted to disentangle the effects between peer selection and peer influence 

on substance use,1 social media sharing,2 and delinquency,9 and find that many studies can 

potentially over- or under- estimate the level of peer influence effects due to difficulties 

disentangling them from peer selection effects (i.e., potential reverse causality).10,11 In this chapter, 

we hypothesize that peer influence diffusion through social adolescent networks (i.e., assuming 

peer selection) is a key mechanism that generates differences in peer influence of smoking 

behavior by network density. To explore this hypothesis, we apply the pertinent pathways posited 

in the previous chapter in a mechanistic computational model to isolate the independent effects of 

peer influence by network structure. This aim presents an explanatory mechanism integrated into 

a mechanistic model, that when incorporated with empirical data, can bring insights into the 

meaning of the statistical associations observed between urbanicity, network density, peer 

influence, and smoking behavior. Furthermore, these results may provide insights into a range of 

potential social policy levers that can help further reduce US smoking prevalence in adolescents. 
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Introduction 

Friendship networks have been consistently shown to contribute to the propagation of 

smoking behavior among adolescents.4,7,12,13 However, whether smoking behavior outcomes, such 

as smoking initiation among non-smokers or smoking cessation among current smokers, are due 

primarily to peer selection, peer influence, or both equally, has also been a topic of considerable 

contention.2,10,11,14,15 Moreover, many studies have examined how complex social networks 

contribute to adolescent smoking initiation,16 yet most either utilize data-driven statistical methods 

or mechanistic computational methods that prioritize individual-level network characteristics, such 

as popularity or other centrality measures, while ignoring broader contextual network 

characteristics.1,16 Despite evidence supporting differences in the nature of friendship17 and 

smoking behavior across urban contexts,18,19 we found no published studies explicitly focusing on 

the differences in associations between friendship influence and urbanicity with smoking behavior 

outcomes using the National Longitudinal Study of Adolescent to Adult Health (Add Health) 

networks data. To our knowledge, there are also no mechanistic modeling studies using the Add 

Health networks data to examine how school network structure can independently change the 

propagation outcomes of smoking behavior through mechanisms of friendship influence. Thus, 

although many studies suggest that network density, and perhaps urbanicity by proxy, can change 

the nature of friendship influence on adolescent behavior,6,7,13 the mechanisms explaining why we 

observe these differences remain unclear. The complexities of social networks may result in 

analytic or conceptual biases that could contribute to erroneous interpretations of social influence. 

Such results may then encourage ineffective interventions or policies if social influence does not 

truly cause adolescents to change their health behaviors,20 or if its influence is lower than inferred 

from associations using non-mechanistic analysis methods. 

While the statistical regression models shown in Chapter 3 demonstrate potential effect 

modification of peer influence on smoking behavior by network structure, the validity of our model 

results relies on the validity of the causal framework that motivated the statistical analyses. 

Mechanistic computational models (such as ABMs) can bring additional value to the causal 

framework by providing further explanations of the interacting processes that can generate 

empirical data patterns. These methods are also able to experiment with and test processes in well-

defined and closed experimentation environment, free of unknown confounding. Given the 

literature supporting differences in social network characteristics by built environment (e.g., 
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urbanicity and regional location),21,22 we hypothesize that because friendship influence on smoking 

behavior changes due to network density, the same differences may be observed through a higher-

level proxy measure, such as urbanicity. We test this hypothesis by examining whether the 

magnitude and direction of friendship influence on smoking initiation and cessation changes by 

urbanicity designations, an extension of the findings from Chapter 3. Next, we hypothesize that 

the observed differences from our statistical models can be accounted for solely by differences in 

network structure, and when assuming competing percolation processes of smoking cessation and 

smoking initiation. We test this hypothesis by implementing the network structure data from Add 

Health in an agent-based networks simulation model, assuming that friendship influence on 

smoking behavior, for both smoking initiation and cessation, spreads across directed friendship 

ties. This model excludes all other risk factors to isolate the effects of network structure and peer 

influence on smoking prevalence outcomes. After model simulations are finished, we match 

individuals in the model to corresponding empirical observations to determine whether the 

computational model can recover the qualitative characteristics of the outcomes observed from the 

mixed-effects statistical models presented here and in Chapter 3. This work yields two important 

results. First, we provide insights into the basic processes contributing to smoking behavior among 

US adolescents. Second, by showing how statistical and abstract computational methods can 

coordinate to advance causal frameworks in epidemiology, we demonstrate the role that abstract 

models can play in the study of causality in epidemiology and public health.  

 

Methods 

Data 

The statistical methods of chapter uses networks data from the Add Health study, a school-

based longitudinal study of a nationally representative sample of adolescents in the United States 

attending grades 7-12 in 1994.23 Urbanicity designations were determined in the primary sampling 

frame of Add Health, using Quality Education Data to ensure that the selected schools in the study 

are representative of US schools in terms of urbanicity, region, size, type, and race/ethnicity 

distribution.23 In wave 1 (1994) of the in-school questionnaire, adolescents were asked to select 5 

of their best female friends, in addition to 5 of their best male friends, with many selecting fewer 

than 10 total friends. Add Health only retained network data for schools with at least 50% 

participation by the student body on friendship questionnaires to ensure that the social network 



	 84 

samples are representative of the whole school.23 While the simulation methods of this chapter use 

only friendship structure data from the Add Health study, adolescent identification values are 

retained in the model order to identify what adolescent and school characteristics (i.e., sex, race, 

network density, urbanicity) may be associated with friendship network structure, and whether 

these associations may give rise to differences in social patterning of smoking behavior.  

 

Statistical Analysis 

To determine the potential mechanisms contributing to the patterning of social influence 

by broader contextual factors in the Add Health survey, we test whether friendship influence on 

smoking behavior differs by school urbanicity designations. We begin by applying the same data 

selection method and subsequent dataset from Chapter 3. Then, using univariate analysis, we 

estimate the relative risks and 95% confidence intervals of risk factors of interest, hypothesized to 

contribute to smoking initiation and cessation in wave 3 (2001-2002) among non-smokers and 

smokers, respectively, in wave 1 (1994). These results are stratified by urban, suburban, and rural 

designations of schools. Next, to determine potential effect modification by urbanicity on the 

pathway between peer influence and smoking behavior, we use multivariate mixed-effects 

analyses, stratified by urbanicity, with schools acting as the random intercept while adjusting for 

fixed effects of all variables analyzed in the univariate models, in addition to a range of potential 

confounders, such as age, sex, race/ethnicity, self-report of depression, school size, and the 

availability of cigarettes at home. We additionally test for heterogeneity through interaction 

analysis of the relationship between urbanicity and peer influence on smoking behavior. These 

analyses were performed by employing a modified Poisson approach to estimate relative risks and 

using PROC GLIMMIX in SAS 9.4 to account for the weighted multi-level survey design of the 

Add Health survey.  

 

Simulation Modeling 

 Next, we initialize network structures in a separate simulation model, using friendship data 

from the Add Health study. We then initialize smoking prevalence at random across the entire Add 

Health population, and then propagate smoking behavior in each of the school networks 

accounting for peer effects as described below. We additionally matched network identification 

data to in-school response questionnaires to determine sex (male or female) and race (white, non-
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Hispanic black, or other) of participants in the model. “Other” race is an aggregate of individuals 

identifying as of Hispanic or Latino origin, Asian or Pactific Islander, or American Indian or 

Native American. Adolescents included in the network data with missing values for sex and race 

were randomly assigned values for simplicity, and low levels of missing data (less than 1% from 

each subgroup, and missing at random). While these factors were excluded from the model 

mechanisms and processes entirely, their associated network characteristics and community 

structure may differ substantially and thus contribute to differences in the patterning of smoking 

behavior by urbanicity or network density. Aside from the assumption that the Add Health network 

structures are representative of US adolescent friendship networks, we make two additional 

assumptions of smoking behavior among adolescents: 1) that peer influence of smoking behavior 

manifests in populations like information or infectious disease diffusion; and 2) that peer influence 

of smoking initiation behaves similarly to peer influence of smoking cessation (i.e., equivalent 

forces in competing directions).  

In operationalizing peer influence and the subsequent diffusion of smoking state changes, 

we construct a transition probability by time step. This transition probability weights the 

probability of smoking status changes by the percentage of nominated smoking and non-smoking 

friends, derived from a formulation of the odds ratio (OR) in logistic regression (see Appendix C 

for details of this derivation):  

 

! "#$%&'(')% *+, =
1

1 + 012345678519:∗<=>4?@A 

 

Where t is time and baseline is a parameter of the baseline transition rate between states that 

captures the individual propensity to either start of quit smoking (Baseline_start and 

Baseline_quit). OR values are also a variable parameter that differs by whether the focal adolescent 

will quit (OR_quit) or start (OR_init). pofs is the percentage of friends that are either non-smokers 

for a currently smoking focal adolescent, or the percentage of friends that are current smokers, for 

a non-smoking focal adolescent (from 0 to 100 in units). In other words, the term OR*pofs captures 

the peer influence effects. When pofs is 0, the transition probability depends only on the baseline 

parameter.  

At every time step in the model, each additional percentage point increase in the percentage 

of nominated friends that smoke increases the odds of a non-smoker becoming a smoker. Similarly, 
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each percentage point increase in the percentage of nominated friends that are non-smokers 

increases the odds of a smoker becoming a non-smoker. The magnitude of the odds of non-smokers 

becoming smokers and smokers becoming non-smokers are variable parameters in this model, 

which allow us to examine how smoking behavior outcomes of the model change due to changes 

in the magnitude of friendship influence on smoking initiation (OR_init) and smoking cessation 

(OR_quit). The odds of a non-smoker initiating smoking increase the baseline probability of 

smoking initiation (Baseline_start), while the odds of a current smoker quitting increase the 

baseline probability of quitting smoking (Baseline_quit). For interpretability purposes, we present 

a select subset of 9 model outcomes for combinations of two values for Baseline_start and 

Baseline_quit (0.01, and 0.005), along with two values for OR_init and OR_quit (1.000, 1.025). 

Heatmaps of how the combinations of our parameters change model smoking prevalence by 

urbanicity and density are shown in Figures C1-C3.  

In this simulation model, the conceptualization of time is not fixed to data, and is therefore 

abstractly defined in the context of the model dynamics. All model dynamics occur as discrete 

events in discrete time. That is, each agent has one opportunity at each time step to become a 

smoker or to quit smoking, depending on their smoking state at that time step. Each model runs 

for 150 time steps (i.e., until qualitative equilibrium), and all experiments are repeated 15 times 

for each case to account for stochasticity in each model run. Again, no assumptions in this model 

are made regarding differences of peer influence by urbanicity, network density, sex, or race. 

Heterogeneity of agents in this model come exclusively from the friendship network data (i.e., the 

number of ties for each adolescent is heterogeneous). Importantly, heterogeneity in the percentage 

of friends that smoke arises from this data. That is, the number of friendship selections affects the 

percentage of friends that smoke overall. All other variables, such as the baseline probability of 

smoking initiation and cessation, and the coefficient of the odds of smoking initiation and 

cessation, are homogenous within the population. This is done to isolate the impact of potential 

differences in the underlying school networks that contribute to the diffusion of smoking behaviors 

by friendship influence. Finally, given the potential association between urbanicity and school-

level network density, continuous network density values are converted to tertiles for comparison 

purposes to the three urbanicity levels, although quartiles of network density are retained for the 

statistical model. Further details discussing the derivation and operationalization of the probability 
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of smoking state changes by peer influence (C1.1), along with pseudo code of the model (C1.2), 

can be found in Appendix C.  

 

Results 

We begin with an extension of the results from Chapter 3. Table 4.1 shows select statistical 

multi-level outcomes of smoking initiation in wave 3 among non-smokers in wave 1, and smoking 

cessation in wave 3 among current smokers in wave 1, stratified by urbanicity. Univariate 

outcomes for parameters of interest are included in Table C1 and complete model results in Table 

C2. We observe that among suburban (RR=1.09, 95% CI: 1.02, 1.16) and urban (RR=1.09, 95% 

CI: 1.02, 1.17) schools, the proportion of friends is important for smoking initiation, though the 

effect estimate of school-level smoking prevalence for smoking initiation among adolescents in 

rural schools (RR=1.25, 95% CI: 1.02, 1.51) is larger than that of the percentage of nominated 

friends that smoke (RR=1.01, 95% CI: 0.93, 1.11), which does not reach significance. For smoking 

cessation, we observe that school smoking prevalence plays a large role in predicting smoking 

cessation in urban schools (RR=0.73, 95% CI: 0.61, 0.88), though the effects are smaller in 

suburban (RR=0.97, 95% CI: 0.74, 1.26) and rural schools (RR=0.87, 95% CI=0.63, 1.20). We 

additionally find that adolescents attending schools in the 3rd and 4th quartile of network density in 

rural schools are 0.56 (95% CI: 0.32, 0.98) and 0.46 (95% CI: 0.23, 0.94) times less likely, 

respectively, to quit smoking than adolescents attending rural schools in the 2nd quartile of network 

density. Interaction terms between urbanicity and peer influence in predicting smoking initiation 

and cessation were not found to be statistically significant. Table 3.1 presents the descriptive 

statistics of the population used for the analyses presented here. 

Overall, 69,408 adolescents in 112 schools participated in the in-school friendship 

networks survey of Add Health. A glossary of network terms and their definitions are available in 

Table 4.2; network terms previously defined in Table 3.1 are not included in this table. Table 4.3 

shows descriptive statistics of the population used in the networks models, and of the networks 

themselves, stratified by urbanicity and density tertiles. We also show descriptive statistics of 

networks stratified by sex in Table C3. We observe rural networks have higher number of contacts 

(degree) and higher excess degree, which is a measure of the efficiency of the network in 

transmitting communicable traits (see Table 4.2 for network measure definitions). Additionally, 

we find in the data that a greater percentage of adolescents in rural schools are white and have 



	 88 

higher network centrality measures on average (i.e., degree, excess degree, betweenness, 

closeness, modularity) than adolescents attending urban or suburban schools. We also observe that 

rural schools have higher mean and median density than suburban or urban schools, with urban 

schools reporting the lowest values for all descriptive variables except in cases of the percentage 

of non-white adolescents. Shifting our focus to density, we observe that most urban schools are 

concentrated in the 1st tertile of network density, which also contains no rural schools. Adolescents 

with higher levels of network centrality measures also attend schools in the highest levels of 

network density. Similarly, white students comprise of 71% of the adolescents attending schools 

in the 3rd tertile of network density, while schools in the 1st tertile of network density comprise of 

a lower percentage of white (35%) adolescents, and a higher percentage of non-Hispanic black 

(25%) and other race (30%) adolescents. 

Figure 4.1 shows model results from the agent-based networks model, where panel 

columns represent static values for OR_init and OR_quit, and panel rows represent static values 

for Baseline_start and Baseline_quit. Each graph represents a unique combination of these four 

values. In the cases where OR_quit is low (i.e., 1.000) and OR_init is high (i.e., 1.025), we find 

that regardless of whether the baseline initiation start or quit values are high (0.01) or low (0.005), 

we observe increases from smoking prevalence at initialization. In contrast, when OR_quit is high 

and OR_init is low, we observe that smoking prevalence decreases from initialization values for 

all cases. When the OR values are equal for both friendship influence of smoking initiation and 

friendship influence of cessation, we observe decreasing and then slightly increasing prevalence 

rates when baseline initiation and cessation values are equal. However, decreasing the baseline 

initiation value to 0.005 while holding the baseline cessation value at 0.01 results in decreases to 

smoking prevalence. Alternatively, decreasing the baseline cessation rate to 0.005 and maintaining 

the baseline initiation value at 0.01 results in increases to smoking prevalence when ORs are equal.  

Notably, we observe the emergence of differences in smoking prevalence by network 

density and urbanicity with varying values of ORs. In all cases where the differences emerge in 

the smoking prevalence, we observe that urban and schools in the first tertile (T1) of density report 

lowest smoking prevalence. Similarly, rural schools and schools in the third tertile (T3) of density 

report the highest smoking prevalence. These patterns of smoking prevalence by urbanicity and 

density are consistent across all cases where we can observe clear differences in smoking 

prevalence by these strata.  
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 Figure 4.2 shows smoking prevalence stratified by race. We observe similar outcomes to 

that of urbanicity, with non-Hispanic blacks demonstrating lower smoking prevalence than whites, 

and other races demonstrating smoking prevalence values slightly higher than blacks in all cases. 

Figure 4.3 expands on the information from Figure 4.2 by comparing races across urban 

environments. We observe that all urban groups by race present lower smoking prevalence than 

rural and suburban whites. Moreover, rural blacks surpass urban whites in smoking prevalence for 

all cases when observable patterns distinguishing smoking prevalence by these parameters emerge. 

Finally, Figure 4.4 shows model results by sex. In cases where differences between males and 

females emerge, females present with higher smoking prevalence than males. Across all cases in 

Figures 4.1-4.4, we observe differences in the dynamics of smoking prevalence, with the same 

networks generating dramatically different smoking prevalence outcomes. 

 

Discussion 

From the statistical models, we observe that the potential effects of friendship influence on 

both smoking initiation and cessation vary across urbanicity designations, although statistical tests 

for heterogeneity do not reach significance. Given that we adjust for network density in the 

stratified analysis, these results may suggest that the effects of network density (found in Chapter 

3) may outweigh any additional differences by urbanicity in our statistical analyses. Nevertheless, 

among adolescents in rural schools, school smoking prevalence is positively associated with and 

has a greater influence on smoking initiation than the effect of the percentage of nominated friends 

that smoke. Differently, among urban and suburban schools, a higher percentage of nominated 

friends that smoke is a stronger factor for smoking initiation than school-level smoking prevalence, 

suggesting potentially stronger contextual effects on adolescent smoking initiation in rural areas 

than in suburban or urban areas. In urban schools, current smokers are much less likely to quit if 

school-level smoking prevalence is high, and while we observe this association across all 

urbanicity designations, it does not reach statistical significance in suburban or rural areas. Finally, 

while we observe that the 3rd and 4th quartile of network density is significantly associated with 

lower likelihood of smoking cessation in rural schools relative to the 1st quartile of network density, 

the effect estimates of network density quartiles are potentially non-linear in suburban and urban 

areas, although these estimates are not statistically significant.  
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Results from the simulation models demonstrate that racial and urbanicity differences in 

adolescent smoking behavior can be generated from a simple diffusion assumption through 

network structure alone. In other words, differences in network configurations by these factors are 

sufficient to generate the higher smoking prevalence in rural and high density schools. However, 

these differences vary greatly between different combinations of baseline values and the 

magnitude of the influence of peers. This suggests a potential feedback between peer selection and 

peer influence in a way that is strongly influenced by network structure. This may be due to a 

variety of factors, including what friendship means in different contexts, and how they manifest as 

explicit pathways through which influence can change behavior. The possibility for differences to 

emerge in smoking outcomes by urbanicity and race, demonstrate that the effects of network 

structure cannot be attributed to race alone, although individual network communities and 

subsequent structure may differ by race across similar urbanicity designations. Similarly, we 

observe that urbanicity differences in network structure may overpower the peer effects of racial 

differences in network structure, given the patterning of higher prevalence of smoking among 

blacks in rural areas than whites in urban areas.  

We observe that model results differ by sex, with females propagating smoking prevalence 

more effectively than males in our simulations. Smoking prevalence is known to be higher in male 

versus female adolescents (Table 3.1),24 which could be due to differences in tendencies towards 

risk behaviors by sex,25 in addition to differences in social structure by sex.26 However, while 

centrality and degree measures may point to popularity within a network, perhaps as a proxy for 

peer influence, these measures are not largely different between males and females in the network 

data used in this chapter (Table 4.3 and Table C3). Notably, female and male networks are not 

independent from each other in the Add Health representations, so the larger smoking prevalence 

values among females in our simulation develops from a network structure that includes 

connections between all sex combinations. More complex characteristics of network influence 

may therefore be responsible for the emergence of these differences, resulting in females 

experiencing peer influence to a greater, and perhaps different, extent than males. This outcome is 

potentially supported by studies that find that  adolescent females are less likely to quit smoking 

once they start,27 and with female adolescent smoking being linked to concerns regarding weight 

and appearance.28 Additionally, the disparate results by sex presented here and in Chapter 3 (Table 
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B8) perhaps lend credence to the hypothesis that adolescent female social networks perpetuate 

smoking behavior more easily than adolescent male social networks on average.26,29  

There are several limitations to the results of this study. The first obvious limitation is in 

its abstract nature. We do not make predictions, nor use individual-level empirical data other than 

the peer network, to generate our results, and thus, the absolute outcomes produced by this model 

are not directly interpretable. Additionally, like any other mechanistic simulation model, it is a 

simplified representation of the world. While the proportion of friends that smoke changes at each 

time step, and in turn, changes the magnitude and direction of smoking influence over time, we do 

not implement dynamic networks of changing friends and may observe substantially different 

results if network properties change dramatically as a result. Finally, the outcomes of this model 

only suggest a potential explanation for the outcomes that have been empirically observed and 

analyzed by statistical models, and cannot independently demonstrate that empirical differences 

in smoking by urbanicity is truly caused by network structure.  

However, these limitations are also potential strengths of the model. While the differences 

in smoking prevalence by urbanicity have been well documented, the overall simplicity of the 

model isolates one mechanism: peer influence, in the context of social network structure, and 

independently observes differences in the diffusion of smoking behavior by a designation (i.e., 

urbanicity, race, sex, and network density) that have no bearing on the diffusion mechanism. This 

suggests that diffusion, combined with network structure, are sufficient in tandem to generate the 

differences in smoking prevalence by these factors, independent and absent of all other covariates.  

Finally, our results suggest that the same networks can generate dramatically different 

outcomes due only to the relative baseline initiation and cessation rates, and the relative peer 

influence on initiation and cessation. Social networks that propagate smoking behavior can also 

eliminate smoking behavior, or accelerate its decline. With the changing landscape of attitudes 

toward tobacco and the tobacco policy environment in the US, non-smokers may eventually exert 

greater influence on quitting than current smokers have on smoking initiation. This phenomenon 

could result in synergistic effects on decreasing smoking prevalence through pathways of social 

influence. The results of our model support prior research findings that peer influence can 

positively impact smoking prevalence over time.30 Thus, network based interventions to enhance 

peer effects against tobacco initiation and encouraging cessation through the empowerment of non-
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smokers and anti-tobacco use behavior more generally may be effective tobacco control 

interventions.31,32  

 

Conclusions 

Computational modeling as an exercise alone encourages researchers to explicitly state 

their assumptions and justify the inclusion of any hypothesized cause by considering it within a 

set of contextual processes that result in an outcome.33 This method of inquiry differs from the 

process of variable selection in statistics. Here, the stratifying model results by “school network 

density” or “urbanicity” in a generalized linear model suggests a causal hypothesis that accounts 

for differences by these variables when determining the effects of peer influence on smoking 

behavior. Yet the quality of living in a “rural” area, for example, is not itself responsible for the 

mechanism that perpetuates its relationship with other risk factors and smoking behavior. Rather, 

it is in the experience of living in a rural area that is hypothesized to contribute to the differences 

observed by urbanicity in smoking behavior resulting from peer influence. In this chapter, we 

determined how urbanicity, race, and sex, could function through network density to change the 

effects of peer influence on smoking behavior. By explicitly describing (via functions) how these 

peer influence processes can generate the differences that we see observe in the patterning of 

smoking behavior by urbanicity, race, and sex, we identify a potential sufficient cause process and 

framework. As a result, the flexibility to define such mechanisms and processes can help us 

develop better causal frameworks while providing additional insights into smoking etiology.  
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Table 4.1 Adjusted risk ratios for smoking initiation by selected risk factors, stratified by school urbanicity designations, Add Health, 
2001-2002.
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Table 4.2 Summary glossary of network measures described in Tables 4.3  

 
 
Table 4.3 School and individual level descriptive measures, stratified by urbanicity and density tertiles. 

Network Term Definition

Excess	Degree
The number of ties that smoking initiation or cessation influence can spread through, excluding the tie that is 
responsible for influencing the ego previously. More generally, measures  the efficiency of a network to 
propagate communicable features (e.g., infections, information, health behaviors). 

Clustering	Coefficient Quantifies the extent to which an adolescent's friends are to also be friends with each other
Out-Degree	Centrality The fraction of total nodes in the overall network of an adolescent's nominated friends
Shortest	Paths The shortest number of connections that it takes for a focal adolescent to reach a target adolescent
Betweenness	Centrality The number of shortest paths between two other adolescents that pass through the focal adolescent
Closeness	Centrality The sum of the length of the paths that connect an one adolescent to all other adolescents
Modularity A measure of how connected groups of friends are from one another in the network
Average	Race	Heterogeneity A measure of the extent to which the race of nominated friends differ from that of the adolescent
Eigenvector	Centrality The sum of the importance of the alters that nominate the ego as their friend.

Measure Urban (N=20410) Standard Deviation Suburban (N=41018) Standard Deviation Rural (N=7980) Standard Deviation

General Measures

Number of Schools 31 63 18
Female (%) 50.833 48.844 49.424
White (%) 42.959 60.103 69.649
Other (%) 26.546 18.411 10.025
Black (%) 19.696 16.454 17.393
Network Measures

Average density 0.341 0.098 0.437 0.091 0.512 0.034
Average degree 7.157 5.239 8.829 5.676 10.252 5.688
Average in-degree 3.579 3.275 4.415 3.712 5.126 3.910
Average out-degree 3.579 2.933 4.415 3.052 5.126 3.015
Excess degree 9.419 1.887 10.889 1.839 12.154 0.923
Average clustering coefficient 0.169 0.207 0.180 0.196 0.204 0.188
Average out-degree centrality 0.006 0.009 0.007 0.012 0.011 0.015
Average betweeness centrality 0.004 0.008 0.005 0.007 0.007 0.012
Average closeness centrality 0.098 0.069 0.127 0.072 0.164 0.072
Average race heterogeneity 0.358 0.228 0.263 0.221 0.190 0.183
Average eigenvector centrality 0.011 0.037 0.012 0.037 0.017 0.044

Measure

Density Tertile 1 
(N=21730)

Standard Deviation
Density Tertile 2 

(N=24521)
Standard Deviation

Density Tertile 3 
(N=23157)

Standard Deviation

General Measures

Number of School 31 38 43
Female (%) 47.335 51.030 49.899
White (%) 34.634 61.180 71.041
Other (%) 29.986 17.842 12.433
Black (%) 25.081 15.354 12.705
Urban (person) 11587 7217 1606
Suburan (person) 10143 15572 15303
Rural (person) 0 1732 6248
Urban (school) 18 8 5
Suburan (school) 13 27 23
Rural (school) 0 3 15
Network Measures

Average degree 6.035 4.634 8.779 5.437 10.521 5.825
Average in-degree 3.017 2.840 4.390 3.565 5.260 4.042
Average out-degree 3.017 2.707 4.390 2.993 5.260 3.016
Excess degree 8.306 1.291 10.864 0.899 12.481 0.812
Average clustering coefficient 0.165 0.223 0.180 0.192 0.193 0.179
Average out-degree centrality 0.004 0.006 0.007 0.009 0.010 0.017
Average betweeness centrality 0.004 0.008 0.005 0.009 0.006 0.008
Average closeness centrality 0.074 0.060 0.129 0.066 0.161 0.068
Average race heterogeneity 0.337 0.232 0.281 0.228 0.234 0.205
Average eigenvector centrality 0.009 0.037 0.012 0.037 0.014 0.041
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Figure 4.1 Time series plots of smoking prevalence by urbanicity designations and density terciles for all OR_init, OR_quit, 
Baseline_start, and Baseline_quit combinations. Each column represents a different combination of OR_init and OR_quit values, and 
each row represents a different Baseline_start and Baseline_quit combination. 
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Figure 4.2 Time series plots of smoking prevalence by race for all OR_init, OR_quit, Baseline_start, and Baseline_quit combinations. 
Each column represents a different combination of OR_init and OR_quit values, and each row represents a different Baseline_start 
and Baseline_quit combination. 
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Figure 4.3 Time series plots of smoking prevalence by race, stratified by urbanicity, for all OR_init, OR_quit, Baseline_start, and Baseline_quit 
combinations. Each column represents a different combination of OR_init and OR_quit values, and each row represents a different Baseline_start 
and Baseline_quit combination.  
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Figure 4.4 Time series plots of smoking prevalence by sex for all OR_init, OR_quit, Baseline_start, and Baseline_quit combinations. 
Each column represents a different combination of OR_init and OR_quit values, and each row represents a different Baseline_start 
and Baseline_quit combination.
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Appendix C: Supplemental Material for Chapter 4 

 

Model Mechanisms and Pseudo Code 

 
C 1.1 Transition Probabilities 

Transition probability calculations are taken from the functional form of logistic 

regression to better connect an understanding of the underlying theory of statistical methods with 

mechanistic computational methods. That is, the percentage of friends that smoke should behave 

as a weight on the odds of transition at baseline, which we assume in this model to control for all 

other factors.  We then convert these odds into a probability to control for the likelihood of 

transition between states with parameters.  

! = 1
1 + %&'()*+,-* 

 

Where b is the baseline transition probability assuming no friendship influence, and 

baseline is the baseline odds of transitioning from one smoking state to another. 

%&'()*+,-* = 1 − !
!  

!/0%123% = −log	 1 − !!  

8 9:/30292;3 < =
1

1 + %&'()*+,-*&b∗>?@)ABC 

 

Where pofst-1 is the percentage of friends at the previous time step that generate the 

influence to change states. These are the friends that have different smoking states than the 

smoking state of the focal adolescent and emerge from the network connections of the focal 

adolescents in the mode
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b = log	(EF) 

EF =
8 9:/30292;3

1 − 8 9:/30292;3
( !00
1 − !00)

 

Our variable model parameters include b and baseline, which are referred to throughout 

the text as OR_init and OR_quit, along with Baseline_start and Baseline_quit, respectively. 

 

C 1.2 Model Pseudo Code 

 
OBJECT agent; 
proportion of friends that smoke; 
proportion of friends that are non-smokers; 
school id; 
personal id; 

 
PROGRAM network_smoking_model; 
initialize agents according to data from 1994 Add Health Network; 
initialize smokers probabilistically (uniform) by weighted population smoking 
prevalence 1994 Add Health Data (29%); 

for every time step from 1 to 150: 
repeat for all agents in the model:  

if non-smoker: 
start at P(start_smoking) 

else: 
quit at P(quit_smoking) 

calculate the percentage of friends that are smokers for next time step; 
calculate the percentage of friends that are non-smokers for next time 
step;  

calculate aggregates; 
write model and agent statistics to output; 
clear model and agent statistics;  
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Table C1 Unadjusted risk ratios for smoking initiation and cessation by selected risk factors, stratified by school urbanicity designations, Add 
Health, 2001-2002. 
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Table C2 Full model results of adjusted risk ratios for smoking initiation and cessation by selected risk 
factors, stratified by school network density, Add Health, 2001-2002. 
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Table C3 Individual level descriptive statistics of network measures, stratified by sex. 
 

Measure
Female 

(N=34354)
Standard 
Deviation

Male 
(N=34554)

Standard 
Deviation

Network Measures
Average degree 9.035 5.512 8.004 5.713
Average in-degree 4.461 3.570 4.057 3.713
Average out-degree 4.574 2.917 3.948 3.147
Excess degree 10.677 1.878 10.532 2.054
Average clustering coefficient 0.193 0.197 0.168 0.199
Average out-degree centrality 0.008 0.012 0.007 0.012
Average betweeness centrality 0.005 0.009 0.004 0.008
Average closeness centrality 0.131 0.068 0.115 0.078
Average race heterogeneity 0.283 0.223 0.280 0.228
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Figure C1 Model results comparing smoking prevalence values stratified by urbanicity and density tertiles, averaged over last 5 model time steps, 
where Baseline_start = 0.01 and Baseline_quit = 0.01.
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Figure C2 Model results comparing smoking prevalence values stratified by urbanicity and density tertiles, averaged over last 5 model time steps, 
where Baseline_start = 0.005 and Baseline_quit = 0.01.
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Figure C3 Model results comparing smoking prevalence values stratified by urbanicity and density tertiles, averaged over last 5 model time steps, 
where Baseline_start = 0.01 and Baseline_quit = 0.005. 
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CHAPTER 5 

 

Conclusions: Advancing Causal Frameworks in Epidemiology 

 

Background 

What constitutes the explanation of a social phenomenon?  Epstein suggests that the answer 

to the question of “can you explain it?” can be better interpreted as “can you grow it?”1 That is, 

growing a phenomenon necessarily means that we can provide a plausible explanation of its 

potential causes. This suggestion appropriately integrates with Rothman’s sufficient-component 

cause model which proposes that there can exist some set of component causes, that when 

occurring together, are sufficient to result in disease.2 While the latter of these two examinations 

provides a theoretical basis for causality, the former proposes a practical application of sufficient-

component cause theory, with important implications for causal thinking in epidemiology. In the 

following sections, I conclude this dissertation by discussing 1) some existing conceptualizations 

of causal pathways in traditional epidemiology; 2) how combining statistical and computational 

models can provide better insights into causality frameworks of smoking behavior than either 

method alone; 3) how a better understanding of these insights, even in abstract forms such as those 

presented in previous chapters, can provide insights into potential causal mechanisms; and 4) 

directions for future work on the topics of this dissertation.  

 

Discussion of Causality 

Causality in History, Science, and Epidemiology 

The field of epidemiology as a scientific discipline with roots in biology, logic, and the 

philosophy of science, for which applied statistics is only a tool.3 Concepts such as causality and 

counterfactuals, which are pillars of epidemiologic theory, logic, and complex systems, also exist 

as fundamental theories of knowledge throughout the history of science and philosophy. A 

commonly cited philosopher in the epidemiologic (and epistemological) methods literature is 
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David Hume. In his endeavor to define knowledge, Hume provides the first explicit 

conceptualization of counterfactual theory when discussing causality in the Enquiry Concerning 

Human Understanding, stating that “if the first object had not been, the second never had existed.”4 

Hill references this concept of temporality in his set of criteria in determining causality,5 with 

Popper later refining this understanding of causality in epidemiology by stressing that science 

progresses through rejection and modifications of causal hypotheses, not through proof of causality 

itself.6 These ideas are all later referenced by Rothman as “basic concepts” of causal inference in 

epidemiology.2 Broad conceptualizations of disease etiology are discussed through causal 

frameworks in both historical and modern epidemiology, beginning with germ theory 

representations of monocausal frameworks (i.e., necessary causes) such the relationship between 

microorganisms and disease, to the etiological connection between cigarette smoking and a variety 

of negative health outcomes, and more recently through directed acyclic graphs (DAGs), a 

graphical summarization of multiple causal links between risk factors to an outcome of interest.  

All these notions of causality in epidemiology are constrained by temporal directionality: 

cause(s), then effect; exposure(s), then disease. In practice, this relationship is complicated by 

heterogeneity of causal types, which are representations of how the same exposure can result in 

different outcomes across individuals due to between-individual characteristic differences (i.e., 

comparability). Modern epidemiologic practice designates four causal types: doomed, immune, 

preventive, and causal.2 Causal types are often presented through counterfactual 

conceptualizations of the relationships between exposures and disease.2,7 As an example, if the 

presence of an exposure is sufficient to explain the occurrence of disease among an individual of 

the “causal” causal type, the counterfactual explanation of the causal effect requires that the disease 

would not have occurred in the absence of that same exposure. This explanation accounts for two 

different, though intersecting, causal theories. In their explanation of sufficient-component cause 

models, Greenland and Brumbak portray causal mechanisms as the fundamental unit of analysis, 

instead of the person-level unit of analysis used in the causal types theory discussed previously.2 

Yet the two must interrelate to provide a full understanding of the causal mechanisms at play 

between exposures and disease. That is, if someone is immune to an exposure for a disease, yet 

that same exposure is causal for another individual for the same disease, the same sufficient cause 

conceptualization of the exposure cannot apply to both individuals.  
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The framework of causal types and sufficient-component cause models imply three broad 

and interfacing concepts of populations that researchers must consider when performing 

epidemiologic studies: 1) measured and unmeasured heterogeneity of individual traits, 2) the 

relationships between these traits to exposures, and 3) causal processes contributing to the 

occurrence of disease. These considerations provide natural support for reductionist (i.e., 

statistical) approaches to estimate individual-level effects of exposures on diseases from 

population data. That is, if a defined exposure is causal for a disease, we should be able to observe 

a progression towards disease among those that are exposed, and from a population level 

perspective, these exposed individuals should be similar in some traits, and will aggregate to 

represent the portion of the population that presents with disease. The same must be true in the 

opposite direction, we should be able to make broad causal inferences about the relationship 

between disease and exposure at the person level by isolating a specific risk factor from an 

aggregate population level. After all, disease must occur in individuals, and if we assume that the 

population is simply an aggregate of individuals, then we should be able to make both bottom-up 

and top-down inferences. 

 

Establishing Causality in Epidemiology 

Despite the rich history of causal theory and scientific interrogation of natural and social 

processes contributing to the epidemiologic causal frameworks described previously, these 

explanations fall short of independently distinguishing causal from non-causal associations, and 

definitive tests of causality in epidemiology remain elusive. To address the prior shortcomings of 

causal theory in epidemiology, Hill suggested a set of considerations to be accounted for when 

attempting to make causal inferences: strength, consistency, specificity, temporarily, biological 

gradient, plausibility, coherence, experimental evidence, and analogy.2  In fact, Hill used his work 

with Doll that established the relationship between smoking and lung cancer as example for the 

use of the criteria.5 This list is an expansion of the criteria offered in the landmark U.S. Surgeon 

General’s report on Smoking and Health in 1964, which included the review of over 7,000 

scientific articles, ultimately stating that cigarettes are causally related to lung cancer and other 

health conditions.8  

An overarching goal of the modern epidemiologic approach is to establish a sufficient body 

of evidence to support a causal relationship between an exposure of interest and an outcome of 
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interest. Such approaches are traditionally based in regression analyses and, from a philosophical 

perspective, require two key components: 1) comprehensive and unbiased data for exposures of 

interest, relevant covariates, and the outcome of interest, and 2) a unidirectional causal framework 

providing support for the relationships tested (i.e., directed acyclic graphs). When examining the 

relationship between social influence and cigarette smoking, the body of scientific evidence 

supporting this causal relationship draws from a mixture of epidemiological, sociological, and 

economical research – many of which use regression analyses to examine the association.9–14	

Expanding simple regression models to account for correlated data and time dependencies using 

generalized estimating equations,15 time series analysis,16 and marginal structural equation 

models,17 provide additional methods to account for the inherent complexity of the mechanisms of 

social influence and subsequent behavioral outcomes. Nevertheless, despite the strength and 

formalization of regression analyses for examining patterns and magnitudes of relationships 

between indicator variables and outcomes, drawing causal conclusions (i.e., if-then) while using 

these methods remains challenging.  

Beyond limitations in the statistical approaches used in epidemiology to isolate the 

independent effects of one risk factor against an outcome, analyzing outcomes from observational 

studies that attempt to mimic randomized experiments18 also limits the scientific pursuit of 

causality. For example, the intermixing of risk factors and disease outcomes in datasets creates 

difficulties in determining what associations are due to the absence of accounting for confounding 

effects of various sources (e.g., missing data, study design, failing to account for unknown 

confounders) relative to what is truly causal of the outcomes of interest. The possible contributors 

to the causal effects occurring between the exposure and the disease in the observed world are 

theoretically infinite. Thus, as done with smoking and various negative health outcomes in the 

1964 Surgeon General’s Report,8 the practical requirements for establishing causation, or even 

strong enough associations to warrant policy intervention, requires enormous human capital, years 

of focused inquiry, multiple robust datasets, consistent outcomes in both the form of magnitude 

and outcome of the effect, and substantial contributions from multiple disciplines of science.2 

Epidemiologists are tasked with satisfying a large subset of requirements when making causal 

inference, while also bearing brunt of hundreds of years of science applied to problems of the 

highest dimension: humans, their life history, their relationships and interactions with each other, 

and their environments.  
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A potential tool that may help us better understand the problem of causality in applied 

epidemiologic practice is the use of computational modeling and complex systems theory. In 

contrast to statistical methods, computational models provide flexibility when the pertinent data is 

insufficient or unavailable.19–22 Rather than attempt to understand the data through effect isolation 

and reductionist methods, computational models can, following Epstein’s logic, potentially grow 

and reproduce the same observed patterns of data through a set of causal hypotheses. These models 

can then provide insights into the mechanisms that generate observed patterns in the real world if 

their hypothesized processes are feasible explanations of the outcome. The finite environment of 

a model is limited to the processes and traits that the researchers choose to include. As a result, the 

combination of the processes and assumptions of various mechanisms in the computational model 

are, by definition, sufficient causes for every outcome that the model can produce. Thus, the 

application of computational modeling provides a method to validate the causal frameworks of 

statistical models.   

 

Added Value from Computational Models in Causality and Epidemiology 

The benefits of mechanistic models, applied to the field of epidemiology, are numerous 

and public health science may benefit from expanding their application towards causal 

frameworks. Here, I focus primarily on ABMs given their typical application in growing 

population-level patterns from individual-level processes. The most commonly cited ABMs in the 

complex systems literature are substantiated on the notion that hypothesized mechanisms 

contribute to the emergence of a phenomenon, effectively through component cause theory. For 

example, Schelling’s segregation model was simple enough to implement on a checkerboard with 

nickels and dimes, yet sufficient to explain a simple causal mechanism for segregation: slight 

preference for homophily.23 Similarly, Doringo demonstrated that solution sharing, otherwise 

known as swarm intelligence, is sufficient to define path optimization between two points, such as 

that between an ant hive and a food colony.24 Both models do not use empirical data collected 

from observational or controlled studies in the models themselves. Instead, these models use 

existing theories derived from a large body of empirical studies (i.e., those utilizing statistics) to 

develop data-free algorithms of interaction that produce patterns observed in the real world. The 

outcomes of the models are thus able to demonstrate the potential causal underpinnings of said 

patterns in a closed-solution environment, free from unobserved confounding that hounds existing 
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statistical methods or the excessive complexity that may obfuscate potentially important 

mechanisms or processes. In epidemiologic research, robust abstract models have presented 

numerous opportunities for a better understanding of population health, although they remain 

isolated examples. In cancer, multistage carcinogenesis models, such as the Armitage-Doll 

model25 or the Two-Stage clonal expansion model26–28 can reproduce the population patterns of 

cancer incidence based on minimal assumptions, and have been used since the 1950s to generate 

hypotheses about cancer mechanisms and epidemiology. Similarly, in infectious disease 

epidemiology, the SIR (Susceptible-Infectious-Recovered) model by Kermack-McKentrick29 is 

based on simple principles of disease transmission, and can produce simulated population patterns 

of disease consistent with observed epidemics.30–32 These models have been able to shed light on 

the mechanisms of herd immunity, and has led to the evolution of a mathematical (infectious) 

disease modeling subfield in epidemiology. Coupled with empirical data and statistical methods, 

the conceptual frameworks of these models provide powerful insights into the fundamental causes 

of observed phenomenon. Yet the dearth of such models in social epidemiology leave much to be 

explored.  

The utility of systems science methods in social epidemiology has been previously 

discussed in the literature with Auchincloss,33 Diez Roux34 and Galea35 who all suggest that agent-

based models (ABMs) are likely to contribute to an understanding of social dynamics and towards 

the development of theories of disease causality. A discussion of the distinct traits of ABMs 

compared to other computational modeling methods can be found in Appendix A2.1. Despite this 

potential, ABMs in the epidemiologic literature are often implemented as a data-driven method 

rather than as a theoretical one. Examples of this include recent attempts by Marshall and Galea to 

formalize the role of ABMs in epidemiologic theory of causality by contextualizing the method in 

the counterfactual frameworks36, El-Sayed et al.’s exploration of obesity interventions,37 Hennessy 

et al.’s step-by-step guide to build an ABM to explore obesity interventions,38 and Yang et al.’s 

analysis of the contributions of land use and socioeconomic differences in walking behavior.39 One 

study by Cerdá et al. includes full regression models and corresponding beta estimates for risk 

factors in the ABM to determine the probability of violence perpetration.40 While these studies all 

utilize the ability of ABMs to account for interference, interdependence, and interaction, their 

primary focus is not on building causal frameworks. Rather, the previously discussed studies use 

ABMs within existing epidemiologic frameworks to quantify counterfactual effect estimates. 
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When examining the applications of ABMs in the epidemiologic literature, Auchincloss et al.41 is 

the only publication, to our knowledge, to approach modeling from the sufficient cause perspective 

in the epidemiologic sciences literature. This dearth of ABMs exploring sufficient cause 

mechanisms is perhaps due to modeling philosophy in epidemiology, which Galea has described 

as a “pragmatic” field.42 Moreover, even simple mechanistic models take substantially more time 

and effort to understand, build, and tune, relative to statistical methods, for which existing 

frameworks of analyses and black box software,43 are readily available. Ethical, time, and resource 

constraints limit epidemiologists to analyzing outcomes from observational studies that attempt to 

mimic randomized experiments. Yet as Hernán observes, in attempting to obtain and scrutinize 

high-quality data from many individuals using statistical methods of association, the role of theory 

in epidemiology has been minimized.18  

Throughout this dissertation, we sought to present a different understanding of ABMs 

through highlighting the importance of epidemiologic theory from a causal framework perspective 

(i.e., providing generalizable and broader explanations for why we observe certain statistical 

associations from the empirical data). Our goal is to demonstrate an instance of a causality in an 

epidemiologic framework that is relatively free of linear assumptions and data driven results (i.e., 

in comparison to statistical methods, Chapter 4). We also highlight the importance of applied 

statistical methods in revealing hypothesized causal mechanisms that can be further explored by 

sufficient cause computational models (Chapter 3). Additionally, statistical models provide 

quantitative boundaries representative of the real world, such that when abstract models function 

within these boundaries, their results can have real world implications (Chapter 2).  

 

Summary of Findings 

 

In the second chapter, we observe that based on current knowledge of the patterns of adult 

e-cigarette use by smoking status and the heavy concentration of e-cigarette use among current 

smokers, the simulated effects of e-cigarettes on smoking cessation generate substantially larger 

changes to smoking prevalence compared to their effects on smoking initiation.44 Additionally, 

our findings do not change, even when the model accounts for large initiation effects whereby 

youth and adult smoking initiation rates escalate due to e-cigarettes.45 Overall, we observe that 

under current conditions, the cessation effects of e-cigarettes on adult smoking offset these 
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undesirable “gateway” effect even if adolescents initiate e-cigarette use at higher rates than 

currently observed, and e-cigarettes increase smoking initiation among these adolescents by 

substantially. This model also considers the influence of population levels of e-cigarette use on 

individual likelihood of e-cigarette initiation. Additionally, we consider feedbacks of e-cigarette 

and cigarette use influence at the individual level to initiate e-cigarettes, smoking, or to quit 

smoking.  Despite lacking predictive power, the results of this model quantify relative estimates, 

and highlight the how the modeling process itself can contribute to a better understanding of a 

complex public health issue from the perspective of populations and individuals. While robust 

longitudinal data on e-cigarette initiation and prevalence patterns are still in development, 

simulation models such as ours can help to determine the best public policies that tip the balance 

toward desirable public health outcomes. 

The third and fourth chapter suggests that overall differences observed in smoking 

prevalence by urbanicity, network density, race, and sex can be explained by the interfacing of 

differences in network structure with peer influence. Computational modeling as an exercise alone 

encourages researchers to explicitly state their assumptions and justify the inclusion of any 

hypothesized cause by considering it within a set of contextual processes that result in an 

outcome.20 This method of inquiry differs from the process of variable selection in statistics. In 

these chapters, stratifying model results by “school network density,” “urbanicity,” or “race” in a 

generalized linear model suggests a causal hypothesis that accounts for differences by these 

variables when determining the effects of peer influence on smoking behavior. Yet the quality of 

living in a “rural” area, for example, is not itself responsible for the mechanism that perpetuates 

its relationship with other risk factors and smoking behavior. Rather, it is in the experience of 

living in a rural area that is can contribute to the differences observed by urbanicity in smoking 

behavior resulting from peer influence. In mechanistic framework, we determine how urbanicity 

changes individual-level experiences by explicitly describing (via functions) how these processes 

can generate the differences that we see observe the magnitude and direction of the effect that 

urbanicity may have on the relationship between peer influence and smoking behavior. This 

flexibility to define mechanisms and processes can help us develop better frameworks of causality 

while providing additional insights into smoking etiology.  

Hernán suggests that “many practicing epidemiologists, attached to their cherished data, 

may not be prepared to jump head first into the world of agent-based modeling.”18 The continued 
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dearth of abstract ABMs in social epidemiology suggest that many are perhaps still unwilling to 

embrace the theoretical benefits of the method over its ability to generate quantitative outcomes. 

However, this patterning of published ABMs in the epidemiologic literature may be a symptom of 

epidemiologists embracing the added value of modeling, yet using ABMs in situations that are 

suboptimal, when other computational or advanced statistical methodologies are better suited to 

the stated problems. Ultimately, we find many published ABMs justifying the approach by stating 

that traditional epidemiologic methods do not account for nonlinearity, feedbacks of exposures, or 

correlated data.46–49 These claims are somewhat deceiving in the face of advanced statistical 

methods, for example the maximum likelihood and generalized estimating equation techniques by 

Vanderweele et. al.50,51  

In consideration of the criticisms of the still-developing literature that applies and discusses 

the utility of ABMs and mechanistic models,51 the outcomes of this this dissertation attempt to 

provide a stepping stone towards the development of a better understanding of the potential 

theoretical and scientific value added by abstract computational models to epidemiologic research. 

The outcomes described in this chapter are not meant to simply demonstrate potential and abstract 

causal mechanisms of the differences in smoking behavior across a variety of contexts with 

varying assumptions. Rather, these outcomes are an extension of an enormous body of statistical 

models that analyze population representative data, which provided insights and practical 

implications for the mechanistic models built in this dissertation. As a result, we can infer potential 

real world implications of what would otherwise only be considered theoretical results. In other 

words, while these results are not predictive, they provide greater insight into the inner workings 

of tobacco use among adults and adolescents, beyond quantitative estimates, and suggesting 

sufficient cause mechanisms of real world patterning. These mechanisms can contribute to a better 

understanding of why we observe the results of statistical outcomes, thereby providing 

justifications and support for public health intervention. Our results suggest evidence to consider 

when determining the appropriate e-cigarette regulation policies, and in the development of 

network based interventions to encourage adolescents to abstain from or quit smoking. In 

environments where vast amounts of time and money are invested into better understanding causal 

mechanisms of health behavior, computational models in combination with statistical models can 

provide better guidance for intervention and randomized experiments than either method 

independently.  
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This dissertation provides a large platform for future research in the application of 

computational modeling methods towards tobacco control epidemiology. As longitudinal data of 

e-cigarettes become more available, the model presented in Chapter 2 can be extended to account 

for additional factors, including excess mortality due to e-cigarette use, as well as incorporating 

additional tobacco products such as smokeless tobacco or heat not burn cigarettes. Additionally, 

from a mechanistic standpoint, we could tie the e-cigarette model from Chapter 2 into the network 

models of Chapter 3 and 4 to provide insights into potential tipping points of peer influence, and 

worst- and base- case scenarios of cigarette smoking behavior resulting from propagation of e-

cigarette use through social networks. Finally, we could extend the findings in Chapter 3 and 4 to 

provide a standardized framework of validating causal pathways considered in statistical models 

through the application of mechanistic simulation models more broadly. The practice of science 

has begun an interdisciplinary integration process that has been able to expand our understanding 

of nature and social systems. Mathematics and biology integrate to better understand cancer from 

a cellular level,52 while physics and sociology have united to contribute an entirely new 

understanding of social science through the study of networks.53,54 This dissertation attempts to tie 

understandings from two already vastly interdisciplinary fields: complex systems and 

epidemiology. It is with feelings of great anticipation that these two disciplines can standardize 

their understanding of one another, such that the added value of computational models can extend 

far beyond fitting models to data and prediction of future disease dynamics, to providing causal 

frameworks for revealing the underlying mechanisms of disease and health behavior. 
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